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ABSTRACT OF THE DISSERTATION 

 

Inverse Solutions of Convective Heat Transfer Problems 

 

By ARDESHIR BANGIAN TABRIZI 

 

Dissertation Director:  

Yogesh Jaluria 

 

Inverse problems are well known in nearly every discipline of science and engineering. 

In mechanical engineering, in particular, inverse heat transfer problems have always been 

a major focus for research and improvement. Inverse heat transfer solutions are usually 

needed when direct measurement of a boundary condition, commonly in the form of 

temperature, or a thermophysical property of a material, is not feasible. Estimating the 

aerodynamic heating on a reentering shuttle heat shields or approximating the 

temperature dependence of thermal conductivity of a cooled ingot during steel tempering 

are examples of inverse heat transfer applications in engineering. 

A new inverse methodology to tackle the inverse heat convection problem of a wall 

plume is studied and presented here. A detailed study of the forward problem is 

developed, and the results are used to build the inverse solution methodology. Through 
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studying the forward problem, unique interpolating functions relating plume heat source 

strength and location to various flow features such as steady-state temperature on the 

wall downstream of the plume, are developed. These functions would form up a system 

of equations through which plume source strength and location are estimated. A search-

based optimization method, particle swarm optimization (PSO), is used to minimize the 

estimation error through improving the system of equations.  

In the first study, numerically simulated steady-state laminar and turbulent wall plume 

flows are considered. Temperature variations on the wall prove to have a unique 

correlation with the heat input and location of the plume. Our proposed method 

formulates these relations into mathematical functions for distinct locations on the wall, 

downstream of the plume. PSO would choose the best pair, or more, of locations on the 

wall to read the temperatures and form up a system of equations to solve for plume heat 

source strength and location. Results demonstrate high accuracy in estimating both 

unknowns. 

The second study focuses on the transient behavior of the laminar wall plume flow. It is 

shown that the time it takes for the temperature, at any given location downstream of the 

flow, to reach a maximum across the boundary layer is related to plume heat input and 

location. The methodology formulates these functions and PSO would find the optimal 

data points on the wall to form up the system of equations. The results of this study also 

demonstrate high accuracy in estimating both plume strength and location. 

The third study is about testing the methodology against experimental data. An 

experiment setup of the wall plume problem was built and temperatures on the wall 

downstream of the plume were measured. To test the robustness of the methodology, the 
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same relative functions derived in the first study are applied to the experimental data to 

great success. The inverse solution produces accurate estimations of the heat input and 

source location with the experiment data as well. 

The ultimate goal of this project is to provide an inverse solution to rapidly and accurately 

respond in applications that include free convection heat transfer, such as overheating of 

electronic devices and small fires in data centers and small rooms. To that end, the 

proposed methodology could be considered as the first step towards a more complex and 

general inverse heat convection solution. 
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 Introduction 

 

A brief introduction to inverse heat transfer problems is discussed in this chapter along 

with the motivation and outline of the dissertation. 

1.1. Inverse Heat Transfer 

Inverse problems are widely common in nearly every engineering and science branch. In 

mechanical engineering, inverse problems have found application in the form of inverse 

heat transfer problems. Inverse heat transfer in engineering applications deals with 

situations where direct measurement of temperature or heat input is not feasible. Finding 

the temperature of the center of an optic furnace, estimating the aerodynamic heating of a 

reentering shuttle into the atmosphere, and estimating the cooling intensity parameter of a 

cast slab in a cooling process are some examples of inverse heat transfer applications. In 

the case of the reentering shuttle, for example, the aerodynamic heating of the shuttle is so 

high during reentry in the atmosphere that it is impossible to put a thermocouple on the 

surface of the shield. So, in order to find the heat flux on the shield,  thermocouples were 

placed beneath the hot shield surface and using inverse techniques the surface temperature 

was calculated.  

Inverse heat transfer problems usually include either heat conduction, convection or 

radiation and rarely, all or two of them combined. In a forward heat transfer problem, the 

boundary conditions of the solution domain are known, and governing equations are solved 

to find the temperature and if convection is involved, fluid velocity distributions. In inverse 

heat transfer problems, however, temperature distribution or part of it is known whereas  
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Figure 1-1- Forward and inverse heat conduction comparison 

 

the boundary conditions are unknown. Figure 1-1 shows the basic difference between a 

forward and an inverse two-dimensional heat conduction problem. 

While the forward heat transfer problems are considered mathematically well-posed, the 

inverse problems are categorized as ill-posed. For a problem to be considered well-posed, 

three conditions are needed. There should exist a solution, it should be unique, and it should 

be stable with regards to input data. If any of these conditions are not met, the problem is 

ill-posed. For an inverse heat transfer problem, the existence of a solution is actually a 
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matter of physical observation. If a certain solution domain exists, there needs to be 

boundary conditions. The uniqueness of the solution, however, can only be mathematically 

proven for a limited number of cases. It should also be noted that the inverse solutions are 

very sensitive to the accuracy of input, usually measured, data. Based on these 

observations, inverse heat transfer problems are categorized as ill-posed and as such there 

are no closed format solutions to them. The major challenge of an ill-posed problem is to 

apply certain techniques and adjustments to transform the problem into an approximate 

well-posed problem. These techniques usually rely heavily on numerical manipulations of 

the problem. With the power of computers rapidly increasing and readily available, the 

inverse heat transfer solutions have found momentum in the past three decades. 

The most common methods to tackle the inverse heat transfer problems are the iterative 

approaches. These methods utilize an initial guess for the unknown parameter and then 

solve the domain and compare the results with the given data. These methods would adjust 

and improve the initial guess according to the difference between the given data and the 

solved domain and continue this iterative process until an acceptable accuracy is achieved. 

Methods such as Levenberg-Marquardt and conjugate gradients fall into the classification 

of the iterative methods. The iterative methods are considered as a relatively reliable and 

accurate approach, especially for inverse heat conduction problems. Inverse heat 

convection, on the other hand, introduces an obstacle in the form of nonlinear forward 

PDEs. This nonlinearity combined with the ill-posed nature of the inverse problem has 

introduced new challenges. 
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1.2. Motivation 

A major setback for iterative methods is the time it takes to converge on the solution. Due 

to the nature of these methods, the entire domain needs to be solved again for each new 

problem even if other parameters, such as geometry and working fluid, remain the same. 

There are applications, such as small fires, that time is of the essence and a fast, reliable 

solution is desired. In addition, iterative methods usually assume that the forward data is 

available for the entire solution domain and so the optimum datum point can be found 

anywhere in the domain, however in application that is not the case. In many applications, 

the available data is limited to certain parts or locations in the geometry which adds another 

layer of difficulty to the already complex problem. 

The purpose of this study is proposing an approach that would take application limitation 

into account and provide a reliable and prompt solution. A very common free convection 

flow in the form of wall plume is studied numerically in both laminar and turbulent 

regimes. Both steady-state and transient temperature trends are then used to build an 

algorithm that is capable of providing inverse solutions with the absolute minimum input, 

within the acceptable estimation error range, instantly. In order to validate the robustness 

of the algorithm, an experimental setup was built and used to gather data. The present 

algorithm provided inverse solutions within an acceptable range for the experimental data 

as well as numerical data. 

1.3. Thesis Outline 

In this chapter, a brief overview of the inverse problems along with their applications and 

limitations was provided. In Chapter 2, related research on both the forward and inverse 
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problem is introduced. In Chapter 3, the inverse methodology and the optimization 

algorithm are discussed. Chapter 4 introduces the basics of the forward laminar problem 

and then discusses the solution to the inverse heat convection problem using steady-state 

temperature. Chapters 5 continues the laminar flow analysis and expands on the transient 

data and its application in solving inverse heat convection. Chapter 6 covers the turbulent 

free convection flow and the inverse problem using steady-state temperatures. Chapter 7 

describes the experimental setup and results.  A conclusion and summary of the thesis are 

presented in Chapter 8.  
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 Literature Review 

 

When the direct measurement of boundary or initial conditions, such as temperature or heat 

flux input of a thermal system is not accessible, inverse heat transfer methods are used to 

estimate them. While the forward problems often use the boundary and initial conditions 

to solve for the temperature and velocity distributions across the solution domain, inverse 

heat transfer problems approximate the unknown boundary conditions using the available 

data, usually in the form of temperature measurements at certain locations throughout the 

solution domain. Based on the definition by Hadamard [1], the inverse heat transfer 

problem is mathematically ill-posed [2]. While the forward heat problem has diffusion 

terms and can smooth the effect of error in boundary conditions, the inverse problem would 

amplify the errors of temperature measurements and lead to unacceptable results [2-4]. 

Being ill-posed also means that different inputs may lead to the same results thus making 

it more difficult to obtain a unique solution. Various methods and approaches have been 

studied over the years to overcome these challenges especially finding ways to limit the 

error amplification. Tikhonov [5], Alifanov [6-8] and Beck [2, 9] pioneered regularization 

and function estimation methods to approach the inverse heat transfer problems. These 

methods are used to reformulate the ill-posed inverse problem into an approximate well-

posed one.  

Most of the existing methods are developed to tackle inverse heat conduction problems 

(IHCP) [2, 6, 9-11]. Heat conduction has a linear forward problem and is very common in 

various thermal systems, so it attracted a lot of research. Inverse heat convection, on the 
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other hand, has a system of nonlinear governing equations. The more complicated forward 

problem means that many of the inverse methods that were developed for the IHCPs either 

needed modifications or could not be used in inverse convection studies. Huang and Ozisik 

[12] solved the wall heat flux in a fully developed channel flow using the temperature 

readings from inside the channel by applying both regular and modified conjugate gradient 

methods. Liu and Ozisik [13] used the same methods to find a time-varying heat flux on a 

wall in a fully developed turbulent channel flow. Hsu et al. [14] found both the inlet 

temperature and wall heat flux in a steady laminar flow in a circular duct. Knight et al. [15] 

estimated the temperature and velocity of a jet in a crosswind using an iterative method 

based on experimental and numerical data. VanderVeer and Jaluria [16] solved for strength 

and location of a plume in a crosswind by applying a predictor-corrector method on both 

numerical and experimental data using a proposed search shape. They concluded that the 

error can be reduced by increasing the number of measuring points. VanderVeer and Jaluria 

[17] optimized the number of measuring points in the search shape using Genetic 

algorithm. They then tested their optimized search shape on a jet in a crossflow to find the 

temperature and location of the jet with reasonable results [18]. Recently, Bangian-Tabrizi 

and Jaluria [19] used interpolative equations to relate steady-state temperature at any 

location downstream of a wall plume to plume strength and location. They then used the 

PSO optimization technique to find sensor locations on the wall and solved the system of 

equations consisted of each sensor`s respective interpolative equation, to solve for the 

plume strength and location. Na et al. [11] solved for heat transfer coefficient in a one-

dimensional heat transfer problem of a cooling body using a variation of PSO called 
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Quantum-behaved PSO (QPSO). A summary of the recent applications and ongoing 

researches of inverse heat transfer in the human body is provided by Scott [20].  

While the main focus of both forward and inverse heat convection problems is on studying 

the steady-state problems, there are attempts at solving transient problems as well. 

Prud’homme et al. [21] approximated a time-varying heat flux boundary condition with a 

single temperature sensor. They concluded that as the Rayleigh number increases the 

sensor needs to get closer to the source. Park and Chung [22] studied the inverse natural 

convection in a two-dimensional cavity to find a time-varying heat source without applying 

any simplifications on the Boussinesq equation. They found that a combination of modified 

and regular conjugate gradient methods yields the best result for their problem. Bangian-

Tabrizi and Jaluria [23] used the time it takes for the leading edge to reach downstream of 

a wall plume to solve the inverse heat convection problem. They found that the time at 

which the maximum temperature across the boundary layer is the highest has a unique 

correlation with the plume heat input and location.  

One of the fundamental flows studied in heat and mass transfer is the natural convection 

flow generated adjacent to a semi-infinite vertical plate with either constant temperature or 

heat flux boundary condition [24-26]. Ostrach [27] used a similarity solution approach to 

solve the steady-state, fully developed boundary flow next to an isothermal vertical flat 

plate. He then solved the resulting system of ODEs with numerical methods. His results 

were in good agreement with the experimental results of Schmidt and Beckmann [28]. 

Schmidt and Beckmann provided a complete theoretical and experimental study of the free 

convection of air adjacent to a vertical flat plate. Eckert [29] expanded Schmidt and 

Beckmann's experiments while Schuh [30] solved the problem for different Prandtl 
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numbers. Gregg and Sparrow [31] studied the laminar convection flow next to an isoflux 

wall. 

On the transient side of the problem, Siegel [32] used Karman-Pohlhausen integral 

approximation method to analyze the transient natural convection flow next to a vertical 

flat plate. Hellums and Churchill [33] studied both transient and steady-state natural 

convection flow over an isothermal vertical plate. They solved the boundary layer 

equations numerically and verified their steady-state solution with Ostrach. They plotted 

the temperature and velocity profiles across the boundary layer as well as the heat 

convection coefficient on the wall against Ostrach similarity solution variables and showed 

that a similarity solution for the transient laminar problem is possible. Harris et al. [34] 

presented an analytical solution for the transient convection flow past a vertical flat plate, 

with an already fully developed steady-state flow, subjected to a sudden surface 

temperature change using a similarity solution approach. Maranzana et al. [35] focused on 

experimental data for free convection heat transfer coefficient on a flat wall.  

The turbulent free convection boundary layer has also attracted research interest. Eckert 

and Jackson [36] used Karman integral method to model a steady-state turbulent free 

convection boundary layer next to a vertical plate. Cheesewright [37] then compared his 

experimental data against Eckert and Jackson model and showed that although the heat 

transfer coefficient and rate are very similar, Eckert model predicted a thicker boundary 

layer than the experiment. Tsunji and Nagano [38] experimental data also matched those 

of Cheesewright. George and Capp [39] proposed a theory to model the flow using scaling 

arguments. Their theoretical results matched the experimental data better than those of 

Eckert and Jackson. To and Humphery [40] numerically studied the turbulent free 
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convection flow next to a heated wall using  𝑘 − 𝜀 method. Their results were in good 

agreement with experimental data such as Cheesewright’s. Nakao et al. [41] used large 

eddy simulation technique to model the same problem to study heat transfer rate and 

friction velocity. Their method yielded comparable results to experimental data of studies 

before them. Turbulent natural convection flow in a cavity was studied by Rundle and 

Lightstone [42] to validate different turbulence models for other CFD applications. 

In order to fully comprehend the aspects of flow development and behavior, more detailed 

researches were conducted. In the very beginning phases of transient natural heat 

convection, heat transfer from the wall to its surrounding ambient fluid is a one-

dimensional conduction process. Gradually adjacent fluid motion begins and the bulk of 

heated fluid starts to rise next to the wall and the problem shifts from a one-dimensional 

conduction from a semi-infinite medium to a two-dimensional convection [43]. The effect 

of this rising bulk of heated fluid is called the leading-edge effect. Sugawara and 

Michiyoshi [44] presented a numerical solution for the flow past an isothermal semi-

infinite wall. They broke the problem into two parts. In the first part, they solved the 

governing equations without the convective terms to capture the initial heat conduction 

phase and then used this solution in the second part with full governing equations and 

continued the solution to steady-state. They concluded that at least for air, the conduction 

only phase lasts very briefly. Ahmadi and Bahrami [45] investigated the transient natural 

convection flow next to an isoflux wall with asymptotic methods, dividing the flow into 

short-time and steady-states asymptotes, and covered the full duration time of the flow. 

Schetz and Eichhorn [46] solved the initial one-dimensional conduction phase using 

Laplace transforms for different surface temperature and flux boundary conditions. Menold 
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and Yang [47], Rao [48] and Miyamoto [49] all studied the one-dimensional conduction 

phase for different boundary conditions and fluid properties. Illingworth [50] was one of 

the pioneers to study the leading edge effects. Goldstein and Briggs [51] presented an 

analytical study of the leading edge propagation rate downstream of the flow. The leading-

edge effect was treated as a wave that propagates downstream towards the one-dimensional 

conduction region. Heat transfer in any location on the wall that the leading edge has passed 

from then turns into a two-dimensional convection. They reported a closed format formula 

to estimate the propagation rate. Gebhart and Dring [52], Mollendorf and Gebhart [53] and 

Mahajang and Gebhart [54] also studied the propagation rate of the leading edge effect. 

Patterson et al. [55] studied the leading edge effect propagation rate using stability analysis.  

One of the more interesting flows that fall under the natural convection flow adjacent to a 

vertical plate category is the wall plume. Wall plumes are plane flows caused by a line 

source, or just a point source in 2D, on a wall. Like any other buoyancy induced flow, the 

source heats up a bulk of fluid next to the wall and causes it to ascend and create a flow. 

An example would be the flow caused by a row of electronic devices on a wall in a data 

center. The main difference between the classic natural convection flow and the wall plume 

is that the surface of the wall is assumed adiabatic anywhere but on the source and so the 

surface does not exchange energy with the rising fluid and so the thermal energy of the 

fluid diffuses into the ambient fluid [43]. Transient flow behavior and temperature variation 

of free and wall plums have been subject to researches.  

Fujii [56] presented a thorough study on free plums over both a line and a point source. He 

offered a closed-form boundary layer solution as well as numerical solutions for various 

Prandtl numbers. Gebhart et al. [57] presented a similarity solution method with 
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appropriate boundary conditions for free plume over a line source problem. Zimin and 

Lyakhov [58] studied the laminar, incompressible wall plume caused by a line source. They 

used the similarity solution technique to reduce the boundary layer equations to a system 

of ODEs and solved them numerically for water (Pr = 7). They verified their results with 

experimental data. Jaluria [59] discussed the effects of mixed convection on a wall plume 

with a finite dimension source. He found that after a certain point downstream, the flow 

patterns closely follow those of a wall plume with a line source reported by Jaluria and 

Gebhart [60]. They provided numerical results for different Prandtl numbers in the range 

of 0.01 to 100.  
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 Inverse Methodology 

 

In this chapter, our proposed inverse methodology is discussed. Like every other inverse 

solution, this methodology relies on optimization to converge on the best estimation. A 

brief introduction to the optimization method used in the proposed methodology is also 

provided. 

3.1. Methodology 

The method described in this study tries to accurately solve the inverse wall plume free 

convection problem with different input data. The method was first developed to work with 

steady-state temperature data on the wall downstream of the plume source. The only 

information a prior is the temperature of the ambient fluid, in this case, air, next to the wall. 

Thus, plume location (𝑙) and its strength, whether it’s constant temperature or heat flux 

boundary condition, are unknown. Here, the strength of the plume source is denoted by 

Grashof (Gr) number. A detailed description of the forward problem is provided in the 

following chapters. The plume source is not a line on the wall but rather has a finite length 

to model the practical applications with a better approximation. 

This method focuses on using the limited data available, for example, the temperature of 

any point on the wall, to solve for the unknown plume features. A more detailed study of 

these relations, discussed in the following chapters, shows that there is indeed an 

interpolative relation between the temperature and the plume strength and location, 

generally in the following form: 
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𝑇 = 𝑓(𝑙, 𝐺𝑟) (3-1) 

where 𝑓 is a unique function that is calculated at any point downstream of the plume, Gr is 

the Grashof number and 𝑙 is the distance of the mid-length of the finite source to the bottom 

of the plate. After determining the function of equation (3-1) for all possible locations 

downstream of the plume, if the temperature at any given two points is known, in theory, 

a system of two equations can be solved to determine Gr and 𝑙. 

{

𝑇1 = 𝑓1(𝑙, 𝐺𝑟)

𝑇2 = 𝑓2(𝑙, 𝐺𝑟)
      ⟹ (𝐺𝑟, 𝑙) (3-2) 

It should be noted that two is the minimum number of data points needed to solve for the 

unknown features in the system of equations (3-2). A part of this study is dedicated to the 

effects of increasing the number of data points on the accuracy of the estimations. With the 

given information above, the question is what are the best data points? 

In order to answer that question, we need to use an optimization algorithm to specify the 

best two points that yield the best estimation of the plume source strength and location. 

Most of the current inverse solution methods apply optimization in their regularization 

process to improve the accuracy and rate of convergence. Colaco et al. [61] provided a 

detailed study of inverse heat transfer problems and different optimization methods. 

Common iterative inverse solutions rely on optimization to minimize a pre-defined 

objective function, usually absolute or square estimation error, in each consecutive 

iterations. Deterministic and stochastic optimization techniques have been used to 

minimize the objective function [4, 61]. Deterministic methods rely heavily on 

mathematical formulations e.g. as gradients of the objective function in order to converge 

on the optimum point over a number of iterations. Some of the deterministic methods that 
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have been used in inverse heat transfer problems are steepest descent, conjugate gradient, 

Newton-Raphson and Levenberg-Marquardt methods [61]. As opposed to the heavy 

mathematics focused deterministic methods, stochastic and evolutionary optimization 

methods tend to minimize the objective function using algorithms inspired by natural 

phenomena. Genetic algorithm, differential evolution, particle swarm, and simulated 

annealing are a few of the stochastic methods used in inverse heat transfer problems [61]. 

3.2. Particle Swarm Optimization (PSO) 

In this thesis, Particle Swarm Optimization or PSO was used due to simple implementation 

and fewer hyperparameters. PSO is a metaheuristic search-based method that was inspired 

by the behavior of a flock of birds or a school of fish searching for food [62]. It was first 

introduced by Eberhart and Kennedy [63] to optimize continues non-linear functions. Since 

its introduction, PSO has been a subject of interest and many modifications have been 

introduced through the years to improve the algorithm. Bonyadi and Michalewicz [64] and 

Zhang and Wang [65] recently published comprehensive reviews on different aspects, 

approaches, and applications of PSO. 

In order to solve a problem, an initial and usually random set of candidate solutions, or 

simply particles, are selected. These particles move around in the search-space under the 

influence of their own personal search history as well as the swarm’s collective search 

history. This way, those particles that are on the better track can guide the rest of the swarm 

to the best position in the search space. This iterative process continues until the accuracy 

criteria of the problem are met or a certain number of iterations have passed [65]. In each 

iteration, the position and velocity of each particle are updated by: 



16 

 

 

𝑉𝑖+1 =  𝜉 ∙ 𝑉𝑖 + 𝐶1 ∙ 𝛾1 ∙ (𝑃𝐵𝑒𝑠𝑡 − 𝑃
𝑖) + 𝐶2 ∙ 𝛾2 ∙ (𝐺𝐵𝑒𝑠𝑡 − 𝑃

𝑖)  (3-3) 

𝑃𝑖+1 = 𝑃𝑖 + 𝑉𝑖+1  (3-4) 

where 𝑃 is particle position and 𝑉 is the velocity or particle path. 𝜉 is the inertia weight 

and shows how much the previous velocity is influencing the current one. 𝐶1 and 𝐶2 are 

cognitive and social factors respectively controlling the influence of a particle’s personal 

best, 𝑃𝐵𝑒𝑠𝑡, as well as the global best, 𝐺𝐵𝑒𝑠𝑡, on the velocity. Finally, 𝛾1 and 𝛾2 are randomly 

generated numbers in the range of [0,1] in each iteration. Typical coefficient values used 

in (3-3 are gathered in Table 3-1. For our study, 50 to 100 particles were randomly selected 

to populate the initial phase. Both 𝑃 and 𝑉 are vectors with a dimension equal to the number 

of data points used. Figure 3-1 shows the algorithm at work. 

The inverse method used in this study can be formulated as an optimization problem with 

the objective function, the estimation error of location and strength estimation, which 

should be minimized. Such an objective function is formulated as: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =∑(𝑤1 |
𝐺𝑟𝑒𝑠𝑡−𝑖 − 𝐺𝑟𝑖

𝐺𝑟𝑖
| + 𝑤2 |

𝑙𝑒𝑠𝑡−𝑖 − 𝑙𝑖
𝑙𝑖

|)

𝑁

𝑖=1

𝑁⁄  (3-5) 

where  𝑤1 and 𝑤2 are weighting factors and 𝑁 is the number of particles used to populate 

the search domain. This objective function was defined as the summation of estimation 

errors of source and location. Weighting factors were added so that objective function 

could be modified to focus more on one of the errors if needed. There were many ways to 

approach the objective function including the least-squares method. Here, for the sake of 

simplicity, the absolute error values were chosen. 
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Table 3-1- Typical coefficients used in equation (3-3) 

𝜉 𝐶1 𝐶2 

0.55~0.85 2 2 

 

 

 

 

Figure 3-1- PSO convergence 
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Some constraints were also applied. The upper half of the plate was divided into discrete 

points or locations, and PSO was then bound to select particles from these points only. 

Also, a selected pair of locations could not have a distance smaller than 5 divisions in 

between. Each particle’s individual best position as well as the swarm’s best position is 

found using the objective function and is then used to update equations (3-3) and (3-4).  

3.3. Conclusion 

The general inverse methodology was presented in this chapter. The main goal of this study 

is to find interpolative functions between different flow characteristics at locations 

downstream of the plume, such as steady-state temperature on the wall surface, and the 

plume heat input and location. If these equations are unique for different locations, then 

they can be used to solve for the unknown plume boundary conditions. However, although 

all such equations would provide an estimate for the said unknowns, not all of these 

estimations would be in an acceptable error range. In order to find the best equation an 

optimization algorithm called PSO is used. PSO is a search-based optimization method that 

sweeps the search domain to find the optimum equations.  
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 Inverse solution – Using Steady-State Data 

 

In this chapter, an inverse solution to the wall plume problem using relations between the 

steady-state temperatures on the plate and the location and strength of the plume is studied.   

4.1. Physics of the Forward Problem 

In order to model a transient wall plume, a laminar natural convection two-dimensional 

flow is presented here. Buoyancy forces are induced by a 2D heat source on a flat wall. 

The surrounding fluid, air, with Prandtl number Pr = 0.712, is initially at rest with 

temperature 𝑇0
∗ when a step change in heat input is applied to the source area of the wall. 

Figure 4-1 showcases the geometry of the problem. L is the height of the plate and 𝑙 the 

distance between the leading edge to the center of the heat source. For the wall plume 

problem considered, the following non-dimensionalizion are used. All dimensional 

parameters are indicated with a superscript star. A complete list of all the parameters used 

in this article is presented in the nomenclature. 

𝑡 =  
𝑡∗ 𝛼

𝐿2
, 𝑥 =  

𝑥∗

𝐿
, 𝑦 =  

𝑦∗

𝐿
 

(4-1) 

𝑙 =  
𝑙∗

𝐿
, 𝑢 =  

𝑢∗𝐿

𝛼
, 𝑇 =  

𝑇∗ − 𝑇0
∗

∆𝑇
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Figure 4-1- Problem geometry: L is the length of the plate and x the distance from the 

leading edge to the center of the source. 

 

The Boussinesq approximation was used to model the buoyancy effects in the energy 

equation. Full Navier-Stokes and energy equations, written in stream function and vorticity 

formulation, are given in non-dimensional form by equations (4-2) to (4-4). In these 

equations, the x-direction is parallel to the wall and y is normal to it.  

𝐷𝜔

𝐷𝑡
= 𝑃𝑟. ∇2𝜔 + 𝐺𝑟 Pr2

𝜕𝑇

𝜕𝑦
 (4-2) 

𝐷𝑇

𝐷𝑡
= 𝑃𝑟. ∇2𝑇 (4-3) 

∇2𝜓 = −𝜔 (4-4) 

where 𝜔 is vorticity, 𝜓 is stream function, 𝐺𝑟 = 𝛽𝑔Δ𝑇𝐿3 𝜈2⁄  is Grashof number 

and Pr =  𝜈 𝛼⁄  is the Prandtl number. The velocity components satisfy no-slip conditions 

on the plate. An adiabatic condition is assumed on the entire wall except for the finite 

height over which the heat input is given. The heat source is a portion of the wall with a 

fixed length (0.02L). On this finite length, the boundary condition is taken as  𝑇∗ = 𝑇1
∗ for 

isothermal cases and 𝑞′′∗ = 𝑞0
′′∗ for isoflux cases. For the isoflux boundary condition, 
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however, due to lack of a characteristic constant temperature on the boundary, a suitable 

definition of temperature difference is Δ𝑇 = 𝑞0
′′∗ ⋅ 𝐿 𝑘⁄ , where 𝑘 is thermal conductivity. 

Equations (4-2), (4-3) and (4-4) were solved in a square region with height L. The wall is 

treated as adiabatic everywhere except for the source region. Flow opening conditions are 

applied to the top and far-right boundaries. The bottom boundary has adiabatic treatment 

for energy equation and no-slip condition for momentum to model a typical corner flow 

frequently seen in electronic heating and small fires.  

Both transient and steady-state results are tested against the numerically obtained boundary 

layer results of Churchill [33] and Ostrach [27]. To validate results, the solution domain 

was changed to a rectangle with a large enough height so that the boundary layer 

assumptions are valid. A wall with a constant temperature condition is taken on the left 

boundary. The bottom boundary is treated as an adiabatic with a slip condition wall. These 

conditions are applied to better simulate the boundary layer flow. Figure 4-2 shows both 

steady-state and transient temperature profiles adjacent to the wall. Here, local Grashof 

number is defined as 𝐺𝑟𝑥 = 𝛽𝑔Δ𝑇𝑥
∗3 𝜈2⁄ .  

Based on the trends that temperature on different locations along the plate followed, several 

observations were made. Figure 4-3 shows the temperature variation with respect to source 

location, 𝑙, and heat input, given by Gr, at three different sensor locations on the plate for 

the forward problem. 
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Figure 4-2- Variation of transient temperature across the boundary layer. 

 

A series of functions, such as power-law, polynomial and exponential functions, were 

considered to capture the nature of these trends. One such function is the equation: 

𝑇 × ∆𝑇 = 𝑎1𝐺𝑟
𝑎2 ∙ 𝑒[𝑎3𝐺𝑟

𝑎4 ∙𝑙𝑎5] (4-5) 

where 𝑎1 to 𝑎5 are coefficients calculated at any point using nonlinear regression methods, 

Gr is the Grashof number and 𝑙 is the distance of the mid-length of the finite source to the 

bottom of the plate. Polynomial part of this equation is to capture the Gr effect on the 

temperature trend shown in Figures 4-3a and c, while the exponential part models the 

source location effect, better shown in Figures 4-3b and d. In order to find these 

coefficients, a group of cases was chosen to be the training data set. This same data set is 

then later used to train the PSO algorithm. The other group of data cases is referred to as 

the testing data set. 
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Table 4-1 showcases typical coefficients for three different locations on the plate as well 

as their coefficient of determination or simply R2 values for isothermal source cases. It 

should be noted that these coefficients are different for isoflux sources. After determining 

the coefficients of equation (4-5) for all possible locations, the PSO algorithm is used to 

find the best two locations to use as data points or sensors.  

 

 

Figure 4-3- Variation of temperature with respect to (a) isothermal source strength, (b) 

isothermal source location, (c) isoflux source location and (d) isoflux source strength – 

locations A, B and C represent 0.5L, 0.75L and L on the wall 

a) b) 

c) d) 
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Table 4-1- Nonlinear Regression Coefficients for Sample Locations 

Location a1 × 10-6 a2 a3 a4 a5 R2 

0.5 L 4.30 0.91 2.31 0.029 1.77 0.99 
0.75 L 3.14 0.91 0.65 0.043 1.31 0.99 

L 3.03 0.90 0.28 0.063 1.09 0.99 

 

4.2. Results 

Three different types of problems were studied: unknown source strength, unknown source 

location and finally unknown source strength and location. Both isothermal and isoflux 

sources were studied in each problem. Forward problem temperature data with different 

combinations of 𝑙 and Gr were used to train the optimization method. This data set was 

used to find the coefficients 𝑎1 to 𝑎5 for locations on the upper half of the plate. PSO 

algorithm then utilized these coefficients to find the best location, for single unknown 

problems, or a pair of locations for the full inverse problem to put the sensors. Due to the 

method’s stochastic nature, the algorithm was applied a number of times with random 

initial swarm particles and it was observed that the presented sensor locations were the 

most frequent result and had the least objective function value in comparison with other 

outcomes of the method. The objective function definition given in equation (3-5) was 

simplified for single unknown problems. Table 4-2 and 4-3 showcase the different Gr and 

𝑙 combinations used for this study. Three type of problems were studied. Plume strength 

unknown, plume location unknown and finally both strength and location unknown.  
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Table 4-2- Gr and l Values for Isothermal Studied Cases 

Case Gr × 10⁷ 𝑙 Case Gr × 10⁷ 𝑙 Case  Gr × 10⁷ 𝑙 
1 0.5 0.15 6 1 0.35 11 2.5 0.3 
2 0.5 0.25 7 1.75 0.125 12 5 0.1 
3 0.5 0.35 8 1.75 0.225 13 5 0.15 
4 1 0.15 9 2.5 0.1 14 5 0.2 
5 1 0.25 10 2.5 0.2 15 5 0.3 

 

Table 4-3- Gr and l Values for isoflux Studied Cases 

Case Gr × 109 𝑙 Case Gr × 109 𝑙 Case Gr × 109 𝑙 
1 5 0.125 6 15 0.175 11 15 0.425 
2 5 0.225 7 15 0.225 12 32.8 0.175 
3 5 0.375 8 15 0.275 13 32.8 0.325 
4 5 0.475 9 15 0.325   
5 15 0.125 10 15 0.375    

 

4.2.1 Type I: Unknown source strength 

In this problem, it was assumed that source location is known. With this assumption, only 

one equation is needed to estimate the strength. PSO was used to find the location that 

would predict the source strength with the least error for all training cases. Here, each 

particle represents a location on the upper half of the plate. Equation (4-6) shows the 

simplified objective function for this problem. As mentioned earlier Gr represents source 

strength.  

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =∑|
𝐺𝑟𝑒𝑠𝑡−𝑖 − 𝐺𝑟𝑖

𝐺𝑟𝑖
|

𝑁

𝑖=1

𝑁⁄  (4-6) 

Table 4-4 shows the optimum particle and its corresponding location on the plate for 

isothermal and isoflux source types. In order to check robustness and validity of the 

method, testing data cases which were not used in finding coefficients 𝑎1 to 𝑎5 or training 

process, were used. Figure 4-4 and 4-5 demonstrate the Gr estimation error for the testing 
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data set. Overall, the presented equation performs well in estimating the Gr in both 

isothermal and isoflux scenarios. Equation (4-5), along with coefficients provided in Table 

4-1, suggests that temperature shows a consistent, almost linear, behavior with respect to 

the temperature of an isothermal source. This special behavior serves as a smoothing factor 

while solving for the unknown strength. Thus, a very good and accurate estimation of Gr 

is achieved. The same reasoning can be applied to isoflux results. 

The tendency to linear behavior for the temperature with respect to Gr grows stronger as 

the sensor locations move towards the trailing edge of the plate. Based on this observation 

it was predicted that optimum sensor location would be close to the trailing edge. For the 

isothermal problem, PSO proved this prediction with the outcome location of 0.98L. 

 

  

Figure 4-4- Source strength estimation error for isothermal boundary condition 
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Figure 4-5- Source strength estimation error for isoflux boundary condition 

 

4.2.2 Type II: Unknown source location 

Here, it was assumed that source strength is known. Again, given that there is only one 

unknown, PSO was used to find the best single sensor location. Each particle is a location 

on the upper half of the plate. Equation (4-7) is the simplified objective function for this 

problem. 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =∑|
𝑙𝑒𝑠𝑡−𝑖 − 𝑙𝑖

𝑙𝑖
|

𝑁

𝑖=1

𝑁⁄  (4-7) 

The best sensor locations are given in Table 4-4 for isothermal and isoflux source types. 

Figure 4-6 and 4-7 show the estimation error results for isothermal and isoflux testing data 

sets respectively. Location estimation is more challenging due to the more complex 

relationship between temperature and source location, as a result of the strong dependence 

of flow on location. Based on equation (4-5), the source location has a more dominant 

effect on locations closer to the source rather than locations closer to the trailing edge, as 

is seen in Figure 4-3 and Table 4-1. Based on this observation, it was predicted that a 
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location closer to the mid-plane, which was the lower bound constraint for the particle 

selection, would better estimate the location. PSO again justified this prediction by giving 

a sensor location of 0.54L as the best suitable one.  

The distance between the sensor and the source and its effect on estimation accuracy in 

isothermal cases is quite intriguing. While cross-referencing the highest percentage errors 

in Figure 4-6 with data from Table 4-2, it was concluded that the cases with highest 

estimation errors are the ones that have the largest distance between the source and the 

sensor location, indicating a relation between the accuracy of estimation and the distance 

of the source to sensor. This was expected based on observations made from Figure 4-3-b. 

The source location has a stronger effect on temperature trends when the sensor location is 

in close proximity. As distance increases, source location effect fades away and source 

strength becomes the dominant factor. It could be concluded that the method presented 

here would struggle with location estimation when the sensor is relatively far from the 

isothermal source. Cases 9 and 12 in Figure 4-6 reinforce this claim.  

The same can be said about the isoflux cases except that the source location effect, based 

on Figure 4-3-d, is stronger and does not fade away as fast as in isothermal cases. This 

means that the optimum sensor location does not need to be very close to the lower bound 

of the search domain. PSO found a sensor location at 0.88L to be the optimum. 

There are also other factors affecting the accuracy of the results. Inverse problems, as was 

mentioned earlier, are mathematically ill-posed problems and so they would inevitably 

introduce some challenges that are not physically justifiable. Location estimation error for 

case 1 in Figure 4-7, is an example of such challenges. This case has the same distance to 
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the sensor as case 5. However, case 5 has the highest and case 1 has one of the least 

estimation errors. Here, case 1 is not following the trend of other similar cases.  

 

Table 4-4- Optimization Results for Single Unknown Problems 

Problem Best  Location Objective Function 

Isothermal 
Gr unknown 0.98L 0.0071 

Location unknown 0.54L 0.0375 

Isoflux 
Gr unknown 0.99L 0.0061 

Location unknown 0.88L 0.0278 

 

 

 

Figure 4-6- Source location estimation error for isothermal boundary condition 
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Figure 4-7- Source location estimation error for isoflux boundary condition 

 

4.2.3 Type III: Unknown source strength and location 

In this part, both source inputs, strength, and location were assumed to be unknown. As 

discussed earlier, a pair of locations are needed to estimate these unknowns. In this part, 

each particle represents a pair of locations. Table 4-5 summarizes the optimization results 

for both isothermal and isoflux scenarios. Figure 4-8 and 4-11 show the estimation errors 

for Gr and 𝑙 when using the locations given by PSO for isothermal and isoflux scenarios 

respectively. Source strength and locations for all cases are summarized in Table 4-2 and  

4-3 for isothermal and isoflux scenarios respectively. 

 

Table 4-5- Optimization Results for Two Unknown Problem 

 Best Pair Corresponding Location Objective Function 

Isothermal 15 , 60 0.61L , 0.98L 0.0269 

Isoflux 25 , 57 0.69L , 0.95L 0.0268 
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Based on previous observations, it was expected that a suitable pair of locations would be 

close to the trailing edge, to better capture the effects of Gr, and close to mid-plate 

locations, to better capture the effects of location change. Results from PSO for isothermal 

source agreed with this expectation. Location 0.98L was already chosen to be the best 

suitable location for unknown source strength. This location showing up in the results could 

be a sign that equation (4-5) is at its best when capturing the temperature trend with respect 

to Gr. Similar to the location unknown problem, cases with highest location estimation 

error have the largest distance for the sensor locations, proving that putting a sensor as 

close as possible to the vicinity of the unknown sources is the key to have a good and 

reliable estimation. Earlier results from the location unknown problem confirm this claim. 

Of course, in practice, just like this study, there are various constraints on the location of 

sensors. The same could be said for the isoflux source type problem. Given that the source 

location effect in the isoflux source is stronger, sensors could be placed further away 

compared to the isothermal scenario and still produce results with reasonable accuracy. 

 

 
 

Figure 4-8- Source strength and location estimation error for isothermal boundary 

condition 
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Figure 4-9- Actual vs estimated source location using two sensors - Isothermal 

 

 

Figure 4-10- Actual vs estimated source strength using two sensors – Isothermal 
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Figure 4-11- Source strength and location estimation error for isoflux boundary condition 

 

 

Figure 4-12- Actual vs estimated source location using two sensors - Isoflux 
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Figure 4-13- Actual vs estimated source strength using two sensors – Isoflux 

 

Figure 4-9 and Figure 4-12 show the actual versus estimated source location for the entire 

data set of isothermal and isoflux boundary conditions, respectively. These plots confirm 

the claim that sources that are further away from the sensors have the highest location 

estimation error. Figure 4-10 and Figure 4-13 represent the actual versus estimated source 

strength for isothermal and isoflux scenarios. It should be noted that these plots also contain 

both training and testing data sets results. It is clear from these plots that the algorithm is 

capable of estimating source strength with a high level of accuracy. 

4.3. Conclusion 

In this chapter laminar wall plume forward problem was studied. These wall plumes were 

caused by both isothermal and isoflux boundary conditions. An observation was made on 

how the steady-state temperature on the wall behaves relative to plume heat input and 
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location. Various functions were studied to capture this behavior and equation (4-5) was 

selected. Using this interpolating function, the inverse methodology developed in chapter 

3 was tested on the forward problem data. PSO provided optimum locations to put sensors 

to read the steady-state temperature on the wall. Using these sensors three different types 

of inverse problems were solved.  

It was shown that temperature trends on the wall get closer to linear change with respect to 

plume strength further downstream of the source. As a result, putting a sensor near the 

trailing edge of the wall could help with an accurate estimation of heat input when dealing 

with unknown source strength problems. On the other hand, location estimation depends 

on sensors that are closer to source location as the effects of source location are more 

intense when the source is closer to the sensor. A well-placed sensor near the middle of the 

plate would accurately estimate unknown source locations. Finally, a combination of the 

two was found to produce the best inverse results for problems in which both source 

strength and location were unknown.   
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 Inverse solution – Using Transient Data 

 

In this chapter, transient temperature data is used to solve the inverse heat convection 

problem of a wall plume. A detailed study of the transient flow behavior is discussed in the 

following section. 

5.1. Physics of the Forward Problem 

Transient flow results and data of the wall plume problem discussed in chapter 4 are studied 

for several different cases. For a short time at the beginning of the flow, the temperature 

behavior of the fluid next to the heated segment of the wall follows the classic conduction-

only solution suggested by the literature. However, as expected, it soon changes to a two-

dimensional transient convective flow and eventually reaches the steady-state. 

 

Figure 5-1- Non-dimensional temperature history at x=0.4 on the wall (Gr = 2.5× 1010 
and l = 0.2). 
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Figure 5-1 shows the temperature history at a given location downstream of the source on 

the wall. The leading-edge effect can be seen to reach the downstream location with a 

delay. It is worth noting the temperature seems to have an overshoot, or a local maximum, 

before dropping and eventually reaching the steady-state. That overshoot is caused by the 

movement of the initially heated bulk of the fluid. This bulk of fluid gets heated up in the 

conduction-only phase without moving, so when it finally starts to move downstream, it 

brings a considerable amount of energy with it and, as a result, a temperature overshoot is 

observed. The fluid that follows this bulk, does not have the same amount of stored energy 

as it does not go through the stationary conduction-only heating phase. 

Figure 5-2 shows that the local maximum dwindles as the flow goes further downstream. 

A possible explanation is that the heated bulk of fluid expands and dissipates into a vortex 

in the y-direction, normal to the wall, as it flows downstream. Considering that it carries a 

set amount of energy, the quantity of energy per unit area decreases and thus the local 

temperature on the wall dwindles as a result. Figure 5-3 illustrates the expansion of the 

bulk as it goes downstream. It shows the y-direction expansion of the bulk vorticity. The 

fluid has to rotate back towards the plume outside of the boundary layer to satisfy 

continuity. In this recirculation, the bulk fluid gains a velocity component in y-direction 

that, in time, expands the flow in the y-direction. If a horizontal line is drawn at any location 

downstream of the plume, like in Figure 5-3, the effects of the flow first reach the line at a 

position away from the wall. As the flow goes downstream and expands in the y-direction, 

this position moves further away from the wall. This initial vortex expansion continues to 

a point downstream of the flow that the initial peak temperature on the wall is less than the 

final steady-state value.  
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Another interesting observation is that at locations further downstream, temperature 

changes in a more complex way in comparison with the locations closer to the plume 

source. Figure 5-2 shows that at x = 0.4, the temperature reaches steady-state value after 

the initial peak has passed without many fluctuations, but at x = 0.8, temperature undergoes 

two local minima and then rises to its steady-state value. The reason for this behavior is in 

the first column of Figure 5-2 where it can be seen that the flow vortex is accelerating faster 

than it is expanding. In other words, the initial bulk of fluid accelerates and passes through 

the locations closer to the plume source before the vortex has the opportunity to expand 

and some of the bulk fluid start to rotate downwards towards the upstream.  Therefore, 

locations upstream, that are closer to the plume source, reach the steady-state condition 

faster than those that experience the vortex rotational flow.  

Figure 5-3 also shows a trend in transient behavior across the temperature boundary layer. 

After reaching a maximum, the temperature peak breaks into two local maxima, one of 

which moves towards the wall over time and reaches a peak value at steady-state while the 

other moves away from the wall and dwindles in magnitude until the temperature reaches 

the value of the ambient fluid. The fluid that accelerates downstream after the initial bulk 

has moved is not expanding in the y-direction, normal to the wall, so there is no more 

heated fluid to fill the space left by the initial bulk moving fluid and the ambient fluid fills 

the gap. This explains the schism in temperature across the transient boundary layer and 

the decrease of the local maximum away from the wall. 
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Figure 5-2- Transient temperature development (Gr = 2.5× 1010 and l = 0.2). 
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Figure 5-3- Temperature envelope development (Gr = 2.5× 1010 and l = 0.2). 
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Time for initial temperature rise, time at which peak temperature occurs and peak 

temperature value are some of the interesting observations of Figure 5-2. If by using 

regression methods, relevant interpolative equations are achieved that relate any of the 

these discussed observations to plume source and its location, then they could be used to 

solve the inverse problem. The idea here is to relate the flow features at each location 

downstream of the flow to the plume source strength and location. With such relations at 

hand, one can pick at least two locations on the wall and solve the resulting system of 

equations to solve for the plume strength and location.  

The variation of Peak Temperature Time (PTT) with source strength has been plotted in 

Figure 5-4 at different locations on the wall for the same source location. It is also seen that 

at each location, the following equation can be used to relate the PTT to the plume Gr 

number: 

𝑃𝑇𝑇(𝐺𝑟) =  
𝑎1
𝐺𝑟𝑎2

 (5-1) 

where 𝐺𝑟 is Grashof number and 𝑎1 and 𝑎2 are coefficients calculated at a location on the 

wall using regression methods. A group of 10 cases was used to obtain the coefficients. 

Table 5-1 shows the coefficients for the four locations on the wall, shown in Figure 5-4, 

along with their correlation coefficients. PTT estimated by equation (5-1) is also plotted in 

Figure 5-4 for each location. The decreasing trend of the plot is expected. As the plume 

strength increases, the fluid adjacent to the heating area absorbs more energy and 

accelerates more rapidly and reaches a downstream location faster. As a result, the 

difference in PTT for different locations on the wall for the same plume strength decreases 

as the plume gets stronger.  



42 

 

 

 

Figure 5-4- Peak Temperature Time (PTT) variation with respect to plume strength at 

different locations on the wall (l = 0.25). 

 

Table 5-1- Equation (5-1) coefficients for different heights on the wall (l = 0.25). 

Height 𝑎1 𝑎2 𝑅2 

0.6 9.96 0.379 0.999 
0.7 10.383 0.371 0.999 
0.8 9.91 0.363 0.999 
1.0 11.80 0.365 0.999 

 

PTT variations with respect to source location are presented in Figure 5-5. For a wall plume 

on a semi-infinite plate due to a line source, source location would linearly affect the 

temperature and velocity profiles in the downstream areas. For the corner flow of the 

problem, it was expected that the plume location effects on temperature deviate from linear 

form, based on the distance between the plume and the corner. The boundary layer on the 

bottom would interfere with the boundary layer development of the plumes very close to 

the corner on the wall and hence leaves an effect on the resulting temperature profiles 

downstream of the plume. Figure 5-5 shows that, if the source location is reasonably far 
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away from the corner, the deviation is negligible, and a linear variation is observed. At 

each height, the following equation can be used to relate the PTT to the plume location: 

𝑃𝑇𝑇(𝑙) =  𝑏1𝑙 + 𝑏2    (5-2) 

where 𝑙 is plume location and 𝑏1 and 𝑏2 are coefficients calculated at any height on the 

wall using regression methods. Table 5-2 shows the coefficients for the four heights on the 

wall, shown in Figure 5-5, along with their correlation coefficients. 

 

 

Figure 5-5- Peak Temperature Time (PTT) variation with respect to plume location at 

different heights on the wall (Gr = 2.5× 1010). 

 

Table 5-2- Equation (5-2) coefficients for different heights on the wall (Gr = 2.5× 1010). 

Height 𝑏1 𝑏2 𝑅2 

0.6 -0.003496 0.00201 0.999 
0.7 -0.003403 0.00229 0.999 
0.8 -0.003054 0.00244 0.999 
1.0 -0.002881 0.00264 0.998 
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The next step is to try and find a function that can predict PTT based on both source strength 

and location. The function presented in this article is a combination of equations (5-1) and 

(5-2) in the form of equation (5-3): 

𝑃𝑇𝑇(𝐺𝑟, 𝑙) =  
𝑐1𝑙 + 𝑐2
𝐺𝑟𝑐3

 (5-3) 

Equation (5-3) captures the PTT behavior with respect to both source strength and location. 

Clearly, this is not unique and other representations can similarly be considered. 

Coefficients 𝑐1, 𝑐2 and 𝑐3 are found using nonlinear, multivariable regression methods. 

Table 5-3 summarizes some of the equation (5-3) coefficients along with their correlation 

coefficient or R2 values. A closer look at the coefficients shows that if the data of Table 5-1 

and 5-2 are combined they result in numbers very close to the ones provided in Table 5-3, 

supporting the idea that PTT behavior can be modeled with a separation of the variable 

approach described by equations (5-1) and (5-2). 

Equation (5-3) is unique for any given height on the wall and can predict the PTT. If at 

least two sensors are located downstream of the plume, a system of the equations, with 

unique coefficients for their respective sensor locations, can be solved to find  𝐺𝑟 and 𝑙. 

Two is the minimum number of sensors that this method can work with since we want both 

the strength and location of the source. By adding more sensors, additional equations are 

obtained and as a result, the problem shifts from solving a nonlinear system of equations 

to nonlinear curve fitting. For nonlinear curve fitting, Levenberg-Marquardt [66] algorithm 

is used. A more detailed discussion on the effects of the number of sensors on the 

performance of the method is provided later in the text.  

 



45 

 

 

Table 5-3- Equation (5-3) coefficients for different heights on the wall. 

Height 𝑐1 𝑐2 𝑐3 𝑅2 

0.6 -29.8215 17.2668 0.378 0.997 
0.7 -25.5308 17.37276 0.373 0.997 
0.8 -19.7253 15.78299 0.366 0.999 
1.0 -17.6432 15.95638 0.363 0.999 

 

Regardless of the number of sensors, it is important to choose the best sensors to solve, or 

curve fit, the system of equations. PSO algorithm is used again to find the sensor locations 

that yield the least estimation errors. The training data set is used to find the coefficients of 

equation (5-3) and with the PSO algorithm to find the best sensor locations. These sensors 

are then tested by a new set of cases, called testing data set, to check the validity and 

robustness of the method. 

5.2. Results 

In this section, the results for three different types of problems are presented. Type I where 

the source strength is unknown, type II where the source location is unknown and finally 

type III where both source location and strength are unknown. For each problem, equation 

(5-3 coefficients and optimal sensor locations are found using the training data set. For 

each category, the objective function of equation (3-5) is modified to better suit the specific 

problem. Due to the stochastic nature of PSO, the algorithm is repeated a number of times 

with random particles each time to populate the initial swarm. The following results are 

the most frequent ones with the least objective function values.  
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5.2.1 Type I: Unknown source strength  

There are many scenarios where the location of the plume is known, for example, the 

location of an electronic chip on the wall is known but when it overheats the amount of 

heat input is unknown. For such cases, because only one parameter is unknown, in theory, 

a single sensor is enough to solve the inverse problem. Equation (5-3) and the modified 

objective function of equation (4-6) were used together with the PSO algorithm to locate 

the best point to put the sensor.  

Figure 5-6 shows the actual vs estimated source strength. The presented method has 

performed well in estimating the plume strength. With just a single sensor, this method 

achieved an average estimation error of 2.71% with a maximum error value of 14.02%. In 

order to study the effects of increasing the number of sensors on the accuracy of the 

method, two and three sensor scenarios were studied as well. Increasing the number of 

sensors influences both the maximum error value and the standard deviation of the error. 

Error average and standard deviation values along with the location of the optimum sensors 

are gathered in Table 5-4 for one, two and three sensors problems. Increasing the number 

of sensors from one to two and three decreases the maximum error value from 14.02% to 

9.02% and 8.52%, respectively, while decreasing the standard deviation from 2.7% to 

2.14% and 2.09%. While adding more sensors does not change the average error 

percentage dramatically, it reduces the maximum error value to an acceptable range and 

also dampens the standard deviation value. Therefore, when using three sensors, for 

instance, while the average error is the same as the case of one sensor, there is a higher 

chance that all the estimations even those that are above the average, are in an acceptable 

error range. 
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Figure 5-6- Actual vs estimated source strength using one sensor 

 

Table 5-4- Optimum sensor data – plume strength unknown. 

Number of 

sensors 

Location  

on the wall 

Average 

% Error 

Standard 

Deviation 

1 0.99L 2.71 2.70 
2 0.78L, 0.98L 2.12 2.14 
3 0.76L, 0.8L, 98L 2.11 2.09 

 

 

5.2.2 Type II: Unknown source location 

There are scenarios in which the strength of the plume is known but the location is 

unknown. As discussed earlier, because only one parameter is unknown, a single sensor 

should be enough to solve the inverse problem. Equation (4-7), the modified objective 

function, is used along with equation (5-3) in the PSO algorithm. 

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Es
ti

m
at

ed
 S

o
u

rc
e 

G
r 

(×
1

0
1

0 )

Actual Source Gr (×1010)



48 

 

 

A graph of actual versus estimated source location is shown in Figure 5-7. Overall the 

accuracy of the method is acceptable with an error average of 1.90% but the maximum 

error value of 7.42% leaves room for improving the setup. Increasing the number of sensors 

is the next logical step. The problem was solved with the condition that two and three 

sensors were available. By increasing the number of sensors, the maximum error value is 

increased from 7.42% in single sensor case to 7.55% and 9.83% in two and three sensor 

cases. Table 5-5 shows the optimum sensor data for type II problems. Based on this data, 

while the maximum error value has increased, the average estimation error and standard 

deviation values have slightly increased as well. A possible explanation is that due to the 

linearity of the plume location on PTT shown in equation (5-3), increasing the number of 

input data introduces more regression related uncertainty rather than improving the overall 

accuracy of the results. It is worth mentioning that although increasing the number of 

sensors seems to be lowering the accuracy, estimation errors are still in an acceptable range. 

 

Figure 5-7- Actual vs estimated source location using one sensor 
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Table 5-5- Optimum sensor data – plume location unknown. 

Number of 

sensors 
Best Points 

Location  

on the wall 

Average 

% Error 

Standard 

Deviation 

1 17 0.63L 1.90 1.89 
2 14, 19 0.61L, 65L 1.92 1.97 
3 5, 13, 20 0.53L, 0.59L, 0.66L 2.19 2.39 

 

5.2.3 Type III: Unknown source strength and location 

Finally, the last problem involves both plume location and strength as unknowns. This is 

of practical interest in environmental problems when the source strength and location are 

both important. The Algorithm is first tried with the assumption that only two sensors are 

needed. Each initial particle then consists of a vector of two randomly chosen points. Based 

on type I and II problems discussed earlier it is expected that by increasing the number of 

sensors or data points, the accuracy of the method will improve, therefore two more 

scenarios were studied. Figure 5-8 and 5-9 show a comparison between the estimation 

results of source strength and location, respectively, while using 2 and 4 sensors. It is 

clearly shown that by adding more sensors the accuracy of the method improved 

drastically. In the case of only 2 sensors, although the majority of estimation errors, for 

both plume strength and location, are in a good range, there are cases with very high errors, 

especially when estimating the location.  

The maximum plume location estimation error percentage has decreased from 392.61% 

with two sensors to 4.06% with three, and 3.89% with four sensors. The same trend is seen 

with the plume strength estimation where the maximum error percentage reduces from 

300% with two sensors to 10.31% and 10.38% with three and four sensors respectively. 

Increasing the number of sensors improves the estimation errors drastically. This 
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improvement ensures that overall this method would provide results within an acceptable 

error range. Table 5-6 provides average and standard deviation values for each scenario as 

well as the optimized sensor locations. 

While the increase in a number of sensors does not improve the accuracy in type II 

problems, it greatly increased the accuracy in location estimation in type III problems. It 

can be concluded that in application, putting at least three sensors on the wall, could 

provide satisfactory results for all three types of problems. The reason that three is chosen 

over four sensors is that, although four sensors provide better results, the difference does 

not justify the overall added complexity and cost to the system, as it can be seen by the 

data gathered in Table 5-6.  

 

Figure 5-8- Actual vs estimated source strength - comparison between 2 and 4 Sensors 
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Figure 5-9- Actual vs estimated source location - comparison between 2 and 4 Sensors 
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concluded that three is the optimal number of required sensors to get good results all 

around. This conclusion was expected as two of these sensors at 0.59L and 0.78L are 

among the optimum sensors of type II and I respectively and contribute to acceptable 

results. 

 

Table 5-7- Type I & II estimation errors using type III optimized three sensors from 

sample cases. 

Gr × 1010  0.25 0.5 1 2.5 5 

𝑙 

0.1 Gr 

𝑙 

2.89% 

6.59% 

3.89% 

8.98% 

2.99% 

6.98% 

2.35% 

5.56% 

2.50% 

5.87% 

0.2 Gr 

𝑙 

2.47% 

2.19% 

0.15% 

0.26% 

1.42% 

1.44% 

3.75% 

3.46% 

4.80% 

4.43% 

0.3 Gr 

𝑙 

2.48% 

1.04% 

0.58% 

0.24% 

1.02% 

0.60% 

4.07% 

2.11% 

7.58% 

3.79% 

0.4 Gr 

𝑙 

0.86% 

0.36% 

0.29% 

0.10% 

0.14% 

0.05% 

2.09% 

0.71% 

7.39% 

2.34% 

0.5 Gr 

𝑙 

5.39% 

1.47% 

4.02% 

0.97% 

1.98% 

0.44% 

0.32% 

0.09% 

4.52% 

1.09% 

 

Table 5-8- Type I & II results using type III optimized three sensor 

Type 
Average 

% Error 

Maximum 

% Error 

Standard 

Deviation 

I 2.30 8.23 2.21 
II 2.46 11.53 2.61 
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5.3. Conclusion 

In this chapter, transient wall plume flow due to a heat source located on the wall near a 

corner with a bottom wall was considered and basic transient features were observed and 

studied. Major interest points of this transient flow were temperature rise initiation time 

and peak temperature time. These times not only described the transient flow behavior and 

temperature dissipation downstream of the plume but also provided valuable insight to 

build an inverse solution. In the case of this article, peak temperature time or PTT was used 

in the search-based methodology to solve the inverse wall plume problem. The inverse 

method involves a series of interpolating functions relating peak temperature time to 

plume`s strength and location, and a search-based optimization algorithm. An interesting 

feature of this study was limiting the available data points. Only data points located on the 

wall were used in the search space to better model the practical applications where it is 

only applicable to put a sensor on the wall rather than an arbitrary location in the solution 

domain. 

It was observed that for type I and II problems, where a single plume’s feature, either its 

location or strength is unknown, the minimum number of sensors required by theory, i.e., 

one, is sufficient to achieve reasonably accurate results. An average estimation error of 

2.71% for the case of unknown source strength and an average estimation error of 1.9% 

for the unknown location was obtained. The effects of the number of sensors were also 

studied and it was concluded that increasing the number of sensors slightly improves the 

case of unknown strength, from 2.71% to 2.11% average, but increases the average 

estimation error in the case of unknown location from 1.9% to 2.19%. Next, type III 

problems were studied. The minimum number of sensors required by the theory, 2, did not 
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produce reasonable results, with errors as high as nearly 400% in estimating the location 

of the plume. Increasing the number of sensors improved the results dramatically and the 

average errors reduced to 2.89% and 1.23% strength and location estimation, respectively. 

Based on the results provided, by improving the standard deviation value, increasing the 

number of sensors ensures that more solutions are in the acceptable error range. The 

performance of the three optimum sensors of the type III scenario was then tested for type 

I and II scenarios only to produce good results. It can be concluded that three sensors on 

the wall are enough to provide good results for any wall plume inverse situation. 
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 Inverse solution – Turbulent Steady-State 

Data 

 

In this chapter, an inverse solution to the turbulent wall plume problem using relations 

between the steady-state temperatures on the plate and the location and strength of the 

plume is studied.   

6.1. Physics of the Forward Problem 

The geometry and boundary conditions of the corner wall plume flow were discussed in 

detail in chapter 4. Here, the heat input of the plume is high enough for the flow to land on 

the turbulent regime. Navier-Stokes equations need to be modified to capture the nature of 

the turbulent flow. For incompressible turbulent flow, velocity can be written as equation 

(6-1). 

𝑢𝑖 = 𝑢𝑖 + 𝑢́  (6-1) 

In this equation, 𝑣𝑖 is the time-averaged value of the velocity (mean velocity) and 𝑣𝑖́ is the 

velocity fluctuation. Plugging equation (6-1) into the Navier-Stokes equation would result 

in an additional nonlinear term on the right-hand side, called the Reynolds stress, 𝑅𝑖𝑗. 

𝑅𝑖𝑗 = −𝜌𝑢𝑖́ 𝑢𝑗́ (6-2) 

The main challenge of modeling a turbulent flow is calculating the Reynolds stress. 

Boussinesq was the first to propose a closed-form solution by introducing the concept of 

kinematic eddy viscosity, 𝜐𝑡. 
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−𝑢𝑖́ 𝑢𝑗́ = 𝜐𝑡 (
𝜕𝑢𝑖̅
𝜕𝑥𝑗

+
𝜕𝑢𝑗̅̅ ̅̅̅

𝜕𝑥𝑖
) −

2

3
𝑘𝛿𝑖𝑗 (6-3) 

where 𝑘 is the turbulent kinetic energy and 𝛿 is the Dirac delta function. The general idea 

here is to treat Reynolds stress like the viscous stress term by relating it to the fluid rate of 

strain. There are numerous models to calculate the eddy viscosity, such as Spalart-

Allmaras, 𝑘 − 𝜀 and  𝑘 − 𝜔 models. Each of these models introduces one or two more 

equations to the system of equations to find the unknown eddy viscosity. In this study, a 

standard 𝑘 − 𝜔  turbulence method was used due to the fact that free convection flow 

regimes are usually in the lower Re ranges and 𝑘 − 𝜔 generally works better with low Re 

turbulent flow regimes. 𝑘 − 𝜔 introduces two transport equations to be solved along with 

the Navier-Stokes and energy equations: turbulent kinetic energy (𝑘) and the specific rate 

of dissipation of kinetic energy (𝜔). Wilcox [67] 𝑘 − 𝜔 model was used here. 

𝜕

𝜕𝑥𝑖
(𝑘𝑢𝑖) =  

𝜕

𝜕𝑥𝑗
[(𝜐 +

𝜐𝑡
𝜎𝑘
)
𝜕𝑘

𝜕𝑥𝑗
] + 𝜐𝑡 [(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
𝑘𝛿𝑖𝑗]

𝜕𝑢𝑗

𝜕𝑥𝑖
− 𝑌𝑘 (6-4) 

𝜕

𝜕𝑥𝑖
(𝜔𝑢𝑖) =  

𝜕

𝜕𝑥𝑗
[(𝜐 +

𝜐𝑡
𝜎𝜔
)
𝜕𝜔

𝜕𝑥𝑗
] + 𝛼

𝜔

𝑘
𝜐𝑡 [(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
𝑘𝛿𝑖𝑗]

𝜕𝑢𝑗

𝜕𝑥𝑖
− 𝑌𝜔 (6-5) 

where 𝜎𝑘 and 𝜎𝜔 are turbulent Prandtl numbers for 𝑘 and 𝜔, respectively. Also, 𝑌𝑘 and 𝑌𝜔 

represent the dissipation of 𝑘 and 𝜔. A few more equations are needed to close the above 

set of equations. The kinematic eddy (turbulent) viscosity, 𝜐𝑡, is calculated using the 

following equations: 

𝜐𝑡 = 𝛼
∗
𝑘

𝜔
 (6-6) 

𝛼∗ = 𝛼∞
∗ (
𝛼0
∗ + 𝑅𝑒𝑡 𝑅𝑘⁄

1 + 𝑅𝑒𝑡 𝑅𝑘⁄
) (6-7) 
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where 𝑅𝑒𝑡 = 𝜌𝑘 𝜇𝜔⁄ , 𝑅𝑘 = 6,  𝛼0
∗ = 𝛽𝑖 3⁄  and 𝛽𝑖 = 0.072. To calculate 𝑌𝑘, equations 

(6-8) to (6-11) are used. 

𝑌𝑘 = 𝛽
∗𝑓𝛽∗𝑘𝜔 (6-8) 

𝑓𝛽∗ =

{
 

 
1                                  𝑥𝑘 ≤ 0

1 + 680𝑥𝑘
2

1 + 400𝑥𝑘
2                 𝑥𝑘 > 0

 (6-9) 

𝑥𝑘 =
1

𝜔3
𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
 (6-10) 

For an incompressible fluid: 

𝛽∗ = 𝛽∞
∗ (
4 5 + (𝑅𝑒𝑡 𝑅𝛽⁄ )4⁄

1 + (𝑅𝑒𝑡 𝑅𝛽⁄ )4
) (6-11) 

To calculate 𝑌𝜔, equations (6-12) to (6-16) are used. 

𝑌𝜔 = 𝛽𝑓𝛽𝜔
2 (6-12) 

𝑓𝛽∗ =
1 + 70𝑥𝜔
1 + 80𝑥𝜔

 (6-13) 

𝑥𝜔 = |
Ω𝑖𝑗Ω𝑗𝑘S𝑘𝑖

(𝛽∞∗ 𝜔)3
| (6-14) 

Ω𝑖𝑗 =
1
2⁄ (
𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗

𝜕𝑥𝑖
) (6-15) 

For an incompressible fluid: 

𝛽 = 𝛽𝑖 (6-16) 

Ansys Fluent was used to model the turbulent flow along with the 𝑘 − 𝜔 model. 

Considerations were made when generating mesh near the wall based on Henkes and 
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Hoogendoorn [68] extensive study of various turbulent natural convection models. Table 

6-1 summarizes the closure coefficients used in equations (6-4) to (6-16). 

In order to verify the turbulence model used, free convection flow next to a vertical plate 

was tested against Cheesewright [37] experimental data. Figure 6-1 shows that overall the 

temperature profiles are in good agreement.  

 

Table 6-1- Coefficients used in 𝑘 − 𝜔 turbulent model 

𝜎𝑘 𝜎𝜔 𝛼∞
∗  𝛼∞ 𝛼0 𝛽∞

∗  𝛽𝑖 𝑅𝛽 𝑅𝑘 𝑅𝜔 

2 2 1 0.52 1 9⁄  0.09 0.072 8 6 2.95 

 

 

Figure 6-1- Turbulent boundary layer temperature comparison 
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For the laminar flow equation, (4-5) captured the relationship between the temperatures on 

the wall with plume location and heat input. By increasing the heat input and, as a result, 

the Gr number, plume flow characteristics would shift from laminar to turbulent. Here, in 

order to check the robustness of equation (4-5), it was assumed that the same equation 

could model the steady-state temperature readings on the wall. Only the coefficients were 

recalculated with the turbulent data. Similar to chapter 4, different combinations of source 

heat input and location were numerically simulated using the mentioned Fluent model. The 

temperature readings on the upper half of the wall were extracted from the simulation 

results. After determining the coefficients of equation (4-5) for all possible sensor locations 

using the extracted temperature readings, PSO would find the optimal locations to place 

sensors. 

6.2. Results 

Similar to the previous chapter, three different problems are presented: unknown source 

strength, unknown source location and finally unknown source strength and location. 

Equation (4-5) with turbulent coefficients was used with the inverse algorithm for each 

type of problem. The results are demonstrated here.  

6.2.1 Type I: Unknown source strength 

In this problem, it was assumed that source location is known. With this assumption, 

theoretically, only one equation is needed to estimate the strength. For type I problems, 

PSO uses the modified objective function, equation (4-6). 

Figure 6-2 shows the actual versus estimated source strength. Inverse solution using 

equation (4-5) based on laminar temperature patterns performed well in estimating a 
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turbulent plume source heat input. Using a single sensor, this method produced results with 

an average error of 5.16% with a maximum error value of 13.69%. Based on Figure 6-2, 

the method has more difficulty estimating heat input when facing higher turbulent flows. 

The plot clearly shows the deviation from accurate estimation when the flow exceeds Gr = 

75×1010. This observation suggests that equation (4-5) can still predict temperature 

readings in the lower turbulent flows but needs some adjustments as the turbulence gets 

stronger. It should be noted, however, that the results are still in an acceptable range.  

 

 

Figure 6-2- Actual vs estimated source strength using one sensor 
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Table 6-2- Optimum sensor data – plume strength unknown. 

Number of 

sensors 

Location  

on the wall 

Average 

% Error 

Standard 

Deviation 

1 L 5.16 3.41 
2 0.96L, L 5.16 3.42 
3 0.91L, 0.96L, L 5.17 3.43 

 

Two more scenarios with two and three sensors respectively were also considered to study 

the effects of additional sensors on the accuracy of the method. Table 6-2 summarizes the 

optimal sensor location as well as average, maximum and standard deviation for the error 

calculated in all the three scenarios. Based on the data, adding more sensors is not affecting 

the accuracy of the method. 

6.2.2 Type II: Unknown source location 

Type II deals with scenarios where the heat input of the source is known but the location 

is not. Like Type I, theoretically only one sensor is required to estimate the plume source 

location. PSO algorithm uses equation (4-7) as a modified version of the objective function. 

Figure 6-3 shows the actual versus estimated source location. The inverse method provided 

solutions with an average error of 9.08%. The present method struggles the most with 

estimating sources that are close to the ground with a maximum error of about 57%. As 

was discussed in chapter 4, equation (4-5) is heavily influenced by source strength rather 

than location and as a result, it has difficulty estimating source locations that are relatively 

far away from the sensor. Figure 6-3 reinforces this observation. Estimations become more 

accurate as the source location gets closer to the sensor.  
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Scenarios with two and three sensors were also studied. Like type I problems before, 

adding more sensors is not affecting the accuracy of the method. Optimal sensor locations, 

average and maximum error values, and standard deviations are presented in Table 6-3. 

 

 

Figure 6-3- Actual vs estimated source location using one sensor 

 

Table 6-3- Optimum sensor data – plume location unknown. 

Number of 

sensors 

Location  

on the wall 

Average 

% Error 

Standard 

Deviation 

1 0.75L 9.08 13.31 
2 0.74L, 0.78L 9.13 12.20 
3 0.54L, 0.90L, 0.97L 9.33 12.22 
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6.2.3 Type III: Unknown source strength and location 

Actual source strengths and locations versus estimated values are shown in Figure 6-4 and 

6-5, respectively. Challenges that were addressed in type I and II are still present here, 

although for locations estimation the results are better compared to type II.  Figure 6-4 

reinforces the data from Figure 6-2 in which the higher the source heat input, and 

consequently the higher the level of turbulence, the inverse method based on Equation (4-5) 

struggles to estimate the source strength. While estimating source strength, an average of 

5.08% error with a maximum value of 19.40% was the outcome of the inverse method with 

two sensors. When estimating source location, the inverse method generated results with 

an average error of 4.56% with a maximum value of 26.29%. Figure 6-5 proves that, like 

type II problems, the inverse method struggles with source locations close to the ground.  

Three and four sensors scenarios were also studied. Similar to previous studies, introducing 

additional sensors is not affecting the accuracy of the method. Table 6-4 summarizes the 

output of two, three and four sensors scenarios. Overall, for the case of turbulence flow 

adding additional sensors is not dramatically increasing the accuracy of the method.  

In application, the inverse methodology and setup should be able to respond to all three 

types of problems. Therefore, as type III is the most complex and general situation, it is 

worth discussing how the sensors that are optimal for this kind of situation would respond 

to type I and II problems. The results of this study are gathered in Table 6-5 and 6-6. It was 

expected that the results would not be as good as individual type I and II results. There are 

a few drastically inaccurate estimations, especially when solving for source location but 

overall the results are promising.  
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Figure 6-4- Actual vs estimated source strength using two sensors 

 

 

Figure 6-5- Actual vs estimated source location using two sensors 

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Es
ti

m
at

ed
 S

o
u

rc
e 

G
r 

(×
1

0
1

0 )

Actual Source Gr (×1010)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.1 0.2 0.3 0.4 0.5

Es
ti

m
at

ed
 S

o
u

rc
e 

lo
ca

ti
o

n

Actual Source Location



65 

 

 

Table 6-4- Optimum sensor data – plume strength and location unknown. 

Number 

of 

sensors 

Location 

on the wall 

Average 

% Error 

- l 

Standard 

Deviation 

- l 

Average 

% Error 

- Gr 

Standard 

Deviation 

- Gr 

2 0.6L, 0.65L 4.56 5.46 5.08 3.93 
3 0.55L, 0.62L, 0.80L 3.98 5.95 5.20 3.75 
4 0.54L, 0.68L, 0.80L, 0.97L 4.14 6.05 5.19 3.72 

 

 

Table 6-5- Type I & II results using type III optimized three sensor 

Type 
Average 

% Error 

Maximum 

% Error 

Standard 

Deviation 

I 6.29 15.37 3.78 
II 8.15 77.85 14.04 

 

Table 6-6- Type I & II estimation errors using type III optimized three sensors from 

sample cases. 

Gr × 1010  30 50 80 90 

𝑙 

0.15 Gr 

𝑙 

1.79% 

4.45% 

0.75% 

1.73% 

4.06% 

8.07% 

5.14% 

9.85% 

0.25 Gr 

𝑙 

11.43% 

9.66% 

4.49% 

3.72% 

2.83% 

2.19% 

1.98% 

1.52% 

0.35 Gr 

𝑙 

5.25% 

2.57% 

3.67% 

1.67% 

6.08% 

2.78% 

7.30% 

3.31% 

0.45 Gr 

𝑙 

12.44% 

3.89% 

9.29% 

2.76 

6.80% 

1.91% 

5.54% 

1.15% 
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6.3. Conclusion 

In this chapter, the turbulent wall plume flow due to a heat source on the wall was studied. 

A 𝑘 − 𝜔 model with low Reynolds corrections was used in Fluent to numerically simulate 

the turbulent flow. Steady-state temperatures on the wall downstream of the source were 

then collected and used to calculate equation (4-5) coefficients. This equation was 

developed earlier in chapter 4 to capture the relation between the temperatures on the wall 

and plume source strength and location. In order to prove its robustness, the general format 

of the equation was not changed, and only coefficients were updated using the turbulent 

temperatures. The search-based inverse methodology was then applied to the new data set.  

As was expected for type I and II problems, a single sensor was enough to produce 

reasonable results. An average estimation error of 5.16% for the case of unknown source 

strength and an average of 9.08% for the unknown location was obtained. For type III, two 

sensors estimated the unknown source strengths and locations with an average error of 

5.08% and 4.56% respectively. Increasing the number of sensors was also studied. It was 

observed that for all three types increasing the number of sensors did not affect the accuracy 

of the method. Performance of the method with type III sensors was then tested on type I 

and II problems and it was observed that although the results were not as refined as when 

using an individual type optimized sensor, the overall estimations were in an acceptable 

range. 
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 Inverse solution – Experiment Data 

 

In this chapter, the inverse solution methodology that has been presented in this thesis is 

checked with experimental data. The experiment setup, forward results, and methodology 

accuracy are discussed. 

7.1. Experiment apparatus 

The main component of the experiment setup is a 1.5 m by 1 m by 1.5 cm piece of plywood 

acting as the wall. Three polyimides insulated flexible heaters (electric resistance type), 30 

cm long and 2.54 cm wide each, were attached using Kapton polyimide plastic tape onto a 

1 m long aluminum band. This aluminum band is 6 cm wide and 2 mm thick. Two vertical 

slots, 15 cm from each side of the plywood are used to move the aluminum band up and 

down the wall so that the heat source location can be changed. An adjustable variable 

transformer provides the electric current through the heaters so that the heat input can be 

changed. Figure 7-1 shows a schematic of the apparatus. 

A total number of 8 k-type thermocouples were used to monitor the temperature along and 

around the plywood. A LabView card was used to capture the readings of the 

thermocouples. The wall plume flow, being a natural convection one, is weak in 

momentum and as a result susceptible to any disturbance, specifically in the form of surface 

irregularities caused by a thermocouple. Instead of disturbing the flow by putting 

thermocouples on the surface of the plywood, holes were drilled from the back of the wood 

and 5 thermocouples were installed inside the wall as seen in Figure 7-2. Temperature 

readings were then adjusted to the surface temperature values. The basic of this adjustment 
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lies with the main assumption that due to large aspect ratio (1.5 m : 1.5 cm) the heat 

conduction through the plywood can be assumed one-dimensional. Under the one-

dimensional assumption, the temperature profile inside the plywood is linear as shown by 

equation (7-1). 

∇2𝑇 = 0 ⇒  
𝜕2𝑇

𝜕𝑥2
= 0 ⇒ 𝑇(𝑥) = 𝐴𝑥 + 𝐵 (7-1) 

where 𝐴 and 𝐵 are constants. A single thermocouple was placed on the backside of the 

plywood on the exact location of the bottom thermocouple. Using the temperature reading 

from these two thermocouples, the unknown coefficients of equation (7-1) can be found. 

The same function is used to adjust the temperature readings of the other 4 thermocouples. 

 

Figure 7-1- Schematic of the experiment apparatus 
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Figure 7-2- Side view of the plywood and thermocouples locations inside 

 

 

Figure 7-3- Detail of the convection calculation model 
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Figure 7-4- Thermal resistance schematic of the convection calculation model 

 

The other two thermocouples are used to monitor the heater temperature. The heat input 

can be calculated by the power consumption of the electric heaters; however, the heater 

surface temperature is also required. Out of the heater total electric power input, only a 

portion is dissipated into natural convection. The rest of the power input goes to conduction 

through the plywood and radiation. In order to find how much power goes to convection, 

a model was developed. Figure 7-4 shows the thermal resistance representation of this 

model. The thermocouple was attached to the surface of the heater using a thin layer of 

Kapton tape.  

Total electric power input is controlled by the voltage through the variable transformer. 

The electric resistance of each polyimide heater was measured using an ohmmeter. Power 

input, 𝑞𝑖𝑛, can be calculated using equation (7-2). 

𝑞𝑖𝑛 = 
𝑉2

𝑅
 (7-2) 

𝑞𝑖𝑛
′′ = 

𝑞𝑖𝑛
𝐴𝑟𝑒𝑎𝐻𝑒𝑎𝑡𝑒𝑟

 (7-3) 
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where 𝑉 is voltage and 𝑅 is the electric resistance. Equation (7-3) provides the input electric 

heat flux by dividing the input electric power over the area of the heater. Equation (7-2) 

calculates how much of the input power goes into convection using the heat resistance 

model of Figure 7-4. Input electric heat flux was calculated by  

𝑞𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛
′′ = 

((𝑞𝑖𝑛
′′ +

𝑇𝑏𝑅𝐾𝑎𝑝 + 𝑇1𝑅𝑠𝑢𝑚
𝑅𝑘𝑎𝑝𝑅𝑠𝑢𝑚

)
𝑅𝑘𝑎𝑝𝑅𝑠𝑢𝑚
𝑅𝑘𝑎𝑝 + 𝑅𝑠𝑢𝑚

) − 𝑇𝑠

𝑅𝑘𝑎𝑝

−  𝜀𝜎(𝑇𝑠
4 − 𝑇𝑟𝑜𝑜𝑚

4 ) 

(7-4) 

where 𝑇𝑠 is the temperature on the heater surface, 𝑇𝑏 is the temperature on the backside of 

the plywood, 𝜀 is the emissivity of the Kapton polyimide tape, 𝜎 is Stefan-Boltzmann 

constant and 𝑅 is the heat conduction resistance calculated by equation (7-5) for each 

material. 

𝑅 =  
𝐿

𝑘
 (7-5) 

where 𝐿 is the thickness of the material and 𝑘 is the thermal conductivity. 𝑅𝑠𝑢𝑚 in equation 

(7-4) is the sum of all conduction resistances between the heater surface and the backside 

of the plywood. 

𝑅𝑠𝑢𝑚 = 𝑅𝐴𝑙𝑢𝑚𝑖𝑛𝑢𝑚 𝑏𝑎𝑛𝑑 + 𝑅𝑘𝑎𝑝 + 𝑅𝑎𝑖𝑟 𝑔𝑎𝑝 + 𝑅𝑝𝑙𝑦𝑤𝑜𝑜𝑑 (7-6) 

The Grashof number can be calculated using the 𝑞𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛
′′  calculated from (7-4). Table 

7-1 shows the calculation results using the correction equation (7-3). The heat loss to 

conduction and radiation are about 41% for the weakest electric input and gradually take 

up to approximately 48% of input energy on the highest input voltage. As the heater surface 

temperature increases with higher input voltages, the radiation heat loss portion gets larger 

than conduction heat loss because radiation is related to 𝑇𝑠
4.     
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Table 7-1- Average calculated heat fluxes for different input voltages  

Voltage 

(𝑉) 

𝑞𝑖𝑛
′′  

(𝑊
𝑚2⁄ ) 

𝑞𝑐𝑜𝑛𝑣
′′  

(𝑊
𝑚2⁄ ) 

𝑞𝑟𝑎𝑑
′′  

(𝑊
𝑚2⁄ ) 

𝑞𝑐𝑜𝑛𝑑
′′  

(𝑊
𝑚2⁄ ) 

10 120 70 30 20 

50 2990 1660 860 470 

75 6500 3510 2140 850 

100 11800 6185 4385 1230 

 

7.2. Results 

Using the variable transformer to control the voltage of the electric heaters and the slots to 

move the aluminum band up and down the plywood, few different combinations of plume 

source strength and location were studied. Table 7-2 demonstrates the heater location on 

the plywood and input electric power and its corresponding Gr number for each case. 

 

 

 

Figure 7-5- Variation of temperature with respect to (a) source strength (l = 0.8255 m), 

(b) source location (Gr = 8.612× 1013) - locations A, B and C represent 0.5L, 0.75L and 

L on the wall 
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Due to large proportions of the plywood, even low voltage inputs would generate a 

turbulent flow. Figure 7-5a and b demonstrate the temperature readings with respect to 

fixed source location and fixed heat input, respectively. It is observed that temperature 

trends are very similar in nature to those plotted in Figure 4-2c and d for laminar flow. 

Therefore, reinforcing the decision made in chapter 6, equation (4-5) which was initially 

developed for laminar flows, was used to solve the inverse problem. Only the coefficients 

were recalculated using the experiment temperature readings. 

For the first study, 5 k-type thermocouples were placed inside the plywood at 18.75 cm 

spaces starting from the middle of the board and ending on top. Like the simulations in 

previous chapters, the thermocouples are only placed on the upper half of the wall. These 

thermocouples are not necessarily placed on the optimum locations; however, they still 

produce reasonable inverse results. Figure 7-6 shows the inverse results obtained by the 

temperature readings of thermocouples at 93.75 cm and 148.75 cm from the bottom of the 

board. These sensors provide an average error of 8.54% when estimating the plume source 

location and 16.26% error when estimating the source strength. The high error in strength 

estimation follows the trend observed in chapter 6 where equation (4-5) had difficulty 

predicting flows in higher turbulence regimes. When cross-checking Figure 7-6 with Table 

7-2 it is observed that these sensors generally estimated better when they were closer to the 

plume source. This behavior was also expected based on the findings of chapter 6.   

As mentioned above, the thermocouples arrangement on the plywood for the results shown 

in Figure 7-6 was sequential in the form of equal space in between. However, in Chapter 

6, while studying the turbulent flow, an optimum location to put two sensors or 

thermocouples was found. Referring to Table 6-4, the optimum locations are 0.6L and 
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0.65L respectively on the wall. In order to check the validity of these findings, two 

thermocouples were replaced to 0.91 and 0.99 m on the plywood. Four sample cases were 

run again with the new thermocouple arrangements. Figure 7-7 shows the drastic reduction 

of estimation error for cases B, C, E and F when the optimum thermocouples are used. For 

case B, for example, the source strength estimation error has reduced from 34.77% to 1.4%. 

while locations estimation error is improved from 14.4% to 2.41%.  

 

Table 7-2- Experiment cases detail 

Case Voltage (𝑉) 𝑙 (𝑚) Gr × 1013 Case Voltage (𝑉) 𝑙 (𝑚) Gr × 1013 

A 10 0.52 0.16 F 75 0.66 8.61 

B 50 0.52 4.08 G 10 0.82 0.16 

C 75 0.52 8.61 H 50 0.82 4.08 

D 10 0.66 0.16 I 75 0.82 8.61 

E 50 0.66 4.08 J 100 0.82 15.19 

 

 

Figure 7-6- Experiment inverse results using two random sensors 
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Figure 7-7- Experiment inverse results for select cases using optimum thermocouple 

locations 

 

7.3. Conclusion 

In this chapter, an experiment apparatus capable of producing wall plume flows with 

different source strengths and locations was presented. The input electric input was 

corrected to take heat conduction and radiation into account.  

10 different combinations of wall plumes were tested. Temperature readings from 5 

thermocouples placed in equal distances were then analyzed and inverse methodology was 

tested using equation (4-5). Similar to chapter 6, equation (4-5) provided acceptable results 

with the experiment turbulent flow data, even though the thermocouple arrangement was 

not following the optimal locations found in chapter 6. When tested against the optimal 

thermocouple arrangement, the method showed high accuracy in estimating both source 

strength and location. This experiment proves that the methodology developed throughout 

this thesis is capable of producing fast and reliable results within an acceptable range of 

accuracy for inverse natural heat convection problems. 
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 Conclusion 

 

In this thesis, an inverse methodology based on training data sets was developed to solve a 

wall plume inverse heat convection problem. The methodology was tested against laminar 

and turbulent steady-state temperatures and transient data from numerical simulations. 

Finally, it was tested against experimental data and provided good accuracy through all of 

the said problems. 

8.1. Summary of the Thesis 

The proposed inverse methodology contains a study of the forward problem data to find 

relatable functions between various flow parameters and plume heat input and location and 

then using these equations to tackle the inverse problem. The laminar and turbulent steady-

state temperature on the wall and transient temperature behaviors were studied numerically 

and a few interesting observations were made. These observations then led to different 

relatable functions that were then used to find unique inverse solutions.  

The main challenge of this study was to find unique inverse solutions within an acceptable 

error range by using limited data. In order to make the proposed solutions more practical, 

data acquiring points were limited to the wall surface only.  

Chapters 1 and 2 provide an introduction and summary to inverse heat transfer problems 

as well as forward transient wall plume studies. Chapter 3 goes into detail with the method 

and also introduces PSO  as the optimization algorithm used with the methodology. 
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In chapter 4, the unique solution was built with steady-state temperature data only. 

Temperature trends were studied with respect to plume source strength, in the form of Gr, 

and source location. A few equations were considered to relate the features and one was 

selected. This equation is unique for any point downstream of the source on the wall. 

Through non-linear regression methods, the coefficients of this equation were determined 

at each point. In theory, if two of the aforementioned equations form a system of equations, 

one can solve the system to obtain the unknown source strength and location. In order to 

find the best sensor locations, PSO was used. Using the equations and a proposed objective 

function, PSO was able to find the best pair of sensors that would estimate the plume source 

strength and location with the least error. Other scenarios where only either source location 

or strength is unknown were also studied.  

In chapter 5 transient phase of the forward flow was studied in order to find relatable 

functions that would connect plume source strength and location to temperature trends 

downstream of the plume. One of the studied flow transient features was Peak Temperature 

Time (PTT). Using non-linear regression methods, PTT was related to plume source 

strength and location in the form of a simple equation. This equation, just like the first 

approach, has unique coefficients at each point downstream of the plume. PSO was used 

again to find the best sensor locations. The effect of increasing the number of data points 

or sensors was also studied and it was shown that generally with an increase in the number 

of data points, the accuracy of the method is improved. 

Chapter 6 covers the turbulent flow. Because turbulent flow is generally more complicated 

than a laminar one, the transient approach was put aside, and all focus was diverted to 

steady-state temperatures on the wall. Using the already established relatable function from 
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the laminar regime, the inverse methodology was applied with good accuracy. Although 

the equation was tailored for laminar flow initially, it adapted nicely to turbulent data and 

provided accurate results. It was observed that as the flow turbulence gets stronger, 

estimation accuracy, especially for source strength, was reduced. It was also shown that 

increasing the number of sensors would not affect the accuracy of the estimations 

dramatically. 

An experiment setup was introduced in chapter 7 to test and verify the robustness of the 

developed methodology. All the plume flows tested were turbulent and just chapter 6, the 

same relatable equation from chapter 4 was tested. The results showed good accuracy, 

especially when estimating the plume location. When the optimal thermocouple locations 

from chapter 6 were tested with the experiment data, a high level of accuracy was achieved. 

8.2. Future Work 

There is room to improve this methodology. One possibility is to study other transient 

features such as peak temperature or the temperature rise initiation time and integrate them 

into the solution method. Also combining the results of transient and steady-state results 

could increase the overall accuracy, reduce the uncertainty of the solutions and help to 

reach unique solutions. Transient inverse results could act as first estimations while steady-

state inverse results could fine-tune the transient solutions. 

Machine learning and deep learning have gained momentum, especially in the last decade 

thanks to the ever-increasing computational power of modern computer systems. They 

have gradually gained a foothold in other science disciplines from health care [69-71] to 

fluid mechanics [72-74]. These techniques usually require a big data set to train the 
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algorithm, however, with the power of computers today, it is a relevantly straight forward 

process to numerically mass simulate forward problems with different boundary conditions 

and feed the algorithm. This is a promising front for mechanical engineering and fluid 

mechanics in general and inverse heat transfer problems in particular. Instead of finding 

the relative functions by human study, the computer would use the huge training data set 

to regulate complex relations between multiple problem parameters at once and produce 

accurate results.  

The ultimate goal of this study is to find solutions to small fires or overheating electric 

devices in rooms. To that end, trying more complex geometries such as cavities with and 

without openings would be the next step. However, this has proven to be more challenging 

than it seems. A considerable amount of work during this project was dedicated to solving 

the inverse heat transfer problem in cavities with openings. The results of the forward 

problem were promising but hard to analyze with the inverse solution in mind. Here is 

where the machine or deep learning algorithms could shine. Providing the algorithm with 

a considerable amount of raw data in the form of transient and steady-state fluid 

temperature and velocity inside the cavity for different heat source locations and strengths 

to form up the training data set would be the first step. The focus of this proposed research 

should be on tuning a suitable algorithm to find unique inverse solutions within an 

acceptable range of accuracy.   
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