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ABSTRACT OF THE THESIS

FREE PLAY STUDY USING PETERS UNSTEADY AERODYNAMICS WITH

APPLICATIONS TO PROBABILISTIC MODELING

by JEET PANCHAL

Thesis Director:
Haym Benaroya

In the last two decades, there has been an increasing interest in the field of nonlinear

aeroelasticity. With substantial improvements in computing capabilities, the control

surface free play problem is now being reinvestigated by many researchers with the

goal of developing more advanced and accurate analytical models. Despite this field

of research being well defined, numerous modeling approaches exist, yielding unique

numerical predictions of the aeroelastic dynamical behavior and its associated prop-

erties. The literature shows many variabilities in the parameters that define free play,

with the majority of the existing models being developed deterministically. In this

thesis, different nonlinear aeroelastic systems with finite-state unsteady aerodynamics

are investigated in the time domain. The results are then used to create a novel prob-

abilistic framework to predict the likelihood of encountering aeroelastic instabilities.
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Chapter 1

Introduction

1.1 Background

Free play in aircraft control surfaces, all-moving wings, and external stores is a struc-

tural nonlinearity that is defined by reduced or zero stiffness within certain ranges

of motion of the actuating structures. Free play results from degraded parts, such as

worn hinges or loose attachments, often due to an aging aircraft. There are various

mathematical representations for this phenomena, many of which are explained in

detail in Section 2.2. Shown in Figure 1.1 is the idealization of freeplay, which is often

represented by a piecewise linear function with zero stiffness in the region of freeplay.

Excessive free play is detrimental to the safety of aircraft. It can lead to catas-

trophic aeroelastic instabilities such as limit cycle oscillations, which accelerate the

accumulation of structural fatigue damage and compromise controllability. Further-

more, it has been well-documented that such instabilities occur below the predicted

linear flutter velocities, rendering potentially hazardous flight scenarios such as pre-

mature flutter or limit cycle oscillations [1, 2].

The Federal Aviation Administration (FAA) has established guidelines that

define allowable free play quantities, limitations, and considerations that would meet
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Figure 1.1: The graph shows the degrees of rotation (in radians)
of a control surface, denoted in the x-axis, and the corresponding
hinge moment necessary to rotate control surface, denoted in the
φ-axis. The free play region is seen in the center where there is
a flat spot in the graph about ±δ, which is the variable for the
amount of rotational free play [3].

regulatory compliance to freedom from flutter in their Advisory Circular (AC) 23.629-

1B (normal, utility, and acrobatic category airplanes) and 25.629-1B (transport cat-

egory airplanes) [4, 5]. The recommendations in these guidelines, however, are in

some ways antiquated. For example, the current AC 23.629-1B that governs modern

design of non-transport category airplanes gives numerical limitations on free play

angle based on data from outdated free play experiments done in the 1950s, directly

referencing the 1955 Airframe and Equipment Engineering Report No. 45 where the

data were published [4, 6]. Not only are such values of free play angle limitations very

stringent and resulting in higher manufacturing and maintenance costs, but they also

do not completely guarantee permanent removal of aeroelastic instabilities, regard-

less of how small or large the free play nonlinearity may be [7, 8]. An approach that

involves using only the angles of free play as the sole parameter of consideration for

establishing freedom from aeroelastic flutter is not suitable for all types of aircraft,

especially aircraft that fly in high subsonic and transonic airspeed. AC 25.629-1B

is more up to date with its guidance, taking a qualitative approach to addressing

free play and providing explicit guidelines to manufacturers of transport category
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airplanes for incorporating the effects of free play in important aeroelastic stability

calculations. Regardless of the difficulties with developing proper Advisory Circulars,

aeroelasticians are well aware of the problems resulting from free play.

Free play related flight challenges have been well known since the earliest

designs of the first airplanes. In the 1930s and 1940s, aeroelasticians correctly doc-

umented that free play affected aeroelastic flutter. Theodorsen and Garrick [9, 10]

stated, “. . . any slack in the aileron. . . may cause a mild type of flutter, which should

not be permitted for too long a time.” While their focus at the time was to simply un-

derstand flutter, they noted that such nonlinearities degraded flight stability. Hence,

they tried to develop different ways to avoid flutter resulting from free play by trying

to completely eliminate it. Examples of such designs included determining a way to

maintain constant pre-load or tension in control mechanisms, such as that shown in

Figure 1.2. However, as aircraft technology became more complex, more sources of

structural nonlinearities were introduced, and eliminating the issues of free play (or

backlash) was not always guaranteed, regardless of design [11].

Figure 1.2: Two different springs are used to ensure that the tab
has a constant spring tension on it to avoid regions of free play
[11].

The earliest work performed to understand and model the effects of free play

on the dynamics of aircraft control surfaces was initiated in the 1950s. Around this

time, understanding nonlinear aeroelastic behavior became a critical point of interest

for the U.S. Air Force. With the emergence of transonic flight, the Air Force’s goal

was to define margins of acceptable free play in various control surfaces, particularly
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examining the effectiveness of tail horizontal stabilizers and elevators where severe

aerodynamic reductions were anticipated in the trailing edges [3]. Hoffman and Spiel-

berg [2] carried out some of the first full scale experimental studies in a wind tunnel

on unswept all-moving elliptical wing sections with controlled amounts of free play

values, over a range of low to high subsonic velocities in free stream air. They tested

to find correlations between free play quantities and various characteristics of flutter

instabilities. See Figure 1.3. They observed limited amplitude flutter oscillations at

speeds below the linear flutter velocities. Supercritical limit cycle oscillation (LCO)

behavior was observed, with a gradual increase in amplitude size resulting from pro-

portional increase in free play displacement. These experiments laid the foundation

for establishing the free play limits in the Airframe and Equipment Engineering Re-

port No. 45 released by Rosenbaum and Vollmecke [6]. Around the same time in the

1950s, Woolston et al. [12] and Shen [13] initiated some of first analytical studies of

the free play problem using analog computers to understand preliminary response of

the aeroelastic systems with different types of structural nonlinearities.

Figure 1.3: The tested wing was split into eight movable sections
linked together by a single spar that cuts across the wing perpen-
dicularly, as shown by the dotted lines [2].
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These studies laid the foundation for the subsequent research on this topic.

Through the late 1980s to the present, research interest in this topic has grown sub-

stantially. As more aircraft continue to age and newer more complicated aircraft are

designed, concerns with structural nonlinearities have drastically increased. Finding

better ways to resolve such issues is important because there is a belief that the current

requirements and approaches for monitoring free play and conducting maintenance

are very costly [14]. Furthermore, readily accessible large-scale and fast computing ca-

pabilities have also led to the rise of research interest in complex domains of nonlinear

aeroelasticity within the academic community, as seen by more literature published

on free play. While the approach to researching free play is generally well defined, the

aviation community has yet to fully understand the global implications of the free

play problem. Thus, there is strong motivation for continued research on this topic.

1.2 Thesis Contribution

In this thesis, several of the issues mentioned above will be explored. The goal of

this research is to demonstrate the variability in the response of a two degree-of-

freedom aeroelastic system with many different nonlinear stiffness models. Our new

contributions include using a new finite-state, induced flow unsteady aerodynamics

theory for studying free play. We also create a first of its kind 3-D bifurcation diagram

that shows how an aeroelastic system’s response would evolve with changing free play.

Finally, we develop a novel probabilistic framework to help predict the likelihood of

encountering aeroelastic instabilities.

In the next chapter, a general literature review of this field of study is provided.

Then, the analytical framework is developed in Chapter 3, followed by the results and

discussion given in Chapter 4. Lastly, concluding remarks and ideas for future work

are given in Chapter 5.
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Chapter 2

Literature Review

A majority of the literature on the topic of free play initiate their studies by expanding

upon fundamental aeroelastic theories. Dynamical equations of motion are developed

for an assumed cross-sectional structural model of a wing or control surface that is

subjected to selected aerodynamic loads. Then the free play nonlinearity is introduced

into the structural model and various types of engineering analyses are performed to

map regions of aeroelastic instability or flutter, and identify parameters of influence

and their sensitivities to aeroelastic response. The accuracy of these models is usually

assessed by comparing numerical results to data from experimental studies involving

similar structural and aerodynamic setups. While many research studies aim to better

understand free play related instabilities and their implications for aircraft reliability,

some research choose to exploit the instabilities, such as using wing-based piezoelectric

systems to harvest energy [15]. Others wish to explore novel means of active control

and other suppression techniques to prevent the instabilities resulting from nonlinear

aeroservoelastic systems [16, 17]. The field of research is quite large.
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2.1 Structural Models

Aeroelastic model formulation for the free play problem starts by initially approxi-

mating an aircraft wing in its simplest structural form as a long, thin, and symmetric

plate with uniformly distributed mass and structural properties. These models also

assume that the plate has uniform transverse and rotational stiffness along its span.

The only boundary condition on this plate is that one edge is fixed to a wall, signify-

ing a wing’s root attachment to the fuselage body of an aircraft. Due to uniformity

and symmetry of such a plate, we are able to completely understand the entire plate’s

dynamical behavior by only observing a single single cross section known as a “typical

wing section” [18, 19]. The 3D problem is reduced to a 2D problem by these structural

approximations.

Starting with a typical wing section allows for the use of the well-known thin

airfoil theory in aerodynamics. The preliminary assumptions involve having incom-

pressible, inviscid airflow around an airfoil of zero thickness (and infinite span). Fur-

ther approximations for simplicity are to assume that the airfoil is rigid with no airflow

penetration and limited to small amplitude oscillations. Since much research on thin

plates and airfoils exists in the fields of structural mechanics and aerodynamics, this is

a great starting point for developing more sophisticated models that can begin to best

represent a true aircraft wing with real flight conditions. The means by which this is

done is through higher order modeling [16]. One can add more degrees of freedom,

more accurate aerodynamics, better-defined constraints, and appropriate initial and

boundary conditions to existing aeroelastic models to better describe the true nature

of an aircraft’s flight. These improvements obviously come with high computational

expense in time and processing capabilities. Higher order modeling also introduces

the possibility for more sources of error accumulation that should be accounted for

in the final aeroelastic analyses.



8

2.1.1 Single Degree-of-Freedom

Figure 2.1: The one degree-of-freedom typical section is shown
here with the two possible degrees of freedoms in pitch α and
plunge h [20].

The simplest structural model to work with is a single degree-of-freedom

model. A thin 2D airfoil is capable of two types of motion shown in Figure 2.1:

rotation (or pitch) and translation (or plunge). For a single degree-of-freedom model,

one of these two types of motion is assumed to be much more important than the

other, which is then considered negligible. This determination is made by observing

which of the two types of motion is significantly larger than the other for the aircraft

and wing of interest. Usually, the rotational degree of freedom is considered more

important because, in most cases, a wing or control surface will rotate much more

significantly than it will bend when actuated by pilot input. Stabilators, particularly

ones that are on fighter jets, demonstrate how great this disparity between rotation

and bending of a wing can be as shown in Figure 2.2b. These wings rotate entirely

at their roots. Their low aspect ratio prevents any significant longitudinal bending

resulting from the lift they generate.

The mathematical modeling of a single degree-of-freedom aeroelastic system
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(a) (b)

Figure 2.2: Stabilators control the pitch of an aircraft, shown in
(a), by rotating entirely at its root as shown in (b). Stabilators
tend to be thin for fighter jets, shown on the left, as opposed to
bluff bodied wings found on large commercial jets. Single degree-
of-freedom modeling with a thin airfoil approximation is suffi-
cient. Picture on the left obtained from NASA Glenn Research
Center online multimedia [21]. Picture on the right taken by Mr.
Jeet Panchal at FAA-TC in New Jersey.

only yields one equation of motion, such as Equation 2.1. Guruswamy and Yang [20]

used the airfoil model shown in Figure 2.1 to carry out transonic aeroelastic analyses

for a thin airfoil using the LTRAN2 code, and compared their results to subsonic

theory. The equation of motion that they used for this system with only pitching

motion α is

Iαα̈ + Cαα̇ +Kαα = Qα. (2.1)

In Equation 2.1, Iα is the mass moment of inertia of the thin airfoil, Cα is the damping

coefficient in pitching, Kα is the rotational stiffness of the airfoil, and Qα is the

aerodynamic moment on the airfoil. The mathematical function for free play would

replace Kα. The above equation can be written in non-dimensional form as

α′′ + A1α
′ + A2α =

Qα

Iαω
. (2.2)

The primes on the rotational angle α indicate differentiation with respect to non-

dimensional time t̄ = ωt (where ω = 2π
t

). A1 and A2 are non-dimensional constants for
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the damping and stiffness, given by
(
Cα
Iαω

)
and

(
Kα
Iαω2

)
, respectively. Non-dimensional

analysis allows important groups of parameters that are of most influence on a model’s

aeroelastic response to be identified. This type of dimensional analysis enables us to

establish correct scaling and similitude that are needed for wind tunnel experiments.

Here, it should be noted that true structural damping is often disregarded

across much of the literature due to the complexity it introduces. Structural damping

within most aircraft systems is highly nonlinear [22, 23]. Viscous damping approx-

imation is often made due to ease of calculations and analysis. Some researchers

completely disregard any type of structural damping. For example, He et al. [24]

studied the control surface buzz phenomena using describing functions by assuming

no structural damping at the hinge line where the control surface attaches with the

wing, as shown in Figure 2.3. Their governing equation of motion was

Iββ̈ +M(β) = 2ρV 2b2cm. (2.3)

In Equation 2.3, β is the degree of freedom in rotation of a control surface, Iβ is

the control surface moment of inertia, and M(β) is the function for the nonlinear

hinge moment for the control surface. The structural forces on the left side of the

equation are equated to the aerodynamic forces on the right, where ρ is the air density,

V is the airspeed, b is the reference half-chord length of the airfoil, and cm is the

aerodynamic pitching moment coefficient about the hinge line. The non-dimensional

form of Equation 2.3 is

1

ω2
β

β̈ +
M(β)

Kβ

=
2U2

πµrb2
cm, (2.4)

where ωβ is the frequency of oscillation for the control surface, µ is the mass ratio de-

fined by µ = m
πρb2

, rβ is the radius of gyration, and U is the reduced (non-dimensional)

velocity given by U = V
bωβ

.

A single degree-of-freedom model can also focus on the plunge motion h if the

longitudinal bending of a wing is significantly greater than its rotation or twisting.
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Figure 2.3: Control surface buzz is a single degree-of-freedom flut-
ter instability that occurs in control surfaces during transonic
flight due to the presence of shock waves on the wing or the
control surface itself. The aeroelastic model used to study this
phenomenon can be as simple as the one shown here, given by He
et al. [24].

Such behavior is most observed in high aspect ratio wings, such as the main wings of

commercial aircraft. These wings are designed to deflect significantly during normal

flight to dissipate oscillatory aerodynamic forces. At the same time, the main aircraft

wings are designed to undergo little to no twisting deformation during flight to prevent

the aeroelastic instability of static divergence. There are several ways to model a single

degree-of-freedom system with only plunging motion. Guruswamy and Yang [20] have

examined this problem. The equation of motion that they used was

mḧ+ Chḣ+Khh = Qh, (2.5)

where m is the mass of the airfoil, Ch is the damping coefficient in plunging, Kh

is the plunging stiffness of the airfoil that represents that bending stiffness of the

wing, and Qh is the lifting aerodynamic force acting on the airfoil. The mathematical

function for free play would replace Kh. Utilizing the same non-dimensional approach

as Equation 2.2, the above equation’s non-dimensional form is

δ′′ +B1δ
′ +B2δ =

Qh

mω2c
. (2.6)

The δ is the non-dimensional plunge variable, B1 and B2 are constants, and c is the

non-dimensional chord length of the airfoil.



12

Single degree-of-freedom systems with plunging free play can also be modeled

differently from the classical airfoil approach described above. Li et al. [25] examined

longitudinal deflection of a cantilevered plate fixed at one end and attached to a

spring with free play on the opposite end, shown in Figure 2.4. The structural model

Figure 2.4: This type of cantilevered plate with free play can be
used to model the behavior of loose aircraft skin attachments
containing manufacturing or installation errors [25].

was subjected to longitudinal subsonic aerodynamic loads. The plunging deflection w

of the plate is governed by the equation [25]

ρshẅ +Dw′′′′ +Dgsẇ
′′′′ − κ(x)

(
ẅ + 2U∞ẇ

′ + U∞
2w′′
)

− ρ∞
π

[
ln
(x
l

) (
U∞ẇ + U∞

2w′
)
|x=0 − ln

(
1− x

l

) (
U∞ẇ + U∞

2w′
)
|x=l
]

+ Fnon · δ(x− lr) = 0.

(2.7)

It is interesting to see how Equation 2.7 takes a much different form than the other

equations of motion described before for single degree-of-freedom systems. Details of

Equation 2.7 are given in reference [25].

Single degree-of-freedom structural models with free play often have similar

equations of motion. The simplicity of working with less variables and equations

makes such models useful for initial analyses of complicated nonlinear systems. This

simplicity allows researchers to explore the validity of novel analytical techniques

before they apply them to systems with more degrees of freedom. For example, Liu

et al. [26] were able to show that fractional dynamical systems with free play can

be solved by validating their approach with a single degree-of-freedom system. The

next steps involve adding an additional degree of freedom for more realistic 2D airfoil
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behavior.

2.1.2 Two Degrees of Freedom

A thin airfoil with two degree-of-freedom aeroelastic systems has both pitching and

plunging. There are many different ways that these airfoils can be diagrammed, as

shown in Figure 2.5. All sketches include a torsional spring for rotational stiffness

and a translational spring for plunging stiffness. The differences in these diagrams are

in the relative locations of important airfoil and wing parameters such as center of

gravity, elastic axis, pitching angle, and plunging displacement. All the sketches are

valid for any aeroelastic analysis as long as the notation is kept consistent.

(a) (b)

(c)

Figure 2.5: The slender plate and flat airfoils in subfigures (a) and
(b), respectively, are typically used with subsonic aerodynamics
[3, 27]. The double-wedge airfoil in subfigure (c) is commonly used
with supersonic aerodynamics [28].

Two governing equations of motion are required to fully describe the dynamics
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of two degree-of-freedom systems. As observed with one degree-of-freedom systems,

the equations of motion for any two degree-of-freedom system will take identical

forms. The standard equations of motion are

mḧ+ Sα̈ + Chḣ+ Ḡ(α) = p(t) (2.8a)

Sḧ+ Iαα̈ + Cαα̇ + M̄(α) = r(t), (2.8b)

where m is the mass, S is the airfoil static moment
(
=
∫
c
xρsdx

)
, Ch and Cα are the

damping coefficients in plunge and pitch, respectively, Ḡ(α) and M̄(α) are the plunge

and pitch stiffness functions, respectively, and p(t) and r(t) are forces and moments

acting on the airfoil, respectively [29]. Ḡ(α) and M̄(α) are functions of Kh and Kα,

respectively. A matrix representation of Equation 2.8 is derived in Chapter 3.

The non-dimensional form of Equations 2.8 is [29]

ξ′′ + xαα
′′ + 2ζξ

ω̄

U∗
ξ′ +

ω̄

U∗

2

G(ξ) = − 1

πµ
CL(τ) +

P (τ)b

mU2
(2.9a)

xα
rα2

ξ′′ + α′′ + 2
ζξ
U∗
α′ +

1

U∗2
M(α) =

2

πµrα2
CM(τ) +

Q(τ)b

mU2rα2
, (2.9b)

where the non-dimensional parameters are

ξ =
h

b
, Kξ = Kh, xα =

S

bm
, τ =

Ut

b
, U∗ =

U

bωα
,

G(ξ) =
Ḡ(h)

Kξ

, M(α) =
M̄(α)

Kα

, ωξ =

√
Kξ

m
, ωα =

√
Kα

Iα
, rα =

√
Ib
mb2

,

ζξ =
Ch

2
√
mKh

, ζα =
Cα

2
√
IαKα

, ω̄ =
ωξ
ωα
, µ =

πρb2

m
.

Some new terms are introduced above. The terms ωα and ωξ are the uncoupled plung-

ing and pitching natural frequencies, µ is the airfoil to air mass ratio, rα is the reduced

radius of gyration about the elastic axis, xα is the distance from elastic axis to the

center of mass of the airfoil. The right hand sides of Equations 2.9 include the coeffi-

cients of lift and moment, defined as CL (τ) and CM (τ), and externally applied forces

and moments, P (τ) and Q (τ). Since P (τ) and Q (τ) are not necessarily aerodynamic
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contributions, they may be zero [29]. The aerodynamic contributions are accounted

for through the CL (τ) and CM (τ), explained in Section 2.3.

The two degree-of-freedom structural model has been used for a variety of

free play studies. The majority of the literature utilizes either two or three degree-

of-freedom models for most types of aeroelastic analyses. Several novel analytical

approaches have been tested with such structural models. Chung et al. [30] used a

perturbation-incremental method in their aeroelastic analysis to calculate both stable

and unable limit cycle oscillations and detect unique nonlinear periodic motions and

bifurcations. De-Min and Qi-Chang [31] performed bifurcation and chaos analysis of

a double wedge airfoil in supersonic and hypersonic flow using Poincaré mapping.

Emory and Patil [32] used nonlinear normal modes to predict limit cycle oscillations

for a two degree-of-freedom airfoil with a cubic nonlinearity. Several probabilistic

analyses on two degree-of-freedom airfoils with structural nonlinearity in pitch have

also been performed [27, 33].

A comparison of different numerical approaches have been done using this

structural model. A reduction approach was used to simplify a typical pitch-plunge

airfoil’s aeroelastic model from eight ordinary differential equations in state space

form to six ordinary differential equations for quicker simulation run time [34]. Dai et

al. [35] also compare classical fourth order Runge-Kutta time integration numerical

methods with Hénon’s method for different representations of free play, verifying the

work of Connor et al. [36] for a three degree-of-freedom system.

Similar to the single degree-of-freedom model, the two degree-of-freedom model

provides a good platform on which to apply new analytical and numerical approaches

to obtaining solutions for the free play problem. However, the additional degree of

freedom allows researchers to study more complex nonlinear behavior that cannot be

seen with a single degree of freedom model, while avoiding simulation issues that are

often limiting factors in analyses with more degrees of freedom.
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2.1.3 Three Degrees of Freedom and Higher

A variety of three degree-of-freedom and higher order models exist in the literature.

Once again, these involve utilizing a “typical wing section” that is an airfoil modeled

with more moving parts. The majority of the literature in the field of free play analysis

uses two degree-of-freedom or three degree-of-freedom airfoils for their studies. The

most common type of airfoil used in three degree-of-freedom models involves adding a

control surface to the existing two degree-of-freedom airfoil from the previous section.

This adds an extra pitching displacement variable β corresponding to the rotation of

the added control surface. See diagrams in Figure 2.6.

(a) (b)

Figure 2.6: Three degree-of-freedom models with airfoil and flap
are generally alike in representation, with few differences such
as the location of the coordinate systems that denote distances
between important parameters of the airfoil, flap, and wing [37,
38].

Three governing equations of motion are required to fully describe the system.

Consider the structural system in Figure 2.6a. The equations of motion for this system

are [37],

mḧ+ Sθθ̈ + Sββ̈ + chḣ+ khh = L (2.10a)

Sθḧ+ Iθθ̈ + (Iβ + b (c− a)Sβ) β̈ + cθθ̇ + kθθ = Mθ (2.10b)

Sβḧ+ (Iβ + b (c− a)Sβ) θ̈ + Iββ̈ + cββ̇ +M (β) = Mβ, (2.10c)
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where Sθ and Sβ are the static moments of the airfoil and flap, kh and kθ are the plunge

and pitch stiffnesses of the airfoil, cθ and cβ are the rotational damping constants of

the airfoil and flap, Iθ and Iβ are the moments of inertia for the airfoil and flap, M (β)

is the pitch stiffness of the flap (where the free play nonlinearity is found), L is the

aerodynamic lift on the airfoil, and Mθ and Mβ are the moments on the airfoil and

the flap. These equations can also be represented in the following non-dimensional

form [39],

ξ′′ + xαα
′′ + xββ

′′ +
Ω2

1

U2
ξ = p (2.11a)

xα
r2α
ξ′′ + α′′ +

[
r2β + (bh − ah)xβ

] 1

r2β
β′′ +

1

U2
Mα (α) = r (2.11b)

xβ
r2β
ξ′′ +

[
1 + (bh − ah)

xβ
r2β

]
+ β′′ +

Ω2
2

U2
Mβ (β) = s. (2.11c)

The non-dimensional relations necessary for the transformation to Equations

2.11 are [39]

τ =
V t

b
, ξ =

h

b
, rα =

√
Jα
mb2

, rβ =

√
Jβ
mb2

,Ω1 =
ωξ
ωα
, Ω2 =

ωβ
ωα
, U =

V

bωα
,

where, p, r, and s are non-dimensional lift and moment contributions. Further expla-

nations for the aerodynamics is provided in Section 2.3. These above equations can

be given in matrix form as well. Using the structural model in Figure 2.6b, the matrix

form of the equations of motion is [38],

[M ] {q̈}+ [C] {q̇}+ [K] {q} = {F} , (2.12)

where,

[M ] =


(
mT
mw

)
xα xβ

xα r2α
[
r2β + (c− a)xβ

]
xβ

[
r2β + (c− a)xβ

]
r2β


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[C] =


d1,1 d1,2 d1,3

d2,1 d2,2 d2,3

d3,1 d3,2 d3,3



[K] =


ω2
h 0 0

0 r2αω
2
αF (α)
α(t)

0

0 0
r2βω

2
βF (β)

β(t)



{q} =


ξ (t)

α (t)

β (t)

 , {F} =

(
1

b2mw

)
−bL (t)

Mα (t)

Mβ (t)

 .

The values of the elements in matrix [C] are given in [38]. The use of this type of

structural model is widespread in the literature. Numerous free play studies have

been conducted using this model. References [36, 40, 41, 42, 43] thoroughly cover

three degree-of-freedom nonlinear aeroelastic systems.

Other three degree-of-freedom systems used for free play analysis include an

airfoil with an external store attachment. Chen and Liu [44] explores an undamped,

coupled airfoil model containing an attached store element free to pitch in the β

direction, shown in Figure 2.7. This model contains free play in the airfoil pitch

stiffness. The “precise-integration-method” is used to map out limit cycle oscillations

and chaotic attractors, which are found to exist together. The governing equations of

motion are

(m+mβ) ḧ+ (Sα + Sβ −mβL)α̈ + Sββ̈ + 2mωhζh +Khh = Qh (2.13a)

(Sα + Sβ −mβL)ḧ+
(
Iα + Iθ +mβL

2 − 2SβL
)
α̈ + 2Iαωαζα

+ (Iβ − SβL) β̈ +KαM(α) = Qα

(2.13b)

Sαḧ+ (Iβ − SβL) α̈ + Iββ̈ +Kββ = 0. (2.13c)
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Figure 2.7: The external store element can be visualized as a rigid
structure joined at a wing’s tip [44].

Typically, researchers have dealt with the store attachment problem in different

ways than Chen and Liu. The free play nonlinearity is usually explored with the store

attachment, not the airfoil itself. This is because such a problem is experienced with

jet aircraft that carry external fuel stores or missiles and weaponry. This type of free

play results in low frequency vibrations of the external stores, causing aircraft cabin

discomfort and potential structural fatigue [45, 46]. There is tremendous difficulty

in establishing an adequate way of modeling this behavior. As opposed to a control

surface that is constrained to rotational movement about its hinge line, an external

store on a wing body can have free play in pitch, yaw, or roll, depending on how the

attachments and its constraints are configured. There are challenges to modelling store

free play problems. Limiting the motion and nonlinearity to a single degree of freedom

leads to inaccuracies. References [45, 46, 47] detail the challenges in establishing

reliable models with store free play.

Higher order 2D airfoil models exist but are not as commonly used for free

play analysis due to the higher computational complexity and cost. A fourth degree

of freedom γ was added to the airfoil-flap model with the addition of a trim tab

[48]. See Figure 2.8 for diagram. This was explored by Al-Mashhadani et al. [48],

who introduced a free play nonlinearity at the trim tab. The governing equations of
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motion for such a system is given by

rαα̈+
[
r2β + (c− a)xβ

]
β̈ +

[
r2γ + (d− a)xγ

]
γ̈ +Cαα̇+ xαḧ+ r2αω

2
αα =

Mα

mb2
(2.14a)

[
r2β + (c− a)xβ

]
α̈+ r2ββ̈ +

[
r2γ + (d− c)xγ

]
γ̈ +Cββ̇ + xβḧ+ r2βω

2
ββ =

Mβ

mb2
(2.14b)

[
r2γ + (d− a)xγ

]
α̈+

[
r2γ + (d− c)xγ

]
β̈ + Iγ γ̈ + Cγ γ̇ + xγḧ+ r2γω

2
γγ =

Mγ

mb2
(2.14c)

xαα̈ + xββ̈ + xγ γ̈ + Chḣ+
M

h
ḧ+ ω2

hh =
L

mb
, (2.14d)

where

h =
ho
b
, xa =

Sα
mb

, xβ =
Sβ
mb

, xγ =
Sγ
mb

, rα =
Iα
mb2

.

Figure 2.8: Most modern aircraft tend to have many control sur-
faces that can operate independently on a wing. This four degree-
of-freedom model better represents modern wing structures than
the models without a trim tab [48, 49].

Al-Mashhadani et al. [48] performed vibration and wind tunnel tests for a

wing section corresponding to the model shown in Figure 2.8. While the experimental

results matched well with the linear theory for the case of no free play, a comparison

of the nonlinear theory developed in the paper and the experimental findings did not

match too well. Kim and Lee [50] examined a flexible airfoil, shown in Figure 2.9,

containing additional degrees of freedom in pitch and plunge about its elastic axis.

The free play nonlinearity was introduced in the pitch. The equations of motion and

the details of their research is beyond the scope of this paper. Interested readers can
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see reference [50]. No experimental tests were conducted to verify the flexible airfoil

model. While similarities were found between the dynamics of the nonlinear flexible

airfoil and rigid airfoil responses, the work remains very theoretical in nature [50].

Figure 2.9: Flexible airfoils are popular in the research of micro-
aviation. Their potential use is being examined for larger scale
flight [50, 51].

It should be noted that 3D models are not covered in this review. However,

one should be aware of the general type of 3D structural modeling that is available

in the literature, should such a model be studied for the free play problem. Suppose

a wing is modeled as shown in Figure 2.10. Using generalized coordinates qi (t) in the

Cartesian coordinate system, 3D wing displacement can be expressed by [29],

z (x, y, t) =
N∑
i=1

φi (x, y)qi (t) . (2.15)

The function φi (x, y) is the mode shape for the ith normal mode of the wing.

N is the number of modes that will be used to best capture majority of the wing’s

dynamic aeroelastic response. Currently, the literature shows analyses including up

to at least the fourth mode shape of a wing [14, 52, 53, 54]. The equation of motion

is given for the generalized coordinate corresponding to the ith mode is

Miq̈i + Ciq̇i +Kiqi = Fi, (2.16)

where Mi, Ci, and Ki are the generalized mass, damping, and stiffness given by

Mi =

∫
A

mφ2
i dA
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Ki =

∫
S

EI

{
d2φi
dx2

}
dx

Ci =

∫
A

pdi (x, y)φ2
i dA.

Figure 2.10: The coordinate system for a typical 3D wing typically
originates at the connection point of the root and the leading edge
of the wing [29].

To evaluate Mi, the integral is taken over the surface area of the wing. The

integral for Ki is taken on the wing span, where EI is the flexural stiffness term. In

the damping integral, pdi is local viscous damping pressure. The force is found by

integrating the pressure over the wing area,

Fi =

∫
A

p (x, y, t)φidA.

This establishes the general framework needed to utilize a 3D structural model.

Several schemes [8, 45, 55, 56] have been developed that can be used to solve Equation

2.16 when coupled with appropriate aerodynamics to obtain a variety of dynamic

aeroelastic responses.
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2.2 Free Play

Free play, sometimes referred to as backlash or a dead band, is a concentrated non-

linearity in the actuation of a wing or its control surface mechanism. It is a potential

characteristic of moving parts that may be due to the looseness and tolerances in

bolts, hinges, and actuators [57]. In the range of rotational values corresponding to

free play, there will be free motion of the wing or control surface without resistance.

In theory, a pure free play in a control surface hinge appears as a bilinear, piece-

wise function with a flat spot in a hinge moment versus deflection graph, as shown

in Figure 1.1. However, free play can be simultaneously present with several other

structural nonlinearities, such as friction and damping within moving parts, resulting

in unique mappings on the moment-deflection graph [11].

The industry standard for measuring free play is based on static testing that

involves applying a load to a control surface and measuring the linear or angular

deflection. This can be done using a measurement device such as a Rotation Variable

Differential Transformer (RVDT), shown in Figure 2.11.According Kiiskila et al. [57],

free play testing is very laborious and time intensive, requiring complicated assembly

for setting up test mechanisms. These ground tests may be performed at tall heights

for rudder and stabilator measurements on larger aircraft. Although rudimentary,

these tests must be conducted regularly throughout the service life of an aircraft

to ensure compliance with regulatory standards of allowable amount of free play.

Relatively new to the field of free play is a method for dynamically testing free play

that was proposed by Kiiskila et al. [57]. Specific low and high frequency modes of

vibration can be distinguished and have been shown to correspond to control surface

motion inside and outside of the free play zones.
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Figure 2.11: An RVDT measures the rotation between the rudder
and the tail, with displacement and force measurements recorded
by a hydraulic actuator and load cell [57].

2.2.1 Mathematical Representations

Curve fitting is used to generate moment functions that best represent typical moment-

deflection curves obtained from static free play tests. Assuming that the free play non-

linearity graphs map identically to Figure 1.1, the moment equation for the control

surface becomes [37]

M (β) =


kβ (β − δ) for β ≥ δ

0 for − δ ≤ β ≤ δ

kβ (β + δ) for β ≤ δ,

(2.17)

where, kβ is the rotational stiffness coefficient, β (arbitrarily chosen variable) is the

rotational angle of deflection, and δ is the free play angle amount referenced from the

neutral position of the control surface. The moment Equation 2.17 is inserted into the

structural models where the nonlinearity appears, replacing the linear terms in the

governing equations of motion. For example, if free play appears in the flap hinge for

a three degree-of-freedom model, then Mβ (β) in Equation 2.11c would be replaced

by Equation 2.17.
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Due to the piecewise nature of Equation 2.17, several attempts have been made

to reformulate the equation as a smooth function using approximation methods. One

such method is the rational polynomial approach. This results in a moment equation

that is the ratio of two polynomials [38],

M (α) =
a0 + a1α + a2α

2 + a3α
3

b0 + b1α + b2α2
, (2.18)

where ai (i = 0, 1, 2, 3) and bi (i = 0, 1, 2) are constants that allow for the selection

of the best fit curve. Usually, these constants are obtained from experimental data.

Another approach to approximating Equation 2.17 is by using a tangent hyperbolic

function, represented as [38],

M (α) =
1

2
[1− tanh (ε (α + δ)) ] (α + δ) +

1

2
[1 + tanh (ε (α− δ)) ] (α− δ) . (2.19)

In Equation 2.19, ε is the smoothness variable. As ε → ∞, Equation 2.19 con-

verges to the piecewise form free play in Equation 2.17. Asjes et al. [3] represented

the hyperbolic model differently, but required similar limiting conditions to match

the hyperbolic function with the piecewise function. While these representations are

useful, not all free plays map a flat spot in the moment-deflection graph.

Free play can also be characterized by a reduced stiffness in the actuation of a

control surface. This can look like Figures 2.12. In both cases shown in Figures 2.12a

and 2.12b, a third order polynomial can give good approximations of the moment-

deflection graphs, with the moment equation for free play given by [29, 59]

M (β) = a0 + a1β + a2β
2 + a3β

3, (2.20)

where ai (i = 0, 1, 2, 3) are constants. This cubic behavior at the nonlinearity is often

associated with the hardening or softening of the stiffness as the control surface passes

through the free play region. Although rare, spring softening is an important consid-

eration because this phenomenon can occur when stiffness decreases as displacement

is increased, such as in the case of buckling or kinetic heating at high Mach numbers
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(a) (b)

Figure 2.12: The free play region can have sharp, linear changes
in stiffness, as seen in subfigure (a), or have gradually changing
stiffness that is nearly flat at the center and linear outside of the
free play zone, as seen in subfigure (b) [4, 58].

[29].

Hysteretic effects can also be found with free play. This involves path depen-

dent jump phenomena occurring between two linearly behaving sections on a moment-

deflection graph that is offset by the value of the free play. Hysteresis, shown in Figure

2.13, can be the result of friction within moving parts. The moment equation, using

the variables denoted in Figure 2.13, is [29]

M (α) =



α− αf +M0 for α < αf ;α increasing

α + αf −M0 for α > −αf ;α decreasing

M0 for αf ≤ α ≤ αf + δ;α increasing

−M0 for −αf ≤ α ≤ −αf − δ;α decreasing

α− αf − δ +M0 for α > αf + δ;α increasing

α + αf + δ −M0 for α < −αf − δ;α decreasing.

(2.21)

In Equation 2.21, the slope of the lines extending beyond the hysteresis box is assumed

to be 1 for sake of simplicity.

Up to this point, the major assumption in the moment equations containing

free play has been that the free play nonlinearity lies only at the origin where the

deflection is zero. This corresponds to the supposed neutral position of the control
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Figure 2.13: Static friction in a hinge or linkage may result in the
measurements for a control surface free play that exhibits such a
hysteresis phenomenon [12, 29].

surface. Control surfaces with preload tension can exhibit free play behavior translated

away from the origin, as shown in Figure 2.14. The bilinear free play moment function

associated with Figure 2.14 is [29],

M (α) =


M0 + α− αf for α < αf

M0 +Mf (α− αf ) for αf ≤ α ≤ αf + δ

M0 + α− αf + δ (Mf − 1) for αf + δ < α.

(2.22)

In the equation above, Mf is the slope of the section where the free play is located.

Another lesser considered, but important, nonlinearity is solid friction. This is

often present simultaneously with free play and significantly complicates the moment-

deflection mapping of a control surface. Instead of a flat spot, friction maps a vertical

spot in the force versus velocity graph as shown in Figure 2.15. More discussion on

other similar concentrated nonlinearities can be found in reference [11].
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Figure 2.14: Free play does not always present itself when a con-
trol surface is at a neutral position. Sometimes the freeplay can
resemble the graph shown here [29].

(a) (b)

Figure 2.15: An ideal static friction mapping on a force-velocity
graph would like subfigure (a). In reality, the behavior more
closely resembles subfigure (b) [29].

2.2.2 Applications in Literature

The literature on free play shows that predicted aeroelastic response can vary depend-

ing on the free play model that is used in the structural model. The piecewise form of

free play, which is most commonly observed in the literature, yields some results and

behavior that can only be predicted when the structural nonlinearity is described in

this specific form. For example, if this type of free play is present at the root of an all
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moving wing, then aeroelastic analyses show a reduction of critical flutter speed [60].

For very large free play angles, the dynamic instability of flutter turns into the static

instability of divergence. Additionally, limit cycle oscillation (LCO) is exhibited over

large range of velocities with dependence on initial condition, including free play gap

size and angle of attack [61]. Using the piecewise form of free play does not, however,

indicate any dependence between starting velocity of dynamic instability and the free

play size [16].

Another important characteristic of the piecewise model of free play is that it

is the only model that permits solutions that have chaotic behavior, often yielding

complex periodic solutions that can settle into different attractors [36, 58]. Bifurcation

analyses have also yielded interesting behavior such as subcritical bifurcations, grazing

bifurcations, and period doubling that was specifically observed when this free play

model is preloaded [30, 48, 62].

Comparisons with the cubic representation of free play shows slightly different

behavior in some regards. The benefit of using this type of nonlinearity representation

is that it is straightforward to use and does not run into the problem of smoothness.

For example, Conner et al. [36] demonstrated that a non-smooth free play function

is very sensitive to the choice and resolution of different numerical methods. Using

a standard Runge-Kutta method alone resulted in a limit cycle solution set settling

into an incorrect attractor. Using the modified approach of Hénon’s numerical inte-

gration method allowed for more accurately locating switching points between linear

subdomains of the free play region and yielding the correct limit cycle period. Some

issues with a cubic model are that it does not show any dependence on initial condi-

tions and does not show reduced speeds at which flutter is observed, something that

has been proved experimentally. Cubic nonlinearity does contribute to LCO behavior,

including results showing supercritical flutter behavior [3, 16].

Other lesser used free play models include the use of a hyperbolic function.
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Asjes et al. [3, 1] were able to effectively use this function, but Vasconcellos et al.

[59, 63] had difficulty obtaining satisfactory results and required corrections to match

analytical results with experimental data. Very few studies have looked into aeroe-

lastic analysis with the hysteresis model, but it has been shown that the dynamic

response exhibits stable and unstable LCO, coexistence of LCO, saddle-node bifurca-

tion, Neimark-Sacker bifurcation, chaotic motion at local and global levels, and other

unique predicted behavior that is different from the piecewise model of free play [58,

64].

2.3 Aerodynamic Models

For analytical studies of free play that stem from the 2D structural models developed

in the previous sections, correctly developing and using aerodynamic models is cru-

cial to the overall aeroelastic analysis. In same manner as the structural models were

developed, aerodynamic models begin with the fundamentals of unsteady aerody-

namics. Research goals and needs dictate the level of complexity of the aerodynamic

models. For large 3D structural models, computational fluid dynamics (CFD) codes

are developed and used with various fluid-structural solvers.

2.3.1 Unsteady Aerodynamics

The aerodynamic forces and moments that correspond to the right-hand side of the

governing equations of motion for the various structural models presented in the

previous sections are time dependent. Due to the changing motion of the airfoil at

different airspeeds and different instances in time, the flow-field around an airfoil will

correspondingly change and vary with time. Thus, unsteady aerodynamics must be

used in all of the aeroelastic models. The fundamental theories of unsteady aerody-

namics were developed by Theodorsen [65] in the early 1930s. They are based on
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potential flow involving small perturbations and harmonic motion. The unsteadiness

of the flow is characterized by using functions of reduced frequency. The theory has

many components and assumptions but can be simply stated through the circulatory

and noncirculatory contributions that affect airfoil motion. Unsteady aerodynamics

has been developed by many researchers and studied extensively [18, 19, 66, 67, 68].

We will not attempt any derivations in this chapter, but rather explain how unsteady

aerodynamics is used in aeroelastic analysis with free play.

Using thin-airfoil theory, Theodorsen’s unsteady lift and moment equations

are [19]

L = 2πρ∞UbC (k)

[
ḣ+ Uθ + b

(
1

2
− a
)
θ̇

]
+ πρ∞b

2
(
ḧ+ Uθ̇ − baθ̈

)
(2.23a)

M 1
4

= −πρ∞b3
[

1

2
ḣ+ Uθ̇ + b

(
1

8
− a

2

)
θ̈

]
. (2.23b)

Equation 2.23 corresponds to Figure 3.1 in Chapter 3. The term C (k) in Equation

2.23a is a function of reduced frequency k, where

C(k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

, (2.24)

and

H2
n (k) = Jn (k)− iYn (k) , (n = 0, 1). (2.25)

H2
n (k) are the Hankel functions of the second kind, represented by Bessel functions

of the first and second kind, respectively [19].

It should be noted that the resulting unsteady aerodynamics equations involve

integral terms. Combining these equations into the structural equations of motion

results in the equations of motion being in integro-differential form. This can be

tackled in several ways using approximations developed by workers in the field of

unsteady aerodynamics.

The use of unsteady aerodynamics is extensive across the literature involving

free play. Most of the aeroelastic analyses are performed using these theories. While
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it would be cumbersome to discuss the many variations and uses observed in all of

the literature, this section provides an example of its use for a two degree-of-freedom

aeroelastic model. Due to the lengthiness of the derivations and resulting equations,

examples of the use of unsteady aerodynamics for three and four degree-of-freedom

aeroelastic models are omitted and referenced for additional reading.

Revisiting the non-dimensional form of the equations of motion for the two

degree-of-freedom structural model described in Equation 2.9, and assuming no exter-

nal force contributions (setting P (τ) , Q (τ) to 0), the coefficients of lift and moment

for incompressible flow are given by Fung [68] as

CL (τ) = π (ξ′′ − ahα′′ + α′) + 2π

{
α (0) + ξ′ (0) +

[
1

2
− ah

]
α′ (0)

}
φ (τ)

+ 2π

∫ τ

0

φ (τ − σ)

[
α′ (σ) + ξ′′ (σ) +

(
1

2
− ah

)
α′′ (σ)

]
dσ

(2.26a)

CM (τ) = π

(
1

2
+ ah

){
α (0) + ξ′ (0) +

[
1

2
− ah

]
α′ (0)

}
φ (τ)

+ π

(
1

2
+ ah

)∫ τ

0

φ (τ − σ)

[
α′ (σ) + ξ′′ (σ) +

(
1

2
− ah

)
α′′ (σ)

]
dσ

+
π

2
ah (ξ′′ − ahα′′)−

(
1

2
− ah

)
π

2
α′ − π

16
α′′.

(2.26b)

In the equations above, σ is a dummy variable used to perform the convolution

integrals in the non-dimensional time domain τ . Using Jones’ approximation with

the Wagner function, we get [29]

φ (τ) = 1− ψ1 exp−ε1τ −ψ2 exp−ε2τ , (2.27)

where, ψ1 = 0.165, ψ2 = 0.335, ε1 = 0.0455, and ε2 = 0.3. Further simplification can

be done by introducing new variables as done by Lee et al. [69],

w1 =

∫ τ

0

e−ε1(t−σ)α (σ) dσ, w2 =

∫ τ

0

e−ε2(t−σ)α (σ) dσ

w3 =

∫ τ

0

e−ε1(t−σ)ξ (σ) dσ, w4 =

∫ τ

0

e−ε2(t−σ)ξ (σ) dσ.

(2.28)

Performing some algebra and rearrangement of terms, the governing equations of

motion can be written in matrix form as a set of eight first-order differential equations,
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as follows [29],

Ẋ̇ẊX = f (XXX) , (2.29)

where XXX is a vector with eight components:

x1 = α, x2 = α′, x3 = ξ, x4 = ξ′, x5 = w1, x6 = w2, x7 = w3, x8 = w4.

Equation 2.29 can be solved numerically. A similar approach is employed by Dai et

al. [35], where the governing equations of motion for a two degree-of-freedom model is

reduced to a set of six first-order differential equations. Li et al. [42] and Sazesh and

Shams [37] use similar frameworks to use unsteady aerodynamics for three degree-of-

freedom structural models. Application to a four degree-of-freedom model is detailed

in reference [48].

2.3.2 Compressibilty and Turbulence

Although subsonic unsteady aerodynamics theories are very useful for aeroelastic

analyses involving free play, other nonlinear aerodynamic effects can significantly

influence dynamic aeroelastic stability. Two main considerations include the effects

compressibility and turbulence. Both of these considerations are relevant for mod-

ern flight as large commercial aircraft cruise at transonic speeds and may encounter

random gust loads flying through turbulent air [70, 71].

At high subsonic and supersonic flow, compressibility effects must be consid-

ered. While a great body of research exists for individual treatment of subsonic and

supersonic flow, the modeling of transonic flow is highly complex. This type of flow

is characterized by a wing in high subsonic flow experiencing localized regions of su-

personic flow, depending on its thickness, shape, and geometry. Transonic flow can

induce shock waves on the wing or its control surfaces, reducing control surface ef-

fectiveness and resulting in premature aeroelastic instability in the form of control

surface buzz, flutter, or LCO [16, 72, 73, 74]. Transonic flow can also bring about
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destabilizing viscous effects that can cause flow separation due to shock wave and

boundary layer interactions [29].

Although only a few studies have explored transonic and supersonic flight

regimes for free play analysis, the general findings are that free play in both tran-

sonic and supersonic flow is severely destabilizing. The equations for both type of

aerodynamics is nonlinear. However, the treatment of unsteady supersonic flow is

more straightforward than transonic flow. In the literature for free play, the common

treatment of supersonic flow is using local piston theory aerodynamics. Details on the

derivation can be found in [40]. Guo and Chen [28] successfully used a second-order

piston theory to examine supersonic and hypersonic flow with the structural model

shown in Figure 2.5c. Assuming that only unsteady aerodynamic lift (p (t) = −L)

and moment (r (t) = MEA) are acting on the two degree-of-freedom double wedge

airfoil, the right-hand sides of Equations 2.8 are respectively defined by piston theory

as,

L = 4p∞γM∞b

(
ḣ

V∞
− ba α̇

V∞
+ α

)
− p∞γ (γ + 1)M2

∞b
2τ̂

(
α̂

V∞

)
(2.30a)

MEA = p∞γM∞b
2

(
4

(
a
ḣ

V∞
−
(
b

3
+ ba2

)
α̇

V∞
+ aα

))

+ (γ + 1)M∞τ̂

(
ḣ

V∞
− 2ba

α̇

V∞
+ α

)
,

(2.30b)

where M∞ is the Mach number, γ is the heat capacity ratio for an ideal gas, and

V∞ and p∞ are freestream velocity and pressure, respectively. The study looked at

piecewise free play and cubic nonlinearity, finding supercritical Hopf bifurcations,

fold bifurcations, and LCO with a jump phenomenon in amplitude. Abbas et al. [75]

used third-order piston theory for supersonic and hypersonic flows for a two degree-

of-freedom double wedge structural model. They found subcritical flutter, chaotic

behavior, and reduction in linear flutter speeds when examining different structural

nonlinearities in all degrees of freedom.
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When dealing with transonic flow, several different approaches exist. Bendiksen

[71] provides an excellent overview of unsteady transonic aerodynamics modeling for

aeroelasticity. Due to the complexity of these models, derivations and equations are

omitted from this thesis. However, uses of various transonic aerodynamics theories are

presented here with references to research involving free play. Kousen and Bendiksen

[76] explored a two degree-of-freedom structural model with a torsional freeplay of

±1 degree in transonic flow, which was modeled by CFD using inviscid 2D unsteady

Euler’s equations. This resulted in 75% reduction in linear flutter speed and multiple

LCO behavior. Kholodar et al. [77] performed a similar analysis using a harmonic

balance approach, as opposed to the time domain approach examined by Kousen

and Bendiksen [76], and found that the resulting LCO in transonic regimes are highly

sensitive to Mach number, exhibiting sudden changes in stability and behavior. Other

studies have also used transonic small disturbance theory for conducting analyses on

3D structural models with free play, yielding similar results in premature degradation

of aeroelastic stability [78, 79]. It is interesting to note that when Kim et al. [78]

considered free play with boundary layer viscous effects in transonic flow with little

to no separation, the reduction in flutter velocity was less severe and LCO amplitudes

were decreased in comparison to the case of inviscid transonic flow.

When dealing with multiple structural and aerodynamic nonlinearities, the

aeroelastic response for airfoils depends on the strength of the individual nonlineari-

ties. Such is the case when dealing with turbulence. Poirel and Price [27] provide an

excellent example of turbulence modeling with free play. They numerically examined

stationary probability structure for the aeroelastic response of a two degree-of-freedom

flat plate with cubic hardening nonlinearity in pitch, corresponding to Figure 2.5b.

The vertical and longitudinal components of turbulence were modeled as stochastic

differential equations shown below,

duT +
Um
L
uTdt = σT

(
2Um
πL

) 1
2

dW1 (2.31a)
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dwT +
2Um
L

wTdt+
U2
m

L2

(∫ t

0

wTds

)
dt

= σT

(
U3
m

πL3

) 1
2
(∫ t

0

dW2

)
dt+ σT

(
3Um
πL

) 1
2

dW2,

(2.31b)

where uT and wT are the longitudinal and vertical components of turbulence, respec-

tively. Additionally, Um is the mean freestream velocity, L is the lift force on the

plate, σT is the turbulence velocity standard deviation, and W1 and W2 are the two

statistically independent Wiener processes. The solutions to Equations 2.31 are incor-

porated into modified unsteady aerodynamics to include time-varying airspeed and

accounted for the governing equations with some mathematical manipulation. See

reference [27]. The resulting solutions showed interesting “decoupled” nonlinear re-

sponses for the pitch, pitch rate, heave, and heave rate, where the marginal probability

density functions of the response exhibited uni- to bi-modality at different airspeeds.

For intermediate levels of turbulence, a double bi-modality is observed between pitch

angle and mean airspeed. See Figures 2.16 on next page.
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(a)

(b)

(c)

Figure 2.16: For increasing levels of turbulence, the aerodynamic
effects overshadow the effects of structural nonlinearity [27].
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2.4 Means of Analysis

In the field of aeroelasticity, a majority of the literature is deterministic. There are

obvious difficulties with nonlinear deterministic calculations since few purely analyt-

ical methods can be employed to solve for all states of dynamic instability. However,

many computational advances have been made in aeroelasticity for both determinis-

tic and non-deterministic methods. Some of the main methods are highlighted in this

section. In both approaches, classical theories from nonlinear dynamics and dynamic

aeroelasticity must be employed to qualitatively understand the resulting aeroelastic

behavior. Several important references in these fields include [18, 19, 40, 68, 70, 80].

2.4.1 Deterministic Approaches

The literature on free play shows two predominant analysis approaches: time do-

main solutions and frequency domain solutions. Numerical time integration provides

a straightforward manner to map the time history of the governing equations of

motion. Several numerical schemes have been successfully employed that involve dis-

cretizing the equations of motion at instants in time with small integration step sizes.

Modified forms of the fourth order Runge-Kutta method are the most popular in the

literature and allow for efficient numerical integration [29, 40]. While the standard

Runge-Kutta method is useful for the smooth functions, there are known issues with

its use when the aeroelastic model contains the piecewise representation of free play.

It was shown to map the incorrect limit cycle oscillations, bifurcations, or chaotic

attractors, regardless of how small the step size may be, due to errors in accurately

locating switching points [35, 36]. This an issue that has been addressed, resulting in

modified numerical approaches. The main drawbacks in time marching come from the

high computational expense for increased accuracy in results. While several reduction

methods and numerical schemes have been developed to target this issue, challenges
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still remain [18, 34].

The frequency-domain analysis involves balancing the Fourier components of

dominant harmonics to an assumed motion of response that is an expansion of the

aerodynamic input to the aeroelastic system. This is known as the harmonic balance

method, or the describing function technique. It was first used by Shen [13]. The

major difficulty with the use of harmonic balance methods for nonlinear aeroelastic

systems free play is that a large number of harmonics are required to obtain accurate

solutions [69]. Regardless, higher order harmonic balance has been employed in nu-

merous instances [46, 81, 82]. A thorough review of these frequency domain methods

can be found in [32].

2.4.2 Non-Deterministic Approaches

Limited research exists on the application of a probabilistic or stochastic framework

for the modeling of control surface free play nonlinearities in wing structures. Due to

the complexities and variations in aircraft wing structures, and the large number of

uncertainties and randomness in the fluid-structure interactions, developing an ad-

equate aeroelastic model with the free play nonlinearity is already a difficult task.

Many simplifications and assumptions are necessary to establish a model that can

yield meaningful solutions to this problem. As a result, much of the literature exam-

ines this problem deterministically, employing unique analytical and computational

methods that map out various solutions for specific wing sections in selected aerody-

namic models, as explained in the previous sections. Substantial experimental work

has also been done to validate some of these models. By examining published data,

there are clearly many variabilities in the parameters that define the freeplay problem

and therefore uncertainties in the solutions for the dynamical structural response of

wings.

Four sources of uncertainties in the formulation of the free play problem are
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stochastic variations in material properties, structural dimensions, boundary condi-

tions, and external excitations [33, 83, 84]. Historically, external excitations have been

predominantly examined while the other variations have been assumed negligible or

accounted for arbitrarily into engineering analyses via factors of safety. However, this

perception has changed over the years. The technology in the aerospace industry

is becoming increasingly sophisticated with more structural parameters that behave

flexibly and nonlinearly, such as composites. Other flight variations also need to be ac-

counted for, such as inertial changes and mass changes (fuel consumption and cargo

movement). Furthermore, predictions for aged aircraft cannot be easily quantified

with deterministic methods alone. There is a strong desire for the use of stochastic

methods within the industry to help prevent over-design and minimize costs [85, 86].

A basic type of uncertainty analysis is synthesizing probabilistic models nu-

merically from deterministic models via sampling. Yi and Zhichun [33] demonstrated

this with Monte Carlo simulations performed on a two degree-of-freedom system in in-

compressible flow with preloaded freeplay, with the airfoil moment, free play amount,

and stochastic initial pitching angle assumed to be Gaussian random variables. Non-

parametric estimation was then used to obtain a probability density function (PDF)

for the response. Sensitivity analysis was also performed to quantify the strongest

parameters of influence and probabilistic aeroelastic analysis was used to determine

the stability of the airfoil system. Similarly, Pitt et al. [86] used a Monte Carlo simula-

tion for random reduced frequency ranges to develop a probabilistic characterization

of flutter for a two degree-of-freedom airfoil with unsteady aerodynamics. Advanced

simulation methods, such as integrated interpolation methods with polynomial chaos

expansion, have been found to be computationally quicker than Monte Carlo methods,

but accuracy in results remain a concern [87].

More sophisticated uncertainty quantification methods have been examined by

several researchers in application to aeroelastic systems, but few deal with geometric
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nonlinearities. Mignolet and Chen [88] examined broad application of nonparametric

stochastic modeling with geometric nonlinearity to assess variability of panel flutter

boundary and response to forced acoustic excitation. Control based methods, such as

iterative learning control and robust flutter analysis via perturbation approach, have

also examined parametric uncertainty of nonlinear systems [89, 90]. Yuting and Chao

[85] provide an overview of such control based methods and further developments in

methods for aeroelastic analysis with uncertainties. A detailed review of uncertainty

modeling with reduced order models and robust active control methods is discussed

in reference [16]. Parallels to such methods exist with problems involving free play in

landing gears [91].

Other types of lesser-used probabilistic or stochastic models have been devel-

oped. For example, Stanford and Beran [56] examined a reliability-based design opti-

mization approach using perturbation methods and employing constraints on maxi-

mum allowable flutter probability. Parametrically uncertain boundary conditions with

random torsional stiffness and nondeterministic panel thickness are analyzed to opti-

mize minimal mass for panels. Stochastic random aerodynamic excitation is another

common model that has been applied to the free play problem. Some of the earliest

discussions on these models are found in [27, 29, 92]. More recently, spectral analysis

methods have been successfully utilized [93]. Other recent contributions include works

from Irani et al. [94] and Sazesh and Shams [37], who examine flutter with the novel

approach of using response variance of flap angle to identify flutter instability under

stochastic loading of a three degree-of-freedom airfoil. Work in the probabilistic area

is promising for the field aeroelasticity.
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2.5 Experimental Studies

The results from the aeroelastic analyses described in the previous sections provide

a fundamental understanding of expected dynamic behavior with free play structural

nonlinearities. These theoretical results must then be validated and supplemented by

experimental studies to better understand the free play problem. Combined, both

theoretical and experimental studies ultimately contribute to establishing the safe

operating flight envelope for an aircraft. However, performing controlled flutter testing

with free play is a difficult task. Initial experimentation takes place in wind tunnels,

where representative wing sections are used. In this area of research, there have been

very few extensive experimental studies. Very little has changed from the earliest free

play experiments first conducted in 1955 by Woolston et al. [12]. The setup involved

placing a straight wing horizontally in a wind tunnel. The wing was only allowed

to move in the pitch and plunge directions, with restoring moments provided by

springs. A measured gap was placed in the torsional axis of the system to represent

the free play, as shown in Figure 2.17. Then air was pushed down the wind tunnel

with gradually increasing speed until flutter was reached.

Figure 2.17: This type of experimental setup represents a
two degree-of-freedom model. Displacement measurements were
recorded electronically [12].
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There were many issues with this type of setup, primarily with lack of control

over a neutral starting position when experiments were conducted. By rotating the

wing section and flutter apparatus vertically, better control over initial conditions

was achieved by limiting the influence of weight as well as friction on linear bearing.

O’Neil [95] set up such a test apparatus. See Figure 2.18a. One of the main issues

with flutter testing is preventing the tests from reaching divergence. Otherwise, re-

peatability is not possible and potential destruction of the test section or damage to

the flutter apparatus and equipment within the wind tunnel can occur. As a result,

only limited motion is allowed by means constraints in the pitch and plunge direction.

This mechanism is shown Figure 2.18b.

(a) (b)

Figure 2.18: The mechanisms shown here enable controlled non-
linear pitching and plunging motion and removes effects of gravity
on the test wings [95].

The experiments were performed within a subsonic 2’ x 3’ wind tunnel at Texas

A & M University, with accelerometers measuring frequency response for each degree

of freedom. This study was one of the first of its kind that was able to examine flutter

conditions for continuous nonlinear restoring forces, particularly with hardening and

softening stiffnesses [95].

More recently, similar experiments with two, three, and four degree-of-freedom

straight wing sections have been conducted, yielding more useful data due to better
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instrumentation. Unique methods for controlling free play have been developed. For

example, Marsden and Price [96] used a clearance hole of varying size with a con-

nection between two pulleys connecting the wing section to a system of spring cables

providing torsional stiffness. See Figure 2.19a. Tang and Dowell [47] and Connor et

al. [97] used a leaf spring support with a gap to imitate free play in pitch for a two

degree-of-freedom and three degree-of-freedom model, respectively. See Figures 2.19b.

Abdelkefi et al. [98] and Vasconcellos et al. [63] repeated both experiments with an

open-circuit blow wind tunnel using a foam-aluminum-fiberglass wing, using the set

up shown in Figure 2.20. Lastly, Al-Mashhadani et al. [48] performed an identical

wind tunnel experiment as Connor et al. [97], except with a four degree-of-freedom

wing section involving free play in the trim tab.

While these experimental studies provide good data for validating theoretical

results, they lack complexity and do not use appropriate similitude methods to ap-

propriately model aircraft wings. Commercial aviation wing control surfaces usually

do not extend the full span of a wing. Often, wings contain more than one control sur-

face that can move independently. On a commercial jet, the wing can have a control

surface in the front known as a slat. Other control surfaces include flaps, flaperons,

and spoilers, some of which only rotate in one direction above or below the wing

and can also extend longitudinally [49]. Most of the experiments in the literature fail

to consider these situations. Furthermore, most of the experiments are in low speed

wind tunnels where results do not entirely correlate to actual flutter experienced

during flight. There are a few exceptions, however. Fichera and Ricci [81] developed

a scaled H-tail model for wind tunnel testing with free play in the rudder. Morino

and Obayashi [100] performed a high-speed wind tunnel test with a scaled horizontal

stabilizer wing with free play in its control surface.

There are challenges and difficulties in performing controlled wind tunnel flut-

ter tests using correct similitude methods with structural nonlinearity and simulating
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(a) (b)

Figure 2.19: Two different methods for establishing free play are
shown, with both confirming accuracy with the respective theo-
retical models used by the researchers [96, 99]

Figure 2.20: The mechanism from Figure 2.19b can be extended
to control surfaces such as a flap or trim tab, while maintaining
complete stiffness in the wing [97].

appropriate aerodynamic conditions. There is always a risk of failure regardless of

how well planned and controlled an experiment is, as observed with the high-speed

wind tunnel tests conducted by Morino and Obayashi [100]. For these reasons, flight

flutter testing is still the most important method to define an aircraft’s flight envelope

and meeting safety and reliability requirements, despite being very costly and time

consuming [101].
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2.6 Gaps and Future Trends

Despite the extensive research on free play, many aspects of the problem are not fully

developed or examined in entirety due to the complex nature of the model formula-

tion and analysis. While it is generally accepted that free play increases accumulated

damage and reduces fatigue life of aircraft wing structures, there are only very limited

publicly available studies that document or model the entire phenomenon, mostly due

to the scale and cost of performing such studies [57]. Furthermore, much of the liter-

ature does not consider the effects of internal damping in their models. Many models

make assumptions on the geometry and mass distribution of aircraft wings as be-

ing straight and uniform. Additionally, variations in material composition, combined

with variable mass distribution and planforms often found in modern aircraft, are

also limited in the study of free play. Few studies have really examined the variations

in angle of attack on free play [33, 60, 61, 102]. Finally, one of the main limitations

of many models is that their validity is reserved to small angles of free play. Models

with large angle deflection and large amount of free play are difficult to verify experi-

mentally due to high risk of catastrophe. Little is known about the behavior for large

angles of airfoil motion with free play, mostly because such scenarios are extreme and

rare circumstances in modern aviation. Some other lesser-examined areas of research

include combining acoustic, thermodynamic, and frictional or drag-related effects due

to compressibility. Although these are just some of the shortcomings in current re-

search regarding free play, existing research is, however, well established with good

agreement on the results from much of the research community, thus enabling further

growth and development in future studies.
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Chapter 3

Aeroelastic Model

3.1 Structural Model

The initial formulation of the aeroelastic model begins with the derivation of the

equations of motion that govern the simplest type of wing section: a thin, rigid,

symmetric airfoil with two degrees of freedom, in pitch θ and plunge h, as shown in

Figure 3.1. A detailed discussion about the assumptions involved is given in Section

2.1. The straight line distance measured from the leading edge to the trailing edge of

the airfoil is known as the chord length. In Figure 3.1, the chord length is 2b, where

b is an arbitrary length constant.

The elastic axis (EA) of the wing, located at point P in Figure 3.1, is the origin

from which the airfoil pitch and plunge are measured. The springs kh and kθ act at

this point, representing the restoring translational and rotational stiffnesses of the

wing, respectively. Point P is also the center of origin for both the local coordinate

system unit vectors (b̂bb1, b̂bb2, b̂bb3) and the global Cartesian coordinate system unit vectors

(̂iii1, îii2, îii3). Points Q and C are the aerodynamic center (AC) and center of gravity

(CG), respectively. AC is the point on an airfoil about which the aerodynamic pitching

moment stays constant, regardless of the airfoil pitch angle (or angle of attack). For
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Figure 3.1: This “typical section” is a representative model of a
thin airfoil used in many models across the literature [19].

an uncambered, flat airfoil, the location of AC is at quarter-chord from the leading

edge, at point Q. The aerodynamic lift force, which acts through the center of pressure

of the airfoil, is also located at the quarter-chord. The center of pressure is the point

on an airfoil where the total pressure can be assumed to be acting through [18].

The relative locations of EA (point P) and CG (point C) are taken by measur-

ing the distance of each point from the leading edge of the airfoil and representing that

quantity as a scalar multiple of half the chord length b. These locations depending

based on the mass distribution of the wing. Here, locations of EA and CG are given as

(1 + a)b and (1 + e)b, respectively, where a and e are non-dimensional constants that

account for the variability in the locations of EA and CG on different wing sections.

True values of a and e are usually obtained experimentally [19].

The relationship between the two local and global coordinate systems is very

important. The axes of both unit vectors b̂bb3 and îii3 coincide, pointing inwards per-

pendicular to the plane of the coordinate system shown in Figure 3.1. Thus, the

relationship between local and global coordinate systems is described by a clockwise
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rotation about b̂bb3 = îii3, where îii1 × îii2 = îii3 and b̂bb1 × b̂bb2 = b̂bb3. Thus,b̂bb1b̂bb2
 =

 cos (θ) sin (θ)

− sin (θ) cos (θ)


îii1îii2

 . (3.1)

We will need to use this relationship in the subsequent derivation of the equations of

motion for the two degree-of-freedom airfoil in Figure 3.1.

3.1.1 Derivation of EOM for 2-DOF Airfoil

The calculus of variations is used to derive the equations of motion (EOM) for the

airfoil. First, the potential (strain) energy of the system is calculated,

PE =
1

2
khh

2 +
1

2
kθθ

2. (3.2)

Next, we derive the expression for the airfoil’s kinetic energy, which is a bit more

involved because it must be calculated with respect to the center of mass of the

airfoil. The kinetic energy is expressed as

KE =
1

2
mvvvC · vvvC +

1

2
IC θ̇

2, (3.3)

where m is the mass of the airfoil, and vvvC and IC are the velocity vector and moment

of inertia at point C, respectively. The velocity vector at point C is related to the

plunge and rotational displacements caused by airfoil motion at point P ,

vvvC = vvvP + θ̇b̂bb3 × rrrPC

= vvvP + θ̇b̂bb3 × b [(1 + a)− (1 + e)] b̂bb1.

(3.4)

In Equation 3.4, vvvP is the plunge velocity vector at point P . From Figure 3.1, we

see that the defined plunge displacement direction is downwards, which immediately

tells us that vvvP = −ḣîii2. The second term in Equation 3.4 is the tangential velocity

contribution from the angular velocity, which is given by the cross product of the

angular velocity and the distance to point C from point P . Carrying out the algebra
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in Equation 3.4 yields

vvvC = −ḣîii2 − bθ̇xθb̂bb2, (3.5)

where xθ = e − a and b̂bb2 = − sin(θ)̂iii1 + cos(θ)̂iii2 ≈ θîii1 + îii2, due to the relationship

defined in Equation 3.1. Assuming small θ, we get b̂bb2 ≈ θîii1+ îii2. Combining Equations

3.3 and 3.5 and neglecting higher order terms, we get the value of the kinetic energy

to be

KE =
1

2
m
(
ḣ2 + 2bxθḣθ̇

)
+

1

2

(
IC +mb2xθ

2
)
θ̇2. (3.6)

Conveniently, the term (IC +mb2xθ
2) is the application of the parallel axis theorem

corresponding to the moment of inertia at point P. Therefore, that term will be

replaced by IP going forward. Next, the generalized forces for the airfoil must be

calculated for both degrees of freedom with respect to variables h and θ. To find the

generalized force, the virtual work done by the aerodynamic lift and pitching moment

at point Q must be calculated. First, vvvQ, the velocity at point Q, is calculated. That

will allow us to find the variations in plunge and angular displacements for the virtual

work calculations. Similar to vvvP found above, total velocity at point Q is obtained by

accounting for the inertial and angular contributions of the airfoil motion at point P .

This yields

vvvC = vvvP + θ̇b̂bb3 × rrrPQ

= vvvP + θ̇b̂bb3 × b
[
(1 + a)− 1

2

]
b̂bb1.

(3.7)

Equation 3.7 then simplifies to

vvvQ = −ḣîii2 + bθ̇

(
1

2
+ a

)
b̂bb2. (3.8)

The variation of displacement for point Q is

δpppQ = −δhîii2 + bδθ

(
1

2
+ a

)
b̂bb2. (3.9)

For the variation in angular displacement, we find that the virtual rotation

is simply δθb̂bb3 because the angular velocity at point Q is the angular velocity of the
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airfoil, which is given by θ̇b̂bb3. Now, we can proceed to solve for the virtual work done

by the aerodynamic lift and pitching moment. This equation is given by

δW = Lîii2 · δpppQ +M 1
4
îii3 · δθb̂bb3. (3.10)

where L is the aerodynamic lift force at point Q, M 1
4

is the aerodynamic pitching

moment at the quarter-chord location, and b̂bb3 = îii3, as defined previously. The dot

products are carried out with the help of Equation 3.1. Using the small θ assumption,

the virtual work then becomes

δW = −Lδh+

(
M 1

4
+ b

(
1

2
+ a

)
L

)
δθ. (3.11)

Equation 3.11 gives us the generalized forces corresponding to the generalized coor-

dinates q1 = h and q2 = θ. These are

Qh = −L (3.12a)

Qθ = M 1
4

+ b

(
1

2
+ a

)
L. (3.12b)

At this point, we have the complete set of equations that are needed to derive

the equations of motion for the two degree-of-freedom airfoil. We use Lagrange’s

equation,

d

dt

(
∂K

∂q̇i

)
+

(
∂P

∂qi

)
= Qi, (n = h, θ), (3.13)

substituting in Equations 3.6, 3.2, and 3.12 and performing the following derivatives,

d

dt

(
∂KE

∂ḣ

)
= m

(
ḧ+ bxθθ̈

)
d

dt

(
∂KE

∂θ̇

)
= IP θ̈ +mbxθḧ(

∂PE

∂h

)
= khh(

∂PE

∂θ

)
= kθθ.
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Combining all of the above results, the equations of motion for an undamped

two degree-of-freedom airfoil are

m
(
ḧ+ bxθθ̈

)
+ khh = −L (3.14a)

IP θ̈ +mbxθḧ+ kθθ = M 1
4

+ b

(
1

2
+ a

)
L. (3.14b)

We can transform Equation 3.14 into matrix form as m mbxθ

mbxθ IP


ḧ
θ̈

+

kh 0

0 kθ


h
θ

 =

 −L

M 1
4

+ b
(
1
2

+ a
)
L

 ≡
Qh

Qθ

 . (3.15)

The matrix representation will be used for the dynamical analysis of the system.

3.2 Aerodynamics Model

Several types of unsteady aerodynamics models exist, with the most popular un-

steady model in the literature being the Theodorsen’s unsteady equations for lift and

moment on a flat plate airfoil, or some variations of these equations. Theodorsen’s

unsteady model makes several strong assumptions, one of them being that the un-

steady motion is entirely oscillatory in nature. Furthermore, the major challenge

with the use of Theodorsen’s unsteady equations is that the equations are in the

frequency domain. Thus, several sophisticated approximations and transformations

are necessary to represent the unsteady equations in the time domain [65, 103]. This

transformation into the time domain also requires experimentally obtaining some of

the coefficients in the unsteady equations. Many of the approximations also result in

lengthy integro-differential equations with complicated coefficients that are difficult

to interpret physically. Thus, the validity of these aerodynamic models is limited to

how accurately the aeroelastic analysis predicts the dynamic behavior of the airfoil

when compared with results from lab testing.

This thesis will focus on using a new type of incompressible unsteady aero-
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dynamics model for free play analysis. Peters [103] provides an excellent historical

overview of the development of the unsteady theories that deal with two-dimensional,

incompressible flow. While several choices are available for use in this thesis, the un-

steady model selected is a finite-state, induced-flow model that was introduced in 1995

by Peters et al. [104]. The theory is based on the idealization of an induced flow field

near the airfoil resulting from the interactions of shed vortices with arbitrary airfoil

motion. The advantage of using this model is that it is strictly derived in the time

domain using first principles of fluid mechanics, thus avoiding the difficulties of trans-

formation from the frequency domain. This newer unsteady, aerodynamics model has

been shown to yield results comparable to those of classical unsteady aerodynamics

models [19]. The use of this generalized finite-state, induced-flow model would be a

first in the area of free play analysis.

3.2.1 Background

Two-dimensional, finite-state unsteady induced flow theory is very similar to the

two-dimensional Theodorsen’s unsteady flow theory. There are several ways to arrive

at the unsteady aerodynamics equations. However, we will show the derivation to

be an equivalent form of the unsteady Theodorsen’s unsteady equations with spe-

cial conditions. Hence, Theodorsen’s unsteady equations and Theodorsen’s function,

C(k), which is a complex number, must first be understood at a qualitative level.

Theodorsen’s unsteady equations corresponding to the airfoil selected in this paper

are [19]

L = 2πρ∞UbC(k)

[
ḣ+ Uθ + b

(
1

2
− a
)
θ̇

]
+ πρ∞b

2
(
ḧ+ Uθ̇ − baθ̈

)
(3.16a)

M 1
4

= −πρ∞b3
[

1

2
ḧ+ Uθ̇ + b

(
1

8
− a

2

)
θ̈

]
, (3.16b)



54

where the Theodorsen’s function is

C(k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

. (3.17)

The variables θ and h are the same as the variables used for the structural model

shown in Figure 3.1. In Equation 3.17, H
(2)
1 (k) and H

(2)
0 (k) are Hankel’s functions of

the second kind, k = ωb/U is reduced (non-dimensional) frequency, and i =
√
−1.

Before the importance of Theodorsen’s function is explained, unsteady flow must be

understood qualitatively as well.

Unsteady flow, in general, is assumed to consist of circulatory and non-cir-

culatory parts. Lift contributions from circulatory flow, defined as circulatory lift, is

the lift resulting from bound circulation on the airfoil. Non-circulatory flow, on the

other hand, captures the effects of apparent mass and apparent inertia on the airfoil,

represented by the flow acceleration terms. With these definitions, we find that in

Equations 3.16 the circulatory terms are only observed in the aerodynamic lift force

L. In particular, this circulatory part of the unsteady lift is given by

2πρ∞UbC(k)

[
ḣ+ Uθ + b

(
1

2
− a
)
θ̇

]
.

This circulatory part in the unsteady lift contains two important quantities: the “ef-

fective angle of attack” between the airfoil and unsteady flow, represented by the

variable α, defined below, and Theodorsen’s function C(k). The effective angle of

attack,

α =

[
ḣ

U
+ θ +

b

U

(
1

2
− a
)
θ̇

]
, (3.18)

represents the relative airflow that the airfoil “feels” when present in unsteady flow.

Not only does this value depend on the instantaneous pitch angle θ, but also plunge

velocity ḣ and angular velocity of the airfoil θ̇. The value of effective angle of attack

involves first order terms due to the fact that flow direction varies along the chord

of the airfoil, resulting in variation in lift throughout the airfoil motion at different

instants of time. Furthermore, the lift response and magnitude are not always propor-
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tional to the effective angle of attack. Instead, unsteady motion can induce a phase

lag in the airfoil response and a reduction in total lift. Both of these phenomena,

which are experimentally observed, are captured in the lift equation by multiplying

the effective angle of attack by Theodorsen’s function C(k) [66].

Theodorsen’s function, shown in Figure 3.2, is a complex function of reduced

frequency k. Starting with k = 0, we find that C(0) = 1 from the definition in

Equation 3.17. C(k) is a complex number with real value Re[C(k)], which reduces

for increasing k, while the imaginary part Im[C(k)] varies as shown in Figure 3.2.

Physically, the phase lag in the lift response, φ, is interpreted from Theodorsen’s

function as φ = arctan( Im[C(k)]
Re[C(k)]

); the real part of Theodorsen’s function is used in the

circulatory part of the unsteady lift.

In practical cases, the reduced frequency k rarely exceeds a value of 1, even

for highly unsteady flow. In particular, for the case of slowly varying arbitrary airflow

motion, quasi-steady aerodynamics assumptions can be made, where k is assumed

to be in the range 0 ≤ k ≤ 0.05 [105]. For quasi-steady flow, the approximation

C(k) = 1 is made, where the phase lag by the definition above becomes φ = π
2
. The

quasi-steady assumption is often a good and valid assumption for aircraft flying in

high-altitude cruise conditions. At this point, we are ready to explore the finite-state,

unsteady induced flow theory.
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Figure 3.2: Theodorsen’s function contains only positive real parts
and negative imaginary parts. As the reduced frequency k ap-
proaches infinity, the function approaches a limiting real value of
0.5 with no imaginary component, as seen at the left side of the
curve. The right endpoint of the curve approaches a limiting real
value of 1 (no imaginary components) when k = 0.

3.2.2 Finite-State, Induced-Flow Theory

The induced flow model by Peters et al. [104] is a finite-state, time domain represen-

tation of unsteady aerodynamics that is derived analytically by using first principles

in fluid mechanics. In this thesis, we will show that it is possible, to an extent, to

derive the unsteady equations of Peters [103] directly from Theodorsen’s unsteady

equations discussed above.

Starting with Equations 3.16, we assume that the flow is incompressible and

inviscid and will remain that way. Imposing the conservation laws of mass and momen-

tum in the flow field around the airfoil, we can show that the non-circulatory, inertial

terms from the Theodorsen’s unsteady equations remain the same as in the Peters et

al. [103] model, regardless of variations in the flow field around the airfoil resulting
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from induced flow. The major difference in the models come from how the circulatory

lift is defined. First, the finite-state, induced-flow theory assumes quasi-steady flow,

and so C(k) = 1. Secondly, when induced-flow is considered for an arbitrarily moving

airfoil, the flow field near the airfoil is altered, thus changing the airfoil’s effective an-

gle of attack. A derivation of the effective angle of attack for this new aerodynamics

model is provided below, as well as a discussion about induced flow. Ultimately, the

new unsteady equations are derived.

We begin by introducing the variable λ0 as the average velocity of the induced

flow field around the airfoil acting in the perpendicular downwards direction relative

to the chordline of the airfoil. An induced flow field around an airfoil is the downwash

due to shed vorticity that is produced as air deflects off of the airfoil. The induced flow

field vary along the length of the chord of the airfoil and λ0 provides its average value

approximation at the three-quarter chord location (point T in Figure 3.1). According

to classical thin-airfoil theory convention, the three-quarter chord location is the where

angle of attack for an airfoil is calculated. Henceforth, all of the derivations for the

effective angle of attack will be done with respect to the three-quarters chord location

on the airfoil.

The effective angle of attack, α, is found by calculating the angle between the

airfoil chordline and the relative wind velocity direction that the airfoil encounters.

Relative wind is thought of as the velocity that the airfoil “feels” with respect to the

induced flow field near the airfoil. By definition, it is the difference between the airfoil

motion and the relative velocity field near the airfoil with induced flow. Visually, this

phenomena can be seen in Figure 3.3, where the relative wind velocity is a vector that

points in the âaa1 direction in the local relative wind coordinate system. The effective

angle of attack is also shown in the diagram with its relationship to the direction of

the chordline, b̂bb1.
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Figure 3.3: Relative wind is the instantaneous velocity of the air-
foil with respect to unsteady flow that has been induced near the
airfoil [19].

The local relative wind coordinate system is related to the local airfoil coor-

dinate system by a counterclockwise rotation of α about âaa3 = îii3 = b̂bb1 × b̂bb2. This

relationship is defined byâaa1âaa2
 =

cos (α) − sin (α)

sin (α) cos (α)


b̂bb1b̂bb2

 . (3.19)

Keep in mind that the local airfoil coordinate system is related to the global Cartesian

coordinate system by Equation 3.1. We rewrite the relationship asîii1îii2
 =

cos (θ) − sin (θ)

sin (θ) cos (θ)


b̂bb1b̂bb2

 . (3.20)

We are ready to derive the instantaneous relative wind velocity vector using

the appropriate vector notation. As mentioned earlier, it is defined in vector space

as the difference between the airfoil motion and the relative velocity field near the

airfoil with induced flow. Calculating the velocities at the three-quarter chord location

(point T in Figure 3.1), the instantaneous relative wind vector, with magnitude W ,

is given by

Wâaa1 = vvvT −
(
−Uîii1 − λ0b̂bb2

)
, (3.21)
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where the airfoil velocity at three-quarter chord (point T), is given by

vvvT = vvvP + θ̇b̂bb3 × rrrPT , (3.22)

and rrrPT is the position vector from point P to point T given by

rrrPT =

[
b

2
+ (1 + a) b− 2b

]
b̂bb1

= b

(
a− 1

2

)
b̂bb1.

(3.23)

Collecting all the terms into Equation 3.21, we find

Wâaa1 = Uîii1 − ḣîii2 +

[
bθ̇

(
a− 1

2

)
− λ0

]
b̂bb2. (3.24)

Applying the small θ approximation and using the relationships in Equations 3.19

and 3.20, we can rewrite Equation 3.24 in terms of the local airfoil coordinates, b̂bb1

and b̂bb2,

Wâaa1 = (U − ḣθ)b̂bb1 +

(
−Uθ − ḣ+ bθ̇

(
a− 1

2

)
+ λ0

)
b̂bb2. (3.25)

We can approximate U − ḣθ ≈ U because ḣθ is a nonlinear, higher-order term that

can be assumed to be ḣθ << U . Physically, this assumptions is interpreted as the

magnitudes of the airfoil motion being significantly less than the aircraft speed.

We can also decompose the wind vector on the left-hand side of Equation 3.25

into its trigonometric relationships,

Wâaa1 = W cos(α)b̂bb1 −W sin(α)b̂bb2. (3.26)

Here, we can assume small α and can normalize the magnitude of the wind vector by

dividing all terms by U , giving us

W

U
âaa1 =

W

U
b̂bb1 −

W

U
αb̂bb2. (3.27)

Equation 3.27 then becomes

W

U
âaa1 = (1)b̂bb1 +

(
−θ − ḣ

U
+
bθ̇

U

(
a− 1

2

)
+
λ0
U

)
b̂bb2. (3.28)

From Equation 3.27 and 3.28, we can see that the effective angle of attack for
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induced-flow, unsteady aerodynamics is

α =

[
θ +

ḣ

U
+
b

U

(
1

2
− a
)
θ̇ − λ0

U

]
. (3.29)

Equation 3.29 now replaces the effective angle of attack in the circulatory lift

of Theodorsen’s unsteady equations. Finally, we arrive at the unsteady finite-state,

induced flow equations for lift and pitching moment,

L = 2πρ∞Ub

[
ḣ+ Uθ + b

(
1

2
− a
)
θ̇ + λ0

]
+ πρ∞b

2
(
ḧ+ Uθ̇ − baθ̈

)
(3.30a)

M 1
4

= −πρ∞b3
[

1

2
ḧ+ Uθ̇ + b

(
1

8
− a

2

)
θ̈

]
. (3.30b)

This equation is coupled with the structural equations to complete the aeroelastic

equations of motion for our model.

This model, however, is not complete. In Equations 3.30, there is the additional

unknown λ0 term, which is the approximated average induced flow velocity at the

three-quarter chord point. Peters et al. [103] resolve this issue by showing that the

induced flow can be represented in terms of the variables of airfoil motion. Specifically,

λ0 ≈
1

2

N∑
n=1

bnλn, (3.31)

where N is the number of user-defined finite induced flow states λ1, λ2, . . . , λN . These

states represent velocity coefficients of induced flow fields as opposed to velocities at

discrete points on or near the airfoil. These states are hierarchical, requiring only

a few number of states to be chosen for the aeroelastic analysis to yield accurate

results. More detailed discussion is found in [104]. In that reference, it is stated that

an optimal selection for N is between four and nine induced flow states to obtain

results that are consistent with established theories in the field. Choosing a too large

N can lead to ill-conditioning and result in degraded accuracy in the model.

In Equation 3.31, bn are weighted averaging constants whose sum is constrained

to being 1 due to how this theory is developed by Peters [103]. The least-squares
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approximation of bn, given by

bn =


(−1)n−1 (N+n−1)!

(N−n−1)!
1

(n!)2
n 6= N

(−1)n−1 n = N,

(3.32)

is used for this thesis due its higher accuracy for the large time scales that we use in

our time-domain analysis. We can let {λ} be an N × 1 column matrix that contains

the values of λn. Hodges and Pierce [19] show that the induced flow dynamics for

the Peters et al. model is governed by the following set of N first-order differential

equations,

[A] {λ̇}+
U

b
{λ} = {c}

[
ḧ+ Uθ̇ + b

(
1

2
− a
)
θ̈

]
. (3.33)

[A] and {c} are coefficient matrices that are found based on following relationships,

given N user-defined induced-flow states:

[A] = [D] + {d}{b}T + {c}{d}T +
1

2
{c}{b}T , (3.34)

where bn are defined above, and,

Dnm =



1
2n

n = m+ 1

− 1
2n

n = m− 1

0 n 6= m± 1

(3.35a)

dn =


1
2

n = 1

0 n 6= 1,

(3.35b)

and

cn =
2

n
. (3.35c)

See references [103, 104] for more details on the specifics of this model.

Equations 3.31 and 3.34 give the relationships necessary to relate λ0 to the

variables of the structural model that describes the airfoil motion. At this point, we

are ready to synthesize a full state-space representation of the aeroelastic model.
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3.3 State-Space Representation

Establishing a state-space model for the equations of motion of the entire system

allows us to perform dynamical analyses in the time domain. First, consider Equation

3.15. The 2× 2 matrices on the left side of the equation and the vector on the right

side can be replaced by short-form matrices as[
Mstruct

]ḧ
θ̈

+

[
Kstruct

]h
θ

 =

 −L

M 1
4

+ b
(
1
2

+ a
)
L

 ≡ {Faero} . (3.36)

We can input Equations 3.30 into the right side of this equation to find

−L =− πρ∞b2ḧ+ πρ∞b
3aθ̈ − 2πρ∞Ubḣ+ πρ∞Ub

2(2a− 2)θ̇

− 2πρ∞U
2bθ + 2πρ∞Ubλ0

(3.37a)

M 1
4

+ b

(
1

2
+ a

)
L = πρ∞b

3aḧ− πρ∞b4
(

1

8
+ a2

)
θ̈ + πρ∞Ub

2 (1 + 2a) ḣ

+ πρ∞Ub
3
(
a− 2a2

)
θ̇ + πρ∞U

2b2 (1 + 2a) θ

− πρ∞Ub2 (1 + 2a)λ0.

(3.37b)

These equations can be put into matrix form as{
Faero

}
=

−πρ∞b2 πρ∞b
3a

πρ∞b
3a −πρ∞b4

(
1
8

+ a2
)

ḧ
θ̈


+

 −2πρ∞Ub πρ∞Ub
2 (2a− 2)

πρ∞Ub
2 (1 + 2a) πρ∞Ub

3 (a− 2a2)


ḣ
θ̇


+

0 −2πρ∞U
2b

0 πρ∞U
2b2 (1 + 2a)


h
θ

+

 2πρ∞Ub

−πρ∞Ub2 (1 + 2a)

[λ0] .
(3.38)

Just like Equation 3.36, we can rewrite Equation 3.38 in short-form as{
Faero

}
=

[
Maero

]ḧ
θ̈

+

[
Baero

]ḣ
θ̇

+

[
Kaero

]h
θ

+

[
Paero

] [
λ0

]
. (3.39)
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We can combine Equations 3.36 and 3.39, and rearrange matrices corresponding to

like variable vectors, and obtain[
Mstruct −Maero

]ḧ
θ̈

 =

[
Kaero −Kstruct

]h
θ

+

[
Baero

]ḣ
θ̇

+

[
Paero

] [
λ0

]
,

(3.40)

where [
Mstruc −Maero

]
=

 m+ πρ∞b
2 mbxθ − πρ∞b3a

mbxθ − πρ∞b3a IP + πρ∞b
4
(
1
8

+ a2
)
 (3.41a)

[
Kaero −Kstruc

]
=

−kh −2πρ∞U
2b

0 −kθ + πρ∞U
2b2 (1 + 2a)

 . (3.41b)

For sake of brevity and simpler notation, we will rename Equations 3.41a and 3.41b

as

[
Msys

]
and

[
Ksys

]
, respectively.

Equation 3.40 must now be transformed into a non-dimensional form so that

the numerical results from this model can be physically interpreted for any general

case. The non-dimensional parameters that will be used are listed Table 3.1. These

parameters were found in [19, 106]
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Non-dimensional (N.D.) Parameter Proportionality Relationship

N.D. Plunging Variable (h̄) h̄ =
h

b

N.D. Pitching Variable (θ̄) θ̄ = θ

N.D. Induced Airflow Velocity (λ̄0) λ̄0 =
λ0
U

N.D. Frequency Ratio (σ) σ =
ωh
ωθ

N.D. Mass Ratio Parameter (µ) µ =
m

πρ∞b2

N.D. Radius of Gyration (r2) r2 =
IP
mb2

N.D. Freestream Velocity (V ) V =
m

b2ωθ

N.D. Time (τ) τ = ωt,
d

dt
= ω

d

dτ
,
d2

dt2
= ω2 d

2

dτ 2

Table 3.1: Table of non-dimensional parameters and proportion-
ality relationships.

To correctly transform the entire system of equations into non-dimensional

form, the first rows in the matrices of Equation 3.40 must initially be multiplied

by b. Then the entire system of equations are divided by mU2. Upon doing this

step, the variables of airfoil motion, h and θ, and their derivatives are replaced by

their proportional non-dimensional parameter equivalencies. Finally, all of the terms

in the equations are grouped in a manner to yield only non-dimensional terms for
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our dynamical equations of motion. These manipulated matrices, shown below with

asterisk superscripts, thus become non-dimensional,[
M∗

sys

]
=

(
1

µV 2

) µ+ 1 µxθ − a

µxθ − a µr2 +
(
1
8

+ a2
)
 (3.42a)

[
B∗aero

]
=

(
1

µV 2

) −2V (2a− 2)V

(1 + 2a)V (a− 2a2)V

 (3.42b)

[
K∗sys

]
=

(
1

µV 2

)−µσ2 −2V 2

0 −µr2 + V 2 (1 + 2a)

 (3.42c)

[
P ∗aero

]
=

(
1

µV 2

) 2V 2

− (1 + 2a)V 2

 . (3.42d)

The common term of 1/µV 2 can be divided out of Equation 3.40 since it appears on

both sides of the equation.

To perform time domain analyses, the equations of motion have to be put into

state space form. Before state variables are introduced, Equation 3.40 must be put

into standard form. This is done by multiplying both sides of the equation by the

inverse of matrix

[
M∗

sys

]
to geth̄′′

θ̄′′

 =

[
M∗

sys

]−1 [
K∗sys

]h̄
θ̄

+

[
M∗

sys

]−1 [
B∗aero

]h̄′
θ̄′

+

[
M∗

sys

]−1 [
P ∗aero

] [
λ̄0

]
,

(3.43)

where [
M∗

sys

]−1
=

(
1

(detM∗
sys)

)µr2 +
(
1
8

+ a2
)
−µxθ + a

−µxθ + a µ+ 1

 , (3.44)

and

detM∗
sys = µ2

(
r2 − xθ2

)
+ µ

(
r2 + a2 + 2axθ +

1

8

)
+

1

8
.

The primes on the non-dimensional variables h̄ and θ̄ in Equation 3.43 denote non-
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dimensional time derivatives. Also, once again for the sake of brevity and simpler

notation, we define [
E

]
=

[
M∗

sys

]−1 [
K∗sys

]
(3.45a)[

F

]
=

[
M∗

sys

]−1 [
B∗aero

]
(3.45b)[

G

]
=

[
M∗

sys

]−1 [
P ∗aero

]
. (3.45c)

The final steps before we can continue into state vector formulation is to

relate the variable λ̄0 in Equation 3.43 back to the non-dimensional system variables

of pitch and plunge. This is achieved by transforming Equations 3.31-3.35 into non-

dimensional form using the transformations of Table 3.1. The first relation we get

is

λ̄0 ≈
1

2

N∑
n=1

bnλ̄n, (3.46)

where bn remains the same as in Equation 3.32. When this equation is substituted

into Equation 3.43, the 2×1 matrix

[
G

]
transforms into the following 2×N matrix,

[
Ḡ

]
=

[
M∗

sys

]−1


b1V −(0.5 + a)b1V

b2V −(0.5 + a)b2V

...
...

bNV −(0.5 + a)bNV



T

. (3.47)

Additionally, the variable

[
λ̄0

]
in Equation 3.43 is replaced by the N × 1 vector[

λ̄1, λ̄2, . . . , λ̄N
]T

.

Finally, the dimensionless form of Equation 3.33 is derived by dividing both

sides of the equation by ωθ
2b, yielding

[A] {λ̄′}+ V {λ̄} = {c}
[
h̄′′ + V θ̄′ +

(
1

2
− a
)
θ̄′′
]
, (3.48)

where {λ̄} is the vector of N non-dimensional induced flow states λ̄n. The above

equation must be put into standard form for it to be solvable using a state-space
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model. Both sides of Equation 3.48 must be left multiplied by [A]−1, followed by

isolating highest order differential variables to one side of the equation. This yields

{λ̄′} = −V [A]−1 {λ̄}+ [A]−1 {c}
[
h̄′′ + V θ̄′ +

(
1

2
− a
)
θ̄′′
]
. (3.49)

At this point, we are ready to introduce the state variables. Let

[x1, x2, x3, x4, x5, x6, . . . , xN ]T =
[
h̄, θ̄, h̄′, θ̄′, λ̄1, λ̄2, . . . , λ̄N

]T
. (3.50)

Then,

[ẋ1, ẋ2, ẋ3, ẋ4, ẋ5, ẋ6, . . . , ˙xN ]T =
[
h̄′, θ̄′, h̄′′, θ̄′′, λ̄′1, λ̄

′
2, . . . , λ̄

′
N

]T
.

Using the newly introduced state variables, we can express our system of two second-

order differential equations in Equation 3.43 as a system of N+4 first-order differential

equations, given by

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6
...

ẋN



=



0 0 1 0 0 0 . . . 0

0 0 0 1 0 0 . . . 0[
E

] [
F

] [
Ḡ

]

[
Rsys

] [
Raero

]





x1

x2

x3

x4

x5

x6
...

xN



. (3.51)

In Equation 3.51,

[
Rsys

]
=

[
A

]−1{
c

}


E(1, 1) + (0.5− a)E(2, 1)

E(1, 2) + (0.5− a)E(2, 2)

F (1, 1) + (0.5− a)F (2, 1)

F (1, 2) + (0.5− a)F (2, 2) + V



T

(3.52)
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[
Raero

]
=

[
A

]−1{
c

}


Ḡ(1, 1) + (0.5− a)Ḡ(2, 1)

Ḡ(1, 2) + (0.5− a)Ḡ(2, 2)

...

Ḡ(1, N) + (0.5− a)Ḡ(2, N)



T

−V
[
A

]−1
, (3.53)

where the matrices are size N × 4 and N ×N , respectively.

3.4 Nonlinear Modeling

There are several mathematical representations of the free play nonlinearity in pitch,

as discussed in Section 2.2. The two models that are examined in this thesis are the

piecewise and cubic representations of free play.

Recall, we define the system’s pitch stiffness to be equal to kθM(θ), where

kθ is an arbitrary stiffness constant and M(θ) is a mathematical function of pitch

that determines the pitching nonlinearity. If the system has linear stiffness, then the

stiffness will obey Hooke’s Law and M(θ) = θ. However, for the piecewise and cubic

free play models, we define their mathematical representation by

M(θ) = (θ + δ)− (θ + δ)H (t+ δ) + (θ − δ)H (t− δ) (3.54)

and

M(θ) = C1θ + C3θ
3, (3.55)

respectively. In Equation 3.54, H is the Heaviside function that turns the stiffness

“on” and “off” around the bounds of the free play amount that is given the variable

δ. While this mathematical form is slightly different from the one given in Equation

2.17, both equations are identical. In Equation 3.55, C1 and C3 are scaling parameters

that provide the best fit cubic approximation to the piecewise model of free play. The

choice of constants for C1 and C3 depends largely on the domain within which the

piecewise model is valid. For a domain of best fit with a large range, the cubic model
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would more closely match the linear subdomains as opposed to the flat spot of free

play, resulting in weak nonlinearities. Selecting a domain that is too small would result

in the best fit approximation giving good match to the flat spot subdomain but poorly

resembling the linear subdomains, resulting in strongly cubic nonlinearities. Through

trial and error, the domain of best fit for the cubic model was selected to be between

−3◦ ≤ α ≤ 3◦, where the best fit approximations struck a good balance between the

flat spot and linear subdomains.

Now that we have defined the nonlinearities, we will derive the nonlinear form

of the state-space model shown in the previous section. The derivation provided works

for both free play models. The first step is to rewrite the original equations of motion

given in Equations 3.36 as m mbxθ

mbxθ IP


ḧ
θ̈

+

kh 0

0 kθ


 h

M(θ)

 =

 −L

M 1
4

+ b
(
1
2

+ a
)
L

 , (3.56)

where the pitch variable θ is now replaced by M(θ). Note, L and M 1
4

remain the

same as in Equation 3.37. Then, following the same procedure as in Section 3.3, we

rearrange the equations by combining terms that have the same variables, and making

all parameters dimensionless, yielding µ+ 1 µxθ − a

µxθ − a µr2 +
(
1
8

+ a2
)

h̄′′
θ̄′′

 =

−µσ2 −2V 2

0 V 2 (1 + 2a)


h̄
θ̄


+

 −2V (2a− 2)V

(1 + 2a)V (a− 2a2)V


h̄′
θ̄′

+

 2V 2

− (1 + 2a)V 2

[λ̄0]+

 0

−µr2

[M(θ)

]
,

(3.57)

or[
M∗

sys

]h̄′′
θ̄′′

 =

[
K̃∗sys

]h̄
θ̄

+

[
B∗aero

]h̄′
θ̄′

+

[
P ∗aero

] [
λ̄0

]
+

 0

−µr2

[M(θ̄)

]
.

(3.58)

Finally, we put the above equation into standard form, substitute λ̄0 with the ex-
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panded form of the finite state variables λ̄1, λ̄2, . . . , λ̄N and their relationship with

the system variables of plunge and pitch as shown in the previous section, and in-

troduce the same state-variables as Equation 3.50. We obtain the final nonlinear

state-space form as



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6
...

ẋN



=



0 0 1 0 0 0 . . . 0 0

0 0 0 1 0 0 . . . 0 0[
Ẽ

] [
F

] [
Ḡ

] [
L

]

[
R̃sys

] [
R̃aero

] [
R̃non

]





x1

x2

x3

x4

x5

x6
...

xN

M(x2)



, (3.59)

where [
Ẽ

]
=

[
M∗

sys

]−1 [
K̃∗sys

]
(3.60a)[

F

]
=

[
M∗

sys

]−1 [
B∗aero

]
(3.60b)

[
L

]
=

[
M∗

sys

]−1  0

−µr2

 (3.60c)

[
Ḡ

]
=

[
M∗

sys

]−1


b1V −(0.5 + a)b1V

b2V −(0.5 + a)b2V

...
...

bNV −(0.5 + a)bNV



T

(3.61)
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[
R̃sys

]
=

[
A

]−1{
c

}


Ẽ(1, 1) + (0.5− a)Ẽ(2, 1)

Ẽ(1, 2) + (0.5− a)Ẽ(2, 2)

F (1, 1) + (0.5− a)F (2, 1)

F (1, 2) + (0.5− a)F (2, 2) + V



T

(3.62)

[
R̃aero

]
=

[
A

]−1{
c

}


Ḡ(1, 1) + (0.5− a)Ḡ(2, 1)

Ḡ(1, 2) + (0.5− a)Ḡ(2, 2)

...

Ḡ(1, N) + (0.5− a)Ḡ(2, N)



T

− V
[
A

]−1
(3.63)

[
R̃non

]
=

[
A

]−1{
c

}[
L(1, 1) + (0.5− a)L(2, 1)

]
. (3.64)

Note, the tilde on the variables in Equations 3.59-3.62 signifies nonlinear.

Now, we are ready to begin conducting time domain analysis on this system.

In the next chapter, the numerical methodologies are explained and the subsequent

results are shown. A discussion of the results is given along with a comparison of

data with the published literature. Finally, the data is then used to build the initial

probabilistic framework for the final goal of this thesis.
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Chapter 4

Results and Discussion

In this chapter, we provide the results from performing dynamical analyses on the

linear and nonlinear aeroelastic systems derived in Chapter 3. We initially provide the

computational framework necessary for conducting time domain analyses on all of the

aeroelastic systems. All considerations that were made for the numerical integration

schemes are given in detail, along with the discussions on their numerical stability

and convergence. A novel discussion regarding the issue of numerical stiffness in the

differential equation is also provided. Next, we provide the values for the parameters

in our aeroelastic systems.

This chapter provides the results from the time domain analysis performed

on the linear system and the nonlinear systems. Methods used for the nonlinear

dynamical analyses are provided, followed by the discussion of the results. Finally, we

wrap up this chapter by detailing the probabilistic framework and by providing the

results from the stochastic analysis of the nonlinear systems.

4.1 Numerical Procedures Used

To thoroughly examine our system in the time domain, detailed time histories of our

model were recorded for all velocities of interest (see Section 4.1.3). To accomplish
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this, all aeroelastic systems (linear and nonlinear) were numerically integrated over

a sufficiently large range of non-dimensional time such that all variabilities of the

system behavior was fully captured well into its steady-state. This procedure was

then repeated for every velocity of interest. Once the time histories were obtained,

further numerical studies were done to identify stable and unstable regimes and unique

phenomena - such as limit cycle oscillations, quasi-periodic behavior, and chaos -

that are attributed to the different types of nonlinearities examined. This section will

discuss and explain the criteria for determining the scale, scope, and methods of the

time domain analyses.

For this thesis, all numerical studies were conducted in MATLAB on a personal

laptop with an Intel(R) Core(TM) i5-8250U CPU operating at 1.60GHz. Limitations

in accuracy, along with the trade-offs in computing time, are addressed below.

4.1.1 Differential Equation Solvers

Three different types of differential equation solvers were examined. The first is the

classical Fourth Order Runge-Kutta (RK4) solver. This is a fixed step size solver,

where each step of the numerical integration is fixed to a preselected step-size of h.

Given a system of first order differential equations, expressed as

ẋ = f(t, x), (4.1)

the RK4 method recursively estimates the n + 1 state of x from the values of its

previous state, given by

xn+1 = xn +
h

6
(k1 + 2k2 + 2k3 + k4) , (4.2)

where

k1 = f(tn, xn)

k2 = f(tn +
h

2
, xn +

1

2
k1h)
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k3 = f(tn +
h

2
, xn +

1

2
k2h)

k1 = f(tn + h, xn + k3h)

tn+1 = tn + h.

The accuracy of the RK4 method improves as the step size h is reduced [107]. However,

the trade-off is that the total time required for computation drastically increases

depending on the order of the system. We wrote a MATLAB script that performed the

numerical integration of the RK4 method.

The second solver that was examined is the built-in MATLAB function ode45.

This is a variable step-size nonstiff differential equation solver. It is the most com-

monly used MATLAB differential equation solver, using an explicit fourth and fifth

order Runge-Kutta formula, known as the Dormand-Prince method, to compute the

solution of xn+1 using information from the xn state. The relative step size is governed

by convergence of the solver, as specified by the error tolerances defined in the ode45

function [108].

Finally, the third solver that was examined is the built-in MATLAB function

ode15s. This function is a variable step size, variable order solver based on numerical

differentiation formulas of orders 1 to 5, where a multi-step approach is utilized to

yield the solution [108]. The ode15s function is generally used for stiff differential

equations. Stiffness is broadly regarded as phenomena where solutions to differential

equations can become numerically unstable when using certain types of numerical

solvers. This problem can present itself in different ways in MATLAB, such as when

a numerical solver fails to provide a solution, is very inefficient, or converges to an

incorrect solution [109, 110]. While it may appear natural to use this type of solver if

stiffness is suspected, there is added computational cost for large nonlinear systems

when using ode15s due to the additional algorithmic output necessary to perform

the numerical integration.
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In nonlinear aeroelasticity time-domain analyses, solvers that utilize some vari-

ation of the RK4 method are most frequently used. Variable step size solvers are only

typically used when free play is modeled using a piecewise function, due to the non-

smooth nature of the model [35, 36, 111]. Otherwise, the classical RK4 method is

utilized with fixed-step size, particularly in instances with cubic nonlinearity. We will

show with our numerical results that this method is not only inefficient, but it is also

a poor choice when stiffness is suspected in the differential equations.

In most cases, the rationale for choice and type of solver is heavily influenced

by the computational cost (speed). However, very little discussion is found in the lit-

erature examining the manipulation of error tolerances, especially when the numerical

solvers use variable step size. This matter becomes more important when considering

systems that have multiple stability regions, as in the case of nonlinear systems. A

solver with error tolerances that are not small enough could produce solutions that

have settled incorrectly or drifted into different equilibrium states [110]. These phe-

nomena can also be mistaken as stiffness being present in the differential equations.

In our results, we will show that choosing smaller error tolerances dramatically affect

the computed behavior of a strongly nonlinear system near its flutter boundary.

The final discussion point in the numerical framework is that stiffness may

arise in the differential equations that have strong, coupled nonlinearities. To our

knowledge, this thesis may be the first to present such a discussion on stiff differential

equations in the field of free play. In some instances when stiffness is present, there

may be stability regions where some components of a solution decay more rapidly

over other parts of the solution, which may result in inaccurate solutions. The in-

stances that are considered in this thesis looked into how rapidly changing stability

regions near the flutter boundary can be incorrectly computed. While the natural

approach may be to use stiff solvers, they too are prone to yielding inaccurate results

if their error tolerances are too large. Therefore, we will show that using a solver that
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prioritizes high accuracy (smaller error tolerances) over the computational speed in

specified situations can produce both reliable and efficient solutions.

4.1.2 Error Control

Selecting the appropriate error control bounds is a tricky and complicated task. The

MATLAB ODE solvers track error at each state using an algorithm that computes

the local error by taking both relative error and absolute error as functional inputs.

Specific details are can be found in reference [108]. The default values of relative error,

'RelTol', and absolute error, 'AbsTol', are set to 10−3 and 10−6, respectively. As a

general rule of thumb, 'RelTol' determines the number of correct significant digits in

a solution at each time step, whereas 'AbsTol' determines the threshold below which

the difference in the computed values are unimportant [112]. There is drawback to

setting these tolerances too low, which can lead to increased accumulation of round-off

error due to the large number of integration steps necessary for computing a solution.

Trial and error is necessary to some extent as is an understanding of the physical

interpretations of the solutions output by the numerical solvers.

For our purposes, we decided to only manipulate the relative error while hold-

ing absolute error at its default value because we are dealing with small dimensionless

values that are sensitive to changes in the initial conditions. Multiple simulations were

run using solvers with default error values and solvers in which 'RelTol' was set to

10−7. The results and discussion are provided in the subsequent sections. The main

conclusion was that smaller relative error was most important to consider when cal-

culating results near the flutter boundary.

4.1.3 Baseline Solver and Integration Requirements

Unless mentioned otherwise, the ode45 function was the baseline solver that was

adopted here for obtaining a majority of the data presented in the subsequent sections.
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We developed a conditional scheme that would select a modified version of the ode45

function with smaller error tolerances if the velocity was below the linear flutter

velocity. For such velocities, the relative error tolerance of 10−7 was used in the ode45

function due to our needs of higher accuracy for results near the flutter boundary. For

velocities higher than the linear flutter velocity, our code would switch to using the

unmodified ode45 function due to its faster computation speed. All of the simulation

results using other solvers were compared to the results of this baseline solver that

had the added logically controlled error tolerances.

All numerical simulations were integrated from zero to 3 × 105 dimensionless

time. This range was determined through trial and error. For the most part, all data

associated with all times larger than 1.5×105 were found to be steady-state values. The

rate at which the transient behavior decayed to steady state varied for the different

ranges of velocities, with slower transition to steady-state for lower velocities. Thus,

we truncated the data for all times below 1.5 × 105 so that the steady-state values

were used for all of our analyses.

The dimensionless velocities of interest for our studies range from 0.5 to 4.2.

The lower end was selected to start at 0.5 because for lesser velocities the systems was

essentially motionless with zero displacement for all linear and nonlinear systems. All

interesting behavior was found for velocities larger than 0.5, and thus, that was the

starting point for all time-domain analysis. The upper end velocity was set at a value

much larger than the linear flutter velocity. While, no subsonic aircraft is truly de-

signed to operate at velocities that exceed its projected linear flutter speed, such rare

instances can occur during an in flight emergency, perhaps if an aircraft experiences

an uncontrolled dive. Therefore, it is interesting from a theoretical perspective to see

what type of instabilities may occur should an aircraft exceed its designed velocities.

Using the FAA’s ultimate factor of safety of 1.5 [113], we set the upper threshold

of the velocities by multiplying the rounded up linear flutter velocity of 2.8 by 1.5,
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giving us 4.2.

Lastly, the initial conditions for all numerical simulations were set to zero for

all states except pitch, which was set to an initial perturbation of −3◦. The initial

perturbation was set in the pitch degree of freedom because that is the state that

was closely examined for this thesis. While the numerical integration gives us the

data for all of the states of the examined system, the pitch degree of freedom is most

important to examine because the nonlinearities in stiffness are present in the pitch.

Therefore, all of the data that is presented in this thesis correspond only to the pitch

dynamics of the airfoil system.

4.2 Constant Parameters

The linear and nonlinear state space equations, Equations 3.51 and 3.59, were an-

alyzed by using various time domain methods that are explained in the subsequent

sections. In these equations, the following system constants were used a = −1
3
, e =

− 1
10
, σ = 2

5
, r = −2

5
, µ = 50. All constants were selected based on values found in the

literature reviewed in Chapter 2. The choice of N , the number of inflow states in the

aerodynamics model, was set to 9 because of its good agreement with Theodorsen’s

model [104]. While a larger N would lead to better accuracy, choosing N too large

would lead to ill-conditioning in the state-space matrix due to how bn is defined in

Equation 3.32. Varying N can be a future topic of research with free play studies.

4.3 Linear Flutter

The first step is to determine the linear flutter velocity. This is a very important

metric that not only helps in the design of the scope and the scale of the aeroelastic

studies, but also serves as a baseline measurement against which the instabilities of

the nonlinear systems are compared.
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The linear flutter speed is computed by conducting an eigenvalue analysis of

linear Equation 3.51. The system has a total of 13 eigenvalues, of which the first four

correspond to structural deformation in bending and torsion, and the last 9 corre-

spond to the behavior of the 9 aerodynamic induced flow states. Starting at V = 0,

and increasing the dimensionless velocity in 10−3 increments, all of the system’s eigen-

values were calculated, recorded, and plotted. The system’s stability was determined

by the real parts of the eigenvalues. Positive real eigenvalues indicate that the system

has became unstable at that velocity corresponding to the eigenvalue. This is known

as flutter. The velocity at which positive real eigenvalues are first observed is denoted

as the linear flutter velocity, Vf . This value was found to be Vf = 2.783 for our aeroe-

lastic model. The first two eigenvalues, corresponding to the plunge and the pitch,

were the only eigenvalues to become positive in the range of velocities examined. In

Figure 4.1, the evolution of the first four eigenvalues is provided. In comparison, the

linearized model of Dai et al. [34] yields Vf = 2.546 when the same system constants

are used, corresponding to a relative difference of 9.3%. The difference in these two

results are likely due to the choice of the aerodynamics model. We will maintain our

results to be accurate for our system with the aerodynamics model that we selected

to use.

For a more accurate flutter velocity, we performed the eigenvalue analysis

with 10−6 increments. We found that the refined linear flutter velocity to be Vf =

2.782970. Establishing this benchmark value for linear flutter velocity, we next begin

time domain analysis of the both the linear and nonlinear systems to examine the

system’s behavior at a range of velocities of interest.



80

Figure 4.1: The red circle in the graphs on the top row indicate
the velocities at which where the system transitions to having
positive eigenvalues.

4.4 Results: Linear System

The dynamical behavior of the linear system is straightforward. For all velocities below

the linear flutter speed of Vf , the system converges to zero displacement for its steady

state. For velocities larger than Vf , the system completely diverges and the solutions’

amplitudes grow without bound. At the flutter velocity Vf = 2.782970, the system

bifurcates into a fixed amplitude oscillation with amplitude size of approximately

2.145 degrees as shown in time history plot given in Figure 4.2.

It should be noted that the system’s true flutter velocity is likely an irrational

number that is slightly different than 2.782970 by an order of magnitude smaller than

10−6. Despite its phase plot showing an apparent single closed loop with two fixed

points, the system’s response is very slowing changing its amplitude. This was seen
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by zooming into the positive fixed points in the phase plot, as shown in Figure 4.3.

There appears a thick band of curves that are moving away from each other by a

distance less than 10−8, as seen by the fact that no new fixed points are detected

after the first few initial points.

Figure 4.2: This time history plot shows an apparent fixed am-
plitude oscillation.

Figure 4.3: This phase plot for linear system at the computed
linear flutter velocity. The red dots show the detected fixed points.

At velocities very close to Vf , the system’s behavior is interesting. When the

velocity is less than Vf , the rate of decay towards motionless steady state amplitude

reduces drastically. In a similar manner, the rate of amplitude increase beyond the

linear flutter is also reduced drastically. The behavior for both velocities is shown in
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Figures 4.4a and 4.4b. In Figure 4.4a, at velocity V = 2.8792, the system decays very

slowly and has not settled into a steady state value at time 3 × 105. In Figure 4.4b,

the system continually grows in amplitude in a very slow manner. In both cases, the

rate of decay or growth appears to be slightly exponential.

(a)

(b)

Figure 4.4: The time histories and phase plots for velocities near
the linear flutter velocity. (a) The phase plot trajectory is slowly
spiraling into the center. (b) The phase plot in slowly spiraling
away from the center.

As explained in Section 4.1.1, the RK4 method is computationally inefficient

when compared with the ode45 function. In the table below, we show a side-by-side

run time comparison between the RK4 method and the ode45 function for three dif-

ferent velocities. The only case when the RK4 method was faster than the ode45
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function is at the linear flutter velocity. Otherwise, the RK4 method was approxi-

mately 4 to 7 times slower than the ode45 function.

ode45 RK4 Method
V = Vf 39.412 seconds 23.858 seconds
V = 1.17 15.742 seconds 104.342 seconds
V = 2.3 29.710 seconds 112.171 seconds

Table 4.1: Comparison of run times using two different solvers.

Using both solvers, we show the time histories and phase plots for velocities

V = 1.17 and V = 2.3 in Figures 4.5 and 4.6, respectively. While both appear

identical, their steady-state phase plots reveal an interesting finding. Unlike the RK4

method, the ode45 function does not completely settle to zero. There appears to be

some residual roundoff error on the order of 10−12. While such a small error may

not appear as quantitatively significant, it does make us aware that all of our data

is subject to some level of inaccuracies due the accumulation of roundoff error. The

reason for the presence of a residual error is due to manner in which the solver’s

algorithm produces results. Detailed discussion can be found in references [108, 112].

Lastly, we tested the use of a stiff solver to see how the results would come out.

The results, shown in Figure 4.7, were very poor and failed to converge accurately,

thus suggesting that stiffness is not an important consideration with the linear system.
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Figure 4.5: The left column of plots (time history and phase plot)
are produced by using the ode45 function. The right column of
plots are produced by using the RK4 method. Both systems were
solved for identical conditions at V = 1.17. Their solutions yield
apparently identical time histories. However, their steady state
behavior is slightly different, with the ode45 function showing
some residual roundoff error preventing the solution from fully
settling to zero displacement. This is seen in the phase plot on
bottom left. The RK4 solver allows for the correct steady state
convergence to motionless pitch behavior, as seen by its phase
plot on the bottom right, showing a single point at zero.
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Figure 4.6: Similar to Figure 4.5, the left column of plots are pro-
duced by using the ode45 function. The right column of plots are
produced by using the RK4 method. Both systems were solved for
the sub-flutter velocity of V = 2.3, yielding apparently identical
time histories. Once again, as previously shown, the ode45 func-
tion has residual roundoff error in its phase plot, shown on the
bottom left, which prevents the solution from ever settling into
zero displacement. In comparison, the phase plot produced by the
RK4 solver, shown on the bottom right, gives a single point that
is plotted at zero.
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Figure 4.7: The use of a stiff solver when it is not warranted can
result in poor and inaccurate solutions. These plots show large
errors on the order of 10−5.

4.5 Nonlinear Dynamical Analyses

For nonlinear systems, identifying the various regimes of nonlinear behavior is crucial

for gaining a physical understanding of how the system behaves under varied specific

conditions. Two large classes of nonlinear behavior were examined in this thesis:

periodic (and quasiperiodic) oscillations and chaotic oscillations. Different analytical

tools were used to determine the type of behavior experienced by the system for the

specific conditions examined, and the phenomena associated with these. This section

will discuss the methods that were used and the study design that was subsequently

created.

4.5.1 Periodic Oscillations

After performing the numerical integration, the data for the pitch and pitch veloci-

ties were used to plot the steady-state phase portraits. From these plots, the initial

assessments of periodicity was made. If repeating or almost-repeating closed loop tra-

jectories were mapped in the phase portraits, then periodicity can be qualitatively

assumed. Further assessments are necessary to quantitatively prove this assumption.
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First, from the phase portraits, the fixed points or zero-crossings have to be

obtained by following the orbits through their phase spaces. Since the accuracy of

our data is limited by roundoff error in the numerical integration, we deemed that

any two fixed points were considered as repeating fixed points if the absolute value

difference was less than 10−8. In the same manner, if the numerically integrated values

for steady-state pitch settled into an infinitesimally decaying orbit whose peak am-

plitudes differed by less than 10−8, then the difference was deemed negligible and the

steady-state fixed point value was presumed to be the average of the two infinitesimal

peaks. Following this procedure allowed us to determine if the orbits were periodic;

if they were, then the number of repeating fixed points can determine the order of

the orbit’s periodicity [80]. Fixed points were obtained for all velocities of interest for

all of the nonlinearities studied, and then plotted to create 2-D bifurcation diagrams

corresponding to the various nonlinearities.

If periodicity cannot be clearly determined by the first method, then more

advanced time-domain and frequency-domain analyses need to be applied. Autocor-

relation analysis and Fourier analysis are the two methods that were used. Since our

data is discretized, numerical discrete-time autocorrelation functions and Fast Fourier

Transforms (FFT) were used to generate normalized autocorrelation plots and am-

plitude spectra. For periodic motion, the FFT would yield narrow band amplitude

spectra with distinct peaks; the autocorrelation plot would yield repeating or consis-

tent patterns if periodicity is present [114]. Additionally, if periodic motion is clearly

determined, then the mean of the separation of the peaks in the autocorrelation plots

can give a quantitative measure of the period of these oscillations.

4.5.2 Quasi-Periodic Oscillations and Subharmonics

As the velocity varies, periodicity may become more difficult to identify if the system

is headed towards chaos. There are three main precursors to chaos that we looked
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into: the presence of subharmonics, quasi-periodic oscillations, and transient chaos

[115]. A stable periodic system can bifurcate and experience period-doubling with

when the velocity changes. This gives rise to smaller frequency oscillations being

observed within the larger periodic oscillations. In the phase space, this is observed

by the presence of smaller self-intersecting closed loops within a larger closed loop. In

the frequency domain, this is observed by the presence of large peaks at frequencies

below the dominant frequency. With the presence of more subharmonics and period

doubling, the system gets closer to chaos [114].

Another identifier of pre-chaos is the loss of true periodicity in a phenomena

known as quasi-periodic oscillations. Such oscillations occur when the solution con-

tains the sum of periodic oscillations whose frequencies are incommensurable [115].

When the frequencies are unknown, as in the case with our solutions, three graphical

methods can be used to adequately make this judgement. First, the phase portrait will

show graphs that are almost-periodic yet do not have clearly repeating oscillations.

Their FFTs will show thick peaks as opposed to narrow peaks. Lastly, the method

of Poincaré section can be used, where a pseudo-phase portrait is mapped at regular

fixed instances when a specified “event” occurs. Since this is not a periodically forced

system, the standard method of selecting fixed time instances does not work [34]. We

adopted the method described by Dai et al. [34] and defined our “event” criteria as

instances when plunge velocity equals zero (α̇ = 0) and the plunge acceleration is

positive. For quasi-periodic oscillations, the Poincaré section will show a closed loop

of points [116]. Observing quasi-periodic oscillations is strong precursor to chaos.

Finally, the last type aperiodic motion that we searched for is one that involves

intermittent or transient chaos. This is observed as short bursts of chaos that can

appear and disappear within an apparent periodic or nearly periodic motion [115].

Intermittency is both difficult to observe and understand. Therefore, it is important

to map the time history over a sufficiently large range of time to allow for such chaotic
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transients to settle within periodic motion. In this thesis, we use the simple approach

of examining the time history simultaneously with the phase portrait to see if such

behavior can be visually inspected.

4.5.3 Chaotic Oscillations

Chaos is a condition that is only possible in nonlinear systems. We used three different

graphical indicators and one numerical indicator to show the existence of chaos. The

first approach involved using FFTs. A broad spectrum of frequencies with many

peaks can suggest the existence of chaos [114]. The second graphical tool used was

the autocorrelation plots. Chaotic motion appears as random-like oscillations that

decay to zero in the autocorrelation plots. Poincaré sections are the third type of

plots used to identify chaos. When chaos is present, the plot appears as a cluster of

seemingly unorganized points, as opposed to being well structured [114].

The final approach to identifying chaos is the quantitative method of numeri-

cally calculating the largest Lyapunov exponent (LLE). Following the procedure out-

lined by Sprott [115], we chose two sets of initial conditions separated by a magnitude

of 10−8 in the vector space. Then the orbits are allowed to march forward in time by

one increment. At that instant, the vector difference of the two orbits is calculated

and the natural logarithm of its ratio with the original perturbation value is recorded.

This value becomes the initial Lyapunov exponent value. The perturbed orbit’s posi-

tion is then rescaled such that its distance from the first orbit is the size of the original

perturbation in the direction of its maximum expansion according to its position in

the vector space. Then the whole process is repeated for the next time increment and

the new Lyapunov exponent value is recorded by summing the new natural logarithm

ratio with the previous value and taking their averages. The process is iterated for the

entire range of time. If the converged values of the Lyapunov exponent are positive,

then this is a numerical indication of chaos. A positive Lyapunov exponent suggests
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that two orbits with perturbed initial conditions have their orbit diverging from each

other exponentially fast.

While we have several different methods of capturing chaos, none of the meth-

ods can always guarantee that chaos is present. Therefore, we must make our judge-

ment by using all of the methods together and justifying our rationale in that matter.

If multiple indicators of chaos test positive, then we can safely assume the presence

of chaos. However, if the tests are inconclusive, then our judgement must remain

inconclusive as well; there may be more occuring than meets the eye.

4.6 Nonlinear Systems

Several different types of nonlinear models were examined. All models were either cu-

bic or piecewise-linear functions. There are some similarities in the resulting behavior

with both types of nonlinear models. Roughly summarized, both models lead to a

reduction in the flutter velocity when compared with the linear flutter velocity. The

reduction in the flutter velocity for both models is a function of the free play amount.

These systems tend to undergo a sequence of bifurcations, with some of the nonlin-

earities producing chaotic behavior. Despite the similarities, some unique differences

are found with the use of the two types of free play models. All of the discussion is

provided below in the subsequent sections.

4.7 Results: Cubic Free Play Models

All cubic models that we examined took on the mathematical form of Equation 3.55,

whereM(θ) = C1θ+C3θ
3. Different cubic models had different values for the constants

C1 and C3. For our work, we examined two classes of cubic free play models. The first

class of cubic models had values of C1 and C3 that we selected (user defined). We

only looked at one such model where we chose C1 = 0.01 and C3 = 50. These values
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were selected because there have been other studies that have previously looked into

this exact cubic model. This allowed us to compare our results to these studies. In

particular, we compared our results to those found in the paper by Dai et al. [34].

Not only did they use this exact cubic model, their state-space aeroelastic model was

developed in a similar manner to our state-space model.

The second class of cubic models were the best fit cubic functions, where the

values of C1 and C3 were selected based on the best fit approximation of the cubic

models to the piecewise models of free play. The domain of best fit for the cubic models

was selected to be between −3◦ ≤ α ≤ 3◦, a range that we established using trial

and error, as explained in Section 3.4. Ten different values of free play were examined

using the best fit approach, which gave us ten different cubic models that corresponded

to each amount of free play. We combined real data from the aviation industry on

free play and used that in the development of our best fit cubic models. One of our

new contributions here is using the abundance of data obtained by studying these

nonlinear aeroelastic systems and translating the variability and sensitivity of the

data into a stochastic model that can give quantitatively measures on the likelihood

of experiencing aeroelastic instability. A full discussion is provided in the following

sections.

4.7.1 User Defined Cubic Model: C1 = 0.01 and C3 = 50

We initiated the study of this nonlinear cubic model by incorporating it into the

nonlinear state space model of Equation 3.59. Numerically integrating this equation,

we began the first analyses by plotting the system’s complete bifurcation diagram

for the entire range of velocities that were studied. This plot is shown in Figure 4.8,

with the boxed regions being areas of interest for closer examination. It shows some

unique and interesting behavior, particularly in the regions that we selected, labeled

from A to D. In this section, we will provide a thorough discussion of the nonlinear
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dynamical phenomena that is captured in the bifurcation diagram and its physical

interpretation.

The first objective was to determine the nonlinear flutter velocity associated

with our nonlinear system. We established this value to be the first velocity at which

multiple fixed points are obtained. This is seen on the bifurcation diagram in the

boxed Region A as multiple points being vertically plotted for a single velocity. In

Figure 4.9, we zoom into the bifurcation diagram where we first observe the system

breaking into multiple fixed points at V = 1.15. We verified this by running a MATLAB

script that checked the number of fixed points that were being plotted at each velocity.

This allowed us to establish V = 1.15 as the nonlinear flutter velocity. This value is a

41.323% reduction from the linear flutter velocity. Clearly then, nonlinearities must

a part of any flutter analysis.

Figure 4.8: This bifurcation diagram allows us to qualitatively see
how the system behaves for a large range of velocities.
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It should be noted that the bifurcation diagram in Figure 4.8 shows that the

system does not settle to zero displacement for values that are below its nonlinear

flutter velocity. While the system does settle into a single point, this value is a nonzero

displacement. Physically, this phenomena can appear to be puzzling. Our best expla-

nation is that the strong cubic nonlinearity prevents this system from truly settling

back into zero displacement when this system experiences unsteady aerodynamic forc-

ing. When the system settles into nonzero displacements, the system is motionless -

i.e., there is no pitch velocity.

As the velocity increases, the system switches between positive and negative

displacement values into which it settles. For these increasing velocities that are be-

low the nonlinear flutter velocity, the magnitude of the displacement into which the

system settles also increases, switching back and forth between more positive or more

negative displacement values as seen in the points plotted to the left of Region A in

Figure 4.8. This switching behavior seen in Figure 4.9 also reveals that the system

has no clear pattern on when it switches between positive and negative steady state

displacement values. For example, from V = 1.02 to V = 1.05, the system alternates

between positive and negative settled steady state values. Then there is group of

consecutive velocities for which the system settles into positive displacement values,

before jumping to a negative displacement value once. Then, a sequence positive fixed

point values appear before a final switch to a negative fixed point value occurs, which

is immediately followed by what appears to be a chaotic flutter.
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Figure 4.9: In Region A of Figure 4.8, at V = 1.15, we can see that
the bifurcation diagram plots multiple fixed points, indicating
that the system has encountered flutter.

Region A

There are numerous intriguing findings in the boxed Region A from Figure 4.8. First,

we speculate that chaos occurs when the system first encounters flutter at V = 1.15.

The thick black vertical band of many fixed points plotted at V = 1.15, seen in Figure

4.9, suggests that there is an apparent aperiodic behavior present, potentially chaotic.

We tested our presumption by first plotting the time history at V = 1.15, shown in

Figure 4.10. Immediately, we see that the response is very chaotic, with random-like

oscillations that jump between positive pitch values and negative pitch values before

the oscillations start to center at zero for much larger amplitudes. Plotting its phase

portrait gives us Figure 4.11. This graph reveals a map that closely resembles the

chaotic Lorenz system [80]. The manner in which the system evolves through time

in its state space suggests the existence of a strange attractor. Such discussion is

beyond the scope of this thesis but is very interesting to mention. Qualitatively, we

have strong reason to believe in the existence of chaos at V = 1.15. Now, we must

prove it through the use of the few different methods that we described in Section

4.5.
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Figure 4.10: A chaotic time history is seen where the system’s
oscillatory response jumps around in a random-like manner.

Figure 4.11: This shape resembles the butterfly plot of Lorenz’s
strange attractor. The red dots are the fixed points of the system’s
steady state that are seen as mapped vertically in the bifurcation
diagram of Figure 4.8.

To prove the existence of the chaos, we plotted the Fast Fourier Transform

(FFT), autocorrelation function, Poincaré section, and the largest Lyapunov exponent

(LLE). The first three qualitative measures of chaos are given in Figures 4.13a, 4.13b,

and 4.13c. In the FFT plot, we observe what appears to be a broad spectrum of

frequencies with a few sharp peaks and many thick smaller peaks. It is interesting to

see that the dominant frequency appears to be zero, which suggests that this system

has an infinite period. This observation supports our belief of chaos. Furthermore,

in Figure 4.13b, the autocorrelation function rapidly decays to zero, providing more



96

evidence of chaos. Even though there appears to be an underlying character to the

shape of the decay in the autocorrelation function, a closer look reveals that there

are many irregularities in the oscillations and no patterns emerge from it. Finally,

the Poincaré section in Figure 4.13c shows a random-like cluster of points that are

distributed in no particular shape. This is the final piece of qualitative evidence that

proves that chaotic flutter is encountered at V = 1.15. The LLE plot is provided in

Figure 4.12. Even though all of its values are positive, the plot cannot be reliably used

to reasonable conclude chaos because it has large fluctuations that continue well into

its steady state times. These fluctuations make it impossible to truly determine if the

graph will stay positive as time goes to infinity. Despite that, the other three measure

are enough to prove that chaos is present. Further discussion on the type of chaos

encountered is beyond the scope of this thesis. More can be read on the numerous

classifications of chaos in reference [115].

Figure 4.12: The LLE plot cannot be reliably used to prove chaos
because of the large fluctuations seen towards its tail end. Possible
refinements are needed in how the LLE was plotted.
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(a)

(b)

(c)

Figure 4.13: (a) In this FFT plot, a broad spectrum of frequencies
is seen, with the dominant frequency appear at zero. (b) An ir-
regularly shaped autocorrelation function that quickly decays to
zero is observed. (c) A wide spread of points are plotted for the
Poincaré section, consistent with chaotic behavior.
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Figure 4.14: In Region A of the bifurcation diagram, the system’s
response structure wildly varies, going in and out of chaos for
different velocities.

We find that after flutter is reached, the system undergoes a large change in the

stability of its response structure for increasing velocities. When we zoom into Region

A, as shown in Figure 4.14 above, we see that the system’s steady state response for

increasing velocity takes on a wise assortment of solutions. Chaos exists for almost

all velocities between V = 1.15 to V = 1.23, except for velocities from V = 1.17

to V = 1.19. At these velocities, we observe both stable oscillatory response and

quasi-periodic response, as shown in Figures 4.15 and 4.16, respectively. The periodic

behavior at V = 1.17 and V = 1.19 is demonstrated in the FFT plots, given in Figure

4.17, which show narrow, distinct peaks and no underlying subharmonic behavior.

Proving quasi-periodic behavior at V = 1.18 is more challenging but involves looking

for closed-loop or semi-closed loop orbits in the Poincaré section and observing a set

of small, narrow peaks that are either sub- or superharmonic. Both plots are shown

in Figure 4.18.



99

Figure 4.15: The phase plots of the system’s response at V = 1.17
and V = 1.19 show stable oscillatory behavior with period-1 and
period-2 limit cycles, respectively.

Figure 4.16: The phase plot for V = 1.18 shows trajectories
that are nearly superimposed. It is unclear from this graph alone
whether this is a quasi-periodic oscillation or chaotic. Further
tests are needed.



100

(a)

(b)

Figure 4.17: (a) A single peak suggests that a limit cycle os-
cillation (LCO) with a single closed loop exists at V = 1.17.
(b) The presence of a few discrete superharmonic peaks suggest
that period doubling took place and that there are no underly-
ing frequencies that are unobserved in the phase plot diagram for
V = 1.19.



101

(a)

(b)

Figure 4.18: (a) The Poincaré section shows two clusters of points
that resemble a closed loop orbit on the bottom right of the graph
and a semi-closed loop orbit across the top left of the graph, both
of which are indicators of quasi-periodic oscillations. (b) Quasi-
periodicity is further confirmed by this FFT plot, which shows the
presence of several distinct subharmonic peaks and other smaller
impulsive peaks scattered across the plot.
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In Figure 4.14, immediately after V = 1.19, the system once again exhibits

chaos that continues until V = 1.24, when the system returns to being a stable limit

cycle with two fixed points. This type of behavior with changing stability regions

for changes in the velocities is strikingly similar to the behavior exhibited by the

Mathieu Equation, which deals with time-dependent coefficients [117]. While we do

not suggest that this may be the case for our system, the similarity in behavior is

interesting. This is a topic that we wish to further investigate in future works.

The final studies that we conducted on the data associated with Region A

involves examining how the results are affected when different solvers are used. Seeing

the rapidly changing stability regions in the data near the nonlinear flutter boundary,

we had good reason to believe that there may be stiffness present in our system

of nonlinear differential equations. Our data presented here was obtained using a

modified version of the ode45 function as explained in Section 4.1.3. We decided to

test this system at velocities near the nonlinear flutter boundary with the use of two

other solvers to see how the results compare. We used the unmodified ode45 function,

a nonstiff solver, and the unmodified ode15s function, a stiff solver at three different

velocities V = 1.14, V = 1.17, and V = 1.19. We also tested the use of the RK4

solver at V = 1.17 just to reinforce the idea of how much superior the ode45 function

is compared to a fixed step size solver like the RK4 solver.

The phase plots and time histories obtained using the three different solvers

for V = 1.14 are provided in Figures 4.19 and 4.20. The phase plots reveal a fasci-

nating finding. The modified ode45 function with smaller error tolerances gives us a

motionless solution with residual roundoff noise on the order of 10−11, as shown in

Figure 4.19a. However, the solutions obtained by using the unmodified ode45 and

ode15s functions show seemingly similar chaotic flutter being present at V = 1.14,

as seen in Figures 4.19b and 4.19c. However, the respective time histories, in Figures

4.20b and 4.20c, are drastically different over the same range of time.
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(a)

(b)

(c)

Figure 4.19: (a) Negligible residual roundoff noise is present in the
steady state solution. This is physically interpreted as the system
being motionless with pitch displacement of −0.02972◦. (b) Chaos
is observed when a nonstiff solver with looser error controls is
used. (c) This solution corresponds to the use of a stiff solver. Its
solution appears to be identical to the previous solution, however
there are differences. One of the biggest difference here is that
not all fixed points are accurate captured.
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(a)

(b)

(c)

Figure 4.20: (a) Negligible residual roundoff noise is present on
the order of 10−11. (b) Chaotic time history is obtained with
many random-like jumps and fluctuations in the oscillations. (c)
A chaotic solution is obtained when a stiff solver is used, but the
time history does not match with the previous solution that was
obtained using a nonstiff solver.
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These new results obtained by using different solvers highlight the importance

of having solvers with appropriate bounded error controls. With the looser error

tolerances, the solutions incorrectly showed chaos. In fact, when the unmodified ode45

function is used, it predicts that the nonlinear flutter velocity is at V = 1.13 instead

of what we found as the nonlinear flutter velocity, V = 1.15. While this difference

in the computed flutter velocity is only separated by a magnitude of 0.02 on the

dimensionless velocity scale, that difference can become physically significant when

scaled for a large aircraft that can fly at speeds close to Mach 1.

We further tested stiffness by examining the system at V = 1.17 and V =

1.19, where we have the known stable solution shown in Figure 4.15. The unmodified

ode45 function gave accurate results in both cases. However, the stiff solver gave an

inaccurate result for V = 1.17 and a choppy, non-smooth solution that was somewhat

accurate for V = 1.19. The phase plots using the stiff solver are provided in Figures

4.21 and 4.22.

Figure 4.21: This phase plot shows an incorrect quasi-periodic
behavior at V = 1.17 when using a stiff solver.

The computational times were recorded for each solver. The data is given in

Table 4.2. We additionally performed a few tests with the RK4 solver at V = 1.17 to

compare the efficiency and accuracy of the fixed step size solver with the efficiency

and accuracy of variable step size solvers when dealing with strong nonlinearities. We
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Figure 4.22: Despite the solution appearing to be correct, its res-
olution is poor, with the graph being non-smooth and choppy.

found that the RK4 solver would not converge to a solution unless its step size was

h ≤ 0.01. The solution that was produced with h = 0.01 was accurate but required

525.582 seconds, being over 17 times computationally slower than the modified ode45

function.

modified ode45 unmodified ode45 ode15s

V = 1.14 31.038 seconds 19.066 seconds 89.430 seconds
V = 1.17 28.578 seconds 18.531 seconds 68.334 seconds
V = 2.3 18.368 seconds 17.517 seconds 52.837 seconds

Table 4.2: Comparison of run times using three different solvers
for the nonlinear aeroelastic system.

Unsurprisingly, the unmodified ode45 function was the fastest solver. However,

it ran into issues of accuracy at times, particularly near the nonlinear flutter boundary.

Most surprising to us was that the stiff solver was both the slowest and least accurate

solver. Despite this, we cannot conclusively rule out stiffness in our system since

that would require further research, as explained in [109, 110]. We can conclude

that considerations of error tolerances are significantly important and need to be

addressed when performing numerical integration, especially with nonlinear systems.

Such systems may be highly sensitive to variations in the numerical methodology

implemented. This is a topic for future research in the field of nonlinear aeroelasticity.
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Region B

As the system’s velocity is increased between V = 1.24 and V = 1.87, the system’s

response remains a single closed loop limit cycle oscillation. The only change that

occurs is that the amplitude of the oscillation increases for increasing velocities. In

Figure 4.23, we provide two phase portraits for arbitrary velocities within the range

of V = 1.24 and V = 1.87.

Figure 4.23: The phase portraits for V = 1.30 and 1.85 show
that its evolution is headed towards a potential period doubling,
as seen by the trajectories in the phase portrait showing a more
pronounced curvature near the zero amplitude displacement val-
ues at V = 1.85 than at V = 1.30.

Immediately after V = 1.87, the system undergoes a jump phenomena, where

the system response experiences both a jump in amplitude and a period doubling.

This behavior is captured in the boxed Region B of the bifurcation diagram in Figure

4.8. The zoomed-in image of Region B is provided in Figure 4.24. What follows

for V > 1.88 is a sequence of random-like solution “flipping”, where the oscillations

appear to flip about their horizontal axes with no particular pattern for certain values

of V . This phenomena can be seen in the fixed points plotted in Figure 4.24, where

some of the fixed points for V > 1.88 appear to be mirrored about the horizontal

axis. For example, at V = 1.89, there are three negative valued fixed points; yet at

V = 1.90, the negative fixed points become positive and vice-versa. When their phase



108

portraits are mapped, shown in Figure 4.25, the path mapped by the trajectories also

appear as flipped and mirrored. This is the same phenomena that was observed by

the system prior to experiencing flutter in Region A. The reasoning behind this is

unexplained and requires further research.

Figure 4.24: This zoomed-in image of Region B from Figure 4.8
shows a jump phenomena occurring at V = 1.88. After this, the
fixed points are mapped in a mirrored manner about the horizon-
tal axis for some of the velocity values.

Figure 4.25: The mirroring phenomenon is seen in the phase por-
trait plots of two velocities that are close to each other, V = 1.89
on the left and V = 1.90 on the right.
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Region C

As the velocity is further increased beyond V = 2, the amplitude response grows

proportionally and the solutions continue to undergo flipping until V = 2.77. Once

again, another period doubling occurs at that velocity. Recalling the discussion in

Section 4.5, one of the routes to chaos is through repeated period doubling. This

behavior holds true for our system. In Region C of the bifurcation diagram, shown in

Figure 4.26, we see that the system finds its way towards chaos, by first experiencing

period doubling and then quasi-periodicity.

Figure 4.26: This zoomed-in image of Region C from Figure
4.8 shows further period doubling at V = 2.77, followed by
quasiperiodic oscillations and then chaos for almost all veloci-
ties 2.96 ≤ V ≤ 3.24. Then the system settles back into stable
limit cycle oscillations.

The route towards chaos is mapped in Figure 4.27 by the phase portrait plots

for increasing velocity. The FFTs of the systems at those velocities are given in Figure

4.28. From these graphs, the evolution of the system’s response is better understood.
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(a)

(b)

(c)

Figure 4.27: The evolution toward chaos is mapped, with increas-
ing velocities showing more unstable behavior. (a) Periodic LCO
is present at V = 2.85. This system appears to be headed towards
period doubling. (b) At V = 2.92, the system encounters quasi-
periodic behavior, which is seen by the trajectories not repeating
their same return path in state space. (c) A chaotic solution ap-
pears at V = 3.00.
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(a) (b)

(c)

Figure 4.28: (a) Peaks are present at a small discrete number of
frequencies. A small subharmonic peak is also seen to the left of
the dominant frequency. (b) At V = 2.92, a large number of small
narrow peaks begin to appear across the frequency spectrum. This
is usually the case for quasi-periodic oscillations (c) Chaos is seen
by the existence of a broad band spectrum of frequencies.

At V = 2.85, the system has already encountered multiple period doubling,

which is seen by the presence of multiple closed and intersecting loops within the larger

loops in Figure 4.27a. Its FFT, shown in Figure 4.28a, has a discrete number of tall,

sharp peaks that indicate that the system is in a periodic oscillation regime. It also

contains a small subharmonic peak below the dominant peak, indicating that some

form instability is potentially present in these oscillations. However, the strength of

the subharmonic is seen to be weak. At V = 2.92, in Figure 4.27b, the system enters

quasi-periodic oscillations. The trajectories do not repeat the same return path as
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it orbits in the state space. The quasi-periodicity claim is supported by the FFT

plot in Figure 4.28b. A large number of small discrete peaks begin to appear. These

smaller peaks affect the periodicity of the orbits. The lack of a broad band spectrum

of frequencies suggests that chaos has not yet been reached. Thus, the oscillations are

quasi-periodic. It should also be noted that the phase portrait for V = 2.92 is seen as

being a flipped quasi-periodic map of the phase plot for V = 2.85. Finally, the system

encounters chaos at V = 3.00, seen in Figure 4.27c. This is confirmed by the thick,

broad band frequency spectrum in the FFT plot in Figure 4.28c.

Chaos is observed for almost all of the velocities between 2.96 ≤ V ≤ 3.24.

However, there are a few distinct velocities for which the system becomes semi-stable

and experiences a repeating orbit with a large period that contains numerous self-

intersecting loops. Chaos reappears in the system for the next velocity increment. The

peak amplitude size of chaos grows with increasing velocity. Ultimately, the system’s

response structure slowly settles into a stable limit cycle for velocities larger than

V = 3.24, seen by the discrete set of 4.26. The behavior exhibited in this region of the

bifurcation diagram is similar to that seen in Region A, where the system experiences

small stability regions within large velocity ranges experiencing chaos.

Below, we show the evolution out of chaos in Figure 4.29, where the phase plots

for increasing velocities are given. Three velocities were selected. The first velocity is

V = 3.05, where a repeating orbit with a large period appears, seen in Figure 4.29a.

Determining its periodicity required looking at both FFT and the autocorrelation

plots, shown in Figure 4.30. The FFT plot in Figure 4.30a shows many discrete peaks

that are spread across the spectrum of frequencies in the plot, preventing conclusive

determination of periodicity. However, the autocorrelation plot in Figure 4.30b shows

a consistent pattern that maintains its form over the entire range of time, which allows

us to conclude the existence of a long-lived periodic orbit at V = 3.05.
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(a)

(b)

(c)

Figure 4.29: (a) At V = 3.05, chaos vanishes and a semi-stable,
long-lived periodic orbit appears. (b) At V = 3.15, chaos returns.
(c) At V = 3.25, the system begins to leave chaos but still has
strong underlying subharmonic behavior in its response structure.
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(a) (b)

Figure 4.30: (a) The FFT plot shows the presence of a number
of discrete peaks spread across the entire spectrum of frequen-
cies. Determining periodicity from this plot alone is difficult. (b)
The autocorrelation plot validates that the oscillations are pe-
riodic due to the consistent, and largely non-decaying, patterns
observed.

From the phase portrait plot in Figure 4.29b, we can see that there appears

to be chaos occurring at V = 3.15 in same manner as we observed in Figure 4.27c.

For this case, we will show the existence of chaos without using its FFT. We will

only use the autocorrelation plot, Poincaré section, and the LLE plot. All three are

given in Figure 4.31. First, the autocorrelation function in Figure 4.31a displays a

rapidly decaying plot that approaches zero. This type of trend in the autocorrelation

strongly suggests the presence of chaos. The Poincaré section in Figure 4.31c maps

a cluster of disorderly distributed points that are plotted across the entire phase

portrait plot. This a strong indicator of chaos. Finally, the LLE plot, given in Figure

4.31b, graphs all of the Lyapunov exponents as strongly positive. While there are

some fluctuations, these variations become less pronounced with increasing time and

the graph becomes steady with increasing time. This is a strong indication of chaos,

since it means that two nearby initial conditions for this system diverge away from

each other exponentially fast at V = 3.15. From these plots, we can conclusively state

that chaos exists at V = 3.15.
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(a) (b)

(c)

Figure 4.31: (a) The autocorrelation function rapidly trends to
zero with increasing time, indicating chaos. (b) The LLE plot,
while exhibiting some fluctuations, is strongly positive into later
time. It can be concluded from this plot that the system is ex-
periencing chaos. (c) The Poincaré section show a wide spread of
points that have no structured shape to them. This is also a very
strong indication of chaos.

The system exits chaos at V = 3.25, as the phase portrait in Figure 4.29c shows

that it is not immediately clear what type of behavior this phase plot has mapped. It

appears quasi-periodic but clearly has some trajectories that follow the same return

path in its state space. A closer look at the FFT and autocorrelation plots show the

strong presence of subharmonic oscillations. The FFT, shown in Figure 4.32a, has

many discrete peaks scattered across the entire band of frequencies. The strength of

these peaks is seen to be quite large, particularly for the subharmonic peaks. This can
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explain the unique nature of the oscillations that are seen in this system’s response at

V = 3.25. This response appears to be dominated by multiple frequencies that lead

to its “almost-periodic” behavior. This near periodicity is seen in the autocorrelation

function plotted in Figure 4.32b. The plot appears to have a consistent pattern and

shape in its oscillations, but diminishes in magnitude as the time lag increases. We

are able to see that as the system exits chaos, many of the frequencies that dominate

the oscillatory response during chaos significantly diminish until a periodic behavior

reemerges, as seen in the tail end of the bifurcation diagram in Figure 4.8.

(a) (b)

Figure 4.32: (a) There is a strong presence of subharmonics, seen
by the multiple peaks at several frequencies below the dominant
frequency. There are also a large number of small peaks that are
spread across the spectrum of frequencies. These small peaks and
subharmonics have a strong effect on how this system oscillates at
V = 3.25. (b) The autocorrelation plot suggests that there may
be an underlying periodic phenomena that is being overpowered
by subharmonics. There are clear patterns autocorrelation plot,
however there is also a slight decay in these oscillations with in-
creasing time lag.

Region D

The final portion of interest in the bifurcation diagram is in Region D. The sys-

tem’s response becomes a stable limit cycle whose amplitude grows with increasing

velocity. The stability of the system’s response can be seen by examining its time his-
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tory at particular velocity. Here, we chose to examine the largest velocity for which

we performed numerical integration, V = 4.2. Its phase plot, shown in Figure 4.33,

shows a pattern of continuously repeating trajectories that loop inside itself twice

before completing a larger orbit in the phase portrait. Its FFT, given in Figure 4.34a,

shows a few distinct peaks at only the frequencies that govern the system’s oscilla-

tory response, suggesting a stable solution. Numerically, the stability of this response

can be determined by using the LLE plot, given in Figure 4.34b. We find that the

LLE quickly becomes negative and exhibits limiting behavior that trends towards a

negative valued Lyapunov exponent. This a strong sign of a stable response, since

it implies that two nearby initial conditions will collapse into the same orbit over a

large range of time.

Figure 4.33: This is a stable limit cycle containing two smaller
loops that are enclosed within.

By studying this last region in the bifurcation diagram, we have fully examined

and understood the manner in which this highly nonlinear system responds. We have

gained good insight into the physical behavior of an airfoil with this type of nonlinear

stiffness. This deep dive into the bifurcation diagram allows us to proceed into our

next set of nonlinearities that we studied: the best fit cubic models.
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(a) (b)

Figure 4.34: (a) There are only a discrete number of frequencies
with narrow peak, suggesting periodicity in the response. (b) The
negative Lyapunov exponent indicates that the system response
is very stable.

4.7.2 Best Fit Cubic Models

One of the main goals of this thesis is to study the application of the nonlinear

models with real data on free play. According to Chen et al. [8], the Federal Aviation

Administration and the United States military require that all moving control surfaces

cannot have free play that exceeds ±0.017 degrees. However, this is a requirement that

is nearly impossible to meet in all aircraft. They found that an F-16 fighter jet was

operating with over six times the allowable free play amount and never experienced

any instabilities in the form of limit cycle oscillations. These aircraft are much more

closely maintained than aircraft used in general aviation. With that in mind, we can

only speculate how much worse this problem is for lesser maintained aircraft. This

motivated us to examine the use of best fit cubic nonlinear stiffness models for a

variety of free play amounts much larger than ±0.017 degrees. The cubic models were

best fit between −3◦ ≤ α ≤ 3◦, a range that we established using trial and error, as

explained in Section 3.4.

In this thesis, we used an idealized piecewise model of free play that is math-

ematically defined in Equation 3.54. The nonlinear stiffness is given by the use of a
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Heaviside function in the piecewise model, where M(θ) = (θ + δ)−(θ + δ)H (t+ δ)+

(θ − δ)H (t− δ). The variable δ is used to define the free play amount that we mea-

sure from the neutral position of the control surface, with α = 0. Then, we used

polyfit, a built-in MATLAB function, to best fit the cubic model free play, given in

Equation 3.55, with the piecewise model of free play. As an example, we show in

Figure 4.35 how this function looks when this procedure is carried out for a free play

value of δ = 1◦.

Figure 4.35: A best fit cubic approximation of the piecewise model
with free play of ±1◦ is given here. The cubic model gives a good
fit in the center of the flat spot and along the two linear portions
that branch away.

In Figure 4.35, we see that the cubic function has difficulty mapping closely

to the sharp corner of the piecewise function. In this case, the best fit values of the

constants in Equation 3.55 determined by MATLAB were C1 = 0.17284 and C3 =

0.06401. We repeated this type of approach for ten different values of free play to

study ten different cubic models for our nonlinear aeroelastic system. These values

of free play are given in Table 4.3, along with the values of C1 and C3 that were
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determined using MATLAB for the respective values of free play.

Free Play C1 C3

0.034◦ 0.96812 0.00275
0.05◦ 0.95313 0.00404
0.1◦ 0.90636 0.00808
0.2◦ 0.81342 0.01605
0.3◦ 0.72186 0.02382
0.4◦ 0.63235 0.03126
0.5◦ 0.54555 0.03828
0.6◦ 0.46208 0.04479
0.75◦ 0.34442 0.05340

1◦ 0.17284 0.06401

Table 4.3: Ten different values of free play were adopted. Each
new set of values for C1 and C3 give us a new nonlinear model to
work with.

We selected values for free play that began at δ = 0.034◦. This value was chosen

because it is twice the amount of free play that is allowed in the aviation industry

and, according to Chen et al. [8], such a free play magnitude is commonplace with

most aircraft. Mathematically, we found that for smaller values of free play, the cubic

approximation became nearly linear and any results that were obtained were almost

identical with those of the linear system. Therefore, our first nonlinear cubic model

was best fitted to with free play value of 0.034◦. We chose the nine other somewhat

evenly free play spaced values up to δ = 1◦. While it is unlikely to observe an amount

of free play as extreme as ±1◦ in real life, we decided to still examine such a system

for theoretical purposes.

For these ten different nonlinear systems, we conducted the same numerical

analyses that we discussed in the previous section. We generated ten different bifur-

cation diagrams and recorded the values for nonlinear flutter velocity in each case.

From these plots, we were able to create a first of its kind 3-D bifurcation diagram

plot, shown in Figure 4.36. This graph plots the evolution of the system’s response

structure for increasing amounts of free play.

There are several qualitative aspects of the response structure that immedi-
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Figure 4.36: The complete evolution of the system’s response
structure can be seen in this 3-D graph. The red circles on the
graph are the locations in the 3-D space where the flutter occurs.

ately jump out from the 3-D plot in Figure 4.36. First, we see that the nonlinear

flutter velocity is a function of free play. If we look at the graph from the top view,

we are able to see an apparent linear relationship between the free play amount and

the nonlinear flutter velocity. This is shown in Figure 4.37. This type of relationship

is likely a property of the cubic nonlinearity. We cannot conclude if this linear rela-

tionship would still be present for larger values of free play. From the front view of

Figure 4.36, we are able to see that the system’s amplitude response decays rapidly

fast for increasing values of free play. This is shown in Figure 4.38. We notice that the

system response continues to exist well past the linear flutter velocity for all types of

cubic nonlinearity, regardless of its strength.
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Figure 4.37: The red circles indicate the location of when flutter
is encountered. An apparent linear relationship appears from this
top view of the 3-D plot in Figure 4.36. The bottom axis should
be read from right to left.

Figure 4.38: Reading the bottom axis from right to left, this graph
shows the rapid decay in the peak amplitude response for increas-
ing amount of free play.
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From the 3-D graph in Figure 4.36, we also see that the more interesting

dynamical behavior, such as jump phenomena, period doubling, and the appearance

of new bifurcation branches, are only seen when the nonlinearity becomes stronger for

larger amounts of free play. What should be noted is that chaos is not seen anywhere

in any of the bifurcation diagrams. In comparison to the previous section where the

cubic nonlinearity was significantly stronger, the response structure of the best fit

cubic nonlinearities is mild. This leads us to the conclusion that there are certain

specific conditions that are necessary for the cubic nonlinearity for the system to

produce chaos. This type of behavior associated with the cubic nonlinearity can be

best understood by noticing the similarity of this nonlinear system with the Duffing

oscillator, where there is a cubic component to the stiffness. For the right combination

of cubic stiffness and forcing function, the Duffing oscillator can exhibit chaos. For

other conditions, different instabilities can be found, as well as the system response

settling to zero. More can be read about the Duffing oscillator in references [116, 106].

For our system, chaos and other unique types of nonlinear instabilities are not always

guaranteed for all types of cubic nonlinearities.

4.8 Results: Piecewise Free Play Models

For this thesis, we conducted minimal examinations of piecewise nonlinear models

to gain a preliminary understanding of how the behavior of an aeroelastic system

with this type of nonlinearity model compares with that of a system with a cubic

nonlinearity. We tested a piecewise nonlinear model with free play of δ = 0.3◦ at four

different velocities, V = 1, V = 1.9, V = 2.75, and V = 2.8. These results were then

compared with best fit cubic model data for the same amount of free play. We used

the unmodified ode45 function, for its fast computation speed, to obtain the results

given in Figure 4.39.
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(a) (b)

(c) (d)

Figure 4.39: (a) This phase portrait shows that the system settles
to zero displacement at V = 1. (b) For V = 1.9, the system has
bifurcated into multiple solutions with two fixed points. This is
an indication of aeroelastic instability. (c) A large amplitude limit
cycle is seen to occur at V = 2.75. (d) The system diverges to
infinite amplitude response at V = 2.8. The time history plot
reaches the maximum value that MATLAB can compute.

At V = 1, the system settles to zero displacement. The phase portrait, shown

in Figure 4.39a, gives the plot of the converged system with the residual roundoff noise

on the order of 10−11, as seen previously in Sections 4.4 and 4.7 with the other linear

and nonlinear systems. At V = 1.9, this system is seen to have reached an aeroelastic

instability. In its phase portrait in Figure 4.39b, a period-1 limit cycle is seen with

two fixed points, indicating that the system is past its flutter velocity. In comparison

to the best fit cubic nonlinearity, that system is seen to reach flutter at V ≈ 2.3.
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These piecewise nonlinearities cause the system to encounter flutter well before the

cubic nonlinearity reaches flutter. This is important to note because it suggests that

the cubic nonlinear approximation of free play possibly needs more refinement than

how it is currently defined.

Continuing further, at V = 2.75, the piecewise nonlinearity gives us a large

amplitude limit cycle response, as seen in the phase plot given in Figure 4.39c. Its

amplitude range is from approximately −20◦ to +20◦. When compared with the cubic

system at that same velocity, we find that the cubic system’s response amplitude range

is only approximately from −4◦ to +4◦. This large difference is the predicted response

structure and can mean that one, if not both models, need to be improved to better

reflect the true nonlinear stiffness of a control surface with free play.

Lastly, at V = 2.8, the system fails to converge to a steady state solution.

It diverges with its amplitudes increasing towards infinite response, as seen in the

time history given in Figure 4.39d. We speculate that this is likely due to how the

piecewise function is mathematically defined. It is almost entirely a linear system with

a flat spot in its center. Therefore, we speculate that the piecewise model will fail to

converge for all velocities larger than the linear flutter velocity for any given free

play amount. This can be seen as a drawback of the piecewise model. In comparison,

we showed in the previous section that the cubic nonlinear system will produce a

converged response for any type of cubic nonlinearity, well past the linear flutter

velocity.

There were other drawbacks with the use of the piecewise model that we

encountered. First, the system took a very long time to produce solutions. In Table

4.4, we show the times that were needed for the computation to take place. In some

cases, a factor of 20 more time is required than for computation for the cubic nonlinear

system, where we used modified versions of the ode45 function that is not as fast as

its unmodified version. We believe that this could be a sign that there is stiffness
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present in the system over the entire range of velocities that we examined. In the

future work, we could explore the possibility of using a stiff solver.

Computation Time
V = 1.00 429.638 seconds
V = 1.90 831.392 seconds
V = 2.75 1249.160 seconds
V = 2.80 529.002 seconds

Table 4.4: The excessive computational time needed to produce a
solution suggests that stiffness may be present in the system over
the full range of velocities.

4.9 Probabilistic Modeling

The final major goal of this thesis was to develop an initial probabilistic framework

to predict the likelihood of encountering aeroelastic instability or flutter when cubic

nonlinear systems are present. We developed a model that would give a quantitative

measure of the probability of flutter based on the aircraft’s cruise velocity and the

free play amount at any given time. Let’s define X as the random variable for the

aircraft cruise velocity and Y as the random variable for the free play amount. We

chose X to be defined by a triangular distribution sake of simplicity. According to

FAA AC-25.335-lA [118], the design cruise speed, VC , of an aircraft should not exceed

80% of the aircraft’s design dive speed, VD. The FAA also states that the aeroelastic

stability envelope must be at least 15% larger than the design dive speed [4, 5]. For

the sake of demonstration, we therefore set the design dive speed in our model to be

at 15% below the linear flutter velocity, VD = Vf/1.15.

The triangular probability distribution function is [119],

FX(x) =


(x−a)2

(b−a)(c−a) for a ≤ x ≤ c

1− (b−x)2
(b−a)(b−c) for c < x ≤ b

0 for x < a, x > b,

(4.3)
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where c ∈ [a, b] and is the mode of the distribution. Choosing the constant values for

a, b, c required some understanding about the variabilities in cruise flight. According

to the electronic aerospace repository SKYbrary [120], aircraft tend to fly at speeds

below their designed cruise speed for a number of controlled and uncontrolled reasons,

including saving fuel and external environmental factors. In some cases, it is not

uncommon that an aircraft flies slight faster than its cruise speed if the conditions

are correct. Keeping these sources of variabilities in mind, we chose a = (0.7)(VD),

b = (0.85)(VD), and c = (0.8)(VD).

The second variable Y is the free play amount. We used a gamma distribution

to model its probability because it has wide engineering reliability application. The

gamma distribution also has the unique property of having its input variable being

nonnegative. In our case, the input variable is the amount of free play, a value that

cannot be negative. The distribution function for the gamma distribution is given by

[117]

FY (y) =

∫ Y

0

θ

Γ(k)
(θy)k−1 e−θydy, for y ≥ 0, (4.4)

where k > 0 is the shape parameter and θ > 0 is the scale parameter. The mean value

is µY = kθ [121]. By carefully selecting k = 0.136 and θ = 0.25, we were able to set

the mean, µY = 0.034, to bisect the distribution at the 80% probability mark. This

created a Pareto type distribution which means that the probability of an aircraft

having free play smaller than 0.034◦ is P (Y ≤ 0.034) = 80%. This also allows for

higher and more extreme values of free play to see an extremely low, rare probability

of occurrence. For example, with this model, the probability of an aircraft having

free play larger than 1◦ is evaluated to be 0.0678%. In Figure 4.40, we provide both

distribution functions plotted for 105 random random probability values.

The probabilistic modeling for free play still requires one more component that

we have not considered until now. Free play is a function of time. It has been well

documented that an operating aircraft will see free play that will worsen and accelerate
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Figure 4.40: The gamma distribution is shown by the blue dots
and the triangular distribution is given by the red dots.

with time [122]. This means that Y has to become a stochastic variable that is able to

capture this accelerating wear phenomenon with increasing time, leading to larger free

play. However, every aircraft has a maintenance planning document that determines

the maintenance schedule for checking free play and lubricating or replacing parts.

We found that American Airlines at one point had their Boeing 737 airplanes on a

maintenance cycle of 5000 flight hours [123]. Assuming that the only time that free

play is checked is during a maintenance schedule, and that all free play is reset to

zero after a maintenance cycle, we can develop a clever, yet simple, stochastic model

for free play. We defined the random process governing free play by

Y (t) = A×
(

exp (t/5000)− 1

exp(1)− 1

)
, (4.5)

where A is a random amplification parameter with gamma probability distribution

function, where k = 0.136 and θ = 0.25. In Figure 4.41, we show 50 random realiza-

tions of this stochastic process. Note, Equation 4.5 is non-stationary.

At this point, we are ready to create our probabilistic model to quantify the
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Figure 4.41: This graph show 50 random realizations of how free
play can evolve with increasing flight hours. The different colors
help differentiate the lines

probability of encountering flutter for an aircraft flying at a cruise airspeed of X with

t flight hours logged since its previous maintenance cycle, and Y amount of free play.

Assuming that the variables X and Y are statistically independent, we define the

joint probability of this model as

P (X ≤ x, Y (t) ≤ y) = P (X ≤ x)P (Y (t) ≤ y). (4.6)

Using Monte Carlo simulation with 10, 000 sample points for n random flight

hours realizations, we were able to create n 2-D density plots that show this prob-

ability of flutter using a colormap index. Four such plots are shown in Figure 4.42.

Furthermore, we created the 3-D probability density function plot (PDF) for our

model, shown in Figure 4.43. It is interesting to note that with increasing time, the

PDF evolves and the tail strength of the gamma function becomes more pronounced.
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(a) (b)

(c) (d)

Figure 4.42: Four different Monte Carlo simulations are shown for
randomly selected values of flight hour time.
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Figure 4.43: This graph shows how the two statistically indepen-
dent variables map a PDF that maintains the characteristics of
both variables. This PDF is plotted for 2000 flight hours.

Now, we can use the data from the cubic nonlinear systems to determine the

probability of flutter. First, we must find a function that can accurate predict the

nonlinear flutter velocity given an arbitrary free play amount. We used a best fit

linear function to do this. Using the nonlinear flutter velocity data shown in the top

view of the 3-D bifurcation diagram in Figure 4.37, we found that the linear function

Vnf (δ) = 2.7829− 1.5983δ (4.7)

was a highly accurate predictor of nonlinear flutter velocity, as shown in Figure 4.44.

This nonlinear flutter predictor can be used to interpolate the nonlinear flutter veloc-

ity for any free play amount between 0◦ ≤ δ ≤ 1◦. Beyond that, however, we cannot

precisely use the linear function to predict the nonlinear flutter velocity because we

do not have data to show if the nonlinear flutter velocity will remain linearly propor-

tional to the free play amount. However, assuming that it does, we can use Equation
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4.7 and use Y an input to obtain the value of the nonlinear flutter velocity associated

with that value of free play. From there, we can find the probability of flutter as being

P (X > Vnf (Y (t)), Y (t) ≤ y) = P (X > Vnf (Y (t)))P (Y (t) ≤ y). (4.8)

Figure 4.44: This graph shows the best fit linear model plotted
with the nonlinear flutter velocity values that we obtained from
Figure 4.37.

At this point, we have established an initial probabilistic framework for non-

linear aeroelastic systems. Following the same procedure that we outlined in this

section, different nonlinear models and data can be used to create a more thorough

and accurate quantitative model for determining probability of flutter. For future

works, we plan to develop this probabilistic framework into a more sophisticated and

comprehensive model that can take multiple inputs and produce multiple outputs.
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Chapter 5

Conclusion and Future Works

We initiated this thesis with the motivation to examine how various models of free

play and nonlinear stiffness affect an aeroelastic system’s dynamical response. From

our literature review, we found that there exist many different aeroelastic systems that

can be formed by pairing numerous structural and aerodynamic models with various

nonlinear stiffness models. These systems have been analyzed using a plethora of

analytical and numerical tools, with the end goal of producing data to better under-

stand how a nonlinear aeroelastic system with free play can potentially behave. The

literature landscape was quite large, but contained many gaps and areas where more

research was necessary in order to elucidate the many complexities in this field. One

of the most immediate deficiency that we found was the lack of a probabilistic frame-

work. The majority of the abundant and varied research that we found was determin-

istic. Thus, it became one of our goals to develop a probabilistic framework through

our research to better understand how free play affects aeroelastic systems. Among

other goals, we wished to contribute a new type of aeroelastic system that could be

analyzed for studying free play. Finally, we wished to find connections between this

problem and other existing and well-studied problems in the field of vibrations and

nonlinear dynamics. Ultimately, this spurred our research and produced this thesis.
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5.1 Accomplishments and Major Findings

Many new accomplishments were made in this thesis. First, we used a new combi-

nation of structural and aerodynamic models for studying free play. The unsteady

aerodynamics theory of Peters et al. [104], using finite-state, induced flow theory, was

paired with a two degree-of-freedom structural model. In this aeroelastic system, we

added cubic and piecewise nonlinear stiffness. To our knowledge, this is a new non-

linear aeroelastic model that has not been studied in the field of free play. We were

then able develop a state-space model that was compatible with systems that had

both linear and nonlinear stiffness.

From the state-space models, we conducted time domain analyses by numer-

ically integrating the aeroelastic system to produce time histories for a large range

of velocities. Several different types of differential equation solvers were examined. In

our numerical study, we looked into two main issues regarding the numerical stabil-

ity of the solutions that we obtained. First, we looked into how manipulating error

tolerances can lead to different sets of solutions, particularly for nonlinear systems

that are highly sensitive near their flutter boundary. Our results confirmed that the

choice of solver and their error tolerances were significant considerations that need

to be understood and examined when dealing with nonlinear aeroelastic systems.

Secondly, we looked at the possibility that the differential equations are numerically

stiff, particularly for highly nonlinear systems. While inconclusive, our speculations

were confirmed by our results that stiffness in the differential equations is another

important consideration that must be understood and examined. From our research,

we demonstrated the importance of correctly developing an accurate and efficient

numerical methodology. This is an area that needs to be researched more in the field

of free play. The trust in the data that is found across the literature relies greatly on

the numerical framework that researchers have utilized.

Our next accomplishment in this research was being able to successfully iden-
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tify complex nonlinear dynamics of the aeroelastic systems that we studied. While

this is not new, we were able to find two very interesting connections between the

field of free play and the field of nonlinear dynamics. First, we found that one of the

highly nonlinear systems that we examined had many alternating regions of stability

and regular solution flipping, as we described in Section 4.7.1. This type behavior

is very similar to that of the Mathieu Equation, where the reason for changing sta-

bility regions is the time-dependent coefficients. More research is necessary to better

understand this connection and how it can be used in the field of free play to ex-

plain certain unique phenomena. The second major connection we made was with

the Duffing oscillator. In our cubic models, we found that some strongly nonlinear

phenomena, such as chaos, only appeared for one cubic nonlinearity. Much like the

Duffing oscillator, we believe that the aeroelastic systems will exhibit some unique

nonlinear phenomena, such as chaos, only with a certain set of cubic nonlinearities.

By better understanding the Duffing oscillator, we can potentially determine that set

of cubic nonlinearities that produce such nonlinear behavior and aid with aeroelastic

design.

We then examined a wide variety of cubic nonlinearities that were produced

by curve fitting to piecewise models with varied amount of free play. Performing

more time domain analyses allowed us to produce a novel 3-D plot containing the

evolution of bifurcation curves with changing amount of free play. This 3-D plot was

crucial in allowing us to gain strong qualitative understanding of various aeroelastic

systems with cubic nonlinearities that differed from each other by small amounts.

From this, we were also able to map a relationship between free play and nonlinear

flutter velocity.

Next, we briefly examined the use of piecewise nonlinearities within our aeroe-

lastic system. One of the unique features about our piecewise model was that we

used the Heaviside function to represent this nonlinearity in one equation, allowing
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us to easily incorporate it into our state-space model without altering it. We gained

some interesting qualitative insight that we discussed in Section 4.8. One of the main

limitations that prevented us from continuing further study of this nonlinearity was

difficulties in the numerical integration of these systems. More research is necessary

to better tackle this issue.

Finally, we developed a novel probabilistic framework that allowed us to quan-

tify the probability of a nonlinear aeroelastic system encountering aeroelastic insta-

bility or flutter. We used a random variable that gave the probability of an aircraft

flying at a some cruise velocity X and a second stochastic variable that gave the

probability of a system having free play Y with t flight hours logged. Both of these

variables were used to create a joint probability function that was tested using Monte

Carlo simulation. Lastly, we used the data from the cubic nonlinear systems to de-

velop relationships between free play amount and its nonlinear flutter velocity. This

information was used to finally develop a scheme for quantifying the probability of

flutter for some set of realizations. One of the major goals of this thesis was to have a

framework in place that others can use and improve. We believe that we accomplished

this goal with our probabilistic model. There is tremendous flexibility and room for

broad applications.

5.2 Possible Improvements

The research that we performed in this thesis offers opportunities for improvement.

Some of the numerical tools that we used for analyzing nonlinear dynamics can be

further refined and improved. Two such cases are with producing better largest Lya-

punov exponent (LLE) plots and with Pioncaré sections. For the LLE plots, we can

improve the overall results by using smaller time steps for comparing and rescaling

the infinitesimally separated systems. For the Pioncaré sections, we can use better
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interpolation tools to better determine the exact times when a point should be plot-

ted on the plots of the Pioncaré sections. Our current methodology is sufficient but

refinements can always be made.

Another major area where improvements can be made is in the MATLAB code

that we wrote. This would require expertise in programming, which we do not claim

to possess. Our code is effective but its efficiency can always be further improved. This

includes having a better numerical framework for the piecewise nonlinear systems.

Finally, our results are limited by the accuracy and speed of the hardware

that was used. For this thesis, we produced all results using a personal laptop with an

Intel(R) Core(TM) i5-8250U CPU operating at 1.60GHz. Access to better hardware

can potentially allow more to be examined and allow for more refinements in our data

and plots.

5.3 Future Works and Suggestions

We laid the groundwork for numerous avenues of further research. This project re-

quires an understanding of many different fields from academic topics of engineering,

computer science, mathematics, and physics to legal and industry topics such regu-

latory compliance, industry standards, and finance. In the future, we wish to further

examine three main avenues of this research. First, we wish to further develop this

research in the many areas of probability and statistical theories. This includes look-

ing at potential stochastic forcing of the aeroelastic systems, extreme value theory,

and sensitivity and perturbation analysis of initial conditions and constants.

The second avenue that we wish to further examine is in the field of aerody-

namics. Studying a new unsteady aerodynamics theory has sparked our interest into

this field. The study of free play has been historically apprehensive about exploring

different aerodynamics theories for aeroelastic systems due to the high level of com-
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plexities involved. However, we feel that this is a welcoming and exciting undertaking

for the future.

The third and final avenue of research is in improving the structural models to

be more realistic to real-life conditions. This means that not only must we consider

nonlinear stiffness, but we must also consider structural stiffness in our models. This

added level of complexity is the topic of many other engineering application that deal

with structural dynamics.

One of our suggestions for researchers in this field is that there is a need

for having access to real-life data from actual aircraft that may experience behavior

associated with free play. The lack of available data makes it difficult for many to

truly test the accuracy of their models and refine them as needed. While this data

may be proprietary, our final recommendation is for more engineers in the industry

to collaborate with academics who do research on this topic.
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