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ABSTRACT OF THE THESIS

Pole and Angle Based Analysis of RR Linkages

by YASH PARIKH

Thesis Director:

Dr. Haim Baruh

An infinite number of planar linkage solutions exist for a prescribed rigid body positions.

Given a set of precision points, determining fixed pivot and moving pivot curves, sorting

through limitless number of possible solutions to find optimal link parameters that satisfies

compactness criteria can be a daunting task. In this work, an algorithm is developed and

presented by which user can select an optimal linkage from all the mechanism solutions by

using Pole and Angle Based Design Method. The significance of poles for design of linkage

and hence a mechanism is also determined. The numerical examples presented in this work

for two position, three position and four position analysis of a linkage to develop a moving

pivot curve using Pole and Angle Based Method have been presented to support analysis

capabilities.

Keywords: Pole and Angle Based Design Method, RR Linkage Analysis, Numerical Meth-

ods
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Chapter 1

Introduction

A mechanism is assembled from gears, cams and linkages though it usually contains spe-

cialized components such as springs, breaks and clutches. Amongst all of these, the linkage

provides versatile movement in any design. A linkage is collection of interconnected compo-

nents called links which are interconnected by joints. The design of geometric constraints

which guides specific movement of a body is called kinematic synthesis.

Kinematic synthesis of design of linkage is the base for kinematic synthesis of design

of mechanisms. In the nineteenth century and prior to 1950’s, most mechanism analysis

and design was done graphically. The algebraic design of mechanisms originated from

Freudenstein [1] who is considered as ”Father of Modern Kinematics”. The Freudenstein

equation gives an analytical approach towards analysis and design of four-bar mechanisms

which, along with its variants, are present in a large number of machines used in day to

day life. The design of linkages which is determined in the thesis is based on design of a

guiding linkage by Hall [2], rigid body guidance by Suh and Radcliffe [3], motion generation

by Sandor and Erdman [4], and finite-position synthesis by Roth [5]. It is inspired by

ideas introduced by Ludwig Burmester [6] for planar movement and Arthur Schoenflies

[7] for spatial movement [8]. The texts by Hartenberg and Denavit [9] and Kimbrell [10]

gives a detailed development of graphical linkage synthesis. The use of the opposite-pole

quadrilateral to construct the center-point curve can be found in Luck and Modler [11].

There are various methods to design linkages such as Graphical Method, Analytical

Method and Pole and Angle Based Method. Graphical solutions for the design of a four-

bar linkage to accomplish rigid body guidance for up to five positions are known. The

previous methods for two and three position synthesis focuses on selecting free choices and

then using graphical construction to determine the consequences. If the solution is not
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satisfactory, new choices are made, and the process is repeated according to Erdman and

Sandor [4], Paul B [12] and McCarthy[13]. The traditional graphical method used for design

of four position synthesis involved plotting Burmester center point curves using a tedious

procedure based on pole quadrilaterals [13], [2].

The algebraic formulation of linkage design was introduced by Freudenstein and Sandor

[14] using a complex vector formulation and is developed in detail in the text by Erdman

and Sandor [4] and also in Waldron and Kinzel [15]. The polynomial elimination procedure

used to solve the RR and PR design equations was inspired by Innocenti [16] and Liao

[17]. Computer implementations of planar linkage synthesis originated is carried out using

Kaufman’s KINSYN [18], and Waldron and Song’s RECSYN [19], Erdman and Gustafson’s

LINCAGES [20], and Ruth’s SphinxPC [21]. Ravani and Roth [22] present an optimization

approach to linkage synthesis that allows more that five task positions. The analytical

synthesis procedure is usually carried out using algebraic solution method unless graphical

methods which is less intuitive than any other methods.

The solution of the constraints imposed on the design variables which force the result to

be a four-bar linkage, limit the forces and torques within the linkage, restrict the location of

the pivot points, limits the lengths of the links, etc. was found using an iterative technique

with the aid of a digital computer by Fox and Willmert [23]. Analytical solvers capable of

quickly plotting Burmester curves have been developed. In some cases, this software has

been integrated into CAD systems. In many cases, this makes the analytical method better

suited to solving four-position synthesis problems than the previous graphical technique.

However, the analytical method requires software external to the CAD system.

The Pole and Angle Based synthesis approach considered in this thesis changes the focus

from making free choices to calculating constraints. The synthesis carried out here is for

various positions of the coupler namely two positions, three positions and four positions

using Pole and angle based method. After the constraints are known, the available free

choices are wisely selected from among all the possible solutions. In most cases, all the

possible solutions can be calculated at once knowing the poles and angle of rotations which

are defined in the constraints. This is similar to the graphical method given by Zimmerman

[24] which gives all the possible solutions using the graphical methods by constructing poles,
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instead it is an analytical approach. This synthesis method is much faster than conventional

analytical approaches and can be applied to the guidance of a rigid body through up to

five positions. Known is the fact that the midnormal of the moving pivots in two positions

always passes through the pole and that the lines from the moving pivots through the pole

are separated by the rotation angle [2]. The angle from the mid-normal line to the line

through either moving pivot is consequently half the rotation angle [9]. Using this fact,

the need for iterative graphical construction to evaluate possible solutions is eliminated

because Pole and angle based method also has a graphical solution method as given in

McCarthy [13]. Free choices can be changed if all the possible solutions are not satisfactory

and will lead to another definite set of solutions. This synthesis approach removes the time

disadvantages of the conventional analytical method has for four and five position synthesis

problems.

The geometric theory presented here can be found in Hartenberg and Denavit [9] as well

as in Bottema and Roth [25]. The results on the equation of a triangle are drawn from

McCarthy [26], while the complex vector formulation follows Erdman and Sandor [4].

For a two position synthesis problem, the previously published literature by Erdman

and Sandor[4] recommends using two of the free choices to select moving pivot locations as

the first step. The fixed pivots can be located anywhere along the perpendicular bisector

of line joining the two links. For each new choice of moving pivots, the construction of

perpendicular bisector must be repeated. It was discovered by Loerch [27] [28] for three

precision conditions, with one unprescribed angle fixed and the other used as a parameter,

fixed pivots and moving pivots of all possible dyads must lie on respective circular loci.

For three position synthesis, using both the available free choices to select a moving pivot

location is recommended by Paul B [12]. A synthesis is required to identify the fixed pivot

location. If the fixed pivot is not suitable, an iterative process is required to find other

solutions, requiring repeated graphical construction. For three position synthesis, some

have identified that a moving pivot can be found after the fixed pivot is selected by using

two poles and their corresponding half rotation angles [13], [2]. Similarly for four position

synthesis, fixed and moving pivot curves are determined [29]. Frequent mention is made of

the number of free choices, but no mention is made of the constraints.
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Each center point choice then requires additional graphical construction to find the

corresponding circle point. Circle and center point pairs were then evaluated for suitability.

In all of these synthesis problems, the number of free choices was often referenced, but no

definition was given for the constraints.

This thesis takes advantage of the property that two lines through the pole separated

by half the rotation angle represent a set of possible fixed and moving pivot point pairs, for

a two position synthesis problem. When rotated around the pole, these two lines define all

the possible fixed and moving pivot point pairs that will satisfy the two specified positions

[24]. This pair of lines can be rotated to a desired orientation, and then desirable fixed and

moving pivot points can be selected along the lines. This method of linkage design not only

simplifies the design process by eliminating the need for iterative conventional analytical

solution as well as iterative graphical solution, but also can be extended to three, four and

five position synthesis.

This research focuses on the linkage design of a floating link that can be carried for both

graphical and analytical construction of a pair of RR linkages. This floating link reaches

various positions and points in a defined sets of corresponding points in a fixed frame. The

design and synthesis of linkages is challenging and has not been implemented in practice.

The design of linkages in this research is based on synthesis of planar chains by poles and

rotation angles. This research also includes the results obtained from variation of rotation

angle on location of moving pivots for getting a more optimal link design.
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Chapter 2

Problem Definition

The problem at hand is to study the Pole and Angle based Method for design of RR linkages

for any four bar mechanism. The dyads are defined by rotation angle φ, location of fixed

pivot G and location of moving pivot W . The added quantity for design using pole based

method is Pole of Displacement P . The design equation for RR chain according to J.

McCarthy [13] Pole and Angle based method are given as

D1i : (G−P1i)[A(φ1i)− I](W1 −P1i) = 0, i = 2, ..., n (2.1)

Figure 2.1: Design of RR chain for n-positions of the moving pivot

The pole of displacement gives the location of corresponding link at various instants

and forms a curve of link rotation about a fixed pivot along the specified angle of rotation
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defining the link position within permissible range. The design is compared to conventional

linkage design methods as well as graphical methods to understand the location of moving

pivot. The design equation for analytical approach for up to four positions according to

conventional method described in R. L. Norton [30] is given as

W (ejβ1k − 1) +M(ejα1k − 1) = Pk1e
jδk , k = 2, 3, 4 (2.2)

Here, P denotes the position of linkage at each instant. The angle of rotation φ is the

parameter which is altered to observe the change in location of the linkage. The RR linkage

and the parameters of the problem are shown in Figure 2.1.
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Chapter 3

Methodology

The design of linkages and henceforth mechanisms can be done in many different ways.

Graphical and Analytical are the most widely used methods. The position of a moving body

at an instant is defined by coordinate transformation and each transformation is associated

with an invariant point called the pole of displacement. The relationship between relative

positions of points on the moving body and location of pole given by J. McCarthy [13] is

used to determine positions of link at various rotation angles.

The approach presented here is based on techniques given in J. McCarthy [13] for motion

generation. It is assumed that the designer has identified positions that represent the desired

movement of a mechanism. This can be viewed as specifying positions that are to lie in the

work space of the linkage. Thus, a discrete representation of the work space is known, but

not the design parameters of the linkage. The constraint equations of the chain evaluated at

each of the task positions provide design equations that are solved to determine the linkage.

The discussion of pole location and design in this chapter is based on pole and angle

based synthesis method given by McCarthy [13]. Similarly, the design of analytical synthesis

is based on design analysis given by conventional method discussed in R. L. Norton [30]

and Erdman and Sandor [4].

3.1 The Pole of Displacement and Angle of Rotation

The displacement between two positions can be achieved by a single rotation about a point

called pole of displacement. The pole of displacement is always located in the same ground

frame for all the locations of the moving body. The pole of displacement between two

positions M1 : (−→e 1,D
1) and M2 : (−→e 2,D

2) is given as P12. The pole of a displacement can

be located by using Graphical or Analytical methods.



8

The points or positions, prescribed for successive locations of the output link in the

plane are referred to as precision points or precision positions. The representation of fixed

pivot and a moving pivot is a characteristic point representation in any plane which is done

by giving x-coordinates and y-coordinates of the point. The ways of representing any point

are as follows:

• Geometric Vectors: Any point in an X − Y coordinate system can be defined as X =

xî + yĵ.

• Column Vector Formulation: The formulation of a point in a single column vector is

given as

X =

x
y


• Complex Variable Notation: The complex variable representation of a point has a

real part and an imaginary part which is X = x+ iy.

The rotation is described by,

X = Ax + d

where x and X are the initial and final positions in the same reference frame.

The angle of rotation is defined as the angle about which the link rotates at the pole

from one precision point to another precision point. The scalar rotation A[φ] is given as,

A[φ] =

cosφ − sinφ

sinφ cosφ


where,

φ = Angle of Rotation

d = Displacement from one position to another

To find P12 graphically, we first consider the point of intersection C of the line through

D1 along −→e 1 and the line through D2 along −→e 1. The angle between these lines about C is

called the rotation angle of displacement φ12. Every point in the displaced body moves in

a circle about the pole as shown in Figure 3.1.

For each planar rotation there is a unique rotation angle φ, rotation matrix A and

translation d associated with which there is a unique pole position P . If we consider a case
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Figure 3.1: A general point Q1 is displaced by a pure rotation about P12 by the angle φ12
to the point 2

where we have three positions Mi, i = 1, 2, 3 for a moving body M , the displacements can

be considered in pairs to determine poles P12, P23, P13 and the associated rotation angles

φ12, φ23, φ13. The displacement given by T13 : (φ13, P13) is obtained by a sequence of two

successive displacements T12 : (φ12, P12) followed by T23 : (φ23, P23) as shown in Figure

3.2. Thus,

φ13 = φ12 + φ23 (3.1)

The three poles φ13, φ12 and φ23 form a triangle known as Pole Triangle as shown in Figure

3.2. The pole P has the coordinates which are unchanged by the planar displacement

[T ] = [A(φ), d], that is

P = [A(φ)]P + d (3.2)

where,

[T ] = Transformation matrix from one precision point to another

A[φ] = Rotation matrix from from one precision point to another

d = Scalar translation of linkage

The rotation and translation of linkage are isometric operations i.e. they move on a

plane such that distance between point on the body does not change.
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The above equation can be solved to determine the coordinates of P as

P = [I −A(φ)]−1d (3.3)

where,

I = Identity Matrix

Figure 3.2: The pole triangle associated with three positions M1, M2, and M3

The same equation can also be used to define translation component of the displacement

in terms of the coordinates of the pole, that is

d = [I −A(φ)]P (3.4)

Thus, a planar displacement [T ] = [A(φ), d] can be defined directly in terms of rotation

angle φ and pole P using Equation 3.2 such that

[T (φ, P )] = [A(φ), [I −A(φ)]P ] (3.5)

3.1.1 Pole of Relative Displacement

The pole of the relative displacement from Mi to Mj is found by applying equation 3.3 to

the transformation [Tij ] = [A(φij), dij ]. This can be written in terms of the components of
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two displacements [Ti] and [Tj ] as

Pij = [I −A(φij)]
−1(dj −A(φij)di) (3.6)

Angle of rotation between M1 to M2 is measured from x-axis of M1 to x-axis of M2. The

relative translation vector d12 is given in terms of pole P12 by

d12 = [I −A(φ12)]P12 (3.7)

Figure 3.3: The fixed and moving pivots G and W1 of an RR chain and the pole P12 from
the dyad triangle ∆W 1GP12

3.2 Geometry of RR Chain

The displacement of the end-link of RR chain is the result of rotation about the moving pivot

W 1 followed by a rotation about the fixed pivot G which is equivalent to composition of

rotations about the relative poles P12 and P23, and we find that the dyad triangle, ∆W 1GP12

has the same properties as pole triangle. W 1 and W 2 are corresponding points of the moving

pivot in two positions and G is the fixed pivot. The angle β12 between these lines is the

rotation angle of the crank as shown in Figure 3.3. The relative rotation of floating link
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around W 2 is α12 between L2 and −→e 2. The relative rotation φ12 of the end-link between

positions M1 and M2 is the sum of relative rotations about the fixed and moving pivots,

φ12 = β12 + α12 (3.8)

which can be found as shown in the Figure 3.4. According to Burmester’s theory [6]

of linkage synthesis, the center point G which is fixed pivot of an RR chain reaches three

positions Mi, Mj , and Mk views the relative poles Pij and Pjk in the angle βik/2 or βik/2+π,

where βik is the crank rotation angle from position Mi to Mk.

Figure 3.4: The fixed pivot G of an RR chain views the poles P12 and P23 in the angles
β12/2 and β23/2 respectively, where β13 is the crank rotation from position M1 to M3

3.2.1 Finite-Position Synthesis of RR Chains

The design of RR chains reaches a specific set of task positions Mi. The positions are

specified by drawing each reference point Di and direction vector −→e , where i = 1, ..., n, on

the background plane F .

The fixed pivot G of the RR chain is located in frame F and attached by a link to the

moving pivot W in the moving body M . The moving pivot defines the corresponding points
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W i, i = 1, ..., n, in each of the task positions. The points W i must lie on a circle about G,

because the crank connecting the G and W has a fixed length. Thus, the goal of the design

process is to find points on the rotation circle of moving body that has n corresponding

positions on a circle.

3.2.2 Polar Synthesis of RR Chain

A revolute, or hinged, joint provides pure rotation about a point. Given two positions of a

rigid body, M1 and M2, we can locate a revolute joint such that it moves the body between

the two positions. This can be done by locating the hinged joint at the pole of the relative

displacement. Let the two positions be specified by the transformations [T1] = [A(φ1), d1]

and [T2] = [A(φ2), d2]. Then, locate the revolute joint G at the relative pole according to

equation 3.6 as

G = [I −A(φ12)]
−1(d2 −A(φ12)d1) (3.9)

where φ12 = φ2 − φ1 . This joint does not exist if the relative displacement is a pure

translation. An RR chain consists of a fixed revolute joint located at a point G = (x, y)T

in F connected by a link to a moving revolute joint located at w in M . Let [T ] = [A, d] be

a displacement that locates M . Then the point W in F that coincides with w is given by

W = [A]w + d (3.10)

where W = (λ, µ)T must lie on a circle about the fixed pivot G, that is,

(W −G)(W −G) = (λ− x)2 + (µ− y)2 = R2 (3.11)

where R is the length of the link. This geometric constraint characterizes the RR chain.

The n positions of the end-link of an RR chain are defined by [Ti], i = 1, ...., n transfor-

mations. The coordinates W i of the moving pivot must satisfy equation 3.11 for each

position Mi and n equations are solved simultaneously to get desired output which is given

by Burmester as

(W i −W 1)G− 1

2
(|W i|2 − |W 1|2) = 0, i = 2, ...., n (3.12)
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which can also be given by,

(W i −W 1)(G− V1i) = 0 (3.13)

where V1i = (W i +W 1)/2 is the midpoint of W 1 and W i.

Figure 3.5: The fixed pivot G lies on perpendicular bisector of the segment W 1W 2 formed
by two positions of the moving pivot

The equation 3.13 shows that G− V1i is perpendicular to W i −W 1 and passes through

the midpoint as shown in the figure. This shows that perpendicular bisector of all chords

of the circle passes through its center i.e. pole P1i of the relative displacement [T1i] of the

end link of RR chain lies on perpendicular bisector of W i −W 1 which gives,

(W i −W 1)(G− P1i) = 0, i = 2, ..., n (3.14)

3.2.3 Algebraic Design Equations

The design of a RR chain needs identification of a set of task positions Mi, i = 1, ..., n, for

the end-link of the chain which means that the displacements [Ti], i = 1, ..., n, are known,

and the angles φ1i and the relative poles P1i can be determined at the outset. The unknowns

are the two coordinates of the fixed pivot G = (x, y)T and the two coordinates of the moving

pivot W 1 = (λ, µ)T , four in all. The equation 3.14 can be formulated in a way that yields
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a convenient set of algebraic equations for an RR chain.

(W i − P1i) = [A(φ1i)](W
1 − P1i) (3.15)

If we subtract W 1 − P1i from the above equation, we obtain

(W i −W 1) = [A(φ1i)− I](W 1 − P1i) (3.16)

Substituting this into equation 3.14, gives

D1i : (G− P1i)[A(φ1i)− I](W 1 − P1i) = 0, i = 2, ..., n (3.17)

which are the design equations for the RR chain. When n = 4, we have three design

equations in three unknowns. Thus, an RR chain can be designed to reach four arbitrarily

specified precision positions.

3.3 The Bilinear Structure

The design equations 3.17 are quadratic in the four unknowns G = (x, y)T , W = (λ, µ)T

namely Gx, Gy, Wx and Wy. However, they have the important property that they are

linear when considered separately in the unknowns x, y, λ and µ. This structure provides

a convenient strategy for the solution of two to four position problem.

In design of two, three and four precision positions the bi-linear structure provides

alternative solutions that we describe as “select the fixed pivot” or “select the moving

pivot”. These solution strategies correspond to the two ways the design equations can be

used to design RR chains. Let the coordinates of the relative pole be P1i = (pi, qi)
T . Using

equation 3.17, we obtainx− piy − qi


T cosφ1i − 1 − sinφ1i

sinφ1i cosφ1i − 1

λ− piµ− qi

 = 0, i = 2, ..., n (3.18)

If we select the fixed pivot G then the coordinates x, y are known, and we can collect

the coefficients of λ and µ to obtain the design equations.
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Ai(x, y)λ+Bi(x, y)µ = Ci(x, y), i = 2, ..., n (3.19)

where,

Ai(x, y) = (cosφ1i − 1)(x− pi) + sinφ1i(y − qi),

Bi(x, y) = − sinφ1i(x− pi) + (cosφ1i − 1)(y − qi),

Ci(x, y) = (cosφ1i − 1)(pi(x− pi) + qi(y − qi)) + sinφ1i(piy − qix)

The coordinates of the moving pivot (λ, µ) are obtained by solving the above set of linear

equations. Similarly, if we select the moving pivot W 1 then λ, µ are known and we can

collect the coefficients of x and y to obtain

A′i(λ, µ)x+B′i(λ, µ)y = C ′i(λ, µ), i = 2, ..., n (3.20)

where,

A′i(λ, µ) = (cosφ1i − 1)(λ− pi) + sinφ1i(µ− qi),

B′i(λ, µ) = − sinφ1i(λ− pi) + (cosφ1i − 1)(µ− qi),

C ′i(λ, µ) = (cosφ1i − 1)(pi(λ− pi) + qi(µ− qi)) + sinφ1i(piµ− qiλ).

Thus, the fixed pivot coordinates x, y are obtained by solving a set of linear equations, as

well.

The equations of the dyad triangle provide a set of design equations that include the

crank rotation angles β1i. These equations provide a way to select a crank angle in the

design process. For a set of task positions Mi = 1, ..., n, we have the (n− 1) dyad triangle

equations as discussed in J. McCarthy[13],

(1− eiφ1i)P1i = (1− eiβ1i)G+ eiβ1i(1− eiα1i)W 1, i = 2, ..., n (3.21)

which are linear in the unknown complex vectors G = x+ iy and W 1 = λ+ iµ. If the crank

angles β1i are specified, then the rotation angles α1i = φ1i − β1i can be calculated.

3.3.1 Two Precision Synthesis

If two positions M1 and M2 of the end-link of linkage are specified, then the displacements

[T1] = [A(φ1), d1] and [T2] = [A(φ2), d2] are given. The relative rotation angle φ12 and the
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pole P12 can be determined. Because n=2, there is s single design equation

(G− P12)[A(φ12)− I](W 1 − P12) = 0 (3.22)

Figure 3.6: Two-Position synthesis of a 4R chain obtained by constructing two different RR
open chains and connecting their end-links

To design the RR chain either the fixed or moving pivot can be selected and still have

a free parameter.

Selection of Fixed Pivot for Two Positions

Choose values for the coordinates of the fixed pivot G = (x, y)T , then equation 3.19 yields

the equation

A2(x, y)λ+B2(x, y)µ = C2(x, y), (3.23)

for the coordinates W 1 = (λ, µ)T of the moving pivot. This equation relates λ and µ. One

of them is a free choice and the other can be computed.
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Selection of Moving Pivot for Two Positions

The bilinearity of the design equations allows to select values for the coordinates W 1 =

(λ, µ)T of the moving pivot and use equation 3.20 to define

A′2(λ, µ) +B′2(λ, µ) = C ′2(λ, µ), (3.24)

This equation is perpendicular bisector of the line segment W 1W 2. Any point on this line

can be used as the center point G.

3.3.2 Three Precision Synthesis

For three specified positions of the floating link, there are three displacements [Ti] =

[A(φi), di], i = 1, 2, 3. Compute the relative angles φ12, φ13 and the poles P12, P13 in

order to obtain the pair of design equations

(G− P1i)[A(φ1i)− I](W 1 − P1i) = 0, i = 2, 3 (3.25)

These equations yield a unique solution for either fixed pivot G or the moving pivot W 1 for

an arbitrary choice of another.

Figure 3.7: The fixed pivot G is the intersection of the two bisectors V12 and V23
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Selection of Fixed Pivot for Three Positions

Choose values for the coordinates of the fixed pivot G = (x, y)T , then assemble the two

design equations 3.19 into a matrix equationA1(x, y) B1(x, y)

A2(x, y) B2(x, y)

λµ
 =

C1(x, y)

C2(x, y)

 (3.26)

these equations are solved simultaneously to obtain a unique value of moving pivot W 1.

Selection of Moving Pivot for Three Positions

The coordinates of W 1 = (λ, µ)T are specified and formed into equations 3.20 in matrix to

obtain A′1(λ, µ) B′1(λ, µ)

A2(λ, µ) B2(λ, µ)

xy
 =

C ′1(λ, µ)

C ′2(λ, µ)

 (3.27)

These equations define the two perpendicular bisectors D12 and D13 that intersect at the

point G.

3.3.3 Four Precision Synthesis

For four specified positions of the floating link, [Wi], i = 1, 2, 3, 4 should lie on a circle which

would not be satisfied by any arbitrary point. There is a cubic curve of moving pivots called

the circle-point curve that have four positions on a circle. The center of all these circles

form the center-point curve.

If [Mi], i = 1, 2, 3, 4 are the four specified positions then relative displacements [T1i] =

[A(φ1i), d1i], the matrix form of the design equations is given as
A2(x, y) B2(x, y)

A3(x, y) B3(x, y)

A4(x, y) B4(x, y)


λµ

 =


C2(x, y)

C3(x, y)

C4(x, y)

 (3.28)

gives a solution for the moving pivot W 1 only if these equations are linearly dependent.

For these equations to have a solution, the fixed pivot G must be selected so the 3x3
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Figure 3.8: The opposite-pole quadrilateral obtained from four planar positions

augmented coefficient matrix [M ] = [Ai, Bi, Ci] is of rank two. This means that the deter-

minant |M | equals zero, which yields a cubic polynomial

R(x, y) : |M | =a30y3 + (a21x
2 + a20)y

2 + (a12x
2 + a11x+ a10)y

+ a03x
3 + a02x

2 + a01x+ a00 = 0

(3.29)

This polynomial defines a cubic curve in a fixed frame, and any point on this curve may be

chosen as the center point G for the RR chain, called center-point curve. The coefficients

in equation 3.29 are obtained by noting that each of the elements of [M ] are linear in the

components of G = (x, y)T . Using the column vectors ai,bi and ci in the above equation,

we have

det[M ] = |a1x+ b1y + c1, a2x+ b2y + c2, a3x+ b3y + c3| = 0 (3.30)

The above equation can be expanded because of linearity to define coefficients of center-

point curve as
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a30 = |b1b2b3|,

a21 = |a1b2b3|+ |b1a2b3|+ |b1b2a3|,

a20 = |b1b2c3|+ |b1c2b3|+ |c1b2b3|,

a12 = |a1a2b3|+ |a1b2a3|+ |b1a2a3|,

a11 = |a1b2c3|+ |a1c2b3|+ |b1a2c3|+ |c1a2b3|+ |c1b2a3|,

a10 = |b1c2c3|+ |c1b2c3|+ |c1c2b3|,

a03 = |a1a2a3|,

a02 = |a1a2c3|+ |a1c2a3|+ |c1a2a3|,

a01 = |a1c2c3|+ |c1a2c3|+ |c1c2a3|,

a00 = |c1c2c3|

(3.31)

Next we discuss, the center point theorem which provides a geometric condition that

characterizes center points for four precision positions. For four positions, there are six

relative displacement poles Pij , i < j = 1, 2, 3, 4, and the center-point theorem requires

that a fixed pivot G views the pole pairs PijPik and PmjPmk in the angle βjk/2 or βjk/2 +

π. Burmester combined the six relative poles into the three complementary pairs P12P34,

P13P24, and P14P23 such that each pair has the numbers 1 through 4 in its indices. He then

introduced that opposite pole quadrilateral that has any two of these complementary pairs

as its diagonals which ensures that the opposite sides of the opposite pole quadrilateral have

the form needed to apply the center-point theorem.

Burmester’s Theorem[6] is given as, “The center point G of an RR chain can reach

four specified positions in the plane views opposite sides of an opposite pole quadrilateral

obtained from the relative poles of the given positions in angles that are equal, or differ

by π”. This theorem describes a method to derive the center point curve in terms of the

coordinates of relative displacement poles. If the opposite pole quadrilateral is formed with

vertices P12P23P34P14 and the fixed pivot G views P23P12 in the angle κ and P34P14 in κ or

κ + π. The coordinate direction
−→
k which is perpendicular to plane, allows us to compute

sin κ using the vector cross product

−→
k (P12 −G)× (P23 −G) = sinκ|P12 −G||P23 −G| (3.32)
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Figure 3.9: The opposite-pole quadrilateral obtained from four planar positions

The value of κ is determined by substituting P12 = (p2, q2)
T , P23 = (a1, b1)

T as

tanκ =
(b1 − q2)x+ (a1 − p2)y + p2b1 − q2a1

x2 + y2 − (p2 + a1)x− (q2 + b1)y + p2a1 + q2b1
=
L12

C12
(3.33)

Similarly for poles P14 = (p4, q4)
T and P34 = (a2, b2)

T ,

tanκ =
(b2 − q4)x+ (a2 − p4)y + p4b2 − q4a2

x2 + y2 − (p4 + a2)x− (q4 + b2)y + p4a2 + q4b2
=
L34

C34
(3.34)

The center point equation given by 3.33 and 3.34 to obtain center point curve is,

R(x, y) : L12C34 − L34C12 = 0 (3.35)

which in cubic terms is,

a30y
3+a21y

2x+a12yx
2+a03x

3 = ((b1−q2−b2+q4)x+(a1−p2−a2+p4)y)(x2+y2) (3.36)

The comparison of two, three and four position Pole and angle based Synthesis of RR

linkages depending on number of constraints, free choices and solutions is as shown in the

Table 3.1.
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No. of No. of No. of Constraints Free No. of
Positions Variables Prescribed Variables Choices Solutions

2 6 3 1 3 ∞
3 9 6 2 2 ∞
4 12 9 3 1 ∞

Table 3.1: Number of Variables, Constraints and Free Choices Using Poles And Rotation
Angles

3.4 Analytical Synthesis

Any linkage of a mechanism can be synthesized by closed-form methods for up to five pre-

cision points for motion generation with coupler output positions. Analytical synthesis

methods are used for solution of any multi-positional synthesis problem by solving simul-

taneous equations according to Norton[30]. Motion generation technique is the control of a

line in the plane such that it assumes some sequential set of prescribe positions. Here the

orientation of link containing the line is important. This is accomplished when a point on

the coupler traces the desired output path and the linage also controls the angular orien-

tation of coupler link containing the output line of interest. The analytical technique here

is used to compare the results obtained by pole based methods. The nomenclature used in

this section is similar to nomenclature used in previous chapters.

3.4.1 Two Positions Synthesis

This section gives design of a linkage which will move a line on its coupler link such that

point Pi, i = 1, 2 will be first at P1 and later at P2 and will rotate through an angle α2

between those precision points. The location of the crank is given by positions Ai, i = 1, 2.

The location of fixed pivot is described by point G. The linkage length is given as W . Two

desired positions are defined in the plane with respect to an arbitrary chosen coordinate

system using the position vectors R1 and R2 as shown in the Figure 3.10. The change in

angle α2 of the vector Zi is the rotation required of the coupler link. The position vector

P21 defines the displacement of the output motion of point P and is defined as:

−→
P 21 =

−→
R 2 −

−→
R 1 (3.37)
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The solution is carried out using vector loop equation around the loop which includes both

positions P1 and P2.

W2 + Z2 − P21 − Z1 −W1 = 0 (3.38)

By substituting the complex number equivalents for the vectors, we get

wej(θ+β2) + zej(φ+α2) − p21ejδ2 − zejγ − wejθ = 0 (3.39)

The terms are simplified and rearranged as,

wejθ(ejβ2 − 1) + zejφ(ejα2 − 1) = p21e
jδ2 (3.40)

where,

z = Link length of Coupler

w = Link length of Crank

β2 = Rotation angle of Crank between first precision point to second

α2 = Rotation angle of Coupler between first precision point to second

θ = Crank inclination of first position vector with respect to X-axis

φ = Coupler inclination of first position vector with respect to X-axis

δ2 = Angle between desired output positions

The lengths of vectors W1 and W2 are of the same magnitude w because they represent

the same link in two different positions. This is similar to vectors M1 and M2 in Pole and

Angle Based Analysis. Equation 3.40 is a vector equation which is further converted into

two scalar equations and can be solved for two unknowns. The equations can be written as,

Real Part:

[w cos θ](cosβ2 − 1)− [w sin θ](sinβ2)

+ [z cosφ](cosα2 − 1)− [z sinφ] sinα2 = p21 cos δ2 (3.41a)

Imaginary Part:

[w sin θ](cosβ2 − 1)− [w cos θ](sinβ2)

+ [z sinφ](cosα2 − 1)− [z cosφ] sinα2 = p21 sin δ2 (3.41b)
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Figure 3.10: A schematic of dyad triangle used for two position vector loop equation

The above two equations have eight variables: w, θ, β2, z, φ, α2, p21, δ2, and they can be

used for solving two unknowns. Out of all the unknowns above, three of the unknowns

are defined in the problem statement namely α2, p21, δ2. Now, from the remaining five

unknowns, w, θ, β2, z, φ any three can be considered as free choices and other two can be

calculated. Either the angles θ, β2, φ are assumed as free choices or we can assume w, β2, z.

As stated by Norton[30], the commonly used and better approach to design is by selecting

w, β2, z as free choices and computing vector W1. Now, x and y components of vectors M1

and Z1 are given as

Z1x = z cosφ W1x = w cos θ

Z1y = z sinφ W1y = w sin θ

Substituting in equation 3.41,

W1x(cosβ2 − 1)−W1y(sinβ2) + Z1x(cosα2 − 1)− Z1y sinα2 = p21 cos δ2

W1y(cosβ2 − 1) +W1x(sinβ2) + Z1y(cosα2 − 1) + Z1x sinα2 = p21 sin δ2 (3.42a)

The values of Z1x and Z1y are known with link length z and rotation angle φ assumed as
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free choices. This expression can be further simplified into

A = cosβ2 − 1 B = sinβ2 C = cosα2 − 1

D = sinα2 E = p21 cos δ2 F = p21 sin δ2 (3.43)

where,

A,B,C,D,E, F = Constants (3.44)

substituting,

AW1x −BW1y + CZ1x −DZ1y = E

AW1y +BW1x + CZ1y +Dz1x = F (3.45)

The solution is given as,

W1x =
A(−CZ1x +DZ1y + E) +B(−CZ1y −DZ1x + F )

−2A

W1y =
A(−CZ1y −DZ1x + F ) +B(CZ1x −DZ1y − E)

−2A
(3.46)

There are infinite solutions to the above problem as any free choices can be selected by the

designer. Hence the design of any mechanism is dependent on designers perspective using

analytical methods.

3.4.2 Three Positions Synthesis

This section gives design of a linkage which will move a line on its coupler link such that

point Pi, i = 1, 2, 3 will be first at P1 and later at P2 and still later at P3 will rotate through

an angle α2 between first two precision points and through an angle of α3 between first

and third precision points. The location of the crank is given by positions of moving pivot

Ai, i = 1, 2, 3. The location of fixed link is described by point G. Three desired positions

are defined in the plane with respect to an arbitrary chosen coordinate system using the

position vectors R1, R2 and R3 as shown in the Figure 3.11. The change in angle α2 and

α3 of the vector Zi is the rotation required of the coupler link. The position vector
−→
P 21

and
−→
P 31 defines the displacement of the output motion of point D. Now we will have two
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vector loop equations to solve for Wi and Zi.

W2 + Z2 − P21 − Z1 −W1 = 0

W3 + Z3 − P31 − Z1 −W1 = 0 (3.47)

Figure 3.11: A schematic of dyad triangle used for three position vector loop equation

The lengths of vectors W1, W2 and W3 are of the same magnitude w because they rep-

resent the same link in three different positions. M1,M2 and M3 whose common magnitude

is m are similar to vector Mi in Pole and Angle Based Method. Solving the Equations 3.47

simultaneously by following the same method as we followed in two position synthesis we

get four equations, two real parts of the equation and two imaginary parts of the equation

as,

Real Part:

[w cos θ](cosβ2 − 1)− [w sin θ](sinβ2)

+ [z cosφ](cosα2 − 1)− [z sinφ] sinα2 = p21 cos δ2 (3.48a)

[w cos θ](cosβ3 − 1)− [w sin θ](sinβ3)

+ [z cosφ](cosα3 − 1)− [z sinφ] sinα3 = p31 cos δ3 (3.48b)



28

Imaginary Part:

[w sin θ](cosβ2 − 1) + [w cos θ](sinβ2)

+ [z sinφ](cosα2 − 1) + [z cosφ] sinα2 = p21 sin δ2 (3.48c)

[w sin θ](cosβ3 − 1) + [w cos θ](sinβ3)

+ [z sinφ](cosα3 − 1) + [z cosφ] sinα3 = p31 sin δ3 (3.48d)

The above four equations have twelve variables: w, θ, β2, β3, z, φ, α2, α3, p21, p31, δ2, δ3,

they can be used for solving four unknowns. Out of all the unknowns above, six of the

unknowns are defined in the problem statement α2, α3, p21, p31, δ2, and δ3. Now, from

the remaining six unknowns, w, θ, β2, β3,m, φ any two can be considered as free choices

and other two can be calculated. Both the angles β2, β3 are assumed as free choices being

a simpler approach as it leads to set of linear equations per Norton[30]. Hence it leaves

magnitude and orientation of vectors W and Z. Now, x and y components of vectors W

and Z are given as

Z1x = z cosφ W1x = w cos θ

Z1y = z sinφ W1y = w sin θ

Substituting in equation 3.48,

W1x(cosβ2 − 1)−W1y(sinβ2) + Z1x(cosα2 − 1)− Z1y sinα2 = p21 cos δ2 (3.49a)

W1x(cosβ3 − 1)−W1y(sinβ3) + Z1x(cosα3 − 1)− Z1y sinα3 = p31 cos δ3 (3.49b)

W1y(cosβ2 − 1) +W1x(sinβ2) + Z1y(cosα2 − 1) + Z1x sinα2 = p21 sin δ2 (3.49c)

W1y(cosβ3 − 1) +W1x(sinβ3) + Z1y(cosα3 − 1) + Z1x sinα3 = p31 sin δ3 (3.49d)
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This expression can be further simplified into following constants

A = cosβ2 − 1 B = sinβ2 C = cosα2 − 1

D = sinα2 E = p21 cos δ2 F = cosβ3 − 1

G = sinβ3 H = cosα3 − 1 I = sinα3

L = p31 cos δ3 M = p21 sin δ2 N = p31 sin δ3 (3.50)

where, A,B,C,D,E, F,G,H, I, J,K,L,M,N = Constants

Substituting,

AW1x −BW1y + CZ1x −DZ1y = E

FW1x −GW1y +HZ1x −KZ1y = L

BW1x +AW1y +DM1x + CZ1y = M

GW1x + FW1y +KZ1x +HZ1y = N (3.51)

The solution is given by solving the matrix,

A −B C −D

F −G H −K

B A D C

G F K H





W1x

W1y

M1x

M1y


=



E

L

M

N


(3.52)

There are infinite solutions to the above problem as there are free choices Gx, Gy. Hence

the design of any mechanism is dependent on designers perspective using analytical method

for three position synthesis, as well. For a different rotation angle, the calculations are to

be carried out again using the same method. While using Pole and Angle based method,

all the solutions can be calculated by calculating pole positions.

3.4.3 Four Positions Synthesis

The same techniques derived for two and three position synthesis can be extended to four

position by adding one more vector loop equation, for an added precision point. The vector



30

loop equations can be formulated in more general form. The angles α2, α3, α4, β2, β3 and

β4 will now be designated as αk and βk, k = 2ton, where k represents the precision positions

and n = 2, 3, 4 represents the total number of positions to be solved for. The general vector

loop equation now becomes,

Wk + Zk − Pk1 − Z1 −W1 = 0 k = 2, 3, 4 (3.53)

This can be put in a more compact form by substituting vector notations,

W = wejθ Z = zejφ Pk1 = pk1e
jδk (3.54)

then:

Figure 3.12: A schematic of dyad triangle used for four position vector loop equation

W (ejβk − 1) + Z(ejαk − 1) = Pk1e
jδk (3.55)

Here, P denotes the precision points which is denoted asD in Pole and Angle based approach

by McCarthy [13]. Equation 3.55 is called the standard form equation by Erdman and

Sandor [4]. The above equation for four position analysis has sixteen variables w, θ, β2,

β3, β4, z, φ, α2, α3, α4, p21, p31, p41, δ2, δ3, δ4 forming six equation. The circle point and

center point circles of the three position problem become cubic curves called Burmester
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curves in four position problem. Here we can only solve the equation for six variables and

out of remaining ten variables, nine are already defined in the statement problem. So, there

is just one free choice. The defined variables are β2, β3, β4, p21, p31, p41, δ2, δ3 and δ4. If

we define the angle θ as a free choice, the variables which we are going to calculate are w,

α2, α3, α4, z and φ.

There are infinite solutions to the above problem depending upon the selection of free

choices which is according to designer’s perspective. The Analytical method does not pro-

vide definite solution for all the precision points except for free choices selected for a specified

precision point.

The comparison of two, three and four position Analytical synthesis of RR linkages

depending on number of constraints, free choices and solutions is as shown in the Table 3.2.

No. of No. of No of No. of Free No. of
Positions Variables Equations Prescribed Variables Choices Solutions

2 8 2 3 3 ∞
3 12 4 6 2 ∞
4 16 6 9 1 ∞

Table 3.2: Number of Variables, Constraints and Free Choices Using Analytical Synthesis
Method

3.5 Graphical Synthesis

The RR chains reaches a specific set of task positions Mi by drawing reference point Di and

direction vector −→e i, i=1,...,n on the background plane F . The fixed pivot G of RR chain is

attached by a link to the moving pivot W in moving body M . The points W i must lie on

a circle about G, because crank connecting G and W has a constant length.

3.5.1 Two Precision Positions

For two positions M1 : (
−→
E 1, D

1) and M2 : (
−→
E 2, D

2), a moving pivot W 1 has a second

position W 2 in frame F . The fixed pivot G lies on the perpendicular bisector of the line

segment W 1W 2. Any point on this line can be chosen as the fixed pivot of the chain with
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Figure 3.13: The fixed pivot G of an RR chain lies on the perpendicular bisector of the
segment W 1W 2

W 1 as the moving pivot.

For each choice of a moving pivot W 1 there is a one dimensional set of fixed pivots G.

Thus, there is a three dimensional set of RR chains compatible with the two positions. It

is most preferable to select fixed pivot G rather than selecting moving pivot. This is done

by locating the pole P12 and determining the relative rotation φ12 of displacement from

M1 : (
−→
E 1, D

1) to M2 : (
−→
E 2, D

2). The line V = GP12 must be the perpendicular bisector

of the segment W 1W 2 for a specific fixed pivot G for all possible moving pivots W 1. The

angle φ12/2 can be drawn on either side of line V around P12 to construct lines L1 and L2.

Any point on line L1 can be determined as moving pivot W 1. The circle about P12 with

radius P12W
1 intersects L2 on the point W 2.

3.5.2 Three Precision Positions

For the three positions Mi : (
−→
E i, D

i), i=1,2,3, the moving pivot W 1 for M1 moves to the

points W 2 and W 3 in the other two positions. The desired fixed pivot G is the center of

the circle through ∆W 1W 2W 3.

The construction is done by first constructing the poles P12 and P13 and the rotation

angles φ12 and φ13. Then selecting a fixed pivot G and joining it to the poles P12 and P13 by
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Figure 3.14: The moving pivot W 1 determined using selected fixed pivot G and the pole
triangle

lines V12 and V13. Thus, duplicating angle φ12/2 on either side of V12 to define lines L1 and

L2, and angle φ13/2 on either side of V13 to define the lines M1 and M2. The intersection

of two lines L1 and M1 defines the moving pivot W 1.

3.5.3 Four Precision Positions

For four positions of the moving body, W i, i = 1, 2, 3, 4, there are points on the moving body

M that have four corresponding points W i that lie on the circle as described by Burmester’s

theorem that defines the desired RR chains by constructing opposite-pole quadrilateral. The

six relative displacement poles Pij , i ≤ j = 1, 2, 3, 4 are assembled into three opposite pole

pairs i.e. P12P34, P13P24 and P14P23.

The construction is carried out by first constructing the opposite-pole quadrilateral

Q : P12P23P34P14 using the relative poles of the four task positions. Then selecting an

arbitrary angle θ and rotating the segment P12P23 by this angle about P12 to obtain P ′23.

Now, we can construct a new location of P34 on a circle about P14 such that P ′34 maintains

its original distance to P ′23.

The new configuration Q′ of the quadrilateral Q. The pole G of the displacement of the
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Figure 3.15: A fixed pivotG for four specified positions is constructed using the quadrilateral
formed by the poles P12P23P34P14

segment P ′23P
′
34 relative to its original location P23P34 that satisfies Burmester’s theorem

and is a center point G.

The relative poles obtained from all of the configurations of the opposite-pole quadri-

lateral form a cubic curve known as the center-point curve. Once a center point is obtained

by this construction, any three of the four positions can be used to construct the associated

moving pivot. The result is an RR chain that reaches the four specified positions.
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Chapter 4

Design of RR chains

4.1 Introduction to Design and Simulation

In the previous chapter, Pole and Angle based design, analytical synthesis and graphical

synthesis methods for two, three and four position analysis of RR chains are presented. In

all the design methods, there are constraints and free choices depending on the number

of prescribed positions. The design basis of RR chain on pole and angle based method as

described by J. McCarthy [13], the classical design of RR chain is as described in classical

texts such as R.L.Norton [30] which are then compared to the graphical synthesis method

and importance of Pole and Angle based method is shown. In this chapter, the design of

the location of fixed pivot G and locus of moving pivot W i of RR chain is presented using

all the three methods and the results are compared to show the importance of Pole and

Angle based method over the other two methods. The design is carried out using MATLAB

and Simulink.

The simulation of position analysis is carried out by considering constraints and free

choices of different position synthesis. When the coupler is guided through two precision

points, there are three free choices and one constraint for each guiding link. One constraint

is added by adding each coupler position which results in reducing a free choice. For

the number of positions that our analysis is carried on, constraints and free choices are

summarized in the Tables 3.1 & 3.2 in previous chapter.

4.2 Selecting Constraints and Free Choices

Selection of constraints basically depends on design requirements of a mechanism and also

on designers choice. A comparison of constraint and free choices selection is defined in
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this chapter by analyzing two different cases. The first case defines the fixed pivot G

and rotation angle φ and carrying out design of moving pivot W i for two positions, three

positions and four positions. The second case defines moving pivot W i and angle of rotation

φ and designing for fixed pivot G. One can select free choices blindly and design a linkage

blindly using design approach or one can use guidelines to follow to select free choices

and carry out the design. According to Zimmerman [24], defining fixed pivot and angle of

rotation and then analyzing moving pivot is better suited for design of mechanisms. This

provides optimal length of links required and output positions so as to design a mechanism

accordingly which gives maximum coupler output according to application requirements by

using minimal input.

A distinct advantage of pole and angle based method is that the fixed and moving pivot

options can be seen and selected simultaneously as by the location of poles obtained from

the calculations. The synthesis methods require graphical construction to find the fixed

pivot after the moving pivot is selected or vice versa. The other key advantage is that

no additional construction is required to evaluate new fixed and moving point pairs if the

original choice is not suitable. If the design is to be evaluated for more than one desired

locations of coupler link of mechanism, then evaluation of other points on the basis of

location of pole can be done using pole and angle based method by just defining rotation

angle.

4.3 Design Algorithm

Figure 4.1 illustrates a diagram of the algorithm developed in this work. Moving pivot curves

are generated numerically by using Pole and Angle Based design given in J. McCarthy[13].

This section explains the detailed method followed in linkage design.

The first step, as shown in block A1, of the algorithm is defining the constraints of the

given RR linkage. For our case, the predefined variables includes the desired pivot locations

for two, three or four position synthesis. The rotation angle φ is also defined in the problem.

Although depending on the positions that synthesis has to be carried out, the constraints

change to the number of equations that can be solved to obtain respective free choices.
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Figure 4.1: Design algorithm of Two, Three and Four Precision Points by Pole & Angle
Based Method

The second step, in the algorithm (block A2), defines the free choices of RR linkage.

The fixed pivot G is also defined as a free choice. Similar to number of constraints, number

of free choices also change depending on various position synthesis according to Pole and

Angle based design method.

The third step, given in block A3, involves calculation of the rotation matrix A[φ] and

displacement d. The rotation matrices are calculated according to various rotation angles

for different positions. And hence displacement are calculated on the basis of rotation

matrices between various positions.

The fourth step, given in block A4, involves calculation of pole of displacement from one

position to another positions. According to user defined free choices, solutions are carried

out computationally. The accuracy of pole position is one of the most important factors of

design using this method as it gives various solutions using this pole positions.

The fifth step, as in block A5, involving calculation of the moving pivots W i for the

defined desired positions, phase angles and fixed pivots. The pole positions used to find

fixed pivot locations which are obtained from pole positions lie on a circle of rotation of
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moving pivot. The accuracy of the results obtained from pole and angle based methods

compared with results obtained from analytical synthesis i.e. conventional design method

and graphical method. Alongside that, the rotation angle are varied to a certain range to

see the deviation in location of moving pivot with the same fixed pivot using pole locations,

describing importtance of pole locations.

4.4 Two Position Design Approach

For two position simulation according to pole and angle based method, unknowns are fixed

pivot G = (Gx, Gy) and moving pivot W i = (λ, µ). The coupler precision points Di are

given as input conditions to the problem with a specified angle of rotation φ12 from first

location to second location of coupler motion. The designer can select free choices knowing

the circumstances of desired output. Selecting the fixed pivot as free choices leads to infinite

solutions of a moving pivot and can lead to undesirable link lengths. Though selecting a

fixed pivot as free choice, designer still has to select either λ or µ from the moving pivot

locations because two position synthesis results in one algebraic equation which can only

be solved for one variable. Now, selection of coordinate of moving pivot constrains the link

to a desired range. Hence, both poles and rotation angles here are used as constraints. The

rotation from the moving pivots to the fixed pivot position is in the same direction as the

rotation angle. The general representation of Pole and Angle Based two position analysis

is as illustrated in Figure 4.2.

The designer can quickly see all the possible solutions by rotating the linkage around

the pole according to rotation angle required to reach the desired position.

The moving pivot line is shown dashed and fixed pivot line is solid. Additionally, fixed

and moving pivot lines usually are shown terminating at the pole, when in fact, these lines

extend infinitely in both directions. The general form of the constraint is shown in Figure

4.2 for any two positions X and Y where the rotation angle is not zero.

A number of textbook illustrations of RR linkage for two position synthesis were evalu-

ated using pole based, analytical and graphical methods to verify solutions, one of which is

described here.
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Figure 4.2: Pole and Angle Based Design for Two Position Analysis

The target position points are given as D1 = (7, 3) and D2 = (2, 7) and the angle of

rotation between them is given by φ12 = 60◦. The design of RR chain is carried out by

selecting free choices and then calculating the moving pivots of the coupler. The fixed pivot

G is selected as free choice as an origin of the coordinate system (0, 0). The x co-ordinate

of W i.e. λ is set to a certain value, for our case it is set to λ = 1. The moving pivots

W i, i = 1, 2 are calculated by first calculating pole position P12. Refer to MATLAB code

as in Appendix 1. The MATLAB code is formulated on basis of the pole based design

approach for two positions discussed in previous chapter. The analysis is also carried out

on the basis of variation of the rotation angle φ12 to determine the precision of the moving

pivot with respected to selected fixed pivot from the actual desired location.

Analytical solution is also carried out for the same problem according to methods given

in R.L. Norton [30] as explained in section previous chapters. Graphical solution to the

above problem is also done to calculate the location of moving pivots.
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4.5 Three Position Design Approach

For three position synthesis, two constraints must be satisfied simultaneously. If we choose

to do the synthesis on the moving body in position one, then the constraints are defined

by the poles P12 and P13 and the rotation angles φ12 and φ13. The two constraints are the

fixed pivots Di and rotation angles φij for i, j = 1, 2, 3, i < j. The poles are separated by

half of the respective rotation angles. The moving pivot lines for first position intersect at

point W1 as shown in the figure which is similar for second position W2and third position

W3.

The fixed pivot lines intersect at the fixed pivot G, as shown in the figure. The moving

pivot line for position two from P12 and the moving pivot line for position three from P13

are taken into consideration but not shown in the Figure 4.3.

Figure 4.3: Pole and Angle Based Design for Three Position Analysis

All of these pairs of lines can be rotated to any angle in the plane, so that either the fixed

or moving pivot can be placed anywhere the designer desires. All of the possible solutions

can be seen in a few seconds by changing the fixed pivot in the plane and observing the
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corresponding location of the moving pivot. The moving pivot could also be moved in the

plane and the location of the fixed pivot can be observed. Hence, both the cases of analysis

can be verified and compared for selection of free choices.

The free choices are the Cartesian coordinates of location of fixed pivot G. The rotation

angles φ12 and φ13 are in same direction, therefore the moving pivot lines are in the same

direction from pole P12 are also in the same direction of those from pole P13.

A textbook illustration of three positions is evaluated using pole and angle based method,

analytical method and graphical method to demonstrate the location of moving pivots. The

coupler target positions are given as D1 = (0, 8), D2 = (7, 4) and D3 = (1, 6). The rotation

angle φij , i, j = 1, 2, 3, i < j is given as 30◦ i.e. φ12 = 30◦ and φ13 = 60◦. The rotation matrix

[A(φ)] is determined from the rotation angles along with translation dij , i, j = 1, 2, 3, i < j

from one position to another position.

The poles are calculated using equation 3.6. The fixed pivot is defined as a free choice

G = (0, 0). The coefficients of λ and µ are defined using equation 3.19. λ and µ are hence

formulated in the matrix form to calculate W i, i = 1, 2, 3. The variation in the rotation

angle is also carried out Refer to MATLAB code formulated on the basis of pole based

design approach for three positions discussed previous chapter. Refer to Appendix 2.

Analytical solution to the same statement problem is also carried out according to

method described in previous section as given by R. L. Norton [30]. The analytical simu-

lation is also carried out using MATLAB to demonstrate the location of moving pivots. A

graphical solution is also done to calculate the location of moving pivots.

4.6 Four Position Design Approach

For four position synthesis, a third constraint is added. Again, this constraint is the line

of the moving pivot W4 and the line of the fixed pivot G passing through the pole P14 and

separated by half the rotation angle φ14. The pole and corresponding fixed and moving

pivot lines for positions one and four are added and shown in Figure 4.4. The four fixed

pivot lines can be constrained to intersect at a single point. When this is done, the three

corresponding moving pivot lines for position one will not necessarily intersect at a common
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point. The fixed pivot G point can be moved in the plane until the moving pivot lines do

intersect at a single point. The moving pivot lines can then be constrained to have a

common intersection point. This identifies one center point, circle point pair.

Figure 4.4: Pole and Angle Based Design for Four Position Analysis

Once the three constraints are selected, only one free choice remains. The center point

or the circle point can be moved in the plane. However, the motion is constrained to the

center and circle point curves. As either point is moved in the plane, the circle and center

point curves are traced simultaneously. If the center point curve is continuous, all the circle

and center point pairs can be seen by dragging either point along its curve. The free choice

is made by selecting a circle-center point pair.

The center points are on the fixed body G and the circle points are on the moving body in

the position represented by the common subscript W 1, W 2, W 3 and W 4. The pole positions

are shown in Figure 4.4 as P12, P23, P34 and P14 that are used in the construction of the

curves. In summary, any three poles having a common subscript and their corresponding

rotation angles defines the constraints. These three constraints define both the circle and
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center point Burmester’s curves simultaneously. As the circle and center point curves are

traced, individual pairs of points can be considered. This is a new technique for solving the

four position synthesis problem and constructing Burmester’s curves graphically, as well.

The constraints force the matching points to remain on the Burmester’s curves [6]. This

method provides infinite resolution for selecting circle-center point pairs along the curves.

The circle point curve is specific to the position for which we do the synthesis. For example,

the circle point curve for the body in position two is rotated from the circle point curve for

the body in position one.

A textbook illustration of four positions of a textbook mechanism were evaluated using

pole based methods, analytical methods and graphical methods to compare the locations of

moving pivot positions. The target positions for the mechanism are given as D1 = (12, 3),

D2 = (7, 7), D3 = (4, 9) and D4 = (2, 7). The angles of rotation are given as φ12 = 30◦,

φ13 = 60◦ and φ14 = 90◦. Similar to two and three position synthesis, the rotation angles

were also varied to understand the behavior of the moving pivots W 1, W 2, W 3 and W 4

from the desired coupler output. One of the coordinates of fixed pivot G is considered to

be a free choice and selected accordingly. The coordinate positions of moving pivots are

calculated using MATLAB using an iterative loop in the research. Refer to Appendix 3.

Analytical solution is also carried out for the same problem using method described in

previous chapter by R. L. Norton [30]. The same example is also solved using graphical

method to check the accuracy of pole and angle based method.



44

Chapter 5

Results

5.1 Two Position Method Results

The two position design gives solution according to conventional method, Pole and Angle

Based and Graphical method using the design approaches given in previous chapters. The

solution and their comparison are provided in the following section. Various textbook

problems were evaluated for two position design out of which one of the problem is as

follows. Consider an initial positions of coupler as D1 = 7i + 3j and second position as

D2 = 2i+7j. In the problem, rotation from first position to second position is given as 60◦.

In the above problem, the fixed pivot position is considered to be at (0,0) as a free choice.

Alongside λ = 1, i.e., X co-ordinate of moving pivot is also considered as a free choice.

The solution of the above problem by Pole and angle based method is carried out by

the method described in previous chapter which is from J. McCarthy [13]. A solution of

the same problem using conventional method is carried out according to method followed

in previous chapter which follows method defined in Norton [30]. The graphical solution

of two position problem which was done using AutoCAD is compared to solution obtained

by Analytical as well as Pole and Angle based method carried out in Matlab (described in

Appendix A) and variation is observed. The comparison of results obtained from all the

three methods is as shown in the following Table 5.1. The values of moving pivots obtained

Location of Location of
Moving Pivot W1 Moving Pivot W2

Graphical Method (1.48,1.53) (2,0.71)
Analytical Method (1.4759,1.5291) (2,0.7185)

Pole and Angle Based Method (1.4758,1.5291) (2,0.7185)

Table 5.1: Comparison of Solutions from Graphical, Analytical and Pole and Angle Based
Methods for Two Position Problem
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from all the methods in Table 5.1 shows that the results obtained are accurate. As described

in previous chapters, from a pole position we can get all the solutions for the angles that

we want to reach. Let us assume here that our link rotates following the Grashof’s criteria

[31], and our crank rotates by an angle of φ. According to the theory, the angle between

initial and final location of moving pivot about the pole P12 is equal to the phase angle

φ12 which rotates from 5◦ to 60◦. Here using the assumed location of fixed pivot, angle of

rotation and already calculated Pole location P12, we can find the location of all the points

that our link reaches using that pole location. Using the following range of variable φ12:

φ12= 5◦, 10◦, . . . , 60◦

As the prescribed phase angle φ12 increases, the moving pivot W i is observed to rotate from

W 1 to Wn about the pole P12 which is calculated to be as (1.0359, 0.6699).

Figure 5.1: Locus of Moving Pivot W x and W y over Pole P12

The abscissa is in Figure 5.1 represents the X co-ordinate of the moving pivot W i and

ordinate represents the Y co-ordinate of moving pivot W i. The blue link indicates the locus

of moving pivots. From the output it is observed that the moving pivot W i rotates around

fixed pivot G with a constant link length where W 1 is the initial position of moving pivot

at 0◦ and Wn is the position of moving pivot at 60◦.

The abscissa is in Figure 5.2 represents the X co-ordinate of moving pivot W i and

ordinate represents the phase angle φ12. The blue line indicates the locus of moving pivots
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Figure 5.2: Locus of X co-ordinate of Moving Pivot W x over Pole P12

W i.

The abscissa is in Figure 5.3 represents the Y co-ordinate of moving pivot W i and

ordinate represents the phase angle φ12.

Figure 5.3: Locus of Y co-ordinate of Moving Pivot W y over Pole P12

X-axis on the Figure 5.4 represents theX co-ordinates of moving pivot, Y -axis represents

Y co-ordinate of moving pivot and Z-axis represents the increase in phase angle defined in

the problem. From the plots it is observed that moving pivot rotates around fixed pivot

with a constant link length about the pole P12. Using the pole, all the values of moving
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Figure 5.4: Locus of W i over Pole P12

pivot can be obtained using the given conditions. If our link rotates from 0◦ to 360◦, then

using the same data i.e pole P12, fixed pivot G and initial link position W 1 we can obtain

the locus of moving pivots Wn at all the instants. This is shown in Figure 5.5,

Figure 5.5: Two Position Graphical Representation

The red solid circle as shown represents the locus of moving pivots, and the dashed circle

which passes through coupler positions represents the locus of coupler positions. The range

of solutions obtained gives the designer a better and faster perspective of Pole positions to
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be reached.

5.2 Three Position Method Results

Similar to two position design, three position design was also carried out for various problems

by conventional, Pole and Angle Based and Graphical method using the design approaches

given in previous chapters. The solution and their comparison are provided in the following

section. One three position design problem solution is shown to understand the results

obtained from all three methods.

Consider an initial positions of coupler as D1 = 0i+ 8j, second position as D2 = 7i+ 4j

and third position as D3 = 1i + 6j. In the problem, rotation from first position to second

position is given as 30◦ and rotation from first position to third position is given as 60◦.

Now, we evaluate the location of moving pivots for all the three positions. In this problem,

the fixed pivot position is considered to be at origin i.e. (0,0) as a free choice. The same

problem is solved using Pole and angle based methods using Matlab by method discussed

in previous chapter by McCarthy [13]. Also, it is solved by using conventional link design

methods by Norton [30]. The comparison of results obtained from all the three methods

are accurate as shown in the following Table 5.2,

Location of Location of Location of
Moving Pivot Moving Pivot Moving Pivot

W1 W2 W3

Graphical Method (-3.65,-6.25) (0.04,-7.25) (0.59,-7.22)
Analytical Method (-3.6515,-6.2528) (0.0359,-7.2408) (0.5893,-7.2169)

Pole And Angle Based Method (-3.6515,-6.2528) (0.0359,-7.2408) (0.5893,-7.2169)

Table 5.2: Comparison of Solutions from Graphical, Analytical and Pole and Angle Based
Methods for Three Position Problem

From a pole position we can reach all the solutions for the angles that we want to reach.

Let us assume here that our link rotates following the Grashof’s criteria [31], and our crank

rotates by an angle of φ12 from position one to two and by an angle of φ13 from position

one to three. Hence to reach from position two to three, our crank rotates by an angle

of φ23 = φ13 − φ12 about the pole P23. We know that the angle between initial and final

location of moving pivot about any pole is equal to the phase angle φ. Hence using the
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assumed location of fixed pivot, angle of rotation and already calculated Pole locations P ′ijs,

we can find the location of all the points that our link reaches using that pole location.

Using the following range of variables for phase angles φ:

φ12= 5◦, 10◦, . . . , 60◦,

φ13= 5◦, 10◦, . . . , 60◦,

As the phase angle φ increases, the moving pivot W i is observed to rotate from W 1 to Wn

about the pole P12 which is calculated to be as (0.0359, 0.1340), about pole P13 which is

calculated to be (−0.6962,−3.0622) to third position. Along with that the moving pivot

rotates from W 2 to Wn about the pole P23 = (0.2679,−6.1952).

Figure 5.6: Locus of Moving Pivot W x and W y over Pole Pij

The abscissa is in Figure 5.6 represents the X co-ordinate of the moving pivot W i and

ordinate represents the Y co-ordinate of moving pivot W i. The blue line indicates the locus

of moving pivots W over the pole P12, the red line represents the locus of moving pivot W

over pole P13 and black line represents the locus of moving pivot W over pole P23. From

the output it is observed that the moving pivot W i rotates around fixed pivot G with a

constant link length where W 1 is the initial position and Wn is the position of moving pivot

at the location we want our coupler to rotate upto.

The abscissa is in Figure 5.7 represents the X co-ordinate of moving pivot W i and

ordinate represents the phase angle φ12. The blue, red and black lines indicates the locus
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Figure 5.7: Locus of X co-ordinate of Moving Pivot W x over Pole Pij

of moving pivots W i over the respective pole positions Pij .

Figure 5.8: Locus of Y co-ordinate of Moving Pivot W y over Pole Pij

The abscissa is in Figure 5.8 represents the Y co-ordinate of moving pivot W i and

ordinate represents the phase angle φij .

X-axis on the Figure 5.9 represents theX co-ordinates of moving pivot, Y -axis represents

Y co-ordinate of moving pivot and Z-axis represents the increase in phase angle defined in

the problem. The triangle formed using all the three pole positions, P12, P13 and P23 is

called the Pole Triangle.
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Figure 5.9: Locus of W i over Pole Pij

Figure 5.10: Three Position Graphical Representation
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The pole triangle provides a geometric way to determine the rotation angle and pole of

a displacement T13, given the rotation anglesφij and poles of two relative displacements T12

and T23. From the plots it is observed that moving pivot rotates around fixed pivot with a

constant link length about the pole Pij . Using the pole, all the values of moving pivot can

be obtained using the given conditions.

If our link rotates from 0◦ to 360◦, then using the same data i.e pole Pij , fixed pivot

G and initial link position W 1 we can obtain the locus of moving pivots Wn at all the

instants. This is shown in Figure 5.10. The red circle as shown represents the locus of

moving pivot W over P12 for 360◦ rotation of the coupler. Similarly the blue and magenta

circle represents locus of moving pivot W over respective poles P23 and P13. The dashed

circle which passes through coupler positions represents the locus of coupler positions. The

gray shaded area is the pole triangle. The range of solutions obtained gives the designer a

better and faster perspective of Pole positions to be reached.

5.3 Four Position Method Results

The four position design of various problems are carried out by conventional method, Pole

and Angle Based and Graphical method discussed in previous chapters. The solution and

their comparison are provided in the following section. One three position design problem

solution is shown to understand the results obtained from all three methods.

Consider an initial positions of coupler as D1 = 12i+3j, second position as D2 = 7i+7j,

third position as D3 = 4i+9j and fourth position as D4 = 2i+7j. In the problem, rotation

from first position to second position is given as 30◦, rotation from first position to third

position is given as 60◦ and rotation from first position to fourth position is given as 90◦.

Now, we evaluate the location of moving pivots for all the four positions using all the

methods described in previous chapters.

In this problem, X co-ordinate of fixed pivot is assumed to be zero as a free choice

and Y co-ordinate is calculated. Y co-ordinate can be assumed and calculations can be

carried out on X co-ordinate as well. There are various ways of calculating y variable of

a cubic equation, out of which Brute-Force method [32] is used. Then evaluated value of



53

y-coordinate is used to calculate poles and locations of moving pivots.

The same problem is solved using Pole and Angle based method using Matlab by using

four position design method mentioned in previous chapter by McCarthy [13]. Similar to two

and three position approaches, four position design is also carried out using conventional

method as given in Norton [30]. The comparison of results obtained from all the three

methods are accurate as shown in the following Table 5.3,

Location of Location of Location of Location of
Moving Moving Moving Moving

Pivot W1 Pivot W2 Pivot W3 Pivot W4

Graphical (2.26,16.87) (-8.37,14.14) (-12.86,7.5) (-11.97,-2.73)
Method

Analytical (2.26,16.8703) (-8.37,14.1422) (-12.8619,7.50) (-11.9703,-2.7307)
Method

Pole & Angle (2.26,16.8703) (-8.37,14.1422) (-12.8619,7.50) (-11.9703,-2.7307)
Based Method

Table 5.3: Comparison of Solutions from Graphical, Analytical and Pole and Angle Based
Methods for Four Position Problem

From a pole position we can reach all the solutions for the angles that we want to reach.

Same assumption which is considered in two and three position problems, is considered

here, that our link rotates following the Grashof’s criteria [31], and our crank rotates by an

angle of φ12 from position one to two, an angle of φ13 from position one to three and by

an angle of φ14 from position one to four. Hence to reach from position two to three, our

crank rotates by an angle of φ23 = φ13− φ12 about the pole P23 and to reach from position

three to four our crank rotates by an angle of φ34 = φ14−φ13 about the pole P34. We know

that the angle between initial and final location of moving pivot about any pole is equal to

the phase angle φ. Hence using the assumed location of fixed pivot, angle of rotation and

already calculated Pole locations P ′ijs, we can find the location of all the points that our

link reaches using that pole location.

Using the following range of variables for phase angles φ:

φ12= 10◦, 20◦, . . . , 100◦,

φ13= 10◦, 20◦, . . . , 110◦,

φ14= 10◦, 20◦, . . . , 120◦,
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As the phase angle φ increases, the moving pivot W i is observed to rotate from W 1 to Wn

about the pole P12 which is calculated to be as (2.0359,−4.3301) to second position, about

pole P13 which is calculated to be (2.8038,−0.9282) to third position and about the pole

P14 which is calculated to be (5, 0) to fourth position. Along with that the moving pivot

rotates from W 2 to W 3 about the pole P23 = (1.7679, 2.4019). The moving pivot rotates

from W 3 to W 4 about pole P34 = (6.7321, 4.2679).

Figure 5.11: Locus of Moving Pivot W x and W y over Pole Pij

The abscissa is in Figure 5.11 represents the X co-ordinate of the moving pivot W i and

ordinate represents the Y co-ordinate of moving pivot W i. The blue line indicates the locus

of moving pivots W over the pole P12, the red line represents the locus of moving pivot W

over pole P13, black line represents the locus of moving pivot W over pole P14, green line

represents the locus of moving pivot W over pole P23 and magenta line represents the locus

of moving pivot W over pole P34. From the output it is observed that the moving pivot W i

rotates around fixed pivot G with a constant link length where W 1 is the initial position

and Wn is the position of moving pivot at the location we want our coupler to rotate upto.

The abscissa is in Figure 5.12 represents the X co-ordinate of moving pivot W i and

ordinate represents the phase angle φ12. The blue, red, black, green and magenta lines

indicates the locus of moving pivots W i over the respective pole positions Pij .

The abscissa is in Figure 5.13 represents the Y co-ordinate of moving pivot W i and
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Figure 5.12: Locus of X co-ordinate of Moving Pivot W x over Pole Pij

Figure 5.13: Locus of Y co-ordinate of Moving Pivot W y over Pole Pij
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ordinate represents the phase angle φij .

Figure 5.14: Locus of W i over Pole Pij

X-axis on the Figure 5.14 represents the X co-ordinates of moving pivot, Y -axis rep-

resents y co-ordinate of moving pivot and Z-axis represents the increase in phase angle

defined in the problem. The quadrilateral formed using all the three pole positions, P12,

P23, P34 and P14 is called the Pole Quadrilateral formed according to Brumester’s Theorem

[6].

The pole quadrilateral provides a geometric way to determine the rotation angle and pole

of a displacement T14, given the rotation anglesφij and poles of two relative displacements

T12, T23 and T34. From the plots it is observed that moving pivot rotates around fixed pivot

with a constant link length about the pole Pij . Once a center point is obtained by this

construction, any three of the four positions can be used to construct the associated moving

pivot. The result is an RR chain that reaches the four specified positions. Notice that for

a given increment of rotation of the crank P12P23 of the opposite pole quadrilateral there

are actually two center points, one for each assembly of the quadrilateral as a linkage. The

relative poles obtained from all of the configurations of the opposite-pole quadrilateral form

a cubic curve known as the center-point curve. Using the pole, all the values of moving

pivot can be obtained using the given conditions.

If our link rotates from 0◦ to 360◦, then using the same data i.e poles P ′ijs, fixed pivot
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Figure 5.15: Four Position Graphical Representation

G and initial link position W 1 we can obtain the locus of moving pivots Wn at all the

instants. This is shown in Figure 5.10. The red circle as shown represents the locus of

moving pivot W over P12 for 360◦ rotation of the coupler. Similarly blue, green, magenta

and maroon circle represents locus of moving pivot W over respective poles P13, P14, P23

and P34. The dashed circle which passes through coupler positions represents the locus of

coupler positions. The gray shaded area is the pole quadrilateral. The range of solutions

obtained gives the designer a better and faster perspective of Pole positions to be reached.

All the results obtained from all the methods are to show that moving pivots can be

obtained by calculating the pole positions from the given coupler positions to be reached.

By assuming the fixed pivot, the designer can analyze the moving pivots just from the pole

calculations. This gives the designer a better and faster approach to design a link and hence

a mechanism.

From the examples explained above, the primary focus is to emphasize the importance of

poles in the design. Poles give more information about the design of linkage or mechanism
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to the designer and provides with the variation of solutions that can be determined. Pole

and Angle Based Method also gives a graphical tool of design. All of which, provides

designer a better perspective to observe a pattern in the design of a specific mechanism

rather than doing a blind analysis carried out by conventional methods which is a trial and

error approach.
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Chapter 6

Conclusion

In this work, an algorithm for designing a linkage for two position, three position and four

position problems with respect to Pole and Angle based design method was developed and

codified in MatLab. In Matlab, the designer can express the numerical values to a precision

over ten decimal places. All calculated linkage dimensions are dimension less. All the data

calculated on Matlab for linkage is specified to four decimal places. The data calculated for

graphical design method is specified to two decimal places. Coordinate systems with X,Y

and Z labels for respective axis are specified throughout this work.

As written, the algorithm developed and codified in this work basically takes the input

to the defined problem and solves the design problem with respect to pole positions. The

designed problems defined in the sections are used to demonstrate the importance of Pole

and pole location through this work. The significance of Pole and Angle Based Method

can be determined using this work. In real-world engineering design, the linkages and

hence mechanisms are designed either by using conventional design methods or Graphical

Methods. Either of those, makes designer’s work more tedious as for each specified angular

position, the design has to be reevaluated. Though this work, the significance of poles can

be understood. Using those pole positions, a designer can visualize all the locations that

the link reaches to and hence decide the changes that has to be made.

Although the algorithm presented in this work was codified in Matlab, the designer is

not necessarily limited to Matlab. The designer can codify the algorithm presented in this

work in other platforms such as C, C++, MathCAD, Mathematica, Maple, etc that are

well suited for computationally intense calculations required in the algorithm.

Solving different examples using Pole and Angle based method by McCarthy [13], the

study is focused on importance of poles in the design of linkages and mechanism. The pole
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location changes with change in problem definition. Hence, for a defined problem, the pole

location is fixed which means the designer can evaluate a number of designs by altering fixed

pivot G positions, altering the phase angle that our mechanism rotates to. Pole and Angle

based approach also can be used if the designer wants to evaluate the problem by having a

fixed location of G and variable precision point locations. All of the above variations can

be evaluated just on the basis of pole positions within short time frame.

For a series of prescribed rigid body positions, an infinite number of planar solutions

exist. Sorting through the unlimited number of possible solutions to find one that ensures

full link rotatability, satisfies feasible phase angles and is as compact as possible is over-

whelming given a set of positions. In this work, the algorithm is presented by which a

designer can select optimum design of linkage from the moving pivot curves obtained from

the specified problem.
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Chapter 7

Future Scope

The design of another RR linkage for a four-bar mechanism can be carried out using the Pole

and Angle Based approach. Combining the results from both the link designs, a four bar

mechanism can be designed. The current work gives a general algorithm for linkage design,

a similar approach can be used to design a PR linkage and can be evaluated. Although

conventional design approaches are used for most of mechanism designs, pole and angle

based design can be used to design all the mechanisms giving any designer an easier and

faster perspective to mechanism design. A similar approach can be used to design five, six

or eight bar mechanisms as well.
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Appendix A

Two Position Synthesis Using Pole and Angle Based Method

%Two Position Synthesis by Pole and Angle Based Method

%Couper Points D1 and D2

D1 = [7 3]’ ;

D2 = [2 7]’ ;

m=60; %Number of iterations

%Defining array of Positions, Poles and Rotation Matrices

P_1=[];

W_1=[];

W_2=[];

ph_1=[];

%Iterative loop

for phi=5:5:m

cc = cosd(phi);

ss = sind(phi);

A = [ cc, -ss;

ss ,cc ] ; %Calculated Rotation Matrices

t=phi;
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d = D2 - A*D1; %Displacement

ph_1=[ph_1 t];

p12 = inv( eye(2) - A)*d; % Calculated pole location

P_1=[P_1 p12];

%select G and lambda as free choices

p = p12(1);

q = p12(2);

x = 0;

y = 0;

lam = 2; % select origin at zero (arbitrary)

%selection of lambda is also arbitrary choose as first position - 3

G(1)=x;

G(2)=y;

AA = ((cc - 1)*(x - p)) + (ss*(y - q)); %Defining constants

B = -ss*(x - p) + (cc-1)*(y-q);

C = (cc-1)* (p*(x-p) + q*(y-q)) + ss*(p*y - q*x);

mu = (C - AA*lam)/B;

W1 =[lam mu]’;

W_1=[W_1 W1]; %Calculated Moving Pivots

W2 = p12 + A*(W1-p12);

W_2=[W_2 W2];

end

W_21=[];

W11 = W_1(:,length(W_1));

for pp=5:5:m
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cc1 = cosd(pp);

ss1 = sind(pp);

A1 = [ cc1, -ss1;

ss1 ,cc1 ] ;

p1=P_1(1,12);

q1=P_1(2,12);

W= W11-p12;

W21 = p12 + A1*W;

W_21=[W_21 W21];

end

figure(1)

plot3(W_21(1,:),W_21(2,:),ph_1,’b-o’)

grid on

hold on

xlabel(’W_x’)

ylabel(’W_y’)

zlabel(’Range of \phi_{12}’)

title(’Locus of Moving Pivot W^i over Pole P_{12}’)

plot(p12(1,1),p12(2,1),’k*’); hold on

text(p12(1,1)+0.005,p12(2,1)+0.005,2,’P_{12}’,

’Color’,’black’,’FontSize’,10)

plot(G(1,1),G(1,2),’k*’); hold on

text(G(1,1)+0.005,G(1,2)+0.005,2,’G’,’Color’,’black’,’FontSize’,10)

legend(’Locus of Moving Pivots W^i’,’Location of Pole’)
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Appendix B

Three Position Synthesis Using Pole and Angle Based

Method

% Three Position Synthesis by Pole and Angle Based Method

% Coupler positions of D1, D2 and D3

D1=[8;0];

D2=[7;4];

D3=[1;6];

m = 60; %Defining the range of iterations along i

n = 60; %Defining the range of iterations along j

W = []; %Defining initial link length

P_1=[];

P_2=[];

P_3=[];

W_1 =[];

W_x =[];

s = 5; %Defining the Step

ph12 = zeros(m,n);

ph13 = zeros(m,n);

%Iterative loop

for i=5:s:m
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for j=5:s:n

k=(i-5)+1;

l=(j-5)+1;

% Determining the angles between D1, D2 and D3

ph12(k,l)=i+(0*j);

ph13(k,l)=(0*i)+j;

ph_12=i;

ph_13=j;

ph_23 = ph_13-ph_12;

% Determining the rotation matrix from D1 to D2, D2 to D3 and D1

A12 = [ cosd(ph_12) -sind(ph_12);

sind(ph_12) cosd(ph_12) ];

A13 = [ cosd(ph_13) -sind(ph_13);

sind(ph_13) cosd(ph_13) ];

A23 = [ cosd(ph_23) -sind(ph_23);

sind(ph_23) cosd(ph_23) ]; %Calculating Rotation Matrices

% Translation from W1 to W2=d12, W2 to W3=d23 and W1 to W3=d13

d12 = D2-(A12*D1);

d13 = D3-(A13*D1);

d23 = D3-(A23*D2);

% Finding the poles P12, P13 and P23

P12 = inv(eye(2)-A12)*d12;

P13 = inv(eye(2)-A13)*d13;

P23 = inv(eye(2)-A23)*d23;

P_1=[P_1 P12];

P_2=[P_2 P13];

P_3=[P_3 P23];
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% Defining variables to poles and angles

c2 = cosd(ph_12);

s2 = sind(ph_12);

c3 = cosd(ph_13);

s3 = sind(ph_13);

p2 = P12(1);

q2 = P12(2);

p3 = P13(1);

q3 = P13(2);

% Determining the fixed pivot G as free choice

G=[0,0];

% Finding the coefficients of lambda and mu

A2 = ((c2-1) * (G(1)-p2)) + (s2 * (G(2)-q2));

B2 = (-s2*(G(1)-p2)) + ((c2-1)*(G(2)-q2));

C2 = ((c2-1)* (p2*(G(1)-p2) + q2 *(G(2)-q2)))+s2*(p2*G(2)-q2*G(1));

A3 = (c3-1)*(G(1)-p3)+s3*(G(2)-q3);

B3 = -s3*(G(1)-p3)+(c3-1)*(G(2)-q3);

C3 = (c3-1)*(p3*(G(1)-p3)+q3*(G(2)-q3))+s3*(p3*G(2)-q3*G(1));

% Matrix of coefficients

AA = [A2 B2 ;

A3 B3];

CC = [C2;

C3];

% Finding lambda and mu i.e. W1, W2 and W3

W1 = (inv(AA))*CC;

W2 = P12 + (A12*(W1-P12));
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W3 = P13 + (A13*(W1-P13));

W_1=[W_1 W1];

W_x=[W_x W2];

end

end

P_12 = P_1(:, 1:12:end);

p=P_12(:,6);

W_2 = [W_1(:,72)];

W11 = W_1(:,72);

for pp=5:5:m

cc1 = cosd(pp);

ss1 = sind(pp);

A1 = [ cc1, -ss1;

ss1 ,cc1 ] ;

p1=P_1(1,12);

q1=P_1(2,12);

W= W11-p;

W21 = p + A1*W;

W_2=[W_2 W21];

end

p_12 = ph12(1:s:end, 1:s:(end-s)); %Angle matrix for ph12

p_13 = ph13(1:s:end, 1:s:(end-s)); %Angle matrix for ph13
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P_13 = P_2(:, 1:1:12);

po=P_13(:,12);

W_o = [W_1(:,72)];

Wo1 = W_1(:,72);

for pp1=5:5:n

cc2 = cosd(pp1);

ss2 = sind(pp1);

A2 = [ cc2, -ss2;

ss2 ,cc2 ] ;

W= Wo1-po;

Wn1 = po + A2*W;

W_o=[W_o Wn1];

end

P_23 = P_3(:, 1:1:12);

pn=P_23(:,7);

W_n = [W_x(:,72)];

Wn_1 = W_x(:,72);

for p_n=5:5:30

cc2 = cosd(p_n);

ss2 = sind(p_n);

A11 = [ cc2, -ss2;

ss2 ,cc2 ] ;

Wn= Wn_1-pn;

Wnn1 = pn + A11*Wn;
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W_n=[W_n Wnn1];

end

x=30:5:60;

p12=0:5:60;

figure(1)

plot3(W_2(1,:),W_2(2,:),p12,’b-o’); hold on

plot3(W_o(1,:),W_o(2,:),p12,’r-o’); hold on

plot3(W_n(1,:),W_n(2,:),x,’k-o’); hold on

grid on

xlabel(’W_x’)

ylabel(’W_y’)

zlabel(’Range of \phi_{ij}’)

title(’Locus of Moving Pivot W^i over Pole P_{12}’)

plot(p(1,1),p(2,1),’k*’); hold on

text(p(1,1)+.2,p(2,1)+.2,2,’P_{12}’,’Color’,’black’,’FontSize’,10)

plot(po(1,1),po(2,1),’k*’); hold on

text(po(1,1)-.2,po(2,1)-.2,2,’P_{13}’,’Color’,’black’)

plot(pn(1,1),pn(2,1),’k*’); hold on

text(pn(1,1)+.2,pn(2,1)+.2,2,’P_{23}’,’Color’,’black’)

plot(G(1,1),G(1,2),’ko’); hold on

text(G(1,1)+.2,G(1,2)+.2,2,’G’,’Color’,’black’)

plot([p(1,1),po(1,1)],[p(2,1),po(2,1)],’k-’)

plot([pn(1,1),po(1,1)],[pn(2,1),po(2,1)],’k-’)

plot([p(1,1),pn(1,1)],[p(2,1),pn(2,1)],’k-’)

legend(’Locus of Moving Pivots W^1 over P_{12}’,

’Locus of Moving Pivots W^1 over P_{13}’,

’Locus of Moving Pivots W^2 over P_{23}’,

’Location of Poles’)
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Appendix C

Four Position Synthesis Using Pole and Angle Based Method

% Four Position Design Using Poles

% Coupler positions of D1, D2, D3 and D4

D1 = [12 3]’;

D2 = [7 7]’;

D3 = [4 9]’;

D4 = [2 7]’;

% Orientations of end point

ph12 = 30;

ph13 = 60;

ph14 = 90;

ph23 = ph13-ph12;

ph34 = ph14-ph13;

% Calculating Rotation Matrices

A12 = [ cosd(ph12) -sind(ph12) ;

sind(ph12) cosd(ph12) ];

A13 = [ cosd(ph13) -sind(ph13) ;

sind(ph13) cosd(ph13) ];

A14 = [ cosd(ph14) -sind(ph14) ;

sind(ph14) cosd(ph14) ];
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A23 = [ cosd(ph23) -sind(ph23) ;

sind(ph23) cosd(ph23) ];

A34 = [ cosd(ph34) -sind(ph34) ;

sind(ph34) cosd(ph34) ];

% Translation dij,i<j

d12 = D2 - A12*D1;

d13 = D3 - A13*D1;

d14 = D4 - A14*D1;

d23 = D3 - A23*D2;

d34 = D4 - A34*D3;

% Calculation of poles

P12 = (eye(2) - A12)\d12;

P13 = (eye(2) - A13)\d13;

P14 = (eye(2) - A14)\d14;

P23 = (eye(2) - A23)\d23;

P34 = (eye(2) - A34)\d34;

% Symbolic notation for all angles

c2 = cosd(ph12); s2 = sind(ph12);

c3 = cosd(ph13); s3 = sind(ph13);

c4 = cosd(ph14); s4 = sind(ph14);

c5 = cosd(ph23); s5 = sind(ph23);

c6 = cosd(ph34); s6 = sind(ph34);

% Symbolic notation for all pole positions

p2 = P12(1); q2 = P12(2);
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p3 = P13(1); q3 = P13(2);

p4 = P14(1); q4 = P14(2);

p5 = P23(1); q5 = P23(2);

p6 = P34(1); q6 = P34(2);

% x and y are locations of fixed pivot G

% Define symbolic characters syms x, syms y

% Continue on to design problem - Given G find W1

% First select x as free choice

x=0;

% Solve for second coordinate y

% This program does it by trial and error using Brute Force Method

% Ordinarily, one can also solve this part using fsolve or another way

% Next define symbolic characters

% syms x, use syms x if you are selecting y coordinate of G as free choice

syms y

% For 2nd position

AA2 = (c2 -1)*(x-p2) + s2*(y-q2);

BB2 = -s2*(x-p2) +(c2-1)*(y-q2);

CC2 = (c2-1)*(p2*(x-p2) + q2*(y-q2) ) + s2*(p2*y - q2*x);

% For 3rd position

AA3 = (c3 -1)*(x-p3) + s3*(y-q3);

BB3 = -s3*(x-p3) +(c3-1)*(y-q3);

CC3 = (c3-1)*(p3*(x-p3) + q3*(y-q3) ) + s3*(p3*y - q3*x);

% For 4th position

AA4 = (c4 -1)*(x-p4) + s4*(y-q4);

BB4 = -s4*(x-p4) +(c4-1)*(y-q4);

CC4 = (c4-1)*(p4*(x-p4) + q4*(y-q4) ) + s4*(p4*y - q4*x);

% Define matrix M

MM = [ AA2 BB2 CC2 ;
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AA3 BB3 CC3 ;

AA4 BB4 CC4 ];

% Center Point Equation is given by Determinant of M

curve = det(MM);

% Set the Curve Equation to Zero for matrix M to be of Rank 2

eqn = curve == 0;

% Solution of cubic center point equation

sol = solve(eqn,y);

% The next step will check to check the number of solutions

% This operation writes the solution in double precision

sol2 = double(sol);

% It turns out that the det = 0 equation has three solutions, one real and

% two complex. We identify the real solution as the first and eliminate

% complex solutions as link does not have a complex coordinate solution

y = double(sol(1)); % Identify the Real value of y to use

m = 100; %Defining the range of iterations along ph12

n = 110; %Defining the range of iterations along ph13

o = 120; %Defining the range of iterations along ph14

s = 10; %Defining the Step Variation of phase angle

ph12 = zeros(m,n,o);

ph13 = zeros(m,n,o);

ph14 = zeros(m,n,o);

P_12 = [];

P_13 = [];

P_14 = [];

P_23 = [];
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P_34 = [];

W_1_1= [];

W_2_1= [];

W_3_1= [];

W_4_1= [];

for i=10:s:m

for j=20:s:n

for p=30:s:o

k=(i-10)+1;

l=(j-20)+1;

q=(p-30)+1;

% Determining the angles between D1, D2 and D3

ph12(k,l,q)=i;

ph13(k,l,q)=j;

ph14(k,l,q)=p;

ph_12=i;

ph_13=j;

ph_14=p;

ph_23 = ph_13-ph_12;

ph_34 = ph_14-ph_13;

% Calculation of Rotation Matrix

A12 = [ cosd(ph_12) -sind(ph_12) ;

sind(ph_12) cosd(ph_12) ];
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A13 = [ cosd(ph_13) -sind(ph_13) ;

sind(ph_13) cosd(ph_13) ];

A14 = [ cosd(ph_14) -sind(ph_14) ;

sind(ph_14) cosd(ph_14) ];

A23 = [ cosd(ph_23) -sind(ph_23) ;

sind(ph_23) cosd(ph_23) ];

A34 = [ cosd(ph_34) -sind(ph_34) ;

sind(ph_34) cosd(ph_34) ];

% Translation

d12 = D2 - A12*D1;

d13 = D3 - A13*D1;

d14 = D4 - A14*D1;

d23 = D3 - A23*D2;

d34 = D4 - A34*D3;

%Calculating poles

P12 = (eye(2) - A12)\d12;

P13 = (eye(2) - A13)\d13;

P14 = (eye(2) - A14)\d14;

P23 = (eye(2) - A23)\d23;

P34 = (eye(2) - A34)\d34;

%Storing Values of Poles

P_12=[P_12 P12];

P_13=[P_13 P13];

P_14=[P_14 P14];

P_23=[P_23 P23];

P_34=[P_34 P34];
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% Symbolic Notation for angles

c2 = cosd(ph_12); s2 = sind(ph_12);

c3 = cosd(ph_13); s3 = sind(ph_13);

c4 = cosd(ph_14); s4 = sind(ph_14);

c5 = cosd(ph_23); s5 = sind(ph_23);

c6 = cosd(ph_34); s6 = sind(ph_34);

% Symbolic Notation for Poles

p2 = P12(1); q2 = P12(2);

p3 = P13(1); q3 = P13(2);

p4 = P14(1); q4 = P14(2);

p5 = P23(1); q5 = P23(2);

p6 = P34(1); q6 = P34(2);

%Using G obtained from Brute Force Method above

G=[x,y]’;

x=G(1);

y=G(2);

% Calculating constants A2 A3 and A4 for all Positions

% For 2nd position

AR2 = (c2 -1)*(x-p2) + s2*(y-q2);

BR2 = -s2*(x-p2) +(c2-1)*(y-q2);

CR2 = (c2-1)*(p2*(x-p2) + q2*(y-q2)) + s2*(p2*y - q2*x);

% For 3rd position

AR3 = (c3 -1)*(x-p3) + s3*(y-q3);

BR3 = -s3*(x-p3) +(c3-1)*(y-q3);

CR3 = (c3-1)*(p3*(x-p3) + q3*(y-q3)) + s3*(p3*y - q3*x);
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% For fourth position

AR4 = (c4 -1)*(x-p4) + s4*(y-q4);

BR4 = -s4*(x-p4) +(c4-1)*(y-q4);

CR4 = (c4-1)*(p4*(x-p4) + q4*(y-q4)) + s4*(p4*y - q4*x);

AAA= [ AR2 BR2 ;

AR3 BR3 ;

AR4 BR4];

CCC= [ CR2; CR3; CR4];

W1= (AAA)\CCC;

W_1_1=[W_1_1 W1];

% Calculating W2, W3, W4 using the Pole Equation

W2 = P12 + A12*(W1 - P12);

W3 = P13 + A13*(W1 - P13);

W4 = P14 + A14*(W1 - P14);

W_2_1=[W_2_1 W2];

W_3_1=[W_3_1 W3];

W_4_1=[W_4_1 W4];

end

end

end

%Matrices for Phase Angles ph_12,ph_13 and ph_14

p_12 = ph12(1:s:end, 1:s:(end-s), 1:s:(end-(2*s)));
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p_13 = ph13(1:s:end, 1:s:(end-s), 1:s:(end-(2*s)));

p_14 = ph14(1:s:end, 1:s:(end-s), 1:s:(end-(2*s)));

%Calculating W_i over respective Poles P_{ij}

Pp_12 = P_12(:, 1:100:1000);

p_1=Pp_12(:,3);

W_1 = [W_1_1(:,247)];

Wo1 = W_1_1(:,247);

for pp=10:s:m

cc1 = cosd(pp);

ss1 = sind(pp);

A1 = [ cc1, -ss1;

ss1 ,cc1 ] ;

W= Wo1-p_1;

Wn1 = p_1 + A1*W;

W_1=[W_1 Wn1];

end

Pp_13 = P_13(:, 1:10:100);

p_2=Pp_13(:,5);

W_2 = [W_1_1(:,247)];

Wp1 = W_1_1(:,247);

for pp1=10:s:n

cc_1 = cosd(pp1);
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ss_1 = sind(pp1);

A1 = [ cc_1, -ss_1;

ss_1 ,cc_1 ] ;

W= Wp1-p_2;

Wn2 = p_2 + A1*W;

W_2=[W_2 Wn2];

end

Pp_14 = P_14(:, 1:1:10);

p_3=Pp_14(:,7);

W_3 = [W_1_1(:,247)];

Wq1 = W_1_1(:,247);

for pp2=10:s:o

cc_2 = cosd(pp2);

ss_2 = sind(pp2);

A2 = [ cc_2, -ss_2;

ss_2, cc_2 ] ;

W= Wp1-p_3;

Wn3 = p_3 + A2*W;

W_3=[W_3 Wn3];

end

Pp_23 = P_23(:, 1:10:100);

p_4=Pp_23(:,3);

W_4 = [W_2_1(:,247)];

Wr1 = W_2_1(:,247);
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for pp3=10:s:30

cc_3 = cosd(pp3);

ss_3 = sind(pp3);

A3 = [ cc_3, -ss_3;

ss_3, cc_3 ] ;

W= Wr1-p_4;

Wn4 = p_4 + A3*W;

W_4=[W_4 Wn4];

end

Pp_34 = P_34(:, 1:1:10);

p_5=Pp_34(:,3);

W_5 = [W_3_1(:,247)];

Ws1 = W_3_1(:,247);

for pp4=10:s:30

cc_4 = cosd(pp4);

ss_4 = sind(pp4);

A4 = [ cc_4, -ss_4;

ss_4, cc_4 ] ;

W= Ws1-p_5;

Wn5 = p_5 + A4*W;

W_5=[W_5 Wn5];

end
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%Plotting All The W_i’s and P_{ij}’s

x1=0:s:100;

x2=0:s:110;

x3=0:s:120;

x4=30:s:60;

x5=60:s:90;

figure(1)

plot3(W_1(1,:),W_1(2,:),x1,’b-o’); hold on

plot3(W_2(1,:),W_2(2,:),x2,’r-o’); hold on

plot3(W_3(1,:),W_3(2,:),x3,’k-o’); hold on

plot3(W_4(1,:),W_4(2,:),x4,’g-o’); hold on

plot3(W_5(1,:),W_5(2,:),x5,’m-o’); hold on

grid on

xlabel(’W_x’)

ylabel(’W_y’)

zlabel(’Range of \phi_{ij}’)

title(’Locus of Moving Pivot W^i over Pole P_{12}’)

plot(p_1(1,1),p_1(2,1),’k*’); hold on

text(p_1(1,1)-1,p_1(2,1)-1,4,’P_{12}’,’Color’,’black’,’FontSize’,10)

plot(p_2(1,1),p_2(2,1),’k*’); hold on

text(p_2(1,1)+.5,p_2(2,1)+.5,4,’P_{13}’,’Color’,’black’)

plot(p_3(1,1),p_3(2,1),’k*’); hold on

text(p_3(1,1)+.5,p_3(2,1)+.5,4,’P_{14}’,’Color’,’black’)

plot(p_4(1,1),p_4(2,1),’k*’); hold on

text(p_4(1,1)-1,p_4(2,1)-1,4,’P_{23}’,’Color’,’black’)

plot(p_5(1,1),p_5(2,1),’k*’); hold on

text(p_5(1,1)+.2,p_5(2,1)+.2,4,’P_{34}’,’Color’,’black’)

plot(G(1,1),G(2,1),’k*’); hold on

text(G(1,1)+.2,G(2,1)+.2,4,’G’,’Color’,’black’)

plot([p_1(1,1),p_4(1,1)],[p_1(2,1),p_4(2,1)],’k-’)
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plot([p_4(1,1),p_5(1,1)],[p_4(2,1),p_5(2,1)],’k-’)

plot([p_5(1,1),p_3(1,1)],[p_5(2,1),p_3(2,1)],’k-’)

plot([p_3(1,1),p_1(1,1)],[p_3(2,1),p_1(2,1)],’k-’)

legend(’Locus of Moving Pivots W^1 over P_{12}’,

’Locus of Moving Pivots W^1 over P_{13}’,

’Locus of Moving Pivots W^1 over P_{14}’,

’Locus of Moving Pivots W^2 over P_{23}’,

’Locus of Moving Pivots W^3 over P_{34}’,

’Location of Poles’)



84

References

[1] Freudenstein, F. et al., “An analytical approach to the design of four-link mechanisms,”
Transactions of the ASME , Vol. 76, No. 3, 1954, pp. 442–483.

[2] Hall, A. S., Kinematics and Linkage Design, Waveland PressInc, 1986.

[3] Suh, C. H. and Radcliffe, C. W., Kinematics and mechanisms design, Wiley, 1978.

[4] Sandor, G. N. and Erdman, A. G., Advanced Mechanism Design V. 2: Analysis and
Synthesis, Prentice-Hall, 1984.

[5] Roth, B., “Finite-Position Theory Applied to Mechanism Synthesis,” Journal of Ap-
plied Mechanics, Vol. 34, 1967, pp. 599.

[6] Burmester, L. E. H., Lehrbuch der kinematik: Für studirende der machinentechnik,
mathematik und physik geometrisch dargestellt , Vol. 1, A. Felix, 1888.

[7] Schoenflies, A., Geometrie der Bewegung in synthetischer Darstellung , BG Teubner,
1886.

[8] Beyer, R., “The Kinematic Synthesis of Mechanisms (Translated from German by H.
Kuenzel),(1963),” .

[9] Hartenberg, R. and Danavit, J., Kinematic synthesis of linkages, New York: McGraw-
Hill, 1964.

[10] Kimbrell, J. T., Kinematics analysis and synthesis, McGraw-Hill College, 1991.

[11] Luck, K. and Modler, K., “Konstruktionslehre der Getrebe,” 1990.

[12] Paul, B., Kinematics and dynamics of planar machinery , Prentice Hall, 1979.

[13] McCarthy, J. M. and Soh, G. S., Geometric design of linkages, Vol. 11, Springer Science
& Business Media, 2010.

[14] Freudenstein, F. and Sandor, G. N., “On the Burmester Points of a Plane,” Journal of
Applied Mechanics, Vol. 28, 1961, pp. 41.

[15] Waldron, K. J., Kinzel, G. L., and Agrawal, S. K., Kinematics, dynamics, and design
of machinery , John Wiley & Sons, 2016.

[16] INNOCENTI, C., “Polynomial solution of the spatial Burmester problem,” Journal of
mechanical design (1990), Vol. 117, No. 1, 1995, pp. 64–68.

[17] Li, D., Zhang, Z., and McCarthy, J. M., “A constraint graph representation of meta-
morphic linkages,” Mechanism and Machine Theory , Vol. 46, No. 2, 2011, pp. 228–238.



85

[18] Kaufman, R., “Mechanism design by computer,” Machine Design, Vol. 50, No. HS-025
808U, 1978.

[19] Waldron, K. and Song, S., “Theoretical and numerical improvements to an interactive
linkage design program, RECSYN,” Proceedings of the Seventh Applied Mechanisms
Conference, 1981, pp. 8–1.

[20] Erdman, A. G. and Gustafson, J., “Lincages: Linkage interactive computer analysis and
graphically enhanced synthesis package,” American Society of Mechanical Engineers
(Paper), , No. 77-DET-5, 1977.

[21] Ruth, D. and McCarthy, J., “Sphinxpc: An implementation of four position synthesis
for planar and spherical 4r linkages,” CD-ROM Proc. of the ASME DETC’97 , 1997,
pp. 14–17.

[22] Ravani, B. and Roth, B., “Motion synthesis using kinematic mappings,” Journal of
Mechanisms, Transmissions, and Automation in Design, Vol. 105, 1983, pp. 460–467.

[23] Fox, R. and Willmert, K., “Optimum design of curve-generating linkages with inequal-
ity constraints,” Journal of Engineering for Industry , Vol. 89, No. 1, 1967, pp. 144–151.

[24] Zimmerman, R. A., “Planar linkage synthesis for rigid body guidance using poles and
rotation angles,” ASME 2013 International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, American Society of Me-
chanical Engineers Digital Collection, 2013.

[25] Bottema, O. and Roth, B., Theoretical kinematics, Vol. 24, Courier Corporation, 1990.

[26] MCCARTHY, J., “The synthesis of planar RR and spatial CC chains and the equation
of a triangle,” Journal of mechanical design, Vol. 117, No. B, 1995, pp. 101–106.

[27] Loerch, R., Erdman, A. G., and Sandor, G. N., “On the Existence of Circle-Point and
Center-Point Circles for Three-Precision-Point-Dyad Synthesis,” Journal of Mechanical
Design, Vol. 101, No. 4, 1979, pp. 554–562.

[28] Loerch, R., Erdman, A. G., Sandor, G. N., and Midha, A., “Synthesis of Four Bar
Linkages with Specified Ground Pivots,” 1976.

[29] Martin, P. J., Russell, K., Lee, W.-T., and SODH, R. S., “An algorithm for planar
four-bar motion generation with optimization,” Transactions of the Canadian Society
for Mechanical Engineering , Vol. 31, No. 3, 2007, pp. 357–371.

[30] Norton, R. L. et al., Design of machinery: an introduction to the synthesis and analysis
of mechanisms and machines, Boston: McGraw-Hill Higher Education,, 2004.

[31] TING, K.-L., “Mobility criteria of single-loop N-bar linkages,” Journal of mechanisms,
transmissions, and automation in design, Vol. 111, No. 4, 1989, pp. 504–507.

[32] Chedmail, P. and Ramstein, E., “Robot mechanism synthesis and genetic algorithms,”
Proceedings of IEEE international conference on robotics and automation, Vol. 4,
IEEE, 1996, pp. 3466–3471.


