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ABSTRACT OF THE DISSERTATION

Some Combinatorial Results on Matrices and Polynomials

By JUSTIN SEMONSEN

Dissertation Director: Swastik Kopparty

This thesis studies three problems in combinatorics that concern matrices and polyno-

mials.

The first problem refines a technique by Scheinerman [24] to get an improved upper

bound on the determinants of n×n 0-1 matrices with k ones in each row. Our new bound

uses linear programming techniques to analyze a greedy decomposition algorithm, show

how it improves on previous methods, and determine its asymptotic behavior as a

function of k. We also present and analyze an improvement to this method, as well as

the limitations and other possibilities of using this technique.

The second problem analyzes the supports of F2 polynomials on n variables in Ham-

ming balls, and proves an optimal Schwartz-Zippel-like bound. We then use methods

based on those of Kasami and Tokura [11], [12] to find and classify all tight polynomi-

als for this bound. Our result is based on studying necessary conditions for ”division

lemmas” for polynomials.

The third result studies sets of points in Fn2 for which the sum of any F2 polynomial

of degree d on those points is 0. We prove that for d ≥ 2, we have that the size of the

set must at least twice the affine dimension of the set. For larger d, we can show the

size of the set must be a constant amount larger than twice the affine dimension, but we

conjecture that this can be improved to 2d+1

d+2 times the affine dimension of the set. We
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also apply these theorems to prove a bound on the weight distribution of Reed-Muller

codes of high dimension.
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Chapter 1

Introduction

1.1 Asymptotic Determinant Bounds on 0-1 Matrices with Fixed Row

Sums

The results presented in Chapter 2 deal with the determinants of Mn×n({0, 1}). Specif-

ically, we focus on upper bounding the determinants of the following class of matrices:

R(n, k) := {A ∈Mn×n({0, 1}) : ‖ ~Ai‖ =
√
k ∀ 1 ≤ i ≤ n}

Since each row has norm
√
k, Hadamard’s Inequality [10] gives that M(n, k) :=

maxA∈R(n,k) det(A) ≤
√
k
n
. Ryser [21] was able to improve this to M(n, k) ≤ k(k −

λ)
n−1
2 for λ = k(k−1)

n−1 . However, he also showed this bound cannot be tight when λ < 1,

meaning that in the regime where k <
√
n, this improvement is small. In fact, for

any fixed k both Hadamard and Ryser only showed the following asymptotic bound:

lim supn→∞M(n, k)
1
n ≤
√
k.

Bruhn and Rautenbach [5] were able to show that M(n, 2) ≤ ( 3
√

2)n, meaning that

lim supn→∞M(n, 2)
1
n ≤ 3

√
2 <
√

2. Although this improves the asymptotic bound for

k = 2, they also conjectured that this bound could be improved for k > 2. Scheinerman

[24] developed a technique based on decomposing the matrices into blocks of rows to

show that lim supn→∞M(n, k)
1
n ≤ cq,k for some cq,k <

√
k.

Scheinerman [24] also presented a greedy algorithm to optimize his bounds, but

could only conjecture that this greedy algorithm would generate a bound better than his

optimal cqk,k =
√
k− .096

2
√
k

+O(k
−3
2 ). The results in Chapter 2 use tools derived from lin-

ear programming to analyze this greedy algorithm and prove that lim supn→∞M(n, k)
1
n ≤

ck for a ck <
√
k. We also use duality to not only prove that ck < cq,k, but also find
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the optimal solution and show the asymptotic bound is of the form:

ck =
√
k −

1− π2

12

2
√
k

+O(k
−3
2 )

We also develop and analyze some minor improvements upon the greedy algorithm to

get another asymptotic bound lim supn→∞M(n, k)
1
n ≤ c′k < ck, although we conjecture

that the asymptotic behavior of c′k is the same.

1.2 Supports of Binary Polynomials

The Schwartz-Zippel Lemma [7],[30],[25] says that the probability that a nonzero degree

d polynomial is zero over a finite set S is no more than d
|S| . For F2 polynomials on Fn2 ,

this can be generalized to prove that every nonzero polynomial of degree d has at least

2n−d non-zeros.

Kasami and Tokura [11],[12] took this a step further by proving that every poly-

nomial for which this bound is tight is the product of d linearly independent linear

functions. They also extended their techniques to categorize the functions that have

close to minimal support.

In Chapter 3 we take this a different direction, restricting the domain to only inputs

with Hamming weight below a given threshold r. We then prove a theorem similar to

the Schwartz-Zippel Lemma, saying that the support on inputs with Hamming weight

less than r of a degree d polynomial on n variables must be at least
∑r−d

i=0

(
n−d
i

)
.

We then use some of the techniques from Kasami and Tokura [11],[12] to fully

characterize the polynomials that achieve the bound. For r > d, we show these are

products of certain independent linear factors, and along the way we produce alternate

conditions for finding linear factors of polynomials in these restricted domains.

1.3 Weight Bounds in Dual Reed-Muller Codes

One of many useful applications of F2 polynomials is in Reed-Muller codes. Reed-

Muller codes use the message to be encoded as coefficients of a degree d polynomial on

n variables and then encode it by evaluating that polynomial on every point of Fn2 . The
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Schwartz-Zippel Lemma and other polynomial results can be used to find the minimum

distance and prove other properties of Reed-Muller codes.

We examined the dual codes of Reed-Muller codes, which can be represented as a

set of points on which any polynomial of degree d sums (modulo 2) to 0. Finding small

size sets in this model is easy, but only if the points sit inside an affine subspace of

small dimension. We show that when the smallest affine subpace spanned by the points

is dimension m, then the size of the set must be at least twice m.

In fact, when S is a dual codeword for polynomials of degree d and S is of affine

dimension m, we conjecture that |S| ≥ 2d+1

d+2 (m + 1). This comes from summing in-

dependent affine subspaces of dimension d + 1, and then counting the resulting affine

dimension.

Showing the optimality of this construction is more difficult, but we can prove this

for d = 2 using a rank-based approach. This fails in the d = 3 case, but we can show

|S| ≥ 2(m+ 1) + 2d − d− 2 using a clever application of results from Chapter 2.

We then demonstrate why this bound is likely not tight and pose various new avenues

for proving the full conjecture as well as a weakening. We also apply our results to

counting the low weight codewords of Reed-Muller codes, as well as showing how the

conjectures would improve these bounds.
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Chapter 2

Asymptotic Determinant Bounds on 0-1 Matrices with

Fixed Row Sums

2.1 The Maximum Determinant Problem

Hadamard’s maximum determinant problem [10] asks for the largest determinant among

all n×n zero-one matrices. This problem has been well studied [29],[4], [8], [16], [19],[18],

but many questions still remain unanswered.

For the remainder of this paper, let ~Ai be the ith row of the matrix A. Also let ‖ · ‖

represent the standard l2 norm on vectors.

We will look at the maximum determinant of the restricted class of zero-one matrices

defined below:

Definition 2.1. R(n, k) = {A ∈Mn×n({0, 1}) : ‖ ~Ai‖ =
√
k ∀ 1 ≤ i ≤ n} for 1 ≤ k ≤ n.

We can also characterize the matrices in R(n, k) as the matrices in Mn×n({0, 1})

whose rows each sum to k. This means the vector of all ones is a left eigenvector with

eigenvalue k.

The question originally posed to me by Scheinerman [24] is what is the largest

determinant that can be attained in R(n, k)? This lets us define the following quantity:

Definition 2.2. M(n, k) = maxA∈R(n,k) | det(A)|

To get a lower bound on M(n, k), it suffices to give a single matrix with large

determinant. This lets us show that M(n, k) is supermultiplicative in n, as if we have

two matrices with large determinants, a block diagonal matrix with those two on the

diagonal forms a matrix with determinant equal to the product of the original two

determinants. This means that if we exhibit an m×m matrix A for which det(A) = cm,

then det(A⊗ It) = cmt for any t, and thus lim supn→∞M(n, k)
1
n ≥ c.
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A projective plane of order k − 1 has an (k2 − k + 1) × (k2 − k + 1) incidence

matrix A with k ones in each row, and thus is in R(k2 − k + 1, k). Since AA> =

J + (k− 1)I, we have that det(A)2 = det(Jk2−k+1 + (k− 1)Ik2−k+1) = k2(k− 1)k
2−k, so

lim supn→∞M(n, k)
1
n ≥ k

1
k2−k+1 (k − 1)

k2−k
2k2−2k+2 =

√
k − 1

2
√
k

+O(k
−3
2 ) [24]. Computer

searches have been unable to yield any improvements on this lower bound.

The first upper bound onM(n, k) that was found is due to Hadamard [10]. Hadamard’s

result says that | det(A)| ≤
∏n
i=1 ‖ ~Ai‖. Since ‖ ~Ai‖ =

√
k for every i, this means

|det(A)| ≤
√
k
n
.

This exponential upper bound when k is fixed allows us to use Fekete’s Lemma

to show that lim supn→∞M(n, k)
1
n = limn→∞M(n, k)

1
n exists and is finite, in fact no

larger than
√
k.

Let ρk = limn→∞M(n, k)
1
n be this limit for every k. By the construction above we

have that ρk ≥
√
k − 1

2
√
k

+O(k
−3
2 ), while Hadamard says that ρk ≤

√
k.

A result of Ryser [21] gives that M(n, k) ≤ k(k − λ)
n−1
2 where λ = k(k−1)

n−1 . When

k is large relative to n, this is an exponential improvement on Hadamard, but Ryser

showed this bound can’t be tight unless λ is integral.

In the asymptotic regime where k is fixed and n→∞, this means λ→ 0, so Ryser’s

bound is not only not tight, but gives the same bound on ρk as Hadamard’s bound.

This question has been studied in these and other regimes by many others including

[29],[4], [8], [16], [19], and [18]. However, none of these results show any improvement

in this exponential factor as n approaches infinity.

Only recently did Bruhn and Rautenbach [5] give an exponentially better bound

when k = 2: M(n, 2) ≤
(

3
√

2
)n

. However, their methods left them only able to conjec-

ture that a similar exponential improvement was possible for k = 3 and larger.

Scheinerman [24] proved such a smaller exponential bound exists by decomposing

the matrix into blocks of rows, then analyzing each block separately.

Theorem 2.3 (Scheinerman [24]). Let q be an integer with 1 ≤ q ≤ k. Then M(n, k) ≤

cnq,k for

cq,k = (q + k − 1)
1
2q (1−

q−1
k )(k − 1)

q−1
2q (1− q−1

k )k
q−1
2k
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For q = 1, this matches the Hadamard bound, but when q > 1, we have that cq,k <
√
k. Scheinerman also gave a particular sequence qk for which cqk,k =

√
k− t1

2
√
k

+O(k
−3
2 )

a constant t1 ≈ 0.096 and thus ρk ≤
√
k − 0.096

2
√
k

+O(k
−3
2 )

Scheinerman also proposed a greedy algorithm for combining his methods to provide

an even tighter bound, but his analysis only provided an improvement for k ≤ 27.

In this work, we provide a tighter analysis of this greedy algorithm based on linear

programming, show that it improves on Scheinerman’s other techniques for bounding

the determinant, and analyze the asymptotic behavior of this new bound in k. In

particular, we show that ρk ≤
√
k − 0.178

2
√
k

+O(k
−3
2 ).

We also use similar techniques to slightly improve upon Scheinerman’s algorithm,

and show that the resulting bound is an improvement upon the previous algorithm.

2.2 Decomposition Bounds

Since these techniques depend heavily on the decomposition by Scheinerman in [24],

here we will give a simple overview of the needed definitions and methods as they appear

in this paper.

For any m×n matrix B we define V ol(B) =
√
| det(BB>)|. Since the inner matrix

product is the Gram matrix of the rows, this quantity is essentially the m-dimensional

volume of the box with sides given by the rows of B.

This measure has two useful properties: First, if A is an n× n square matrix, then

V ol(A) =
√
|det(AA>)| =

√
det(A)2 = | det(A)|. Secondly if B1 and B2 are m1 × n

and m2 × n matrices respectively, then let B =
[
B1
B2

]
, the (m1 +m2)× n block matrix

with B1 above B2. We can see that BB> =
[
B1B>1 B1B>2
B2B>1 B2B>2

]
, so by Fischer’s Inequality:

V ol(B) =

√√√√√
∣∣∣∣∣∣det

 B1B
>
1 B1B

>
2

B2B
>
1 B2B

>
2

∣∣∣∣∣∣
≤

√√√√√
∣∣∣∣∣∣det

 B1B
>
1 0

0 B2B
>
2

∣∣∣∣∣∣ = V ol(B1)V ol(B2)

(2.1)
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For convenience of notation we will sometimes use M(n, k)2 instead of M(n, k) in

calculations, as M(n, k)2 = maxA∈Rn,k V ol(A)2 = maxA∈Rn,k det(AA>).

Given a matrix A ∈ R(n, k), we can decompose A into its rows ~Ai. Then by

repeatedly using the submultiplicativity, we can see that V ol(A)2 ≤
∏n
i=1 V ol(

~Ai)
2 =

kn. This was already given by Hadamard, but other decompositions will yield better

results.

Scheinerman noticed that if we decompose A into blocks Ai of rows such that each

block has a column of all ones, then if Ai is an mi × n block, then AiA
>
i is an mi by

mi matrix with k on the main diagonal and strictly positive integers off of it.

Using a result by Olkin [17], Scheinerman proved that V ol(Ai)
2 ≤ det(Jmi + (k −

1)Imi) = (mi + k− 1)(k− 1)mi−1. Since the Ai are a partition of the n rows
∑

imi = n

and thus V ol(A)2 ≤
∏
i(mi + k − 1)(k − 1)mi−1 = (k − 1)n

∏
i

(
1 + mi

k−1

)
.

We can see that we have at most n such partitions, so we can assume that there are

exactly n, with some allowed to be of size 0. By Jensen’s inequality balancing these

sizes maximizes the product, but that is the same as making each row its own partition.

We are hoping to find a smaller bound, and thus go for as large of blocks as we can.

With this in mind, Scheinerman proposed the following algorithm: At each step i,

choose the column with the most 1s in it. Let the rows that contain those ones be the

block Ai, remove Ai, and then repeat the same steps on the remaining rows to partition

the entire matrix. This greedy algorithm gives us a method for finding a more useful

decomposition of a matrix.

In order derive a bound on this, Scheinerman noted that the average number of

ones per column in an m × n matrix is km
n , so there is always a column with at least

dkmn e ones. While it might be possible to find a column with more ones, this is always

guaranteed, and this will allow us to bound the determinant for all A ∈ R(n, k).

2.3 Analysis of the Greedy Algorithm Bound

In this section, we use a new analysis technique to get the following result:

Theorem 2.4. For every k, there is a ck such that M(n, k) ≤ cnk where ck =
√
k −
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t2
2
√
k

+O(k
−3
2 ) for t2 = 1− π2

12 .

This theorem gives ρk ≤
√
k − t2

2
√
k

+ O(k
−3
2 ), slightly closing the gap towards the

lower bound given by the projective plane.

To get this bound from the greedy algorithm, we will set up a linear programming

problem to help us analyze it: Fix a matrix A in R(n, k). Let xj be the number of

blocks of size j in the decomposition given by Scheinerman’s greedy algorithm. This

gives us n variables, as the blocks can be of size 1 up to n.

Since we always take the column with the most ones, we know that after we remove

all the blocks of size i or larger, the m remaining rows can’t have any columns with

i ones in them. This means the average number of ones km
n must be no bigger than

i − 1, where we calculate the number of rows remaining by m = n −
∑n

j=i jxj . This

means that the greedy decomposition of any matrix A must satisfy the constraints∑n
j=i kjxj ≥ (k − i+ 1)n for every i ∈ [n].

Since the xi give us a partition of the n rows, we also have that
∑n

j=1 jxj = n, and

that xi ≥ 0 for every i.

Lemma 2.5. Every greedy algorithm decomposition of a matrix A ∈ R(n, k) has xj

blocks of size j, where xj is an integral feasible solution to the following LP:

n∑
j=i

kjxj ≥ (k − i+ 1)n, i = 1, ..., n

n∑
j=1

jxj = n

xj ≥ 0, j = 1, ..., n

(2.2)

A given set of xj generates the determinant bound V ol(A)2 ≤ (k−1)n
∏n
j=1

(
1 + j

k−1

)xj
.

In order to find a bound for all matrices, we want to find the largest this greedy algo-

rithm bound could be for any matrix in R(n, k).

While this bound doesn’t fit the LP framework, we can remove the (k−1)n term and

take the logarithm, giving that the objective function to be maximized is
∑n

j=1 xj ln
(

1 + j
k−1

)
.

Since the right hand side of each bound is a multiple of n, we can simply scale down

the variables by aj =
xj
n . In addition, since each aj is non-negative, we can see that all
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the constraints with i > k are trivially satisfied, and can thus be dropped. Similarly,

the equality constraint ensures that the i = 1 constraint is also trivially satisfied.

Lastly, we note that relaxing the integrality constraint can only weaken the bound,

so we are left with the following lemma:

Lemma 2.6. For any fixed k, let α be the optimal solution of the following LP:

maximize α =
n∑
j=1

ln
(

1 + j
k−1

)
aj

subject to
n∑
j=i

kjaj ≥ k − i+ 1, i = 2, ..., k

n∑
j=1

jaj = 1

aj ≥ 0, j = 1, ..., n

(2.3)

Then M(n, k)2 ≤ γnk where γk = (k − 1)eα.

Since there are k constraints and n variables, we can define the dual linear program

as follows:

minimize β =
k∑
i=1

(k − i+ 1)bi

subject to
j∑
i=1

kjbi ≥ ln
(

1 + j
k−1

)
, j = 1, ..., n

bi ≤ 0, i = 2, ..., k

(2.4)

This formulation lets us give an explicit formula for the optimal α:

Lemma 2.7. The optimal solution to equation 2.3 is given by aj = 1
kj for 1 ≤ j ≤ k

and aj = 0 otherwise. The optimal solution to equation 2.4 is given by b1 =
ln(1+ 1

k−1)
k

and bi =
ln(1+ i

k−1)
ik − ln(1+ i−1

k−1)
(i−1)k for 2 ≤ i ≤ k.

Proof. Since aj = 0 for all j > k, we simply need to show that
k∑
j=i

kjaj ≥ k − i+ 1 for

each 2 ≤ i ≤ k and
k∑
j=1

jaj = 1. However, since kjaj = 1, it is easy to see that aj are a

feasible solution to equation 2.3.

In fact, these aj are the solution given by making all constraints tight, and thus if

we let ~a ∈ Rk be the vector of the non-zero aj , we see that M~a = ~v where ~v is the
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vector given by vi = k − i − 1 and M is the matrix with Mij = kj when j ≥ i and 0

otherwise.

This means that ~a = M−1~v and so if we let ~c be given by ci = ln
(

1 + i
k−1

)
, we

have that α = ~c>~a = ~c>M−1~v.

As for the dual solution, we can use Jensen’s Inequality to verify that bi ≤ 0 for

every 2 ≤ i ≤ k. We can also see that the first k constraints are actually tight. The

remaining constraints hold because
ln(1+ j

k−1)
j is a decreasing sequence.

This means that these bj form a feasible solution, and furthermore the one given by

making the first k constraints tight. Thus if we let ~b ∈ Rk be the vector of the bi, we

have that M>~b = ~c. This means that ~b = (M>)−1~c, and thus β = ~v>~b = ~v>(M−1)>~c.

This means that α = β, and thus by duality these sets of aj and bi are optimal

solutions to their respective problems.

This allows us to finally prove Theorem 2.4 by combining Lemma 2.6 with Lemma

2.7:

Proof. By Lemma 2.6, we have that M(n, k)2 ≤ γnk , so M(n, k) ≤ cnk where ck =
√
γ.

By Lemma 2.7, we can write γ and ck as follows:

γ = (k − 1)e

(
k∑
j=1

ln(1+ j
k−1)
jk

)

ck =
√
k − 1e

k∑
j=1

ln(1+ j
k−1)
j

2k

Using x = j
k−1 , we can manipulate a part of this equation to resemble a Riemann

approximation of the integral
1∫
0

ln(1+x)
x = π2

12 . This gives that:

k∑
j=1

ln
(

1 + j
k−1

)
j

=
ln
(

1 + k
k−1

)
k

+

k−1∑
j=1

ln(1+ j
k−1)
j

k−1

k − 1

=

1∫
0

ln(1 + x)

x
+O(k−1)

=
π2

12
+O(k−1)
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Since e
π2

12k
+O(k−2) = 1 + π2

12k + O(k−2), we have that γk
k = 1 − 1−π

2

12
k + O(k−2).

Since γk = c2k, we can use the Taylor series decomposition of
√

1 + x to see that ck√
k

=√
1− t2

k +O(k−2) = 1− t2
2k +O(k−2).

The fact that t2 > t1 implies that ck ≤ cq,k for large enough k, but we can actually

prove more:

Theorem 2.8. Any decomposition bound that decomposes using this greedy approach

with restricted block sizes gives a bound that is no better than this greedy algorithm. In

particular, cq,k ≥ ck for any q ≤ k.

Proof. If block size i is not allowed, then the LP corresponding to Equation 2.3 for

that algorithm has ai = 0 and omits the inequality corresponding to i. Taking the dual

of this new LP gives an LP whose feasible region is contained in the feasible region of

Equation 2.4, because bi = 0.

This means that the optimal solution of the modified primal problem is the same

value as a feasible dual solution, and thus is at least as large as α. This means that the

induced bound on M(n, k)2 is larger with the modified algorithm.

Scheinerman’s methods [24] for cq,k can be framed as modified greedy algorithms,

where only blocks of size 1 and q are used (only a1 and aq are non-zero). Therefore the

unmodified greedy algorithm bound ck ≤ cq,k for any k and q.

2.4 Improving the Greedy Algorithm

To attempt to do better, we try to utilize the idea that we take all the rows with a one

in the chosen column, meaning that column cannot be chosen in future iterations. In

fact, since the remainder of the chosen column is guaranteed to have no ones, we can

remove that column from all future iterations of our algorithm without affecting the

determinant.

This means that after we have removed all blocks of size at least i, there are still

m = n−
∑n

j=i jxj rows, but now only n−
∑n

j=i xj columns, meaning that we can find
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more large blocks. This means that the average number of ones per row is k
n−
∑n
j=i jxj

n−
∑n
j=i xj

which again must be no larger than i − 1. Rearranging this similarly to Theorem 2.6

gives us the constraints in the following linear program:

Lemma 2.9. For any fixed k, let α be the optimal solution of the following LP:

maximize α′ =
n∑
j=1

ln
(

1 + j
k−1

)
a′j

subject to
n∑
j=i

(kj − i+ 1)a′j ≥ k − i+ 1, i = 2, ..., k

n∑
j=1

ja′j = 1

aj ≥ 0, j = 1, ..., n

(2.5)

Then M(n, k)2 ≤ (γ′k)
n where γ′k = (k − 1)eα

′
.

We can also find the dual in the same manner as before:

minimize β′ =
k∑
i=1

(k − i+ 1)b′i

subject to
j∑
i=1

(kj − i+ 1)b′i ≥ ln
(

1 + j
k−1

)
, j = 1, ..., n

b′i ≤ 0, i = 2, ..., k

(2.6)

While the analog of Lemma 2.7 holds again, the proof is a little more involved:

Lemma 2.10. The optimal solution to equation 2.5 is given by a′j = 0 for j > k and the

other a′j determined by making all k non-trivial constraints tight. The optimal solution

to equation 2.6 is given by the b′i that make the first k constraints tight.

Proof. To show feasibility of the primal solution, we need to show that each aj is

positive, as the other constraints are already tight. This is trivial for each j > k, so we

focus on the case where j ≤ k.

To do this, we note that
∑k

j=i(kj− i+1)a′j = k− i+1 and
∑k

j=i+1(kj− i)a′j = k− i.

When solving for a′i, we get the recursive definition: a′i =
1−
∑k
j=i+1 a

′
j

(k−1)i+1 . The exact values

can be computed from this, but this is unnecessary to show that a′i ≥ 0.

We can simply note that this means that each a′i is a small fraction of the dis-

tance between
∑k

j=i+1 a
′
j and 1. By induction down from k, this means that every∑k

j=i+1 a
′
j ≤ n, and thus a′j ≥ 0 for every j.
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In addition, we can write the non-zero a′j in the same manner as in Lemma 2.7, so

~a′ = (M ′)−1~v and α = ~c>(M ′)−1~v, where all quantities are the same as in Lemma 2.7

except that M ′ij = kj − i+ 1 for j ≥ i instead.

To show feasibility of the dual solution, we need to show that b′i ≤ 0 for each i ≥ 2

and also that
j∑
i=1

(kj − i+ 1)b′i ≥ ln
(

1 + j
k−1

)
for each j > k, as the other constraints

are already tight.

To show both of these things, we rely heavily on the following equation:

(j−1)

j∑
i=1

(kj−i+1)b′i−j
j−1∑
i=1

(k(j−1)−i+1)b′i = (j−1)[(k−1)(j−2)+1]b′j+

j−1∑
i=1

(i−1)b′i

(2.7)

To show that b′j ≤ 0 for 2 ≤ j ≤ k, we simply notice that
∑j

i=1(kj − i + 1)b′i =

ln
(

1 + j
k−1

)
and

∑j−1
i=1 (k(j−1)−i+1)b′i = ln

(
1 + j−1

k−1

)
because j ≤ k. This means that

the left hand side is equal to (j−1) ln
(

1 + j
k−1

)
−j ln

(
1 + j−1

k−1

)
, so in order to show b′j

is negative, we need to show that
∑j−1

i=1 (i− 1)b′i ≥ (j− 1) ln
(

1 + j
k−1

)
− j ln

(
1 + j−1

k−1

)
for each j ≥ 2.

We show this by induction on j. The base case is when j = 2, where the left hand

side is 0. A simple application of Jensen’s inequality gives that the right hand side is

negative, and thus b′2 ≤ 0.

Now inductively assume that
∑j−1

i=1 (i− 1)b′i ≥ (j− 1) ln
(

1 + j
k−1

)
− j ln

(
1 + j−1

k−1

)
,

and thus that b′j ≤ 0. Using Jensen, we have that:[
j ln

(
1 +

j + 1

k − 1

)
− (j + 1) ln

(
1 +

j

k − 1

)]
−
[
(j + 1) ln

(
1 +

j + 2

k − 1

)
− (j + 2) ln

(
1 +

j + 1

k − 1

)]
= (j + 1)[2 ln

(
1 +

j + 1

k − 1

)
− ln

(
1 +

j

k − 1

)
− ln

(
1 +

j + 2

k − 1

)
] > 0 (2.8)

This means (j − 1)[(k− 1)(j − 2) + 1]b′j ≤ (j − 1)b′j , so using our constraints we get

that
∑j

i=1(i− 1)b′i ≥ (j − 1)[(k− 1)(j − 2) + 1]b′j +
∑j−1

i=1 (i− 1)b′i. By equation 2.8, we

have that j ln
(

1 + j+1
k−1

)
− (j+ 1) ln

(
1 + j

k−1

)
≥ (j− 1) ln

(
1 + j

k−1

)
− j ln

(
1 + j−1

k−1

)
,

so we have our induction.

This gives that b′j ≤ 0 for j ≥ 2. To show the other constraints are satisfied, we

simply leverage equations 2.7 and 2.8 differently.
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We prove that
∑j

i=1(kj − i + 1)b′i ≥ ln
(

1 + j
k−1

)
inductively, where the base case

is the given equality when j = k. Assuming truth for j, the inductive step is:

j+1∑
i=1

(k(j + 1)− i+ 1)b′i

=
j[(k − 1)(j − 1) + 1]b′j+1 +

∑j
i=1(i− 1)b′i + (j + 1)

∑j
i=1(kj − i+ 1)b′i

j

≥
j ln

(
1 + j+1

k−1

)
− (j + 1) ln

(
1 + j

k−1

)
+ (j + 1) ln

(
1 + j

k−1

)
j

= ln

(
1 +

j + 1

k − 1

)
This means that the b′i are a feasible solution to the dual, and so like in Lemma

2.7, we have ~b′ = (M ′>)−1~c and β′ = ~v>~b′ = ~v>((M ′)−1)>~c. Since α′ = β′, both are

optimal.

As in Theorem 2.4, we now can say that:

Theorem 2.11. For every k, there is a c′k such that M(n, k) ≤ c′k where c′k =
√
k −

t3
2
√
k

+O(k
−3
2 ) for t3 ≈ 0.178.

Proof. Using Lemma 2.9 and Lemma 2.10, we have that M(n, k) ≤ (c′k)
n for c′k =√

(k − 1)eα′ .

Asymptotically, this also means that ρk ≤
√
k − t3

2
√
k

+O(k
−3
2 ).

Experimentally t3 ≈ 0.178, but the recursive nature of the computations for finding

the ai (shown in the proof of Lemma 2.10) makes explicit calculation of t3 difficult.

While this seems identical to Theorem 2.4, we can prove that this new c′k is a strict

improvement on the ck from the previous analysis.

Theorem 2.12. The optimal solution α′ to equation 2.5 is strictly smaller than α

in equation 2.3. Therefore, the improved algorithm gives a strictly better bound on

M(n, k).

Proof. Since α =
∑k

j=1 aj ln
(

1 + j
k−1

)
, the difference is

∑k
j=1 ln

(
1 + j

k−1

)(
aj − 1

jk

)
.

Rearranging the sums gives that this difference is:
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ln

(
1 +

1

k − 1

) k∑
j=1

ja′j − 1

+
k∑
i=2

ln
(

1 + i
k−1

)
i

−
ln
(

1 + i−1
k−1

)
i− 1

 k∑
j=i

ja′j −
k − i+ 1

k


(2.9)

Because
∑k

j=1 ja
′
j = 1, the first term is simply 0. Using the other constraints

in equation 2.5, we know that
∑k

j=i(kj − i + 1)a′j = k − i + 1. This means that∑k
j=i ja

′
j − k−i+1

k = i−1
k

∑k
j=i a

′
j > 0 for each 2 ≤ i ≤ k.

Using Jensen’s inequality, we can see that
ln(1+ i

k−1)
i − ln(1+ i−1

k−1)
i−1 < 0 for every i ≥ 2,

so the other k − 1 terms are negative. This means that α′ < α , and so c′k < ck is an

improvement on our earlier algorithm.

Experimentally, this difference appears to be O(k−2), and thus has no effect on the

asymptotic convergence in Theorem 2.4, so t2 = t3. A plot of this is shown below in

Figure 2.1:

Figure 2.1: The differences between the exponents of the algorithms described in The-
orems 2.4 and 2.11. The computed line represents k2 times the difference computed in
Theorem 2.12, seemingly showing that α− α′ = O(k−2) and thus t2 = t3.
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2.5 Summary of Results

While it is impossible to improve on Ryser’s bound when λ = k(k−1)
n−1 is Ω(1) (k =

Ω(
√
n)), for fixed k we have can see the improvement on the previously known bounds

as shown in Table 2.1 below for k = 3 and various n:

Table 2.1: Generated Bounds on M(n, 3)

Values of n 7 14 21 28

Hadamard [10] 46.7654 2.1870× 103 1.0228× 105 4.7830× 106

Ryser [21] 24 1.2789× 103 0.6177× 105 2.9311× 106

Scheinerman [24] 40.7612 1.6615× 103 0.6772× 105 2.7605× 106

Theorem 2.4 38.8508 1.5094× 103 0.5864× 105 2.2782× 106

Theorem 2.11 37.5030 1.4065× 103 0.5275× 105 1.9782× 106

Note that Ryser’s bound [21] outperforms the others at small n, but rapidly ap-

proaches the Hadamard bound [10] as n gets larger.

By plotting the exponential growth factors as k gets larger, we can see how each

iteration improves upon the earlier bounds on ρk, as shown in Figure 2.2. The actual

asymptotic bounds are laid out in Table 2.2:

Table 2.2: Known Asymptotic Bounds on ρk

M(n, k) bound Asymptotic bound on ρk

Hadamard [10] k
n
2

√
k

Ryser [21] k(k − λ)
n−1
2

√
k

Scheinerman [24] (c2,k)
n

√
k − 1

4k
3
2

+O(k−3)

Scheinerman [24] (cqk,k)
n

√
k − .1

2
√
k

+O(k
−3
2 )

Theorem 2.4 (ck)
n

√
k − .18

2
√
k

+O(k
−3
2 )

Theorem 2.11 (c′k)
n

√
k − .18

2
√
k

+O(k
−3
2 )1

None of these approaches achieve the known lower bound on ρk given by a block

diagonal matrix of projective planes (ρk ≥
√
k− 1

2
√
k

+O(k
−3
2 )), but the gap is closing.

1Constant is conjectured
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Figure 2.2: The improvements over
√
k of various theorems’ bounds on ρk from k = 3

to k = 40. Ryser’s bound is not included as it is asymptotically no better than the
Hadamard bound (which is the x axis).

2.5.1 Limitations and avenues for improvement

Note that these bounds have three places where there could be loss:

1. In Fischer’s inequality for bounding the volume when subdividing into blocks.

2. In the determinant estimation within a single block.

3. In the LP relaxation of the integer program.

Since all constraints are integral in Equations 2.3 and 2.5, the optimal aj are always

rational. This means that if we choose an n that is a multiple of the least common

denominator, the LP solution is then an integral solution. For instance, if we consider

Equation 2.5 with k = 3, using n = 35 means we can decompose the rows into 5 blocks

of 3, 6 blocks of 2, and 8 blocks of 1. For k = 4, we can use n = 455 for the same result.
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The determinant estimation is tight within a single block Ai when AiA
>
i = Jmi +

(k − 1)Imi . Because AiA
>
i is a Gram matrix, and there is a column of Ai that is all 1,

we simply need to place the other k − 1 ones in each row such that no two are in the

same column.

In the case where Equation 2.5 is tight that is described above, we have that
n∑
j=i

(kj−

i+1)xj = (k− i+1)n for each 1 ≤ i ≤ k. If we consider all the rows in all the xi blocks

of size i, there are ixi rows where we need to place k − 1 ones in each. Since none of

the chosen rows can have any more ones in them there are
∑n

j=i xj rows we can’t use.

As in the proof of Lemma 2.10, we know that ai =
1−
∑k
j=i+1 aj

(k−1)i+1 . Rescaling by n gives

that n−
∑k

j=i xj = ixi(k − 1), so we only need to put a single one in each column for

all xi blocks!

This means that our determinant estimation can be tight inside every block. In

addition, this means that if we have two blocks of size i, and take a vector from each

block, they will always be perpendicular. This means that B1B2 = 0 in Fischer’s

inequality for these blocks as well, so our bound is tight there.

Since each set of blocks puts a one in every row that wasn’t chosen, clearly this part

of Fischer’s inequality isn’t tight when the blocks are different sizes. Looking closer

shows that each column also has k non-zero entries in this example.

This suggests that the first type of error is where any improvement could be made to

this bound, as opposed to the other two. However, it is likely a more nuanced approach

will need to be used to balance these different errors.

To see this, we randomly generated many examples of this form for k = 3, and found

that the maximum of their determinants never exceeded the asymptotic lower bound

given by the Fano plane (which is 24
n
7 ).

This suggests that the projective plane (or a block matrix of them) has the (asymp-

totically) largest determinant of any matrix in T (n, k). When examining the execution

of the greedy algorithm on a projective plane, the decomposition is 1 block of size k and

k− 1 blocks of size k− 1. Only the i = k inequality is tight here, and so the projective

plane is nowhere close the LP bound.

This block decomposition still has that the determinant estimation is tight within
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each block, but there still is significant error coming from the volume submultiplica-

tivity. Even if we set xj to the number of blocks from aboce, the volume bound

we get for the projective plane of with k ones in each row (order k − 1) is (k −

1)k
2−k+1 2k−1

k−1

(
2k−2
k−1

)k−1
= (2k − 1)2k−1(k − 1)k

2−k−1. This is much larger than the

actual volume which is k2(k − 1)k
2−k, and the loss is approximately a factor of 2k

k2
.

2.6 Related Classes of Matrices

Ryser [21], Bruhn and Rautenbach [5], and Scheinerman [24] also defined two other

related classes of matrices, which they entitled S(n, k) and T (n, k) as follows:

Definition 2.13. S(n, k) = {A ∈ R(n, k) : A> ∈ R(n, k)}.

Definition 2.14. T (n, k) =

{
A ∈Mn×n({0, 1}) :

n∑
i=1

n∑
j=1

Aij = kn

}
.

Since S(n, k) is the set of matrices with k ones in each row and k ones in each

column, and T (n, k) is the set of matrices with a total of kn ones, clearly S(n, k) ⊂

R(n, k) ⊂ T (n, k).

When asking for the maximum determinants of these other classes of matrices we

define the following notation:

Definition 2.15. MS(n, k) = maxA∈S(n,k) |det(A)|

Definition 2.16. MT (n, k) = maxA∈T (n,k) | det(A)|

By inclusion we have that MS(n, k) ≤ M(n, k) ≤ MT (n, k). Using concavity and

Hadamard’s bound we can see that MT (n, k) ≤
(√

k
)n

as well. Ryser [21], Bruhn and

Rautenbach [5], and Scheinerman [24] each showed slightly more.

The same theorem by Ryser [21] used above applies to any matrix in T (n, k), giving

that MT (n, k) ≤ k(k − λ)
n−1
2 for λ = k(k−1)

n−1 , slightly improving over Hadamard. In

addition, they showed the tight examples are exactly the combinatorial designs with

those parameters, indirectly proving that MS(n, k) = M(n, k) = MT (n, k) when such a

combinatorial design exists.

While this is an improvement on Hadamard, in the fixed k regime the question of

equality remained open until Bruhn and Rautenbach [5] showed that MT (n, 2) ≤ ( 6
√

6)n,
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giving an exponential improvement on Hadamard’s bound. Scheinerman [24] was able

to generalize this to MT (n, k) ≤ cnk for ck =
√
k2 − 1

k−1
2k k

1
2k .

A linear programming approach similar to Theorem 2.4 can be used here giving the

following result:

Theorem 2.17. Let κ be the optimal objective value for the following linear program:

maximize κ =
n∑
l=2

pl ln(l − 1) +
n∑
j=1

tjl ln
(

1 + j
l−1

)
subject to

n∑
j=i

ljtjl ≥ lpl − i+ 1, l = 1, ..., n, i = 2, ..., n

n∑
j=1

jtjl = pl l = 1, ..., n

n∑
l=1

lpl = k

n∑
l=1

pl = 1

pl, xjl ≥ 0, j = 1, ..., n, l = 1, ..., n

(2.10)

Then MT (n, k)2 ≤ eκn

Proof. The methodology used here is similar to Theorem 2.6, except that now we can

have anywhere from 1 to n ones per row. To that end, we break up the matrix into n

sets of rows, where each set contains all the rows with a certain number of ones. We

denote the proportion of rows with l ones by pl, giving the last two constraints.

Then we let tjl be the number of blocks of size j in the lth set, and derive the

remaining constraints in the same way as in the proof of Lemma 2.6. Since we can

bound the determinant by the product of the volumes of each set of rows for each l, we

simply take the logarithm to get our objective function.

Scheinerman’s bound [24] can be rewritten as a dual feasible solution in a similar

way to Theorem 2.8, meaning that Theorem 2.10 is an improvement, although further

analysis is needed to quantify the difference.

It is possible to use the improvements used for Theorem 2.11 to improve the bounds

within each set of rows, although there is still error from using Fisher’s inequality to

combine the bounds from each set.
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Scheinerman [24] also conjectured that limn→∞MS(n, k)
1
n = ρk = limn→∞MT (n, k)

1
n

for all k ≥ 2, citing computational evidence that the projective plane was determinant

maximizing in all three subsets of matrices.

In the previous section, the construction of a matrix in R(n, k) for which all esti-

mations are tight save that from Fisher’s inequality is also contained in S(n, k), further

suggesting that S(n, k) likely contains the maximizing examples and thus MS(n, k) =

M(n, k). Even though these matrices minimize some of the errors in the algorithm,

experimentally their determinants are smaller than that of a block matrix of projective

planes, implying that those are the determinant maximizing matrices, and suggesting

Scheinerman’s conjecture is true.
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Chapter 3

Supports of Binary Polynomials

3.1 Polynomials on F2

Finding and counting the zeros of polynomials over various structures has been used

throughout many areas of mathematics, ranging from algebra to complex analysis.

Computer science also leans heavily on the mathematics of polynomials, with applica-

tions to circuits or codes.

When discussing circuit complexity, we often represent the input wires to a circuit

as variables that take on values in F2 to simulate boolean logic. The gates of the circuit

can now be represented as arithmetic operations in F2, and thus the entire circuit can be

written as a polynomial. This essential idea has been used for proving many results in

complexity theory, including some in PCPs and other probabilistic complexity classes.

Model examples are Razborov-Smolensky [20],[27] which proves lower bounds on AC0

circuit complexity.

In addition, the area of error correcting codes often relies on polynomials to construct

good rate codes with large distance. Reed-Muller, Reed-Solomon, and BCH codes all

utilize the properties of polynomials in finite fields to get their properties. This paper

builds on the methods in [11] and [12], which are also focused on Reed-Muller codes.

In all these applications, an essential result that is often used for polynomials over

finite fields is the Schwartz-Zippel Lemma [30],[25],[7]:

Theorem 3.1. If f ∈ Fq[X1, . . . , Xn] is a nonzero polynomial of total degree at most

d, then

P
~x∈Fnq

(f(~x) = 0) ≤ d

q

However, when q = 2, this bound only is meaningful for linear polynomials, so the
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following generalization can be used:

Theorem 3.2. If f ∈ F2[X1, . . . , Xn] is a nonzero polynomial of total degree at most

d, then

P
~x∈Fn2

(f(~x) = 0) ≤ 1− 2−d

Both of these bounds are tight, exhibited by the polynomial f( ~X) =
∏d
i=1Xi.

Kasami and Tokura [11] focused on the q = 2 case and fully characterized all tight

examples for Theorem 3.2:

Theorem 3.3. If f ∈ F2[X1, . . . , Xn] is a nonzero polynomial of total degree at most d

where P~x∈Fn2 (f(~x) = 0) = 1−2−d, then f is the product of d linearly independent linear

functions.

In this chapter we develop similar results for when ~x is constrained to within a

certain Hamming weight, both giving a bound and characterizing the tight examples.

3.2 Preliminaries

Given a polynomial f ∈ F2[X1, . . . , Xn] and a non-negative integer r no larger than n,

we define |f |r = |{~x ∈ F2 : ‖~x‖H ≤ r, f(~x) = 1}|. This is similar to the notation of

Kasami and Tokura [11] , although the subscript has a different meaning.

Since we only are considering the evaluations of polynomials in F2[X1, . . . , Xn] on Fn2 ,

we can utilize that x2i = xi for every i and ~x ∈ Fn2 . We can multilinearize polynomials

by reducing them modulo X2
i +Xi and the support is unchanged. To this end, we treat

all polynomials as elements of the polynomial ring Mn, as defined below:

Definition 3.4. Mn := F2[X1, . . . , Xn]/〈X2
i +Xi : i ∈ [n]〉

Even though the following theorems are written for polynomials in Mn, since mul-

tilinearization can only reduce the total degree of a polynomial, the same results also

apply to polynomials in F2[X1, . . . , Xn]. This allows us to rewrite Theorem 3.3 as

follows:

Theorem 3.5. If f ∈ Mn is a nonzero polynomial of total degree at most d where

|f |n = 2n−d, then f is the product of d independent linear functions.
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To prove this, we prove a division lemma that uses the following notion of divisibility:

Definition 3.6. A polynomial g ∈ Mn is ml-divisible by a polynomial f ∈ Mn if and

only if there is a polynomial h ∈Mn with deg(h) ≤ deg(g)− deg(f) such that g = f · h

in Mn.

Lemma 3.7. If f, l ∈ Mn are polynomials such that deg(l) = 1, deg(f) ≤ n, and

f(~x) = 0 ∀~x ∈ Fn2 : l(~x) = 0, then l ml-divides f .

Proof. Since l depends on at least one variable, there is a change of variables such that

l( ~X) = Xn. The linearity of l means that the degree of f is preserved in the new

variables, and thus all the assumptions still hold.

This means that f is zero when Xn = 0, and (potentially) non-zero only on the sub-

space Xn = 1. There is some h ∈ Mn−1 such that h(y1, . . . , yn−1) = f(y1, . . . , yn−1, 1)

for all ~y ∈ ~Fn−12 . Trivially this means that f(~x) = l(~x)h(~x), and so since both poly-

nomials are of degree less than or equal to n, they are equal in Mn. This means

that deg(h) = deg(f) − 1, and this is preserved when changing back to the original

variables.

We also utilise the following simple lemma:

Lemma 3.8. If f ∈ Mn is ml-divisible by l1, l2, . . . , lt ∈ Mn where deg(li) = 1∀ i ∈ [t]

and all li are linearly independent, then f is ml-divisible by
∏t
i=1 li.

Proof. Since the li are linearly independent, there is an affine change of coordinates

Φ : Fn2 → Fn2 that maps li ◦ Φ = Xi for every i ∈ [t].

Now g = f ◦Φ must be ml-divisible by all of the li ◦Φ, and so we can let h ∈Mn−t

be the unique function such that h(y1, . . . , yn−t) = f(1, . . . , 1, y1, . . . , yn−t).

Similar to the proof of Lemma 3.7, we can see that g = h ·
∏t
i=1Xi, and so reversing

the change of variables gives that
∏t
i=1 li ml-divides f .

The proof of Theorem 3.5 is fairly simple using Lemmas 3.7 and 3.8:
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Proof. This proof goes via induction on n. The base case is n = 0, where the only

nonzero function is identically 1. Trivially this satisfies all the conditions and conclu-

sions of the theorem.

Otherwise we can relabel the variables such that f depends on the variable Xn. Now

define two functions f0, f1 ∈ Mn−1 such that f( ~X) = f0( ~X) + Xnf1( ~X). Note that f0

is of degree at most d, while f1 is of degree at most d− 1 and is nonzero.

If xn is zero, then f(~x) = f0(~x). Otherwise f(~x) = f0(~x) + f1(~x), so by separating

the cube into these two halves we see that:

|f |n = |f0|n−1 + |f0 + f1|n−1 = 2|f0|n−1 + |f1|n−1 − 2|f0f1|n−1

Clearly |f0|n−1 ≥ |f0f1|n−1, so we can see that |f1|n−1 ≤ 2n−d. However, since f1

is nonzero of degree d − 1, the Lemma 3.2 gives that |f1|n−1 ≥ 2(n−1)−(d−1). By our

inductive assumption, this means that f1 is the product of d − 1 independent linear

functions L1, . . . , Ln−1.

Using the equation above, we can now see that |f0|n−1 = |f0f1|n−1, meaning f0(~x) =

0 when f1(~x) = 0. Since f1 is the product of L1, . . . , Ln−1, each of these linear functions

have the same property. By Lemma 3.7, each of the Li ml-divide f0, so we can use

Lemma 3.8 to see that f0 = h ·
∏d−1
i=1 Li for some deg(h) ≤ 1.

This means that f = (h+Xn) ·
∏d−1
i=1 Li. Since all the Li do not depend on Xn, it

is clear that h+Xn is a linear function independent of all the Li, regardless of h.

The main theorems in this paper follow a similar structure to attain more general

results. We will use the following notation to denote the numbers used in the following

theorems: Let
(
a
≤b
)

=
∑b

i=0

(
a
i

)
for any integral a and b. Now we prove the following

analog of the Schwartz-Zippel lemma:

Theorem 3.9. If f ∈ Mn is a nonzero polynomial of total degree at most d, then

|f |r ≥
(
n−d
≤r−d

)
for any r.

Proof. This is can proven via induction on d, with the base case being d = 0. The

only nonzero polynomial of degree d is identically 1, which trivially satisfies all the

constraints.
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Otherwise we assume f depends on some variable, which we may assume is Xn.

Then define f0 and f1 as above, only now we note that |f |r = |f0|r + |f0 + f1|r−1 =

|f0|r + |f0|r−1 + |f1|r−1 − 2|f0f1|r−1 since we need to account for the Hamming weight

when xn = 1.

We note that trivially |f0|r ≥ |f0|r−1 ≥ |f0f1|r−1, so we know that |f |r ≥ |f1|r−1.

Since f1 is a non-zero polynomial of degree d − 1 on n − 1 variables, by induction we

know that |f1|r−1 ≥
( (n−1)−(d−1)
≤(r−1)−(d−1)

)
=
(
n−d
≤r−d

)
.

When r = n, we recover Theorem 3.2. This also provides a more exact proof of a

lemma used in [14], showing that any nonzero polynomial of degree d cannot vanish on

any ball of radius ≥ d.

In addition, we can see that these bounds are tight for every r, d ≤ n: For a given

d, the function f( ~X) =
∏d
i=1Xi is tight for every 0 ≤ r ≤ n. However, this is not the

only minimizing polynomial, as described in the following theorem:

Theorem 3.10. If f ∈ Mn is a nonzero polynomial of total degree at most d where

|f |r =
(
n−d
≤r−d

)
, then f is of one of the following forms depending on how large r is

relative to n and d:

1. If r = n then f( ~X) =
∏d
i=1 Li(

~X) for Li( ~X) linear functions that are mutually

independent.

2. If r = n−1 then f( ~X) =
∏d
i=1 Li(

~X) for Li( ~X) linear functions that are mutually

independent and Li(~1) = 1 for all i.

3. If d < r < n − 1, then either f( ~X) =
∏
i∈S Xi for some S ⊂ [n] with |S| = d or

f( ~X) = (r +
∑n

i=1Xi)
∏
i∈S Xi for some S ⊂ [n] and |S| = d− 1.

4. If r = d, then f( ~X) =
∑

T⊇S:|T |≤d
∏
i∈T Xi for some S ⊂ [n] with |S| ≤ d.
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5. If r < d, then f(~x) is a nonzero linear combination of the monomials
∏
i∈S Xi for

r < |S| ≤ d.

The theorem is proved in full in the following section through various lemmas.

3.3 Structure of Nonzero Polynomials with Minimal Support on Vec-

tors of Hamming Weight Less Than r

To prove the previous structure theorem, we address each case independently. The first

case was already proven by Kasami and Tokura [11], and a proof is shown in Theorem

3.5. The second case is proven similarly:

Lemma 3.11. If f ∈ Mn is a nonzero polynomial of total degree at most d where

|f |n−1 =
(

n−d
≤n−d−1

)
= 2n−d − 1, then f( ~X) =

∏d
i=1 Li(

~X) for Li( ~X) linear functions

that are mutually independent and Li(~1) = 1 for all i.

Proof. Since f is a nonzero polynomial, Theorem 3.2 gives that |f |n ≥ 2n−d. But since

the only point not counted in |f |n−1 is ~1, we have that |f |n ≤ |f |n−1 + 1. This gives

that |f |n = 2n−d as well as f(~1) = 1.

By Theorem 3.5, the first equality shows f( ~X) =
∏d
i=1 Li(

~X) for Li( ~X) linear

functions that are mutually independent. Since f(~1) =
∏d
i=1 Li(

~1) = 1, Li(~1) = 1 for

every i.

When r < n − 1, we have much fewer minimizing polynomials, and they come

in exactly two forms. While it is easy to see that the product of d variables has

exactly the minimum support size, we have another specific linear factor that is allowed:

(r +
∑n

i=1Xi). This factor makes f vanish on points whose Hamming weight is the same

parity as r, which means that the support (when f is degree d) is
∑b r−d2 c

i=1

(n−d+1)
r−d−2i

)
.

Using the binomial identity
(
a
b

)
=
(
a−1
b

)
+
(
a−1
b−1
)
, we can verify that this is equal to(

n−d
≤r−d

)
.

To prove these are the only minimizing polynomials, we cannot use the same method-

ology as Lemma 3.11. Instead we use a method similar to Theorem 3.9.
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Lemma 3.12. If f ∈ Mn is a nonzero polynomial of total degree at most d where

|f |r =
(
n−d
≤r−d

)
for d < r < n − 1, then either f( ~X) =

∏
i∈S Xi for some S ⊂ [n] with

|S| = d or f( ~X) = (r +
∑n

i=1Xi)
∏
i∈S Xi for some S ⊂ [n] and |S| = d− 1.

In order to prove this, we also need a division lemma similar to Lemma 3.7:

Lemma 3.13. Let f ∈ Mn with deg(f) ≤ t and l ∈ {Xi : 1 ≤ i ≤ n} or l( ~X) =

t+
∑n

i=1Xi. If f(~x) = 0 ∀ ‖~x‖H ≤ t with l(~x) = 0, then l ml-divides f .

Proof. We begin with the case where l = Xi for some i. Assume for the sake of

contradiction that there is a monomial in f of the form
∏
i∈T Xi for some T ⊂ [n] \ {i}.

Since deg(f) ≤ t, we have that |T | ≤ t.

In this case, there is a minimal monomial of this type, so let T be minimal. This

means that f(~1T ) = 1, since no other monomial evaluates to 1. However, l(~1T ) = 0 and

‖~1T ‖ = |T | ≤ t, so by our assumptions f(~1T ) = 0.

This contradiction gives that there are no monomials in f that do not contain Xi,

so by factoring out that variable from each monomial we get that f(~x) = Xih( ~X) with

deg(h) ≤ deg(f)− 1.

If l = t+
∑n

i=1Xi, we let Ψ be a change of basis given by the involution:

Ψ(X1, . . . , Xn−1, Xn) = (X1, . . . , Xn−1, t+

n∑
i=1

Xi)

This change of basis preserves degree, but Ψ(~x) need not have the same Hamming

weight as ~x. However, as long as ‖~x‖H ≤ t, we have that ‖Ψ(~x)‖H ≤ t, as Ψ(~x)n = 0 if

‖~x‖H = t.

This means that l(Ψ( ~X)) and f(Ψ( ~X)) satisfy the same assumptions of the lemma,

only now we also have that l(Ψ( ~X)) = Xn. By the proof above, f(Ψ( ~X)) = l(Ψ( ~X))h(Ψ( ~X)),

so f( ~X) = l( ~X)h( ~X). Since the change of variables preserves degree, we still have

deg(h) ≤ deg(f)− 1.

To prove Lemma 3.12, Lemma 3.13 is used in a similar way as Lemma 3.7 is in

Theorem 3.5, although more computation is required to perform the inductive step:
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Proof of Lemma 3.12. The proof is by induction on d, where the base case is d = 0.

The only non-zero polynomial of degree 0 is identically 1, and this trivially is in the

first form allowed.

Similar to Theorem 3.5, assume that f( ~X) depends on Xn, and define the poly-

nomials f0 and f1 as before. As before we know that |f0|r ≥ |f0|r−1 ≥ |f0f1|r−1, so

|f |r ≥ |f1|r−1. However, the result of that theorem says |f1| ≥
(
n−d
≤r−d

)
, meaning it is in

fact equality. Since f1 is of lower degree, we can use our theorem by induction. Because

d− 1 < r − 1 < n− 2, we have 2 cases:

1. f1( ~X) =
∏
i∈S′ Xi for some S′ ⊂ [n− 1] with |S′| = d− 1

2. f1( ~X) =
(
r − 1 +

∑n−1
i=1 Xi

)∏
i∈S′ Xi for some S′ ⊂ [n− 1] and |S′| = d− 2

Since |f1|r−1 = |f |r, we know that |f0|r = |f0|r−1 = |f0f1|r−1. The first equality

means that f0(~x) = 0 when ‖~x‖H = r, while the second says f0(~x) = 0 when ‖~x‖H ≤

r − 1 and f1(~x) = 0.

Since deg(f0) = d ≤ r − 1 and f1 is the product of d− 1 linear factors of the forms

used in Lemma 3.13, we can apply the lemma to each factor with t = r − 1. This

means that each factor ml-divides f0, so by Lemma 3.8, f1 also ml-divides f0. Since f1

is degree d− 1, this means that f0 = h · f1 where deg(h) ≤ 1.

Let h( ~X) = a+
∑n−1

i=1 aiXi for constants a and ai. Now the first equality from above

says that if R ⊂ [n− 1] is a subset of size r, we have that:

f0(~1R) = f1(~1R)h(~1R) = f1(~1R)

(
a+

∑
i∈R

ai

)
= 0

Regardless of which case we are in, if S′ ⊂ R, then f1(~1R) = 1. This means that(
a+

∑
i∈R ai

)
= 0 as long as S′ ⊂ R.

Now choose any i 6= j ∈ [n − 1] \ S′. Because r < n − 1, we can pick an R with

|R| = r such that i ∈ R and j 6∈ R. Then we can set R′ = R ∪ {j} \ {i}. Now we have

that: (
a+

∑
i∈R

ai

)
+

(
a+

∑
i∈R′

ai

)
= ai + aj = 0
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Since i and j were chosen arbitrarily this means that for some constant c, ai = c for

every i ∈ [n− 1] \ S′. This means that:

h( ~X) = a+
∑
i∈S′

aiXi + c
∑

i∈[n−1]\S′
Xi

Since h is being multiplied by f1, h is multiplied by Xi for each i ∈ S′, and thus every

choice of the ai induces the same function up when multilinearized modulo X2
i − Xi.

We choose ai = c for each i ∈ S′, meaning that h(~1R) = a + cr = 0 for S′ ⊂ R. This

means a = cr and thus:

h( ~X) = c

(
r +

n−1∑
i=1

Xi

)
If c = 0, then f0 = 0, and thus f = Xnf1, which is in one of the two accept-

able forms, regardless of which form f1 takes. However, if c = 1, then f0( ~X) =(
r +

∑n−1
i=1 Xi

)
f1( ~X). If

(
r − 1 +

∑n−1
i=1 Xi

)
divides f1, then both

(
r +

∑n−1
i=1 Xi

)
and its conjugate divide f0, and thus f0 is identically 0 on Fn2 which reduces to the

prior case. Otherwise, f1( ~X) =
∏
i∈S′ Xi for some S′ ⊂ [n − 1] with |S′| = d − 1, so

f( ~X) =
∏
i∈S Xi (r +

∑n
i=1Xi) for S = S′.

At the threshold r ≤ d, the paradigm changes again and the minimizing functions

are easier to determine:

Lemma 3.14. If f ∈ Mn is a nonzero polynomial of total degree at most d where

|f |d =
(
n−d
≤d−d

)
= 1, then f( ~X) =

∑
T⊇S:|T |≤d

∏
i∈T Xi for some S ⊂ [n] with |S| ≤ d.

When r = d, there is a unique point with weight less than d that entirely determines

the structure of the polynomial. The proof follows from that observation:

Proof. Since |f |d = 1, there is a unique ~x with ‖~x‖H ≤ d for which f(~x) = 1. Let

S ⊆ [n] be the set for which ~x = ~1S .

Assume that f has the monomial
∏
i∈T xi for some T 6⊇ S. As in the proof of 3.7,

take a minimal T , and so f(~1T ) = 1. Since f is of maximum degree d, ‖~1T ‖H ≤ d,

which is a contradiction.

Now we can show that
∏
i∈T Xi is part of f for every T ⊇ S by induction on the

size of T up to |T | = d. The base case is T = S. Since no monomials of with fewer than

|S| factors can be part of f , the only reason f(~1S) can be 1 is that
∏
i∈S xi is in f .
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Now we assume that
∏
i∈T ′ xi is part of f for every S ⊆ T ′ ( T . If

∏
i∈T xi is

not part of f , then f(~1T ) =
∑

S⊆T ′(T 1 = 2|T |−|S| − 1 = 1. Since |T | ≤ d, this is a

contradiction.

It is possible for a polynomial of degree d to vanish on all points with Hamming

weight less than d, so when r < d, saying |f |r = 0 is just imposing a set of linear

constraints on f . The resulting minimizing polynomials thus form a subspace which we

can easily characterize:

Lemma 3.15. If f ∈ Mn is a nonzero polynomial of total degree at most d where

|f |r =
(
n−d
≤r−d

)
= 0, then f( ~X) is a nonzero linear combination of the monomials

∏
i∈S Xi

for r < |S| ≤ d.

Proof. If r < |S| ≤ d, note that |
∏
i∈S Xi|r = 0. This means that if f is in the subspace

generated by these monomials, then |f |r = 0.

Now assume that f contains a monomial
∏
i∈T Xi for some |T | < r. We may again

take T to be minimal, and then f(~1T ) = 1, which is a contradiction. This means that

the subspace is the set of polynomials of degree at most d that vanish on points of

hamming weight at most r.

3.4 Division Lemmas

As in [9], factoring polynomials is itself an important problem with applications outside

its usage in this paper. We used Lemma 3.7 and Lemma 3.13 to find the linear factors

needed for Theorem 3.5 and Theorem 3.10 respectively.

While we assume less about the polynomial to be factored using Lemma 3.7, the

lemma only works for specific linear functions: The linear functions with minimal sup-

port on vectors of Hamming weight less than t. Any other linear function will not

induce an automorphism when doing a change of coordinates as in the proof of Lemma

3.13. In fact, we can actually produce a counterexample for each of these other linear

functions:
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Lemma 3.16. If l( ~X) is a linear function that is not t+
∑n

i=1Xi or Xi for any 1 ≤ i ≤

n, then for any t < n− 1 there is a function f with deg f = t and f(~x) = 0 ∀ ‖~x‖H ≤ t

with l(~x) = 0, but l does not ml-divide f .

Proof. If l satisfies the conditions above, it is not of the structures described in Lemma

3.12, so it must be that |l|t >
(
n−1
≤d−1

)
.

Consider all functions f ∈ Mn such that deg(f) ≤ t and f(~x) = 0 ∀ ‖~x‖H ≤ t

with l(~x) = 0. All these constraints are linear, meaning that this forms a vector space

V ⊂ Mn. The dimension of V is then easily computed to be |l|t, as we can think of it

as a subspace of the space of polynomials of degree at most t, with codimension equal

to the number of times l(~x) = 0 in the Hamming ball of radius t.

Now consider the vector space W of polynomials f ∈ Mn such that l ml-divides f .

Trivially W ⊂ V , but since f = l ·g for some g ∈Mn−1 with degree d−1, the dimension

of W is
(
n−1
≤d−1

)
< dim(V ), and thus W ( V . Therefore V \W 6= ∅ and thus there is a

polynomial f ∈ V \W that satisfies all the constraints of the theorem.

We also provide the following construction to generate an explicit f for every l that

satisfies the conditions:

Constructive Proof. Since l is a non-trivial linear function, we can write l( ~X) = a +∑
i∈S Xi for some ∅ 6= S ⊆ [n]. Fix some j ∈ S. Now choose a maximal set T1 ⊆ S \{j}

such that |S| ∼= a+ 1 mod 2 and |T1| ≤ t. This is always possible unless |S \ {j}| = 0

and a = 0, which only occurs when l( ~X) = Xi for some i ∈ [n].

Now Let T2 be any set of t−|S′| elements chosen from [n]\S. Since t < n−1, the only

way this is impossible is if S = [n] and t ∼= a mod 2 which is when l( ~X) = t+
∑n

i=1Xi.

Otherwise, let T = T1 ∪ T2, so |T | = t.

Now let f( ~X) =
∏
i∈T Xi. Note that f is zero on all |~x|H ≤ t except ~1T , so since

l(~1T ) = a+ |S′| = 1, all that remains is to show that l does not divide f .

Because l depends on Xj , l(~1T∪{j}) = 0. However f(~1T∪{j}) = 1, meaning that

f 6= l · g for any g ∈Mn.

The same techniques can be used to prove analogs of Lemma 3.13 and Lemma 3.16
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for the case where t = n − 1, except the linear functions that can be used are those l

for which l(~1) = 1.

In Lemma 3.16, we note that the technique used can only construct counterexamples

of degree exactly t. This is no coincidence, as the following extension of Lemma 3.13

shows:

Lemma 3.17. If f, l ∈ Mn are polynomials such that deg(l) = 1,deg(f) ≤ t − 1, and

f(~x) = 0∀ ‖~x‖H ≤ t with l(~x) = 0, then l ml-divides f .

We can prove this in two similar ways, using either of our previous division lemmas.

The first proof of this mirrors that of Lemma 3.13, using a similar change of coordinates

to prove divisibility:

Proof using Lemma 3.13. Without loss of generality, we can assume that l depends on

Xn, and thus let Ψ be a change of basis given by the involution:

Ψ(X1, . . . , Xn−1, Xn) = (X1, . . . , Xn−1, l( ~X))

While this doesn’t induce an automorphism in the same way as Lemma 3.13, we

note that only one coordinate is changing, and thus ‖Ψ(~x)‖H − ‖~x‖H ≤ 1. This means

that {~x : ‖Ψ(~x)‖H ≤ t − 1} ⊂ {~x : ‖~x‖H ≤ t}, so since f(~x) = 0∀ ‖~x‖H ≤ t with

l(~x) = 0, we have that f(Ψ(~x)) = 0∀ ‖Ψ(~x)‖H ≤ t− 1 with l(Ψ(~x)) = 0.

Now since deg(f) ≤ t− 1 and l(Ψ( ~X)) = Xn, by Lemma 3.13, l ml-divides f .

This can also be proved through a clever use of Theorem 3.9:

Proof using Lemma 3.9. Consider the function g = f(1 − l). Since f(~x) = 0 when

l(~x) = 0 and ‖~x‖H ≤ t, we can see that g vanishes on every ~x with ‖~x‖H ≤ t, and thus

|g|t = 0

Since deg g ≤ deg f + 1 ≤ t, by Theorem 3.9 we know that g = 0 (after multilin-

earization). This means that f(~x) = 0 when l(~x) = 0 for every ~x ∈ Fn2 , so by Lemma

3.7 l ml-divides f .
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This means that the only possible counterexamples to Lemma 3.13 are of degree

exactly t. While Lemma 3.17 is not needed in the proof of Theorem 3.12, it may have

other applications in future work.

3.5 Further Directions

There are a few avenues to explore to extend these results. Kasami and Tokura [11],

[12] analyze the structure of polynomials with nearly minimal support. When only

considering the support on vectors with weights less than r, similar results may be

possible.

When r ≤ d, by taking a proper summation of the functions described in Lemma

3.14 (and Lemma 3.15 if r < d), we can create a function with an arbitrary support on

{~x : ‖~x‖ ≤ r}, trivially answering the above questions in this regime.

When r > d, the question of identifying and categorizing nearly minimal supports

is far less trivial. The first challenge with obtaining a structural result is determining

which range of |f |r such a theorem can address, since it is unclear what even the

second smallest support is. By considering f = (X1 +X2)X3 . . . Xd+1, we can see that

|f | = 2
(
n−d−1
r−d−1

)
is possible, though experimentally this is not always the second smallest

support size.

The methods used in Lemma 3.12 unfortunately don’t generalize well in this regime,

since now it is possible that |f0|r + |f0|r−1 − 2|f0f1|r−1 > 0. Although we can rewrite

this number as |{~x : ‖~x‖H = r, f0(~x) = 1}|+ 2|f0(1− f1)|r−1, this still means that:

|f |r −
(
n− d
r − d

)
= |{~x : ‖~x‖H = r, f0(~x) = 1}|+ 2|f0(1− f1)|r−1 +

(
|f1|r−1 −

(
n− d
r − d

))
This three term summation means that there are potentially many ways to distribute

the excess support size, raising the complexity of any categorization proof substantially.

To avoid this problem in the r = n case, Kasami and Tokura [11] decompose f

along two variables, writing f = f0 + Xn−1f1 + Xnf2 + Xn−1Xnf3 for f0, f1, f2, f3 ∈

F2[X1, . . . , Xn−2]. In the r < d case, we now must consider the changes in r that come

from writing |f |r = |f0|r + |f0 + f1|r−1 + |f0 + f2|r−1 + |f0 + f1 + f2 + f3|r−2.
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Kasami and Tokura [11],[12] also use the fact that any affine change of coordinates

in Fn2 is an automorphism of the cube to find linear factors of f , but when r < n this is

not possible unless the affine change of coordinates is one of the special ones outlined

in Lemma 3.13. However, it may be possible to use Lemma 3.17 to find linear divisors

when the degree is low enough, implying that the regime to examine is r > d+1 instead

of r > d.

So far all these questions have been focused on determining the structure and sup-

port of a polynomial f ∈ F2[X1, . . . , Xn]. If the polynomial is over Fq instead of F2,

we can ask similar questions. The same kind of improvements in Theorem 3.2 can be

applied to Fq to get a similar Schwartz-Zippel type result:

Theorem 3.18. If f ∈ Fq[X1, . . . , Xn] is a nonzero polynomial of total degree at most

d, then by writing d = a(q − 1) + b for 0 ≤ b < q − 1,

P~x∈Fnq (f(~x) 6= 0) ≥
(

1− b

q

)
q−a

This generalization can be seen to be tight in a similar way to Theorem 3.2: Let

f( ~X) =
∏a
i=1(X

q−1
i − 1)

∏b
j=1(Xb − j). This polynomial and all affine transformations

of it are tight examples for Theorem 3.18, but it is unknown whether these are the only

polynomials that do so.

In projective space, this is known ([28],[26],[15],[6]), but it is not clear how to adapt

those algebraic methods to address the affine case. The methods used here don’t gen-

eralize well into Fq, as even if we write f =
∑q−1

i=0 X
i
nfi, we can no longer use inclusion-

exclusion to analyse |f0 + f1|r in terms of |f0|r and |f1|r. Further algebraic tools are

needed to continue this line of inquiry.
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Chapter 4

Weight Bounds in Dual Reed-Muller Codes

4.1 Background and Definitions

In coding theory, the most basic uses of polynomials are the Reed-Muller codes. For

a given degree d, there are
(
n
≤d
)

unique monomials on n variables of degree no more

than d, and thus we can represent
(
n
≤d
)

bits as a polynomial f ∈ F2[X1, . . . , Xn] where

deg f ≤ d.

The codeword corresponding to a given f is the tuple (f(~x) : ~x ∈ Fn2 ). This is a

string of length 2n, thus encoding at a rate of
( n≤d)
2n .

The minimum distance between two codewords f and g is exactly the number of

nonzeros in the codeword of f+g. Unless f = g, this is a non-zero polynomial of degree

less than d and so by Theorem 3.2, f + g has at least 2n−d non-zeros. This means the

minimum distance of the code is 2n−d.

This gives us a simply described family of linear codes for which we can tailor

their efficiency, allowing for many applications, such as in [22],[23],[1],[2],[3], and [13].

Although presented as purely polynomial results, the papers from which the previous

chapter drew inspiration [11],[12] stated their results in the context of Reed-Muller

codes. Many results on polynomials can be used to make statements about Reed-

Muller codes, making them very useful codes. Results on polynomials over other fields

find uses in Reed-Solomon or BCH codes.

For any linear code C ⊂ Fn2 , the dual code is {~x ∈ Fn2 : ~x · ~c = 0 ∀ c ∈ C}.

Equivalently, dual codewords for Reed-Muller codes are sets of points S ⊂ Fn2 such that

every polynomial of degree (at most) d sums to 0 on S.

Definition 4.1. The set S ⊂ Fn2 is a dual codeword for polynomials of degree up to d
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if
∑

~x∈S f(~x) = 0∀ f ∈ F[X1, . . . , Xn] with deg f ≤ d.

Each set S corresponds to a c which is a F2 vector of length 2n, where each entry is

associated with a ~x ∈ Fn2 , and is 1 if and only if ~x ∈ S.

4.2 Minimum Weights of Dual Codewords

There are a few properties of dual codewords that are easily verified:

1. Trivially S = ∅ is a dual codeword for any n and d.

2. If d ≥ n, there are no other dual codewords.

3. If d < n, then S = Fn2 is a dual codeword.

To show the second property, choose ~y ∈ Fn2 arbitrarily. Note that the polynomial

f( ~X) =
∏n
i=1(Xi + yi + 1) is 0 on every point of Fn2 except ~y. This means that∑

~x∈S f(~x) = 1 if ~y ∈ S. Since ~y was arbitrary, no nonempty S can be dual codewords.

The last property can be shown by examining each monomial separately and noting

that each is nonzero on a subspace of codimension equal to their degree. Since d < n,

they are each nonzero on a subspace of positive dimension, and thus on an even number

of points.

When d < n − 1, we can construct more dual codewords by affine transformation:

Let Ψ : Fk2 → Fn2 be any affine embedding for k > d. If f is any polynomial of degree d

on Fn2 , it is also degree d on Ψ(Fk2). Since k > d, Fk2 is a dual codeword for any f ◦Ψ,

and thus Ψ(Fk2) is a dual codeword for any f .

In fact, if we know a dual codeword S ⊂ Fk2, then Ψ(S) ⊂ Fn2 is a dual codeword

by the same logic. This means that to categorize the structure of dual codewords, we

should classify them by their affine dimension.

Now we can pose the question: What is the smallest a dual codeword S for degree d

polynomials can be if S has affine dimension m? We already constructed a dual code-

word with |S| = 2m (while m > d), but, for large enough m, there are subexponential

size codewords.
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In fact, we can construct dual codewords where the size is linear in m as follows:

Let S be the union of k affinely independent (affine) subspaces of dimension d + 1.

Each subspace has d + 2 degrees of freedom, so the k2d+1 points are contained in an

m = k(d + 2) − 1 dimensional affine subspace. This means that when k = m+1
d+2 is

integral, |S| = 2d+1

d+2 (m+ 1) is possible.

We conjecture that this construction gives an optimal bound:

Conjecture 4.2. If S is a dual codeword for polynomials of degree at most d ≥ 2 of

affine dimension m, then |S| ≥ 2d+1

d+2 (m+ 1).

We exclude the case when d = 1, as it is easy to prove that |S| ≥ m + 2, and that

this bound is tight for m even. The lower bound follows from the fact that we need at

least m+ 1 points to define an affine subspace of dimension m. If |S| = m+ 1, since as

any m points define an affine subspace of dimension m − 1, we can construct a linear

function that vanishes on those m, but not on the final point of S, meaning S is not a

dual codeword.

The construction is simple: S = {0, ~e1, . . . , ~em, ~e1 + · · · + ~em}. It is easily verified

that any non-trivial linear function sums to 0 on these points, and we require even m

to be a dual codeword for the degree 0 polynomial that is identically 1.

In the case that d = 2, we can prove that this bound is indeed tight:

Theorem 4.3. If S is a dual codeword for polynomials of degree at most 2 of affine

dimension n, then |S| ≥ 2(m+ 1).

To prove this, we use an alternate formulation of the set S:

Definition 4.4. The set S ⊂ Fn2 is a dual codeword for polynomials of degree up to d

if
∑

~x∈S(~x, 1)⊗d = ~0⊗d.

This definition is equivalent to Definition 4.1, as the i1, i2, . . . , id entry of (~x, 1)⊗d is∏d
j=1 xij which is the the evaluation of the monomial

∏d
j=1Xij on ~x. Since evaluation

is over F2, repeated indices can be removed, allowing us to generate every multilinear

monomial of degree up to d (the additional entry allows us to do the same for the

constant monomial).
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If Definition 4.1 holds, then since each of these monomials is itself a polynomial of

degree d, we see that every entry of the tensor must be 0 implying Definition 4.4.

On the other hand, if Definition 4.4 holds, then by examining the appropriate entry

of the tensor, we can see that the sum of the evaluations on S of every monomial of

degree up to d add to 0. Therefore, any polynomial of maximum degree d also has the

sum of its evaluations on S add to 0, implying Definition 4.1.

Since 2-tensors of vectors are equivalent to matrices, we can use known matrix

properties to prove Theorem 4.3.

Proof. Assume for the sake of contradiction that |S| ≤ 2m + 1. If S is contained in

an affine subspace of dimension m, we can use a set of affine transformations to make

~0 ∈ S, as well as ~ei ∀ 1 ≤ i ≤ m. Now S ⊂ Fm2 , so we may drop the other coordinates

without changing the problem.

Now consider the outer product matrix that corresponds to the 2-tensor (~ei, 1)⊗2 =

(~ei, 1)(~ei, 1)>. The only nonzero entries are the coordinates in {i,m+ 1} × {i,m+ 1}.

Similarly (~0, 1)⊗2 is zero except at the (m + 1,m + 1) position. Adding these n + 1

matrices together gives a matrix:

(~0, 1)⊗2 +

m∑
i=1

(~ei, 1)⊗2 =

 Im ~1>

~1 m+ 1


By row reduction, we can see that this matrix is full rank. However, since

∑
~x∈S(~x, 1)⊗2 =

~0⊗2, we can see that
∑

~x∈S\{~0,~ei ∀ i}(~x, 1)⊗2 = (~0, 1)⊗2 +
∑m

i=1(~ei, 1)⊗2 and thus is the

same matrix.

Since (~x, 1)⊗2 = (~x, 1)(~x, 1)> is a rank 1 matrix for any ~x, the rank of
∑

~x∈S\{~0,~ei ∀ i}(~x, 1)⊗2

is no more than |S| −m− 1 ≤ m. This contradicts that this matrix is full rank.

Since (~x, 1)⊗2 is a subtensor of (~x, 1)⊗d for any d > 2, the above result proves that

|S| must be at least twice m (in fact at least 2m+ 2) for d ≥ 3, but cannot achieve the

bounds conjectured. Even using a higher dimensional analog of rank cannot achieve

better bounds, as any sum of m + 1 rank one tensors can be constructed as the sum

of those same m + 1 tensors. Forbidding repeat tensors is difficult with a rank-based

approach, and would require new developments.
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The following weakening of Conjecture 4.2 would itself be an interesting result:

Conjecture 4.5. If S is a dual codeword for polynomials of degree at most d ≥ 3 of

affine dimension m, then ∃ εd > 0 such that |S| ≥ (2 + εd)(m+ 1).

Consider the function 1S ∈ F2[X1, . . . , Xn] such that 1S(~x) = 1 if and only if ~x ∈ S.

This means that
∑

~x∈S f(~x) =
∑

~x∈Fn2
f(~x)1S(~x), so if S is a dual codeword, we have

that
∑

~x∈Fn2
f · 1S(~x) = 0 for every deg f ≤ d. This means that deg(1S) ≤ n− d− 1, so

by using Theorem 3.9, we can get a small improvement over Theorem 4.3:

Theorem 4.6. If S is a dual codeword for polynomials of degree at most d of affine

dimension m, then |S| ≥ 2(m+ 1) + 2d − d− 2.

Proof. If S is of affine dimension m, then there is a change of variables such that S

is contained in the subspace generated by the first m coordinates. By picking the

change of coordinates properly, we may assume without loss of generality ~1 ∈ S and

{~1− ~ei, 1 ≤ i ≤ n} ⊂ S ⊆ Fm2 . Again we can drop all but these m coordinates without

affecting the result.

If l·1S is identically 0 for some (non-zero) linear l on X1, . . . , Xm, then S is contained

in the affine subspace l( ~X) = 0. Since S is of affine dimension m, l · 1S is nonzero for

every nonzero linear l. Since the space of linear functions on X1, . . . , Xm is of dimension

m+1, we can choose any m points in S and find a nonzero linear function l that vanishes

on those points.

Choose any n points in S with weight no more than m− 2, and let l be a nonzero

linear function that vanishes on those points. Since deg(l·1S) ≤ m−d and not identically

zero, by Theorem 3.9, we have that |l · 1S |m−2 ≥
(

d
≤d−2

)
= 2d − d− 1.

Since 1S must be one whenever l · 1S is, |1S |m−2 ≥ |l · 1S |m−2. In fact, since l

was chosen to be 0 on m points in S with weight d − 2, we actually have |1S |m−2 ≥

m+ 2d − d− 1.

By our assumptions earlier, all m+ 1 points with weight greater than m− 2 are in

S, so therefore:

|S| = |1S |m = m+ 1 + |1S |m−2 ≥ 2(m+ 1) + 2d − d− 2
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When d = 2, Theorem 4.6 matches the bound in Theorem 4.3, as well as the lower

bound construction above. For d ≥ 3, Thoerem 4.6 is only a constant improvement

over Theorem 4.3, but not the linear improvement needed for Conjectures 4.2 and 4.5.

It is unlikely this bound is tight, as Theorem 3.10 shows that the polynomials that

achieve the bound in Theorem 3.9 have many linear factors, but 1S cannot have any.

Another structural result may be needed to make further improvements.

We can use Theorem 4.3 (or Theorem 4.6) to count the number of dual codewords

for polynomials of degree at most d:

Theorem 4.7. For a given n, the number of dual codewords for polynomials of degree

d ≥ 2 of size at most s is O
(

2
s
2
n
)

.

Proof. Consider any dual codeword S of size at most s. By Theorem 4.3 s ≥ |S| ≥

2(r+ 1) where r is the affine dimension of S. An affine subspace of dimension r can be

defined by choosing r+ 1 affinely independent points and there are at most
(
2n

r+1

)
ways

to do this. Once we have chosen an affine subspace, we must choose a dual codeword of

size s from the 2r points. Naively, this is bounded by
(
2r

s

)
. Summing these estimations

gives the bound:

s
2
−1∑
r=0

(
2n

r + 1

)(
2r

s

)
For constant s, this is O

(
2
s
2
n
)

.

Not only is this much better than the naive bound of
(
2n

s

)
= O (2sn), but it is

actually not overestimating too much when Theorem 4.3 is tight at d = 2.

However, when d ≥ 3, this is likely not tight for similar reasons as Theorem 4.6. If

proven, Conjecture 4.2 would give a better bound, saying that the number of codewords

of size s is at most O
(

2
d+2

2d+1 sn
)

.

Since these dual codewords can themselves be used as Reed-Muller codes (as in

the proof of Theorem 4.6), Theorem 4.7 shows that for Reed-Muller codes of where
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d ≤ n − 3, we have that the number of codewords of size at most s is O(N
s
2 ), where

N = 2n is the length of the code.

4.3 Further Directions

There are a few different methods that could be used to improve Theorem 4.6 in the

hopes of proving either Conjecture 4.5 or even Conjecture 4.2.

As mentioned before, Theorem 3.10 says that if l ·1S achieves the bound in Theorem

3.9, it should be the product of linear functions (after multilinearization). We also

assumed that 1S was supported on all ~x with Hamming weight n − 1 and above. It

seems impossible to satisfy both of these conditions, suggesting that it may be possible

to refine this method.

Conjecture 4.8. Let f ∈ F2[X1, . . . Xn] be a nonzero degree d polynomial divisible by

at most t linearly independent linear functions. Then |f |n ≥ 2n−d

n−d+1(n− t+ 1).

Note that when t = d, the above conjecture is proved by Theorem 3.2. In addition,

when t = 0, we are left with Conjecture 4.2. However the two conjectures are actually

equivalent, as the t linear factors can be used to create a Φ : Fn2 → Fn−t2 by restricting

to the subspace given by setting all the linear factors to 0. Restricting f by Φ gives

that f is a dual codeword of affine dimension m = n− t.

While Conjecture 4.8 is equivalent to Conjecture 4.2, the different presentation

may facilitate an inductive proof. By Theorem 4.3, we have proven a base case when

d = n− 3, but going further has proven difficult.

Another possible methodology for proving Conjecture 4.2 comes from this alternate

view of dual codewords: If deg(1S) ≤ n− d− 1, then by examining the monomials we

can see that S is the F2 sum of cubes, where each cube is a point of Hamming weight

at least d+ 1 as well as all points below that point in the subset lattice (with n atomic

basis elements).

By mapping Φ(~x) =

(
~x, 1 +

n∑
i=1

)
∈ Fn+1

2 , we can embed S into the odd Hamming

weight subspace of Fn+1
2 . Since we assumed that S is of affine dimension m, we can

assume that ~ei ∈ Φ(S) for all i ∈ [m+ 1].
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The cubes from points of Hamming weight d+ 1 become the odd weight vertices of

a cube from a point of Hamming weight d+ 2, and now we can view this as an energy

minimization problem. Since |{~x ∈ Φ(S) : ‖~x‖H = 1}| is always less than the affine

dimension of S, we simply want to say that if S is the F2 sum of cubes from points of

Hamming weight at least d + 2, then |{~x ∈ S : ‖x‖H ∼= 1 mod 2}| ≥ 2d+1

d+2 |{~x ∈ Φ(S) :

‖~x‖H = 1}|.

This is natural in that if we take cubes that are on pairwise disjoint coordinates, we

achieve the tight construction in the previous section. In this regime it is also easy to

visualize why there are factors of d+ 2 and n+ 1 in the bound of Conjecture 4.2.

However, proving this for all sums of these cubes is difficult, as computing the

intersections of these cubes requires using their polynomial structure. While this lattice

helps with visualization of the tight examples, use of the polynomial structure is likely

needed to actually prove the bounds.

Another potential avenue for exploration is to more carefully decompose the poly-

nomials in the polynomial approach. We chose exactly n points and an l that vanished

on those points, but a randomly chosen linear function should vanish on about half of

any set of points.

Alternately, if we allow for nonlinear polynomials, we can choose more than n points.

But if p is a polynomial of degree (at least) 2, we have no guarantee that p · 1S 6= 0. In

fact, this cannot be true, as then we could show that |S| = Ω(n2). Ideally, we would

want to choose p from a polynomial subspace of dimension
(
2d+1

d+2 − 1
)

(m + 1) where

p ·1S 6= 0 and deg(p ·1S) ≤ m−2, but no natural constructions seem to appear. Finding

a similar subspace of dimension (1 + εd)(m+ 1) would be sufficient to prove Conjecture

4.5.

Lastly, note that we can adapt the proof of Theorem 4.6 to prove something slightly

different:

Lemma 4.9. If S is a dual codeword for polynomials of degree at most d of affine

dimension n, then |1S |n−d ≥ n+ 1.

The proof is similar to that of Theorem 4.6:



44

Proof. As before, we assume without loss of generality ~1 ∈ S and {~1− ~ei, 1 ≤ i ≤ n} ⊂

S ⊆ Fn2 .

Now choose n points in S of Hamming weight at most n − d. Let l be a nonzero

linear function that vanishes on those points. As before, l · 1S is a nonzero polynomial

of degree at most n − d, and thus |l · 1S |n−d ≥ 1 by Theorem 3.12. This means that

1S is nonzero on at least one point of Hamming weight at most n− d other than the n

chosen in the construction of l.

This lemma says that |1S |n−d is much larger than the d + 2 given by applying

Theorem 3.12 to 1S . We also know there are n+ 1 points of Hamming weight n− 1 or

n, proving Theorem 4.3.

There must also be points of Hamming weights between n−d and n−1, but Theorem

4.6 only gives a constant number. But knowing that both |1S |n−d ≥ n+ 1 and that S

contains all points with hamming weight at least n + 1, it seems impossible that S is

that sparse in the gap. Showing that there are O(n) elements of S in this intermediate

range would prove Conjecture 4.5, with a sufficiently large constant proving Conjecture

4.2.
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