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ABSTRACT OF THE DISSERTATION
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Deligne-Mumford Stacks

By CHENGXI WANG

Dissertation Director: Lev Borisov

We study strong exceptional collections of line bundles on Fano toric Deligne-Mumford

stacks PΣ. We prove that when the rank of Picard group is no more than two, any

strong exceptional collection of line bundles generates the derived category of PΣ, as

long as the number of elements in the collection equals the rank of the (Grothendieck)

K-theory group of PΣ.

Moreover, we consider generalized Hirzebruch surfaces Fα,n which are not Fano and

have Picard rank two. We give a classification of all (strong) exceptional collections of

line bundles of maximum length and show they generate the derived category, which is

a generalization for the results of Hirzebruch surfaces. We show that any exceptional

collections of line bundles on Fα,n can be extend to maximum length 2(α+ 1) which is

the rank of K-theory. We give examples of strong exceptional collections of line bundles

on Fα,n which cannot be extended to strong exceptional collections of line bundles of

length 2(α+1), but can be extend to exceptional collections of line bundles of maximum

length 2(α+ 1).
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Chapter 1

Introduction

The branch of mathematics known as algebraic geometry mainly studies the sets of

common zeros of systems of polynomials, which are referred to as algebraic varieties.

It occupies a central place in modern mathematics and has multiple interactions with

diverse fields such as complex analysis, topology, physics and number theory.

The development of algebraic geometry proceeded in waves with their own meth-

ods and viewpoints. The nineteenth century saw the development of non-Euclidean

geometry and Abelian integrals in order to bring the old algebraic ideas back into

the geometric fold. This later lead to the classification of algebraic surfaces up to bira-

tional isomorphism by members of the 20th century Italian school of algebraic geometry

and the development of Riemann surfaces by Bernhard Riemann. Simultaneously, the

algebraization of the algebraic geometry through commutative algebra lead to the cru-

cial results such as Hilbert’s basis theorem, Hilbert’s Nullstellensatz. Then came the

twentieth- century “American” school of Chow, Weil, and Zariski, which solidified the

foundations of algebraic geometry of the Italian school. In the 1950s and 1960s, Serre

and Grothedieck initiated the French school, which recast the foundations making use

of sheaf theory and homological techniques. As a key achievement of this abstract alge-

braic geometry, Grothendieck’s scheme theory allows one to use sheaf theory to study

algebraic varieties in a way which is very similar to its use in the research of differential

and analytic manifolds.

For every algebraic variety, we have the abelian category of coherent sheaves. How-

ever, the functors, induced by morphisms between varieties, are not exact; they do not

take exact sequences to exact sequences. To give necessary corrections to non-exact

functors, Cartan and Eilenberg [9] introduced the notion of derived functors using
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techniques developed by Grothendieck in [17]. This subsequently led to the develop-

ment of derived categories and derived functors between them. Derived categories, in

contrast to Abelian categories, do not have short exact sequences. It is formalized

by Verdier as the notion of triangulated category [30]. The bounded derived category

carries a very rich structure and encodes information which might not directly be visi-

ble from geometry [8, 20]. The first example of two non-isomorphic algebraic varieties

having equivalent derived categories of coherent sheaves was uncovered by Mukai [26].

In the 1990s, Bondal and Orlov found an unexpected parallelism between the derived

categories and birational geometry.

Further motivation for the study of derived categories is provided by Kontsevich’s

homological mirror symmetry conjecture [24] and the use of derived categories for D-

branes in superstring theory [12]. Mirror Symmetry was discovered in string theory as

a duality between families of 3-dimensional Calabi-Yau manifolds. It also reveals the

relations between symplectic structures and complex structures. Homological mirror

symmetry of Kontsevich is an open-string version of mirror symmetry. It asserts the

equivalence between the derived category of coherent sheaves on one compact Calabi-

Yau variety X and the derived Fukaya category a mirror compact Calabi-Yau variety

Y .

It is important to explore the derived categories by constructing suitable generating

sets. The framework of exceptional collections provides the simplest possible set up for

this. Moreover, toric varieties provide rich examples of algebraic varieties, admitting an

action of torus and fully determined by the combinatorics of its associated fan. Also,

the toric DM stacks gives more freedom than toric varieties since the lattice points on

each one dimensional ray no longer need to be primitive. Derived categories of coherent

sheaves on toric varieties and DM stacks provide examples of combinatorially defined

triangulated categories. A lot of work has been done over the years aimed at finding

exceptional objects and collections in these categories.

Kawamata constructed exceptional collections in the bounded derived categories of

of coherent sheaves on smooth Deligne-Mumford stacks in [22]. Alastair King conjec-

tured in [23] that every smooth toric variety has a full strong exceptional collection of
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line bundles. Although the conjecture was proved to be false in [18], rich and varied

results related to the conjecture were proved in [6, 19, 25, 13, 21, 28]. In particular, it

was proved in [6] that there exist full strong exceptional collections of line bundles on

smooth toric Fano DM stacks of Picard number no more than two, and of any Picard

number in dimension two.

The full strong exceptional collections of line bundles constructed in [6] have length

equal the rank of the (Grothendieck) K-theory group, which is known to be a necessary

condition, see for example [16]. It is natural to ask whether any strong exceptional

collection of line bundles of this length is a full strong exceptional collection. That is

to say that the subcategory generated by all elements in the strong collection equals

Db(coh(PΣ)), and there is no orthogonal complement phantom category. We propose

the following conjecture.

Conjecture 1.1. Any strong exceptional collection of line bundles of maximum length

on a Fano toric DM stack is a full strong exceptional collection.

In this thesis, we prove Conjecture 1.1 for rk(Pic(PΣ)) = 1 (Theorem 3.7) and

rk(Pic(PΣ)) = 2 (Theorem 3.20). Our main idea is to “shrink” the strong exception-

al collection by moving some specific elements successively and eventually obtain a

standard full strong exceptional collection given in [6].

These results are also meaningful from the perspective of constructing phantom and

quasi-phantom subcategories of the derived category of coherent sheaves on smooth

projective varieties which has attracted considerable interest over the years. A quasi-

phantom subcategory is an admissible subcategory with trivial Hochschild homology

and a finite Grothendieck group. A phantom subcategory is an admissible subcategory

with trivial Hochschild homology and a trivial Grothendieck group.

Some quasi-phantom subcategories are constructed in [3, 1, 15] as semiorthogonal

complements to exceptional collections of maximum possible length on certain surfaces

of general type for which q = pg = 0. Moreover, the Grothendieck group of a quasiphan-

tom is isomorphic to the torsion part of the Picard group of a corresponding surface.

It is natural to ask whether there exists a phantom as a semiorthogonal complement to
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an exceptional collection of maximum length on a simply connected surface of general

type with q = pg = 0 like a Barlow surface. Böhning, H-Ch. Graf von Bothmer, L.

Katzarkov, and P. Sosna achieved it in [2] by showing that in a small neighbourhood of

the surface constructed by Barlow in the moduli space of determinantal Barlow surfaces,

the generic surface has a semiorthogonal decomposition of its derived category into a

length 11 exceptional sequence of line bundles and a category with trivial Grothendieck

group and Hochschild homology.

Moreover, geometric phantom categories are constructed by S. Gorchinskiy and D.

Orlov in [16] by considering admissible subcategories generated by the tensor product

of two quasi-phantoms for which orders of their (Grothendieck) K-theory groups are

coprime. They also show that these phantom categories have trivial K-motives and,

hence, all their higher K-groups are trivial too. This result has implications for the

structure of the Chow motive of a variety admitting a phantom category under certain

assumptions on the semi-orthogonal decomposition [29].

However, it was showed in [27] that there are no quasi-phantoms, phantoms or

universal phantoms in the derived category of smooth projective curves over a field k.

Furthermore, it is impossible to build a phantom as a semiorthogonal complement to

an exceptional collection of line bundles of maximum length in the derived category of

a Fano toric DM stack PΣ if Conjecture 1.1 is confirmed. This is shown by the main

result in Chapter 3 in the case of Picard rank less or equal to two.

We consider generalized Hirzebruch surfaces Fα,n which are not Fano. We classify

the (strong) exceptional collections of line bundles of maximum length to finitely many

classes and give criterion for when the exceptional collection is strong, which generalize

the results given by the toric systems of Hirzebruch surfaces in [19]. We show that

any exceptional collection of line bundles can be extended to exceptional collection of

line bundles of maximum length 2(α + 1) (Theorem 4.15). Any SEC of line bundles

with two vertical lines can be extended to a SEC of line bundles of maximum length

with two vertical lines. When there exist strong exceptional collections (SEC) of line

bundles on Fα,n of maximum length with three vertical lines, then any SEC of line
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bundles with three vertical lines can be extended to a SEC of line bundles of maximum

length (Theorem 4.33 and Theorem 4.35). However, when there exist no SEC of line

bundles on Fα,n of maximum length with three vertical lines, then any SEC of line

bundles with three vertical lines can be extended to a SEC of line bundles of length

3α+3−n (Theorem 4.33). We also obtain that any exceptional collection of line bundles

of maximum length generates the bounded derived category of coherent sheaves on Fα,n.

Since the requirement Exti(L1,L2) = 0 in the definition of exceptional collections

of line bundles translates into Hi(L2 ⊗ L−11 ) = 0, it is natural to study line bundles

with trivial cohomology spaces which are defined to be H−trivial line bundles in [32]

and are discussed in [32, 7]. We use the forbidden sets defined in [6] to get all H-

trivial line bundles (Definition 2.9) and acyclic line bundles (Definition 2.10). The key

methods in the proofs is using H-trivial line bundles to analyze when a collection of line

bundles is an exceptional collection, and using acyclic line bundles to determine when

an exceptional collection of line bundles is a strong exceptional collection.

We now discuss the content of each chapter briefly.

The thesis is organized as follows. Chapter 2 introduces the concepts and defini-

tions which will be used through the thesis. Section 2.1 recalls basic knowledge of toric

DM stacks and (strong) exceptional collections of line bundles on PΣ. In Section 2.2,

we remind the reader how to calculate the cohomology of a line bundle L on PΣ. In

Section 3.1, we prove Conjecture 1.1 for the case of rk(Pic(PΣ)) = 1. In Section 3.2,

Conjecture 1.1 for the case of the rank of Pic(PΣ) equals two is settled. Section 3.3

contains brief discussion of further directions. Chapter 4 studies exceptional collection-

s and strong exceptional collections of line bundles on certain generalized Hirzebruch

surfaces (GHS). Section 4.1 contains the definition of generalized Hirzebruch surfaces

and in it we calculate the rank of various K-theory groups. Section 4.2 gives a classifi-

cation of all exceptional collection of line bundles on Generalized Hirzebruch Surfaces.

In Section 4.3, we show that any exceptional collection of line bundles on generalized

Hirzebruch surfaces can be extended to an exceptional collection of line bundles of maxi-

mum length. Section 4.4 determines when the exceptional collections of line bundles are

strong exceptional collections. We conclude that our results match the known results
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for Hirzebruch surfaces in Section 4.5. In Section 4.6, we consider extending the strong

exceptional collections of line bundles on generalized Hirzebruch surfaces. In Section

4.7, we show that any exceptional collection of line bundles on a generalized Hirzebruch

surface of maximum length generates the bounded derived category of coherent sheaves

on the surface.
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Chapter 2

Background

In this chapter, we introduce the concepts and definitions which will be used through

the thesis.

2.1 (Strong) exceptional collections of line bundles on toric DM stacks

In this section, we give an overview of toric Deligne-Mumford stacks PΣ, the corre-

sponding Grothendieck group and (strong) exceptional collections of line bundles on

PΣ.

Let Σ be a complete fan with m one-dimensional cones in a lattice N which is a free

abelian group of finite rank. The assumption that N has no torsion allows us to refrain

from the technicalities of the derived Gale duality of [4]. We pick a lattice point v in

each of the one-dimensional cones of Σ and get a complete stacky fan Σ = (Σ, {vi}mi=1),

see [4]. The toric DM stack PΣ associated to the stacky fan Σ is constructed in [4] as

a stack version of the homogeneous coordinate ring construction of a toric variety [10].

Line bundles on PΣ are described in [5, 6] similar to the scheme case of [11, 14].

Proposition 2.1. The Picard group of PΣ is generated by {Ei}mi=1 with relations∑m
i=1(wi · vi)Ei for all w in the character lattice M = N∗.

Proof. See [6].

Definition 2.2. An object F in Db(coh(PΣ)) is exceptional if Hom(F, F ) = C and

Extt(F, F ) = Hom(F, F [t]) = 0 for t 6= 0. A sequence of exceptional objects

(F1, F2, . . . , Fn)
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in Db(coh(PΣ)) is called an exceptional collection if

Extt(Fi, Fj) = Hom(Fi, Fj [t]) = 0

for all i > j and all t ∈ Z. An exceptional collection is further called a strong exceptional

collection if

Extt(Fi, Fj) = 0

for all i < j and all t ∈ Z \ {0}.

Remark 1. A subset T of Pic(PΣ) can be indexed to form a strong exceptional collection

if and only if Extt(L1,L2) = 0 for any {L1,L2} ∈ T and any t > 0. The reason is that

the existence of nonzero Hom(L1,L2) induces a partial order on the set T which can be

extended to a linear order.

Definition 2.3. [6] Let T be a finite set of line bundles on PΣ (which are always

exceptional objects on PΣ). We call T a full strong exceptional collection if

Extt(L1,L2)

for any {L1,L2} ∈ T and any t > 0 and the derived category of PΣ is generated by the

line bundles in T .

Definition 2.4. A toric DM stack PΣ is called Fano if the chosen points vi are precisely

the vertices of a simplicial convex polytope in NR.

Definition 2.5. [5] Let PΣ be a smooth DM stack. The (Grothendieck) K-theory group

K0(PΣ) is defined to be the quotient of the free abelian group generated by coherent

sheaves F on PΣ by the relations [F1] − [F2] + [F3] for all exact sequences 0 → F1 →

F2 → F3 → 0.

Lemma 2.6. [16] Let PΣ be a Fano toric DM stack and (F1,F2, . . . ,Fn) be an excep-

tional collection of objects in Db(coh(PΣ)). If n = rankK0(PΣ), then F1,F2, . . . ,Fn is

a basis of K0(PΣ).

Corollary 2.7. Let (F1,F2, . . . ,Fn) be an exceptional collection of objects in Db(coh(PΣ)).

Then n ≤ rk(K0(PΣ)).
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2.2 Cohomology of line bundles on toric DM stacks

Now we remind the reader how to calculate the cohomology of a line bundle L on PΣ.

For each r = (ri)
n
i=1 ∈ Zn, we define Supp(r) to be the simplicial complex on n vertices

{1, . . . , n} as follows

Supp(r) ={J ⊆ {1, . . . , n}|ri ≥ 0 for all i ∈ J

and there exists a cone of Σ containing all vi, i ∈ J}.

The following proposition gives a description of the cohomology of a linear bundle

L on PΣ.

Proposition 2.8. [6] Let L ∈ Pic(PΣ). Then

Hj(PΣ,L) =
⊕

Hred
rkN−j−1(Supp(r)),

where the sum is over all r = (ri)
n
i=1 ∈ Zn such that O(

∑n
i=1 riEi)

∼= L.

Proof. See [6].

Remark 2. We have the cohomology H0(L) 6= 0 if and only if there exists r ∈ Zn≥0 such

that O(
∑n

i=1 riEi)
∼= L. Another extreme case is that Hrk(N)(L) only appears when the

simplicial complex Supp(r) = {∅}, i.e. when O(
∑n

i=1 riEi)
∼= L with all ri ≤ −1.

Remark 3. Let L ∼= O(
∑n

i=1 aiEi) be a line bundle in Pic(PΣ). Assume there is

another expression L ∼= O(
∑n

i=1 riEi). Then by Proposition 2.1, there exists an element

f ∈ N∗ such that ri = ai + f(vi) for i = 1, . . . , n, where f(vi) = (f.vi). Thus the

cohomology of L can also be written as following:

Hj(PΣ,L) =
⊕
f∈N∗

Hred
rkN−j−1(Supp(rf )),

where rf = (ai + f(vi))
n
i=1.

We give the definition of H−trivial line bundles and acyclic line bundles as follows.

Definition 2.9. Let L be a line bundle in Pic(PΣ). We say that L is H−trivial iff

Hj(PΣ,L) = 0 for all j ≥ 0.
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Definition 2.10. Let L be a line bundle in Pic(PΣ). We say that L is acyclic iff

Hj(PΣ,L) = 0 for all j > 0.

A combinatorial criterion for H−triviality is given in terms of forbidden sets intro-

duced below, see [6].

Definition 2.11. For every subset I ⊆ {1, . . . , n}, we denote CI to be the simiplicial

complex Supp(r) where ri = −1 for i /∈ I and ri = 0 for i ∈ I. Let ∆ = {I ⊆

{1, . . . , n}|CI has nontrivial reduced homology }. By Remark 2, ∆ contains {1, . . . , n}

and ∅. For each I ∈ ∆, the forbidden set associated to I is defined by

FSI := {O(
∑
i/∈I

(−1− ri)Ei +
∑
i∈I

riEi)|ri ∈ Z≥0 for all i}.

Proposition 2.12. Let L be a line bundle on PΣ. Then L is H−trivial if and only if

L does not lie in FSI for any I ∈ ∆.

Proof. This follows immediately from Proposition 2.8.

Proposition 2.13. Let L be a line bundle on PΣ. Then L is acyclic if and only if L

does not lie in FSI for any I ∈ ∆ and I 6= {1, . . . , n}.

Proof. This follows immediately from Proposition 2.8.

Figure 2.1:

Remark 4. When the toric DM stacks is of dimension two, i.e. N = Z2, then we have

a complete simplicial fan Σ in Z2 with n one-dimensional cones and n lattice points

{vi}ni=1 chosen in each of the one-dimensional cones of Σ, see Figure 2.1. The maximum

cones of Σ are R≥0v1+R≥0v2,R≥0v2+R≥0v3, . . . ,R≥0vn+R≥0v1. In dimension 2 case,

we describe ∆ = {∅, {1, . . . , n}}∪{I ⊂ {1, . . . , n}|CI is disconnected}. For example, we
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have {1, 3} ∈ ∆ if n > 3, {n, 2, 3} ∈ ∆ if n > 4, but {1, 2} /∈ ∆, {n, 1, 2} /∈ ∆ for all

n > 2.
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Chapter 3

Strong exceptional collections of line bundles of maximum

length on Fano toric Deligne-Mumford stacks

3.1 The case when the rank of Picard group equals one

In the section, we prove Conjecture 1.1 when the rank of Pic(PΣ) is one.

Let PΣ be a Fano toric DM stack such that Pic(PΣ) has no torsion and rank one.

In this case PΣ is a weighted projective space which we denote by WP(w1, . . . , wm),

where gcd(w1, . . . , wm) = 1. 1 The rank of K0(Pic(PΣ)) is
∑m

i=1wi. The Picard group

Pic(PΣ) is {O(d)|d ∈ Z}, where O(Ei) = O(wi). By [6], we know that PΣ possesses a

full strong exceptional collection of line bundles.

Proposition 3.1. [6] Let T = {O(w)| − rk(K0(PΣ)) + 1 ≤ w ≤ 0}. Then T forms a

full strong exceptional collection in the derived category of WP(w1, . . . , wm).

Proof. See [6].

From [6], for any d1, d2 ∈ Z, we know that

Extrk(N)(O(d1),O(d2)) 6= 0⇔ d2 − d1 =
m∑
i=1

aiwi, for some ai ∈ Z<0;

Hom(O(d1),O(d2)) 6= 0⇔ d2 − d1 =

m∑
i=1

aiwi, for some ai ∈ Z≥0.

Remark 5. In the case of rk(Pic(PΣ)) = 1, any exceptional collection on X = PΣ is a

strong exceptional collection. Indeed, let

T = (O(s1), . . . ,O(sn))

1This condition comes from our assumption that N has no torsion.
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be an exceptional collection on PΣ. We have Hom(O(sj),O(si)) = 0 for j > i. Then

Extrk(N)(O(si),O(sj)) = 0 for j > i. Otherwise, we get sj − si =
∑m

i=1 aiwi, where

ai ∈ Z<0. This implies sj − si =
∑m

i=1 biwi, where bi = −ai ∈ Z≥0, which contradicts

Hom(O(sj),O(si)) = 0.

Main idea. Starting from an exceptional collection T of line bundles of maximum

length, i.e., with
∑m

i=1wi elements, we construct other exceptional collections of max-

imum length in D(T ), the subcategory generated by elements in T . Eventually, we

will get to the exceptional collection in Proposition 3.1 given in [6]. This allows us to

conclude that D(T ) = Db(coh(PΣ)).

The main step is to “move” the smallest element of the exceptional collection T by∑m
i=1wi, see Figure 3.1.

Figure 3.1:

Specifically: If line bundles O(s1), . . . ,O(sn), where s1 < s2 < · · · < sn, form a

strong exceptional collection T of maximum length, then

1. O(s1 +
∑m

i=1wi) is not in the strong exceptional collection T (Lemma 3.3);

2. By replacing O(s1) with O(s1 +
∑m

i=1wi) and reordering, we get another strong

exceptional collection (Lemma 3.4);

3. O(s1 +
∑m

i=1wi) ∈ D(T ), so the new collection generates a subcategory of D(T )

(Corollary 3.6).

Once we know these that these moves are possible, we can “shrink” the exceptional

collection to make it one from Propostion 3.1 (Theorem 3.7).

Example 3.2. We consider an exceptional collection on WP(5, 6)

(O(−15),O(−13),O(−10),O(−9),O(−8),O(−7),O(−6),O(−5),O(−3),O(−1),O)
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of maximum length 11. We replace O(−15) by O(−15 + 11) = O(−4) to get another

strong exceptional collection

(O(−13),O(−10),O(−9),O(−8),O(−7),O(−6),O(−5),O(−4),O(−3),O(−1),O).

Then we replace O(−13) by O(−13 + 11) = O(−2) to get

(O(−10),O(−9),O(−8),O(−7),O(−6),O(−5),O(−4),O(−3),O(−2),O(−1),O)

which is a full strong exceptional collection in Proposition 3.1 given in [6].

Lemma 3.3. Let T = {O(s1), . . . ,O(sn)} be a strong exceptional collection. Then

O(s1 +
∑m

i=1wi) /∈ T .

Proof. If O(s1 +
∑m

i=1wi) ∈ T , then Extrk(N)(O(s1 +
∑m

i=1wi),O(s1)) 6= 0 since s1 −

(s1 +
∑m

i=1wi) = −
∑n

i=1wi. This contradicts the assumption that T is a strong

exceptional collection.

Lemma 3.4. Let T = {O(s1), . . . ,O(sn)} be a strong exceptional collection of maxi-

mum length on PΣ, where s1 < s2 < · · · < sn. By replacing O(s1) with O(s1+
∑m

i=1wi)

and reordering, we get another strong exceptional collection.

Proof. Let T 1 be a collection obtained by replacing O(s1) with O(s1 +
∑m

i=1wi). For

any i ∈ {2, . . . , n}, we have si − s1 −
∑m

i=1wi > −
∑m

i=1wi. Thus Extrk(N)(O(s1 +∑m
i=1wi),O(si)) = 0. Also for any i ∈ {2, . . . , n}, we have Extrk(N)(O(si),O(s1 +∑m
i=1wi)) = 0. Otherwise, we get s1 +

∑m
i=1wi− si =

∑m
i=1 aiwi, where ai ≤ −1. Thus

s1 − si =
∑m

i=1 biwi, where bi < −1. This implies Extrk(N)(O(si),O(s1)) 6= 0, which

contradicts the assumption that T is an exceptional collection.

Lemma 3.5. Let T = {O(s1), . . . ,O(sn)} be a strong exceptional collection of maxi-

mum length on PΣ, where s1 < s2 < · · · < sn. Then O(s1 +
∑

j∈J wj) is in T for any

proper subset J $ {1, 2, . . . ,m}.

Proof. Let s = s1+
∑

j∈J wj . We have Extrk(N)(O(s),O(sk)) = 0 for all k ∈ {1, 2, . . . , n}.

Otherwise, we have sk − s ∈
∑m

i=1 Z<0wm for some k. However, we have sk − s1 ≥ 0.

So sk − s = sk − s1 −
∑

j∈J wj > −
∑m

j=1wj , which leads to contradiction.
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We have Extrk(N)(O(sk),O(s)) = 0 for all k ∈ {1, 2, . . . , n}. Otherwise, we get

s1 +
∑

j∈J wj − sk = s − sk =
∑m

i=1 aiwi for some k, where ai ≤ −1. Thus s1 − sk =∑m
i=1 biwi, where bi ≤ −1. Therefore Extrk(N)(O(sk),O(s1)) 6= 0, which contradicts

that T is an exceptional collection.

If O(s) is not in T , we can get another exceptional collection with
∑m

i=1wi + 1

elements by inserting O(s) into T . This is impossible by Corollary 2.7.

Corollary 3.6. Let T = {O(s1), . . . ,O(sn)} be a strong exceptional collection of maxi-

mum length on PΣ, where s1 < s2 < · · · < sn. Then we have O(s1 +
∑m

i=1wi) ∈ D(T ).

Proof. We consider the Koszul complex [6]

0→ O(−
m∑
i=1

wi)→ · · · →
m⊕
i=1

O(−wi)→ O → 0.

Then we tensor this complex by O(s1 +
∑m

i=1wi) and get

0→ O(s1)→ · · · →
m⊕
i=1

O(−
∑
j 6=i

wj + s1)→ O(s1 +

m∑
i=1

wi)→ 0.

By Lemma 3.5, we have that O(s1 +
∑

j∈J wj) is in T for any proper subset J $

{1, 2, . . . ,m}. Thus O(s1 +
∑m

i=1wi) ∈ D(T ).

Theorem 3.7. Let X = PΣ be a Fano toric DM stack with rank(Pic(PΣ)) = 1. Assume

T = {O(s1), . . . ,O(sn)} is a strong exceptional collection of maximum length. Then T

is a full strong exceptional collection.

Proof. Without loss of generality, we assume s1 < s2 < · · · < sn. If s1 +
∑m

i=1wi ≥ sn,

then
∑m

i=1wi ≥ sn − s1. Then (s1, . . . , sn) = (s1, s1 + 1, . . . , s1 +
∑m

i=1wi). So T is a

twist of the collection of [6] and is therefore full. If s1 +
∑m

i=1wi < sn, we get a new

strong exceptional collection

T 1 = {O(s2), . . . ,O(s1 +

m∑
i=1

wi), . . . ,O(sn)}

in D(T ) by Lemma 3.4 and Corollary 3.6.

This process decreases sn − s1 and therefore terminates. So eventually we will be

in the situation s1 +
∑m

i=1wi ≥ sn.
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Remark 6. When Pic(PΣ) has torsion, the arguments go without significant changes.

The details are left to the reader.

3.2 The case when the rank of Picard group equals two

In this section, we consider Fano toric Deligne-Mumford stack PΣ associated to a stacky

fan Σ = (Σ, {vi}mi=1) in the lattice N with rk(N) = m − 2. In this case, the rank of

Picard group rk(Pic(PΣ)) equals 2. Our aim is to prove Conjecture 1.1 in this case. We

first assume that Pic(PΣ) has no torsion for ease of exposition.

We recall the results of [6].

Proposition 3.8. [6] There exists a unique up to scaling collection of rational numbers

αi such that
∑m

i=1 αi = 0 and
∑m

i=1 αivi = 0. Moreover, all αi in this relation are

nonzero.

Proof. See [6].

We pick one such relation
∑m

i=1 αivi = 0. Let I+ = {i|αi > 0} and I− = {i|αi > 0}.

Then we have {1, . . . ,m} = I+ t I−. Let E+ =
∑

i∈I+(Ei) and E− =
∑

i∈I−(Ei). We

consider a linear function α on PicR(PΣ) with α(Ei) = αi from Proposition 3.8. Then

α(E+) + α(E−) = 0.

Moreover, from [6], we can pick and fix a collection of positive numbers ri, i =

1, . . . ,m such that
∑

i ri = 1 and
∑

i rivi = 0. This collection of positive numbers gives

a linear function f on PicR(PΣ) with f(Ei) = ri > 0.

Let P be a parallelogram in PicR(PΣ) given by

|f(x)| ≤ 1

2
, |α(x)| ≤ 1

2

∑
i∈I+

αi.

Pick a generic point p ∈ PicR(PΣ) so that the lines along the sides of the parallelogram

p+ P do not contain any points from PicQ(PΣ). Then we have the following.

Proposition 3.9. [6] The set S of line bundles in p+P forms a full strong exceptional

collection on PΣ.
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Proof. See [6].

Notation: The following notation will be used in our arguments and proofs. Let

T = {O(D1), . . . ,O(Dn)} be a collection of line bundles, we will abuse the notation

slightly and denote by max(α(T )) the maximum value of α(Di) for O(Di) in T (and

similarly, for min and f). We denote Tmin(f) = {Di ∈ T |f(Di) = min(f(T ))}.

Main idea. The idea of the proof is similar to the case rk(Pic(PΣ)) = 1. Starting

from an exceptional collection T of line bundles of maximum length, we construct

other exceptional collections of maximum length in D(T ), the subcategory generated

by elements in T . Eventually, we get to the exceptional collection in Proposition 3.9.

Step 1. The first step is to “move” the largest elements in terms of the linear

function α in the strong exceptional collection by −E+ or E− to construct a new

strong exceptional collection in D(T ), see Figure 3.2.

Figure 3.2:

Specifically: let T = (O(D1), . . . ,O(Dn)) be a strong exceptional collection of line

bundles of maximum length. We pick i0 ∈ {1, . . . , n} such that α(Di0) = max(α(T )).

Then

1. Both O(Di0 −E+) and O(Di0 +E−) are not in the strong exceptional collection

T (Lemma 3.10);

2. Either replacing O(Di0) with O(Di0 − E+) or with O(Di0 + E−), we get anoth-

er strong exceptional collection after reordering (Lemma 3.13, Lemma 3.16 and
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Lemma 3.17);

3. The new exceptional collection in (2) is in D(T ) (Lemma 3.14 and Lemma 3.15).

By repeating the above step (Theorem 3.18), we can reduce the problem to the

strong exceptional collection S in D(T ) such that all the line bundles in S are within

a strip of width less than α(E+), i.e., max(α(S))−min(α(S)) < α(E+) = α(−E−).

Step 2. From now on, we consider a strong exceptional collection

T = (O(D1), . . . ,O(Dn))

of maximum length within a strip of width less than α(E+). If max(f(T ))−min(f(T )) <

f(E+ +E−) = 1, then T is a full strong exceptional collection in Proposition 3.9. This

allows us to conclude that D(T ) = Db(coh(PΣ)).

Now, we assume max(f(T ))−min(f(T )) ≥ f(E++E−) = 1. We pick j0 ∈ {1, . . . , n}

such that α(Dj0) = max(α(T )). Then we can replace O(Di0) with O(Di0 − E+) or

O(Di0 + E−) to get another strong exceptional collection T ′ such that (Proposition

3.19):

1. max(f(T ′)) ≤ max(f(T ));

2. min(f(T ′)) ≥ min(f(T ));

3. ](T ′min(f)) ≤ ](Tmin(f)) if min(f(T ′)) = min(f(T ));

4. ]({Di ∈ T ′|f(Di) = min(f(T ))}) < ](Tmin(f)) if f(Di0) = min(f(T )).

By repeating the above step (Theorem 3.20), we get a new strong exceptional col-

lection S such that max(α(S)) − min(α(S)) < α(E+) = α(−E−) and max(f(S)) −

min(f(S)) < f(E+ + E−) = 1 which is one in Proposition 3.9. This allows us to

conclude that D(T ) = Db(coh(PΣ)).

Details of proof. For a divisor class D in Pic(PΣ), we write D =
∑

i∈I(≥ 0)Ei if

D can be written as D =
∑

i∈I aiEi with ai ∈ Z≥0 for all i in a subset I ⊆ {1, . . . ,m}.

We use similar notation for other inequalities.
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The nonzero Ext groups between line bundles have been calculated in [6]. We denote

by Ext+, Ext− the groups associated to sets I+, I−. Specifically, for any D1, D2 ∈

Pic(PΣ), we have

Extrk(N)(O(D1),O(D2)) 6= 0⇔ D2 −D1 =
∑

i∈{1,...,m}

(< 0)Ei;

Ext+(O(D1),O(D2)) 6= 0⇔ D2 −D1 =
∑
i∈I−

(< 0)Ei +
∑
i∈I+

(≥ 0)Ei;

Ext−(O(D1),O(D2)) 6= 0⇔ D2 −D1 =
∑
i∈I+

(< 0)Ei +
∑
i∈I−

(≥ 0)Ei;

Hom(O(D1),O(D2)) 6= 0⇔ D2 −D1 =
∑

i∈{1,...,m}

(≥ 0)Ei.

Lemma 3.10. Let T = (O(D1), . . . ,O(Dn)) be a strong exceptional collection of line

bundles on PΣ. If i0 ∈ {1, . . . , n}, then both O(Di0 −E+) and O(Di0 +E−) are not in

T .

Proof. If O(Di0 − E+) ∈ T , we have Ext−(O(Di0),O(Di0 − E+)) 6= 0 since Di0 −

E+ −Di0 = −E+. If O(Di0 + E−) /∈ T , we have Ext+(O(Di0 + E−),O(Di0) 6= 0 since

Di0 −Di0 −E− = −E−. These contradict that T is a strong exceptional collection.

For any subset I ⊆ {1, . . . ,m}, we denote EI =
∑

i∈I Ei.

Lemma 3.11. Let T = {O(D1), . . . ,O(Dn)} be a strong exceptional collection of line

bundles on PΣ. We pick i0 ∈ {1, . . . , n} such that α(Di0) = max(α(T )). Then for any

proper subset J of I+ and any k ∈ {1, . . . , n}, we have

Ext∗(O(Di0 − EJ),O(Dk)) = 0, where ∗ = rk(N),+,−;

Ext∗(O(Dk),O(Di0 − EJ)) = 0, where ∗ = +,−.

Proof. (1) We have Extrk(N)(O(Di0 −EJ),O(Dk)) = 0. Otherwise, we get Dk −Di0 +

EJ =
∑

i∈{1,...,m}(< 0)Ei. Thus Dk −Di0 =
∑

i∈{1,...,m}(< 0)Ei − EJ =
∑

i∈{1,...,m}(<

0)Ei. This implies Extrk(N)(O(Di0),O(Dk)) 6= 0 which contradicts the assumption that

T is a strong exceptional collection.

(2) We have Ext+(O(Di0 − EJ),O(Dk)) = 0. Otherwise, we get Dk −Di0 + EJ =∑
i∈I−(< 0)Ei +

∑
i∈I+(≥ 0)Ei. So we get Dk −Di0 = −E− − EJ +

∑
i∈I−(≤ 0)Ei +
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∑
i∈I+(≥ 0)Ei. We have α(−E−) = α(E+) > α(EJ) since J $ I+. Also, α(

∑
i∈I−(≤

0)Ei) ≥ 0 and α(
∑

i∈I+(≥ 0)Ei) ≥ 0. Thus α(Dk − Di0) > 0 which contradicts the

assumption that α(Di0) = max(α(T )).

(3) We have Ext−(O(Di0 −EJ),O(Dk)) = 0. Otherwise, we have Dk −Di0 +EJ =∑
i∈I+(< 0)Ei+

∑
i∈I−(≥ 0)Ei. Thus Dk−Di0 =

∑
i∈I+(< 0)Ei−EJ+

∑
i∈I−(≥ 0)Ei =∑

i∈I+(< 0)Ei +
∑

i∈I−(≥ 0)Ei. This implies Ext−(O(Di0),O(Dk)) 6= 0, contradiction.

(4) We have Ext+(O(Dk),O(Di0 −EJ)) = 0. Otherwise, we have Di0 −EJ −Dk =∑
i∈I+(≥ 0)Ei+

∑
i∈I−(< 0)Ei. Thus Di0−Dk =

∑
i∈I+(≥ 0)Ei−

∑
i∈I−(< 0)Ei+EJ =∑

i∈I+(≥ 0)Ei−
∑

i∈I−(< 0)Ei. This implies Ext+(O(Dk),O(Di0)) 6= 0, contradiction.

(5) We have Ext−(O(Dk),O(Di0 −EJ)) = 0. Otherwise, we have Di0 −EJ −Dk =∑
i∈I+(< 0)Ei+

∑
i∈I−(≥ 0)Ei. Thus Di0−Dk =

∑
i∈I+(< 0)Ei+EJ +

∑
i∈I−(≥ 0)Ei.

We get α(
∑

i∈I+(< 0)Ei) =
∑

i∈I+(< 0)αi ≤
∑

i∈I+(−1)αi <
∑

i∈J(−1)αi = α(−EJ)

since J $ I+. So α(
∑

i∈I+(< 0)Ei+EJ) < 0. Also, α(
∑

i∈I−(≥ 0)Ei) ≤ 0. This implies

α(Di0 −Dk) < 0 which contradicts the assumption that α(Di0) = max(α(T )).

Lemma 3.12. Let T = {O(D1), . . . ,O(Dn)} be a strong exceptional collection of line

bundles on PΣ. We pick i0 ∈ {1, . . . , n} such that α(Di0) = max(α(T )). Then for any

proper subset L of I− and any j ∈ {1, . . . , n}, we have

Ext∗(O(Di0 + EL),O(Dj)) = 0, where ∗ = +,−;

Ext∗(O(Dj),O(Di0 + EL)) = 0, where ∗ = rk(N),+,−;

Proof. The proof is analogous to the proof of Lemma 3.11 and is left to the reader.

Note that Lemmas 3.11, 3.12 only cover vanishing of five out of possible six Ext>0

spaces. The next Lemma addresses the remaining space.

Lemma 3.13. Let T = {O(D1), . . . ,O(Dn)} be a strong exceptional collection of line

bundles on PΣ. We pick i0 ∈ {1, . . . , n} such that α(Di0) = max(α(T )). Then either

Extrk(N)(Dk, Di0 − EJ) = 0 for all k ∈ {1, . . . , n} and all J ⊆ I+ or Extrk(N)(Di0 +

EL, Dj) = 0 for all j ∈ {1, . . . , n} and all L ⊆ I−, or both.
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Proof. If Extrk(N)(O(Dk),O(Di0 − EJ)) 6= 0 for some k and some J ⊆ I+, then

Di0 −Dk − EJ =
∑

(< 0)Ei = −E− +
∑
I−

(≤ 0)Ei +
∑
I+

(< 0)Ei.

If Extrk(N)(O(Di0 + EL),O(Dj)) 6= 0 for some j and some L ⊆ I−, then

Dj −Di0 − EL =
∑

(< 0)Ei = −E+ +
∑
I+

(≤ 0)Ei +
∑
I−

(< 0)Ei.

We add the two equations to get

Dj −Dk − EJ − EL = −E+ − E− +
∑
I+

(< 0)Ei +
∑
I−

(< 0)Ei.

Thus

Dj −Dk = (−E+ + EJ) + (−E− + EL) +
∑
I+

(< 0)Ei +
∑
I−

(< 0)Ei

=
∑
I+

(< 0)Ei +
∑
I−

(< 0)Ei

since J ⊆ I+ and L ⊆ I−. This implies Extrk(N)(O(Dk),O(Dj)) 6= 0 which contradicts

the assumption that T is a strong exceptional collection.

Lemma 3.14. Let T = {O(D1), . . . ,O(Dn)} be a strong exceptional collection of max-

imum length on PΣ. We pick i0 ∈ {1, . . . , n} such that α(Di0) = max(α(T )). Assume

Extrk(N)(O(Dk),O(Di0−EJ)) = 0 for all k ∈ {1, . . . , n} and all proper subsets J $ I+.

Then O(Di0 − E+) ∈ D(T ).

Proof. We have O(Di0 − EJ) ∈ T for all J $ I+. Otherwise, there is J $ I+ such

that O(Di0 − EJ) /∈ T . By Lemma 3.11, we can add O(Di0 − EJ) to T to get a

strong exceptional collection with more than rk(K0(PΣ)) elements. This is impossible

by Corollary 2.7.

Now we consider the Koszul complex

0→ O(−E+)→ · · · →
⊕
i∈I+

O(−Ei)→ O → 0.

We tensor the complex by O(Di0) to get

0→ O(Di0 − E+)→ · · · →
⊕
i∈I+

O(−Ei +Di0)→ O(Di0)→ 0.

Since O(Di0 − EJ) ∈ T for all J $ I+, we get O(Di0 − E+) ∈ D(T ).
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Lemma 3.15. Let T = {O(D1), . . . ,O(Dn)} be a strong exceptional collection of max-

imum length on PΣ. We pick i0 ∈ {1, . . . , n} such that α(Di0) = max(α(T )). Assume

Extrk(N)(O(Di0 +EL),O(Dj)) = 0 for any j ∈ {1, . . . , n} for any subset L $ I−. Then

O(Di0 + E−) ∈ D(T ).

Proof. Analogous to Lemma 3.14.

Lemma 3.16. Let T = {O(D1), . . . ,O(Dn)} be a strong exceptional collection of line

bundles of maximum length on PΣ. We pick i0 ∈ {1, . . . , n} such that α(Di0) =

max(α(T )). Assume Extrk(N)(O(Dk),O(Di0 − EJ)) = 0 for any k ∈ {1, . . . , n} and

any subset J ⊆ I+. Then we can get a new strong exceptional collection by replacing

O(Di0) with O(Di0 − E+) and reordering.

Proof. We will carefully check vanishing of all six Ext>0 spaces with the new element

of the collection.

(1) We have Extrk(N)(O(Di0 − E+),O(Dk)) = 0 by the same argument as in (1) of

Lemma 3.11.

(2) We have Ext+(O(Di0 − E+),O(Dk)) = 0. Otherwise, we get Dk −Di0 + E+ =∑
i∈I−(< 0)Ei +

∑
i∈I+(≥ 0)Ei. So Dk−Di0 = −E−−E+ +

∑
i∈I−(≤ 0)Ei +

∑
i∈I+(≥

0)Ei. We have α(−E− − E+) = 0. Also, the coefficients in
∑

i∈I−(≤ 0)Ei +
∑

i∈I+(≥

0)Ei cannot be all zero. Otherwise, we have Dk − Di0 = −E− − E+. This implies

Extrk(N)(Di0 , Dk) 6= 0 which contradicts that T is a strong exceptional collection. Now

we get α(
∑

i∈I−(≤ 0)Ei+
∑

i∈I+(≥ 0)Ei) > 0. Thus α(Dk−Di0) > 0 which contradicts

the assumption that α(Di0) = max(α(T )).

(3) We have Ext−(O(Di0 − E+),O(Dk)) = 0 by the same argument as in (3) of

Lemma 3.11.

(4) By assumption, Extrk(N)(O(Dk),O(Di0 − E+)) = 0 for all k ∈ {1, . . . , n}.

(5) We have Ext+(O(Dk),O(Di0 − E+)) = 0 by the same argument as in (4) of

Lemma 3.11.

(6) We have Ext−(O(Dk),O(Di0 −E+)) = 0. Otherwise, we have Di0 −E+−Dk =∑
i∈I+(< 0)Ei+

∑
i∈I−(≥ 0)Ei. Thus Di0−Dk =

∑
i∈I+(< 0)Ei+E+ +

∑
i∈I−(≥ 0)Ei.



23

If one of the coefficients in
∑

i∈I+(< 0)Ei is less than −1, then α(
∑

i∈I+(< 0)Ei) =∑
i∈I+(< 0)αi <

∑
i∈I+(−1)αi = α(−E+). So α(

∑
i∈I+(< 0)Ei + E+) < 0. If all the

coefficients in
∑

i∈I+(< 0)Ei equal −1, then Di0−Dk =
∑

i∈I−(≥ 0)Ei. Since Di0 6= Dk,

the coefficients in
∑

i∈I−(≥ 0)Ei cannot be all zero. Thus α(
∑

i∈I−(≥ 0)Ei) < 0. Now,

we obtain that either α(
∑

i∈I+(< 0)Ei + E+) < 0 or α(
∑

i∈I−(≥ 0)Ei) < 0. Therefore

α(Di0 − Dk) = α(
∑

i∈I+(< 0)Ei + E+ +
∑

i∈I−(≥ 0)Ei) < 0 which contradicts the

assumption that α(Di0) = max(α(T )).

We have verified that there are no Ext>0 spaces between the new element and other

elements of the collection.

Lemma 3.17. Let T = {O(D1), . . . ,O(Dn)} be a strong exceptional collection of line

bundles of maximum length on PΣ. We pick i0 ∈ {1, . . . , n} such that α(Di0) =

max(α(T )). Assume Extrk(N)(O(Di0 + EL),O(Dj)) = 0 for any j ∈ {1, . . . , n} for

any subset L ⊆ I−. Then we can get a new strong exceptional collection in D(T ) by

replacing O(Di0) with O(Di0 + E−) and reordering.

Proof. Analogous to Lemma 3.16.

Proposition 3.18. Let T = {O(D1), . . . ,O(Dn)} be a strong exceptional collection of

line bundles of maximum length on PΣ. We can construct a new strong exceptional

collection S in D(T ) such that max(α(S))−min(α(S)) < α(E+) = α(−E−).

Proof. The argument is similar to that of Theorem 3.7. Let α(Di0) = max(α(T )). By

Lemma 3.13, we have either Extrk(N)(Dk, Di0 − EJ) = 0 for any k ∈ {1, . . . ,m} and

any J ⊆ I+ or Extrk(N)(Di0 + EL, Dj) = 0 for any j ∈ {1, . . . ,m} and any L ⊆ I−.

By Lemma 3.14, Lemma 3.15, Lemma 3.16 and Lemma 3.17, we get a new strong

exceptional collection T ′ in D(T ) by replacing O(Di0) by O(Di0−E+) or O(Di0 +E−),

and reordering. See Figure 3.2.

We have max(α(T ′)) ≤ max(α(T )) since α(Di0 − E+) = α(Di0 + E−) < α(Di0) =

max(α(T )). After a finite number of steps, we replace successively all O(Di) such that

α(Di) = max(α(T )) by O(Di − E+) or O(Di + E−) to get a new strong exceptional

collection T 1 in D(T ) such that max(α(T 1)) < max(α(T )).
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If min(α(T 1)) < min(α(T )), there exists some D such that α(Di) = max(α(T ))

and α(Di ∓ E±) = min(α(T )). Now we have

max(α(T 1))−min(α(T 1)) < max(α(T ))−min(α(T 1)) = α(Di)−α(Di∓E±) = α(E+).

If min(α(T 1)) ≥ min(α(T )), then max(α(T 1)) − min(α(T 1)) < max(α(T )) −

min(α(T )).

This process decreases max(α(T ))−min(α(T )). Eventually we will be in the situ-

ation that max(α(T ))−min(α(T )) < α(E+) = α(−E−).

Proposition 3.19. Let T = {O(D1), . . . ,O(Dn)} be a strong exceptional collection of

line bundles with length n = rk(K0(PΣ)). Assume

max(f(T ))−min(f(T )) ≥ f(E+ + E−) = 1.

We pick i0 ∈ {1, . . . , n} such that α(Di0) = max(α(T )). Then we can replace O(Di0)

with O(Di0 − E+) or O(Di0 + E−) to get another strong exceptional collection T ′ in

D(T ) such that:

1. max(f(T ′)) ≤ max(f(T ));

2. min(f(T ′)) ≥ min(f(T ));

3. ](T ′min(f)) ≤ ](Tmin(f)) if min(f(T ′)) = min(f(T ));

4. ]({Di ∈ T ′|f(Di) = min(f(T ))}) < ](Tmin(f)) if f(Di0) = min(f(T )).

Proof. If

min(f(T )) < f(Di0 − E+) < f(Di0 + E−) ≤ max(f(T )), (3.1)

by Lemma 3.13, Lemma 3.16 and Lemma 3.17, we can replace O(Di0) with O(Di0−E+)

or O(Di0 + E−) to reach the result.

If Equation 3.1 fails, there are several cases to consider.

Case f(Di0 − E+) ≤ min(f(T )). We have f(Di0 + E−) ≤ max(f(T )) by the

assumption that max(f(T ))−min(f(T )) ≥ f(E+ + E−) = 1. We show that replacing

O(Di0) with O(Di0 + E−) is possible and will achieve our goal, see (2) of Figure 3.3.
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We have Extrk(N)(Di0 + EL, Dj) = 0 for all j ∈ {1, . . . ,m} and L $ I−. Otherwise,

we get Dj − Di0 − EL =
∑

i∈{1,...,m}(< 0)Ei = −E+ − E− +
∑

i∈{1,...,m}(≤ 0)Ei for

some j and some L $ I−. Thus Dj − Di0 + E+ = (EL − E−) +
∑

i∈{1,...,m}(≤ 0)Ei.

Then f(Dj −Di0 + E+) = f((EL − E−) +
∑

i∈{1,...,m}(≤ 0)Ei) < 0 which contradicts

f(Di0−E+) ≤ min(f(T )). Then by Lemma 3.14, the line bundle O(Di0 +E−) ∈ D(T ).

Also, we have Extrk(N)(Di0 + E−, Dj) = 0 for all j ∈ {1, . . . ,m}. Otherwise, we

get Dj −Di0 − E− =
∑

i∈{1,...,m}(< 0)Ei = −E+ − E− +
∑

i∈{1,...,m}(≤ 0)Ei for some

j. Thus Dj − Di0 = −E+ +
∑

i∈{1,...,m}(≤ 0)Ei. If the coefficients in
∑

i∈{1,...,m}(≤

0)Ei are not all zero, then f(Dj − Di0 + E+) = f(
∑

i∈{1,...,m}(≤ 0)Ei) < 0, which

contradicts that f(Di0 − E+) ≤ f̃(T ). If the coefficients in
∑

i∈{1,...,m}(≤ 0)Ei are all

zero, then Dj −Di0 = −E+. This implies Ext−(O(Di0),O(Dj)) 6= 0 which contradicts

the assumption that T is a strong exceptional collection.

Figure 3.3:

Then by Lemma 3.16, we get a strong exceptional collection T ′ in D(T ) by replacing

Di0 with O(Di0 +E−) which satisfies (2), (3) and (4) of this Proposition. Since f(Di0 +

E−) ≤ max(f(T )), then max(f(T ′)) ≤ max(f(T )).

Case f(Di0 +E−) > max(f(T )). We have f(Di0−E+) > min(f(T )). By the same

arguments, we can get a strong exceptional collection T ′ in D(T ) by replacing Di0 with

O(Di0 − E+) which satisfies (1), (3) and (4) of this Proposition, see (1) of Figure 3.3.
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Since f(Di0 − E+) > min(f(T )), then min(f(T ′)) ≥ min(f(T )).

Remark 7. Let T = {O(D1), . . . ,O(Dn)} be a strong exceptional collection of line

bundles with length n = rk(K0(PΣ)). Assume all line bundles in T are within a strip of

α with width less than α(E+) and max(f(T )) −min(f(T )) ≥ f(E+ + E−) = 1. After

doing the move in Proposition 3.19, we can guarantee that all line bundles in the new

strong exceptional collection is within a strip of α with width less or equal to α(E+).

After replacing all Dj in T such that α(Dj) = max(α(T )), we get the width of the strip

of α to be less than α(E+).

Theorem 3.20. Let PΣ be a Fano toric DM stack with rank(Pic(PΣ)) = 2. Assume

T = {O(D1), . . . ,O(Dn)} be a strong exceptional collection of line bundles with length

n = rk(K0(PΣ)). Then T is a full strong exceptional collection.

Proof. Without of loss of generality, we can assume that max(α(T )) − min(α(T )) <

α(E+) = α(−E−) by Proposition 3.18.

Figure 3.4:

Let Dj be an element in T such that f(Dj) = min(f(T )). If α(Dj) = max(α(T )),

then by Proposition 3.19, after replacing O(Dj) with O(Dj−E+) or O(Dj+E−), we get

another strong exceptional collection T ′ such that ]({Di ∈ T ′|f(Di) = min(f(T ))}) <

](Tmin(f)). If α(Dj) < max(α(T )), then by repeating the process in Proposition 3.19

several times, we will get to the situation that α takes maximum value at Dj , see Figure
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3.4.

After replacing all elements in Tmin(f), we get min(f(T )) increase. Then we continue

to apply Proposition 3.19. During the process, we assure that max(f(T )) does not

increase and min(f(T )) increases. Thus max(f(T ))−min(f(T )) decreases. Therefore,

we will eventually be in the situation max(f(T ))−min(f(T )) < 1.

Also, by Remark 7, we get a new strong exceptional collection S of line bundles in

D(T ) such that max(α(S)) − min(α(S)) < α(E+) and max(f(S)) − min(f(S)) < 1.

So S is a full strong exceptional collection by Proposition 3.9. Thus D(T ) ⊇ D(S) =

Db(coh(PΣ)).

Remark 8. When Pic(PΣ) has torsion, the arguments of this section go through without

significant change. The details are left to the reader.

3.3 Future directions

We expect our main result to be valid without the assumption on the rank of Picard

group, as stated in Conjecture 1.1. Also, in the case of rk(Pic(PΣ)) = 1, we know that

any exceptional collection of line bundles is a strong exceptional collection by Remark

5. However, in the case of rk(Pic(PΣ)) = 2, Theorem 3.20 does not tell us that every

exceptional collection of maximum length is a full exceptional collection. Thus we

hope we can drop the strong assumption to ask whether every exceptional collection of

maximum length is a full exceptional collection. The possible future directions include

dimension two rk(Pic(PΣ)) = 3 Fano case, and dimension two non-Fano case. We hope

that techniques of this thesis can be modified to settle them.

Moreover, in our proofs when we replace j0 ∈ {1, . . . , n} such that α(Dj0) =

max(α(T )) withO(Di0−E+) orO(Di0+E−), the strong exceptional collection “shrinks”

in Pic(PΣ). We would like to find a more geometric meaning of this phenomenon.

Remark 9. In [31], S̆pela S̆penko, Michel Van den Bergh and Jason P. Bell show

that in the case of rk(Pic) = 1, every strong exceptional collection of line bundles on a

toric variety or stack can be extended to a strong exceptional collection of line bundles

with length equal to rank of K-theory. However, in [13], Efimov constructs infinitely
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many examples of toric Fano varieties with Picard number three, which do not admit

full exceptional collections of line bundles. It is meaningful to consider, whether we

have the same result in the case of rk(Pic) = 2 as in the case of rk(Pic) = 1.



29

Chapter 4

Exceptional collections and strong exceptional collections

on generalized Hirzebruch surfaces

In this chapter we study in complete detail exceptional collections and strong excep-

tional collections of line bundles on certain generalized Hirzebruch surfaces (GHS).

4.1 Hirzebruch surfaces and generalized Hirzebruch surfaces

In this section, we give a brief review of Hirzebruch surfaces and define certain gener-

alized Hirzebruch surfaces.

The Hirzebruch surface Fn is a P1 bundle over P1 associated to the sheaf O⊕O(n).

That is to say that Fn is the projectivization of the direct sum of line bundles O⊕O(n)

on P1 which we denote by P(O⊕O(n)). In terms of toric geometry, the corresponding

fan Σ has rays v1 = (1, 0), v2 = (0,−1), v3 = (−1, n), v4 = (0, 1) (see Figure 4.1). The

Figure 4.1:

Picard group is generated by E1, E2, E3, E4 with relations

E1 = E3, E4 = E2 − nE3.

Thus Picard group is isomorphic to Z2 with basis E2, E3.

Definition 4.1. The Generalized Hirzebruch surface Fα,n is given to be the toric

DM stack PΣ associated to the stacky fan Σ = (Σ, {vi}4i=1), where v1 = (1, 0), v2 =



30

(0,−1), v3 = (−α, n), v4 = (0, 1), α ∈ Z>0 and n ≥ α (Figure 4.2).

Figure 4.2:

Remark 10. The reason to add the assumption n ≥ α is that we have similar H-

trivial line bundles when n ≥ α, so there is a common way to classify the exceptional

collections of line bundles of maximum length. However, when n < α, the structure

of the set of H-trivial line bundles varies, so the exceptional collections of line bundles

of maximum length do not have a common pattern. Note that the stack PΣ is Fano

when n = α, the stack PΣ is not Fano when n > α, and the stack PΣ is nef-Fano iff

n = α+ 1.

Lemma 4.2. The rank of the K-theory of PΣ = Fα,n equals 2(α+ 1).

Proof. In general, the rank of K-theory of the proper toric smooth DM stack is the sum

of normalized volumes of maximum cones. The absolute values of the determinants of

the following four matrices are 1, 1, α, α respectively.1 0

0 1

 ,

1 0

0 −1

 ,

 0 −1

−α n

 ,

−α n

0 1


Then the rank of the K-theory equals 1 + 1 + α+ α.

4.2 Classification of exceptional collections of line bundles on gener-

alized Hirzebruch surfaces

In this section, we give a classification of all exceptional collection of line bundles on

generalized Hirzebruch surfaces Fα,n.
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The Picard group of Fα,n is generated by E1, E2, E3, E4 with relations

E1 = αE3, E4 = E2 − nE3.

Let E2, E3 be basis of the Picard group. We have E1 = (0, α), E2 = (1, 0), E3 =

(0, 1), E4 = (1,−n). By Remark 4 and Definition 2.11, we have

∆ = {{1, 3}, {2, 4}, ∅, {1, 2, 3, 4}}.

The corresponding forbidden sets are computed as follows.

F13 = −E2 − E4 + Z≥0E1 + Z≥0E3 + Z≥0(−E2) + Z≥0(−E4)

= −E2 − E2 + nE3 + Z≥0E3 + Z≥0(−E2) + Z≥0(−E4)

= (−2, n) + Z≥0(0, 1) + Z≥0(−1, 0) + Z≥0(−1, n)

F24 = −E1 − E3 + Z≥0E2 + Z≥0E4 + Z≥0(−E1) + Z≥0(−E3)

= −αE3 − E3 + Z≥0E2 + Z≥0E4 + Z≥0(−E3)

= (0,−(α+ 1)) + Z≥0(1, 0) + Z≥0(1,−n) + Z≥0(0,−1)

F∅ = −E1 − E2 − E3 − E4 + Z≥0(−E1) + Z≥0(−E2) + Z≥0(−E3) + Z≥0(−E4)

= −(α+ 1)E3 − 2E2 + nE3 + Z≥0(−E3) + Z≥0(−E2) + Z≥0(−E4)

= (−2,−(α+ 1) + n) + Z≥0(0,−1) + Z≥0(−1, 0) + Z≥0(−1, n)

F{1,2,3,4} = Z≥0E1 + Z≥0E2 + Z≥0E3 + Z≥0E4

= Z≥0(0, 1) + Z≥0(0, 1) + Z≥0(1,−n)

A convenient feature of Fα,n is that the forbidden sets contain all lattice points in

their respective convex hulls.

Lemma 4.3. All lattice points in the following cones are in the forbidden sets.

FC13 = (−2, n) + R≥0(0, 1) + R≥0(−1, 0) + R≥0(−1, n),

FC24 =
(
(0,−(α+ 1)) + R≥0(1, 0) + R≥0(1,−n) + R≥0(0,−1),

FC∅ = (−2,−(α+ 1) + n) + R≥0(0,−1) + R≥0(−1, 0) + R≥0(−1, n),

FC{1,2,3,4} = R≥0(0, 1) + R≥0(0, 1) + R≥0(1,−n).
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Proof. We have

F13 ⊆ FC13 ∩ Pic(PΣ), F24 ⊆ FC24 ∩ Pic(PΣ),

F∅ ⊆ FC∅ ∩ Pic(PΣ), F{1,2,3,4} ⊆ FC{1,2,3,4} ∩ Pic(PΣ).

Since the absolute value of the determinant of the matrix

−1 n

0 1

 is 1, any lattice

point in cone FC13 can be generated by (0, 1) and (−1, n), thus in the forbidden sets

F13. The arguments are similar for other cones.

Corollary 4.4. All the H-trivial line bundles on PΣ = Fα,n are

(−2, n− 1), . . . , (−2, n− α), {(−1, y)|y ∈ Z}, (0,−1), . . . , (0,−α).

Figure 4.3:

Proof. The top boundary of FC∅ is (−2, ,−(α + 1) + n) + R≥0(−1, n). The bottom

boundary of FC13 is (−2, n)+R≥0(−1, 0). They intersect at (−2− α+1
n , n). If n > α+1,

then this intersection point is to right of (−3,Z) (see Figure 4.3). If n = α + 1, then

this intersection point is on (−3,Z) (see Figure 4.3). So when n ≥ α + 1, there are

no H-trivial line bundles with first coordinates less than −2. If n = α, then it is easy

to see that all lattice points with first coordinates −3 are still in the two cones (see
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Figure 4.3). The same argument applies for positive first coordinate. Then the result

is implied by Proposition 2.12 and Lemma 4.3.

Remark 11. The fan associated to PΣ = Fα,n has a collinear pair of rays v2, v4 (see

Figure 4.2). Thus, by the main results in [32], there are infinitely many H-trivial line

bundles on PΣ = Fα,n and the set of H-trivial line bundles has a tubes + ball description.

That is to say that the set of H-trivial line bundles can be depicted in the form “finite

set + finite set of lines ”, which is consistent with the Corollary 4.4.

In the next Lemma, we state the basic properties of any exceptional collection of

line bundles on PΣ.

Lemma 4.5. Let

T = {(a1, b1), (a2, b2), . . . , (ar, br)}

be an exceptional collection. Then it satisfies

1. a1 ≤ a2 ≤ . . . ≤ ar and x ∈ {ar − 2, ar − 1, ar} for any line bundle (x, y) ∈ T .

2. There are no more than α+1 points in T on the same vertical line and the second

coordinates increase for the points on the same vertical line.

Proof. We have

Ht(PΣ,O((ai, bi)− (aj , bj))) = Extt(O((aj , bj)),O((ai, bi))) = 0

for any i < j and t ≥ 0. So (ai, bi) − (aj , bj) is H-trivial. Thus ai − aj ∈ {0,−1,−2}

which implies 1.

When ai = aj for i < j, since (ai, bi) − (aj , bj) = (0, bi − bj) is H-trivial, we get

bi − bj ∈ {−1, . . . ,−α}. This implies bi < bj and there are no more than α + 1 points

in T having the first coordinate, i.e., on the same vertical line. Thus we get 2.

Corollary 4.6. Ordering of line bundles in an exceptional collection on Fα,n is uniquely

determined.
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Now we will give a classification of all exceptional collection of maximum length

rk(K(PΣ)) = 2(α+ 1).

Let T = {(a1, b1), (a2, b2), . . . , (ar, br)} be an exceptional collection. We first “fill in

the holes” in the collection.

Lemma 4.7. If there exists (ai, bi) and (ai+1, bi+1) such that ai+1 = ai and bi+1 < bi+1,

then the collection obtained by inserting (ai, bi + 1) between (ai, bi) and (ai, bi+1) is still

an exceptional collection.

Proof. For any other element O((a, b)) in the collection, we have that (a, b)− (ai, bi+1)

is in the same vertical line as (a, b) − (ai, bi) and (a, b) − (ai, bi+1) and is in between

them. Since the set of H-trivial bundles in the same vertical line is a segment in Z, the

H-triviality of (a, b)−(ai, bi+1) follows. The same holds for (ai, bi+1)−(a, b). The only

thing left to check is that the two Extension spaces from (ai, bi+1) to (ai, bi), and from

(ai, bi+1) to (ai, bi+1) are zero. This is automatically implied by bi < bi+1 < bi+1.

Corollary 4.8. After inserting line bundles between line bundles on the same vertical

lines in T to make the second coordinates to be consecutive numbers, we get another

exceptional collection with longer length.

Corollary 4.9. For any maximal exceptional collection, the second coordinates are

consecutive numbers for points on the same vertical line.

Case 1. We first consider the case that ar − a1 = 2. We assume that a1 = · · · =

ar1 = ar−2, ar1+1 = · · · = ar1+r2 = ar−1, ar1+r2+1 = · · · = ar, where 1 ≤ r1, r3 ≤ α+1,

0 ≤ r2 ≤ α + 1 and r = r1 + r2 + r3. By Corollary 4.8, we can assume the second

coordinates are consecutive numbers for points on the same vertical line.

Lemma 4.10. We have r1 + r3 ≤ α+ 1 and n− α ≤ b1 − br ≤ br1 − br1+r2+1 ≤ n− 1.

Proof. By assumption and 2. in Lemma 4.5, we know that the second coordinates

of the points on the left vertical line and right vertical line are b1 ≤ . . . ≤ br1 and

br1+r2+1 ≤ . . . ≤ br respectively (see Figure 4.4). Since the second coordinates are

consecutive numbers for points on the same vertical line, we have br1 − b1 = r1− 1 and
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Figure 4.4:

br − br1+r2+1 = r3 − 1. Since (a1, b1) − (ar, br) = (−2, b1 − br) is H-trivial, b1 − br ∈

{n−α, . . . , n− 1}. Similarly, we get br1 − br1+r2+1 ∈ {n−α, . . . , n− 1}. Then we have

(br1 − br1+r2+1)− (b1− br) = r1− 1 + r3− 1 ≤ α− 1, which implies r1 + r3 ≤ α+ 1.

Now we assume T is of maximum length, i.e, r = 2(α+ 1).

Corollary 4.11. For an exceptional collection T of maximum length, we have r2 =

α+ 1 = r1 + r3, b1 − br = n− α and br1 − br1+r2+1 = n− 1.

Proof. By Lemma 4.10 and 2(α + 1) = r = r1 + r2 + r3, we have r2 ≥ α + 1. By 2. in

Lemma 4.5, we have r2 ≤ α + 1. Thus r2 = α + 1 and r1 + r3 = r − r2 = α + 1. The

property b1−br = n−α and br1−br1+r2+1 = n−1 follows from the proof of Lemma 4.10.

Indeed, by the proof Lemma 4.10 and r1+r3 = α+1, we get (br1−br1+r2+1)−(b1−br) =

r1−1+r3−1 = α−1. Since br1− br1+r2+1 ≥ b1− br and both are in {n−α, . . . , n−1}.

Thus b1 − br = n− α and br1 − br1+r2+1 = n− 1.

Proposition 4.12. The exceptional collection of line bundles of maximum length on

PΣ with elements in three vertical lines is, up to tensoring with a line bundle, are given

by

Hr1,r3 =
(
(−2, n− α), . . . , (−2, n− α+ r1 − 2), (−2, n− α+ r1 − 1),

(−1, br1+r2 − α), . . . , (−1, br1+r2 − 1), (−1, br1+r2),

(0,−(r3 − 1)), . . . , (0,−1), (0, 0)
)
,
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for a pair r1, r3 ∈ {1, . . . , α} such that r1 + r3 = α+ 1 and br1+r2 ∈ Z. Since we have

#{(r1, r3)|r1, r3 ∈ {1, . . . , α}, r1 + r3 = α+ 1} = α.

Now we have α classes of exceptional collections of line bundles of maximum length on

PΣ.

Proof. By Corollary 4.11, for any pair r1, r3 ∈ {1, . . . , α} such that r1 + r3 = α+ 1, we

get a class of exceptional collection of line bundles of maximum length

Tr1,r3 =
(
(ar − 2, br + (n− α)), . . . , (ar − 2, br1 − 1), (ar − 2, br + (n− α) + (r1 − 1)),

(ar − 1, br1+r2 − α), . . . , (ar − 1, br1+r2 − 1), (ar − 1, br1+r2),

(ar, br − (r3 − 1)), . . . , (ar, br − 1), (ar, br)
)
,

where br1 , br1+r2 ∈ Z. After tensoring with (−ar,−br) and replacing br1+r2 − br by

br1+r2 to simplify notation, we get

Hr1,r3 =
(
(−2, n− α), . . . , (−2, br1 − 1− br), (−2, (n− α) + (r1 − 1)),

(−1, br1+r2 − α), . . . , (−1, br1+r2 − 1), (−1, br1+r2),

(0,−(r3 − 1)), . . . , (0,−1), (0, 0)
)
,

where br1 , br1+r2 ∈ Z.

To show that this collection is exceptional, we check that the appropriate line bun-

dles are H-trivial. For elements in the same vertical line, the result follows from r1, r3 ≤

α + 1. For elements on the first and the third vertical lines, the result follows from

b1−br = n−α−0 = n−α and br1−br1+r2+1 = (n−α)+(r1−1)−(−(r3−1)) = n−1.

Case 2. We consider the case ar − a1 < 2. If ar = a1, then T lies on one vertical

line. It can never be of maximum length. If ar−a1 = 1, then T lies on two consecutive

lines. We assume that a1 = a2 = . . . = ar1 = ar − 1 and ar1+1 = . . . = ar1+r2 , where

1 ≤ r1, r2 ≤ α+ 1. So if T has maximum length, then r1 = r2 = α+ 1.

Now we can assume an exceptional collection of line bundles of maximum length

lies on two consecutive vertical lines to be

T0 =
(
(ar−1, br1−α), . . . , (ar−1, br1−1), (ar−1, br1), (ar, br−α), . . . , (ar, br−1), (ar, br)

)
,
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where br1 ∈ Z. After tensoring with (−ar,−br) and replace br1 − br by br1 to simplify

the notations, we get

H0 =
(
(−1, br1 − α), . . . , (−1, br1 − 1), (−1, br1), (0,−α), . . . , (0,−1), (0, 0)

)
, (4.1)

where br1 ∈ Z. Therefore, every exceptional collection of line bundles of maximum

length on PΣ with elements in two vertical lines is, up to tensoring with a line bundle,

of this form in Equation 4.1.

Proposition 4.13. We can classify all exceptional collection of line bundles on PΣ of

maximum length into α+ 1 types.

Proof. By Proposition 4.12, we have α types. And H0 in Equation 4.1 gives us one

more type.

We illustrate this classification in the case α = 3, n = 4.

Example 4.14. We have v1 = (1, 0), v2 = (0,−1), v3 = (−3, 4), v4 = (0, 1). The Picard

group is generated by E1, E2, E3, E4 with relations

E1 = 3E3, E4 = E2 − 4E3.

Let E2, E3 be basis. E1 = (0, 3), E2 = (1, 0), E3 = (0, 1), E4 = (1,−4) We have forbid-

den sets (See Figure 4.5):

F13 = (−2, 4) + Z≥0(0, 1) + Z≥0(−1, 0) + Z≥0(−1, 4)

F24 = (0,−4) + Z≥0(1, 0) + Z≥0(1,−4) + Z≥0(0,−1)

F∅ = (−2, 0) + Z≥0(0,−1) + Z≥0(−1, 0) + Z≥0(−1, 4)

F{1,2,3,4} = Z≥0(0, 1) + Z≥0(0, 1) + Z≥0(1,−4)

All the H-trivial line bundles are

(−2, 3), (−2, 2), (−2, 1), {(1, y)|y ∈ Z}, (0,−1), (0,−2), (0,−3)

which are represented by hollow dots in Figure 4.5.

There are α+ 1 = 4 classes of exceptional collection of line bundles with maximum

length:

H1,3 =
(
(−2, 1), (−1, b5 − 3), (−1, b5 − 2), (−1, b5 − 1), (−1, b5), (0,−2), (0,−1), (0, 0)

)
,
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Figure 4.5:

H2,2 =
(
(−2, 1), (−2, 2), (−1, b6 − 3), (−1, b6 − 2), (−1, b6 − 1), (−1, b6), (0,−1), (0, 0)

)
,

H3,1 =
(
(−2, 1), (−2, 2), (−2, 3), (−1, b7 − 3), (−1, b7 − 2), (−1, b7 − 1), (−1, b7), (0, 0)

)
,

H0 =
(
(−1, b4 − 3), (−1, b4 − 2), (−1, b4 − 1), (−1, b4), (0,−3), (0,−2), (0,−1), (0, 0)

)
,

where b4, b5, b6, b7 ∈ Z.

4.3 Extensions to collections of maximum length

As mentioned in Remark 9, we want to see whether every strong exceptional collection

of line bundles on a toric variety or stack with Picard number two can be extended to

a strong exceptional collection of line bundles of maximum length. In this section, we

don’t assume that the collections are strong exceptional. For generalized Hirzebruch

surfaces PΣ = Fα,n, we will show that any exceptional collection of line bundles on PΣ

can be extended to an exceptional collection of line bundles of maximum length on PΣ

(Theorem 4.15).

Theorem 4.15. Any exceptional collection of line bundles on generalized Hirzebruch

surfaces PΣ = Fα,n can be extended to an exceptional collection with maximum length

2(α+ 1).
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We will first show that any exceptional collection of line bundles

T = {(a1, b1), (a2, b2), . . . , (ar, br)}

with ar−a1 = 2 can be extended to an exceptional collection of line bundles of maximum

length on PΣ.

By 1. and 2. in Lemma 4.5 and Lemma 4.9, we assume an exceptional collection of

line bundles with ar − a1 = 2 to be

T =
(
(ar − 2, br1 − (r1 − 1)), . . . , (ar − 2, br1 − 1), (ar − 2, br1),

(ar − 1, br1+r2 − (r2 − 1)), . . . , (ar − 1, br1+r2 − 1), (ar − 1, br1+r2),

(ar, br − (r3 − 1)), (ar, br), . . . , (ar, br)
)
,

where 1 ≤ r1, r3 ≤ α + 1, 0 ≤ r2 ≤ α + 1, r = r1 + r2 + r3 and the second coordinates

of the points on the same vertical line increase.

After tensoring with (−ar, br) and replacing br1−br by d, br1+r2−br by c, we rewrite

the collection

T =
(
(−2, d− (r1 − 1)), . . . , (−2, d− 1), (−2, d),

(−1, c− (r2 − 1)), . . . , (−1, c− 1), (−1, c),

(0,−(r3 − 1)), . . . , (0,−1), (0, 0)
)
,

where c, d ∈ Z.

In the following lemma, we show that the exceptional collection is still an exceptional

collection after extending the middle vertical line.

Lemma 4.16. Let

T1 =
(
(−2, d− (r1 − 1)), . . . , (−2, d− 1), (−2, d),

(−1, c− α), . . . , (−1, c− r2), (−1, c− (r2 − 1)), . . . , (−1, c− 1), (−1, c),

(0,−(r3 − 1)), . . . , (0,−1), (0, 0)
)
,

be the collection obtained by extending the second line in T to maximum length α+ 1.

Then T1 is also exceptional collection.
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Proof. New differences of the elements of the collection are in the line (−1,Z) or the

segment (0, [−1,−α]).

Remark 12. Let l = 0, . . . , (r3−1) and t = 0, . . . , (r1−1). Then l−t = 1−r1, . . . , r3−1.

Thus d + l − t = d − r1 + 1, . . . , d + r3 − 1. Since T is exceptional collection, then

(−2, d− t)− (0,−l) = (−2, d+ l − t) is H-trivial. This implies n− α ≤ d− r1 + 1 and

d+ r3 − 1 ≤ n− 1 (see Figure 4.6).

Figure 4.6:

Let

s3 = n− 1− (d+ r3 − 1), s1 = d− r1 + 1− (n− α)

be two nonnegative integers. Then we consider extend the first vertical line below by

s1 and extend the first vertical line below by s3 (see Figure 4.7).

Figure 4.7:

In the following lemma, we claim that the exceptional collection is still an exceptional

collection after extending as above.
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Lemma 4.17. Let

T2 =
(
(−2, d− r1 − (s1 − 1)), . . . , (−2, d− r1), (−2, d− (r1 − 1)), . . . , (−2, d),

(−1, c− α), . . . , (−1, c− r2 − 1), (−1, c− r2), (−1, c− (r2 − 1)), . . . , (−1, c),

(0,−r3 − (s3 − 1)), . . . , (0,−r3 − 1), (0,−r3), (0,−(r3 − 1)), . . . , (0,−1), (0, 0)
)
,

be the collection obtained by extending the first and third vertical lines in T1 to length

r3+s3 and r1+s1 respectively (see Figure 4.7). Then T2 is also an exceptional collection

of length s1 + r1 + s3 + r3 + (α+ 1) = 2(α+ 1).

Proof. This is an exceptional collection of Hr1+s1,r3+s3 of Proposition 4.12.

Proof of Theorem 4.15. For an exceptional collection of line bundles with a1−ar <

2, we can extend each vertical line to length α + 1 to get an exceptional collection of

maximum length. For an exceptional collection of line bundles with a1 − ar = 2 , the

result follows from Lemma 4.7, 4.16, 4.17.

4.4 Strong exceptional collections of line bundles

In this section, we will determine when the exceptional collections of line bundles are

strong exceptional collections. We first have the following criterion.

Lemma 4.18. Let T =
(
(a1, b1), (a2, b2), . . . , (ar, br)

)
be an exceptional collection of

line bundles. Then the collection T is further a strong exceptional collection if and only

if (ai, bi)− (aj , bj) is not in any of the Forbidden cones F13, F∅ and F24 for any i < j.

Proof. By Definition 2.2, the collection T is further a strong exceptional collection if

and only if

Ht(PΣ,O((aj , bj)− (ai, bi))) = Extt(O((ai, bi)),O((aj , bj))) = 0

for any i < j and t > 0. By Proposition 2.13, it is equivalent to that (aj , bj) − (ai, bi)

is not in any of the Forbidden cones F13, F∅ and F24 for any i < j.
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Now we consider the exceptional collections of line bundles of maximum length.

Hr1,r3 =
(
(−2, n− α), . . . , (−2, n− α+ r1 − 2), (−2, n− α+ r1 − 1),

(−1, b− α), . . . , (−1, b− 1), (−1, b),

(0,−(r3 − 1)), . . . , (0,−1), (0, 0)
)
;

H0 =
(
(−1, d− α), . . . , (−1, d− 1), (−1, d), (0,−α), . . . , (0,−1), (0, 0)

)
,

where b, d ∈ Z and r1 + r3 = α + 1. The following two propositions give the criterions

for the exceptional collection Hr1,r3 and H0 to be strong.

Proposition 4.19. The exceptional collection Hr1,r3 is a strong exceptional collection

only in the following two cases:

1. n = α and b = r1, r1 − 1;

2. n = α+ 1 and b = r1.

Proof. For any two points (x, bi), (x, bj) on the same vertical line in Hr1,r3 such that

i < j, we have bj − bi > 0 since the second coordinates increase for points on the

same vertical line. Thus (x, bj) − (x, bi) = (0, bj − bi) is not in any of F13, F∅ and F24.

Therefore Hr1,r3 is a strong exceptional collection if and only if it satisfies that

(0, t)− (−1, l) = (1, t− l), (−1, l)− (−2, k) = (1, l − k), (0, t)− (−2, k) = (2, t− k)

are not in any of F13, F∅ and F24 for t = 0,−1, . . . ,−(r3− 1), l = b, b− 1, . . . , b−α and

k = n− α+ (r1 − 1), n− α+ (r1 − 2), . . . , n− α.

Note that (1, y), (2, y), y ∈ Z are not in any of F13, F∅ and F24 if and only if y ≥ −α.

Since the second coordinates of points in the same vertical line increase, we only have

to check t = −(r3 − 1), l = b and k = n − α + (r1 − 1). Therefore Hr1,r3 is strong

exceptional collection if and only if it satisfies (see Figure 4.8):

1. −(r3 − 1)− b ≥ −α,

2. b− α− (n− α+ (r1 − 1)) = b− n− r1 + 1 ≥ −α,

3. −(r3 − 1)− (n− α+ (r1 − 1)) ≥ −α.
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Figure 4.8:

The condition 1. is equivalent to α− r3 + 1 ≥ b. Since r1 + r3 = α+ 1, it is equivalent

to r1 ≥ b. The condition 2. is equivalent to b ≥ n−α+ r1−1. Since r1 + r3 = α, we get

−(r3−1)−(n−α+(r1−1)) = −(r1+r3)−n+α+2 = −(α+1)−n+α+2 = −n+1. Thus

condition 3. is equivalent to α+ 1 ≥ n. Since n ≥ α, it is equivalent to n ∈ {α, α+ 1}.

When n = α, we have (2) equivalent to b ≥ r1−1. Thus Hr1,r3 is strong exceptional

collection if and only if b = r1, r1 − 1. When n = α + 1, condition 2. is equivalent to

b ≥ r1. Thus Hr1,r3 is a strong exceptional collection if and only if b = r1.

Proposition 4.20. The exceptional collection H0 is strong exceptional if and only if

d ≤ 0.

Proof. With the similiar argument in Propostion 4.19, we get that H0 is strong if and

only if −α− d ≥ −α which equailent to 0 ≥ d.

We illustrate the results in the case α = 3, n = 4.

Example 4.21. Let us consider the toric DM stack in Example 4.14. We have n =

4 = 3 + 1 = α+ 1. We get

H1,3 =
(
(−2, 1), (−1, b5 − 3), (−1, b5 − 2), (−1, b5 − 1), (−1, b5), (0,−2), (0,−1), (0, 0)

)
is a strong exceptional collection if and only if b5 = 1;

H2,2 =
(
(−2, 1), (−2, 2), (−1, b6 − 3), (−1, b6 − 2), (−1, b6 − 1), (−1, b6), (0,−1), (0, 0)

)
is a strong exceptional collection if and only if b6 = 2;

H3,1 =
(
(−2, 1), (−2, 2), (−2, 3), (−1, b7 − 3), (−1, b7 − 2), (−1, b7 − 1), (−1, b7), (0, 0)

)
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is a strong exceptional collection if and only if b7 = 3;

H0 =
(
(−1, b4 − 3), (−1, b4 − 2), (−1, b4 − 1), (−1, b4), (0,−3), (0,−2), (0,−1), (0, 0)

)
is a strong exceptional collection if and only if b4 ≤ 0.

4.5 Relation to toric systems on Hirzebruch surfaces

In this section, we will see that when α = 1, the results in above sections match well

the computation of so-called toric systems in [19] for Hirzebruch surfaces.

We first introduce the definition of toric systems.

Definition 4.22. [19] A set of divisors {Ai}ni=1 on a projective rational surface S is

called a toric system if it satisfies the following the conditions.

1. Ai ·Ai+1 = 1 for 1 ≤ i < n and A1 ·An = 1;

2. Ai ·Aj = 1 for i 6= j, {i, j} 6= {1, n}, and {i, j} 6= {k, k + 1} for any 1 ≤ k < n;

3.
∑n

i=1Ai = −K, where K is a canonical divisor of S.

Next proposition gives the correspondence of toric systems and exceptional collection

of line bundles.

Lemma 4.23. [19] Let D1, . . . , Dn be divisors on a projective rational surface S such

that O(D1), . . . ,O(Dn) form an exceptional collection. Then Ai = Di+1 −Di for 1 ≤

i ≤ n and An = −K −
∑n−1

i=1 Ai form a toric system.

Proof. See [19].

When α = 1, we have v1 = (1, 0), v2 = (0,−1), v3 = (−1, n), v4 = (0, 1), where

n ≥ 1. The toric DM stacks PΣ associated to the stacky fan Σ = (Σ, {vi}4i=1) are the

Hirzebruch surfaces Fn. The Picard group is generated by E1, E2, E3, E4 with relations

E1 = E3, E4 = E2 − nE3.
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Let E2, E3 be basis, we have E1 = (0, 1), E2 = (1, 0), E3 = (0, 1), E4 = (1,−n) and the

canonical divisor K = −
∑4

i=1E4 = (−2, n− 2). All forbidden sets are as follows.

F13 = (−2, n) + Z≥0(0, 1) + Z≥0(−1, 0) + Z≥0(−1, n)

F24 = (0,−2) + Z≥0(1, 0) + Z≥0(1,−n) + Z≥0(0,−1)

F∅ = (−2, n− 2) + Z≥0(0,−1) + Z≥0(−1, 0) + Z≥0(−1, n)

F{1,2,3,4} = Z≥0(0, 1) + Z≥0(0, 1) + Z≥0(1,−n)

When n = 2, the forbidden sets are shown in Figure 4.9 For general n, all the H-trivial

Figure 4.9:

line bundles are

(−2, n− 1), {(1, y)|y ∈ Z}, (0,−1).

By Proposition 4.12 and Equation 4.1, there are only two classes of exceptional collec-

tions of line bundles with maximum length:

H1,1 =
(
(−2, 1), (−1, c− 1), (−1, c), (0, 0)

)
,

H0 =
(
(−1, b− 1)(−1, b), (0,−1), (0, 0)

)
,

where b, c ∈ Z.

This matches the results about toric systems on Hirzebruch surfaces Fn in [19]. The

Proposition 5.2 in [19] is stated as follows with the notations in this thesis.
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Proposition 4.24. [19] There are the following toric systems on a Hirzebruch surface

Fn:

1. E2, sE2 + E1, E2,−(n+ s)E2 + E1 for s ∈ Z and any n ≥ 1;

2. −(n/2)E2 +E1, E2 + s(−(n/2)E2 +E1),−(n/2)E2 +E1, E2 − s(−(n/2)E2 +E1)

for s ∈ Z and n even.

Toric systems of type (1) are always exceptional. They are strongly exceptional for

s ≥ −1. They are cyclic strong exceptional if and only if s ≥ −1 and n+ s ≤ 1.

Toric system of type (2) are almost never exceptional. The exceptions are for n = 0,

where type (2) is symmetric to type (1) by exchanging E2 and E1, and for n = 2 and

s = 0, which then coincides with a toric system of type (1) and is cyclic strongly

exceptional.

Let D1, D2, D3, D4 be the collection of divisors corresponding to the toric systems

of type (1). By the Lemma 4.23, the collection falls into the following two cases:

1. D2 −D1 = E2, D3 −D2 = sE2 + E1, D4 −D3 = E2 for s ∈ Z

2. D2 −D1 = sE2 + E1, D3 −D2 = E2, D4 −D3 = −(n+ s)E2 + E1 for s ∈ Z and

any n ≥ 1.

Without loss of generality, we let D4 = (0, 0). Then we have the following two class

of collection:

1. W0 =
(
D1 = (−1,−2 − s), D2 = (−1,−1 − s), D3 = (0,−1), D4 = (0, 0)

)
for

s ∈ Z;

2. W1 =
(
(D1 = (−2, n− 1), D2 = (−1, n+ s− 1), D3 = (−1, n+ s), D4 = (0, 0)

)
for

s ∈ Z and any n ≥ 1.

By Proposition 4.24, we know there are exactly two classes of exceptional collections on

Fn which are W0 and W1. In face W0 is the same class as H0 if let b = −s− 1 and W1

is the same class as H11 if let c = s+n. By Proposition 4.20, the exceptional collection

W0 is a strong exceptional collection if and only if b = −s− 1 ≤ 0 which is equivalent
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to s ≥ −1. By Proposition 4.19, the exceptional collection W1 is a strong exceptional

collection only at two cases that n = 1, s = −1, 0 and n = 2, s = −1. These match with

the results in Proposition 4.24.

In [19], the authors introduced cyclic (strongly) exceptional collections.

Definition 4.25. An infinite collection of sheaves . . . ,Fi,Fi+1, . . . is called a cyclic

(strongly) exceptional collection if there exists an m such that Fi+m ∼= Fi ⊗ O(−K)

for every i ∈ Z and if every winding (i.e. every subinterval Fi, . . . ,Fi+m) forms a

(strongly) exceptional collection.

From the Proposition 5.1 in [19], we know both W0 and W1 are cyclic exceptional

collections. We consider the infinite collection

. . . , (−3,−3−s+n), (−2,−3+n), (−2,−2+n), (−1,−2−s), (−1,−1−s), (0,−1), (0, 0), . . .

constructed as Definition 4.25, where (−2,−2 + n) − K = (0, 0). The exceptional

collection
(
(−2,−2 + n), (−1,−2 − s), (−1,−1 − s), (0,−1)

)
is strong if and only if

−1 − (−1 − s) ≥ −1,−1 − (−2 + n) ≥ −1,−2 − s − (−2 + n) ≥ −1. We have that

−1− (−1− s) ≥ −1 is equivalent to s ≥ −1. Also −2− s− (−2 +n) ≥ −1 is equivalent

to n+ s ≤ 1. And −1− (−2 + n) ≥ −1 is equivalent to n = 1, 2. Thus the exceptional

collection
(
(−2,−2 + n), (−1,−2− s), (−1,−1− s), (0,−1)

)
is strong only at two cases

that n = 1, s = −1, 0 and n = 2, s = −1. Actually,
(
(−2,−2+n), (−1,−2−s), (−1,−1−

s), (0,−1)
)

is in the same class as W1 and H11.

Thus, the infinite collection

. . . , (−3,−3−s+n), (−2,−3+n), (−2,−2+n), (−1,−2−s), (−1,−1−s), (0,−1), (0, 0), . . .

is cyclic (strongly) exceptional collection only at two cases that n = 1, s = −1, 0 and

n = 2, s = −1. This matches very well with the sufficient and necessary conditions in

Proposition 4.24 for the infinite collection to be cyclic strongly exceptional. Indeed, the

conditions s ≥ −1 and n+ s ≤ 1 are equivalent to −s ≤ 1 and n ≤ 1− s, which implies

n ≤ 1 − s ≤ 2. Since n ≥ 1, then n = 1, 2. When n = 1, the conditions s + n ≤ 1

and s ≥ −1 are equivalent to −1 ≤ s ≤ 0, i.e., s = 0,−1. When n = 2, the conditions

s+ n ≤ 1 and s ≥ −1 are equivalent to −1 ≤ s ≤ −1, i.e., s = −1.
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4.6 Extending strong exceptional collections to maximum length

In this section, we analyze when a strong exceptional collection of line bundles on

PΣ = Fα,n can be extended to a strong exceptional collection of line bundles of length

rk(K(PΣ)) = 2(α + 1). If a strong exceptional collection of line bundles cannot be

extend to length 2(α+ 1), we consider what is the maximum length it can extend to.

We first consider to extend the strong exceptional collection of line bundles

T = {(a1, b1), (a2, b2), . . . , (ar, br)}

with ar − a1 = 2. By 1., 2. in Lemma 4.5, we can assume

T =
(
(ar − 2, b1), . . . , (ar − 2, br1−1)(ar − 2, br1),

(ar − 1, br1+1), . . . , (ar − 1, br1+r2−1), (ar − 1, br1+r2),

(ar, br1+r2+1), . . . , (a1 − 2, br−1), (ar, br)
)
,

where 1 ≤ r1, r3 ≤ α + 1, 0 ≤ r2 ≤ α + 1, r = r1 + r2 + r3 and the second coordinates

of the points on the same vertical line increase.

Remark 13. With the same argument in Proposition 4.19, exceptional collection T is

a strong exceptional collection if and only if it satisfies:

1. br1+1 − br1 ≥ −α;

2. br1+r2+1 − br1 ≥ −α;

3. br1+r2+1 − br1+r2 ≥ −α.

Similarly, by 1., 2. in Lemma 4.5, we can assume an exceptional collection of line

bundles with ar − a1 < 2 to be

R =
(
(ar − 1, b1), (ar − 1, b2), . . . , (ar − 1, br1),

(ar, br1+1), (ar, br1+2), . . . , (ar, br)
)
,

where 0 ≤ r2 ≤ α + 1, 1 ≤ r1 ≤ α + 1, r = r1 + r2 and the second coordinates of

the points on the same vertical line increase. With the same argument in Proposition

4.20, exceptional collection R is a strong exceptional collection if and only if it satisfies

br1+1 − br1 ≥ −α.
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Corollary 4.26. After inserting line bundles between line bundles on the same vertical

lines in the strong exceptional collection to make the second coordinates to be consecutive

numbers, we get an another strong exceptional collection with longer length.

Proof. By Corollary 4.8, we know the collection is still an exceptional collection after

inserting. The three conditions 1., 2., 3. in Remark 13 still hold after inserting, which

implies the new collection is a strong exceptional collection.

Now we consider the case when there exist exceptional collections of line bundles

of length 2(α + 1) on Fα,n, i.e., n = α, α + 1. We will show at this case, any strong

exceptional collection of line bundles with ar − a1 = 2 can be extended to a strong

exceptional collection of line bundles of length 2(α+ 1).

Remark 14. Without loss of generality, we can assume a strong exceptional collection

of line bundles with ar − a1 = 2 to be

T =
(
(−2, c− (r1 − 1)), . . . , (−2, c− 1), (−2, c),

(−1, b− (r2 − 1)), . . . , (−1, b− 1), (−1, b),

(0,−(r3 − 1)), . . . , (0,−1), (0, 0)
)
,

where c, d ∈ Z, 0 ≤ r2 ≤ α+ 1 and 1 ≤ r1, r3 ≤ α+ 1, which satisfies three conditions:

−(r3 − 1)− b ≥ −α, −(r3 − 1)− c ≥ −α and b− (r2 − 1)− c ≥ −α.

Since T is an exceptional collection, we have that (−2, c − (r1 − 1)) and (−2, c)

are H-trivial. Thus we have n − α ≤ c − (r1 − 1) and c ≤ n − 1. This implies

c− (n− α) + 1 ≤ n− 1− n+ α+ 1 = α. So it is reasonable to extend the first vertical

line to length c− (n− α) + 1 in the following lemma.

Lemma 4.27. Let

T =
(
(−2, n− α), . . . , (−2, c− r1 − 1), (−2, c− r1), (−2, c− (r1 − 1)), . . . , (−2, c),

(−1, b− (r2 − 1)), . . . , (−1, b− 1), (−1, b),

(0,−(r3 − 1)), . . . , (0,−1), (0, 0)
)
,

be the collection obtained by extend the first vertical line in T . Then T1 is also a strong

exceptional collection.
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Proof. We first show T1 is an exceptional collection. It is sufficient to show (−2, l) −

(0, t) = (−2, l− t) is H-trivial for l = c− r1, . . . , n−α and t = 0,−1, . . . ,−(r3− 1). We

have l − t = n − α, . . . , c − r1 + r3 − 1. We claim that c − r1 + r3 − 1 ≤ n − 1. Since

T is strong and by the three conditions in Remark 14, we have c ≤ −r3 + 1 + α. This

implies c− r1 + r3−1 ≤ −r1 + r3−1− r3 + 1 +α = α− r1. If c− r1 + r3−1 > n−1, we

get α− r1 > n− 1. When n = α, we get r1 < 1, which contradicts to the assumption.

When n = α + 1, we get r1 < 0, which contradicts to the assumption. So we have

n− α ≤ l − t ≤ n− 1 which implies (−2, l − t) is H-trivial.

Since extending the third line will not change the three conditions in Remark 14,

the exceptional collection T1 is a strong exceptional collection.

Case 1 We first consider the case that n = α+1. In this case, the strong exceptional

collection

T1 =
(
(−2, 1), . . . , (−2, c− 1), (−2, c),

(−1, b− (r2 − 1)), . . . , (−1, b− 1), (−1, b),

(0,−(r3 − 1)), . . . , (0,−1), (0, 0)
)
,

where c, b ∈ Z and 1 ≤ r3, r2, c ≤ α+1, which satisfies three conditions: −(r3−1)−b ≥

−α, −(r3 − 1)− c ≥ −α and b− (r2 − 1)− c ≥ −α.

We consider two subcases that b ≤ c and b > c separately.

If b ≤ c, we consider extending the middle vertical line as follows:(
(−1, b− (r2 − 1)) . . . , (−1, b− 1), (−1, b), (−1, b+ 1), . . . , (−1, c− 1), (−1, c)

)
.

This vertical line has length c−b+r2. Since b−(r2−1)−c ≥ −α, we get c−b+r2 ≤ α+1.

Thus it is reasonable to consider further extending the vertical line to length α + 1 as

follows:(
(−1, b−r2−(s2−1)), . . . , (−1, b−r2)(−1, b−(r2−1)) . . . , (−1, b), (−1, b+1), . . . , (−1, c)

)
,

where s2 = α + 1 − (c − b + r2) (see Figure 4.10). By Lemma 4.10, we have that the

total length of the first and third vertical lines is c + r3 ≤ α + 1. It is reasonable to

consider extending the third vertical line to length α+ 1− c as follows(
(0,−r3 − (s3 − 1)), . . . , (0,−r3), (0,−(r3 − 1)), . . . , (0,−1), (0, 0)

)
,
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where s3 = α+ 1− r3 − c (see Figure 4.10).

Figure 4.10:

In following proposition, we show that the strong exceptional collection is still a

SEC after extending as above.

Proposition 4.28. If b ≤ c, let s2 = α+ 1− (c− b+ r2) and s3 = α+ 1− r3− c. Then

the collection

T2 =
(
(−2, 1), . . . , (−2, c− 1), (−2, c),

(−1, b− r2 − (s2 − 1)), . . . , (−1, b− r2)(−1, b− (r2 − 1)) . . . , (−1, b), . . . , (−1, c),

(0,−r3 − (s3 − 1)), . . . , (0,−r3), (0,−(r3 − 1)), . . . , (0,−1), (0, 0)
)

is a strong exceptional collection with maximum length.

Proof. We first show T2 is an exceptional collection. It is sufficient to show (−2, l) −

(0,−r3+t) = (−2, l+r3−t) is H-trivial for l = 1, . . . , c and t = −(s3−1), . . . , 0. We have

1+r3 ≤ l+r3 ≤ c+r3 and 0 ≤ −t ≤ s3−1. Thus 1 ≤ 1+r3 ≤ l+r3−t ≤ c+r3+s3−1 = α.

When n = α+ 1, we have n− 1 = α and n− α = 1. So (−2, l + r3 − t) is H-trivial.

Then we claim that T2 is a strong exceptional collection. By the definition of s3, we

have −r3− (s3−1)−c = −α. By the definition of s2, we have b−r2− (s2−1)−c = −α

(see Figure 4.10). Thus T2 satisfies the three conditions 1., 2., 3. in 13, which implies

our claim.

The length of the collection equals r3 + s3 + (α+ 1) + c = 2(α+ 1).

If b > c, we consider extending the third vertical line of T1 to length b as follow:

(
(−2, 1), (−2, 2), . . . , (−2, c− 1), (−2, c), (−2, c+ 1), . . . , (−2, b− 1), (−2, b)

)
.
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Since T1 is a strong exceptional collection, we have −(r3 − 1) − b ≥ −α. Then we get

b ≤ α − r3 + 1 ≤ α since r3 ≥ 1. It is reasonable that the length of the new vertical

line is not more than α. Then we consider extending the middle vertical line to length

α+ 1 as follows:

(
(−1, b− r2 − (s2 − 1)), . . . , (−1, b− r2), (−1, b− (r2 − 1)), . . . , (−1, b− 1), (−1, b)

)
,

where s2 = α+ 1− r2. Also since −(r3 − 1)− b ≥ −α, so the sum of the lengths of the

new third and the first vertical line in T1 is b+ r3 ≤ α+ 1. It is reasonable to consider

extending the third vertical line in T1 as follows:

(
(0,−r3 − (s3 − 1)), . . . , (0,−r3), (0,−(r3 − 1)) . . . , (0,−1), (0, 0)

)
,

where s3 = α+ 1− b− r3.

In following proposition, we show that the strong exceptional collection is still a

SEC after extending as above.

Proposition 4.29. If b > c, let s3 = α+ 1− b− r3 and s2 = α+ 1− r2.

T3 =
(
(−2, 1), (−2, 2), . . . , (−2, c− 1), (−2, c), (−2, c+ 1), . . . , (−2, b− 1), (−2, b),

(−1, b− r2 − (s2 − 1)), . . . , (−1, b− r2), (−1, b− (r2 − 1)), . . . , (−1, b− 1), (−1, b),

(0,−r3 − (s3 − 1)), . . . , (0,−r3), (0,−(r3 − 1)) . . . , (0,−1), (0, 0)
)

is a strong exceptional collection with maximum length.

Proof. We first show T3 is an exceptional collection. It is sufficient to show (−2, t) −

(0,−r3+l) = (−2, t+r3−l) is H-trivial for l = −(s3−1), . . . , 0 and t = 1, . . . , b. We have

1+r3 ≤ t+r3 ≤ b+r3 and 0 ≤ −l ≤ s3−1. Thus 1 ≤ 1+r3 ≤ t+r3−l ≤ b+r3+s3−1 = α

by the definition of s3 and r3 ≥ 1. When n = α+ 1, we have n− 1 = α and n− α = 1.

Thus (−2, t+ r3 − l) is H-trivial.

Then we claim that T3 is a strong exceptional collection. By the definition of s2, we

have b−r2−(s2−1)−b = −α. By the definition of s3, we have −r3−(s3−1)−b = −α.

Thus T3 satisfies the three conditions 1., 2., 3. in 13, which implies our claim.
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Case 2 We consider the case that n = α. In this case, the strong exceptional

collection

T1 =
(
(−2, 0), . . . , (−2, c− 1), (−2, c),

(−1, b− (r2 − 1)), . . . , (−1, b− 1), (−1, b),

(0,−(r3 − 1)), . . . , (0,−1), (0, 0)
)
,

where c, b ∈ Z and 1 ≤ r3, r2, c + 1 ≤ α + 1, which satisfies three conditions: −(r3 −

1)− b ≥ −α, −(r3 − 1)− c ≥ −α and b− (r2 − 1)− c ≥ −α.

We consider two subcases that b ≤ c and b > c separately. The arguments are

similar as that of Case 1. When b > c, we consider extending the first vertical of T1

to length b as follow:

(
(−2, 0), . . . , (−2, c− 1), (−2, c), (−2, c+ 1), . . . , (−2, b− 1)

)
,

which is a little different from Case 1. The details of proof are left to the reader.

Theorem 4.30. When n = α, α + 1, any strong exceptional collection of line bundles

with ar − a1 = 2 can be extended to a strong exceptional collection of line bundles of

maximum length 2(α+ 1).

Proof. The result is implied by Remark 14, Proposition 4.28,4.29 and Case 2.

Remark 15. By Proposition 4.19, we know when n > α + 1, there are no strong

exceptional collections of line bundles of length 2(α + 1) with three vertical lines on

generalized Hirzebruch surfaces Fα,n. It is natural to ask what is the maximum length

of strong exceptional collection of line bundles with three vertical lines on generalized

generalized Hirzebruch surfaces.

We will show that when n > α+1, any strong exceptional collections of line bundles

with ar − a1 = 2 on generalized Hirzebruch surfaces Fα,n can be extend to a strong

exceptional collections of line bundles of length 3α+ 3− n.

We need some preparations to prove it. By Remark 14, we can assume a strong
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exceptional collection of line bundles with ar − a1 = 2 to be

T =
(
(−2, c− (r1 − 1)), . . . , (−2, c− 1), (−2, c),

(−1, b− (r2 − 1)), . . . , (−1, b− 1), (−1, b),

(0,−(r3 − 1)), . . . , (0,−1), (0, 0)
)
,

where c, d ∈ Z, 0 ≤ r2 ≤ α+ 1 and 1 ≤ r1, r3 ≤ α+ 1, which satisfies three conditions:

−(r3 − 1)− b ≥ −α, −(r3 − 1)− c ≥ −α and b− (r2 − 1)− c ≥ −α.

It is easy to see that the three conditions are equivalent to the vertical distances

between the following three pairs of points are no more than α (see Figure 4.11).

{(0,−(r3 − 1)), (−1, b)}, {(0,−(r3 − 1)), (−2, c)}, {(−1, b− (r2 − 1)), (−2, c)}

Figure 4.11:

We consider two subcases that b > c and b ≤ c separately. We first consider the

subcase of b > c (see Figure 4.11).

Proposition 4.31. If b > c, let s1 = (c − (r1 − 1)) − (n − α), s2 = (α + 1) − r2 and

s3 = α− (r3 − 1 + b). Then the collection (see Figure 4.12)

T1 =
(
(−2, c− r1 − (s1 − 1)), . . . , (−2, c− r1)), (−2, c− (r1 − 1)), . . . , (−2, c), . . . , (−2, b),

(−1, b− r2 − (s2 − 1)), . . . , (−1, b− r2)), (−1, b− (r2 − 1)), . . . , (−1, b− 1), (−1, b),

(0,−r3 − (s3 − 1)), . . . , (0,−r3)), (0,−(r3 − 1)), . . . , (0,−1), (0, 0)
)
,

obtained by extending T is a strong exceptional collection of line bundles with length

3α+ 3− n. And T1 cannot extend any more.
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Figure 4.12:

Proof. We first show T1 is an exceptional collection. It is sufficient to show (−2, t) −

(0, l) = (−2, t+r3−l) is H-trivial for l = −r3−(s3−1), . . . , 0 and t = c−r1−(s1−1), . . . , b.

Then we have t− l = c− r1− (s1− 1), . . . , b+ r3 + (s3− 1). The vertical distance of the

two points (−2, c− r1− (s1− 1)) and (0, 0) is c− r1− (s1− 1) = n−α by the definition

of s1. And the vertical distance of the two points (−2, b) and (0,−r3 − (s3 − 1)) is

b + r3 + (s3 − 1) = −α by the definition of s1. Thus the first and third vertical line

cannot extand anymore. Also n−α ≤ t− l ≤ −α ≤ n− 1 since n ≥ α+ 1. This implies

that (−2, t)− (0, l) = (−2, t+ r3 − l) is H-trivial.

Then we claim that T1 is a strong exceptional collection. By the definition of s2, we

have b−r2−(s2−1)−b = −α. By the definition of s3, we have −r3−(s3−1)−b = −α.

Thus T1 satisfies the three conditions 1., 2., 3. in 13 and the second vertical cannot

extend anymore, which implies our claim.

The total length of T1 is s1 + r1 + (b− c) + r2 + s2 + r3 + s3 = 3α+ 3− n

Now we consider the subcase of b ≤ c.

Proposition 4.32. When b ≤ c the collection T can be extend to a strong exceptional

collection of line bundles on Fα,n with length 3α+ 3−n which cannot be extend further

Proof. The result is obtained by similar arguments in Proposition 4.31.

Theorem 4.33. For n = α, α + 1, any strong exceptional collection of line bundles

on generalized Hirzebruch surfaces Fα,n with ar − a1 = 2 can be extended to a strong
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exceptional collection of line bundles on Fα,n of maximum length 2α+2. For n > α+1,

any strong exceptional collection of line bundles on generalized Hirzebruch surfaces Fα,n

with ar − a1 = 2 can be extended to a strong exceptional collection of line bundles on

Fα,n of length 3α+ 3− n which cannot be extend anymore.

Proof. The result is implied by Theorem 4.33, Proposition 4.31 and Proposition 4.32

Now let us consider a strong exceptional collection of line bundles with ar − a1 < 2

for n ≥ α.

By Corollary 4.26, we can assume a strong exceptional collection of line bundles

with ar − a1 < 2 to be

R =
(
(a− 1, c− (r2 − 1)), . . . , (a− 1, c− 1), (a− 1, c),

(0, b− (r1 − 1)), . . . , (a, b− 1), (a, b)
)
,

where a, b, c ∈ Z, 0 ≤ r2 ≤ α+1 and 1 ≤ r1, r2 ≤ α+1, which satisfies b− (r1−1)−c ≥

−α.

Proposition 4.34. Let s1 = α+ 1− r1 and s2 = α+ 1− r2. Then the collection

R1 =
(
(a− 1, c− r2 − (s2 − 1)) . . . , (a− 1, c− r2), (a− 1, c− (r2 − 1)), . . . , (a− 1, c),

(0, b− (r1 − 1)), . . . , (a, b− 1), (a, b), (a, b+ 1) . . . , (a, b+ s1)
)

is a strong exceptional collection for maximum length 2α+ 2.

Proof. Since (−1, y) is H-trivial for any y ∈ Z, so (a − 1, l) − (a, t) = (−1, l − t) is

H-trivial for any l, t ∈ Z. Thus R1 is an exceptional collection. Also, the condition

b− (r1 − 1)− c ≥ −α still hold after extending, which implies our result.

Theorem 4.35. For n ≥ α, any strong exceptional collection of line bundles on on

Fα,n with ar − a1 < 2 can be extended to a strong exceptional collection of line bundles

on Fα,n of maximum length 2α+ 2.

Proof. The result is implied by Proposition 4.34.
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4.7 Exceptional collections of maximal length generate the derived

category

In this section, we show that any exceptional collection of line bundles on PΣ of maxi-

mum length generates D, the bounded derived category of coherent sheaves on PΣ.

It is shown in [5] that the bounded derived category of coherent sheaves on PΣ is

generated by the invertible sheaves. Also since any such collection is a shift of one of

Hr1,r3 ,H0, it is sufficient to show that each of Hr1,r3 ,H0 generates all line bundles.

Lemma 4.36. If the points (a, b), (a, b− 1), . . . , (a, b−α) on the same vertical line are

in the derived category, then all the other points {(a, y)|y ∈ Z} are also in the derived

category.

Proof. We consider the Koszul complex

0→ O(−E1 − E3)→ O(−E1)⊕O(−E3)→ O → 0. (4.2)

We tensor the complex by O(a, b) to get

0→ O(a, b− α− 1)→ O(a, b− α)⊕O(a, b− 1)→ O(a, b)→ 0. (4.3)

This implies O(a, b−α− 1) is in the derived category. To get that O(a, b−α− 2) is in

the derived category, we further tensor the complex 4.3 by O(0,−1). By repeating the

process, we obtain that O(a, b− α− y) is in the derived category for any y ∈ Z≥0.

Then we tensor the complex 4.2 by O(a, b+ 1) to get

0→ O(a, b− α)→ O(a, b− α+ 1)⊕O(a, b)→ O(a, b+ 1)→ 0.

This implies O(a, b − α + 1) is in the derived category. By similar argument, we can

show it is true for O(a, b− α+ y) for any y ∈ Z≥0. This leads to our result.

The following example illustrate the lemma more concretely.

Example 4.37. Let us consider the toric DM stack in Example 4.14. We have n =

4 = 3 + 1 = α + 1 and E1 = (0, 3), E2 = (1, 0), E3 = (0, 1), E4 = (1,−4). The Koszul
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complex 4.2 in Lemma 4.36 is

0→ O(0,−4)→ O(0,−3)⊕O(0,−1)→ O → 0.

We consider an exceptional collection

H3,1 =
(
(−2, 1), (−2, 2), (−2, 3), (−1, b− 3), (−1, b− 2), (−1, b− 1), (−1, b), (0, 0)

)
,

where b ∈ Z. The middle vertical line in H3,1 contains (−1, b), (−1, b−1), . . . , (−1, b−3).

After tensor the Koszul complex with O(−1, b), we get the complex in Lemma 4.36 as

follows:

0→ O(−1, b− 4)→ O(−1, b− 3)⊕O(−1, b− 1)→ O(−1, b)→ 0.

Thus O(−1, b − 4) in the derived category generated by H3,1. We further tensor the

complex with (0, 1) to get

0→ O(−1, b− 3)→ O(−1, b− 2)⊕O(−1, b)→ O(−1, b+ 1)→ 0.

This implies O(−1, b+1) in the derived category generated by H3,1. With the argument

in the proof of Lemma 4.36, we get O(−1, y) in the derived category for all y ∈ Z.

Proposition 4.38. All line bundles are in the derived category generated by H0.

Proof. Let D(H0) be the derived category generated by H0. By Lemma 4.36, we get

O(0, y),O(−1, y) ∈ D(H0) for any y ∈ Z. Then we consider the Koszul complex

0→ O(−E2 − E4)→ O(−E2)⊕O(−E4)→ O → 0. (4.4)

This implies O(−2, n) = O(−E2−E4) ∈ D(H0). We tensor the Koszul complex 4.4 by

O(0,−1) and get O(−2, n − 1) ∈ D(H0). Similarly, we tensor the Koszul complex by

O(0,−t) and get O(−2, n− t) ∈ D(H0) for t = 2, . . . , α. Then by Lemma 4.36, we get

O(−2, y) ∈ D(H0) for any y ∈ Z. With the similar argument for any given x ∈ Z, we

have {(x, y)|y ∈ Z} ⊆ D(H0). This leads to our conclusion.

The following example helps us understand the lemma more concretely.
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Example 4.39. Let us consider the exceptional collection

H0 =
(
(−1, c− 3), (−1, c− 2), (−1, c− 1), (−1, c), (0,−3), (0,−2), (0,−1), (0, 0)

)
,

where c ∈ Z, on the toric DM stack in Example 4.14. We have n = 4 = 3 + 1 =

α + 1, E1 = (0, 3), E2 = (1, 0), E3 = (0, 1), E4 = (1,−4). By Lemma 4.36, we get

O(0, y),O(−1, y) ∈ D(H0) for any y ∈ Z}. The Koszul complex 4.4 in Proposition 4.38

is

0→ O(−2, 4)→ O(−1, 0)⊕O(−1, 4)→ O → 0.

See the parallelogram in Figure 4.13. This implies O(−2, 4) ∈ D(H0). We tensor the

complex with (0,−1), (0,−2), (0,−3) to get (−2, 1), (−2, 2), (−2, 3) ∈ D(H0). Then by

Lemma 4.36 again, we have O(−2, y) ∈ D(H0) for any y ∈ Z.

Figure 4.13:

Proposition 4.40. For any given pair r1, r3 ∈ {1, . . . , α} such that r1 + r3 = α + 1,

all line bundles are in the derived category generated by Hr1,r3.

Proof. We have

Hr1,r3 =
(
(−2, n− α), . . . , (−2, n− α+ r1 − 2), (−2, n− α+ r1 − 1),

(−1, br1+r2 − α), . . . , (−1, br1+r2 − 1), (−1, br1+r2),

(0,−(r3 − 1)), . . . , (0,−1), (0, 0)
)
,



60

where br1+r2 ∈ Z. Let D(Hr1,r3) be the derived category generated by Hr1,r3 . By

Lemma 4.36, we get O(−1, y) ∈ D(Hr1,r3) for any y ∈ Z. We consider the Koszul

complex

0→ O(−E2 − E4)→ O(−E2)⊕O(−E4)→ O → 0. (4.5)

Sine E2 = (1, 0) and E4 = (1,−n), we tensor the complex 4.5 with O(0,−α) to get

0→ O(−2, n− α)→ O(−1,−α)⊕O(−1, n− α)→ O(0,−α)→ 0.

Thus O(0,−α) ∈ D(Hr1,r3). Similarly, we get O(0,−α + i) ∈ D(Hr1,r3) for i =

1, . . . , r1 − 1 by tensoring the complex 4.5 with O(0,−α + i). Since r1 + r3 = α + 1,

we have −α+ (r1 − 1) = −(r3 − 1)− 1. So we get α+ 1 line bundles (0,−α), (0,−α+

1), . . . , (0,−(r3−1)−1), (0,−(r3−1)), . . . , (0,−1), (0, 0) ∈ D(Hr1,r3). Then by Lemma

4.36, we get O(0, y) ∈ D(Hr1,r3) for any y ∈ Z. Then the final result is implied by the

same arguments as in Proposition 4.38.

The following example illustrate the lemma in a more concrete way.

Example 4.41. Let us consider the exceptional collection

H1,3 =
(
(−2, 1), (−1, d− 3), (−1, d− 2), (−1, d− 1), (−1, d), (0,−2), (0,−1), (0, 0)

)
on the toric DM stack in Example 4.14. By Lemma 4.36, we get O(−1, y) ∈ D(H1,3)

for any y ∈ Z. Since E1 = (0, 3), E2 = (1, 0), E3 = (0, 1), E4 = (1,−4), the Koszul

Figure 4.14:

complex 4.5 in Proposition 4.40 is

0→ O(−2, 4)→ O(−1, 0)⊕O(−1, 4)→ O → 0.
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We tensor the complex by O(0,−3) to get

0→ O(−2, 1)→ O(−1,−3)⊕O(−1, 1)→ O(0,−3)→ 0.

See the parallelogram in Figure 4.14. Thus O(0,−3) ∈ D(H1,3). Thus we have (0,−3),

(0,−2), (0,−1), (0, 0) ∈ D(H1,3). Then by Lemma 4.36, we get O(0, y) ∈ D(Hr1,r3)

for any y ∈ Z. Then the final result is implied by the same arguments as in Proposition

4.38.
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