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ABSTRACT OF THE DISSERTATION

Stability of the Hull(s) of the n-Sphere

By CHLOE URBANSKI WAWRZYNIAK

Dissertation Director: Xiaojun Huang

For a particular natural embedding of the real n-sphere in C", the CR singularities
are elliptic and nondegenerate and form an (n—2)-sphere on the equator. In particular,
for n > 3, these singularities are non-isolated. This distinguishes the difficulty of this
problem from the well-studied case of n = 2. It can easily be seen that the n-sphere can
be filled by an (n — 1)-parameter family of attached holomorphic discs foliating towards
the singularities. This family of discs forms a real (n + 1)-dimensional ball, which is
the holomorphic and polynomial hull of the n-sphere. This dissertation investigates
whether these properties are stable under C3-small perturbations and what regularity
can be expected from the resulting manifold. We find that under such perturbations, the
local and global structure of the set of singularities remains the same. We then solve a
Riemann-Hilbert problem, modifying a construction by Alexander, to obtain an (n—1)-
parameter family of holomorphic discs attached to the perturbed sphere, away from the
set of singularities. We then use the theory of multi-indices for attached holomorphic
discs and nonlinear functional analysis to study the regularity of the resulting manifold.
We find that in the case that the perturbation is C**2¢ the construction yields a C*®
manifold. In the case that the perturbation is C*° smooth or real analytic we show
that the regularity of the manifold matches the regularity of the perturbation. We then

patch this construction with small discs constructed by Kénig, Webster, and Huang

ii



near nondegenerate elliptic singularities to obtain a complete filling of the perturbed
sphere by attached holomorphic discs, with an additional loss of regularity near the CR
singularities. This filled sphere is diffeomorphic to the (n + 1)-dimensional ball and is
clearly contained in the hull of holomorphy. Finally, we show that if the perturbation
is real analytic and admits a uniform lower bound on its radius of convergence, this
perturbed ball is in fact exactly the polynomial (and holomorphic) hull of the perturbed

sphere.
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Chapter 1

Introduction

1.1 Motivation and statement of result

Given a prescribed surface S in C2, the problem of finding a hypersurface M in C?
such that M = S and M is Levi-flat, i.e., locally foliated by analytic curves, is called
the Levi-flat plateau problem. This problem has been extensively studied for 2-spheres
in C2. The first foundational result in this direction was due to Bishop (in [6]), whose
construction of discs produces a local solution near any nondegenerate elliptic complex
point of S. The regularity (up to the boundary) and the uniqueness of Bishop’s local
solution were settled much later in the works of Kenig-Webster ([14]; the smooth case),
and Moser-Webster, Moser, and Huang-Krantz ([17], [16] and [I3]; the real-analytic
case).

The global problem for spheres was studied in a series of papers in the 80’s and
90’s, starting with Bedford-Gaveau (see [4]), who proved the existence and uniqueness
of the global solution for S in graph form (and with 2 elliptic complex points), followed
by Bedford ([3]), who established the stability of the solution. The CR-geometric and
regularity conditions on S were later substantially weakened via geometric methods, as
in the works of Bedford-Klingenberg ([5]) and Chirka-Shcherbina ([§]), as well as via
PDE techniques, as in the work of Slodkowski-Tomassini ([19]). In the case when S is
either C*°-smooth or real-analytic, and has only elliptic complex points, the regularity
of the global solution follows from the local results discussed above.

We note that, in all the results cited above, the uniqueness of the solution M follows
from the fact that M is the envelope of holomorphy (and, in some cases, the polyno-
mially convex hull) of S. Given a compact set K C C", its polynomially convez hull is

the set K = {z € C" : Ip(2)| < sup,ex|p(z)|, for all holomorphic polynomials p}. In



terms of function algebras, K can be identified with the maximal ideal space of P(K)—
the closure in C(K) of the set of holomorphic polynomials on C" restricted to K. The
envelope of holomorphy Kof K , can be analogously defined as the maximal ideal space
of H(K) — the closure in C(K) of the set O(K) = {f|x : f is holomorphic in some
neighborhood of K'}. When K is schlicht, i.e., representable as a subset in C", it is the
maximal set in C™ such that every f € O(K) analytically extends to some fe O(IN( ).
It is of fundamental interest in complex analysis to determine these hulls for any given
set, and study their analytic structures. Furthermore, if K = K, then H(K) = P(K).
In C, this equality holds if (and only if) K is simply-connected, but this is far from
true in C", n > 2.

In higher dimensions (n > 3), the corresponding problem for n-spheres in C" is not
as well understood. The Levi-Flat plateau problem has been studied in C", n > 3, but
all the known results consider boundaries that are (2n — 2)-dimensional spheres in C".
From the point of view of computing polynomial hulls, it is more natural to consider
n-dimensional manifolds in C™. In this setting, part of the challenge stems from the fact
that the CR-singularities of such a manifold are not generically isolated when n > 3.
Moreover, even when a “filling” by attached analytic discs is possible, the resulting
manifold has high codimension, thus making it hard to establish its holomorphic or
polynomial convexity. Thus, there is a lack of global results, even for n-spheres in C".

In this paper, we study the hulls of small perturbations of the following natural

embedding of the n-sphere in C”.

St = {(Zazl) €CxCM Lz —I—HZ'H2 =1, Im2 = 0}.

We let B"*! denote the (n + 1)-ball bound by S™ in C x R*~!, and note that B"*1
is both the envelope of holomorphy and the polynomially convex hull of S™, and is
trivially foliated by analytic discs. We establish the following stability result in the
style of Bedford (]2]) and Alexander ([1]).

Theorem 1.1. Let p > 0 and §6 > 0. Then, there is an € > 0 such that, for k >> 1, if

Y € C3KRFT(S™;, C™) with [¥llcagsn,cny < €, then there is a CF-smooth (n+1)-dimensional



submanifold with boundary, M C C", such that

1. OM = U (S™), where ¥ =141 on S™.

2. M is foliated by an (n — 1)-parameter family of embedded analytic discs attached
to U(S™).

3. There is a C*-smooth diffeomorphism j : B"*Y — M with |j — Il c2(gnt1,cny < 6.
4. If ¥ is C*-smooth, then M is C*°-smooth up to its boundary.
5. If ¢ is real-analytic, then M is real-analytic up to its boundary.

6. If ¥ is real-analytic and the complexified map ¢ extends holomorphically to

N,SE = {€ € € : dist(&, S2) < p},

—_~—

where S = {(z,z) € C* : z € S"}, and supmlwd < e, then M = ¥ (S") =

T(Sm).

In order to construct M, we need to consider the CR-structure of W(S™). First, we
note that the set of CR-singularities of ¥(S™) forms an (n — 2)-sphere consisting only
of nondegenerate elliptic CR-singularities (see Lemma . A point p in an n-manifold
X C C" is a nondegenerate elliptic CR-singularity of X if, after a local holomorphic

change of coordinates, X near p = 0 is given by

Zn = ]z1|2+2)\Re(z%)+O(|z|3);

yj = O(|z]3), j=2,...,n—1,

where A € [0, %) The local hull of holomorphy of a smooth (real-analytic) X at
such a p is a smooth (real analytic) (n + 1)-dimensional manifold that is foliated by
Bishop discs attached to X. As discussed earlier, when n = 2, this follows from the
works of Bishop, Kenig-Webster, Moser-Webster, Moser and Huang-Krantz. In higher
dimensions, this problem was settled by Kenig-Webster ([I5]) and Huang ([20]) (see

Theorem |4.2]).



Away from the set of CR-singularities of ¥(S™), we solve a Riemann-Hilbert problem
to produce the necessary attached discs. We note that such a construction was done by
Alexander in [1I], and his technique can be used to show that for any k large enough,
there is an €, > 0 such that every ep-small C*+2-perturbation of S™ contains the
boundary of a C*-smooth manifold foliated by attached holomorphic discs. However,
€, may shrink to zero as k increases, and thus we need a different approach for C*°-
smooth perturbations. For this, we fix a sufficiently small perturbation ¥, construct the
(Cl-smooth) foliation attached to W(S™) & la Alexander, and then, use the Forstnerié-
Globevnik theory ([L10], [11]) of multi-indices of discs attached to totally real manifolds
to smoothly reparametrize the foliation near each leaf.

Finally, to establish the polynomial convexity of M, we globally flatten M to a
domain in C x R"~!, and use a trick due to Bedford for Levi-flat graphs of hypersurface
type. In order to carry out this flattening, we must assume that our perturbation is
real-analytic with a uniformly bounded below radius of convergence on S™. Hence, the
assumptions stated in (6) in Theorem It is not clear whether these assumptions

can be done away with.

1.2 Plan of the Thesis

The proof of our main result is organized as follows. In Chapter [2| we discuss the
CR structure of the perturbed sphere, including the local and global structure of its
singularities. In Chapter [3] we establish the stability of the holomorphic discs whose
boundaries in S™ lie outside a neighborhood of its CR-singularities and in its subsections
and we show that the regularity is maintained in the real analytic and C*
cases, respectively. Next, in Chapter 4] we complete the proof of claims (1) to (5)
in Theorem by patching up the construction in Chapter [3] with the local hulls of
holomorphy of the perturbed sphere near its CR-singularities. Finally, in Chapter
we establish the polynomial convexity of the constructed manifold under the stated

assumptions.



1.3 Notation and Setup
We will use the following notation throughout this paper.

e The unit disc and its boundary in C are denoted by A and 0A, respectively.

The open Euclidean ball centered at the origin and of radius = > 0 in R* is

denoted by D*(r).

Bold small letters such as t and s denote vectors in R”~1. For the sake of conve-

nience, we index the components of these vectors from 2 to n, i.e., t = (tg, ..., t,).

We will denote the identity map by I, where the domain will depend on the

context.
e Given any normed function space (F(K),||-|| ) on a set K C C", we let

— F(K;R) = {f € F(K) : f is R-valued}, with the same norm.

— F(K;RY) = {(fi,.. fn) : K = R ¢ f; € FKR)}, with ||(f)]|, =
supy | 51| -

— F(K;C") = {(fr, s f) s K = C: f; € F(K)}, with]|(£;)]| - = sup; || £5]] -

e For any n-dimensional submanifold M C C", we denote the set of CR-singularities

of M by Sing(M).

We now make some preliminary observations on the perturbations considered in this
article. Let Bs denote an e-neighborhood of the origin in C3(S™; C"), where ¢ > 0 will
be determined later on. We let Ky = {2z € C" : dist(z, S™) < s}, where s > 0 is small
enough so that there is a smooth retraction p of K, to S™. We may choose an € > 0

small enough so that

e there is a t € (0,s) such that for every ¢ € Bs, the diffeomorphism ¥ : Ky — C”

given by z — z + 1¢(p(2)) satisfies U(S™) C K; C ¥(K,); and

e the map Inv : By — C3(K;; C") given by ¢ + (¥~! —1)|g, is well-defined and

C2-smooth.



We denote U1k, by ® and Inv()) = ® — I by ¢. For ¢ € Inv(B3), we let

Sy = W¥(S"),

where the ¢ = Inv(¢)). Thus, z € K = K satisfies z € S§ if and only if z—¢(z) € S"™.



Chapter 2

CR Structure of Perturbed Sphere

2.1 CR Dimension and Singularities

Let X be an m-dimensional manifold embedded in C™, defined by

X={zeC":pi(z) == pm(z) = 0}

where p; : C* — R are at least C! and dp; A---Adp,, # 0 on X. Note that the ideas

in this section can be generalized to non-embedable manifolds, but these generalizations

are not needed here.

Definition 2.1. Let p € X. Let T, X denote the tangent space to X at p. Then,

define the CR dimension of X at p, which we denote CRdim, X, to be the (complex)

dimension of the largest complex subspace of T, X.

We say that a point p € X is in the totally real part of X if CRdim, X = 0.

Example 2.2. Here are four illustrative examples.

1. Let X = {z € C": p(z) = 0} be any real hypersurface in C". Then, for all p € X,

CRdim, X =n — 1.

2. Let X = {(21,22) € C? : 23 = yo = 0}. Then, T,X = spang{(0,1),(0,4)} =

{0} x C. So, for all p € X, CRdim, X =1.

3. Let X = {(21,22) € C? : 1 = 29 = 0}. Then, T,X = spang{(1,0),(0,1)} =

R x R. So, for all p € X, CRdim, X = 0. In other words, X is totally real.

4. Consider the embedding S? = {(z1,22) € C2 : y5 = 0,]z1]* 4+|22|* = 1}. Then,

1,5 = spang{(p1,p2),(0,i)}. Then, for p # (£1,0), CRdim,S* = 0 and

CRdim 41 ) S? = 1. In other words, S? is totally real except at the poles (£1,0).



Definition 2.3. In the last example above, the two points (£1,0) where the CR di-
mension jumps are called CR singularities and we denote the set of CR singularities

for a manifold X by Sing(X).

An important example to this document is the real n-sphere in C":

Sh={zeC":|z|* =1, o =93="-- =1y, =0}

Similar to the 2 dimensional version, one can easily compute that Sing(S™) = {z €
S™ : z; = 0}, which is an n — 2-dimensional sphere. In fact, this property is stable
under C3-small perturbations, as shown in the following

Given 1 > 0, there is a 7 € (0,1) such that for any ¢ € 7Bs, there exists a
C2?-smooth diffeomorphism ¢ : ™ — S™ such that (¥ o ¢)(SingS") = Sing(S53), and
[ ot —1|cz(snicny <. In particular, Sing(Sy) is an (n — 2)-dimensional sphere.

Proof. We first parametrize S™ by © : D2(1) x [0,27]"~2 — C" as follows

O 1 (a,b,01, ... Op_s) s (a +ib & (\/1 — 2020, ...,on_2)> ,
where &(r, 01, ...,0,_2) is a point in R™~! with spherical coordinates 7,01, ..., 0,_2.
Note that ©~1(SingS™) = {(0,0) : 8 € [0, 27]"2}.
Let R : C" — R™ be given by (21, 22, ..., z,) = (|z1[2 4+ -+ + |2n]? — 1,Im(22), ..., Im(2y,)).

We note that since Sing(S™) = {z € S™ : rank Jacc R(z) < n}, and

Zl 2’2 e Zn

0 % )
Jacc R(z1, ..., 2n) = _ ] 1>

o ... ... 1L

21

we have that Sing(S™) = {z € S™ : det Jacc R(z) = 0}. Now, let J : Bs x D?(1) x
[0,27]""2 — R? be given by (1, a,b,0) — det Jacc(R o ®)(¥ o O(a,b,)), where § =
(01,....,0n—2), and ¥ and ® are related to ¢ as discussed above. Note that J is a

C%-smooth map such that



[0,2m]"2

Figure 2.1: The preimage of Sing(Sg) under ¥ in the parameter space is a graph.

e O(a,b,0) € \I’_l(Sing(Sg)) if and only if J(¢, a,b,0) = 0 (after possibly shrinking
B3);

e For any 6 € [0,27]""2, J(0,0,0) = 0 and D,;.J(0,0,0) = ()" " bY
0 —1
Thus, by the implicit function theorem (and the compactness of [0, 27]"2), there is
aT € (0,1), aneighborhood U of 0 in C, and a C2-smooth map I : 783 x [0, 27]" 2 — C
such that J(v,21,0) = 0 if and only if z; = I'(¢,0), for any (¢, 21,0) € 7Bs x U X
[0, 2772,
Thus, in the parameter space D2(1) x [0, 27]"2, \Ilfl(Sing(Sg)) pulls back to the
C?-smooth graph G, = (I'(¢,0),6). By shrinking 7 further, we may assume that G,
lies in a thin neighborhood N of Gy. As both Go and Gy, are graphs over [0, 27" 2,

there is a diffeomorphism 7 of D2(1) x [0, 27]" 2 that is C2-close to identity, maps Gy to

Gy and is identity outside N. Setting : = © 07001, we obtain the necessary map. [

2.2 Moser Webster Normal Form and Elliptic Singularities

For a point on a real n manifold X in C" which is at least C3 smooth, we consider a
point p € X with CRdim, X = 1. At this point, because the tangent space contains
a 1-dimensional complex subspace, after linear transformation which sends p to 0, a
relabeling of the variables, and applying implicit function theorem, we have X defined

locally near 0 as a graph of (z1, %7, x1).
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In other words, X is defined near 0 as

Zn = F(Zlvzilax)

Yo = fa(21,70,2) = folz1,71,2) a=2....n—1
where
F=q+q+q¢+0(z*
fo = Qo + Q1o + G20 + O(2]°) 2<a<n—1
and

q= az% + b2177 + ¢Z12

@ =Y welagzr + bezr)
J4

q2 = Z CopTyTk
2k

2 — —2
o = a2y + bazlzl + aqz1

f1a = 2Re Z Catez1
¢

q2 = E CalkT¢TE

0k
where b, car € R. Note that in this section, (, ¢, and « will always range from 2

ton—1.

Definition 2.4. We say that a singularity is nondegenerate if, after the above trans-

formation, we have b # 0.

In [I7], Moser and Webster constructed a biholomorphic change of coordinates which
reduce the functions F' and f, above to a useful form, which is often referred to as the

Moser Webster normal form. In particular, they proved the following

Theorem 2.5. Let X be a real n-dimensional C3-smooth manifold in C" such that
0 € X is a CR singularity with CRdim, X = 1. Then, after a holomorphic change of

coordinates, X can be written locally near 0 as a graph
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o =72 + 7% + 27 + O(=f)
Yo = O(2]*) 2<a<n-—1
where 0 < v < o00.
Proof. We start with the definitions of F, f, as above. As we are assuming that the

singularity is nondegenerate, we can replace z, — %(zn — (a — ¢)z?). This only affects

q, which becomes

qg= 'y(z% + 712) + 2171

where v = a = ¢. Now, replace z; — 21 + > Agzg where Ag solves

2vApg + Ap = —bg.

At this point, we assume ~y # % Now, we get

a=7 (34203 Asze+ (O Asza) + A2+ 25y Zaza+ (Y A55)%)
taz o) apzp+ Iy Agzs + (D Aszs) () 75%5)
=21 (= Y bprs +i(27 Y Asys — > Asys))
+7 (— > bpas +i(=2y Y Agys+ Y AB%))
(2 + O sz + @t + (O a5%)?) + 217 + (Y As2) (Y As7),

q1 = Z Qe + Z apxeAgzg + Z bexyz1 + Z bznggﬁ,
l 0,8 L ¢,8

and ¢o remains unchanged. Therefore, collecting and cancelling terms appropriately,

we have

F =2 (ar—b)zezn +i(27 ) Agys — Y Asys)zt +i(D_ Asys — 20 Apys)zi
+@E + O Apze) + 70+ () Zs7)°) + mm + () Aszp) (Y As7p)

+ Z(agA/gZﬁ + bgfﬂ%)$g + Z Cop TR + 0(3)
4B L,k
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Now, replace z, — 2, — > (zp2¢21 + cep2023), so F becomes

F=q(+3Y) +27— Y (b — a)zez
+ 7y Z AgAyzgzg + 7y Z AgAzazi + Z ApgAizsze
+ Z arAgzare + Z beApzgae + Z CopTITB
+1 Z 2vAgygz — 1 Z Agysz
+iY  Agyszi—i Yy 27 Azypzi + O(3)

Since the yg are O(2), the last few terms are order 3, so we can simplify this to

F=q(+3%) +azm— Y (b — a)uz
+72A@‘A425Z@ —i—’yZM@—i—ZABngzgz? (2.1)
+ ) aeApzpre+ Y biAgZgre + Y | cppeas + O(3)
At this point, we focus on the second and third line of equation , separate

23 = 28 + iyg, and define

ay =a;— by
C;,B = ’yAﬁAg + ’)/AﬁAg + AB/Tg + agA/; + bngCgﬁ

Then, again grouping any terms of order 3 or higher into the O(3), we have

F= fy(z% + 722) + 2171 + Z ayrezy + Z 625:17(335 +0O(3)

Lastly, transforming z, — z, — > a/KZng -3 c’wzezﬁ gives the desired form

F=~+3Y) + 2z +0(3)

Now, it remains to simplify the f,. First, recall that f, = ¢o + q1a + 22 Where
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o = aaz% + baz171 + Qazl2

Q1o = 2Re Y capwez
14

q2 = Z CalkTeTk
Lk

and by, car € R. The by 2177 term is removed by the transformation z, — zq+iba 2.

Then, all remaining terms in g, g1, and ¢o, are removed by the transformation

Za P Za + 21 Z CaBZBZa +1 Z Caprzgze + 2iaa2n
B Bt

O]

Definition 2.6. If 0 < v < % in the Moser Webster normal form, then we say that the

singularity is elliptic.

For example, one can easily see that each singularity on S™ is elliptic and nonegen-
erate. In fact, we have the following

If[|3)|| o2 is small enough, then the singularites of S are elliptic and nondegenerate.

Proof. Because both b and v only depend on the defining functions and their first two
derivatives, the lemma follows from the fact that the conditions b # 0 and 0 < v < %

are open conditions. ]
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Chapter 3

Attached Discs and Smoothness Away from Singularities

3.1 Preliminaries and Infinite Dimensional Calculus

We begin with some function spaces on the unit circle 9A. Given 0 < a < 1, let

99) = | £ € COA) <[ f]l, =lfllo + sup LDIW]
x,yi@A "r y’
Ty

< o0 g,

where || f|| oo = sup,eaa || f(@)||. For k € N, let
k .
Ch(A) = f € CHOM ) 2| f o = Y| DF|| < o0
5=0

Note that we use notation C**(0A;R), CH*(0A;R™) and C**(0A;C") according
to the convention establish in Section We will use the notation By, o(f,7) to denote
the ball of radius r centered at f in the Banach space C*®(9A) (or in C**(0A;C"),
depending on the context).

We also work with the Banach space

ABCOA) = {f € CP*(OA) : 3 f € O(A)NCH*(A) such that floa = f}  (3.1)

with the same norm as that on C**(9A). It is known that if f and fare as above,

<
Pl S17lka

In this section, we let E, F,G denote Banach spaces with norms ||| g, |||l g, ||l &

then

respectively. We let L(E, F') denote the space of bounded linear maps from E to F.

Definition 3.1. For amap T : E — F, the Fréchet derivative of T, denoted DT is a

map from E to L(E, F') such that for each point = € E,
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_ ||T(@+h) = T(z) — DT (z)h||,, 0

|Ih]l 5 —0 Al &

Example 3.2. Here are some examples which will be useful for later .

1. If T is bounded and linear, then DT'(x) =T for all z € E.

2. If ¢ : Q C R™ — R" is continuously differentiable and F is a space of continuous
functions on some subset of R", then for f € E with appropriate range, we can

define the map

evg: fr=>oof
Then Devy(f)h = ¢'(f)h

Definition 3.3. If E, F' are complex Banach spaces and DT'(z) is complex linear, then

we say that T is holomorphic at x.
Example 3.4. If ¢ in the example above is holomorphic, then so is evy.
We can also define partial derivatives and higher-order derivatives as usual:

Definition 3.5. Let T : E x F — G. Then at each point (z,y) € E x F, the derivative

of T with respect to x € E, denoted DTg or DT, is in L(E, G) satisfying

. HT ((:L‘,y) + (h, 0)) —T(z,y) — DET(:U,y)hHG _

0
[l 0 IRl &

Definition 3.6. Let n € N. Let L("E, F') denote the space of n-linear maps from E™

to F. Then, D"T : E — L("E, F) satisfying

) HD”_lT(a: +h)o — D" 'T(x)o — D"T'(z)(o, h)HF 0
1]l =0 171l N

Given these definitions, we can state two theorems which will be helpful throughout

this paper:
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Theorem 3.7 (Inverse Function Theorem). Let T : E — E be differentiable at a point
x € E. Suppose further that T'(x) = 0 and DT (x) is invertible. Then, there are open

sets x € U and 0 € V such that T is a diffeomorphism from U to V.

Theorem 3.8 (Implicit Function Theorem). Let T : E x F — F have a partial deriva-
tive with respect to F at a point (z,y) € E x F. Suppose further that T'(z,y) = 0 and
DTr(z,y) is invertible. Then, there are open neighborhoods U of y in F' and V of x in
E and there is a map g : E — F such that T'(xz,g9(z)) = 0 for x € V.. Furthermore, g

inherits the reqularity of T.

For proofs and more details of this nonlinear functional analysis, see [9]. We will
additionally need the following

An infinitely differentiable map T between Banach spaces is analytic at a point a
in its domain if and only if there exists a neighborhood V, of a and constants ¢, p such

that
_ i
HDJT(ZC)H <l
p]
for all z € V. In this case, T'(a+h) = Y. D’T(a)(h?) for all h small enough, where

h/ denotes (h,...,h). In particular, this implies that the composition or product of

analytic maps is again analytic.

Example 3.9. Suppose K is some neighborhood of S™ and ¢ : K — C" is real analytic.
Then the map evy : CH*(OA) — CH*(DA) is real analytic. This follows from the fact

that

D" evy(f)(R)(C) = 6™ (£(C))h(C)

With these tools we prove the following lemma, which will prove useful later.
For any k € N, the map ev : A x A¥*(9A;C") — C" given by ev(£, f) = f(£) is
CF-smooth on A x A¥Y(9A;C") and real-analytic on A x A% (9A;C").

Proof. We note that f — f is a bounded linear transformation. Now, we have that
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Ce

Since all the derivatives of f up to order k satisfy a Holder condition of the form

j o .. .
D7 ev(é, ) (¢ ha) - (G, hy) = FOE - ¢ + Z hz(jfl)(g)g'
=1

fO&) = f9&)| <Ifllpales — &%, &.&en,

the continuity of D7e for j < k follows. Thus, we obtain the first part of the claim.

Next, we observe that for any (£, f) € A x A5%(9A;C"), we may write

ev (éaf)—i_(gah) :eV(f,f)—‘r A((Cah)(<7h’))
( ) ; ’ j times

whenever f,h € AF*(OA;C") and |¢ — €| < 1 — ||, where A; is the symmetric

j-linear map

. kPO
<1 Cn‘F% (]_1)' Cg .

By Cauchy’s estimates, we have thatHAjH < (AHflly.o)s 7 € N. Thus, ZjeNHAJ'H rl <

f(j)(

(€13 11)s s (G o) = =5

oo for any r < 1, which establishes the real-analyticity of ev at (&, f). O

Remark 1. Here onwards, we will identify f and f, ie., for f € AM*(9A;C") and

¢ € A, we will denote f(&) simply by f(§).

Next, given f € CH*(0A;R), we let H(f) be given by

o [o.¢]
f=ao+ Z ane™ + aye7 ™ H(f) = Z —iane™ + g, e (3.2)
n=1 n=1

Note that H is the standard Hilbert transform. It is well known that H is a bounded
linear transformation from CK®(0A;R) to itself. We then define J : CH*(0A;R) —
CF(0A) as

T fe= fHIH(f).
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Clearly, J is also a bounded linear transformation with J(C**(9A)) C A¥¥(9A).
Note that if f is as in (3.2), then J(f)(0) = ao. In an abuse of notation, the component-
wise application of % and J on elements in C*®(9A;R") is also denoted by H and 7,
respectively.

Lastly, we fix a parametrization for the holomorphic discs that foliate the hull of
S™. For any (£,t) € A x D" 1(1), we let g¢(&) = ( 1 —]|t|\2£,t>. The perturbed
sphere will be shown to be foliated by boundaries of discs that are perturbations of g¢.

As discussed in Remark |1, we also use g¢ to denote g¢|ga.

3.2 Construction of Discs

In this section, we follow Alexander’s approach (see [I]) to construct a C!-smooth
manifold Mtr C C™ that is foliated by holomorphic discs whose boundaries are attached
to the totally real part of Sg. For this, we first solve the following nonlinear Riemann-
Hilbert problem: find a function f : A — C that is holomorphic on A and whose
boundary values on OA satisfy | f(z) — v(z)| = o(z), where y(z) is close to 0 (in some
appropriate norm) and o is a positive function on OA. The solutions to the above
29 — ’y(zl)‘ =0(z1)} in C2

Let o € (0,1). There is an open set Q C CH*(9A) @ CH*(0A;R) such that

problem give analytic discs attached to the torus {|zl| =1,

{(0,0):0 >0} C QC{(y,0):0 >0},
and there is an analytic map E : Q — A%*(0A) such that
() if (y,0) € Q and E(vy,0) = f, then|f —~| = 0 on A, f(0) =0, and f/(0) > 0;
(17) E(0,c)(§) = c& for £ € OA, when c is a positive constant function.

Proof of Lemma[3.3 The idea of the proof is as follows. Given (y,0) € CY*(0A) @
CH(OA;R) with o > 0, if there is an n € C1*(0A) that satisfies

~ = pe (logo)=J (lodg—n)) (3.3)

)

where g(¢) = £, € € A, and J : CH*(OA;R) — AL¥(DA) is the operator defined
in Section then, setting E(y,0) = f = ge’ 1089) =T (odo—10) e have that
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If =~ = ‘geJ(logU)efj(logigfnl) _ 7]eJ(logU)efj(logig*nl)‘ — 6log0|g — 7 e~ lodo—nl —
(3.4)
Moreover, f(0) = 0 and f'(0) = (7 leg(@/g=nD)(0) > (. So, we must solve for 7 in
for (v,0) close to (0,0) when ¢ > 0. But any solution of corresponding to
(7,0) is also a solution corresponding to (ye~7(°89) 1), Thus, it suffices to establish
the solvability of near (0,1) € CH*(9A) & CH(9A; R).
Let U = {n € CY"*(0A) :|In||, < 1}, which is an open set in C1*(dA). For n € U,

let A(n) = e~ edo=nl) We claim that

A:U — AM(DA) is an analtyic map with A(0) = 1. (3.5)

Further, letting Q(n) = n - A(n), we claim that

Q:U — CH*(9A) is an analytic map with Q(0) = 0 and Q'(0) = 1. (3.6)

Assuming (3.5) and (3.6 for now, we can apply the inverse function theorem for
Banach spaces to @ to obtain open neighborhoods 4/ C U and V of 0 in C1*(9A) such

that @ is an analtyic diffeomorphism from U onto V. Set

Q= {(,0) € C"*(8A) & C"*(A;R) : o > 0 and e~ 7187 ¢ V}

and observe that n = Q! (ye~7(1°29)) solves for every (v,0) € €.

Now set Ey : CY*(0A;Rsg) — AV (DA) by Ex(0) = e*/(°89)  The proof of
below can be imitated to check that E are analytic maps. Further, My : AY*(0A) —
AL*(OA) defined by My(h) = gh is also analytic since it is a bounded linear transfor-

mation. Thus, the map E : Q — AY*(JA) given by

E(v,0) = E4(0) (Mg oAo Q—l) (YE_(0))

is analytic. As shown in (3.4), it satisfies (). Also, E(0,c) = E;(c)My(1) = cg, for

c> 0.
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We must now prove (3.5) and (3.6)). For (3.5)), we first consider the map L : n —
log|lg — n|. We use the fact that if f € CH*(0A) and g € C?(f(QA)), then go f €

CH*(OA). We apply this fact to f = g —n for n € U, and g(-) = log(-|) to obtain that
L(U) C CY*(dA;R). Now, for a fixed n € U and a small h € C1*(9A), we have that

L(n+h)— L(n) = log|lg —n — h| — log|g — |

1 h 9
=—| —-2Re| —— O(|lh as ||h — 0,
2< (;2)+ou ||1,a>) Il

where we are using the Taylor series expansion of log(1 — z) and the submultiplica-
tive property of ||-||; ., in the last step. Thus, L is differentiable at 5 and DL(n)(h) =
—Re (#) Continuing in this way, we obtain that DL : U — L7 (CY*(0A),CH*(0A;R))

exists and is given by D'L(n)(h1,...,hj) = —(j — 1)! Re (?;7;;?)7 where

L£I(CH(0A),CH (A R))

is the space of bounded j-linear maps from C1*(9A)7 to C1*(0A;R). Thus, for any
j > 1, DIL is continuous on U when L7 (CH*(0A),CH*(dA;R)) is given the standard

norm topology. Finally, observe that

“DjL(U)“ = sup HDjL(ﬁ)(h1,-..,hj)H _(j—1)
|| (h1,eshy) || <1

(hihy 5!
f ((g—n)j>H =o—nl
(3.7)

Hence, L is analytic. Now, the maps J and u +— e™"

are both analytic on
CH2(OA;R), since the former is a bounded linear transformation, and the latter has
continuous derivatives of all orders of the following form (h1,...,h;) — e "hy---h; at

any u € C1*(9A;R). Thus, A being the composition of analytic maps, is itself analytic.
Further, as L(0) = log|g| = 0, A(0) = 1.
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Now, recall that Q(n) = n- A(n). So, Q(0) = 0. Being the product of two analytic
maps, ) is analytic at any n € U. Now, since DQ(n)(h) = nDA(n)(h) + hA(n), we
have that DQ(0)(h) = h. This gives (3.6) and concludes our proof. O

We now apply Lemma to solve a nonlinear Riemann-Hilbert problem in n func-
tions. Note that the same problem will be solved using a different technique in Sec-
tion [3.4] where we will improve the regularity of the manifold constructed here.

Let a € (0,1). There is an open neighborhood Q of D*~1(1) x {0} in D" (1) x
C3(K;C") and a C'-smooth map F : Q— AL2(OA; C™) such that F(t,0) = gy, and if
F(t,¢) = f = (fi,.... f) for (t,¢) € Q, then f(A) C 87, f1(0) = 0 and f{(0) > 0.

Proof. Recall that from Lemma there exists an open set 2 C CL(0A)BCH(0A; R)

so that the solution operator E is smoothly defined on 2.

Now, for (t,¢, f) € D" (1) x C3(K;C") x AM*(A;C"), consider the map

P (.6, /) = (1) V1= 5(6,6,7)),

where X(t, ¢, f) = 7, (t; + HIm ¢;(f)) — Red>j(f))2. Then, P is a C'-smooth
map from W into C1*(0A) @ C1*(0A;R), where W = {(t, ¢, f) : f(OA) C K and

‘E(t, o, f )({)! < 1 for all £ € 9A}. This is a consequence of the following observations.

1. P is clearly C*°-smooth in the t variable.

2. Since H and f + f? are C*®°-smooth from CH*(0A) to CL*(JA), and f — /Ff is
C%-smooth from CY*(A;R~q) to C1¥(OA;R), our claim reduces to (3) below.

3. If w = {(p, f) C C3B) x CH*(dA) : f(OA) C dom(p)}, where B C C is some
closed ball, then the map (¢, f) — ¢(f) is Cl-smooth from (w,|-|5 @ l;,) to
(CH(A),]]l1,0)-

Next, we note that when t € D"~(1), (t,0,g¢) € W and P(t,0, g¢) = (0,1/1 —||t]|*) €
Q. So, there exists an open set W C R"~1 ¢ C3(K;C") & A% (0A; C") such that

(i) (t,0,g¢) € W for all t € D"1(1),



22

Now, consider the map R : W +— AY*(9A; C") given by

where ¢ denotes the tuple (¢2,...,¢,), and H acts component-wise. The map R
is Cl-smooth. Note that R(t,0,g¢) = 0 and D3R(t,0,g¢) = I on AY¥(9A;C") for
all t € D" !(1). So, by the implicit function theorem for Banach spaces, for each
t € D"~L(t), there exist neighborhoods U, of t in D"~1(1), V4 of 0 in C3(K; C") and W
of g¢ in AM¥(0A;C"), and a C'-smooth map F : Uy x Vi — W4 such that Fy(t,0) = g¢

and

R(s, ¢, f) =0 for (s, ¢, f) € Uy x Vg x Wy if and only if f = Fi(s, ). (3.9)

But, by uniqueness Fi, = Fi, whenever the domains overlap. Thus, there exists an
open set Q C D" 1(1) x C3(K;C™) such that D"1(1) x {0} C Q, and a C'-smooth map
F : Q — AY*(A;C") such that F(t,0) = g¢ and R(t, ¢, F(t,¢)) = 0 for all (t, ¢) € Q.

The latter condition means that if F(t,¢) = f, then

n

1fi— o)+ (Ref; —Reo;(f))* =1,
i=2 (3.10)

Im(f;) =Im¢;(f), j=2,...,n
In other words, f(90A) C Sg. Further, from (i) in Lemma f1(0) = 0 and
f1(0) > 0. O

We are now ready to construct the manifold Mrg.

Theorem 3.10. Given t € (0,1), there is a neighborhood Ny of 0 in C3(K;C") such

that D"=1(t) x Ny C Q, and for ¢ € Ny, the map Fy : A x D"7L(t) — C" defined by

Fo(&t) = F(t,9)(E)
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is a Cl-smooth embedding into C", with the the image set Mrr = Fs(A x D"71(t))
a disjoint union of analytic discs with boundaries in Sg. Further, the map ¢ — Fy 18

a continuous map from Ny into C1(A x D"~1(t); C").

Proof. In Lemma the open set Q C D"~ 1(1) x C3(K;C™) contains D"~1(1) x {0}.
Thus, by compactness, for any ¢t € (0,1), there is an open neighborhood N; of 0 in
C3(K;C™) such that D"=1(¢) x N; C €.
Now, for a fixed ¢ € V¢, note that Fy is the composition of two C!-smooth maps:
(&t) = (& F(t,9));

(& f) = (&)

The smoothness of the second map was established in Lemma Thus, Fy is a
C!-smooth map. Since, for ¢ € Ny, ¢ — F(t,¢) is a C'-smooth map, we have that DF,

depends continuously on ¢. Quantitatively, this says that for some C' > 0,

H]'-d)l —]:¢2

(<0t =#],

for ¢!, ¢? € N;. Thus, shrinking N; if necessary, we have that F4 is an embedding

for all ¢ € Ny, since Fy is an embedding. O

Remark 2. Based on the above results, we call an f = (f1,..., fn) € AP*(OA;C") a
normalized analytic disc attached to Sy if f(OA) C SE, f1(0) = 0 and f{(0) > 0. Note
that in the construction above, each F'(t,¢) is a normalized analytic disc attached to
Sg.

3.3 The Real Analytic Case

In this section, we will show that the manifold Mg constructed in Theorem [3.10] is,
in fact, real analytic if ¢ is real analytic. To do so, we will take advantage of the
deep connection between real analytic maps on R” and holomorphic maps in C". From
lemma we can show that Fy is analytic on A x D"~1(1), however, we must show
analyticity up to dA. For a single attached disc, we can get regularity up to the

boundary by applying a reflection principle, since the disc is attached to an analytic
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totally real manifold. However, to obtain the regularity in both the & and t direction,
we apply the Edge-of-the-Wedge theorem, which acts in this context as a strengthening
of the reflection principle.

Let W C D" }(1)@C3(K;C")® AM*(0A; C"), R and F be as in the previous section
(see (3.8)). Recall that R is a C'-smooth map and D3R(t,0,g¢) = I on A*(9A;C"),
for all t € D"1(1). Thus, given ¢ € (0,1), there is an &; > 0 such that, if ||} s < &,

then
e ¢ € Ny where N; C C3(K; C™) is a neighborhood of 0 obtained in Lemma
e D3R(t, ¢, F(t,¢)) is an isomorphism on AY%(9A;C") for all t € D"~ 1(t).

Now, fix a real-analytic ¢ € C3(K;C") with||¢||os < &r. Let Ry : Wy — AVY(OA; C™)

be the map given by

Ry(t, f) = R(t, ¢, f),

where W, = {(t, f) € R" 1@ AL*(9A;C") : (t, ¢, f) € W}. Note that Ry(t, F(t, ¢))
0 and DaRy(t, F(t,¢)) ~ I, as long as t € D"1(¢). Since ¢ is real analytic, R, is an-
alytic on Wy. This follows from the analyticity of £ as shown in lemma and the
fact that the map f — ¢(f) is analytic for ¢ analytic, as shown in example

We apply the analytic implicit function theorem for Banach spaces to conclude
that for each t € D" 1(¢), there exist neighborhoods U{ C D" L(t) of t and W{ C
ALX(OA;C") of F(t,¢), and an analytic map Fy¢ : Uf — W{ such that F,¢(t) =
F(t,¢) and

Ry(s, f) =0 for (s, f) € U{ x W{ if and only if f = F,4(s). (3.11)

As before, the Fj +’s coincide when their domains overlap. Thus, there is an analytic

map Fy : D" (1) — AM*(0A; C") such that Ry (t, Fyy(t)) =0 on D"~ 1(t). We set

Mig = {Fo(6)(€) : (&) e A x D" (1)}
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The uniqueness in and shows that, in fact, Fy(-) = F(-,¢) and Mz =
Mrgr. Thus, we already know that M’TR is a C'-smooth embedded manifold in C". To
show that My is in fact a real-analytic manifold, it suffices to show that F : (£, t) —
Fy(t)(€) is real-analytic on A x D"71(¢).

Now, since F is the composition of (§,t) — (&, Fy(t)) and the mapev : (¢, f) — F(6),
F € C¥(A x D"L(t)); see Lemma To show that F € C¥(A x D""1(t)), we fix
to € D"71(t). Since F is real-analytic, there is an € > 0 such that for t € to+D""1(e),
Fy(t)(8) = Y genn-1 hp(€)(t — to)” with hg € AL*(9A;C) and [|hg|, , < ¥l for some
r > 0. Without loss of generality, let t = 0. Now, let §, € JA and zy = F(&,0).
Since T' = {(z1,...z2n) € C" : 21 € OA,29,...,2, € R} is a real-analytic totally real
manifold in C" there exists a biholomorphism P near £y that maps an open piece of
T biholomorphically into R™ in C", mapping & to the origin. Similarly, there exists a
biholomorphism ) near zy that maps an open piece of Sg biholomorphically into R"
in C", mapping 2o to the origin. Now, we let Q*(21,2") = Q(3_4 hs(z1)(2")?), where

/

2" = (22, ..., ). From the analyticity of Fy,, we have that Q* € O(W)NC(W'), where

W = {mel:|n—&|<epx{zeC || <e},

W = {zn1e€A:|z—&|<e}x{eC? 2| < e}

For (z1, ..., zn) close to 0, we define

. : Q* o P~1(2,2"), Imz; > 0,
P Z1,%2 ) =

Q* o P~1(z1,7), Imz < 0.
Then, by the edge of the wedge theorem, P* extends holomorphically to a neigh-
borhood of (0,0) in C", and thus, F extends analytically to a neighborhood of & in
A x D" 1(t). Repeating this argument for every t € D"~(¢), we obtain the real-

analyticity of Mrg.
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3.4 The Case of C?*! and O

The techniques in section [3.2| can be generalized to higher orders to obtain higher reg-
ularity for Mrg for more regular 1». However, this poses two problems for our desired
result. First, because we would be applying the implict function theorem in a higher
order function space, this would require assumptions on the size of additional deriva-
tives. In this section, we use different methods that allow us to increase the regularity
on Mrpr while still only assuming smallness in the C? norm. More importantly, in the
weaker version there is nothing stopping the neighborhoods in which our solutions lie
from tending to zero as the number of derivatives goes to infinity, leaving only a result
in the C*° case for the trivial perturbation.

To overcome these hurdles, we take advantage of the existence of the discs already
proved in section [3.2] Recall that for a fixed ¢ € (0,1), Theorem yields a neigh-
borhood N; of 0 in C}(K;C") such that, for ¢ € Ny, Mrr = Fy(A x D"7L(t)) is a
C'-smooth submanifold in C". Shrinking N; further, if necessary, we show in this sec-
tion that if ¢ € C***1 N Ny, then for each t € D"~1(t), there exists a neighborhood of
discs around F(A x {t}) attached to Sj and that those discs form a C*-smooth mani-
fold. By the uniqueness proved above, this will show that My is in fact C* smooth. In
the C*° case, although the neighborhoods for each k£ may shrink to triviality, this result
shows that at the starting disc, Mg is smooth. Repeating the argument at each disc

gives the desired result. More precisely, we prove the following

Theorem 3.11. For any k € N, ¢ € N, NC*#H(K;C") and t € D""(t), there eist
neighborhoods Wi, Wy C D"L(t) of t, and a C*-smooth embedding Gy, : A x Wy — C"
such that GL.(A x Wy) = F(A x Wa). Thus, Mg is Ck-smooth. In particular, if
¢ € NyNC®(K;C"), then Mg is a C*°-smooth manifold.

Remark 3. Note that when ¢ € C?**+1(K;C") N Ny, then fy : € — F(t,¢)(&) is in
AR (QA; CM) (for every 0 < a < 1) for every t € D"~!(¢). This follows from known
regularity results for analytic discs attached to totally real manifolds in C™ (see [7]).
So, it remains to establish the regularity in the direction of the foliation, i.e. in the

t-direction.
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The strategy of constructing neighborhoods of discs attached to a manifold around
a starting one has been used extensively in C2. For example, Bedford and Gaveau in [4]
defined the index of an analytic disc to construct nearby discs and compute the envelope
of holomorphy for certain 2-spheres in C2. Later, Bedford use these indices in [3] to
prove the existence of nearby discs on more general manifolds in C2. His result was
later strengthened by Forstneri¢ in [I0] by introducing a different definition of index
which differs from the Bedford and Bedford-Gaveau definition by 1. In this section,
we will use the theory of multiindices introduced by Globevnik in [II] to generalize
Forstneri¢’s work to C™. In particular, lemmas and below are the C*®-versions

of the main results in Section 6 and 7 of [11].

Notation. In this section, we will sometimes express an n X n matrix over C as

where a € C, v, w € C" !, and A is an (n — 1) x (n — 1) matrix over C.

Let M be an n-dimensional totally real manifold in C". Suppose f : A — C" is an
analytic disc with boundary in M, i.e., f € C(A) N O(A), and f(0A) C M. Further,
suppose A : A — GL(n;C) is such that the real span of the columns of A(§) is the
tangent space TryM to M at f(), for each £ € JA. Then, owing to the solvability
of the Hilbert boundary problem for vector functions of class C* (see [I1, Sect. 3],
also see [18]), it is known that if A is of class C* (0 < « < 1), then there exist maps

Ft:A = GL(n;C) and F~: C\ A — GL(n;C), and integers s1 > --- > k,,, such that
o FTeC*(A)NO(A) and F~ e C*(C\ A)nO(C\ A);
e for all £ € 0A,

¢ - 0

0 &2 ... 0 -
AQAST=FHO| . T | PO geoa (1)
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Moreover, the integers k1 > ... > Kk, are the same for all factorizations of the type
(3.12)). These integers are called the partial indices of M along f and their sum is
called the total index of M along f. Using the factorization above, a normal form for
the bundle {TyyM : § € OA} is obtained in [I1]. In particular, it is shown that if
the partial indices of M along f are even, then there is a C%map © : A — GL(n;C),
holomorphic on A, and such that for every £ € A, the real span of the columns of the

matrix O(§)A(E) is Ty M, where A(§) = Diag[¢"1/2, ..., €%n/2]. Conversely, suppose,

there is a © : A — GL(n; C) of class C%, holomorphic on A, such that

Im(A~'OA) = 0 on DA or, equivalently, the real span of the columns of ©(£)A(€)

is Tf(&)M
Then, for £ € JA,
€0 - 0
0 ¢ oo 0 |—
AAE) T =0() _ ©-1(1/¢),
0 0 .- &

which, due to the holomorphicity of © on A, is a factorization of type (3.12)). Thus,
we obtain
Remark 4. Suppose f and A are as above. Then, A satisfies (3.13) if and only if
K1, ..., kn are the partial indices of M along f. Furthermore, if A is of class C*®, then

© in (3.13) can be chosen to be of class C¥,

Example 3.12. We now use remark [4] to compute the partial indices of the disc g¢(¢) =
(1/1 —|t]|*¢, t) for t € D""1(1) on S™.

Recall that the map Fo : 9A x D"~ 1(t) — C™ defined by

76t = (1=l )
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gives a parametrization of S™. Therefore, we have that the real span of the columns

of the matrix

VI oRe %

2
D¢ ¢ Fo(€,t) = 1 —|t]]
oT |

is precisely Tz (¢ +)S™. We can factor the above matrix as

WI-THE ————) [,

2
1—|lt]

T
OT In,1 0 In—l

Because the factor on the left clearly extends to a holomorphic map (in §) from
A to GL(n;C), we have that the partial indices of S™ along g¢ are 2,0,...,0 for all
t € D" 1(1).

We now use Remark [4] to establish a stability result for partial indices of SZ along
the disks constructed in Lemma [3.2

Let Q and F be as in Lemma Then, given any ¢ € (0,1), there exists a
neighborhood N; C C3(K;C") such that D"~ 1(t) x N; C Q, and for any (t,¢) €
D"1(t) x Ny, the partial indices of Sy along fy : & — F(t,0)(&), € € 0A, are 2,0, ..., 0.

Proof. Let t € (0,1), and N; C C3(K;C") be as in Theorem Recall that F, :
(£,1) = F(t,0)(€) for (£,t) € A x D"1(t). Note that Fo(£,t) = (1/1 — [|t]|2€,t) and
D¢t Fo(€,t) € GL(n; C) for all (£,t) € A x D"7L(¢).

Let > 0. As in the proof of Theorem N; can be chosen so that for each ¢ € Ny,

1. Fray isaC L_smooth parametrization of an open totally real subset of S7; where

Fhay : (0,t) — F(t,$)(e), (e, t) € 0A x D"7L(1),
2. [|DegFp — DegFolloo <

9 0

Now, we fix a ¢ € Ny and let F = F. Since é = ifag

o0

when ¢ = e’ we have that
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0
(Dot Foay) (6,8) = Oc() | on JA, (3.13)
0 In—l

where

i 0
O¢(§) = (DetF)(€,t)
oT 1,4

Owing to (1), the real span of the columns of the matrix A¢(e?) = (Dg ¢Fray)(0,t)
is the tangent space to Sy at fe(e?). By (2), if ¢ > 0 is sufficiently small, then
Ot : A — GL(n; C) since D¢ Fo(€,t) € GL(n;C) for all (£,t) € A x D"(¢). Thus,
in order to apply Remark ] to f = f; and A = A¢, we must show that A is of class
C* and O extends holomorphically to A. We will, in fact, show that the entries
of (D¢+F)(-,t) are in A»*(dA). First, since Sp 18 C3-smooth and & — F(&,t) is an
analytic disc attached to S7, F is C>*-smooth in &. This gives the Ch*-regularity
of D¢F(-,t) on OA. Next, note that F(§,t) = ev(, F(t,¢)), where ev is the map
defined in Lemma Thus, D¢F(-,t)(s) = DyF(t,¢)(s)(-). Since D¢F(t,¢) is a
bounded linear transformation from R"~! to AL*(9A; C"), the entries of Dy F(-,t) are
in AL®(9A;C"), and therefore holomorphic in & € A. Thus, the indices of S along fe
are 2,0,...,0. O

For the rest of this section, we fix ¢t € (0,1), ¢ € N, N C*+(K;C") (k > 3)
and t € D"71(t). We let M = Mryg. Recall that by [7], fi : & = Fy(£,t) is in
A?F2(9A;C™) and is a normalized analytic disc attached to S§ (see Remark . We

fix a tubular neighborhood € of fi(OA) in C* and a map p® : Q — R” such that

> p? = (p7, ..., ph) € CFFLQR™);
> dpf/\---/\dpf{#OonQ;

> SZOQz{ZEQ:sz)zO}.
_ O

Let X =
et 1(5) 80
ist C%*-smooth maps Xo,..., X, : A — C" such that for each ¢ € OA, the real

(§). Since Sy N Q is C?*+1_smooth and totally real, there ex-
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span of Xi(&),..., X,(§) is the tangent space to S§ at fe(§). Given p = (p1,...,pn) €
CP*(OA;R™) and ¢ = (q1, ..., qn) € CH(OA;R™), let

n n
Q) =Y pX;+iy (g;+iH(g)X;.
=1 j=1

Note that £ : CH*(0A; R™) x CHY(0A; R"™) — CH*(OA; C") is a linear isomorphism.
This is because X;(&),iX;(&), 1 < j < n, form a real basis of C" and the standard
Hilbert transform H : CH*(0A;R") — CH*(0A;R") is a bounded linear map. There
exist neighborhoods U; of 0 in C**(0A;R™) and Uy of 0 in CH*(0A;C"), and a Ck-
smooth map D : U; — C**(dA; C") such that

1) for any f € Us, fi + f is attached to S% if and only if f = D(p) for some p € U;
¢

and
(74) there is an n > 0 such that HD(p) - D(p’)Hka > 17Hp —p’Hka for all p,p’ € Us.

Proof. Let U be a neighborhood of 0 in C**(dA; R™) such that, for all p,q € U, fi(€)+
E(p,q)(§) € Q for all £ € OA. Consider the map

R (p.a) = (£ 92 (fe6) + £, 0)(©)))

on U x U. Note that R(0,0) = 0. By Lemma 5.1 in [12], R : U x U — CH*(0A; R™)
is a C*-smooth map. We claim that (D,R)(0,0) : CH¥(0A;R™) — CH*(0A;R™) is a

linear isomorphism. This is because, for h = (hq, ..., hy) € CH*(OA; R"),

R2n

DyR(0,0)(h) = Zh <Vﬂj(ft 1Xk> ZH <VP] (fe), Xk>

hi hi

= <<vp;?(ft),ixk>R2n> =c] ]

hn, hn,

where C' is an n x n matrix with entries in C¥*(9A;R). Note that the second
equality follows from the fact that X;(§) are tangential to Sg at ft(€). Tt suffices to
show the invertibility of C' at each & € 9A. If, for some £ € JA, C(£) is not invertible,

then there exist a1, ..., a, € Rsuch that >77_; a;iX;(§) is orthogonal to each Vp‘,f(ft €))
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(as vectors in R?"), which contradicts the total reality of Sg at fe(§). Thus, by the
implicit function theorem applied to R, there exist neighborhoods U, U] C U, and a

Ck-smooth map Q : Uy — U] such that

(p,q) € Uy x U; satisfies R(p,q) =0 <= p €U and ¢ = Q(p).

Now, setting D(p) = E(p, Q(p)), Us = E(Uy x U]), and recalling that £ is a linear
isomorphism, we have (7).

To establish (ii), we note that (D,D)(0) : CH*(dA; R™) — CH*(0A;C™) is the map

k=1

This computation uses the linearity of DyR(0,0); details can be found in [I1}
Lemma 6.2]. Due to the nondegeneracy of the matrix X = [X{,..., X,}], there exists
an 7 > 0 such that, for all s € U (after shrinking, if necessary), (D,D)(s) extends to a
linear isomorphism Zg : C*®(9A; C") — CH*(9A; C") satisfying HIS()Hk‘a >l Iy, o on
CH(0A;C™). Assuming U; to be convex, we get D(p') —D(p) = (fol Ip+t(p/_p)dt) (p' —

p), and thus,

IDW) =P, 0 = llp —plla o €CHUOARY).

O]

The neighborhood U obtained above parametrizes all the C¥®-discs close to f; that
are attached to Sg. Next, we find those elements of U; that parametrize analytic discs
attached to Sg. We direct the reader to Remark [2] for the definition of a normalized
analytic disc.

There exists an open neighborhood U of 0 in R*! and a C*¥-smooth map G : U —

AP (9A; C") such that

(b) for each ¢ € U, f; + G(c) extends to a normalized analytic disc attached to S7;
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(¢) for each neighborhood V' C U of 0 in R*™1, there is a 7 > 0 so that if f €
By, (0; 7v) is such that fi + f is a normalized analytic disc attached to Sg, then
f = G(e) for some ¢ € V;

(d) for each c1,cp € U, G(c1) # G(c2) if ¢1 # ca.
(e) the map G : A x U — C" given by (§,¢) — f; + G(c) is a CF-smooth embedding.

Proof. In Lemma we proved that the indices of Sg along fi are 2,0,...,0. By
Remark [4] there is a map © = [0;4]1<j < € AP (0A; GL(n;C)) such that X = OY

on 0A, where

£ 0
Y(€) = . £E0A.

ol 1,

Since X1 = 0f/00, the above equation gives (0ft/00)1(&) = £011(£). On the other

hand, (9gy/d0)1(¢) = i€y/1 —||t||*>. Thus, shrinking N; in Theorem [3.10} if necessary,

we can make

Hen—z’ e

<Ife = gtllcragan)
Coo(aA)

small enough so that ©11(0) = & 027T O11(e)df # 0. We work under this assump-
tion for the rest of this proof.
Now, let Uy, Us and D be as in Lemma We determine the maps f = fi + D(p),

p € Uy, that extend holomorphically to A. We have

n

D(p)=E(p,Qp)) = > (pj+i(Qi(p) +iHQ;(p))) X;
j=1
= 0D pYi+i) (Qip) +iHQ;(p)Y;
j=1 j=1
Note that fi, Y and Q(p) + iH Q(p) extend holomorphically to A. Moreover, ©

extends holomorphically to A with values in GL(n;C). Thus, f = fi + £(p, Q(p))

extends holomorphically to A if and only if

§= ) pi(O)Y5(6) = (€p1(8),p2(§), -, Pul§)) (3.15)
j=1
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extends holomorphically to A. Let us assume that the map in extends holo-
morphically to A. Then, since p;, j = 1, ..., n, are real-valued, we have that p; = ¢; for
some real constants ca, ..., ¢,. Moreover, pi(e?) = ZjeZ ajeije for some a; € C satisfy-
ing ap € R and a; = a_;, j € N. Thus, {p1(§) extends to a holomorphic map on A if
and only if a; = 0 for all [j| > 2. Now, let r = (p,q,7) € R® and ¢ = (c2, ..., c,) € R" 7L,

and P : R**1 s CF(9A; R™) be the bounded linear map

(r,e) = (p,q,7,cayoesCn) = ((p— iQ)E+ 7+ (p+1iq)€, 2, ..., cn),
then, based on the above argument,

(%) f € Uy extends holormorphically to A if and only if f = D(P(r,¢)) for some
(;7 C) € P_l(ul)‘

Next, in order to reduce the dimension of the parameter space, we set Nt = T, 0DoP,

where the map ey : A¥%(0A; C") — R3 is given by

(f1, fn) = (Re £1(0), Im f1(0), Im(f1)(0)).

Then, M : P71 (1h) € R? x R*"™1 — R? is a C*-smooth map with 91(0,0) = 0. We
claim that D,91(0,0) is invertible. For this, using (3.14) and the fact that X; = % =

i€ %—Jg, we note that

D0, 0)(u, v,w) = Diey(0) - DD(0) ((u — )€ +w + (u+ iv)E,0, ..., o)
= DFe(0) (= i) + wXi(§) + (u+ iw) X1 (0))

= (au+ bv,bu — av, Bu — Av + aw),

where a = Re(f,)'(0), b = Im(f,)'(0), A = Re(f,)"(0) and B = Im(f;,)"”(0). Here
ft, is the first component of the normalized analytic disc f;. Thus, Re f{ (0) > 0 and
D(0,0) is invertible. We may, thus, apply the implicit function theorem to obtain
neighborhoods U of 0 in R™™ !, U’ of 0 in R3, and a C*-smooth map A : W — R? such

that N(r,c) =0 for (r,¢) € U' x U if and only if r = A(c).
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Finally, we let G : U — A%(9A;C") be the map given by

G :c— D(P(Alc),c)).

It is clear that G is C¥-smooth and (a) holds. For (b), we note that (3 0 G)(c)(0) =
0 for all ¢ € W. Furthermore, by shrinking U if necessary, we can ensure that
[(r10G)(e)'(0)| < |(m10 f¢)'(0)| for all ¢ € U. Then, since (m o f;)'(0) > 0 and
Im(m o G)(e)'(0) = 0, we have that Re(m; o G)(¢)’(0) > 0. Claim (d) follows from
Lemma (ii) and the fact that P is injective. The argument for (e) is similar to the
proof of Theorem Now, for (c), we let V' C U be a neighborhood of 0 in R?~!,
Since G is injective and continuous, G(V) is open in G(U) (in the subspace topology
inherited from C*®(9A;C™)). Thus, there is an open set V C Uy in CF*(dA; C") such
that G(V) =V NG(U), and so G~}(V) = V. Thus, combining Lemma (1) and (),
we have that, for f € V, fy + f is an analytic disc attached to S§ with f1(0) = 0 and
Im f{(0) = 0 if and only if f = G(c) for some ¢ € G~}(V) = V. To complete the proof

of (¢), we choose 1y > 0 so that By, o(0;7y) C V. O

Remark 5. We may repeat the proof of Lemma in the Ch*-category to conclude
that there exists an open neighborhood U* of 0 in R*~! and a C'-smooth injective map
G* : U* — ALY (QA; C") with G*(0) = 0 such that for each ¢ € U*, f; + G*(c) extends

to a normalized analytic disc attached to Sg. Moreover,

(t) for each neighborhood V' C U* of 0, there is a 7y, > 0 so that if f € By (0;7y)
and fy + f is a normalized analytic disc attached to S, then f = G*(c)

for some ¢ € V,

and G* : A x U* — C" given by (&, ¢) +— f; + G(c) is a Cl-smooth embedding.

Proof of Theorem |3.11] Recall that M = Mg is the manifold constructed in Theo-
rem We let My = G(AxU) and M; = G*(A x U*), where G and G* are the maps
defined in Lemma [3.4] (¢) and Remark [5] respectively. Note that M, M; and Mj, each
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contain the disc f¢(A). To show that near fi(A), these three manifolds coincide, we

will use the following proposition from [11].

Proposition 3.13 ([I1}, Prop. 8.1]). Let X be a Banach space, w C R™ a neighborhood
of 0 and let K, L : w — X be Ct-smooth maps such that K(0) = L(0) and (DK)(0),
(DL)(0) both have rank n. Suppose that for every neighborhood of V.C w of 0, there is
a neighborhood Vi C w of 0 such that K(Vy) C L(V'). Then, there are neighborhoods Vy
and Vo of 0 such that K(V1) = L(Vs).

We first show that M and M coincide near fi(A). Shrinking U* if necessary,
we may assume that t + U* C D""1(¢). We set w = U* C R""!. For ¢ € w, we let
K(c) = F(t+c) and L(c) = fe+G*(c), where F and G* are the maps in Lemma[3.2and
Remark [5, respectively. Note that K (0) = L(0) = f; and DK(0) and DL(0) both have
rank n—1. Now, let V' C w be a neighborhood of 0. We set Vi = K~1(By o(fi; 7)), where
T < 1 is sufficiently small so that V; C w. Then, for any ¢ € Vi, K(c) is a normalized
analytic disc attached to S§ with property that HK(C) — ftHLa <7 < 7y. Thus, by (1)
in Remark 5, K(c) = ft + L(?) for some 9 € V. Thus, K (Vi) C L(V). By the above
proposition, there exist neighborhoods Vi, Vo C w of 0 such that K(V;) = L(V). This
shows that M and M coincide near f¢(A).

Next, we use the same approach to show that M; and M}, coincide near f¢(A). In
this case, we set K(c) = 1o G(c) and L(c) = G*(¢), where G* and G are the maps
in Remark |5/ and Lemma respectively, and ¢ : CH*(9A; C") — CH*(0A;C") is the
inclusion map. Now, let V' C w be a neighborhood of 0. We set Vi = G~1(By 4(0; 7)),
where 7 < min{7,, 7} is sufficiently small so that Vi C w. Then, for any ¢ € Vi,
ft + K(c) is a normalized analytic disc attached to Sy with property that HK (c) HLa <
HG(C)Hk,a <1 < 1y. Thus, by () in Remark fe+ K(c) = ft+ L(d) for some d € V.
Thus, K(V1) C L(V). Once again, by the above proposition, there exist neighborhoods
Vi, Vo C w of 0 such that K(V;) = L(V2). This shows that M}, and M, and therefore
M, and M, coincide near fi(A). This completes the proof of Theorem O
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Chapter 4

Proof of Parts 1 to 5 in Theorem [1.1]

So far, we have constructed that portion of the manifold §(’;L whose leaves stay bounded
away from Sing(Sj). We summarize the results from the previous sections as Theo-
rem below. Note that we will use the following notation throughout this section.
For t € (0,1),

Sz = {(m,2) € 8™:|l2|| s 13,
Bg[l = {(z1,2') e B"! 2| =t}
We also refer the reader to Section for the relationship between ¢, ¥, ¢ = Inv(¢))
and @, and recall that Sj = W(S™). Further, we recall that in light of Lemma if 9 is
sufficiently small, we may assume that ¥(Sing(S™)) = Sing(Sy) and || —I||c2 &~ 0. For

the sake of convenience, we denote the extension of ¥ o+ to the tubular neighborhood

K > 5™ by U.

Theorem 4.1. Let k > 1. Given § small enough, there is a t € (0,1) and an e > 0
such that for all ) € C**+1(S™; C) with 1¥]lea(snicny < &t, there is a CF-diffeomorphism

@ : B — C" such that

(i) @(S%,) C S%, and for each t € D"71(t), Ay == ¢ ({(21,2') e B"™ 12/ =1t}) s

an analytic disc attached to S(’;.
.o 2
(12) flo — IHcl(B’gl) < 0%
(iii) There exist 0 <t1 <t <ty <1 such that U(SZ;,) € p(SZ;) € U(SZ,,).

(iv) There is a tz <t such that for|t| € (t3,t), diam(A¢) < 7 and

Supea, dist(z, Sing(Sy)) < 76.
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Moreover, ¢ has the same regularity as i, when v is either C°°-smooth or real-

analytic on S™.

Proof. Let § € (0,1) and ¢t = v/1 — 2. Let &, > 0 be as in Lemmafor n =62 Let
N; C C3(K;C") be as in Theorem (and Theorem. We choose (t) > 0 so that
[¥les(gn;cny < €(t) implies that ¢ = Inv(y) € N;. Finally, we set &¢ = min{ey, e(t), 52}
Then, (i) and (i7) follow from the construction in the previous section.

For (iii), we let t; = /1 —442. Note that ¢(S%, ) € ¢(ST%,) are connected open

sets in Sy, and if z € 5% and w € 95Z,,

lo(z) =) = llz—wl —|e(z) — 2| —|jew) —w|

> 3—52—5%252,

for sufficiently small §. Thus, the (26%)-neighborhood of ¢(S5%;,) in S is compactly
contained in ¢(S%,). But this neighborhood contains W(S%, ) since [|p — ¥ < 242
Thus, we have half of (iii). For the second half of (iii), we set to = /1 —62/4 and
repeat a similar argument.

For (iv), we note that since [|[¢)[|cs < &, we have that ||V —If|c2(gn) < 52 (see

Lemma . Hence, for||t|| € (\/1 —802,V/1 — 52), we have that for any p,q € A,

lp—al < |p-¢7'0)| +]|e @) - '@ +|¢ @) - q
< 0%+ 4V26 + 6% < 76,
for sufficiently small 6. A similar argument also gives the second part of (iv). O

To construct M near Sing(S;}), we will rely on the deep work of Kenig-Webster
and Huang (see [I5] and [20], respectively), where the local hull of holomorphy of an n-
dimensional submanifold in C™ at a nondengenerate elliptic CR singularity is completely
described. Although their results are local, the proofs in [I5] and [20] yield the following

version of their result. Once again, we are using the compactness of Sing(Sg).
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Theorem 4.2 (Kenig-Webster [15], Huang [20]). Let k >> 8 and my, = Lk—;lj There
exist§; > 0, j = 1,2,3, and e* > 0 such that for any v € Ck(S™;C") with|[yl¢s(gncny <
e*, there is a C"™* -smooth (n+1)-dimensional manifold Mfl s, in C" that contains some

neighborhood of Sing(Sg) in Sg as an open subset of its boundary and is such that

(a) Any analytic disc f : A — C" that is smooth up to the boundary with f(0A) C Sg
diam(f(A)) < 61 and sup,¢ya) dist(z, Sing(S3)) < d2, is a reparametrization of

a leaf in Mg’l P

(b) U ({z € 5™ : dist(z, Sing(S™)) < 63}) € OJT/[/gi’é. Further, if p € th(s is such that
dist(U~1(p), Sing(S™)) < &3, then there is an embedded disk, f : A — C" (unique
up to reparametrization) that is smooth up to the boundary, with p € f(A),
f(0A) C Sy and f(A) c ]\7{?1 5,0 and the union of all such disks is a smooth

(n + 1)-dimensional submanifold, Mi,ﬁz,ég’ of Mz?l,éz'

(¢) If 11 is the projection map (z1,2" 4+ iy') — (y') on C™, then

g
81,02 cl

Moreover, Mf s has the same regularity as 1, when 1 is either C°°-smooth or real-
1

analytic on S™.

Now, given §;, j = 1,2,3, and €* > 0 as in Theorem we let 0 = min{g, 572, %3}
and ¢ = min{ey, e*}, where t > 0 and &, > 0 correspond to § as in Theorem 4.1
(shrinking & further, if necessary). Then, for ¢ € C¥(S™;C") with H¢H03(Sn;(cn) < e, we

let

1 —
My = (‘O(BZ—; ) U M£,52,53'

We now proceed to show that this indeed leads to the desired manifold. First, by

Theorem (731) and Theorem (b),

My =W (8% s ) UW (S2 i) € OM C 3.

This follows from the fact that dist(z, Sing(S™)) < 26 < d3, when z € ST

V1-4482"



40

Next, for the foliated structure and the regularity of M, we need only focus on
e(B2H N ]\7{?1752’53. Let p € o(B%) N Mgﬁﬁ%&. Then, p = ¢(z1,t) for some (z1,t) €
B" 1!, where recall that ¢ = v/1 — §2. We first assume that ||t|| > t3 = v/1 — 852. Then,
by the choice of § and Theorem (iv), diam(Ag) < 01, sup,en, dist(z, Sing(S53)) < d2
and dist(p, Sing(S72)) < d3. Thus, by Theorem [1.2{ (b), Ay C @(B%") N M ; ;. By

this argument, we see that the smooth (n + 1)-dimensional manifold

Btg,t = U Zt

ts<||s||<t

lies in o(B™f1) N Méﬁ’%&g. Thus, M is a smooth manifold in a neighborhood of p.

Next, suppose p = ¢(z1,t) € (BN ]\7;1752753 is such that ||t]| < V1 — 862. We
observe that the complement of 0By, ; in Sgﬂﬁﬂgiv 55,0, CONSIStS of two disjoint submani-
folds of S§ — one, say S, containing Sing(S%) and contained in a (26)-neighborhood of
Sing(Sy), and another, say S, with the property that dist(Si, Sing(Sy)) = 2v/26 +
O(6%) > 26. Since p € M(?ly(SQ,éS’ it lies on some analytic disc f(A) attached to
ngaMg 5,.5,- BY the uniqueness of these discs, f(9A) cannot intersect 0By, ; because
any disc whose boundary intersects 0By, ; lies completely in By, ; (as seen above), and
p € f(A) does not. Thus, either f(0A) C 5 or f(OA) C S (as the two are disjoint).
But since S lies in the tubular (2)-neighborhood of Sing(Sy), which is a polynomially
convex set, we must have that if f(9A) C &, then dist(p, Sing(S})) < 26. This contra-
dicts the fact that p = ¢(z1,t) with ||t]| < v/1 —862. Thus, f(OA) C ;. This, and the

fact that

W (S i) € SUOBy,

shows that if we shrink ]/\\4/(?)1 5,.6, DY removing S and the discs attached to it, then

_ +1 Are
M = (‘O(BZt ) U M51,52,53

is an (n+1)-dimensional manifold, as smooth as Mfl 52,637 and is foliated by analytic
discs attached to its boundary Sg. Moreover, M is a C'-small perturbation of B"*! in

c™.
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Chapter 5

Holomorphic/Polynomial Convexity

5.1 Preliminary Results

5.1.1 M as a graph

Let I : C* — C" x R™! be the map (z1,2" +iy’) ~ (21,2'). For ¢ € C¥(S™;C")
as above, we note that since Sg is a C3-small perturbation of S™, we may write S? =
Graph(h) for some C*-smooth h : 9Q — R™ !, where Q is a CF-smooth strongly convex
domain in C,; x R~ ! and h and 9% are C3-small perturbations of the constant zero
map and S7, respectively. We make two observations. Since Sg lies in Q x iR™™ !, which
is strongly convex, M C Q x iR"~! with int M C Q x iR"~ !,

Next, since T,(M) at any p € M is a small perturbation of Ty, (Q) (as manifolds
with boundary in C*), IT : M — Q is a local diffeomorphism that restricts to a diffeo-
morphism between S’g and 0€2. Thus, II extends to a C"™*-smooth diffeomorphism from

M to Q, and we may write M = Graph (h*) for some C!-small h* : Q — R* 1.

5.1.2 On the analytic extendability of M

In this section, we fix our attention on real-analytic perturbations of S™. So far, we have:
given 6 > 0, there is an € > 0 so that for any any ¢ € C*(5™;C) with [|¢[|cs(gn) < &,

there is a C¥-domain Qg C C x R ! and a C¥-map H : ﬁ¢ — R™ 1, such that

* 0Qy and H|pq , are e-small perturbations (in C3-norm) of S™ and the zero map,

respectively,

* Graphg, (H) is foliated by an (n—1)-parameter family of embedded analytic discs

attached to S, and HHHO(@Q < 4.
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In this subsection, we show that given p > 0, § > 0, there is a p’ > 0, € > 0 such

that

if the complexified map ¢¢ extends holomorphically to N,Sg with supWHwH <e,

then H extends real-analytically to (1 + p’)g, and [H [| g2 ) <90

1+p)Q

Near Sing(Sy), this follows from the results in [I5] and [20], where uniform analytic
extendability of the local hulls of holomorphy past real-analytic nondegenerate elliptic
points is established . Away from Sing(Sg), we obtain this by complexifying the con-
struction of Mrpg, and establishing a lower bound on the radius of convergence of its
parametrizing map F, : A x D""L(t) — C" for every ¢ (or ¢) sufficiently small. We
briefly elaborate on this below.

In order to complexify the construction in Section we need to expand our
collection of function spaces. First, recall that S% = {(z,z) € C** : z € S"} and
N:SE = {¢€ € C* : dist(&,S) < r}. For s € (0,1), we set, Ay = (1 + s)A and
Amng = {z€C:1—s<|z] <1+s}. We define A4*(0A;) and AL (Anng) in analogy
with AV*(OA); see (3.1). For any open set U € C", we let A(U) be the Banach spaces

of continuous functions on U, whose restrictions to U are holomorphic.

X"(s) = AY(0A4C™) x AVY(Anng; C"),

Xg(s) = {(f.h) € X"(s) : hloa = floa},

Y™i(r) = AWN:S¢;C"),

YEM(r) = {(p1, s p2n) €Y (r) 1 2(2,2) = P1(2,7), Im ¢5(2,2) = 0, = 3,..., 2n},
Z(r,s) = {lp,n, f,h) € Y2"(r) x X"(s) : (f,h)(Anng) C NS¢},
Zg(r,s) = Z"0(YE"(r) x Xg(s)).

We need the bounded linear map K. s : RxY™(2r) x Ab¥(0Ag4; C™") — Cx Y27 (r) x

X"(s) given by

(.’L’, ¢17 ceey ¢n7 f) = (1’ + 10, ¢17 (ﬁv (Re ¢2)*7 (Im ¢2)*"'7 (Re ¢n)*7 (Im ¢n)*7 f7 f*)a
=:(¢,0*)
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where ¢7, (Re¢;)*, (Im¢;)* and f* are obtained by taking the holomorphic exten-
sions of the real analytic functions a‘ smo (Re ¢;) ‘ sn (Im ¢;) } o and ﬂ o Tespectively.
To keep the exposition short, we will now only discuss this for the case n = 2.

Now, fixing r = p/2 and s = r/2, and dropping all inessential references to r and
s, we solve the following complexified version of on Ann,: given ¢ € Y2, find
(f,h) € X? satisfying

fo+ha
2

2
(1 = or(F. 1)) (1 — o, 1)) + ( — h)) 1

fa = ha = ua(f, D),

so that (f,h) € X3 if p € Y. For this, we first define the following maps on C x Z2.

SC o (e, foh) = (n+ He(pa(f,h) — w3(f,h))*, and

PC : (n»@afah) = (d)l(fvh)vsoQ(fvh)vl _2(907n’f7h))7

where Hc : AM*(Anng) — Ab¥(Anny) is the complexified Hilbert transform (see
[12]). We let QF€ ¢ A(Ann,)? x A(Ann,;C\ (—o0,0)) be the domain of the operator
EC obtained by complexifying the map E constructed in Lemma The range of EC
lies in X', and if (f,h) = E®(p, o), then

e on Anng, (f —¢1)(h — p2) =0,

o if p € Y2 and olga > 0, then (f,h) = (E(¢,\/0), E(¢,1/0)) on DA, i.e., (f,h) €
X3,

o for c € C\ (—00,0], EC(0,0,c¢) = (\/c&,\/c/E).

Finally, we set W€ = {¢ € C x Z% : P%(¢) € QF}, and define the map R®: W€ —

X2 as follows

(= (777 2 f7 h) = (f)g)_(ECOP(C(C)v 77+H(C(Q04(f7 h))+1804(f7 h)7 n+HC(SO4(f7 h))_ZQpél(fa h))
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All the complexified maps constructed are holomorphic on their respective do-
mains, and therefore, so is RC. Moreover, (7,0,9,) € WE, RC(O,n,gn) = 0 and
D3R®(0,7,9,) =1, for n € Q(1,s) = (—1,1) x (—is, is), where

g(&) = (V1 -2 n, /1 =02 n).

Thus, by repeating the argument in §3.2| given ¢t < 1 — s, sg < s, there is an

e > 0, such that for each ||¢||y4 < €, there is a holomorphic embedding ]—"g t Ag X
Q(to, s0) — C* whose image is a disjoint union of analytic discs in C* with boundaries
7| <

C'supy, gn||¢||- By shrinking s, to, sg slightly, and using Cauchy estimates, we can ensure

in SZ. Moreover, there is a C > 0 (independent of ¢) such that SUPA, xQ(

t0,50)
that for a given § > 0,

7

Now, let ¢ = (¢, ¢*) € Y& with [|¢[ly4 < e. Setting Fy =7 o}'g’A «(

<6, for all <e. 5.1
CQ(ASXQ(to,so)) or a H‘P”Y‘l € (5.1)

toite)? where

. 4 2 - . .
m: C;,, — C7 is the projection map, we have

(a) Fy: A x (—to,tp) — C? is an anlytic map with radius of convergence at least so,

(b) Fo(0A x {t}) C Si for every t € (—tg,tg). This follows from the fact that R®
complexifies the map RE : (t, ¢, f) — 7o RE(t +i0, K (¢, f)), and RR = 0 gives
equations (3.10]).

() M' = Fy(As x (—to,t9)) C C? is an embedded 3-manifold with boundary that is
a graph over a domain ' C C xR. Due to (a) above, there is a p’ > 0 (depending

only on p and §) such that (1+ p/)Q4 C .

5.2  Polynomial Hull of 57

We note that if M is as constructed in the previous section, then due to its foliated
structure, M is contained in both the schlicht part of gﬁ, and in SZ} In this section, we
show that when the perturbations are real-analytic and admit a uniform lower bound

on their radii of convergence, then M is in fact polynomially convex. This will complete
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the proof of Theorem Our strategy is to globally ‘flatten” M, which allows for M
to be expressed as the intersection of n — 1 Levi-flat hypersurfaces, to each of which we
can apply Lemmal[5.2] We note that when n = 2, the flattening is unnecessary, and the
final claim follows directly from Lemma [5.2] (as seen in Bedford’s paper [3]).

There is a neighborhood W of §¢ in C™ and a biholomorphism G : W — C" such
that M € G(W) and normG — I, < 4.

Proof. We let M' = {(z1,2") € Vy oMy : 2" = §(21,71,2')}, where p’ and § are
as in section [5.1.1, since M’ is a small perturbation of Graph(0) and is foliated by
analytic discs, it admits a tangential (1,0)-vector field, L = 8%1 + aga%2 + - '-an%,
ag,...,a, € C¥(M';C), such that [L,L] € span{L,L} mod HM' ®g C on M’. The

conditions on L give that

(a) L(a) =0on M, ie., ais a CR-map on M’, where a = (as, ..., a,), and

(b) a’(Zla Z/) = 22(21,271, Z,) along M/a since L(Zl - 57.]('217717 Z/)) =0.
<1

Thus, we get that a extends as a holomorphic map, say A, to some neighborhood of
M’. Since, $ (and, therefore a) has radius of convergence at least p'/2 on M’', A is
holomorphic on V,,/5(Mg). Further, we have that A(z1,2') = a(21,71,2',9(21,71, 7))
on Vy 2(Mg), which gives the bound |[A[lo1 < 6 on V,,/5(Mg) (since [lal|on < 6 on M,
from (b)).

We now construct the flattening map. By applying the implicit function theorem
to the equation z' = §(21, 71, 2") on Vi /5(My), we can solve for ¢ in terms of z1, y1
and 2’ to write M’ = Graphg H, where Q' is the (1 + p'/2)-tubular neighborhood of

Qp in CxR" 1 and H : ' — R" ! is a C*-map with |[|H || < 4. Shrinking e further,

we may assume that Q4 C B C €, where B = (1 + p//4)B"*l. Given (21,2') € B,
we let w(szl) =2+ iH(fU17y1>$/)- Now, on the metric space J = {g S C(B,Rnil) :

supgllg — w|| < p'/2}, endowed with the sup-norm, we consider the map

Qg (Qq)(z1. ') = o +iH(0,0,') + /0 LA 96,2 de.

To see this, note that for g, g1, go € F, we have
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supg Qg — wl| < supg|| H(0,0,2) — Hzr,yr, )| + supy,, ar,) |1 Al dim(B) <6 (144

supp Qg1 — Qga | < supv,, ur,) | DA diam(B) supp g1 — g2 S 6 (1+ 4 ) suppllgr — g2l

Shrinking e > 0 further, if necessary, we can ensure that §(1+ p’/4) < min{p’/2,1}.
Thus, Q(F) C F, and @ is a contraction, ie., Qg1 — Qg2|z < |lg1 — 92|z, for all
gi,92 € F. By the Banach fixed point theorem, there is a unique gy € F such that
Q(g0) = go- In other words, G : (z1,2") — (21,90(z1,2")) is a solution of the flow

equation

dg
aizl(zlax/) = (1,A(Zl,g(251,$l))) ) on Ba

g(0,2") =2’ +iH(0,0,2'), on By =BN{z =0}

By the local uniqueness and regularity of solutions to quasilinear PDEs with real-
analytic Cauchy data, G must be real-analytic in 21 and 2. Moreover, |G —I|l¢1(p) < 0.
Thus, G extends to a biholomorphism in some neighborhood W of B. Now, since
G«(0/0z1) = L and G(By) C M’, by the uniqueness of integral curves, G(B) C M’.
Finally, if z € 9B, then HH oG(z) — zH < 8, where IT : C* — C x R" ! is the projection
map, and 0 can be made sufficiently small (by shrinking €) so that Q4 C (Il o G)(B),
and thus, M € G(B) C G(W). This settles our claim. O

Now, to complete the proof of the polynomial (and holomorphic convexity) of M,
we need the following lemma.

Let D' ¢ C» ! xR be a domain containing the origin, and F : D’ — R be a smooth
function such that £’ = Graphp, (F) is a Levi-flat hypersurface. Then, for any strongly
convex domain D € D’ containing the origin, the set £ = Graphp(F) is polynomially

convex.

Proof. We fix a tg € (0,1) such that D, = (1 +¢t)D € D’ for all t < ty5. Now,

set C = 2(to + sup5t0|F|). Since Dy, x [—iC,iC] is polynomially convex in C", by



47

a theorem due to Docquier and Grauert (see [?]), it suffices to produce a family of

pseudoconvex domains, {Uy o<t in Dy, x (—iC,iC) such that

U, cUits<t, (|itUs=U;, |JUs=U;, L= and Dy, x (=iC,iC) = | ] U.
s>t s<t 0<t 0<t

We use the notation (z*,w) to denote a point in C"~! x C, with w = u + iv. Now,

consider the following pseudoconvex domains.

{(z*,w) : (z*,u) € Dy,|v — F(2*,u)| < t}, 0 <t <tp,
U=
{(z*,w) : (z*,u) € Dyy,max(—C, F(z*,u) —t) < v < min(F(z*,u) +¢,C)}, t > to.
The claim now follows. O

Finally, given j = 2,...,n, let Y; denote the hyperplane {z € C" : Imz; = 0}. We

set

Ly =G (wWnYy))

Shrinking e further, if necessary, we have that E; is a graph of some smooth function
FJ over some open set D;CY; = C"! x R such that Q4 € D cWnY;. We now

choose a strongly convex domain £ C C” such that

* £ENYj € DY, and

* ENYaNn---NY, = Q4.

This can be obtained, for instance, by letting & = {7%p(z, 2') —|—Hy’H2 < 0}, where p
is a smooth strongly convex exhaustion function of Q4 with p > —1 (see [?]), and 7 > 0

is small enough. Now, we apply Lemma to D}, FJ and D; = &nNYj, and conclude

that £; = Graphgfj(F 7) is polynomially convex. However,

vfe.

Jj=2

Thus, M is polynomially convex.
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