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ABSTRACT OF THE DISSERTATION

Stability of the Hull(s) of the n-Sphere

By CHLOE URBANSKI WAWRZYNIAK

Dissertation Director: Xiaojun Huang

For a particular natural embedding of the real n-sphere in Cn, the CR singularities

are elliptic and nondegenerate and form an (n−2)-sphere on the equator. In particular,

for n ≥ 3, these singularities are non-isolated. This distinguishes the difficulty of this

problem from the well-studied case of n = 2. It can easily be seen that the n-sphere can

be filled by an (n−1)-parameter family of attached holomorphic discs foliating towards

the singularities. This family of discs forms a real (n + 1)-dimensional ball, which is

the holomorphic and polynomial hull of the n-sphere. This dissertation investigates

whether these properties are stable under C3-small perturbations and what regularity

can be expected from the resulting manifold. We find that under such perturbations, the

local and global structure of the set of singularities remains the same. We then solve a

Riemann-Hilbert problem, modifying a construction by Alexander, to obtain an (n−1)-

parameter family of holomorphic discs attached to the perturbed sphere, away from the

set of singularities. We then use the theory of multi-indices for attached holomorphic

discs and nonlinear functional analysis to study the regularity of the resulting manifold.

We find that in the case that the perturbation is Ck+2,α, the construction yields a Ck,α

manifold. In the case that the perturbation is C∞ smooth or real analytic we show

that the regularity of the manifold matches the regularity of the perturbation. We then

patch this construction with small discs constructed by Kënig, Webster, and Huang

ii



near nondegenerate elliptic singularities to obtain a complete filling of the perturbed

sphere by attached holomorphic discs, with an additional loss of regularity near the CR

singularities. This filled sphere is diffeomorphic to the (n + 1)-dimensional ball and is

clearly contained in the hull of holomorphy. Finally, we show that if the perturbation

is real analytic and admits a uniform lower bound on its radius of convergence, this

perturbed ball is in fact exactly the polynomial (and holomorphic) hull of the perturbed

sphere.
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Chapter 1

Introduction

1.1 Motivation and statement of result

Given a prescribed surface S in C2, the problem of finding a hypersurface M in C2

such that ∂M = S and M is Levi-flat, i.e., locally foliated by analytic curves, is called

the Levi-flat plateau problem. This problem has been extensively studied for 2-spheres

in C2. The first foundational result in this direction was due to Bishop (in [6]), whose

construction of discs produces a local solution near any nondegenerate elliptic complex

point of S. The regularity (up to the boundary) and the uniqueness of Bishop’s local

solution were settled much later in the works of Kenig-Webster ([14]; the smooth case),

and Moser-Webster, Moser, and Huang-Krantz ([17], [16] and [13]; the real-analytic

case).

The global problem for spheres was studied in a series of papers in the 80’s and

90’s, starting with Bedford-Gaveau (see [4]), who proved the existence and uniqueness

of the global solution for S in graph form (and with 2 elliptic complex points), followed

by Bedford ([3]), who established the stability of the solution. The CR-geometric and

regularity conditions on S were later substantially weakened via geometric methods, as

in the works of Bedford-Klingenberg ([5]) and Chirka-Shcherbina ([8]), as well as via

PDE techniques, as in the work of Slodkowski-Tomassini ([19]). In the case when S is

either C∞-smooth or real-analytic, and has only elliptic complex points, the regularity

of the global solution follows from the local results discussed above.

We note that, in all the results cited above, the uniqueness of the solution M follows

from the fact that M is the envelope of holomorphy (and, in some cases, the polyno-

mially convex hull) of S. Given a compact set K ⊂ Cn, its polynomially convex hull is

the set K̂ = {z ∈ Cn :
∣∣p(z)∣∣ ≤ supx∈K

∣∣p(x)
∣∣ , for all holomorphic polynomials p}. In
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terms of function algebras, K̂ can be identified with the maximal ideal space of P(K) —

the closure in C(K) of the set of holomorphic polynomials on Cn restricted to K. The

envelope of holomorphy K̃ of K, can be analogously defined as the maximal ideal space

of H(K) — the closure in C(K) of the set O(K) = {f |K : f is holomorphic in some

neighborhood of K}. When K̃ is schlicht, i.e., representable as a subset in Cn, it is the

maximal set in Cn such that every f ∈ O(K) analytically extends to some f̃ ∈ O(K̃).

It is of fundamental interest in complex analysis to determine these hulls for any given

set, and study their analytic structures. Furthermore, if K̃ = K̂, then H(K) = P(K).

In C, this equality holds if (and only if) K is simply-connected, but this is far from

true in Cn, n ≥ 2.

In higher dimensions (n ≥ 3), the corresponding problem for n-spheres in Cn is not

as well understood. The Levi-Flat plateau problem has been studied in Cn, n ≥ 3, but

all the known results consider boundaries that are (2n− 2)-dimensional spheres in Cn.

From the point of view of computing polynomial hulls, it is more natural to consider

n-dimensional manifolds in Cn. In this setting, part of the challenge stems from the fact

that the CR-singularities of such a manifold are not generically isolated when n ≥ 3.

Moreover, even when a “filling” by attached analytic discs is possible, the resulting

manifold has high codimension, thus making it hard to establish its holomorphic or

polynomial convexity. Thus, there is a lack of global results, even for n-spheres in Cn.

In this paper, we study the hulls of small perturbations of the following natural

embedding of the n-sphere in Cn.

Sn =
{

(z, z′) ∈ C× Cn−1 : |z|2 +
∥∥z′∥∥2

= 1, Im z′ = 0
}
.

We let Bn+1 denote the (n+ 1)-ball bound by Sn in C×Rn−1, and note that Bn+1

is both the envelope of holomorphy and the polynomially convex hull of Sn, and is

trivially foliated by analytic discs. We establish the following stability result in the

style of Bedford ([2]) and Alexander ([1]).

Theorem 1.1. Let ρ > 0 and δ > 0. Then, there is an ε > 0 such that, for k >> 1, if

ψ ∈ C3k+7(Sn;Cn) with‖ψ‖C4(Sn;Cn) < ε, then there is a Ck-smooth (n+1)-dimensional
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submanifold with boundary, M ⊂ Cn, such that

1. ∂M = Ψ(Sn), where Ψ = I + ψ on Sn.

2. M is foliated by an (n− 1)-parameter family of embedded analytic discs attached

to Ψ(Sn).

3. There is a Ck-smooth diffeomorphism j : Bn+1 →M with ‖j − I‖C2(Bn+1;Cn) < δ.

4. If ψ is C∞-smooth, then M is C∞-smooth up to its boundary.

5. If ψ is real-analytic, then M is real-analytic up to its boundary.

6. If ψ is real-analytic and the complexified map ψC extends holomorphically to

NρSnC = {ξ ∈ C2n : dist(ξ, SnC) < ρ},

where SnC = {(z, z) ∈ C2n : z ∈ Sn}, and supNrSnC
|ψC| < ε, then M = Ψ̃(Sn) =

Ψ̂(Sn).

In order to construct M , we need to consider the CR-structure of Ψ(Sn). First, we

note that the set of CR-singularities of Ψ(Sn) forms an (n− 2)-sphere consisting only

of nondegenerate elliptic CR-singularities (see Lemma 2.1). A point p in an n-manifold

X ⊂ Cn is a nondegenerate elliptic CR-singularity of X if, after a local holomorphic

change of coordinates, X near p = 0 is given by

zn = |z1|2 + 2λRe(z2
1) +O(|z|3);

yj = O(|z|3), j = 2, ..., n− 1,

where λ ∈ [0, 1
2). The local hull of holomorphy of a smooth (real-analytic) X at

such a p is a smooth (real analytic) (n + 1)-dimensional manifold that is foliated by

Bishop discs attached to X. As discussed earlier, when n = 2, this follows from the

works of Bishop, Kenig-Webster, Moser-Webster, Moser and Huang-Krantz. In higher

dimensions, this problem was settled by Kenig-Webster ([15]) and Huang ([20]) (see

Theorem 4.2).
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Away from the set of CR-singularities of Ψ(Sn), we solve a Riemann-Hilbert problem

to produce the necessary attached discs. We note that such a construction was done by

Alexander in [1], and his technique can be used to show that for any k large enough,

there is an εk > 0 such that every εk-small Ck+2-perturbation of Sn contains the

boundary of a Ck-smooth manifold foliated by attached holomorphic discs. However,

εk may shrink to zero as k increases, and thus we need a different approach for C∞-

smooth perturbations. For this, we fix a sufficiently small perturbation Ψ, construct the

(C1-smooth) foliation attached to Ψ(Sn) à la Alexander, and then, use the Forstnerič-

Globevnik theory ([10], [11]) of multi-indices of discs attached to totally real manifolds

to smoothly reparametrize the foliation near each leaf.

Finally, to establish the polynomial convexity of M , we globally flatten M to a

domain in C×Rn−1, and use a trick due to Bedford for Levi-flat graphs of hypersurface

type. In order to carry out this flattening, we must assume that our perturbation is

real-analytic with a uniformly bounded below radius of convergence on Sn. Hence, the

assumptions stated in (6) in Theorem 1.1. It is not clear whether these assumptions

can be done away with.

1.2 Plan of the Thesis

The proof of our main result is organized as follows. In Chapter 2, we discuss the

CR structure of the perturbed sphere, including the local and global structure of its

singularities. In Chapter 3, we establish the stability of the holomorphic discs whose

boundaries in Sn lie outside a neighborhood of its CR-singularities and in its subsections

3.3 and 3.4, we show that the regularity is maintained in the real analytic and C∞

cases, respectively. Next, in Chapter 4, we complete the proof of claims (1) to (5)

in Theorem 1.1 by patching up the construction in Chapter 3 with the local hulls of

holomorphy of the perturbed sphere near its CR-singularities. Finally, in Chapter 5,

we establish the polynomial convexity of the constructed manifold under the stated

assumptions.
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1.3 Notation and Setup

We will use the following notation throughout this paper.

• The unit disc and its boundary in C are denoted by ∆ and ∂∆, respectively.

• The open Euclidean ball centered at the origin and of radius r > 0 in Rk is

denoted by Dk(r).

• Bold small letters such as t and s denote vectors in Rn−1. For the sake of conve-

nience, we index the components of these vectors from 2 to n, i.e., t = (t2, ..., tn).

• We will denote the identity map by I, where the domain will depend on the

context.

• Given any normed function space
(
F(K),‖·‖F

)
on a set K ⊂ Cn, we let

– F(K;R) = {f ∈ F(K) : f is R-valued}, with the same norm.

– F(K;Rn) = {(f1, ..., fn) : K → Rn : fj ∈ F(K;R)}, with
∥∥(fj)

∥∥
F =

supj
∥∥fj∥∥F .

– F(K;Cn) = {(f1, ..., fn) : K → Cn : fj ∈ F(K)}, with
∥∥(fj)

∥∥
F = supj

∥∥fj∥∥F .

• For any n-dimensional submanifold M ⊂ Cn, we denote the set of CR-singularities

of M by Sing(M).

We now make some preliminary observations on the perturbations considered in this

article. Let B3 denote an ε-neighborhood of the origin in C3(Sn;Cn), where ε > 0 will

be determined later on. We let Ks = {z ∈ Cn : dist(z, Sn) < s}, where s > 0 is small

enough so that there is a smooth retraction ρ of Ks to Sn. We may choose an ε > 0

small enough so that

• there is a t ∈ (0, s) such that for every ψ ∈ B3, the diffeomorphism Ψ : Ks → Cn

given by z 7→ z + ψ(ρ(z)) satisfies Ψ(Sn) ⊂ Kt ⊂ Ψ(Ks); and

• the map Inv : B3 → C3(Kt;Cn) given by ψ 7→ (Ψ−1 − I)|Kt is well-defined and

C2-smooth.
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We denote Ψ−1|Kt by Φ and Inv(ψ) = Φ− I by φ. For φ ∈ Inv(B3), we let

Snφ = Ψ(Sn),

where the φ = Inv(ψ). Thus, z ∈ K = Kt satisfies z ∈ Snφ if and only if z−φ(z) ∈ Sn.
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Chapter 2

CR Structure of Perturbed Sphere

2.1 CR Dimension and Singularities

Let X be an m-dimensional manifold embedded in Cn, defined by

X = {z ∈ Cn : ρ1(z) = · · · = ρm(z) = 0}

where ρj : Cn → R are at least C1 and dρ1∧· · ·∧dρm 6= 0 on X. Note that the ideas

in this section can be generalized to non-embedable manifolds, but these generalizations

are not needed here.

Definition 2.1. Let p ∈ X. Let TpX denote the tangent space to X at p. Then,

define the CR dimension of X at p, which we denote CR dimpX, to be the (complex)

dimension of the largest complex subspace of TpX.

We say that a point p ∈ X is in the totally real part of X if CR dimpX = 0.

Example 2.2. Here are four illustrative examples.

1. Let X = {z ∈ Cn : ρ(z) = 0} be any real hypersurface in Cn. Then, for all p ∈ X,

CR dimpX = n− 1.

2. Let X = {(z1, z2) ∈ C2 : x2 = y2 = 0}. Then, TpX = spanR{(0, 1), (0, i)} =

{0} × C. So, for all p ∈ X, CR dimpX = 1.

3. Let X = {(z1, z2) ∈ C2 : x1 = x2 = 0}. Then, TpX = spanR{(1, 0), (0, 1)} =

R× R. So, for all p ∈ X, CR dimpX = 0. In other words, X is totally real.

4. Consider the embedding S2 = {(z1, z2) ∈ C2 : y2 = 0,|z1|2 + |z2|2 = 1}. Then,

TpS
2 = spanR{(p1, p2), (0, i)}. Then, for p 6= (±1, 0), CR dimp S

2 = 0 and

CR dim(±1,0) S
2 = 1. In other words, S2 is totally real except at the poles (±1, 0).
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Definition 2.3. In the last example above, the two points (±1, 0) where the CR di-

mension jumps are called CR singularities and we denote the set of CR singularities

for a manifold X by Sing(X).

An important example to this document is the real n-sphere in Cn:

Sn = {z ∈ Cn :‖z‖2 = 1, y2 = y3 = · · · = yn = 0}.

Similar to the 2 dimensional version, one can easily compute that Sing(Sn) = {z ∈

Sn : z1 = 0}, which is an n − 2-dimensional sphere. In fact, this property is stable

under C3-small perturbations, as shown in the following

Given η > 0, there is a τ ∈ (0, 1) such that for any ψ ∈ τB3, there exists a

C2-smooth diffeomorphism ι : Sn → Sn such that (Ψ ◦ ι)(SingSn) = Sing(Snφ), and

||Ψ ◦ ι− I||C2(Sn;Cn) < η. In particular, Sing(Snφ) is an (n− 2)-dimensional sphere.

Proof. We first parametrize Sn by Θ : D2(1)× [0, 2π]n−2 → Cn as follows

Θ : (a, b, θ1, ..., θn−2) 7→
(
a+ ib,S

(√
1− a2 − b2, θ1, ..., θn−2

))
,

where S(r, θ1, ..., θn−2) is a point in Rn−1 with spherical coordinates r, θ1, ..., θn−2.

Note that Θ−1(SingSn) = {(0,θ) : θ ∈ [0, 2π]n−2}.

LetR : Cn → Rn be given by (z1, z2, ..., zn) 7→
(
|z1|2 + · · ·+ |zn|2 − 1, Im(z2), ..., Im(zn)

)
.

We note that since Sing(Sn) = {z ∈ Sn : rank JacCR(z) < n}, and

JacCR(z1, ..., zn) =



z1 z2 · · · zn

0 1
2i · · · 0

...
...

. . .
...

0 · · · · · · 1
2i


,

we have that Sing(Sn) = {z ∈ Sn : det JacCR(z) = 0}. Now, let J : B3 × D2(1) ×

[0, 2π]n−2 → R2 be given by (ψ, a, b,θ) 7→ det JacC(R ◦ Φ)(Ψ ◦ Θ(a, b,θ)), where θ =

(θ1, ..., θn−2), and Ψ and Φ are related to ψ as discussed above. Note that J is a

C2-smooth map such that
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Figure 2.1: The preimage of Sing(Snφ) under Ψ in the parameter space is a graph.

• Θ(a, b,θ) ∈ Ψ−1(Sing(Snφ)) if and only if J(ψ, a, b,θ) = 0 (after possibly shrinking

B3);

• For any θ ∈ [0, 2π]n−2, J(0, 0,θ) = 0 and Da,bJ(0, 0,θ) = ( 1
2i)

n−1

1 0

0 −1

.

Thus, by the implicit function theorem (and the compactness of [0, 2π]n−2), there is

a τ ∈ (0, 1), a neighborhood U of 0 in C, and a C2-smooth map Γ : τB3× [0, 2π]n−2 → C

such that J(ψ, z1,θ) = 0 if and only if z1 = Γ(ψ,θ), for any (ψ, z1,θ) ∈ τB3 × U ×

[0, 2π]n−2.

Thus, in the parameter space D2(1) × [0, 2π]n−2, Ψ−1(Sing(Snφ)) pulls back to the

C2-smooth graph Gψ = (Γ(ψ,θ),θ). By shrinking τ further, we may assume that Gψ

lies in a thin neighborhood N of G0. As both G0 and Gψ are graphs over [0, 2π]n−2,

there is a diffeomorphism ι̃ of D2(1)× [0, 2π]n−2 that is C2-close to identity, maps G0 to

Gψ and is identity outside N . Setting ι = Θ◦ ι̃◦Θ−1, we obtain the necessary map.

2.2 Moser Webster Normal Form and Elliptic Singularities

For a point on a real n manifold X in Cn which is at least C3 smooth, we consider a

point p ∈ X with CR dimpX = 1. At this point, because the tangent space contains

a 1-dimensional complex subspace, after linear transformation which sends p to 0, a

relabeling of the variables, and applying implicit function theorem, we have X defined

locally near 0 as a graph of (z1, z1, x1).
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In other words, X is defined near 0 as

zn = F (z1, z1, x)

yα = fα(z1, z1, x) = fα(z1, z1, x) α = 2, . . . , n− 1

where

F = q + q1 + q2 +O(|z|3)

fα = qα + q1α + q2α +O(|z|3) 2 ≤ α ≤ n− 1

and

q = az2
1 + bz1z1 + cz1

2

q1 =
∑
`

x`(a`z1 + b`z1)

q2 =
∑
`,k

c`kx`xk

qα = aαz
2
1 + bαz1z1 + aαz1

2

q1α = 2Re
∑
`

cα`x`z1

q2 =
∑
`,k

cα`kx`xk

where bα, cα`k ∈ R. Note that in this section, β, `, and α will always range from 2

to n− 1.

Definition 2.4. We say that a singularity is nondegenerate if, after the above trans-

formation, we have b 6= 0.

In [17], Moser and Webster constructed a biholomorphic change of coordinates which

reduce the functions F and fα above to a useful form, which is often referred to as the

Moser Webster normal form. In particular, they proved the following

Theorem 2.5. Let X be a real n-dimensional C3-smooth manifold in Cn such that

0 ∈ X is a CR singularity with CR dimpX = 1. Then, after a holomorphic change of

coordinates, X can be written locally near 0 as a graph



11

zn = γ(z2
1 + z1

2) + z1z1 +O(|z|3)

yα = O(|z|3) 2 ≤ α ≤ n− 1

where 0 ≤ γ <∞.

Proof. We start with the definitions of F, fα as above. As we are assuming that the

singularity is nondegenerate, we can replace zn 7→ 1
b (zn − (a− c)z2

1). This only affects

q, which becomes

q = γ(z2
1 + z1

2) + z1z1

where γ = a = c. Now, replace z1 7→ z1 +
∑
Aβzβ where Aβ solves

2γAβ +Aβ = −bβ.

At this point, we assume γ 6= 1
2 . Now, we get

q = γ
(
z2

1 + 2z1

∑
Aβzβ + (

∑
Aβzβ)2 + z1

2 + 2z1

∑
Zβzβ + (

∑
Aβzβ)2

)
+ z1z1 + z1

∑
aβzβ + z1

∑
Aβzβ + (

∑
Aβzβ)(

∑
zβzβ)

= z1

(
−
∑

bβxβ + i(2γ
∑

Aβyβ −
∑

Aβyβ)
)

+ z1

(
−
∑

bβxβ + i(−2γ
∑

Aβyβ +
∑

Aβyβ)
)

+ γ
(
z2

1 + (
∑

Aβzβ)2 + a1
2 + (

∑
aβzβ)2

)
+ z1z1 + (

∑
Aβzβ)(

∑
Aβzβ),

q1 =
∑
`

a`x`z1 +
∑
`,β

a`x`Aβzβ +
∑
`

b`x`z1 +
∑
`,β

b`x`Aβzβ,

and q2 remains unchanged. Therefore, collecting and cancelling terms appropriately,

we have

F =
∑

(a` − b`)x`z1 + i(2γ
∑

Aβyβ −
∑

Aβyβ)z1 + i(
∑

Aβyβ − 2γ
∑

Aβyβ)z1

+ γ(z1
2 + (

∑
Aβzβ)2 + z1

2 + (
∑

Zβzβ)2) + z1z1 + (
∑

Aβzβ)(
∑

Aβzβ)

+
∑
`,β

(a`Aβzβ + b`Aβzβ)x` +
∑
`,k

c`kx`xk +O(3)
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Now, replace zn 7→ zn −
∑

(z`z`z1 + c`βz`zβ), so F becomes

F = γ(z2
1 + z2

2) + z1z1 −
∑

(b` − a`)x`z1

+ γ
∑

AβA`zβz` + γ
∑

AβA`zβz` +
∑

AβA`zβz`

+
∑

a`Aβzβx` +
∑

b`Aβzβx` +
∑

c`βx`xβ

+ i
∑

2γAβyβz1 − i
∑

Aβyβz1

+ i
∑

Aβyβz1 − i
∑

2γAβyβz1 +O(3)

Since the yβ are O(2), the last few terms are order 3, so we can simplify this to

F = γ(z2
1 + z2

2) + z1z1 −
∑

(b` − a`)x`z1

+ γ
∑

AβA`zβz` + γ
∑

AβA`zβz` +
∑

AβA`zβz`

+
∑

a`Aβzβx` +
∑

b`Aβzβx` +
∑

c`βx`xβ +O(3)

(2.1)

At this point, we focus on the second and third line of equation (2.1), separate

zβ = xβ + iyβ, and define

a′` = a` − b`

c′`β = γAβA` + γAβA` +AβA` + a`Aβ + b`Aβc`β

Then, again grouping any terms of order 3 or higher into the O(3), we have

F = γ(z2
1 + z2

2) + z1z1 +
∑

a′`x`z1 +
∑

c′`βx`xβ +O(3)

Lastly, transforming zn 7→ zn −
∑
a′`z`z1 −

∑
c′`βz`zβ gives the desired form

F = γ(z2
1 + z2

2) + z1z1 +O(3)

Now, it remains to simplify the fα. First, recall that fα = qα + q1α + 22α where
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qα = aαz
2
1 + bαz1z1 + aαz1

2

q1α = 2Re
∑
`

cα`x`z1

q2 =
∑
`,k

cα`kx`xk

and bα, cα`k ∈ R. The bαz1z1 term is removed by the transformation zα 7→ zα+ibαzn.

Then, all remaining terms in qα, q1α, and q2α are removed by the transformation

zα 7→ zα + 2i
∑
β

cαβzβzα + i
∑
β,`

cαβ`zβz` + 2iaαzn

Definition 2.6. If 0 ≤ γ < 1
2 in the Moser Webster normal form, then we say that the

singularity is elliptic.

For example, one can easily see that each singularity on Sn is elliptic and nonegen-

erate. In fact, we have the following

If‖ψ‖C2 is small enough, then the singularites of Snφ are elliptic and nondegenerate.

Proof. Because both b and γ only depend on the defining functions and their first two

derivatives, the lemma follows from the fact that the conditions b 6= 0 and 0 ≤ γ < 1
2

are open conditions.
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Chapter 3

Attached Discs and Smoothness Away from Singularities

3.1 Preliminaries and Infinite Dimensional Calculus

We begin with some function spaces on the unit circle ∂∆. Given 0 < α < 1, let

C0,α(∂∆) =

f ∈ C(∂∆;C) :‖f‖α =‖f‖∞ + sup
x,y∈∂∆
x 6=y

∣∣f(x)− f(y)
∣∣

|x− y|α
<∞

 ,

where ‖f‖∞ = supx∈∂∆

∥∥f(x)
∥∥. For k ∈ N, let

Ck,α(∂∆) =

f ∈ Ck(∂∆;C) :‖f‖k,α =
k∑
j=0

∥∥∥Djf
∥∥∥
α
<∞

 .

Note that we use notation Ck,α(∂∆;R), Ck,α(∂∆;Rn) and Ck,α(∂∆;Cn) according

to the convention establish in Section 1.3. We will use the notation Bk,α(f, r) to denote

the ball of radius r centered at f in the Banach space Ck,α(∂∆) (or in Ck,α(∂∆;Cn),

depending on the context).

We also work with the Banach space

Ak,α(∂∆) = {f ∈ Ck,α(∂∆) : ∃ f̃ ∈ O(∆) ∩ Ck,α(∆) such that f̃ |∂∆ = f} (3.1)

with the same norm as that on Ck,α(∂∆). It is known that if f and f̃ are as above,

then
∥∥∥f̃∥∥∥

Ck,α(∆)
.‖f‖k,α.

In this section, we let E,F,G denote Banach spaces with norms ‖·‖E , ‖·‖F , ‖·‖G,

respectively. We let L(E,F ) denote the space of bounded linear maps from E to F .

Definition 3.1. For a map T : E → F , the Fréchet derivative of T , denoted DT is a

map from E to L(E,F ) such that for each point x ∈ E,
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lim
‖h‖E→0

∥∥T (x+ h)− T (x)−DT (x)h
∥∥
F

‖h‖E
= 0

Example 3.2. Here are some examples which will be useful for later .

1. If T is bounded and linear, then DT (x) = T for all x ∈ E.

2. If φ : Ω ⊂ Rn → Rn is continuously differentiable and E is a space of continuous

functions on some subset of Rn, then for f ∈ E with appropriate range, we can

define the map

evφ : f 7→ φ ◦ f

Then D evφ(f)h = φ′(f)h

Definition 3.3. If E,F are complex Banach spaces and DT (x) is complex linear, then

we say that T is holomorphic at x.

Example 3.4. If φ in the example above is holomorphic, then so is evφ.

We can also define partial derivatives and higher-order derivatives as usual:

Definition 3.5. Let T : E×F → G. Then at each point (x, y) ∈ E×F , the derivative

of T with respect to x ∈ E, denoted DTE or DTx, is in L(E,G) satisfying

lim
‖h‖E→0

∥∥∥T ((x, y) + (h, 0)
)
− T (x, y)−DET (x, y)h

∥∥∥
G

‖h‖E
= 0

Definition 3.6. Let n ∈ N. Let L(nE,F ) denote the space of n-linear maps from En

to F . Then, DnT : E → L(nE,F ) satisfying

lim
‖h‖E→0

∥∥Dn−1T (x+ h)σ −Dn−1T (x)σ −DnT (x)(σ, h)
∥∥
F

‖h‖E
= 0

Given these definitions, we can state two theorems which will be helpful throughout

this paper:
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Theorem 3.7 (Inverse Function Theorem). Let T : E → E be differentiable at a point

x ∈ E. Suppose further that T (x) = 0 and DT (x) is invertible. Then, there are open

sets x ∈ U and 0 ∈ V such that T is a diffeomorphism from U to V .

Theorem 3.8 (Implicit Function Theorem). Let T : E×F → F have a partial deriva-

tive with respect to F at a point (x, y) ∈ E × F . Suppose further that T (x, y) = 0 and

DTF (x, y) is invertible. Then, there are open neighborhoods U of y in F and V of x in

E and there is a map g : E → F such that T (x, g(x)) = 0 for x ∈ V . Furthermore, g

inherits the regularity of T .

For proofs and more details of this nonlinear functional analysis, see [9]. We will

additionally need the following

An infinitely differentiable map T between Banach spaces is analytic at a point a

in its domain if and only if there exists a neighborhood Va of a and constants c, ρ such

that

∥∥∥DjT (x)
∥∥∥ ≤ c j!

ρj

for all x ∈ Va. In this case, T (a+ h) =
∑
DjT (a)(hj) for all h small enough, where

hj denotes (h, . . . , h). In particular, this implies that the composition or product of

analytic maps is again analytic.

Example 3.9. Suppose K is some neighborhood of Sn and φ : K → Cn is real analytic.

Then the map evφ : C1,α(∂∆) → C1,α(∂∆) is real analytic. This follows from the fact

that

Dn evφ(f)(h)(ζ) = φ(n)(f(ζ))h(ζ)

With these tools we prove the following lemma, which will prove useful later.

For any k ∈ N, the map ev : ∆ × Ak,α(∂∆;Cn) → Cn given by ev(ξ, f) = f(ξ) is

Ck-smooth on ∆×Ak,α(∂∆;Cn) and real-analytic on ∆×Ak,α(∂∆;Cn).

Proof. We note that f 7→ f is a bounded linear transformation. Now, we have that
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Dj ev(ξ, f)(ζ1, h1) · · · (ζj , hj) = f (j)(ξ)ζ1 · · · ζj +

j∑
`=1

h`
(j−1)(ξ)

ζ1 · · · ζj
ζ`

.

Since all the derivatives of f up to order k satisfy a Hölder condition of the form

∣∣∣f (j)(ξ1)− f (j)(ξ2)
∣∣∣ ≤‖f‖k,α|ξ1 − ξ2|α , ξ1, ξ2 ∈ ∆,

the continuity of Dje for j ≤ k follows. Thus, we obtain the first part of the claim.

Next, we observe that for any (ξ, f) ∈ ∆×Ak,α(∂∆;Cn), we may write

ev
(
(ξ, f) + (ζ, h)

)
= ev(ξ, f) +

∑
j≥1

Aj((ζ, h) · · · (ζ, h)︸ ︷︷ ︸
j times

)

whenever f, h ∈ Ak,α(∂∆;Cn) and |ζ − ξ| < 1 −|ξ|, where Aj is the symmetric

j-linear map

(
(ζ1, h1), ..., (ζn, hn)

)
7→ f (j)(ξ)

j!
ζ1 · · · ζn +

k∑
`=0

h
(j−1)
` (ξ)

(j − 1)!

ζ1 · · · ζn
ζ`

.

By Cauchy’s estimates, we have that
∥∥Aj∥∥ ≤ (1+‖f‖k,α), j ∈ N. Thus,

∑
j∈N
∥∥Aj∥∥ rj <

∞ for any r < 1, which establishes the real-analyticity of ev at (ξ, f).

Remark 1. Here onwards, we will identify f and f̃ , i.e., for f ∈ Ak,α(∂∆;Cn) and

ξ ∈ ∆, we will denote f̃(ξ) simply by f(ξ).

Next, given f ∈ Ck,α(∂∆;R), we let H(f) be given by

f = a0 +
∞∑
n=1

ane
inθ + ane

−inθ 7→ H(f) =

∞∑
n=1

−ianeinθ + iane
−inθ (3.2)

Note that H is the standard Hilbert transform. It is well known that H is a bounded

linear transformation from Ck,α(∂∆;R) to itself. We then define J : Ck,α(∂∆;R) →

Ck,α(∂∆) as

J : f 7→ f + iH(f).
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Clearly, J is also a bounded linear transformation with J (Ck,α(∂∆)) ⊂ Ak,α(∂∆).

Note that if f is as in (3.2), then J (f)(0) = a0. In an abuse of notation, the component-

wise application of H and J on elements in Ck,α(∂∆;Rn) is also denoted by H and J ,

respectively.

Lastly, we fix a parametrization for the holomorphic discs that foliate the hull of

Sn. For any (ξ, t) ∈ ∆ × Dn−1(1), we let gt(ξ) =

(√
1−‖t‖2ξ, t

)
. The perturbed

sphere will be shown to be foliated by boundaries of discs that are perturbations of gt.

As discussed in Remark 1, we also use gt to denote gt|∂∆.

3.2 Construction of Discs

In this section, we follow Alexander’s approach (see [1]) to construct a C1-smooth

manifoldMTR ⊂ Cn that is foliated by holomorphic discs whose boundaries are attached

to the totally real part of Snφ . For this, we first solve the following nonlinear Riemann-

Hilbert problem: find a function f : ∆ → C that is holomorphic on ∆ and whose

boundary values on ∂∆ satisfy
∣∣f(z)− γ(z)

∣∣ = σ(z), where γ(z) is close to 0 (in some

appropriate norm) and σ is a positive function on ∂∆. The solutions to the above

problem give analytic discs attached to the torus
{
|z1| = 1,

∣∣z2 − γ(z1)
∣∣ = σ(z1)

}
in C2.

Let α ∈ (0, 1). There is an open set Ω ⊂ C1,α(∂∆)⊕ C1,α(∂∆;R) such that

{(0, σ) : σ > 0} ⊂ Ω ⊂ {(γ, σ) : σ > 0},

and there is an analytic map E : Ω→ A1,α(∂∆) such that

(i) if (γ, σ) ∈ Ω and E(γ, σ) = f , then |f − γ| = σ on ∂∆, f(0) = 0, and f ′(0) > 0;

(ii) E(0, c)(ξ) ≡ c ξ for ξ ∈ ∂∆, when c is a positive constant function.

Proof of Lemma 3.2. The idea of the proof is as follows. Given (γ, σ) ∈ C1,α(∂∆) ⊕

C1,α(∂∆;R) with σ > 0, if there is an η ∈ C1,α(∂∆) that satisfies

γ = ηeJ (log σ)−J (log|g−η|), (3.3)

where g(ξ) = ξ, ξ ∈ ∂∆, and J : C1,α(∂∆;R) → A1,α(∂∆) is the operator defined

in Section 3.1, then, setting E(γ, σ) = f = geJ (log σ)e−J (log|g−η|), we have that
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|f − γ| =
∣∣∣geJ (log σ)e−J (log|g−η|) − ηeJ (log σ)e−J (log|g−η|)

∣∣∣ = elog σ|g− η| e− log|g−η| = σ.

(3.4)

Moreover, f(0) = 0 and f ′(0) = e(J log(σ/|g−η|))(0) > 0. So, we must solve for η in

(3.3) for (γ, σ) close to (0, σ) when σ > 0. But any solution of (3.3) corresponding to

(γ, σ) is also a solution corresponding to (γe−J (log σ), 1). Thus, it suffices to establish

the solvability of (3.3) near (0, 1) ∈ C1,α(∂∆)⊕ C1,α(∂∆;R).

Let U = {η ∈ C1,α(∂∆) :‖η‖∞ < 1}, which is an open set in C1,α(∂∆). For η ∈ U ,

let A(η) = e−J (log|g−η|). We claim that

A : U → A1,α(∂∆) is an analtyic map with A(0) = 1. (3.5)

Further, letting Q(η) = η ·A(η), we claim that

Q : U → C1,α(∂∆) is an analytic map with Q(0) = 0 and Q′(0) = I. (3.6)

Assuming (3.5) and (3.6) for now, we can apply the inverse function theorem for

Banach spaces to Q to obtain open neighborhoods U ⊆ U and V of 0 in C1,α(∂∆) such

that Q is an analtyic diffeomorphism from U onto V . Set

Ω = {(γ, σ) ∈ C1,α(∂∆)⊕ C1,α(∂∆;R) : σ > 0 and γe−J (log σ) ∈ V }

and observe that η = Q−1(γe−J (log σ)) solves (3.3) for every (γ, σ) ∈ Ω.

Now set E± : C1,α(∂∆;R>0)→ A1,α(∂∆) by E±(σ) = e±J(log σ). The proof of (3.5)

below can be imitated to check that E± are analytic maps. Further, Mg : A1,α(∂∆)→

A1,α(∂∆) defined by Mg(h) = gh is also analytic since it is a bounded linear transfor-

mation. Thus, the map E : Ω→ A1,α(∂∆) given by

E(γ, σ) = E+(σ)
(
Mg ◦A ◦Q−1

)
(γE−(σ))

is analytic. As shown in (3.4), it satisfies (i). Also, E(0, c) = E+(c)Mg(1) = cg, for

c > 0.
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We must now prove (3.5) and (3.6). For (3.5), we first consider the map L : η 7→

log|g− η|. We use the fact that if f ∈ C1,α(∂∆) and g ∈ C2(f(∂∆)), then g ◦ f ∈

C1,α(∂∆). We apply this fact to f = g− η for η ∈ U , and g(·) = log(|·|) to obtain that

L(U) ⊂ C1,α(∂∆;R). Now, for a fixed η ∈ U and a small h ∈ C1,α(∂∆), we have that

L(η + h)− L(η) = log|g− η − h| − log|g− η|

= log

∣∣∣∣1− h

g− η

∣∣∣∣
=

1

2
log

(
1− h

g− η

)
+

1

2
log

(
1− h̄

ḡ− η̄

)

=
1

2

(
−2 Re

(
h

g− η

)
+O

(
‖h‖21,α

))
as ‖h‖1,α → 0,

where we are using the Taylor series expansion of log(1− z) and the submultiplica-

tive property of ‖·‖1,α in the last step. Thus, L is differentiable at η and DL(η)(h) =

−Re
(

h
g−η

)
. Continuing in this way, we obtain thatDjL : U → Lj(C1,α(∂∆), C1,α(∂∆;R))

exists and is given by DjL(η)(h1, ..., hj) = −(j − 1)! Re
(
h1···hj
(g−η)j

)
, where

Lj(C1,α(∂∆), C1,α(∂∆;R))

is the space of bounded j-linear maps from C1,α(∂∆)j to C1,α(∂∆;R). Thus, for any

j ≥ 1, DjL is continuous on U when Lj(C1,α(∂∆), C1,α(∂∆;R)) is given the standard

norm topology. Finally, observe that

∥∥∥DjL(η)
∥∥∥ = sup
‖(h1,...,hj)‖≤1

∥∥∥DjL(η)(h1, . . . , hj)
∥∥∥ = (j − 1)!

∥∥∥∥∥Re

(
h1 · · ·hj
(g− η)j

)∥∥∥∥∥ ≤ j!

‖g− η‖j

(3.7)

Hence, L is analytic. Now, the maps J and u 7→ e−u are both analytic on

C1,α(∂∆;R), since the former is a bounded linear transformation, and the latter has

continuous derivatives of all orders of the following form (h1, ..., hj) 7→ e−uh1 · · ·hj at

any u ∈ C1,α(∂∆;R). Thus, A being the composition of analytic maps, is itself analytic.

Further, as L(0) = log|g| = 0, A(0) = 1.
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Now, recall that Q(η) = η · A(η). So, Q(0) = 0. Being the product of two analytic

maps, Q is analytic at any η ∈ U . Now, since DQ(η)(h) = ηDA(η)(h) + hA(η), we

have that DQ(0)(h) ≡ h. This gives (3.6) and concludes our proof.

We now apply Lemma 3.2 to solve a nonlinear Riemann-Hilbert problem in n func-

tions. Note that the same problem will be solved using a different technique in Sec-

tion 3.4, where we will improve the regularity of the manifold constructed here.

Let α ∈ (0, 1). There is an open neighborhood Ω̃ of Dn−1(1) × {0} in Dn−1(1) ×

C3(K;Cn) and a C1-smooth map F : Ω̃ → A1,α(∂∆;Cn) such that F (t, 0) = gt, and if

F (t, φ) = f = (f1, ..., fn) for (t, φ) ∈ Ω̃, then f(∂∆) ⊂ Snφ , f1(0) = 0 and f ′1(0) > 0.

Proof. Recall that from Lemma 3.2, there exists an open set Ω ⊂ C1,α(∂∆)⊕C1,α(∂∆;R)

so that the solution operator E is smoothly defined on Ω.

Now, for (t, φ, f) ∈ Dn−1(1)× C3(K;Cn)×A1,α(∂∆;Cn), consider the map

P : (t, φ, f) 7→
(
φ1(f),

√
1− Σ(t, φ, f)

)
,

where Σ(t, φ, f) =
∑n

j=2

(
tj +H(Imφj(f))− Reφj(f)

)2
. Then, P is a C1-smooth

map from W into C1,α(∂∆)⊕ C1,α(∂∆;R), where W = {(t, φ, f) : f(∂∆) ⊂ K and∣∣Σ(t, φ, f)(ξ)
∣∣ < 1 for all ξ ∈ ∂∆}. This is a consequence of the following observations.

1. P is clearly C∞-smooth in the t variable.

2. Since H and f 7→ f2 are C∞-smooth from C1,α(∂∆) to C1,α(∂∆), and f 7→
√
f is

C∞-smooth from C1,α(∂∆;R>0) to C1,α(∂∆;R), our claim reduces to (3) below.

3. If ω = {(ϕ, f) ⊂ C3(B) × C1,α(∂∆) : f(∂∆) ⊂ dom(ϕ)}, where B ⊂ C is some

closed ball, then the map (ϕ, f) 7→ ϕ(f) is C1-smooth from (ω,‖·‖3 ⊕‖·‖1,α) to

(C1,α(∂∆),‖·‖1,α).

Next, we note that when t ∈ Dn−1(1), (t, 0, gt) ∈W and P (t, 0, gt) = (0,
√

1−‖t‖2) ∈

Ω. So, there exists an open set W ⊂ Rn−1 ⊕ C3(K;Cn)⊕A1,α(∂∆;Cn) such that

(i) (t, 0, gt) ∈ W for all t ∈ Dn−1(1),
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(ii) W ⊆W ,

(iii) P (W) ⊆ Ω.

Now, consider the map R :W 7→ A1,α(∂∆;Cn) given by

R(t, φ, f) = f −
(
E ◦ P (t, φ, f), t +H(Imφ(f)) + i Imφ(f)

)
, (3.8)

where φ denotes the tuple (φ2, ..., φn), and H acts component-wise. The map R

is C1-smooth. Note that R(t, 0, gt) = 0 and D3R(t, 0, gt) = I on A1,α(∂∆;Cn) for

all t ∈ Dn−1(1). So, by the implicit function theorem for Banach spaces, for each

t ∈ Dn−1(t), there exist neighborhoods Ut of t in Dn−1(1), Vt of 0 in C3(K;Cn) and Wt

of gt in A1,α(∂∆;Cn), and a C1-smooth map Ft : Ut× Vt →Wt such that Ft(t, 0) = gt

and

R(s, φ, f) = 0 for (s, φ, f) ∈ Ut × Vt ×Wt if and only if f = Ft(s, φ). (3.9)

But, by uniqueness Ft1 = Ft2 whenever the domains overlap. Thus, there exists an

open set Ω̃ ⊂ Dn−1(1)×C3(K;Cn) such that Dn−1(1)×{0} ⊂ Ω̃, and a C1-smooth map

F : Ω̃→ A1,α(∂∆;Cn) such that F (t, 0) = gt and R(t, φ, F (t, φ)) = 0 for all (t, φ) ∈ Ω̃.

The latter condition means that if F (t, φ) = f , then

∣∣f1 − φ1(f)
∣∣2 +

n∑
j=2

(
Re fj − Reφj(f)

)2
= 1,

Im(fj) = Imφj(f), j = 2, ..., n.

(3.10)

In other words, f(∂∆) ⊂ Snφ . Further, from (i) in Lemma 3.2, f1(0) = 0 and

f ′1(0) > 0.

We are now ready to construct the manifold MTR.

Theorem 3.10. Given t ∈ (0, 1), there is a neighborhood Nt of 0 in C3(K;Cn) such

that Dn−1(t)×Nt ⊂ Ω̃, and for φ ∈ Nt, the map Fφ : ∆×Dn−1(t)→ Cn defined by

Fφ(ξ, t) = F (t, φ)(ξ)
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is a C1-smooth embedding into Cn, with the the image set MTR = Fφ(∆×Dn−1(t))

a disjoint union of analytic discs with boundaries in Snφ . Further, the map φ 7→ Fφ is

a continuous map from Nt into C1(∆×Dn−1(t);Cn).

Proof. In Lemma 3.2, the open set Ω̃ ⊂ Dn−1(1)× C3(K;Cn) contains Dn−1(1)× {0}.

Thus, by compactness, for any t ∈ (0, 1), there is an open neighborhood Nt of 0 in

C3(K;Cn) such that Dn−1(t)×Nt ⊂ Ω̃.

Now, for a fixed φ ∈ Nt, note that Fφ is the composition of two C1-smooth maps:

(ξ, t) 7→ (ξ, F (t, φ));

(ξ, f) 7→ f̃(ξ).

The smoothness of the second map was established in Lemma 3.1. Thus, Fφ is a

C1-smooth map. Since, for φ ∈ Nt, φ 7→ F (t, φ) is a C1-smooth map, we have that DFφ

depends continuously on φ. Quantitatively, this says that for some C > 0,∥∥∥Fφ1 −Fφ2∥∥∥
1
≤ C

∥∥∥φ1 − φ2
∥∥∥

3

for φ1, φ2 ∈ Nt. Thus, shrinking Nt if necessary, we have that Fφ is an embedding

for all φ ∈ Nt, since F0 is an embedding.

Remark 2. Based on the above results, we call an f = (f1, ..., fn) ∈ Ak,α(∂∆;Cn) a

normalized analytic disc attached to Snφ if f(∂∆) ⊂ Snφ , f1(0) = 0 and f ′1(0) > 0. Note

that in the construction above, each F (t, φ) is a normalized analytic disc attached to

Snφ .

3.3 The Real Analytic Case

In this section, we will show that the manifold MTR constructed in Theorem 3.10 is,

in fact, real analytic if ψ is real analytic. To do so, we will take advantage of the

deep connection between real analytic maps on Rn and holomorphic maps in Cn. From

lemma 3.1, we can show that Fφ is analytic on ∆ ×Dn−1(1), however, we must show

analyticity up to ∂∆. For a single attached disc, we can get regularity up to the

boundary by applying a reflection principle, since the disc is attached to an analytic
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totally real manifold. However, to obtain the regularity in both the ξ and t direction,

we apply the Edge-of-the-Wedge theorem, which acts in this context as a strengthening

of the reflection principle.

LetW ⊂ Dn−1(1)⊕C3(K;Cn)⊕A1,α(∂∆;Cn), R and F be as in the previous section

(see (3.8)). Recall that R is a C1-smooth map and D3R(t, 0, gt) = I on A1,α(∂∆;Cn),

for all t ∈ Dn−1(1). Thus, given t ∈ (0, 1), there is an εt > 0 such that, if ‖φ‖C3 < εt,

then

• φ ∈ Nt where Nt ⊂ C3(K;Cn) is a neighborhood of 0 obtained in Lemma 3.2;

• D3R(t, φ, F (t, φ)) is an isomorphism on A1,α(∂∆;Cn) for all t ∈ Dn−1(t).

Now, fix a real-analytic φ ∈ C3(K;Cn) with‖φ‖C3 < εt. LetRφ :Wφ → A1,α(∂∆;Cn)

be the map given by

Rφ(t, f) = R(t, φ, f),

whereWφ = {(t, f) ∈ Rn−1⊕A1,α(∂∆;Cn) : (t, φ, f) ∈ W}. Note thatRφ(t, F (t, φ)) =

0 and D2Rφ(t, F (t, φ)) ≈ I, as long as t ∈ Dn−1(t). Since φ is real analytic, Rφ is an-

alytic on Wφ. This follows from the analyticity of E as shown in lemma 3.2, and the

fact that the map f → φ(f) is analytic for φ analytic, as shown in example 3.9.

We apply the analytic implicit function theorem for Banach spaces to conclude

that for each t ∈ Dn−1(t), there exist neighborhoods U ′t ⊂ Dn−1(t) of t and W ′t ⊂

A1,α(∂∆;Cn) of F (t, φ), and an analytic map Fφ,t : U ′t → W ′t such that Fφ,t(t) =

F (t, φ) and

Rφ(s, f) = 0 for (s, f) ∈ U ′t ×W ′t if and only if f = Fφ,t(s). (3.11)

As before, the Fφ,t’s coincide when their domains overlap. Thus, there is an analytic

map Fφ : Dn−1(t)→ A1,α(∂∆;Cn) such that Rφ(t, Fφ(t)) ≡ 0 on Dn−1(t). We set

M ′TR =
{
Fφ(t)(ξ) : (ξ, t) ∈ ∆×Dn−1(t)

}
.
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The uniqueness in (3.9) and (3.11) shows that, in fact, Fφ(·) = F (·, φ) and M ′TR =

MTR. Thus, we already know that M ′TR is a C1-smooth embedded manifold in Cn. To

show that M ′TR is in fact a real-analytic manifold, it suffices to show that F : (ξ, t) 7→

Fφ(t)(ξ) is real-analytic on ∆×Dn−1(t).

Now, since F is the composition of (ξ, t) 7→ (ξ, Fφ(t)) and the map ev : (ξ, f) 7→ f̃(ξ),

F ∈ Cω(∆ × Dn−1(t)); see Lemma 3.1. To show that F ∈ Cω(∆ × Dn−1(t)), we fix

t0 ∈ Dn−1(t). Since Fφ is real-analytic, there is an ε > 0 such that for t ∈ t0 +Dn−1(ε),

Fφ(t)(ξ) =
∑

β∈Nn−1 hβ(ξ)(t− t0)β with hβ ∈ A1,α(∂∆;C) and
∥∥hβ∥∥1,α

. r|β| for some

r > 0. Without loss of generality, let t = 0. Now, let ξ0 ∈ ∂∆ and z0 = F(ξ0, 0).

Since T = {(z1, ...zn) ∈ Cn : z1 ∈ ∂∆, z2, ..., zn ∈ R} is a real-analytic totally real

manifold in Cn there exists a biholomorphism P near ξ0 that maps an open piece of

T biholomorphically into Rn in Cn, mapping ξ0 to the origin. Similarly, there exists a

biholomorphism Q near z0 that maps an open piece of Snφ biholomorphically into Rn

in Cn, mapping z0 to the origin. Now, we let Q∗(z1, z
′) = Q(

∑
β hβ(z1)(z′)β), where

z′ = (z2, ..., zn). From the analyticity of Fφ, we have that Q∗ ∈ O(W ) ∩ C(W ′), where

W = {z1 ∈ ∆ : |z1 − ξ0| < ε} × {z′ ∈ Cn−1 :
∥∥z′∥∥ < ε},

W ′ = {z1 ∈ ∆ : |z1 − ξ0| ≤ ε} × {z′ ∈ Cn−1 :
∥∥z′∥∥ < ε}.

For (z1, ..., zn) close to 0, we define

P ∗(z1, z
′) =


Q∗ ◦ P−1(z1, z

′), Im z1 > 0,

Q∗ ◦ P−1(z1, z′), Im z1 < 0.

Then, by the edge of the wedge theorem, P ∗ extends holomorphically to a neigh-

borhood of (0, 0) in Cn, and thus, F extends analytically to a neighborhood of ξ0 in

∆ × Dn−1(t). Repeating this argument for every t ∈ Dn−1(t), we obtain the real-

analyticity of MTR.
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3.4 The Case of C2k+1 and C∞

The techniques in section 3.2 can be generalized to higher orders to obtain higher reg-

ularity for MTR for more regular ψ. However, this poses two problems for our desired

result. First, because we would be applying the implict function theorem in a higher

order function space, this would require assumptions on the size of additional deriva-

tives. In this section, we use different methods that allow us to increase the regularity

on MTR while still only assuming smallness in the C3 norm. More importantly, in the

weaker version there is nothing stopping the neighborhoods in which our solutions lie

from tending to zero as the number of derivatives goes to infinity, leaving only a result

in the C∞ case for the trivial perturbation.

To overcome these hurdles, we take advantage of the existence of the discs already

proved in section 3.2. Recall that for a fixed t ∈ (0, 1), Theorem 3.10 yields a neigh-

borhood Nt of 0 in C1(K;Cn) such that, for φ ∈ Nt, MTR = Fφ(∆ × Dn−1(t)) is a

C1-smooth submanifold in Cn. Shrinking Nt further, if necessary, we show in this sec-

tion that if φ ∈ C2k+1 ∩Nt, then for each t ∈ Dn−1(t), there exists a neighborhood of

discs around F(∆× {t}) attached to Snφ and that those discs form a Ck-smooth mani-

fold. By the uniqueness proved above, this will show that MTR is in fact Ck smooth. In

the C∞ case, although the neighborhoods for each k may shrink to triviality, this result

shows that at the starting disc, MTR is smooth. Repeating the argument at each disc

gives the desired result. More precisely, we prove the following

Theorem 3.11. For any k ∈ N, φ ∈ Nt ∩ C2k+1(K;Cn) and t ∈ Dn−1(t), there exist

neighborhoods W1, W2 ⊂ Dn−1(t) of t, and a Ck-smooth embedding Gk : ∆×W1 → Cn

such that Gk(∆ × W1) = F(∆ × W2). Thus, MTR is Ck-smooth. In particular, if

φ ∈ Nt ∩ C∞(K;Cn), then MTR is a C∞-smooth manifold.

Remark 3. Note that when φ ∈ C2k+1(K;Cn) ∩ Nt, then ft : ξ 7→ F (t, φ)(ξ) is in

A2k,α(∂∆;Cn) (for every 0 < α < 1) for every t ∈ Dn−1(t). This follows from known

regularity results for analytic discs attached to totally real manifolds in Cn (see [7]).

So, it remains to establish the regularity in the direction of the foliation, i.e. in the

t-direction.
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The strategy of constructing neighborhoods of discs attached to a manifold around

a starting one has been used extensively in C2. For example, Bedford and Gaveau in [4]

defined the index of an analytic disc to construct nearby discs and compute the envelope

of holomorphy for certain 2-spheres in C2. Later, Bedford use these indices in [3] to

prove the existence of nearby discs on more general manifolds in C2. His result was

later strengthened by Forstnerič in [10] by introducing a different definition of index

which differs from the Bedford and Bedford-Gaveau definition by 1. In this section,

we will use the theory of multiindices introduced by Globevnik in [11] to generalize

Forstnerič’s work to Cn. In particular, lemmas 3.4 and 3.4 below are the Ck,α-versions

of the main results in Section 6 and 7 of [11].

Notation. In this section, we will sometimes express an n× n matrix over C as

 a v

wT A

 ,

where a ∈ C, v, w ∈ Cn−1, and A is an (n− 1)× (n− 1) matrix over C.

Let M be an n-dimensional totally real manifold in Cn. Suppose f : ∆→ Cn is an

analytic disc with boundary in M , i.e., f ∈ C(∆) ∩ O(∆), and f(∂∆) ⊂ M . Further,

suppose A : ∂∆ → GL(n;C) is such that the real span of the columns of A(ξ) is the

tangent space Tf(ξ)M to M at f(ξ), for each ξ ∈ ∂∆. Then, owing to the solvability

of the Hilbert boundary problem for vector functions of class Cα (see [11, Sect. 3],

also see [18]), it is known that if A is of class Cα (0 < α < 1), then there exist maps

F+ : ∆→ GL(n;C) and F− : Ĉ \∆→ GL(n;C), and integers κ1 ≥ · · · ≥ κn, such that

• F+∈ Cα(∆) ∩ O(∆) and F−∈ Cα(Ĉ \∆) ∩ O(Ĉ \∆);

• for all ξ ∈ ∂∆,

A(ξ)A(ξ)−1 = F+(ξ)



ξκ1 0 · · · 0

0 ξκ2 · · · 0

...
...

. . .
...

0 0 · · · ξκn


F−(ξ), ξ ∈ ∂∆. (3.12)
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Moreover, the integers κ1 ≥ ... ≥ κn are the same for all factorizations of the type

(3.12). These integers are called the partial indices of M along f and their sum is

called the total index of M along f . Using the factorization above, a normal form for

the bundle {Tf(ξ)M : ξ ∈ ∂∆} is obtained in [11]. In particular, it is shown that if

the partial indices of M along f are even, then there is a Cα-map Θ : ∆ → GL(n;C),

holomorphic on ∆, and such that for every ξ ∈ ∂∆, the real span of the columns of the

matrix Θ(ξ)Λ(ξ) is Tf(ξ)M , where Λ(ξ) = Diag[ξκ1/2, ..., ξκn/2]. Conversely, suppose,

there is a Θ : ∆→ GL(n;C) of class Cα, holomorphic on ∆, such that

Im(A−1ΘΛ) ≡ 0 on ∂∆ or, equivalently, the real span of the columns of Θ(ξ)Λ(ξ)

is Tf(ξ)M.

Then, for ξ ∈ ∂∆,

A(ξ)A(ξ)−1 = Θ(ξ)



ξκ1 0 · · · 0

0 ξκ2 · · · 0

...
...

. . .
...

0 0 · · · ξκn


Θ−1(1/ξ),

which, due to the holomorphicity of Θ on ∆, is a factorization of type (3.12). Thus,

we obtain

Remark 4. Suppose f and A are as above. Then, A satisfies (3.13) if and only if

κ1, ..., κn are the partial indices of M along f . Furthermore, if A is of class Ck,α, then

Θ in (3.13) can be chosen to be of class Ck,α.

Example 3.12. We now use remark 4 to compute the partial indices of the disc gt(ζ) =

(
√

1−‖t‖2ζ, t) for t ∈ Dn−1(1) on Sn.

Recall that the map F0 : ∂∆×Dn−1(t)→ Cn defined by

F0(ξ, t) =

(√
1−‖t‖2 ξ, t

)
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gives a parametrization of Sn. Therefore, we have that the real span of the columns

of the matrix

Dξ,tF0(ξ, t) =


i
√

1− ||t||2 ξ − tξ√
1−‖t‖2

0T In−1


is precisely TF0(ξ,t)S

n. We can factor the above matrix as


i
√

1− ||t||2 − tξ√
1−‖t‖2

0T In−1


 ξ 0

0T In−1

 .

Because the factor on the left clearly extends to a holomorphic map (in ξ) from

∆ to GL(n;C), we have that the partial indices of Sn along gt are 2, 0, . . . , 0 for all

t ∈ Dn−1(1).

We now use Remark 4 to establish a stability result for partial indices of Snφ along

the disks constructed in Lemma 3.2.

Let Ω̃ and F be as in Lemma 3.2. Then, given any t ∈ (0, 1), there exists a

neighborhood Nt ⊂ C3(K;Cn) such that Dn−1(t) × Nt ⊂ Ω̃, and for any (t, φ) ∈

Dn−1(t)×Nt, the partial indices of Snφ along ft : ξ 7→ F (t, φ)(ξ), ξ ∈ ∂∆, are 2, 0, ..., 0.

Proof. Let t ∈ (0, 1), and Nt ⊂ C3(K;Cn) be as in Theorem 3.10. Recall that Fφ :

(ξ, t) 7→ F (t, φ)(ξ) for (ξ, t) ∈ ∆×Dn−1(t). Note that F0(ξ, t) = (
√

1− ||t||2 ξ, t) and

Dξ,tF0(ξ, t) ∈ GL(n;C) for all (ξ, t) ∈ ∆×Dn−1(t).

Let > 0. As in the proof of Theorem 3.10, Nt can be chosen so that for each φ ∈ Nt,

1. Fbdy is a C1-smooth parametrization of an open totally real subset of Snφ ; where

Fbdy : (θ, t) 7→ F (t, φ)(eiθ), (eiθ, t) ∈ ∂∆×Dn−1(t),

2. ||Dξ,tFφ −Dξ,tF0||∞ <.

Now, we fix a φ ∈ Nt and let F = Fφ. Since
∂

∂θ
= iξ

∂

∂ξ
when ξ = eiθ, we have that
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(Dθ,tFbdy)(θ, t) = Θt(ξ)

 ξ 0

0T In−1

 on ∂∆, (3.13)

where

Θt(ξ) = (Dξ,tF)(ξ, t)

 i 0

0T In−1

 .

Owing to (1), the real span of the columns of the matrix At(e
iθ) = (Dθ,tFbdy)(θ, t)

is the tangent space to Snφ at ft(e
iθ). By (2), if ε > 0 is sufficiently small, then

Θt : ∆ → GL(n;C) since Dξ,tF0(ξ, t) ∈ GL(n;C) for all (ξ, t) ∈ ∆ × Dn−1(t). Thus,

in order to apply Remark 4 to f = ft and A = At, we must show that A is of class

Cα, and Θt extends holomorphically to ∆. We will, in fact, show that the entries

of (Dξ,tF)(·, t) are in A1,α(∂∆). First, since Snφ is C3-smooth and ξ 7→ F(ξ, t) is an

analytic disc attached to Snφ , F is C2,α-smooth in ξ. This gives the C1,α-regularity

of DξF(·, t) on ∂∆. Next, note that F(ξ, t) = ev(ξ, F (t, φ)), where ev is the map

defined in Lemma 3.1. Thus, DtF(·, t)(s) = DtF (t, φ)(s)(·). Since DtF (t, φ) is a

bounded linear transformation from Rn−1 to A1,α(∂∆;Cn), the entries of DtF(·, t) are

in A1,α(∂∆;Cn), and therefore holomorphic in ξ ∈ ∆. Thus, the indices of Snφ along ft

are 2, 0, ..., 0.

For the rest of this section, we fix t ∈ (0, 1), φ ∈ Nt ∩ C2k+1(K;Cn) (k ≥ 3)

and t ∈ Dn−1(t). We let M = MTR. Recall that by [7], ft : ξ 7→ Fφ(ξ, t) is in

A2k,α(∂∆;Cn) and is a normalized analytic disc attached to Snφ (see Remark 2). We

fix a tubular neighborhood Ω of ft(∂∆) in Cn and a map ρφ : Ω→ Rn such that

. ρφ = (ρφ1 , ..., ρ
φ
n) ∈ C2k+1(Ω;Rn);

. dρφ1 ∧ · · · ∧ dρ
φ
n 6= 0 on Ω;

. Snφ ∩ Ω = {z ∈ Ω : ρφ(z) = 0}.

Let X1(ξ) =
∂ft
∂θ

(ξ). Since Snφ ∩ Ω is C2k+1-smooth and totally real, there ex-

ist C2k-smooth maps X2, ..., Xn : ∂∆ → Cn such that for each ξ ∈ ∂∆, the real
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span of X1(ξ), ..., Xn(ξ) is the tangent space to Snφ at ft(ξ). Given p = (p1, ..., pn) ∈

Ck,α(∂∆;Rn) and q = (q1, ..., qn) ∈ Ck,α(∂∆;Rn), let

E(p, q) =

n∑
j=1

pjXj + i

n∑
j=1

(qj + iH(qj))Xj .

Note that E : Ck,α(∂∆;Rn)×Ck,α(∂∆;Rn)→ Ck,α(∂∆;Cn) is a linear isomorphism.

This is because Xj(ξ), iXj(ξ), 1 ≤ j ≤ n, form a real basis of Cn and the standard

Hilbert transform H : Ck,α(∂∆;Rn) → Ck,α(∂∆;Rn) is a bounded linear map. There

exist neighborhoods U1 of 0 in Ck,α(∂∆;Rn) and U2 of 0 in Ck,α(∂∆;Cn), and a Ck-

smooth map D : U1 → Ck,α(∂∆;Cn) such that

(i) for any f ∈ U2, ft + f is attached to Snφ if and only if f = D(p) for some p ∈ U1;

and

(ii) there is an η > 0 such that
∥∥D(p)−D(p′)

∥∥
k,α
≥ η

∥∥p− p′∥∥
k,α

for all p, p′ ∈ U1.

Proof. Let U be a neighborhood of 0 in Ck,α(∂∆;Rn) such that, for all p, q ∈ U , ft(ξ) +

E(p, q)(ξ) ∈ Ω for all ξ ∈ ∂∆. Consider the map

R : (p, q) 7→
(
ξ 7→ ρφ

(
ft(ξ) + E(p, q)(ξ)

))
on U ×U . Note that R(0, 0) = 0. By Lemma 5.1 in [12], R : U ×U → Ck,α(∂∆;Rn)

is a Ck-smooth map. We claim that (DqR)(0, 0) : Ck,α(∂∆;Rn) → Ck,α(∂∆;Rn) is a

linear isomorphism. This is because, for h = (h1, ..., hn) ∈ Ck,α(∂∆;Rn),

DqR(0, 0)(h) =

n∑
j=1

hj

〈
∇ρφj (ft), iXk

〉
R2n
−

n∑
j=1

H(hj)
〈
∇ρφj (ft), Xk

〉
R2n

=

(〈
∇ρφj (ft), iXk

〉
R2n

)
h1

...

hn

 = C


h1

...

hn

 ,

where C is an n × n matrix with entries in Ck,α(∂∆;R). Note that the second

equality follows from the fact that Xj(ξ) are tangential to Snφ at ft(ξ). It suffices to

show the invertibility of C at each ξ ∈ ∂∆. If, for some ξ ∈ ∂∆, C(ξ) is not invertible,

then there exist a1, ..., an ∈ R such that
∑n

j=1 ajiXj(ξ) is orthogonal to each ∇ρφk(ft(ξ))
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(as vectors in R2n), which contradicts the total reality of Snφ at ft(ξ). Thus, by the

implicit function theorem applied to R, there exist neighborhoods U1,U ′1 ⊆ U , and a

Ck-smooth map Q : U1 → U ′1 such that

(p, q) ∈ U1 × U ′1 satisfies R(p, q) = 0 ⇐⇒ p ∈ U1 and q = Q(p).

Now, setting D(p) = E(p,Q(p)), U2 = E(U1 × U ′1), and recalling that E is a linear

isomorphism, we have (i).

To establish (ii), we note that (DpD)(0) : Ck,α(∂∆;Rn)→ Ck,α(∂∆;Cn) is the map

h 7→
n∑
k=1

hjXj . (3.14)

This computation uses the linearity of DqR(0, 0); details can be found in [11,

Lemma 6.2]. Due to the nondegeneracy of the matrix X = [XT
1 , ..., X

T
n ], there exists

an η > 0 such that, for all s ∈ U (after shrinking, if necessary), (DpD)(s) extends to a

linear isomorphism Is : Ck,α(∂∆;Cn)→ Ck,α(∂∆;Cn) satisfying
∥∥Is(·)∥∥k,α ≥ η‖·‖k,α on

Ck,α(∂∆;Cn). Assuming U1 to be convex, we get D(p′)−D(p) =
(∫ 1

0 Ip+t(p′−p)dt
)

(p′−

p), and thus,

∥∥D(p′)−D(p)
∥∥
k,α
≥ η

∥∥p′ − p∥∥
k,α

p, p′ ∈ Ck,α(∂∆;Rn).

The neighborhood U1 obtained above parametrizes all the Ck,α-discs close to ft that

are attached to Snφ . Next, we find those elements of U1 that parametrize analytic discs

attached to Snφ . We direct the reader to Remark 2 for the definition of a normalized

analytic disc.

There exists an open neighborhood U of 0 in Rn−1 and a Ck-smooth map G : U →

Ak,α(∂∆;Cn) such that

(a) G(0) = 0;

(b) for each c ∈ U , ft +G(c) extends to a normalized analytic disc attached to Snφ ;
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(c) for each neighborhood V ⊂ U of 0 in Rn−1, there is a τV > 0 so that if f ∈

Bk,α(0; τV ) is such that ft + f is a normalized analytic disc attached to Snφ , then

f = G(c) for some c ∈ V ;

(d) for each c1, c2 ∈ U , G(c1) 6= G(c2) if c1 6= c2.

(e) the map G : ∆×U → Cn given by (ξ, c) 7→ ft +G(c) is a Ck-smooth embedding.

Proof. In Lemma 3.4, we proved that the indices of Snφ along ft are 2, 0, ..., 0. By

Remark 4, there is a map Θ = [Θj`]1≤j,`≤n ∈ Ak,α(∂∆; GL(n;C)) such that X = ΘY

on ∂∆, where

Y (ξ) =

 ξ 0

0T In−1

 , ξ ∈ ∂∆.

Since X1 = ∂ft/∂θ, the above equation gives (∂ft/∂θ)1(ξ) = ξΘ11(ξ). On the other

hand, (∂gt/∂θ)1(ξ) = iξ
√

1−‖t‖2. Thus, shrinking Nt in Theorem 3.10, if necessary,

we can make ∥∥∥∥Θ11 − i
√

1−‖t‖2
∥∥∥∥
C∞(∂∆)

≤‖ft − gt‖C1,α(∂∆)

small enough so that Θ11(0) = 1
2π

∫ 2π
0 Θ11(eiθ)dθ 6= 0. We work under this assump-

tion for the rest of this proof.

Now, let U1, U2 and D be as in Lemma 3.4. We determine the maps f = ft +D(p),

p ∈ U1, that extend holomorphically to ∆. We have

D(p) = E(p,Q(p)) =
n∑
j=1

(
pj + i(Qj(p) + iHQj(p))

)
Xj

= Θ

 n∑
j=1

pjYj + i

n∑
j=1

(Qj(p) + iHQj(p))Yj

 .

Note that ft, Y and Q(p) + iHQ(p) extend holomorphically to ∆. Moreover, Θ

extends holomorphically to ∆ with values in GL(n;C). Thus, f = ft + E(p,Q(p))

extends holomorphically to ∆ if and only if

ξ 7→
n∑
j=1

pj(ξ)Yj(ξ) = (ξp1(ξ), p2(ξ), ..., pn(ξ)) (3.15)
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extends holomorphically to ∆. Let us assume that the map in (3.15) extends holo-

morphically to ∆. Then, since pj , j = 1, ..., n, are real-valued, we have that pj ≡ cj for

some real constants c2, ..., cn. Moreover, p1(eiθ) =
∑

j∈Z aje
ijθ for some aj ∈ C satisfy-

ing a0 ∈ R and aj = a−j , j ∈ N. Thus, ξp1(ξ) extends to a holomorphic map on ∆ if

and only if aj = 0 for all |j| ≥ 2. Now, let x = (p, q, r) ∈ R3 and c = (c2, ..., cn) ∈ Rn−1,

and P : Rn+1 7→ Ck,α(∂∆;Rn) be the bounded linear map

(x, c) = (p, q, r, c2, ..., cn) 7→ ((p− iq)ξ + r + (p+ iq)ξ, c2, ..., cn),

then, based on the above argument,

(∗) f ∈ U2 extends holormorphically to ∆ if and only if f = D(P(x, c)) for some

(x, c) ∈ P−1(U1).

Next, in order to reduce the dimension of the parameter space, we set N = π̃ev◦D◦P,

where the map π̃ev : Ak,α(∂∆;Cn)→ R3 is given by

(f1, ..., fn) 7→ (Re f1(0), Im f1(0), Im(f ′1)(0)).

Then, N : P−1(U1) ⊂ R3 × Rn−1 → R3 is a Ck-smooth map with N(0, 0) = 0. We

claim that DxN(0, 0) is invertible. For this, using (3.14) and the fact that X1 = ∂ft
∂θ =

iξ ∂ft∂ξ , we note that

DxN(0, 0)(u, v, w) = Dπ̃ev(0) ·DD(0)
(

(u− iv)ξ + w + (u+ iv)ξ, 0, ..., 0
)

= Dπ̃ev(0)
(

(u− iv)X1(ξ)
ξ + wX1(ξ) + (u+ iv)ξX1(ξ)

)
= (au+ bv, bu− av,Bu−Av + aw),

where a = Re(ft1)′(0), b = Im(ft1)′(0), A = Re(ft1)′′(0) and B = Im(ft1)′′(0). Here

ft1 is the first component of the normalized analytic disc ft. Thus, Re f ′t1(0) > 0 and

DxN(0, 0) is invertible. We may, thus, apply the implicit function theorem to obtain

neighborhoods U of 0 in Rn−1, U ′ of 0 in R3, and a Ck-smooth map A : W → R3 such

that N(x, c) = 0 for (x, c) ∈ U ′ × U if and only if x = A(c).
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Finally, we let G : U → Ak,α(∂∆;Cn) be the map given by

G : c 7→ D
(
P(A(c), c)

)
.

It is clear that G is Ck-smooth and (a) holds. For (b), we note that (π1 ◦G)(c)(0) =

0 for all c ∈ W . Furthermore, by shrinking U if necessary, we can ensure that∣∣(π1 ◦G)(c)′(0)
∣∣ < ∣∣(π1 ◦ ft)′(0)

∣∣ for all c ∈ U . Then, since (π1 ◦ ft)′(0) > 0 and

Im(π1 ◦ G)(c)′(0) = 0, we have that Re(π1 ◦ G)(c)′(0) > 0. Claim (d) follows from

Lemma 3.4 (ii) and the fact that P is injective. The argument for (e) is similar to the

proof of Theorem 3.10. Now, for (c), we let V ⊂ U be a neighborhood of 0 in Rn−1.

Since G is injective and continuous, G(V ) is open in G(U) (in the subspace topology

inherited from Ck,α(∂∆;Cn)). Thus, there is an open set V ⊂ U2 in Ck,α(∂∆;Cn) such

that G(V ) = V ∩G(U), and so G−1(V) = V . Thus, combining Lemma 3.4 (i) and (∗),

we have that, for f ∈ V, ft + f is an analytic disc attached to Snφ with f1(0) = 0 and

Im f ′1(0) = 0 if and only if f = G(c) for some c ∈ G−1(V) = V . To complete the proof

of (c), we choose τV > 0 so that Bk,α(0; τV ) ⊂ V.

Remark 5. We may repeat the proof of Lemma 3.4 in the C1,α-category to conclude

that there exists an open neighborhood U∗ of 0 in Rn−1 and a C1-smooth injective map

G∗ : U∗ → A1,α(∂∆;Cn) with G∗(0) = 0 such that for each c ∈ U∗, ft +G∗(c) extends

to a normalized analytic disc attached to Snφ . Moreover,

(†) for each neighborhood V ⊂ U∗ of 0, there is a τ∗V > 0 so that if f ∈ B1,α(0; τ∗V )

and ft + f is a normalized analytic disc attached to Snφ , then f = G∗(c)

for some c ∈ V ,

and G∗ : ∆× U∗ → Cn given by (ξ, c) 7→ ft +G(c) is a C1-smooth embedding.

Proof of Theorem 3.11. Recall that M = MTR is the manifold constructed in Theo-

rem 3.10. We letMk = G(∆×U) andM1 = G∗(∆×U∗), where G and G∗ are the maps

defined in Lemma 3.4 (e) and Remark 5, respectively. Note thatM,M1 andMk each
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contain the disc ft(∆). To show that near ft(∆), these three manifolds coincide, we

will use the following proposition from [11].

Proposition 3.13 ([11, Prop. 8.1]). Let X be a Banach space, ω ⊂ Rn a neighborhood

of 0 and let K, L : ω → X be C1-smooth maps such that K(0) = L(0) and (DK)(0),

(DL)(0) both have rank n. Suppose that for every neighborhood of V ⊂ ω of 0, there is

a neighborhood V1 ⊂ ω of 0 such that K(V1) ⊂ L(V ). Then, there are neighborhoods V1

and V2 of 0 such that K(V1) = L(V2).

We first show that M and M1 coincide near ft(∆). Shrinking U∗ if necessary,

we may assume that t + U∗ ⊂ Dn−1(t). We set ω = U∗ ⊂ Rn−1. For c ∈ ω, we let

K(c) = F (t+c) and L(c) = ft+G∗(c), where F and G∗ are the maps in Lemma 3.2 and

Remark 5, respectively. Note that K(0) = L(0) = ft and DK(0) and DL(0) both have

rank n−1. Now, let V ⊂ ω be a neighborhood of 0. We set V1 = K−1(B1,α(ft; τ)), where

τ < τ∗V is sufficiently small so that V1 ⊂ ω. Then, for any c ∈ V1, K(c) is a normalized

analytic disc attached to Snφ with property that
∥∥K(c)− ft

∥∥
1,α

< τ < τ∗V . Thus, by (†)

in Remark 5, K(c) = ft + L(d) for some d ∈ V . Thus, K(V1) ⊂ L(V ). By the above

proposition, there exist neighborhoods V1, V2 ⊂ ω of 0 such that K(V1) = L(V2). This

shows that M and M1 coincide near ft(∆).

Next, we use the same approach to show that M1 and Mk coincide near ft(∆). In

this case, we set K(c) = ι ◦ G(c) and L(c) = G∗(c), where G∗ and G are the maps

in Remark 5 and Lemma 3.4, respectively, and ι : Ck,α(∂∆;Cn) → C1,α(∂∆;Cn) is the

inclusion map. Now, let V ⊂ ω be a neighborhood of 0. We set V1 = G−1(Bk,α(0; τ)),

where τ < min{τω, τ∗V } is sufficiently small so that V1 ⊂ ω. Then, for any c ∈ V1,

ft +K(c) is a normalized analytic disc attached to Snφ with property that
∥∥K(c)

∥∥
1,α

<∥∥G(c)
∥∥
k,α

< τ < τ∗V . Thus, by (†) in Remark 5, ft +K(c) = ft +L(d) for some d ∈ V .

Thus, K(V1) ⊂ L(V ). Once again, by the above proposition, there exist neighborhoods

V1, V2 ⊂ ω of 0 such that K(V1) = L(V2). This shows thatMk andM1, and therefore

Mk and M, coincide near ft(∆). This completes the proof of Theorem 3.11.
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Chapter 4

Proof of Parts 1 to 5 in Theorem 1.1

So far, we have constructed that portion of the manifold S̃nφ whose leaves stay bounded

away from Sing(Snφ). We summarize the results from the previous sections as Theo-

rem 4.1 below. Note that we will use the following notation throughout this section.

For t ∈ (0, 1),

Sn≶t = {(z1, x
′) ∈ Sn :

∥∥x′∥∥ ≶ t},

Bn+1
≶t = {(z1, x

′) ∈ Bn+1 :
∥∥x′∥∥ ≶ t}.

We also refer the reader to Section 1.3 for the relationship between ψ, Ψ, φ = Inv(ψ)

and Φ, and recall that Snφ = Ψ(Sn). Further, we recall that in light of Lemma 2.1, if ψ is

sufficiently small, we may assume that Ψ(Sing(Sn)) = Sing(Snφ) and‖Ψ− I‖C2 ≈ 0. For

the sake of convenience, we denote the extension of Ψ ◦ ι to the tubular neighborhood

K ⊃ Sn by Ψ̃.

Theorem 4.1. Let k ≥ 1. Given δ small enough, there is a t ∈ (0, 1) and an εt > 0

such that for all ψ ∈ C2k+1(Sn;C) with ‖ψ‖C3(Sn;Cn) < εt, there is a Ck-diffeomorphism

ϕ : Bn+1
<t → Cn such that

(i) ϕ(Sn<t) ⊂ Snφ , and for each t ∈ Dn−1(t), ∆t := ϕ
(
{(z1, x

′) ∈ Bn+1 : x′ = t}
)

is

an analytic disc attached to Snφ .

(ii) ‖ϕ− I‖C1(Bn+1
<t ) < δ2.

(iii) There exist 0 < t1 < t < t2 < 1 such that Ψ(Sn<t1) b ϕ(Sn<t) b Ψ(Sn<t2).

(iv) There is a t3 < t such that for ‖t‖ ∈ (t3, t), diam(∆t) < 7δ and

supz∈∆t
dist(z,Sing(Snφ)) < 7δ.



38

Moreover, ϕ has the same regularity as ψ, when ψ is either C∞-smooth or real-

analytic on Sn.

Proof. Let δ ∈ (0, 1) and t =
√

1− δ2. Let εη > 0 be as in Lemma 2.1 for η = δ2. Let

Nt ⊂ C3(K;Cn) be as in Theorem 3.10 (and Theorem 3.11). We choose ε(t) > 0 so that

‖ψ‖C3(Sn;Cn) < ε(t) implies that φ = Inv(ψ) ∈ Nt. Finally, we set εt = min{εη, ε(t), δ2}.

Then, (i) and (ii) follow from the construction in the previous section.

For (iii), we let t1 =
√

1− 4δ2. Note that ϕ(Sn<t1) b ϕ(Sn<t) are connected open

sets in Snφ , and if z ∈ ∂Sn<t1 and w ∈ ∂Sn<t,

∥∥ϕ(z)− ϕ(w)
∥∥ ≥ ‖z − w‖ −

∥∥ϕ(z)− z
∥∥−∥∥ϕ(w)− w

∥∥
>

δ

2
− δ2 − δ2 > 2δ2,

for sufficiently small δ. Thus, the (2δ2)-neighborhood of ϕ(Sn<t1) in Snφ is compactly

contained in ϕ(Sn<t). But this neighborhood contains Ψ(Sn<t1) since ‖ϕ−Ψ‖ < 2δ2.

Thus, we have half of (iii). For the second half of (iii), we set t2 =
√

1− δ2/4 and

repeat a similar argument.

For (iv), we note that since ‖ψ‖C3 < εη, we have that ‖Ψ− I‖C2(Sn) < δ2 (see

Lemma 2.1). Hence, for ‖t‖ ∈
(√

1− 8δ2,
√

1− δ2
)

, we have that for any p, q ∈ ∆t,

‖p− q‖ ≤
∥∥∥p− ϕ−1(p)

∥∥∥+
∥∥∥ϕ−1(p)− ϕ−1(q)

∥∥∥+
∥∥∥ϕ−1(q)− q

∥∥∥
≤ δ2 + 4

√
2δ + δ2 < 7δ,

for sufficiently small δ. A similar argument also gives the second part of (iv).

To construct M near Sing(Snφ), we will rely on the deep work of Kenig-Webster

and Huang (see [15] and [20], respectively), where the local hull of holomorphy of an n-

dimensional submanifold in Cn at a nondengenerate elliptic CR singularity is completely

described. Although their results are local, the proofs in [15] and [20] yield the following

version of their result. Once again, we are using the compactness of Sing(Snφ).
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Theorem 4.2 (Kenig-Webster [15], Huang [20]). Let k >> 8 and mk = bk−1
7 c. There

exist δj > 0, j = 1, 2, 3, and ε∗ > 0 such that for any ψ ∈ Ck(Sn;Cn) with‖ψ‖C3(Sn;Cn) <

ε∗, there is a Cmk-smooth (n+1)-dimensional manifold M̃φ
δ1,δ2

in Cn that contains some

neighborhood of Sing(Snφ) in Snφ as an open subset of its boundary and is such that

(a) Any analytic disc f : ∆→ Cn that is smooth up to the boundary with f(∂∆) ⊂ Snφ ,

diam(f(∆)) < δ1 and supz∈f(∆) dist(z,Sing(Snφ)) < δ2, is a reparametrization of

a leaf in M̃φ
δ1,δ2

.

(b) Ψ
(
{z ∈ Sn : dist(z,Sing(Sn)) < δ3}

)
b ∂M̃φ

δ1,δ
. Further, if p ∈ M̃φ

δ1,δ
is such that

dist(Ψ−1(p),Sing(Sn)) < δ3, then there is an embedded disk, f : ∆→ Cn (unique

up to reparametrization) that is smooth up to the boundary, with p ∈ f(∆),

f(∂∆) ⊂ Snφ and f(∆) ⊂ M̃φ
δ1,δ2

, and the union of all such disks is a smooth

(n+ 1)-dimensional submanifold, M̃φ
δ1,δ2,δ′3

, of M̃φ
δ1,δ2

.

(c) If Π is the projection map (z1, x
′ + iy′) 7→ (y′) on Cn, then

∥∥∥∥∥Π
∣∣∣
M̃φ
δ1,δ2

∥∥∥∥∥
C1
≈ 0.

Moreover, M̃φ
δ1,δ

has the same regularity as ψ, when ψ is either C∞-smooth or real-

analytic on Sn.

Now, given δj , j = 1, 2, 3, and ε∗ > 0 as in Theorem 4.2, we let δ = min{ δ7 ,
δ2
7 ,

δ3
3 }

and ε = min{εt, ε∗}, where t > 0 and εt > 0 correspond to δ as in Theorem 4.1

(shrinking δ further, if necessary). Then, for ψ ∈ Ck(Sn;Cn) with ‖ψ‖C3(Sn;Cn) < ε, we

let

M1 = ϕ(Bn+1
<t ) ∪ M̃φ

δ1,δ2,δ3
.

We now proceed to show that this indeed leads to the desired manifold. First, by

Theorem 4.1 (iii) and Theorem 4.2 (b),

M1 = Ψ
(
Sn
<
√

1−4δ2

)
∪Ψ

(
Sn≥
√

1−4δ2

)
⊂ ∂M1 ⊆ Snφ .

This follows from the fact that dist(z,Sing(Sn)) . 2δ < δ3, when z ∈ Sn≥√1−4δ2
.
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Next, for the foliated structure and the regularity of M , we need only focus on

ϕ(Bn+1
<t ) ∩ M̃φ

δ1,δ2,δ3
. Let p ∈ ϕ(Bn+1

<t ) ∩ M̃φ
δ1,δ2,δ3

. Then, p = ϕ(z1, t) for some (z1, t) ∈

Bn+1
<t , where recall that t =

√
1− δ2. We first assume that‖t‖ > t3 =

√
1− 8δ2. Then,

by the choice of δ and Theorem 4.1 (iv), diam(∆t) < δ1, supz∈∆t
dist(z, Sing(Snφ)) < δ2

and dist(p,Sing(Snφ)) < δ3. Thus, by Theorem 4.2 (b), ∆t ⊂ ϕ(Bn+1
<t ) ∩ M̃φ

δ1,δ2,δ3
. By

this argument, we see that the smooth (n+ 1)-dimensional manifold

Bt3,t :=
⋃

t3<‖s‖<t

∆t

lies in ϕ(Bn+1
<t ) ∩ M̃φ

δ1,δ2,δ3
. Thus, M is a smooth manifold in a neighborhood of p.

Next, suppose p = ϕ(z1, t) ∈ ϕ(Bn+1
<t ) ∩ M̃φ

δ1,δ2,δ3
is such that ‖t‖ ≤

√
1− 8δ2. We

observe that the complement of ∂Bt3,t in Snφ∩∂M̃
φ
δ1,δ2,δ3

consists of two disjoint submani-

folds of Snφ — one, say SI, containing Sing(Snφ) and contained in a (2δ)-neighborhood of

Sing(Snφ), and another, say SII, with the property that dist(SII,Sing(Snφ)) = 2
√

2δ +

O(δ2) > 2δ. Since p ∈ M̃φ
δ1,δ2,δ3

, it lies on some analytic disc f(∆) attached to

Snφ ∩∂M
φ
δ1,δ2,δ3

. By the uniqueness of these discs, f(∂∆) cannot intersect ∂Bt3,t because

any disc whose boundary intersects ∂Bt3,t lies completely in Bt3,t (as seen above), and

p ∈ f(∆) does not. Thus, either f(∂∆) ⊂ SI or f(∂∆) ⊂ SII (as the two are disjoint).

But since SI lies in the tubular (2δ)-neighborhood of Sing(Snφ), which is a polynomially

convex set, we must have that if f(∂∆) ⊂ SI, then dist(p,Sing(Snφ)) < 2δ. This contra-

dicts the fact that p = ϕ(z1, t) with ‖t‖ ≤
√

1− 8δ2. Thus, f(∂∆) ⊂ SII. This, and the

fact that

Ψ
(
Sn≥
√

1−4δ2

)
⊂ SI ∪ ∂Bt3,t

shows that if we shrink M̃φ
δ1,δ2,δ3

by removing SII and the discs attached to it, then

M = ϕ(Bn+1
<t ) ∪ M̃φ

δ1,δ2,δ3

is an (n+1)-dimensional manifold, as smooth as M̃φ
δ1,δ2,δ3

, and is foliated by analytic

discs attached to its boundary Snφ . Moreover, M is a C1-small perturbation of Bn+1 in

Cn.
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Chapter 5

Holomorphic/Polynomial Convexity

5.1 Preliminary Results

5.1.1 M as a graph

Let Π : Cn → Cn × Rn−1 be the map (z1, x
′ + iy′) 7→ (z1, x

′). For ψ ∈ Ck(Sn;Cn)

as above, we note that since Snφ is a C3-small perturbation of Sn, we may write Snφ =

Graph(h) for some Ck-smooth h : ∂Ω→ Rn−1, where Ω is a Ck-smooth strongly convex

domain in Cz1 × Rn−1
x′ , and h and ∂Ω are C3-small perturbations of the constant zero

map and Snφ , respectively. We make two observations. Since Snφ lies in Ω×iRn−1, which

is strongly convex, M ⊂ Ω× iRn−1 with intM ⊂ Ω× iRn−1.

Next, since Tp(M) at any p ∈ M is a small perturbation of TΠ(p)(Ω) (as manifolds

with boundary in Cn), Π : M → Ω is a local diffeomorphism that restricts to a diffeo-

morphism between Snφ and ∂Ω. Thus, Π extends to a Cmk -smooth diffeomorphism from

M to Ω, and we may write M = Graph (h∗) for some C1-small h∗ : Ω→ Rn−1.

5.1.2 On the analytic extendability of M

In this section, we fix our attention on real-analytic perturbations of Sn. So far, we have:

given δ > 0, there is an ε > 0 so that for any any ψ ∈ Cω(Sn;C) with ‖ψ‖C3(Sn) < ε,

there is a Cω-domain Ωφ ⊂ C× Rn−1, and a Cω-map H : Ωφ → Rn−1, such that

? ∂Ωφ and H|∂Ωφ are ε-small perturbations (in C3-norm) of Sn and the zero map,

respectively,

? GraphΩφ
(H) is foliated by an (n−1)-parameter family of embedded analytic discs

attached to Snφ , and ‖H‖C1(Ωφ) < δ.
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In this subsection, we show that given ρ > 0, δ > 0, there is a ρ′ > 0, ε > 0 such

that

if the complexified map ψC extends holomorphically to NρSnC with supNρSnC
‖ψ‖ < ε,

then H extends real-analytically to (1 + ρ′)Ωφ, and ‖H‖C2((1+ρ′)Ωφ) < δ.

Near Sing(Snφ), this follows from the results in [15] and [20], where uniform analytic

extendability of the local hulls of holomorphy past real-analytic nondegenerate elliptic

points is established . Away from Sing(Snφ), we obtain this by complexifying the con-

struction of MTR, and establishing a lower bound on the radius of convergence of its

parametrizing map Fφ : ∆ × Dn−1(t) → Cn for every φ (or ψ) sufficiently small. We

briefly elaborate on this below.

In order to complexify the construction in Section 3.2, we need to expand our

collection of function spaces. First, recall that SnC = {(z, z) ∈ C2n : z ∈ Sn} and

NrSnC = {ξ ∈ C2n : dist(ξ, SnC) < r}. For s ∈ (0, 1), we set, ∆s = (1 + s)∆ and

Anns = {z ∈ C : 1− s < |z| < 1 + s}. We define A1,α(∂∆s) and A1,α(Anns) in analogy

with A1,α(∂∆); see (3.1). For any open set U ∈ Cn, we let A(U) be the Banach spaces

of continuous functions on U , whose restrictions to U are holomorphic.

Xn(s) = A1,α(∂∆s;Cn)×A1,α(Anns;Cn),

Xn
R(s) = {(f, h) ∈ Xn(s) : h|∂∆ = f |∂∆},

Y n(r) = A(NrSnC;Cn),

Y 2n
R (r) = {(ϕ1, ..., ϕ2n) ∈ Y 2n(r) : ϕ2(z, z) = ϕ1(z, z), Imφj(z, z) = 0, j = 3, ..., 2n},

Zn(r, s) = {(ϕ, η, f, h) ∈ Y 2n(r)×Xn(s) : (f, h)(Anns) ⊂ NrSnC},

ZnR(r, s) = Zn ∩
(
Y 2n
R (r)×Xn

R(s)
)
.

We need the bounded linear map Kr,s : R×Y n(2r)×A1,α(∂∆2s;Cn)→ C×Y 2n(r)×

Xn(s) given by

(x, φ1, ..., φn, f) 7→ (x+ i0, φ1, φ
∗
1, (Reφ2)∗, (Imφ2)∗..., (Reφn)∗, (Imφn)∗︸ ︷︷ ︸

=:(φ,φ∗)

, f, f∗),
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where φ∗1, (Reφj)
∗, (Imφj)

∗ and f∗ are obtained by taking the holomorphic exten-

sions of the real analytic functions φ1

∣∣
SnC

, (Reφj)
∣∣
SnC

, (Imφj)
∣∣
SnC

, and f
∣∣
∂∆

, respectively.

To keep the exposition short, we will now only discuss this for the case n = 2.

Now, fixing r = ρ/2 and s = r/2, and dropping all inessential references to r and

s, we solve the following complexified version of (3.10) on Anns: given ϕ ∈ Y 2, find

(f, h) ∈ X2 satisfying

(f1 − ϕ1(f, h))(h1 − ϕ2(f, h)) +

(
f2 + h2

2
− ϕ3(f, h)

)2

= 1

f2 − h2 = ϕ4(f, h),

so that (f, h) ∈ X2
R if ϕ ∈ Y 2

R . For this, we first define the following maps on C×Z2.

ΣC : (η, ϕ, f, h) 7→
(
η +HC(ϕ4(f, h))− ϕ3(f, h)

)2
, and

PC : (η, ϕ, f, h) 7→
(
φ1(f, h), ϕ2(f, h), 1− Σ(ϕ, η, f, h)

)
,

where HC : A1,α(Anns) → A1,α(Anns) is the complexified Hilbert transform (see

[12]). We let ΩC ⊂ A(Annr)
2 × A(Annr;C \ (−∞, 0)) be the domain of the operator

EC obtained by complexifying the map E constructed in Lemma 3.2. The range of EC

lies in X1, and if (f, h) = EC(ϕ, σ), then

• on Anns, (f − ϕ1)(h− ϕ2) = σ,

• if ϕ ∈ Y 2
R and σ|∂∆ > 0 , then (f, h) = (E(φ,

√
σ), E(φ,

√
σ)) on ∂∆, i.e., (f, h) ∈

X2
R,

• for c ∈ C \ (−∞, 0], EC(0, 0, c) = (
√
cξ,
√
c/ξ).

Finally, we set WC = {ζ ∈ C× Z2 : PC(ζ) ∈ ΩC}, and define the map RC :WC →

X2 as follows

ζ = (η, ϕ, f, h) 7→ (f, g)−
(
EC◦PC(ζ), η+HC(ϕ4(f, h))+iϕ4(f, h), η+HC(ϕ4(f, h))−iϕ4(f, h)

)
.
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All the complexified maps constructed are holomorphic on their respective do-

mains, and therefore, so is RC. Moreover, (η, 0, gη) ∈ WC, RC(0, η, gη) = 0 and

D3R
C(0, η, gη) = I, for η ∈ Q(1, s) = (−1, 1)× (−is, is), where

gη(ξ) = (
√

1− η2ξ, η,
√

1− η2ξ−1, η).

Thus, by repeating the argument in §3.2, given t0 < 1 − s, s0 < s, there is an

ε > 0, such that for each ‖ϕ‖Y 4 < ε, there is a holomorphic embedding FC
ϕ : ∆s ×

Q(t0, s0)→ C4 whose image is a disjoint union of analytic discs in C4 with boundaries

in S2
C. Moreover, there is a C > 0 (independent of ϕ) such that sup∆s×Q(t0,s0)

∥∥∥FC
ϕ

∥∥∥ ≤
C supNrSn‖ϕ‖. By shrinking s, t0, s0 slightly, and using Cauchy estimates, we can ensure

that for a given δ > 0,

∥∥∥FC
ϕ

∥∥∥
C2
(

∆s×Q(t0,s0)
) < δ, for all ‖ϕ‖Y 4 < ε. (5.1)

Now, let ϕ = (φ, φ∗) ∈ Y 4
R with ‖ϕ‖Y 4 < ε. Setting Fφ = π ◦ FC

ϕ

∣∣
∆s×(−t0,t0)

, where

π : C4
z,w 7→ C2

z is the projection map, we have

(a) Fφ : ∆× (−t0, t0)→ C2 is an anlytic map with radius of convergence at least s0,

(b) Fφ(∂∆ × {t}) ⊂ S2
φ for every t ∈ (−t0, t0). This follows from the fact that RC

complexifies the map RR : (t, φ, f) 7→ π ◦ RC(t + i0,K(φ, f)), and RR = 0 gives

equations (3.10).

(c) M ′ = Fφ(∆s × (−t0, t0)) ⊂ C2 is an embedded 3-manifold with boundary that is

a graph over a domain Ω′ ⊂ C×R. Due to (a) above, there is a ρ′ > 0 (depending

only on ρ and δ) such that (1 + ρ′)Ωφ ⊂ Ω′.

5.2 Polynomial Hull of Snφ

We note that if M is as constructed in the previous section, then due to its foliated

structure, M is contained in both the schlicht part of S̃nφ , and in Ŝnφ . In this section, we

show that when the perturbations are real-analytic and admit a uniform lower bound

on their radii of convergence, then M is in fact polynomially convex. This will complete
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the proof of Theorem 1.1. Our strategy is to globally ‘flatten’ M , which allows for M

to be expressed as the intersection of n− 1 Levi-flat hypersurfaces, to each of which we

can apply Lemma 5.2. We note that when n = 2, the flattening is unnecessary, and the

final claim follows directly from Lemma 5.2 (as seen in Bedford’s paper [3]).

There is a neighborhood W of Ωφ in Cn and a biholomorphism G : W → Cn such

that M b G(W) and normG− IC1 . δ.

Proof. We let M ′ = {(z1, z
′) ∈ Vρ′/2Mφ : z′ = H(z1, z1, z

′)}, where ρ′ and H are

as in section 5.1.1. since M ′ is a small perturbation of Graph(0) and is foliated by

analytic discs, it admits a tangential (1, 0)-vector field, L = ∂
∂z1

+ a2
∂
∂z2

+ · · · an ∂
∂zn

,

a2, ..., an ∈ Cω(M ′;C), such that [L,L] ∈ span{L,L} mod HM ′ ⊗R C on M ′. The

conditions on L give that

(a) L(a) ≡ 0 on M ′, i.e., a is a CR-map on M ′, where a = (a2, ..., an), and

(b) a(z1, z
′) =

∂H

∂z1
(z1, z1, z

′) along M ′, since L(z′ − H(z1, z1, z
′)) = 0.

Thus, we get that a extends as a holomorphic map, say A, to some neighborhood of

M ′. Since, H (and, therefore a) has radius of convergence at least ρ′/2 on M ′, A is

holomorphic on Vρ′/2(Mφ). Further, we have that A(z1, z
′) = a(z1, z1, z

′,H(z1, z1, z
′))

on Vρ′/2(Mφ), which gives the bound ‖A‖C1 . δ on Vρ′/2(Mφ) (since ‖a‖C1 < δ on M ′,

from (b)).

We now construct the flattening map. By applying the implicit function theorem

to the equation z′ = H(z1, z1, z
′) on Vρ′/2(Mφ), we can solve for y′ in terms of x1, y1

and z′ to write M ′ = GraphΩ′ H, where Ω′ is the (1 + ρ′/2)-tubular neighborhood of

Ωφ in C×Rn−1, and H : Ω′ → Rn−1 is a Cω-map with ‖H‖C1 . δ. Shrinking ε further,

we may assume that Ωφ ⊂ B ⊂ Ω′, where B = (1 + ρ′/4)Bn+1. Given (z1, x
′) ∈ B,

we let w(z1, x
′) = x′ + iH(x1, y1, x

′). Now, on the metric space F = {g ∈ C(B;Rn−1) :

supB‖g − w‖ < ρ′/2}, endowed with the sup-norm, we consider the map

Q : g 7→ (Qg)(z1, x
′) = x′ + iH(0, 0, x′) +

∫ z1

0
A(ξ, g(ξ, x′))dξ.

To see this, note that for g, g1, g2 ∈ F , we have
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supB‖Qg − w‖ ≤ supB
∥∥H(0, 0, x′)−H(x1, y1, x

′)
∥∥+ supVρ′/2(Mφ)‖A‖ diam(B) . δ

(
1 + ρ′

4

)
,

supB‖Qg1 −Qg2‖ ≤ supVρ′/2(Mφ)‖DA‖ diam(B) supB‖g1 − g2‖ . δ
(

1 + ρ′

4

)
supB‖g1 − g2‖ .

Shrinking ε > 0 further, if necessary, we can ensure that δ(1 +ρ′/4) < min{ρ′/2, 1}.

Thus, Q(F) ⊂ F , and Q is a contraction, i.e., ‖Qg1 −Qg2‖F < ‖g1 − g2‖F , for all

g1, g2 ∈ F . By the Banach fixed point theorem, there is a unique g0 ∈ F such that

Q(g0) = g0. In other words, G : (z1, x
′) 7→ (z1, g0(z1, x

′)) is a solution of the flow

equation

∂g

∂z1
(z1, x

′) =
(
1,A(z1, g(z1, x

′))
)
, on B,

g(0, x′) = x′ + iH(0, 0, x′), on B0 = B ∩ {z1 = 0}.

By the local uniqueness and regularity of solutions to quasilinear PDEs with real-

analytic Cauchy data, G must be real-analytic in z1 and x′. Moreover,‖G− I‖C1(B) . δ.

Thus, G extends to a biholomorphism in some neighborhood W of B. Now, since

G∗(∂/∂z1) = L and G(B0) ⊂ M ′, by the uniqueness of integral curves, G(B) ⊂ M ′.

Finally, if z ∈ ∂B, then
∥∥Π ◦G(z)− z

∥∥ . δ, where Π : Cn → C×Rn−1 is the projection

map, and δ can be made sufficiently small (by shrinking ε) so that Ωφ ⊂ (Π ◦ G)(B),

and thus, M b G(B) ⊂ G(W). This settles our claim.

Now, to complete the proof of the polynomial (and holomorphic convexity) of M ,

we need the following lemma.

Let D′ ⊂ Cn−1×R be a domain containing the origin, and F : D′ → R be a smooth

function such that L′ = GraphD′(F ) is a Levi-flat hypersurface. Then, for any strongly

convex domain D b D′ containing the origin, the set L = GraphD(F ) is polynomially

convex.

Proof. We fix a t0 ∈ (0, 1) such that Dt = (1 + t)D b D′ for all t ≤ t0. Now,

set C = 2(t0 + supDt0
|F |). Since Dt0 × [−iC, iC] is polynomially convex in Cn, by
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a theorem due to Docquier and Grauert (see [?]), it suffices to produce a family of

pseudoconvex domains, {Ut}0<t in Dt0 × (−iC, iC) such that

Us ⊂ Ut if s < t,
⋂
s>t

int Us = Ut,
⋃
s<t

Us = Ut, L =
⋂
0<t

Ut, and Dt0 × (−iC, iC) =
⋃
0<t

Ut.

We use the notation (z∗, w) to denote a point in Cn−1 × C, with w = u+ iv. Now,

consider the following pseudoconvex domains.

Ut =


{(z∗, w) : (z∗, u) ∈ Dt,

∣∣v − F (z∗, u)
∣∣ < t}, 0 < t ≤ t0,

{(z∗, w) : (z∗, u) ∈ Dt0 ,max(−C,F (z∗, u)− t) < v < min(F (z∗, u) + t, C)}, t > t0.

The claim now follows.

Finally, given j = 2, ..., n, let Yj denote the hyperplane {z ∈ Cn : Im zj = 0}. We

set

L′j = G
(
W ∩ Yj

)
Shrinking ε further, if necessary, we have that L′j is a graph of some smooth function

F j over some open set D′j ⊂ Yj ∼= Cn−1 × R such that Ωφ b D′j ⊂ W ∩ Yj . We now

choose a strongly convex domain E ⊂ Cn such that

∗ E ∩ Yj b D′j , and

∗ E ∩ Y2 ∩ · · · ∩ Yn = Ωφ.

This can be obtained, for instance, by letting E = {τ2p(z, x′) +
∥∥y′∥∥2

< 0}, where p

is a smooth strongly convex exhaustion function of Ωφ with p ≥ −1 (see [?]), and τ > 0

is small enough. Now, we apply Lemma 5.2 to D′j , F
j and Dj = E ∩ Yj , and conclude

that Lj = GraphEj (F
j) is polynomially convex. However,

M =
n⋂
j=2

Lj .

Thus, M is polynomially convex.
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