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This thesis consists of five parts, treated in Chapters 3-7 respectively. The material

in Chapter 7 is separate, but the other topics are interconnected: Chapters 5 and 6

are both concerned with asymptotic enumeration on the cube (and share some ideas),

while Chapters 3 and 4, though of independent interest, also provide crucial ingredients

for Chapter 5.

Chapter 3 proves, answering questions of Y. Rabinovich, “stability” versions of

upper bounds on maximal independent set counts in graphs under various restrictions.

Roughly these say that being close to the maximum implies existence of a large induced

matching or triangle matching (depending on assumptions).

The main result of Chapter 4 is an isoperimetric inequality for the Hamming cube

Qn, which can be written: ∫
hβAdµ ≥ 2µ(A)(1− µ(A)).

Here µ is uniform measure on V = {0, 1}n (= V (Qn)); β = log2(3/2); and, for S ⊆ V

and x ∈ V ,

hS(x) =


dV \S(x) if x ∈ S,

0 if x /∈ S

(where dT (x) is the number of neighbors of x in T ).
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This implies inequalities involving mixtures of edge and vertex boundaries, with

related stability results, and suggests some more general possibilities.

Chapter 5 proves that the number of maximal independent sets in Qn is asymptot-

ically (with N = 2n)

2n2N/4,

as was conjectured by Ilinca and Kahn in connection with a question of Duffus, Frankl

and Rödl.

The value is a natural lower bound derived from a connection between maximal

independent sets and induced matchings. The proof that it is also an upper bound

draws on various tools, among them some of the results of Chapters 3 and 4, and

isoperimetric ideas originating in work of Sapozhenko in the 1980’s.

Chapter 6 proves that the number of (proper) 4-colorings of Qn is asymptotically

6e2N ,

as was conjectured by Engbers and Galvin in 2012. The proof uses a combination

of information theory (entropy) and, again, ideas related to the work of Sapozhenko

mentioned above.

Chapter 7 proves a conjecture of Talagrand, a fractional version of the “expectation-

threshold” conjecture of Kahn and Kalai. It is shown that for any increasing family F

on a finite set X,

pc(F) = O(qf (F) log `(F)),

where pc(F) and qf (F) are the threshold and “fractional expectation-threshold” of

F , and `(F) is the maximum size of a minimal member of F . This easily implies

several heretofore difficult results and conjectures in probabilistic combinatorics, in-

cluding thresholds for perfect hypergraph matchings (Johansson–Kahn–Vu), bounded

degree spanning trees (Montgomery), and bounded degree graphs (new). The machin-

ery developed also resolves (and vastly extends) the “axial” version of the random

multi-dimensional assignment problem (earlier considered by Martin–Mézard–Rivoire

and Frieze–Sorkin). The approach in this chapter builds on a recent breakthrough of

Alweiss, Lovett, Wu and Zhang on the Erdős–Rado “Sunflower Conjecture.”
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Chapter 1

Introduction

1.1 Maximal independent sets

Chapter 3 discusses stability aspects of maximal independent set counts. We recall two

well-known bounds for mis(G):

Theorem 1.1 (Moon-Moser [52]). For any n-vertex graph G,

mis(G) ≤ 3n/3,

with equality iff G is the disjoint union of n/3 triangles.

Theorem 1.2 (Hujter-Tuza [29]). For any n-vertex, triangle-free graph G,

mis(G) ≤ 2n/2,

with equality iff G is a perfect matching.

As usual M is an induced matching of G if it is an induced subgraph of G that is a

matching. Similarly, T is an induced triangle matching of G if it is an induced subgraph

of G that is a vertex-disjoint union of triangles.

Write itm(G) for the number of triangles in a largest induced triangle matching in

G, and im(G) for the number of edges in a largest induced matching.

In what follows we will usually prefer to work with log mis (log = log2), thought

of as the number of bits needed to specify a maximal independent set. Note that

itm(G) log 3 and im(G) are obvious lower bounds on log mis(G). We will be interested

in questions suggested by Yuri Rabinovich [54] concerning “stability” aspects of upper

bounds on mis, meaning, roughly: does large mis imply existence of a large induced
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triangle matching or large induced matching (as appropriate)? Formally, his conjec-

tures were unquantified versions of the following three statements, whose proofs are the

content of Chapter 3. (The questions were motivated by [55], which includes a proof of

Theorem 1.4 for bipartite graphs.)

Theorem 1.3. For any ε > 0, there is a δ = δ(ε) = Ω(ε) such that for an n-vertex

graph G, if itm(G) < (1− ε)n3 then log mis(G) < (1
3 log 3− δ)n.

Theorem 1.4. For any ε > 0, there is a δ = δ(ε) = Ω(ε) such that for a triangle-free

n-vertex graph G, if im(G) < (1− ε)n2 then log mis(G) < (1
2 − δ)n.

Theorem 1.4 applies to bipartite graphs, of course. If G is bipartite with bipartition

X ∪Y , then log mis(G) is trivially at most min{|X|, |Y |} (since a maximal independent

set is determined by its intersection with either of X, Y ); so the statement is uninterest-

ing unless G is close to balanced. But Rabinovich asked whether something analogous

also holds for unbalanced (bipartite) G; more precisely, whether something along the

following lines is true.

Theorem 1.5. For any ε > 0, there is a δ = δ(ε) = 2−O(1/ε) such that for a bipartite

graph G on X ∪ Y with |X| = n and |Y | = 2n, if im(G) < (1− ε)n then log mis(G) <

(1− δ)n.

The proof of this is easily adapted to |Y | = Bn (with δ then δ(ε,B)), but to keep things

simple we just state the result for B = 2.

Rabinovich suspected that, as in Theorems 1.3 and 1.4, δ(ε) should be linear in

ε, but this is not true. In fact, Theorem 1.5 is tight (up to the implied constant); a

construction to show this will be given in Section 3.2.2.

The proofs of Theorems 1.3 and 1.4 are similar, while that of Theorem 1.5 is related

but somewhat trickier. The general approach has its roots in an idea for counting

(ordinary) independent sets due to A.A. Sapozhenko [60], [61].

Strictly speaking we prove the theorems only for sufficiently large n, since we occa-

sionally hide minor terms in o(1)’s. Of course combined with the characterizations of

equality in Theorems 1.1 and 1.2 this does give the stated versions, though the δ’s we
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produce may not be valid for small n. Since we are really interested in large n anyway,

this approach seems preferable to carrying explicit error terms.

One reason to be interested in Theorem 1.4—or in what its proof actually gives; see

Theorem 3.4—is its key role in a proof of Theorem 1.8. While Theorem 3.4 is one of

the easier ingredients in the proof of Theorem 1.8, it is in some sense the basis for the

whole; in particular, it was understanding the connection between induced matchings

and stability that first suggested that the conjecture of [30], which had seemed out of

reach, might in fact be manageable.

1.2 Hamming cubes

In Chapter 4 we discuss an isoperimetric inequality for the Hamming cube. Write Qn

for the n-dimensional Hamming cube and V for V (Qn). (A few basic definitions are

given in Section 2.2.)

For T ⊆ V let dT (x) be the number of neighbors of x in T (x ∈ V ) and define

hS : V → N by

hS(x) =


dV \S(x) if x ∈ S,

0 if x /∈ S.
(1.1)

For f : V → N, a probability measure ν on V and X ⊆ V , we set∫
X
fdν =

∑
x∈X

f(x)ν(x).

We also use
∫

for
∫
V .

The main result of Chapter 4 is the following isoperimetric inequality. We use β for

log2(3/2) (≈ .585) and µ for uniform measure on V .

Theorem 1.6. For any A ⊆ V ,∫
hβAdµ ≥ 2µ(A)(1− µ(A)). (1.2)

The form of Theorem 1.6 is inspired by the following inequality of Talagrand [62].

Theorem 1.7. For any A ⊆ V ,∫ √
hAdµ ≥

√
2µ(A)(1− µ(A)).
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Notice that Theorem 1.6 is tight in two ways: it holds with equality for subcubes of

codimensions 1 and 2, and for subcubes of codimension 2 it does not hold for any smaller

value of β. As far as we know the
√

2 in Theorem 1.7 could be replaced by 2 when

µ(A) = 1/2 (but of course not in general). The difference between 2 and
√

2 wouldn’t

have mattered in [62], but getting the right constant when µ(A) is close to 1/2 was

crucial for applications, particularly Theorem 1.8, which was our original motivation.

Chapters 5 and 6 discuss two asymptotic enumeration problems on Hamming cubes.

In Chapter 5 we prove the following statement, which was conjectured by Ilinca and

Kahn [30] in connnection with a question of Duffus, Frankl and Rödl [7]. We use mis(G)

for the number of maximal independent sets (MIS’s) of a graph G, and N for 2n.

Theorem 1.8.

mis(Qn) ∼ 2n2N/4 (1.3)

(where an ∼ bn means an/bn → 1 as n→∞).

(The original question from [7], answered in [30], just asked for the asymptotics of

log mis(Qn).)

In Chapter 6 we prove the following statement, which was conjectured by Engbers

and Galvin [10]. We use Cq(G) for the number of q-colorings of a graph G (where, here

and throughout, coloring means proper vertex coloring).

Theorem 1.9. C4(Qn) ∼ 6e2N .

The general context for Theorems 1.9 and 1.8 is asymptotic enumeration in the

spirit of, prototypically, Erdős, Kleitman and Rothschild [11], who showed that a.a.1

triangle-free graphs are bipartite. Here we typically have some collection C (really, a

sequence of collections Cn) and the goal is to say that some natural, easily understood

subcollection C′n accounts for a.a. of Cn.

Within this broad context Theorems 1.9 and 1.8 are closest to a short sequence of

results beginning nearly forty years ago with the asymptotic solution of Dedekind’s

1that is, all but a o(1) fraction as n → ∞
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Problem by Korshunov [43] (and Sapozhenko [58]). Other results in the sequence

give asymptotics for the number of independent sets in Qn (again Korshunov and

Sapozhenko [44] and Sapozhenko [59]) and the numbers of proper 3-colorings of Qn

due to Galvin [22]. (Similar ideas appear in work on certain statistical physics models,

e.g. in [24, 53], to mention just the earliest and most recent instances.) The reader fa-

miliar with the earlier combinatorial results will note the striking purity of Theorem 1.8,

which involves no terms akin to the powers of e in [44, 59, 22] and Theorem 1.9 or the

far messier “extra” terms in the Dedekind asymptotic.

1.3 Thresholds

The most important contribution in Chapter 7 is the proof of a conjecture of Tala-

grand [67] that is a fractional version of the “expectation-threshold” conjecture of Kahn

and Kalai [35]. For an increasing family F on a finite set X, we write (with definitions in

Section 7.2) pc(F), qf (F) and `(F) for the threshold, fractional expectation-threshold,

and size of a largest minimal element of F . In this language, our main result is the

following.

Theorem 1.10. There is a universal K such that for every finite X and increasing

F ⊆ 2X ,

pc(F) ≤ Kqf (F) log `(F).

As observed in Section 7.1.1, qf (F) is a more or less trivial lower bound on pc(F), and

Theorem 1.10 says this bound is never far from the truth. (Apart from the constant

K, the upper bound is tight in many of the most interesting cases.)

Thresholds have been a—maybe the—central concern of the study of random dis-

crete structures (random graphs and hypergraphs, for example) since its initiation by

Erdős and Rényi [12], with much work around identifying thresholds for specific prop-

erties (see [3, 31]), though it was not observed until [4] that every increasing F admits a

threshold (in the Erdős–Rényi sense; see Section 7.1.1). See also [18] for developments,

since [17], on the very interesting question of sharpness of thresholds.

Our second main result is Theorem 7.6, which was motivated by work of Frieze and
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Sorkin [20] on the “random multi-dimensional assignment problem.” The statement,

Theorem 7.6, is postponed until we have filled in some background in Section 7.1.3.
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Chapter 2

Preliminaries for Chapters 3-6

For a graph G and disjoint X,Y ⊆ V (G), ∇(X,Y ) is the set of edges joining X and Y .

We use “∼” for adjacency, N(X) for the set of neighbors of X (with N({x}) = Nx),

and dS(x) = |Nx ∩S|. We also use N2(X) for N(N(X)). (We will only use these when

G is bipartite with X contained in one side of the bipartition, so e.g. will not need to

worry about whether N(X) can include vertices of X.)

As usual, G[S] is the subgraph of G induced by S ⊆ V (G), and [n] is shorthand

for {1, . . . , n}. We use log for log2. Following a common abuse, we pretend all large

numbers are integers, to avoid cluttering the discussions with irrelevant floor and ceiling

symbols.

Recall that a composition of m is a sequence (a1, . . . , as) of positive integers with∑
ai = m (the ai’s are the parts of the composition), and that:

Proposition 2.1. The number of compositions of m is 2m−1 and the number with at

most b ≤ m/2 parts is
∑

i<b

(
m−1
i

)
< exp2[b log(em/b)].

2.1 Maximal independent set counts

For the proof of Theorem 1.4 we need the following upper bounds on mis for paths and

cycles, given by Z. Füredi [21].

Proposition 2.2. Let γ (≈ 1.325) be the unique real solution of the equation 1+γ = γ3.

1. For Pn, the path with n vertices,

mis(Pn) ≤ 2γn−2.
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2. For Cn, the cycle with n vertices,

mis(Cn) ≤ 3γn−3.

2.1.1 Algorithm

Here we isolate an algorithmic framework that will play key roles in the proofs of

theorems in Chapter 3, and Lemmas 5.1 and 5.3. This is motivated by an idea for

counting (ordinary) independent sets due to Sapozhenko [61], but the analyses that we

use in Chapters 3 and 5 seem new.

Let G be given. For the algorithm we fix some order “≺” on V = V (G).

[Algorithm] Given I an MIS in G, let X0 = V (G) and repeat for i = 1, 2, . . .:

(1) Let xi be the first (in ≺) vertex of Xi−1 among those with largest degree in Xi−1.

(2) If xi ∈ I then let Xi = Xi−1 \ ({xi}∪N(xi)); otherwise, let Xi = Xi−1 \ {xi}. Set

ξi = 1{xi∈I}.

(3) STOP: the stopping rule will vary.

Let X = X(I) be the final Xi and H = H(I) = G[X]. Notice that ξ = ξ(I) =

(ξ1, ξ2, . . .) encodes a complete description of the run of the algorithm (so we may also

write H = H(ξ)), including, in particular, the identities of the xi’s; also that

ξ(I) determines X and I \X (2.1)

and

I ∩X is an MIS of H. (2.2)

2.2 Hamming cubes

Recall that the n-dimensional hypercube Qn has vertex set {0, 1}n, with two vertices

adjacent iff they differ in exactly one coordinate. Thus Qn is n-regular and bipartite

with (unique) bipartition E ∪ O, where E and O are the sets of even and odd vertices

(the parity of x being the parity of the number of 1’s in x).
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We use A,B,C and W for subsets of V and E for E(Qn). For x ∈ V , xi is (as

usual) the ith coordinate of x, and xi is the vertex obtained from x by flipping xi. For

any A,

Ai = {xi : x ∈ A},

the vertex-boundary of A is

∂A = {x /∈ A : x ∼ y for some y ∈ A},

and the edge-boundary of A is

∇A = {(x, y) : x ∈ A, y /∈ A}.

We also use

∇(A,B) = {(x, y) : x ∈ A, y ∈ B},

∇iA = {(x, xi) : x ∈ A, xi /∈ A},

∇IA = ∪i∈I∇Ai (I ⊆ [n]),

and

∇i(A,B) = {(x, xi) : x ∈ A, xi ∈ B}.

We say C is a codimension k subcube if there are I ⊆ [n] of size k and z ∈ {0, 1}I such

that

C = {x ∈ V : xi = zi for all i ∈ I}.

2.2.1 k-components

For a graph G and positive integer k, say u, v ∈ V = V (G) are k-linked if there is a

path from u to v of length at most k, and A ⊂ V is k-linked if for any u, v ∈ A, there

are vertices u = u0, u1, . . . , ul = v in A such that ui−1, ui are k-linked for each i ∈ [l].

Then for A ⊆ V the k-components of A are its maximal k-linked subsets. (So we use

“component” for a set of vertices rather than a subgraph.) In what follows we will only

be interested in k = 2, and use iA for the number of 2-components of A. Notice that

distinct 2-components of A have disjoint neighborhoods.
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In particular, when the given graph is Qn, we use the next lemma in bounding the

numbers of certain types of 2-linked sets in Qn. It follows from the fact (see e.g. [42,

p. 396, Ex.11]) that the infinite ∆-branching rooted tree contains precisely(
∆m
m

)
(∆− 1)m+ 1

≤ (e∆)m−1

rooted subtrees with m vertices.

Lemma 2.3. If G is a graph with maximum degree ∆, then the number of m-vertex

subsets of V (G) which contain a fixed vertex and induce a connected subgraph is at most

(e∆)m.

Proposition 2.4 ([22], Lemma 1.6). For each fixed k, the number of k-linked subsets

of V (Qn) of size x containing some specified vertex is at most 2O(x logn).

Proposition 2.5. For any Y ⊆ E and x, b ∈ Z+ with b ≤ |Y |/2, the number of

possibilities for an X ⊆ E with |X| = x, iX ≤ b and each 2-component of X meeting Y

is at most (|Y |
b

)
nO(x) (2.3)

(and similarly with E replaced by O).

Proof. The number of possibilities for the (say ordered, though this overcounts) list of

sizes, say x1, . . . , xt, of the 2-components of X is at most the number of compositions

of x, so at most 2x−1 (see Proposition 2.1). Given this list—so also iX—the number

of ways to choose “roots” in Y for the 2-components is at most
(|Y |
iX

)
≤
(|Y |
b

)
, and then

Lemma 2.3 bounds the number of ways to complete the 2-components by (en2)
∑
xi =

nO(x), which absorbs the initial 2x−1.

2.2.2 Isoperimetry

As is common in this area, we will need to know a little about isoperimetric behavior

of small subsets of Qn. See e.g. [44, Lemma 1.3] or [23, Claim 2.5] for the following

proposition.
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Proposition 2.6. For A ⊆ E with |A| ≤ N/4,

|N(A)| − |A|
|N(A)|

= Ω(1/
√
n).

Lemma 2.7. For A a subset of E or O and k = no(1),

if a := |A| = nk, then |N(A)| > (1− o(1))(an/k).

Proof. This is similar to [22, Lemma 6.1]—and a routine application of [45]—so we will

be brief, referring to [22] for some elaboration.

It is of course enough to consider A ⊆ E . By the main theorem of [45] (see [22,

Lemma 1.10]) we may assume A is an even Hamming ball; that is,

B(v, l) ⊆ A ⊆ B(v, l + 2), (2.4)

for some v and l with l ≡ |v| (mod 2) (where |v| =
∑
vi and, with ρ denoting distance,

B(v, r) = {w ∈ E : ρ(v, w) ≤ r} is the even Hamming ball of radius r about v). We

just discuss v ∈ E , in which case we may assume v = 0.

Elementary calculations show that (assuming a is as in the lemma) the l in (2.4) is

asymptotic to k (since for l = no(1), |
([n]
≤l
)
∩E| = nl−o(l)). It’s then easy to see that each

of |N(B(0, l))|, |N(B(0, l + 2))| is asymptotic to an/k, and the lemma follows.

2.2.3 Sapozhenko and Galvin

Finally we recall what we need from the aforementioned results of Sapozhenko and

Galvin (adapted to present purposes).

For A ⊆ V , the closure of A is [A] = {x ∈ V : N(x) ⊆ N(A)} and A is closed if

A = [A]. Given A (always a subset of E or O), we use G and B for N(A) and B(A)

(:= {y : N(y) ⊆ A}).

Let

G(g) = {A ⊆ E 2-linked : |G| = g} (2.5)

and

H(g, b) = {A ⊆ E 2-linked : |G| = g, |B| = b}.
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The first of our lemmas here is from [57] but we refer to the more accessible [23,

Lemma 3.1]:

Lemma 2.8. For any γ < 2 and each g ∈ [n4, γn],

|G(g)| ≤ 2g−Ω(g/ logn).

Lemma 2.9 ([22], Lemma 7.1). For any γ < 2 and each g, b ≤ γn,

|H(g, b)| < 2n2g−b−Ω(g/ logn).

The next two lemmas are special cases of Lemmas 5.3-5.5 in [23].

Lemma 2.10. For g as in Lemma 2.8 and G = G(g), there are W =W(g) ⊆ 2E × 2O

with

|W| = 2O(g log2 n/n)

and ϕ = ϕg : G → W such that for each A ∈ G, (S, F ) := ϕ(A) satisfies:

(a) S ⊇ [A], F ⊆ G;

(b) dF (u) ≥ n− n/ log n ∀u ∈ S.

In the next lemma, we take t = |G| − |[A]|.

Lemma 2.11. For g ∈ [n4, N/4] and G = G(a, g) := {A ⊆ E : A is 2-linked and closed, |A| =

a and |G| = g}, there are W =W(a, g) ⊆ 2E × 2O with

|W| = 2O(t log2 n/
√
n)

and ϕ = ϕa,g : G → W such that for each A ∈ G, (S, F ) := ϕ(A) satisfies:

(a) S ⊇ A (= [A]), F ⊆ G;

(b) dF (u) ≥ n−
√
n/ log n ∀u ∈ S;

(c) |S| ≤ |F |+O(t/(
√
n log n)).
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2.3 Entropy

We next briefly recall relevant entropy background; see e.g. [50] for a less hurried

introduction.

Let X,Y be discrete random variables. The binary entropy of X is

H(X) =
∑
x

p(x) log
1

p(x)
,

where p(x) = P(X = x) (and, recall, log is log2). The conditional entropy of X given

Y is

H(X|Y ) =
∑
y

p(y)
∑
x

p(x|y) log
1

p(x|y)
(2.6)

(where p(x|y) = P(X = x|Y = y)).

The next lemma lists a few basic properties.

Lemma 2.12.

(a) H(X) ≤ log |Range(X)|, with equality iff X is uniform from its range;

(b) H(X,Y ) = H(X) +H(Y |X);

(c) H(X1, . . . , Xn|Y ) ≤
∑
H(Xi|Y ) (note (X1, . . . , Xn) is a discrete random vari-

able);

(d) if Z is determined by Y , then H(X|Y ) ≤ H(X|Z).

We also need the following version of Shearer’s Lemma [5]. (This statement is more

general than the original, but is easily extracted from the proof in [5].)

Lemma 2.13. If X = (X1, , . . . , , Xk) is a random vector and α : 2[k] → R+ satisfies

∑
A3i

αA = 1 ∀i ∈ [k], (2.7)

then

H(X) ≤
∑
A⊆[k]

αAH(XA), (2.8)

where XA = (Xi : i ∈ A).
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Finally, we will need the following standard fact (see e.g. Lemma 16.19 in [15]; this

is also implied by Lemma 2.13 with αA equal to 1 if |A| = 1 and zero otherwise).

Proposition 2.14. For k ≤ 1
2n,

k∑
i=0

(
n

i

)
≤ 2H( k

n
)n.
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Chapter 3

Stability for maximal independent sets

3.1 Proofs of Theorems 1.3 and 1.4

In this section, I is always a maximal independent set in G. We use [Algorithm] in

Section 2.1.1 with the following stopping rule:

Terminate the process if dXi(x) ≤ 2 for all x ∈ Xi.

Recall that X = X(I) is the final Xi produced by [Algorithm] and H = H(I) = G[X].

3.1.1 Proof of Theorem 1.3

The argument for Theorem 1.3 goes roughly as follows. By (2.1) and (2.2) we find that

mis(G) ≤
∑
ξ

mis(H(ξ)) (3.1)

(If we restrict the sum to possible ξ’s—those corresponding to actual I’s—then we have

equality in (3.1).)

It turns out that running the algorithm for very long is “expensive” in the sense

that the loss in |X|, and so in possibilities for I ∩ X, outweighs what is contributed

to (3.1) by possibilities for ξ; this limits the number of I’s with t(I) large. Similarly,

the difference between the bounds in Theorems 1.1 and 1.2 says there are “few” I’s for

which the triangle-free part of H is large. (Note H, having maximum degree at most

two, is a disjoint union of triangles and a triangle-free part, below called R.) But the

part of mis(G) corresponding to I’s for which both t and R are small must come mainly

from counting choices for the restriction of I to the triangles of H, and these are limited

by our assumption on itm(G).

To begin with, the following lemma bounds the number of I’s with large t(I).
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Lemma 3.1. Let α = − log(4 · 3−4/3) (≈ 0.113). For any x ∈ [0, 1],

log |{I : t(I) ≥ xn}| ≤ (
1

3
log 3− αx+ o(1))n. (3.2)

Proof. For given t and s, consider I’s for which t(I) = t and s(I) = s. Note that for

each such I, |X| ≤ n − (t + 3s), so by Theorem 1.1 we have mis(H) ≤ 3(n−(t+3s))/3.

Also, there are at most
(
t
s

)
possibilities for ξ(I), so by (2.1) and (2.2) we have

|{I : t(I) = t, s(I) = s}| ≤
(
t

s

)
3(n−(t+3s))/3, (3.3)

so

|{I : t(I) = t}| ≤
t∑

s=0

(
t

s

)
3(n−(t+3s))/3 = 3n/3αt1,

where α1 = 4 · 3−4/3. Thus,

|{I : t(I) ≥ xn}| ≤ 3n/3αxn1 /(1− α1),

yielding (3.2).

Let T = T (I) be the union of the triangles in X (so the unique maximal induced

triangle matching in H), R = R(I) = H[X \ V (T )], and r = r(I) = |V (R)|. Note that

there are no edges between V (T ) and V (R), since H has maximum degree at most 2,

so

mis(H) = mis(T )mis(R). (3.4)

Note also that R is triangle-free, so

log mis(R) ≤ r/2 (3.5)

by Theorem 1.2. Now, the following lemma bounds the number of I’s with large r.

Lemma 3.2. Let β = − log(21/23−1/3) (≈ 0.028). For any y ∈ [0, 1],

log |{I : r(I) ≥ yn}| ≤ (
1

3
log 3− βy + o(1))n. (3.6)

Proof. By (3.4) and (3.5), we have

|{I : r(I) = r, t(I) = t, s(I) = s}| ≤
(
t

s

)
3(n−(t+3s+r))/32r/2,
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so

|{I : r(I) = r}| ≤
n∑
t=0

t∑
s=0

(
t

s

)
3(n−(t+3s+r))/32r/2

≤ 3n/3βr1/(1− α1),

where α1 = 4 · 3−4/3 (as in Lemma 3.1) and β1 = 21/23−1/3. Thus,

|{I : r(I) ≥ yn}| ≤ 3n/3βyn1 /((1− α1)(1− β1)),

which gives (3.6).

Lemma 3.3. If itm(G) < (1− ε)n/3 then for any x, y ∈ [0, 1],

log |{I : t(I) < xn, r(I) < yn}| ≤ ((1− ε)1

3
log 3 + x+ y/2 + o(1))n. (3.7)

Proof. For any I, with H = H(I) and r = r(I), we have (using (3.4), (3.5) and

|V (T (I))| = 3itm(H) < (1− ε)n)

mis(H) ≤ 3(1−ε)n/32r/2.

Therefore,

|{I : t(I) = t, r(I) = r}| ≤ 2t3(1−ε)n/32r/2,

so

|{I : t(I) < xn, r(I) < yn}| ≤
∑
t<xn

∑
r<yn

3(1−ε)n/32r/2+t

≤ 3(1−ε)n/3 · 2xn+1 · (
√

2− 1)−12(yn+1)/2,

giving (3.7).

Proof of Theorem 1.3. This is now just a matter of combining the above bounds. With

δ1 = εα/8 and δ2 = εβ/4, Lemmas 3.1 - 3.3 give (respectively)

log |{I : t(I) ≥ δ1n/α}| ≤ (
1

3
log 3− δ1 + o(1))n,

log |{I : r(I) ≥ δ2n/β}| ≤ (
1

3
log 3− δ2 + o(1))n
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and (using 1
3 log 3 > 1/2)

log |{I : t(I) < δ1n/α, r(I) < δ2n/β}| ≤ (
1

3
log 3− ε/4 + o(1))n.

Thus, with δ = min{δ1, δ2, ε/4} (= Ω(ε)), we have

log mis(G) ≤ (
1

3
log 3− δ + o(1))n.

3.1.2 Proof of Theorem 1.4

We first give the slightly stronger version of Theorem 1.4 mentioned in Chapter 1. For

I ⊆ V (G), write m(I) = mG(I) for the maximum size of an induced matching M

satisfying

• each edge of M meets I and

• there are no edges joining V (M) (the set of vertices covered by M) and I \V (M).

Given G we now write I = I(G) for the collection of maximal independent sets of G

and set

Iε = I(G, ε) = {I ∈ I(G) : m(I) < (1− ε)n/2}

and mis(G, ε) = |Iε|.

Theorem 3.4. For any ε > 0 there is a δ = Ω(ε) such that for any n-vertex, triangle

free G,

log mis(G, ε) < (1− δ)n/2.

(We have omitted the corresponding strengthening of Theorem 1.3.)

As mentioned earlier, the argument for Theorem 3.4 is similar to the one in Section

3.1.1, so we will try to be brief. We again start from the algorithm in Section 2.1.1,

and continue to use the notation (X, H etc.) defined in the paragraph following the

algorithm’s description. (For most of this we just need I ∈ I; the role of Iε will appear

in Lemma 3.8.)
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Lemma 3.5. Let α = − log( 1√
2

+ 1
4) (≈ 0.063). For any x ∈ [0, 1],

log |{I ∈ I : t(I) ≥ xn}| ≤ (
1

2
− αx+ o(1))n. (3.8)

Proof. Arguing as for (3.3) in Section 3.1.1, we obtain

|{I ∈ I : t(I) = t, s(I) = s}| ≤
(
t

s

)
2(n−(t+3s))/2, (3.9)

where we used mis(H) ≤ 2(n−(t+3s))/2, as given by Theorem 1.2 (sinceG is triangle-free).

Thus

|{I ∈ I : t(I) = t}| ≤
t∑

s=0

(
t

s

)
2(n−(t+3s))/2 = 2n/2αt1,

where α1 = 1√
2

+ 1
4 , and

|{I ∈ I : t(I) ≥ xn}| ≤ 2n/2αxn1 /(1− α1),

yielding (3.8).

Say an edge vw of H is isolated if H[{v, w}] is a component of H. Let M = M(I)

be the set of isolated edges in H, R = R(I) = H[X \ V (M)], and r = r(I) = |V (R)|.

Notice that M satisfies the two •’s from the definition of m(I) (the first by maximality

of I, the second by the definition of M and the fact that there are no edges joining X

and I \X); so if I ∈ Iε then |M | < (1− ε)n/2. Also, since there are no edges between

V (M) and V (R),

mis(H) = mis(M)mis(R). (3.10)

Note that R is triangle-free, so is a vertex-disjoint union of isolated vertices, cycles

with at least 4 vertices, and paths with at least 3 vertices. Combining this with Propo-

sition 2.2, we obtain an upper bound for mis(R). (Recall that γ ≈ 1.325 was defined in

Proposition 2.2.)

Lemma 3.6. With R and r as above, mis(R) ≤ (3γ)r/4.

Proof. Let lp (resp. lc) be the number of vertices in the union of all paths (resp. cycles)

in R. Clearly lp + lc ≤ r, while the number of paths (resp. cycles) in R is at most lp/3
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(resp. lc/4). Thus

mis(R) ≤ (2/γ2)lp/3(3/γ3)lc/4γr

< (3/γ3)r/4γr = (3γ)r/4,

where the first inequality is given by Proposition 2.2 and the second follows from the

fact that (2γ−2)1/3 < (3γ−3)1/4.

Lemma 3.7. Let β = − log(2−1/2(3γ)1/4) (≈ 0.0023). For any y ∈ [0, 1],

log |{I ∈ I : r(I) ≥ yn}| ≤ (
1

2
− βy + o(1))n. (3.11)

Proof. By (3.10) and Lemma 3.6,

|{I ∈ I : r(I) = r, t(I) = t, s(I) = s}| ≤
(
t

s

)
2(n−(t+3s+r))/2(3γ)r/4,

and summing this over t and s gives

|{I ∈ I : r(I) = r}| ≤ 2n/2βr1/(1− α1),

where α1 = 1√
2

+ 1
4 (as in Lemma 3.5) and β1 = 2−1/2(3γ)1/4. Thus,

|{I ∈ I : r(I) ≥ yn}| ≤ 2n/2βyn1 /((1− α1)(1− β1)),

which gives (3.11).

Lemma 3.8. For any x, y ∈ [0, 1],

log |{I ∈ Iε : t(I) < xn, r(I) < yn}| ≤ ((1− ε)/2 + x+ (log(3γ)/4)y + o(1))n. (3.12)

Proof. As in the proof of Lemma 3.3 (now using |M | < (1− ε)n/2),

mis(H) ≤ 2(1−ε)n/2(3γ)r/4

for any I ∈ Iε with r(I) = r. Therefore,

|{I ∈ Iε : t(I) = t, r(I) = r}| ≤ 2t2(1−ε)n/2(3γ)r/4,

and summing over the relevant t’s and r’s gives

|{I ∈ Iε : t(I) < xn, r(I) < yn}| ≤ 2(1−ε)n/2 · 2xn+1 · ((3γ)1/4 − 1)−1(3γ)(yn+1)/4;

so we have (3.12).
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Proof of Theorem 3.4. With δ1 = εα/8 and δ2 = εβ/(2 log(3γ)), Lemmas 3.5, 3.7 and

3.8 give (respectively)

log |{I ∈ I : t(I) ≥ δ1n/α}| ≤ (
1

2
− δ1 + o(1))n,

log |{I ∈ I : r(I) ≥ δ2n/β}| ≤ (
1

2
− δ2 + o(1))n,

and

log |{I ∈ Iε : t(I) < δ1n/α, r(I) < δ2n/β}| ≤ (
1

2
− ε/4 + o(1))n.

Thus, with δ = min{δ1, δ2, ε/4}, we obtain

log mis(G, ε) ≤ (
1

2
− δ + o(1))n.

3.2 Proof of Theorem 1.5

For a bipartite graph G on X ∪ Y , say X ′ ⊆ X is irredundant if ∀x ∈ X ′, N(x) 6⊆

N(X ′ \ {x}). (So for this discussion “irredundant” sets are always subsets of X.)

Denote the number of irredundant sets in G by irr(G).

Proposition 3.9. For any G as above, mis(G) ≤ irr(G).

Proof. This follows from the observation that for each maximal independent set I there

is an irredundant set J ⊆ I ∩X with N(J) = N(I ∩X) (= Y \ I); namely, this is true

whenever J ⊆ I ∩X is minimal with N(J) = N(I ∩X).

Thus the following statement implies Theorem 1.5.

Theorem 3.10. For any ε > 0, there is a δ = δ(ε) = 2−O(1/ε) such that for a bipartite

graph G on X ∪ Y with |X| = n and |Y | = 2n, if im(G) < (1 − ε)n then log irr(G) <

(1− δ)n.

For the rest of this section, G is as in Theorem 3.10.
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3.2.1 Proof

The algorithm we use for Theorem 3.10 is slightly different from the one in section

2.1.1. In what follows, I is always an irredundant set (thus I ⊆ X).

Algorithm Let X0 = X, Y0 = Y and M = Mε = 12/ε. Fix an order “≺” on X. For a

given I, repeat for i = 1, 2, . . .:

1. Let xi be the first vertex of Xi−1 in ≺ among those with largest degree in Xi−1.

2. If xi ∈ I then set Yi = Yi−1 \N(xi); otherwise, set Yi = Yi−1. In either case, set

Xi = Xi−1 \ {xi}.

3. Terminate the process if dYi(x) < M for all x ∈ Xi.

Let X = X(I) = Xt and Y ∗ = Y ∗(I) = Yt be the final Xi and Yi, respectively.

Set t = t(I) and H = H(I) = G[X ∪ Y ∗]. As in section 2.1.1, define ξ = ξ(I) =

(ξ1, ξ2, · · · , ξt) by ξi := 1{xi∈I}, and let |ξ| be the length of ξ (so |ξ(I)| = t(I)). Finally,

let s = s(I) = |supp(ξ)| and define ψ = ψ(I) = I ∩X.

Notice that I is determined by (ξ, ψ), namely (as earlier) I \X is determined by ξ

(and I ∩X = ψ).

Consider a random (uniform) irredundant set I. Our various parameters (ξ, ψ, . . .)

are then random variables, which will be denoted by ξ and so on. Since each of I and

(ξ,ψ) determines the other and ξ determines t, we have (using Lemma 2.12)

H(I) = H(ξ) +H(ψ|ξ)

= H(t) +H(ξ|t) +H(ψ|ξ)

≤ log n+H(ξ|t) +H(ψ|ξ). (3.13)

Notice that, by Lemma 2.12 (a),

H(ξ|t = t) ≤ t

for any t and

H(ψ|ξ = ξ) ≤ n− |ξ| (= n− t) (3.14)
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for any ξ. Thus the sum of the last two terms in (3.13) is at most

∑
t

P(t = t)

H(ξ|t = t) +
∑
|ξ|=t

P(ξ = ξ|t = t)H(ψ|ξ = ξ)

 ≤ n,
and we would like to somewhat improve these bounds. (Since we aim for H(I) <

n−Ω(n), the log n in (3.13) is irrelevant.) The next lemma, giving such a gain in (3.14)

when t is small, is our main point.

Lemma 3.11. For any ξ with |ξ| = t < εn/2,

H(ψ|ξ = ξ) ≤ n− t− ϑn,

where ϑ = ϑ(ε) = 2−O(1/ε).

Proof. Given ξ as in the Lemma, set

X̃ = X̃(ξ) = {x ∈ X : NY ∗(x) ⊆ NY ∗(X \ {x})}.

We have

(1− ε)n > im(G) ≥ im(H) ≥ n− t− |X̃|,

where the last inequality holds since for each x ∈ X \ X̃ there is some yx ∈ Y ∗ with

NX(yx) = {x}, and {(x, yx) : x ∈ X \ X̃} is an induced matching of H of size |X \ X̃| =

n− t− |X̃|. Thus

|X̃| > εn− t > εn/2. (3.15)

For each x ∈ X̃ fix some Zx ⊆ X \ {x} such that

NY ∗(x) ⊆ NY ∗(Zx), (3.16)

|Zx| < M (3.17)

and

∀z ∈ X |{x ∈ X̃ : z ∈ Zx}| < 2M. (3.18)

To see that we can do this: For each y ∈ NY ∗(X̃) let Πy be a partition of NX(y) into

blocks of size 2 or 3. (Note y ∈ NY ∗(X̃) implies dX(y) ≥ 2.) Then to form Zx, for each

y ∈ NY ∗(x) choose one x′ 6= x from the block of Πy containing x and take x′ ∈ Zx.
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Note that each x ∈ X has degree less than M in H (see step 3 of the algorithm), so we

have (3.17) and (3.18) (and (3.16) is clear).

Let Wx = Zx ∪ {x} (x ∈ X̃), and ψA = ψ ∩ A for any A ⊆ X. Note that for each

x ∈ X,

H(ψ
Wx
|ξ = ξ) ≤ log[2|Wx| − 1] (3.19)

= |Wx|+ log(1− 2−|Wx|)

< |Wx| − 2−M log e.

(The first inequality follows from irredundancy: we cannot have ψWx = Wx.)

Now aiming to use Lemma 2.13, form α : 2X → R≥0 by assigning weight 1/(2M)

to each Wx (thus assigning each set weight some multiple of 1/(2M), with the total

weight of the sets containing any given x′ at most 1 by (3.18)) and supplementing with

weights on the singletons to get to (2.7). Then by Lemma 2.13,

H(ψ|ξ = ξ) ≤
∑
A⊆X

αAH(ψA|ξ = ξ)

=
∑
x∈X̃

αWxH(ψ
Wx
|ξ = ξ) +

∑
x∈X

α{x}H(ψ{x}|ξ = ξ). (3.20)

Now (3.19) and the fact that α assigns total weight |X̃|/(2M) to the Wx’s give

∑
x∈X̃

αWxH(ψ
Wx
|ξ = ξ) <

∑
x∈X̃

αWx |Wx| − |X̃|(2M2M )−1 log e,

while the second sum in (3.20) is at most
∑

x∈X α{x} (since H(ψ{x}|ξ = ξ) ≤ 1). Thus

the entire bound in (3.20) is at most

∑
x∈X̃

αWx |Wx|+
∑
x∈X

α{x} − |X̃|(2M2M )−1 log e = |X| − |X̃|(2M2M )−1 log e

< n− t− ϑn,

where ϑ = (ε/2)(2M2M )−1 log e = 2−O(1/ε) (see (3.15)) and we use

∑
x∈X̃

αWx |Wx|+
∑
x∈X

α{x} =
∑
x∈X

∑
A3x

αA = |X|.
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Corollary 3.12. Let ζ = P(t < εn/2). Then with ϑ as in Lemma 3.11,

H(ψ|ξ) ≤ n− Et− ζϑn.

Proof. Using Lemma 3.11 and (3.14) we have

H(ψ|ξ) =
∑
t

∑
|ξ|=t

P(ξ = ξ)H(ψ|ξ = ξ)

≤
∑

t<εn/2

P(t = t)(n− t− ϑn) +
∑

t≥εn/2

P(t = t)(n− t)

= n− Et− ζϑn.

The gain for larger t is easier. Noting that

s ≤ s0 := 2n/M = εn/6,

setting H(1/3) = 1− γ and using Proposition 2.14, we have, for any t ≥ εn/2,

H(ξ|t = t) ≤ log
∑
s≤s0

(
t

s

)
≤ H(1/3)t = (1− γ)t,

whence (recall ζ = P(t < εn/2))

H(ξ|t) ≤
∑

t<εn/2

P(t = t)t+
∑

t≥εn/2

P(t = t)(1− γ)t

≤ Et− (1− ζ)γεn/2.

Finally, combining this with (3.13) and Corollary 3.12 yields

H(I) ≤ log n+ n− [ζϑ+ (1− ζ)γε/2]n

≤ log n+ n− ϑn

(since the ϑ produced in Lemma 3.11 is much smaller than γε/2), proving Theorem

3.10.

3.2.2 Tightness

Define a bipartite graph Bm on X∪Y = [m]∪[2m] (disjoint copies, of course) as follows.
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1. If x ∈ X and x ≤ m− 1, then x ∼ y iff y = x or y = m− 1 + x.

2. If x = m ∈ X, then x ∼ y iff m ≤ y ≤ 2m− 2.

It is easy to see that im(Bm) = m− 1, and mis(Bm) = 2m − 1.

Now, for ε > 0 and n with 1/ε and εn integers, letG be the union of εn disjoint copies

of B1/ε. Then G is bipartite on [n]∪ [2n], im(G) = (1− ε)n, and mis(G) = (21/ε− 1)εn.

So,

log mis(G) = εn log(21/ε − 1)

= εn(
1

ε
+ log (1− 2−1/ε))

= n(1− 2−1/εε log e+O(2−2/ε))

(where the implied constant does not depend on ε).
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Chapter 4

An isoperimetric inequality for the Hamming cube and

some consequences

We first introduce some applications of Theorem 1.6. We use V for V (Qn), and x = a±b

means a− b ≤ x ≤ a+ b. Recall that β = log2(3/2)(≈ .585).

4.1 Applications

4.1.1 First application: separating the cube

Isoperimetric inequalities beginning with Harper [26] (and for edge boundaries also

Lindsey [47]) give lower bounds in terms of |A| on the sizes of ∂A and ∇A; e.g.

|∇A| ≥ |A| log2(2n/|A|), (4.1)

with equality iff A is a subcube. We are interested in hybrid versions of these. In what

follows we assume (A,B,W ) is a partition of V , with W thought of as small. The

next conjecture is a simple illustration of what we have in mind, followed by something

general.

Conjecture 4.1. There is a fixed K such that if µ(A) = 1/2, then

|∇(A,B)|+K
√
n |W | ≥ 2n−1.

Results of Margulis [49] and Talagrand [62] (motivated by [49]) imply tradeoffs

between |∇A| and |∂A|, but don’t seem to help here. Theorem 1.6 implies a weaker

version of Conjecture 4.1:

Corollary 4.2. For A,B,W as in Conjecture 4.1, |∇(A,B)|+ nβ|W | ≥ 2n−1.
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4.1.2 Second application: stability for “almost” isoperimetric subsets

A simple (though now suboptimal) ”stability” statement for edge boundaries says:

Theorem 4.3. For a fixed k, if |A| = 2n−k and |∇A| < (1 + ε)|A| log2(2n/|A|), then

there is a subcube C with µ(C∆A) = O(ε) (where the implied constant depends on k).

This was proved for k = 1 by Friedgut, Kalai and Naor [19]; then for k = 2, 3 by

Bollobás, Leader and Riordan, who conjectured the general statement (see [8]); and

finally in full by Ellis [8]. These all based on Fourier analysis; e.g. at the heart of [8] is

Talagrand’s extension [63] of [36]. Even stronger, very recent results of Ellis, Keevash

and Lifshitz [9] are more elementary but rather involved.

Notice that if A is (sufficiently) close to a codimension k subcube then there is an

I ⊆ [n] of size k with ∇A ≈ ∇IA. In fact the implication goes both ways; this follows

(more or less) from Theorem 4.3, but is also easy without that machine:

Proposition 4.4. Assume |A| = (1± ε)2n−k and

|∇A \ ∇IA| ≤ ε|A|,

where I is a k-subset of [n]. Then there is a (codimension k) subcube C with |A∆C| =

O(ε)|A| (where the implied constant depends on k).

The original motivation for Theorem 1.6 arose in connection with our efforts to prove

Theorem 1.8 whose proof is completed in Chapter 5. What it needed from isoperimetry

was a variant of Theorem 4.3—really, just of the original result of [19]—of the following

type.

If (A,B,W ) is a partition of V with µ(A), µ(B) ≈ 1/2 (so W is “small”) and

|∇(A,B)| ≈ 2n−1, then

∇A ≈ ∇iA for some i.

Of course this depends on quantification; e.g. it can fail with µ(W ) as small as Θ(n−1/2)

(let W consist of strings of weight bn/2c). Note also that here the full edge boundary

of A need not be small, since there is no restriction (beyond n|W |) on |∇(A,W )|.
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The following consequence of Theorem 1.6 is a (limited) statement of the desired

type, the case k = 1 of which suffices for Theorem 1.8. (Recall β = log2(3/2).)

Theorem 4.5. For k ∈ {1, 2} the following holds. Suppose (A,B,W ) is a partition of

V with µ(A) = (1± ε)2−k, µ(W ) ≤ εn−β and

|∇(A,B)| < (1 + ε)k2n−k. (4.2)

Then there is I ⊆ [n] of size k such that

|∇iA| = (1−O(ε))2n−k ∀i ∈ I. (4.3)

Furthermore, there is a codimension k subcube C such that

µ(C∆A) = O(ε). (4.4)

Conjecture 4.6. The statement in Theorem 4.5 holds for all k ∈ P, even with nβ

replaced by 2n/∂(|A|).

(The implied constant in (4.3) and (4.4) would necessarily depend on k.)

Note Theorem 4.5 implies an isoperimetric statement—similar to those in Sec-

tion 4.1.1—of which it is a stability version; namely:

Corollary 4.7. For k ∈ {1, 2}, the assumptions of Theorem 4.5 imply |∇(A,B)| >

(1−O(ε))k2n−k.

(And of course similarly for whatever one can establish in the direction of Conjec-

ture 4.6.)

Finally, the next observation provides a general approach to proving something like

the statement in Theorem 4.5 for other values of k. (Its proof is similar to the derivation

of Theorem 4.5 from Theorem 1.6 and is omitted.)

Theorem 4.8. Fix k ∈ P and suppose there are f, g : [0, 1] → <+ such that (i) g

is continuous with g(2−k) = k2−k and (ii) f is increasing and strictly concave, with

f(0) = 0, f(k) = k and ∫
f(hA)dµ ≥ g(µ(A)) ∀A ⊆ V.
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Then the conclusions of Theorem 4.5 hold (with implied constants depending on f and

g) for A,B,W as in the theorem, except with the bound on w replaced by w ≤ ε/f(n).

(For the cases covered by Theorem 4.5, Theorem 1.6 gives the hypothesis of Theorem 4.8

with f(x) equal to xβ when k = 1 and (4/3)xβ when k = 2.)

Theorem 1.6 is proved in Section 4.2. Section 4.3 derives the case k = 1 of Theorem

4.5 and then indicates the small changes needed for k = 2, and in passing derives

Corollary 4.2 (see following Corollary 4.13). The easy proof of Proposition 4.4 is given

in Section 4.4.

4.2 Proof of Theorem 1.6

Lemma 4.9. Let X ⊆ V and let f be a real-valued function on V . If

1

µ(X)

∫
X
fβdµ = T β, (4.5)

then

1

µ(X)

∫
X

(f + 1)βdµ ≥ (T + 1)β. (4.6)

Proof. Set g(x) = fβ(x) for x ∈ X. Then the l.h.s. of (4.5) is Eg and the l.h.s. of (4.6)

is E(g1/β + 1)β, where E refers to uniform measure on X. But p(x) := (x1/β + 1)β is

easily seen to be convex; so, by Jensen’s inequality,

E(g1/β + 1)β ≥ ((Eg)1/β + 1)β,

which implies (4.6).

The proof of Theorem 1.6 proceeds by induction on n. (This is also true of Theorem

1.7, but beyond this the arguments seem to be different.) It is easy to see that the

theorem holds for n = 1, so we suppose n ≥ 2.

Given A, fix an i ∈ [n]. Let

V0 = {x ∈ V : xi = 0},

V1 = {x ∈ V : xi = 1},
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A0 = A ∩ V0,

and

A1 = (A ∩ V1)i = {xi : x ∈ A, xi = 1} ⊆ V0.

Let µ′ be uniform measure on V0. For simplicity, write h0 (h1, h, resp.) for hA0

(hA1 , hA, resp.), a function on V0 (V0, V , resp.).

Let µ′(A0) = a0, µ′(A1) = a1, and µ(A) = a = (a0 + a1)/2. Then by induction

hypothesis, for i = 0, 1, ∫
hβi dµ

′ ≥ 2ai(1− ai). (4.7)

We may assume a0 ≥ a1. Note that

h(x) =



h0(x) + 1 if x ∈ A0 \A1,

h0(x) if x ∈ A0 ∩A1,

h1(xi) + 1 if xi ∈ A1 \A0,

h1(xi) if xi ∈ A0 ∩A1;

(4.8)

so ∫
hβdµ =

∫
A0

hβdµ+

∫
(A1)i

hβdµ

=

∫
A0

hβdµ+

∫
A1\A0

(h1 + 1)βdµ+

∫
A0∩A1

hβ1dµ

≥
∫
A0

hβdµ+

∫
A1

hβ1dµ

≥
∫
A0

hβdµ+ a1(1− a1)

(4.9)

(the last inequality by (4.7)). Thus the theorem will follow if we show∫
A0

hβdµ ≥ 2a(1− a)− a1(1− a1) (= a0 + a2
1 − (a0 + a1)2/2). (4.10)

The rest of this section is devoted to the proof of (4.10). Let Z = supp(h0)\A1 and

X = supp(h0) ∩A1 (see Figure 6.1); thus

2

∫
A0

hβdµ =

∫
Z

(h0 + 1)βdµ′ +

∫
X
hβ0dµ

′ +

∫
A0\(A1∪Z)

1dµ′. (4.11)

Observation 4.10. We may assume A1 ⊆ A0.
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A0

Z X

A1

supp(h0)

Figure 4.1:

Proof. If there is x ∈ A1 \A0 then we can find y ∈ A0 \A1 since µ′(A0) ≥ µ′(A1). Let

B1 = (A1 \ {x})∪{y}, B = A0 ∪ (B1)i and B0 = B ∩V0 (= A0). Notice that |A| = |B|,

|Ai| = |Bi| for i ∈ {0, 1}, and ∫
B0

hβBdµ <

∫
A0

hβdµ,

because: with ZB (resp. XB) for supp(hB0) \ B1 (resp. supp(hB0) ∩ B1), the location

of y changes either from Z to XB or from A0 \ (A1 ∪ Z) to (B0 ∩ B1) \XB. In either

case its contribution to the r.h.s. of (4.11) shrinks. So if A1 6⊆ A0, then we can shift it

to a “worse” set.

Let σ =
∫
Z h

β
0dµ

′, γ =
∫
X h

β
0dµ

′, α = σ + γ (=
∫
hβ0dµ

′) and µ′(Z) = z. Since

A1 ⊆ A0, the r.h.s. of (4.11) is∫
Z

(h0 + 1)βdµ′ + γ + µ′(A0 \ (A1 ∪ Z)) ≥ (σ1/β + z1/β)β + γ + (a0 − a1 − z)

= ((α− γ)1/β + z1/β)β + γ + (a0 − a1 − z)

≥ (α1/β + z1/β)β + (a0 − a1 − z), (4.12)

where the first inequality is given by Lemma 4.9 and the second holds because ((α −

γ)1/β + z1/β)β + γ is increasing in γ.

So we are done if we show that the expression in (4.12) is at least

2(a0 + a2
1)− (a0 + a1)2, (4.13)

where we are entitled to assume

α =

∫
hβ0dµ

′ ≥ 2a0(1− a0). (4.14)
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(see (4.7)) and

z ≤ min{α, a0 − a1} (4.15)

(where the second bound holds since Z ⊆ A0 \ A1). We consider two cases depending

on which of a0 − a1 and the r.h.s. of (4.14) is smaller.

Case 1. 2a0(1− a0) ≤ a0 − a1

Equivalently,

a1 ≤ a0(2a0 − 1). (4.16)

Also, since 0 ≤ a0(2a0 − 1), we have

a0 ≥ 1/2. (4.17)

Note that (4.12) is decreasing in z and z ≤ α by (4.15), so recalling that 2β = 3/2

and using (4.14), we find that (4.12) is at least

α/2 + a0 − a1 ≥ a0(1− a0) + a0 − a1. (4.18)

Subtracting (4.13) from (4.18) gives

−a2
1 + (2a0 − 1)a1,

which is nonnegative since

f(x, y) := −y2 + (2x− 1)y ≥ 0 for x ∈ [1
2 , 1] and y ∈ [0, x(2x− 1)].

(Because: for any y ≥ 0, f(x, y) is nondecreasing in x, so it is enough to show the

inequality holds when y = x(2x− 1), in which case f(x, y) = x(1− x)(2x− 1)2 ≥ 0.)

Case 2. 2a0(1− a0) ≥ a0 − a1

Equivalently,

a0(2a0 − 1) ≤ a1 (≤ a0). (4.19)

Again using the fact that (4.12) is decreasing in z, now with z ≤ a0 − a1 by (4.15),

we find that (4.12) is at least

(α1/β + (a0 − a1)1/β)β, (4.20)
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which, in view of (4.14) (and the fact that (4.20) is increasing in α), is at least

((2a0(1− a0))1/β + (a0 − a1)1/β)β. (4.21)

Thus the proof that (4.12) is at least (4.13) in the present case is completed by the

following proposition (applied with x = a0 and y = a1).

Proposition 4.11. Let

g(x, y) = ((2x(1− x))1/β + (x− y)1/β)β − 2(x+ y2) + (x+ y)2.

Then g(x, y) ≥ 0 for x, y ∈ [0, 1] with y ∈ [x(2x− 1), x].

Proof. Observe that for x ∈ [0, 1],

g(x, x(2x− 1)) = x(1− x)(2x− 1)2 ≥ 0, (4.22)

and

g(x, x) = 0. (4.23)

Also, the partial derivative of g(x, y) with respect to y is

gy(x, y) = −(x− y)
1
β
−1

((2x(1− x))
1
β + (x− y)

1
β )β−1 + 2(x− y).

Now, we claim that

for given x ∈ [0, 1], gy(x, y) is equal to zero for at most one y ∈ [x(2x− 1), x).

(4.24)

Indeed, let A = x− y (> 0) and B = 2x(1− x). Then

gy(x, y) = 0⇔ A
1
β +B

1
β = 2

1
β−1A

2β−1
β(β−1) . (4.25)

Notice that A
1
β + B

1
β is increasing in A while 2

1
β−1A

2β−1
β(β−1) is decreasing in A (since

2β−1
β(β−1) < 0). So we conclude that for any B, (4.25) holds at most once, which is (4.24).

Finally, we claim that

for each x ∈ (0, 1), there is c = c(x) > 0 such that g(x, y) > 0 for all y ∈ (x− c, x).

(4.26)
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Note that Proposition 4.11 follows from the combination of (4.22), (4.23), (4.24), and

(4.26).

Proof of (4.26). Given x ∈ (0, 1), for c = c(x) TBA,

g(x, x− c) = ((2x(1− x))
1
β + c

1
β )β + 2x2 − 2x− c2,

so

g(x, x− c) > 0⇔ ((2x(1− x))
1
β + c

1
β )β > c2 + 2x(1− x). (4.27)

Now,

((2x(1− x))
1
β + c

1
β )β = 2x(1− x)

(
1 +

(
c

2x(1− x)

) 1
β

)β
,

and if c is small enough,(
1 +

(
c

2x(1− x)

) 1
β

)β
= exp[Θ(c1/β)β]

= 1 + Θ(c1/β),

which implies (4.27).

4.3 Proof of Theorem 4.5

As noted at the end of Section 4.1.2, we prove Theorem 4.5 for k = 1 and then indicate

what changes for k = 2. This seemed slightly clearer than proving them together,

though the differences are minor. Extending to Theorem 4.8 is straightforward, though

the counterpart of Proposition 4.14 is slightly more painful than the original.

As usual, A ⊆ V is increasing if x ∈ A and y ≥ x (with respect to the product order

on V ) imply y ∈ A (and A is decreasing is defined similarly). For x, y with x < y, we

write xl y if x ≤ z ≤ y implies z ∈ {x, y}. We will need Harris’ Inequality [27]:

Theorem 4.12. For any product measure ν on Qn and increasing A,B ⊆ V ,

ν(A ∩B) ≥ ν(A)ν(B).

Recall that hS was defined in (1.1) and, for disjoint A,B ⊆ V , set

hAB(x) =


dB(x) if x ∈ A,

0 if x /∈ A;
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thus ∫
A
hV \Bdµ =

∫
hAB dµ = 2−n|∇(A,B)|.

We need the following easy consequence of Theorem 1.6.

Corollary 4.13. If (R,S, U) is a partition of V with µ(R ∪ U) = α, then

(2−n|∇(R,S)| =
∫
R
hR∪Udµ ≥)

∫
R
hβR∪Udµ ≥ 2α(1− α)− nβµ(U).

Proof. Theorem 1.6 gives

2α(1− α) ≤
∫
hβR∪Udµ =

∫
R
hβR∪Udµ+

∫
U
hβR∪Udµ ≤

∫
R
hβR∪Udµ+ nβµ(U),

and the corollary follows.

In particular, taking (R,S, U) = (B,A,W ) gives Corollary 4.2.

We now assume the situation of Theorem 4.5. Note that each of µ(A), µ(B) is

1/2 ± O(ε). In what follows we (abusively) use “a.e.” to mean “all but an O(ε)-

fraction,” so for example write “a.e. x ∈ A satisfies Q” for “Q holds for all but an

O(ε)-fraction of the members of A.”

Proposition 4.14. For a.e. x ∈ A, hAB(x) = 1.

Proof. Applying Corollary 4.13 with (R,S, U) = (A,B,W ) (and using (4.2)) gives

(1 + ε)/2 ≥
∫
hABdµ =

∫
A
hA∪Wdµ ≥

∫
A
hβA∪Wdµ = 1/2−O(ε). (4.28)

In particular,
∫

(hAB − hβAB)dµ = O(ε), which, since∫
(hAB − hβAB)dµ = Ω (µ({x ∈ A : hAB(x) 6∈ {0, 1})) ,

implies hAB(x) ∈ {0, 1} for a.e. x ∈ A.

The next observation will allow us to assume that A is increasing andB is decreasing.

Proposition 4.15. For any partition (A,B,W ) of V there is another partition (A′, B′,W ′)

satisfying:

1. µ(X) = µ(X ′) for X ∈ {A,B,W};
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2. A′ is increasing and B′ is decreasing;

3. |∇i(A,B)| ≥ |∇i(A′, B′)| for all i ∈ [n].

Proof. This is a typical “shifting” argument and we will be brief. For i ∈ [n], the i-shift

of a partition (A,B,W ) is defined thus: let

V0 = {x ∈ V : xi = 0}, V1 = {x ∈ V : xi = 1},

and for each x ∈ V0 with (x, xi) ∈ (A,B), (A,W ), or (W,B), switch the affiliations of

x and xi. This trivially does not change |∇i(A,B)|, and it’s easy to see that it does

not increase |∇j(A,B)| for j ∈ [n] \ {i}. (Consider the contribution to ∇j(A,B) of any

quadruple {x, xi, xj , (xi)j}.)

It is also clear that no sequence of nontrivial shifts can cycle (e.g. since any such

shift strictly increases
∑

x∈A |x| −
∑

x∈B |x|); so there is a sequence that arrives at an

(A′, B′,W ′) stable under i-shifts (for all i), and this meets the requirements of the

proposition.

Proof of Theorem 4.5. We first show there is an i as in (4.3). By Proposition 4.15, we

may assume A is increasing and B is decreasing. For each i ∈ [n], let Ai = {x ∈ A :

xi ∈ B}, and notice that

Ai is a decreasing subset of A. (4.29)

Indeed, given x ∈ Ai, consider any y ∈ A satisfying y l x. Then yi ∈ B since xi ∈ B

and B is decreasing, so y ∈ Ai.

By proposition 4.14,

a.e. x ∈ A is in exactly one Ai; (4.30)

in particular, if we let A0 = {x ∈ A : dB(x) = 0}, then µ(A0) = O(ε).

Setting maxµ(Ai) = µ(A)− δ, we just need to show that δ = O(ε).

Assume (w.l.o.g.) that maxµ(Ai) = µ(A1), and let Ã = ∪i 6=1Ai, C1 = A \ A1, and

C̃ = A \ Ã. By (4.30),

µ(C̃) ≥ µ(A1)−O(ε), (4.31)
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while C1 ∩ C̃ = A0 implies

µ(C1 ∩ C̃) = O(ε).

Moreover, (4.29) and the fact that A is increasing imply that C1 and C̃ are increasing

(in V ); so Theorem 4.12 gives

O(ε) = µ(C1 ∩ C̃) ≥ µ(C1)µ(C̃) ≥ δ(µ(A)− δ −O(ε)), (4.32)

whence

δ = O(ε) or µ(A)− δ −O(ε) = O(ε).

But δ = O(ε) is what we want, so we may assume for a contradiction that µ(A) −

δ − O(ε) = O(ε); equivalently, µ(A1) = O(ε). In this case, µ(Ai) = O(ε) for all i, so

there is a partition [n] = I ∪ J such that each of AI (:= ∪i∈IAi) and AJ has measure

µ(A)/2 + O(ε). But then, setting CI = A \ AI and CJ = A \ AJ , and again using

Theorem 4.12, we have

O(ε) = µ(CI ∩ CJ) ≥ µ(CI)µ(CJ) ≥ µ2(A)/4−O(ε),

which is impossible.

For (4.4), let i be as above and for π ∈ {0, 1}, let C(i, π) = {v : vi = π}. If D is

one of these subcubes then with |A ∩ D| = δ2n−1, Corollary 4.13 (applied in D with

R = A∩D and U = W ∩D) gives at least [2δ(1−δ)−O(ε)]2n−1 edges in ∇(A,B)\∇iA,

which with (4.2) and (4.3) forces δ to be either O(ε) or 1 − O(ε). So exactly one, say

C, has δ = 1−O(ε), and this C satisfies (4.4).

Changes for k = 2 (briefly). The only changes are to Proposition 4.14 and the final

argument(s). For the former, the statement is now:

for a.e. x ∈ A, hAB(x) = 2.

Set f(x) = (4/3)xβ. Theorem 1.6 gives
∫
f(hA∪W )dµ ≥ 1/2−O(ε), leading to∫

f(hAB)dµ ≥ 1/2−O(ε).
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Now let X(x) = hAB(x) for x ∈ A and write E for expectation w.r.t. uniform

measure on A. Our assumptions on µ(A) and |∇(A,B)| give

EX =
1

µ(A)

∫
hABdµ =

|∇(A,B)|
µ(A)2n

≤ 2 +O(ε),

so, using the concavity of f , we have∫
f(hAB)dµ = µ(A)Ef(X) ≤ µ(A)f(EX) ≤ 1/2 +O(ε).

It’s then easy to see (if somewhat annoying to write) that concavity of f , with Ef(X)−

f(EX) = O(ε) and f(EX) = 2±O(ε) (and X ∈ Z) implies, first, that there is a c such

that f(x) = c for a.e. x ∈ A, and, second, that c = 2.

For the step leading to (4.3) we may as well think of a general k. Thus we assume

A and B are increasing and decreasing (resp.), with nβµ(W ) ≤ ε, µ(A) = (1 ± ε)2−k,

|∇(A,B)| < (1 + ε)k2n−k, and hAB(x) = k for a.e. x ∈ A, and want to show

there is I ⊆ [n] of size k such that |∇iA| ≥ (1−O(ε))2n−k ∀i ∈ I.

Here for each k-subset I of [n] we set

AI = {x ∈ A : xi ∈ B ∀i ∈ I}.

Each AI is decreasing in A and a.e. x ∈ A is in exactly one AI . We then assume

maxI µ(AI) = µ(A[k]) = µ(A)− δ and continue essentially as before.

The step yielding (4.4) again takes no extra effort for general k: here we have 2k

subcubes corresponding to the members of {0, 1}k, and Corollary 4.13 (with (4.2) and

(4.3)) shows that all but one of these meet A in sets of size O(ε)2n−k (and the one that

doesn’t is the promised C).

4.4 Proof of Proposition 4.4

Let |A| = a. For z ∈ {0, 1}I let Vz = {x : xi = zi ∀i ∈ I}, Az = A ∩ Vz, az = |Az| and

αz = az/a. Assume (w.l.o.g.) that az is maximum when z = 0. We have

εa ≥ |∇A \ ∇IA| =
∑
z

|∇(Az, Vz \Az)| ≥
∑
z

az log2(2n−k/az)

= a
[
H(αz : z ∈ {0, 1}I) + log2(2n−k/a)

]
= aH(αz : z ∈ {0, 1}I) +O(ε)a,
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where H is binary entropy and the inequality is given by (4.1). It follows that each αz

is either O(ε/ log(1/ε)) or 1 − O(ε) ; so in fact α0 = 1 − O(ε/ log(1/ε)) and V0 is the

promised subcube.
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Chapter 5

The number of maximal independent sets in the

Hamming cube

5.1 Lower bound and proof plan

We first briefly recall why the r.h.s. of (1.3) is an (asymptotic) lower bound. As usual

an induced matching (IM) is an induced subgraph that is a matching. It is easy to see

that the largest IM’s of Qn are of size N/4 and that there are exactly 2n of these, here

called canonical matchings and denoted M∗ (see below for a precise description). Each

M∗ gives rise to exactly 2N/4 MIS’s, gotten by choosing one vertex from each edge of

M∗ and extending the resulting independent set to the (unique) MIS containing it. It

is also easy to see (an argument is sketched at the end of this section) that the overlaps

between the sets of MIS’s gotten from different M∗’s are negligible, and the lower bound

follows. In analogy with the problems mentioned above (beginning with Dedekind’s)

one may think of 2n ”phases,” one for each M∗. (E.g. for the simplest of the earlier

instances—independent sets, or, in physics, the hard-core model—the vast majority of

those sets consist almost entirely of vertices of a single parity, and the phases are ”even”

and ”odd.”)

So what Theorem 4.5 is really saying is that the number of MIS’s not corresponding

to canonical matchings is negligible. The proof of this goes roughly as follows. We first

(“Step 1”; Lemma 5.1) show that almost every MIS is “associated” with some “large”

IM. Step 2 (Lemma 5.2) then says that each “large” IM is close to some M∗. Finally,

in Step 3 (Lemma 5.3), we show that the number of MIS’s that are associated with an

IM close to some M∗ but are not obtained from M∗ as above (that is, miss at least one

edge of M∗) is small.

We use I and M for MIS’s and IM’s (respectively), I(G) for the set of MIS’s in
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G, and, in particular, I for I(Qn). Write I ∼ M if each edge of M meets I. For

bookkeeping purposes we fix a linear order “≺” on the set of IM’s of G and define

MG(I) to be the first (in ≺) of the largest induced matchings M satisfying

I ∼M (5.1)

and

∇(V (M), I \ V (M)) = ∅ (5.2)

(where ∇(X,Y ) is the set of edges between X and Y and V (M) is the set of vertices

contained in edges ofM). We also setmG(I) = |MG(I)| and abbreviateMQn(I) = M(I)

and mQn(I) = m(I).

A canonical matching of Qn is the set of edges vvi of parity ε, for some i ∈ [n] and

ε ∈ {0, 1}. Canonical matchings are denoted M∗. It is easy to see that (as mentioned

earlier) the maximum size of an IM is N/4, and an IM is of this size iff it is canonical.

We set I∗ = {I ∈ I : I ∼M∗ for some M∗}.

We can now formalize our plan. Let

J = {I ∈ I : m(I) > (1− log3 n/n)N/4}.

(The log3 n/n is not optimal, but it is convenient and we have some room.)

Lemma 5.1.

|I \ J | = o(2N/4).

(The actual bound will be log |I \ J | < (1− Ω(log3 n/n))N/4.)

Lemma 5.2. With β = log(3/2) (as in Chapter 4), if

|M | = (1− o(n−β))N/4, (5.3)

then there is an M∗ with

|M∆M∗| = o(N)

(equivalently, |M ∩M∗| = (1− o(1))N/4).
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We use Lemma 5.2 to say that each I not covered by Lemma 5.1 (i.e. I ∈ J ) is

closely tied to some M∗; precisely, for a suitable ζ = ζ(n) = o(1), each I ∈ J satisfies

there is an M∗ with |M(I)∆M∗| < ζN.

Thus, the following lemma completes the proof of Theorem 4.5.

Lemma 5.3. For any M∗,

|{I 6∈ I∗ : |M(I)∆M∗| < ζN}| = 2N/4−ω(n/ logn) (5.4)

The following proposition is the promised lower bound discussion.

Proposition 5.4. Let M∗1 ,M
∗
2 be distinct canonical matchings and I∗j = {I ∈ I : I ∼

M∗j } for j = 1, 2. Then

|I∗1 ∩ I∗2 | ≤ 3N/8.

Proof. This is easy and we just give an informal sketch. We may assume M∗1 and M∗2 use

different directions, since otherwise I∗1 ∩ I∗2 = {E ,O}. We may further assume the two

directions are n−1 and n, and consider the natural projection π : {0, 1}[n] → {0, 1}[n−3];

thus the π−1(v)’s are copies of Q3 partitioning Qn. It is then easy to see that for an

I ∈ I∗1 ∩I∗2 there are at most three possibilities for each I ∩π−1(v)∩V (M∗1 ∪M∗2 ) (and

that these choices determine I), yielding the bound in the lemma.

In what follows we will mainly be concerned with I ∈ I (recall this is {MIS’s of Qn})

having m(I) ≈ N/4, for which the next little point will be helpful.

Observation 5.5. If |M(I)| > (1− ε)N/4, then |I \ V (M(I))| < εN .

Proof. With M = M(I), W = V (M) and Z = N(W ) \W , we have I ∩ Z = ∅ (by

definition of M(I)) and

(n− 1)|W | = |∇(W,Z)| ≤ (n− 1)|Z|,

implying |Z| ≥ |W | and

|I \ V (M)| ≤ |V \ (W ∪ Z)| < εN.
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5.1.1 Preview

In this section we preview the role of the [Algorithm] in Section 2.1.1. Recall that we

use V for V (Qn).

Proposition 5.6. For ξ running over binary strings, with |ξ| denoting the length of ξ,

and positive integers l and r ≤ l/2,

log |{ξ : |ξ| ≤ l, |supp(ξ)| ≤ r}| ≤ r log(l/r) +O(r) + log(l + 1).

Proof. This follows from log
∑

t≤r
(
l
t

)
≤ lH(r/l) (where H is binary entropy).

Proposition 5.7. If Z ⊆W ⊆ V , dZ(x) ≤ d ∀x ∈ Z and |∇W | ≤ L, then

|Z| ≤ (2n− d)−1(n|W |+ L).

Proof. This follows from

n|W \ Z| ≥ |∇(Z,W \ Z)| ≥ |Z|(n− d)− L.

In our uses of [Algorithm] one reason for stopping will usually be that degrees in

Xi fall below some specified d; we then have a tradeoff:

(i) Larger d tends to mean smaller supp(ξ): each xi ∈ I removes at least d vertices from

consideration, so |supp(ξ)| < |W |/d. (And by Proposition 5.6, smaller supp(ξ) means

fewer possibilities for ξ.)

(ii) Smaller d tends to mean smaller X (by Proposition 5.7, applied with Z = X).

Note the effect of varying d is not insignificant here since we are usually interested in

|X| − |W |/2.

A simple but seemingly new idea that is one of the main drivers of the present work

is that we can do better in (i) if we lower bound dXi−1(xi), not by the final cutoff d,

but by whatever we get by plugging Xi−1 in for Z in Proposition 5.7. We give two

implementations of this idea; the first, in Section 5.2, is more elegant and precise, while

the cruder version in Section 5.4 more simply illustrates the basic principle. (See also

Remark 5.19.)
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5.2 Proof of Lemma 5.1

In this section, I is always in I \J . The eventual key here is Theorem 3.4, but we need

to first reduce to a place where the theorem is helpful—so to a vertex set of size not

much more than N/2 since we are interested in induced matchings of size around N/4.

The algorithm of Section 2.1.1 provides a “cheap” way to do this.

For any subgraph H of Qn, let

MIS∗(H) = {I ∈ I(H) : mH(I) ≤ (1− log3 n/n)N/4},

and mis∗(H) = |MIS∗(H)|. (Note the cutoff for mH(I) here is the one in the definition

of J .)

For the proof of Lemma 5.1 we run [Algorithm] with input our unknown I, stopping

as soon as either

1. |supp(ξ)| ≥ logn
2n N , or

2. Xi = ∅,

and let X = X(I) and H = H(I) (= H(ξ)) be as in Section 2.1.1. Notice that I ∈ I \J

implies

I ∩X ∈ MIS∗(H(I)),

so

|I \ J | ≤
∑
ξ

mis∗(H(ξ))

(where the sum runs over possible ξ’s). Proposition 5.6 bounds the number of possible

ξ’s by

exp2

[
O
(
log2 n/n

)
N
]
,

so that Lemma 5.1 will follow from

log mis∗(H(I)) ≤
(

1− Ω

(
log3 n

n

))
N/4 for all I. (5.5)

Proof of (5.5). Fix I and let X = X(I) (= V (H(I))). We first show that |X| cannot

be much larger than N/2. Let di = max{dXi(v) : v ∈ Xi} and Xi = V \Xi.
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Observation 5.8. For each i, |Xi| ≤ (1 + di/n)N/2.

Proof. This follows from Proposition 5.7 with Z = Xi and W = V (and L = 0).

Define αi by

|Xi| = (1 + αi)N/2 ;

so α0 = 1 and Observation 5.8 says

di ≥ αin. (5.6)

Observation 5.9. If ξi = 1, then αi < (1− 2n/N)αi−1.

Proof. Using (5.6), we have

(1 + αi)N/2 = |Xi| = |Xi−1| − di−1 − 1 < (1 + αi−1)N/2− αi−1n,

and the observation follows.

Proposition 5.10.

|X| < (1 + 1/n)N/2. (5.7)

Proof. Let α be the final αi (so |X| = (1 +α)N/2). Assuming (as we may) that X 6= ∅,

we have

|supp(ξ)| ≥ log n

2n
N,

so that Observation 5.9 (with α0 = 1 and the fact that αi is decreasing in i) gives

α ≤ (1− 2n/N)
logn
2n

N < 1/n,

which is (5.7).

Now, if

|X| < (1− Ω(log3 n/n))N/2

then (5.5) follows from Theorem 1.2; otherwise, applying Theorem 3.4 with m = |X|

and a suitable ε = Ω(log3 n/n) gives

log mis∗(H) < (1− cε)|X|/2 < (1− Ω(log3 n/n))N/4.
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5.3 Proof of Lemma 5.2

Let M be as in Lemma 5.2. We may assume that

n− 1 and n are the two directions least used by M . (5.8)

Let π : V → V (Qn−2) be the natural projection, namely

π((ε1, . . . , εn)) = (ε1, . . . , εn−2),

and for v ∈ V (Qn−2), let

Uv = π−1(v) = {(v, εn−1, εn) : εn−1, εn ∈ {0, 1}}.

For the rest of this section, “measure” refers to µ, the uniform measure on V (Qn−2).

Say v ∈ V (Qn−2) is red (or in R) if Uv ∩ V (M) = {(v, 0, 0), (v, 1, 1)} and blue (v

in B) if Uv ∩ V (M) = {(v, 1, 0), (v, 0, 1)}. (So v 6∈ R ∪B iff Uv either contains an edge

of M or meets V (M) at most once.) Say v ∈ R ∪ B is good if there is a (necessarily

unique) v′ ∈ Nv with the same color (R or B) as v; thus v is good iff Uv meets two

edges of M and these have the same direction, and

if w ∼ v are both good then they have the same color iff w = v′. (5.9)

Let X be the set of good vertices and W = V (Qn−2)\X (the set of “bad” vertices).

Observation 5.11. µ(W ) = o(n−β)

Proof. As already noted, v is bad iff it satisfies one of: (i) Uv contains an edge of M ;

(ii) |Uv ∩ V (M)| ≤ 1; (iii) v is red or blue and there is no vertex of the same color in

Nv. It follows from (5.8) that the fraction of v’s of the first type is O(1/n), and from

(5.3) that the fraction of the second type is o(n−β).

For v as in (iii), let xy be one of the two M -edges meeting Uv, say with x ∈ Uv and

y ∈ Uw. Then Uw ∩ V (M) = {y}, w is as in (ii), and v is the unique vertex of Qn−2

for which Uv and Uw are connected by an edge of M . Thus the number of vertices in

(iii) is less than (actually at most half) the number in (ii), so these too make up an

o(n−β)-fraction of the whole.
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Recall that the parity of the edge vvi is the parity of
∑

j 6=i vj and notice that

v and vvi have the same parity iff vi = 0. (5.10)

It follows from (5.9) that T := {(v, v′) : v ∈ X} is a perfect matching of Qn−2[X].

Observation 5.12. Each e = vv′ ∈ T corresponds to two edges of M (((v, 0, 0), (v′, 0, 0))

and ((v, 1, 1), (v′, 1, 1)) if v ∈ R and similarly if v ∈ B), and these edges have the same

parity as e if v ∈ R and the opposite parity if v ∈ B.

Let Γ = Qn−2[X]− T .

Observation 5.13. For each e ∈ T , the ends of e are in different components of Γ. In

particular no component of Γ has measure more than 1/2.

Proof. Assume for a contradiction that e = xy and P = (x = x0, x1, x2, . . . , xk = y) is

a path in Γ. Notice that (5.9) implies xi and xi+1 have different colors, while x and y

have the same color. Thus P ∪ {e} is an odd cycle in Qn−2, which is impossible.

For the rest of this discussion we do not distinguish between components and their

vertex sets.

Proposition 5.14. Γ contains two components of measure 1/2− o(1).

(We really only need one such component, but for the same price can give the correct

picture.)

Proof. This follows from Observation 5.13 and

If Z is a union of components of Γ with z := µ(Z) ≤ 1/2, then z is either o(1) or 1/2− o(1).

(5.11)

Proof of (5.11). Set Y = X \ Z. Since ∇(Z, Y ) ⊆ T and T is a perfect matching of

Qn−2[X], we have hZ∪W (x) ∈ {0, 1} for x ∈ Z, which with Corollary 4.13 (applied in

Qn−2 with (R,S, U) = (Z, Y,W )) and Observation 5.11 gives

z ≥
∫
Z
hZ∪Wdµ ≥ 2z(1− z)− o(1),

implying (5.11).
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Let Z be one of the two large components promised by Proposition 5.14 and Y =

X \ Z. Again (as in the proof of (5.11)), we have hZ∪W (x) ∈ {0, 1} for x ∈ Z, which

with Observation 5.11 and Theorem 4.5 implies that there are i ∈ [n− 2] with

|(∇iZ) ∩ T | = |∇i(Z, Y )| ∼ 2n−3 (5.12)

and ε ∈ {0, 1} such that

all but o(2n) vertices of Z lie in the subcube C(i, ε) = {v : vi = ε} (⊆ V (Qn−2)).

Assume (w.l.o.g.) that ε = 0 and set

Z ′ = {v ∈ Z ∩ C(i, 0) : vvi ∈ T}.

Connectivity of Z and (5.9) imply

any two vertices of Z either agree in both color and parity or disagree in both.

(5.13)

Finally, for Lemma 5.2: For v, w ∈ Z ′, Observation 5.12 and (5.10) imply that

the edges of M corresponding to vvi and wwi have the same parity iff v and w either

agree in both parity and color or disagree in both; but (5.13) says this is true for any

v, w ∈ Z ′. So all edges of M corresponding to edges of ∇i(Z ′, Y ) have the same parity

and the lemma follows from (5.12).

5.4 Proof of Lemma 5.3

For the discussion in this section we fix a canonical matching M∗ and show (proving

Lemma 5.3)

|{I 6∈ I∗ : |M(I)∆M∗| < ζN}| = 2N/4−ω(n/ logn). (5.14)

Assume (w.l.o.g.) that M∗ is the set of odd edges in direction n and let π : V (Qn) →

V (Qn−1) be the projection

π((ε1, . . . , εn)) = (ε1, . . . , εn−1).
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Thus π(V (M∗)) is the set of odd vertices in Qn−1, which we from now on denote by O.

For ε ∈ {0, 1} let Vε = {x ∈ V (Qn) : xn = ε}, and for v ∈ V (Qn−1) let π−1(v) =

{v0, v1} where vε ∈ Vε. (We will not use the coordinates of v, so ”vε” should cause no

confusion.) For I ∈ I, define the labeling σ = σ(I) of V (Qn−1) by:

σv =


0 if v0 ∈ I

1 if v1 ∈ I

Λ if I ∩ {v0, v1} = ∅

Say v is unoccupied if σv = Λ, and occupied otherwise. Note that (since I ∈ I)

no two adjacent vertices have the same label from {0, 1} (5.15)

and

if σv = Λ then both 0 and 1 appear on neighbors of v. (5.16)

Call a labeling σ : V (Qn−1)→ {0, 1,Λ} legal if it satisfies (5.15) and (5.16), and notice

that I 7→ σ(I) is a bijection between I and the set of legal labelings. We will find both

viewpoints useful in what follows and will assume, often without explicit mention, that

when we are discussing I the labeling referred to is σ(I).

For the rest of Section 5.4 we restrict to I as in (5.14), noting that then σ = σ(I)

satisfies

all but a o(1)-fraction of odd vertices are occupied (5.17)

and, by Observation 5.5,

only a o(1)-fraction of the even vertices are occupied. (5.18)

Notation below (E∗, Ai and so on) is for a given I, which the notation suppresses.

Write E∗ for the set of occupied even vertices. Notice that I /∈ I∗ implies that there

is at least one unoccupied v ∈ O, which by (5.16) must have neighbors in both σ−1(0)

and σ−1(1); in particular

there is a non-singleton 2-component in E∗. (5.19)

(Recall k-components were defined in Section 2.2.1.)

Notation.
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• Ai’s : non-singleton 2-components of E∗

• A = ∪Ai

• Gi = N(Ai), G = N(A)

• Ai (or simply i) is


small if |Gi| < n4 and

large otherwise

• X̂ = π−1(X) (for X ⊆ V (Qn−1)).

We usually (without comment) use lower case letters for the cardinalities of the sets

denoted by the corresponding upper case letters, except that we use a for |[A]| and

ai for |[Ai]|. (Recall the closure [A] of A was defined in Section 2.2.3.) We also set

ti = gi − ai and t = g − a, noting that a ≥
∑
ai ([A] can properly contain ∪[Ai]), so

t ≤
∑
ti.

Before moving to lemmas we record two basic observations. The first says that

in some sense all the action is in the [Ai]’s and Gi’s (though this only approximately

describes what will happen in the main argument; see (5.27)).

All vertices of O \G are occupied. (5.20)

Proof. All neighbors of the set in (5.20) are in E \A, and any occupied vertex from this

set is a singleton 2-component of E∗, so by (5.16) has all its neighbors occupied (with

a common label).

The second observation (this will be crucial; see (5.39)-(5.40) and (5.47), which leads

via (5.48) to (5.57)) is

for each i, each edge contained in Ĝi has a neighbor in I ∩ Âi (5.21)

(that is, one of its ends has such a neighbor; note these edges form an induced matching

in Qn).



52

5.4.1 Main lemma

We continue to restrict to I as in (5.14) and to suppress dependence on I in our notation.

In what follows we use “cost of X” for the log of the number of possibilities for X.

Before turning to our main point, Lemma 5.16, we observe that there is not much

to do when g is large:

Lemma 5.15. The number of I’s with g = Ω(N) is 2N/4−Ω(N).

Proof. By (5.18), the cost of specifying A is at most log
( N/4
≤o(N)

)
= o(N), and that for

labeling A is at most |A| = o(N). But A and its labels determine G and its labels,

while (5.20) says that the cost of labeling O \G (given G) is at most N/4− g and that

the labels for O \G determine those for E \N(G) (and all labels on N(G) \ A are Λ).

The lemma follows.

We may thus assume from now on that (say)

g < N/4, (5.22)

so that, by Proposition 2.6,

t = Ω(g/
√
n) and ti = Ω(gi/

√
n) for each i. (5.23)

This small but crucial point will be used repeatedly in what follows; indeed, one may

say that the purpose of Lemmas 1.2 and 1.3 was to get us to (5.23). (Namely: Lemmas

1.2 and 1.3 lead to (5.18); (5.18) is the basis for Lemma 5.15; and Lemma 5.15 allows

us to restrict to (5.22), where we have (5.23).)

Lemma 5.16. For any a 6= 0 and g < N/4

log |{I : |[A]| = a, |G| = g}| = N/4− ω(t/ log n). (5.24)

To see that this (with Lemma 5.15) gives Lemma 5.3, note that we always have

g ≥ 2n−2, and that if g ≤ n2 (say) then Proposition 2.7 gives t ∼ g. Thus Lemma 5.16

and (5.23) bound the number of I’s satisfying (5.22) by

2N/4
[
n42−ω(n/ logn) +

∑
g>n2 g2−ω(g/(

√
n logn))

]
= 2N/4−ω(n/ logn)
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(where the irrelevant n4 and initial g in the sum are for choices of (g, a) and a respec-

tively).

5.4.2 Proof of Lemma 5.16

Before beginning in earnest, we dispose of the minor cost of specifying the ai’s and gi’s

(with
∑
ai ≤ a,

∑
gi = g). The only thing to notice here is that, since gi ≥ 2n− 2 ∀i,

the number of i’s is less than g/n. Thus Proposition 2.1 bounds the cost of the gi’s by

(g/n) log(en) and that of the ai’s by (g/n) log(en) if (g >) a > 2g/n,

2g/n if a ≤ 2g/n,

so also the overall “decomposition” cost by

O(g log n/n) = O(t log n/
√
n). (5.25)

Preview and objective

It remains to specify Ai’s (and thus Gi’s and [Ai]’s) corresponding to the above

parameters, and a labeling (σ) compatible with these specifications. For small i’s it

turns out to be easy to directly identify the Ai’s and their labels (which also gives the

associated Gi’s and [Ai]’s and their labels).

For the large i’s we think of “identification” and “labeling” phases, roughly cor-

responding to identifying the [Ai]’s (and Gi’s), and then the restriction of σ to these

sets—“roughly” because in the most interesting (“slack”) case the first phase will not

actually succeed in identifying the [Ai]’s. The identification phase takes place in the

projection on Qn−1 and leans mainly on Lemma 2.11. For the labeling phase we return

to Qn and work with maximal independent sets rather than labelings (recall these are

interchangeable), with arguments again based on the algorithm of Section 2.1.1. It is

here that the crucial role of J will finally appear.

The large i’s will be of two types, “tight” and “slack.” The slack i’s are treated last,

when we already have full information on the small and tight i’s. Here we produce a

single pair (S, F ) ⊆ E ×O satisfying (inter alia; e.g. the role of F will appear later)

S ⊇ ∪{[Ai] : i slack} (5.26)
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and

S ∪N(S) is disjoint from ∪ {[Ai] ∪Gi : i small or tight},

and then specify labels for S ∪N(S).

Since N(S) ⊇ ∪{Gi : i slack}, (5.20) gives

all vertices of O \ (∪{Gi : i small or tight} ∪N(S)) are occupied. (5.27)

Note also that

a (legal) labeling is determined by its restriction to ∪{[Ai] : i small or tight} ∪ S ∪ O,

since each v not in this set (so v ∈ E) has at least one occupied neighbor (for if all

neighbors of v are unoccupied, then v is occupied and, by (5.16), N2(v) contains an

occupied vertex, so v must be in some Ai).

Thus the cost of σ given its restriction to

∪{[Ai] ∪Gi : i small or tight} ∪ S ∪N(S)

(so in particular the identity of this set) is at most

N/4−
[∑
{gi : i small or tight}+ |N(S)|

]
. (5.28)

This gives us a benchmark: for Lemma 5.16, the cost of the above information (through

specification of labels for S ∪ N(S)) should be less by ω(t/ log n) than the subtracted

quantity in (5.28) (which in particular makes the decomposition cost (5.25) negligible).

In the event, this will hold fairly locally: we will wind up paying gi−Ω(ti) for each small

or tight i and |N(S)| − ω(t′/ log n) for (all) the slack i’s, where t′ =
∑
{ti : i slack}.

(We will repeat this last bit more precisely at the end of the section, following the proof

of Lemma 5.20.)

Small i’s. As suggested above, these are easy. Since |Ai| ≤ ai (= |[Ai]|), the cost of

identifying Ai, together with its labels, is at most

(n− 2) +O(ai log n) + ai = n+O(ai log n) < gi − (1/2− o(1))ti. (5.29)
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Here the first two terms on the l.h.s., representing the cost of identifying Ai, are given by

Proposition 2.4, and the final bound follows from gi ≥ max{2n−2, ti} and ai = O(gi/n),

the latter holding for small i by Proposition 2.7.

But Ai and its labels determine Gi, [Ai] and their labels (the labels since all vertices

of N(Gi) \Ai are labeled Λ); so (5.29) actually bounds the total cost of identifying and

labeling [Ai] ∪Gi.

Large i’s. For a given large i, Lemma 2.11 gives W = W(ai, gi), ϕ = ϕi, S = Si and

F = Fi (as in the lemma), at cost O(ti log2 n/
√
n); so the cost of specifying these for

all large i is

O(
∑
ti log2 n/

√
n). (5.30)

Let ε = εn be a parameter satisfying

1� ε� 1/ log n, (5.31)

and say i is tight if (with ε as in (5.31))

gi − fi ≤ εti (5.32)

and slack otherwise. (As usual we use si = |Si| and fi = |Fi|. The role of ε is just to

enable proper definitions of ”tight” and ”slack.”)

For our purposes the most significant difference between these two possibilities is

that specification of ([Ai], Gi) given (Si, Fi) is cheap if i is tight, but becomes unafford-

able as the difference in (5.32) grows; this leads to the following plan. We first treat

tight i’s, in each case paying for the full specification of [Ai] (which determines Gi) and

then the labels of [Ai] ∪Gi.

We then combine and slightly massage the remaining (slack) Si’s and Fi’s, taking

account of what we know so far, to produce a single pair (S, F ) that in some sense

approximates the slack parts of the configuration, and from (S, F ) go directly to spec-

ification of labels (so we learn—implicitly—the identities of the slack [Ai]’s and Gi’s

only when we learn their labels.)
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Tight i’s. The next two lemmas bound the total cost of a tight i (so of [Ai], Gi and

their labels) by

gi − Ω(ti). (5.33)

Lemma 5.17. For tight i, the cost of ([Ai], Gi) given (Si, Fi) is o(ti).

Lemma 5.18. The cost of labeling a given [Ai] ∪Gi is gi − Ω(ti).

Remark. Lemma 5.18 does not require that i be tight.

Proof of Lemma 5.17. Given (Si, Fi), fix some A∗ ∈ ϕ−1(Si, Fi). (Note A∗ is closed.

Note also that we are not considering possibilities for A∗, just naming a particular

choice associated with (Si, Fi)—e.g. the first member of ϕ−1
i (Si, Fi) according to some

order—so the specification costs nothing. This strangely helpful device is from [25].)

The key (trivial) point here is that (given H := A∗)

(H \Gi, Gi \H) determines (Gi, [A]).

So we should bound the costs of H \Gi and Gi \H. Since H \Gi ⊆ H \Fi, the cost of

H \Gi is at most |H \ Fi| ≤ εti = o(ti) (since i is tight).

On the other hand,

Gi \H = N([Ai] \A∗) \H

(since each x ∈ Gi \H has a neighbor in [Ai] and none in A∗); so we may specify Gi \H

by specifying a Y ⊆ [Ai] \ A∗ ⊆ Si \ A∗ of size at most |Gi \H| ≤ gi − fi = o(ti) with

Gi \H = N(Y ) \H (let Y contain one neighbor of x for each x ∈ Gi \H). But, since

si < fi+o(ti) ≤ gi+o(ti) (see (c) of Lemma 2.11), we have |Si\A∗| = si−ai ≤ ti+o(ti);

and the cost of specifying a subset of size o(ti) from a set of size O(ti) is o(ti).

Proof of lemma 5.18. As promised earlier (see the discussion following (5.25)) we now

return to Qn and, with W = [̂Ai] ∪ Ĝi, bound the number of MIS’s in Γ := Qn[W ].

(Note that since Ai is a 2-component of E∗, I∩W is an MIS in Γ, possibilities for which

correspond to possible (legal) labelings of [Ai] ∪Gi).

We run [Algorithm] (of Section 2.1.1) twice (or, really, once with a pause; here we

index steps by j since i is already taken). For the first run (on all of Γ, with input the



57

unknown I) we STOP as soon as

dXj (x) ≤ n2/3 for all x ∈ Xj .

This implies |supp(ξ)| ≤ 2(gi+ai)n
−2/3 (note e.g. |Ĝi| = 2gi), so Proposition 5.6 bounds

the cost of this run by

(2 + o(1))(gi + ai)n
−2/3 log(n2/3) = o(ti), (5.34)

where the ”o(ti)” uses (5.23). On the other hand, with Z1 the final Xj from this run,

Proposition 5.7 with Z = Z1, d = n2/3 and

L = |∇(W )| = 2(n− 1)(gi − ai) (5.35)

gives

|Z1| ≤ (2n− n2/3)−1(2n(gi + ai) + 2(n− 1)(gi − ai))

< (2n− n2/3)−14ngi < (1 + n−1/3)2gi. (5.36)

We next run [Algorithm] on Qn[Z1] and STOP as soon as either

(a) dXj (x) ≤ n1/3 for all x ∈ Xj or

(b) |Xj | ≤ 2ai.

(Note we treat this as a fresh run rather than a continuation, and recycle Xj and ξ.)

Let Z2 be the final Xj for this run. From (5.36) and (b) we have z1 − z2 ≤ 2ti +

2n−1/3gi, so in view of (a),

|supp(ξ)| ≤ (z1 − z2)n−1/3 ≤ 2tin
−1/3 + 2gin

−2/3 =: r.

Proposition 5.6 (with this r and l = |W | ≤ 4gi) then bounds the run cost by

O((tin
−1/3 + gin

−2/3) log n+ log gi) = o(ti), (5.37)

with the o(ti) given by (5.23).

Finally we consider the cost of specifying I ∩ Z2 (an MIS of Qn[Z2]). If the second

run ends with |Z2| ≤ 2ai (as in (b)), then Theorem 1.2 bounds this cost by

ai = gi − ti.
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Suppose instead that the algorithm halts due to (a). In this case we again use

Proposition 5.7, now with Z = Z2, d = n1/3 and L as in (5.35), to obtain (cf. (5.36))

|Z2| < (1 + n−2/3)2gi = 2gi + o(ti). (5.38)

We now apply Theorem 3.4 in Γ := Qn[Z2]. The key here is (5.21), which implies

no edge of Ĝi can belong to MΓ(I ∩ Z2) (5.39)

(since the neighbor promised by (5.21) cannot come from I \Z2, which has no neighbors

in Z2). It follows that

mΓ(I ∩ Z2) ≤ ai (5.40)

(each edge of MΓ(I∩Z2) meets (possibly meaning equals) one of the ai edges of Âi and,

since MΓ(I ∩Z2) is an induced matching, the edges met are distinct). The combination

of (5.38), (5.40) and Theorem 3.4 now again bounds the cost of I ∩ Z2 by gi − Ω(ti).

Summarizing, the cost of the two runs of [Algorithm] is o(ti) (see (5.34), (5.37))

and, regardless of how these end, the cost of I∩Z2 is gi−Ω(ti). The lemma follows.

Remark 5.19. Note—cf. the preview at the end of Section 2.1.1—the above argument

does not work if we run [Algorithm] just once, stopping when degrees in Xj fall below

n1/3; for our bound on |supp(ξ)| then becomes 2(gi + ai)n
−1/3, so the cost bound in

(5.34) increases to Θ(gin
−1/3 log n), which need not be small compared to ti.

Slack i’s. At this point we have found and labeled

Y := ∪{[Ai] ∪Gi : i small or tight} ,

so are left with the slack i’s. As suggested above, these differ from tight i’s in that the

step that identifies the ([Ai], Gi)’s is no longer affordable, and we instead go directly

from the (Si, Fi)’s to the labeling phase.

Set YE = Y ∩ E and YO = Y ∩ O (so YE = ∪{[Ai] : i small or tight} and similarly

for YO). Writing ∪s and
∑s for union and sum over slack i’s, set

S = (∪sSi) \N(YO), F = ∪sFi, X = N(S) \ F
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(note N(YO) ⊇ YE), g′ =
∑s gi and t′ =

∑s ti. Notice that

g′ − f > εt′ (5.41)

and that with these definitions we still have the appropriate versions of (a)-(c) of

Lemma 2.11, namely:

(a′) S ⊇ ∪s[Ai], F ⊆ ∪sGi;

(b’) dF (u) ≥ n− 1−
√
n/ log n ∀u ∈ S;

(c′) |S| ≤ |F |+O(t′/(
√
n log n)).

Here (b’) is immediate from the corresponding statement for the (Si, Fi)’s, as is (c′)

once we observe that the Fi’s are disjoint (since the Gi’s are, and Fi ⊆ Gi). Similarly,

(a′) holds because Si ⊇ [Ai] (∀i) and—the least uninteresting point here—N(YO) ∩

(∪s[Ai]) = ∅ (since there are no edges between [Ai] and Gj if i 6= j).

The last ingredient in the proof of Lemma 5.16 is Lemma 5.20 below, before turning

to which we need a few further observations.

First, we are about to return to Qn (as in the proof of Lemma 5.18), where we will

be running [Algorithm] on

W := Ŝ ∪ F̂ , (5.42)

and for use in Proposition 5.7 will need a bound on |∇W |. Setting ψ =
√
n/ log n (and

for the moment still working in Qn−1), we have (from (b’))

|∇S \ ∇(S, F )| ≤ sψ (5.43)

and

|∇F \ ∇(S, F )| ≤ f(n− 1)− s(n− 1− ψ)

= (f − s)(n− 1) + sψ,

(5.44)

whence (now in Qn)

L := |∇W | ≤ 2(f − s)(n− 1) + 4sψ. (5.45)

Set U = Ŝ ∪ N̂(S). A second—crucial—observation is

I ∩ U is an MIS of Qn[U ]. (5.46)
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Proof. Suppose instead that x ∈ U \ (I ∪ N(I ∩ U)). Then, since I is an MIS of Qn,

there are y ∼ x and z ∼ xn with y, z ∈ I and y 6∈ U . Note this implies π(x) ∈ N(S)

(as opposed to S), since otherwise N(x) ⊆ U . Now π(y), π(z) are distinct occupied

neighbors of π(x) (distinct since y and z, being in I, cannot be adjacent), meaning that

π(x) ∈ Gi for some slack i (slack because N(S)∩YO = ∅); but since Ai is a 2-component

of E∗, this implies π(y) ∈ Ai and y ∈ U , a contradiction.

Finally, we observe that

the edges in N̂(S) with neighbors in I ∩ U are precisely those in ∪sĜi. (5.47)

(We have already noted in (5.21) that edges in ∪sĜi do have such neighbors (in ∪sÂi),

so what (5.47) really says is that the remaining edges in N̂(S) do not. This is because

there are no occupied vertices in S \ ∪sAi: by (b’) each v in S has a neighbor in F , so

in some slack Gi, so if occupied must lie in Ai.) Of course at this point we don’t know

the Gi’s, but what we can use from (5.47) is

exactly g′ edges in N̂(S) have neighbors in I ∩ U (so in I ∩ Ŝ). (5.48)

Lemma 5.20. The cost of labeling S ∪N(S) is at most

f + x− Ω(εt′) (= |N(S)| − Ω(εt′)) (5.49)

(where x is the size of X, which was defined two lines before (5.41)).

Proof. This is similar to the proof of Lemma 5.18. We again run [Algorithm] in two

stages, but this time only on W (defined in (5.42)). As before we STOP the first run

when

dXi(x) ≤ n2/3 ∀x ∈ Xi,

and let Z1 be the (final) Xi produced by this stage. We then run the algorithm on

Qn[Z1], in this case stopping as soon as either

(a) dXi(x) ≤ n1/3 for all x ∈ Xi or

(b) |Xi| ≤ 2(f − t′)
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(of course (b) is possible only if f ≥ t′), and letting Z2 be the final Xi.

As before: the ξ produced by the first run has (|ξ| ≤ |W | = 2(s+f) and) |supp(ξ)| ≤

2(s+ f)n−2/3, so Proposition 5.6 bounds the cost of this run by

(2 + o(1))(s+ f)n−2/3 log(n2/3) = o(εt′) (5.50)

(using s + f ≤ 2g′, as follows from (c′) and (5.41), with (5.23) and (5.31)); Proposi-

tion 5.7 with Z = Z1, d = n2/3 and L as in (5.45) gives

|Z1| < (2n− n2/3)−1[2n(s+ f) + 2(f − s)n+ 4sψ]

= (2n− n2/3)−1[4nf + 4sψ]

≤ 2f(1 + n−1/3) +O(sψ/n)

= 2f(1 + n−1/3) + o(εt′) (5.51)

(using sψ/n = O(g′/(
√
n log n)) = o(εt′), which follows from (5.23) and (5.31); this is

the reason for the lower bound in (5.31)); (a), (b) and (5.51), now with the ξ from the

second run, imply

|supp(ξ)| ≤ (z1 − z2)n−1/3 ≤ r :=

 (2fn−1/3 +O(t′))n−1/3 if f ≥ t′,

(2 + o(1))t′n−1/3 if f < t′;

Proposition 5.6 with this r and l = |W | = O(f) (note (b’) implies s < (1 + o(1))f)

bounds the run cost by

O((fn−2/3 + t′n−1/3) log n+ log f) = o(εt′), (5.52)

with the o(εt′) given by (5.23) (and f ≤ g′); and Proposition 5.7, with Z = Z2, d = n1/3

and, again, L as in (5.45), gives (cf. (5.51))

|Z2| < (2n− n1/3)−1[2n(s+ f) + 2(f − s)n+ 4sψ]

≤ 2f(1 + n−2/3) + o(εt′) = 2f + o(εt′) (5.53)

(again—as in (5.51)—using sψ/n = o(εt′)).

Let P = I∩(W \Z2) (the set of vertices that were ”processed” in the two runs of the

algorithm and turned out to be in I), X ′ = X̂ \N(P ), Z ′ = Z2∪X ′ and Γ = Qn[Z ′]. So
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we are down to identifying I ∩ Z ′ (Z ′ being the set of vertices of U whose membership

in I is still in question). Noting that

I ∩ Z ′ is an MIS of Γ (5.54)

(see (5.46)) and recalling that the run costs in (5.50) and (5.52) were o(εt′), we find

that Lemma 5.20 will follow from

the cost of identifying I ∩ Z ′ is at most f + x− Ω(εt′). (5.55)

(Note we are still enforcing (5.48).)

If |Z ′| ≤ 2(f + x) − Ω(εt′) then (5.55) is given by Theorem 1.2 (and (5.54)). In

particular this is true if the second run ends because of (b), since then |Z ′| ≤ z2 + 2x ≤

2(f + x− t′).

So we are left with cases where the run is stopped by (a) and

|Z ′| > 2(f + x)− o(εt′),

which by (5.53) implies x′ = 2x− o(εt′), i.e.

|X̂ \X ′| = o(εt′). (5.56)

But (5.48) and the fact that each edge of F̂ has a neighbor in I ∩ Ŝ imply that exactly

g′ − f > εt′ edges in X̂ have neighbors in I ∩ Ŝ, which with (5.56) yields

(1− o(1))εt′ edges in X ′ have neighbors in Z2 ∩ I ∩ Ŝ. (5.57)

Now let M = MΓ(I ∩ Z ′). According to the definition of MΓ (see (5.2)) no edge as

in (5.57) can be in M (cf. (5.39)), so M fails to cover at least one vertex from each of

these edges (since, M being induced, V (M) meets any edge not in M at most once).

But then z′ ≤ 2(f + x) + o(εt′) (which follows from (5.53) and z′ ≤ z2 + 2x) implies

mΓ(I ∩ Z ′) = |M | < (2(f + x)− (1− o(1))εt′)/2 = f + x− Ω(εt′),

and a final application of Theorem 3.4 (with the above bound on z′) again gives (5.55),

completing the proof of Lemma 5.20.
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In sum (making precise the discussion following (5.28)), we have paid:

1. O(t log n/
√
n) for the decompositions of a and g (see (5.25));

2. gi−Ω(ti) for specification and labeling of [Ai] and Gi for each small i (see (5.29));

3. O(
∑
ti log2 n/

√
n) for the (Si, Fi)’s, i large (see (5.30));

4. for each tight i, gi − Ω(ti) for specification and labeling of [Ai] and Gi, given

(Si, Fi) (see (5.33));

5. |N(S)| − Ω(εt′) for labeling S ∪N(S), given (S, F ) (which is determined by the

(Si, Fi)’s, together with the Gi’s for small and tight i); see (5.49).

Finally, the sum of all these cost bounds is at most

|N(S)|+
∑
{gi : i small or tight}+O(

∑
ti log2 n/

√
n)− Ω (

∑
{ti : i small or tight})− Ω(εt′),

which (recalling t′ =
∑
{ti : i slack}, t ≤

∑
ti and ε = ω(1/ log n)) is at most

|N(S)|+
∑
{gi : i small or tight} − ω(t/ log n);

and combining this with the additional cost in (5.28) (paid for the remaining labels in

O) gives Lemma 5.16.
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Chapter 6

The number of 4-colorings of the Hamming cube

6.1 Lower bound and task

As discussed earlier, the asymptotic value in Theorem 1.9 is an obvious lower bound.

We quickly show how this goes. Let {1, 2, 3, 4} be our set of colors, C the set of (six)

ordered equipartitions of this set, and F the set of (proper) 4-colorings of Qd. Say

f ∈ F agrees with (C,D) ∈ C at v if

fv ∈ C ⇔ v ∈ E .

For given (C,D) and a fixed k, the number of colorings that disagree with (C,D) at

precisely k vertices is asymptotically
(
N
k

)
2N−dk ∼ 2N/k! (the k exceptional vertices—

flaws—will typically have disjoint neighborhoods, whose colors are determined by those

of the flaws), and summing over choices of (C,D) and k gives the value in Theorem 1.8.

(See also the more general discussion in [10, Sec. 6.1]; in particular the case q = 4 of

their Conjecture 6.2 is our Theorem 1.8. For q ≥ 5, colorings will typically have many

flaws, and the conjectured asymptotics are for logCq(Qd) rather than Cq(Qd) itself.)

In fact for almost every f there is some (C,D) ∈ C with which f agrees on all but

a tiny fraction of the vertices; this special case of Theorem 1.1 of [10] is our point of

departure:

Theorem 6.1. There is a fixed α < 2 such that for all but |F|2−Ω(d) f ’s in F there is

some (C,D) ∈ C such that

|{v ∈ V : f disagrees with (C,D) at v}| < αd.

For f and (C,D) as in Theorem 6.1, call (C,D) the main phase of f . (So not every f
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has a main phase, but the number that do not is negligible.) We then write Xf for the

set of vertices that disagree with (C,D) at f and call such vertices bad (for f).

Say a coloring (with a main phase) is ideal if any two of its bad vertices are at

distance at least 3. The preceding lower bound discussion extends to say that the

number of ideal colorings is less than 6
∑

k

(
N
k

)
2N−dk < 6e2N . So the asymptotic

number of ideal colorings is 6e2N and for Theorem 1.8 we should show that the number

of non-ideal colorings is o(2N ), which in view of Theorem 6.1 will follow if we show

that the number of non-ideal colorings with a given main phase (C,D) is o(2N ). (In

fact it is 2N−Ω(d)—see following (6.3)—which with Theorem 6.1 gives a similar value

for what’s lost in the “∼” of Theorem 1.8.)

We may specialize a little further: Let F∗ be the set of non-ideal f ’s having main

phase ({1, 2}, {3, 4}) and satisfying

|N(Xf ∩ E)| ≥ |N(Xf ∩ O)| (6.1)

(where N is neighborhood). Then Theorem 1.8 will follow from

|F∗| = o(2N ), (6.2)

and the rest of this chapter is concerned with proving this.

The tools that we will use are not unexpected, as both have been important in

earlier work on questions of the present type, but the way they are combined here

seems interesting. Specifically, what’s perhaps most interesting is the use of entropy

following application of [57, 22] (see Section 6.3.3). This is in contrast to, e.g., the use

in [22] of an entropy-based result from [33] as a sort of preprocessing step (echoed in the

role of the entropy-based argument in [22] here). Something similar in spirit—though

not in implementation—to what we do appears in a recent breakthrough of Peled and

Spinka [53] (on colorings of Zd and related statistical physics models), which partly

inspired our approach.
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6.2 Main point

In what follows f will always be a (proper) coloring of Qd. We use fu for the value of

f at u and fU for the restriction of f to U .

We almost always use lower case letters for the cardinalities of the sets denoted by

the corresponding upper case letters (thus a = |A|, â = Â and so on), usually without

comment.

For f ∈ F∗, we denote by Af and Âf the unions of (resp.) the nonsingleton and

singleton 2-components of Xf ∩ E , and set Gf = N(Af ) and Ĝf = N(Âf ). Set

F∗(g, ĝ) = {f ∈ F∗ : |Gf | = g, |Ĝf | = ĝ}.

The next lemma is almost all of the story.

Lemma 6.2.

2−N |F∗(g, ĝ)| =


2−Ω(d) if g = 0 and ĝ ≤ d2/ log d,

exp[−Ω( g
log d + ĝ

d log ĝ
d)] otherwise.

We close this section with the derivation of (6.2) from Lemma 6.2. The lemma itself

is proved in Section 6.3.

Proof of (6.2). We show

2−N |F∗| = 2−Ω(d/ log d), (6.3)

which a little more care with the bounds in Lemma 6.2 (see the remark following

“Al terms” in Section 6.3.4) would improve to 2−Ω(d). With
∑∗ running over (g, ĝ)

satisfying g 6= 0 or ĝ > d2/ log d, the lemma gives

2−N |F∗| = 2−N
∑∗ |F∗(g, ĝ)|+ (d2/ log d)2−Ω(d);

so we are just interested in the sum, which we may bound by

d2

log d

∑
g≥d

2−ζg/ log d +

1 +
∑
g≥d

2−ζg/ log d

 ∑
ĝ≥d2/ log d

2−ζ(ĝ/d) log(ĝ/d)

 , (6.4)

where ζ > 0 is the implied constant in the second line of Lemma 6.2. (Of course if g is

not zero then it is at least d.)
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With x = 2−ζ/ log d, the first sum in (6.4) is

xd
∑
i≥0

xi = xd/(1− x) = xd ·O(log d) = 2−Ω(d/ log d).

Similarly, with y = 2−ζ log(d/ log d)/d, the last sum in (6.4) is less than

∑
ĝ≥d2/ log d

yĝ = yd
2/ log d/(1− y) = 2−Ω(d).

So we have (6.3).

6.3 Proof

6.3.1 Orientation

We first spend a little time trying to motivate what’s happening below, hoping this

makes the discussion easier to follow. For purposes of comparison we begin with a

standardish entropy-based bound.

Given G ⊆ F∗, set

T (u) = TG(u) = 1
dH(fNu) +H(fu|f(Nu))

= 1
d [H(f(Nu)) +H(fNu |f(Nu))] +H(fu|f(Nu)), (6.5)

where f is uniform from G. (We will use this only with u ∈ O.) Then

log |G| = H(f) = H(fE) +H(fO|fE)

≤ 1

d

∑
u∈O

H(fNu) +
∑
u∈O

H(fu|f(Nu)) =
∑
u∈O

T (u).

Here the first two equalities are given by (a) and (b) of Lemma 2.12 and the inequality

by Lemmas 2.13 and 2.12 (c,d), the former with

αS =

 1/d if S = Nu for some u ∈ O,

0 otherwise.
(6.6)

On the other hand, for each possible value c of f(Nu),

H(fu|f(Nu) = c) ≤ log(4− |c|),

H(fNu |f(Nu) = c) ≤ d log |c|.
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Since log x+log(4−x) ≤ 2, this bounds 1
dH(fNu |f(Nu))+H(fu|f(Nu)) (the main part

of (6.5)) by

∑
c P(f(Nu) = c)[1

dH(fNu |f(Nu) = c) +H(fu|f(Nu) = c)] ≤ 2,

yielding

T (u) ≤ 2 +O(1/d) (6.7)

(since H(f(Nu)) = O(1)).

In particular, applying this with G = F∗ gives the easy bound

log |F∗| ≤ N +O(N/d), (6.8)

whereas we want log |F∗| < N−ω(1); so what we do below may be thought of as fighting

over this difference. (Note this argument makes no use of the fact that members of F∗

are non-ideal, so can’t give a bound less than N .)

We now very briefly sketch the actual argument. We think of |F∗| as the number

of ways to specify f ∈ F∗, which we do in two stages. The first of these identifies

a “template,” T = Tf , which provides some, usually incomplete, information on Xf

(recall this is the set of vertices that are bad for f). In fact T will completely specify

Xf ∩ E , but the information on Xf ∩ O will typically be less precise.

The second (“coloring”) stage then treats possibilities for f given T . Thus we

restrict to a set G of f ’s satisfying Tf = T , usually with some “cheap” part of f also

specified, and return to the entropy approach leading to (6.8). The hope—and basic

idea of the proof—is that what we save in the above argument by exploiting information

from the template recovers (more exactly, more than recovers) what we’ve paid for said

information.

In what follows we usually speak in terms of the cost of a choice, meaning the log

of the number of possibilities for that choice, which we think of as the number of bits

“paid” for the desired information.
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6.3.2 Templates

A template will consist of two parts, the first specifying Xf ∩ E and the second corre-

sponding to, but not necessarily precisely identifying, the portion of Xf∩O not adjacent

to Xf ∩E . (For perspective we note that the asymmetry between E and O corresponds

to (6.1) in the definition of F∗, an assumption we will use frequently below.)

Names for the sets involved will now be helpful; for a particular f we use the

following notation, with dependence on f suppressed (so X = Xf , Ai = Ai(f) and so

on).

Ai’s: non-singleton 2-components of X ∩ E ;

Âi’s: singleton 2-components of X ∩ E ;

Gi = N(Ai), Ĝi = N(Âi);

A = ∪Ai and similarly for Â, G and Ĝ (as in the passage preceding Lemma 6.2);

R = O \ (G ∪ Ĝ);

Pi’s: 2-components of X ∩R meeting N2(G ∪ Ĝ);

P̄i’s: non-singleton 2-components of X ∩R not meeting N2(G ∪ Ĝ);

P̂i’s: singleton 2-components of X ∩R not in N2(G ∪ Ĝ);

Qi = N(Pi), Q̄i = N(P̄i) and Q̂i = N(P̂i);

P = ∪Pi, Q = ∪Qi etc.

(See figure 6.1.) Note that the vertices of Q ∪ Q̄ ∪ Q̂, not being in A ∪ Â, are all good,

while the template does not usually distinguish good and bad vertices of G ∪ Ĝ. (The

one exception to this is in the treatment of the special case (6.9) in Section 6.3.5.) Note

also that the Gi’s and Ĝi’s are pairwise disjoint and similarly for the Qi’s, Q̄i’s and

Q̂i’s.

Treatment of the contributions (to our overall cost) of the above pieces will depend

on their sizes, necessitating some further decomposition, as follows. (Recall ai = |Ai|

and so on.) Say

Ai is

 small if gi < exp2[log3 d] and

large otherwise,
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E
Q̄ Q̂ Q A Â

OP̄ P̂ P G Ĝ

Figure 6.1:

and similarly for P̄i and Pi. Let As, Al be the unions of the small and large Ai’s (resp.)

and extend this notation in the natural ways; thus Gs = N(As), P l is the union of the

large Pi’s and so on. We also set b = |B(Al)| (see Section 2.2.3).

Remark. The choice exp2[log3 d] is not delicate. The most serious constraint is in the

discussion of (6.32), where we use ql = dω(log d). The other cutoffs could be smaller—we

mainly need them to support application of Lemmas 2.8-2.9—but for simplicity we use

one value for all.

Note that in proving Lemma 6.2 we are given g and ĝ. Analysis in Sections 6.3.4

and 6.3.5 will vary depending on these, but for now the discussion is general. It will be

convenient to set g = g + ĝ.

Before proceeding, we set aside the easy (but important) special case in which

a = p̄ = p = 0 and ĝ ≤ d2/ log d. (6.9)

This will be handled in Section 6.3.5, and until then we restrict to f ’s that are not of

this type.

It will be helpful to have specified the sizes of some of the other sets above, namely

as (= |As|), gs, p, q, p̄, q̄, p̂, iAs , iP̄ s , iP s , b,

which we may do at an (eventually negligible) cost of

O(log g). (6.10)

(Most of these could be skipped, but it’s easier to pay the above negligible cost up front

than to waste time on this issue.)
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We begin with costs associated with the non-large sets above. These choices are

mostly treated as if made autonomously; that is, without trying to exploit proximity

or non-proximity of different pieces. The one exception is in the cost of P s, where

we sometimes save substantially by choosing initial vertices for the 2-components from

N2(G ∪ Ĝ) rather than all of O.

Claim 6.3. The costs of identifying Â,As,P̂ ,P̄ s and P s are bounded by:

[Â] log
(N/2
â

)
≤ ĝ − Ω((ĝ/d)) log(ĝ/d)) (using ĝ = âd);

[As] iAs(d− 1) +O(as log d);

[P̂ ] log
(N/2
p̂

)
≤ p̂d = q̂;

[P̄ s] iP̄ s(d− 1) +O(p̄s log d);

[P s] iP s log(egd2/iP s) +O(ps log d).

Proof. The first and third of these are trivial and the others are instances of Proposi-

tion 2.5, with some relaxation of bounds. We use Y = O (|Y | = N/2) for all but [P s],

where, as mentioned above, we save significantly by taking Y = N2(G ∪ Ĝ).

For larger pieces we have the following bounds, which, in contrast to the elementary

Claim 6.3, depend on the sophisticated results of Section 2.2.3.

Lemmas 2.9 and 2.8 bound the costs of Al and Q̄l by

gl − b− Ω(gl/ log d) (6.11)

and

q̄l − Ω(q̄l/ log d). (6.12)

(E.g. for (6.11): we first pay O(gl log d/d) for the list of gi’s and (with the obvious

meaning) bi’s corresponding to large Ai’s (the cost bound given by Proposition 2.1, using

iAl < gl/d), and then apply Lemma 2.9 to the pieces, absorbing the initial O(gl log d/d)

and the 2d from the lemma in the “Ω” term of (6.11).)
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E
Ql A∪Â

OP l G∪Ĝ
S

F

Figure 6.2: S and F

For P l, perhaps the most interesting part of this story, the cost of full specification

turns out to be more than we can afford, and we retreat to the approximations of

Lemma 2.10. (As mentioned earlier, Lemma 2.10 was originally a step in the proof of

Lemma 2.8; so its present appearance in a non-auxiliary role seems interesting.)

Here again we pay an initial

O(ql log d/d) (6.13)

for (qi : i ∈ I), where I indexes the large Pi’s. Then for i ∈ I we slightly modify

the output of Lemma 2.10 (applied here with the roles of E and O reversed), letting

(S′i, Fi) = ϕi(Pi) ∈ Wi, with ϕi = ϕqi and Wi = W(qi) as in the lemma, and setting

Si = S′i \ (G ∪ G′) (see Figure 2). Note (Si, Fi) still enjoys the properties the lemma

promised for (S′i, Fi); that is,

Si ⊇ [Pi], Fi ⊆ Qi, (6.14)

dFi(u) ≥ d− d/ log d ∀u ∈ Si. (6.15)

(The only thing to observe here—used for the first part of (6.14)—is that [Pi]∩(G∪Ĝ) =

∅ follows from N(Pi)∩ (A∪ Â) = ∅. Incidentally, S ⊇ Pi in (6.14) would be enough for

our purposes.) Note also that the Si’s are pairwise disjoint (by (6.15) since the second

part of (6.14) implies the Fi’s are pairwise disjoint) and that, with S = ∪Si, F = ∪Fi,

S ∩ (G ∪ Ĝ) = ∅ = F ∩ (Q̄ ∪ Q̂ ∪Qs). (6.16)

Lemma 2.10 bounds the cost of specifying the (Si, Fi)’s by

O(ql log2 d/d), (6.17)
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which absorbs the decomposition cost (6.13).

This completes the template stage (apart from the treatment of (6.9)). Formally—

but we won’t actually use this—we could say that T = Tf is (A, Â, P̄ , P̂ , P s, S, F ).

(Note A determines As, Al and similarly for P̄ .)

6.3.3 Colors

First notice that each P̄i, Q̄i, P̂i, Q̂i, P
s
i , Qsi (these being, of course, the 2-components

of P s and Qs) and Fi is monochromatic. (The general observation is: if Z is a 2-linked

subset of O or E , all vertices of Z are bad and all vertices of N(Z) are good, then each

of Z, N(Z) is monochromatic (and the color for Z determines the color for N(Z)).)

So we begin by paying

iP + iP̄ + p̂ (6.18)

to specify the colors of these sets. (These are the “cheap” color choices mentioned

earlier.) We then restrict our discussion to the set G of f ’s agreeing with these specifi-

cations (and the specified T ).

For appraising the cost of identifying a member of G, we refine the discussion leading

to (6.8). To begin, we will in each instance consider T (u) (defined in (6.5)) only for

the u’s in some subset, say U , of O, with the rest of α (as in Lemma 2.13; cf. (6.6))

supported on singletons. (We use u and v for vertices of O and E respectively.) Thus

we use

H(f) ≤
∑
u∈U

T (u) +
∑

u∈O\U

H(fu|f(Nu)) +
∑
v∈E

(1− dU (v)/d)H(fv). (6.19)

As noted earlier, T includes specification of Xf ∩ E , so we know which vertices of

E are bad for f . A key ingredient in evaluating the first term in (6.19) is then the

following variant of (6.7), in which—just to point out that this doesn’t require uniform

distribution—Tµ(u) is the natural generalization of TG(u) to the probability distribution

µ.
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Proposition 6.4. If X ∪ Y is a partition of Nu with X,Y 6= ∅, and f is chosen from

some probability distribution µ on the set of colorings for which X is entirely good and

Y entirely bad, then

Tµ(u) ≤ 1 +O(1/d). (6.20)

Proof. This is similar to the derivation of (6.7). Notice that |f(Nu)| must be either 2

or 3 (it is at least 2 by our assumption on X,Y and at most 3 since f(Nu) 63 fu), and

that

f(Nu) determines

 fNu if |f(Nu)| = 2,

fu if |f(Nu)| = 3,

so that H(fNu |f(Nu) = c) = 0 if |c| = 2 and H(fu|f(Nu) = c) = 0 if |c| = 3. Moreover,

H(fu|f(Nu) = c) ≤ 1 if |c| = 2,

H(fNu |f(Nu) = c) ≤ d if |c| = 3

(the d could be replaced by max{|X|, |Y |}).

Thus 1
dH(fNu |f(Nu)) +H(fu|f(Nu)) (the main part of (6.5)) is

∑
c P(f(Nu) = c)[1

dH(fNu |f(Nu) = c) +H(fu|f(Nu) = c)] ≤ 1,

and Proposition 6.4 follows since H(f(Nu)) = O(1).

Of course knowing Xf ∩ E also bounds the last sum in (6.19) by∑
v∈E

(1− dU (v)/d) = N/2− |U|,

which in cases where G specifies some of the fv’s, say those in V ⊆ E , improves to

N/2− |U| −
∑
v∈V

(1− dU (v)/d) = N/2− |U| − |∇(V,O \ U)|/d. (6.21)

So we will be evaluating (6.19) using (6.20) and (6.21) (with a small assist from

(6.7)). From this point we take

U = G ∪ Ĝ and V = Q̄ ∪ Q̂ ∪Qs ∪ F

(so also O \ U = R; recall colors for V were specified at (6.18)). We then have the

following bounds for the three sums in (6.19).
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The combination of (6.7) and (6.20) bounds the first by

g + b+ ĝ +O(g/d) (6.22)

(using (6.7) for u ∈ B and (6.20) for the rest).

We next claim that the second is at most

s log 3 +N/2− (g + ĝ + s) = N/2− (g + ĝ) + s(log 3− 1) (6.23)

(where s = |S|). Here we use S ∩ (G ∪ Ĝ) = ∅ (see (6.16)) and

H(fu|f(Nu)) ≤ H(fu) ≤

 1 if u ∈ O \ (G ∪ Ĝ ∪ S),

log 3 if u ∈ S.

The second bound is trivial. For the first notice that we actually know fu if u ∈

P̄ ∪ P̂ ∪ P s and in other cases know u is good (using P l ⊆ S).

Finally, the last term in (6.19) is at most N/2−|U|−|∇(V,R)|/d (see (6.21)), which

we rewrite as

N/2− (g + ĝ)− [q̄ + q̂ + |∇(Qs,R)|/d+ |∇(F,R)|/d] (6.24)

(using N(Q̄ ∪ Q̂) ⊆ R and F ∩ (Q̄ ∪ Q̂ ∪Qs) = ∅ (see (6.16))).

6.3.4 In sum

It remains to check that the above cost bounds give Lemma 6.2 (in cases not covered

by (6.9)). We are now playing the game mentioned near the end of Section 6.3.1, in

which we try to balance costs from the template stage against what we have gained

(relative to (6.8)) in the coloring stage (and need to come out slightly ahead).

The bounds are: from the template stage, (6.10) and the more serious bounds in

Claim 6.3, (6.11), (6.12) and (6.17); and from the coloring stage, the minor (6.18) and

the non-minor (6.22)-(6.24). We will recall the template bounds as we come to them.

The total cost from the coloring stage is bounded by

N + b− (g + ĝ) + s(log 3− 1)− (q̄ + q̂)− |∇(Qs ∪ F,R)|/d+O(g/d), (6.25)



76

gotten by summing (6.22)-(6.24) and absorbing (6.18) in the O(g/d).

Note that both the O(g/d) in (6.25) and the O(log g) in (6.10) are negligible relative

to the bounds in Lemma 6.2. (The comparison is least drastic when g = 0 and ĝ is

not much more than d2/ log d.) So we may safely ignore these terms and in particular,

rearranging and slightly expanding, replace (6.25) by

N − ĝ − q̂ − gs − gl + b− q̄s − q̄l + s(log 3− 1)− |∇(Qs ∪ F,R)|/d. (6.26)

The initial N will of course cancel the 2−N in Lemma 6.2, and we want to show that

the combination of the remaining terms in (6.26) and the template costs produces the

savings the lemma promises. We consider terms in groups of two or three corresponding

to the different constituents of the template, following the order in (6.26), with the

expressions in curly brackets below representing template costs and those immediately

following them taken from (6.26) (and the right hand sides the bounds we will use).

We first collect all these bounds and then take stock.

Â terms: {ĝ − Ω((ĝ/d)) log(ĝ/d))} − ĝ = −Ω((ĝ/d)) log(ĝ/d))

P̂ terms: {q̂} − q̂ = 0

As terms: {iAs(d− 1) +O(as log d)} − gs ≤ −(1/2− o(1))gs

(since gs ≥ max{2iAs(d− 1),Ω(asd/ log2 d)}, the second bound by Lemma 2.7)

Al terms: {gl − b− Ω(gl/ log d)} − gl + b = −Ω(gl/ log d)

Remark. Using the last two bounds, we could replace the second bound in Lemma 6.2

by exp[−Ω(gs + gl/ log d+ (ĝ/d) log(ĝ/d))] and the bound in (6.3) by 2−Ω(d).

P̄ s terms: {iP̄ s(d− 1) +O(p̄s log d)} − q̄s ≤ −(1/2− o(1))q̄s

(as for the As terms).

P̄ l terms: {q̄l − Ω(q̄l/ log d)} − q̄l ≤ 0

The P terms require a little more care. Here we will sometimes incur a small

loss—that is, a positive contribution—but can live with this provided these losses are
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negligible relative to

g min{d−1 log(g/d), (log d)−1} (6.27)

since our current gain from Â, As and Al is at least of this order. Recall from (6.24)

that the last term in (6.26) is the same as [|∇(Qs,R)|+ |∇(F,R)|]/d.

P s terms:

{iP s log(egd2/iP s) +O(ps log d)} − |∇(Qs,R)|/d. (6.28)

Lemma 2.7 and the definition of “small” give

qs > (1− o(1))psd/ log2 d. (6.29)

Set k = logd q
s and suppose first that k = do(1). Then Lemma 2.7 gives |N(Qs)| =

Ω(qsd/k), implying that either

qs = O(gk/d) (6.30)

or

|∇(Qs,R)| ≥ |N(Qs)| − |U| = Ω(qsd/k). (6.31)

But if (6.30) holds then iP s ≤ qs/d and (6.29) imply that the positive terms in (6.28)

are negligible relative to (6.27). (Note this uses the fact that x log(A/x) is increasing

on (0, A/e].) If, on the other hand, (6.30) does not hold then by (6.31) those positive

terms are dominated by the negative term.

If k is larger, then g ≥ qs implies that the first and second terms in (6.28) are

(respectively) O((g/d) log d) and (again using (6.29)) O((g/d) log3 d), both of which

are dwarfed by the expression in (6.27).

P l terms:

{O(ql log2 d/d)}+ s(log 3− 1)− |∇(F,R)|/d (6.32)

Assuming ql 6= 0, we have g ≥ ql ≥ exp2[log3 d], so the first term in (6.32) is negligible

relative to (6.27). On the other hand, (6.15) and S ∩ U = ∅ (see (6.16)) give

|∇(F,R)|/d ≥ |∇(F, S)|/d ≥ (1− 1/ log d)s,

so the sum of the last two terms in (6.32) is at most −(2− log 3− 1/ log d)s.
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Summary. In the second case of Lemma 6.2, the above gains from A and Â give the

promised bound (or the stronger −Ω(gs+ gl/ log d+ (ĝ/d) log(ĝ/d)) mentioned earlier).

If we are in the first case, the desired gain comes from P̄ s and/or P s (at least one

of which must be nonempty since we assume (6.9) does not hold; note g ≤ d2/ log d

implies P̄ l = P l = ∅). If P̄ s 6= ∅ then the gain is at least (1/2 − o(1))q̄s = Ω(d). If

P s 6= ∅, then we note that (6.30) is impossible, since g ≤ d2/ log d and qs > d; so (6.31)

holds and we gain Ω(qsd/k) = Ω(d).

6.3.5 Finally

We return to the exceptional case (6.9), which we recall:

a = p̄ = p = 0 and ĝ ≤ d2/ log d. (6.33)

Notice that if the first part of this holds then we must have

X ∩ Ĝ 6= ∅

(where X = Xf ), since otherwise f is not ideal (so is not in F∗). So it is enough to

show that for each x ∈ [1, ĝ], the number of possibilities for f ∈ F∗ satisfying (6.33)

and |Xf ∩ Ĝ| = x is (suitably) small.

To begin (given x) we pay

log
(N/2
â

)
+ log(ĝ/d) + log

(N/2
p̂

)
+ log

(
ĝ
x

)
< ĝ + q̂ +O(x log d) (6.34)

for Â, p̂, P̂ and X ∩ Ĝ. We then assign colors to Â ∪ (X ∩ Ĝ) ∪ P̂ , noting that these

determine the restriction of f to Ĝ∪N(X∩Ĝ)∪Q̂ (since u ∈ Ĝ\X is colored by whichever

of 3, 4 is not assigned to its neighbor in Â, and similarly for v ∈ (N(X ∩ Ĝ) \ Â) ∪ Q̂).

Thus, since vertices whose colors are not determined by these choices are good, the

total coloring cost is at most

â+ x+ p̂+N − [ĝ + |N(X ∩ Ĝ)|+ q̂] = N − [ĝ + q̂ + Ω(xd)].

(For the r.h.s. note that N(X ∩ Ĝ)∩ Q̂ = ∅ (by the definition of P̂ ) and that the bound

on ĝ in (6.33) implies |N(X ∩ Ĝ)| = Ω(xd) (by Lemma 2.7) and (p̂ ≤) â ≤ d/ log d.)
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Finally, combining with (6.34) and summing bounds the number of f ’s satisfying (6.33)

by ∑
x≥1 2N−Ω(xd) = 2N−Ω(d).
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Chapter 7

Thresholds versus fractional expectation-thresholds

7.1 More introduction

7.1.1 Thresholds

For a given finite set X and p ∈ [0, 1], µp is the product measure on 2X (the power set of

X) given by µp(S) = p|S|(1−p)|X\S|. An F ⊆ 2X is increasing if B ⊇ A ∈ F ⇒ B ∈ F .

If this is true (and F 6= 2X , ∅), then µp(F)(:=
∑
{µp(S) : S ∈ F}) is strictly increasing

in p, and the threshold, pc(F), is the unique p for which µp(F) = 1/2. This is finer

than the original Erdős–Rényi notion, according to which p∗ = p∗(n) is a threshold for

F = Fn if µp(F) → 0 when p � p∗ and µp(F) → 1 when p � p∗. (That pc(F) is

always an Erdős–Rényi threshold follows from [4].)

Following [64, 65, 67], we say F is p-small if there is a G ⊆ 2X such that F ⊆ 〈G〉 :=

{T : ∃S ∈ G, S ⊆ T} and ∑
S∈G p

|S| ≤ 1/2. (7.1)

Then q(F) := max{p : F is p-small}, which we call the expectation-threshold of F (note

the term is used slightly differently in [35]), is a trivial lower bound on pc(F), since for

G as above and T drawn from µp,

µp(F) ≤ µp(〈G〉) ≤
∑

S∈G µp(T ⊇ S) =
∑

S∈G p
|S| (= E[|{S ∈ G : S ⊆ T}|]). (7.2)

The following statement, the main conjecture (Conjecture 1) of [35], says that for any

F , this trivial lower bound on pc(F) is close to the truth.

Conjecture 7.1. There is a universal K such that for every finite X and increasing

F ⊆ 2X ,

pc(F) ≤ Kq(F) log |X|.
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We should emphasize how strong this is (from [35]: “It would probably be more

sensible to conjecture that it is not true”). For example, it easily implies—and was

largely motivated by—Erdős–Rényi thresholds for (a) perfect matchings in random r-

uniform hypergraphs, and (b) appearance of a given bounded degree spanning tree in

a random graph. These have since been resolved: the first—Shamir’s Problem, circa

1980—in [32], and the second—a mid-90’s suggestion of Kahn—in [51]. Both arguments

are difficult and specific to the problems they address (e.g. they are utterly unrelated

either to each other or to what we do here). See Section 7.7 for more on these and

other consequences.

Talagrand [64, 67] suggests relaxing “p-small” by replacing the set system G above

by what we may think of as a fractional set system, g: say F is weakly p-small if there

is a g : 2X → R+ such that

∑
S⊆T g(S) ≥ 1 ∀T ∈ F and

∑
S⊆X g(S)p|S| ≤ 1/2.

Then qf (F) := max{p : F is weakly p-small}, the fractional expectation-threshold of

F , satisfies

q(F) ≤ qf (F) ≤ pc(F) (7.3)

(the first inequality is trivial and the second is similar to (7.2)), and Talagrand [67,

Conjectures 8.3 and 8.5] proposes a sort of LP relaxation of Conjecture 7.1, and then

a strengthening thereof. The first of these, the following, replaces q by qf in Con-

jecture 7.1; the second, which adds replacement of |X| by the smaller `(F), is our

Theorem 1.10.

Conjecture 7.2. There is a universal K such that for every finite X and increasing

F ⊆ 2X ,

pc(F) ≤ Kqf (F) log |X|.

Talagrand further suggests the following “very nice problem of combinatorics,”

which implies equivalence of Conjectures 7.1 and 7.2, as well as of Theorem 1.10 and

the corresponding strengthening of Conjecture 7.1.
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Conjecture 7.3. There is a universal K such that, for any increasing F on a finite

set X, q(F) ≥ qf (F)/K.

(That is, weakly p-small implies (p/K)-small.)

Note the interest here is in Conjecture 7.3 for its own sake and as the most likely

route to Conjecture 7.1; all applications of the latter that we are aware of follow just

as easily from Theorem 1.10.

7.1.2 Spread hypergraphs and spread measures.

In what follows a hypergraph on the (vertex ) set X is a collection H of subsets of X

(edges of H), with repeats allowed. For S ⊆ X, we use 〈S〉 for {T ⊆ X : T ⊇ S}, and

for a hypergraph H on X, we write 〈H〉 for ∪S∈H〈S〉. We say H is `-bounded (resp.

`-uniform or an `-graph) if each of its members has size at most (resp. exactly) `, and

κ-spread if

|H ∩ 〈S〉| ≤ κ−|S||H| ∀S ⊆ X. (7.4)

(Note that edges are counted with multiplicities on both sides of (7.4).)

A major advantage of the fractional versions (Conjecture 7.2 and Theorem 1.10)

over Conjecture 7.1—and the source of the present relevance of [2]—is that they admit,

via linear programming duality, reformulations in which the specification of qf (F) gives

a usable starting point. Following [67], we say a probability measure ν on 2X is q-spread

if

ν(〈S〉) ≤ q|S| ∀S ⊆ X.

Thus a hypergraph H is κ-spread iff uniform measure on H is q-spread with q = κ−1.

As observed by Talagrand [67], the following is an easy consequence of duality.

Proposition 7.4. For an increasing family F on X, if qf (F) ≤ q, then there is a

(2q)-spread probability measure on 2X supported on F .

This allows us to reduce Theorem 1.10 to the following alternate (actually, equivalent)

statement. In this chapter with high probability (w.h.p.) means with probability tending

to 1 as `→∞.
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Theorem 7.5. There is a universal K such that for any `-bounded, κ-spread hypergraph

H on X, a uniformly random ((Kκ−1 log `)|X|)-element subset of X belongs to 〈H〉

w.h.p.

The easy reduction is given in Section 7.2.

7.1.3 Assignments

The second main result of this chapter provides upper bounds on the minima of a

large class of hypergraph-based stochastic processes, somewhat in the spirit of [66]

(see also [65, 68]), saying that in “smoother” settings, the logarithmic corrections of

Conjecture 7.2 and Theorem 1.10 are not needed.

For a hypergraph H on X, let ξx (x ∈ X) be independent random variables, each

uniform from [0, 1], and set

ξH = min
S∈H

∑
x∈S

ξx (7.5)

and ZH = E[ξH].

Theorem 7.6. There is a universal K such that for any `-bounded, κ-spread hypergraph

H, we have ZH ≤ K`/κ, and ξH ≤ K`/κ w.h.p.

These bounds are often tight (again up to the value of K). The distribution of the ξx’s

is not very important; e.g. it’s easy to see that the same statement holds if they are

Exp(1) random variables, as in the next example.

Theorem 7.6 was motivated by work of Frieze and Sorkin [20] on the “axial” version

of the random d-dimensional assignment problem. This asks (for fixed d and large n)

for estimation of

ZAd (n) = E

[
min

∑
x∈S

ξx

]
, (7.6)

where the ξx’s (x ∈ X := [n]d) are independent Exp(1) weights and S ranges over “axial

assignments,” meaning S ⊆ X meets each axis-parallel hyperplane ({x ∈ X : xi = a} for

some i ∈ [d] and a ∈ [n]) exactly once. For d = 2 this is classical; see [20] for its rather

glorious history. For d = 3 the deterministic version was one of Karp’s [41] original
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NP-complete problems. Progress on the random version has been limited; see [20] for

a guide to the literature.

Frieze and Sorkin show (regarding bounds; they are also interested in algorithms)

that for suitable c1 > 0 and c2,

c1n
−(d−2) < ZAd (n) < c2n

−(d−2) log n. (7.7)

(The lower bound is easy and the upper bound follows from the Shamir bound of [32].)

In present language, ZAd (n) is essentially (that is, apart from the difference in the

distributions of the ξx’s) ZH, with H the set of perfect matchings of the complete,

balanced d-uniform d-partite hypergraph on dn vertices (that is, the collection of d-

sets meeting each of the pairwise disjoint n-sets V1, . . . , Vd). This is easily seen to be

κ-spread with κ = (n/e)d−1 (apart from the nearly irrelevant d-particity, it is the H of

Shamir’s Problem), so the correct bound is an instance of Theorem 7.6:

Corollary 7.7. ZAd (n) = Θ(n−(d−2)).

Frieze and Sorkin also considered the “planar” version of the problem, in which S

in (7.6) meets each line ({x ∈ X : xj = yj ∀j 6= i} for some i ∈ [d] and y ∈ X)

exactly once; and one may of course generalise from hyperplanes/lines to k-dimensional

“subspaces” for a given k ∈ [d− 1]. It’s easy to see what to expect here, and one may

hope Theorem 7.6 will eventually apply, but we at present lack the technology to say

the relevant H’s are suitably spread.

7.2 Little things

Usage. As is usual, we use
(
X
r

)
for the family of r-element subsets of X, and [S, T ] for

{R : S ⊆ R ⊆ T}. Our default universe is X, with |X| = n.

In what follows we assume ` and n are somewhat large (when there is an ` it will

be at most n), as we may do since smaller values can by handled by adjusting the K’s

in Theorems 7.5 and 7.6. Asymptotic notation referring to some parameter λ (usually

`) is used in the natural way: implied constants in O(·) and Ω(·) are independent of λ,

and f = o(g) (also written f � g) means f/g is smaller than any given ε > 0 for large
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enough values of λ. Following a standard abuse, we usually pretend large numbers are

integers.

For p ∈ [0, 1] and m ∈ [n], Xp and Xm are (respectively) a p-random subset of

X (drawn from µp) and a uniformly random m-element subset of X. The latter is

not entirely kosher, since we will also see sequences Xi; but we will never see both

interpretations in close proximity, and the overlap should cause no confusion.

In a couple places it will be helpful to assume uniformity, which we will justify using

the next little point.

Observation 7.8. If H is `-bounded and κ-spread, and we replace each S ∈ H by M

new edges, each consisting of S plus `− |S| new vertices (each used just once), then for

large enough M the resulting `-graph G is again κ-spread.

Derivation of Theorem 1.10 from Theorem 7.5. Let F be as in Theorem 1.10 with G

its set of minimal elements, let ` with `(F) ≤ ` = O(`(F)) be large enough that the

exceptional probability in Theorem 7.5 is less than 1/4 and let ν be the (2q)-spread

probability measure promised by Proposition 7.4, where q = qf (F). We may assume

ν is supported on G (since transferring weight from S to T ⊆ S doesn’t destroy the

spread condition) and that ν takes values in Q. We may then replace G by H whose

edges are copies of edges of G, and ν by uniform measure on H.

Setting m = ((2Kq log `)n) and p = 2m/n (with n = |X| and K as in Theorem 7.5),

we then have (using Theorem 7.5 with κ = 1/(2q))

µp(F) ≥ P(Xp ∈ 〈H〉) ≥ P(|Xp| ≥ m)P(Xm ∈ 〈H〉) ≥ 3P(|Xp| ≥ m)/4 > 1/2,

implying pc(F) < p = 4Kq log `. (Note H q-spread with ∅ 6∈ H implies q ≥ 1/n, so that

m is somewhat large and P(|Xp| ≥ m) ≈ 1.)

Remark 7.9. This was done fussily to cover smaller ` in Theorem 1.10; if ` → ∞,

then it gives P(Xp ∈ 〈H〉)→ 1.
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7.3 Main Lemma

Let γ be a slightly small constant (e.g. γ = 0.1 suffices), and let C0 be a constant

large enough to support the estimates that follow. Let H be an r-bounded, κ-spread

hypergraph on a set X of size n, with r, κ ≥ C2
0 . Set p = C/κ with C0 ≤ C ≤ κ/C0 (so

p ≤ 1/C0), r′ = (1− γ)r and N =
(
n
np

)
. Finally, fix ψ : 〈H〉 → H satisfying ψ(Z) ⊆ Z

for all Z ∈ 〈H〉; set, for W ⊆ X and S ∈ H,

χ(S,W ) = ψ(S ∪W ) \W ;

and say the pair (S,W ) is bad if |χ(S,W )| > r′ and good otherwise.

The heart of our argument is the following lemma (an improvement of [2, Lemma 5.7]),

regarding which a little orientation may be helpful. We will (in Theorems 7.5 and 7.6)

be choosing a random subset of X in small increments and would like to say we are

likely to be making good progress toward containing some S ∈ H. Of course such

progress is not to be expected for a typical S, but this is not the goal: having chosen

a portion W of our eventual set, we just need the remainder to contain some S \W ,

and may focus on those that are more likely (basically meaning small). The key idea

(introduced in [2] and refined here) is that a general S \W , while not itself small, will,

in consequence of the spread assumption, typically contain some small S′ \W . (In fact

χ(S,W ) will usually be one of these: an S′ \W contained in S \W will typically be

small, so we don’t need to steer this choice.) We then replace each “good” S \W by

χ(S,W ) and iterate, a second nice feature of the spread condition being that it is not

much affected by this substitution.

Lemma 7.10. For H as above, and W chosen uniformly from
(
X
np

)
,

E[|{S ∈ H : (S,W ) is bad}|] ≤ |H|C−r/3.

Proof. It is enough to show, for s ∈ (r′, r],

E [|{S ∈ H : (S,W ) is bad and |S| = s}|] ≤ (γr)−1|H|C−r/3, (7.8)

or, equivalently, that

|{(S,W ) : (S,W ) is bad and |S| = s}| ≤ (γr)−1N |H|C−r/3. (7.9)



87

(Note γr = r−r′ bounds the number of s for which the set in question can be nonempty,

whence the negligible factors (γr)−1.)

We now use Hs = {S ∈ H : |S| = s}. Let B =
√
C and for Z ⊇ S ∈ Hs say (S,Z)

is pathological if there is T ⊆ S with t := |T | > r′ and

|{S′ ∈ Hs : S′ ∈ [T,Z]}| > Br|H|κ−tps−t. (7.10)

From now on we will always take Z = W ∪ S (with W as in Lemma 7.10); thus |Z| is

typically roughly np and, since H is κ-spread, |H|κ−tps−t is a natural upper bound on

what one might expect for the l.h.s. of (7.10).

Note that in proving (7.9) we may assume s ≤ n/2: we may of course assume |Hs|

is at least the r.h.s. of (7.8); but then for an S ∈ Hs of largest multiplicity, say m, we

have

m ≤ κ−s|H| ≤ κ−sγrCr/3|Hs| ≤ κ−sγrCr/3m2n,

which is less than m if s > n/2 (since κ > C).

We bound the nonpathological and pathological parts of (7.9) separately; this (with

the introduction of “pathological”) is the source of our improvement over [2].

Nonpathological contributions. We first bound the number of (S,W ) in (7.9) with

(S,Z) nonpathological. This basically follows [2], but “nonpathological” allows us to

bound the number of possibilities in Step 3 below by the r.h.s. of (7.10), where [2]

settles for something like |H|κ−t.

Step 1. There are at most

s∑
i=0

(
n

np+ i

)
≤
(
n+ s

np+ s

)
≤ Np−s (7.11)

choices for Z = W ∪ S.

Step 2. Given Z, let S′ = ψ(Z). Choose T := S ∩ S′, for which there are at most

2|S
′| ≤ 2r possibilities, and set t = |T | > r′. (If t ≤ r′ then (S,W ) cannot be bad, as

χ(S,W ) = S′ \W ⊆ T .)

Step 3. Since we are only interested in nonpathological choices, the number of possibil-

ities for S is now at most

Br|H|κ−tps−t.
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Step 4. Complete the specification of (S,W ) by choosing W ∩ S, the number of possi-

bilities for which is at most 2s.

In sum, since s ≤ r and t > r′ = (1−γ)r, the number of nonpathological possibilities

is at most

2r+sN |H|Br(pκ)−t ≤ N |H|(4B)rC−t < N |H|[4BC−(1−γ)]r. (7.12)

Pathological contributions. We next bound the number of (S,W ) as in (7.9) with

(S,Z) pathological. The main point here is Step 4.

Step 1. There are at most |H| possibilities for S.

Step 2. Choose T ⊆ S witnessing the pathology of (S,Z) (i.e. for which (7.10) holds);

there are at most 2s possibilities for T .

Step 3. Choose U ∈ [T, S] for which

|Hs ∩ [U, (Z \ S) ∪ U ]| > 2−(s−t)Br|H|κ−tps−t. (7.13)

(Here the left hand side counts members of Hs in Z whose intersection with S is

precisely U . Of course, existence of U as in (7.13) follows from (7.10).) The number of

possibilities for this choice is at most 2s−t.

Step 4. Choose Z \ S, the number of choices for which is less than N(2/B)r. To see

this, write Φ for the r.h.s. of (7.13). Noting that Z \S must belong to
(
X\S
np

)
∪
(
X\S
np−1

)
∪

· · · ∪
(
X\S
np−s

)
, we consider, for Y drawn uniformly from this set,

P(|Hs ∩ [U, Y ∪ U ]| > Φ). (7.14)

Set |U | = u. We have

|Hs ∩ 〈U〉| ≤ |H ∩ 〈U〉| ≤ |H|κ−u,

while, for any S′ ∈ Hs ∩ 〈U〉,

P(Y ⊇ S′ \ U) ≤
(

np

n− s

)s−u
(of course if S′ ∩ S 6= U the probability is zero); so

ϑ := E [|Hs ∩ [U, Y ∪ U ]|] ≤ |H|κ−u
(

np

n− s

)s−u
≤ |H|κ−u (2p)s−u
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(since n− s ≥ n/2). Markov’s Inequality then bounds the probability in (7.14) by ϑ/Φ,

and this bounds the number of possibilities for Z \ S by N(ϑ/Φ) (cf. (7.11)), which is

easily seen to be less than N(2/B)r.

Step 5. Complete the specification of (S,W ) by choosing S ∩W , which can be done in

at most 2s ways.

Combining (and slightly simplifying), we find that the number of pathological pos-

sibilities is at most

|H|N(16/B)r. (7.15)

Finally, the sum of the bounds in (7.12) and (7.15) is less than the (γr)−1N |H|C−r/3

of (7.9).

7.4 Small uniformities

As in [2, Lemma 5.9], very small set sizes are handled by a simple Janson bound:

Lemma 7.11. For an r-bounded, κ-spread G on Y , and α ∈ (0, 1),

P(Yα 6∈ 〈G〉) ≤ exp

−( r∑
t=1

(
r

t

)
(ακ)−t

)−1
 . (7.16)

Proof. We may assume G is r-uniform, since modifying it according to Observation 7.8

doesn’t decrease the probability in (7.16). Denote members of G by Si and set ζi =

1{Yα⊇Si}. Then

µ :=
∑

E[ζi] = |G|αr

and

Λ :=
∑∑

{E[ζiζj ] : Si ∩ Sj 6= ∅} ≤ |G|
r∑
t=1

(
r

t

)
κ−t|G|α2r−t = µ2

r∑
t=1

(
r

t

)
(ακ)−t

(where the inequality holds because G is κ-spread), and Janson’s Inequality (e.g. [31,

Thm. 2.18(ii)]) bounds the probability in (7.16) by exp[−µ2/Λ].

Corollary 7.12. Let G be as in Lemma 7.11, let t = α|Y | be an integer with ακ ≥ 2r,

and let W = Yt. Then

P(W 6∈ 〈G〉) ≤ 2 exp[−ακ/(2r)].
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Proof. Lemma 7.11 gives

exp[−ακ/(2r)] ≥ P(Yα 6∈ 〈G〉) ≥ P(|Yα| ≤ t)P(W 6∈ 〈G〉) ≥ P(W 6∈ 〈G〉)/2,

where we use the fact that any binomial ξ with E[ξ] ∈ Z satisfies P(ξ ≤ E[ξ]) ≥ 1/2;

see e.g. [48].

7.5 Proof of Theorem 7.5

It will be (very slightly) convenient to prove the theorem assuming H is (2κ)-spread.

Let γ and C0 be as in Section 7.3 and H as in the statement of Theorem 7.5, and recall

that asymptotics refer to `. We may of course assume that κ ≥ 2γ−1C0 log ` (or the

result is trivial with a suitably adjusted K).

Fix an ordering “≺” of H. In what follows we will have a sequence Hi, with H0 = H

and

Hi ⊆ {χi(S,Wi) : S ∈ Hi−1},

where Wi and χi will be defined below (with χi a version of the χ of Section 7.3). We

then order Hi by setting

χi(S,Wi) ≺i χi(S′,Wi)⇔ S ≺i−1 S
′.

(So each member of Hi ultimately inherits its position in ≺i from some member of

H. This is not very important: we will be applying Lemma 7.10 repeatedly, and the

present convention just provides a concrete ψ for each stage of the iteration.)

Set C = C0 and p = C/κ, define m by (1 − γ)m =
√

log `/`, and set q = log `/κ.

Then γ−1 log ` ∼ m ≤ γ−1 log ` and Theorem 7.5 will follow from the next assertion.

Claim 7.13. If W is a uniform ((mp+ q)n)-subset of X, then W ∈ 〈H〉 w.h.p.

Proof. Set δ = 1/(2m). Let r0 = ` and ri = (1 − γ)ri−1 = (1 − γ)ir0 for i ∈ [m]. Let

X0 = X and, for i = 1, . . . ,m, let Wi be uniform from
(
Xi−1
np

)
and set Xi = Xi−1 \Wi.

(Note the assumption κ ≥ 2γ−1C0 log ` ensures |Xm| ≥ n/2.)

For S ∈ Hi−1 let χi(S,Wi) = S′\Wi, where S′ is the first member of Hi−1 contained

in Wi ∪ S (with Hi−1 ordered by ≺i−1). Say S is good if |χi(S,Wi)| ≤ ri (and bad
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otherwise), and set

Hi = {χi(S,Wi) : S ∈ Hi−1 is good}.

Thus Hi is an ri-bounded collection of subsets of Xi and inherits the ordering ≺i as

described above.

Finally, choose Wm+1 uniformly from
(
Xm
nq

)
. Then W := W1 ∪ · · · ∪ Wm+1 is as

in Claim 7.13. Note also that W ∈ 〈H〉 whenever Wm+1 ∈ 〈Hm〉. (More generally,

W1 ∪ · · · ∪Wi ∪ Y ∈ 〈H〉 whenever Y ⊆ Xi lies in 〈Hi〉.)

So to prove the claim, we just need to show

P(Wm+1 ∈ 〈Hm〉) = 1− o(1) (7.17)

(where the P refers to the entire sequence W1, . . . ,Wm+1).

For i ∈ [m] call Wi successful if |Hi| ≥ (1− δ)|Hi−1|, call Wm+1 successful if it lies

in 〈Hm〉, and say a sequence of Wi’s is successful if each of its entries is. We show a

little more than (7.17):

P(W1, . . . ,Wm+1 is successful) = 1− exp
[
−Ω(

√
log `)

]
. (7.18)

For i ∈ [m], according to Lemma 7.10 (and Markov’s Inequality),

P(Wi is not successful |W1, . . . ,Wi−1 is successful) < δ−1C−ri−1/3,

since W1, . . . ,Wi−1 successful implies |Hi−1| > (1−δ)m|H| > |H|/2, which, since |Hi−1∩

〈I〉| ≤ |H ∩ 〈I〉| and we assume H is (2κ)-spread), gives the spread condition (7.4) for

Hi−1. Thus

P(W1, . . . ,Wm is successful) > 1− δ−1
m∑
i=1

C−ri−1/3 > 1− exp
[
−
√

log `
]

(7.19)

(using rm =
√

log `).

Finally, if W1, . . . ,Wm is successful, then Corollary 7.12 (applied with G = Hm,

Y = Xm, α = nq/|Y | ≥ q, r = rm, and W = Wm+1) gives

P(Wm+1 6∈ 〈Hm〉) ≤ 2 exp
[
−
√

log `/2
]
, (7.20)

and we have (7.18) and the claim.
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7.6 Proof of Theorem 7.6

We assume the setup of Theorem 7.6 with γ and C0 as in Section 7.3 and κ ≥ C2
0 (or

there is nothing to prove). We may assume H is `-uniform, since the construction of

Observation 7.8 produces an `-uniform, κ-spread G with ξG ≥ ξH. In particular this

gives

|H|` =
∑
x∈X
|H ∩ 〈x〉| ≤ nκ−1|H|. (7.21)

We first assume κ is slightly large, precisely

κ ≥ log3 `; (7.22)

the similar but easier argument for smaller values will be given at the end. (The bound

in (7.22) is convenient but there is nothing delicate about this choice.)

Claim 7.14. For κ as in (7.22) and C0 ≤ C ≤ γκ/(4 log `),

P(ξH > (3C/γ)`/κ) < exp[−(log ` logC)/4].

Proof of Theorem 7.6 in regime (7.22) given Claim 7.14. The “w.h.p.” statement is

immediate (take C = C0). For the expectation, ZH, set t = (3C0/γ)`/κ and T =

3`/(4 log `). By Claim 7.14 we have, for all x ∈ [t, T ],

P(ξH > x) ≤ f(x) := exp [− log ` log(γκx/3`)/4] = (bx)a = baxa,

where a = −(log `)/4 and b = γκ/3`. Noting that ξH ≤ `, we then have

ZH ≤ t+

∫ T

t
P(ξH > x)dx+ `P(ξH > T ) ≤ t+

∫ T

t
f(x)dx+ `f(T ) = O(`/κ).

Here t = O(`/κ) and the other terms are much smaller: the integral is less than −1/(a+

1)bata+1 = O(1/ log `)Ca0 t , while (7.22) easily implies that f(T ) = (γκ/(4 log `))a is

o(1/κ).

Proof of Claim 7.14. Terms not defined here (beginning with p = C/κ and Wi; note C

is now as in Claim 7.14, rather than set to C0) are as in Section 7.5, but we (re)define

m by (1− γ)m = log `/` and set q = logC log2 `/κ, noting that (7.21) gives p ≥ C`/n.
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It’s now convenient to generate the Wi’s using the ξx’s in the natural way: let

ai =

 (ip)n if i ∈ {0} ∪ [m],

(mp+ q)n if i = m+ 1,

and let Wi consist of the x’s in positions ai−1 + 1, . . . , ai when X is ordered according

to the ξx’s.

Proposition 7.15. With probability 1− e−Ω(C`),

ξx ≤ εi :=

 2ip if i ∈ {0} ∪ [m]

2(mp+ q) if i = m+ 1

 for all i and x ∈Wi. (7.23)

Proof. Failure at i ≥ 1 implies

|ξ−1[0, εi]| < ai. (7.24)

But |ξ−1[0, εi]| is binomial with mean εin = 2ai ≥ 2C`, so the probability that (7.24)

occurs for some i is less than exp[−Ω(C`)] (see e.g. [31, Theorem 2.1]).

We now write W i for W1 ∪ · · · ∪Wi.

Proposition 7.16. If Wm+1 ∈ 〈Hm〉, then W contains some S ∈ H with

|S \W i| ≤ ri ∀i ∈ [m].

Proof. SupposeW ⊇ Sm ∈ Hm. By construction (of theHi’s) there are Sm−1, . . . , S1, S0 =:

S with Si ∈ Hi and Si = Si−1 \Wi, whence Si = S \W i for i ∈ [m]; and Si ∈ Hi then

gives the proposition.

We now define “success” for (ξx : x ∈ X) to mean that W1, . . . ,Wm+1 is successful

in our earlier sense and (7.23) holds. Notice that with our current values of m and

q (and rm = `(1 − γ)m = log `), we can replace the error terms in (7.19) and (7.20)

by essentially δ−1C− log `/3 and e− logC log `/2, which with Proposition 7.15 bounds the

probability that (ξx : x ∈ X) is not successful by (say) exp[−(log ` logC)/4].

We finish with the following observation.

Proposition 7.17. If (ξx : x ∈ X) is successful then ξH ≤ (3C/γ)`/κ.
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Proof. For S as in Proposition 7.16, we have (with W0 = ∅ and ε0 = 0)

ξH ≤
m+1∑
i=1

εi|S ∩Wi| =
m+1∑
i=1

(εi − εi−1)|S \W i−1|

≤ 2

[
m∑
i=1

(1− γ)i−1p+ (1− γ)mq

]
`

≤ 2[C/(γκ) + (log `/`)(logC log2 `/κ)]` < (3C/γ)`/κ.

This completes the proof of Claim 7.14 (and of Theorem 7.6 when κ satisfies (7.22)).

Finally, for κ below the bound in (7.22) (actually, for κ up to about `/ log `), a

subset of the preceding argument suffices. We proceed as before, but now only with

C = C0 (so p = C0/κ), stopping at m defined by (1 − γ)m = 1/κ (so m ≈ γ−1 log κ).

The main difference here is that there is no “Janson” phase: W1, . . . ,Wm is successful

with probability 1 − exp[−Ω(`/κ)], and when it is successful we have (as in the proof

of Proposition 7.17, now just taking Wm+1 = X \Wm)

ξH ≤
m∑
i=1

(εi − εi−1)|S \W i−1|+ |S ∩Wm+1| < 2(C0/(γκ))`+ `/κ

(so also ZH ≤ O(`/κ) + exp[−Ω(`/κ)]` = O(`/κ)).

7.7 Applications

Much of the significance of Theorem 1.10—and of the skepticism with which Conjec-

ture 7.1 was viewed in [35]—derives from the strength of their consequences, a few of

which we discuss (briefly) here.

For this discussion, Krn =
(
V
r

)
is the complete r-graph on V = [n], and Hrn,p is the

r-uniform counterpart of the usual binomial random graph Gn,p. Given r, n and an

r-graph H, we use GH for the collection of (unlabeled) copies of H in Krn and FH for

〈GH〉. As usual, ∆ is maximum degree.

As noted earlier, Conjecture 7.1 was motivated especially by Shamir’s Problem

(since resolved in [32]), and the conjecture that became Montgomery’s theorem [51].

Very briefly: for n running over multiples of a given (fixed) r, Shamir’s Problem asks for
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estimation of pc(FH) when H is a perfect matching (n/r disjoint edges), and [32] proves

the natural conjecture that this threshold is Θ(n−(r−1) log n); and [51] shows that for

fixed d, the threshold for Gn,p to contain a given n-vertex tree with maximum degree d

is Θ(n−1 log n), where the implied constant in the upper bound depends on d (though

it probably shouldn’t). See [32, 51] for some account of the history of these problems.

In both cases—and in most of the other examples mentioned following Theorem 7.18

(all but the one from [46])—the lower bounds derive from the coupon-collectorish re-

quirement that the (hyper)edges cover the vertices, and it is the upper bounds that are

of interest.

In fact, Theorem 1.10 gives not just Montgomery’s theorem, but its natural ex-

tension to r-graphs and more. (Strictly speaking, Montgomery proves more than the

original conjecture and we are not so far recovering this stronger result.) Say an r-graph

F is a forest if it contains no cycle, meaning distinct vertices v1, . . . , vk and distinct

edges e1, . . . , ek such that vi−1, vi ∈ ei ∀i (with subscripts mod k). A spanning tree is

then a forest of size (n−1)/(r−1). For a (general) r-graph F , let ρ(F ) be the maximum

size of a forest in F and set

ϕ(F ) = max{1− ρ(F ′)/|F ′| : ∅ 6= F ′ ⊆ F}.

Theorem 7.18. For each r and c there is a K such that if H is an r-graph on [n] with

∆(H) ≤ d and ϕ(H) ≤ c/ log n, then

pc(FH) < Kdn−(r−1) log |H|.

This gives pc(FH) = Θ(n−(r−1) log n) if H is a perfect matching (as in Shamir’s Prob-

lem), or a “loose Hamiltonian cycle” (a result of [6], to which we refer for definitions

and history of the problem), and pc(FH) < Kdn−(r−1) log n if H is a spanning tree

with ∆(H) ≤ d. For fixed d the latter is the aforementioned r-graph generalization

of [51] (or a slight improvement thereof in that the dependence on d—which, again, is

probably unnecessary—is explicit), and for d = nΩ(1) it is a result of Krivelevich [46,

Theorem 1], which is again tight up to the value of K (see [46, Theorem 2]).

The last application we discuss here was suggested by Simon Griffiths and Rob

Morris. Set cd = (d!)2/(d(d+1)) and p∗(d, n) = cdn
−2/(d+1)(log n)2/(d(d+1)).
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Theorem 7.19. For fixed d and H any graph on [n] with ∆(H) ≤ d,

pc(FH) < (1 + o(1))p∗(d, n). (7.25)

When (d+1) |n and H is a Kd+1-factor (that is, n/(d+1) disjoint Kd+1’s), p∗(d, n)

is the asymptotic value of pc(FH). Here (7.25) with O(1) in place of 1+o(1) was proved

in [32], while the asymptotics are given by the combination of [34] and [56, 28]; we state

this in a form convenient for use below:

Theorem 7.20. For fixed d and ε > 0, and n ranging over multiples of d + 1, if

p > (1 + ε)p∗(d, n), then Gn,p contains a Kd+1-factor w.h.p.

Interest in pc(FH) for H as in Theorem 7.19 dates to at least 1992, when Alon and

Füredi [1] showed the upper bound O(n−1/d(log n)1/d), and has intensified since [32],

motivated by the idea that Kd+1-factors should be the worst case. See [13, 14] for

history and the most recent results; with O(1) in place of 1 + o(1), Theorem 7.19 is

conjectured in [13] and in the stronger “universal” form in [14].

Theorem 7.20 probably extends to r-graphs and d of the form
(
s−1
r−1

)
. This just

needs extension of Theorem 1 of [56] to r-graphs (suggested at the end of [56]), which

(with [34]) would give asymptotics of the threshold for Hrn,p to contain a Kr
s -factor

(where Kr
s is the complete r graph on s vertices).

Each of Theorems 7.18 and 7.19 begins with the following easy observations. (The

first, an approximate converse of Proposition 7.4, is the trivial direction of LP duality.)

Observation 7.21. If an increasing F supports a q-spread measure, then qf (F) < q.

(More precisely, qf (F) is the least q such that F supports a probability measure ν with

ν(〈S〉) ≤ 2q|S| ∀S.)

Observation 7.22. Uniform measure on GH is q-spread if and only if: for S ⊆ Krn

isomorphic to a subhypergraph of H, σ a uniformly random permutation of V , and

H0 ⊆ Krn a given copy of H,

P(σ(S) ⊆ H0) ≤ q|S|. (7.26)
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Proving Theorem 7.18 is now just a matter of verifying (7.26) with q = O(dn−(r−1)),

which we leave to the reader. (It is similar to the proof of (7.28).)

Proof of Theorem 7.19. The next assertion is the main thing we need to check here.

Lemma 7.23. There is ε = εd > 0 such that if H is as in Theorem 7.19 and has no

component isomorphic to Kd+1, then

qf (FH) ≤ n−(2/(d+1)+ε) =: q. (7.27)

Proof. We just need to show (7.26) for q as in (7.27) and S,H0 as in Observation 7.22,

say with W = V (S), s = |S|, and f the size of a spanning forest of S. We may of course

assume S has no isolated vertices, so w := |W | ≤ 2f . We show

P(σ(S) ⊆ H0) < (e2d/n)f (7.28)

and

f

s
≥ 2(d+ 1)

(d+ 2)d
=

2

d+ 1
+ ε0, (7.29)

where ε0 = 1/((d + 2)(d + 1)d), implying that for any ε < ε0, (7.26) holds for large

enough n.

Proof of (7.28). Let α, β : W → V be, respectively, a uniform injection and a uniform

map. Then

(d/n)f ≥ P(β(S) ⊆ H0) ≥ P(β is injective)P(β(S) ⊆ H0|β is injective)

= (n)wn
−wP(α(S) ⊆ H0) > e−2fP(σ(S) ⊆ H0).

Proof of (7.29). We may of course assume S is connected, in which case we have f =

w − 1 and upper bounds on s:
(
w
2

)
if w ≤ d;

(
d+1

2

)
− 1 if w = d + 1; and wd/2 if

w ≥ d + 2. The corresponding lower bounds on f/s are 2/d, 2d/((d + 2)(d + 1) − 2)

and 2(d+ 1)/((d+ 2)d), the smallest of which is the last.

This completes the proof of Lemma 7.23.

We are now ready for Theorem 7.19. Let ς = ςn be some slow o(1) (e.g. 1/ log n). By

Theorem 7.20 there is p1 ∼ p∗(d, n) such that if (d+1) |m > (1−ς)n then Gm,p1 contains
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a Kd+1-factor w.h.p., while by Lemma 7.23 and Theorem 1.10 (or, more precisely,

Remark 7.9), there is p2 with p∗(d, n) � p2 � n−(2/(d+1)+ε) such that if m ≥ ςn then

for any given m-vertex H ′ with ∆(H ′) ≤ d, Gm,p2 contains (a copy of) H ′ w.h.p.

Let H1 be the union of the copies of Kd+1 in H (each of which must be a component

of H), H2 = H−H1, and ni = |V (Hi)| (so n1+n2 = n). Let G1 ∼ Gn,p1 and G2 ∼ Gn,p2

be independent on the common vertex set V = [n] and G = G1 ∪G2. Then G ∼ Gn,p

with p = 1 − (1 − p1)(1 − p2) ∼ p∗(d, n), and we just need to show G ⊇ H w.h.p. In

fact we find each Hi in the corresponding Gi, in order depending on n2: if n2 ≥ ςn,

then w.h.p. G1 contains H1, say on vertex set V1, and w.h.p. G2[V \ V1] contains H2;

and if n2 < ςn, then w.h.p. G2 contains H2 on some V2, and w.h.p. G1[V \ V2] contains

H1.
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