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ABSTRACT OF THE THESIS

CellRep: Usage Representativeness Modeling and Correction Based on Multiple

City-Scale Cellular Network

by Chaoji Zuo

Thesis Directors:

Prof. Desheng Zhang

Prof. Yingying Chen

Understanding representativeness in cellular web logs at city scale is essential for web

applications. Most of the existing work on cellular web analyses or applications is built

upon data from a single network in a city, which may not be representative of the over-

all usage patterns since multiple cellular networks coexist in most cities in the world. In

this thesis, we conduct a comprehensive investigation of multiple cellular networks in a

city with a 100% user penetration rate. We study web usage pattern (e.g., internet access

services) correlation and difference between diverse cellular networks in terms of spatial

and temporal dimensions to quantify the representativeness of web usage from a single

network in usage patterns of all users in the same city. Moreover, relying on three exter-

nal datasets, we study the correlation between the representativeness and contextual factors

(e.g., Point-of-Interest, population, and mobility) to explain the potential causalities for

the representativeness difference. We found that contextual diversity is a key reason for

representativeness difference, and representativeness has a significant impact on the per-

formance of real-world applications. Based on the analysis results, we further design a

correction model to address the bias of single cellphone networks and improve representa-

tiveness by 45.8%.
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CHAPTER 1

INTRODUCTION

1.1 Background

Cellular services are essential to our daily life for personal communication and mobile

web access. Cellular devices have been increasing from 740 million in 2000 to 7,740

million in 2018 in the world [1] as the increase of cellular web users. Understanding

the cellular usage patterns in a city is extremely important for cellular operators to provide

reliable services such as mobile web access by improve their infrastructures including tower

deployment [2], load balancing [3], and network resilience [4]. To date, many efforts have

been focused on cellular usage patterns and applications, e.g., traffic patterns [5] [6], user

behaviors [7], tower deployment [6], special events [8], and mobility management [9],

based on large-scale data collected by cellular operators or small-scale data collected by

individual researchers. These studies have provided valuable insights to understand the

performance of cellular networks.

However, most of the above work based on large-scale operator-level data is built upon a

single network and assumes users and cellular traffic (e.g., web usage) from single network

is a representativeness of all cellular users across different cellular networks in a city [10]

[11] [12] [13]. Since different networks have different pricing strategies and user coverage,

single-network data is potentially biased to represent all cellular users in applications such

as web traffic estimation [6]. Even though some studies are based on the data from multiple

networks [14] [15] [16] [17] [18], the data are collected at a small scale, e.g., a dozen

devices [17], which are not statistically representative of the generic cellular web usage

patterns. To our knowledge, none of the existing work has quantified the bias of single

network data (e.g., web access log) and its impact on the real-world applications due to
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limited data access.

Recently, thanks to the Smart Cities initiative [19], many cities have been consolidating

various data from diverse infrastructures [20]. For example, Shenzhen (i.e., the 4th biggest

city in the mainland of China and the twin city of Hong Kong) has been consolidating data

from its all three cellular networks for innovative smart city services through different data

collection mechanisms, e.g., data trading and purchasing [19], which provide an unprece-

dented opportunity for the research community to improve our understanding of cellular

usage behaviors based on all cellular networks in a city.

1.2 Motivation

The user distribution and tower coverage difference in single networks may cause inaccu-

rate models and bias in real-world applications. However, such bias is often ignored in

many existing studies such as population estimation [8], web user estimation [21] due to

limited data access. To study the impact of single network biases, we first quantify the

difference on coverage in different networks and their user difference. Second, we study

the performance of applications based on data from different networks.

Root Cause of Bias of Single Network Data: Many data-driven research studies rely

on data from single cellular networks, e.g., modeling human mobility based on CDR (Call

Detail Records) data from AT&T [11], inferring internet usage in Shanghai [6]. Those

studies assume single network data (e.g., web access record or phone calls) is represen-

tative of all cellular activities in the same regions. However, single network data is often

biased in data-driven applications due to different tower distributions and target user groups

among networks. cellular network operators typically have different business priorities in

terms of geographic locations, which leads to a significant difference in cell tower distri-

butions [22]. In fact, tower deployment strategies are dependent on various factors such as

communication technologies, usage demand, geographic and demographic information in

regions [23]. In particular, we found that the tower coverage differs in the three networks,



3

as shown in Fig. 1.1 when we model tower coverage by Voronoi partition, which is widely

used to estimated cell tower coverage boundary [22]. We found a large difference between

the tower coverage, which lead to different quality of services and associated metrics (e.g.,

advertisement, plan rates, etc) for different networks in same city regions, which lead to

different numbers of users for each network in the same region. It is the root cause for bias

of single network data when used for real-world applications.

Figure 1.1: Cell Size Figure 1.2: Impact of Bias on App.

Impact of Bias on Real-world Applications: Relying on log data records for call, app

or Internet service access from three major networks in the Chinese city Shenzhen, we study

the impact of data from different networks on a real-world application, which estimates

real-time population distribution based on regression models [24] of cellular users. More

detailed settings are given in Chapter 6. We use MAPE (Mean Absolute Percent Error) to

quantify the performance of the same models with different datasets from three networks.

Fig. 1.2 shows CDF distribution of estimation errors on region-level population estimation.

We found the performance of the same estimation model differs when using data from

different networks. In general, the model based on data from Network B and A show a

better performance compared with Network C. The performance difference is caused by

different user coverage and usage patterns of networks.
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1.3 Overview

In this thesis, we conduct an analysis on cellular network usage representativeness, which

is defined as the degree that a single network can be a representative of operational pat-

terns of all cellular users in a region. The question we want to address in this thesis is

when, where, and to what extent the usage patterns of a given cellular network is biased

against the overall patterns of all cellular users across all networks and how we can cor-

rect such bias with access only to single-network data. We infer the overall usage pattern

and design quantitative metrics to study cellular network representativeness on multiple

diverse networks in the same city. Based on the proposed metrics, we analyze the corre-

lation between representativeness and underlying contextual factors to explore its potential

causalities. Our analyses feature large-scale cellular network data for Internet and App

access log in Shenzhen, including more than 10 million daily active users from all three

cellular networks. The contributions are summarized as follows.

(1). We provide the first investigation on cellular usage representativeness based on

multiple diverse cellular networks in the same city. We quantify cellular network represen-

tativeness with a distance metric and study the representativeness, its potential causality,

and impact on real-world applications. Specifically, we summarize 3 findings and analyze

its causality based on real-world contextual data.

• finding 1: On the spatial dimension, we found that regions with mixed functions such

as CBD (Central Business District) area has higher data representativeness compared

with regions with single functions such as residential areas.

• finding 2: On the temporal dimension, we found that the representativeness of a

cellular network is highly correlated with user mobility and commuting patterns. We

found a 50% lower representativeness during mobility peak hours, e.g., 9am, 5pm,

and 8pm, compared with hours with lower mobility demand, e.g., 1pm.

• finding 3: The performance of population estimation based on single networks is
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highly correlated with representativeness. We found a high representativeness leads

to a 58.2% lower error of population estimation.

(2). Based on the measurement study and correlation analysis with three contextual

datasets (i.e., Point of Interests, Population, and Mobility), we design a learning-based

correction model to address data bias in single networks. Further, we evaluate our method

based on real-world cellphone web log records from multiple cellular networks covering

100% cellphone users. The results show our method increases the representativeness by

45.8% and then improve the accuracy of population estimation by reducing MAPE from

25.8% to 15.4%.

Moreover, from the correction model, we share our finding 4: Even data from a single

network is not a representative of all cellular activities across different networks, with a

correction model, 30% of sample data can achieve same representativeness as the data

across all networks; 60% of sample data can improve representativeness of a single network

by 45.8% on average compared with original single-network data.

1.4 Thesis Structure

The structure of this thesis is organized as follows.

Chapter 1 introduces the background the cellular network, our motivation and findings

of human location inference problem.

Chapter 2 discusses related work on cellular web log analyses.

Chapter 3 presents the data we study and the data engineering work to extra the features

of our raw data.

Chapter 4 descries our measurement methodology, including the terminologies, metrics

and approach in this thesis.

Chapter 5 evaluate our measurement results and findings.

Chapter 6 propose our correlation model to improve the representativeness of a single

network.

Chapter 7 draws the discussion.
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CHAPTER 2

RELATED WORK

Cellular network is the key infrastructure for Web services. In fact, the trend has been

showing that people use their cellular phones for Web services (e.g., Internet Access or

App) more often than their phone call [25]. Investigating cellular usage patterns has re-

ceived considerable attention recently due to data availability. In Table 2.1, we summarize

related work based on a two-dimension taxonomy: (i) data collection, i.e., data collected by

individual researchers or cellular operators; (ii) investigation scale, i.e., single or multiple

networks.

Table 2.1: Cellular Web Log Analyses Survey

Categories Investigation Scale
Single Multiple

Data
Collection

Methodology

Individual
Researcher

[26] [27] [28]
[29] [30]

[14] [15]
[16] [18]

Network
Operators

[21] [31] [11] [6] [32]
[10] [12] [13] [33] CellRep

2.1 Study on Data from Indivi. Researchers

Many adhoc research projects have various cellular users reporting their data, e.g., loca-

tions, web access latency, and signal strength, by installing Apps on cellular devices (e.g.,

cellphones [30] and connected vehicles [23]). In this approach, researchers obtain detailed

data, but the limitation is that the data from a small portion of users and cannot reveal the

overall large-scale user patterns.

A Single Network: Given the relatively easier access of single network data collected

by individual researchers, lots of work has been proposed to focus on performance and

operational patterns of individual networks, such as urban activity inference [30], popular

routes construction [26], destination recommendation [27], anomalies spotting [28] and

relationships between mobility and PoI [29].
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Multiple Networks: Due to the limited accessibility of multiple network data from

cellular operators directly, almost all data-driven investigations on multiple networks are

limited to small samples of users voluntarily contributing their data from their devices at

an application level, e.g., inter-city mobility of Skout users [18], location prediction [15],

urban planning based on location-based social network [16], and existing PoI verifica-

tion [14].

2.2 Study on Data from Network Operators

Cellular network operators passively collected their network data for billing purposes (e.g.,

CDR data [11]) or web access logs (e.g., internet access data [34]). Compared with detailed

data collected by individual researchers, the data collected by cellular operators typically

cover all users for a network, yet with coarse granularity on spatial and temporal dimen-

sions.

A Single Network: Extensive studies have been conducted with cellular data for var-

ious applications. For example, Call Detail Records (i.e., CDR data) for phone calls or

data connection records for data calls are commonly used to model human mobility at a

metropolitan scale [11] [35]. Based on cellular data from a single network, researchers

(i) conduct spatiotemporal phone call analysis[10], data call analysis [13], mobile traffic

analysis and prediction[10] [4] [6], and dynamic urban geo-social connectivity graph con-

struction [21] (ii) trajectories recovery from mobility data [31], (iii) determine the locations

of network upgrades [33], and (iv) improve network performance [32]. However, the above

work is based on a single network in one city, which may not be representative of usage

patterns of all cellular users across different networks.

Multiple Networks: To our knowledge, we conduct the first effort to investigate the

usage patterns of all cellular networks in a city. Compared with previous studies in other

three categories, we advance the understanding on the usage patterns of multiple diverse

cellular networks.
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CHAPTER 3

DATASET

3.1 Cellular Networks Datasets

We have been collaborating with the Shenzhen smart city team for data access to all three

cellular networks for one month. For privacy and security issues, we use Network A, B,

and C in this thesis, instead of using the company name and detailed time. Network A has

the largest number of towers, followed by Network B and Network C. Since China only

has three cellular service vendors, the dataset achieves 100% penetration rates for cellular

devices. Here are the basic information of these three networks.

• Network A deploys 5174 towers serving 3.9 million users;

• Network B deploys 3595 towers serving 3.8 million users;

• Network C deploys 2977 towers serving 2.5 million users.

Even though three networks have different data formats, we reorganize the data to obtain

the data log records with five essential attributes including user ID, timestamp, longitude,

latitude, type (e.g., a data call for Internet access) where the longitude and latitude give

the tower location. For example, Network B generates 24.5 million records for a daily data

log of voice calls and 185.5 million records for a daily data log of data calls (e.g., app or

Web service access). We drop other fields for the minimum data exposure. More details on

privacy and ethical issues are given in the Chapter 7 . We show their tower coverage with

Voronoi partitions [22] in Fig 3.1.
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Network A 5,174
Voronoi 

Cells

Commercial

Industrial Network C 2,977
Voronoi 

Cells 

Commercial

Industrial
Network B 3,595

Voronoi 
Cells 

Commercial

Industrial

CBD CBD CBD

0 1Relative User Density

Figure 3.1: User Density in Tower-based Voronoi Diagram

10.6983 M
100m × 100m
Worldpop

0 376#people
100m × 100m

CBD

Figure 3.2: Population Distribution

3.2 Contextual Datasets

To study the bias of cellular networks in context, we focus on three most important con-

textual data during the same period: (1) the total potential users, i.e., population, (2) the

reason for a user to use cellular services, i.e., Region Functions with Point of Interests; (3)

the physical movement of cellular users, i.e., mobility.

(i) Population: We extract Shenzhen population from Worldpop [36], which gives fine-

grained population distribution in 100m⇥100m grids. Fig. 3.2 presents the population dis-

tribution and statistics in Shenzhen where the CBD (central business district) has a higher

population density than other areas. We map population into administrative regions and

calculate the population density in regions to study the impact on representativeness in

Fig. 5.5.
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Figure 3.3: Point of Interests

(ii) Point of Interests (PoI): The function of regions is one important factor to determine

the spatial cellular patterns [37]. For instance, more web access are made in the down-

town Central Business District (CBD) during daytime compared to some residential areas;

whereas the nighttime may have a reverse pattern. To quantify region functions, we col-

lect 542,115 PoIs in Shenzhen from an online map service provider. The PoIs are mainly

categorized into 5 groups (i.e., residential, office, education, transportation and recreation),

and 17 subgroups (i.e., traffic facilities, education, fitness, auto services, culture and media,

business, life services, food, tourist attractions, government organizations, shopping, ho-

tels, recreation, medical services, real estates, beauty & spas, finance). Fig. 3.3 visualizes

PoIs on a map based on the Voronoi cells of the Network B. We expect that regions with

PoIs from different categories may have different web access in cellular networks and lead

to a difference of representativeness.

(iii) Mobility: We study cellular operational patterns with three urban-scale mobility datasets

in Shenzhen, i.e., (i) a subway system with 8 lines, 194 stations and 4 million users, (ii)

a bus system with 1,115 lines, 10,106 stations, 13 thousand buses and 5 million bus pas-

sengers, (iii) a taxi system with 15 thousand taxis and 500 thousand passengers, and (iv) a

personal car system with 10,043 personal cars which are collected for insurance purposes,
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for a correlation analysis on cellular patterns and urban mobility. Fig. 3.4 shows mobility of

bus, taxi, subway, and car users, which are also the cellular users given the high penetration

rates of cellular services. A lighter color indicates a higher density.

194 subway stations
13 thousand buses
15 thousand taxis
10 thousand cars

Figure 3.4: Mobility Distribution
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CHAPTER 4

MEASUREMENT METHODOLOGY

4.1 Terminologies

We use a lowercase letter for a number, e.g., l presents the number of data records at a

specific location during a time period, and a uppercase letter for a collection, e.g., L is

a vector of l as a distribution. In general, we have three factors to aggregate loads, i.e.,

spatial, temporal and networks. We summarized terminologies in Tab. 4.1.

Notation Meaning
P a spatial partition
r, R a region and a region collection
t, T a time slot and a time slot collection
k, K a network and a network collection
l, L a load and a load collection/distribution
L̃ normalized load distribution
l
r,t
k a load of network k at region r in time slot t

L
R,T
K a load collection given K, T and R

✏ a tolerant threshold for representativeness

Table 4.1: Terminologies

Spatial Partition: We introduce two spatial partitions to show the bias of individual

networks in a city, i.e., a network-specific tower based partition and a network-agnostic

census-based partition. For a single network, a tower partition is generated by a Voronoi

graph [22] to estimate the coverage of a tower. The census-based partition is released by

city governments according to their road distribution and population distribution. Specif-

ically, Shenzhen has a census-based partition including 491 regions as shown in Fig. 4.1,

which shows the dominant cellular network (with most users) for each region, and the aver-

age size of regions is 4.06 km
2. Therefore, tower-based partitions are dependent on tower

locations in single networks. Instead, since census partition is independent from cellphone
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networks, we compare load distribution of different networks under the census-based ad-

ministrative regions.

A
B
C

Figure 4.1: Census-based Partition

Temporal Partition: We partition time into 10-minute time slots. In other words, we

calculate calculate load for every 10 minutes. As a result, one day is divided into 144

time slots. The 10-minute slot length has been extensively used in various cellular network

studies [22] [6] [24].

Load Distribution: The number of phone calls or internet calls is described as load. L =

l1, l2, . . . ln represents the load distribution where l1 to ln is the load in a specific region in

a specific time slot. As we introduce in table 4.1, we use a subscript k to differentiate loads

from different networks, e.g., Lk; we use L8 for loads of total loads in a city by combining

all cellphone networks. We use a superscript r and t for load distribution in a region, e.g.,

Lr, or at specific time, e.g., Lt.

4.2 Measurement Metrics

Representativeness Distance: Intuitively, Li is a representative of L8 if Li can be scaled

to L8 by a scaling factor ↵. Similarly, to study if a network can be used as a representative

of all networks, we use Representative Distance ✓k (0  ✓k  1) which is the maximum

norm of the difference between the total load distribution and the scaled load distribution
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of network i at region r during the same time slot as in Equation (4.1).

✓k = min
↵
k|L̃8 � ↵L̃k|k1;

L̃ =
L�min(L)

max(L)�min(L)
; L8 =

KX

k=0

Lk;
(4.1)

We illustrate our idea in the example with a single network LA load distribution and the to-

tal load among all networks L8 in Fig. 4.2. LA and L8 represent the load distribution during

one day for Network A and all three networks, respectively. (1) we normalize both distribu-

tions as in the left figure and calculate the maximum norm between the two distributions.

(2) we tune a scaling factor ↵ to search for the minimum values of the maximum norm

between the two distribution, which is denoted as the representativeness distance between

the two distributions as shown in the right figure.

Representativeness 
Distance

Figure 4.2: Representativeness Distance

We use the maximum norm for two reasons. First, it measures similarity and preserves

pair-wise comparison between two load distributions. The pair-wise comparison is impor-

tant since it measures the representativeness under same spatial-temporal dimension, e.g.,

li in L8 and li in LA describe the load in same region at same time slot. In contrast, other

statistical features, e.g., average or similarity, are aggregated results and may ignore the

difference between two pairs. Second, it measures the upper bound of the difference be-

tween two load distributions and therefore it is a more strict measurement than aggregated
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value such as mean and similarity. The upper bound means that difference between loads

in the two load distributions is guaranteed to be smaller than the representative distance. In

other words, a low value of ✓ leads to a low value of similarity or mean difference but not

vice versa.

Tolerant Parameter ✏. We define a tolerant parameter ✏ for representativeness. A net-

work k is a representative of all networks if the representativeness distance ✓k  ✏. Based

on load distributions of Network A, B and C, we categorize 491 administrative regions

as shown in Fig. 4.1 or time slots into 3 groups: (i) Total Representative Regions/Time

Slots (TR), the regions/time slots where every network is representative; (ii) Partial Rep-

resentative Regions/Time Slots (PR), the regions/time slots where we can find at least one

representative network but not all networks; (iii) No Representative Regions/Time Slots

(NR), the regions/time slots where no network is representative.

4.3 Measurement Approach

We conduct our study on representativeness from three perspectives:

(1). Findings and Causalities (Chapter 5.1 and 5.2): we categorize the measurement

results on spatial, temporal dimensions. (i) On the spatial dimension, we study load dis-

tribution Lr for different r. For each region r, Lr describes loads at different time slots.

(ii). On the temporal dimension, we study load distribution Lt for different slots t. For

each time slot t, Lt describes loads in different regions, i.e., elements l in Lt are loads from

different regions with same time slot t. To better understand the potential reasons for repre-

sentativeness difference, we study the correlation between representativeness and different

factors such as population distribution (i.e., how many potential users); mobility (i.e., will

these users change?); point of interest distributions (i.e., why they use cellular there?).

(2). Case Study (Section 5.3): we select 4 regions with different contextual information

distribution for a detailed study to validate our findings.

(3). Correction (Chapter 6): we design a diversity-driven model to alleviate the impact
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of representativeness distance with single-network data and public contextual data. We

evaluate our correction model with two real-world applications, i.e., population inference

and mobility modeling, by studying their performance with corrected representativeness.
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CHAPTER 5

MEASUREMENT RESULTS

5.1 Spatial Representativeness

Overall Patterns: Fig. 5.1 shows Representative Distance ✓ distribution of three networks

in administrative regions. A lower representative distance indicates high similarity between

loads (e.g., cellular traffic on web access) in a single network and loads of all networks. We

found the load of Network B is the most similar to the load distribution of all users across

all networks. One possible reason is that the load patterns of Network A and C are comple-

mentary, while the load pattern of Network B is close to the overall load pattern in the city.

Based on the representative distance of three networks, we study the regions in the three

groups with different ✏ in Fig. 5.2. When the threshold ✏ increases, the number of total rep-

resentative (TR) regions increases; the number of no representative (NR) regions decreases;

The number of partial representative (PR) regions increases first and then decreases.

Figure 5.1: Regions Figure 5.2: Spatial Groups

Impact Factors: To further explain the representativeness of regions in these three

groups, i.e., TP, PR, and NR, we study user distribution and their usage patterns in these

regions, which are closely related to two types of features, i.e., static features of the regions
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(e.g., functions and population) [22] and dynamic features of the users (e.g., mobility) [35].

For example, there are more business activities and users in CBD areas, who prefer the cel-

lular networks with better quality and are more tolerant on costs; whereas college students

in educational regions are more sensitive on costs.

Therefore, we take both PoI (points of interests) and static population distribution into

consideration for potential reasons for representativeness difference. However, those static

features are not sufficient to capture dynamic user distributions since users are moving be-

tween different regions during different time of day. Therefore, we introduce a dynamic

feature, i.e., user mobility, to analyze its correlation with cellular representativeness. As a

result, we study these static and dynamic features as three contextual impact factors, i.e.,

Point of Interest (PoI), population, and user mobility, which are used to investigate their

impact on representativeness in regions to explore the underlying reasons for representa-

tiveness differences.

Figure 5.3: PoI v.s. Spatial Figure 5.4: Groups v.s. Spatial

Impact Factor 1: Region PoI. For each administrative region in Fig. 4.1, the PoI

distribution is described by a 17-dimension vector from 17 subgroups. Since entropy is

widely used to measure the randomness and diversity of a certain distribution. We study

PoI entropy, as in Equation (5.1) where x is a 17-dimension vectors and each element xi is
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number of PoIs in one subgroup.

H(X) = �
17X

i=1

p(xi)log2p(xi) (5.1)

We found that a higher PoI entropy leads to a lower representative distance as in Fig. 5.3.

In other words, in the regions with more diverse PoI distributions, the load distribution of

a network is more similar to its total load distribution. We further validate this observation

in Fig. 5.4 and Tab. 5.1. In Fig. 5.4, we set ✏ as 0.2 to categorize all 491 regions into three

groups, i.e., NR (No Representative group), PR (Partial Representative group), and TR

(Total Representative group). We found that a high entropy (i.e., more diverse distribution

of PoI) in both TR and PR, compared with NR. We give the detailed PoI distribution in

Table 5.1: PoI Distribution in Groups

Group Cluster
Residence Transport Office Recreation Edu

TR 0.18 0.23 0.21 0.22 0.16
PR 0.14 0.26 0.28 0.20 0.12
NR 0.30 0.18 0.13 0.18 0.21

Tab. 5.1 where we found that (i) the most PoI distributions in TR and PR regions are

dominated by the function of Transportation and Office, and (ii) NR regions are dominated

by the residence.

Impact Factor 2: Region Population. We extract Shenzhen population from World-

pop [36], which gives fine-grained population distribution in 100m⇥ 100m grids. Fig. 3.2

presents the population distribution and statistics in Shenzhen where the CBD (central busi-

ness district) has a higher population density than other areas. We map population into ad-

ministrative regions and calculate the population density in regions to study the impact on

representativeness in Fig. 5.5. In regions with high populations, the representative distance

is small, which indicates that a single network is more representative in cellular users in

these regions.

Impact Factor 3: Region Mobility. We quantify the user mobility of one region by
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Figure 5.5: Pop. v.s. Spatial Figure 5.6: Mobility v.s. Spatial

its mobility demand, which is quantified by the number of trips starting from ri inferred

from the four transportation systems as introduced in Section 3.2. To eliminate the impact

of region sizes and populations, we use mobility demand index, which is defined as the

ratio between mobility demand and population in Fig. 5.6. We found that a high mobility

demand index (i.e., a high percentage of moving population) decreases the representative

distance. In other words, it increases the representativeness of a single network.

5.2 Temporal Representativeness

Daily Pattern: As shown in Fig. 5.7, we found a lower representativeness distance in Net-

work A and B, but a higher representativeness distance in Network C. All networks show

similar patterns including three peaks around 9-10am, 4-5pm, and 8-9pm. Similarly, on the

temporal dimension, we study three representativeness groups, i.e., TR (Total Representa-

tiveness), PR (Partial Representativeness), and NR (None Representativeness), in Fig. 5.8.

Compared with spatial representativeness groups as in Fig. 5.2, temporal representativeness

groups present a lower representativeness thresholds. It indicates the spatial dimension has

a higher variance of representativess, which motivates us to correct the representativeness

mainly from the spatial dimension in Chapter 6.

Impact Factors on Daily Pattern: We analyzed both network and contextual data to study

the potential reasons and impact factors on the daily representativeness patterns. We mainly
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Figure 5.7: Time of Day Figure 5.8: Temporal Groups

show the results on user mobility since it is the most important dynamic contextual factors

on the temporal dimension compared to population and PoI distributions, which are static

features related to spatial distribution of regions. We calculate the entropy of daily origin-

destination pair distributions of all taxi and public transportation (i.e., bus and subway)

trips based on the mobility data introduced in Section3.2. A lower entropy indicates a less

random (i.e., less diverse) distribution of user mobility as shown in Fig. 5.9. In other words,

Figure 5.9: Mobility v.s. Temporal
Figure 5.10: Groups v.s. Temporal

most passengers are mainly moving from certain origins to destinations, i.e., from residen-

tial regions to office regions or vice versa. We study the impact of mobility entropy on the

representativeness by showing the average mobility entropy of three groups in Fig. 5.10.

We found the highest mobility entropy in the TR (total representative) group and the lowest

in the NR (no representative) group. It suggested that the low diversity of mobility poten-
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tially leads to a high representativeness distance, which may be because most passengers

are moving between high-demand regions.

(ii) Weekly Pattern: We further study weekly patterns of representativeness as shown in

Fig. 5.11. We found a larger representative distance during weekdays than weekends. Be-

sides, the representativeness distance is relatively flat during the day time of weekends.

Compared with non-peak time segments, the representative distance is larger in peak seg-

ments. Similar to daily patterns, the representativeness difference is potentially caused

WeekendsPeak Hour

Figure 5.11: Average Representative Distance in One Week

by the user mobility difference. For instance, the mobility traces are more random during

weekdays compared with weekends. Due to space limitation, we omit the detailed analysis.

5.3 A Case Study

CBD

Airport
Residential

Train Station

Factors PoI
Diversity Population Mobility

CBD High Large High
Train Station Medium Large High
Residential Low Medium Medium

Airport Low Small High

Figure 5.12: Case Study Areas and Their Contextual Diversity
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To dive deeper on the spatial and temporal representativeness, we conduct a case study in

four selected regions, i.e, two transportation centers (including the city train station and the

airport), the CBD area, and a residential area, which are labeled in Fig. 5.12. We select

the four regions for two reasons: (i) they are the most important regions for most cities;

(ii) they have very diverse distributions in terms of the contextual factors including PoI,

population, and mobility as shown in the Table in Fig. 5.12. The number of towers in the

four selected locations with a certain radius is given in Tab. 5.2 from the least number of

towers to the most number of towers.

Table 5.2: Tower Distribution on Select Locations
Radius 1 km 2 km

A B C A B C
airport 2 2 1 17 20 11

residential 25 17 13 84 55 47
train station 38 30 27 134 109 101

CBD 58 56 30 164 178 92

We compare their representative distances in Fig. 5.13, where we found the highest

representative distance (i.e., less representative) in the airport area and the lowest represen-

tative distance (i.e., more representative) in CBD. It confirmed our previous observations in

Section 5.1 that a lower contextual diversity in terms of PoI, population and mobility leads

to a larger representative distance, which make a region less representative. For an in-depth

study on contextual diversity, we further study the impact of geographical distances from

the center of these areas on representativeness in Fig. 5.14. A long distance to the area cen-

ter (i.e., a larger area with a larger radius) decreases the representativeness distance of the

area because it mainly increases its contextual diversity. However, we found that the im-

pacts of distances on four areas are different: the representativeness only decreases slightly

around the CBD region; whereas the representativeness decreases significantly around the

train station, airport and residential regions. This is because the nearby regions around

the CBD area is still downtown so the contextual diversity does not change much with

the increasing of geographical distances from the CBD center; whereas the nearby regions
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around airport, train station and residential areas have higher contextual diversity with the

increasing of geographical distances since they include more diverse regions.

Figure 5.13: Studied Locations
Figure 5.14: Distance to Centers
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CHAPTER 6

CORRECTION MODEL

6.1 Motivation

Based on the analyses in the previous section, we found that contextual diversity (i.e., PoI,

population, and mobility) is a key reason for cellular network representativeness. In regions

with more diverse PoI distribution and mixed functions, higher density of population and

more visitors, a single network is more representative for the usage patterns of all networks

in a city. Our analysis has the potential to help fellow researchers or network operators

with the data from only one network to avoid data bias for their academic research and

real-world applications. For instance, they can use a sample of data from a spatial temporal

combination with high contextual diversity, instead of all the data from a single network.

Therefore, a natural question for us is how to design a correction model to obtain such a

data sample, which is resilient to representativeness bias. The key feature of our correlation

model is that it is only based on single-network data and public contextual data, and does

not require the data from all networks in a city to correct the bias and thus improve repre-

sentativeness. This is because accessing the data from all networks is very challenging in a

real-world setting.

6.2 Problem Definition

We first introduce terminologies for diversity modeling as in Tab. 6.1 and then formalize

our target problem.
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Notation Meaning
g,G a grid and a grid collection

Sg
,SG data from a network a grid/grid collection

S,SU both present data from a network for all grids
Sr, SR data from a network for a region r or a region subset R

↵ a data sampling ratio in terms of S
Mg

from a mobility matrix from grid g

Mg
to a mobility matrix to grid g

Pg a PoI distribution in grid g

Dg a Population density in grid g

Vg a region function distribution for grid g

Eg a contextual diversity for grid g

Table 6.1: Terminologies

6.3 Terminologies

1. Spatial Partition: We use a grid partition in our correction model, which divides a

region into grids with equal widths and heights. We use grid partition because it is

flexible to change sizes for different spatial granularity, which has been used in many

other research [11] [4].

2. Mobility Matrices: For each grid g, we construct two matrices to describe its mobility

patterns in the grid: a From matrix Mg
from to describe the number of passengers

moving from grid g to other grids in different time slots. a To matrix Mg
to to describe

the number of passengers moving to grid g from other grids in different time slots.

Therefore, both matrices have |G| rows and |T | columns where |G| is the number of

grids; |T | is the number of time slots covering both weekdays and weekends.

3. PoI Distribution: For each grid, a PoI vector Pg is used to describe the PoI distribu-

tion; each element in Pg is number of PoIs in a category, e.g., education, transport.

Different from mobility matrices to show dynamic features with time, the PoI vector

is a static feature on regions.
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4. Population: Another static feature is population on a grid, we quantify population on

a grid g by population density Dg, i.e., the average number of population per km2.

5. Function of Regions: Since a grid is always mixed with functions (e.g., office area,

entertainment, residence, shopping, transportation hub, etc), we model function of

regions with a vector Vg where |Vg| is the number of prefixed region functions; each

element vgi in Vg is a probability that the grid r has a function of region, e.g., eduction.

Specifically, we define Vg as a 5-dimension vector corresponding to five functions

of regions, i.e., office, residential, educational, transportation and recreation, which

are the main urban region functions used in recent literature [38]. However, different

from the traditional definition of region function, which is a static feature for a region,

the region function in our study is a dynamic feature on temporal dimensions since

we classify region function with temporal mobility data. For example, a grid can be

identified as an office area during workdays while as an entertainment area during

weekends.

6. Contextual Diversity: Intuitively, a grid with a single function, i.e., V = {1, 0, · · · , 0}

represents a low contextual diversity. In contrast, a more uniform distribution of

V , e.g., V = {0.1, · · · , 0.1} represents a high contextual diversity. Therefore, we

quantify region diversity Eg with an entropy of vector Vg, which is one of the most

common measurement for randomness of elements in a set [39]. For example, Vg =

{0.2, 0.2, 0.2, 0.2, 0.2} has the highest entropy, which indicates a high contextual di-

versity.

6.4 Target Problem: Diversity-Driven Grid Selection for Data Sampling

Given a data set S of a network from all grids and a sample ratio ↵, our target is to select

a sub set of grids G from all equally-sized grids to maximize the contextual diversity EG

under a constraint that the size of SG is equal to ↵ · |S|. All the data SG from this sub set
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of grids G are our data sample. The Equation 6.1 gives the formulation.

argmaxG EG

s.t.

X

g2G

|Sg| = ↵ · |S|

|G \ r| � 1, 8r 2 R

(6.1)

To avoid missing values on spatial dimension in sampling, we add a constraint |G\ r| � 1

to make sure every census-based region r at least gets one of its grids selected. In our

setting, a region is always bigger than a grid, and typically has a few grids in it. When we

require a smaller region, i.e., finer granularity, we can decrease the grid size to satisfy the

constraint.

Metadata
Population, PoI distribution  

8 1 10 10

15 8

0 5

20 0 1 12

0 15 0 11

3 5 0 6

Words f1 f2 f3 f4 f5

0.3 0.3 0.1 0.1 0.2

0.2 0.25 0.2 0.2 0.15

0.05 0 0.3 0.65 0

0 0 0.9 0.1 0

g1 g2 g3

t3

t2

t1

V1

V2

V3

V4

g2 g1

PoI Population Mobility

Contextual Information

Diversity Modeling

Entropy Maximization

Function Distribution

Topic Learning

l1 l2 l3 l4 l5 l6 l7 l8 l9Sample

g4

4 regions

Figure 6.1: Diversity-Driven Sampling
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6.5 Diversity-Driven Sampling

Since contextual diversity in terms of PoIs, population and user mobility is a key for rep-

resentativeness in single networks, we propose a diversity-driven sampling strategy by se-

lecting a few grids to construct a representative dataset (including all the data from the

selected grids) from a non-representative single network data to solve the target problem

in Equation 6.1. The general idea is to first quantify the contextual diversity in grids (i.e.,

equally-sized grids) in all regions, and then maximize the contextual diversity in sampling

grids. We summarize our model into two steps as in Fig. 6.1 : (i) diversity modeling; (ii)

diversity-maximization sampling. We elaborate on these two steps as follows.

Algorithm 1: Diversity-Driven Sampling
Input: ↵, SU , PU , DU , MU

from, MU
to

Result: SG

(1) metadata (PU
,DU);

(2) words (MU
from,MU

to);
(3) VU  topicClustering(metadata, words) ;
(4) G initialize() ;
(5) C  U �G;
(6) while |SG| < ↵ · |SU | do
(7) EG  entropy(VG) ;
(8) �EC  entropyGain(VG,VC);
(9) g  argmaxg2C �Eg;
(10) G G [ {g};
(11) C  C/{g} ;
(12) SG  SG [ Sg

(13) end

(i) Diversity Modeling: In diversity modeling, we generate a vector V = {v1, v2, · · · , vn}

for each grid where n is the number of potential region functions (e.g., education, office,

etc), and each element vi in V is the probability that a grid belongs to a function. In gen-

eral, a higher entropy on V indicates a more diverse distribution on region functions, thus

a larger contextual diversity in a region. To construct such a V from contextual informa-

tion of a grid, e.g., population, mobility and PoI distribution, we apply a topic model [38].
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Topic models such as LDA [40] was proposed to model the relation between the word

distribution in a document and the topic distribution of the document. Similarly, we infer

region functions with topic models along with the input of mobility, PoI and population.

Specifically, the detailed mapping from region function clustering to document topic clus-

tering is as follows: we map grids to documents; region functions to document topics; the

dynamic feature, i.e., mobility matrices to words; the static features, i.e., population and

PoI distributions to meta data of documents, e.g., authors, key words of documents. We

initialize the topic number as 5 in the clustering and thus the output of a topic model for a

document is a vector V with 5 functions of regions, and each element of the vector indicates

the possibility that the document belongs to a topic, i.e., a function of region. Thus, in our

region diversity modeling, the topic model is to assign a grid with a distribution of region

functions Vg where Vg = {vg1 , v
g
2 , · · · , vgn} and v

g
i is the possibility a grid g belongs to a

region function i. Fig. 6.1 presents a simplified example with 4 grids, 3 time slots, and 5

functions of regions. We map contextual data into grids, and each grid has population and

PoI distribution as metadata. Besides, both Mfrom and Mto have 3 rows for 3 time slots

and 4 columns for 4 regions. The topic model will generate a 5-dimension vector V for

each region to describe the possibility that the grid has these 5 functions.

(ii) Diversity-Maximization Sampling: After the first step, each grid has been assigned

with a function distribution vector. Based on that, our second step is to create a data sample

that meets the sampling requirement and maximizes the contextual diversity of the grids

having this data sample. To achieve it, we apply an entropy maximization strategy based

on a greedy algorithm. We separate all grids U into two groups, i.e., a selected group G and

a unselected group U �G. In the initialization, for each region r, we select a grid in r with

the highest entropy and put the grid in G to satisfy the second constraint in Equation 6.1.

Second, we calculate the entropy gain based on EG for every grid in U �G. We select the

gird g with the highest entropy gain, i.e., the diversity gain, and then update G = G [ {g}.

Third, we update the EG with new G, i.e., including this new grid g. The process will stop
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until the number of sample records are satisfied. For the example in Fig. 6.1, the number

of sample records are ↵ · |S| == 9 and there are 4 records (i.e., l1 to l4) in grid g2 and 5

records g1 (i.e., l5 to l9). We first select 4 records from g2 since Vg2 has the largest entropy

with one region selected and then select 5 records from g1 since we have the largest entropy

in V{g1,g2}. The process is described in Algorithm 1.

6.6 Evaluation

6.6.1 Evaluation Settings

we evaluate the sampling strategy with the following settings.

Ground Truth: We use the load of three networks, which covers 100% of cellular users,

as the ground truth.

Baselines: we compare the CellRep with two baselines: (1) Single is based on the raw

data from the most representative network for the best performance of a single network, i.e.,

a network with the lowest representativeness distance from A, B and C without sampling.

(2) CellSam is a uniform sampling method without considering the contextual diversity.

Metrics: we use representativeness distance ✓ as the metrics for the evaluation, a lower

representativeness distance indicates a higher representativeness.

Figure 6.2: Performance Figure 6.3: Sample Ratio
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6.6.2 Overall Results

We compare the performance of CellRep with two baselines in Fig. 6.2. Both the baseline

model CellRam and our CellRep increases the representativeness by reducing the repre-

sentativeness distance due to the higher sample until the ratio is 0.6. In particular, our

CellRep decreases representativeness distance significantly from 0.31 to 0.16 on average

as shown in Fig. 6.3. It shows that with a sophisticated sampling strategy in CellRep, even

30% of sample data from a single network can achieve similar representativeness as all

single-network data.

Figure 6.4: Impact of Networks Figure 6.5: Impact of Grid Size

6.6.3 Impact of Factors

We further study the impact of different factors on the performance of CellRep. Fig. 6.4

compares the resulted representativeness distance ✓ with data in the three networks. We

found even three networks have different user coverage, they can achieve similar repre-

sentativeness with CellRep. Therefore, CellRep shows a robust performance in different

networks. Specifically, the representativeness distance can be reduced to smaller than 0.2

in Network A, B, and C with ↵ equal to 0.5, 0.6, and 0.7, respectively. Moreover, we study

the impact of spatial granularity in Fig. 6.5, which shows the performance of CellRep with

different grid sizes. CellRep achieves the best performance with a grid size 100m⇥ 100m.

In general, a finer spatial granularity leads to a better performance.
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6.6.4 Impact on Real-World Applications

Relying on the measurement results, we validate the impact of representativeness on pop-

ulation estimation application as introduced in the motivation. Different from the previous

work, which improves the inference accuracy, our work focuses on a different angle, which

studies the impact of representativeness of cellular data. We implement a contextual-aware

population estimation with cellular usage data from single networks [24] and map the es-

timated population to the administrative regions. We use the Worldpop [36] dataset as the

ground truth data for cross-validation and MAPE (Mean Absolute Percent Error) as the

evaluation metric. We study the impact of our representative distance on this population

estimation in Fig. 6.6, which proves that a higher representativeness distance leads to a

worse performance on the application. Fig. 6.7 shows CellRep corrects the data bias in this

population estimation and improves the performance by reducing the MAPE 40.3% from

25.8% to 15.4% compared with a baseline Single (which use raw data in single networks)

and another baseline CellSam, which use a uniform sampling method without considering

the contextual diversity.

Figure 6.6: Impact on Pop Figure 6.7: Impact of Correction
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CHAPTER 7

DISCUSSION

Lesson Learned: We summarize several lessons learned and implications as follows.

1. Contextual diversity is the key factor for network representativeness on both spatial

and temporal dimensions. Different contextual information (e.g., PoI distribution,

population and mobility) causes different cellular user distribution and leads to rep-

resentativeness difference of single networks.

2. The representativeness is one of the most important factors for performance for real-

world applications. We found a high correlation between representativeness and the

performance of a population estimation model. Due to the limited access to cellular

activities from multiple networks, most existing applications and research studies are

based on single networks. On one hand, a better understanding on representativeness

can help understand the performance of existing models. On the other hand, our

measurement study paves a way to future cellular web log studies by providing pre-

analysis results and insights.

3. A well-designed correction model provides an approach to improving data qualify in

single networks by combining open contextual data with single-network data. Our

evaluation results show that such a correction model has the potential to improve

application performance by intelligently sampling the representative data. The cor-

rection model can be applied to many applications related with web services or user

distribution such as traffic demand prediction [6], web user estimation [41], hot spot

recommendations [42].

Ethical and Privacy Issues: Our study acquired consent to investigate the Cellular web log

data for research purposes, which is approved by IRB. The data we investigate (i) Deidenti-
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fication: the analyzed data are anonymized by the three cellular operators, and identifiable

IDs (e.g., phone numbers or SIM IDs) are replaced by a serial identifier during the analy-

ses. (ii) Coarse-grained Locations: we analyze cellular user behaviors at the level of cell

towers, which may cover from a few thousand square meters to a few square kilometers,

which cannot reveal detailed locations of users. (iii) Aggregation: Our work was exempted

by an IRB process in our affiliation since there is no more than the minimal risk to con-

duct our research because the tower-level results are based on aggregation, which cannot

be traced back to individual cellular users. (iv) Benefits Outweigh Risks: All cellular users

consented that their data will be used for cellular network management and improvement.

We believe our results have positive impacts on cellular users’ by improving their cellular

services so the benefit of our data-driven research outweigh the potential risk.

Limitation: A limitation is that our study is based on three networks in one particular city.

Due to limited data access, we cannot validate our findings in other cities. However, most

cities in the world are covered by multiple cellular networks. We believe that the findings

in this work are meaningful to other cities, especially the cities in China since they have

the same three cellular operators.
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CHAPTER 8

CONCLUSION

As an infrastructure for mobile web service, we conduct a comprehensive study based on

multiple diverse cellular networks to understand cellular service representativeness at city

scale with more than 10 million cellular users. We quantify the representativeness in single

networks and explain the potential reasons for representativeness differences. Based on

our analysis, we design a correlation model and then validate its performance based on

real world application on population estimation. Our analysis results could be used as a

preliminary result to provide insights for research work and applications such as city-scale

web service modeling, mobility and population estimation. Last but not least, we design

a correction model to improve representativeness in single-network data. Our correction

model can improve representativeness of a single network by 45.58% on average.
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