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Dark energy is a leading theory to explain cosmic acceleration, and forthcoming astronomical

surveys have been specifically designed to probe this mysterious energy component of our

universe. This thesis addresses aspects of using large galaxy surveys to study dark energy,

which requires an unprecedented understanding and mitigation of systematics – a challenge

that can be addressed on two fronts: quantification of the impacts of systematics, and new

tools to mitigate them. Here, we specifically study the impacts of three key systematics:

those induced by 1) the telescope observing strategy, 2) the Milky Way dust, and 3) uncertain

photometric redshifts. Focusing on the Legacy Survey of Space and Time (LSST) carried out by

the Vera C. Rubin Observatory, we quantify the impacts of LSST observing strategy on large-

scale structure studies, which is a probe of dark energy. We demonstrate the effectiveness of

large translational dithers – telescope-pointing offsets – in increasing LSST survey uniformity

and reducing systematic uncertainties (Awan et al., 2016; LSST Science Collaboration et al.,

2017) – a result that has now been adopted for the baseline LSST observing strategy. We also

study the impacts of MilkyWay dust on dark energy science and demonstrate that∼25% of the

default LSST survey area would not be useful for extragalactic static science given the Milky

Way dust extinction, motivating the reconfiguration of the LSST survey footprint to avoid high-

extinction regions of the sky (Lochner et al., 2018; Olsen et al., 2018). And finally, we present

a new formalism that provides a novel way to correct for redshift contamination arising from
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photometric redshift estimation (Awan & Gawiser, 2020). Specifically, we first introduce a

general formalism to correct for sample contamination for photometric galaxy samples when

measuring two-point angular correlation functions, and then a new weighted estimator that

assigns each galaxy a weight in each redshift bin based on its probability of being in that bin,

thereby fully utilizing the probabilistic distance information available for photometric galaxies.

While these techniques are motivated by preparations for LSST, they are applicable to other

large galaxy surveys like Dark Energy Survey (DES), Dark Energy Spectroscopic Instrument

(DESI), Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), Euclid, and Wide-Field

Infrared Survey Telescope (WFIRST).
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Chapter 1

Introduction

Cosmology is the study of the origin and evolution of our universe. In recent decades, this

field has become quantitative, with more advanced technology allowing detailed observations

and providing the computational power needed to analyze the vast amount of data. This thesis

specifically focuses on the cosmic acceleration – one of the phenomena unexplained by our

models of the universe. To provide a proper context and address the motivation of this work,

we start with a brief overview of the discovery of cosmic acceleration in Section 1.1, followed

by the current models explaining the phenomenon in Section 1.2. We then discuss one of the

observational probes in Section 1.3 and provide the context for this thesis in Section 1.4.

1.1 An Accelerating Universe: Discovery

In 1929, Edwin Hubble measured distances to nearby galaxies and plotted them against their

recessional velocities. He found that the galaxies farther away from us appear to be receding

faster from us. The trend, known as the Hubble’s law, indicates an expansion of the universe,

and is expressed quantitatively as v = H0r, where v is the recessional velocity,H0 is the Hubble

constant, and r is the distance.

Since Hubble’s sample consisted mainly of nearby galaxies, he was able to use the classical

Doppler shift to infer velocities from redshift, z = v/c, where redshift measures the difference

between the observed and emitted wavelengths:

z = λobserved − λemitted

λemitted
(1.1)

If the galaxies are receding from each other today, they must have been closer together

before. Therefore, the expansion of the universe applied reversed in time gave rise to the Big

Bang model: an expanding universe that started from an infinitely dense region, marking the

origin of the universe. The model, however, did not explain the nature of the expansion.

In 1998, two teams revealed another feature of our universe. Using Type Ia supernovae
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(SNIa), Riess et al. (1998) and Perlmutter et al. (1999) extended the Hubble’s law to high-

z galaxies, as SNIa offer precise distance estimates to far away galaxies given that they are

very bright objects with known intrinsic luminosities (Branch & Tammann, 1992) and their

luminosities are standardizable using their light curvewidth (Phillips et al., 1999). Their results

indicate an accelerating expansion of the universe, i.e., our universe is not only expanding, as

Hubble had found, but the expansion rate has been increasing recently.

Figure 1.1 shows the results from Riess et al. (1998). The vertical axis shows the difference

between the apparent magnitude m and absolute magnitudeM , which is a direct measure of

luminosity distance dL:

m−M = 5 log10

(
dL

10pc

)
(1.2)

Luminosity distance is one of the measures of the cosmological distance to an object (Do-

delson, 2003). Therefore, Figure 1.1 is an analog of the Hubble diagram. We note that in the

high-z regime, the simple relation between the recessional velocity and redshift does not hold,

as ‘cosmological redshift’ comes to play an important role (for a related discussion, see Bunn &

Hogg, 2009). The lower panel in the figure makes clear that the galaxies farther away from us

are at greater distances than their redshifts would imply for a non-accelerating universe (i.e.,

ΩΛ = 0).

We note that the Hubble constant is a function of time:

H = H(t) = da/dt

a(t) , a(t) = 1
1 + z

(1.3)

where the scale factor a(t) measures the expansion of the universe, and is taken to be unity

today, i.e. a0 = a(t0) = 1; note that the scale factor is a dimensionless quantity. Therefore, the

Hubble “constant" measures the rate of expansion at a given time.

Recent measurements of the Hubble constant today,H0, range from 67.8±0.9 kms−1Mpc−1

(Planck Collaboration et al., 2016) to 73.2±1.7 kms−1Mpc−1 (Riess et al., 2016). Given the range

of estimates, it has become customary to introduce a reduced Hubble constant h as

H0 = 100h kms−1Mpc−1 (1.4)

and quote distance-dependent quantities in the units with h (Mo et al., 2010). We will return

to the curves in Figure 1.1 later when we discuss how the high-z data favors a specific class of

cosmological models.
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Figure 1.1: Figure 4 from Riess et al. (1998) showing the high-z Hubble diagram constructed using Type
Ia supernovae measurements, showing an accelerating expansion of the universe; figure included here
with permission. The vertical axis in the top panel shows the difference between the apparent magnitude
m and absolute magnitudeM , which is a measure of luminosity distance as in Equation 1.2, whereas the
bottom panel plots the change in this quantity; the horizontal axis plots the redshift. The observed data is
plotted as black dots, while the predictions for the relation based on three different cosmologies is shown
as curves: the solid curve is for the cosmology with a non-zero energy density for Λ, the dotted one is for
a universe with no Λ but not a matter-only universe, while the dashed line is for a matter-only universe.
We see that the data prefers the cosmology with a non-zero energy density for Λ, hence indicating an
accelerating universe.

1.2 An Accelerating Universe: Explanation

By the end of the 20th century, we knew that our universe is composed of at least two compo-

nents: matter and radiation. Matter content not only includes the luminous, baryonic matter,

but also the non-baryonic one, with the latter discovered by Vera Rubin et al. (Rubin et al., 1962;

Rubin, 1965), and found to be dominating thematter content of the universe; observational data

indicates that the non-baryonicmatter interactswith baryonicmatter only gravitationally and is

non-relativistic (see more details in e.g., Mo et al., 2010), and hence is termed as cold dark matter

(CDM), characterizing what is known of its nature of being non-luminous and non-relativistic.

As for the radiation component, an isotropic presence, with small-scale inhomogeneities, is the
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Cosmic Microwave Background (CMB) – discovered in 1964 (Penzias & Wilson, 1965), it is a

relic from some 300,000 years after the Big Bang when photons decoupled frommatter. The re-

sults indicating the expansion of the universe (Hubble, 1929; Riess et al., 1998; Perlmutter et al.,

1999), however, suggest the existence of another component, dubbed dark energy, characterized

by negative pressure that drives the expansion of the universe to accelerate.

In order to elaborate the requirements for an explanation of the expansion of the universe,

we first consider the Einstein equations relating the geometry of the universe to its energy-

momentum components:

Gµν = 8πGTµν (1.5)

where the Gµν is the Einstein tensor encoding the geometry of the universe, G is Newton’s

constant, and Tµν is the energy-momentum tensor describing the different components of the

universe; µ, ν are indices denoting the time coordinate and three spatial coordinates. Note that

further details of Equation 1.5 and what follows can be found in e.g., Ryden (2003) and Carroll

(2019).

For a flat universe (i.e., one without any intrinsic geometric curvature), Equation 1.5 leads

to two Friedmann equations: (
ȧ

a

)2
= H2 = 8πG

3 ρ (1.6)

ä

a
= −4πG

3 (ρ+ 3P) (1.7)

where ρ is the energy density and P is the pressure of the fluid; a is the scale factor introduced

in Equation 1.3, and ȧ and ä are its time derivatives. Here, we note that Equation 1.6 defines

the critical density ρcritical, i.e., the energy density of a flat, non-expanding universe.

Modeling the fluid pressure as a function of density, with the equation of state parameter

w, we have P = wρ. Applying the energy-momentum conservation, we arrive at the relation

ρi ∝ a−3(1+wi) (1.8)

For matter (both baryonic and non-baryonic), the density is inversely proportional to volume,

so ρm ∝ a−3. On the other hand, the radiation energy density ρr is the photon number density

times the photon energy; while the former is inversely proportional to volume, the latter is

inversely proportional to the scale factor, accounting for the redshifting of the wavelength with

the expansion of the universe. Therefore, ρr ∝ a−4.
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For an accelerated expansion, ä > 0. This combined with Equation 1.7 implies that any

energy component driving the accelerating expansion of the universe must have

ρ+ 3P = ρ+ 3wρ < 0 ⇒ w < −1
3 (1.9)

The simplest model for dark energy considers a cosmological constant Λ with equation of

state parameter w = −1 and hence a constant energy density (for details, see e.g., Peebles &

Ratra, 2003).

In order to discuss andmeasure the density of different energy components, it is convenient

to consider their density ratios versus the critical density:

Ωi ≡
ρi

ρcritical
(1.10)

where i denotes different components, e.g., physical contributors like the dark energy (denoted

as DE; with the specific case of a cosmological constant denoted as Λ), matter (m), baryons

(b), and radiation (r). Also, since
∑
i Ωi = 1 to account for all the energy components of the

universe, we have Ωk ≡ 1− Ωphysical, which is attributed to the geometry of the universe.

We can now vary the density parameters in our model and check its compatibility with

observed data. In Figure 1.1, Riess et al. (1998) plot the Hubble relation for three different

universes: matter-only universe Ωm = 1, Ωm = 0.2 universe without a cosmological constant,

and the Ωm = 0.24, ΩΛ = 0.76 universe. Comparing the models with the data, we find that the

high-z SNIa measurements strongly rule out the matter-only universes. Similar constraints are

achieved when comparing the theoretical CMB prediction with the observed data.

1.2.1 Dark Energy

While the cosmological constant model for DE satisfies the parameter required to explain the

accelerating expansion, as dictated by Equation 1.9, and leads to predictions that are in good

agreement with the observed data, it leads to a formidable discrepancy when we consider the

physical nature of the cosmological constant. By definition, the energy density of Λ remains

constant. The only known kind of energy density that remains constant is the vacuum energy

density – arising from quantum fluctuations in empty space, with virtual particle, antiparticle

pairs zipping in and out of existence. While an exact theoretical estimate of the vacuum

energy is not available, an order of magnitude estimate of this vacuum energy comes from the

smallest length scale, the Planck length `planck and the related Plank energy Eplanck (Ryden,
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Figure 1.2: Figure modeled after Figure 1.3 from Dodelson (2003), showing the evolution of the different
components in a flat universe. Specifically, the y-axis shows the density of each of the energy components
as a function of the scale factor plotted on the x-axis.

2003; Carroll, 2001):

ρvac ∼
Eplanck

`3planck
∼ O(10110) ergs cm−3 (1.11)

On the other hand, observational data constrains the ratio of dark energy density to the

critical density (e.g. Planck Collaboration et al., 2016):

ΩΛ = ρΛ

ρcritical
≈ 0.7 ⇒ ρΛ ≈ O(10−10) ergs cm−3 (1.12)

The comparison of Equations 1.11-1.12 shows an O(10120) discrepancy between the observed

and (potential) theoretical estimate of the energy density associated with the cosmological

constant; this disagreement, known as the cosmological constant problem, marks a fundamental

problem with the cosmological constant.

Furthermore, in the ΛCDM framework, we appear to be at a special point in time in the

course of the evolution of the universe: ΩΛ has only recently taken over Ωm, while remain-

ing subdominant to radiation and matter since inflation. Figure 1.2 shows the evolution of

the different components of the universe, highlighting the peculiarity of the current state of

the universe; this cosmic coincidence (Sahni, 2002) also generates criticism of the cosmological

constant model for DE.

Since the cosmological constant leads to rather uneasy conclusions, other models are pro-

posed for the dark energy equation of state, e.g. quintessence, which proposes an evolving

equation of state parameter, e.g., w = w0 + wa(1 + a) (see e.g., Barboza & Alcaniz, 2008). Yet

other models propose modified gravity, i.e., departures from Einstein’s theory of general rela-

tivity on large scales, and therefore do not introduce a different type of energy to explain the

expansion of the universe (see e.g., Jain & Zhang, 2008).
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In summary, the observational data reveal characteristic features of our universe, and we

test our current cosmological model by measuring some of its key parameters. These include

the dark energy density ΩDE, baryon density Ωb, matter density Ωm, curvature density Ωk =

1− Ωm − ΩDE, and the DE equation of state parameters w0, wa.

1.3 Large-Scale Structure as a Probe

Various large galaxy surveys have revealed the large-scale structure (LSS) of the universe.

Referred to as the cosmic web, LSS consists of galaxies, galaxy clusters and super-clusters

forming 1D filaments that combine to form 2D sheets, separated by large nearly-empty spaces

termed as voids. This peculiar arrangement hints at a hierarchal growth of structure: as matter

gravitates into the potential wells set up by overdense regions, these regions get bigger and

eventually merge, giving rise to the filamentary structure we see today (Cooray & Sheth, 2002).

Studying the evolution of LSS from initial conditions is a strong probe to study the ex-

pansion and acceleration of the universe, especially with the increased computational power

which allows running detailed simulations of how the structures evolve and how the different

components in the universe affect the growth of structure. This is shown in Figure 1.3, where

the left panel shows the LSS mapped by the Sloan Digital Sky Survey (SDSS) (York et al., 2000),

while the right panel shows the structure simulated by the Millennium Simulation (Springel

et al., 2005). The details of both panels allow a comparison of the theoretical model predictions

with observations, hence constraining the cosmological parameters in our models.

Figure 1.3: Left: Large-scale structure as mapped by the Sloan Digital Sky Survey (SDSS); image included
here given the Creative Commons Attribution license. Right: Simulated large-scale structure from the
Millennium Simulation (Springel et al., 2005); image included here with permission.

https://www.sdss.org/science/orangepie/
https://www.sdss.org/collaboration/#image-use
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1.3.1 A Cosmological Ruler: Baryonic Acoustic Oscillations

A specific cosmological signature in large-scale clustering of galaxies is the Baryonic Acoustic

Oscillations (BAO), arisingdue to an inherent scale introducedby thephoton-baryon interaction

in the early universe. Before recombination, when the photons and baryons were tightly

coupled, their interaction gave rise to acousticwaves. Pressure drove the baryon-photonplasma

outwards from the overdensities, before it returned to the overdensities due to gravitational

pull. However, as the photons decoupled from neutral matter, they free-streamed instead of

gravitating back with the baryons, leaving the baryonic shells ‘frozen’ as they were no longer

driven out by pressure. These shells evolved under gravity, preserving the comoving scale

of the original matter inhomogeneity as well as the baryonic shell (Eisenstein & Hu, 1998;

Eisenstein et al., 2007).

The radius of the baryonic shells is the sound horizon, s, at recombination and marks a

characteristic scale length; it is quantitatively defined as

s =
∫ ∞
zrec

dz
cs

H(z) (1.13)

where zrec is the redshift at recombination (∼ 1000) and cs is the speed of sound. Therefore,

studying the BAO scale at various epochs can be instrumental in mapping out the expansion

of the universe.

Specifically, measurement of the BAO signal provides direct constraints on the Hubble

constantH(z) and the angular diameter distance dA(z), which is a distancemeasurement based

on the apparent angular size of an object (in this case, the BAO feature). More specifically, we

can probe both the transverse and the line-of-sight (LOS) BAO scale s, and get two relations.

The transverse measurement relates the angular scale of the BAO signal and dA(z) (Dodelson,

2003, Chapter 2):

∆θBAO = s

dA(z) (1.14)

In a flat universe, dA(z) is defined as (Noh, 2013; Koehler, 2009)

dA(z) = c

1 + z

∫ z

0

dz′

E(z′) , E(z) =

√
Ωm(1 + z)3 + ΩDE exp

[
3
∫ z

0
dz

1 + w(z)
1 + z

]
(1.15)

On the other hand, Hubble’s law relates the LOSmeasurement of s to the change in redshift
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and the Hubble constant (Hamilton, 1998; Dodelson, 2003):

c∆zBAO = sH(z) (1.16)

Therefore, a measurement of the BAO signal can independently constrain the angular diameter

distance through Equation 1.14, and the Hubble constant via Equation 1.16 (see e.g., Kazin

et al., 2012). Since both dA(z) and H(z) depend on the evolution of the universe, measuring

the BAO signal at different epochs allows strong constraints on the evolution of the universe.

1.3.2 Two-Point Statistics and Systematics

Various statistics can be used to study the LSS, most common of which are two-point statistics

like the two-point correlation function and its Fourier transform, the two-point power spectrum.

Specifically consideringphotometric surveys,where redshift information is not themost precise

and hence disallows precise measurements in 3D space, it is common to use 2D statistics –

namely, the angular correlation function (w(θ)) and the angular power spectrum (C`) – which

are calculated in (thin) redshift bins to track time-evolution and hence constrain cosmology

(e.g., see Camacho et al. (2019) for an analysis for Dark Energy Survey (DES) (Flaugher, 2005),

and Nicola et al. (2019) for that for Hyper Suprime-Cam (HSC) (Aihara et al., 2018)).

Now, we expect to measure the BAO signal in two statistics as the sound horizon leads to

excess clustering on its specific scale (Eisenstein et al., 1998a; Eisenstein & Hu, 1998; Eisenstein

et al., 1998b); for instance, it is measured in the DES galaxy sample (Abbott et al., 2019) while

its first detection came from SDSS (Eisenstein et al., 2005) using the 3D galaxy correlation

function (which is measured in the 3D comoving space, instead of the projected one). Given

the imperative need to not only precisely locate the BAO peak but also measure its amplitude,

it becomes critical to avoid systematic uncertainties on the scales of interests: e.g., for a galaxy

sample at z ∼ 1, the BAO angular scale is expected to be O(1) degree1, which corresponds to

the multipole range of 100 ≤ ` ≤ 300 2.

Another point to note is the impacts of uncertainties associated with photometric redshifts.

The current methodology to handle these redshift uncertainties in cosmological analyses relies

on Bayesian forward modeling each point in the cosmological parameters space to predict

measurements, which then allows constraining the parameters (e.g., see Abbott et al. 2019).

1Calculated as ∆θBAO(z) = dphysical,BAO(z)/dA(z), where dphysical(z) = dcomoving(1 + z)−1 and dA(z) is the
angular diameter distance from Equation 1.15; here dcomoving,BAO ≈ 110Mpc.

2Since θ ∼ `/180, where θ is the angular scale and ` is the multipole.
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Specifically, this approach focuses on predicting the observed two-point statistics in redshift

bins as long as the true number of galaxies in each redshift bins is correct (which can be done

by calibrating these numbers using e.g., spectroscopic surveys). While this approach yields

competitive constraints, it disallows handling the redshift uncertainties for each galaxy – a

problem that may be a limiting factor as we get more precise redshift uncertainties with the

upcoming surveys.

1.4 Motivation for this work

As discussed above, the statistics used to quantify LSS suffer from statistical and systematic

uncertainties. The former is overcome by the forthcoming astronomical surveys given access

to an unprecedented amount of data. These surveys include the Legacy Survey of Space and

Time (LSST) carried out by the Vera C. Rubin Observatory (LSST Science Collaboration et al.,

2009), Dark Energy Spectroscopic Instrument (DESI) (DESI Collaboration et al., 2016), HETDEX

(Hill et al., 2008), Euclid (Laureĳs et al., 2011), and WFIRST (Spergel et al., 2015). Since these

surveys begin an era where, for the first time, science probes of cosmic acceleration like LSS

will be systematics-limited as opposed to being statistics-limited, it is imperative to analyze the

sources of systematic uncertainties in our measurements and find ways to mitigate them.

This thesis focuses on two specific aspects of using LSS studies with large galaxy surveys:

understanding survey systematics and their impacts on our measurements, and developing

statistical tools to fully realize the data-driven understanding of our universe. Specifically, we

consider the impacts of three specific systematics that affect our data: the telescope observing

strategy, Milky Way dust, and redshift uncertainties; these are discussed in detail in Chapters

2, 3, and 4 respectively. Also, since the work here is motivated by preparations for LSST, we

provide a brief overview of the survey below.

1.4.1 Legacy Survey of Space and Time

The Legacy Survey of Space and Time (LSST) is a 10-year optical survey that will be carried

out by the Vera C. Rubin Observatory during 2022-2032. During its 10-year term, the Observa-

tory will scan the full southern sky with unprecedented detail, with the final survey covering

20,000 deg2 in six different filters (spanning∼300-1100 nm inwavelength space) andmeasuring

angular positions and photometric redshifts of over 10 billion galaxies (LSST Science Collabo-

ration et al., 2009). Specifically pertinent to dark energy science is the ability to use the same

https://www.lsst.org/
https://www.lsst.org/
https://www.desi.lbl.gov/
http://hetdex.org/
http://sci.esa.int/euclid/
https://wfirst.gsfc.nasa.gov/
https://www.lsst.org/
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dataset for different astrophysical probes of cosmic acceleration – large-scale structure, Type-

Ia supernovae, weak gravitational lensing, strong lensing, and clusters of galaxies – thereby,

enabling competitive combined probe analyses, alongside those from individual probes given

the unprecedentedly large statistical sample. Figure 1.4 shows the forecast constraints on the

dark energy equation of state from the ten-year LSST data; these are based on the Science Road

Map (The LSST Dark Energy Science Collaboration et al., 2018) from LSST Dark Energy Science

Collaboration (DESC), which is the collaboration focused on carrying out the research and

development for dark energy constraints using LSST data.

Figure 1.4: Figure adapted from Figure G2 in The LSST Dark Energy Science Collaboration et al. (2018)
showing the forecast constraints on dark energy equation of state from the ten-year (Y10) LSST data;
included herewith permission. As discussed in Section 1.2.1, theDE equation of state can be characterized
by w = w0 + wa(1 + a), and this figure plots the constraints on the two equation of state parameters w0
and wa using individual DE probes (cyan, yellow, red, green contours), the joint static probes analysis
(blue contour) and joint all-probes analysis (black contour).

https://lsstdesc.org
https://lsstdesc.org
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Chapter 2

LSST Observing Strategy Systematics and Translational
Dithering

This chapter is reproduced, aside fromminor formatting changes and an addi-
tional appendix (2.B), fromAwan et al. (2016): published in the Astrophysical
Journal©AAS; titledTesting LSST Dither Strategies for Survey Uniformity and
Large-Scale Structure Systematics; authored by Humna Awan, Eric Gawiser,
Peter Kurczynski, R. Lynne Jones, Hu Zhan, Nelson D. Padilla, Alejandra M.
MuñozArancibia, AlvaroOrsi, SofíaA.Cora, andPeter Yoachim. Reproduced
here with permission.
Appendix 2.B, aside from its preface, is reproduced with permission from
LSST Science Collaboration et al. (2017), a Community White Paper, titled
Science-Driven Optimization of the LSST Observing Strategy, and authored
by Phil Marshall, et al. (including Humna Awan) for the LSST DESC Collab-
oration. The specific source of the appendix is subsections 9.2.3-9.2.5, where
Section 9.2 was authored by Humna Awan, Eric Gawiser, Peter Kurczynski,
and Lynne Jones.
Note also that the content here is updated to use the new terminology: LSST
now stands for the Legacy Survey of Space and Time, which is carried out
by the Vera C. Rubin Observatory, which was previously known as the Large
Synoptic Survey Telescope (abbreviated LSST).

2.1 Introduction

The Legacy Survey of Space and Time (LSST) is an upcoming wide-field deep survey, carried

out by the Vera C. RubinObservatory (RubinObs.) and designed tomake detailed observations

of the southern sky. A telescope with an effective aperture of 6.7m and a 3.2 Gigapixel camera,

Rubin Obs. will survey about 20,000 deg2 of the sky in ugrizy bands, over the course of ten

years with∼150 visits in each band to each part of the survey area (LSST Science Collaboration

et al., 2009). While the survey has various goals, from studying near-Earth objects to transient

phenomena, its imaging capabilities are particularly promising for studying dark energy. With

its wide-deep observation mode, LSST will probe 1) the shear field from weak gravitational

lensing, 2) Baryonic Acoustic Oscillations (BAO) in the galaxy power spectrum and correlation

functions, 3) evolution of the galaxy cluster mass function, 4) Type Ia supernovae and their

distance-redshift relationship, and 5) time delays from strong gravitational lenses, providing

an opportunity to study dark energy from one dataset. The nature of these cosmic probes

leads to requirements on the survey observing strategy, understood in terms of cadence, i.e.

frequency of visits in a particular filter, and uniformity, i.e. survey depth across various regions

https://doi.org/10.3847/0004-637X/829/1/50
https://doi.org/10.3847/0004-637X/829/1/50
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of the sky. For goals dependent on spatial correlations, such as BAO and additional large-scale

structure (LSS) studies, survey uniformity is of critical importance, while time domain science

often depends on high cadence.

The baseline LSST observing strategy tiles the sky with hexagons, each of which inscribes

an LSST field-of-view (FOV) (LSST Science Collaboration et al., 2009). Given that the FOV

is approximately circular, the hexagonal tiling leads to regions between the FOV and the

inscribed hexagon that overlap when adjacent fields are observed. Therefore, observations at

fixed telescope pointings lead to deeper data in these overlapping regions, decreasing survey

uniformity and inducing artificial structure specifically at scales corresponding to the expected

BAO signal at z ∼ 1 (Carroll et al., 2014). While the double-coverage data could be discarded

to make the survey uniform, the loss would comprise nearly 17% of LSST data (Carroll et al.,

2014), equivalent to 1.5 years of survey time. On the other hand, correction methods have been

developed for other surveys (e.g., Ross et al., 2012; Leistedt et al., 2016) to post-process and

correct for the systematics in the observed data – such an approach could also work for LSST

survey uniformity. Here, however, we address the approach of minimizing eventual survey

systematics by designing an optimal observing strategy.

Dithers, i.e. telescope pointing offsets, are helpful in reducing systematics. While LSST

plans to implement small dithers to compensate for the finite gaps between the CCDs (e.g.,

McLean, 2008), implementing large dithers on the scale of the FOV appears to offer a solution

for LSST survey uniformity, reducing the artificial structure by a factor of 10 as compared to

the undithered survey (Carroll et al., 2014). In this paper, we analyze various dither strategies,

varying in both the geometric pattern and the timescale on which the pattern is implemented.

We develop a methodology for a quantitative comparison of these strategies and explore their

effects on survey depth and BAO systematic uncertainty. We introduce the LSST Operations

Simulator and theMetrics Analysis Framework in Section 2.2. Then, in Section 2.3, we describe

the variants of the dithers implemented, followed by a discussion of the impacts of the dither

strategies on the coadded depth as well as artificial fluctuations in galaxy counts in Section 2.4.

We conclude in Section 2.5, highlighting that our work illustrates the capability to assess the

effectiveness of various dither strategies for LSST science goals.



14

2.2 The LSST Operations Simulator and Metrics Analysis Framework

The LSST Operations Simulator (OpSim) simulates 10-year surveys, accounting for realistic

factors that affect the final data; these considerations include scheduling of observations, tele-

scope pointing, slewing and downtime, site conditions, etc. (Delgado et al., 2014). More

specifically, OpSim output contains realizations of LSST metadata, stamped with sky position,

time, and filter (LSST Science Collaboration et al., 2009), allowing post-processing of the output

to simulate different dither strategies.

As mentioned earlier, LSST OpSim tiles the sky with hexagonal tiles. In order to effectively

account for the overlapping regions between the hexagons, we utilize the Hierarchical Equal

Area isoLatitude Pixelization (HEALPix) package to uniformly tile the sky with equal area

pixels (Górski et al., 2005). HEALPix uses nearly-square pixels to tile the sky with a resolution

parameter Nside, leading to a total number of pixels Npixels= 12N2
side. In our analysis, we use

Nside= 256, giving a total of 786,432 pixels, and effectively tiling each 3.5◦ FOV with about 190

HEALPix pixels. Here we note that our resolution is four-fold higher than that used in Carroll

et al. (2014); this improvement ensures that we do not encounter signal aliasing in the angular

scale range we study here.

We carry out our analysis within the Metrics Analysis Framework (MAF), designed for

the analysis of OpSim output in a manner that facilitates hierarchical building of the analysis

tools. MAF consists of various classes, of which most relevant here are Metrics that contain

the algorithm to analyze each HEALPix pixel and Stackers that provide the functionality of

adding columns to the OpSim database; for details, see Jones et al. (2014). Some of our code

has already been incorporated into the MAF pipeline1, and the rest can be found in the LSST

GitHub repository2.

2.3 Dither Strategies

We consider dither strategies with three different timescales: by season, by night, and by visit.

A single visit is a set of two 15 second exposures (Ivezic et al., 2008). Since OpSim output does

not have a season assignment for the simulated data, we define seasons separately for each

field, starting from zero and incrementing the season number when the field’s RA is overhead

in the middle of the day. This leads to 11 seasons for the 10-year data, and we assign the 0th

1https://github.com/lsst/sims_maf

2https://github.com/LSST-nonproject/sims_maf_contrib/tree/master/mafContrib

https://github.com/lsst/sims_maf
https://github.com/LSST-nonproject/sims_maf_contrib/tree/master/mafContrib


15

and the 10th seasons the same dither position.

Since fields are scheduled to be visited at least two times in a given night, followed by a

typical revisit time of three days (Ivezic et al., 2008), we implement two approaches for the

by-night timescale: 1) FieldPerNight, where a new dither position is assigned to each field

independently, and 2) PerNight, where a new position is assigned to all fields. The first

approach tracks each field and assigns it a new dither position only if it is observed on a

new night, while the second approach assigns a dither position to all the fields every night

(regardless of whether a particular field is observed or not). For the by-visit timescale, we only

consider FieldPerVisit, and for by-season strategies, we consider PerSeason only.

For the dithers, we implement a few geometrical patterns to probe the effects of dither

positions themselves. Since the sky is tiled with hexagons inscribed within the 3.5◦ FOV, we

restrict all dither positions to lie within these hexagons. For by-season strategies, given that

there are only 10 seasons throughout the LSST run, we pick a geometry that allows choosing

10 dither positions uniformly across the FOV:

– Pentagons: points alongs two pentagons, one inside an inverted, bigger pentagon.

For by-night and by-visit timescales, we consider four different geometries:

– Hexagonal lattice dithers: 217 points arranged on a hexagonal lattice (Krughoff, 2016).

– Random dithers: random points chosen within the hexagon such that every dither posi-

tion is a new random point.

– Repulsive Random dithers: after creating a grid of squares inside the hexagon, squares

are randomly chosen without replacement. Every dither position is a random point

within a chosen square.

– Fermat Spiral dithers: 60 points are chosen from the spiral defined by r ∝
√
θ, where θ

is a multiple of the golden angle 137.508◦ (geometry appears in nature; see Muñoz et al.

(2014)).

Figure 2.1 shows these geometries and the possible dither positions. We also considered

some other variants. For by-season timescale, we implemented a PentagonDiamond geometry

where the first point is at the center of the FOV, followed by 9 points arranged along a diamond

circumscribed by a pentagon. We find that PentagonDiamond leads to results similar to Pen-

tagons, and discuss only the latter here. We also considered Spiral dithers, where equidistant

points are chosen along a spiral centered on the FOV and the number of points and coils can

be varied, as well as variants of Fermat spiral, in terms of the number of points and θ as a
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Figure 2.1: Dither geometries: PentagonDither is implemented only for per-season timescale, while the
rest are implemented for per-visit, per-night and field-per-night timescales. The green curve represents
the circular FOV with radius of 0.305 radians, the blue hexagon represents the hexagonal tiling of the sky
originally adopted for the undithered observations, and the red points are the dither positions, connected
with gray lines. The axes are labelled in radians. See Section 2.3 for details.

multiple of 77.508◦ or 177.508◦. Our preliminary analysis shows that these spiral geometries

behave similarly as the 60-point, golden-angle Fermat spiral described above.

To identify the various strategies, we follow a consistent naming scheme: [Geome-

try]Dither[Field]Per[Timescale], where the absence of ‘Field’ implies dither assignment to all

fields, while its presence implies that each field is tracked and assigned a dither position in-

dependent of other fields. For instance, SequentialHexDitherPerNight assigns the new dither

position to all fields every night, while SequentialHexDitherFieldPerNight assigns it to a field

only when it is observed on a new night.
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2.4 Analysis & Results

We use OpSim dataset enigma_11893, which includes the wide-fast-deep (WFD) survey region

as well as five Deep Drilling fields; we focus only on WFD survey for our analysis. We

implement various dithers within MAF by building Stackers corresponding to each dither

strategy and post-processing the OpSim output to find the survey results using the dithered

positions. First, we examine the r-band coadded depth (i.e. the final depth after the 10-year

survey) as a function of sky location, followed by an analysis of the fluctuations in the galaxy

counts, in order to probe the effects of dither strategies on large-scale structure studies.

2.4.1 Coadded 5σ Depth

In order to calculate the coadded depth, we use the modified 5σ limiting magnitude data

from OpSim, where the limiting magnitude is ‘modified’ in order to represent a real point

source detection depth (Ivezic et al., 2008). Assuming that the signal-to-noise ratio adds in

quadrature, as it should for optimal weighting of individual images (see e.g., Gawiser et al.,

2006), we calculate the coadded depth, 5σstack, in each HEALPix pixel from the modified 5σ

limiting magnitude summed over individual observations, 5σmod,i :

5σstack = 1.25 log10

(∑
i

100.8×5σmod,i

)
(2.1)

We find that dithered surveys lead to shallower depth near the borders of the survey

region, adding significant noise to the corresponding angular power spectra. In order to clean

the spectra, we develop a border masking algorithm to discount pixels at the edges of the

survey region, comprising nearly 15% of the survey area. See Appendix 2.A for details of the

masking algorithm.

Figure 2.2 shows two projections for the r-band coadded 5σ depth for the various dither

strategies after the shallow border has been masked. The first row shows the Mollweide

projection of the coadded depth for NoDither and PentagonDitherPerSeason, while the second

row shows the corresponding Cartesian projection, zoomed on the LSST WFD survey area

(−180◦<RA<180◦, −70◦<Dec<10◦). To conserve space, we show only the latter projection for

the rest of the dither strategies. We observe that the survey pointings without any dithering

lead to deeper overlapping regions between the fields, and consequently a strong honeycomb

pattern in the coadded depth. In contrast, the dithered skymaps have comparatively more

3https://confluence.lsstcorp.org/display/SIM/OpSim+Datasets+for+Cadence+Workshop+LSST2015

https://confluence.lsstcorp.org/display/SIM/OpSim+Datasets+for+Cadence+Workshop+LSST2015
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Figure 2.2: Plots for r-band coadded 5σ depth from various dither strategies, after masking the shallow-
depth border. The top row shows theMollweide projection for two observing strategieswhile the 2nd row
shows the Cartesian projection restricted to 180◦>RA>−180◦ (left-right), −70◦<Dec<10◦ (bottom-top);
we only show the latter for the rest of the strategies. We note that the strong honeycomb pattern present
in the undithered survey is weaker in the dithered surveys, while for SequentialHexDitherFieldPerNight,
we observe strong horizontal striping across the survey region. See Section 2.4.1 for further details.
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uniform depth across the survey region, with smaller-scale variations amongst the dither

strategies.

Herewe note that although dithering in general weakens the honeycomb pattern seen in the

undithered survey, we observe horizontal striping from SequentialHexDitherFieldPerNight; in

contrast, SequentialHexDitherPerNight and SequentialHexDitherFieldPerVisit show no such

behavior. This is an example where a specific dither strategy’s behavior is highly dependent

on the timescale on which it is implemented: for PerNight timescale, a new dither is assigned

to all fields every night, implying that the 217-point lattice is traversed multiple times during

the ∼3650-night survey. Similarly, for PerVisit timescale, although a new dither is assigned

to each field every time it is visited, the lattice is traversed multiple times given that every

field is visited ∼150 times in the r-band throughout the survey. In contrast, for FieldPerNight

timescale, a new dither point is assigned to each field only when it is observed on a new night.

Since a given field is only visited on ∼50 nights in a given filter, only the lower part of the

lattice is traversed (as the lattice is traversed starting from bottom left), leading to horizontal

striping. We verified this conclusion by rotating the hexagonal lattice by 90◦, and observing

vertical striping for FieldPerNight timescale.

In Figure 2.3, we show a histogramof the r-band coadded depth. We see that the undithered

survey leads to a bimodal distribution, with the overlapped regions observedmuchdeeper than

the rest of the survey. On theother hand, all thedithered surveys lead tounimodal distributions,

as dithering leads to observing the datamore uniformly, in agreement with Carroll et al. (2014).
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Figure 2.3: Histogram for the r-band coadded 5σ depth, indicating a bimodal distribution from the
undithered survey, and unimodal distributions from the dithered ones.
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In order to quantify the angular characteristics reflected in the skymaps, we measure the

power spectrum associated with each of the skymaps. Figure 2.4 shows the power spectra

for the coadded depth from each of the dither strategies considered here; we have removed

the monopole and dipole using HEALPix routine remove_dipole. We note that the spectrum

corresponding to the undithered survey has a very large peak around `∼150, resulting from

the strong honeycomb pattern. In comparison, we see over 10 times less power in the dithered

surveys; the `∼150 peak in these surveys is much more comparable to the rest of the spectrum.

More specifically, we find that the FieldPerVisit timescale is the most effective in reducing the

power for a given dither geometry, while Random and RepulsiveRandom dithers performwell

on all three timescales. Also, we confirm the origins of the `∼150 peak by creating a pure

honeycomb, and observing a power spectrum similar to that from the undithered survey.

Furthermore, we see that the horizontal striping in the SequentialHexDitherFieldPerNight

skymap generates a large peak around `∼150, while the rest of the dithered spectra do not

exhibit such a strong peak. Curiously, the PentagonDitherPerSeason strategy leads to two large

peaks around `∼270 – a characteristic different from the rest of the dither strategies’ but similar

to NoDither, with much less power.

To understand the origins of the characteristic patterns in the skymaps, we consider the

a`m coefficients of their spherical harmonic transforms. This allows us to produce the skymaps

corresponding to specific ranges of the angular scale `. We show our results in Figure 2.5 for

NoDither, PentagonDitherPerSeason and SequentialHexDitherFieldPerNight strategies. The

top row includes the full power spectrum for each strategy, and the second row shows the

corresponding Cartesian projection for 0◦<RA<50◦, −45◦<Dec<−5◦. The third and fourth

rows show the partial skymaps arising from each of the colored peaks shown in the power

spectra in the top row. We observe that for the undithered survey, the `∼150 peak arises from

the strong honeycombpattern, while the secondpeak arises from structure on the small angular

scales. For PentagonDitherPerSeason, we see a milder honeycomb for the `∼150 peak, while

the 240<`<300 peak arises from structure similar to the corresponding one in the undithered

survey. Finally, for SequentialHexDitherFieldPerNight, we can see the source of the strong

`∼150 peak: the horizontal striping. For higher-` peaks, we note the weaker structure as

compared to the other two strategies. We also performed this a`m analysis individually for the

two peaks in 240<`<300 and found the underlying structure to be very similar.
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Figure 2.4: Angular power spectra for the r-band coadded depth for all the dither strategies. We note that
dithering reduces the angular power by at least a factor of 10 as compared to NoDither. The honeycomb
pattern in the undithered survey generates a large peak around `∼150, while dithering of all kinds
decreases the spurious power. The horizontal striping in SequentialHexDitherFieldPerNight also creates
a moderate peak around `∼150.
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Figure 2.5: a`m analysis plots for two `-ranges in the r-band coadded depth power spectra (colored
peaks in the top row). The first row shows the full power spectrum for three observing strategies; the
second row shows the corresponding skymaps for 50◦>RA>0◦ (left-right), −45◦<Dec<−5◦ (bottom-
top). The third row is for 130<`<165 (yellow in the power spectra in the first row),and the fourth is
for 240<`<300 (red in the top row), all in the same RA, Dec range as the second row. The leftmost
column corresponds to NoDither, the middle one to PentagonDitherPerSeason, and the right one to
SequentialHexDitherFieldPerNight. We see that the honeycomb pattern in the undithered survey and
the horizontal striping in SequentialHex generates the `∼150 peak. Also, we see one (partial) Deep
Drilling Field at the top as well as a pentagonal tile at Dec= −30◦ resulting from the tiling of the sphere,
both of which are smeared out by dithering.
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2.4.2 Artificial Galaxy Fluctuations

Given our knowledge of the characteristics induced in the coadded depth due to the observing

strategy, we now consider the effects of these artifacts on BAO studies. We model the artificial

fluctuations in galaxy counts, accounting for photometric calibration errors, dust extinction,

and galaxy catalog magnitude cuts. Since BAO studies are redshift dependent, we consider

five redshift bins: 0.15<z<0.37, 0.37<z<0.66, 0.66<z<1.0, 1.0<z<1.5, and 1.5<z<2.0.

We first estimate the number of galaxies in specific redshift bins detected in each pixel

at a particular depth using a mock LSST catalog, which is constructed using the outputs

of the SAG semi-analytic model for galaxy formation (Cora, 2006; Lagos et al., 2008; Tecce

et al., 2010; Orsi et al., 2014; Gargiulo et al., 2015; Muñoz Arancibia et al., 2015). The model

incorporates differential equations for gas cooling, quiescent star formation, energetic and

chemical supernova feedback, the growth of a supermassive black hole, the associated AGN

feedback, bursty star formation inmergers and disk instabilities, all coupled to themerger trees

extracted from a dark matter simulation run with GADGET2 (Springel et al., 2005) assuming

the standard ΛCDM model (Jarosik et al., 2011). The subhalo populations of merger trees

are found using SUBFIND (Springel et al., 2001) after the DM haloes were identified using a

friends-of-friends algorithm.

We normalize the total r-band galaxy counts to the empirical cumulative galaxy count

estimates for LSST (see LSST Science Collaboration et al., 2009, Section 3.7.2 for details) at

a magnitude cut r<25.9 (corresponding to the CFHTLS Deep survey completeness limit of

i<25.5; see Hoekstra et al. 2006; Gwyn 2008 for details). In contrast with Carroll et al. (2014),

where Fleming’s function (Fleming et al., 1995)was used to account for the incompleteness near

the 5σ limit, we use an erfc function. Whenmultiplied by power-law number counts, Fleming’s

function causes completeness to drop to 20% of its peak at r∼30 before rising again, while the

erfc incompleteness function correctly damps down for higher magnitudes. We calculate the

number of galaxies, Ngal, in each HEALPix pixel in a given redshift bin as

Ngal = 0.5
∫ mmax

−∞
erfc[a(m− 5σstack)]10c1m+c2dm (2.2)

where a is the rollover speed and is chosen to be 1, 5σstack is the coadded magnitude depth in

the givenHEALPix pixel, mmax is themagnitude cut, and c1 and c2 are the power-law constants

determined from themock catalogs for specific redshift bins. Here, we assume galaxies to have

average colors, i.e. u − g = g − r = r − i = 0.4, and take this into account by modifying

c2 and mmax in equation 2.2 for u, g, i vs. r. Given the sharp decline of the erfc function at
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high magnitudes and the consequent decline in the differential galaxy counts, we consider a

magnitude limit of r= 32.0 as no magnitude limit.

Using the number of galaxies in each pixel, we calculate the fluctuations in the galaxy counts

∆N/N as (Ngal/Navg)− 1, where Navg is the average number of galaxies per pixel across the

survey area. Within MAF, this procedure amounts to using a metric to calculate the number of

galaxies and then post-processing the galaxy counts to find ∆N/N.

Here we note that artificial fluctuations in galaxy counts induced by the observing strategy

(OS) scale the fluctuations arising due to actual LSS. In our calculations, we assume that LSS

affects the local normalization of the galaxy luminosity function in a given redshift bin, not its

shape. This assumption is valid as long as LSS does not alter the shape of the faint end of the

luminosity function, which dominates the galaxy number counts. More precisely, in the ith

pixel, (
Ngal

Navg

)
observed,i

=
(

Ngal

Navg

)
OS,i

(
Ngal

Navg

)
LSS,i

(2.3)

Defining δi= ∆Ni/N= (Ngal,i/Navg)− 1, we have

(1 + δobserved,i) = (1 + δOS,i)(1 + δLSS,i) (2.4)

Since the ensemble average of LSS is zero, we have

〈δobserved,i〉 = 〈δOS,i〉+ 〈δLSS,i〉+ 〈δOS,iδLSS,i〉

= δOS,i + 〈δOS,iδLSS,i〉
(2.5)

where the angular brackets 〈..〉 indicate an ensemble average defined as an average over many

realizations of the Universe with one LSST survey. Hence, we have 〈δOS,i〉 = δOS,i , as the

OS-induced structure represents a fixed pattern on the sky for a given LSST observing strategy

and OpSim run. Since there is generally no correlation between the OS–induced structure and

LSS, the cross-term 〈δOS,iδLSS,i〉 should be negligible; we check and confirm this for a typical

dither pattern. Also, we note that this assumption about the correlation between OS-induced

structure and LSS breaks down if the survey strategy is correlated with LSS, e.g., Deep Drilling

Fields focused on galaxy clusters, as then 〈δOS,iδLSS,i〉 6= 0.

Using equations 2.4-2.5, we calculate the power in δobserved,i :

〈
δ2
observed,i

〉
=
〈
δ2
OS,i

〉
+
〈
δ2
LSS,i

〉
+ 2 〈δOS,iδLSS,i〉

+ 2
〈
δ2
OS,iδLSS,i

〉
+ 2

〈
δOS,iδ

2
LSS,i

〉
+
〈
δ2
OS,iδ

2
LSS,i

〉 (2.6)
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As mentioned earlier, 〈δOS,iδLSS,i〉 is negligible since OS–induced structure and LSS are gen-

erally not correlated. To check how the higher order terms like
〈
δ2
OS,iδ

2
LSS,i

〉
compare with

〈δOS,iδLSS,i〉, we calculate the cross-spectra for a typical dither pattern. Wefind that 〈δOS,iδLSS,i〉

is dominant over
〈
δ2
OS,iδ

2
LSS,i

〉
and therefore these higher order terms are also negligible. There-

fore,

〈
δ2
observed,i

〉
≈
〈
δ2
OS,i

〉
+
〈
δ2
LSS,i

〉
= δ2

OS,i +
〈
δ2
LSS,i

〉 (2.7)

implying that the OS and LSS contribute independently to the observed power. δ2
OS,i thus

represents a bias in our measurement of LSS.

To consider realistic behavior of the observing strategies, we account for the uncertainties

arising from photometric calibrations. Given that related systematic errors correlate with

seeing (Leistedt et al., 2016) and are expected to decrease with the number of observations, we

model the calibration uncertainty ∆i in the ith HEALPix pixel as

∆i = k∆si√
Nobs,i

(2.8)

where ∆si is the difference between the average seeing in the ith HEALPix pixel and the

average seeing across the map, Nobs,i is the number of observations in the ith pixel, and k is

a constant such that the variance σ2
∆i

= 0.012, ensuring the expected 1% errors in photometric

calibration (LSST Science Collaboration et al., 2009). Figure 2.6 shows skymaps for these

simulated uncertainties for example dither strategies. We note that while dithering does not

alter the amplitudes of the photometric calibration uncertainties in our model, it helps mitigate

the sharp hexagonal pattern seen in the uncertainties in the undithered survey.

NoDither

-0.006 -0.002 0.002 0.006
Photometric Calibration Error

RepulsiveRandomDitherFieldPerVisit

-0.006 -0.002 0.002 0.006
Photometric Calibration Error

NoDither

-0.006 -0.002 0.002 0.006
Photometric Calibration Error

Figure 2.6: Skymaps of simulated photometric calibration uncertainties for example dither strategies.
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In order to account for the fluctuations in the galaxy counts arising due to the photometric

calibration uncertainties, we modify the upper limit on the magnitude in equation 2.2 to be

mmax + ∆i for the ith pixel. Since the calibration uncertainties are small, the skymaps for

the fluctuations in the galaxy counts after accounting for the calibration uncertainties are

indistinguishable from those without. These are shown in the top row in Figure 2.7.

No Photometric Calibration Uncertainties, Dust Extinction or Poisson Noise

NoDither

-0.06 -0.02 0.02 0.06
∆N/N

RepulsiveRandomDitherFieldPerVisit

-0.06 -0.02 0.02 0.06
∆N/NWith Photometric Calibration Uncertainties, Dust Extinction and Poisson Noise

NoDither

-0.06 -0.02 0.02 0.06
∆N/N

RepulsiveRandomDitherFieldPerVisit

-0.06 -0.02 0.02 0.06
∆N/N

RepulsiveRandomDitherFieldPerVisit

-0.06 -0.02 0.02 0.06
∆N/N

Figure 2.7: Skymaps for artificial galaxy fluctuations for example dither strategies for 0.66<z<1.0. Top
row: without calibration errors, dust extinction or poisson noise. Bottom row: After including calibration
uncertainties, dust extinction and poisson noise. We do not see significant differences in the fluctuations
after including the photometric calibration uncertainties or poisson noise; the skymaps match those in
the top row. However, we see that dust extinction dominates the structure on large angular scales. These
trends remain consistent across all five z-bins.

Furthermore, we include dust extinction by using the Schlegel-Finkbeiner-Davis dust map

(Schlegel et al., 1998) when calculating the coadded depth as well as poisson noise in the galaxy

counts after accounting for both dust extinction and photometric calibration. The bottom row

in Figure 2.7 shows the skymaps for the artificial fluctuations for 0.66<z<1.0 after accounting

for photometric calibration uncertainties, dust extinction and the poisson noise. We find that

dust extinction dominates both photometric calibration uncertainties and poisson noise; it

induces power on large angular scales, but it does not wash out the honeycomb pattern in
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the undithered survey or its low-level residual in the dithered surveys. These trends remain

consistent across the five redshift bins.

Finally, in order to account for the spurious power introduced by the depth variations,

we consider the relationship between the measured power spectrum and the true one, for a

perfectly uniform survey:

〈Pmeasured(k)〉 =
∫

dk′ Ptrue(k′) |W(k− k′)|2 (2.9)

where W(k− k′) is the survey window function, accounting for the effective survey geometry

(Feldman et al., 1994; Sato et al., 2013). Projecting the 3D k-space onto the 2D `-space, we have

C`,measured =
∑
`′

|W`−`′ |2 〈C`′〉+ δC` (2.10)

where 〈C`〉 is the expected power spectrum on the full sky, and δC` is an error term whose

minimum variance is given by (see Dodelson, 2003, Chapter 8 for details)

(∆C`)2 = 2
fsky(2`+ 1) 〈C`〉

2 (2.11)

where fsky is the fraction of the sky observed, accounting for the reduction in observed power

due to incomplete sky coverage. Since we consider only the WFD survey with masked shallow

borders, fsky ≈ 37%−39% for the dithered surveys while fsky ≈ 36% for the undithered survey.

The expected power spectrum can be defined as

〈C`〉 = C`,LSS + 1
η̄

(2.12)

where η̄ is the surface number density in steradians−1; see Fall (1978), Huterer et al. (2001), Jing

(2005) for details. The first term in equation 2.12 is the LSS contribution to the expected power

spectrumwhile the second is the shot noise contribution arising from discrete signal sampling.

With no LSS and negligible shot noise, 〈C`〉 → 0. However, as shown in equation 2.7,

the observing strategy induces a bias in the measured power spectrum, leading to non-zero

power even when 〈C`〉 → 0. The uncertainty in this bias caused by imperfect knowledge of the

survey performance limits our ability to correct for the OS-induced artificial structure. More

quantitatively, we have (
σC`,measured

)2 = (∆C`)2 +
(
σC`,OS

)2 (2.13)
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where the first term on the right is theminimum statistical uncertainty defined in equation 2.15,

while the second term corresponds to the contribution from the uncertainty in the bias induced

by the OS. Since the “statistical floor" ∆C` assumes no bias in C` measurements caused by the

observing strategy, the OS-induced uncertainty σC`,OS must be subdominant to the statistical

floor for an optimal measurement of BAO at a given redshift, i.e.

σC`,OS << ∆C` =
√

2
fsky(2`+ 1)

(
C`,LSS + 1

η̄

)
(2.14)

Here we note that the right-hand side in equation 2.14 is formally derived in Shafer & Huterer

(2015a); also see Huterer et al. (2013). These papers offer a detailed theoretical treatment of

artificial structure induced by calibration errors, and while our approach is similar to theirs,

we incorporate the additional effects of dust extinction, variations in survey depth, and incom-

pleteness in galaxy detection.

Considering the case where C`,LSS = 0, we find C`,measured, giving us C`,OS for each band

and magnitude cut. Since ugri bands are the deepest and appear to have the greatest influence

on photometric redshifts (Prakash, priv. comm.), we model the overall bias as the mean C`,OS

across the four bands. We calculate σC`,OS as the standard deviation of C`,OS across the ugri

bands, modeling uncertainties due to detecting galaxy catalogs in different bands. Therefore,

σC`,OS should provide a conservative upper limit on the true uncertainty in C`,OS.
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Figure 2.8: Left: Simulated full-sky, pixelized galaxy power spectra with BAO signal from five different
redshift bins for three galaxy catalogs: r<24.0, 25.6, 27.5. Right: Minimum statistical error associatedwith
measuring the signal in the left panel, with lower–` range shown in the inset. We observe that neither
curve changes significantly with magnitude cuts considered in Section 2.4.2.

The left panel in Figure 2.8 shows the full-sky galaxy power spectrum with the BAO signal

for three galaxy catalogs, r<24.0, 25.6, 27.5, for the five redshift bins: 0.15<z<0.37, 0.37<z<0.66,

0.66<z<1.0, 1.0<z<1.5, and 1.5<z<2.0. These spectra are pixelized in order to account for the
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finite angular resolution of our survey simulations, especially when comparing the uncertain-

ties in C`,OS with the minimum statistical error in measuring BAO. Assuming that all the

HEALPix pixels are identical, the pixelized power spectra can be approximated by multiplying

the galaxy power spectra with the pixel window function4.

Thegalaxypower spectra are calculatedusing the code fromZhan (2006),withmodifications

to account for BAO signal damping due to non-linear evolution (Eisenstein et al., 2007). Using

the galaxy redshift distribution from LSST Science Collaboration et al. (2009), galaxies are

assigned to the five redshift bins according to their photometric redshifts, with a time-varying

but scale-independent galaxy bias of b(z) = 1 + 0.84z over scales of interest and a simple

photometric redshift error model, σz = 0.05(1 + z). Here we assume the cosmology with

w0 = −1, wa = 0, Ωmh2 = 0.127, Ωbh2 = 0.0223, Ωk = 0, spectral index of the primordial

scalar perturbation power spectrum ns = 0.951 and primordial curvature power spectrum at k

= 0.05/Mpc, ∆2
R = 2× 10−9.

The right panel in Figure 2.8 shows the minimum statistical uncertainty for the five redshift

bins for all three galaxy catalogs; the uncertainties are calculated using fsky from the undithered

survey. We observe that while shallower galaxy catalogs lead to larger C` and ∆C`, the

difference is small and decreases with increasing redshift. For the lowest z-bin, 0.15<z<0.37,

there is only about 8% increase in C` and ∆C` when comparing the r<25.6 catalogwith r<24.0.

First we calculate C`,OS and its uncertainties for 0.66<z<1.0 after only one year of survey

in order to explore the quality of BAO study the first data release will allow. Figure 2.9 shows

the C`,OS uncertainties as well as the minimum statistical error for 0.66<z<1.0 for various

observing strategies, for r<24.0 and r<25.7 (corresponding to the gold sample, i<25.3). We

observe that the undithered survey leads to C`,OS uncertainties 1-3× the minimum statistical

uncertainty for the gold sample at ` >100, and only a few dither strategies are effective in

reducing the difference. In particular, Random and RepulsiveRandom dithers are the most

effective, reducing σC`,OS to nearly 1-2× the statistical floor. We note that FermatSpiral and Se-

quentialHex dithers perform nearly as poorly as NoDither when implemented on FieldPerVisit

and FieldPerNight timescales, while the PerNight timescale is more effective. On the other

hand, we see that FieldPerVisit and FieldPerNight lead to smaller uncertainties for Random

and RepulsiveRandom geometries. As expected, we see that a shallower sample r<24.0 re-

duces the C`,OS uncertainties; the undithered survey still leads to σC`,OS about 3× the statistical

floor, while Random and RepulsiveRandom dithers lead the uncertainties comparable to the

4See Appendix B in the HEALPix primer: http://healpix.sourceforge.net/pdf/intro.pdf

http://healpix.sourceforge.net/pdf/intro.pdf
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statistical floor on some timescales. Here we note that since we do not mask borders when

considering the one-year data, fsky ≈ 42% − 45% for the one year survey, depending on the

dither strategy.

We then extend the calculation of the OS-induced power to the full 10-year survey. Fig-

ure 2.10 shows σC`,OS as well as ∆C` for 0.66<z<1.0 for three different magnitude cuts: r<24.0,

r<25.7 and r<27.5. We find that the undithered survey leads to σC`,OS 0.2-4 times theminimum

statistical floor for r<25.7 and r<27.5; at ` >100, only a very strict cut of r<24.0 brings σC`,OS

below ∆C`. However, most dither strategies reduce the uncertainties below the statistical floor

for galaxy catalogs as deep as r<27.5, with exceptions of SequentialHex dithers on FieldPer-

Visit and FieldPerNight timescales. We note here that systematics correction methods such as

template subtraction and mode projection can be applied to further reduce the contribution

of C`,OS to the total C` uncertainties; e.g., see Elsner et al. (2016), Holmes et al. (2012). Such

application appears necessary for the 1-year survey as optimizing the observing strategy alone

does not reduce the uncertainties in C`,OS below ∆C`. However, the correction methods may

not lead to significant improvements for a dithered 10-year survey, as optimizing the observing

strategy is effective in reducing C`,OS well below the statistical floor.

To further our understanding, we repeat the 1-year and 10-year analysis for 1.5<z<2.0.

We find similar qualitative results as those from 0.66<z<1.0 analysis: for the 1-year survey,

Random and RepulsiveRandom perform well alongside FermatSpiral and SequentialHex on

PerNight timescale, while most dither strategies are effective for the ten-year survey, with the

exception of SequentialHex on FieldPerVisit and FieldPerNight timescales.

The effect of magnitude cuts is further illustrated in Table 2.1, which includes the estimated

number of galaxies for 0.15<z<2.0 from the r-band coadded depth for the 10-year survey

after accounting for photometric calibration errors, dust extinction and poisson noise. We see

that each magnitude cut eliminates a substantial number of galaxies. Also, as in Carroll et al.

(2014), we see that dithering increases the estimated number of galaxies when compared to

the undithered survey; the fractional difference in the number of galaxies from dithered to

undithered surveys increases with shallower surveys.
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Figure 2.9: σ`,OS comparison with the minimum statistical uncertainty ∆C` for 0.66<z<1.0 for different
magnitude cuts after only one year of survey.
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Figure 2.10: σ`,OS comparison with the minimum statistical uncertainty ∆C` for 0.66<z<1.0 for different
magnitude cuts after the full 10-year survey.
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Table 2.1. Estimated number of galaxies from r-band coadded depth after the 10-year survey
for 0.15<z<2.0, after accounting for photometric calibration errors, dust extinction and

poisson noise.

r<27.5 r<25.7 r<24.0

Number of galaxies from NoDither 1.0× 1010 4.3× 109 1.6× 109

Percent improvements in comparison with NoDither
PentagonDitherPerSeason 7.0 6.6 6.6
SequentialHexDitherFieldPerVisit 8.1 7.8 7.9
SequentialHexDitherFieldPerNight 4.9 4.3 4.4
SequentialHexDitherPerNight 8.3 8.0 8.1
FermatSpiralDitherFieldPerVisit 7.6 7.2 7.3
FermatSpiralDitherFieldPerNight 7.6 7.2 7.3
FermatSpiralDitherPerNight 7.4 7.0 7.1
RandomDitherFieldPerVisit 8.7 8.4 8.5
RandomDitherFieldPerNight 8.3 8.0 8.1
RandomDitherPerNight 8.5 8.2 8.3
RepulsiveRandomDitherFieldPerVisit 8.9 8.5 8.7
RepulsiveRandomDitherFieldPerNight 8.6 8.4 8.5
RepulsiveRandomDitherPerNight 8.3 7.9 8.0

Note. —We observe 6.5-9% improvement in the estimated number of galaxies fromdithered
surveys in comparisonwith undithered survey, across the threemagnitude cuts. The exception
is SequentialHexDitherFieldPerNight where the improvement is only 4-5%.

2.5 Conclusions

It is critical to develop an LSST observing strategy that will maximize the data quality for its

science goals. In this work, we analyzed the effects of dither strategies on r-band coadded

5σ depth to study the feasibility of increasing the uniformity across the survey region. We

investigated different dither geometries on different timescales, and illustrated how a specific

geometrical pattern (e.g., hexagonal lattice) canperformquite differentlywhen implemented on

different timescales. We find that per-visit and per-night implementations outperform field-

per-night and per-season timescales, while some dither geometries (like repulsive random

dithers) consistently lead to less spurious power for all the timescales on which the dither

positions are assigned. We also performed an a`m analysis to probe the origins of some of the

characteristic patterns induced by the observing strategies. Our work illustrates the sensitivity

of depth uniformity to the dither strategy.

We then considered how the artifacts in coadded depth produce fluctuations in galaxy

counts; we calculate the uncertainties in the bias induced by the observing strategy, which lim-

its our ability to correct for the spurious structure. Wefind that after accounting for photometric

calibration uncertainties, dust extinction, poisson noise and reasonablemagnitude cuts, dithers
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of most kinds are effective in reducing the uncertainties in the observing-strategy-induced bias

below the minimum statistical uncertainty in the measured galaxy power spectrum. Specif-

ically, we find that RepulsiveRandom dithers implemented on per-visit and field-per-night

timescales are the most effective for the 0.66<z<1.0 sample after only one year of survey, al-

though they do not bring down the uncertainties in the induced bias below the minimum

statistical floor for r<25.7. As for the full 10-year survey, we find that all dither strategies (ex-

cept per-visit and field-per-night SequentialHex dithers) bring down the uncertainties below

the statistical floor for a galaxy catalog as deep as r<27.5. We find similar results for all redshift

bins.

To precisely determine the limiting uncertainties in the bias induced by the observing

strategy, more detailed LSST simulations are needed, including photometric redshifts, input

large-scale structure and further systematics reduction methods, e.g., mode projection ac-

counting for imperfect detectors and the consequent instrumental effects. Also, while our work

illustrates the impact of dithers on large-scale structure studies, the differences between some

dither geometries are small and therefore need more detailed investigation to determine a

conclusively-best dither strategy, alongside an analysis of the impacts of various dither strate-

gies on other science goals. Such analyses will facilitate a more definitive measure of the

precision with which LSST data will allow high redshift studies of large-scale structure.
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Appendices

2.A Border Masking Algorithm

In Figure 2.A.1, we show skymaps (left column) and the corresponding power spectrum (right

column) for the r-band coadded 5σ depth from the undithered survey and an example dithered

survey. While the dithered survey does not have the strong honeycomb seen in the undithered

case, we notice that the border of the dithered survey area is much shallower than the rest of

the survey. This variation in depth carries over to the power spectrum as strong oscillations,

especially at small `. In order to minimize this effect, we develop a border masking algorithm

to mask the pixels within a specific ‘pixel radius’ from the edge of the survey area. For

this purpose, we utilize the distinction between out-of-survey and in-survey area in MAF:

the former is masked, and the analysis only accounts for the data in the unmasked portion

of the data array. Using this distinction and the HEALpix routine get_all_neighbours, we

find the unmasked pixels with masked neighbors, effectively finding the edge of the survey.

We parametrize the number of iterations for this neighbor finding algorithm, and choose the

number of iterations (determined by what we call the pixel radius) that removes the shallow

border. The masking algorithm can be found on GitHub5.

Working at Nside= 256 resolution, wemasked all the pixels within a 14-pixel radius from the

edge of survey, effectively masking ∼15% of the survey area. The bottom row in Figure 2.A.1

shows the dithered skymap and the corresponding power spectrum after the shallow border

has been removed. We notice a stark difference between the power spectrum before and after

the border masking, as removing the shallow border allows the in-survey variations to be seen

much more clearly.

5https://github.com/LSST-nonproject/sims_maf_contrib/blob/master/mafContrib/
maskingAlgorithmGeneralized.py

https://github.com/LSST-nonproject/sims_maf_contrib/blob/master/mafContrib/maskingAlgorithmGeneralized.py
https://github.com/LSST-nonproject/sims_maf_contrib/blob/master/mafContrib/maskingAlgorithmGeneralized.py
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Figure 2.A.1: Left column: Skymaps for r-band coadded 5σ depth for example dither strategies. Right
column: Angular power spectra corresponding to the skymaps in the first column. Top and middle rows
show the data without any border masking. We note that the undithered survey does not lead to any
shallow edges, while dithered survey does. The shallow-depth edge leads to a noisy power spectrum,
shown in the middle right panel. After removing the shallow-border by implementing 14 pixel-radius
masking, we see a reduction in the low-` power, and therefore a cleaner spectrum.
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2.B Dithering to Improve Survey Uniformity

Following our work in Awan et al. (2016), we extend our analysis to not only test the latest

simulations but also develop a Figure of Metric for LSS studies to quantify the impacts of

systematics induced by the observing strategy on the specific probe6. The latest simulation

outputs include minion_1016 which is the new baseline (as opposed to enigma_1189 used in

the analysis earlier), minion_1020which covers the maximum survey area of 27,400 deg2, and

kraken_1043which is the same as minion_1016 but relaxes the constraint of visit pairs.

2.B.1 Figure of Merit

As derived and discussed in Awan et al. (2016), the spurious power from the artificial fluc-

tuations in the galaxy counts induced by the observing strategy (OS) represents a bias in our

measurement of the LSS. Hence, the uncertainty in this bias becomes the limiting factor in our

ability to correct for the structure induced by the observing strategy. More quantitatively, for

an optimized LSS study, the uncertainties induced by the observing strategy, σC`,OS , must be

subdominant to the statistical uncertainty ∆C` inherent to the measured power spectrum due

to “cosmic variance” (Dodelson, 2003):

∆C` = C`,LSS

√
2

fsky(2`+ 1) (2.15)

where fsky is the fraction of the sky observed, accounting for the reduction in the observed

information due to incomplete sky coverage.

Since we do not include any input LSS in our pipeline, the power spectrum we measure for

any given band is due to the power induced by the observing strategy, C`,OS, for that band.

Modeling the overall bias induced by the observing strategy as an average across ugri bands,

we calculate the uncertainties in the bias σC`,OS as the standard deviation across C`,OS for ugri

bands to account for the effects of detecting the galaxy catalog through various bands. We

then compare these uncertainties with the statistical floor for various redshift bins, where the

statistical floor is based on the galaxy power spectra calculated using the code fromZhan (2006),

which we pixelize to match the HEALPix resolution to account for the finite angular resolution

6Note that we do not explore a direct relation between our Figure of Merit (FoM) and cosmological parameters
but focus only on developing a metric to quantify the impacts of observing strategy to measured power spectra.
Our FoM does correlate nontrivially with the Dark Energy Task Force FoM, which is defined as the reciprocal of the
area of the contour enclosing the 68% confidence interval constraining the dark energy parameters, w0 and wa, after
marginalizing over other parameters (Albrecht et al., 2006). Given the lack of a direct connection with cosmological
parameters, however, our FoM may be thought of as a diagnostic metric as opposed to a true figure of merit.
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of our simulations.

To quantify the effectiveness of each observing strategy inminimizing σC`,OS , we construct a

Figure ofMerit (FoM) as the ratio of the ideal-case uncertainty in themeasured power spectrum

and the uncertainty arising from shot noise and the structure induced by the observing strategy:

FoM =

√√√√√√√
∑̀(√

2
fsky,max(2`+1)C`,LSS

)2

∑̀ [(√
2

fsky(2`+1)

{
C`,LSS + 1

η̄

})2
+ σ2

C`,OS

] (2.16)

Here, η̄ is the surface number density in steradians−1, and the term containing it accounts

for the contribution from the shot noise to the measured signal (Huterer et al., 2001; Jing,

2005). This FoM measures the percentage of ideal-case information that can be measured in

the presence of systematics. We note that the shot noise is negligible even for the shallowest

(10-year) surveys we consider.

We define the ideal-case as being based on the largest coverage of the sky with LSST, i.e.,

fsky,max is the largestWFD coveragewith the baseline cadence. For minion_1016, the observing

strategy with RepulsiveRandomDitherFieldPerVisit dithers leads to the largest fsky (∼ 39.5%).

Note that this fraction is calculated after masking the shallow borders of the main survey; for

details, see Awan et al. (2016).

2.B.2 A Comment on Terminology

For clarity, we make a note on the terminology we have introduced. Strictly speaking, the bias

caused by the observing strategy is a window function bias, as the survey window function

(Wi) accounts for the effective survey geometry which scales the fluctuations in the galaxy

counts in each pixel: 1 + δobs,i = Wi(1 + δLSS,i). Comparing this with Equation 4 in Awan et al.

(2016), 1 + δobs,i = (1 + δOS,i)(1 + δLSS,i), we see that the bias induced by the observing strategy

is directly related to the window function: 1 + δOS,i = Wi

Then, for the total power, we have

〈
δ2
obs,i

〉
=
〈
δ2
LSS,i

〉 〈
(1 + δOS,i)2〉+

〈
δ2
OS,i

〉
=
〈
δ2
LSS,i

〉 〈
W 2
i

〉
+
〈
(Wi − 1)2〉 (2.17)

where the first equality is based on Equation 6 in Awan et al. (2016) and the second one holds

given the relation between δOS,i and Wi. Since the bias induced by the observing strategy

δ2
OS,i = (Wi − 1)2, the uncertainties in the bias are the window function uncertainties.

Generally the window function is assumed to be known perfectly and its uncertainties
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are not explicitly identified as such. To avoid confusion and focus on the window function

uncertainties arising from the observing strategy, we continue using the terms bias induced by

the observing strategy and its uncertainties in favor of window function and its uncertainties.

2.B.3 OpSim Analysis and Results

For the purposes of our analysis, we use HEALPix resolution of Nside = 256, effectively tiling

each 3.5◦ FOV with about 190 HEALPix pixels. Using the metrics developed in the text, we

analyze σC`,OS from various observing strategies. First we present the results for the baseline

cadence, minion_1016.
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Figure 2.B.1: Histogram for the i-band coadded 5σ depth after the full, 10-year survey.

Figure 2.B.1 shows the histogram for the i-band coadded 5σ depth from minion_1016 for

the four observing strategies. We observe a bimodal distribution for the undithered survey –

the deeper depth mode corresponds to the overlapping regions between the hexagons, while

the rest of the survey contributes to the shallower mode. In contrast, all dithered surveys lead

to unimodal distributions as the overlapping regions between the fields change frequently,

leading to more uniformity. We also note that frequent dithering leads to deeper regions as we

observe more peaked histograms for FieldPerVisit and PerNight strategies.

Figure 2.B.2 shows the plots for the i-band coadded 5σ depth for the observing strategies. As

in Awan et al. (2016), we find that the undithered survey leads to a strong honeycomb pattern

which is much weaker in all of the dithered surveys. We again observe that the dithered

surveys are deeper than the undithered survey in terms of the median depth across the survey

region.

In order to quantify the angular characteristics observed in the skymaps, we calculate
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Figure 2.B.2: Plots for the i-band coadded 5σ depth basedon minion_1016 for various observing strategies.
The top left plot shows theMollweide projection forNoDitherwhile the bottom left shows the correspond-
ing Cartesian projection, restricted to 180◦ >RA> −180◦ (left-right), −70◦ <Dec< 10◦ (bottom-top).
Only the latter is shown for the rest of the strategies.

the angular power spectra corresponding to the skymaps for the i-band coadded 5σ depth.

Figure 2.B.3 shows these spectra for the four observing strategies. We observe a sharp reduction

in the artificial power in the dithered surveyswhen compared to the undithered one: the strong

honeycomb pattern in the undithered survey leads to a large peak around ` ∼ 150, while the

peak is about 10 times weaker in the dithered surveys. We do, however, observe variations

amongst the various dither strategies: while RepulsiveRandom dithers lead to small power

for all timescales, PerSeason dithers lead to large power on larger angular scales, and both

PerSeason and FermatSpiral lead to large power around ` ∼ 150 (which still is < 10× the

corresponding peak from the undithered survey).
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Figure 2.B.3: Angular power spectra for the i-band coadded 5σ depth from minion_1016 for various
observing strategies. We note that dithering reduces the spurious power by over 10×.

We then proceed to calculate the bias induced by the observing strategy and its uncertainty

from the different observing strategies. First, we examine simulated results after only one year

of survey. Figure 2.B.4 shows the comparison between σC`,OS and ∆C` for 0.66 < z < 1.0
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after the 1-year survey for two magnitude cuts: i < 24.0 and i < 25.3. We observe that

the undithered survey leads to σC`,OS 1-5× the statistical floor around ` ∼ 150; PerSeason

timescale does only slightly better. However, we see an improvement with frequent dithers:

both FieldPerVisit and PerNight implementations lead to uncertainties 0.5-1× the statistical

floor, although FermatSpiral dithers on PerNight timescale lead to a peak around ` ∼ 150 more

pronounced than the one from RepulsiveRandom dithers on FieldPerVisit timescale.
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Figure 2.B.4: σC`,OS comparison with the minimum statistical uncertainty ∆C` for 0.66 < z < 1.0 for
different magnitude cuts after only one year of survey based on minion_1016.

The trends are captured in the Figure of Merit, which we calculate using Equation 2.16 over

the range 100 < ` < 300. We observe a smaller FoM for the shallower survey – realistic given

that although there is less structure and therefore weaker artifacts induced by the observing

strategy, the shot noise becomes significant and makes the FoM smaller. For the deeper survey,

we find that FermatSpiralDitherPerNight outperforms all others with the highest FoM, while

RepulsiveRandomDitherFieldPerVisit ismore effective than PerSeasondithers. The undithered

survey, as expected, performs the worst.

In Figure 2.B.5, we show simulated results after the full, 10-year survey for 0.66 < z < 1.0

for three different magnitude cuts: i < 24.0, i < 25.3 and i < 27.5. We observe stark differences

between the undithered anddithered surveys: the former leads to large uncertainties in the bias

induced by the observing strategy while the latter is effective in bringing σC`,OS well below the

statistical floor. The effectiveness of all three dithered surveys in minimizing the uncertainties

implies more flexibility in choosing the dither strategy for years 2-10.

Analyzing the FoMmore closely, we observe that the gold sample leads to smaller FoM than

both the shallower and deeper catalogs. The larger FoM for shallower catalog is realistic, given

less structure with shallow depth leads to weaker artifacts and the shot noise is negligible over
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the full ten-year survey, but the out-of-trend behavior of gold sample hints at a peculiarity of

the variance across the ugri bands at that depth for the baseline cadence. We investigate this

behavior briefly and find that the u-band-induced artifacts add the most to the uncertainties

in the bias induced by the observing strategy, as the gold sample u-band cadence in the

minion_1016 is different from gri cadences. This issue still needs to be further investigated,

potentially incorporating the importance of each band to calculate an overall bias induced by

the observing strategy. We note, however, that this peculiarity is particularly enhanced for the

undithered survey.
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Figure 2.B.5: σC`,OS comparison with the minimum statistical uncertainty ∆C` for 0.66 < z < 1.0 for
different magnitude cuts after the full, 10-year survey based on minion_1016.

The trends observed here remain consistent for all five redshift bins. We note that our

choice of dithers is particularly important for the one-year survey as only one of the three

dither strategies leads to a large FoM. Therefore, in the absence of effective dithers, systematics

correction methods will become necessary after the one-year survey. However, these methods

may not lead to significant improvements for a dithered 10-year survey as dithers of most kinds

are effective in reducing the uncertainties well below the minimum statistical limit.

To further probe the effects of dithers, we run the 1-year and 10-year analyses for two

cadences besides the baseline cadence: kraken_1043 which does not require visit pairs, and

minion_1020 which implements a Pan-STARRS-like observing strategy offering a larger area

coverage. In Figure 2.B.6, we compare the results from these two cadences with those from

minion_1016 for 0.66 < z < 1.0 for the i < 25.3 galaxy sample after only one year of survey.

We see that the undithered survey leads to large uncertainties in the bias induced by the

observing strategy with all three cadences, with the peak uncertainty 5-15× the statistical floor.

As expected, the undithered survey with the wider coverage minion_1020 cadence leads to
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stronger artifacts and a much smaller FoM (by∼ 33% in comparison with minion_1016), while

not requiring visit-pairs is slightly more effective than the baseline (FoM increases by about

6%). We see very similar trends for the three cadences for PerSeason dithers although the peak

σC`,OS ranges between 3-9× the statistical floor; FoM based on minion_1020 is worse than that

from minion_1016 by about 25% and kraken_1043 improves on the baseline FoM by ∼ 5%.

As before, σC`,OS improves withmore frequent dithering. It is only about 1-3× the statistical

floor for FermatSpiral dithers on PerNight timescale. In contrast to NoDither and PerSeason

dithers, both minion_1020 and kraken_1043 perform better than baselineminion_1016 with

PerNight dithers: FoM from the wider coverage cadence is about 4.5% better than for the

baseline cadence, while we see a 4% better FoM with kraken_1043.

For RepulsiveRandom dithers on FieldPerVisit timescale, we find that the uncertainties in

the bias induced by the observing strategy are on the same scale as the statistical floor. The

wider coverage cadence outperforms the baseline cadence significantly as the wider survey

FoM is about 18% better than the baseline FoM while the improvement is about 3% when not

requiring visit-pairs. We emphasize that the differences between resultswith different cadences

are highly dependent on the observing strategy: the wider coverage with no or infrequent

dithers performs quite poorly while it significantly improves the FoM when large, frequent

dithers are implemented. On the other hand, not requiring visit-pairs leads to comparatively

larger improvement for infrequent dithers than frequent ones (compared to the baseline).
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Figure 2.B.6: σC`,OS comparison with the minimum statistical uncertainty ∆C` for 0.66 < z < 1.0 for
three different cadences for i < 25.3 after only one year of survey.

Finally, we show the simulated results for different cadences after the 10-year survey in

Figure 2.B.7. As in Figure 2.B.5, we see that all the dithered surveys effectively minimize the

uncertainties, regardless of the cadence. We do observe, however, that the wider coverage
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minion_1020 still underperforms significantly for the undithered survey (FoM about 30% less

than baseline FoM) while all the dithered surveys see a stark improvement (FoM > 1 for all;

∼ 20% improvement on the baseline FoM). The improvement from kraken_1043 is comparable

among the four observing strategies. Based on these results, we note that wider coverage offers

significant improvements with large dithers on any implementation timescale.
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Figure 2.B.7: σC`,OS comparison with the minimum statistical uncertainty ∆C` for 0.66 < z < 1.0 for
three different cadences for i < 25.3 after the full, 10-year survey.
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Chapter 3

Milky Way Dust Systematics and LSST Survey Footprint

This chapter presents contributions from H. Awan’s work for two White Pa-
pers: 1) Lochner et al. (2018), titledOptimizing the LSST Observing Strategy for
Dark Energy Science: DESC Recommendations for the Wide-Fast-Deep Survey
and authored by Lochner, M., Scolnic, D. M., Awan, H., and 33 authors; and
2) Olsen et al. (2018), titled A Big Sky Approach to Cadence Diplomacy, and
authored by Olsen, K., and 9 authors, including Awan, H. These papers were
written in response to the LSST Project White Paper Call in 2018, aimed at
gathering feedback from various Science Collaborations on LSST observing
strategy; content derived directly from the publications is reproduced here
with permission.

3.1 Introduction

Milky Way dust affects our observation of all extragalactic sources, not only reducing the

depth of our surveys but also inducing non-uniformities that correlate with the galactic dust,

thus making dust uncertainties a limiting factor in our analyses. To address these issues, we

investigate the impacts of Milky Way (MW) dust extinction on dark energy studies with LSST

and demonstrate that nearly ∼25% of the current LSST Wide-Fast-Deep (WFD) survey area

is not useful for dark energy science due to high dust extinction: the extinction renders this

survey area too shallowandhencedisallows access to constraining information for cosmological

studies.

3.2 Methods and Results

Specifically, for the extragalactic static science using high S/N measurements, we must restrict

our analysis to a footprint that will give us the deep, high S/N galaxy samples we need for

our science. To achieve this, we implement an extinction cut and a depth cut, retaining only

the survey area with E(B-V)<0.2 with limiting i-band coadded 5σ depth of 26.0 for Y10; the

E(B-V) restriction ensures that we consider the area with small dust uncertainties (Schlafly

& Finkbeiner, 2011) while the depth cut ensures that we have high S/N galaxies, with Y10

cut fixed by the LSST SRD goal of yielding a gold sample after Y10 (defined by i < 25.3

(LSST Science Collaboration et al., 2009), where i denotes the i-band coadded 5σ depth after
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accounting for Milky Way dust extinction). Furthermore, in order to ensure good photometric

redshift quality, we focus on the survey footprint that has coverage in all six LSST filters. For

Y10, before any selection cuts, the LSST WFD survey comprises ∼19,091 deg2 in the current

baseline, baseline2018a. Implementing our selection cuts (on coadded depth and extinction,

alongside requiring observations in all filters) reduces the usable footprint to ∼14,645 deg2,

hence discarding ∼23% of the WFD survey area1. Figure 3.1 shows the skymaps before and

after our selection cuts for the i-band coadded 5σ depth after Y10.

Figure 3.1: Skymaps for Y10 i-band coadded 5σ depth for baseline2018a, limited to the footprint with
coverage in all six bands, with random, per night translational dithers. Left: Before any selection cuts;
yielding ∼19,091 deg2 in usable survey area. Right: After a depth cut of i > 26.0 and an extinction cut of
E(B-V)< 0.2; yielding only ∼14,645 deg2.

Wefind similar resultswhenwe implement selection cuts onY1 data, nowwith a limiting 5σ

magnitude of i = 24.5: theWFD footprint drops from∼18,085 deg2 to∼13,613 deg2, rendering

∼25% of the nominal survey area unusable for our purposes. Figure 3.2 shows the skymaps

before and after our selection cuts for the i-band coadded 5σ depth.

In order to circumvent the issue of discarding a significant fraction of the WFD region,

we propose to shift the nominal 18,000 square degree WFD footprint away from the Galactic

Plane to lie entirely within the regionwhere E(B-V)< 0.2, allowing for optimization of theWFD

footprint that is usable for our science. To illustrate this, we consider the wider-coverage OpSim

cadence, pontus_2002 and implement similar selection cuts as we did for baseline2018a. For

Y1, the final footprint consists of ∼15,544 deg2 while Y10 footprint comprises ∼19,254 deg2,

illustrating that the WFD footprint can be optimized to yield a sufficiently large extragalactic

footprint; Figures 3.3-3.4 show the analogs of Figures 3.1-3.2 for pontus_2002.

The optimization of the LSST WFD survey footprint effectively yields ∼ 25% more survey

1Note that the depth cut implemented here not only removes the shallow survey area resulting from high dust
extinction but also the shallow borders around the main survey area that result from translational dithering on a fixed
HEALPix grid, as is done in OpSim.
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Figure 3.2: Skymaps for Y1 i-band coadded 5σ depth for baseline2018a, limited to the footprint with
coverage in all six bands with random, per night translational dithers. Left: Before any selection cuts;
yielding ∼19,091 deg2 in usable survey area. Right: After a depth cut of i > 24.5 and an extinction cut of
E(B − V ) < 0.2; yielding only ∼14,645 deg2.

Figure 3.3: Skymaps for Y10 i-band coadded 5σ depth for pontus_2002 (awider-survey footprint), limited
to the footprint with coverage in all six bands with random, per night translational dithers. Left: Before
any selection cuts. Right: After a depth cut of i > 26.0 and an extinction cut of E(B-V)< 0.2; yielding
∼19,254 deg2.

Figure 3.4: Skymaps for Y1 i-band coadded 5σ depth for pontus_2002 (a wider-survey footprint), limited
to the footprint with coverage in all six bands with random, per night translational dithers. Left: Before
any selection cuts. Right: After a depth cut of i > 24.5 and an extinction cut of E(B − V ) < 0.2; yielding
∼15,544 deg2.

area, making the survey more constraining for dark energy science. This optimization was

formally proposed to the LSST Project via Lochner et al. (2018). Figure 3.5 shows the skymaps,
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comparing the baseline footprint with the optimized footprint; note that the proposal used the

latest baseline cadence, kraken_2002 – an upgrade from baseline2018a that was discussed

above as it included dome crawls2. Not only does the optimized footprint yield more survey

area for LSST, it also increases the overlap with spectroscopic surveys like 4MOST-TiDES (de

Jong, 2011) andDESI (DESI Collaboration et al., 2016), whichwill be instrumental in calibrating

the photometric samples from LSST.

Figure 3.5: Left: Skymap showing the current baseline (in blue) and the optimized footprint (in yellow).
Right: Figure 3 from Lochner et al. (2018), showing not only the baseline and the optimized footprint but
also the expected survey footprints for upcoming spectroscopic surveys; included here with permission.

We also proposed a variation of the optimized footprint to the LSST Project via a cross-

collaboration study Olsen et al. (2018). Here, the WFD survey was defined with selection cuts

on the galactic latitude instead of the extinction (not optimal for dark energy science but better

than no mechanism to avoid surveying the anti/galactic plane), with the minimum criteria for

WFD visits met as outlined in LSST SRD. Figure 3.6 shows the skymaps for baseline (left) and

proposed (right) LSST survey, with the optimized footprint significantly increasing the overlap

with DESI (5912 deg2 for WFD and 4538 deg2 for non-WFD) vs. baseline (3739 deg2 for WFD

and 2233 deg2 for non-WFD).

2Dome crawls refer to small dome movements during an exposure. More details regarding the crawling model can
be found in the document detailing the description of the simulation.

https://docushare.lsst.org/docushare/dsweb/Get/Document-28715
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Figure 3.6: Figure adapted from Figure 1 in Olsen et al. (2018); included here with permission. Left:
Skymap showing the current baseline footprint (WFD in blue; non-WFD in coral), alongside the survey
footprint for DESI (in acqua green). Right: Skymap showing the proposed footprint (WFD in yellow;
non-WFD in pink), alongside the survey footprint for DESI (in acqua green).

Further extending the analysis, we considered various cadences and calculated not only the

useable survey footprint but also the overlap with spectroscopic samples. Figure 3.7 shows the

area of the footprint resulting from various simulations that is useable for extragalactic science.

We note that Y1 is especially sensitive to the specific cadence, and while the different kinds of

cadences/footprints converge for Y3-Y10 area, very few simulations yield close to the 18,000

deg2 WFD area for extragalactic science. Figure 3.8 shows the overlap area for the different

cadences, where we see that only some cadences lead to a footprint that overlaps completely

with at least one of the two spectroscopic surveys.

Figure 3.7: Footprint area for extragalactic science passing an extinction and depth cut alongside having
coverage in all six of LSST filters, and hence yielding high S/N galaxies.
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Figure 3.8: Overlapping area (in magenta, blue, green and black solid curves) between the extragalactic
science footprint for LSST (i.e., that passing a depth and extinction cut, alongside having coverage in all
six filters) and spectroscopic surveys like 4MOST and DESI; note that the full footprint area for 4MOST
and DESI is shown in orange and red respectively while the overall extragalactic footprint area for LSST
(from Figure 3.7) is shown here in dotted curves.

3.3 Conclusions

In this chapter, we considered the impacts of Milky Way dust extinction and analyzed the

effective survey area and median survey depth at various times during the 10-year survey.

While the efforts to optimize the observing strategy are underway, our work demonstrates the

importance of considering the statistics at various intermediate points during the survey, e.g.,

sincewhile itmaymake sense to expect depth cuts to scale as
√
t, the interimdepth is sensitive to

various factors andmay require redefining depth cuts, with the final Y10 depth still as expected.

We also note that this work continues to inform the ongoing survey optimization work, as the

science collaborations work with the LSST Project; our analysis of the latest simulations is

currently in development (Lochner et al. for the LSST-DESC, 2020, in prep).
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Chapter 4

Redshift Contamination and Correlation Function Estimators

This chapter is reproduced, aside fromminor formatting changes, fromAwan
& Gawiser (2020): published in the Astrophysical Journal © AAS; titled An-
gular Correlation Function Estimators Accounting for Contamination from
Probabilistic Distance Measurements; authored by Humna Awan and Eric
Gawiser. Reproduced here with permission.
Note also that, as for Chapter 2, the content here is updated to use the new
terminology: LSST now stands for the Legacy Survey of Space and Time,
which is carried out by the Vera C. Rubin Observatory, which was previously
known as the Large Synoptic Survey Telescope (abbreviated LSST).

4.1 Introduction

Various probes exist to study the cause of cosmic acceleration, one of which is the evolution

of large-scale structure (LSS) as traced by clustering in the spatial distribution of galaxies

(Cooray & Sheth, 2002). The standard metric to quantify galaxy clustering is the two-point

correlation function (CF) or its Fourier transform, the power spectrum. Galaxy clustering can

be measured in 3D using spectroscopic surveys, where precise radial information is available,

or by measuring the 2D correlations in tomographic redshift bins when only photometric data

is available.

Several large astronomical surveys are coming online in the next decade, allowing access

to an unprecedented amount of data and hence the ability to measure the evolution of LSS

to high precision. These surveys include the Legacy Survey of Space and Time (LSST) (LSST

Science Collaboration et al., 2009) carried out by the Vera C. Rubin Observatory (Rubin Obs.),

Dark Energy Spectroscopic Instrument (DESI Collaboration et al., 2016), Euclid (Laureĳs et al.,

2011), and WFIRST (Spergel et al., 2015). The large datasets, however, present new challenges,

among which are understanding, mitigating, and accounting for the impacts of systematic

uncertainties that exceed the statistical uncertainties; these include uncertainties due to sample

contamination, arising either due to photometric redshift uncertainties or spectroscopic line

misidentification. Various studies have presentedmethods to mitigate these effects; e.g., Elsner

et al. (2016) and Leistedt et al. (2016) present mode projection as a way to account for system-

atics, and Shafer & Huterer (2015b) present methodology to handle multiplicative errors like

photometric calibration errors.

https://doi.org/10.3847/1538-4357/ab63c8
https://www.lsst.org/
https://www.desi.lbl.gov/
http://sci.esa.int/euclid/
https://wfirst.gsfc.nasa.gov/
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Various estimators exist to measure the CFs, with the most widely used one introduced

in Landy & Szalay (1993) (referred to as LS93 hereafter); see e.g., Kerscher et al. (2000) for a

comparison of the various analog estimators, while Vargas-Magaña et al. (2013) and Bernstein

(1994) are example studies that consider involved optimizations of the estimators. These

estimators can also be extended for various purposes using the overarching idea of ‘marked’

statistics, which employweights, or ‘marks’, for different quantities: they can be used to account

for additional dependencies in the correlation functions (see e.g., Sheth& Tormen, 2004; Harker

et al., 2006; Skibba et al., 2006; White & Padmanabhan, 2009; Sheth et al., 2005; Robaina & Bell,

2012;Hernández-Aguayo et al., 2018;White, 2016), extract characteristic-dependent correlations

(see e.g., Beisbart & Kerscher, 2000; Armĳo et al., 2018), or be used to account for different

systematics or to extract target features. For instance, Feldman et al. (1994) present a simple

weighting that accounts for the signal-to-noise differences coming from each tomographic

volume (which was applied e.g., when measuring the Baryonic Acoustic Oscillations (BAO) in

Eisenstein et al. 2005); Ross et al. (2017) extend the weights in Feldman et al. (1994) to handle

photometric redshift (photo-z) uncertainties for BAOmeasurements while Peacock et al. (2004)

extend them to account for luminosity-dependent clustering, which then are extended by

Pearson et al. (2016) for minimal variance in cosmological parameters; Zhu et al. (2015) and

Blake et al. (2019) use weights to optimize the BAOmeasurements; Bianchi et al. (2018) employ

weights to account for spectroscopic fibre assignment; Ross et al. (2012) use them to handle

systematics, as doMorrison &Hildebrandt (2015); while Bianchi & Percival (2017) and Percival

& Bianchi (2017) employ them for 3D correlations to not only correct for missing observations

but to improve clustering measurements.

In this paper, we focus on the impacts of sample contamination on the angular correlation

functions (ACF). As alluded to earlier, ACFs are especially relevant for photometric surveys,

for which we can either measure the projected CFs (e.g., see Zehavi et al. 2002; Zehavi et al.

2011) or the ACFs in redshift bins (e.g., see Crocce et al. 2016; Balaguera-Antolínez et al.

2018; Abbott et al. 2018). Note that one can also measure the ACFs without the tomographic

binning (e.g., as in Connolly et al. 2002; Scranton et al. 2002) but that disallows mapping the

evolution of the galaxy clustering. Photo-z uncertaintiesmakemeasuringACFs in tomographic

bins more challenging as the uncertainties introduce spurious cross-correlations across the

redshift bins (e.g., see Bailoni et al. 2017 for a study on the impacts of bin cross-correlations on

cosmological parameters) and smear out valuable cosmological information, including the BAO

(e.g., as in Chaves-Montero et al. 2018). Since the traditional ACF estimators do not account

for contamination arising from photo-z uncertainties, the standard tomographic clustering
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analysis entails estimating N(z), i.e., the number of galaxies as a function of redshift, in each

nominal redshift bin and forward modeling the contaminated ACFs using the N(z) estimates

(e.g., as in Crocce et al. 2016; Balaguera-Antolínez et al. 2018; Abbott et al. 2018); also see e.g.,

Newman (2008) for a discussion on estimating N(z). While this method allows cosmological

parameter estimation, it suffers some key limitations as forward modeling is not commonly

used outside of cosmology. Furthermore, the variance on the cosmological parameters could

potentially be reduced if sample contamination were accounted for directly, instead of being

forward modeled, to yield a higher S/N BAO signal from photometric samples.

We propose amethod tomeasure the ACFs while accounting for contamination andwithout

needing to forward model the N(z). Specifically, we first introduce a formalism that uses the

observed cross correlations to account for sample contamination. Using this formalism, we

propose our first estimator, which still uses the photo-z point estimates and the standard CF

estimator, but corrects for contamination. Then, we introduce a new estimator that incorporates

not just the photo-z point estimates but each galaxy’s entire photo-z probability distribution

function (PDF; of which photo-z is only representative), by weighting each galaxy based on its

photo-z PDF. We note that while the second estimator extends the idea of marked statistics, as

discussed above, it differs from the applications in the literature on several fronts. In particular,

it avoids the loss of information caused by placing galaxies in a single redshift bin based on

their photo-zs, thereby allowing us to counter the impacts of sample contamination with the

statistical power of a large dataset, as well as potentially allowing low-variance measurements

of the full correlation functions. We return to some of these points for a more thorough

discussion of the various differences between our work and that in the literature.

This paper is structured as follows: in Section 4.2, we formally introduce the ACF and its

standard estimator. In Section 4.3, we introduce terminology to address sample contamination

in themost general sense, followedbyourfirst estimator to correct for sample contamination; we

refer to this as the Decontaminated estimator. In Section 4.4, we introduce aweighted estimator

in which the weights can be chosen to track the probability of each galaxy lying in each redshift

bin; we refer to this as the Weighted estimator; it is followed by a Decontaminated Weighted

estimator that estimates the true CFs. We present our validation method in Section 4.5, where

we start with a toy example to illustrate the impacts of photo-z uncertainties, followed by a

realistic example of measuring the ACFs in three redshift bins, demonstrating the effectiveness

of the estimators in recovering the true correlation functions and their covariance matrices in

the presence of sample contamination. We discuss our results in Section 4.6 and conclude in

Section 4.7.
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4.2 2D Two-Point Correlation Function

Themost common statistic to study galaxy clustering is the two-point correlation function. The

2D angular correlation function wαβ(θ) measures the excess probability of finding a galaxy

of Type-α at an angular distance θ from a galaxy of Type-β, in comparison with a random

distribution (Peebles, 1993):

dPαβ(θ) = ηαηβ [1 + wαβ(θ)] dΩαdΩβ (4.1)

where dPαβ(θ) is the probability of finding a pair of galaxies of Type-αβ at an angular distance

θ, ηα is the observed sky density of Type-α galaxies in the projected catalog, and dΩ is the solid

angle element at separation θ. An estimator for the correlation function can be constructed as

the ratio of number of data-data pairs compared to the number of random-random pairs at a

given angular separation:

wαβ(θk) = (DD)αβ(θk)
(RR)αβ(θk) − 1 (4.2)

where (DD)αβ(θk) is the normalized number of data-data pairs at angular separation θk, and

(RR)αβ(θk) is that for the random-random pairs; the index k emphasizes the binned nature

of the estimator. We note that Equation 4.2 leads to an auto-correlation function when α = β

and cross-correlation otherwise; for the cross-correlation, we explicitly consider independent

random catalogs for the two populations, accounting for the case when the two samples do

not completely overlap in their angular range. We also note that each histogram can be written

using the Heaviside step function, defined as

Θ(x) =


0, x < 0

1, x ≥ 0
(4.3)

For instance, for the auto-correlation, we have

(DD)11(θk) =
∑N1
i

∑N1
j>i Θ(θij − θmin,k)[1−Θ(θij − θmax,k)]∑N1

i

∑N1
j>i

≡
∑N1
i

∑N1
j>i Θ̄ij,k∑N1

i

∑N1
j>i

=
∑N1
i

∑N1
j 6=i Θ̄ij,k∑N1

i

∑N1
j 6=i

(4.4)

where

Θ̄ij,k ≡ Θ(θij − θmin,k)[1−Θ(θij − θmax,k)] (4.5)
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Here, θij is the angular separation between the ith and jth galaxy in the data sample of N1

galaxies, and we have explicitly written out the histogram: the kth bin counts the number of

galaxy pairs at separations θmin,k ≤ θij < θmax,k. Note that the normalized histograms can

be calculated either by considering all unique pairs or with double counting, as long as the

normalization accounts for the total pairs; the denominator in the case where we count only

the unique pairs yields the familiar count of N1(N1 − 1)/2 pairs.

Similar to Equation 4.4, we can write the histogram for the cross-correlation function as

(DD)12(θk) =
∑N1
i

∑N2
j Θ̄ij,k∑N1

i

∑N2
j

(4.6)

where sample α contains Nα galaxies.

We note here that the estimator in Equation 4.2 differs only slightly from the estimator

introduced in LS93 (referred to hereafter as the LS estimator). In the absence of sample

contamination, the LS estimator is unbiased and has Poissonian variance but we choose to

work with the simpler estimator since the LS estimator accounts for edge-effects that become

subdominant to sample contamination when using large galaxy surveys. Specifically, we note

that the DD/RR estimator presented above is as (un)biased as the LS estimator (see Equation

48 in LS93) and its variance reduces to Poissonian variance in the limit of largeN (see Equations

42, 48 in LS93). We refer to theDD/RR estimator as the Standard estimator, when comparing

with the new estimators.

4.3 Standard Estimator and Contaminants

We start with the case of two galaxy types in the observed sample, Type-A and Type-B; either

one acts as a contaminant in relation to the other. We assume that we have some method

that gives us the probability of each observed galaxy i of being Type-A, qAi or Type-B, qBi ;

example methods include, e.g., integration of a galaxy’s photo-z PDF in the target redshift bin

or a Bayesian classifier as presented in Leung et al. (2017). Assuming that our observed galaxy

sample comprises only the two types of galaxies, we have qAi + qBi = 1, where i runs over all

the galaxies in the observed sample.

Now, assuming that the classifier is unbiased, we can use the classification probabilities

to estimate the fraction of objects that are contaminants for a given target sample. For this

purpose, however, we must divide the full observed sample into target subsamples, i.e., in
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the 2-sample case, the observed Type-A and Type-B galaxies.1 Then, our classifier provides

the probability of each observed Type-A galaxy i to be truly of Type-A, qAAi , as well as the

probability of each observed Type-A galaxy to be truly of Type-B, qABi . Hence, we have

qAAi + qABi = qBAj + qBBj = 1 (4.7)

where i runs over the observed Type-A sample and j runs over the observed Type-B sample.

We can then use the classification probabilities on the observed subsamples to estimate the

contamination. That is, we have the fraction of observed Type-A galaxies that are true Type-A

or Type-B galaxies given by

fAA =
〈
qAAi

〉
; fAB =

〈
qABi

〉
(4.8)

where the average is over the observedType-A sample. Equation 4.7 translates into the expected

identities on the fractions:

fAA + fAB = fBA + fBB = 1 (4.9)

These ideas can be generalized to M galaxy samples of Types A1, A2, ..., AM , with the

classification probabilities on the entire observed sample given by qA1 , qA2 , ..., qAM . Once

the full observed catalog is divided into M target subsamples, we have the probability of ith

observed galaxy of Type-Aj being of Type-Am given by qAjAmi and the fraction of observed

Type-Aj galaxies that are Type-Am galaxies given by fAjAm .

4.3.1 Decontamination

Using the standard ACF estimator, correlations from known contaminated samples can be

corrected for by using the fractions fαβ as defined in Equation 4.8; see e.g., Grasshorn Gebhardt

et al. (2019), Addison et al. (2019) for a similar approach. Formally, this is done by writing the

observed correlation functions in terms of the true correlation functions by considering the

type of galaxy that contributes to each data pair. Here weworkwith two target galaxy samples,

Type-A and Type-B; the generalized case is discussed in Appendix 4.D.1.

Since we have two types of galaxies, we aim to calculate two auto-correlations and one

cross-correlation from the contaminated sample: wtrue
AA (θk), wtrue

AB (θk), wtrue
BB (θk). However, if

we calculate the correlations on the subsamples directly, we get wobs
AA(θk), wobs

AB(θk), wobs
BB(θk),

1A simple way to do this would be to assign all galaxies with qAi > 0.5 to target sample A and the rest to target
sample B.
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which differ from the true correlations due to sample contamination. To construct the relation

between the two, lets consider wobs
AB(θk) which gets its contributions from four types of pairs:

1) Observed Type-A galaxies that are true Type-A, paired with observed Type-B that are true

Type-A, contributing fAAfBAwtrue
AA (θk) to the observed correlation, 2) Observed Type-A that are

true Type-A, pairedwith observed Type-B that are true Type-B, contributing fAAfBBwtrue
AB (θk),

3) Observed Type-B that are true Type-A, paired with observed Type-A that are true Type-B,

contributing fABfBAw
true
AB (θk), and 4) Observed Type-A that are true Type-B, paired with

observed Type-B that are true Type-B, contributing fABfBBwtrue
BB (θk). Therefore, we have

wobs
AB(θk) = fAAfBAw

true
AA (θk) + {fAAfBB + fBAfAB}wtrue

AB (θk) + fABfBBw
true
BB (θk) (4.10)

The auto correlations follow similarly, leading us to


wobs
AA(θk)

wobs
AB(θk)

wobs
BB(θk)

 =


f2
AA 2fAAfAB f2

AB

fAAfBA fAAfBB + fABfBA fABfBB

f2
BA 2fBBfBA f2

BB



wtrue
AA (θk)

wtrue
AB (θk)

wtrue
BB (θk)

 (4.11)

where we note that the contribution from the true cross correlation to the observed auto

correlations simplifies (as opposed for that to the observed cross correlation). We also present

a formal derivation of the result above using Equation 4.1 in Appendix 4.A.1. Now, using these

equations, we can construct the Decontaminated estimators ŵAA(θk), ŵBB(θk), ŵAB(θk) for the

true correlation functions wtrue
AA (θk), wtrue

BB (θk), wtrue
AB (θk) given by

[
ŵAA(θk) ŵAB(θk) ŵBB(θk)

]T
= [DS]−1

[
wobs
AA(θk) wobs

AB(θk) wobs
BB(θk)

]T
(4.12)

where [DS] is the square matrix in Equation 4.11, which must be invertible2. Appendix 4.D.1

presents the Decontaminated estimators for the generalized case of working with M target

subsamples. We also note that this decontamination formalism could be easily applied to the

LS estimator; the decontamination matrix [DS] does not inherently depend on the usage of the

DD/RR estimator.

Given their construction, the Decontaminated estimators are unbiased (under the assump-

tion that the contamination fractions are represented by the average classification probabilities);

2For the matrix to be non-invertible, its determinant must be zero, which, after many algebraic manipulations,
simplifies to the constraint (fAAfBB−fABfBA)3 = 0. Given Equation 4.9, this leads to fAA = fBA and fBB = fAB ,
implying that wobs

AA(θk) = wobs
AB(θk) = wobs

BB(θk), i.e., all the observed correlation functions are equal and hence
disallow distinguishing the contributions from the true correlation functions. We do not expect the contamination rate
to be high enough to enable this special case.
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seeAppendix 4.A.2 formoredetails. As for the variance, the decontamination leads to a quadra-

ture sum of the variance of the standard estimators for each of the auto- and cross-correlations

in the absence of covariance between the observed correlations; the closed form expression for

the variance as well as the general covariance of the estimators is presented in Appendix 4.A.3.

Note that this overarching idea of using contamination fractions is similar to that presented

in Benjamin et al. (2010) but their focus is on estimating the contamination fractions from the

contaminated correlations, for which they resort to approximating the decontaminationmatrix

as diagonal. Since we expect sufficiently strong correlations across the different target sam-

ples (e.g., between the neighboring photo-z bins for a tomographic clustering analysis), the

simplification of ignoring some contamination fractions becomes undesirable.

4.4 A New, Weighted Estimator

Here, we present an estimator for the observed correlation function that accounts for pair

weights, i.e., each pair of galaxies is weighted to account for its contribution to the target

correlation function, e.g., by the classificationprobability of each contributing galaxy (alongside

other parameters). This way, we consider the entire observed catalog, containing Ntot galaxies

of both Type-A and Type-B, each with their respective classification probabilities. That is, we

propose a Weighted estimator for the observed correlation function:

w̃obs
αβ (θk) = (D̃D)αβ(θk)

RR(θk) − 1 (4.13)

where α, β are the types, e.g., w̃obs
AA denotes the estimator for the observed Type-A auto-

correlation while w̃obs
AB denotes the cross-correlation. Here, we define weighted data-data

pair counts as

(D̃D)αβ(θk) =
∑Ntot
i

∑Ntot
j 6=i w

αβ
ij Θ̄ij,k∑Ntot

i

∑Ntot
j 6=i w

αβ
ij

(4.14)

where wαβij is the pair weight, with the pair comprised of the ith and jth galaxies, while the

weighting is over all Ntot galaxies in the observed catalog. We note that the normalization is

needed to match the normalization of unweighted correlation functions (Equations 4.4, 4.6).

Equation 4.14 therefore allows us to calculate the different weighted data-data pair counts, e.g.,

(D̃D)AA, (D̃D)AB , (D̃D)BB . We also note that RR(θk) is formally (RR)αβ(θk) since different

galaxy samples can have different selection functions. However, since we consider all the

galaxies in the observed sample, not just the target subsamples, we take RR(θk) to trace the

full survey geometry. We also note that using the DD/RR estimator allows us to introduce
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pair weights more naturally here; the LS estimator would make it difficult given the DR term

to account for. We include some notes on the implementation of the Weighted estimator in

Appendix 4.C.2.

In the simplest scenario, the pair weight could be linearly dependent on the probabilities

of ith and jth objects being of Type α, β respectively, i.e., wαβij = wαi w
β
j = qαi q

β
j . Note that this

approach does not require us to break the observed sample into target subsamples as long as

intelligent weights are assigned to each galaxy pair. Explicitly, if we have two observed galaxy

types in our observed catalog, as was discussed at the beginning of Section 4.3, wAi = qAAi

for observed Type-A while wAi = qBAi for observed Type-B galaxies. Similarly, wBi = qABi for

observed Type-A while wBi = qBBi for observed Type-B. Also note that Ntot = NA
obs + NB

obs =

NA
true + NB

true. Finally, we highlight that our Weighted estimator reduces to the Standard

estimator if wαi is set to 1 for observed Type-A galaxies and to 0 for observed Type-B galaxies,

and wβi is set to 0 for observed Type-A galaxies and to 1 for observed Type-B.

4.4.1 Estimator Bias and Variance

The estimator in Equation 4.13 is biased, as it considers the entire sample, including contam-

inants with different correlation functions. In order to estimate the true correlations using

unbiased estimators, ŵ, we require that their expectation value approach the true correlations.

That is, we have

〈
ŵAA(θk)

ŵAB(θk)

ŵBB(θk)


〉

=
〈

[DW ]


w̃obs
AA(θk)

w̃obs
AB(θk)

w̃obs
BB(θk)


〉

=


wtrue
AA (θk)

wtrue
AB (θk)

wtrue
BB (θk)

 (4.15)

where [DW] is a decontamination matrix, designed to make the estimators unbiased. It is

analogous to the decontamination matrix [DS] in Equation 4.12. Here we explicitly work with

the two-sample case, with only Type-A and Type-B galaxies present in our sample.

As done to decontaminate the Standard estimators in Section 4.3.1, we calculate the con-

tributions that are coming from each of the true correlation functions to any given weighted
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correlation function. That is, we have

〈
w̃obs
αβ (θk)

〉
=

(
Ntot∑
i

Ntot∑
j 6=i
wαβij q

A
i q

A
j

)
wtrue
AA (θk)

+
(
Ntot∑
i

Ntot∑
j 6=i
wαβij

{
qAi q

B
j + qBi qAj

})
wtrue
AB (θk)

+
(
Ntot∑
i

Ntot∑
j 6=i
wαβij q

B
i q

B
j

)
wtrue
BB (θk)

Ntot∑
i

Ntot∑
j 6=i
wαβij

(4.16)

We present the full derivation of Equation 4.16 in Appendix 4.B. Consolidating the terms as

done in Equation 4.11, we have


〈
w̃obs
AA(θk)

〉
〈
w̃obs
AB(θk)

〉
〈
w̃obs
BB(θk)

〉
 =



Ntot∑
i

Ntot∑
j 6=i

wAAij q
A
i q

A
j

Ntot∑
i

Ntot∑
j 6=i

wAA
ij

Ntot∑
i

Ntot∑
j 6=i

wAAij {qAi qBj +qBi q
A
j }

Ntot∑
i

Ntot∑
j 6=i

wAA
ij

Ntot∑
i

Ntot∑
j 6=i

wAAij q
B
i q

B
j

Ntot∑
i

Ntot∑
j 6=i

wAA
ij

Ntot∑
i

Ntot∑
j 6=i

wABij q
A
i q

A
j

Ntot∑
i

Ntot∑
j 6=i

wAB
ij

Ntot∑
i

Ntot∑
j 6=i

wABij {qAi qBj +qBi q
A
j }

Ntot∑
i

Ntot∑
j 6=i

wAB
ij

Ntot∑
i

Ntot∑
j 6=i

wABij q
B
i q

B
j

Ntot∑
i

Ntot∑
j 6=i

wAB
ij

Ntot∑
i

Ntot∑
j 6=i

wBBij q
A
i q

A
j

Ntot∑
i

Ntot∑
j 6=i

wBB
ij

Ntot∑
i

Ntot∑
j 6=i

wBBij {qAi qBj +qBi q
A
j }

Ntot∑
i

Ntot∑
j 6=i

wBB
ij

Ntot∑
i

Ntot∑
j 6=i

wBBij q
B
i q

B
j

Ntot∑
i

Ntot∑
j 6=i

wBB
ij




wtrue
AA (θk)

wtrue
AB (θk)

wtrue
BB (θk)



(4.17)

Therefore, the Decontaminated Weighted estimators are given by

[
ŵAA(θk) ŵAB(θk) ŵBB(θk)

]T
= [DW]−1

[
w̃obs
AA(θk) w̃obs

AB(θk) w̃obs
BB(θk)

]T
(4.18)

where [DW] is the square matrix in Equation 4.17. We note that each row in Equation 4.18

corresponds to final, unbiased weights on each pair, comprised of a sum of three weights

– a fact that can be utilized when optimizing weights for minimum variance. We present

an example optimization that decontaminates while estimating the correlation functions in

Appendix 4.C.3.

We have checked Equation 4.18 in various limiting cases to confirm the validity of its form.

Specifically, we first divided the total observed sample into subsamples, and then applied the

simplifications that reduce the Decontaminated Weighted estimators to Decontaminated es-

timators (i.e., setting the pair weights for the target subsample to unity and the rest to zero,

and approximating the classification probabilities with their averages); we confirm that Equa-

tion 4.18 does indeed reduce to Equation 4.12, demonstrating that Decontaminated Weighted
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is the generalized estimator. We then tested the two limiting cases of no contamination and

100% contamination, working with just the observed subsamples and using pair weights that

are a linear product of the respective classification probabilities; we confirm that the reduced

estimator recovers the truth when there is no contamination while it is indeterminate when

there is 100% contamination. Finally, we considered the entire observed sample and tested the

limiting cases of no contamination and 100% contamination, with pair weights that are a linear

product of the respective classification probabilities, and arrive at true correlations both when

there is no contamination and when there is 100% contamination – an advantage of using the

full sample. We also present the analytical form of the variance of the Weighted estimator in

Appendix 4.C.1; since the variance is a function of a four-point sum and depends non-trivially

on the pair weights, we choose to estimate the variance numerically using bootstrap as de-

scribed in Section 4.5.1. Finally, we present the generalized estimator, i.e., applicable to M

target samples, in Appendix 4.D.2.

4.5 Validation and Results

In order to test our estimators, we consider the simplest relevant application: tomographic

clustering analysis, i.e., the measurement of the ACF for galaxies in different redshift bins.

Then, in the context of our terminology in Sections 4.3-4.4, the different ‘types’ of galaxies

are essentially the galaxies in the different redshift bins. For this purpose, we use the publicly

available v0.4_r1.4 ofMICE-GrandChallengeGalaxy andHalo Light-coneCatalog. The catalog

is generated by populating the dark matter halos in MICE, which is an N -body simulation

covering an octant of the sky at 0 ≤ z ≤ 1.4. Most importantly for our purposes, the catalog

follows local observational constraints, e.g., galaxy clustering as a function of luminosity and

color, and incorporates galaxy evolution for realistic high-z clustering – allowing for a robust test

of the estimators. More details about the catalog can be found in MICE publications: Fosalba

et al. (2015a); Crocce et al. (2015); Fosalba et al. (2015b); Carretero et al. (2015); Hoffmann et al.

(2015). We query the catalog using CosmoHub (Carretero et al., 2017).

In order to test our method, we must have photo-zs that are realistic for upcoming surveys

like the LSST. Since MICE catalog photo-zs are biased and exhibit a large scatter, we simulate

adhoc photo-zs using the true redshifts and assuming σz = 0.03(1 + z), the upper limit on

the scatter mentioned in the LSST Science Requirements Document3. Specifically, we model

3https://docushare.lsstcorp.org/docushare/dsweb/Get/LPM-17; see also LSST Science Collaboration et al.
(2009).

https://cosmohub.pic.es/home
 https://docushare.lsstcorp.org/docushare/dsweb/Get/LPM-17 
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Figure 4.1: Illustration of the simulated photo-zs. Left: Comparison between true redshift and MICE
catalog photo-zs (blue) vs. those simulated here (red). Right: Comparison between the different N(z)
distributions: true N(z); those based on MICE catalog photo-zs vs. those simulated assuming Gaussian
PDFswith σz = 0.03(1+z). The red, blue, green areN(z) estimates from binning the respective redshifts,
while the black curve is based on stacking the observed photo-z PDFs. We see that our simulated photo-zs
are well-behaved and are able to recover the true N(z) effectively. These plots are created using only the
galaxies with 0 ≤ RA ≤ 5 deg, 0 ≤ Dec ≤ 5 deg, yielding 994,863 galaxies at 0 ≤ z ≤ 1.4.

the photo-z probability distribution function (PDF) for each galaxy as a Gaussian with its true

redshift as the mean and σz as the standard deviation. Then, we randomly draw from the

PDF and assign the draw as the photo-z of the galaxy; the “observed PDF" is then a Gaussian

with the random draw as the mean and σz as the standard deviation. This method generates

unbiased photo-zs in a simple way.

Figure 4.1 illustrates our simulated photo-zs: the left panel compares the MICE catalog

photo-zs and the simulated photo-zs with the true redshifts, while the right panel showsN(z),

the number of galaxies as a function of redshift, as estimated by binning the redshifts as well

as by stacking the photo-z PDFs. We see that our simulated photo-z PDFs and the consequent

photo-zs effectively recover the overall true galaxy number distribution. Also note that the

N(z) from simulated photo-z (solid red) and observed (solid black) PDFs are very similar,

indicating that our simulated observed photo-z PDFs are nearly unbiased.

Now, the true catalog essentially consists of the location of the galaxies on the sky (RA,

Dec) and the true redshift, while the observed catalog consists of the RA, Dec and photo-zs.

In order to test the effects of contamination, we must work with observed subsamples, i.e.,

galaxies with photo-zs in the target redshift bin; these differ from the true subsamples, which

are galaxies with their true redshifts in the target redshift bins. Note that this subsampling

is not necessary for the Weighted estimator, introduced in Section 4.4, which only needs the

photo-z PDFs for all the observed galaxies. We use TreeCorr (Jarvis et al., 2004) to calculate

the correlation functions.
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Figure 4.2: True and observed positions of galaxies for the idealized galaxy sample of Section 4.5.1, where
all the true galaxies lie at 0.75 ≤ z ≤ 0.76, 0.85 ≤ z ≤ 0.86. We see that redshift binning of galaxies based
on photo-z point estimates modifies the LSS due to the redshift contamination.

4.5.1 Toy Example

In order to illustrate the impacts of photo-zs, we consider a toy example: a clustering analysis

using only two tomographic bins (0.7 ≤ z < 0.8, 0.8 ≤ z < 0.9) with the true galaxy sample

having galaxies only at 0.75 ≤ z ≤ 0.76, 0.85 ≤ z ≤ 0.86, but with the photo-z scatter as

mentioned before, i.e., σz = 0.03(1 + z). We query the true galaxies in nine 10x10 deg2 patches

along Dec = 0; all patches have a similar number of galaxies (66K-78K) and face similar photo-

z contamination rates (22-25%, 18-21% in the two tomographic bins, respectively). To make

explicit the impacts of redshift binning based on photo-z point estimates, we show the true and

observed positions of the galaxies in the two redshift bins in Figure 4.2, where we can see that

the two distributions are different, with photo-z uncertainties mixing the LSS between the two

bins. Figure 4.3 shows the distributions of the true and photometric redshifts using one of the

patches (with 66,927 galaxies, and 23% and 20% contamination in the two tomographic bins,

respectively).
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Figure 4.3: True and observed redshift histograms for the idealized galaxy sample of Section 4.5.1, with
redshift bin edges shown using the vertical dashed lines. We see that photo-z uncertainties lead to a
smearing of the redshift information.

Then, using the observed photo-z PDFs, we calculate the classification probabilities as the

integral of the PDFs within the target redshift bin. Note that since we are simulating only two

bins, we use Gaussian PDFs truncated at z = 0.7 and z = 0.9 to ensure that we conserve the

number of true and observed galaxies; this yields a slight bias in the PDF integrations, which

we correct to make the overall classification probabilities unbiased, i.e.,
〈
qABi

〉
= fAB , where

the average is checked over redshift intervals with ∆z = 0.02, while ensuring the de-biased

probabilities remain in the range 0-1. For real data, this debiasing should be possible utilizing a

limited set of spectroscopic redshifts. Figure 4.4 shows the distribution of the final classification

probabilities for all the galaxies in our observed sample. In order to estimate the various

correlation functions (two auto, one cross) and their variance, we consider the 9 patches: the

mean across the nine samples gives us the mean estimate of the respective correlation function

while we calculate the estimator variance as
〈
{ŵi(θk)− wtrue

i (θk)}2
〉
where i runs over all the

correlations (both auto and cross) and the expectation value is over all the realizations; note

that this variance is not sensitive to the sample variance but only a measure of the estimator

variance, which we can calculate explicitly given that we have access to the true CFs in each

of the nine patches. Note that for each of the patches, we calculate five types of the three

correlation functions: those in the true subsamples; those using the Standard estimator on the

contaminated observed subsamples, followed by those from the Decontaminated estimators;

and those using the Weighted estimator, followed by the Decontaminated Weighted ones.

Also, we use a random catalog that is 5x the size of the data catalog, and restrict CF calculation

to 0.01-3deg scales. Figure 4.5 shows our results, with both the correlation functions and their

variance. As expected, the cross correlations with contamination are non-negligible, taking

signal away from the twoauto-correlations. Decontamination lowers the amplitudeof the cross-

correlations, andwe find that both estimators correct for the contamination and reduce the bias,
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Figure 4.4: Distribution of the classification probabilities to be in bin 1 (upper panel) or bin 2 (lower
panel) for the toy galaxy sample of Section 4.5.1. As introduced in Section 4.3, qαβ is the probability of
the observed Type-α galaxy to be a true Type-β galaxy. We see that given the photo-z uncertainties, the
probability to be in a given target tomographic bin has a broad range. Note that the two panels are mirror
images of one another, as dictated by the identity in Equation 4.7.

leading to estimates closer to the truth. This is more apparent in Figure 4.6, where we show the

bias in the correlation functions (i.e., difference from the truth calculated as 〈ŵi(θk)− wtrue
i (θk)〉

where i runs over all the correlations (both auto and cross) and the expectation value is over

all the realizations). We note that the Decontaminated Weighted estimator is unbiased after

decontamination – a reassuring result. We also note that our decontaminated estimators reduce

the variance on the CF estimates, as indicated by the error bars in Figure 4.5.

4.5.2 Realistic Example: Optimistic Case

Now we consider a more realistic scenario: a true galaxy sample with 0.7 ≤ z ≤ 1.0, with

three redshift bins (0.7 ≤ z < 0.8, 0.8 ≤ z < 0.9, 0.9 ≤ z < 1.0) for the tomographic clustering

analysis. As before, we query the galaxies in nine 10x10 deg2 patches along Dec = 0, and

model their photo-zs assuming Gaussian PDFs for all the galaxies with σz = 0.03(1 + z) as

discussed at the beginning of Section 4.5; all patches have a similar number of galaxies (1080K-

1147K) and face similar contamination (23-26%, 44-46%, 19-23% in the three tomographic bins,

respectively). Note that our chosen bins are realistic, as a tomographic analysis for 10 redshift

bins with ∆z = 0.1 is currently planned for dark energy science studies with LSST (The LSST

DarkEnergy ScienceCollaboration et al., 2018); our treatment of photo-zs, however, is optimistic

in the assumption of Gaussian photo-z PDFs.
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Figure 4.5: Correlation functions estimates and the estimator variance in the toy galaxy sample with
only two redshift bins (presented in Section 4.5.1). We see that just as Decontamination (red) recovers
the truth (green) using the correlations on the contaminated subsamples (blue), the Decontaminated
Weighted estimator (black) recovers the truth from the Weighted correlations on the entire observed
sample (magenta), without needing to divide the observed sample into subsamples. We also note that the
decontaminated estimators reduce the variance on the CF estimates, as indicated by the error bars here.

Figure 4.6: Bias in correlation functions for the toy galaxy sample of Section 4.5.1, with 1σ uncertainties in
each estimator indicated with the shaded regions. We see that the Decontaminated Weighted estimator
(black) leads to a bias smaller than that from the Decontaminated estimator (red); the green line indicates
zero bias.

Figure 4.7 shows the distributions of the true redshifts and the photo-zs using one of the

patches (with 1,095,404 galaxies, and 24%, 45% and 22% contamination in the three redshift

bins, respectively). Wenote that themiddle bin sees the largest andmost realistic contamination

– the case that will be true for most of the LSST bins, hence making this example a relevant one.

Note that the bin edges see the impacts of artificially having contamination from only one side.

Figure 4.8 shows the distribution of the classification probabilities for all the galaxies.

Again we note that given the large contamination rates for the middle bin, the classification

probabilities are far fromunity, indicating that no observed galaxy has a very highprobability to

be in any target bin. As before, we calculate the various correlations for each of the nine patches

and estimate themean and the variance across the calculations. Figure 4.9 illustrates our results,

showing only the estimator bias for brevity, where we see that the Decontaminated Weighted

estimator leads to a bias that is comparable to that using the Decontaminated estimator, both of
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Figure 4.7: True and observed redshift histograms for the mock galaxy sample of Section 4.5.2, with bin
edges shown using the vertical dashed lines. We see that the photo-z uncertainties lead to a smearing of
the redshift information, while the truncation of the edge-bins makes theN(z) biased near the outermost
edges.

Figure 4.8: Distribution of the classification probabilities to be in the three target redshift bins for the
mock galaxy sample of Section 4.5.2. The middle bin sees the largest contamination and therefore has no
objects that have a very high probability to be in any target bin.

which are smaller than from thosewithout decontamination. We note that the Decontaminated

estimator performs similar to Decontaminated Weighted, potentially due to the correlation

functions in the three redshift bins being similar. We also note that there is a weak residual
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Figure 4.9: Bias in the correlation functions in the three sample case of Section 4.5.2, with 1σ uncertainties
in each estimator indicatedwith the shaded regions. We see that as in the toy example in Section 4.5.1, just
as Decontamination (red) reduces the bias using the correlations on the contaminated subsamples (blue),
the Decontaminated Weighted estimator (black) reduces the bias from the Weighted correlations on the
entire observed sample (magenta), without needing to divide the observed sample into subsamples; the
green line indicates zero bias.

bias in the decontaminated estimates, which is likely caused by our simple debiasing of the

classification probabilities.

As a more comprehensive metric for comparing the various estimators, we consider the

covariances in correlation functions across the three redshift bins for an example θ-bin. Specif-

ically, given that we have access to the truth here, we first calculate the covariances in the

estimators without accounting for the LSS sample variance – this we term as the “estimator

covariance" and calculate as
〈
{ŵi(θk)− wtrue

i (θk)}
{
ŵj(θk)− wtrue

j (θk)
}〉

where i, j run over all

the correlations (both auto and cross) and the expectation value is over all the realizations4;

4We calculate covariances using the numpy.cov function, which automatically subtracts off the mean for each
variable (which, in this case, is the residual bias for each estimator); the default parameters of the function also account
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note here that the diagonal of this covariance matrix is the estimator variance used to generate

uncertainties shown in Figures 4.5-4.6 and Figure 4.9. We show the estimator covariances for

the mock galaxy sample considered here in Figure 4.10, where we see that without decontam-

ination, the covariances are large, as expected given the strong mixing of the samples. Both

decontaminated estimators effectively reduce the covariances, with Decontaminated Weighted

outperforming Decontaminated.

Then we consider the covariances accounting for the LSS sample variance – this we term

as the “full covariance" and calculate as 〈{ŵi(θk)− 〈ŵi(θk)〉} {ŵj(θk)− 〈ŵj(θk)〉}〉 where i, j

again run over all the correlations and the expectation value is over all the realizations; these

are shown in Figure 4.11. We see that without decontamination, the clustering information

is smeared across the CF-space and is much in contrast from the true covariances. However,

both of our decontaminated estimators are able to approximate the true covariances effectively,

hence achieving their purpose of correcting for sample contamination. We also note here that

decontamination does not simply diagonalize the covariance matrices but instead reduces off-

diagonal elements appropriately; diagonalization would not account for true covariances that

exist between auto- and cross- CFs for neighboring bins due to shared LSS. Finally, comparing

with Figure 4.10, we note that LSS sample variance largely dominates over the estimator

variance for the 10x10 patches considered here – a reassuring result; a comparison between the

two sources of variance for larger effective survey area is left for future work.

4.5.3 Realistic Example: Pessimistic Case

Now we consider a more pessimistic scenario for the true galaxy sample of Section 4.5.2:

instead of having all the galaxies with well-behaved Gaussian photo-z PDFs, we assign half

of the galaxies bimodal photo-z PDFs – a scenario where standard N(z) forward modeling

might be problematic. Specifically, the Gaussian photo-z PDFs are constructed as described

above: by drawing a random number from a Gaussian of width σ = 0.03(1 + ztrue), with the

observed photo-z PDF being a Gaussian centered at zdraw and with width σ = 0.03(1 + zdraw).

In contrast, the bimodal photo-z PDFs are constructed with one mode at the true redshift and

another randomly chosen to be ± 0.13 away (while ensuring the second mode remains in the

redshift range of 0.7-1.0); 0.13 separation mimics a degeneracy arising from Balmer vs. 4000Å

decrement at ∼7% separations in 1 + z. This treatment leads to slightly higher contamination

rates: 39-42%, 54-57%, 33-36% in the three tomographic bins, respectively. To illustrate the

for the lost degree-of-freedom (i.e., usingN − 1 when calculating the average, whereN is the number of realizations).
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Figure 4.10: Estimator covariances across redshift bins for the case with three target redshift bins of
Section 4.5.2 for an example theta-bin (with θ = 0.79 degrees as nominal center of the bin in log(θ)); these
probe the covariances in the estimators without accounting for LSS sample variance. Here, wαβ refers
to the CF between galaxies in redshift bins α and β, and as noted in the text, we estimate the estimator
covariance as

〈{
ŵi(θk)− wtrue

i (θk)
}{

ŵj(θk)− wtrue
j (θk)

}〉
for each estimator, where i, j run over all the

correlations (both auto and cross) and the expectation value is over all the realizations. Note that this is
not sensitive to sample variance since the true CF for each realization is subtracted from the observed CF
for that realization. The left column shows estimator covariances in contaminated samples constructed
using photo-z point estimates before (top) and after (bottom) decontamination, while the right column
shows the estimator covariances in CF estimates using our Weighted estimator before (top) and after
(left) decontamination. We see that our new decontaminated estimators reduce the covariances, with
Decontaminated Weighted outperforming Decontaminated.

difference between the two cases more explicitly, Figure 4.12 shows an example set of PDFs for

the case of all-Gaussian PDFs vs. half-bimodal ones.

Figure 4.13 shows the distributions of the true redshifts and the photo-zs using one of the

patches (with 1,095,404 galaxies as before, but now with 40%, 55% and 35% contamination in

the three redshift bins, respectively). Comparing it to Figure 4.7, we see that the distribution

is slightly more biased, although the middle redshift bin sees a comparable observed redshift

distribution; and as before, the bin edges see the impacts of artificially having contamination

from only one side.

Figure 4.14 shows the classification probabilities for all the galaxies here; comparing it

to Figure 4.8, we see that the classification probabilities are now more varied, with more

objects in the edge-bins with larger classification probabilities due to the bimodality in some

of the photo-z PDFs. As before, we calculate the various correlations for each of the nine
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Figure 4.11: Full covariances across redshift bins for the case with three target redshift bins of Section 4.5.2
for an example theta-bin (with θ = 0.79 degrees as the nominal center of the bin in log(θ)); these probe
the covariances in the estimators while accounting for LSS sample variance. Here, wαβ refers to the CF
between galaxies in redshift bins α and β, and e.g., w11 and w12 are correlated since LSS at the boundary
of the two bins makes w12 non-zero and contributes to w11. As noted in the text, we calculate these full
covariances as 〈{ŵi(θk)− 〈ŵi(θk)〉} {ŵj(θk)− 〈ŵj(θk)〉}〉 for each estimator, where i, j again run over all
the correlations and the expectation value is over all the realizations. The top left panel shows the true
covariances acrossmultiple realizations of the LSS, themiddle column shows covariances in contaminated
samples constructed using photo-z point estimates before (top) and after (bottom) decontamination, while
the rightmost column shows the covariances in CF estimates using our Weighted estimator before (top)
and after (left) decontamination. We see that our new decontaminated estimators approximate the true
covariances, successfully accounting for sample contamination arising from photo-z uncertainties.

patches and estimate the mean CFs and the covariances. Figure 4.15 shows the residuals

in the CF estimates, and we see that the decontaminated estimators are able to reduce the

bias significantly. Figure 4.16 shows the estimator covariance matrices where we see that as

in the all-Gaussian case, our decontaminated estimators lead to lower estimator covariances,

with Decontaminated Weighted outperforming Decontaminated slightly more strongly than

in Figure 4.10. Finally, Figure 4.17 shows the full covariance matrices. Here too, we see that as

in Figure 4.11 for the all-Gaussian case, our decontaminated estimators approximate the true

covariances more effectively with those without decontamination.

This completes the demonstration of our new estimators: they provide for a way to decon-

taminate correlations, while the Weighted estimator specifically allows using the full photo-z

PDFs and full observed samples, in a framework that can be extended e.g., tominimize variance.
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Figure 4.12: An example set of PDFs to compare the case of all-Gaussian PDFs of Section 4.5.2 vs. the
case presented in Section 4.5.3 where half of the galaxies have bimodal PDFs. The left panel shows the
observed photo-z PDFs for the case of all-Gaussian PDFs while the right panel shows them for the case
where half of the galaxies have bimodal PDFs. The colors correspond to the same objects across the
panels.

Figure 4.13: True and observed redshift histograms for the mock galaxy sample of Section 4.5.3. As in
Figure 4.7, the bin edges shown using the vertical dashed lines. We see that as in Figure 4.7, the photo-z
uncertainties lead to a smearing of the redshift information, while the truncation of the edge-bins makes
the N(z) biased near the outermost edges.

4.6 Discussion

We have presented a formalism to estimate the ACFs in the presence of sample contamination

arising fromphoto-z uncertainties. Weachieve this by a two-foldprocess: using the information

in the contaminated correlations and utilizing the probabilistic information available via each

galaxy’s photo-z PDF in each target redshift bin. Asmentioned inSection4.1, ourmethodavoids

forwardmodeling the contaminated ACFs based on estimatedN(z), which is the standardway

to handle the photo-z contamination for cosmological analyses. We note, however, that forward

modeling is effective if the contamination can be modeled effectively; a full investigation of

measurements using our method vs. those using forward modeling is left for future work. We

also note that the BAO signal is washed out by projection and hence its measurement should

benefit from our approach.
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Figure 4.14: Distribution of the classification probabilities to be in the three target redshift bins for the
mock galaxy sample of Section 4.5.3. As in Figure 4.8, the middle bin sees the largest contamination and
therefore has no objects that have a very high probability to be in any target bin.

Our estimators are distinct from previous work employing weighted correlation functions,

specifically on three accounts: 1) our weighted estimator considers all galaxies in the entire

observed sample as a part of every photo-z bin, 2) to our knowledge, there is no literature

on the usage of a decontamination matrix to correct for correlation function contamination,

and our Decontaminated Weighted estimator presents a novel way to decontaminate marked

correlation functions, and 3) we weight only the data, and not the randoms. As far as we are

aware, the only other estimator in the literature that uses weights that are dependent on a

galaxy’s photo-z PDF in a galaxy clustering analysis is Asorey et al. (2016) but they employ a

threshold to determine whether a galaxy contributes to a given redshift bin and do not allow

contributions froma single galaxy tomore than one bin. In a further comparisonwith ourwork,

for instance, Ross et al. (2017) employ weights to account for photo-z uncertainty by weighting

both the data and random galaxies in the target subsamples by inverse-variance weights. Blake

et al. (2019) also weight both the data and random galaxies to increase the precision with

which they can measure the BAO by accounting for the dependency on the environment of
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Figure 4.15: Bias in the correlation functions in the three sample case of Section 4.5.3. As in Figure 4.9,
the 1σ uncertainties in each estimator are indicated with the shaded regions. We see that as for the
all-Gaussian photo-z PDFs case, both decontaminated estimators significantly reduce the bias and lead
to estimates closer to the truth.

the measured signal. In somewhat of a contrast, Zhu et al. (2015) use both weighted data

and random pairs, and unweighted random pairs for optimized BAO measurements, while

Morrison & Hildebrandt (2015) employ weighted randoms to account for mitigating survey

systematics. Percival & Bianchi (2017), on the other hand, upweight only their data (data-data,

data-random pairs, but not the random-random pairs) for 3D BAO measurements when the

spectroscopic data is available only for a subset of the angular sample while Bianchi & Percival

(2017) employ a similar weighting to account for missing information.

Since this work introduces a new estimator, we note various avenues for further develop-

ment. For the 2D case, we can optimize the estimator to be minimum variance by introducing

an additional parameter for each pair of galaxies, i.e., wαβij,opt= Υij(q, k)wαβij , where Υij(q, k)

are the optimization parameters that minimize the variance of the estimator for each bin k.
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Figure 4.16: Estimator covariances across redshift bins for the case of Section 4.5.3 for the same example
theta-bin as in Figure 4.10. As in Figure 4.10, the left column shows estimator covariances in contaminated
samples constructed using photo-z point estimates before (top) and after (bottom) decontamination, while
the right column shows the estimator covariances in CF estimates using our Weighted estimator before
(top) and after (left) decontamination. We see that our new decontaminated estimators reduce the
covariances, with Decontaminated Weighted outperforming Decontaminated.

We note again that the Decontaminated estimator presented in the text is in fact a special

case of the Decontaminated Weighted estimator, with the weights set to 1 when the proba-

bility is high enough to place an object in a given subsample and 0 otherwise and then with

average contamination fractions used to decontaminate instead of the classification probabili-

ties. It is indeed surprising that the Decontaminated estimator performs nearly as well as our

Decontaminated probability-Weighted estimator; this implies either a broad range of optimal

weights or, more likely, that the optimal weights lie somewhere between these two simplistic

approaches. Optimization of the weights will be an important aspect of applying the new

estimator. Furthermore, since we have introduced general pair weights, we can incorporate

Bayesian priors on the correlation functions, based on current measurements, or when mea-

suring correlation functions for different galaxy types, as then, we can incorporate priors that

are dependent on the separations, e.g., accounting for one galaxy sample clustering strongly on

smaller scales. This will call for an in-depth analysis of the covariance matrices for the various

correlation functions. Also, we can extend the weighting scheme to harmonic space, where it

will be relevant for a tomographic analysis for LSST (Awan et al., in prep).
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Figure 4.17: Full covariances across redshift bins for the case of Section 4.5.3 for the same example theta-
bin as in Figure 4.11. As in Figure 4.11, the top left panel shows the true covariances across multiple
realizations of the LSS, the middle column shows covariances in contaminated samples constructed
using photo-z point estimates before (top) and after (bottom) decontamination, while the rightmost
column shows the covariances in CF estimates using our Weighted estimator before (top) and after (left)
decontamination. We see that our new decontaminated estimators approximate the true covariances,
successfully accounting for sample contamination arising from photo-z uncertainties.

Wealso note that ourmethod can handle other kinds of contamination, e.g., star-galaxy con-

tamination, where probabilisticmodels forwhether an object is a star or a galaxy can inform the

weights for each object in our observed sample; this is possible since neither decontamination

nor the pair weights have an explicit redshift dependence, hence allowing decontaminating

and weighting any types . Finally, we can also extend the 2D formulation to 3D, where it

will be relevant for HETDEX (Hill et al., 2008), Euclid and WFIRST, as they face emission line

contaminants, as well as LSST where the projected correlation function will be measurable

(without tomographic binning). Note that for the 3D case in real space, we must treat the

random catalogs more carefully than in 2D; in the 2D case considered here, we have not made a

distinction between random catalogs for the different samples as they are spatially overlapping

with the same selection function – a case that does not hold for 3D.

http://hetdex.org/
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4.7 Conclusions

Cosmology is entering a data-driven era, with several upcoming galaxy surveys opening gate-

ways for huge galaxy catalogs. Given the increased statistical power of our datasets, we face

imminent challenges, including the need to account for systematic uncertainties that dominate

the uncertainty budget on our measurements. In this paper, we have studied the treatment

of contamination arising from photo-z uncertainties when measuring the two-point angular

correlation functions. We first introduced a simple formalism: decontamination that uses the

correlations in contaminated subsamples to estimate the true correlations. We then introduced

a new estimator that accounts for the full photo-z PDF of each galaxy to estimate the true corre-

lations, allowing each galaxy to contribute to all bins (or samples) based on their probabilities.

We demonstrated the effectiveness of our method in recovering true CFs and covariance matrix

on both a toy example and a realistic scenario that is scaleable for surveys like LSST. We also

note that our estimator can correct for contamination when measuring correlation functions of

multiple galaxy populations, rather than photo-z bins, alongside other kinds of contamination.

We emphasize the need for more data-driven tools in order to truly utilize the statistical

power of the large datasets. Herewehave presented an estimator that incorporates the available

probabilistic information to reduce the bias and variance in themeasured correlation functions;

this represents a step in the direction of reducing biases and uncertainties in the measurement

of cosmological parameters from upcoming surveys.
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Appendices

4.A Decontaminated Estimator: Decontamination, Bias and Variance

4.A.1 Decontamination Derivation

Here, we re-derive the decontamination equation (Equation 4.11) using the definition of

angular correlation function. We start with Equation 4.1, rewriting it as

dPαβ(θk) = ηpair
αβ [1 + wαβ(θk)] dΩαdΩβ = Nαβ [1 + wαβ(θk)] dΩα

Vα

dΩβ
Vβ

(4.19)

where ηpair
αβ is the observed sky density of Type-αβ pairs of galaxies whileNαβ is the observed

number of Type-αβ pairs. Assuming that we work with large surveys such that the integral

constraint is nearly zero, we have Nαβ → 〈Nαβ〉, hence the simplification in the last line in

the equation above. Since we consider samples in the same volume, Vα = Vβ = V and

dΩα = dΩβ = dΩ. Therefore, for the Standard estimator, for the case where we have the

correlations measured in the contaminated subsamples, we have

dPαβ(θk) = Nαβ,obs
[
1 + wobs

αβ (θk)
] dΩ
V

dΩ
V

=
∑
γ,δ

N γδ,true
αβ,obs [1 + wtrue

γ,δ (θk)]dΩ
V

dΩ
V (4.20)

where wobs
αβ (θk) is the biased correlation function, measured using contaminated samples.

Expanding the sum on the right hand side, we have

N tot
αβ,obs

[
1 + wobs

αβ (θk)
]

= N 11,true
αβ,obs

[
1 + wtrue

11 (θk)
]

+N 12,true
αβ,obs

[
1 + wtrue

12 (θk)
]

+N 21,true
αβ,obs

[
1 + wtrue

21 (θk)
]

+N 22,true
αβ,obs

[
1 + wtrue

22 (θk)
] (4.21)

Since we have
N γδ,true
αβ,obs

N tot
αβ,obs

= fαγfβδ (4.22)

⇒
[
1 + wobs

αβ (θk)
]

= fα1fβ1
[
1 + wtrue

11 (θk)
]

+ {fα1fβ2 + fα2fβ1}
[
1 + wtrue

12 (θk)
]

+ fα2fβ2
[
1 + wtrue

22 (θk)
] (4.23)
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Therefore, for α, β = 1, 2, Equation 4.23 becomes

[
1 + wobs

12 (θk)
]

= f11f21
[
1 + wtrue

11 (θk)
]

+ {f11f22 + f12f21}
[
1 + wtrue

12 (θk)
]

+ f12f22
[
1 + wtrue

22 (θk)
] (4.24)

Now, since

f11f21 + {f11f22 + f12f21}+ f12f22 = f11 [f21 + f22] + f12 [f21 + f22] = 1, (4.25)

we have

wobs
12 (θk) = f11f21w

true
11 (θk) + {f11f22 + f12f21}wtrue

12 (θk) + f12f22w
true
22 (θk) (4.26)

which agrees with Equation 4.11. Similar results follow for (α, β) = (1,1), (2, 2).

4.A.2 Estimator Bias

We expect that the Decontaminated estimators are unbiased given their construction (i.e.,

Equation 4.10). However, for brevity, we formally show that they are indeed unbiased. By

definition, an unbiased estimator is such that

〈ŵ〉 = wtrue (4.27)

where the expectation value is overmany realizations of the survey. Then, using Equations 4.11

and 4.12, we have

〈[
ŵAA(θk) ŵAB(θk) ŵBB(θk)

]T〉
=
〈

[DS]−1
[
wobs
AA(θk) wobs

AB(θk) wobs
BB(θk)

]T〉
= [DS]−1[DS]

[
wtrue
AA (θk) wtrue

AB (θk) wtrue
BB (θk)

]T
=
[
wtrue
AA (θk) wtrue

AB (θk) wtrue
BB (θk)

]T (4.28)

where the second equality follows by substituting Equation 4.11. Hence, the Decontaminated

estimators are unbiased. Wenote here that [DS] in Equation 4.12 is effectively adecontamination

matrix: it removes the contamination from the biased estimates,wobs
αβ , in the presence of sample

contamination. A similar argument follows for the casewherewe haveM target samples, using

Equation 4.108. We also note that Equation 4.28 is valid only when fαβ are accurate averages

of the classification probabilities.
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4.A.3 Estimator Variance

As for the variance of the Decontaminated estimators, we can calculate it by using the variance

in our observed correlations. That is, given Equation 4.12, we have

[
σ2
ŵAA

(θk) σ2
ŵAB

(θk) σ2
ŵBB

(θk)
]T

=
{

[DS]−1}2
ij

[
σ2
wobs
AA

(θk) σ2
wobs
AB

(θk) σ2
wobs
BB

(θk)
]T

(4.29)

where
{

[DS]−1}2
ij

denotes that matrix resulting from squaring each individual coefficient in

the matrix [DS]−1. We also note that the above derivation assumes no covariance between

the observed correlations (i.e., wobs
αβ ), which is incorrect for the case of neighboring redshift

bin given the shared LSS between them; this is discussed in more detail when we discuss the

covariance matrices in Section 4.5.2. To consider the covariance matrix for the Decontaminated

estimators, we start with Equation 4.12, which is reproduced here:

[
ŵAA(θk) ŵAB(θk) ŵBB(θk)

]T
= [DS]−1

[
wobs
AA(θk) wobs

AB(θk) wobs
BB(θk)

]T
(4.30)

Given Equation 4.28, we therefore have

〈[
ŵAA(θk) ŵAB(θk) ŵBB(θk)

]T〉
= [DS]−1

〈[
wobs
AA(θk) wobs

AB(θk) wobs
BB(θk)

]T〉
(4.31)

where we assume that [DS] is constant across the samples over which the expectation value is

calculated. Now, using the above equations, we can write the variations in the estimators from

their expectation value (≡ ∆w ≡ w − 〈w〉) as

[
∆ŵAA(θk) ∆ŵAB(θk) ∆ŵBB(θk)

]T
= [DS]−1

[
∆wobs

AA(θk) ∆wobs
AB(θk) ∆wobs

BB(θk)
]T

(4.32)

Now defining C
ŵ

(θk) as the covariance matrix for the Decontaminated estimators ŵαβ(θk), we

have

C
ŵ

(θk) =
〈[

∆ŵAA(θk) ∆ŵAB(θk) ∆ŵBB(θk)
]T [

∆ŵAA(θk) ∆ŵAB(θk) ∆ŵBB(θk)
]〉

(4.33)
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Using Equation 4.32 and its transpose, we then have

C
ŵ

(θk) =
〈

[DS]−1
[
∆wobs

AA(θk) ∆wobs
AB(θk) ∆wobs

BB(θk)
]T
·[

∆wobs
AA(θk) ∆wobs

AB(θk) ∆wobs
BB(θk)

] [
[DS]−1]T〉

= [DS]−1
〈[

∆wobs
AA(θk) ∆wobs

AB(θk) ∆wobs
BB(θk)

]T
·[

∆wobs
AA(θk) ∆wobs

AB(θk) ∆wobs
BB(θk)

]〉 [
[DS]−1]T

= [DS]−1Cwobs(θk)
[
[DS]−1]T

(4.34)

where Cwobs is covariance matrix for the observed correlations, wobs
αβ . Note that the second

equality is valid only under the assumption that [DS] is constant.

BothCwobs(θk) andC
ŵ

(θk) can be determined by bootstrap, as done for the example consid-

ered in Section 4.5.2, with the estimated covariancematrices presented in Figures 4.11 and 4.17.

We note thatC
ŵ

(θk) may be calculated usingCwobs(θk) given Equation 4.34, assuming that [DS]

is constant across the bootstrapped samples. We also that one can construct covariancematrices

for both wobs and ŵ spanning all θ-bins via a block combination of the θ-dependent matrices

presented here; these larger matrices are only block diagonal to the extent that individual CFs

are uncorrelated between neighboring θ-bins. Finally, as a simple check of the expression in

Equation 4.34, we note that ifCwobs(θk) is diagonal, i.e., there are no covariances in the observed

correlations, Equation 4.34 leads to the variance in the Decontaminated estimators as given by

Equation 4.29.

4.B Decontamination: From Decontaminatedwith Full Sample toWeighted

Here, we present the methodology to decontaminate the Weighted correlation function intro-

duced in Equation 4.13, using the formalism introduced in 4.A.1. To develop intuition, we first

extend the methodology in 4.A.1 to consider an unweighted full observed sample, followed by

considering the weighted full sample.

4.B.1 Decontaminated: Full Sample

We extend the treatment in 4.A.1 to consider an unweighted full sample. Then, the analog of

Equation 4.20 is

dP (θk) = Ntotobs

[
1 + wfull(θk)

] dΩ
V

dΩ
V

=
∑
γ,δ

N γδ,true
totobs

[1 + wtrue
γ,δ (θk)]dΩ

V

dΩ
V (4.35)
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Note that we have dropped the α, β markers since there is only one correlation that can be

measured for the unweighted full sample. Expanding the sum, we have

Ntotobs

[
1 + wfull(θk)

]
= N 11,true

totobs

[
1 + wtrue

11 (θk)
]

+N 12,true
totobs

[
1 + wtrue

12 (θk)
]

+N 21,true
totobs

[
1 + wtrue

21 (θk)
]

+N 22,true
totobs

[
1 + wtrue

22 (θk)
] (4.36)

Now if we assume that our classification probabilities are unbiased, we can write

Nγtotobs∑
i

Nδtotobs∑
j 6=i

qγi q
δ
j = N̂ γδ,true

totobs
(4.37)

Note that technically Nγ
totobs

= Nδ
totobs

= Ntotobs but we keep γ, δ tags just to keep track of

samples when reducing to Decontaminated. Now, simplifying the equation above, we have

Ntotobs

[
1 + wfull(θk)

]
=
N1

totobs∑
i

N1
totobs∑
j 6=i

q1i q
1
j

[
1 + wtrue

11 (θk)
]

+
N1

totobs∑
i

N2
totobs∑
j 6=i

q1i q
2
j

[
1 + wtrue

12 (θk)
]

+
N2

totobs∑
i

N1
totobs∑
j 6=i

q2i q
1
j

[
1 + wtrue

21 (θk)
]

+
N2

totobs∑
i

N2
totobs∑
j 6=i

q2i q
2
j

[
1 + wtrue

22 (θk)
]

(4.38)

We now check what happens when we reduce the above equation to Decontaminated,

i.e., we consider not the full sample but the target subsamples, while all the probabilities are
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represented by their averages. Then, for α, β = 1, 2, Equation 4.38 becomes

N1,obsN2,obs
[
1 + wobs

11 (θk)
]

=

N1,obs∑
i

N2,obs∑
j 6=i
q1i q

1
j

[1 + wtrue
11 (θk)

]
+

N1,obs∑
i

N2,obs∑
j 6=i
q1i q

2
j

[1 + wtrue
12 (θk)

]

+

N1,obs∑
i

N2,obs∑
j 6=i
q2i q

1
j

[1 + wtrue
21 (θk)

]
+

N1,obs∑
i

N2,obs∑
j 6=i
q2i q

2
j

[1 + wtrue
22 (θk)

]

=

N1,obs∑
i

N2,obs∑
j

q1i q
1
j

[1 + wtrue
11 (θk)

]
+

N1,obs∑
i

N2,obs∑
j

q1i q
2
j

[1 + wtrue
12 (θk)

]

+

N1,obs∑
i

N2,obs∑
j

q2i q
1
j

[1 + wtrue
21 (θk)

]
+

N1,obs∑
i

N2,obs∑
j

q2i q
2
j

[1 + wtrue
22 (θk)

]
simplify qs−−−−−−→

N1,obs∑
i

N2,obs∑
j

qi,11qj,12

[1 + wtrue
11 (θk)

]

+

N1,obs∑
i

N2,obs∑
j

qi,11qj,22

[1 + wtrue
12 (θk)

]

+

N1,obs∑
i

N2,obs∑
j

qi,12qj,21

[1 + wtrue
21 (θk)

]

+

N1,obs∑
i

N2,obs∑
j

qi,12qj,22

[1 + wtrue
22 (θk)

]
qs=fs−−−→

f11f21

N1,obs∑
i

N2,obs∑
j

[1 + wtrue
11 (θk)

]
+

f11f22

N1,obs∑
i

N2,obs∑
j

[1 + wtrue
12 (θk)

]

+

f12f21

N1,obs∑
i

N2,obs∑
j

[1 + wtrue
21 (θk)

]
+

f12f22

N1,obs∑
i

N2,obs∑
j

[1 + wtrue
22 (θk)

]
= f11f21N1,obsN2,obs

[
1 + wtrue

11 (θk)
]

+ f11f22N1,obsN2,obs
[
1 + wtrue

12 (θk)
]

+ f12f21N1,obsN2,obs
[
1 + wtrue

21 (θk)
]

+ f12f22N1,obsN2,obs
[
1 + wtrue

22 (θk)
]

(4.39)

⇒
[
1 + wobs

12 (θk)
]

= f11f21
[
1 + wtrue

11 (θk)
]

+ {f11f22 + f12f21}
[
1 + wtrue

12 (θk)
]

+ f12f22
[
1 + wtrue

22 (θk)
] (4.40)

which agrees with Equation 4.26. Similar results follow for (α, β) = (1, 1) = (2, 2).
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4.B.2 Weighted: Full Sample

We now extend the analysis above further for the weighted (biased) estimator:

dP̃αβ(θk) = Ñαβ,obs
totobs

[1 + w̃αβ(θk)] dΩ
V

dΩ
V

(4.41)

where we introduce Ñ to account for the weighted pair counts which we define as

Ñαβ,obs
totobs

=
Nαtotobs∑

i

Nβtotobs∑
j 6=i

wαβij (4.42)

Now, when writing the analog of Equations 4.20-4.35, we need to account for pair weights,

leading us to

dP̃αβ(θk) = Ñαβ,obs
totobs

[1 + w̃αβ(θk)] dΩ
V

dΩ
V

=
∑
γ,δ

Ñ γδ,true
totobs

[1 + wtrue
γ,δ (θk)]dΩ

V

dΩ
V (4.43)

where we have the analog of Equation 4.37:

Nαtotobs∑
i

Nβtotobs∑
j 6=i

wαβij q
α
i q

β
j = ̂̃Nαβ,true

totobs
(4.44)

Now, expanding the sum in Equation 4.43, we have

Ñαβ,obs
totobs

[1 + w̃αβ(θk)] = Ñ 11,true
totobs

[
1 + wtrue

11 (θk)
]

+ Ñ 12,true
totobs

[
1 + wtrue

12 (θk)
]

+ Ñ 21,true
totobs

[
1 + wtrue

21 (θk)
]

+ Ñ 22,true
totobs

[
1 + wtrue

22 (θk)
] (4.45)

Substituting Equation 4.37 to estimate the true counts, we have

Nαtotobs∑
i

Nβtotobs∑
j 6=i

wαβij

[1 + w̃full
αβ (θk)

]

=

Nαtotobs∑
i

Nβtotobs∑
j 6=i

wαβij q
1
i q

1
j

[1 + wtrue
11 (θk)

]
+

Nαtotobs∑
i

Nβtotobs∑
j 6=i

wαβij q
1
i q

2
j

[1 + wtrue
12 (θk)

]

+

Nαtotobs∑
i

Nβtotobs∑
j 6=i

wαβij q
2
i q

1
j

[1 + wtrue
21 (θk)

]
+

Nαtotobs∑
i

Nβtotobs∑
j 6=i

wαβij q
2
i q

2
j

[1 + wtrue
22 (θk)

]
(4.46)

Note that, this equation reduces to Decontaminated as in Equation 4.39 when weights
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are set to 1 for target subsample and 0 for the rest; and we basically have theta-independent

decontamination.

4.C Weighted Estimator: Variance and Practical Notes

4.C.1 Weighted Estimator: Variance

Here, we follow the procedure in LS93 to estimate the variance of the Weighted estimator

introduced in Equation 4.13, filling in additional details while accounting for the weights in the

data-data pair counts. While the details may be of value to the interested reader, we note that

the derivation is lengthy, culminating in the analytical expression for the variance in 4.C.1.6.

Specifically, we write the pair counts, i.e., the unnormalized DD, RR histograms in terms of

the fluctuations about their means, i.e., we have

(DD)αβ(θk) =
〈
(DD)αβ(θk)

〉
(1 + η(θk))

(RR)(θk) =
〈
(RR)(θk)

〉
(1 + γ(θk))

(4.47)

wherewe use the overline to distinguish the unnormalized histograms from the normalized ones

(denoted with a tilde). Here, η and γ are the fluctuations in the histograms about their means,

which follows

〈η(θk)〉 = 〈γ(θk)〉 = 0 (4.48)

and hence, we have

σ2
η(θk) =

〈
η2(θk)

〉
−���

��:0
〈η(θk)〉2 =

〈
η2(θk)

〉
σ2
γ(θk) =

〈
γ2(θk)

〉
−���

��:0
〈γ(θk)〉2 =

〈
γ2(θk)

〉
cov(η, γ)(θk) = 〈η(θk)γ(θk)〉 −����:

0
〈η(θk)〉 ����:

0
〈γ(θk)〉 = 0

(4.49)

where 〈η(θk)γ(θk)〉 = 0 since the data and random catalogs are not correlated. Note that η here

is the same as α in LS93; we choose the former given that the latter letter is already in use here.

Then, given Equation 4.13 and Equation 4.47, we have

1 + w̃αβ(θk) = (D̃D)αβ(θk)
RR(θk) = (DD)αβ(θk)∑Ntot

j 6=i w
αβ
ij

Nr(Nr − 1)/2
(RR)(θk)

= Nr(Nr − 1)
2
∑Ntot
j 6=i w

αβ
ij

〈
(DD)αβ(θk)

〉
(1 + η(θk))〈

(RR)(θk)
〉

(1 + γ(θk))

(4.50)
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where we have collapsed the double sums for brevity, and have defined

RR(θk) =
∑Nr
i

∑Nr
j>i Θ̄ij,k∑Nr

i

∑Nr
j>i

=
∑Nr
i

∑Nr
j>i Θ̄ij,k

Nr(Nr − 1)/2 (4.51)

⇒ 1 + 〈w̃αβ(θk)〉 =
〈
Nr(Nr − 1)
2
∑Ntot
j 6=i w

αβ
ij

〈
(DD)αβ(θk)

〉
(1 + η(θk))〈

(RR)
〉

(θk)(1 + γ(θk))

〉

= Nr(Nr − 1)
2

〈
(DD)αβ(θk)

〉〈
(RR)(θk)

〉 〈
1∑Ntot

j 6=i w
αβ
ij

〉〈
(1 + η(θk))
(1 + γ(θk))

〉

≈ Nr(Nr − 1)
2
∑Ntot
j 6=i w

αβ
ij

〈
(DD)αβ(θk)

〉〈
(RR)(θk)

〉 〈
(1 + η(θk))(1− γ(θk) + γ2(θk))

〉
= Nr(Nr − 1)

2
∑Ntot
j 6=i w

αβ
ij

〈
(DD)αβ(θk)

〉〈
(RR)(θk)

〉 〈
1− γ(θk) + γ2(θk) + η(θk)

−η(θk)γ(θk) + η(θk)γ2(θk)
〉

(4.52)

where we only keep the terms up to the second order in fluctuations. Note that the second

equality is justified since the weights for individual galaxies are fixed across the different

realizations. Now, we calculate the variance of the estimator as

var [w̃αβ ] (θk) = σ2
w̃αβ

(θk) = var
[
Nr(Nr − 1)
2
∑Ntot
j 6=i w

αβ
ij

〈
(DD)αβ(θk)

〉〈
(RR)(θk)

〉 ×
{

1− γ(θk) + γ2(θk) + η(θk)− η(θk)γ(θk) + η(θk)γ2(θk)
}]

≈

[
Nr(Nr − 1)
2
∑Ntot
j 6=i w

αβ
ij

〈
(DD)αβ(θk)

〉〈
(RR)(θk)

〉 ]2

var [1− γ(θk) + η(θk)]

=
[
Nr(Nr − 1)
2
∑Ntot
j 6=i w

αβ
ij

〈
(DD)αβ(θk)

〉〈
(RR)(θk)

〉 ]2

×[
σ2
γ(θk) + σ2

η(θk)− 2
��

���
���:

0
cov(η(θk), γ(θk))

]

=
[
Nr(Nr − 1)
2
∑Ntot
j 6=i w

αβ
ij

〈
(DD)αβ(θk)

〉〈
(RR)(θk)

〉 ]2 [〈
γ2(θk)

〉
+
〈
η2(θk)

〉]

(4.53)

where, again, we only keep the terms up to the second order in fluctuations. Here, as derived

from Equation 4.47, we have the second moments of the fluctuations defined as

〈
η2(θk)

〉
=
〈
(DD)αβ(θk) · (DD)αβ(θk)

〉
−
〈
(DD)αβ(θk)

〉2〈
(DD)αβ(θk)

〉2 (4.54)
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〈
γ2(θk)

〉
=
〈
(RR)(θk) · (RR)(θk)

〉
−
〈
(RR)(θk)

〉2〈
(RR)(θk)

〉2 (4.55)

In order to evaluate the variance, we calculate the second moments of the fluctuations using

the first and second moments of the pair counts. Specifically, we only need
〈
(RR)(θk)

〉
,〈

(DD)αβ(θk)
〉
, and

〈
(DD)αβ · (DD)αβ(θk)

〉
; we do not need the secondmoment of the random

pair counts, since
〈
γ2〉 is simply the variance of the random data and hence the variance of the

Poisson distribution.

4.C.1.1 Pair Counts: First and Second Moments

As in Section 2 in LS93, we consider counts in cells in order to write out the first and second

moments of the pair counts. We calculate first moment of random pairs in 4.C.1.2; random

pairs are uncorrelated in the limit of large Nr and hence present a simpler case. Then, we

calculate the first moment of correlated data pairs in 4.C.1.3, followed by the second moment

for the correlated data pairs in 4.C.1.4.

4.C.1.2 Random Pairs: First Moment

Here, we consider Nr points distributed randomly over the survey area, which we divide into

K cells. The probability of finding the ith randompoint in any cell is the continuumprobability,

〈ρj〉 = Nr/K, in the limit of large enough K that we essentially have either zero or one point

in each cell. This follows that the number of random pairs is

〈
(RR)(θk)

〉
=
〈

K∑
j<i

ρiρjΘ̄ij,k

〉
= 1

2

K∑
i 6=j
〈ρiρj〉 Θ̄ij,k (4.56)

where we have borrowed the notation introduced in Equation 4.5 to express the heavisides.

Now, the probability of finding two random points in two cells, chosen without replacement,

is

〈ρiρj〉 = Nr(Nr − 1)
K(K − 1) (4.57)

and, similar to LS93 Equation 10, we have

K∑
i 6=j

Θ̄ij,k = K(K − 1)Gp(θk) (4.58)
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whereGp(θk) is the probability of finding two random points at separations θk± dθk/2. Hence∑K
i 6=j Θ̄ij,k is just the total number of random points with separations between θmin,k, θmax,k as

we haveK(K − 1) cells. Substituting Equations 4.57-4.58 into Equation 4.56, we have

〈
(RR)(θk)

〉
= 1

2
Nr(Nr − 1)
K(K − 1) [K(K − 1)Gp(θk)] = Nr(Nr − 1)

2 Gp(θk) (4.59)

4.C.1.3 Data Pairs: First Moment

Here, we have Ntot points distributed randomly over the survey area. As in 4.C.1.2, the

probability of finding a galaxy in any cell is 〈ν〉 = Ntot/K, in the limit of large enough K that

we essentially have either no galaxy or one galaxy in each cell. Furthermore, we assign the pair

weight to the cells in which the pair falls. This follows, given Equation 4.14, that

〈
(DD)αβ(θk)

〉
= CΩ

〈
K∑
i 6=j
wαβij νiνjΘ̄ij,k

〉
= CΩ

K∑
i6=j

〈
wαβij

〉
〈νiνj〉 Θ̄ij,k (4.60)

where CΩ is a normalization constant to ensure that we recover the correct number of pairs,∑Ntot
i 6=j w

αβ
ij , when integrating over all angles. Here, the pair weights are assumed to be uncorre-

latedwith the probability of finding galaxies in a particular pair of cells, allowing us to separate

their expectation values in the second equality; this assumption is valid since we are assigning

pair weights based upon galaxy properties rather than their locations. Now, since data pairs

are generally correlated, we must account for the correlation explicitly when considering the

probabilities of finding a pair of galaxies in any two cells, chosen without replacement. That

is, we have the probability of finding two galaxies in two cells separated by θk, chosen without

replacement, as

〈νiνj〉 = Ntot(Ntot − 1)
K(K − 1) [1 + wαβ(θk)] (4.61)

Therefore, using Equations 4.58 and 4.61, Equation 4.60 becomes

〈
(DD)αβ(θk)

〉
= CΩ

〈
wαβij

〉
|i 6=j

Ntot(Ntot − 1)
K(K − 1) [1 + wαβ(θk)] [K(K − 1)Gp(θk)]

= CΩ

[ ∑Ntot
i 6=j w

αβ
ij

Ntot(Ntot − 1)

]
[1 + wαβ(θk)]Gp(θk)Ntot(Ntot − 1)

= CΩ [1 + wαβ(θk)]Gp(θk)
Ntot∑
i 6=j
wαβij

(4.62)
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Now, before finding the normalization constant, we define wΩ as the mean of wαβ(θk) over the

sampling geometry, i.e.,

wΩ ≡
∫

Ω
Gp(θk)wαβ(θk)dΩ (4.63)

with Gp(θk) normalized to unity, i.e.,

∫
Ω
Gp(θk)dΩ = 1 (4.64)

Therefore, we have

∫
Ω

〈
(DD)αβ(θk)

〉
dΩ =

Ntot∑
i6=j
wαβij

⇒
∫

Ω
CΩGp(θk) [1 + wαβ(θk)]

Ntot∑
i6=j
wαβij =

Ntot∑
i6=j
wαβij

⇒ CΩ = 1
1 + wΩ

(4.65)

where we make use of Equation 4.64. Therefore, Equation 4.62 becomes

〈
(DD)αβ(θk)

〉
= Gp(θk)

[
1 + wαβ(θk)

1 + wΩ

]Ntot∑
i6=j
wαβij (4.66)

4.C.1.4 Data-Data Pairs

As in LS93, using counts in cells, the second moment is defined as

〈
(DD)αβ · (DD)αβ(θk)

〉
=
〈

K∑
j 6=i
wαβij νiνjΘ̄ij,k

K∑
l 6=m
wαβmlνmνlΘ̄ml,k

〉

=
K∑
j 6=i

K∑
l 6=m
〈νiνjνmνl〉

〈
wαβij w

αβ
ml

〉
Θ̄ij,kΘ̄ml,k

(4.67)

Now, there are three cases to consider, each of which needs to be normalized to give the

right total weight from each case (as done in 4.C.1.3):

1. No indices overlap: there areK(K−1)(K−2)(K−3) cases of the sort since we choose each

of the four cells without replacement. Since the data pairs are correlated, the probability of
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finding each of the four galaxies in the four cells, chosen without replacement, is given by

〈νiνjνmνl〉 = Ntot(Ntot − 1)(Ntot − 2)(Ntot − 3)
K(K − 1)(K − 2)(K − 3) [1 + wij(θk) + wim(θk) + wil(θk)

+wjm(θk) + wjl(θk) + wml(θk)]
(4.68)

Here, since pairs i, j and m, l are separated by θk ± dθk/2, wij(θk) = wml(θk) = wαβ(θk)

while the rest of the correlations can be approximated as wΩ. Therefore,

〈νiνjνmνl〉 = Ntot(Ntot − 1)(Ntot − 2)(Ntot − 3)
K(K − 1)(K − 2)(K − 3) [1 + 2wαβ(θk) + 4wΩ] (4.69)

Also, as in LS93, we introduce Gq(θk) as the probability of finding quadrilaterals, i.e., pairs

i, j andm, l separated by θk ± dθk/2. Then, the total number of quadrilaterals is

K∑
unique{i,j,l,m}

Θ̄ij,kΘ̄ml,k = K(K − 1)(K − 2)(K − 3)Gq(θk), i 6= j,m 6= l (4.70)

Note that as in Equation 4.64, Gq(θk) is also normalized to unity, i.e.,

∫
Ω
Gq(θk)dΩ = 1 (4.71)

Therefore, the contribution to the second moment of the pair counts by the quadrilaterals is

given by

〈
(DD)αβ · (DD)αβ(θk)

〉
quad = Cquad

K∑
j 6=i 6=l 6=m

〈νiνjνmνl〉
〈
wαβij w

αβ
ml

〉
Θ̄ij,kΘ̄ml,k

= CquadNtot(Ntot − 1)(Ntot − 2)(Ntot − 3) [1 + 2wαβ(θk) + 4wΩ]×

Gq(θk)
〈
wαβij w

αβ
ml

〉
i 6=j 6=m6=l

= CquadNtot(Ntot − 1)(Ntot − 2)(Ntot − 3) [1 + 2wαβ(θk) + 4wΩ]×

Gq(θk)
[ ∑Ntot

i6=j 6=m 6=l w
αβ
ij w

αβ
ml

Ntot(Ntot − 1)(Ntot − 2)(Ntot − 3)

]

= Cquad [1 + 2wαβ(θk) + 4wΩ]Gq(θk)
Ntot∑

i 6=j 6=m6=l
wαβij w

αβ
ml

(4.72)
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where Cquad is the normalization constant so that we get the correct weight for the quadri-

laterals when integrating over all angles, i.e.,

∫ 〈
(DD)αβ · (DD)αβ(θk)

〉
quad dΩ =

Ntot∑
i 6=j 6=m 6=l

wαβij w
αβ
ml

⇒
∫
{Cquad [1 + 2wαβ(θk) + 4wΩ]Gq(θk)} dΩ = 1

⇒ Cquad = 1
1 + 2

∫
wαβ(θk)Gq(θk)dΩ + 4wΩ

= 1
1 + 2wΩ,q + 4wΩ

(4.73)

where we have used Equation 4.71 and have defined a new mean:

wΩ,q ≡
∫
wαβ(θk)Gq(θk)dΩ (4.74)

Therefore,

〈
(DD)αβ · (DD)αβ(θk)

〉
quad =

[
1 + 2wαβ(θk) + 4wΩ

1 + 2wΩ,q + 4wΩ

]
Gq(θk)

Ntot∑
i 6=j 6=m6=l

wαβij w
αβ
ml (4.75)

2. One of the indices is repeated: there areK(K − 1)(K − 2) cases of the sort, since we choose

only three cells without replacement, i.e., we choose two cells for the first (DD) and one

for the second (DD). Note that we do not have to account for m, l swap since we consider

the two cases explicitly when calculating 〈νiνjνmνl〉 (needed since the swap carries different

meaning for the pair weights). As for the probabilities of finding the data points in the
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chosen cells, we have

〈νiνjνmνl〉 |i=m =
〈
ν2
i νjνl

〉
= 〈νiνjνl〉

= Ntot(Ntot − 1)(Ntot − 2)
K(K − 1)(K − 2) [1 + wij(θk) + wil(θk) + wjl(θk)]

= Ntot(Ntot − 1)(Ntot − 2)
K(K − 1)(K − 2) [1 + 3wαβ(θk)]

〈νiνjνmνl〉 |i=l =
〈
ν2
i νlνm

〉
= 〈νiνlνm〉

= Ntot(Ntot − 1)(Ntot − 2)
K(K − 1)(K − 2) [1 + wil(θk) + wim(θk) + wlm(θk)]

= Ntot(Ntot − 1)(Ntot − 2)
K(K − 1)(K − 2) [1 + 3wαβ(θk)]

〈νiνjνmνl〉 |j=m =
〈
νiν

2
j νl
〉

= 〈νiνjνl〉

= Ntot(Ntot − 1)(Ntot − 2)
K(K − 1)(K − 2) [1 + wij(θk) + wil(θk) + wjl(θk)]

= Ntot(Ntot − 1)(Ntot − 2)
K(K − 1)(K − 2) [1 + 3wαβ(θk)]

〈νiνjνmνl〉 |j=l =
〈
νiν

2
j νm

〉
= 〈νiνjνm〉

= Ntot(Ntot − 1)(Ntot − 2)
K(K − 1)(K − 2) [1 + wij(θk) + wim(θk) + wjm(θk)]

= Ntot(Ntot − 1)(Ntot − 2)
K(K − 1)(K − 2) [1 + 3wαβ(θk)]

(4.76)

where we note that 〈ν〉 =
〈
ν2〉 = Ntot/K since we are working in the large-K regime where

there is only 0 or 1 galaxy in each cell. Also, as in LS93, we introduceGt(θk) as the probability

of finding triangles, i.e., two galaxies within θk ± dθk/2 of a given galaxy. Then, the total

number of triangles is

K∑
unique{i,j,m};l=i

Θ̄ij,kΘ̄ml,k = K(K − 1)(K − 2)Gt(θk), i 6= j,m 6= i (4.77)

where Gt(θk) is also normalized to unity:

∫
Ω
Gt(θk)dΩ = 1 (4.78)

Therefore, the contribution to the secondmoment of the pair counts by the triangles is given
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by

〈
(DD)αβ · (DD)αβ(θk)

〉
tri = CtriNtot(Ntot − 1)(Ntot − 2)Gt(θk) [1 + 3wαβ(θk)]×{〈

wαβij w
αβ
ml

〉
i=m6=j 6=l

+
〈
wαβij w

αβ
ml

〉
i=l 6=j 6=m

+
〈
wαβij w

αβ
ml

〉
i 6=j=m 6=l

+
〈
wαβij w

αβ
ml

〉
i6=j=l 6=m

}
= CtriGt(θk) [1 + 3wαβ(θk)]

Ntot∑
i6=j 6=l

{
wαβij w

αβ
il + wαβij w

αβ
li + wαβij w

αβ
jl + wαβij w

αβ
lj

}
(4.79)

where Ctri is the normalization constant so that we get the correct weight for the triangles

when integrating over all angles, i.e.,

∫ 〈
(DD)αβ · (DD)αβ(θk)

〉
tri dΩ =

Ntot∑
i 6=j 6=l

{
wαβij w

αβ
il + wαβij w

αβ
li + wαβij w

αβ
jl + wαβij w

αβ
lj

}
⇒
∫
{Ctri [1 + 3wαβ(θk)]Gt(θk)} dΩ = 1

⇒ Ctri = 1
1 + 3

∫
wαβ(θk)Gt(θk)dΩ + 3wΩ

= 1
1 + 3wΩ,t

(4.80)

where we have used Equation 4.78 and have defined a new mean:

wΩ,t ≡
∫
wαβ(θk)Gt(θk)dΩ (4.81)

Therefore,

〈
(DD)αβ · (DD)αβ(θk)

〉
tri =

[
1 + 3wαβ(θk)

1 + 3wΩ,t

]
Gt(θk) ×

Ntot∑
i 6=j 6=l

{
wαβij w

αβ
il + wαβij w

αβ
li + wαβij w

αβ
jl + wαβij w

αβ
lj

} (4.82)

3. Two of the indices overlap: there are K(K − 1) cases, since we choose only two cells. This

follows that the probability of finding two galaxies in the chosen cells is

〈νiνjνmνl〉i=m,j=l = 〈νiνjνiνj〉 =
〈
ν2
i ν

2
j

〉
= 〈νiνj〉 = Ntot(Ntot − 1)

K(K − 1) [1 + wαβ(θk)]

〈νiνjνmνl〉i=l,j=m = 〈νiνjνjνi〉 =
〈
ν2
i ν

2
j

〉
= 〈νiνj〉 = Ntot(Ntot − 1)

K(K − 1) [1 + wαβ(θk)]
(4.83)
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Here, Equation 4.58 applies, giving us the contribution to the second moment of the pair

counts by the pairs as

〈
(DD)αβ · (DD)αβ(θk)

〉
pairs

= CpairsNtot(Ntot − 1)Gp(θk) [1 + wαβ(θk)]
{〈
wαβij w

αβ
ml

〉
i=m6=j=l

+
〈
wαβij w

αβ
ml

〉
i=l 6=j=m

}
= CpairsNtot(Ntot − 1)Gp(θk) [1 + wαβ(θk)]

{〈
wαβij w

αβ
ij

〉
i 6=j

+
〈
wαβij w

αβ
ji

〉
i 6=j

}
= CpairsGp(θk) [1 + wαβ(θk)]

Ntot∑
i 6=j

{
wαβij w

αβ
ij + wαβij w

αβ
ji

}
(4.84)

where Cpairs is the normalization constant so that we get the correct weight for the pairs

when integrating over all angles, i.e.,

∫ 〈
(DD)αβ · (DD)αβ(θk)

〉
pairs dΩ =

Ntot∑
i 6=j

{
wαβij w

αβ
ij + wαβij w

αβ
ji

}
⇒
∫
{Cpairs [1 + wαβ(θk)]Gp(θk)} dΩ = 1

⇒ Cpairs = 1
1 + wΩ

(4.85)

where we have used Equation 4.64; this results matches with Equation 4.65 as it should.

Therefore,

〈
(DD)αβ · (DD)αβ(θk)

〉
pairs = Gp(θk)

[
1 + wαβ(θk)

1 + wΩ

]Ntot∑
i6=j

{
wαβij w

αβ
ij + wαβij w

αβ
ji

}
(4.86)

Combining the three cases, i.e., Equations 4.75, 4.82 and 4.86, Equation 4.67 becomes

〈
(DD)αβ · (DD)αβ(θk)

〉
=

K∑
j 6=i

K∑
l 6=m
〈νiνjνmνl〉

〈
wαβij w

αβ
ml

〉
Θ̄ij,kΘ̄ml,k

=
[

1 + 2wαβ(θk) + 4wΩ

1 + 2wΩ,q + 4wΩ

]
Gp(θk)2

Ntot∑
i 6=j 6=m6=l

wαβij w
αβ
ml

+
[

1 + 3wαβ(θk)
1 + 3wΩ,t

]
Gt(θk)

Ntot∑
i6=j 6=l

{
wαβij w

αβ
il + wαβij w

αβ
li + wαβij w

αβ
jl + wαβij w

αβ
lj

}

+Gp(θk)
[

1 + wαβ(θk)
1 + wΩ

]Ntot∑
i6=j

{
wαβij w

αβ
ij + wαβij w

αβ
ji

}
(4.87)

where we have used the result Gq(θk) = G2
p(θk) from LS93, valid in the large-K limit.
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4.C.1.5 Fluctuations

Now, substituting Equations 4.66, 4.87 in Equation 4.54, we have

〈
η2(θk)

〉
=

[
1+2wαβ(θk)+4wΩ

1+2wΩ,q+4wΩ

]
Gp(θk)2∑Ntot

i 6=j 6=m 6=l w
αβ
ij w

αβ
ml

+
[

1+3wαβ(θk)
1+3wΩ,t

]
Gt(θk)

∑Ntot
i 6=j 6=l

{
wαβij w

αβ
il + wαβij w

αβ
li + wαβij w

αβ
jl + wαβij w

αβ
lj

}
+Gp(θk)

[
1+wαβ(θk)

1+wΩ

]∑Ntot
i 6=j

{
wαβij w

αβ
ij + wαβij w

αβ
ji

}
(
Gp(θk)

[
1+wαβ(θk)

1+wΩ

]∑Ntot
i 6=j w

αβ
ij

)2 − 1

=

[
1+2wαβ(θk)+4wΩ

1+2wΩ,q+4wΩ

]∑Ntot
i 6=j 6=m 6=l w

αβ
ij w

αβ
ml

+
[

1+3wαβ(θk)
1+3wΩ,t

]
Gt(θk)
G2
p(θk)

∑Ntot
i 6=j 6=l

{
wαβij w

αβ
il + wαβij w

αβ
li + wαβij w

αβ
jl + wαβij w

αβ
lj

}
+ 1

Gp(θk)

[
1+wαβ(θk)

1+wΩ

]∑Ntot
i 6=j

{
wαβij w

αβ
ij + wαβij w

αβ
ji

}
([

1+wαβ(θk)
1+wΩ

]∑Ntot
i6=j w

αβ
ij

)2 − 1

(4.88)

As for
〈
γ2(θk)

〉
, given Equation 4.59, it takes the form

〈
γ2(θk)

〉
= 2
Nr(Nr − 1)Gp(θk) (4.89)

4.C.1.6 Variance

We now go back to Equation 4.53, and attempt to evaluate it. First, substituting Equations 4.66

and 4.59, we have

σ2
w̃αβ

(θk) =

Nr(Nr − 1)
2
∑Ntot
j 6=i w

αβ
ij

Gp(θk)
[

1+wαβ(θk)
1+wΩ

]∑Ntot
i 6=j w

αβ
ij

Nr(Nr−1)
2 Gp(θk)

2 [〈
γ2(θk)

〉
+
〈
η2(θk)

〉]
=
[

1 + wαβ(θk)
1 + wΩ

]2 [〈
γ2(θk)

〉
+
〈
η2(θk)

〉] (4.90)

Now, in the limit of large Nr, i.e.,
〈
γ2〉→ 0, we have

σ2
w̃αβ

(θk) −−−−−→
large Nr

[
1 + wαβ(θk)

1 + wΩ

]2 〈
η2(θk)

〉
(4.91)

where
〈
η2(θk)

〉
is given by Equation 4.88. The expression can be simplified: we first look at

leading order term, i.e., the quadrilateral contribution:

σ2
w̃αβ

(θk) leading−−−−→
order

[
1+2wαβ(θk)+4wΩ

1+2wΩ,q+4wΩ

]∑Ntot
i6=j 6=m 6=l w

αβ
ij w

αβ
ml([

1+wαβ(θk)
1+wΩ

]∑Ntot
i 6=j w

αβ
ij

)2 − 1 (4.92)
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Then, in the limit of weak correlations as then 1 << wαβ(θk) ∼ wΩ < wΩ,t < wΩ,q , we have

σ2
w̃αβ

(θk) weak−−−−−−−→
correlations

∑Ntot
i 6=j 6=m 6=l w

αβ
ij w

αβ
ml(∑Ntot

i6=j w
αβ
ij

)2 − 1 (4.93)

where we note that wαβij = wβαji .

Now, in order to get the analytical expression for the variance of the unbiased estimator, i.e.,

the Decontaminated Weighted estimator, we must consider not only the variance of each of

the biased correlations but also the covariances. As an example, based on Equation 4.18 which

is valid for when there are two galaxy types in our observed sample, we essentially have the

unbiased estimator for the AA auto-correlation function as

ŵAA(θk) = CAA(θk)w̃obs
AA(θk) + CAB(θk)w̃obs

AB(θk) + CBB(θk)w̃obs
BB(θk) (4.94)

where CAA(θk), CAB(θk), CBB(θk) are the elements of the first row of the inverse matrix in

Equation 4.18. Given the dependency of all terms and factors on the pair weights, we have the

variance of the unbiased estimator as

σ2
ŵAA

(θk) = C2
AA(θk)σ2

w̃AA
(θk) + C2

AB(θk)σ2
w̃AB

(θk) + C2
BB(θk)σ2

w̃BB
(θk)

− 2cov
[
CAA(θk), w̃obs

AA(θk)
]
− 2cov

[
CAB(θk), w̃obs

AB(θk)
]

− 2cov
[
CBB(θk), w̃obs

BB(θk)
]
− 2w̃obs

AA(θk)w̃obs
AB(θk)cov [CAA(θk), CAB(θk)]

− 2w̃obs
AA(θk)w̃obs

BB(θk)cov [CAA(θk), CBB(θk)]

− 2w̃obs
AB(θk)w̃obs

BB(θk)cov [CAB(θk), CBB(θk)]

(4.95)

This expression is unwieldy to evaluate for the general case, even if when we use the leading-

order, weak-correlation approximation as in Equation 4.93. Therefore, we resort to numerical

estimation of the variance.

4.C.2 Weighted Estimator: Practical Notes

4.C.2.1 Weighted Data-Data Pair Counts

Here, we note some points that are important when it comes to implementing the Weighted

estimator proposed in Equation 4.13. Specifically considering Equation 4.14 for the auto corre-

lation, we have

(D̃D)AA(θk) =
∑Ntot
i

∑Ntot
j 6=i w

AA
ij Θ̄ij,k∑Ntot

i

∑Ntot
j 6=i w

AA
ij

(4.96)
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while for the cross, we have

(D̃D)AB(θk) =
∑Ntot
i

∑Ntot
j 6=i w

AB
ij Θ̄ij,k∑Ntot

i

∑Ntot
j 6=i w

AB
ij

(4.97)

It might appear that (D̃D)AB 6= (D̃D)BA since wABij 6= wBAij but we must realize that

wABij = wBAji (4.98)

and since the sums are re-indexable, we have

(D̃D)BA(θk) =
∑Ntot
i

∑Ntot
j 6=i w

BA
ij Θ̄ij,k∑Ntot

i

∑Ntot
j 6=i w

BA
ij

=
∑Ntot
i

∑Ntot
j 6=i w

AB
ji Θ̄ij,k∑Ntot

i

∑Ntot
j 6=i w

AB
ji

= (D̃D)AB(θk) (4.99)

Therefore, when implementing the weighted data-data histogram, we canworkwith either wαβij
or wβαij , even though wαβij 6= w

βα
ij when α 6= β.

4.C.2.2 Pair Weights

While we have used simple pair weights in this work, i.e., wαβij = qαi q
β
j , the Weighted estimator

presented in Equation 4.13 works with general pair weights. In the case where the pair

weights are not separable (e.g., they account for a theta-dependence), we must circumvent the

problempresented by the normalization of the data-data histogram in Equation 4.14: it requires

summing over all the pair weights – a task that is computationally prohibitive when working

with large datasets where standard correlation function algorithms focus on a specified range

of separations to reduce compute time. We can address the challenge by two methods: 1)

estimating the number of pairs and the average weights for the larger θ-bins, and hence still

being able to use the all-pairs normalization, and 2) introducing a new, exact normalization,

which can be achieved by considering Equation 4.13 with its full details, i.e.,

w̃obs
αβ (θk) + 1 = (D̃D)αβ(θk)

RR(θk) =
∑Ntot
i

∑Ntot
j 6=i w

αβ
ij Θ̄ij,k∑Ntot

i

∑Ntot
j 6=i w

αβ
ij

∑Nr
i

∑Nr
j 6=i∑Nr

i

∑Nr
j 6=i Θ̄ij,k

=
∑Ntot
i

∑Ntot
j 6=i w

αβ
ij Θ̄ij,k∑Nr

i

∑Nr
j 6=i Θ̄ij,k

∑Nr
i

∑Nr
j 6=i∑Ntot

i

∑Ntot
j 6=i w

αβ
ij

(4.100)

where the first fraction in the last line compares the data-data pair weight in bin k with the

random-randompairs in the same bins, while the second fraction normalizes the total data-data

pair weight with the total random-random pair counts. Now, since exact numerical calculation
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of the total data-data pair weight is prohibitive and affects only the overall normalization, we

can normalize both the total data-data pair weight and the total random pair counts in a less

computationally challenging way, i.e.,

w̃obs
αβ (θk) + 1 =

∑Ntot
i

∑Ntot
j 6=i w

αβ
ij Θ̄ij,k∑Nr

i

∑Nr
j 6=i Θ̄ij,k

∑Nbin
m

∑Nr
i

∑Nr
j 6=i Θ̄ij,m∑Nbin

m

∑Ntot
i

∑Ntot
j 6=i w

αβ
ij Θ̄ij,m

(4.101)

where have replaced the total counts over all possible scales to those in only the scales of

interest.

4.C.3 Direct Decontamination

Here we attempt to find weights that allow us to decontaminate while estimating the correla-

tions – a step towards optimal weights. To achieve this, we consider Equation 4.17 which is

reproduced here for convenience:
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In order to achieve our goal, we would like to find weights wαβij,opt such that we can write the

above equation as
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To consider a simple scenario, we first assume that the pair weights are a linear product of

the weights of individual weights, i.e., wαβij,opt = wαi,optw
β
j,opt, which follows that we only need

to find wαi,opt and wβi,opt (where we note α, β can be either A or B). Then, we must have the

non-diagonal terms in Equation 4.102 be zero, leading us to specific constraints on the pair

weights. To demonstrate the method, we achieved the optimization by assuming a functional

form for the optimized weights:

wαi,opt = µα + ναqαi (4.104)

where µ, ν are the optimization parameters and are allowed to be negative (which is what

allows this method to mimic Decontaminated by automatically subtracting off pairs in which

one contributor is likely a contaminant). Using this method, we were able to decontaminate

as effectively as Decontaminated for the 2-sample case, but without reducing the variance. We

note that the equivalence between this direct decontamination with optimized weights and

Decontaminated is not guaranteed for larger numbers of samples or for weights that are non-

linear functions of probability, meriting further investigation as part of a larger investigation of

optimizing the weights.

4.D Generalized Estimators

4.D.1 Decontaminated Estimator

As an extension of our derivation for two samples in Section 4.3.1, we now consider three

samples, with galaxies of Types A, B, C present in our sample. For instance, we have

wobs
AB(θk) = fAAfBAw

true
AA (θk) + {fAAfBB + fABfBA}wtrue

AB (θk) + fABfBBw
true
BB (θk)

+ {fABfBC + fACfBB}wtrue
BC (θk) + fACfBCw

true
CC (θk)

+ {fAAfBC + fACfBA}wtrue
CA (θk)

(4.105)
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Therefore, similar to the construction of Equation 4.12, we have
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where we have defined the following for brevity:

ςijmn = fAiAjfAmAn = ςmnij (4.107)

Extending the idea to M samples, we can write the analog of the unbiased estimator for

Decontamination, given by Equation 4.12, as
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As for the 2-sample case, we can get the variance of the estimators forM target samples as
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where [Dgen
S ] is the square matrix in Equation 4.108 and as in 4.A.3,

{
[Dgen

S ]−1}2
ij

denotes

that matrix resulting from squaring each individual coefficient in the matrix [Dgen
S ]−1. The

covariance matrix for the M -samples case follows the derivation in Equation 4.34, with all of

its assumptions.
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4.D.2 Decontaminated Weighted Estimator

Expanding our derivation for two samples to three samples, with galaxies of Types A, B, C

present in our sample, we have
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where we have defined the following for brevity:
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Extending the idea to M samples, we can write the analog of our unbiased estimator for

Decontaminated Weighted, given by Equation 4.18, as
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Chapter 5

Summary & Future Work

Studying the evolution of the large scale structure (LSS) in the universe is a strong probe of

dark energy – the leading theory to explain the cosmic acceleration. As discussed in this thesis,

LSS studies require some important features: survey uniformity over an area that maximizes

the usable survey footprint with deep photometric data. Focusing on one of the largest surveys

of the next decade – the Legacy Survey of Space and Time (LSST) – we studied the first feature

in Chapter 2 and explored the impacts of translational dithers in increasing survey uniformity;

while the latter is discussed in Chapter 3 where we investigated the survey area resulting from

selection cuts needed to yield deep photometric galaxy samples. We also studied the impacts

of redshift contamination in Chapter 4 and developed tools to make use of all the probabilistic

distance information available for each photometric galaxy when measuring the two-point

correlation function.

While there are various avenues for further development to understand and handle sys-

tematics in cosmological analyses, there are some direct next-steps:

5.1 Application and Optimization of the New Estimators to Simulated and

Pre-Cursor LSST Data

As discussed in 4.6, the new estimator for galaxy correlation functions (CFs) can be optimized

to yield low-variance measurements of cosmological parameters. This can be achieved specif-

ically using the outputs of the Data Challenges (DCs) from the LSST Dark Energy Science

Collaborations (DESC) – organized efforts for an end-to-end simulation of the LSST-like data,

aimed at testing and validating various analysis pipelines (The LSST Dark Energy Science Col-

laboration et al., 2018). Specifically, DC1 simulation yielded 40 deg2 in just one photometric

filter (Sánchez et al., 2020); Figure 5.1 shows the DC1 survey footprint with and without trans-

lational dithering. DC2 simulations (LSST DESC et al., 2020, in prep) are currently underway1,

1DC2 image simulation is expected to be completed by June 2020, based on plans in the LSST DESC Science
Roadmap.

https://lsstdesc.org/assets/pdf/docs/DESC_SRM_latest.pdf
https://lsstdesc.org/assets/pdf/docs/DESC_SRM_latest.pdf
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providing us with 300 deg2 in all six LSST photometric filters; Figure 5.2 shows the footprint of

the simulation. Both these simulations have used translationally dithered visits, deriving from

our work in Chapter 2, as well as rotational dithers (based on preliminary dithering scheme

discussed in Section 5.3).

DC2 is lucrative for the optimization of the new CF estimators since we will have access to

the truth catalog corresponding to the photometric catalog, allowing a robust test of themethod

and an easy platform for a direct comparison of results with those from forwardmodeling. The

optimized estimator can then be applied to data fromHyper Suprime-Cam (HSC) (Aihara et al.,

2018) as well as the Dark Energy Survey (DES) (Flaugher, 2005) to obtain improved constraints

on cosmological parameters.

Figure 5.1: Figure adapted from Figures 16, 20, 21 in Sánchez et al. (2020) (with permission), showing
the number of visits to the DC1 survey area in the top row when translationally undithered (left) and
dithered (right), leading to the survey depth as shown in the corresponding panels in the bottom row.
We see that as expected, translational dithering leads to a more uniform coverage, as it redistributes the
visits to the overlapping regions of the undithered fields to the rest of the survey.
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Figure 5.2: Figure adapted from LSST DESC et al., 2020, in prep., showing the footprint of the simulated
data from the LSST-DESC Data Challenge 2, yielding 300 deg2 of the wide-fast-deep survey area (green)
along side a 25 deg2 deep drilling field (blue); figure included here with permission. The simulated visits
are translationally dithered.

5.2 Impacts of LSS Systematics on Cosmological Parameter Estimation

Taking our work in Chapters 2-3, we can not only quantify the uncertainties/biases induced in

the power spectra but also those induced in the cosmological parameters. This can be done by

creating a modular framework to assess the impacts of systematics induced by the observing

strategy and Milky Way dust uncertainties. Figure 5.3 shows the workflow for this framework.

Taking the simulated cadences and the resulting survey statistics, the pipeline built for the

analysis Chapter 2 yields the fluctuations in galaxy density resulting from the two systematics;

this can then be combined with theoretical power spectra given a specified cosmology using

the Core Cosmology Library, leading us to the observed galaxy density maps. Then, using

NaMaster – a fast power spectrumcalculation code – and LSSLike – the cosmological parameters

likelihood code, we can quantify the impacts of the systematic uncertainties and determine the

need for rigorous mitigation schemes to counter the added systematic uncertainties. Note that

this can also be applied to the simulated data from DESC DC2, discussed in Section 5.1, to test

the current systematics mitigation schemes.

https://github.com/LSSTDESC/CCL
https://github.com/LSSTDESC/NaMaster
https://github.com/LSSTDESC/LSSLike
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Figure 5.3: Workflow for the modular framework that would allow us to quantify the impacts of the
systematic uncertainties on cosmological parameter estimations using galaxy power spectra.

5.3 Rotational Uniformity

Just as translational uniformity of telescope coverage is critical for LSS studies with LSST, rota-

tional uniformity is important for Weak Lensing studies and hence for cosmological analyses

with photometric surveys like the LSST: the standard tool for competitive constraints from

joint dark energy probes (e.g., Krause et al., 2017) is the 3x2pt analysis which entails joint

constraints from three two-point correlations – galaxy-galaxy, galaxy-shear, and shear-shear.

To address rotational uniformity, we investigate the impacts of rotational dithers, with the goal

of making the distribution of rotational angles more uniform. Figure 5.4 shows an example

result, demonstrating that rotational dithers would be critical for ensuring uniform rotational

distributions.

5.4 Impacts ofMilkyWayDust Uncertainties on CMBLensing× LSS Stud-

ies

Cross-correlations between CMB lensing and LSS provides yet another probe to study cosmol-

ogy but suffers from a correlated systematic arising from the Milky Way dust: Galactic dust

leads to extinction in observation of extragalactic sources alongside contributing foreground

emission that affects CMB lensing. Given the infrastructure set up for work discussed in Sec-

tion 5.2, we can investigate the impacts of Milky Way dust on the cross-correlation, specifically
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Figure 5.4: Distribution of two rotational angles with and without rotational dithers for all the pointings
of the survey. We see that our simple rotational dithering scheme makes the distribution of the rotational
angles more uniform, with room for further improvement.

focusing on CMB observations from the Simons Observatory and LSS from the LSST, while

taking into account survey-specific systematics and specifications. Figure 5.5 shows some pre-

liminary results: the residual power spectra for the lensing-galaxy density cross-correlation

without any systematics (blue), with observing strategy systematics in the galaxy density field

(orange), and with both observing strategy systematics in the galaxy density field and dust

systematics in lensing and galaxy density fields (black). We see a modest bias in the power

spectrumdue to the dust systematics, and the next step is to quantify the impacts of the residual

uncertainties on the cosmological parameters.

Figure 5.5: Residual power spectra for the lensing-galaxydensity cross correlationwithout any systematics
(blue), with observing strategy systematics in the galaxy density field (orange), and with both observing
strategy systematics in the galaxy density field and dust systematics in lensing and galaxy density fields
(black).
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5.5 Conclusions

With various large astronomical surveys coming online in the next decade, it is imperative

to understand and reduce the dominant source of uncertainties in our measurements of the

cosmological parameters in the Big Data cosmology era: systematic uncertainties. Only with

an enhanced understanding of the sources of systematic uncertainties and better mitigation of

their impacts can we expect to utilize the statistical power of the large datasets. In this thesis,

we focused on three specific sources of systematic unceratainties.

In Chapter 2, we considered the impact of the telescope observing strategy for the Legacy

Survey of Space andTime (LSST) anddemonstrated that fixed telescope pointings lead to strong

artifacts that induce large systematic uncertainties at the scale of interest for cosmology. To

mitigate these artifacts, we considered translational dithers and showed them to be effective in

reducing the added systematic uncertainties to be subdominant to the statistical uncertainties

– the regime where we can truly utilize the statistical power of the large datasets. Our recom-

mendations have now been incorporated into the baseline LSST observing strategy, as the LSST

scheduler no longer uses a static gridding of the sky but one that randomly changes every night,

effectively implementing random per night translational dithers; the re-gridding also removes

the shallow borders in the survey area that resulted from translational dithering on a fixed grid

of the sky. We plan to extend our investigation to rotational dithers, as discussed in Section 5.3,

in order to ensure rotational uniformity that will be critical for photometric calibration as well

as Weak Lensing systematics.

In Chapter 3, we studied the impacts of Milky Way dust extinction and demonstrate that

nearly 25% of the default LSST survey area does not pass the selection cuts needed to yield a

deep photometric sample. To address this, we proposed a reconfiguration of the LSST survey

area to avoid high extinction regions of the sky. We also considered the evolution of themedian

depth at various points in the 10-year survey from different simulations, and demonstrate that

it is critical to pay attention to not just Y1, Y10 statistics but also the intermediate years to better

assess the optimization of the survey.

Considering Milky Way dust uncertainties, we can incorporate them into the joint-probes

analysis as discussed in Section 5.2; this will allow us to not only figure out the dominant source

of systematic uncertainties but fully incorporate their impacts in the planned analysis pipelines.

We can also consider the impact of dust uncertainties on the cross-correlation between CMB

lensing and LSS, as discussed in Section 5.4.

In Chapter 4, we focused on the two-point angular correlation estimators that are used
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to quantify galaxy clustering. We discussed how the standard estimators do not handle dis-

tance uncertainties directly, and hence are limited in utilizing the statistical power of the large

datasets. We presented a formalism to correct for any kind of contamination and a new

weighted estimator that incorporates the full redshift probabilistic density function for each

galaxy when measuring the correlation function. We demonstrated that our estimators lead to

smaller estimator covariances, and recover the true correlation functions and their covariance

matrices. Applying the weighted estimator to simulated data, as discussed in Section 5.1,

we can compare our results directly with those resulting from forward modeling the redshift

contamination as well as optimized the estimator to apply to real data.

The work presented here is only a step in the right direction. In order to fully realize the

statistical power of the largedatasets, it is critical to reframeour treatment of data: to fully accept

the uncertainties associatedwith ourmeasurements and to develop tools that incorporate them

more carefully into our analyses. With a better understanding of the systematic uncertainties

and new tools to mitigate and address their impacts – the focus of this work – we can ensure

robust measurements of dark energy using large surveys like the LSST and unveil the nature

of our universe.
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