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ABSTRACT OF THE DISSERTATION
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Theory of evolution provides a simple, flexible, and elegant framework to study and explain

life around us. Population genetics is a mathematical wing of evolutionary theory. One of

its key results connects steady state distribution of observable traits in a population with

evolutionary parameters like mutation rate and fitness landscape in which the population

is evolving. If number of trait types is very large, which is a relevant limit for molecular

biology, then Ewens sampling formula provides a description of the steady state for the

case with no natural selection acting on the population. We provide a generalization of

this formula to arbitrary fitness landscape and use it to infer distribution of mutation rate

and selection pressure along fruit fly chromosomes from sequenced data.

ii



Acknowledgments

It is hard to accomplish something valuable. But when you are surrounded by great people

this hardship turns into challenge from which you can learn, grow and even enjoy the

ride. Steph Petrusz and Rob Isenhower, Matteo Turilli and Paloma Caravantes, Dima

Grigoryev, Asya Zaytseva, Liza Guseva and Polina Kuznetsova, Volodya Lubyshev, Manos

Maridakis, Jacek Cyranka, Triet Pham, Adrian Culver, Marina Kechkina, Max Miller,

Mitya Karabash, Yana Bromberg, Jumana Dakka, Borya Radnaev, Jeremy Pronchik, Liza

Muravieva, Masha Danilenko, and Bryan Leung. I would like to say thank you to all of

you. Special thanks to my family Vika, Julia, Alexander, Larisa, and Galina. Ted Malliaris

thanks for awesome collaboration, and finally Alex Morozov thanks for your guidance,

patience and support.

iii



Dedication

In memory of Lilia Khromova.

Loving mother and best friend.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Evolutionary forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Stochastic models of evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3. Master equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4. Diffusion limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5. Infinite allele limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Sampling Formula for Arbitrary Fitness Landscape . . . . . . . . . . . . 8

2.1. Sampling probability with selection . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1. Allele frequency distribution . . . . . . . . . . . . . . . . . . . . . . 15

v



2.1.2. Strongly monomorphic limit . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3. Probability of a sample of alleles . . . . . . . . . . . . . . . . . . . . 16

2.1.4. Generalized sampling formula . . . . . . . . . . . . . . . . . . . . . . 19

2.1.5. Neutral limit of the sampling formula . . . . . . . . . . . . . . . . . 20

2.1.6. Sampling formula for a population with two fitness states . . . . . . 20

2.1.7. Sampling formula for a population with multiple fitness states . . . 22

2.1.8. Efficient evaluation of sampling probabilities . . . . . . . . . . . . . 25

2.2. The effective population size approximation . . . . . . . . . . . . . . . . . . 27

2.3. Detection of selection signatures . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4. Mutation load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5. Fitness landscape models and numerical simulations . . . . . . . . . . . . . 31

2.6. Partition probabilities on fully-connected vs. single-point-mutant networks . 34

2.7. Infinite-allele assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8. Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3. Inference and Sampling Formulae . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2. Overview of Approximate Bayesian Computation (ABC) . . . . . . . . . . . 49

3.3. D. melanogaster population genomics data . . . . . . . . . . . . . . . . . . 50

3.4. Application of ABC in population genetics . . . . . . . . . . . . . . . . . . . 51

3.5. Recombination simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6. Validation of the ABC inference pipeline using synthetic data . . . . . . . . 55

vi



3.6.1. Frequencies of allelic counts and ABC inference in the presence of

recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7. Evolutionary parameter inference in D. melanogaster . . . . . . . . . . . . . 65

3.7.1. Inference of mutation rates . . . . . . . . . . . . . . . . . . . . . . . 65

3.7.2. Inference of selection strengths and the fraction of viable genotypes 69

3.8. Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

vii



List of Tables

2.1. KL divergences between theoretical predictions and numerical simulations

for single-plane, two-plane, and three-plane fitness landscapes, with the sam-

ple size n = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2. KL divergences between theoretical predictions and numerical simulations

for single-plane, two-plane, and three-plane fitness landscapes, with the sam-

ple size n = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3. KL divergences between theoretical predictions and numerical simulations

for single-plane, two-plane, and three-plane fitness landscapes, with the sam-

ple size n = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1. ABC prediction accuracy in the presence of recombination. . . . . . . . . . 63

3.2. Summary statistics for the average number of mutations per sequence, par-

titioned by functional region and selection strength. . . . . . . . . . . . . . 74

viii



List of Figures

1.1. Steady state allele frequency distributions. . . . . . . . . . . . . . . . . . . . 5

2.1. Summations in the sampling formula for a population with multiple fitness

states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2. KL divergences of partition probabilities. . . . . . . . . . . . . . . . . . . . 29

2.3. Mutation load and population fraction for the two-plane fitness landscape. . 30

2.4. Partition probabilities for the two-plane fitness landscape. . . . . . . . . . . 33

2.5. Partition probabilities for the three-plane fitness landscape. . . . . . . . . . 34

2.6. Test of the infinite-allele assumption. . . . . . . . . . . . . . . . . . . . . . . 38

3.1. Accuracy of ABC inference with selection on synthetic data . . . . . . . . . 56

3.2. Accuracy of neutral ABC inference on synthetic data. . . . . . . . . . . . . 58

3.3. Effect of recombination on sampling frequencies. . . . . . . . . . . . . . . . 60

3.4. Chromosome-wide distributions of mutation rates. . . . . . . . . . . . . . . 64

3.5. Comparison of mutation rate estimators. . . . . . . . . . . . . . . . . . . . . 65

3.6. Chromosome-wide distributions of Tajima’s D statistic. . . . . . . . . . . . 66

3.7. Inferred mutation rates along D. melanogaster chromosomes. . . . . . . . . 67

3.8. Genome-wide posterior distributions of mutation rates, selection coefficients,

and fraction of viable genotypes. . . . . . . . . . . . . . . . . . . . . . . . . 68

ix



3.9. ABC inference of mutation rates, selection coefficients, and fraction of viable

genotypes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.10. ABC inference of mutation rates, selection coefficients, and fraction of viable

genotypes partitioned by selection strength. . . . . . . . . . . . . . . . . . . 70

3.11. Inferred selection coefficients along D. melanogaster chromosomes. . . . . . 70

3.12. Inferred fractions of high-fitness alleles along D. melanogaster chromosomes. 71

3.13. Polymorphisms in sequence alignments and selection strength. . . . . . . . . 72

3.14. Chromosome-wide distributions of the number of mutations partitioned into

functional regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

x



1

Chapter 1

Introduction

Theory of evolution provides a simple, flexible, and elegant framework to study and explain

life around us. Population genetics is a mathematical wing of evolutionary theory which

lies at the center of our research. In this chapter we introduce basic notions and concepts

that our results are built on.

1.1 Evolutionary forces

Population genetics studies changes in a population under three evolutionary forces: mu-

tation, selection, and drift.

To illustrate these forces, imagine we study a population of cells. Cells compete for

finite resources and divide to produce offspring. But sometime an offspring is not an exact

copy of its parent. Errors do occur during this process, sometimes due to a pure chance

or thanks to external influences like chemical agents or radiation. These are all example of

mutations.

Broadly speaking, these errors can have three outcomes. If the changes happen in a

part of DNA that is responsible for critical cell functions, then life of this new cell will

be affected. This could be twofold, if the mutation breaks something in the cell’s fine

tuned machinery, this will inevitably lower its chances to compete for resources and divide.
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We can express that by saying that fitness of the offspring is lower that of its parent’s.

Alternatively, as there is always room for improvement, so if the mutation happen to

streamline the function of the cell, then the cell gains an edge over its peers and now it

will likely to win more often when competing for resources and leave more progeny. This

can be summarized by saying that the offspring fitness is higher than its parent’s. Finally,

third option is when the mutation happens in a region of DNA that is not responsible for

any critical cell functions and we don’t observe any immediate effect on cell’s viability.

Then we conclude that the offspring and the parent have the same fitness.

And lastly there are always random effects acting on the population of cells that remove

cells from the population without paying any respect to cell’s fitness. Just as piano that is

about to fall on a cell does not care about cell’s fitness. This is genetic drift.

1.2 Stochastic models of evolution

Pioneering attempts to mathematically model this phenomena were made by Wright [1]

and Fisher [2]. Alternative but equivalent method was introduced by Moran in [3]. I will

follow the latter below.

Let us go back to a population of cells. Instead of looking at the whole DNA, we

consider its subsequence – a gene – that is responsible for a particular function of the cell.

Then two cells either share the same subsequence or not, which means they have different

variant of gene which are called alleles. To evolve this population, we make changes every

discrete time step – a generation – while maintaining constant size N of the population.

For the sake of establishing notations, if among these N cells we observe K allelic types,

then there are ni cells of type i and
∑K

i=1 ni = N .
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Let us start by considering neutral case, meaning all K alleles have same fitness. We

pick an allele from the population to become a parent. As long as the alleles are equally

fit, picking a parent boils down to uniform sampling, i.e. each allele has equal chance of 1
N

to become a parent. Once we introduce fitness landscape, each allele is assigned its fitness

fi and the uniform sampling is replaced by weighted one. Now probability for i-th allele Ai

to become a parent is fini/
∑N

j=1 fjnj . Once we have a parent allele Ai, there is a chance

µij that the offspring will be one of K − 1 other alleles Aj 6=i. That leaves a chance of

1−
∑K

j=1 µij for mutation to not occur leaving parent and offspring alleles identical. One

can think of this setup by means of a graph with K vertices representing different alleles.

Edges are assigned weights being mutation rates between alleles. These weights need not

to be symmetric and could be zero if corresponding alleles cannot mutate into each other.

If every allele can mutate to any other allele with the same rate µij = µ corresponding

graph becomes complete. This complete graph or as we also refer to it fully-connected (FC)

network case is the starting point for my research. Finally, we uniformly sample (fitness

does not play role here) the population to pick an allele that we replace with the offspring.

Instead of cells we could have considered other organisms focusing on other kind of

traits: say eye color for humans, beak shape for birds or wing shape for fruit flies, and

study how a particular trait is represented in a given population.

1.3 Master equation

This dynamics can be described by master equation. Consider a population of N alleles

of two types A and B. Let fitness of A be fA = 1 + s and fB = 1. Number of A alleles

nA = n is sufficient to describe the state of the system as nB = N − n at any given time
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t. If there are n alleles A at time t then there are two ways to end up with n + 1 alleles

at t + 1: First, pick one of A’s to be a parent, not have a mutation when producing the

offspring and replace one of B’s with the offspring. The odds of that happening are

fAnA
fAnA + fBnB

(1− µ)
nB
N
. (1.1)

Second, is to pick B to be a parent, have a mutation when producing the offspring, and

replace one of B’s with the offspring. Probability of that is

fBnB
fAnA + fBnB

µ
nB
N
. (1.2)

Therefore transition probability P[n + 1|n] is simply the sum of 1.1 and 1.2. Similarly, to

end up with n− 1 alleles of A at t+ 1 while having n at t we either pick one of A’s to be a

parent, mutate the offspring, and replace one of A’s with the offspring or pick one of B’s

to be a parent, avoid mutation and replace one of A’s with the offspring. Then

P[n− 1|n] =
fAnA

fAnA + fBnB
µ
nA
N

+
fBnB

fAnA + fBnB
(1− µ)

nA
N

(1.3)

Finally, as long as we can’t increase or decrease nA by more than one

P[n|n] = 1− P[n+ 1|n]− P[n− 1|n]. (1.4)

If p(n, t) is a probability to have n alleles of type A at time t then the master equation is

p(n, t+ ∆t) =
∑
n′

P[n|n′]p(n′|t) (1.5)

which we can rewrite in gain minus loss form

p(n, t+ ∆t)− p(n, t) =
∑
n′ 6=n

P[n|n′]p(n′|t)−
∑
n′ 6=n

P[n′|n]p(n|t). (1.6)
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0.0 0.2 0.4 0.6 0.8 1.0
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N = 0.1
N = 10.0

Figure 1.1: Steady state allele frequency distributions. Panels A through C represent
increase in selection pressure. Blue line shows distribution for monomorphic population
while orange for polymorphic.

1.4 Diffusion limit

Now we consider large populations while assuming Nµ and Nsi finite. It makes sense to

introduce allele frequencies x = n/N . Expanding 1.6 in ∆t and ∆x = 1/N and keeping

only leading terms in 1/N and scaling ∆t = 2/N2 we arrive at Fokker-Plank equation

∂p

∂t
=

1

2

∂2

∂x2
(V p)− ∂

∂x
(Mp). (1.7)

Here M is mean allele frequency change ∆x

M = E[∆x] = ∆xP[x|x+ ∆x] + (−∆x)P[x|x−∆x] = Nµ
1− 2x

2
+
N

2
x(1− x)

∂〈f〉
∂x

(1.8)

and V is its variance

V = E[x2]− E[x]2 = x(1− x) (1.9)

with 〈f〉 =
∑N

i=1 fixi being mean population fitness.

Setting time derivative in (1.7) to zero we get a steady state allele frequency distribution

[4, 5]

p ∼ eNsx[x(1− x)]Nµ−1. (1.10)
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Examples of this distribution are shown on Fig. 1.1. We see that in case of θ = 0.1 the

population tends to be in either of two states x = 0 or x = 1 which corresponds to the

whole population being made up of just a single allele. This limit is called monomorphic.

In the neutral case Ns = 0 (panel A) both states have the same probability but if we start

introducing selection pressure Ns = 1 and Ns = 10 (panels B and C) we see the state

corresponding to the highest fitness has progressively higher chance to be observed. Now

if we consider higher mutation rate Nµ = 10 we see that the population consisting of a

mix of different alleles. This limit is called polymorphic. In the neutral case (panel A)

the mean of the distribution corresponds to the situation when both alleles are equally

represented in the population. But when we increases selection (panels B and C) the mean

shifts towards state with higher fitness hence alleles with higher fitness make up more then

half of the population on average.

In case of K alleles we are dealing with a probability density p(x1, . . . , xK) = p(x)

where all frequencies xi are normalized
∑K

i=1 xi = 1. If we pick xK to be a dependent

variable corresponding Fokker-Plank equation is [4, 5]

∂p

∂t
=

1

2

K−1∑
i,j=1

∂2

∂xi∂xj
(Vijp)−

K−1∑
i=1

∂

∂xi
(Mip) (1.11)

where mean

Mi = E[∆xi] =
ε−Kεxi

2
+
N

2
xi

∂〈f〉
∂xi

−
K∑
j=1

xj
∂〈f〉
∂xj

 (1.12)

with ε = Nµ/(K − 1) and covariance matrix

Vij = E[∆xi∆xj ]− E[∆xi]E[∆xj ] =


xi(1− xi) i = j,

xixj i 6= j

. (1.13)
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Steady state solution to (1.11) is [4, 5]

p(x) ∼ eN〈f〉
K∏
i=1

xε−1
i (1.14)

up to a normalization constant. We can use this distribution to predict steady state

frequencies given evolutionary parameters and the other way around, given steady state

frequencies we could infer evolutionary parameters.

1.5 Infinite allele limit

It turns out though we cannot describe large K systems using (1.14) as it was shown this

distribution becomes ill defined in infinite allele limit [6, 7]. Intuitively it could be seen by

calculating the means of steady state frequencies go to zero as E[xi] ∼ 1/K. This limit is not

a mathematical abstraction, in fact it has direct connection to molecular biology. Consider

a chunk of DNA of size 100 nucleotides. This could be a small gene for example (most genes

span way more than 100 nucleotides but we will stick to a conservative estimate). As each

nucleotide could be either of four amino acids A, C, T or G then there is at most 4100 ∼ 1060

possible variants of this sequence. Hence one needs to find appropriate degrees of freedom

to describe this limit and find the distribution of these degrees of freedom. This was done

by Ewens [8] for neutral populations. We will spend subsequent chapters introducing this

distribution, generalizing it to arbitrary fitness landscape, mastering fast calculation of this

generalized distribution, and finally developing a method to infer evolutionary parameters

with a help of this distribution and applying it to fruit fly sequencing data.
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Chapter 2

Sampling Formula for Arbitrary Fitness Landscape

With the advent of high-throughput molecular biology techniques, it has recently become

possible to carry out large-scale genotype-phenotype assays in molecular systems [9, 10,

11, 12, 13]. For example, Podgornaia and Laub have recently mapped all 204 = 1.6× 105

possible combinations of four key residues in the E. coli protein kinase PhoQ, and assayed

each mutant for the signaling function mediated by its binding partner PhoP [9]. This

study revealed 1659 functional PhoQ variants, which can be thought of as forming the

upper plane on the fitness landscape; all non-functional variants form the lower plane. The

upper plane is divided into several clusters under single-point amino acid or nucleotide

mutations – sequences within each cluster can mutate into each other through neutral

substitutions only. The two-plane landscape is epistatic – the effect of a given mutation

depends on the amino acids at the other three positions, in agreement with previous reports

on the major role of epistasis in molecular evolution [14, 15, 16, 17].

The picture of a “coarse-grained” fitness landscape stratified into several distinct pheno-

types is in agreement with other recent high-throughput experiments aimed at elucidating

the relationship between sequence and function [15, 18, 19, 10, 11, 12]. Although these ex-

periments typically yield continuous distributions of selection coefficients, the distributions
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tend to be bi-modal, with one peak corresponding to strongly deleterious and lethal muta-

tions and another to weakly deleterious and neutral ones [20, 21, 22]. These observations

suggest stratifying the fitness landscape into functional and non-functional phenotypes;

intermediate fitness states such as those corresponding to weakly deleterious phenotypes

can be added if necessary to refine the picture.

Overall, given the astronomically large number of alleles, the typical size of neutrally-

connected clusters of sequences can be assumed to be much larger than the population

size. Then evolutionary dynamics on a multiple-plane landscape will be characterized by

mutation-selection-drift balance [1, 23, 24, 5, 25, 26, 27, 28] in the infinite-allele limit.

At steady state, population statistics, such as the mean and the variance of the number

of distinct alleles or the probability of observing a given pattern of allelic diversity in a

sample of sequences, do not change anymore, even though the population continues to

explore new alleles through mutation [28]. In the absence of selection, the steady-state

allele sampling probability was derived by Ewens [8]. The Ewens sampling formula can

be used to understand allelic diversity in neutral populations and to test for deviations

from the neutral expectation; [29] its essential limitation is that, essentially, each allele

is allowed to mutate into every other allele [28]. The Ewens formula arises naturally in

many sampling problems in biological and physical sciences [30, 31, 32]. However, in

order to understand molecular evolution in the presence of selection and make quantitative

predictions of selection coefficients, it is necessary to extend it to more general fitness

distributions.

Previous work in this area has focused mostly on the symmetric overdominance model,

first analyzed in this context by Watterson [5, 33]. This is a diploid model in which all
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heterozygotes have the same selective advantage over all homozygotes, such that the mean

population fitness depends on the square of allele frequencies. Since the sampling formula

for this model is challenging to evaluate and therefore has never been used in practical

calculations, subsequent work in the field focused on various approximations to the exact

result, which require additional assumptions such as weak selection [5] or large sample

sizes [34]. In particular, Joyce and collaborators have discussed asymptotic properties of

the sampling distributions under a model of selection with multiple fitness states [35, 36],

as well as the symmetric overdominance model [37]. More recently, Watterson’s model of

selection was generalized by Handa [38] and Huillet [39], who considered mean population

fitness involving allele frequencies raised to the arbitrary power q ≥ 1. They obtained

sampling probabilities expressed in terms of multi-dimensional integrals which would be

difficult to employ in practical calculations. In any event, only the q = 1 (neutral evolution)

and q = 2 (symmetric overdominance) cases appear to have biological meaning.

Furthermore, Ethier and Kurtz have studied allelic diversity in a general model of

selection in which fitness of each new allele is a symmetric function of the allelic states of

its two parents, focusing on the proofs of existence and uniqueness of a steady state in the

infinite-allele limit. [40, 41] Desai et al. have investigated sampling probabilities in a model

(previously introduced by Charlesworth et al. [42] and Hudson and Kaplan [43]) based on

a sequence of neutral and negatively selected sites [44]. This model has no interactions

between sites, and therefore can be treated using the Poisson Random Field approach [45].

Since molecular evolution is characterized by prominent epistasis and correlated fitness

values between parents and their offspring, the approach of Desai et al. cannot be applied

to genomic data without careful numerical analysis of all the approximations involved.
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Finally, several prior publications have focused on steady-state population statistics other

than sampling probabilities. In particular, Li used the steady-state approach to obtain the

frequency spectrum for a general landscape, and derived expressions for the mean number

of alleles in a sample, as well as the mean and the variance of heterozygosity [25, 26,

27]. Ewens and Li derived frequency spectra for landscapes with two and three distinct

fitness states and used them to compute the mean number of distinct alleles and the

mean heterozygosity [46]. Griffiths derived a general integral expression for the frequency

spectrum in a genic selection model [47].

Here we demonstrate an extension of the Ewens sampling formula to arbitrary fitness

landscapes with genic selection. First, we follow previous work [1, 23, 24, 5, 25, 26, 27, 28]

in assuming that the population adopts a steady state characterized by mutation-selection-

drift balance. The steady state depends on the mean population fitness, which involves a

linear combination of gene frequencies. Next, we derive a general sampling formula valid for

any mutation rate µ, population size N , sample size n� N , and the number of alleles K

with arbitrary fitness. We find that the most general sampling formula is difficult to employ

in numerical calculations with large finite values of K, but small values of K and the infinite

K limit are more manageable. Here we focus on the infinite-allele (K →∞) approximation

with several phenotypic states, inspired by recent high-throughput molecular evolution

experiments [15, 18, 19, 9, 10, 11, 12, 13]. We have developed a numerical technique based

on the efficient calculation of Bell polynomials, which is distinct from previous efforts

to compute sampling probabilities [48, 49]. Our approach enables us to study selection

signatures and deviations from neutrality on landscapes with arbitrary fitness distributions.

We contrast our predictions with the effective population size approximation [42, 44].
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We also compare our results with explicit simulations, using the Moran population genetics

model [3] with single-point mutations as a benchmark against which the accuracy of the

“full connectivity” assumption is checked. Finally, we investigate the limitations of the

infinite-allele assumption. Our results are applicable to understanding the nature of allelic

diversity under selection, mutation and drift. Moreover, our sampling formulas can form

a basis of a quantitative, numerically feasible test for detecting the presence of selection

and estimating its strength in evolving populations. Population-level allele diversity data

are made increasingly available through high-throughput sequencing techniques, making

our approach a practical and timely tool for studying the role of selection in evolution – a

topic of much current interest and debate [22, 50, 51, 52, 53, 54, 55].

2.1 Sampling probability with selection

We consider a haploid population of fixed size N (our results also hold for diploid popu-

lations, as long as fitness values are assigned to individual genes rather than organisms).

Each organism in the population is represented by a single allele in the state i, with fitness

fi; there are K distinct allelic states. Mutations occur with a probability µ per generation,

changing the original allele into one of the K − 1 remaining alleles. Thus the probabil-

ity of offspring Aj produced by parent Ai 6=j is µ/(K − 1) (note that our approach can

be easily generalized to the case of final-state-dependent mutation rates: µij = µj , ∀i in

Ai → Aj). We can view this system as an “allelic network” with the topology of a com-

plete graph, with K vertices representing allelic states and edges representing mutational

moves. Stochastic evolution of the population can then be described using Moran [3, 56]

or Wright-Fisher [1, 56] models of population dynamics.
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The steady-state distribution of allelic frequencies for these models is given by [1, 23,

24, 25, 5]

p(x) =
1

Z
eN〈f〉

K∏
i=1

xε−1
i , (2.1)

where x = (x1, . . . , xK) is a vector of allelic frequencies, ε = θ/(K − 1) with θ = Nµ for

Moran and θ = 2Nµ for Write-Fisher models correspondingly, 〈f〉 =
∑K

i=1 fixi is mean

population fitness, and Z is a normalization constant.

In many situations relevant to molecular evolution, the number of alleles K is much

larger than the population size N . In this case, the steady state in terms of allele frequencies

is unlikely to be reached on relevant evolutionary time scales. Mathematically, the K →∞

limit of Eq. 2.1 becomes ill-defined [6, 7]. Nonetheless, the steady state is well-defined in

terms of allelic counts rather than frequencies of specific alleles [28]. In other words, the

allelic diversity of the population (e.g. as characterized by the mean and the variance of the

distribution of the number of distinct allelic types) is tractable and will no longer change

in steady state, although new alleles will continue to be explored through mutation.

Since only a subset of the entire population is typically available for analysis, we shall

focus on the probabilities of allelic counts in samples of size n � N . To introduce the

concept of allelic counts, let us for a moment consider a finite number of allelic types, e.g.

K = 5, and call the corresponding alleles A,B,C,D,E. Suppose that we take a sample of

n = 4 alleles from the population and we first observe allele A, then C, then A again, and

finally D. We can record this sequence of alleles as an ordered list (A,C,A,D). However,

typically we are not interested in the order in which alleles appear in the sample, and

therefore record the result as an unordered list {A,A,C,D}, which shows that allele A

has appeared twice and alleles C and D have appeared once each. Here we have used the
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notation {a, b, . . . , z} for unordered lists ({a, b, . . . , z} = {b, a, . . . , z}), and (a, b, . . . , z) for

ordered lists ((a, b, . . . , z) 6= (b, a, . . . , z)).

Alternatively, we can record non-zero allelic counts, which yields nA = 2, nC = 1, nD =

1. Finally, we can dispense with the allele labels altogether, identifying each allele in the

sample as either new or already seen. In this case, we are left with an unordered list of

counts {2, 1, 1}, meaning that we have observed 4 alleles of 3 different types, with one

type represented by two alleles and the other two types by one each. In general, we will

refer to n = {n1, . . . , nk} as the sample configuration or the allelic counts. An equivalent

representation would be to use a histogram which records how many groups of j identical

alleles occur in the sample, with j ranging from 1 to n. In our example, there is one group

of two identical alleles and two groups of one allele each, so that (A,C,A,D) is recorded as

the allelic histogram (a1 = 2, a2 = 1, a3 = 0, a4 = 0). All results in the paper are presented

in terms of the counts {n1, . . . , nk} rather than the histogram (a1, . . . , an).

It turns out that the allelic counts are appropriate variables in the infinite allele limit.

The celebrated Ewens sampling formula [28, 8] expresses the probability of observing a

particular sample configuration n in the absence of selection:

P[n] = NP
1

k!

n!∏k
i=1 ni

θk

θ(n)
. (2.2)

where NP is the total number of distinct permutations of the allelic counts, and θ(n) =

θ(θ + 1) . . . (θ + n− 1) is the rising factorial.

Following an approach developed by Watterson [5], we generalize the Ewens sampling

formula to the case of multiple fitness states. We define γ, a vector whose components, γm,

are fractions of all alleles with fitness fm. Allowing m to range from 1 to M (
∑M

m=1 γm = 1)

results in a landscape with M � K distinct fitness states. Unless γm ∼ 1/K, there is an



15

infinite number of alleles with the same fitness, so that the landscape looks like M fitness

planes interconnected through mutations. For this reason we shall often refer to phenotypic

states as fitness planes and to the fitness landscape as the multiple-plane landscape.

2.1.1 Allele frequency distribution

Eq. 2.1 can be rewritten as follows:

p(x) =
1

B(ε)F(ε; |ε|;β)

K∏
i=1

xε−1
i eβixi , (2.3)

where ε = (ε, . . . , ε) is a K-dimensional vector of rescaled mutation rates, |ε| = Kε ' θ is

the L1-norm of ε,

B(a) =

∏K
i=1 Γ(ai)

Γ(
∑K

i=1 ai)
(2.4)

is the generalized beta function, and

F(a; b; z) =

∞∑
j1=0

. . .

∞∑
jK=0

a
(j1)
1 . . . a

(jK)
K

b(j1+...+jK)

zj11

j1!
. . .

zjKK
jK !

=

∞∑
j=0

Bj(α1, . . . , αj)

j!b(j)
(2.5)

is a generalization of the confluent hypergeometric function 1F1(a; b; z) to vector arguments.

Here, a(j) = Γ(a+ j)/Γ(a) is the rising factorial, Bj is the j-th complete Bell polynomial,

and αj = (j − 1)!
∑n

i=1 aiz
j
i . To obtain Eq. 2.3, we have used the following result for

integrating over the (K − 1)-dimensional simplex ΣK−1:∫
ΣK−1

K∏
i=1

xνi−1
i dxi =

∏K
i=1 Γ(νi)

Γ(
∑K

i=1 νi)
. (2.6)

A (K − 1)-dimensional simplex ΣK−1 is a subspace of RK : (x1, . . . , xK) ∈ [0, 1]K which

satisfies
∑K

i=1 xi = 1. We have expanded the exponent in Eq. 2.1 in a Taylor series and

applied Eq. 2.6 to each term in the resulting expansion.
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2.1.2 Strongly monomorphic limit

In this limit the mutation rate tends to zero while the population size is kept fixed, ε →

0 [56, 57, 58, 59]. Consider the Fourier transform of the steady-state distribution in Eq. 2.3:

p̃(k) =

∫
ΣK−1

dx eik·xp(x), (2.7)

where the integral is over the (K − 1)-dimensional simplex. Using Eq. 2.5, we can write

the Fourier transform as a ratio of two generalized hypergeometric functions:

p̃(k) =
F(ε; |ε|;β + ik)

F(ε; |ε|;β)
. (2.8)

Taking the ε→ 0 limit yields

p̃mono(k) =

∑K
m=1 e

βm+ikm∑K
m=1 e

βm
. (2.9)

Thus the steady-state distribution in the monomorphic limit is given by:

pmono(x) =

∫
dx

Vol(ΣK−1)
e−ik·xp̃mono(k) =

∑K
m=1 e

βmδ(x− 1m)∑K
m=1 e

βm
, (2.10)

where Vol(ΣK−1) =
√
K/(K − 1)! is the volume of the (K − 1)-dimensional simplex and

(1m)i = δmi. The population resides in one of the K monomorphic states available to it,

with the probability of being in a particular state exponentially weighted by its fitness [60,

61, 62].

2.1.3 Probability of a sample of alleles

In this section we derive the sampling probability when the number of alleles K is finite.

Let us find the probability P[n] of observing counts n = {n1, . . . , nk}, assuming that the

population has reached steady state in terms of its allelic diversity. Before considering
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general case, we illustrate our approach using an example with only K = 3 allelic types:

A = (A,B,C). We wish to calculate the probability of observing counts {2, 1} in a sample

of size n = 3, which is assumed to be much less than the population size N . There are 18

samples that contribute to this counts:

AAB ABA BAA

AAC ACA CAA

BBC BCB CBB

ABB BAB BBA

ACC CAC CCA

BCC CBC CCB

The probability of choosing A first, then A again and finally B is

P[(A,A,B)] =

∫
x2
Ax

1
B p(xA, xB, xC) dxAdxBdxC

=

∫
x2
Ax

1
B p(xA, xB) dxAdxB,

(2.11)

where p(xA, xB, xC) is given by Eq. 2.3. Consequently, the probability of observing two

A’s and one B in any order is given by [5]

P[{A,A,B}] =

(
3

2 1

)∫
x2
Ax

1
B p(xA, xB) dxAdxB, (2.12)

where
(

3
2 1

)
is the multinomial coefficient. Introducing a set S2A = {(A,B), (A,C), (B,C)},

which permutes allelic identities in an ordered manner (i.e., the overall allele ordering from

A to B to C is preserved in each pair of alleles), we can take into account the first 9
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configurations in the table above:

P[{A,A,B}] + P[{A,A,C}] + P[{B,B,C}] =

(
3

2 1

) ∑
σ∈S2A

∫
x2
σ1x

1
σ2 p(xσ1 , xσ2) dxσ1dxσ2 .

(2.13)

In order to include 9 remaining configurations in the table, we need to switch the order of

the alleles: {(A,B), (A,C), (B,C)} → {(B,A), (C,A), (C,B)}. But switching the alleles

in each pair amounts to replacing x2
σ1x

1
σ2 with x2

σ2x
1
σ1 = x1

σ1x
2
σ2 in Eq. 2.13. Thus we can

summarize the entire table by introducing a set P (n1, . . . , nk) of all distinct permutations

of the counts {n1, . . . , nk}, which determine the powers to which the allelic frequencies are

raised in Eq. 2.13. In our example P (2, 1) = {(2, 1), (1, 2)}. Therefore,

P[{2, 1}] =

(
3

2 1

) ∑
ν∈P (2,1)

∑
σ∈S2A

∫
xν1σ1x

ν2
σ2 p(xσ1 , xσ2) dxσ1dxσ2 (2.14)

=

(
3

2 1

) ∑
ν∈P (2,1)

∑
σ∈S2A

E

[
2∏
i=1

xνiσi

]
. (2.15)

The above example can be easily generalized to describe the probability P[{n1, . . . , nk}]

of observing arbitrary counts. To do so, we enumerate all K alleles, forming a unique

ordered list A = (1, . . . ,K). Second, we choose a subset σ = (σ1, . . . , σk) of size k from

A without replacement, so that the allelic order is preserved: σ1 < . . . < σk (note that

no subsets are allowed to contain repeating elements of A). Then SkA can be naturally

defined as a set which contains all ordered subsets of A of size k. Finally, as before P (n)

is a set of all distinct permutations of allelic counts. Following these steps we have

P[n] =

(
n

n1 . . . nk

) ∑
ν∈P (n)

∑
σ∈SkA

E

[
k∏
i=1

xνiσi

]
, (2.16)

where the expectation is calculated with respect to the steady-state allele distribution,

Eq. 2.3.
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We can use sampling probability (Eq. 2.16) to compute the distribution of the number

of different allelic types k:

P[k] =
∑

n1≥...≥nk
n1+...+nk=n

P[n], (2.17)

where the summation runs over all ordered partitions of n into k positive integers.

2.1.4 Generalized sampling formula

As Eq. 2.16 demonstrates, evaluation of sample probabilities requires calculation of mo-

ments of allele frequency distributions. This could be done by taking derivatives of the

normalization constant Z = B(ε)F(ε; |ε|;β) in Eq. 2.3 with respect to the corresponding

components of β:

E

[
k∏
i=1

xνii

]
=

1

Z

k∏
i=1

(
∂

∂βi

)νi
Z. (2.18)

Then Eq. 2.16 takes the form

P[n] =

(
n

n1 . . . nk

)∏k
i=1 ε

(ni)

(Kε)(n)

∑
ν∈P (n)

∑
σ∈SkA

F(ε+ νσ;Kε+ n;β)

F(ε;Kε;β)
, (2.19)

where νσ is a K-dimensional vector whose σi-th components are νi with i = 1, . . . , k and

all the other components are zero. Here, we have used the fact that differentiating Eq. 2.5

with respect to z yields a simple result similar to that known for the regular confluent

hypergeometric function:

k∏
i=1

(
∂

∂zi

)ni

F(a; b; z) =

∏k
i=1(ai)

(ni)

b(n)
F

(
a +

k∑
i=1

ni1i; b+ n; z

)
,

where n =
∑k

i=1 ni and (1i)j = δij . As discussed above, the sum over σ extends over

all distinct subsets of k alleles sampled from K uniquely ordered alleles and subject to the

σ1 < . . . < σk constraint. Therefore νσ has K − k zero and k non-zero components which
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are distributed according to σ. The sum over ν extends over all distinct permutations of

allelic counts which sum up to n. Eq. 2.19 is valid for an arbitrary fitness landscape and

an arbitrary number of alleles K.

2.1.5 Neutral limit of the sampling formula

When all alleles have the same fitness, the general sampling formula given by Eq. 2.19

should reduce to the Ewens formula for neutral evolutionary dynamics [28, 8]. Indeed, with

all βi set to zero, the generalized hypergeometric function F(a; b; 0) (Eq. 2.5) becomes 1.

Then for the finite number of alleles K

P[n] = NP
n!

(Kε)(n)

(
K

k

) k∏
i=1

ε(ni)

ni!
, (2.20)

where NP = |P (n)| is the total number of distinct permutations of allelic counts. In the

limit of an infinite number of alleles K → ∞, Eq. 2.20 reduces to Eq. 2.2. Changing

variables to allelic histogram counts yields
∏k
i=1 ni =

∏n
j=1 j

aj and NP = k!/
∏n
j=1 aj !,

resulting in

P[(a1, . . . , an)] =
n!∏n

j=1 aj !j
aj

θk

θ(n)
. (2.21)

Eq. 2.21 is a standard form of the Ewens sampling formula [28, 8].

2.1.6 Sampling formula for a population with two fitness states

As a straightforward generalization of the neutral case, consider a system with I alleles of

fitness f2 and K − I alleles with fitness f1 > f2. Thus the fitness landscape consists of two

interconnected “planes”. We can assume without loss of generality that alleles 1 through

I belong to the lower plane and alleles I + 1 through K belong to the higher plane. Then
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γ = I/K defines a fraction of nodes on the lower plane and the fitness vector is

β = (β, ..., β︸ ︷︷ ︸
I

, 0, ..., 0︸ ︷︷ ︸
K−I

), (2.22)

with I non-zero entries followed by K − I zeros, and β = −Ns. If the first i counts come

from the lower plane and the other k − i counts come from the upper plane, we have

νY = (

i︷ ︸︸ ︷
ν1, ..., νi, 0, ..., 0︸ ︷︷ ︸

I

,

k−i︷ ︸︸ ︷
νi+1, ..., νk, 0, ..., 0︸ ︷︷ ︸

K−I

), (2.23)

plus all alternative assignments of the first i counts within the first I entries of νY , and

the remaining k− i counts within the last K− I entries of νY , such that the original order

of the non-zero count entries is not changed. In this case, the generalized hypergeometric

function reduces to the confluent hypergeometric function:

F(ε+ νY ; |ε|+ n;β) = 1F1(γθ +
i∑

m=1

νm; θ + n;β). (2.24)

Then for finite K the sampling probability is given by:

P[n] =

(
n

n1 . . . nk

)∏k
i=1 ε

(ni)

(Kε)(n)

(
K

k

) ∑
ν∈P (n)

k∑
i=0

1F1

(
γθ +

∑i
m=1 νm; θ + n;β

)
1F1 (γθ; θ;β)

(
I
i

)(
K−I
k−i
)(

K
k

) .

(2.25)

Here, the
(
I
i

)
and

(
K−I
k−i
)

binomial factors are due to assigning non-zero counts to alternative

positions within νY , as described above. Taking the infinite allele (K → ∞) limit with γ

fixed, we arrive at

P[n] =
n!

k!

1∏k
i=1 ni

θk

θ(n)

∑
ν∈P (n)

k∑
i=0

1F1

(
γθ +

∑i
m=1 νm; θ + n;β

)
1F1 (γθ; θ;β)

(
k

i

)
γi(1− γ)k−i. (2.26)

Thus hypergeometric sampling of Eq. 2.25 reduces to binomial sampling in the infinite-allele

limit.
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2.1.7 Sampling formula for a population with multiple fitness states

Let us now generalize the result of the previous section to the case of multiple fitness states:

each allele can be assigned a distinct fitness value fm, m = 1, . . . ,M . In other words, the

fitness landscape consists of multiple planes, with Im = γmK nodes of fitness fm on the

m-th plane, so that
∑M

m=1 γm = 1. Then the sampling probability for finite K is given by

P[n] =

(
n

n1 . . . nk

)∏k
i=1 ε

(ni)

(Kε)(n)

(
K

k

) ∑
ν∈P (n)

∑
Y ∈Y(I,n)

F(γθ + νY ; θ + n;β)

F(γθ; θ;β)

(
I1
i1

)
. . .
(
IM
iM

)(
K
k

) ,

(2.27)

and its infinite allele limit is given by

P[n] =
n!

k!

1∏k
i=1 ni

θk

θ(n)

∑
ν∈P (n)

∑
Y ∈Y(n)

F(γθ + νY ; θ + n;β)

F(γθ; θ;β)

(
k

i1 . . . iM

)
γi11 . . . γiMM . (2.28)

The sums in Eqs. 2.27 and 2.28 take into account all possible ways of sampling n alleles

from M planes (Fig 2.1). To explain these sums, let us imagine distributing n books over

M shelves. The books come in k indivisible volume sets, and the i-th set has νi identical

books in it. We would like to find all book-to-shelf arrangements, keeping in mind that

shelves have finite capacities: only Im books can be placed on the m-th shelf. One way

to describe any book-to-shelf arrangement is to use an M -dimensional vector νY which

records how many books are placed on each shelf. For example, if M > k, a vector

νY = (ν1, . . . , νk, 0, . . . , 0) with M − k zeros following k non-zero entries describes placing

volume sets on shelves in a particular order: the first volume set goes on the first shelf, the

second volume on the second shelf and so on (assuming that the shelves are large enough to

accommodate the volume sets), until no more books are left, so that the remaining M − k

shelves remain empty. Permutations of this arrangement, expressed as permutations of νY
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Figure 2.1: Summations in the sampling formula for a population with multiple
fitness states. Illustration of summations over Y(I,n) and Y(n) in Eqs. 2.27 and 2.28
respectively, for a list of allelic counts n = {4, 1, 2}. (A) The finite plane case. Finite plane
capacities are shown in parentheses. (B) The infinite plane case.

vector elements, are also allowed (again, assuming that all the shelves are large enough).

We can also put more than one volume set on a single shelf, leading to arrangements such

as (ν1 + ν2, ν3, . . . , νk, 0, . . . , 0) with M − k+ 1 zero and k− 1 non-zero entries. As before,

this arrangement is allowed only if the number of books on each shelf does not exceed shelf

capacities. Note that the question of capacity does not arise in the infinite allele limit,

since the shelves become effectively infinitely long.

In order to systematically list all the arrangements for volume sets (ν1, . . . , νk), we

follow a simple rule: if the k-th set of νk books is placed on the m-th shelf, the (k + 1)-

th set of νk+1 books goes either on the same shelf or on the m′-th shelf with m′ > m.
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Taking elements of (ν1, . . . , νk) one by one and changing the initial shelf (onto which the

1st volume set is placed) and the number of volume sets on each shelf, we can generate a

set of all permutations of νY elements. We shall call this set Y(I,n) since it depends on

both the shelf capacities I = (I1, . . . , IM ) and the volume sets n. In the limit of infinite

shelf capacity the dependence on shelf sizes disappears, and the set of all permutations will

be called Y(n). To include all possible arrangements, we need to perform the book-placing

procedure for each distinct permutation of n.

Now, if we replace shelves with fitness planes and volume sets with allelic counts, we

obtain an algorithm for generating all allowed placements of allelic counts on fitness planes.

The non-negative indices i1, . . . , iM in Eqs. 2.27 and 2.28 represent the number of volume

sets (allelic counts) on each shelf (fitness plane). The distribution of alleles among fitness

planes of finite capacity is illustrated in Fig 2.1A for M = 3 and a vector of allelic counts

ν = (4, 1, 2); the infinite-plane case is shown in Fig 2.1B.

Next, let us consider the monomorphic limit of Eq. 2.28. It can be shown that

F(θγ; θ;β) −−−→
θ→0

M∑
m=1

γme
βm , (2.29)

leading to

P[{n}] = 1 +O(θ),

P[{n1, . . . , nk}] = O(θk−1).

(2.30)

Therefore, as expected, the P[{n}] (k = 1) term dominates in the monomorphic limit.

By construction, Eq. 2.28 reduces to the neutral limit, Eq. 2.2, when all fitness values

are the same. In addition, the neutral limit is reproduced in the strongly polymorphic limit

F(γθ + νY ; θ + n;β) −−−→
θ→∞

F(γθ; θ;β), (2.31)
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and Eq. 2.28 reduces to the neutral result. This is expected since selection effects become

vanishingly small in this regime.

2.1.8 Efficient evaluation of sampling probabilities

To evaluate sampling probabilities, we need to compute F(a, b, z) (Eq. 2.5) efficiently.

The calculation of F(a, b, z) is performed by filling a square matrix with the partial Bell

polynomials Bn,k, from which complete Bell polynomials can be calculated from the rows as

Bn =
∑n

k=1Bn,k. We use the following convolution identity: (x♦y)n =
∑n−1

j=1

(
n
j

)
xjyn−j .

Note that the identity is commutative, i.e. (x♦y)n = (y♦x)n, and that the summation

limits are such that the convolution of two vectors with nonzero elements will always have

a zero as its first element. Let xk♦ denote the vector that results when x is convolved

with itself k times. The convolution matrix C is lower triangular and has the vector

x = (x1, . . . , xn)T as its leftmost column, x2♦ as the second leftmost, etc. Partial Bell

polynomials can then be calculated as:

Bn,k(x1, . . . , xn−k+1) =
(xk♦)n
k!

=
Cn,k
k!

. (2.32)

The matrix elements Cn,k can be calculated starting from the top of the matrix, left-

to-right within each row. The sum in Eq. 2.5 runs over complete Bell polynomials in

ascending order, so that convergence can be checked after the completion of each row. We

specify a relative precision, e.g. ε̃ = 10−12, and terminate the computation of F once the

contribution of the current term j is small enough compared to the partial sum from 0 to

j − 1: |Fj/Fpartial| < ε̃.

Our main result is the following expression for the sampling probability (details of the
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derivation are available in Materials and Methods):

P[n] =
n!

k!

1∏k
i=1 ni

θk

θ(n)
×

∑
ν∈P (n)

∑
Y ∈Y(n)

F(γθ + νY ; θ + n;β)

F(γθ; θ;β)

(
k

i1 . . . iM

)
γi11 . . . γiMM .

(2.33)

Here, F(a; b; z) is a generalization of the confluent hypergeometric function 1F1(a; b; z) to

vector arguments. The double sum in Eq. 2.33 takes into account all possible ways of

assigning observed allelic counts n to M fitness planes; νY is an auxiliary vector which

encodes these assignments Fig 2.1. Each assignment contributes differently to the final ex-

pression due to the non-trivial fitness landscape. The fitness values are stored in the vector

β, whose components are fitness differences βm = N(fm − f1) scaled by the population

size N . For example, in the case of two fitness states β1 = 0 and β2 = N(f2 − f1) = Ns,

where s is the selection coefficient. Finally, i1 . . . iM indicate the number of distinct allelic

types sampled from the corresponding fitness plane (
∑M

m=1 im = k).

The first line in Eq. 2.33 is simply the Ewens formula (Eq. 2.2) without NP , which is

the value returned by the double sum on the second line when all fitness values are equal.

The version of the sampling formula with selection (Eq. 2.33) suitable for a finite number

of alleles K is provided in Materials and Methods. In the main text we shall focus on

the infinite allele limit. Despite the seemingly complicated structure of Eq. 2.33, it can be

used in efficient numerical calculations. The following sections are devoted to exploring

the properties of this formula and discussing its applicability and accuracy if some of the

model assumptions are relaxed.
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2.2 The effective population size approximation

According to the effective population size (EPS) approximation [42, 44] in the monomorphic

limit population dynamics is effectively neutral with a rescaled population size N∗. Indeed,

in this limit Eq. 2.33 reduces to

P[n] −−−→
θ→0

NP

k!

n!∏k
i=1 ni

θk−1(1− γ)k−1 (2.34)

in the two-plane case. The θ → 0 limit corresponds to the s� µ regime with s being finite;

Eq. 2.34 is the same as the neutral sampling formula (Eq. 2.2) in the monomorphic limit if

the population size is rescaled: N → N∗ = (1− γ)N . This result can be generalized to the

landscape with multiple fitness planes, in which case N∗ = γmN , where γm is a fraction of

nodes with the highest fitness.

However, the EPS approximation breaks down in the polymorphic regime. Indeed, if we

take the θ →∞ limit while keeping s/µ finite, it can be shown for the two-plane landscape

that

P[n]

P[n, s = 0]
−−−→
θ→∞

∞∑
m=0

cm

(
s

µ

)m
≡ λ (2.35)

where P[n, s = 0] is given by Eq. 2.2, and the coefficients cm depend solely on the allelic

counts n1, . . . , nk. Since the right-hand side of Eq. 2.35 does not depend on the population

size, it can be used to define N∗ = λ1/(k−n)N . However, this definition will be sample-

specific, as λ depends on the allelic counts via cm’s. Thus there is no universal rescaling

of the population size in the strongly polymorphic regime, and therefore evolutionary

dynamics is non-neutral.
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2.3 Detection of selection signatures

As discussed above, in general we expect allele diversity to deviate from neutrality, making

it possible to detect selection signatures using a set of sequences sampled from the popu-

lation. To investigate non-neutral population dynamics, we compute probabilities for all

integer partitions n = {n1, . . . , nk} of n alleles sampled from the population evolving under

selection (Eq. 2.33), and compare them with steady-state partition probabilities obtained

under neutral evolution (Eq. 2.2) and the monomorphic EPS approximation (Eq. 2.34).

We use the Kullback-Leibler (KL) distance to quantify the difference between two

probability distributions [63]: KL(p||q) =
∑

i pi log(pi/qi), where i is the partition label.

For the two-plane system, we first compare partition probabilities under selection, pi =

P[n, θ, β], with the corresponding neutral probabilities, qi = P[n, θ, β = 0]. In Fig 2.2A,

we plot the KL divergence as a function of the mutation rate and the selection strength

for the two-plane fitness landscape. We observe that evolutionary dynamics is essentially

neutral if selection is weak (s ≤ µ); in addition, the range of selection coefficients for which

neutrality holds increases in the monomorphic regime (Nµ ≤ 1). On the other hand,

population statistics is clearly non-neutral when the population is polymorphic and when

the separation between the two fitness planes is large. Next, we compute the KL divergence

KL(p||q∗) between the EPS probability distribution, q∗i = P[n, θ∗, β = 0], where θ∗ =

(1− γ)θ, and pi (Fig 2.2B). We see that the EPS approximation fails in the polymorphic,

weak-selection regime. Overall, the neutral and EPS approximations are approximately

complementary: for example, in the strong-selection (s � µ) polymorphic regime, when

evolutionary dynamics becomes non-neutral, it is well approximated by the EPS model.

In Fig 2.2C we show KL divergences between partition probability distributions on two-
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Figure 2.2: KL divergences of partition probabilities. Probabilities of all possible
partitions of n = 3 alleles ({3}, {2, 1} {1, 1, 1}) were sampled from a population of size
N = 103. (A) and (B) KL divergences for the two-plane fitness landscape as a function
of the mutation rate Nµ and the selection coefficient Ns scaled by the population size,
for partition probabilities with and without selection (A), and partition probabilities with
selection compared with the EPS approximation (Eq. 2.34) (B). (C) KL divergences for the
sampling probabilities of all possible partitions on a three-plane vs. two-plane landscape.
Alleles in the three planes have fitnesses 1, 1 + s −∆s and 1 + s −∆s respectively, with
Ns = 6 for both two and three-plane landscapes.

and three-plane fitness landscapes. We observe that the partition probabilities are essen-

tially two-plane (i.e., there are no selection signatures indicating presence of intermediate-

fitness alleles) if the population is monomorphic (Nµ ≤ 1), or if the distance between

the two upper planes is smaller than the mutation rate (∆s ≤ µ). However, there is a

considerable parameter region in which deviations between two and three-plane sampling

probabilities appear to be significant (with KL divergences between the two distributions

of 0.01 or more), making it possible to detect three distinct fitness states in the sampling

data.
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Figure 2.3: Mutation load and population fraction for the two-plane fitness land-
scape. (A) Mutation load (Eq. 2.36) and (B) population fraction in the lower plane, as
a function of the mutation rate (Nµ) and the selection strength (Ns) rescaled by the
population size.

2.4 Mutation load

By definition, the mutation load is given by [56, 59] L = (fmax − 〈f〉)/fmax, where fmax

is the maximum fitness and 〈f〉 =
∑K

i=1 xifi is the mean population fitness. To estimate

the mutation load at steady state, we compute the expected value of the mean population

fitness over multiple realizations of the stochastic process, E[〈f〉].

For the two-plane system, this computation leads to

L =
sγ

1 + s
1F1(γθ + 1; θ + 1;−Ns)

1F1(γθ; θ;−Ns)
. (2.36)

Another indicative quantity is the average fraction of the population with low fitness,

E[xlow]. For the two-plane system it is given by E[xlow] = L(1 + s)/s.

Values of mutation load for the two-plane fitness landscape are shown in Fig 2.3A over

a range of selection strengths and mutation rates. As expected, we observe that the largest
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deviations from the maximum fitness occur in the strong-mutation, strong-selection regime,

where a fraction of the population is constantly displaced to the lower plane by mutation,

incurring a fitness cost. Correspondingly, at a given value of selection strength the mutation

load increases with the mutation rate. In the monomorphic regime the mutation load is

vanishingly low because the entire population condenses to a single allelic state and moves

randomly on the upper plane. The fraction of the population on the lower fitness plane is

shown in Fig 2.3B. The fraction is high when the separation between the two planes is low

and, at a fixed separation, it increases with the mutation rate.

2.5 Fitness landscape models and numerical simulations

To check our main result (Eq. 2.33), we have compared it to the outcomes of numerical

simulations of two models. In the first model, each allele is allowed to mutate into any

of the other K − 1 alleles with equal probability. We call this model fully-connected

(FC); derivations of the Ewens sampling formula and our generalization of it (Eq. 2.33)

were carried out for the FC model. The second model is more realistic: an organism is

represented by a sequence of integers S = (a1, . . . , aL) of length L and alphabet size A,

meaning that 0 ≤ ai ≤ A − 1. A mutation replaces an integer at a randomly chosen site

with one of the remaining A−1 integers; all the replacements have equal probabilities. We

call this model a single-point mutation (SPM) model; it is a more realistic description of

protein or nucleotide sequence evolution.

To assign a fitness value to each allele, we focus on the landscapes in which alleles can

have either low or high fitness values (the two-plane model), or low, intermediate, and high

fitness values (the three-plane model). The fractions of alleles found in each plane are given
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by γ: γ = (γ, 1 − γ) for the two-plane model and γ = (γ1, γ2, 1 − γ1 − γ2) for the three-

plane model. In the FC model, the mutational neighborhood of each allele is the same,

so that any desired allele fractions γ can be implemented. However, in the SPM model

the fractions of neutral, beneficial and deleterious moves in each plane will depend on γ

and the assignment of states to planes. We wished to produce non-trivial distributions of

neutral moves on the fitness planes, with mutational neighborhoods of some alleles being

completely neutral in each plane. Another condition was that the number of alleles in each

plane should decrease with its fitness, to reflect the fact that beneficial mutations are rare.

To fulfill these requirements, we chose to assign fitness values in the SPM model in

the following way. We use the sequence length L = 10 and the alphabet size A = 4. For

each sequence S = (a1, . . . , aL) we compute a score z = a1 + . . . + aL. We compare these

scores with a set of cutoffs (c1, . . . , cM−1) for the M -plane landscape. For the two-plane

landscape, the fitness is 1 if z ≤ c1, and 1 + s otherwise. We use the cutoff c1 = 17,

which yields γ = (0.758, 0.242). For the three-plane landscape, if z ≤ c1 the fitness is 1, if

c1 < z ≤ c2 the fitness is 1 + s−∆s, and if z > c2 the fitness is 1 + s+ ∆s. We choose the

cutoffs c1 = 17 and c2 = 21, which lead to γ = (0.758, 0.210, 0.032). In order to compare

FC and SPM simulations directly, we use the same values of γ in the corresponding FC

models.

Our numerical simulations have been carried out using the Moran model of population

genetics [28, 3]. Specifically, we have evolved a population of N = 103 haploid organisms,

each of which could be in one ofK allelic states. At each step a parent is chosen by randomly

sampling the population with weights proportional to the fitness of each individual. An

offspring is then produced as an exact copy of the parent. Next, the offspring undergoes
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Figure 2.4: Partition probabilities for the two-plane fitness landscape. Shown are
sampling probabilities of all partitions with n = 3: {3}, {2, 1}, {1, 1, 1}. Bars: theoretical
predictions in the infinite allele limit. Black circles: numerical simulations on the FC
sequence network. Grey circles: numerical simulations on the SPM sequence network. In
all simulations, alphabet size A = 4, sequence length L = 10, and population size N = 103

were used. Partition probabilities were estimated from 106 samples as described in the
main text. (A) Monomorphic population, Nµ = 0.1. (B) Weakly polymorphic population,
Nµ = 1.0. (C) Strongly polymorphic population, Nµ = 10.0. The corresponding KL
divergences are listed in Table 2.1. Note that the error bars of the partition probabilities
are too small to be shown, due to extensive sampling in our numerical simulations.

mutation with the probability µ. Finally, the population is uniformly sampled to choose an

organism that will be replaced by the offspring, keeping the overall population size constant.

Probabilities of sampling n individuals from the population were calculated as averages

over 106 samples gathered from 103 independent runs. For each run, a randomly generated

initial population was evolved to steady state, after which n individuals were sampled from

the population with replacement 103 times, waiting ∼ 1/µ generations between subsequent

samples.

Note that in the neutral case the exact mapping between θ and µ is given by θ =

Nµ/(1− µ) for the Moran model. [28] However, it is unclear if this mapping can be ex-

tended to the non-neutral cases considered here. In any event, for the population size and

the values of θ investigated below, µ = θ/(N + θ) ' θ/N . Therefore, we use the diffusion

theory result θ = Nµ in comparing theoretical predictions with numerical simulations.
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Figure 2.5: Partition probabilities for the three-plane fitness landscape. All no-
tation and symbols are as in Fig 2.4. The corresponding KL divergences are listed in
Table 2.1.

2.6 Partition probabilities on fully-connected vs. single-point-mutant

networks

Here we investigate the extent to which sampling probabilities change in the SPM sequence

evolution model described above, compared to the FC fitness landscape. We are especially

interested in the limits of the predictive power of our theoretical framework, which necessar-

ily involves the FC assumption. In Fig 2.4 and Table 2.1 we compare theoretical predictions

with numerical simulations on the FC and SPM networks in the two-plane system for the

sample of n = 3 alleles. Overall, as expected, we observe an excellent agreement between

theory and simulations on FC networks. Furthermore, we see that the agreement between

SPM simulations and our theoretical results is reasonable: in nearly all cases, the predicted

ranking of the sample partitions, as well as the ranking of any given sample partition with

respect to the selection strength, Ns, are preserved. The largest discrepancies occur in the

weakly polymorphic (Nµ = 1), non-neutral regime (Ns = 6, 13).

The situation is qualitatively similar when a three-plane fitness landscape is considered

(Fig 2.5, Table 2.1). We again observe an excellent agreement between theory and FC

simulations and, overall, a reasonable agreement between theory and SPM simulations, with
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Single-plane landscape Two-plane landscape
Ns = 0 Ns = 6 Ns = 13

Nµ = 0.1 FC 1× 10−5 2× 10−5 3× 10−5

SPM 1× 10−5 9× 10−3 2× 10−2

Ratio 1.000 0.452 0.425

Nµ = 1.0 FC 2× 10−5 8× 10−5 1× 10−4

SPM 1× 10−4 2× 10−2 9× 10−2

Ratio 1.000 0.363 0.508

Nµ = 10.0 FC 1× 10−6 6× 10−5 2× 10−4

SPM 1× 10−4 4× 10−5 3× 10−3

Ratio 1.000 0.331 0.345

Three-plane landscape
Ns = 6± 3 Ns = 13± 5

Nµ = 0.1 FC 4× 10−5 2× 10−6

SPM 2× 10−2 3× 10−2

Ratio 0.370 0.380

Nµ = 1.0 FC 1× 10−6 6× 10−6

SPM 8× 10−2 2× 10−1

Ratio 0.378 0.434

Nµ = 10.0 FC 2× 10−5 4× 10−5

SPM 2× 10−4 2× 10−2

Ratio 0.595 0.488

Table 2.1: KL divergences between theoretical predictions and numerical
simulations for single-plane, two-plane (Fig 2.4), and three-plane (Fig 2.5)
fitness landscapes, with the sample size n = 3. Note: FC = KL(p =
numerical FC || q = theory), SPM = KL(p = numerical SPM || q = theory), Ratio =
KL(p = theory || q = numerical SPM)/KL(p = theory || q = numerical neutral SPM).

the largest discrepancies again occurring in the weakly polymorphic, non-neutral regime.

These observations remain true when samples with n = 4 and 5 alleles are considered

(Tables 2.2,2.3).

Finally, we have checked whether our theoretical predictions, which rely on the full-

connectivity assumption, are closer to the non-neutral rather than neutral SPM steady-

state dynamics in numerical simulations: if this is the case, we should be able to predict
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Single-plane landscape Two-plane landscape
Ns = 0 Ns = 6 Ns = 13

Nµ = 0.1 FC 1× 10−5 6× 10−6 6× 10−6

SPM 1× 10−5 9× 10−3 2× 10−2

Ratio 1.000 0.394 0.527

Nµ = 1.0 FC 9× 10−5 3× 10−5 8× 10−5

SPM 9× 10−4 3× 10−2 1× 10−1

Ratio 1.000 0.527 0.542

Nµ = 10.0 FC 2× 10−5 6× 10−6 7× 10−5

SPM 2× 10−4 1× 10−4 3× 10−3

Ratio 1.000 0.418 0.199

Three-plane landscape
Ns = 6± 3 Ns = 13± 5

Nµ = 0.1 FC 1× 10−6 5× 10−6

SPM 2× 10−2 4× 10−2

Ratio 0.397 0.432

Nµ = 1.0 FC 2× 10−4 2× 10−4

SPM 1× 10−1 3× 10−1

Ratio 0.442 0.486

Nµ = 10.0 FC 7× 10−6 1× 10−5

SPM 2× 10−4 2× 10−2

Ratio 0.677 0.406

Table 2.2: KL divergences between theoretical predictions and numerical
simulations for single-plane, two-plane (Fig 2.4), and three-plane (Fig 2.5)
fitness landscapes, with the sample size n = 4. Note: FC = KL(p =
numerical FC || q = theory), SPM = KL(p = numerical SPM || q = theory), Ratio =
KL(p = theory || q = numerical SPM)/KL(p = theory || q = numerical neutral SPM).

selection signatures in populations evolving under single-point mutations using our method-

ology. We have computed the ratio of KL distances defined in the Table 2.1 caption; this

ratio is less than 1 if the theoretical predictions with selection are closer to the correspond-

ing SPM simulation than to the neutral SPM simulation, and greater than 1 otherwise.

We observe that the ratio is less than 1 in all cases with selection and for all sample sizes

(Tables 2.1–2.3), indicating that the error introduced by the FC assumption is less than
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Single-plane landscape Two-plane landscape
Ns = 0 Ns = 6 Ns = 13

Nµ = 0.1 FC 1× 10−5 2× 10−5 3× 10−5

SPM 3× 10−5 1× 10−2 2× 10−2

Ratio 1.000 0.441 0.385

Nµ = 1.0 FC 9× 10−5 1× 10−4 3× 10−4

SPM 5× 10−4 4× 10−2 1× 10−1

Ratio 1.000 0.428 0.485

Nµ = 10.0 FC 1× 10−5 1× 10−5 5× 10−4

SPM 1× 10−3 5× 10−4 8× 10−3

Ratio 1.000 0.461 0.548

Three-plane landscape
Ns = 6± 3 Ns = 13± 5

Nµ = 0.1 FC 5× 10−6 3× 10−6

SPM 3× 10−2 4× 10−2

Ratio 0.379 0.429

Nµ = 1.0 FC 7× 10−4 4× 10−5

SPM 1× 10−1 3× 10−1

Ratio 0.426 0.514

Nµ = 10.0 FC 1× 10−4 1× 10−3

SPM 4× 10−4 4× 10−2

Ratio 0.546 0.516

Table 2.3: KL divergences between theoretical predictions and numerical
simulations for single-plane, two-plane (Fig 2.4), and three-plane (Fig 2.5)
fitness landscapes, with the sample size n = 5. Note: FC = KL(p =
numerical FC || q = theory), SPM = KL(p = numerical SPM || q = theory), Ratio =
KL(p = theory || q = numerical SPM)/KL(p = theory || q = numerical neutral SPM).

the distance between selective and neutral systems (note that the ratio is 1 by definition

in the single-plane neutral case).

2.7 Infinite-allele assumption

Although our approach is valid for an arbitrary number of alleles K, statistics of allele

diversity in a population under selection become substantially easier to deal with in the
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Figure 2.6: Test of the infinite-allele assumption. Shown are KL divergences between
computational and theoretical partition probabilities on the FC two-plane fitness landscape
(Ns = 6, γ = (0.758, 0.242)), as a function of the log ratio between the total number of
alleles K and the population size N . The sample size is n = 3; partition probabilities were
estimated from 106 samples. Population size is N = 103, and the total number of alleles
is K = 103 × 2i, i ∈ {−6 . . . 8}. For smaller networks, the number of sequences in the
upper and lower planes had to be rounded to the nearest integer. Diamonds: polymorphic
population (Nµ = 10.0), squares: weakly polymorphic population (Nµ = 1.0), circles:
monomorphic population (Nµ = 0.1). The solid vertical line corresponds to K = N .

infinite-allele limit. As discussed in the Introduction, this limit is justified since our focus

here is on evolution of protein, RNA and DNA sequences, where the number of alleles grows

exponentially with sequence length. Nonetheless, we have systematically investigated the

extent of deviations between our infinite-allele theoretical results and simulations as the

number of alleles K decreases and becomes comparable to the population size N . Fig 2.6

shows the KL divergence between partition probabilities derived theoretically for the two-

plane landscape in the infinite-allele limit (Eq. 2.33) and obtained numerically on finite-size

FC networks. We consider three regimes: monomorphic (Nµ = 0.1), weakly polymorphic

(Nµ = 1.0), and strongly polymorphic (Nµ = 10.0). In the latter two cases, noticeable

deviations between theory and simulations begin to appear below the K ∼ N regime; the

agreement improves as the population becomes more monomorphic. We conclude that our
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theory is applicable over a wide range of mutation rates, as long as the network size is

comparable to, or greater than, the population size.

2.8 Discussion and Conclusion

One of the most challenging problems in evolutionary biology is to understand evolutionary

dynamics of molecular loci, such as protein or RNA-coding sequences, or gene regulatory

regions. The number of nucleotides at these loci, L, is large enough so that the total

number of possible sequences, K = AL, is astronomical, far exceeding the population size

N . Under these conditions the evolution of a molecular locus, assumed to be decoupled

by recombination from the rest of the genome, reaches a “de-labelled” steady state. The

allelic diversity in the steady-state population is determined by the balance of forces of

selection and drift on one hand, and mutation on the other. The former act to reduce

allelic diversity, while the latter acts to increase it. As a result, population statistics

such as the mean number of distinct alleles, or the probability of seeing a certain allelic

configuration in a sample, do not change with time, even though new genotypes continue

to be explored on the effectively infinite allelic network.

The steady-state allelic diversity in an infinite-allele neutral system was explored by

Ewens [28, 8]. The main result of that study, the Ewens sampling formula, is widely

used in population genetics. However, selection is bound to play a key role in molecular

evolution, and recent high-throughput studies connecting protein sequences with pheno-

types [15, 18, 19, 9, 10, 11, 12] reveal a more complex picture of molecular evolution:

generally, a functional protein is disrupted by a fraction of mutations (e.g., through substi-

tution of a hydrophobic residue for a hydrophilic one in the protein core). Other mutations
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do not significantly change protein stability, binding affinity, or binding specificity, and

are therefore effectively neutral. Occasionally, a mutation is found which increases the

fitness of an already functional, adapted protein, but these mutations are very infrequent.

Overall, recent experimental studies indicate that “coarse-grained” fitness landscapes com-

prised of multiple interconnected planes (i.e., several distinct fitness states) are a reasonable

representation. The simplest landscape of this kind has just two fitness states, with func-

tional sequences on the upper plane and non-functional sequences on the lower plane [9].

Multiple-plane fitness landscapes constructed in this way are characterized by extensive

epistasis under the single-point mutational move set, which is likely to be pervasive in

molecular evolution [14, 15, 16, 17].

Since molecular evolution may be described by steady-state dynamics on multiple-plane

fitness landscapes, it is of great interest to generalize the Ewens sampling formula to ar-

bitrary fitness distributions, and to the case of several distinct fitness states in particular.

Tractable expressions for sampling probabilities would enable inference of selection coef-

ficients, relative numbers of alleles in each fitness state, and mutation rates, using DNA,

RNA, or protein sequences sampled from the population as input to the inference pro-

cedure. Here we report an extension of the Ewens sampling formula to arbitrary fitness

distributions, focusing on the multiple-plane case which yields substantial simplifications

in the infinite-allele limit. Unlike techniques based on the Poisson random field frame-

work [45], such as the sampling probability formulas developed by Desai et al. [44], our

approach does not rely on assuming independent evolution at each site along the sequence.

However, an essential drawback of the Ewens sampling formula and our generalization of

it is the “full-connectivity” assumption (i.e., that each allele can mutate into every other
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allele). Furthermore, the sampling formula becomes intractable for large sample sizes, since

the number of terms to sum over in Eq. 2.33 becomes too large.

Therefore, in order to study the limits of applicability of our theory, we have car-

ried out extensive comparisons with numerical simulations on multiple-plane fitness land-

scapes. First, we checked the full-connectivity assumption inherent in the Ewens approach

by comparing the sampling probabilities of our theory with those obtained by simulation

of steady-state populations evolving on single-point-mutant networks. We find that the

agreement, although dependent on the details of the fitness landscape model, the values

of selection coefficients, and mutation rates (and least reliable in the weakly polymorphic

regime), remains strong enough overall to encourage application of our theoretical results to

sequence data. We also find that the error introduced by the full-connectivity assumption,

as measured by the KL distance, is less than the distance between sampling probabilities

in neutral and non-neutral systems. Note that our SPM model of the fitness landscape

was constructed specifically to create a non-trivial distribution of neutral, deleterious and

beneficial single-point mutations for the alleles, in some sense making it as distant from

the fully connected network as possible. Thus we expect the errors inherent in our the-

oretical framework to be smaller (or at least not much worse) in applications to natural

systems. Second, we have checked the infinite-allele assumption by systematically reducing

the number of alleles until it became lower than the population size. We find that, for a

wide range of mutation rates, deviations between theory and simulations become signifi-

cant only when the number of alleles approaches the population size from above. Thus our

assumption of the infinite network size is justified for sufficiently long loci, such as those

encoding transcribed or regulatory regions.
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Robust inference of selection coefficients from a sample of sequences collected from an

evolving population requires statistics of allelic diversity to deviate substantially from the

neutral expectation. If selection cannot be ruled out a priori, the use of our generalized

Ewens sampling formula, which is valid throughout the entire parameter space, is necessary

for inferring selection signatures and mutation rates from data. Moreover, allelic diversity

generated by steady-state evolutionary dynamics on a three-plane fitness landscape is suffi-

ciently distinct from its two-plane counterpart in the strong-selection, weakly polymorphic

regime, opening up a possibility of inferring multiple selection coefficients from a sample of

sequences. Another hallmark of non-neutral population dynamics is de-localization of the

population to multiple fitness planes. With a two-plane landscape, we expect the fraction

of the population on the lower plane to increase with the mutation rate and decrease with

the distance between the two planes. Our investigation of the mutation load confirms these

predictions.

In summary, we have generalized the Ewens sampling formula to populations evolv-

ing under selection. Although in principle our results are valid for arbitrary fitness dis-

tributions, focusing on the infinite allele limit and landscapes characterized by several

distinct fitness states yields substantial simplifications, making our approach computation-

ally tractable and thus applicable to inferring selection signatures from high-throughput

sequence data. Such multiple-state “coarse-grained” fitness distributions appear to be

a reasonable starting point supported by recent large-scale genotype-phenotype maps in

molecular systems [15, 18, 19, 9, 10, 11, 12]. Unlike previous approaches, we do not assume

that each site along the sequence evolves independently – an assumption that has recently

been challenged in molecular evolution studies [14, 15, 16, 17]. However, we do make the
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infinite allele assumption, and, as in the Ewens original formula [8], assume that each allele

can mutate into any other allele. Therefore, we check our theory against numerical simula-

tions in model systems where these assumptions are relaxed, and find that our predictions

remain accurate enough to enable inference of evolutionary parameters from sequencing

data.
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Chapter 3

Inference and Sampling Formulae

We have developed a computational approach to simultaneous genome-wide inference of

key population genetics parameters: selection strengths, mutation rates rescaled by the

effective population size and the fraction of viable genotypes, solely from an alignment of

genomic sequences sampled from the same population. Our approach is based on a general-

ization of the Ewens sampling formula, used to compute steady-state probabilities of allelic

counts in a neutrally evolving population, to populations subjected to selective constraints.

Patterns of polymorphisms observed in alignments of genomic sequences are used as input

to Approximate Bayesian Computation, which employs the generalized Ewens sampling

formula to infer the distributions of population genetics parameters. After carrying out

extensive validation of our approach on synthetic data, we have applied it to the evolution

of the Drosophila melanogaster genome, where an alignment of 197 genomic sequences is

available for a single ancestral-range population from Zambia, Africa. We have divided the

Drosophila genome into 100-bp windows and assumed that sequences in each window can

exist in either low- or high-fitness state. Thus, the steady-state population in our model is

subject to a constant influx of deleterious mutations, which shape the observed frequencies

of allelic counts in each window. Our approach, which focuses on deleterious mutations

and accounts for intra-window linkage and epistasis, provides an alternative description of
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background selection. We find that most of the Drosophila genome evolves under selec-

tive constraints imposed by deleterious mutations. These constraints are not confined to

known functional regions of the genome such as coding sequences and may reflect global

biological processes such as the necessity to maintain chromatin structure. Furthermore,

we find that inference of mutation rates in the presence of selection leads to mutation rate

estimates that are several-fold higher than neutral estimates widely used in the literature.

Our computational pipeline can be used in any organism for which a sample of genomic

sequences from the same population is available.

3.1 Introduction

Explaining the origin of genetic variation observed in natural populations is a long-standing

problem in evolutionary biology. While earlier views of genome evolution were based on

neutral theory, which emphasizes the role of random genetic drift in the observed patterns

of intra- and interspecies variation [64], recent studies have questioned the applicability of

the neutral theory or its nearly neutral extension [65] to genome evolution.

One of the strongest cases for the pervasive role of natural selection in metazoans has

been made in Drosophila melanogaster [61], where population genetics modeling is enabled

and guided by the availability of hundreds of sequenced genomes, including 197 from a single

population in Zambia, Africa [66, 67], and by the functional genomics databases such as

FlyBase [68]. In particular, genomic data from D. melanogaster and related species was

used to argue that a large fraction of the D. melanogaster genome, including non-coding

regions, is under widespread purifying and positive selection [69, 70]. Genetic linkage, long

recognized as a key evolutionary force [71, 72], is also likely to play an important role in
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fly evolution, either through selective sweeps: hitchhiking of sites adjacent to a beneficial

(adaptive) site that rises rapidly to fixation [73, 74, 75] or through background selection:

continuous generation and removal of strongly deleterious mutations by natural selection,

in the presence of recombination [42, 76, 77].

Although the evidence that selective forces and genetic linkage play key roles in Drosophila

evolution is compelling, the exact nature and the relative contributions of the underlying

evolutionary processes are less clear [78, 79]. In particular, selective sweeps and background

selection produce qualitatively similar outcomes that may be difficult to differentiate given

available genomic data [22]. A recent study has argued that background selection alone can

account for a large fraction of the observed patterns of nucleotide diversity in Drosophila

melanogaster [80]. The study predicted nucleotide diversity at neutral sites in the presence

of selection against deleterious mutations at genetically linked sites [76, 81]. The model

required several inputs: deleterious mutation rates, a parameterized distribution of delete-

rious selection coefficients, and the recombination frequency between the focal neutral site

and the site under selection.

Here we provide an alternative approach to modeling background selection. We model

the fitness landscape explicitly by assigning each allele either to a low- or a high-fitness

state. The fitness difference between the two fitness states, the overall mutation rate and

the fraction of alleles in the high-fitness state are inferred from rather than input into the

model. To carry out the inference, we assume that the population has reached steady state

and use a generalization of the neutral Ewens sampling formula [8, 28] to fitness landscapes

with multiple distinct states [82]. As with the neutral Ewens sampling formula, basic input

data consists of counts of distinct alleles in samples of aligned genomic sequences. In the
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absence of selection, the population maintains a steady state characterized by mutation-

drift balance. As the strength of selection (i.e., the fitness difference between the two

fitness states) is increased, alleles become more and more concentrated on the upper fit-

ness plane, with each high-fitness allele subject to both neutral and deleterious mutations.

Selection against deleterious mutations affects the observed frequency spectrum and the

distribution of allelic counts, allowing us to carry out the inference process. We parse the

D. melanogaster genome into non-overlapping 100-bp windows. Each window contains up

to 197 aligned sequences from the Zambian fly population, providing the allelic counts that

serve as input to the computational inference pipeline. Due to the complexity of the gen-

eralized Ewens sampling formula, we have opted for Approximate Bayesian Computation

(ABC), a Bayesian inference method that can be used to estimate posterior distributions

of model parameters [83, 84, 85].

The key strength of the generalized Ewens sampling approach is that it goes beyond

standard statistical tests of natural selection [86], yielding explicit estimates of key evo-

lutionary parameters such as mutation rate and selection strength. At the same time, in

contrast to the Poisson Random Field approach, [45, 87, 88, 89] our methodology does not

assume that each nucleotide evolves independently, and therefore is capable of treating site

linkage and epistasis within each genomic window. However, as with every population ge-

netics model, several simplifying assumptions have to be made. First, the Ewens sampling

approach implies that any allele can mutate into any other allele with a single mutation

rate. We investigate this issue both in this work and in Ref. [82] and conclude that system-

atic errors caused by this assumption are likely to be modest. Second, unlike the approach

to background selection originally described in Refs. [76, 81], we do not treat recombination
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explicitly. This issue is mitigated by employing short 100-bp genomic windows (compared

e.g. to 1-100 kbp windows in Ref. [80]), which however make the analysis more computa-

tionally challenging. Third, we assume that the genomic sequences in each window are in

a de-labeled steady state [28]: although the sequences keep mutating into novel alleles, the

de-labeled population statistics such as the frequency spectrum and the number of distinct

alleles are stationary on average. If the steady-state assumption is correct, our inference

should not be affected by past expansions and contractions in the population size, such

as the significant bottleneck inferred for the Zambian D. melanogaster population that

we use in this work [90]. Moreover, even if the population is still expanding after the

bottleneck, our approach may still be applicable but will yield evolutionary parameters

based on a reduced effective population size which is in turn affected by implicit bottleneck

parameters.

Using the approach described above, we find that most of the fly genome evolves under

selective pressure from deleterious mutations, and that for the alleles in the high-fitness

state, most mutations are deleterious. The former observation is in line with the emerging

consensus view on the selective constraints imposed on the evolution of the D. melanogaster

genome [61], and with a recent observation of the major role of purifying selection in es-

tablishing the observed patterns of nucleotide diversity across the fly genome [80]. Our

approach thus establishes a baseline against which other selective signatures such as se-

lective sweeps or balancing selection are to be discerned. Our methodology presents an

alternative to statistical tests for selection, including background selection under recom-

bination, and it is reassuring that it reaches broadly similar conclusions as the previous

studies. Moreover, it provides an alternative to the Poisson Random Field framework
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as a population genetics method capable of estimating selection strength directly from

single-population DNA sequence data. Finally, our approach yields a revised estimate of θ,

mutation rates rescaled by the effective population size, suggesting that widely used neu-

tral estimates need to be reconsidered, as neutral estimates of θ are systematically biased

towards lower values.

3.2 Overview of Approximate Bayesian Computation (ABC)

ABC is an efficient inference method that can be used to estimate posterior distributions

of model parameters in cases where the likelihood function is either unavailable as a closed-

form expression or computationally costly to evaluate [83, 84, 85]. Let us suppose that we

have observed a statistic x0 and we would like to learn the distribution of model parameters

α that would be consistent with the observed statistic x0. We also have a probabilistic

model M that can generate the statistic of interest from the underlying parameters: α→ x.

Theoretically, it means that there exists a likelihood function p(x|α) but in practice either

the closed form of this distribution is unknown or the computation of the likelihood is

prohibitively expensive.

In such cases, Approximate Bayesian Computation (ABC) can be employed to infer

the distribution of model parameters. [83, 84, 85] ABC is based on the following rejection

algorithm: First, pick a prior p(α) and sample from it to get an empirical distribution of

model parameters (α1, . . . ,αm). Using the model M , generate the corresponding sample

for the statistic of interest: (x1, . . . ,xm) (i.e., generate (x1, . . . ,xm) by sampling once from

each p(x|αi), i = 1 . . .m). Second, choose an appropriate measure of distance d in the

space of statistics. Then the rejection algorithm amounts to keeping only the parameters
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αi that generated the statistics xi which satisfy d(xi,x0) < ε for a certain tolerance ε.

The tolerance hyperparameter ε can be chosen by requiring that we keep only a certain

percentage or a certain number of m datapoints that best match the observation [83].

The final distributions of the model parameters retained after the rejection step constitute

empirical approximations to posterior probabilities.

3.3 D. melanogaster population genomics data

In this work, we employ sequenced and aligned haploid embryo genomes from a single

ancestral range population of D. melanogaster from Zambia, Africa, which were made

available in phase 3 of the Drosophila Population Genomics Project (DPGP3). [66, 67]

Specifically, our data consists of n = 197 aligned sequences for chromosomes 2L, 2R, 3L, and

3R, and n = 195 aligned sequences for chromosome X. To summarize the observed allelic

diversity in this dataset, we have divided each chromosome into 100 bp non-overlapping

windows. The 100-bp window size was chosen to be able to observe non-trivial patterns of

allelic diversity while minimizing the effects of recombination. We remove all windows in

which more than 20% of the sequences in the alignment have at least one undetermined

nucleotide (labeled as ‘N’). If the fraction of such sequences is < 20%, we keep the window

but remove the affected sequences. We also remove all monomorphic windows as their

frequency spectrum is uninformative for our analysis. This preprocessing step results in

retaining 68% of all windows in chromosome 2L, 73% in 2R, 70% in 3L, 75% in 3R, and

63% in X.

For each remaining window, we compute a vector of allelic counts n = {n1, . . . , nk},

where k is the total number of groups of identical sequences in the window and nj is the
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number of identical sequences in group j = (1 . . . k). Since
∑n

j=1 nj = n, n can be viewed

as an integer partition of n. As an example of the calculation of allelic counts, consider a

genomic window in which out of n = 197 aligned sequences, 187 occur once, 3 sequences

occur twice, and 1 sequence occurs 4 times. The corresponding vector of allelic counts is

given by n = {4, 2, 2, 2, 1, . . . , 1}, where 1 is repeated 187 times, so that k = 191. Note

that the same information can be conveyed with the frequency spectrum widely used in

population genetics [8, 46, 28]: a = (a1, . . . , an), where aj is the number of groups of

identical elements of size j. The aj counts are subject to normalization
∑n

j=1 jaj = n. In

the above example, a1 = 187, a2 = 3, a4 = 1, and the rest of aj ’s are equal to 0. We shall

use the n representation in the rest of the paper.

3.4 Application of ABC in population genetics

The main objective of this study is to infer genome-wide distributions of key evolutionary

parameters such as selection strengths and mutation rates directly from sequence align-

ments of D. melanogaster genomes sampled from a single population. To this end, we use

the generalized Ewens sampling formula which describes allelic diversity of a steady-state

population evolving on an arbitrary fitness landscape. [82] This is an infinite-allele model

where any allele can mutate into any other allele with a single mutation rate. Unlike ap-

proaches that treat deleterious background selection with recombination, [76, 81, 80] our

method does not take recombination into account explicitly; however, in contrast to the

Poisson Random Field approach, [45, 87, 88, 89] our methodology does not assume site

independence and therefore is capable of treating linkage within each genomic window.

For a general fitness landscape with M distinct fitness states, the probability of the
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vector of allelic counts n is given by [82]

P[n|θ,β,γ] = NP
n!

k!

1∏k
i=1 ni

θk

θ(n)

∑
ν∈P (n)

∑
Y ∈Y(n)

1

NP

F(γθ + νY ; θ + n;β)

F(γθ; θ;β)

(
k

i1 . . . iM

)
γi11 . . . γimM .

(3.1)

Here θ = aNµ is the rescaled mutation rate, where N is the effective population size, µ is

the mutation rate per locus, and the prefactor a = 2 for the Wright-Fisher model [1] and 1

for the Moran model [3]. Fitness landscapes are encoded via a vector of selection strengths

s rescaled by the population size, β = Ns, and a vector γ which determines landscape

geometry by specifying the fraction of alleles (genotypes) in each fitness state. For example,

with only two fitness states (M = 2), we assign fitness 1 to the fraction 1− γ of all alleles

and fitness 1 + s to the remaining fraction γ, resulting in β = (0, Ns) and γ = (1− γ, γ).

In this case, 1 − γ can be interpreted as a fraction of deleterious mutations for an allele

in a high-fitness state. Finally, NP is the total number of distinct permutations of the

allelic counts, and F(a; b; z) is the generalized confluent hypergeometric function [82]. The

double sum takes into account all the ways in which an allelic partition n can be distributed

among M fitness states.

In the absence of selection, Eq. (3.1) reduces to the neutral Ewens sampling formula [8]

written in terms of the allelic counts ni:

P[n|θ] = NP
n!

k!

1∏k
i=1 ni

θk

θ(n)
, (3.2)

where θ(n) = θ(θ + 1) . . . (θ + n− 1) is the rising factorial.

Additional details, along with representative examples, on how Eq. (3.1) is derived and

evaluated, including how the double summation is performed and the numerical treatment

of generalized confluent hypergeometric functions, can be found in Ref. [82]. Here it suffices
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to treat Eq. (3.1) as a “black box” function which is used in the ABC inference pipeline. Our

overall objective is to learn genome-wide distributions of model parameters α = (θ,β,γ)

that appear in the generalized Ewens formula (Eq. (3.1)). In this case, a natural choice of

the summary statistic x would be allelic counts n observed in each 100-bp genomic window.

However, with n = 197 the total number of possible partitions is > 3 × 1012, too large

to perform the double summation in Eq. (3.1). Therefore, in each window we subsample

aligned sequencesB = 104 times with replacement, creating sequence samples of size n′ = 5,

for which the probabilities of the corresponding allelic counts n′ are amenable to evaluation

using Eq. (3.1) or Eq. (3.2). In this way, we arrive at the empirical distribution P[n′], where

n′ = {n′1, . . . , n′k} encodes all possible partitions for the smaller integer n′ =
∑k

j=1 n
′
j .

Note that our observed summary statistic x0 is now P[n′], an empirical histogram of the

frequencies of allelic counts generated by subsampling alignments of n′ = 5 sequences in

each window, as described above. Since we do not have an explicit likelihood formula for

this statistic, likelihood-based methods cannot be applied, whereas the ABC framework is

still capable of yielding posterior distributions of model parameters.

Next, we choose model parameter priors for ABC sampling. In the case of the fitness

landscape with M = 2 fitness states, the model parameters are α = (θ,Ns, γ), where γ

is the fraction of nodes with higher fitness. We impose the following priors: log10 θ ∼

Normal(µ = 0, σ = 1), Ns ∼ HalfNormal(σ = 20) (note that if X is distributed according

to a normal distribution with zero mean, |X| is distributed according to a half-normal

distribution), and − log10 γ ∼ HalfNormal(σ = 6). These distributions reflect our prior

expectations of the relevant parameter ranges. We create m = 106 simulated empirical

histograms xi = P[n′|αi] (i = 1 . . .m) by sampling parameters α from their priors and
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calculating P[n′|α] via Eq. (3.1). We rank this dataset against the x0 = P[n′] empirical

histogram of partition frequencies observed in each window, on the basis of the chi-squared

statistic used as a measure of the distance between the two histograms: d2(xi,x0) =∑
p(xi,p−x0,p)

2/xi,p, where p labels allelic count partitions and xi,p, x0,p are the predicted

and observed frequencies of the allelic partition p. We set ABC tolerance ε by ranking all

106 simulated histograms against the histogram observed in a given window and keeping

102 histograms with the smallest d2 score. We typically use median values to summarize

the resulting posterior distributions of the model parameters, since they are less sensitive

to outliers.

3.5 Recombination simulations

Population dynamics under mutation, selection and recombination is modeled using the

Moran process [3]. The population consists of N = 103 sequences with alphabet A = 4

and length L = 10 sites. Each evolutionary simulation starts with a randomly generated

population. Subsequent generations are obtained using the following rules:

• Two distinct parental sequences si = (p1, . . . , pL) and sj = (q1, . . . , qL), i 6= j, are

selected from the population s1, . . . , sN with weights proportional to their fitness.

• A random number r is uniformly sampled in the (0, 1) range. If r is less than the

recombination rate ρ, an offspring sequence (p1, . . . , pb−1, qb, . . . , qL) is formed using

the parent sequences si and sj , where the breakpoint b is uniformly sampled from

2 ≤ b ≤ L− 1. If r > ρ, recombination does not occur and the offspring is a copy of

the first parent si.
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• The offspring undergoes a single-point mutation with probability µ at a randomly

chosen site 1 ≤ k ≤ L.

• The population is uniformly sampled to remove a single sequence. The offspring

sequence is then added to the population, keeping the total population size constant.

The above steps are repeated until the steady state is reached. Once in steady state, the

population is sampled 104 times, skipping 1/µ generations between consecutive samples.

3.6 Validation of the ABC inference pipeline using synthetic data

In order to validate our ABC approach to the genome-wide inference of evolutionary pa-

rameters, we first test our pipeline on simulated data. We use Eq. (3.1) with M = 2

fitness states to generate sampling probabilities for n′ = 5 on a grid of rescaled selection

coefficients, Ns, and the fraction of alleles with fitness 1 + s, γ, for three values of the

rescaled mutation rate θ. We use these probabilities directly as input to the ABC inference

pipeline, which returns predictions for these 3 parameters. Note that this procedure is

equivalent to producing an infinitely large sample of sets of 5 aligned sequences, so that

we are not testing how sampling noise affects the accuracy of predictions (our sample size

in each D. melanogaster genomic window, B = 104, is sufficiently large to minimize the

sampling noise effects). Since we know the exact values of all 3 evolutionary parameters

α = (θ,Ns, γ), we can systematically evaluate the accuracy of ABC inference across bio-

logically relevant parameter ranges (Fig. 3.1). The same set of m = 106 simulated empirical

histograms P[n′|αi] (i = 1 . . .m) is used here as in subsequent inference on fly genomic

data (see Materials and Methods for details).
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Figure 3.1: Accuracy of ABC inference with selection on synthetic data. Shown
are relative errors ∆x/x = (xinferred−xtrue)/xtrue (where xinferred is taken to be equal to the
median value of the corresponding posterior distribution) for the rescaled mutation rate θ
(A, D, G), the rescaled selection coefficient Ns (B, E, H), and the log-fraction of alleles
with fitness 1 + s, log10 γ (C, F, I). All relative errors are calculated for the same ranges of
Ns and γ and for θ = 0.1, 1.0, 10.0 corresponding to the monomorphic, intermediate, and
polymorphic regimes.

Overall, the accuracy of our inference procedure is encouraging in this idealized setting,

where the same model is used to generate the data and infer model parameters from it.

In particular, we can reliably estimate mutation rates θ almost everywhere within the

parameter ranges shown in Fig. 3.1A,D,G: the average relative error for θ inference is
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≈ 0.09 over all 3 values of θ, while the maximum error is ≈ 0.66. For Ns and γ, there

are parameter regions where the predictions yield significant errors, e.g. in the triangular-

shaped area in Fig. 3.1B,E,H. It appears that the models are degenerate in these regions,

such that multiple sets of parameters can fit input sampling probabilities in the n′ = 5

histograms. As a result, the average relative error for Ns inference is ≈ 0.80, while the

maximum error is ≈ 14.8. With log10 γ inference, the most prominent area where the ABC

inference procedure yields significant errors is the vertical stripe in the large γ, large Ns

quadrant (Fig. 3.1C,F,I). The area of the stripe shrinks as the population becomes more

polymorphic. As with the Ns inference, the sampling probabilities within the stripe can

be fit using multiple sets of parameters, so that the original parameter set is difficult to

recover. The average and the maximum relative errors for log10 γ inference are ≈ 1.1 and

≈ 72.2, correspondingly.

We conclude from these numerical experiments that we should be able to infer the

values of mutation rates from genomic data with a reasonably high degree of accuracy.

Moreover, our predictions of selection coefficients, although subject to larger errors, should

be accurate enough to serve as a test for the presence of natural selection signatures in

genomic data. Finally, the predictions of the fraction of alleles with the higher fitness,

γ, is the least reliable but also the least informative, since it depends on the assumption

of two distinct fitness states. The structure of realistic fitness landscapes is likely to be

considerably more complicated. Overall, the prediction accuracy is determined by which

regions of the parameter space correspond to D. melanogaster genomic data.

To investigate the role of selection in predicting mutation rates, we have also carried out

ABC inference using the neutral Ewens formula, Eq. (3.2), instead of its generalized version
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Figure 3.2: Accuracy of neutral ABC inference on synthetic data. Shown are
relative errors ∆x/x = (xinferred − xtrue)/xtrue (where xinferred is taken to be equal to the
median value of the corresponding posterior distribution) for the rescaled mutation rate
θ (A, B, C). All relative errors are calculated for the same ranges of Ns and γ as in
Fig. 3.1 and for θ = 0.1, 1.0, 10.0 corresponding to the monomorphic, intermediate, and
polymorphic regimes.

with selection, Eq. (3.1), to generate m = 106 histograms P[n′|θi] using the values of θi (i =

1 . . .m) previously employed for ABC inference with selection (Fig. 3.2). Since the input

sampling probabilities are the same as in the previous test and therefore were generated

under selection, we expect neutral inference to perform less well than the full treatment

with selection. Indeed, considerable errors in θ predictions are produced under the neutral

assumption in all three mutation regimes (Fig. 3.2A-C). The errors are small only in the

regions where selection is weak and the fraction of high-fitness alleles is small: both of these

factors make the mutational forces more dominant and the system is effectively neutral.

We conclude that when population evolves under selection which is strong enough not to

be dominated by mutational effects, neglecting selective forces (i.e., assuming neutrality)

may easily lead to considerable errors in the inferred mutation rates.
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3.6.1 Frequencies of allelic counts and ABC inference in the presence of re-

combination

Evolution of genomic sequences in D. melanogaster is subject to homologous recombina-

tion [91, 92, 93, 94, 95, 96]. Since our ABC inference pipeline does not include recombi-

nation explicitly (instead, we rely on the small window size, L = 100 bp, to minimize its

effects in genome-wide analysis), we thought to investigate the influence of recombination

on allelic count frequencies using a simple model system. To this effect, we have simulated

a population of sequences with L = 10 sites subject to single-point mutation, recombi-

nation, and genetic drift (see Materials and Methods for details). Thus, each site in our

population is equivalent to 10 bp in genomic windows. Since θ per bp is less than 0.01

per bp in D. melanogaster according to standard infinite-sites-based estimators [96] and

therefore less than 1.0 per 100-bp genomic locus, we thought to investigate n′ = 5 allelic

count probabilities for θ = Nµ = (0.1, 1.0, 10.0) in our simulations.

Note that since the rate of spontaneous point-mutation events is ≈ 5 − 6 × 10−9 per

nucleotide per generation according to mutation-accumulation experiments [97, 98], the

effective population size in the Zambian population under investigation is expected to be

around 106 individuals [90], three orders of magnitude larger than the N = 103 population

size we were able to implement in our simulations. Finally, fine-scale predictions of recom-

bination rates using two D. melanogaster populations, one from North America and the

other from Africa, yield ρ/µ estimates in the ≈ 2− 4 range [96]. Correspondingly, we have

investigated ρ/µ = (0, 1, 2) cases for each of the three θ values mentioned above and for

three values of selection strength: Ns = (0, 6, 13) (Fig. 3.3). For each set of parameter val-

ues, we have compared theoretical predictions for n′ = 5 allelic frequencies (Eq. (3.1)) with



60

0.0 0.2 0.4 0.6 0.8

{1,1,1,1,1}

{2,1,1,1}

{2,2,1}

{3,1,1}

{3,2}

{4,1}

{5}

N
s=

0

A
=0.1

0.0 0.1 0.2

B
=1.0

0.0 0.2 0.4 0.6

C
=10.0

Theory
/ =0
/ =1
/ =2

0.0 0.2 0.4 0.6 0.8

{1,1,1,1,1}

{2,1,1,1}

{2,2,1}

{3,1,1}

{3,2}

{4,1}

{5}

N
s=

6

D

0.0 0.1 0.2 0.3

E

0.0 0.2 0.4 0.6

F

Theory
/ =0
/ =1
/ =2

0.0 0.2 0.4 0.6 0.8

{1,1,1,1,1}

{2,1,1,1}

{2,2,1}

{3,1,1}

{3,2}

{4,1}

{5}

N
s=

13

G

0.0 0.2 0.4

H

0.0 0.2 0.4 0.6

I

Theory
/ =0
/ =1
/ =2

Figure 3.3: Effect of recombination on sampling frequencies. Columns of panels
correspond to different selection strengths Ns and rows of panels to different values of
the rescaled mutation rate θ. For cases with selection (Ns = 6 and 13), γ = 0.242 was
used. In each panel, shown are sampling frequencies for the sample size n′ = 5. Blue
bars correspond to theoretical predictions (Eq. (3.1)), and orange, green and red bars
correspond to numerical simulations averaged over 104 independent steady-state samples
(see Materials and Methods for details). Simulations with ρ/µ = 0: orange, ρ/µ = 1:
green, ρ/µ = 2: red (ρ is the recombination rate and µ is the mutation rate per L = 10
locus).
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steady-state numerical simulations. The ρ/µ = 0 case with no recombination highlights

the difference between the Ewens sampling approach, which assumes that each locus (i.e.,

nucleotide sequence in a 100-bp genomic window) can mutate into every other locus, and

the numerical simulations in which only single-point mutations are allowed (see Ref. [82]

for further analysis of this assumption).

Overall, we find reasonable agreement between predicted and observed allelic count

frequencies. In the monomorphic limit (θ = 0.1), the agreement is very good for all

values of Ns and ρ/µ (Fig. 3.3A-C), indicating that the Ewens sampling approach would

benefit from parsing the genome into even shorter, 10 − 20 bp genomic windows that are

characterized by θ values of similar magnitude. The agreement is significantly worse in the

θ = 1.0 regime when selection is present (Fig. 3.3D-F), indicating failure of the assumptions

inherent in the Ewens sampling formula rather than the effects of recombination, which

appear to be secondary in this case. The situation is reversed in the θ = 10.0 regime

(Fig. 3.3G-I), with recombination effects becoming more prominent. At the same time,

deviations between generalized Ewens formula predictions and the ρ/µ = 0 simulation are

minimal in this regime, even in the presence of selection.

To investigate the effect of the observed discrepancies in allelic count frequencies on

evolutionary parameter inference, we have used the n′ = 5 allelic count frequencies from

Fig. 3.3 as input to our ABC inference pipeline (Table 3.1). We find that θ is predicted very

accurately for all parameter combinations, with the largest discrepancies observed when

θ = 10.0 and ρ/µ = 1 or 2. For the rescaled selection coefficient Ns, the algorithm tends to

predict non-zero values for a small fraction of alleles (e.g., Ns = 4.01 and γ = 2.67× 10−9

in the case of neutral evolution with θ = 0.1 and ρ/µ = 2; Table 3.1, subsection A). In the
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ideal situation where, as in Fig. 3.1, Eq. (3.1) is used to both produce the n′ = 5 allelic

count frequencies and carry out ABC inference from them, the algorithm is able to make

reasonably accurate predictions of both the selection strength and the fraction of viable

alleles (cf. Theory columns in each subsection of Table 3.1).

θ = 0.1, Ns = 0, γ = 0

A Theory ρ/µ = 0 ρ/µ = 1 ρ/µ = 2

θm 0.10 0.10 0.10 0.10

(Ns)m 4.59 4.21 4.62 4.01

γm 1.24× 10−7 1.55× 10−9 2.00× 10−6 2.67× 10−9

θ = 0.1, Ns = 6, γ = 0.24

B Theory ρ/µ = 0 ρ/µ = 1 ρ/µ = 2

θm 0.12 0.10 0.10 0.10

(Ns)m 11.92 9.08 5.08 6.56

γm 0.23 0.58 0.02 0.53

θ = 0.1, Ns = 13, γ = 0.24

C Theory ρ/µ = 0 ρ/µ = 1 ρ/µ = 2

θm 0.11 0.09 0.09 0.10

(Ns)m 13.85 12.95 5.62 16.18

γm 0.20 0.59 0.16 0.61

θ = 1.0, Ns = 0, γ = 0

D Theory ρ/µ = 0 ρ/µ = 1 ρ/µ = 2

θm 1.00 0.96 1.03 1.10

(Ns)m 4.66 5.25 5.01 9.30

γm 4.59× 10−8 2.79× 10−9 4.13× 10−9 2.30× 10−5

θ = 1.0, Ns = 6, γ = 0.24

E Theory ρ/µ = 0 ρ/µ = 1 ρ/µ = 2

θm 1.07 1.01 1.00 1.04

(Ns)m 7.19 8.55 3.81 9.46

γm 0.27 0.58 0.09 8.80× 10−5
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θ = 10.0, Ns = 0, γ = 0

θ = 1.0, Ns = 13, γ = 0.24

F Theory ρ/µ = 0 ρ/µ = 1 ρ/µ = 2

θm 1.12 0.89 0.92 0.97

(Ns)m 16.29 5.66 4.44 7.91

γm 0.22 0.54 0.03 4.48× 10−4

G Theory ρ/µ = 0 ρ/µ = 1 ρ/µ = 2

θm 10.00 9.59 14.76 20.30

(Ns)m 7.11 5.76 10.72 14.40

γm 1.00× 10−6 1.88× 10−7 0.03 0.06

θ = 10.0, Ns = 6, γ = 0.24

H Theory ρ/µ = 0 ρ/µ = 1 ρ/µ = 2

θm 9.86 9.31 14.56 19.61

(Ns)m 10.03 7.73 13.25 14.21

γm 0.04 5.00× 10−6 0.01 0.02

θ = 10.0, Ns = 13, γ = 0.24

I Theory ρ/µ = 0 ρ/µ = 1 ρ/µ = 2

θm 9.89 8.91 13.83 18.48

(Ns)m 12.44 8.65 11.18 16.82

γm 0.24 0.01 0.07 0.03

Table 3.1: ABC prediction accuracy in the presence of recombination. Shown
are median values of the model parameters: θm, (Ns)m, and γm predicted using the ABC
inference pipeline. Sampling frequencies (n′ = 5) for each set of parameters in Fig. 3.3
served as input to the algorithm. To facilitate comparisons, each subsection of the Table
is marked by the corresponding Fig. 3.3 panel label.

Predictions are also accurate in the θ = 0.1 regime when allelic count frequencies from

simulations with recombination are used as input to the ABC inference pipeline. However,

the situation becomes more complicated when mutation rates increase: for example, in

the θ = 1.0 regime predicted Ns values alone are not a reliable indicator of selection

strengths unless they are supplemented by the values of γ, which are much higher in the

Ns = 6 and 13 cases compared to neutral evolution (Table 3.1, subsections D,E,F). Even
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Figure 3.4: Chromosome-wide distributions of mutation rates. Shown are the
histograms of Watterson (θW , blue), Tajima (θT , orange), ABC neutral (θABC

n , green) and
ABC with selection (θABC

n , red) estimators of the logarithm of the mutation rate per bp
rescaled by the population size, log10 θ, for chromosomes 2L (A), 2R (B), 3L (C), 3R (D),
and X (E). The two ABC estimators are represented by their median values in each genomic
window.

considered together, the Ns and γ predictions become unreliable in the θ = 10.0 regime

(Table 3.1, subsections G,H,I), indicating that we cannot distinguish selection strength

differences of O(1) in this case. In summary, our analysis indicates that it is preferable

to combine evidence from both Ns and γ predictions, and that it is prudent to limit the

observations to qualitative conclusions such as presence or absence of selection, especially

in windows with θ & 10.0.
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Figure 3.5: Comparison of mutation rate estimators. Shown are genome-wide density
correlation plots (based on a random sample of 104 windows) between Watterson and
Tajima estimators (A), Watterson and neutral ABC estimators (B), Watterson and ABC
with selection estimators (C), Tajima and neutral ABC estimators (D), Tajima and ABC
with selection estimators (E), neutral ABC and ABC with selection (F). r is the linear
correlation coefficient, computed for all windows. Both ABC estimators are represented by
their median values in each genomic window. All estimators are shown on the log10 scale.
Thin red lines in all panels have unit slopes.

3.7 Evolutionary parameter inference in D. melanogaster

3.7.1 Inference of mutation rates

We have carried out genome-wide inference of rescaled mutation rates using several alter-

native methods. First, we use standard mutation rate estimators due to Watterson [99],

which is based on the number of segregating sites observed in each window, and due to

Tajima [100], which is based on the average number of nucleotide differences between all

pairs of sequences. The normalized difference of the two estimators defines Tajima’s D
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Figure 3.6: Chromosome-wide distributions of Tajima’s D statistic. Vertical dotted
lines indicate D = −2 and D = 2; all windows with D < −2 or D > 2 are assumed to
be under significant selection. The fractions of windows with D < −2 are 0.24, 0.17, 0.15,
0.20 and 0.32 for chromosomes 2L, 2R, 3L, 3R and X, respectively. The corresponding
fractions of windows with D > 2 are 0.004, 0.004, 0.006, 0.003, 0.002.

statistic widely used in tests for selection [86, 101]. For each valid 100 bp window with

n aligned unambiguous sequences (see Materials and Methods for details), Watterson es-

timator is given by θW = Sn/Hn−1, where Sn is the number of segregating sites and

Hn =
∑n

i=1 1/i is the harmonic number. Tajima estimator, θT , is simply the average num-

ber of polymorphisms (nucleotide differences) in all pairwise alignments generated by n

aligned 100-bp sequences in each window. Tajima and Watterson estimators are compared

with two ABC-based inferences of θ, one employing the neutral formula (Eq. (3.2); θABC
n )

and the other one the formula with selection (Eq. (3.1); θABC
s ) (Fig. 3.4, Fig. 3.5).

First of all, we observe that, surprisingly, Tajima’s estimator of the mutation rate,

θT , is strongly correlated with the neutral ABC estimate, θABC
n . In fact, the genome-

wide linear correlation between these two approaches is r = 0.98 (Fig. 3.5D). Although

the two approaches are mathematically different (using pairwise polymorphisms in the

former and allelic counts in the latter), they yield very similar mutation rate estimates.

In contrast, the correlation coefficient between θW and θT is much smaller (r = 0.77;
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Figure 3.7: Inferred mutation rates along D. melanogaster chromosomes. Shown
are Watterson (θW , blue), Tajima (θT , orange), ABC neutral (θABC

n , green) and ABC with
selection (θABC

n , red) estimators of the logarithm of the mutation rate per bp rescaled by
the population size, log10 θ, for each 100-bp window, for chromosomes 2L (A), 2R (B), 3L
(C), 3R (D), and X (E), plotted vs. the genomic coordinate along each chromosome (in
Mbp). The two ABC estimators are represented by their median values in each genomic
window. All plotted values were smoothed with an exponentially weighted moving average
with the center of mass of 1,000 windows, such that the exponential parameter α ' 10−3.

Fig. 3.5A) and θT − θW < 0 in most cases, indicating that Tajima’s D statistic, which is

∼ θT − θW , is affected by selection against genotypes carrying deleterious mutant alleles

(for the purposes of interpreting this test, we assume that the Zambian D. melanogaster

population under consideration is approximately stable in size). Indeed, the distribution

of Tajima’s D statistic for each chromosome is skewed towards negative values and its

magnitude strongly suggests selective effects in a significant fraction of windows (Fig. 3.6).

This can be explained by the fact that the number of segregating sites on which Watterson’s

estimator is based ignores the frequency of mutations and therefore is expected to be more

strongly affected by the existence of rare deleterious mutants than the average number of

pairwise nucleotide differences [100].
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created by combining individual posterior probabilities for each 100 bp window, which
amounts to marginalizing all posteriors over the window index. (A): log10 θ distribution (θ
is the rescaled mutation rate per bp), (B): Ns distribution, (C): log10 γ distribution.

Both θW and θABC
s tend to predict consistently higher values of mutation rates than the

neutral ABC estimate (Fig. 3.4). This is clearly seen when inferred mutation rates are plot-

ted along each chromosome (Fig. 3.7): ABC inference with selection predicts the highest

mutation rates, followed by Watterson’s estimate. However, θW is only moderately corre-

lated with the ABC estimate under selection, θABC
s (r = 0.65, Fig. 3.5C), indicating that

both estimates are affected by selective forces in somewhat different ways. This is not sur-

prising since, as mentioned above (and unlike ABC inference with selection), Watterson’s

estimator ignores the frequency of mutations. Remarkably, ABC inference with selection

produces distributions of mutation rates that are nearly identical from chromosome to

chromosome, indicating that the inference process is dominated by global polymorphism

patterns rather than chromosome-specific features (Fig. 3.9A). To ensure that we do not

lose information by focusing on the median values of rescaled mutation rates in each ge-

nomic window and to estimate the uncertainty of our predictions, we have constructed the

genome-wide posterior probability by combining data from all windows (Fig. 3.8A). We

find that the genome-wide distribution is essentially unimodal, with the shape similar to
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Figure 3.9: ABC inference of mutation rates, selection coefficients, and fraction
of viable genotypes. Chromosome-wide distributions of log10 θ per bp (A), Ns (B)
and log10 γ (C) based on the generalized Ewens formula with selection (Eq. (3.1)). All
predicted quantities are represented by their median values in each window. The curves
for each chromosome represent a smoothed trace of a normalized histogram.

those seen in Fig. 3.9A and with predicted log10 θ values predominantly concentrated in

the [−2.3,−0.8] range.

3.7.2 Inference of selection strengths and the fraction of viable genotypes

We observe three distinct peaks of selection strengths in each chromosome: weak selection

(peak 1; Ns < 15), intermediate selection (peak 2; 15 ≤ Ns ≤ 45), and strong selection

(peak 3; Ns > 45) (Fig. 3.9B). As with the rescaled mutation rates, the peak structure

is similar in all chromosomes. Thus ABC inference predicts that most of the fly genome

evolves under selective constraints, in accordance with previous studies (see Ref. [61] for a

comprehensive review). Interestingly, three distinct peaks are also observed in the genome-

wide posterior probability of selection strengths (Fig. 3.8B); the probability that Ns > 1

is 94.2% according to this distribution. The fraction of genotypes in the high-fitness state

(which we shall refer to as viable genotypes), γ, or, alternatively, the fraction of neutral

mutations for a viable allele, also exhibits a characteristic peak structure which is fairly

similar for all chromosomes (Fig. 3.9C). However, this structure is not observed in the
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Figure 3.11: Inferred selection coefficients along D. melanogaster chromosomes.
Shown are median values of selection coefficients (rescaled by the population size) predicted
using ABC with selection, for each 100-bp window, for chromosomes 2L (A), 2R (B), 3L
(C), 3R (D), and X (E), plotted vs. the genomic coordinate along each chromosome (in
Mbp). All plotted values were smoothed with an exponentially weighted moving average
with the center of mass of 1,000 windows, such that the exponential parameter α ' 10−3.

genome-wide posterior distribution, which is bimodal with a narrow peak in the [-3.0,0.0]

range and a much broader peak in the [-20.0,-3.0) range (Fig. 3.8C).
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Figure 3.12: Inferred fractions of high-fitness alleles along D. melanogaster chro-
mosomes. Shown are median values of the log fraction of viable genotypes, log10 γ, pre-
dicted using ABC with selection, for each 100-bp window, for chromosomes 2L (A), 2R (B),
3L (C), 3R (D), and X (E), plotted vs. the genomic coordinate along each chromosome (in
Mbp). All plotted values were smoothed with an exponentially weighted moving average
with the center of mass of 1,000 windows, such that the exponential parameter α ' 10−3.

To investigate whether sequences in different fitness peaks correspond to distinct distri-

butions of mutation rates and fractions of viable genotypes, we have divided all windows

into 3 classes according to selection strength (Fig. 3.10). We observe that mutation rates

do not correlate strongly with Ns peak identity, although sequences with intermediate se-

lection strengths do tend to have somewhat higher mutation rates (Fig. 3.10A). In contrast,

fractions of viable genotypes are partitioned by selection strength, with the sequences under

strong selection characterized by intermediate values of log10 γ (Fig. 3.10C). In the light

of our previous discussion of prediction accuracy on synthetic data with and without re-

combination (Fig. 3.3, Table 3.1), the intermediate-selection peak may be the most reliable

since it is accompanied by sizable values of log10 γ. With peaks 1 and 3, we cannot rule out
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Figure 3.13: Polymorphisms in sequence alignments and selection strength. His-
tograms of the average number of mutations per sequence, nmut, for 100-bp genomic win-
dows associated with different selection peaks (Fig. 3.9B, Fig. 3.10B) (A). Median values
of the distribution of n′ = 5 allelic counts for all windows in the three selection peaks from
Fig. 3.9B (B). In both panels, data from all chromosomes is combined. In panel B, each
100-bp window has a set of 102 P[n′|αi] distributions corresponding to 102 sets of model
parameters αi with the smallest d2 score (see Materials and Methods for details). These
sets of histograms are combined into a single dataset for all windows that belong to a given
selection peak and median values of the frequency distribution for each allelic configuration
in the n′ = 5 partition are reported.

the possibility that in some genomic windows, similar to predictions in Table 3.1, neutral

evolution is in fact modeled by non-zero selection coefficients accompanied by low values

of γ. In addition, selection strengths in peak 1 may be insufficient to reliably rule out the

no-selection scenario. Finally, we note that plots of Ns and log10 γ vs. chromosome coor-

dinates show no easily identifiable trends, except for the higher values of Ns accompanied

by somewhat lower values of log10 γ in both sub-telomeric regions (Figs. 3.11,3.12).

Next, we have investigated the nature of genomic sequences that belong to the three

selection peaks. We find that, as might be expected, the strength of selection is inversely

correlated with the number of mutations observed in corresponding genomic sequences.

Indeed, sequences evolving under the strongest selection (peak 3) are significantly less

polymorphic than sequences predicted to be under weak selection (peak 1), with sequences

in peak 2 occupying an intermediate position (Fig. 3.13A). Besides the number of mutations
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Figure 3.14: Chromosome-wide distributions of the number of mutations parti-
tioned into functional regions. For each chromosome, shown is the average number
of mutations per sequence in each alignment, nmut, for genes (blue) and intergenic regions
(orange). Only windows that fully overlap the functional region of interest (gene or inter-
genic) are included. Panels A through E show the nmut distributions for chromosomes 2L,
2R, 3L, 3R and X, respectively.

per sequence, we have considered the distribution of allelic partitions in n′ = 5 sequence

alignments used in our inference procedure (Materials and Methods) (Fig. 3.13B). We

observe that n′ = 5 allelic counts that correspond to sequences under the strongest selective

constraint (peak 3) are generated by sequences that are either all identical in the alignment

({5}) or with a single different sequence ({4, 1}). In contrast, sequence alignments in peak 1

are predominantly polymorphic, and sequence alignments in peak 2 occupy an intermediate

position. Since mutation rates are predicted to be polymorphic for most windows (i.e.,

log10 θ + 2 > 0, where θ is the rescaled mutation rate per bp) regardless of their peak

identity (Fig. 3.10A), the number of mutations in the alignment is, according to the ABC

inference pipeline, indicative of selective constraints rather than the monomorphic limit.
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2L 2R 3L

gene intergenic gene intergenic gene intergenic

peak 1 1.06 1.15 0.98 0.86 0.97 0.97
(0.65, 1.71) (0.69, 1.87) (0.60, 1.64) (0.54, 1.48) (0.60, 1.63) (0.60, 1.66)

peak 2 0.30 0.34 0.27 0.22 0.25 0.26
(0.16, 0.97) (0.17, 1.04) (0.14, 0.92) (0.12, 0.62) (0.13, 0.88) (0.13, 0.89)

peak 3 0.04 0.06 0.04 0.04 0.03 0.03
(0.02, 0.08) (0.03, 0.11) (0.02, 0.08) (0.02, 0.07) (0.02, 0.06) (0.02, 0.07)

3R X

gene intergenic gene intergenic

peak 1 0.94 0.87 0.99 0.99
(0.60, 1.58) (0.55, 1.50) (0.64, 1.64) (0.64, 1.64)

peak 2 0.28 0.24 0.31 0.31
(0.15, 0.93) (0.13, 0.79) (0.16, 0.96) (0.16, 0.96)

peak 3 0.05 0.04 0.05 0.05
(0.02, 0.09) (0.02, 0.07) (0.03, 0.09) (0.03, 0.09)

Table 3.2: Summary statistics for the average number of mutations per sequence,
partitioned by functional region and selection strength. Shown are the median
values, followed by the first quartile and the third quartile in parentheses, of the distribution
of nmut, the average number of mutations per sequence in each 100 bp window, for all
windows in a given chromosome, sorted by the selection peaks in Fig. 3.9B and by the
functional region (gene or intergenic).

It would be natural to expect that sequences under stronger selective constraints are

predominantly associated with functional genomic regions, such as coding sequences and

promoters. However, we do not find any correlation between the average number of mu-

tations per sequence in each 100-bp window and its location within either a genic or

an intergenic region (Fig. 3.14; we employ FlyBase annotation v. 6.29 to map functional

regions [68]). In fact, the distributions of the average number of mutations in genes and

intergenic regions are remarkably similar for each chromosome (qualitatively similar results

are obtained when considering exons and introns separately; data not shown). Moreover,
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distributions of the average number of mutations sorted by selection peaks in Fig. 3.10B

are strongly overlapping in each chromosome (Table 3.2). We conclude that sequences

under weak, intermediate and strong selection are distributed throughout the fly genome

in a way that is independent of their standard functional annotation.

Finally, since our ABC inference pipeline produces sizable errors in some areas of the

(θ,Ns, γ) parameter space (cf. Fig. 3.1), it is possible that our results are affected by

inaccuracies in ABC computational predictions. However, a comparison of the ranges of

predicted parameters in Fig. 3.10 with the prediction errors on synthetic data in Fig. 3.1

shows that most of our predictions are not concentrated in the problematic regions of the

parameter space. For example, windows in peak 3 have 0.3 . θ . 10, 45 . Ns . 60,

and −8 . log10 γ . −5. A comparison with the error plots in Fig. 3.1 shows that we

can expect excellent accuracy for θ and Ns inference and reasonable accuracy for log10 γ

inference within these ranges. The same is true, by and large, of the other two peaks. We

conclude that the ABC inference procedure applied to D. melanogaster genomic data has

sufficient internal consistency for at least qualitative conclusions regarding the magnitude

of mutation and selection forces. This observation does not however preclude the possibility

that our results are affected by the phenomena that are not explicitly included into the

ABC model formulated above, such as recombination [91, 92, 93, 94, 95, 96], demographic

effects [102, 90], and the assumption that any sequence in the 100-bp window can mutate

into every other sequence [8].
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3.8 Discussion and Conclusion

In this work, we have developed a novel computational approach to simultaneous genome-

wide inference of mutation rates, selection strengths and the average fractions of beneficial,

deleterious and neutral mutations per allele. The approach is based on applying Approx-

imate Bayesian Computation [83, 84, 85] to the Ewens sampling formula which we have

previously generalized to evolution under selection [82]. The generalized Ewens sampling

formula provides an explicit closed-form solution for the probability of each partition of

n alleles (for example, aligned sequences in a genomic window) into allelic counts. How-

ever, it is cumbersome to implement, requiring (i) a partition of n aligned sequences into

all possible allelic partitions and (ii) for each allelic partition, a sum over all the ways in

which the partition can be distributed among different fitness states. The ABC inference

pipeline alleviates these computational difficulties since it was specifically designed for cases

where the probability of the statistic of interest is either not a closed-form expression or

computationally costly to evaluate.

Furthermore, we have assumed that all alleles can adopt either a low- or high-fitness

state, so that, with a sufficient fitness difference between the two states, sequences in the

population will predominantly concentrate in the high-fitness state and, for such sequences,

the newly arising mutations will be either neutral or deleterious. In this aspect, our fitness

landscape conforms to a central tenet of the neutral theory which assumes that the contri-

bution of beneficial mutations can be ignored [64]. Note, however, that the magnitude of

the difference between the two fitness states is inferred from the data rather than imposed,

enabling us to differentiate between the strictly neutral scenario and its generalization
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to both deleterious and neutral evolutionary dynamics. Finally, the Ewens sampling ap-

proach is based on the steady-state assumption: although specific sequences that make up

the evolving population change, the “de-labeled” statistics such as the average number of

distinct alleles in the population is time-independent [8, 46]. Note that a generalization to

more than two fitness states is not likely to be qualitatively different since the population

will always adopt the highest-fitness configuration in steady state, with the mutational

load due to deleterious mutations into all lower-fitness fitness.

We have applied the ABC inference approach to study selective constraints on the ge-

nomic evolution of D. melanogaster. D. melanogaster is a key model organism in modern

genetics and as a result evolution of fruit fly populations in the wild has received con-

siderable attention in the population genetics community, both experimentally and com-

putationally. In particular, a considerable number of fly genomes have been sequenced,

aligned and functionally annotated to a common standard in a large-scale effort [66, 67].

Specifically, phase 3 of the Drosophila Population Genomics Project (DPGP3) has pro-

vided 197 haploid embryo genomes from a single D. melanogaster population in Zambia,

Sub-Saharan Africa. D. melanogaster likely originated in the Sub-Saharan region [103], so

that the genome sample is from the species’s ancestral range. This data provides a rich

collection of polymorphisms and allelic counts in a single fruit fly population. The allelic

counts serve as input to the ABC inference pipeline developed in this work. To carry out

ABC analysis, we have parsed the D. melanogaster genome into 100-bp non-overlapping

windows. The size of the windows was chosen to minimize the effects of recombination,

which is not explicitly treated in the Ewens sampling framework, while still dealing, in

each window, with a polymorphic sample that provides informative allelic counts.
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Furthermore, linkage between mutations that belong to the same window is fully taken

into account, going beyond the other major assumption of the neutral theory, that positive

and negative selection at linked loci does not affect the dynamics of neutral alleles [64]. As a

result, our approach is closer to the background selection framework, which explicitly treats

the effects of recombination and linkage but puts emphasis on negative rather than positive

selection [42, 76, 77, 80]. Similar to background selection, our computational procedure

can be viewed as a baseline model, deviations from which would be indicative of positive

selection events such as selective sweeps. We find that, consistent with previous studies

(reviewed in Ref. [61]), a large fraction of the Drosophila genome appears to evolve under

selective constraints. Similar to previous work [80], we find that purifying selection can

explain the observed patterns of nucleotide diversity in the Drosophila population under

consideration. The major role of deleterious mutations is expected given that deleterious

and neutral mutations are typically much more numerous than beneficial ones [21]. We

observe that sequences under selective constraints are not preferentially associated with

coding regions or other functional elements, or with centromeric or telomeric positions

(although selection does appear to be stronger at sub-telomeric regions, Fig. 3.11), and

are instead distributed evenly throughout the genome. All sequences under selection are

grouped into three distinct peaks, with weak, intermediate, and strong selection (Fig. 3.9B).

The peaks of selection strength correlate with the total number of polymorphisms observed

in a genomic window and with the frequencies of allelic counts, with sequences under

weaker selection generally being more polymorphic (Fig. 3.13). These global constraints

may reflect the need to maintain nucleosome positioning [104] or higher-order chromatin

structure [105], or other universal constraints whose exact nature is currently unclear.
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The ability to treat linkage and epistasis within genomic windows of arbitrary width

(constrained only by computational considerations) provides a substantial advantage over

the Poisson Random Field approach, [45, 87, 88, 89] which can infer the strength of selection

(rather than merely detect its presence) but is unable to account for linkage between sites.

In addition to providing a quantitative Bayesian estimate of selection strength, our inference

pipeline yields simultaneous estimates of population-size-rescaled mutation rates and of the

fractions of neutral, deleterious and beneficial mutations for each high- and low-fitness allele

in a steady-state population. Overall, our θ estimates yield 2-3 fold higher values genome-

wide compared to standard neutral estimates [99, 100] and our own ABC estimate without

selection (Fig. 3.7). We conclude that ignoring selection against deleterious mutations

leads to consistent underestimation of effective population sizes. Finally, we find that as

a rule, there are many more deleterious than neutral mutations available to an allele in a

high-fitness state. Interestingly, it is the alleles subjected to intermediate levels of selection

that are the most robust to mutations (i.e., have the largest number of neutral mutations

available to them) (Fig. 3.10C).

Our inference relies on the steady-state assumption and therefore our estimates may

become inaccurate if the population is in the process of expansion or contraction. However,

our framework should be able to account for past changes in the population size, such as

bottlenecks, through adjusting the effective population size. Drosophila demographics

is a potential compounding factor because not only derived fruit fly populations have

been associated with severe bottlenecks [102], but the ancestral range population in Sub-

Saharan Africa is also predicted to have undergone a significant bottleneck [90]. These

past events should reduce the magnitude of the effective population size in our framework;
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our predictions of θ (and using mutation rates per nucleotide from previous mutation-

accumulation studies [97, 98]) yield Neff ≈ 106, reasonably consistent with the population

size estimates from Ref. [90].

In summary, we have developed an ABC inference framework for simultaneous genome-

wide prediction of selection strengths, mutation rates, and the fraction of viable alleles.

The framework is based on the Ewens sampling formula, which we previously generalized

to evolution under selection [82]. Applying this approach to the evolutionary dynamics

of a single Drosophila population, we observe, in line with previous reports, that a major

fraction of the fly genome evolves under purifying selection against the constant influx

of deleterious mutations. Moreover, we have found that genomic sequences can be clas-

sified into three distinct classes on the basis of their selection strength and investigated

the effect of selection on mutation rate estimates. The accuracy of our predictions has

been verified against synthetic data, which allowed us to systematically test all the ma-

jor assumptions inherent in the model and gauge their potential effect on the accuracy

of genome-wide predictions. Our computational approach can be used in other organisms

for which population-level genomic data is available, providing an alternative to the Pois-

son Random Field and neutral approaches for explicit inference of key population-genetic

parameters.
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