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In this dissertation, we proposed a new test for the serial correlation under high dimensionality,

based on the maximum self-normalized autocovariances. We show that the asymptotic distribu-

tion of the test statistics is the extreme value distribution of type I. To calibrate the size of test,

we use a multiplier bootstrap procedure, and prove the consistency under mixing conditions.

Our new test has a more accurate empirical rejection rate under the null hypothesis, compared

to the white noise test using the maximum cross correlation proposed by Chang et al. (2017).

We also consider a second test statistic, which is the sum of squared maximum and minimum

self-normalized autocovariances. It aims at killing two birds with one stone: to have an em-

pirical size that is closer to the nominal one, and to gain more power for detecting non-zero

autocorrelations. We demonstrate the sizes and powers of the proposed tests through extensive

numerical studies and a real example on economic indicators, which confirm their superiority

over existing methods. Since the convergence rate of the normal extreme is of critical impor-

tance for hypothesis tests based on extreme type test statistics, we consider a transform of the

normal extreme, with improved convergence rates. In this second project, we show that af-

ter a monotone transformation, the convergence rate of the squared normal extreme is of the

ii



order (log n)−3, which is faster than the existing results, of the order (log n)−2 at their best.

More strikingly, we demonstrate that the empirical convergence speed is uniformly improved,

especially at the tails, even when the sample is of a moderate size.
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Chapter 1

Introduction

Testing for serial correlation is a fundamental problem in time series analysis. One of the most

important application is to test the whiteness of the residuals, after a model has been fitted to the

data. Many testing procedures for univariate time series (see for example Box and Pierce, 1970;

Ljung and Box, 1979; Hong, 1996; Romano and Thombs, 1996; Horowitz et al., 2006; Xiao and

Wu, 2014, among many others) have been extended to examine the whiteness of the multivariate

series. In particular, Hosking (1980), Li and McLeod (1981) and Poskitt and Tremayne (1982)

considered the multivariate portmanteau statistics, Hosking (1981) introduced the Lagrange

multiplier test, and Tiao and Box (1981) proposed the likelihood ratio test. The asymptotic

distributions of these test statistics are all established under the assumption that the dimension

of the time series is fixed. Furthermore, in most cases the time series under the null hypothesis

is assumed to be not only the white noise, but also iid for the validity of the theories.

For contemporary high dimensional time series, the traditional white noise tests often can-

not be implemented directly, or may lead to distorted sizes. Recently, Chang et al. (2017)

proposed an omnibus test, based on the maximum absolute auto- and cross-correlation of all

component time series. Since the distribution of the test statistic is not analytically tractable,

the critical values are given by dependent Gaussian multiplier bootstrapping. Despite the fact

that this new test and its variants show superior performances over the classical methods, the

tests themselves can be too conservative when the dimension is very high, and the empirical

rejecting probabilities are very close to zero when the time series are generated from various

white noise models.

We propose two new tests for the high dimensional white noise. The first one is based on

the maximum absolute self-normalized autocovariances, and the second one is based on the

sum of squared maximum and minimum of the self-normalized autocovariances. The choice
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of the test statistics are motivated by a few reasons. First, it is natural to put the variables on

the same scale, before looking at the extreme values from them, so we use the self-normalized

version of the sample autocovariances. Second, if the sample autocovariances are at the same

scale, the asymptotic distributions of the extremes become analytically tractable. Third, since

there is usually no prior knowledge about the sign of the autocorrelations, including both the

maximum and the minimum in the test can be more adaptive to the unknown pattern under the

alternative.

We show that the asymptotic distribution of the maximum-based test statistic is the extreme

value distribution of type I. In particular, we allow the dimension to grow exponentially with

the sample size. Furthermore, the white noise under the null hypothesis needs not to be iid, and

only mixing conditions are required. We also find that under very mild dependence conditions,

the maximum and minimum sample autocovariances are asymptotically independent, which

implies that the limiting distribution of the second test statistic is a convolution of two extreme

value distributions. To calibrate the sizes of the proposed tests for finite samples, we employ

the dependent Gaussian multiplier bootstrap, which is similar to the one used in Chang et al.

(2018). The consistency of the bootstrap is also established.

We conduct an extensive numerical analysis to compare the sizes and powers of the pro-

posed tests with other methods. It is observed that our tests, especially the second one, are uni-

formly more accurate in terms of the empirical rejection probabilities under the null, comparing

with all other methods. At the same time, the powers of the proposed tests are comparable with

others. We use an economic dataset to illustrate the empirical performance of the tests. More

specifically, we use the white noise tests as diagnostics to identify a suitable autoregressive

model of the matrix-valued time series. While the tests in Chang et al. (2018) fail to detect the

autocorrelations, our tests are more sensitive, and direct us to use an autoregressive model with

two terms.

It is well known that usually the convergence rates of the extremes are very slow. For

example, as a classical result, Fisher and Tippett (1928) pointed out that the normal extreme

converges to the limiting distribution with a speed no faster than (log log n)2/ log n. In a se-

quence of papers (Hall, 1979, 1980), Peter Hall proved that the convergence rate of the squared
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normal extreme can be improved to 1/ log n by choosing a better centering constant, and it

can be further improved to 1/(log n)2 if the squared normal extreme is also rescaled prop-

erly. Interestingly, these improved rates are not reflected through the empirical performances,

unless the sample size is extremely large. For example, when comparing the distributions of

the squared normal extremes, with two different centering constants, corresponding to the con-

vergence rates (log log n)2/ log n and 1/ log n respectively, we find that the former is always

better approximated by the limiting distribution, even when the sample size is as large as 107,

although it leads to a slower rate theoretically. This is however not in contradiction with the

theories: only that a much larger sample size (perhaps unrealistic) is required!

Our major finding is that after a monotone transform, the convergence rate of the normal

extreme can be increased to 1/(log n)3. Both the point-wise and uniform rates are derived.

The most interesting findings are as follows. First, the actual distribution is significantly and

uniformly closer to the asymptotic one than existing results, even for moderate sample sizes

of hundreds or thousands. Second, the actual distribution is always stochastically dominated

by the asymptotic one. This second phenomenon has important implications for the hypothesis

tests based on the maximum: the corresponding asymptotic test is guaranteed to be conserva-

tive.

This dissertation is organized as follows. In Chapter 2 we prove a faster convergence rate

of the squared normal extreme, after a suitable monotone transform. Both the point-wise and

uniform convergence rates are shown to be 1/(log n)3. In addition, similar results are obtained

for the k-th maxima. We also illustrate the finite sample performances through some numerical

studies. Chapter 3 focuses on the new white noise tests for high dimensional time series.

The asymptotic distributions of both test statistics are derived. We also introduce a dependent

Gaussian multiplier bootstrap to calibrate the sizes of the test, and prove the consistency of

the bootstrapping procedure. A thorough numerical study is carried out to compare the sizes

and powers of the proposed tests with existing methods. We also apply our tests to identify a

suitable model for an economic dataset. At the end, Chapter 4 concludes with a short summary.
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Chapter 2

Improved Convergence Rates of Normal Extremes

2.1 Introduction

Let X1, X2, . . . , be a sequence of independent standard normal random variables, and let

Mn := max{X1, X2, . . . , Xn} be the maximum of the first n of them. According to the

extreme value theory (see Leadbetter et al., 1983, for an overview), after proper centering and

rescaling, the limiting distribution of Mn is the extreme value distribution of type I, or the so

called Gumbel distribution, with the distribution function G1(x) = exp(−e−x). In fact, if we

define

αn = (2 log n)−1/2

βn =
√

2 log n− log(log n) + log(4π)

2
√

2 log n

then α−1n (Mn − βn) converges to G1 in distribution, i.e.

lim
n→∞

P
[
α−1n (Mn − βn) ≤ x

]
= lim

n→∞
Φn(αnx+ βn) = exp

(
−e−x

)
, −∞ < x <∞,

(2.1)

where Φ(·) is the distribution function of N(0, 1).

The rate of convergence in (2.1) is extremely slow. The fact was noted by Fisher and Tippett

(1928), and studied more precisely by Hall (1979), who proved that the convergence rate in

(2.1) is no better than (log log n)2/ log n. Hall (1979) also found that if βn1 is the solution of

the equation

2πβ2n1 exp(β2n1) = n2, (2.2)
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and αn1 = β−1n1 , then

C1

log n
< sup
−∞<x<∞

∣∣P[α−1n1 (Mn − βn1) ≤ x]−G1(x)
∣∣ < C2

log n
, (2.3)

where C1 and C2 are absolute constants. In other words, the convergence rate can be improved

to (log n)−1 by choosing a better centering constant βn1. They further proved that the rate can

not be better than (log n)−1 by choosing a different sequence of normalizing constants.

It is equivalent and sometimes more convenient to study the limiting behavior of Mn

through its squared version M2
n. There are counterparts of (2.1) and (2.3) for M2

n. More

importantly, Hall (1980) found that with a suitably chosen constants an and bn, the normalized

sequence a−1n (M2
n − bn) converges to G1(x) with the rate (log n)−2. A detailed overview of

the progression regarding the convergence rates of normal extremes will be provided in Sec-

tion 2.2.3 via the squared version M2
n.

While the aforementioned results are all on the uniform convergence rates, the convergence

to G1 in the upper tail is of particular interests when performing hypothesis tests using max-

imum type statistics. For example, the stepdown procedure of Romano and Wolf (2005) for

multiple testing requires the knowledge about the upper quantiles of the maximum test statis-

tic. Cai et al. (2014) used the maximum coordinate-wise difference of two transformed sample

mean vectors to test the equality of two high dimensional means.

In Figure 2.1 we plot the empirical distributions of M2
n with different choices of normaliz-

ing sequences. The black line is the theoretical cumulative distribution function (CDF) G1, the

dashed, red and blue lines are empirical CDF corresponding to convergence rates in (2.1), (2.3)

and (log n)−2 respectively. Figure 2.2 zooms in on the upper tails. Despite the fact that the red

line is associated with a faster convergence rate than that of the dashed one, Figure 2.2 shows

that it is consistently farther from the theoretical CDF in the upper tail, even when the sample

size is as large as 105. This needs not contradicts the theories on the uniform convergence rates,

because we see in Figure 2.1 that the dashed line deviates apparently from the black one in the

lower tail. However, tests based on the statistic in (2.3) will be quite off, and have no advantage

over the statistic in (2.1). On the other hand, the green line, corresponding to the rate (log n)−2,

shows the potential to outperform the dashed one, when the sample size is sufficiently large,
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as shown in the bottom right panel of Figure 2.2. The issue is that the green line is below the

theoretical CDF, indicating that the corresponding asymptotic test is not conservative.

Our major finding is that the convergence rate can be further improved to (log n)−3 by

applying a monotone transform to M2
n. Let bn := 1

2 [Φ−1(1 − 1/n)]2. Define Yn through the

following transform of M2
n:

Yn :=

[
1−

(
1 +

M2
n − 2bn
8b2n

)−1] (
4b2n + 2bn − 2

)
.

The results in Section 2.2 imply the following rate of convergence

sup
−∞<x<∞

|P (Yn ≤ x)−G1(x)| < C3

(log n)3
.

The blue lines in Figure 2.1 give empirical CDF of Yn, which are almost identical withG1 even

when the sample size is as small as 200. When zoomed into the upper tail in Figure 2.2, the

faster convergence of Yn is more clearly seen. Furthermore, if Yn is used as the test statistic for

the asymptotic test, it is not only more accurate, but also always conservative, since the blue

curve sits above the black one (for G1) in the upper tail.

The rest of this article is organized as follows. We present and prove the point-wise and uni-

form convergence rates of Yn in Section 2.2.1 and Section 2.2.2 respectively. In Section 2.2.3

we demonstrate how the faster convergence rate is achieved by comparing with existing results.

Similar convergence rates regarding the k-th maxima are presented in Section 2.2.4. Numer-

ical analysis and an application on testing the covariance structure are given in Section 2.3.

Additional figures, tables, and some technical results are relegated in the Appendix.

We conclude this section by a brief review of the literature on the convergence rates of

normal extremes. Cohen (1982) showed that the penultimate approximation can achieve the

(log n)−2 rate. Rootzén (1983) investigated the convergence rates of the extremes from a sta-

tionary Gaussian process. Hall (1991) found that the extreme of a continuous time Gaussian

process also has a logarithmic convergence rate. For convergence rates of extremes from a

non-Gaussian sequence, we refer to Hall and Wellner (1979), Smith (1982), Leadbetter et al.

(1983), de Haan and Resnick (1996), Peng et al. (2010) and references therein.



7

2.2 Main Results

We will first consider the pointwise convergence rates in Section 2.2.1, and then illustrate how

the faster rates are achieved by modifying the normalizing constants and applying a transform

of M2
n in Section 2.2.3. The uniform convergence rates are given in Section 2.2.2. In Sec-

tion 2.2.4 we present the corresponding results for the k-th maxima. We make the convention

that C,C1, C2, . . . are generic absolute constants, whose values may vary from place to place.

2.2.1 Pointwise Convergence Rate

Let bn be the solution of the equation 1− Φ(
√

2bn) = 1/n. Recall that Yn is defined as:

Yn :=

[
1−

(
1 +

M2
n − 2bn
8b2n

)−1] (
4b2n + 2bn − 2

)
. (2.4)

According to the definition,
√

2bn is the (1 − 1/n)-th quantile of the standard normal distri-

bution. Since M2
n ≥ 0 and b5 ≈ .35, the transform given in (2.4) is strictly monotone when

n ≥ 5, which we shall assume in the sequel.

Using the Newton-Raphson approximation (see Appendix 2.4.2 for detailed derivations), it

can be shown that

bn = log n− 1
2 log logn− 1

2 log 4π +O(log log n/ log n).

We first prove the pointwise convergence rate of Yn to G1. It is convenient to express the result

through bn, which is of the order log n.

Theorem 2.1. For each fixed −∞ < x <∞,

P(Yn ≤ x)−G1(x) = G1(x)e−x · 4x3 + 15x2 + 30x

24b3n
+O(b−4n ).

Proof. Define the function gn(x) as the inverse transform of (2.4)

gn(x) =

[(
1− x

4b2n + 2bn − 2

)−1
− 1

]
· 8b2n + 2bn (2.5)
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Since (2.4) is a monotone transform, the event [Yn ≤ x] is equivalent to [M2
n ≤ gn(x)]. It can

be shown that

gn(x) = 2bn + 2x− x

bn
+
x2 + 3x

2b2n
− 2x2 + 5x

4b3n
+O(b−4n ). (2.6)

When n is large enough, gn(x) > 0, and we let xn = [gn(x)]1/2. Note that

P(Mn ≤ xn) > P(M2
n ≤ x2n) = P(Mn ≤ xn)−P(Mn < −xn) > P(Mn ≤ xn)−2−n. (2.7)

According to Lemma 2.4.1 in Leadbetter et al. (1983), for any 0 ≤ z ≤ n,

0 ≤ e−z −
(

1− z

n

)n
≤ z2e−z

2
· 1

n− 1
. (2.8)

Let τn(x) = n [1− Φ(xn)], it follows that

P(Mn ≤ xn) = [1− (1− Φ(xn))]n = exp[−τn(x)] +O(n−1). (2.9)

To evaluate τn(x), we make use the following series expansion of the normal tail probability

(Abramowitz and Stegun, 1964): for any z > 0, and any positive integer m,

1− Φ(z) =
φ(z)

z

{
1− 1

z2
+

1 · 3
z4

+ · · ·+ (−1)m1 · 3 . . . (2n− 1)

z2m
+Rm

}
,

where

Rm = (−1)m+1(2m+ 1)!

∫ ∞
z

φ(t)

t2m+2
dt,

which is less in absolute value than the first neglected term. In particular, when m = 3, it holds

that for any z > 0,

(
1

z
− 1

z3
+

3

z5
− 15

z7

)
φ(z) < 1− Φ(z) <

(
1

z
− 1

z3
+

3

z5
− 15

z7
+

105

z9

)
φ(z) (2.10)

According to the definition of τn(x) and (2.10), we first do the Taylor expansion (up to the
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order b−4n ) for

φ(xn) =
1√
2π
· exp

(
−bn − x+

x

2bn
− x2 + 3x

4b2n
+

2x2 + 5x

8b3n

)
=
e−xe−bn√

2π
·
(

1 +
x

2bn
− x2 + 6x

8b2n
− 5x3 + 6x2 − 30x

48b3n
+O(b−4n )

)
,

and

1

xn
=

(
2bn + 2x− x

bn
+
x2 + 3x

2b2n
− 2x2 + 5x

4b3n

)−1/2
=

1√
2bn

(
1− x

2bn
+

3x2 + 2x

8b2n
− 5x3 + 8x2 + 6x

16b3n
+O(b−4n )

)
.

Combining the two preceding equations and rearranging the terms, we have

φ(xn)

xn
=
e−xe−bn√

4πbn
·
(

1− x

2b2n
− 4x3 + 3x2 − 6x

24b3n
+O(b−4n )

)
.

According to (2.10), we also calculate

1− 1

x2n
+

3

x4n
− 15

x6n
= 1− 1

2bn
+

2x+ 3

4b2n
− 4x2 + 14x+ 15

8b3n
+O(b−4n )

=

(
1− 1

2bn
+

3

4b2n
− 15

8b3n

)
·
(

1 +
x

2b2n
− x2 + 3x

2b3n
+O(b−4n )

)

Recall bn is the solution of the equation 1−Φ(
√

2bn) = 1/n. According to the approximation

to normal probability function in (2.10), we have

ne−bn√
4πbn

=

(
1− 1

2bn
+

3

4b2n
− 15

8b3n
+O(b−4n )

)−1
. (2.11)
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Therefore,

(
1− 1

x2n
+

3

x4n
− 15

x6n

)
nφ(xn)

xn

= e−x ·
(

1− x

2b2n
− 4x3 + 3x2 − 6x

24b3n
+O(b−4n )

)
·
(

1− 1

2bn
+

3

4b2n
− 15

8b3n
+O(b−4n )

)−1
·
(

1− 1

2bn
+

3

4b2n
− 15

8b3n

)
·
(

1 +
x

2b2n
− x2 + 3x

2b3n
+O(b−4n )

)
= e−x

(
1− 4x3 + 15x2 + 30x

24b3n
+O(b−4n )

)

Since nφ(xn)/x9n = O(b−4n ), we have by (2.10)

τn(x) = e−x
(

1− 4x3 + 15x2 + 30x

24b3n

)
+O(b−4n ).

According to (2.9), it follows that

P(Yn ≤ x)−G1(x) = exp(−τn(x)) +O(n−1)−G1(x)

= G1(x)e−x · 4x3 + 15x2 + 30x

24b3n
+O(b−4n ).

The proof is complete.

Using (2.10) and Newton-Ralphson method, we have the following expansions for bn

bn = log n− ∆

2
+

∆− 2

4 log n
+

∆2 − 6∆ + 14

16(log n)2
+O

(
(log log n)3

(2 log n)3

)
, (2.12)

where

∆ = log log n+ log 4π.

Therefore, Theorem 2.1 implies that Yn converges to G1 with the rate (log n)−3. The detailed

derivation of (2.12) is given in the Appendix.

2.2.2 Uniform Convergence Rate

In this section we establish the uniform convergence rate.
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Theorem 2.2. There exists an absolute constant c1, such that

sup
−∞<x<∞

|P(Yn ≤ x)−G1(x)| < c1
(log n)3

.

We prove Theorem 2.2 using two lemmas. Recall that gn(x), defined in (2.5), is the inverse

transform of (2.4).

Lemma 2.1. Let {cn} be an increasing sequence of positive integers such that c4n/bn → 0,

then

gn(x) = 2bn + 2x− x

bn
+
x2 + 3x

2b2n
− 2x2 + 5x

4b3n
+
d1n(x)

b3n
,

where limn→∞ sup−cn≤x≤cn |d1n(x)| = 0.

Proof of Lemma 2.1. According to (2.5), for −cn ≤ x ≤ cn, we can obtain the following

expansion:

gn(x) = 2bn + 8b2n ·

[(
1− x

4b2n + 2bn + 2

)−1
− 1

]

= 2bn + 2xγn +
x2γ2n
2b2n

+
x3γ3n
8b4n

·
(

1− xγn
4b2n

)−1
, (2.13)

where

γn =

(
1 +

1

2bn
− 1

2b2n

)−1
.

When n ≥ 13, bn > 1, by series expansion of γn, we have

γn = 1− 1

2bn
+

3

4b2n
− 5

8b3n
+
e1n
b4n

γ2n = 1− 1

bn
+
e2n
b2n

γ3n

(
1− xγn

4b2n

)−1
= 1 + e3n.

The following bounds can be easily verified: |e1n| ≤ 1, |e2n| ≤ 2 and |e3n| ≤ 1. Then by

simplifying (2.13) we have

gn(x) = 2bn + 2x− x

bn
+
x2 + 3x

2b2n
− 2x2 + 5x

4b3n
+

16xe1n + 4x2e2n + x3(1 + e3n)

8b4n
.
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The proof is completed by noting that

sup
−cn≤x≤cn

∣∣∣∣16xe1n + 4x2e2n + x3(1 + e3n)

8bn

∣∣∣∣ ≤ 8cn + 4c2n + c3n
4bn

→ 0

under the condition c4n/bn → 0.

Lemma 2.2. Let {cn} be the same sequence as used in Lemma 2.1, then

τn(x) = e−x
(

1− 4x3 + 15x2 + 30x

24b3n
+
d2n(x)

b3n

)
,

where limn→∞ sup−cn≤x≤cn |d2n(x)| = 0 for all −cn ≤ x ≤ cn.

Proof of Lemma 2.2. Recall that xn := [gn(x)]1/2. Using the normal tail probability bound in

(2.10), we have

∣∣∣∣τn(x)− nφ(xn)

(
1

xn
− 1

x3n
+

3

x5n
− 15

x7n

)∣∣∣∣ ≤ 105nφ(xn)

x9n
. (2.14)

Write

nφ(xn)

(
1

xn
− 1

x3n
+

3

x5n
− 15

x7n

)
=

(
xn√
2bn

)−1
· nφ(xn)√

2bn
·
(

1− 1

x2n
+

3

x4n
− 15

x6n

)
. (2.15)

Let

x1n :=
x

bn
− x

2b2n
+
x2 + 3x

4b3n
− 2x2 + 5x

8b4n
+
d1n(x)

2b4n
,

where d1n(x) is defined in Lemma 2.1. For the first term on the right hand side of (2.15), by

Lemma 2.1,

(
xn√
2bn

)−1
= (1 + x1n)−1/2 = 1− x1n

2
+

3x1n
8
− 5x31n

16
+R1n(x1n). (2.16)

Under the condition c4n/bn → 0, it holds that sup−cn≤x≤cn |x1n| ≤ 5cn/bn, and thus

sup
−cn≤x≤cn

|R1n(x)| = o(1)

b3n
.
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The terms on the right hand side of (2.16) except for R1n(x1n) can be expanded as

(
xn√
2bn

)−1
−R1n(x1n) = 1− x

2bn
+

3x2 + 2x

8b2n
− 5x3 + 8x2 + 6x

16b3n
+
d3n(x)

b3n
.

Note that for each fractional term in x1n, the power of x is no greater than that of bn, and the

same claim holds for the series d3n(x)/b3n. Furthermore, the first term (of the smallest power

of x) in the expansion of d3n(x) is x3/bn, which goes to 0 uniformly over −cn ≤ x ≤ cn.

Therefore, we conclude

lim
n→∞

sup
−cn≤x≤cn

|d3n(x)| = 0

The other two terms in (2.15) can be treated similarly:

nφ(xn)√
2bn

=
ne−xe−bn√

4πbn
·
(

1 +
x

2bn
− x2 + 6x

8b2n
− 5x3 + 6x2 − 30x

48b3n
+
d4n(x)

b3n
+R2n(x)

)
,

1− 1

x2n
+

3

x4n
− 15

x6n
=

(
1− 1

2bn
+

3

4b2n
− 15

8b3n

)
·
(

1 +
x

2b2n
− x2 + 3x

2b3n
+
d5n(x)

b3n
+R3n(x)

)
,

where

sup
−cn≤x≤cn

|d4n(x)| → 0 and |R2n(x)| = o(1)

b3n
,

sup
−cn≤x≤cn

|d5n(x)| → 0 and |R3n(x)| = o(1)

b3n
.

Combining all the preceding bounds together with (2.11), we have

nφ(xn)

(
1

xn
− 1

x3n
+

3

x5n
− 15

x7n

)
= e−x

(
1− 4x3 + 15x2 + 30x

24b3n
+
d6n(x)

b3n

)
.

Using similar arguments as those for d3n, we can verify that

lim
n→∞

sup
−cn≤x≤cn

|d6n(x)| = 0.

It is easy to show that sup−cn≤x≤cn nφ(xn)/x9n = o(b−3n ). So the proof is complete in view of

(2.14).
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We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. Let c1 be a generic absolute constant which may vary from place to

place. We consider three scenarios: x < −cn, −cn ≤ x ≤ cn and x > cn, with cn = 4 log bn.

Obviously, this choice of cn satisfies the condition c4n/bn → 0.

We begin with the situation −cn ≤ x ≤ cn. By (2.7), it holds that

∣∣∣∣P(Yn ≤ x)−
(

1− τn(x)

n

)n∣∣∣∣ ≤ 2−n.

By (2.8) and Lemma 2.2, we have

|P(Yn ≤ x)−G1(x)| ≤ 2G1(x)e−x
(
|4x3 + 15x2 + 30x|

24b3n
+
|d2n(x)|
b3n

)
+

1

2n
+

1

n
,

when n is large enough. Since sup−cn≤x≤cn |d2n(x)| → 0, it suffices to show that

sup
−cn≤x≤cn

∣∣G1(x)e−x(4x3 + 15x2 + 30x)
∣∣ <∞.

Numerical evaluations show that

sup
−∞<x<∞

∣∣G1(x)e−x(4x3 + 15x2 + 30x)
∣∣ < 20

Therefore, we have

sup
−cn<x<cn

|P(Yn ≤ x)−G1(x)| < c1
(log n)3

.

Now we consider the second scenario x > cn. We will show that both G1(x) and P(Yn ≤

x) are close to 1, and their differences from 1 are of the order 1/(log n)3. Since x > cn =

4 log bn,

G1(x) = exp(−e−x) > exp(−b4n) ≥ 1− 1/b4n. (2.17)



15

On the other hand, recall the definition of g(·) in (2.5)

1− P(Yn ≤ x) ≤ P(Yn ≥ 4 log bn) = P
[
M2
n ≥ g(4 log bn)

]
≤ P

(
M2
n ≥ 2bn + 4 log bn ·

8b2n
4b2n + 2bn − 2

)

Note that 8b2n/(4b
2
n + 2bn − 2) > 1.5 for n ≥ 33. Let y2n = 2bn + 6 log bn, then

P(M2
n ≥ y2n) ≤ P(Mn ≥ yn) + 1/2n.

Let τn = n[1− Φ(yn)]. Using the normal tail probability bounds (2.10), we have

τn ≤
n√
2π

(2bn + 6 log bn)−1/2 · exp(−bn − 3 log bn)

=
ne−bn√

3πbn

(
1 +

3 log bn
bn

)−1/2
· exp(−3 log bn)

Recall 1− Φ(
√

2bn) = 1/n, so that by (2.10)

ne−bn√
4πbn

(
1− 1

2bn

)
< 1.

When n ≥ 33, we have

(
1 +

3 log bn
bn

)−1/2
·
(

1− 1

2bn

)−1
< 1,

and it follows that

τn < exp(−3 log bn) = 1/b3n.

Using (2.8), we deduce that when n is large enough

P(Mn ≥ yn) = 1− (Φ(yn))n = 1−
(

1− τn
n

)n
≤ 1− e−τn +

1

n− 1
≤ τn +

1

n− 1
.

Therefore, we conclude

1− P(Yn ≤ x) <
1

b3n
+

1

n− 1
+

1

2n
<

c1
(log n)3

,
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for some absolute constant c1. The preceding inequality, together with (2.17), completes the

proof for x > cn.

Finally we consider x < −cn by showing that both G1(x) and P(Yn ≤ x) converge to 0

faster than 1/(log n)3. Using the definition of bn, we have when n ≥ 33, and x < −cn =

−4 log bn,

G1(x) = exp(−e−x) < exp(−b4n) < 1/b4n.

On the other hand, when x ≤ −4 log bn,

P(Yn ≤ x) ≤ P[M2
n ≤ g(−4 log bn)] ≤ P

(
M2
n ≤ 2bn − 4 log bn ·

8b2n
4b2n + 2bn − 2

)
.

Again since 8b2n/(4b
2
n + 2bn − 2) > 1.5 when n ≥ 33, if we let y′n

2 = 2bn − 6 log bn, then

P(Yn ≤ x) ≤ P (Mn ≤ yn).

Let τ ′n = n[1− Φ(y′n)], we have by (2.10)

exp(−τ ′n) < exp

{
− ne−bn√

4πbn

(
1− 3 log bn

bn

)−1/2
·
(

1− 1

(2bn − 6 log bn)2

)
· exp(3 log bn)

}

< exp {− exp(3 log bn)}

< 1/b3n,

when n is large enough. We conclude by (2.8)

P(Yn ≤ x) <
1

b3n
+

1

n
<

c1
(log n)3

,

which completes the proof.

2.2.3 Comparisons of Different Convergence Rates

The best uniform convergence rate that can be obtained for M2
n, if only centering and rescaling

is allowed, is (log n)−2. We will give a summary of the progression in the literature. We also

explain why the transformed M2
n can have a faster convergence rate (log n)−3.
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In order for M2
n to have the limiting distribution G1, the simplest option is to choose

bn1 = log n− log(log n)/2− log(4π)/2;

then as a counterpart of (2.1), it holds that 1
2(M2

n−2bn1)⇒ G1, where we use⇒ to denote the

convergence in distribution. Using similar arguments as given in Hall (1979), it can be shown

that the convergence rate is (log log n)2/ log n. Similarly as (2.2), if bn1 is the solution of the

equation

4πbn2 exp(2bn2) = n2,

and M2
n is centered by bn2, then the rate of convergence is analogous to (2.3)

C1

log n
< sup
−∞<x<∞

∣∣P [12(M2
n − 2bn2) ≤ x

]
−G1(x)

∣∣ < C2

log n
. (2.18)

Again (2.18) can be established following the proof in Hall (1979).

We note that
√

2bn1 is an approximation of the (1 − 1/n)-th quantile of standard normal

distribution obtained by using the following approximation of the tail probability:

1− Φ
(√

2bn1

)
≈ 1√

2π
· 1√

2 log n
· exp(−bn1) =

1

n
;

and bn2 is obtained by the following approximation of 1− Φ(
√

2bn2):

1− Φ
(√

2bn2

)
≈ 1√

2π
· 1√

2bn2
· exp(−bn2) =

1

n
.

If we choose bn3 through a more precise approximation of 1− Φ(
√

2bn3):

1− Φ
(√

2bn3

)
≈ 1√

4πbn3

(
1− 1

2bn3

)
exp (−bn3) =

1

n
,

and set an3 = 2− 1/bn3, then a−1n3 (M2
n − 2bn3)⇒ G1 with the convergence rate

C1

(log n)2
< sup
−∞<x<∞

∣∣P [a−1n3 (M2
n − 2bn3) ≤ x

]
−G1(x)

∣∣ < C2

(log n)2
. (2.19)
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The way we represent the preceding result is slightly different from the original one given by

Hall (1980). The choices of an3 and bn3 differ from those in Hall (1980) by smaller order terms,

which do not affect the convergence rates. We choose the current formulation in order to have

a better comparison with our main result.

To achieve a better rate of convergence, we first choose bn precisely through 1−Φ(
√

2bn) =

1/n. Second, observe that the events in (2.18) and (2.19) can be written as

M2
n ≤ 2bn2 + 2x

M2
n ≤ 2bn3 + 2x− x/bn3

respectively. According to (2.6), the event [Yn ≤ x] implies that

M2
n ≤ 2bn + 2x− x

bn
+
x2 + 3x

2b2n
+O

(
b−3n
)
.

We see that a term of order O(b−2n ) is needed on the right hand side to achieve the convergence

rate (log n)−3 in Theorem 2.1.

2.2.4 k-th Maxima

In this section we present pointwise and uniform convergence rates for the k-th maxima Mn,k,

defined as the k-th largest among the first n variables {X1, X2, . . . , Xn}. These results follow

from almost the same arguments as those for the maxima, so we state them without proofs.

Theorem 2.3. Let bn be the solution of the equation 1−Φ(
√

2bn) = 1/n. For an given positive

integer k, define

Yn,k :=

1−

(
1 +

M2
n,k − 2bn

8b2n

)−1(4b2n + 2bn − 2
)
.

(i) For each fixed −∞ < x <∞, it holds that

P(Yn,k ≤ x)−Gk(x) = G1(x)
e−kx

(k − 1)!
· 4x3 + 15x2 + 30x

24b3n
+O(b−4n ),
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where Gk(x) := G1(x)
∑k−1

j=0 e
−jx/j!.

(ii) There exists a constant c2 > 0, such that

sup
−∞<x<∞

|P(Yn,k ≤ x)−Gk(x)| < c2
(log n)3

.

2.3 Applications and Numerical Comparisons

2.3.1 Numerical Comparisons

In this section, we numerically compare the convergence rates of different versions of the nor-

malized M2
n, introduced in Section 2.2.3. Specifically, we compare G1(x) with the CDF of

Yn1 := 1
2(M2

n − 2bn1), Yn2 := 1
2(M2

n − 2bn2), Yn3 := (2 − 1/bn3)
−1(M2

n − 2bn3), and Yn,

labeled by bn1, bn2, bn3 and bn respectively in Figure 2.1. The vertical lines mark 90%, 95%

and 99% quantiles of Gumbel distribution. We see that the distribution of Yn (blue curve) is

uniformly closer to G1(x), no matter what the sample size is. Figure 2.2 zooms into the upper

tail for a clearer visualization. An interesting finding is that the faster theoretical convergence

rates of Yn2 and Yn3 over Yn1, are not reflected through the plots for Yn2 even when the sample

size is as large as 105. The distribution of Yn3 starts to be closer to G1(x) in the upper tail

when n = 105. We remark that the inferior performances of Yn2 and Yn3 need not necessarily

contradicts the theoretical convergence rates: from Figure 2.1 it is seen that the convergence

of Yn1 is much slower in the left tail. On the other hand, in Figure 2.2 it is more clearly seen

that Yn always has a faster convergence rate, compared with the rest. Furthermore, the CDF of

Yn lies above G1(x), indicating that if a hypothesis test is based on the maximum type statis-

tic, then it is guaranteed to be conservative by using Yn. This is in contrast to Yn3, which is

always below G1(x). Similar patterns are observed for the second maxima in Figure 2.3. Two

additional figures for the 3rd and 4th maxima are given in the Appendix.

Let cα be the (1 − α)-th quantile of G1(x). We find the smallest sample size n such

that P(Yn > cα) reaches ±10% of α. The results are summarized in Table 2.1 for all of

Yni, i = 1, 2, 3 and Yn. Overall Yn needs much smaller sample sizes. Such sizes do not exist

for Yn2 when n ≤ 106, so we choose not to report them.
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Figure 2.1: Comparison of the CDFs.

Table 2.1: Smallest sample size to reach ±10% of the norminal level.

α Yn1 Yn2 Yn3 Yn
10% 92 - 1230 293
5% 995 - 3639 686
1% 359965 - 38208 4126

2.3.2 An Example

In this section, we consider an example on testing the covariance structure. Suppose x1, . . . ,xN

is a sequence of independently and identically distributed p-dimensional random vectors. Let

R = {ρij}1≤i,j≤p be the correlation matrix of x1. Consider the hypothesis testing problem:

H0 : R = Ip vs H1 : R 6= Ip.

Jiang et al. (2004) proposed to use the maximum absolute sample correlationLN = max1≤i<j≤p |ρ̂ij |

as the test statistic, and proved that 1
2(NL2

N − 2bn1) converges in distribution to G1, where

n = p(p − 1)/2. We consider the test statistics TNi, i = 1, 2, 3 and TN , which are defined in

the same way as Yni and Yn in Section 2.3.1, but replacing M2
n therein by NL2

N . The p-values
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Figure 2.2: Comparison of the CDFs in the upper tail.

are calculated by comparing the test statistics with the Gumbel distribution G1. By treating the

sample correlations Nρ̂ij as iid standard normal random variables, we obtain another approxi-

mation of the p-value, given by 1 − [Φ(NL2
N )]n. The test done this way is named as T0. We

report the empirical rejection probabilities based on 5000 repetitions in Table 2.2 and Table 2.3,

where xi ∼ N(0, Ip), and xi has iid t7 entries, respectively. We see that the empirical sizes

of TN , TN1 and T0 are in general close to the nominal ones, and their performances are stable

across different sample sizes and dimensions. The results are also consistent with our findings

in Section 2.3.1. Six more extensive tables, covering more sample sizes and dimensions, are

given in the Appendix.

2.4 Appendix

2.4.1 Transformation of Mn

Recall

Yn :=

[
1−

(
1 +

M2
n − 2bn
8b2n

)−1] (
4b2n + 2bn − 2

)
.



22

−3 −2 −1 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n = 200

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

G2(x)
bn1
bn2
bn3
bn

−3 −2 −1 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n = 500

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

G2(x)
bn1
bn2
bn3
bn

−3 −2 −1 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n = 1000

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

G2(x)
bn1
bn2
bn3
bn

−3 −2 −1 0 1 2 3 4
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

n = 5000

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

G2(x)
bn1
bn2
bn3
bn

Figure 2.3: Comparison of CDFs for second maxima.

For n ≥ 5, this transformation is strictly monotone. Then [Yn ≤ x] implies that

M2
n − 2bn
8b2n

≤ x

4b2n + 2bn − 2
+

x2

(4b2n + 2bn − 2)2

which further implies:

M2
n ≤ 2bn + 2x ·

(
1 +

1

2bn
− 1

2b2n

)−1
+

x2

2b2n
·
(

1 +
1

2bn
− 1

2b2n

)−2
= 2bn + 2x ·

(
1− 1

2bn
+

3

4b2n
− 5

8b3n
+O(b−4n )

)
+

x2

2b2n
·
(

1− 1

bn
+O(b−2n )

)
= 2bn + 2x− x

bn
+
x2 + 3x

2b2n
− 2x2 + 5x

4b3n
+O(b−4n )
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Table 2.2: The empirical rejection probabilities (%) when xi is N(0, Ip).

p Test
n = 256 n = 512 n = 1024

10% 5% 1% 10% 5% 1% 10% 5% 1%
32 T0 8.96 4.42 0.72 9.64 4.86 0.94 10.74 5.60 1.28

TN1 8.62 4.02 0.62 8.94 4.48 0.78 10.28 5.02 1.10
TN2 7.10 3.36 0.48 7.72 3.80 0.54 8.48 4.18 0.80
TN3 10.06 5.12 1.02 10.64 5.46 1.16 11.92 6.42 1.62
TN 8.94 4.28 0.66 9.46 4.72 0.88 10.64 5.36 1.20

64 T0 7.68 3.78 0.80 9.94 5.34 0.80 9.42 4.74 1.00
TN1 7.48 3.30 0.66 9.46 4.72 0.70 9.02 4.44 0.84
TN2 6.26 2.76 0.62 8.42 3.96 0.66 7.88 3.84 0.70
TN3 8.44 4.10 0.96 10.60 5.88 0.90 10.06 5.12 1.10
TN 7.68 3.76 0.72 9.88 5.24 0.80 9.36 4.70 0.96

128 T0 7.60 3.32 0.62 9.30 4.86 0.80 9.86 4.82 0.98
TN1 7.34 3.12 0.60 8.90 4.52 0.72 9.56 4.58 0.82
TN2 6.26 2.72 0.60 7.86 3.82 0.66 8.20 4.00 0.68
TN3 8.16 3.82 0.66 9.78 5.14 0.90 10.14 5.30 1.14
TN 7.60 3.32 0.62 9.30 4.78 0.78 9.86 4.76 0.92

256 T0 6.44 2.94 0.34 8.64 3.96 0.62 8.54 4.22 0.74
TN1 6.08 2.70 0.28 8.46 3.78 0.58 8.38 3.98 0.64
TN2 5.40 2.38 0.24 7.42 3.28 0.52 7.48 3.64 0.42
TN3 6.80 3.10 0.42 8.92 4.26 0.72 9.16 4.42 0.80
TN 6.44 2.92 0.34 8.66 3.94 0.60 8.54 4.20 0.70

2.4.2 Expansion of bn

Recall bn is the solution of the equation 1 − Φ(
√

2bn) = 1/n. We use the following approxi-

mation to the normal density:

1− Φ(z) =

(
1

z
− 1

z3
+

3

z5
− 15

z7

)
φ(z).

Then
√

2bn is the solution of the following equation:

1√
2π
e−

x2

2

(
1

x
− 1

x3
+

3

x5
− 15

x7

)
= 1/n. (2.20)

Our goal is to use three consecutive applications of the Newton-Raphson approximation method

to obtain the solution of (2.20) and then calculate bn accordingly. Let

f(x) =
1√
2π
e−

x2

2

(
1

x
− 1

x3
+

3

x5
− 15

x7

)
.
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Table 2.3: The empirical rejection probabilities (%) when xi has iid t7 entries.

p Test
n = 256 n = 512 n = 1024

10% 5% 1% 10% 5% 1% 10% 5% 1%
32 T0 9.84 4.82 1.02 9.18 4.70 1.24 10.22 5.28 1.12

TN1 9.28 4.36 0.76 8.82 4.34 1.06 9.58 4.66 0.92
TN2 7.84 3.74 0.66 7.28 3.72 0.92 8.26 3.90 0.68
TN3 10.74 5.70 1.36 10.04 5.32 1.40 11.38 6.12 1.20
TN 9.70 4.66 0.84 9.14 4.44 1.16 10.02 5.02 0.98

64 T0 9.28 4.28 0.94 10.18 5.02 0.82 9.02 4.78 1.00
TN1 8.96 3.88 0.70 9.80 4.50 0.68 8.46 4.54 0.78
TN2 7.70 3.44 0.52 8.42 3.94 0.56 7.44 3.82 0.70
TN3 9.72 4.74 1.04 10.76 5.44 0.98 9.82 5.28 1.14
TN 9.24 4.22 0.84 10.18 4.94 0.78 9.00 4.74 0.88

128 T0 9.14 4.64 0.82 9.74 4.90 1.30 9.96 4.76 0.94
TN1 8.90 4.32 0.76 9.32 4.60 1.14 9.58 4.44 0.84
TN2 7.82 3.90 0.56 8.10 3.76 0.84 8.26 3.84 0.70
TN3 9.64 4.84 0.90 10.20 5.16 1.50 10.32 5.10 1.08
TN 9.14 4.58 0.80 9.74 4.80 1.20 9.96 4.66 0.90

256 T0 9.08 4.32 0.94 10.20 4.98 0.98 9.98 5.36 1.30
TN1 8.80 4.02 0.88 9.96 4.74 0.84 9.68 5.02 1.18
TN2 7.92 3.50 0.86 8.82 4.18 0.80 8.84 4.52 1.10
TN3 9.36 4.72 1.04 10.58 5.30 1.04 10.48 5.62 1.38
TN 9.08 4.30 0.94 10.20 4.98 0.94 9.98 5.30 1.20

then the derivative of f(x) is:

f ′(x) =
1√
2π
e−

x2

2

(
−1 +

105

x8

)
.

We start from

x0 =
√

2 log n− ∆

2
√

2 log n
,

where

∆ = log log n+ log 4π.

By Newton-Raphson approximation method,

f(x0) + f ′(x0)(x1 − x0) = 1/n.
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Then we can obtain:

x1 =
√

2 log n− ∆

2
√

2 log n
− ∆2 − 4∆ + 8

8 (2 log n)3/2
.

Repeat this procedure for two more times, we have

x2 =
√

2 log n− ∆

2
√

2 log n
− ∆2 − 4∆ + 8

8 (2 log n)3/2
− ∆3 − 8∆2 + 32∆− 56

16 (2 log n)5/2
.

x3 =
√

2 log n− ∆

2
√

2 log n
− ∆2 − 4∆ + 8

8 (2 log n)3/2
− ∆3 − 8∆2 + 32∆− 56

16 (2 log n)5/2

− 15∆4 − 184∆3 + 1152∆2 − 4128∆ + 7040

384 (2 log n)7/2
.

Then by bn = x23/2, it can be easily calculated:

bn = log n− ∆

2
+

∆− 2

4 log n
+

∆2 − 6∆ + 14

16(log n)2
+O

(
(log log n)3

(2 log n)3

)
.

2.4.3 k-th Maxima

Recall that xn is defined as

x2n := 2bn + 2x− x

bn
+
x2 + 3x

2b2n
− 2x2 + 5x

4b3n
+O(b−4n ).



26

Event [Yn,k ≤ x] is equivalent to [M2
n,k ≤ x2n]. Following the similar argument in Hall (1980),

we have:

P (Yn,k ≤ x)−Gk(x) =P (Mn,k ≤ xn)−Gk(x) +O(nk−12−n)

=
k−1∑
j=0

(
n

j

)
Φn−j(xn) (1− Φ(xn))j −Gk(x) +O(nk−12−n)

=
k−1∑
j=0

Φn−j(xn) (n (1− Φ(xn)))j /j!−G1(x)
k−1∑
j=0

e−jx/j! +O(n−1)

= exp

{
−e−x

(
1− 4x3 + 15x2 + 30x

24b3n
+O(b−4n )

)}
·
k−1∑
j=0

e−jx
(

1− 4x3 + 15x2 + 30x

24b3n
+O(b−4n )

)j
/j!

−G1(x)
k−1∑
j=0

e−jx/j! +O(n−1)

=G1(x)

{(
1 + e−x · 4x3 + 15x2 + 30x

24b3n
+O(b−4n )

)
·
k−1∑
j=0

e−jx
(

1− 4x3 + 15x2 + 30x

24b3n
+O(b−4n )

)j
/j!−

k−1∑
j=0

e−jx/j!

}
+O(n−1)

=G1(x) · 4x3 + 15x2 + 30x

24b3n
·
k−1∑
j=0

e−jx(e−x − j)/j! +O(b−4n )

=G1(x)
e−kx

(k − 1)!
· 4x3 + 15x2 + 30x

24b3n
+O(b−4n )

2.4.4 Additional Figures

In this section we provide comparisons of the CDFs of the third and fourth maxima.

2.4.5 Additional Tables

In this section we provide a more extensive simulation results for the example in Section 2.3.2,

covering more sample sizes and dimensions.
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Figure 2.4: Full plot of different convergence rates for third maximum
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Figure 2.5: Full plot of different convergence rates for fourth maximum
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Table 2.4: The empirical sizes (%) at nominal level = 10% where xi are independent and
N(0, Ip)

p Test n = 128 n = 256 n = 512 n = 1024 n = 2048

16 T0 8.26 9.82 9.68 10.24 9.96
bn1 7.80 8.92 8.96 9.20 9.22
bn2 6.04 7.14 7.64 7.52 7.36
bn3 10.42 11.52 11.68 12.10 11.78
bn 8.02 9.50 9.32 9.66 9.64

32 T0 7.58 8.96 9.64 10.74 10.18
bn1 7.00 8.62 8.94 10.28 9.46
bn2 5.46 7.10 7.72 8.48 7.86
bn3 8.80 10.06 10.64 11.92 11.32
bn 7.46 8.94 9.46 10.64 10.08

64 T0 5.80 7.68 9.94 9.42 10.36
bn1 5.50 7.48 9.46 9.02 9.98
bn2 4.56 6.26 8.42 7.88 8.78
bn3 6.36 8.44 10.60 10.06 11.06
bn 5.80 7.68 9.88 9.36 10.30

128 T0 5.70 7.60 9.30 9.86 9.46
bn1 5.48 7.34 8.90 9.56 9.12
bn2 4.70 6.26 7.86 8.20 8.14
bn3 6.00 8.16 9.78 10.14 9.76
bn 5.70 7.60 9.30 9.86 9.46

256 T0 4.50 6.44 8.64 8.54 9.44
bn1 4.28 6.08 8.46 8.38 9.16
bn2 3.72 5.40 7.42 7.48 8.30
bn3 4.74 6.80 8.92 9.16 9.84
bn 4.50 6.44 8.66 8.54 9.44
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Table 2.5: The empirical sizes (%) at nominal level = 5% where xi are independent and
N(0, Ip)

p Test n = 128 n = 256 n = 512 n = 1024 n = 2048

16 T0 3.84 4.66 5.22 5.14 4.94
bn1 3.44 4.00 4.60 4.36 4.34
bn2 2.72 3.22 3.76 3.50 3.58
bn3 5.04 6.18 6.68 6.74 6.34
bn 3.58 4.14 4.76 4.52 4.50

32 T0 3.34 4.42 4.86 5.60 5.06
bn1 3.02 4.02 4.48 5.02 4.68
bn2 2.26 3.36 3.80 4.18 3.92
bn3 3.96 5.12 5.46 6.42 5.64
bn 3.26 4.28 4.72 5.36 4.90

64 T0 2.52 3.78 5.34 4.74 5.46
bn1 2.32 3.30 4.72 4.44 4.94
bn2 1.88 2.76 3.96 3.84 4.20
bn3 2.70 4.10 5.88 5.12 6.04
bn 2.48 3.76 5.24 4.70 5.26

128 T0 2.48 3.32 4.86 4.82 4.56
bn1 2.30 3.12 4.52 4.58 4.22
bn2 1.88 2.72 3.82 4.00 3.68
bn3 2.84 3.82 5.14 5.30 4.98
bn 2.48 3.32 4.78 4.76 4.52

256 T0 1.94 2.94 3.96 4.22 4.72
bn1 1.78 2.70 3.78 3.98 4.38
bn2 1.54 2.38 3.28 3.64 3.88
bn3 2.02 3.10 4.26 4.42 4.96
bn 1.94 2.92 3.94 4.20 4.70
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Table 2.6: The empirical sizes (%) at nominal level = 1% where xi are independent and
N(0, Ip)

p Test n = 128 n = 256 n = 512 n = 1024 n = 2048

16 T0 0.52 1.00 1.00 1.10 0.98
bn1 0.42 0.78 0.78 0.86 0.70
bn2 0.32 0.60 0.64 0.72 0.56
bn3 0.86 1.48 1.52 1.50 1.58
bn 0.38 0.76 0.74 0.80 0.64

32 T0 0.46 0.72 0.94 1.28 1.10
bn1 0.38 0.62 0.78 1.10 0.84
bn2 0.30 0.48 0.54 0.80 0.68
bn3 0.52 1.02 1.16 1.62 1.48
bn 0.38 0.66 0.88 1.20 0.88

64 T0 0.46 0.80 0.80 1.00 1.02
bn1 0.36 0.66 0.70 0.84 0.88
bn2 0.30 0.62 0.66 0.70 0.68
bn3 0.50 0.96 0.90 1.10 1.16
bn 0.38 0.72 0.80 0.96 1.00

128 T0 0.30 0.62 0.80 0.98 0.94
bn1 0.26 0.60 0.72 0.82 0.78
bn2 0.26 0.60 0.66 0.68 0.66
bn3 0.38 0.66 0.90 1.14 1.04
bn 0.28 0.62 0.78 0.92 0.90

256 T0 0.28 0.34 0.62 0.74 0.92
bn1 0.18 0.28 0.58 0.64 0.84
bn2 0.18 0.24 0.52 0.42 0.74
bn3 0.34 0.42 0.72 0.80 1.04
bn 0.24 0.34 0.60 0.70 0.92
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Table 2.7: The empirical sizes (%) at nominal level = 10% where xi are i.i.d. t7

p Test n = 128 n = 256 n = 512 n = 1024 n = 2048

16 T0 8.54 9.62 9.88 9.86 9.62
bn1 7.74 8.98 8.88 9.10 8.82
bn2 6.12 7.02 7.08 7.40 6.94
bn3 10.58 11.40 11.68 11.86 11.18
bn 8.26 9.42 9.32 9.46 9.22

32 T0 8.86 9.84 9.18 10.22 9.82
bn1 8.38 9.28 8.82 9.58 9.26
bn2 7.00 7.84 7.28 8.26 7.72
bn3 9.88 10.74 10.04 11.38 10.74
bn 8.76 9.70 9.14 10.02 9.66

64 T0 7.74 9.28 10.18 9.02 9.74
bn1 7.32 8.96 9.80 8.46 9.52
bn2 6.10 7.70 8.42 7.44 8.10
bn3 8.42 9.72 10.76 9.82 10.38
bn 7.72 9.24 10.18 9.00 9.72

128 T0 7.84 9.14 9.74 9.96 9.84
bn1 7.60 8.90 9.32 9.58 9.54
bn2 6.58 7.82 8.10 8.26 8.36
bn3 8.32 9.64 10.20 10.32 10.32
bn 7.84 9.14 9.74 9.96 9.84

256 T0 7.40 9.08 10.20 9.98 10.62
bn1 7.20 8.80 9.96 9.68 10.10
bn2 6.48 7.92 8.82 8.84 9.08
bn3 7.64 9.36 10.58 10.48 10.94
bn 7.40 9.08 10.20 9.98 10.62
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Table 2.8: The empirical sizes (%) at nominal level = 5% where xi are i.i.d. t7

p Test n = 128 n = 256 n = 512 n = 1024 n = 2048

16 T0 4.02 4.66 4.46 5.16 4.30
bn1 3.56 3.96 3.98 4.54 3.66
bn2 2.98 2.98 3.16 3.46 2.96
bn3 5.12 5.92 6.00 6.44 5.98
bn 3.70 4.16 4.10 4.72 3.88

32 T0 4.34 4.82 4.70 5.28 4.96
bn1 3.92 4.36 4.34 4.66 4.68
bn2 3.22 3.74 3.72 3.90 3.84
bn3 5.08 5.70 5.32 6.12 5.66
bn 4.20 4.66 4.44 5.02 4.90

64 T0 3.66 4.28 5.02 4.78 4.98
bn1 3.38 3.88 4.50 4.54 4.40
bn2 2.82 3.44 3.94 3.82 3.70
bn3 4.20 4.74 5.44 5.28 5.54
bn 3.66 4.22 4.94 4.74 4.90

128 T0 4.06 4.64 4.90 4.76 4.62
bn1 3.90 4.32 4.60 4.44 4.30
bn2 3.56 3.90 3.76 3.84 3.82
bn3 4.28 4.84 5.16 5.10 5.08
bn 4.02 4.58 4.80 4.66 4.56

256 T0 3.84 4.32 4.98 5.36 5.32
bn1 3.60 4.02 4.74 5.02 5.10
bn2 3.36 3.50 4.18 4.52 4.64
bn3 4.00 4.72 5.30 5.62 5.54
bn 3.80 4.30 4.98 5.30 5.26



34

Table 2.9: The empirical sizes (%) at nominal level = 1% where xi are i.i.d. t7

p Test n = 128 n = 256 n = 512 n = 1024 n = 2048

16 T0 0.80 0.78 0.88 1.04 1.04
bn1 0.64 0.60 0.78 0.90 0.86
bn2 0.48 0.50 0.68 0.76 0.68
bn3 1.18 1.24 1.36 1.46 1.40
bn 0.60 0.58 0.74 0.88 0.82

32 T0 0.76 1.02 1.24 1.12 0.84
bn1 0.58 0.76 1.06 0.92 0.58
bn2 0.50 0.66 0.92 0.68 0.52
bn3 1.06 1.36 1.40 1.20 1.22
bn 0.62 0.84 1.16 0.98 0.66

64 T0 0.56 0.94 0.82 1.00 0.98
bn1 0.52 0.70 0.68 0.78 0.84
bn2 0.44 0.52 0.56 0.70 0.60
bn3 0.66 1.04 0.98 1.14 1.14
bn 0.54 0.84 0.78 0.88 0.94

128 T0 0.76 0.82 1.30 0.94 0.98
bn1 0.74 0.76 1.14 0.84 0.86
bn2 0.66 0.56 0.84 0.70 0.64
bn3 0.92 0.90 1.50 1.08 1.12
bn 0.76 0.80 1.20 0.90 0.94

256 T0 0.68 0.94 0.98 1.30 1.10
bn1 0.64 0.88 0.84 1.18 1.00
bn2 0.58 0.86 0.80 1.10 0.94
bn3 0.80 1.04 1.04 1.38 1.18
bn 0.68 0.94 0.94 1.20 1.10
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Chapter 3

Test for Serial Correlation under High Dimensionality

3.1 Introduction

White noise or serial correlation test is of fundamental importance in time series analysis,

and has been extensively studied in both statistics and econometrics. It is one of the most

important diagnostics to assess the adequacy of a fitted model. For the univariate case, classical

portmanteau test (Box and Pierce, 1970; Ljung and Box, 1979) has been a standard procedure.

For an overview of its variants, see Escanciano and Lobato (2009). The classical portmanteau

test involves a fixed number sample autocovariances. Many tests have also been proposed

to take account of possible serial correlations at large lags, including Deo (2000), Durlauf

(1991), Hong (1996), Robinson (1991) and Shao (2011), among others. For many of these

tests, the asymptotic distributions are only valid when the time series under the null hypothesis

is i.i.d., and the sizes of the tests are distorted if the underlying series is uncorrelated but not

independent. The performance of the tests can be improved using bootstrap methods, see for

example Horowitz et al. (2006) and Romano and Thombs (1996). Recently, Xiao and Wu

(2014) proposed to use the maximum absolute sample autocovariances as the test statistic, and

showed that it is powerful to the alternative autocovariance sequence with a few spikes. Due

to the slow convergence rates of normal extremes, they proposed to use the blocks of blocks

bootstrap (Horowitz et al., 2006) to improve the finite sample performance. Hill and Motegi

(2016) considered bootstrapping similar statistics using dependent wild bootstrap (Shao, 2010).

For multivariate white noise test, portmanteau procedures were proposed and studied by

Hosking (1980), Li and McLeod (1981) and Poskitt and Tremayne (1982), among others.

Hosking (1981) considered the score or Lagrange multiplier test when the alternative is a vector

autoregressive moving average process. These tests are designed in the classical setting where



36

the dimension of the series is treated as fixed.

Recently there has been an emerging interest on modeling high dimensional time series.

Roughly speaking, these works fall into two major categories: (i) vector autoregressive model-

ing with regularization (Davis et al., 2016; Basu et al., 2015; Guo et al., 2016; Han et al., 2015,

2016; Nicholson et al., 2017; Song and Bickel, 2011; Kock and Callot, 2015; Negahban and

Wainwright, 2011; Nardi and Rinaldo, 2011, among others), and (ii) dynamic factor models

(Bai, 2003; Forni et al., 2005; Lam et al., 2011, 2012; Wang et al., 2019; Chen et al., 2018;

Ghosh et al., 2019; Chen et al., 2019, among others).

It is of great interest to study the white noise test for high dimensional time series, either as

an initial step before any modeling, or as a diagnostic after a model has been fitted. However,

for the contemporary high dimensional data, the aforementioned classical tests often cannot be

implemented directly, or may lead to distorted sizes. Chang et al. (2018) considered the white

noise test for high dimensional time series, and proposed to use the maximum sample cross

correlation as the test statistic. The distribution of the test statistic is not tractable analytically.

They adopted a wild bootstrap procedure, where the critical value was obtained by sampling

the maximum of a very high dimensional Gaussian random vector. Using the result from Cher-

nozhukov et al. (2013), they showed that the test is consistent if the covariance matrix of this

Gaussian vector is chosen as the kernel estimate of the covariance matrix of all sample cross

correlations involved in the test. Despite of the better performance than classical procedures,

this test can be conservative itself under high dimensionality, i.e. the empirical rejection prob-

abilities are very close to zero when the time series are generated from various white noise

models.

We propose two new tests for the high dimensional white noise. The first one is based on

the maximum absolute self-normalized autocovariances, and the second one is based on the

sum of squared maximum and minimum of the self-normalized autocovariances. The choice

of the test statistics are motivated by a few reasons. First, it is natural to put the variables on

the same scale, before looking at the extreme values from them, so we use the self-normalized

version of the sample autocovariances. Second, if the sample autocovariances are at the same

scale, the asymptotic distributions of the extremes become analytically tractable. Third, since
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there is usually no prior knowledge about the sign of the autocorrelations, including both the

maximum and the minimum in the test can be more adaptive to the unknown pattern under the

alternative.

We show that the asymptotic distribution of the maximum-based test statistic is the extreme

value distribution of type I. In particular, we allow the dimension to grow exponentially with

the sample size. Furthermore, the white noise under the null hypothesis needs not to be iid, and

only mixing conditions are required. We also find that under very mild dependence conditions,

the maximum and minimum sample autocovariances are asymptotically independent, which

implies that the limiting distribution of the second test statistic is a convolution of two extreme

value distributions. To calibrate the sizes of the proposed tests for finite samples, we employ

the dependent Gaussian multiplier bootstrap, which is similar to the one used in Chang et al.

(2018). The consistency of the bootstrap is also established.

We conduct an extensive numerical analysis to compare the sizes and powers of the pro-

posed tests with other methods. It is observed that our tests, especially the second one, are uni-

formly more accurate in terms of the empirical rejection probabilities under the null, comparing

with all other methods. At the same time, the powers of the proposed tests are comparable with

others. We use an economic dataset to illustrate the empirical performance of the tests. More

specifically, we use the white noise tests as diagnostics to identify a suitable autoregressive

model of the matrix-valued time series. While the tests in Chang et al. (2018) fail to detect the

autocorrelations, our tests are more sensitive, and direct us to use an autoregressive model with

two terms.

The rest of the chapter is organized as follows. Section 3.2 introduces the new test statis-

tics. Then the main theoretical results are presented in Section 3.3, followed by an extensive

numerical study in Section 3.4. A real example in economics is analyzed in Section 3.5 for the

illustration purpose. A discussion of the further research directions is given in Section 3.6.
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3.2 Test Statistics

Consider a p-dimensional centered stationary time series {xt}, and a hypothesis testing prob-

lem:

H0 : {xt} is white noise vs H1 : {xt} is not white noise

Given the observations x1, x2, . . . , xn, the sample cross covariance between i-th and j-th time

series at lag k is denoted by

γ̂ij(k) =
1

n

n−k∑
t=1

xitxj+k,t.

For each lag k, there are p2 sample cross covariances. A maximum number of lags K is

pre-selected before we do test. So in total there are p2K sample cross covariances involved.

Intuitively, when the time series is not white noise, there must be some non-zero correlation

appearing among p series. It is straightforward to use the maximized sample cross covariance

as the test statistic, i.e. when the maximized sample cross covariance exceeds some threshold,

it is a sign that the time series is not white noise. Moreover, it is more analytically tractable to

take the maximum value of all sample cross covariance at the same scale. Therefore, we carry

out the test based on the maximized self-normalized sample cross covariance. Specifically, the

variance of γ̂ij(k) can be estimated by

τ̂ijk =
1

n

∑
t,t′

K
(
t− t′

wn

)
[xitxj,t+k − γ̂ij(k)]

[
xit′xj,t′+k − γ̂ij(k)

]
, (3.1)

where K(·) is a positive definite kernel function, and wn is the bandwidth parameter. The rea-

son for using estimated standard deviation to normalize sample cross covariance rather than us-

ing sample cross correlation directly is that, the asymptotic distribution of such self-normalized

extremes is more analytically tractable, which is shown to be Gumbel distribution. More impor-

tantly, in general, sample cross correlations themselves can be less sensitive to the alternative.

Concretely, if the time series is i.i.d. across time, then the asymptotic variance of
√
nρ̂ij(k) is

one. However, if the process is not white noise, the variance would be smaller than one. For

instance, for an AR(1) process xt = φxt−1 + et with coefficient −1 < φ < 1 and i.i.d. inno-

vations et, the asymptotic variance of lag-1 sample autocorrelation
√
nρ̂(1) is 1 − φ2, and for
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MA(1) process xt = et + θet−1 with coefficient −1 < θ < 1, the asymptotic variance of lag-1

sample autocorrelation
√
nρ̂(1) is 1− 3θ2/(1 + θ2)2 + 4θ4/(1 + θ2)4. Both are smaller than 1.

Similar conclusion can be made for multivariate linear processes with i.i.d. innovations using

Bartlett formula (Bartlett, 1955). Therefore, the sample version of a nonzero cross correlation

is less likely to be larger than other sample cross correlations due to its small variance.

The following notations are used in the proposed test. Let ξt be the p2K-dimensional

vector:

ξt = vec(xtx
′
t+1 − Γ̂1, . . . , xtx

′
t+K − Γ̂K)

where Γ̂k = 1
n

∑n−k
t=1 xtx

′
t+k is the lag-k sample autocovariance matrix. There are in total

ñ such vector for 1 ≤ t ≤ ñ. Define χ(·) = {χ1(·), χ2(·), χ3(·)} to be a mapping from

{1, 2, . . . , p2K} to {(i, j, k) : 1 ≤ i, j ≤ p, 1 ≤ k ≤ K} such that the l-th element for ξt is

xχ1(l),txχ2(l),t+χ3(l) − γ̂χ(l). Define

Ξ = E


(

1

ñ1/2

ñ∑
t=1

ξt

)(
1

ñ1/2

ñ∑
t=1

ξt

)′ . (3.2)

In practice, Ξ is usually unknown and is estimated from data. Specifically, denote the diagonal

element of Ξ as τχ(l), which is estimated by (3.1). Then our proposed test statistic is

Tn = n1/2 max
1≤l≤p2K

|η̂l|,

where η̂l = γ̂χ(l)/
√
τ̂χ(l). We reject H0 when Tn > cvα, where α ∈ (0, 1) is the significance

level of the test. In order to improve the finite sample performance, we use a bootstrap proce-

dure to generate critical values. Specifically, let G ∼ N(0,Ξ) and normalize each component

ofGl with the corresponding estimated standard deviation
√
τ̂χ(l). Write the normalized vector

as Z whose l-th element is Gl√
τ̂χ(l)

. In practice, we can draw G1, . . . , GB from N(0,Ξ) for a

large number B, and calculate the normalized Z1, . . . , ZB , and then take the bBαc-th largest

among |Z1|∞, . . . , |ZB|∞ as the critical value. According to Xiao and Wu (2013), it can be

shown that the asymptotic distribution of the test statistic converges to Gumbel distribution

under some dependence conditions.
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In addition, since there is usually no prior knowledge about the sign of the autocorrelations,

including both the maximum and the minimum in the test can be more adaptive to the unknown

pattern under the alternative. Therefore, we propose a second test statistics:

Sn = M̂2 + m̂2,

where

M̂ = n1/2 max
1≤l≤p2K

η̂l, m̂ = n1/2 max
1≤l≤p2K

(−η̂l),

where η̂l = γ̂χ(l)/
√
τ̂χ(l). The critical values can be obtained similarly. Specifically, write

M̂Z = max
1≤l≤p2K

Ẑl, m̂Z = max
1≤l≤p2K

(−Ẑl),

where Ẑl = Gl/
√
τ̂χ(l). Then the critical value is simply the bBαc-th largest among the

sum of square of M̂B and m̂B . Similarly, the asymptotic distribution of Sn can be derived

accordingly. We proved the limiting distribution of Sn is a convolution of two independent

Gumbel distributions based on the results from Marques et al. (2015).

However, in practice, Ξ is unknown and is estimated from data. When we have a high-

dimensional time series, there might be computational issues to estimate such huge matrix.

Therefore, instead, we use the dependent Gaussian multiplier bootstrap to estimate critical

values. See more details in Section 3.3.2.

3.3 Main Results

To study the theoretical properties of M̂ and m̂, we need the following regularity conditions.

Condition 1 There exists constants C1, C2 > 0 and 0 < λ1 ≤ 2 such that for any x > 0,

sup
t

sup
1≤i≤p

P(|xi,t| > u) ≤ C1 exp(−C2u
λ1).

Condition 2 Assume {xt} is β-mixing in the sense that βk → 0 as k → ∞ where βk =

supt E
{

supB∈F∞t+k
|P(B|Ft−∞)− P(B)|

}
and Ft−∞ and F∞u+k are the σ-fields generated re-

spectively by {xu}u≤t and {xu}u≥t+k. In addition, assume there exists constants C3 > 0 and
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0 < λ2 ≤ 1 independent of p and n such that βk ≤ exp(−C3k
λ2) for any k > 0.

Remark 3.1. Han and Wu (2019) argued that β-mixing condition is dimension-dependent un-

der a high-dimensional triangular array time series setting. Thus, Condition 2 needs to be

verified with caution under high dimensionality.

3.3.1 Limiting Distribution

In order to derive the limiting distribution of the test statistics, it is crucial to bound the Kol-

mogorov distance between the distribution of the test statistics and that of the extreme values

from Gaussian distribution. To achieve this goal, we first look at the extreme values of autoco-

variances normalized by its true standard deviation, which are denoted as

M = n1/2 max
1≤l≤p2K

ηl, m = n1/2 max
1≤l≤p2K

(−ηl);

where ηl = γ̂χ(l)/
√
τχ(l) and τχ(l) is the diagonal element from the true covariance matrix Ξ

defined in (3.2). Proposition 3.1 bounds the difference between the joint distribution of M and

m with that ofMZ andmZ . Then by substituting the true standard deviation with the estimated

standard deviation, we can obtain the Kolmogorov distance between the joint distribution of

M̂ ,m̂ and that of M̂Z and m̂Z in Proposition 3.2. Then our main result Theorem 3.1 follows

accordingly.

Proposition 3.1. Under Conditions 1-2, it holds that

sup
t1,t2∈R

|P(M ≤ t1,m ≤ t2)− P(MZ ≤ t1,MZ ≤ t2)| → o(1), (3.3)

as n→∞, provided that log p = o(nλ1/(4+9λ1)).

Proof. Write d0 = supt1,t2∈R |P(M ≤ t1,m ≤ t2)− P(MZ ≤ t1,MZ ≤ t2)|. Observe that

ζ = (ζ1, . . . , ζp2K)′ = n−1
ñ∑
t=1

µt +Rn,

where µt is a p2K-dimensional vector with µl,t = ξl,t/
√
τχ(l) and Rn is the reminder term. We
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can define u = ñ−1
∑ñ

t=1 µt ≡ (u1, . . . , up2K)′ and let

M̃ = ñ1/2 max
1≤l≤p2K

ul, m̃ = ñ1/2 max
1≤l≤p2K

(−ul).

The first step is to show d0 ≤ d1 + o(1) where

d1 := sup
t1,t2

∣∣∣P(M̃ ≤ t1, m̃ ≤ t2)− P(MZ ≤ t1,MZ ≤ t2)
∣∣∣ .

Observe that for any t1, t2 ∈ R and ε > 0,

d0 ≤ d1 + P(|M − M̃ | > ε) + P(|m− m̃| > ε) + P(|MZ − t1| ≤ ε, |mZ − t2| ≤ ε).

By the anti-concentration inequality of Gaussian random variables, it holds that

P(|MZ− t1| ≤ ε, |mZ− t2| ≤ ε) ≤ P(|MZ− t1| ≤ ε)+P(|mZ− t2| ≤ ε) ≤ Cε(log(p/ε))1/2.

The rest of the proof is the same with the proof of Lemma 4 in Chang et al. (2017). Thus, it

suffices to show d1 = o(1). Similar to the proof of Theorem 1 in Chang et al. (2018), we can

decompose the sequence {1, 2, . . . , ñ} to H + 1 blocks, where H = bñ/sc and s is a positive

integer satisfying s = o(n) and s ≤ n/2. Let q and r be two positive integers (depending on

n) such that s = q + r and q = o(n), r = o(q). Then we can further decompose each of the

first H blocks into a large block Ih and a small block Jh, where h = 1, . . . ,H . Specifically,

I1 = {1, . . . , q}, J1 = {q + 1, . . . , q + r}, . . . , IH = {(H − 1)(q + r) + 1, . . . , (H − 1)(q +

r)+ q}, JH = {(H−1)(q+ r)+ q+1, . . . ,H(q+ r)}, and JH+1 = {H(q+ r)+1, . . . , ñ} is

the reminder block. Given Dn →∞, write u+l,t = ul,t1{|ul,t| ≤ Dn}−E(ul,t1{|ul,t| ≤ Dn})

and u−l,t = ul,tI{|ul,t| > Dn} − E(ul,tI{|ul,t| > Dn}). Write u+t = (u+1,t, . . . , u
+
p2K,t

)T and

u−t = (u−1,t, . . . , u
−
p2K,t

)T for each t = 1, . . . , ñ. In addition, define

Sh =
∑
t∈Ih

u+t , S′h =
∑
t∈Jh

u+t .

Let W = (W1, . . . ,Wp2K)′ be a centered normal random vector with covariance matrix
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E(WW T ) = 1
qH

∑H
h=1E(ShS

T
h ), and let MW and mW be the corresponding maximum and

minimum of W . Then we can proceed the proof by two parts. First is to show

d2 := sup
t1,t2∈R

∣∣∣P(M̃ ≤ t1, m̃ ≤ t2)− P(MW ≤ t1,MW ≤ t2)
∣∣∣ = o(1), (3.4)

and then to show

d3 := sup
t1,t2∈R

|P(MW ≤ t1,mW ≤ t2)− P(MZ ≤ t1,MZ ≤ t2)| = o(1). (3.5)

We first prove d2 = o(1). Observe that

√
ñu =

1

ñ1/2

ñ∑
t=1

u+t +
1

ñ1/2

ñ∑
t=1

u−t .

Define

M̃+ =
1

ñ1/2
max

1≤l≤p2K

ñ∑
t=1

u+l,t, m̃+ =
1

ñ1/2
max

1≤l≤p2K

ñ∑
t=1

−u+l,t.

By triangle inequality, we have

|M̃ − M̃+| ≤ max
1≤l≤p2K

∣∣∣∣∣ 1

ñ1/2

ñ∑
t=1

u−l,t

∣∣∣∣∣ .
For any ε1 > 0, it follows that

d2 ≤ d4 + sup
t1,t2∈R

P(|MW − t1| ≤ ε1, |mW − t2| ≤ ε1) + 2P

(
max

1≤l≤p2K

∣∣∣∣∣ 1

ñ1/2

ñ∑
t=1

u−l,t

∣∣∣∣∣ > ε1

)
,

where

d4 := sup
t1,t2∈R

∣∣∣P(M̃+ ≤ t1, m̃+ ≤ t2)− P(MW ≤ t1,MW ≤ t2)
∣∣∣ . (3.6)

By anti-concentration inequality in Theorem 3 of Chernozhukov et al. (2015), it holds that

P(|MW − t1| ≤ ε1, |mW − t2| ≤ ε1) ≤ P(|MW − t1| ≤ ε1) + P(|mW − t2| ≤ ε1)

≤ Cε1(log p)1/2 (3.7)
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for any ε1 → 0. According to Davydov inequality from Davydov (1968), for each l =

1, . . . , p2K, we have

E

∣∣∣∣∣ 1

ñ1/2

ñ∑
t=1

u−l,t

∣∣∣∣∣
2
 ≤ 1

ñ

ñ∑
t=1

E((u−l,t)
2) +

C

ñ

∑
t1 6=t2

[E((u−l,t1)4)]1/4[E((u−l,t2)4)]1/4βt1−t2 .

Moreover, it follows from condition 1 that

P(|ul,t| > u) = P
(∣∣∣∣xitxj,t+k√

τijk

∣∣∣∣ > u, |xit| > uω
)

+ P
(∣∣∣∣xitxj,t+k√

τijk

∣∣∣∣ > u, |xit| ≤ uω
)

≤ P(|xit| > uω) + P
(∣∣∣∣ xit√

τijk

∣∣∣∣ > u1−ω
)

≤ C exp(−Cuωλ1) + C exp(−Cu(1−ω)λ1)

for any u > 0. This is bounded by C exp(−Cuλ1/2) when ω = 1/2. Then following the same

argument in proof of Theorem 1 of Chang et al. (2018), we have

E[(u−l,t)
4] ≤ CD4

n exp(−CDλ1/2
n ).

This further implies that

sup
1≤l≤p2K

E

∣∣∣∣∣ 1

ñ1/2

ñ∑
t=1

u−l,t

∣∣∣∣∣
2
 ≤ CD2

n exp(−CDλ1/2
n ) + CD4

n exp(−CDλ1/2
n )

N−1∑
k=1

exp(−Ckλ2 )

≤ CD2
n exp(−CDλ1/2

n ).

Thus, by Markov’s inequality, we have

P

(
max

1≤l≤p2K

∣∣∣∣∣ 1

ñ1/2

ñ∑
t=1

u−l,t

∣∣∣∣∣ > ε1

)
≤ ñ

ε21
sup

1≤l≤p2K
E

∣∣∣∣∣ 1

ñ1/2

ñ∑
t=1

u−l,t

∣∣∣∣∣
2
 ≤ CñD2

n exp(−CDλ1/2
n )/ε21.

Combining the result from (3.7), by taking ε1 = (log p)−1 and Dn = C(log p)2/λ1 for some

sufficiently large C, we have d2 ≤ d4 + o(1). Now it left to show d4 = o(1). We wish to

apply Lemma 3.1 to this case, so we need to verify the conditions of Lemma 3.1. If we assume

(r/q) log2 p ≤ Cn−3c2 and rDn log3/2 p + qDn log1/2 p ≤ Cn1/2−3c2/2 for some constant



45

c2 ∈ (0, 1/3), it holds that

d4 ≤ C

{
n−c2/2 +

(
qD2

n log7(pn)

n

)1/6
}

+ 2(H − 1)br. (3.8)

To make p diverges as fast as possible, we take r � (log n)c3 for some large constant c3 > 0.

Since Dn = C(log p)2/λ1 , the above conditions can be simplified as the following:

C(log n)c3(log p)2n3c2 ≤ q

C(log n)c3(log p)5/2+2/λ1 ≤ n1/2−9c2/2

Thus, we need log p ≤ Cnω1 where ω1 = λ1(1−9c2)
5λ1+4 . Moreover, according to Condition 2, it

holds that 2(H − 1)br ≤ Cq exp(−C3r
λ2) → o(1). Then the right side of (3.8) converges to

zero provided that log p ≤ Cnω2 where ω2 = λ1(1−9c2)
9λ1+4 . Therefore, by combining these two

conditions, we have d4 = o(1) if log p = o(nλ1/(4+9λ1)). Now it left to bound d3. Let Ξu and

ΞZ be the covariance matrices for u and Z respectively. According to Lemma 3.3, it holds that

d3 ≤ C|Ξu − ΞZ |1/3∞ {1 ∨ log(p/(|Ξu − ΞZ |∞))}2/3.

This is the same as to bound |W̃ −W |∞ in the proof for Theorem 1 of Chang et al. (2018).

Verifying the choice of q, r,Dn above, we can conclude that d3 = o(1). This completes the

proof of Proposition 3.1.

Below is the Lemma used in the proof of Proposition 3.1.

Lemma 3.1. Let X1, . . . , Xn be dependent random variables in Rp with zero mean and M =

max1≤j≤p
√
n
∑n

i=1 xij , m = −min1≤j≤p
√
n
∑n

i=1 xij . Assume there exists Dn ≥ 1 such

that |Xij | ≤ Dn. Let Sl =
∑

i∈Il Xi, S′l =
∑

i∈Jl Xi and Y = (Y1, . . . , Yp)
T be a normal

random vector with mean zero and covariance matrix E(Y Y ′) = 1
mq

∑m
l=1E(SlS

′
l). Let

MY = max1≤j≤p Yj and mY = −min1≤j≤p Yj . Suppose that there exist constants 0 < c1 ≤

C1 and 0 < c2 < 1/9 such that c1 ≤ σ2(q) ≤ σ̄2(r) ∨ σ̄2(q) ≤ C1, (r/q) log2 p ≤ C1n
−3c2

and rDn log
3
2 p + qDn log

1
2 p ≤ C1n

1
2
− 3c2

2 . Then there exist a constant C depending only on
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c1, c2, C1 such that

sup
t1,t2∈R

|P(M ≤ t1,m ≤ t2)− P(MY ≤ t1,mY ≤ t2)| =C

{
n−c2/2 +

(
qD2

n log7(pn)

n

)1/6
}

+ 2(H − 1)br. (3.9)

Proof. Let {S̃h} and {S̃′h}, h = 1, . . . ,H be two independent sequences of p-dimensional

random vectors such that S̃h has the identical distribution with Sh and S̃′h has the identical

distribution with S′h. We can proceed the proof in the similar manner as the proof for Theorem

B.1. of Chernozhukov et al. (2016). First we want to reduce the sum of dependent data to sum

of independent blocks. Notice that

∣∣∣∣∣max
1≤j≤p

n∑
i=1

xij − max
1≤j≤p

H∑
h=1

Slj

∣∣∣∣∣ ≤ max
1≤j≤p

∣∣∣∣∣
H∑
h=1

S′hj

∣∣∣∣∣+ max
1≤j≤p

∣∣S′H+1,j

∣∣ .
If we write−Sh =

∑
i∈Ih −Xi and−S′h =

∑
i∈Jh −Xi and define−S̃h and−S̃′h accordingly,

the similar inequality can be obtained:

∣∣∣∣∣max
1≤j≤p

n∑
i=1

(−xij)− max
1≤j≤p

H∑
h=1

(−Shj)

∣∣∣∣∣ ≤ max
1≤j≤p

∣∣∣∣∣
m∑
h=1

S′hj

∣∣∣∣∣+ max
1≤j≤p

∣∣S′H+1,j

∣∣ .
Thus, for every δ1, δ2 > 0,

P(M ≤ t1,m ≤ t2) ≤P

(
max
1≤j≤p

1√
n

H∑
h=1

S̃hj ≤ t1 + δ1 + δ2, max
1≤j≤p

1√
n

H∑
h=1

−S̃hj ≤ t2 + δ1 + δ2

)

+ P

(
max
1≤j≤p

∣∣∣∣∣ 1√
n

H∑
h=1

S̃′hj

∣∣∣∣∣ > δ1

)
+ P

(
max
1≤j≤p

∣∣∣∣∣ 1√
n

H∑
h=1

−S̃′hj

∣∣∣∣∣ > δ1

)

+ P
(

max
1≤j≤p

∣∣∣∣ 1√
n
S′H+1,j

∣∣∣∣ > δ2

)
+ P

(
max
1≤j≤p

∣∣∣∣ 1√
n
− S′H+1,j

∣∣∣∣ > δ2

)
+ 2(H − 1)br.

Specifically, the fourth part is a result from Corollary 2.7 of Eberlein (1984),
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sup
t1,t2∈R

∣∣∣∣∣P
(

max
1≤j≤p

H∑
h=1

Shj ≤ t1, max
1≤j≤p

H∑
h=1

(−Shj) ≤ t2

)

− P

(
max
1≤j≤p

H∑
h=1

S̃hj ≤ t1, max
1≤j≤p

H∑
h=1

(−S̃hj) ≤ t2

)∣∣∣∣∣ ≤ (H − 1)br;

sup
t1,t2∈R

∣∣∣∣∣P
(

max
1≤j≤p

H∑
h=1

S′hj ≤ t1, max
1≤j≤p

H∑
h=1

(−S′hj) ≤ t2

)

− P

(
max
1≤j≤p

H∑
h=1

S̃′hj ≤ t1, max
1≤j≤p

H∑
h=1

(−S̃′hj) ≤ t2

)∣∣∣∣∣ ≤ (H − 1)bq.

Since |SH+1,j | ≤ (q + r − 1)Dn, by taking δ2 = (q + r − 1)Dn/
√
n, the third part becomes

P
(

max
1≤j≤p

∣∣∣∣ 1√
n
S′H+1,j

∣∣∣∣ > δ2

)
= P

(
max
1≤j≤p

∣∣∣∣ 1√
n
− S′H+1,j

∣∣∣∣ > δ2

)
= 0.

Note that since qDn log1/2 p ≤ Cn1/2−3c2/2, it holds that δ2 ≤ Cn−c2 log−1/2 p. Moreover,

by Markov’s inequality and taking δ1 = ε−12 E(max1≤j≤p |n−1/2
∑H

h=1 S̃
′
hj |), we have

P

(
max
1≤j≤p

∣∣∣∣∣ 1√
n

H∑
h=1

S̃′hj

∣∣∣∣∣ > δ1

)
≤ ε2,

for any ε2 > 0. According to Lemma A.3. of Chernozhukov et al. (2016),

E

(
max
1≤j≤p

∣∣∣∣∣n−1/2
H∑
h=1

S̃′hj

∣∣∣∣∣
)
≤ K

(√
(r/q)σ̂2(r) log p+ n−1/2rDn log p

)
,

where K is a universal constant. Based on assumptions that rDn log
3
2 p ≤ n1/2−3c2/2 and

(r/q) log2 p ≤ Cn−3c2 , the right side is bounded by Cn−3c2/2 log−1/2 p. Therefore, by taking

ε2 = n−c2/2, we have δ1 ≤ Cn−c2 log−1/2 p, so that

P(M ≤ t1,m ≤ t2) ≤ P

(
max
1≤j≤p

1√
n

H∑
h=1

S̃hj ≤ t1 + Cn−c2 log−1/2 p,

max
1≤j≤p

1√
n

H∑
h=1

−S̃hj ≤ t2 + Cn−c2 log−1/2 p

)
+ n−c2/2 + 2(H − 1)br.
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The other direction can be proved in the similar manner. The next step is to adopt normal

approximation to the sum of independent blocks. Since S̃h are independent and the covariance

matrix of
√
mq/nY is the same as the covariance matrix of n−1/2

∑H
h=1 S̃h, we can directly

apply the high-dimensional CLT for Hyperrectangles in Proposition 2.1 of Chernozhukov et al.

(2017) if the conditions are satisfied. Specifically, these conditions can be verified by taking

Bn =
√
qDn. It follows that

sup
t1,t2∈R

∣∣∣∣∣P
(

max
1≤j≤p

1√
n

H∑
h=1

S̃hj ≤ t1, max
1≤j≤p

1√
n

H∑
h=1

−S̃hj ≤ t2

)

− P

(
max
1≤j≤p

√
mq/nYj ≤ t1, max

1≤j≤p

√
mq/n(−Yj) ≤ t2

)∣∣∣∣∣ ≤ C
(
qD2

n log7(pn)

n

)1/6

.

Next we need to verify the anti-concentration of MY and mY . Similar to (3.7), we may apply

the anti-concentration inequality from Chernozhukov et al. (2015) again. For any δ → 0, we

have

sup
t1,t2∈R

P (|MY − t1| ≤ δ, |mY − t2| ≤ δ) ≤ Cδ log1/2 p. (3.10)

Thus, by taking δ = Cn−c2 log−1/2 p, the right side is bounded by Cn−c2 . Now it left to

replace
√
mq/n by 1. For any ε3 > 0 and t1, t2 ∈ R,

∣∣∣∣∣P
(√

mq

n
YM ≤ t1,

√
mq

n
Ym ≤ t2

)
− P (YM ≤ t1, Ym ≤ t2)

∣∣∣∣∣
≤P (|MY − t1| ≤ ε3, |mY − t2| ≤ ε3)

+ P
((

1−
√
mq

n

)
|YM | > ε3

)
+ P

((
1−

√
mq

n

)
|Ym| > ε3

)
. (3.11)

Observe that

1−
√
mq

n
≤ 1− mq

n
≤ 1−

(
n

q + r
− 1

)( q
n

)
=

r

q + r
+
q

n
.

It is obvious that r/(q + r) ≤ Cn−2c2 log−1 p. Moreover, since qDn log
1
2 p ≤ Cn1/2−3c2/2,

we have q log p ≤ q2D2
n log p ≤ Cn1−2c2 . Therefore, it holds that 1−

√
mq
n ≤ Cn

−c22 log−1 p.
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In addition, since E(|max1≤j≤p Yj |) ≤ C log1/2 p, by Markov’s inequality, we have

P
(∣∣∣∣max

1≤j≤p
Yj

∣∣∣∣ > nc2 log1/2 p

)
≤ Cn−c2 .

It follows that

P
((

1−
√
mq

n

)
|YM | > Cn−c2 log−1/2 p

)
≤ Cn−c2 .

Finally, combining the above result and (3.10) with ε3 = Cn−c2/4 log−1/2 p, (3.11) becomes

sup
t1,t2∈R

∣∣∣∣∣P
(√

mq

n
YM ≤ t1,

√
mq

n
Ym ≤ t2

)
− P (YM ≤ t1, Ym ≤ t2)

∣∣∣∣∣ ≤ Cn−c2 .
This completes the proof for Lemma 3.1.

Proposition 3.2. Assume the kernel function K(·) satisfies |K(·)| � |x|−τ as x→∞ for some

τ > 1, and the bandwidth wn � nρ for some 0 < ρ < min{ τ−13τ ,
λ2

2λ2+1}. Under conditions in

Proposition 3.1, it holds that

sup
t1,t2∈R

∣∣∣P(M̂ ≤ t1, m̂ ≤ t2)− P(M̂Z ≤ t1, m̂Z ≤ t2)
∣∣∣→ 0. (3.12)

provided that log p = o(nω) where ω is a positive constant specified in the proof of this Propo-

sition.

Proof. Combining the result from Proposition 3.1, we proceed the proof in two parts. First we

want to show

sup
t1,t2∈R

∣∣∣P(M̂ ≤ t1, m̂ ≤ t2)− P(MZ ≤ t1,mZ ≤ t2)
∣∣∣ ≤ d0 + op(1).

The second step is to show

sup
t1,t2∈R

∣∣∣P(MZ ≤ t1,mZ ≤ t2)− P(M̂Z ≤ t1, m̂Z ≤ t2)
∣∣∣ = op(1).
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Following the similar argument in Proposition 3.1, it holds that for any ε > 0

sup
t1,t2∈R

|P(M̂ ≤ t1,m̂ ≤ t2)− P(MZ ≤ t1,MZ ≤ t2)|

≤ d0 + P(|M̂ −M | > ε) + P(|m̂−m| > ε) + Cε(log(p/ε))1/2. (3.13)

According to Lemma 2 of Chang et al. (2017), there exists a constant c1 satisfying n1−c1(log p)1/2 →

∞, such that

P

 max
1≤i,j≤p
1≤k≤K

|γ̂ij(k)| > Cn−c1(log p)1/2

 ≤ Cp−1.
It suffices to bound

∣∣[τ̂χ(l)]−1/2 − [τχ(l)]
−1/2∣∣ for all 1 ≤ l ≤ p2K. Recall

Ξ = E


(

1

ñ1/2

ñ∑
t=1

ξt

)(
1

ñ1/2

ñ∑
t=1

ξt,

)′ ,

and the diagonal element of Ξ is τχ(l). Write

Ξ̂ =

ñ−1∑
k=−ñ+1

K
(
k

wn

)
Γ̂k,

where

Γ̂k =


1
ñ

∑ñ
t=k+1 ξtξ

′
t−k, k ≥ 0;

1
ñ

∑ñ
t=−k+1 ξt+kξ

′
t, k < 0.

Our goal is to show |Ξ̂−Ξ|∞ = op(1). Following the similar argument in the proof for Theorem

2 of Chang et al. (2018), we can define

Ξ̃ =

ñ−1∑
k=−ñ+1

K
(
k

wn

)
Γk,

where

Γk =


1
ñ

∑ñ
t=k+1 E(ξtξ

′
t−k), k ≥ 0;

1
ñ

∑ñ
t=−k+1 E(ξt+kξ

′
t), k < 0.

Proposition 1(b) of Andrews (1991) shows that |Ξ̃ − Ξ|∞ → 0. According to Lemma 4 of
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Chang et al. (2018), provided that log p ≤ CnCδ for δ = min{ λ1
λ1+8(2αλ2 + α − 1), λ18 [(α −

ρ)τ + α+ αλ2 + ρ− 2]}, it holds that

P
(
|Ξ̂− Ξ̃|∞ > C{log(pn)}4/λ1n−f(α0)/2

)
≤ Cp−1,

where κ = max{ 1
2λ2+1 ,

ρτ−ρ+2
τ+1+λ2

, ρτ+1
τ } and α0 is the maximizer for the function f(α) =

min{1 − α − 2ρ, 2(α − ρ)τ − 2} over κ < α < 1 − 2ρ. Therefore, |Ξ̂ − Ξ|∞ goes to zero

with the same convergence rate. Note this convergence rate is uniform for each component of

Ξ̂− Ξ. Observe that

τ̂χ(l) − τχ(l) =
(

[τ̂χ(l)]
1/2 − [τχ(l)]

1/2
)2

+ 2τχ(l)
(
τ̂χ(l) − τχ(l)

)
,

then it follows that

P
(

max
1≤l≤p2K

∣∣∣[τ̂χ(l)]1/2 − [τχ(l)]
1/2
∣∣∣ > C{log(pn)})4/λ1n−f(α0)/2

)
≤ Cp−1.

Moreover, since [τ̂χ(l)]
−1/2 − [τχ(l)]

−1/2 = −
(
[τ̂χ(l)]

1/2 − [τχ(l)]
1/2[τ̂χ(l)]

−1/2) [τχ(l)]
−1/2, it

holds with at least probability 1− Cp−1 that

max
1≤l≤p2K

∣∣∣[τ̂χ(l)]−1/2 − [τχ(l)]
−1/2

∣∣∣ ≤ C{log(pn)}4/λ1n−f(α0)/2.

Therefore, it holds with probability at least 1− Cp−1 that

|M̂ −M | ≤ max
1≤l≤p2K

∣∣∣[τ̂χ(l)]−1/2 − [τχ(l)]
−1/2

∣∣∣ · max
1≤i,j≤p
1≤k≤K

|γ̂ij(k)|

≤ (log(pn))4/λ1+1/2n−f(α0)/2−c1 .

Thus, by taking ε = (log(pn))4/λ1+1/2n−f(α0)/2−c1 , (3.13) implies that

sup
t1,t2∈R

|P(M̂ ≤ t1, m̂ ≤ t2)− P(MZ ≤ t1,MZ ≤ t2)|

≤ d0 + Cp−1 + (log(pn))4/λ1+1n−f(α0)/2−c1 .
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To make right side can decay to zero and p can diverge at exponential rate of n, we need to

assume −f(α0)
2 < c1 < 1 + λ1(2+f(α0))

16+2λ1
and log p = o(nω3) where ω3 = λ1(2c1+f(α0))

8+2λ1
. Now it

left to prove supt1,t2∈R

∣∣∣P(MZ ≤ t1,mZ ≤ t2)− P(M̂Z ≤ t1, m̂Z ≤ t2)
∣∣∣ = op(1). Similarly,

for any ε > 0,

sup
t1,t2∈R

∣∣∣P(MZ ≤ t1,mZ ≤ t2)− P(M̂Z ≤ t1, m̂Z ≤ t2)
∣∣∣

≤P(|M̂Z −MZ | > ε) + P(|m̂Z −mZ | > ε) + sup
t1,t2∈R

P(|MZ − t1| ≤ ε, |mZ − t2| ≤ ε).

Since E(|max1≤l≤p2K Gl|) ≤ C log1/2 p, by Markov’s inequality, it holds that

P
(∣∣∣∣ max

1≤l≤p2K
Gl

∣∣∣∣ > nc2(log p)1/2
)
≤ Cn−c2 ,

where c2 is a positive constant. Thus, it holds with probability at least 1− Cn−c2 that

|M̂Z −MZ | ≤ max
1≤l≤p2K

∣∣∣[τ̂χ(l)]−1/2 − [τχ(l)]
−1/2

∣∣∣ · ∣∣∣∣ max
1≤l≤p2K

Gl

∣∣∣∣
≤ (log(pn))4/λ1+1/2n−f(α0)/2+c2 .

Therefore, by taking ε = (log(pn))4/λ1+1n−f(α0)/2+c2 , it follows from anti-concentration that

sup
t1,t2∈R

|P(MZ ≤ t1,mZ ≤ t2)− P(M̂Z ≤ t1,m̂Z ≤ t2)|

≤ Cn−c2 + C(log(pn))4/λ1+1n−f(α0)/2+c2 .

The right side decays to zero when log p ≤ Cnω4 where ω4 = λ1f(α0)
8+2λ1

(note that ω4 takes its

supremum when c2 = 0). As a result, (3.12) holds provided that log p = o(nω) where ω =

min{λ1f(α0)/(8 + 2λ1), λ1/(4 + 9λ1)}. This completes the proof for Proposition 3.2.

In summary, the difference between the joint distribution of M̂, m̂ and that of M̂Z , m̂Z

converges to 0 under some mild conditions. However, in practice, the test statistics we use is

M̂2 + m̂2. There is still some gap to be shown. First of all, according to Lemma 6 of Xiao

and Wu (2013), the asymptotic distribution of the maximum self-normalized autocovariance
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converges to Gumbel distribution, provided that some dependence conditions on the covariance

matrix Ξ are satisfied. Specifically, let In = {(i, j, k) : 1 ≤ i, j ≤ pn, 1 ≤ k ≤ K} and define

vα =
∑

t(xi,t+kxjt)/
√
n for some α = (i, j, k) ∈ In. Note that for simplicity, we assume

all the covariance pair are centered with mean zero. Then we need the following technical

condition:

Condition 3. ∑
α 6=β∈In

Cov(vα, vβ)2 = O(p4−δn ), (3.14)

for some δ > 0 and

lim
n

sup
α 6=β∈In

Cov(vα, vβ) < 1. (3.15)

Recall n is the number of observed data and p is the dimension which grows to infinity as n

goes to infinity. Under this condition, there exists some constant sequence {bn} such that

lim
n→∞

P(M̂2
Z − bn ≤ y) = exp(−ey/2).

Remark 3.2. For convenience reason, we require Cov(vα, vβ) < 1 for all {α 6= β ∈ In} when

n→∞. However, it is possible that some covariances to be 1 but the above result still holds.

Similarly, the limiting distribution of the minimum extreme m̂Z can be shown to be Gumbel

distribution. Furthermore, Marques et al. (2015) derived the near-exact approximations for the

distribution of linear combinations of independent Gumbel random variables. According to

Section 3.3.3, the limiting distribution of M̂Z and that of m̂Z are asymptotically independent.

Therefore, it is feasible to derive the limiting distribution of M̂2
Z + m̂2

Z according to Marques

et al. (2015). Note that there is no closed form for the distribution of convolution of Gumbels.

For convenience, we denote it as G1 ∗ G′1, where G1(y) = exp(−e−y). Then it comes to our

main result regarding the limiting distribution of the test statistic M̂2 + m̂2.

Theorem 3.1. Let N := p2K. Assume the conditions of Proposition 3.2 hold, then under

condition 3, it holds that for any y ∈ R,

P(M̂2 + m̂2 − 4 logN + 2 log(logN) + 2 log(4π) ≤ y)→ G1(y/2) ∗G′1(y/2), (3.16)
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whereG1(y) = exp(−e−y), provided that log p = o(nω) for some positive constant ω specified

in Proposition 3.2.

The above Theorem is an immediate result from Proposition 3.2.

Remark 3.3. The asymptotic distribution of Tn is the extreme value distribution of type I. We

can proceed the proof in the similar manner as Theorem 3.1. Here we state the result without

proof. Under the same conditions as Theorem 3.1, it holds that

P(T 2
n − 4 logN + log(logN) + log(8π) ≤ y)→ G1(y/2).

3.3.2 Dependent Gaussian Multiplier Bootstrap

In this section, we introduce the dependent Gaussian multiplier bootstrap to evaluate the critical

values. First, there are some preliminary results for comparison bound for distributions of

Gaussian maximums. Let X = (X1, . . . , Xp)
T and Z = (Z1, . . . , Zp)

T be centered Gaussian

random vectors in Rp with covariance matrices ΣX = (σXjk)1≤j,k≤p and ΣZ = (σZjk)1≤j,k≤p

respectively. Let M = max1≤j≤pXj ,m = min1≤j≤pXj ,MZ = max1≤j≤p Zj and mZ =

min1≤j≤p Zj . Similar to Theorem 1 of (Chernozhukov et al., 2015), consider a smooth function

F : Rp → R, which approximate the maximum function:

Fβ(w) := β−1 log

 p∑
j=1

exp(βwj)

 ,

where w = (w1, · · · , wp)T and β > 0 is the smoothing parameter. In Lemma 3.2, we derive

the bound for the difference between smooth functions. Based on Lemma 3.2, we can derive

the upper bound on the Kolmogorov distance between the joint distribution of M,m and that

of MZ ,mZ , which is stated in Lemma 3.3.

Lemma 3.2 (Comparison bounds for smooth functions). For every g ∈ C2(R2) and β > 0,

|E[g(Fβ(X), Fβ(−X))− g(Fβ(Z), Fβ(−Z))]|

≤4×
{

1

2

(
||g11||∞ + ||g12||∞ + ||g21||∞ + ||g22||∞

)
+ β

(
||g1||∞ + ||g2||∞

)}
,



55

where g1 = ∂g(·)
∂Fβ(w)

, g2 = ∂g(·)
∂Fβ(−w) and g11 = ∂2g(·)

∂(Fβ(w))2
, g12 = ∂2g(·)

∂Fβ(w)∂Fβ(−w) , g21 =

∂2g(·)
∂Fβ(−w)∂Fβ(w) , g22 = ∂2g(·)

∂(Fβ(−w))2
.

Proof. Following the similar argument in proof of Theorem 1 of Chernozhukov et al. (2015),

here g : R2 → R is a bivariate function with finite first and second partial derivatives. Write

F̃β(W ) = (Fβ(W ), Fβ(−W )). Without loss of generality, assume X and Z are independent.

The Slepian interpolation between X and Z is W (t) =
√
tX +

√
1− tZ, t ∈ [0, 1]. Let

m := g ◦ F̃β and Ψ(t) := E[m(W (t))]. Then we have

|E[m(X)]− E[m(Z)]| = |Ψ(1)−Ψ(0)| =
∣∣∣∣∫ 1

0
Ψ′(t)dt

∣∣∣∣ .
Taking the first derivative of Ψ(t) and then applying the Lemma 2 (Stein’s identity) of (Cher-

nozhukov et al., 2015), we have

Ψ′(t) =
1

2

p∑
j=1

E
[
∂m(W (t))

∂wj
· (t−1/2Xj − (1− t)−1/2Zj)

]

=
1

2

p∑
j=1

p∑
k=1

(σXjk − σZjk)E
[
∂2m(W (t))

∂wj∂wk

]
.

It follows that

∣∣∣ ∫ 1

0
Ψ′(t)dt

∣∣∣ ≤ 1

2

p∑
j,k=1

∣∣σXjk − σZjk∣∣ · ∣∣∣∣∫ 1

0
E
[
∂2m(W (t))

∂wj∂wk

]
dt

∣∣∣∣
≤ 4

2

∫ 1

0

p∑
j,k=1

∣∣∣∣E [∂2m(W (t))

∂wj∂wk

]∣∣∣∣ dt. (3.17)

For any function f : Rp → R, write ∂jf(w) = ∂f(w)/∂wj and |f |∞ = supx∈R |f(x)|. For

every 1 ≤ j, k ≤ p, taking the first and second derivatives:

∂jFβ(w) = πj(w), ∂j∂kFβ(w) = βθjk(w),

∂jFβ(−w) = −πj(−w), ∂j∂kFβ(−w) = βθjk(−w),
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where

πj(w) := eβwj/

p∑
m=1

eβwm , θjk(w) := 1(j = k)πj(w)− πj(w)πk(w).

Then, following the chain rule, we have

∂j∂km(w) ={g11πk(w) + g12(−πk(−w))} · πj(w) + βg1θjk(w)

+ {g21πk(w) + g22(−πk(−w))} · (−πj(−w)) + βg2θjk(−w)

Since
∑p

j=1 πj(w) = 1 and
∑p

j,k=1 |θjk(w)| ≤ 2, it holds that

p∑
j,k=1

|∂j∂km(W (t))| ≤ |g11(W (t))|+ |g12(W (t))|+ 2β|g1(W (t))|

+ |g21(W (t))|+ |g22(W (t))|+ 2β|g2(W (t))|.

Plugging back to (3.17), we can obtain the following bound:

|E[g(Fβ(X), Fβ(−X))]− E[g(Fβ(Z), Fβ(−Z))]|

≤4
2
×
{∫ 1

0
E[|g11(W (t))|]dt+

∫ 1

0
E[|g12(W (t))|]dt+ 2β

∫ 1

0
E[|g1(W (t))|]dt

+

∫ 1

0
E[|g21(W (t))|]dt+

∫ 1

0
E[|g22(W (t))|]dt+ 2β

∫ 1

0
E[|g2(W (t))|]dt

}
≤4×

{
1

2
(||g11||∞ + ||g12||∞ + ||g21||∞ + ||g22||∞) + 2β (||g1||∞ + ||g2||∞)

}
.

Lemma 3.3. Suppose that p ≥ 2 and σZjj > 0 for all 1 ≤ j ≤ p. Then

sup
x,y∈R

|P(M ≤ x,m ≤ y)− P(MZ ≤ x,mZ ≤ y)| ≤ C41/3{1 ∨ a2p ∨ log(1/4)}1/3log1/3p,

where4 := max1≤j,k≤p |σXjk−σZjk|, ap := E[max1≤j≤p(Zj/σ
Z
jj)] andC is a positive constant

only depending on min1≤j≤p σ
Z
jj and max1≤j≤p σ

Z
jj .

Proof. Similar to proof in Theorem 2 of Chernozhukov et al. (2015), define a bivariate step



57

function g to approximate the joint distributional function of M and m. Take

gx,y,β,δ = g0

(
t1 − x− ep,β

δ
,
t2 − y − ep,β

δ

)
,

where β > 0 and ep,β := β−1logp. The base function g0 : R2 → [0, 1] is a bivariate C2

function such that g0(t1, t2) = 1 for t ≤ 0 and g0(t1, t2) = 0 for t ≥ 1. Note that for

∀t1, t2 ∈ R, it holds that

1(t1 ≤ x+ ep,β, t2 ≤ x+ ep,β) ≤ gx,y,β,δ(t1, t2) ≤ 1(t1 ≤ x+ ep,β + δ, t2 ≤ x+ ep,β + δ).

Moreover, for every z, observe that

0 ≤ Fβ(z)−M ≤ β−1logp and 0 ≤ Fβ(−z)−m ≤ β−1logp.

It follows that

P(M ≤ x,m ≤ y) ≤ P(Fβ(X) ≤ x+ep,β, Fβ(−X) ≤ x+ep,β) ≤ E[gx,y,β,δ(Fβ(X), Fβ(−X))],

for any x ∈ R, β > 0 and δ > 0. For the selected function g, we have |g.|∞ = δ−1 and

|g..|∞ = δ−2. According to the bound for smooth function in Lemma 3.2,

|E[g(Fβ(X), Fβ(−X))− g(Fβ(Z), Fβ(−Z))]| ≤ C4(δ−2 + βδ−1)

Therefore, we have

P(M ≤ x,m ≤ y) ≤ E[gx,y,β,δ(Fβ(Z), Fβ(−Z))] + C4(δ−2 + βδ−1)

≤ P(Fβ(Z) ≤ x+ ep,β + δ, Fβ(−Z) ≤ y + ep,β + δ) + C4(δ−2 + βδ−1)

≤ P(MZ ≤ x+ ep,β + δ,mZ ≤ y + ep,β + δ) + C4(δ−2 + βδ−1).

Now it left to bound the difference between P(MZ ≤ x + ep,β + δ,mZ ≤ y + ep,β + δ) and

P(MZ ≤ x,mZ ≤ y). By anti-concentration inequality in Theorem 3 of Chernozhukov et al.
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(2015), we have

P(MZ ≤ x+ ep,β + δ,mZ ≤ y + ep,β + δ)− P(MZ ≤ x,mZ ≤ y)

≤P(x ≤MZ ≤ x+ ep,β + δ) + P(y ≤ mZ ≤ y + ep,β + δ)

≤C(ep,β + δ)
√

1 ∨ a2p ∨ log{1/δ}.

Hence, it follows that

P(M ≤ x,m ≤ y)− P(MZ ≤ x,mZ ≤ y)

≤ C
{

(δ−24+ βδ−1) + (ep,β + δ)
√

1 ∨ a2p ∨ log{1/δ}
}
.

The other direction can be shown in the similar manner.

P(M ≤ x,m ≤ y) ≥ P(Fβ(X) ≤ x, Fβ(−X) ≤ y)

≥ E[gx−ep,β−δ,y−ep,β−δ,β,δ(Fβ(X), Fβ(−X))]

≥ E[gx−ep,β−δ,y−ep,β−δ,β,δ(Fβ(Z), Fβ(−Z))]− C4(δ−2 + βδ−1)

≥ P(Fβ(Z) ≤ x− δ, Fβ(−Z) ≤ y − δ)− C4(δ−2 + βδ−1)

≥ P(MZ ≤ x− ep,β − δ,mZ ≤ y − ep,β − δ)− C4(δ−2 + βδ−1)

Apply the anti-concentration inequality again, we have

P(MZ ≤ x− ep,β − δ,mZ ≤ y − ep,β − δ)− P(MZ ≤ x,mZ ≤ y)

≥− P(x− ep,β − δ ≤MZ ≤ x)− P(y − ep,β − δ ≤ mZ ≤ y)

≥− C(ep,β + δ)
√

1 ∨ a2p ∨ log{1/δ}.

As a result, we can derive the following upper bound:

sup
x,y∈R

|P(M ≤ x,m ≤ y)− P(MZ ≤ x,mZ ≤ y)| ≤ C
{

(δ−24+ βδ−1)

+ (ep,β + δ)
√

1 ∨ a2p ∨ log{1/δ}
}
.
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Finally, choose δ = 41/3(1 ∨ a)−1/3(2logp)1/3 and β = δ−1logp, we can obtain the bound in

Lemma 3.3 as

sup
x,y∈R

|P(M ≤ x,m ≤ y)− P(MZ ≤ x,mZ ≤ y)| ≤ C41/3{1∨ a2p ∨ log(1/4)}1/3 log1/3 p.

This completes the proof.

In practice, we use the dependent Gaussian multiplier bootstrap to obtain the critical values,

which is similar to the one used in Chang et al. (2017). Specifically, let β = (β1, . . . , βñ)T ∼

N(0,Θ) be a random vector independent of {xt}, where ñ = n−K and Θ is an ñ× ñ matrix

with (i, j)-th element K{(i− j)/wn}. Conditioning on the whole dataset D, it is obvious that

G̃ = 1
ñ1/2

∑ñ
t=1 βtξt has a normal distribution with mean zero and covariance matrix Ξ̂, where

Ξ̂ is the kernel estimate of long-run covariance matrix of autocovariances. Then normalize the

l-th component of G̃ with corresponding τ̂χ(l) and let

M̂B = max
1≤l≤p2K

B̂l, m̂B = max
1≤l≤p2K

(−B̂l),

where B̂l = G̃l/
√
τ̂χ(l). This is one bootstrap sample. We can repeat this procedure for a large

number of times and use the empirical quantile as the critical values. The below Proposition 3.3

shows the difference between the joint distribution of maximum and minimum of normalized

Gaussian random vector from G and the joint distribution from G̃ conditioning on the whole

dataset D. As a result, we can establish the consistency of this dependent multiplier bootstrap

procedure.

Proposition 3.3. Assume the conditions of Proposition 3.2 and Lemma 3.3 holds, then

sup
t1,t2∈R

∣∣∣P(M̂B ≤ t1, m̂B ≤ t2 | D)− P(M̂Z ≤ t1, m̂Z ≤ t2)
∣∣∣ p−→ 0. (3.18)

Proof. Similar to the proof of Proposition 3.2, we first replace the estimated τ̂χ(l) with the true

standard deviation τχ(l). Then according to Lemma 3.3, the bootstrap estimation error depends

mainly on the difference between the empirical and population covariance matrix |Ξ − Ξ̂|∞,

which was bounded in Proposition 3.2. Note that in the worst case, ap ≤
√

2 log p. Thus we
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have

sup
t1,t2∈R

|P(MB ≤ t1,mB ≤ t2)− P(MZ ≤ t1,mZ ≤ t2)| ≤ C|Ξ̂−Ξ|1/3∞ {log(p/|Ξ̂−Ξ|∞)}2/3.

Then it left to show

sup
t1,t2∈R

∣∣∣P(MB ≤ t1,mB ≤ t2)− P(M̂B ≤ t1, m̂B ≤ t2)
∣∣∣ = op(1) (3.19)

sup
t1,t2∈R

∣∣∣P(MZ ≤ t1,mZ ≤ t2)− P(M̂Z ≤ t1, m̂Z ≤ t2)
∣∣∣ = op(1) (3.20)

where MB = max1≤l≤p2K Bl,mB = max1≤l≤p2K(−Bl) and Bl = G̃l/
√
τχ(l). Note that

(3.20) has been shown in Proposition 3.2. So it suffices to show (3.19), which can be done in

the similar manner as (3.20). Observe that B is drawn from normal distribution. According to

Markov’s inequality, for constant c3 > 0 we have

P
(∣∣∣∣ max

1≤l≤p2K
Bl

∣∣∣∣ > nc3(log p)1/2
)
≤ Cn−c3 .

Thus, it holds with probability at least 1− Cn−c3 that

|M̂B −MB|∞ ≤ max
1≤l≤p2K

∣∣∣[τ̂χ(l)]−1/2 − [τχ(l)]
−1/2

∣∣∣ · ∣∣∣∣ max
1≤l≤p2K

Bl

∣∣∣∣
≤ (log(pn))4/λ1+1/2n−f(α0)/2+c3 .

By taking ε = (log(pn))4/λ1+1n−f(α0)/2+c3 , where f(·) and α0 are defined in the proof of

Proposition 3.2, it follows that

sup
t1,t2∈R

|P(MB ≤ t1,mB ≤ t2)− P(M̂B ≤t1, m̂B ≤ t2)|

≤ Cn−c3 + C(log(pn))4/λ1+1n−f(α0)/2+c3 .
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In summary, we have

sup
t1,t2∈R

∣∣∣P(M̂B ≤ t1, m̂B ≤ t2)− P(M̂Z ≤ t1, m̂Z ≤ t2)
∣∣∣ ≤ C|Ξ̂− Ξ|1/3∞ (log p)2/3

+ Cn−c2 + C(log(pn))4/λ1+1n−f(α0)/2+c2 + Cn−c3 + C(log(pn))4/λ1+1n−f(α0)/2+c3

Since we want the right side decays to zero and p diverges as fast as possible, take log p =

o(nω) where ω5 = min
{

3λ1f(α0)
24+4λ1

, λ1(f(α0)−c2)
8+2λ1

, λ1(f(α0)−c3)
8+2λ1

}
. We want to find the minimum

rate of each maximized possible exponentials of n. So we take c2 → 0 and c3 → 0. In

conclusion, if log p = o
(
nλ1f(α0)/(8+2λ1)

)
, then (3.18) follows. This completes the proof for

Proposition 3.3.

Furthermore, according to the continuous mapping theorem for sign measure, Proposi-

tion 3.3 implies the following Theorem:

Theorem 3.2. Assume the conditions of Proposition 3.2 and Lemma 3.3 holds, then

sup
y∈R

∣∣∣P(M̂2 + m̂2 ≤ y)− P(M̂2
B + m̂2

B ≤ y | D)
∣∣∣ p−→ 0. (3.21)

This result implies that it is valid to use the quantiles of M̂2
B+m̂2

B from dependent multiplier

bootstrap samples to approximate that of M̂2 + m̂2, and furthermore, our proposed test is

consistent.

3.3.3 Asymptotic Independence

In this section, we investigate the conditions under which the maximum and minimum of depen-

dent Gaussian random variables are asymptotically independent. We first look at the asymptotic

independence when those Gaussian variables are independent, and then extend it to dependent

case.

Lemma 3.4 (Asymptotic independence for i.i.d). If X1, X2, . . . , Xn is a sequence of indepen-

dently and identically distributed Gaussian random variables and write Mn and mn for the

maximum and minimum of the sequence, then Mn and mn are asymptotically independent.
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Specifically, write

P(an(Mn − bn) ≤ x)
w−→ G(x),

P(αn(mn − βn) ≤ x)
w−→ H(x),

then

P(an(Mn − bn) ≤ x, αn(mn − βn) ≤ y)
w−→ G(x)H(y),

where {an > 0}, {bn} and {αn > 0} and {βn} are some normalizing constants and G and H

are the limiting distribution functions.

Proof. According to Theorem 1.5.3 of Leadbetter et al. (1983), for any i.i.d normal random

variables, the asymptotic distribution of Mn is extreme value distribution of type I:

G(x) = exp(−e−x),

with

an = (2logn)
1
2 and bn = (2logn)

1
2 − 1

2
(2logn)−

1
2 (loglogn+ log4π)

The asymptotic distribution ofmn can be derived accordingly. Sincemn = min(x1, x2, . . . , xn) =

−max(−x1,−x2, . . . ,−xn), then

P(αn(−mn + βn) ≤ x) = 1− P(αn(−mn + βn) ≥ x)

= 1− P(αn(mn − βn) ≤ −x)

→ 1−H(−x)

= G(x).

Thus, let αn = an and βn = −bn, we have

P(αn(mn − βn) ≤ x)→ H(x),

where

H(x) = 1−G(−x) = 1− exp(−ex).
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Then the result follows from Theorem 1.8.3 of Leadbetter et al. (1983) after identifying the

normalizing constants and d.f.’s G and H .

Then it comes to our main result of the asymptotic independence betweenMn andmn from

dependent normal random variables.

Theorem 3.3. Let {Xn, n = 1, 2, . . . } be a sequence of centered Gaussian random vectors

where Xn = (Xn1, Xn2, . . . , Xn,pn). The dimension of each Xn depends on n and goes to

∞ as n → ∞. Let Σpn = (σn,ij)1≤i,j≤pn be the covariance matrix for each Xn and assume

the diagonal elements are all 1’s. Write the maximum and minimum of {Xi, i = 1, . . . , pn} as

Mn,X , mn,X . Then Mn,X and mn,X are asymptotically independent if

lim
n→∞

∑
1<i<j≤pn

|σn,ij |(1− σ2n,ij)−
1
2 p
− 2

1+|σn,ij |
n (logpn) = 0. (3.22)

Proof. In order to prove the asymptotic independence between MX and mX , we consider a se-

quence of standard Gaussian random vector Ypn×1 with mean 0 and covariance matrix Ipn . Let

Mn,Y , mn,Y be the corresponding maximum and minimum of {Yi, i = 1, . . . , pn}. According

to Lemma 3.4, Mn,Y and mn,Y are asymptotically independent. Thus, the difference between

the joint distribution ofMn,X , mn,Y and that ofMn,Y , mn,Y is our main interest. We can show

they are close enough when σn,ij satisfies some asymptotic conditions. First, it is helpful to look

at the multi-dimensional Gaussian density functions. Let φn(x1, · · · , xn;σij , 1 ≤ i, j ≤ n) be

the n-dimensional Gaussian density function with mean vector 0 and covariance matrix Σ,

where Σ = (σij) is an n×n symmetric positive definite matrix with 1’s along the diagonal. So

φn is a function of the x′s and n(n− 1)/2 parameters σij . Qn is defined to be:

Qn(c1, c2; {σij}) =

∫ c1

c2

· · ·
∫ c1

c2

φn(x1, · · · , xn; {σij})
n∏
j=1

dxj .

Applying the same technique in Section 2.1 from Slepian (1962) to take the partial derivative

of Qn with respect to σhl:

∂Qn
∂σhl

=

∫ c1

c2

· · ·
∫ c1

c2

n∏
j=1

dxj ·
∂2

∂xh∂xl
φn(x1, · · · , xn; {σij}).
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Perform integration over xh and xl:

∂Qn
∂σhl

=

∫ c1

c2

· · ·
∫ c1

c2

∏
j 6=h,j 6=l

dxj ·
∫ c1

c2

∫ c1

c2

∂2

∂xh∂xl
φn(x1, · · · , xn; {σij})dxhdxl

=

∫ c1

c2

· · ·
∫ c1

c2

∏
j 6=h,j 6=l

dxj ·
{
φ(hl)n (c1, c1)− φ(hl)n (c1, c2)− φ(hl)n (c2, c1) + φ(hl)n (c1, c2)

}
,

where

φ(hl)n (c1, c2) = φn(x1, · · · , xh−1, c1, xh+1, · · · , xl−1, c2, xl+1, · · · , xn; {σij}).

Since for each φ(hl)n (·, ·) is a density function which is always positive, we can replace the

integration limits to∞ to obtain the upper bound of this partial derivative:

∣∣∣∂Qn
∂σhl

∣∣∣ ≤ ∫ c1

c2

· · ·
∫ c1

c2

φ(hl)n (c1, c1) + φ(hl)n (c1, c2) + φ(hl)n (c2, c1) + φ(hl)n (c1, c2)
∏

j 6=h,j 6=l
dxj

≤ φ2(c1, c1;σhl) + φ2(c1, c2;σhl) + φ2(c2, c1;σhl) + φ2(c2, c2;σhl),

where

φ2(x, y;σ) = (2π)−1(1− σ2)1/2exp

{
−x

2 − 2σxy + y2

2(1− σ2)

}
.

Now we can derive the upper bound of the difference of those joint distributions. Based on the

definition of Qn, we can write

P(Mn,X ≤ c1,mn,X ≥ c2) = Qpn(c1, c2; {σn,ij}),

P(Mn,Y ≤ c1,mn,Y ≥ c2) = Qpn(c1, c2; {0}),

where c1 ≥ 0 and c2 ≤ 0. By the law of the mean, there exists some σ′n,ij which is between 0
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and σn,ij , where 1 < i < j ≤ pn, such that

|P(Mn,X ≤ c1,mn,X ≥ c2)− P(Mn,Y ≤ c1,mn,Y ≥ c2)|

≤
∑

1<i<j≤pn

∣∣∣∣σn,ij( ∂Qpn∂σn,ij

)
(c1, c2; {σ′n,ij})

∣∣∣∣
≤

∑
1<i<j≤pn

|σn,ij |
{
φ2(c1, c1;σ

′
n,ij) + φ2(c1, c2;σ

′
n,ij) + φ2(c2, c1;σ

′
n,ij) + φ2(c2, c2;σ

′
n,ij)

}
.

The sum has pn(pn − 1)/2 terms. Checking the monotonicity of each φ2 regarding |σ|, it is

obvious that φ2(c1, c1;σ) is a monotonically increasing function of |σ|, so as φ2(c2, c2;σ). As

for φ2(c1, c2;σ) and φ2(c2, c1;σ), if |c2| ≥ |c1|, we have the following inequality:

c21 − 2σc1c2 + c22 ≥ c21 − 2|σ|c21 + c21

Recall c1 ≥ 0 and c2 ≤ 0. This follows from

c22 − c21 − 2σc1c2 + 2|σ|c21 ≥ c22 − c21 + 2|σ|c1c2 + 2|σ|c21 = (c2 + c1)(c2 − c1 + 2|σ|c1) ≥ 0.

Thus, we have

φ2(c1, c2;σ) = (2π)−1(1− σ2)1/2exp

{
−c

2
1 − 2σc1c2 + c22

2(1− σ2)

}
≤ (2π)−1(1− σ2)1/2exp

{
−c

2
1 − 2|σ|c21 + c21

2(1− σ2)

}
= φ2(c1, c1; |σ|).

Since 0 ≤ |σ′n,ij | ≤ |σn,ij |, we can obtain the upper bound as a function of σn,ij as

|P(Mn,X ≤ c1,mn,X ≥ c2)− P(Mn,Y ≤ c1,mn,Y ≥ c2)|

≤
∑

1<i<j≤pn

|σn,ij |
{

3φ2(c1, c1; |σ′n,ij |) + φ2(c2, c2; |σ′n,ij |)
}

≤
∑

1<i<j≤pn

|σn,ij | {3φ2(c1, c1; |σn,ij |) + φ2(c2, c2; |σn,ij |)} .
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Similarly, if |c2| < |c1|, then

c21 − 2σc1c2 + c22 ≥ c22 − 2|σ|c22 + c22.

The similar upper bound can be obtained accordingly:

|P(Mn,X ≤ c1,mn,X ≥ c2)− P(Mn,Y ≤ c1,mn,Y ≥ c2)| ≤
∑

1<i<j≤pn

|σn,ij |{3φ2(c2, c2; |σn,ij |)

+ φ2(c1, c1; |σn,ij |)}.

Let c1 = a−1pn x+ bpn and c2 = α−1pn x+ βpn , where apn , bpn and αpn , βpn are the normalizing

constants from Lemma 3.4:

apn = (2logpn)
1
2 and bpn = (2logpn)

1
2 − 1

2
(2logpn)−

1
2 (loglogpn + log4π),

αpn = apn and βpn = −bpn .

If n→∞, then pn →∞. As a result, we have

c21 = (a−1pn x+ bpn)2 = 2logpn − loglogpn +O(1),

c22 = (α−1pn x+ βpn)2 = 2logpn − loglogpn +O(1).

For either case, we can write the upper bound explicitly by

|P(Mn,X ≤ c1,mn,X ≥ c2)− P(Mn,Y ≤ c1,mn,Y ≥ c2)|

≤ C
∑

1<i<j≤pn

|σn,ij |(1− σ2ij)−
1
2 p
− 2

1+|σn,ij |
n (logpn)

1
1+|σn,ij | ,

where C > 0 is a constant. Then Theorem 3.3 follows immediately.

Now we shall discuss the validity of (3.22). Here we give two examples of its sufficient

condition.

Lemma 3.5. If there exists 0 < α < 1, δ > 0 such that δ > 2α/(1 + α) and
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(i) sup
n

sup
1<i<j≤pn

|σn,ij | = α,

(ii)
∑

1<i<j≤pn
σ2n,ij = O(p2−δn ),

then (3.22) holds.

Remark 3.4. For convenience we write condition (i), but it is possible for some σij to be very

close to 1, where the asymptotic independence is still true as long as (3.22) holds.

Proof. By condition (i), there exist some α > 0 such that

(1− σ2n,ij)−1/2 ≤ (1− α2)−1/2,

for all σn,ij . Given pn →∞ as n→∞, then (3.22) would be implied by

lim
p→∞

∑
1<i<j≤p

|σij |p
− 2

1+|σij | (logp) = 0.

Based on condition (ii), we have for any k > 1,

|{σij : |σij | > 1/k, 1 ≤ i, j ≤ pn}| = O(p2−δ),

where |A| is the cardinality of set A. Therefore, we split the sum into two parts. First sum is

over {σij : |σij | > 1/k} where the amount of σij grows linearly with p, while the second sum

is over {σij : |σij | ≤ 1/k}. In order to bound the sum, we would consider a large number k.

Write

I(1) = {(i, j) : |σij | > 1/k, 1 < i < j ≤ p} and I(2) = {(i, j) : |σij | ≤ 1/k, 1 < i < j ≤ p}.

Consider the first sum. Since the number of σij in set I(1) is O(p2−δ), it follows that

∑
I(1)
|σij |p

− 2
1+|σij | (logp) ≤ C(logp) · αp2−δ−

2
1+α → 0,

which resulting from the assumption δ > 2α/(1 + α). Applying Cauchy-Schwarz Inequality
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to the square of second sum. By condition ii, we have

(∑
I(2)

(logp)|σij |p
− 2

1+|σij |
)2
≤ (logp)2 ·

∑
IIp

σ2ij ·
∑
IIp

p
− 4

1+|σij |

≤ (logp)2 · p2−
4

1+1/k ·
∑
IIp

σ2ij

≤ C(logp)2 · p4−δ−
4

1+1/k ,

where the exponent of p is also negative when 1/k → 0, so that the square of second sum also

goes to 0.

Remark 3.5. The other example would be the special scenario when random variables in Xn

are stationary, i.e., the covariance σij depends only on the difference between i and j. Let

σj−i = σij , then we can simplify (3.22) as

lim
p→∞

p−1∑
j=1

(p− j)|σj |(1− σ2j )−
1
2 p
− 2

1+|σj | (logp) = 0. (3.23)

Berman (1964) studied the limiting extreme value distribution function for the maximum for

Gaussian sequence. We can show that (3.23) holds if either

lim
p→∞

σplogp = 0

or
p−1∑
i=1

σ2i = O(p1−δ)

holds for some δ > 0.

3.4 Simulations

In this section, we compare our new tests Tn and Sn with the tests based on maximized

cross correlation Yn and Y ?
n from Chang et al. (2017), and three portmanteau tests: Q1 =

n
∑K

k=1 tr(Γ̂(k)′Γ̂(k)),Q2 = n2
∑K

k=1 tr(Γ̂(k)′Γ̂(k))/(n−k),Q3 = n
∑K

k=1 tr(Γ̂(k)′Γ̂(k))+

p2K(K + 1) where Γ̂(k) = diag{Σ̂(0)}−1/2Σ̂(k)diag{Σ̂(0)}−1/2, and Lagrange multiplier
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test (LM) by Hosking (1981) as well as the likelihood ratio test (TB) by Tiao and Box (1981).

Set the nominal significance level at α = 0.05. The dimension of the time series is p =

3, 15, 50, 150 and sample size is n = 300. We select the lag to be K = 1, 2, 3, 4, 5. In addition,

we use the quadratic kernel derived by Andrews (1991):

K(x) =
25

12π2x2

{
sin(6πx/5)

6πx/5
− cos(6πx/5)

}
,

and the bandwidth is selected to be wn = 1.3221{â(2)ñ}1/5 where

â(2) =

∑p2K
l=1 4ρ̂2l σ̂

4
l (1− ρ̂l)−8∑p2K

l=1 σ̂
4
l (1− ρ̂l)−4

,

with ρ̂l and σ̂2l being the estimated autoregressive coefficient and innovation variance from fit-

ting an AR(1) model to {ξl,t}, t = 1, . . . , ñ. This is the data-driven bandwidth suggested by

Andrews (1991). For each setting, we replicate the test for 500 times. The critical values are ob-

tained from the dependent Gaussian multiplier bootstrap procedure described in Section 3.3.2.

3.4.1 Empirical Size

First, we generate white noise series to examine the empirical rejection rates of the tests. Con-

sider a white noise model xt = Azt, where zt is a p × 1 white noise and the loading matrices

A can be as following:

Model 1. Let S = (skl)1≤k,l≤p where skl = 0.995|k−l|, then A = S1/2.

Model 2. Let r = dp/2.5e, S = (skl)1≤k,l≤p where skk = 1, skl = 0.8 for r(q − 1) + 1 ≤

k 6= l ≤ rq for q = 1, · · · , bp/rc, and skl = 0 otherwise. Then let A = S1/2.

Model 3. Let A = (akl)1≤k,l≤p, where akl ∼ U(−1, 1) independently.

For each model of loading matrix, there are also two different types of white noise zt consid-

ered:

1. zt are independent from N(0, Ip).

2. zt consists of p independent ARCH process. Each process is of the form ut = σtet,

where et are independent and N(0, 1), and σ2t = γ0 + γ1u
2
t−1 with γ0 ∼ U(0.25, 0.5)
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and γ1 ∼ U(0, 0.5).

The above white noise models were proposed by Chang et al. (2017). Obviously all the p series

are independent with each other in these models. So we also consider a different setting as the

following:

Model 4. xt = σtet, t = 1, . . . , p, where et are independent and N(0, 1), and σ2t =

γ0 + γ1x
2
t−1 with γ0 ∼ U(0.25, 0.5) and γ1 ∼ U(0, 0.5). Thus, we have n independent

ARCH(1) process.

Remark 3.6. The white noise test T ∗n described in Chang et al. (2017) is to apply the time series

principal component analysis to the data first and then test on the transformed data. However,

the T ∗n we compared with is from the R package HDtest, where the data is transformed by

different methods. Specifically in this simulation, we choose the first option in the function

wntest to transform the data using package fastclime with λ = 0.05 which estimates the

contemporaneous correlations.

Remark 3.7. The likelihood ratio test (TB) does not involve lag parameter k, so there is only

one value reported for each setting in the empirical size table. For Lagrange multiplier test

(LM), as the test statistics is calculated from multivariate regression, there is no value reported

when pk ≥ n. To be specific, when p = 150, the test is applicable only at lag k = 1.

Table 3.1-3.4 report the empirical size of our new test Tn and Sn along with other white

noise tests. In general, Tn and Sn are able to better control the empirical size regardless of

the increase of p, and Tn usually has a larger size than Sn. The test using maximum cross

correlation (Yn) performs well when p is small, however, it decays very fast when p increases.

The test using maximum cross covariance after a transformation (Y ∗n ) is not very stable to attain

the nominal significance level, especially in Model 2 and Model 3. It becomes extremely large

for some setting, such as Model 3 at p = 150. For Model 4, Y ∗n is expected to fail since the

white noise series is already i.i.d, so performing a transformation on data is unnecessary. As

for those three portmanteau tests, Q2 and Q3 perform very similarly, while Q1 performs worse

than Q2 and Q3, as it is almost 0 when p = 150. The Lagrange multiplier test (LM) fails

badly to capture the nominal significance level as p increases, while the likelihood ratio test
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(TB) always reject H0 when p = 150 for all models. In summary, our proposed new tests are

more robust regardless of the choice of white noise model, and they can calibrate the test more

accurately compared to other tests.

Table 3.1: The empirical sizes (%) of all tests for testing white noise series generated from
model 1.

(a) zt ∼ N(0, Ip)

p K Tn Sn Yn Y ∗n Q1 Q2 Q3 LM TB
3 1 5.6 1.2 6.2 8.0 6.2 6.2 6.2 6.2 6.4

2 6.2 4.8 5.6 9.0 5.0 5.2 5.2 5.2
3 4.8 6.2 5.2 9.2 3.6 4.0 4.0 4.0
4 5.2 6.0 5.0 8.0 4.8 5.0 4.8 5.0
5 5.2 5.6 5.0 8.6 4.0 5.0 4.2 4.8

15 1 5.4 2.6 5.4 2.2 4.2 4.2 4.2 4.2 5.0
2 6.4 5.0 5.2 2.6 4.0 5.2 5.2 4.2
3 5.0 5.6 4.4 2.0 2.2 3.0 3.0 2.6
4 5.4 4.6 4.6 1.8 2.8 3.6 3.4 3.2
5 5.8 5.2 5.2 2.2 2.6 3.6 3.6 2.6

50 1 4.6 3.4 4.6 2.2 2.0 2.6 2.6 1.8 6.0
2 4.8 4.4 3.0 2.0 0.6 2.0 2.0 0.4
3 4.4 3.2 4.2 1.0 1.0 3.2 3.0 0.2
4 3.8 4.8 3.6 0.4 0.6 2.8 2.4 0.0
5 4.0 4.2 3.6 0.4 0.0 3.4 3.2 0.0

150 1 4.8 3.8 3.2 1.4 0.0 0.2 0.2 0.0 100.0
2 7.0 6.6 4.8 1.6 0.0 1.4 1.4
3 7.6 6.6 4.8 0.8 0.0 1.8 1.6
4 7.0 6.2 3.8 1.0 0.0 3.4 3.2
5 6.2 4.2 2.4 1.0 0.0 4.4 3.8

(b) zt ∼ ARCH(1)

Tn Sn Yn Y ∗n Q1 Q2 Q3 LM TB
4.6 0.4 5.2 6.4 7.4 7.8 7.6 7.6 8.0
5.2 4.8 5.0 7.8 7.4 7.4 7.4 7.2
5.4 4.8 6.0 7.8 5.4 5.8 5.6 7.0
5.4 5.4 5.4 7.2 4.2 5.2 4.8 5.8
5.2 5.2 5.0 7.6 4.0 4.8 4.4 4.2
5.6 2.2 5.0 1.8 11.0 11.2 11.2 11.4 13.0
4.4 4.0 4.8 1.2 10.0 11.0 11.0 9.8
6.8 5.2 5.8 0.8 8.4 9.4 9.4 7.4
6.2 5.0 5.6 1.2 4.8 7.2 6.6 5.2
6.8 5.2 5.0 1.2 3.2 7.0 6.8 4.0
5.4 4.2 4.8 1.0 7.0 10.0 10.0 5.4 16.4
4.4 3.4 3.6 0.6 5.2 8.0 8.0 2.4
5.4 5.0 4.4 0.0 3.8 9.8 9.8 0.0
4.6 5.0 3.6 0.2 2.2 8.2 8.0 0.0
5.4 5.2 3.6 0.2 1.4 8.6 8.6 0.0
6.8 7.0 5.6 1.8 0.4 1.8 1.8 0.6 100.0
8.6 8.6 6.2 0.6 0.2 2.6 2.4
9.6 8.4 5.4 0.4 0.0 3.8 3.6
9.4 8.6 5.4 0.6 0.0 6.0 6.0
8.6 8.4 4.4 1.0 0.0 8.0 7.6

Table 3.2: The empirical sizes (%) of all tests for testing white noise series generated from
model 2.

(a) zt ∼ N(0, Ip)

p K Tn Sn Yn Y ∗n Q1 Q2 Q3 LM TB
3 1 5.2 5.0 4.2 6.6 4.8 4.8 4.8 4.8 5.0

2 6.0 4.8 4.8 8.0 4.6 4.6 4.6 5.0
3 6.6 5.2 3.4 7.4 4.2 4.6 4.4 4.0
4 5.2 5.0 3.6 7.0 4.4 5.6 5.4 4.4
5 5.6 5.4 4.2 6.4 4.4 4.8 4.8 5.4

15 1 4.6 5.4 4.8 10.2 4.6 4.8 4.6 4.6 5.6
2 5.6 5.2 2.8 13.0 3.8 4.8 4.8 4.6
3 5.2 5.4 2.4 13.4 3.8 5.0 4.8 4.8
4 5.4 5.4 2.6 14.4 3.0 4.0 4.0 4.0
5 5.8 5.8 3.0 14.8 2.2 3.8 3.8 2.8

50 1 6.2 7.0 2.8 10.8 3.0 3.4 3.4 3.6 8.0
2 5.8 5.6 3.0 9.2 1.8 2.6 2.6 1.2
3 6.6 5.8 3.0 10.8 1.2 5.6 5.6 0.4
4 7.8 7.6 2.6 11.0 0.8 4.0 3.6 0.0
5 8.0 7.0 2.2 10.8 0.2 4.0 3.4 0.0

150 1 8.0 7.0 1.2 5.0 0.2 0.6 0.6 0.0 100.0
2 7.6 6.0 1.6 6.8 0.0 0.6 0.6
3 6.8 6.2 1.4 6.4 0.0 1.2 1.0
4 7.6 6.8 1.8 6.2 0.0 2.8 2.8
5 9.2 7.2 1.0 6.8 0.0 6.0 6.0

(b) zt ∼ ARCH(1)

Tn Sn Yn Y ∗n Q1 Q2 Q3 LM TB
4.4 4.4 4.6 9.4 8.8 8.8 8.8 9.0 9.0
4.6 4.2 4.6 10.4 9.0 9.2 9.0 9.6
6.4 4.8 5.4 11.0 7.2 8.0 8.0 7.6
6.0 5.2 5.0 10.6 7.6 7.8 7.8 7.4
5.4 4.4 4.2 9.6 6.4 7.6 7.4 7.6
6.6 4.8 2.6 3.8 10.4 10.8 10.8 10.6 12.2
5.6 4.6 3.2 5.6 9.2 10.4 10.2 9.6
6.0 5.2 3.0 6.0 7.8 9.8 9.4 6.4
6.0 4.4 3.0 8.0 7.0 10.4 10.2 5.8
6.0 4.2 2.8 7.4 6.2 9.8 9.4 5.2
6.2 5.8 1.0 3.8 6.6 7.4 7.4 5.4 11.6
7.0 6.2 0.6 4.2 4.6 8.2 8.2 2.2
7.6 7.0 0.4 3.2 2.8 10.2 10.0 0.2
8.0 6.8 0.4 4.0 1.4 9.4 9.4 0.2
8.0 7.2 0.6 3.4 1.2 9.6 9.2 0.0
8.8 7.6 0.0 2.2 0.0 1.2 1.2 0.0 100.0
9.8 9.0 0.2 1.6 0.0 1.6 1.6
10.6 9.6 0.2 1.2 0.0 2.6 2.6
10.8 9.8 0.4 1.4 0.0 4.4 4.0
11.4 10.0 0.4 0.8 0.0 6.8 6.4
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Table 3.3: The empirical sizes (%) of all tests for testing white noise series generated from
model 3.

(a) zt ∼ N(0, Ip)

p K Tn Sn Yn Y ∗n Q1 Q2 Q3 LM TB
3 1 4.6 4.2 4.0 9.6 4.2 4.2 4.2 4.2 4.2

2 5.4 4.6 4.4 9.6 4.8 5.0 4.8 4.4
3 4.8 5.4 5.4 8.4 4.4 4.6 4.4 5.2
4 5.6 5.8 4.6 10.4 5.6 5.8 5.6 5.0
5 5.8 5.0 4.6 9.6 5.2 6.4 6.4 5.4

15 1 5.0 4.8 4.0 4.6 4.2 5.2 5.0 5.0 6.6
2 6.6 4.8 3.2 5.0 4.0 6.0 5.8 4.2
3 8.2 7.0 4.6 3.8 3.8 5.4 5.2 4.0
4 8.6 6.6 3.8 4.2 3.6 5.8 5.8 4.0
5 8.0 6.6 4.2 4.8 2.6 5.8 5.6 3.6

50 1 6.0 6.2 2.2 7.6 2.6 3.8 3.6 2.0 9.0
2 6.4 5.4 1.6 9.0 2.8 5.0 4.8 1.8
3 6.8 4.6 1.4 11.6 1.6 4.2 4.2 0.0
4 5.2 3.6 1.6 11.0 1.4 4.6 4.4 0.2
5 5.0 4.0 1.8 11.6 0.8 4.6 4.6 0.0

150 1 7.2 6.8 2.8 20.0 0.0 0.4 0.4 0.0 100.0
2 7.0 6.2 2.0 25.8 0.0 1.0 1.0
3 9.0 7.2 1.6 26.4 0.0 2.0 2.0
4 8.4 7.6 1.6 30.8 0.0 2.8 2.4
5 9.4 7.6 1.4 32.4 0.0 3.6 3.6

(b) zt ∼ ARCH(1)

Tn Sn Yn Y ∗n Q1 Q2 Q3 LM TB
5.8 6.2 5.6 6.6 8.8 8.8 8.8 8.8 8.8
4.8 4.6 4.0 8.0 7.2 7.4 7.4 7.2
6.0 5.2 4.4 8.6 7.8 8.4 8.4 7.8
5.8 4.8 4.6 9.4 9.0 9.4 9.4 7.8
5.2 5.0 3.8 9.6 6.2 6.8 6.8 6.2
6.8 5.8 3.6 3.2 11.8 13.0 12.8 13.0 14.6
6.4 5.2 2.2 3.4 8.0 8.6 8.4 9.0
6.6 5.2 3.2 2.8 7.0 8.4 8.2 7.0
7.0 5.0 3.4 2.6 6.0 8.2 7.8 5.8
6.0 5.0 2.6 1.8 6.0 8.8 8.6 5.4
6.4 5.8 2.0 7.8 6.0 8.4 8.2 4.0 16.2
7.2 5.4 1.8 8.0 6.0 9.4 9.4 3.0
9.2 7.6 2.2 7.8 3.4 10.6 10.0 1.4
8.0 7.2 1.8 8.2 2.4 8.8 8.4 0.0
8.4 5.4 1.6 8.0 1.4 9.8 9.4 0.0
7.4 6.6 1.8 23.0 0.2 1.0 1.0 0.2 100.0
9.4 7.2 1.2 28.4 0.0 2.6 2.4
9.6 7.4 1.4 32.8 0.0 3.2 3.2
9.2 6.0 1.2 33.6 0.0 4.8 4.6
9.4 6.0 0.4 35.6 0.0 6.2 5.8

Table 3.4: The empirical sizes (%) of all tests for testing white noise series generated from
model 4

p K Tn Sn Yn Y ∗n Q1 Q2 Q3 LM TB
3 1 3.8 3.4 4.4 7.4 4.6 4.6 4.6 4.6 5.0

2 5.2 4.6 3.6 8.0 5.8 6.2 6.2 6.4
3 5.4 5.0 4.0 8.4 5.4 5.8 5.6 5.6
4 5.4 4.6 3.8 7.4 5.2 5.4 5.4 5.0
5 4.8 3.6 2.8 7.6 4.0 4.8 4.6 5.0

15 1 5.2 4.6 2.8 7.8 3.0 3.2 3.2 3.2 4.2
2 4.4 4.2 1.4 8.6 3.4 4.6 4.6 3.0
3 5.0 3.2 1.8 8.4 2.8 4.0 4.0 4.2
4 5.6 4.2 1.4 9.4 3.0 5.0 5.0 4.2
5 5.4 3.4 1.0 9.6 2.6 4.2 4.0 2.8

50 1 5.4 4.0 2.0 14.2 1.8 3.0 3.0 1.6 6.8
2 7.0 5.4 1.0 15.2 2.2 4.8 4.6 1.2
3 7.0 5.4 0.4 16.4 1.2 5.2 4.8 0.0
4 6.4 4.8 0.2 16.6 1.6 5.4 5.2 0.2
5 7.0 5.4 0.2 17.0 0.6 6.0 5.6 0.0

150 1 6.8 5.6 1.0 15.6 0.0 0.6 0.4 0.2 100.0
2 6.0 4.6 0.2 17.2 0.0 1.4 1.4
3 5.8 3.6 0.0 17.8 0.0 1.8 1.8
4 5.6 4.2 0.0 16.2 0.0 4.4 4.4
5 5.6 4.6 0.0 17.2 0.0 5.4 4.8

3.4.2 Empirical Power

In this section, our goal is to compare the empirical power of all white noise tests. Here, two

types of non-white noise series are considered:
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Model 5. xt = Axt−1 + et, where et are independent and each et consists of p inde-

pendent t8 random variables, and the coefficient matrix A = (akl) is generated by: akl ∼

U(−0.25, 0.25) independently for 1 ≤ k, l ≤ k0, and akl = 0 otherwise.

Model 6. xt = Azt, where zt = (z1,t, . . . , zp,t)
T . For 1 ≤ k ≤ k0, zt = (zk,1, . . . , zk,n)T ∼

N(0,Σ), where k0 = min(dp/5e, 12) and Σ is an n × n matrix with 1 on the diagonal and

0.5|i− j|−0.6 on the (i, j)-th element for 1 ≤ |i− j| ≤ 7 and 0 on all the other elements. For

k ≥ k0, z1,t, . . . , zk,t are independently generated from t8. The coefficient matrix A = (akl) is

generated by: akl ∼ U(−1, 1) with probability 1/3 and akl = 0 with probability 2/3 indepen-

dently for 1 ≤ k 6= l ≤ p, and akk = 0.8 for 1 ≤ k ≤ p.

Remark 3.8. The likelihood ratio test (TB) does not involve lag parameter k, so the power

curve is flat. For Lagrange multiplier test (LM), it is not applicable when pk ≥ n. However,

for convenience reasons, we let the curve go to zero when p = 150 at lag k = 2, 3, 4, 5.

Figure 3.1-3.2 display the empirical power of all white noise tests against the lag numberK

used in the test. When the autocorrelation decays very fast, as in Model 5, Y ∗n is more powerful

compared to our proposed tests, especially when p is small. As p increases, Yn, Y ∗n and Tn, Sn

have similar performance, where the power curve is very close to 1. However, those traditional

white tests, such as portmanteau tests, are close to powerless. As the autocorrelation remains

relatively strong in Model 6, all tests lose power as p becomes larger. This results from the

different model structures. Specifically, those tests based on maximum-type test statistics (Tn,

Sn, Yn and Y ∗n ) are really close to zero. This is because the autocovariance do not change with

respect to the dimension p, while the variance of autocovariance increases as p increases. If

we divide the autocovairance by its estimated standard deviation, the test statistics will become

even smaller, which makes it harder to reject the null hypothesis. In later section, we adjust

Model 6 to validate the aforementioned argument. In addition, those portmanteau tests are

relatively more powerful than new tests. Since Model 6 has widespread signals within first

k0 rows and portmanteau tests sum up all the autocorrelations, it is expected to observe more

power from them. It should be mentioned that the power curves of most of these tests are less

informative, since these tests have different sizes. It is more reasonable to compare the power

of these tests when they have same size first. This can be achieved by calibrating the critical
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values from each of the corresponding white noise model. In addition, instead of plotting the

power curve against the lag value K, we are more interested in how sensitive our tests are

when the dependence in the data changes. These extensive experiments and more discussions

are presented in the following sections.
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Figure 3.1: Plots of empirical power against lag K for new tests Tn (solid •)and Sn(solid N), Yn (solid
◦) and Y ?

n (solid M), Q1 (dashed �), Q2 (dashed ◦), Q3 (dashed M), LM (dashed +), and TB (dashed
×). Data are generated from model 5.
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3.4.3 Calibrated Critical Values

Instead of evaluating the critical values from dependent multiplier bootstrapping, we calibrate

the critical values based on the corresponding white noise series. Specifically, consider two

white noise models corresponding to Model 5 and Model 6 respectively:

Model 5 (white noise). xt = et, where et are independent and each et consists of p

independent t8 random variables.

Model 6 (white noise). xt = Azt, where zt = (z1,t, . . . , zp,t)
T . For 1 ≤ k ≤ k0, zt =

(zk,1, . . . , zk,n)T ∼ N(0,Σ), where where k0 = min(dp/5e, 12) and Σ is an n×nmatrix with

1 on the diagonal and 0 on all the other elements. For k ≥ k0, z1,t, . . . , zk,t are independently

generated from t8. The coefficient matrix A = (akl) is generated by: akl ∼ U(−1, 1) with

probability 1/3 and akl = 0 with probability 2/3 independently for 1 ≤ k 6= l ≤ p, and

akk = 0.8 for 1 ≤ k ≤ p.

Here, we try to remain the same structure with the original non-white noise model and

remove the correlation at the same time. For instance, for model 5, the dependence comes from

the lag-1 autoregressive term. So we remove the autoregressive term and use the innovation

et as the corresponding white noise series for model 5. Similarly for model 6, the correlation

only appears in the first k0 rows. So we use an identity matrix as the covariance matrix for the

normal distribution used to generated the first k0 rows, and the rest rows are same with original

non-white noise model. In this way, before doing white noise test, we can generate 2000 white

noise samples, calculate the test statistics for each test, and take the α-th upper quantile as

the threshold. Ideally, the empirical type I error is designed to be 5% if the calibrated critical

values are used. Therefore, by using the calibrated critical values to do the test, we are able to

compare all the white noise tests at the same size. Similarly, we reject the null hypothesis if the

test statistics is greater than the calibrated critical values.

Figure 3.3-3.4 display the power plots of all white noise tests against lagK using calibrated

critical values. Generally, the power of Y ∗n decreases due to the correction of significance level.

While the general patterns seem to be the same as previously stated, it is worth observing the

gap between our proposed tests Tn,Sn and Yn,Y ∗n reduces significantly. In summary, our tests

are still dominant in terms of a better control on the size. It is always more important to calibrate
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the size accurately first and then improve the power. In the last section, there are some further

discussion where we propose a new method to improve the empirical power of our new tests.

3.4.4 Sensitivity to Dependence

In order to investigate how sensitive the white noise tests are when the dependence changes,

we modify the level of dependence in the non-white noise model. For each model, how we

measure the dependence of the data is different. For instance, in Model 5, the dependence of

data comes from the autoregressive matrix A. Write A0 as the original matrix described in

Model 5. Let |A| = d|A0| where d = 0, 0.2, 0.4, 0.6, 0.8, 1.0. When d = 0, this is exactly the

same white noise model stated in Section 3.4.3. When d becomes larger, the dependence of

data becomes stronger. While in Model 6, the covariance matrix of first k0 rows is the source

of dependence. Let Σ be an n×nmatrix with 1 on the diagonal and d|i−j|−0.6 on the (i, j)-th

element for 1 ≤ |i − j| ≤ 7, where d = 0, 0.1, 0.2, 0.3, 0.4, 0.5. When d = 0, the covariance

matrix Σ becomes a diagonal matrix, which leads to the white noise model in Section 3.4.3.

The dependence of the data becomes stronger as d increases. Then we are able to plot the

empirical power of each tests against the dependence measure d. Here we only consider lag

k = 1. In other words, there will be p2 cross covariances involved in the test. Note that we

also calibrate the critical values from the white noise model as Section 3.4.3 described. The

results are presented in Figure 3.5 and Figure 3.6. First of all, when d = 0, the generated series

is indeed a white noise. So the empirical rejecting probability is 5%, which is why all power

curves start from around 5%. Notice that when p = 150, the power for those portmanteau

tests are higher than expected. Although the expected value of the portmanteau statistic is the

same with the truth, the variance for each ρ̂ij is Op(1/
√
n). Since portmanteau tests sum up

all autocorrelation, its variance can be very large due to the accumulated variation from each

of the p2 autocorrelation. On the other hand, the empirical power increases as the dependency

becomes stronger. When d = 1, the results are the same as shown in Figure 3.3 and Figure 3.4 at

lag 1. Similar to the aforementioned discussion, as the autocorrelation remains relatively strong

in Model 6, compared to Model 5, all the tests based on maximum-type statistics are relatively

powerless when p is large. However, in Model 5, those tests are substantially powerful.
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In order to investigate the interesting pattern in Model 6, we adjust the variance of loading

matrix in Model 6, so that the variance of each series does not increase as p increases. Specifi-

cally, the variance of each series is partially influenced by the variance from coefficient matrix

A, which is accumulated when the dimension p increases. Thus, we use the following modified

model to generate the non-white series:

Model 6 (adjusted). xt = Azt, where zt = (z1,t, . . . , zp,t)
T . For 1 ≤ k ≤ k0, zt =

(zk,1, . . . , zk,n)T ∼ N(0,Σ), where where k0 = min(dp/5e, 12) and Σ is an n×nmatrix with

1 on the diagonal and 0.5|i− j|−0.6 on the (i, j)-th element for 1 ≤ |i− j| ≤ 7 and 0 on all the

other elements. For k ≥ k0, z1,t, . . . , zk,t are independently generated from t8. The coefficient

matrix A = (akl) is generated by: akl ∼ U(−1/
√
p, 1/
√
p) with probability 1/3 and akl = 0

with probability 2/3 independently for 1 ≤ k 6= l ≤ p, and akk = 0.8 for 1 ≤ k ≤ p.

The results are displayed in Figure 3.7. As expected, there is a significant improvement

from those solid curves compared to the power plots where data is generated from the original

Model 6, especially for p = 150. These results confirm the discussion in Section 3.4.2.

3.5 Real Data Analysis

One of the most important application of white noise test is to check the model adequacy. In

this section, we use the white noise tests as diagnostic tool to identify a suitable number of

terms used in the autoregressive model of matrix-valued time series. We fit the p-MAR(1):

p-term matrix autoregressive model with 1 lag, estimated using the least-square method (Chen

et al., 2018):

Xt = A1Xt−1B
′
1 + · · ·+ApXt−1B

′
p + Et,

and test on the residuals using our proposed test Tn and Sn, as well as Yn and Y ∗n proposed by

Chang et al. (2017). We use the same dataset presented in Section 5.2 of Chen et al. (2018),

the economic indicators from five countries: Canada, France, Germany, United Kingdom and

United States. Four quarterly indicators are selected: 3-month interbank interest rate (first-order

differenced series), GDP growth (first-order differenced log of GDP series), total manufacture

production growth (first-order differenced log of production series) and total consumer price

index (growth from the last period). The data was downloaded from Organisation for Economic
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Co-operation and Development (OECD) at https://data.oecd.org/, and was pre-processed the

same way as in Chen et al. (2018) before fitting the autoregressive model. To be specific, all

series are normalized so that the combined variance of each indicator is 1, and the seasonality

of CPI is adjusted by subtracting the sample quarterly means. The ACF plot of original series

is shown in Figure 3.8.

There are several significant lags in Figure 3.8, so we continue to fit the 1-MAR(1) model,

and apply those white noise tests on the residuals. The significance level is α = 0.05. Select

the lag to beK = 1, 2, 3, 4, 5. We generateB = 2000 bootstrap samples to evaluate the critical

values. The p-value of each test is reported in Table 3.5. Specifically, Tn and Sn reject the

null hypothesis that the residual series is white noise for all lags, while residuals pass Yn and

Y ∗n with pretty high p-value. If we add one more term to fit a 2-MAR(1) model, the residuals

pass Tn and Sn when K is small. When K = 4 and K = 5, these two tests still reject the

null hypothesis. However, the p-values are relatively close to 5%. So we stop here and select

2-MAR(1) model to fit the indicator data. We also plot the ACF of residuals from each model

for reference.

In summary, for this example, the tests proposed by Chang et al. (2017) fail to detect the

correlations, while our white noise tests direct us to use the MAR(1) model with two terms.

Although there are still some significant lags in Figure 3.10, rather than adding more terms to

MAR(1) model, we may consider a more sophisticated model such as MAR(2) or MAR(3) to

obtain a much cleaner residuals.

Table 3.5: The p-value(%) of white noise tests for testing residuals

Model Test
K

1 2 3 4 5
1-MAR(1) Tn 0.10 0.20 0.40 0.65 0.70

Sn 1.05 2.35 2.25 0.20 0.25
Yn 70.20 54.15 56.80 59.60 59.10
Y ∗n 55.15 23.60 24.85 25.30 25.15

2-MAR(1) Tn 7.30 11.35 14.85 3.05 3.70
Sn 13.75 14.95 19.80 3.10 3.95
Yn 71.15 75.00 78.80 75.70 76.65
Y ∗n 22.00 31.45 37.70 44.65 45.05
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3.6 Further Discussion

In this section, we propose a new test using the self-normalized cross correlation in order to

gain more power. The motivation is the variance of sample cross correlation tends to be smaller

under the alternative hypothesis. In order to make the signal stronger, we can divide the sample

cross correlation by its estimated standard deviation. Notice that under null hypothesis, this

is equivalent to normalize the sample cross covariance. The estimation of variance for sample

cross correlation is more complicated. Here we adopt a block estimates. Specifically, partition

n samples into B blocks with block size m. The common practice is to select m = n1/3. Then

for each block, calculate the sample cross correlation for all pairs of {(i, j) : 1 ≤ i, j ≤ p}.

In this way, we have B samples of cross correlations. Then use the sample variance of these

B samples to estimate the variance of sample cross correlation. We also evaluate the critical

values by calibration. The test based on maximum absolute self-normalized cross correlation is

denoted as Zn. There is also an improved version by using the sum of square of maximum and

minimum of self-normalized cross correlation, which is denoted as Z ′n. In order to demonstrate

the result clearly, we use a simple model to generate the non-white noise series.

Model 7. xt = Axt−1 +et, where et are independent and each et consists of p independent

t8 random variables, and the coefficient matrix |A| = d|A0| where d = 0, 0.2, 0.4, 0.6, 0.8, 1.0.

A0 = (akl) is generated by: akk ∼ U(−0.5, 0.5) independently for 1 ≤ k ≤ k0, and akl = 0

for 1 ≤ k, l ≤ k0, k 6= l and k, l > k0.

The first k0 rows in Model 7 are independent AR(1) process, and the rest rows are inde-

pendent t8 random variables. Recall for an AR(1) process xt = φxt−1 + etwith autoregressive

coefficient −1 < φ < 1 and i.i.d. innovations et, the asymptotic variance of lag-1 sample

autocovariance
√
nρ̂(1) is 1− φ2. Thus, by normalizing the sample cross and auto correlation

by its corresponding standard deviation, the dependency signals are stronger to be detected.

We demonstrate these findings by the power plots against dependence d in Figure 3.11. When

d = 0, this is exactly the same white noise model stated in Section 3.4.3. When d becomes

larger, the dependence of data becomes stronger. As shown in Figure 3.11, the tests based

on self-normalized cross correlation Zn and Z ′n (the red curves) are more powerful than other

maximum-type tests as expected.
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Last but not least, we remark that the most important application of the white noise tests is

to assess the adequacy of a fitted model. Much of the literature on the classical portmanteau

tests has focused on the impact of vector autoregressive and moving average modeling on the

distribution of sample autocorrelations of the residuals, and on that of the portmanteau test

statistics, see for example Li and McLeod (1981) and Lütkepohl (2005). For high dimensional

time series, the model building itself becomes more complicated, and has to be performed with

some regularization. The effect of the regularized estimation procedure is not yet clear for

the high dimensional white noise tests based on residuals. Although it might not affect the

asymptotic distributions of the test statistics, its influence on the finite sample performances

should not be neglected. Deep understandings of this problem, both theoretical and empirical,

are of our utmost interest in future research.
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Figure 3.2: Plots of empirical power against lag K for new tests Tn (solid •)and Sn(solid N), Yn (solid
◦) and Y ?

n (solid M), Q1 (dashed �), Q2 (dashed ◦), Q3 (dashed M), LM (dashed +), and TB (dashed
×). Data are generated from model 6.
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Figure 3.3: Plots of empirical power against lag K for new tests Tn (solid •)and Sn(solid N), Yn (solid
◦) and Y ?

n (solid M), Q1 (dashed �), Q2 (dashed ◦), Q3 (dashed M), LM (dashed +), and TB (dashed
×). Data are generated from model 5. Calibrated critical values are used.
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Figure 3.4: Plots of empirical power against lag K for new tests Tn (solid •)and Sn(solid N), Yn (solid
◦) and Y ?

n (solid M), Q1 (dashed �), Q2 (dashed ◦), Q3 (dashed M), LM (dashed +), and TB (dashed
×). Data are generated from model 6. Calibrated critical values are used.
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Figure 3.5: Plots of empirical power against dependence d for new tests Tn (solid •)and Sn(solid N),
Yn (solid ◦) and Y ?

n (solid M), Q1 (dashed �), Q2 (dashed ◦), Q3 (dashed M), LM (dashed +), and TB
(dashed ×). Data are generated from model 5 with adjusted dependence. Calibrated critical values are
used.
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Figure 3.6: Plots of empirical power against dependence d for new tests Tn (solid •)and Sn(solid N),
Yn (solid ◦) and Y ?

n (solid M), Q1 (dashed �), Q2 (dashed ◦), Q3 (dashed M), LM (dashed +), and TB
(dashed ×). Data are generated from model 6 with adjusted dependence. Calibrated critical values are
used.
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Figure 3.7: Plots of empirical power against dependence d for new tests Tn (solid •)and Sn(solid N),
Yn (solid ◦) and Y ?

n (solid M), Q1 (dashed �), Q2 (dashed ◦), Q3 (dashed M), LM (dashed +), and TB
(dashed ×). Data are generated from model 6 (adjusted). Calibrated critical values are used.
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Figure 3.8: ACF of original series
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Figure 3.9: ACF of residuals from 1-MAR(1)
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Figure 3.10: ACF of residuals from 2-MAR(1)
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Figure 3.11: Plots of empirical power against lag K for new tests Zn (red solid •)and Z ′
n(red solid N),

Tn (solid •)and Sn(solid N), Yn (solid ◦) and Y ?
n (solid M), Q1 (dashed �), Q2 (dashed ◦), Q3 (dashed

M), LM (dashed +), and TB (dashed ×). Data are generated from model 7. Calibrated critical values
are used.
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Chapter 4

Concluding Remarks

In the first project, we propose a monotone transform of the squared normal extremes, which

leads to a faster convergence to the limiting Gumbel distribution. We show that both the point-

wise and the uniform convergence rates are of the order (log n)−3. It improves the best existing

result, which is at the rate (log n)−2. While the faster convergence rates are often reflected

when the sample size is large, after the proposed transform, the distribution of the squared

normal extreme is very close to the limiting one even when the sample size is moderate, with

only hundreds of observations. Furthermore, it is stochastically dominated by the limiting

distribution. This is important because the asymptotic test based on the transformed maximum

is conservative, so that the type I error is guaranteed to be controlled at the nominal level.

In the second project, we consider the white noise tests for high dimensional time series.

Two tests are proposed: (i) maximum self-normalized sample autocovariance, and (ii) sum of

squared maximum and minimum sample autocovariances (after normalization). Our theoretical

analysis is under the paradigm of high dimensional statistics, where the dimension is allowed to

grow exponentially with the length of the time series. We show that the limiting distribution of

the first test statistic converges to the Gumbel distribution, and that of the second one converges

to the convolution of two independent Gumbel random variables. To calibrate the sizes of

the tests when the sample size is not very large, we propose to use the dependent Gaussian

multiplier bootstrap, and establish its consistency. We conduct an extensive numerical studies,

and find that the proposed tests do enjoy better type I error controls, compared with existing

testing procedures.

We also find that while the sizes are better controlled, the proposed tests also have compa-

rable powers with other ones. To further improve the power, one approach is to consider the
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self-normalized sample autocorrelations. Another approach is to use the idea of higher criti-

cism tests (Donoho et al., 2004) so that the test is more adaptive to the unknown dependence

pattern under the alternative. These directions will be investigated in future research.

Finally, for most tests based on the maximum, two approximations are involved, a normal

approximation and an asymptotic approximation of the normal extreme by the Gumbel distri-

bution. The second approximation is investigated in the first project of this dissertation. On the

other hand, a thorough analysis of the rate of convergence for the first one is needed, and is also

of our future interests.
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