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THESIS ABSTRACT 

Tardigrades: An Imaging Approach, 

A Record of Occurrence, and a Biodiversity Inventory 

by STEVEN LOUIS SCHULZE 

 

Thesis Director: 

Dr. John Dighton 

 

     Three unrelated studies that address several aspects of the biology of tardigrades—

morphology, records of occurrence, and local biodiversity—are herein described.   

     Chapter 1 is a collaborative effort and meant to provide supplementary scanning 

electron micrographs for a forthcoming description of a genus of tardigrade.  Three 

micrographs illustrate the structures that will be used to distinguish this genus from its 

confamilials.  An In toto lateral view presents the external structures relative to one 

another.  A second micrograph shows a dentate collar at the distal end of each of the 

fourth pair of legs, a posterior sensory organ (cirrus E), basal spurs at the base of two of 

four claws on each leg, and a ventral plate.  The third micrograph illustrates an 

appendage on the second leg (p2) of the animal and a lateral appendage (C′) at the 

posterior sinistral margin of the first paired plate (II).  This image also reveals patterning 

on the plate margin and the leg.  A fourth image presents the tip of a feeding stylet, which 

is normally retracted into the body. 

     Chapter 2 compares unknown marine specimens collected in New Jersey to 

Neoechiniscoides pollocki Møbjerg et al., 2019 (=Echiniscoides pollocki Hallas & 
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Kristensen, 1982).  We provisionally consider the specimens Neoechiniscoides cf. 

pollocki, due to their warty cuticle, cephalic sensory appendages (internal and external 

cirri) that terminate in star-like arrays of projections, 8,8,8,7 claw configuration, and the 

absence of tertiary clavae. 

     Chapter 3 is an inventory of tardigrades on Plummers Island, Maryland that adds the 

phylum Tardigrada to the list of known taxa from the island.  The genera Astatumen and 

Diphascon are new records for the state of Maryland, while the genera Milnesium, 

Macrobiotus, and Minibiotus were also recovered.  Tardigrades were found in higher 

abundance in the eastern sites than the western sites, and eggs were only recovered from 

two sites.   
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Strange is this little creature, because the whole organization of his body is 

extraordinary and strange and because his external appearance, at the first sight, has 

the closest similarity to a little bear.  This also led me to give him the name little water 

bear. 

–Johann A. E. Goeze, 1773 

Translated from the German  

by Hartmut Greven (2015) 

  



1 
 

 

General Introduction 

 

     The phylum Tardigrada (It: tardi, ‘slow’; grado, ‘walker’) is a group of about 1,300 

described species of microscopic invertebrates known as tardigrades (Degma et al. 2019; 

Spallanzani 1776).  Most are no longer than 500 µm, but some, such as the predatory 

Milnesium tardigradum Doyère, 1840, may exceed one millimeter (Kinchin 1994; 

Møbjerg et al. 2018).  Their bodies exhibit bilateral symmetry, are dorsoventrally 

flattened, have distinct anterior and posterior ends, have a mouth, and have eight 

lobopodous limbs that, with the exception of five genera, terminate in claws (Dastych 

1983; May 1948; Pilato 1969a, 1969b; Pilato & Beasley 1987).  These animals may occur 

in marine, freshwater, or terrestrial environments—from the oceanic abyssal plain to the 

Himalayas (Dey & Mondal 2018; Romano et al. 2011), from Arctic glaciers to Antarctic 

lakes (Cathey et al. 1981; De Smet & Van Rompu 1994), and from subtropical deserts to 

tropical rainforests (Gąsiorek & Vončina 2019; Pilato et al. 1991). 

     In the first published description of a tardigrade, Goeze (1773) reported collecting his 

“little water bears” from duckweed in stagnant water from his hometown.  Eichhorn 

(1775) similarly collected tardigrades from bodies of water near his home in Poland, 

while Corti (1774) and Spallanzani (1776) reported them from sediment collected in rain 

gutters.  In each instance, the authors described their outward appearance and curious 

gait, both resembling a bear’s or caterpillar’s, and recognized, significantly, their ability 

to survive desiccation.  It is this combination of peculiarity, resilience, and omnipresence 

that has led to dedicated studies of the biology of tardigrades. 



2 
 

 

     Since their discovery, tardigrades have been included among arachnids, insects, or 

crustaceans (Müller 1785; Plate 1889; Schultze 1834; von Siebold 1848; see also Greven 

2018), mostly owing to a misdiagnosis of articulation in their limbs.  They were later 

included in the defunct phylum Aschelminthes, based on similarities with nematodes in 

the structure of their feeding apparatuses (Greven 2018; Jorgensen et al. 2018; see also 

Kinchin 1994).  Each grouping, though now antiquated, maintained a relationship of 

tardigrades with arthropods or nematodes.  Current consensus, supported by molecular 

analyses and life history traits, places Tardigrada within the clade Ecdysozoa Aguinaldo 

et al., 1997, whose taxa undergo ecdysis (molting) and have lost locomotory cilia 

(Nielson 1995). Ecdysozoans are the cycloneuralians (Loricifera, Kinorhyncha, 

Priapulida, Nematomorpha, and Nematoda) and panarthropods (Tardigrada, Arthropoda, 

Onychophora).  The panarthropods are distinguished from the cycloneuralians by their 

segmented bodies and limbs with terminal hooks (Jørgensen et al. 2018; Nielsen 2012).  

Molecular data and comparisons of morphology among the panarthropods have inferred 

or supported tardigrades as a sister group to either onychophorans, arthropods, or an 

arthropod-onychophoran clade (Budd 2001; Jørgensen et al. 2018; Nielsen 2012).  

     The phylum Tardigrada is divided into four classes: Heterotardigrada Marcus, 1927; 

Eutardigrada Marcus, 1927; the recently erected Apotardigrada Guil et al., 2019 comb. 

Schuster et al., 1980; and the dubious monospecific Mesotardigrada Rahm, 1937, whose 

type specimen was lost and type locale destroyed in an earthquake (Guil et al. 2019).  At 

a glance, heterotardigrades can be distinguished from eutardigrades and apotardigrades 

by their numerous and prominent cephalic appendages, cuticular sculpturing, a distinct 

anus and gonopore, and unbranched claws; apotardigrades and eutardigrades have a 
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cloaca, branched claws, reduced or absent appendages, and slightly sculptured or 

unsculptured cuticles (Jørgensen et al. 2018).  Additionally, Apotardigrades have double 

claws whose primary and secondary branches are completely separated and have a 

pharyngeal bulb without cuticular elements known as placoids (Guil et al. 2019).   

     Heterotardigrada is further divided into the orders Arthrotardigrada Marcus, 1927 and 

Echiniscoidea Richters, 1926.  The arthrotardigrades have an external cephalic sensory 

appendage (median cirrus) that is unique to the order, while echiniscoideans lack a 

median cirrus and have reduced lateral, leg, and sensory appendages.  Eutardigrada 

includes four recently erected orders that are primarily distinguished by the morphology 

of their claws and their feeding apparatuses (Guil et al. 2019).  Despite this 

morphological diversity, tardigrade taxa do exhibit common anatomical and 

physiological features. 

     Tardigrades—marine, freshwater, and even terrestrial—are collectively aquatic; they 

require a film of water to be metabolically and reproductively active.  Terrestrial species 

are commonly found in the periodically inundated interstitial spaces between leaves of 

moss or lobes of lichen, while marine (intertidal, benthic, pelagic, and abyssal) and 

freshwater species are frequently or continuously submerged in water (Ramazzotti & 

Maucci 1983).  The oxygenated water diffuses across the soft, tri-layered tardigrade 

cuticle and into the body’s haemocoel.  This body cavity circulates extracellular fluids, 

gas, and nutrients among the tardigrade’s internal organs and also contains what are 

thought to be storage cells that supplement the animal with protein and fat during lean 

times (Hyra et al. 2016b).  Their primary source of nutrition, however, is quite varied and 

may include plants, fungi, bacteria, or other microinvertebrates (Møbjerg et al. 2018).  
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Feeding preference is poorly understood, and the aforementioned diets are rarely assigned 

to any one group.  Known predatory tardigrades have, however, been observed 

‘foraging’.  Claws and locomotory muscles and a ventral nervous system allow the 

animal to crawl toward and potentially differentiate prey items, but the underlying 

strategies must be investigated further (Hohberg & Traunspurger 2009).  When a 

tardigrade does feed, two stylets extend from the mouth and pierce a cell wall or 

membrane.  The cellular contents are ingested through suction and pass through the gut 

where they are digested (Møbjerg et al. 2018).  Waste is egested through an anus or 

cloaca, which serves as an excretory orifice and, like the gonopore in the 

heterotardigrades, a reproductive organ.  If favorable environmental conditions persist, 

tardigrades will reproduce—with or without fertilization—and a female will lay eggs 

(Altiero et al. 2018).  Those eggs will eventually hatch, and the juveniles will grow into 

adults through a series of instars.  If unfavorable conditions arise, tardigrades will enter a 

dormant stage known as cryptobiosis. 

     Cryptobiosis, or ‘latent life’, is a state of dormancy through which an organism 

reduces its metabolism to an imperceptible level in response to adverse environmental 

conditions (Keilin 1959).  Desiccation, oxygen depletion, freezing, or changes in ambient 

salinity will trigger this physiological response, for which tardigrades are perhaps most 

famous (e.g., Kinchin 1994).  Cryptobiosis was first reported by van Leeuwenhoek at the 

turn of the 18th century, and recent tardigrade research has focused on the molecular 

mechanisms that drive the process and their applications (Boothby et al. 2017; van 

Leeuwenhoek 1702).  Understanding desiccation tolerance may allow human tissue to be 

preserved without the need for refrigeration (Shankar et al. 2019).  Radiation-tolerant 
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tardigrades, which omics studies suggest can maintain DNA integrity when irradiated, 

may have genes that can be transfected to cells of cancer patients (Jönsson 2019).  

Rightly so, promising medical applications have pushed molecular biology to the 

forefront of tardigrade research, but in some cases at the risk of superseding useful 

morphological taxonomy and observational data.  For example, some species in the 

Macrobiotidae: Macrobiotus hufelandi group are only distinguished by their DNA and 

are otherwise morphologically identical.  The three studies that will be described here are 

meant to address understudied aspects of tardigradology and to highlight the importance 

of natural history and organismal biology. 

  



6 
 

 

Chapter 1. 

Imaging Tardigrades: A Scanning Electron Microscopic Approach 

 

Introduction 

     Scanning electron microscopy (SEM) is a useful, multidisciplinary imaging tool.  It 

has found applications in both the physical and life sciences to visualize surface features 

of an object at a high magnification and with better resolution than can be achieved with 

light microscopy (e.g., Moropoulou et al. 2019; Szöke-Nagy et al. 2018; Thompson et al. 

2018).  This is accomplished by using electrons, rather than photons, to interact with a 

sample, thereby overcoming the diffraction limit on resolution imposed by an optical 

system (Abbe 1873; Haguenau et al. 2003; Thomson 1897).  Resolution is the minimum 

distance between two objects that allows them to be seen as separate entities.  This value 

is directly proportional to the wavelength of an energy source (Abbe 1873; de Broglie 

1925; Haguenau et al. 2003).  Electrons have a shorter wavelength than protons, and thus 

theoretically permit a smaller diffraction-limited separation to resolve objects, which 

results in better resolution.  For an SEM to produce an image, a focused beam of 

electrons scans an object in a line-by-line raster pattern to produce signals about the 

object’s surface.  These signals arise from electrons of the object’s atoms being ‘kicked’ 

out of their orbital by the high energy electrons of the beam.  The high-energy signals, 

known as backscattered electrons (BSE), or beam electrons rebounding from an 

interaction with an atom’s nucleus, have almost as much energy as the incident beam and 

require a different detection system than the low-energy signals.  These low-energy 

signals, called secondary electrons (SE), are more easily attracted to a positively biased 
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electron detector.  This detector uses a photomultiplier to convert an electron signal to an 

electronic one that is viewed on a television screen (McMullan 1995; Postek et al. 1980; 

Stintzing 1929a, b; Synge 1928). 

     The concept of scanning an object with an electron beam to produce images was 

theorized by Hugo Stintzing in 1927 and demonstrated by Max Knoll in 1935 (Knoll 

1935; Stintzing 1929a, b).  Knoll’s demonstration employed an apparatus similar to an 

SEM, but which lacked condenser lenses (Knoll 1935; McMullan 1995).  He initially 

used the apparatus to study the metallic granule targets of television camera tubes and 

later expanded to other metallic samples (Knoll 1941).  By 1938, Manfred von Ardenne 

had constructed the first SEM (Knoll 1935; von Ardenne 1938a, b) just as Vladimir 

Zworykin, at RCA laboratories in Camden, NJ, began development of his own machine.  

Charles Oatley began work in 1948 on an SEM at Cambridge University that led to the 

first commercially available SEM.  It was marketed in 1965 by the Cambridge Instrument 

Company and marked the initiation of its widespread use, including in the field of 

biology (Oatley et al. 1965; Stewart & Snelling 1964).   

     Ladislaus Marton (1934) was the first to image a biological specimen (Drosera 

intermedia) with an electron microscope of any kind (Van Dyck 1996), while Smith and 

Oatley (1955) was the earliest example this author could find of published SEMs of 

biological specimens (an amoeba and mealworm grub).   Baccetti and Rosati (1971) were 

the first to use SEM to study tardigrades—specifically, their integument—and successive 

publications in the same decade expanded the gallery of tardigrade SEMs, including 

those of eggs (e.g., Crowe & Cooper 1971; Grigarick et al. 1973; Nelson 1975).  
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Nowadays, it would be difficult to find a species description without supplementary 

images from SEM (e.g., Bai et al. 2020; Guidetti et al. 2019; Perry et al. 2018).   

     In tardigradology, SEM is not a diagnostic tool; rather, it corroborates what is 

observed with light microscopy and reveals details that would otherwise go unseen.  

External structures are especially useful in distinguishing members of the ornamented 

class Heterotardigrada.  In collaboration with Lowman et al. (in prep), scanning electron 

micrographs are contributed to better illustrate characteristics used to describe a new 

genus of heterotardigrade.       

      

Methods 

     Tardigrades (Heterotardigrada, Echiniscoidea, Echiniscidae) recovered from lichen 

collected in the Malaysian rainforest were shipped from Kansas City, Missouri to the 

Rutgers Pinelands Field Station, New Lisbon, New Jersey in a vial of 70% ethanol 

courtesy of Dr. William R. Miller.  At the field station, the contents of the vial were 

poured into a Petri dish and examined with a Nikon SMZ 1000 stereoscope using 

reflected fiber optic illumination (Dolan-Jenner Fiber-Lite® series 180).  Specimens were 

transferred with an Irwin Loop from the dish to a 30-µm microporous specimen capsule 

(Electron Microscopy Sciences) that was immersed to just below its rim in 70% ethanol 

(Miller 1997; Mitchell & Miller 2008; Schram & Davidson 2012).  Animals were 

dehydrated using a standard ethanol series (Newell 1947; Perry et al. 2018) and critical-

point dried (Denton Vacuum DCP-1) according to local protocol at Rutgers University, 

Camden, NJ.  Viewed with a stereomicroscope, individual specimens were removed from 

the capsule electrostatically with a pig’s eyelash taped to a small wooden dowel (Emma 
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Perry pers. comm.) and positioned on double-sided tape on a stub.  They were sputter-

coated (Denton Vacuum Desk II) with 10 nm of Au/Pd at Rutgers University, Camden, 

NJ, then imaged with a Hitachi SU5000 FE-SEM at The College of New Jersey, Ewing, 

NJ.  The use of detector bias and choice of accelerating voltage were informed by trial 

and error to produce the most illustrative images.               

 

Results 

     Pictured are scanning electron micrographs of two specimens belonging to the 

undescribed genus (Heterotardigrada, Echiniscoidea, Echiniscidae).  Figures 1.1, 1.3, and 

1.4 are photographs of the same animal.  Figure 1.1 is an in toto lateral view, showing 

lateral appendages, dorsal and ventral plates, and claws.  Figure 1.2 is a detailed view of 

the terminal ventral plate with few pores.  Also visible are the anus, gonopore, fourth pair 

of legs, basal spurs on the two interior claws on each leg, and the dentate collar at the 

posterior margin of the legs.  The dextral cirrus E has broken off.  Bacteria (bacilli and 

cocci) appear on the ventral plate and legs.  Figure 1.3 is a detailed lateral view of leg 

appendage II and lateral appendage C.  Cocci are visible under the leg appendage.  Figure 

1.4 is a detailed view of a grooved, piercing stylet protruding from the mouth.  Bacteria 

did not obstruct views of any structures in Figures 1.2 or 1.3.   

 

Discussion 

     A full description of the genus is beyond the scope of this work, which is simply 

meant to provide supplementary SEM images in collaboration with Lowman, Miller, and 
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others for a forthcoming description of the newly discovered tardigrade 

(Heterotardigrada, Echiniscoidea, Echiniscidae) (Lowman et al. in press).   

     Figures 1.1–1.3 are of publishable quality and will be used in the description of the 

genus.  The stylet in Figure 1.4 will not be used to describe the genus, but such a 

structure is normally retracted into the body and is seldom photographed with SEM.  The 

pores on ventral plate E in Figure 1.2 are incidental; ventral sculpturing will not be used 

to describe this new genus.  Since the gonopore of the specimen is sufficiently deformed 

to render identification of sex impossible, a different animal is required for imaging this 

structure.  In Figure 1.3, patterning is evident on leg II and on the margins of paired 

plates II and III.  The light spots in this patterning might represent distinct concentrations 

of elements with high atomic numbers.  Since the detector bias (SE) was turned off (BSE) 

for this micrograph, primarily high-energy backscattered electrons were detected.  The 

intensity of each point in the image is highly correlated with atomic number, and the 

resultant strong emission translates to lighter areas on the specimen surface (Postek et al. 

1980).  The patterning may also be explained by the incident beam penetrating the 

surface of the animal to reveal underlying epicuticular pillars (Greven 1980).   

     An in toto image of the dorsal surface and detailed images of cirri A and E; leg 

appendages I, II, and IV; lateral appendage D; and a primary clava will be ideal 

supplements to the description of the genus.  Ultrasonic cleaning can be employed before 

critical-point drying to remove residues such as bacteria (Kristensen pers. comm.).  In an 

SEM, features such as mechanical rotation of the stage, autostigmation, and a broader 

suite of scan speeds are assets to the tardigradologist and could further improve the 

quality of the images. 
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     Advancements such as serial block-face scanning electron microscopy (SBSEM) 

(Denk & Horstmann 2004; Hyra et al. 2016a; see also Møbjerg et al. 2018) and X-ray 

nano-computed tomography (nanoCT) (Gross et al. 2019) would allow 3D visualization 

of the internal anatomy of tardigrades, and both are used in conjunction with SEM.  

Sputter-coating with graphene has also been shown to overcome charging associated with 

heavy metal coating and therefore improve resolution (Park et al. 2016).  The advantages 

of SEM over light microscopy—greater magnification, resolution, and depth of field—

have led to its widespread adoption as a research instrument that enhances the field of 

tardigradology, particularly studies of morphology. 
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Chapter 2. 

A New Record of Marine Tardigrade from the Northwest Atlantic Ocean 

 

Introduction 

     Marine tardigrades are found in all oceanic ecological zones, from the intertidal to the 

abyssal.  They are smaller than their limnoterrestrial counterparts, and their habitats are 

often difficult to access.  Consequently, few records of occurrence exist of marine 

tardigrades from the Cold Temperate Northwest Atlantic Marine Province, which extends 

from Onslow County, North Carolina, USA, northward to the northern reach of the Gulf 

of St. Lawrence, Canada (Miller & Perry 2016; Spalding et al. 2007).  Records of 

occurrence exist for nine U.S. states within the marine province (Fig. 2.1).   

     Perry and Miller (2015) described Echiniscoides wyethi from Allen Island, Maine, 

while Faurby et al. (2011) reported Echiniscoides sp. from Wells, Maine.  Pollock 

(1970c) reported Batillipes pennaki from Hampton Harbor, New Hampshire, and 

Hummon (1994) reported Batillipes tubernatis from Duxbury Harbor and Saquish Neck, 

both in Massachusetts.  Eight different species were reported from the Woods Hole area 

in Massachusetts: Batillipes mirus from Wood Neck Beach (Pollock 1970a, 1975b); 

Stygarctus bradypus from MBL Beach (Uhlig 1968); Angursa bicuspis, Batillipes 

bullacaudatus, Batillipes dicrocercus, Batillipes mirus, Batillipes pennaki, Echiniscoides 

sigismundi, and Stygarctus granulatus from Crane’s Beach (Marcus 1946; Pollock 1970a, 

1970c, 1979); Echiniscoides sigismundi from the “Fisheries Jetty” (Pollock 1975a); and 

Stygarctus bradypus from Nobska Beach (McGinty & Higgins 1968).  In Rhode Island, 

Hallas and Kristensen (1982) described Echiniscoides pollocki (=Neoechiniscoides 
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pollocki Møbjerg et al., 2019) and Echiniscoides higginsi (=Isoechiniscoides higginsi 

Møbjerg et al., 2016) from both an area north of Jamestown Bridge, Narragansett Bay 

and a “brackish bay near Hamilton, Rhode Island”, which this author presumes is Bissel 

Cove, at the mouth of the Annaquatucket River.  Bartsch (1982) did not report 

tardigrades from her three sites at the brackish bay, but did communicate to Kristensen 

that the tardigrades in question were indeed collected there (Reinhardt Kristensen pers. 

comm.).  Kristensen and Hallas (1980) also reported Echiniscoides sigismundi 

groenlandicus from an unspecified location near the town of Narragansett, Rhode Island.  

Continuing south, Martinez (1975) reported Batillipes mirus and Batillipes pennaki from 

Rockaway Point, New York, while Hummon (1994) reported Tanarctus heterodactylus 

from The Shears, a sand bar in the Delaware Bay near Cape Henlopen, Delaware.  

McGinty and Higgins (1968) described Batillipes bullacaudatus and reported Batillipes 

mirus, Halechiniscus remanei, and Stygarctus bradypus from Sandy Point, Virginia, 

where Indian Field Creek meets the York River.  Lindgren (1971) reported Batillipes 

bullacaudatus, Batillipes mirus, Stygarctus bradypus, Stygarctus granulatus, and 

Tanarctus arborspinosus from Bogue Beach, North Carolina, “approximately 250 m west 

of the Iron Steamer Pier”.  Finally, in the first record of marine tardigrades from the 

Americas, Hay (1917) described Batillipes caudatus from Shackleford Bank, North 

Carolina.   

     The following records are noted but not treated in this paper:  The type locality of 

Angursa bicuspis, Tanarctus dendriticus, Tanarctus gracilis, and Tanarctus 

heterodactylus, off the coast of North Carolina, lies outside the 200-m isobath that 

Spalding et al. (2007) defined as the outer boundary of coastal realms, provinces, and 
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ecoregions, and so is not considered here (Coull et al. 1977; Pollock 1979; Renaud-

Mornant 1980).  McGinty and Higgins (1968) noted that Echiniscoides sigismundi is 

known from North Carolina and Massachusetts, but this is uncited and the locations 

unspecified.  Pollock (1976) further mentioned two unpublished records of 

Echiniscoides—one from Seawall Beach, Acadia National Park, Maine and the other 

from Rye Harbor, Rye, New Hampshire.  Higgins (1972) mentioned Echiniscus 

sigismundi (=Echiniscoides sigismundi Plate 1889) from an unspecified location in North 

Carolina.  It should also be noted that Pollock (1970a) suspected that E. sigismundi 

occurred accidentally on Crane’s Beach, as it is usually found among algae on barnacles. 

     Notwithstanding this smattering of records, intertidal species of the family 

Echiniscoididae Kristensen & Hallas, 1980 remain of particular interest. They may 

clarify the transition of tardigrades from marine to terrestrial and freshwater 

environments.  Molecular and morphological studies suggest that they evolved from the 

exclusively marine Arthrotardigrada Marcus, 1927.  Jørgensen et al. (2011) inferred an 

intermediate phylogenetic position of Echiniscoides sigismundi based on combined 18S, 

28S, COI, and morphological data; E. sigismundi was found to be basal to the terrestrial 

family Echiniscidae but rooted by arthrotardigrades.  Kristensen (1981) noted that the 

setae of arthrotardigrades are well-developed, with a defined cuticular portion and 

cuticle-forming epithelial cells.  The cuticular portion of the setae is reduced in the 

intertidal echiniscoideans, and the cells and cuticular portion are lost completely in the 

terrestrial eutardigrades.       

     The class Heterotardigrada Marcus, 1927 is comprised of two orders: the 

Arthrotardigrada Marcus, 1927 and Echiniscoidea Richters, 1926.  Echiniscoidea is 
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distinguished from the arthrotardigrades by the absence of a median cirrus, reduction of 

cephalic and lateral sensory organs, and reduction or absence of leg sensory organs.   

Within the Echiniscoidea are five families, among which is Echiniscoididae Kristensen & 

Hallas, 1980 (Degma et al. 2019).  Echiniscoididae is distinguished by supernumerary 

claws (6–13) in adults; an unplated cuticle; papillar primary clavae and fourth leg 

appendages; the absence of a median cirrus, of stylet supports, and of a seminal 

receptacle; and an anal system with a terminal lobe and two lateral lobes (Møbjerg et al. 

2019).   Echiniscoididae is further divided into three genera: Echiniscoides Plate, 1889; 

Isoechiniscoides Møbjerg et al., 2016; and Neoechiniscoides Møbjerg et al., 2019.  Size 

and shape of sensory organs, claw configuration, body size, and dorsal sculpturing are 

used to distinguish taxa of these genera.  Neoechiniscoides is distinguished from its 

confamilials by its winged anal system (Møbjerg et al. 2019).  Here, we report 

Neoechiniscoides cf. pollocki, recovered from barnacles at Barnegat Lighthouse, New 

Jersey, USA (Fig. 1 inset).   

       

Methods      

     Barnegat Lighthouse was visited five times between November 2017 and March 2018, 

coincident with low tidal stages as recorded by the United States Coast Guard Barnegat 

Inlet monitoring station.  Barnacles (Semibalanus balanoides) (Pollock 1998) were 

scraped from rocks with a putty knife and submerged in Poland Spring® or Wawa® spring 

water to osmotically shock any tardigrades into releasing their grasp on the barnacles.  

Barnacle plates were separated and broken into more easily examined pieces with 
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forceps.  Specimens were either permanently mounted on glass slides or prepared for 

scanning electron microscopy (SEM). 

     Specimens selected for SEM were prepared according to the protocol described in 

Chapter 1.  At the University of Maine, Orono, Maine, specimens were critical-point 

dried (Tousimis® Samdri® pvt-3) and sputter-coated with a 35 nm-thick layer of Au/Pd 

(Cressington® 108 Auto/SF).  Specimens were imaged with an AMRAY 1820 SEM at 

the University of Maine.  The specimens were later recoated with an additional 10 nm of 

Au/Pd (Denton Vacuum Desk II) and imaged with a Zeiss LEO 1450 EP SEM at Rutgers 

University, Camden, New Jersey.   

     Specimens selected for permanent mounting were collected with an Irwin Loop 

(Schram & Davidson 2012) according to Miller (1997) and viewed with a Nikon SMZ 

1000 stereoscope using reflected fiber optic illumination (Dolan-Jenner Fiber-Lite® series 

180).  They were then transferred to a drop of Hoyer’s mounting medium (Hempstead 

Halide) on a glass slide and covered with a glass coverslip.  Four small dots were applied 

with a permanent marker to the top surface of the coverslip to mark the location of the 

tardigrade.  The Hoyer’s medium was allowed to dry for one week, after which the edges 

of the coverslips were sealed with fingernail polish; pigmented fingernail polish is 

preferred to clear fingernail polish, as it is more viscous and renders incomplete coverage 

more evident.  Specimens were viewed with a Nikon Eclipse E200 compound 

microscope and photographed with phase contrast microscopy using an OMAX 

A35140U digital camera and ToupView computer software (ToupTek Photonics).  

Morphometric measurements of taxonomically informative traits were taken using 

ToupView (Møberg et al. 2016, 2019; Perry et al. 2018).  Where curvature of a structure 
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was inherent (e.g., cirri A and E), a measurement line was drawn to approximate the 

curvature.  Body widths were not measured if the specimen was mounted on its side.  

Identification was made according to Hallas and Kristensen (1982), Møbjerg et al. 

(2019), and Perry and Miller (2015). 

 

Results 

     Figure 2.2 illustrates the diagnostic characters of our specimens.  Table 2.1 presents 

morphometrics from our specimens and the type specimens of N. pollocki.  Character 

names and abbreviations follow Kristensen & Hallas (1980).   

     Our adult specimens whose full complement of claws could be resolved (n = 21) 

exhibited an 8,8,8,7 claw pattern, while juveniles (n = 4) exhibited a 5,5,5,4 pattern 

(Table 2.1).  Body lengths of our adult specimens averaged 243.10 µm, which falls 

within the range expected for medium-sized Echiniscoides and Neoechiniscoides taxa 

(Kristensen & Hallas 1980).  Appendages appeared on all legs, but were most often found 

on legs III and IV; those on legs I, II, and IV were dome-shaped, while that on leg III was 

an elongate spike (Fig. 2.2E–H).  Black eyespots were present as were internal and 

external cirri, cirri A and E, and primary clavae.  Cephalic papillae (secondary clavae) 

were lens-shaped (Fig. 2.2B).  The dorsal sculpturing consisted of irregularly arranged, 

polygonal granulations without a substructure of smaller points (Fig. 2.2C).  Stylet bases 

occurred at the anterior part of the pharyngeal bulb.  Cirri A and E were proximally 

annulated (Fig. 2.2C & D).  Internal and external cirri terminated in a star-like array of 

projections (Fig. 2.2B).  The anus was ovoid, with two lateral lobes and a smaller 
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terminal lobe (Fig. 2.2A).  Female gonopores were encircled by a six-lobed floret, while 

male gonopores were trilobed (Fig. 2.2A inset).   

      

Discussion 

     We provisionally consider these specimens to be Neoechiniscoides cf. pollocki 

Møbjerg et al., 2019 (=Echiniscoides cf. pollocki Hallas & Kristensen, 1982).  Only N. 

pollocki and N. horningi Møbjerg et al., 2019 (=Echiniscoides horningi Miller & 

Kristensen, 1999) have both a warty cuticle and an 8,8,8,7 claw configuration within the 

genus.  N. horningi has a pair of tertiary clavae, however, which is lacking in our 

specimens and in N. pollocki (Hallas & Kristensen 1982; Miller & Kristensen 1999; 

Møbjerg et al. 2019).  The internal and external cirri of our specimens terminate in short, 

star-like arrays of projections, which are similar in appearance to the “terminal tufts of 

setae” of Echiniscoides bruni D’Addabbo Gallo et al., 1992.  Such projections also 

appear on E. rugostellatus Perry et al., 2018, but those are longer, and both E. bruni and 

E. rugostellatus have different claw configurations than our specimens (D’Addabbo 

Gallo et al. 1992; Perry et al. 2018).   

     N. pollocki is described as having stylet bases that rest on the posterior portion of the 

pharyngeal bulb, while those of our specimens rest on the anterior portion (Hallas & 

Kristensen 1982).  This characteristic is not presently used to differentiate taxa, however, 

and will be provisionally considered incidental.  Møbjerg et al. (2019) distinguish 

Neoechiniscoides from the other genera of Echiniscoididae by the presence of lateral 

wings in the anal system.  These lateral wings were not apparent in our specimens, 

although they are often difficult to discern.  According to Møbjerg et al. (2019), a ventral 
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cuticular plate “in front of the female gonopore” was observed the two other species in 

the genus, except for N. pollocki.  DNA analysis of our specimens would provide an 

integrative description and contribute to the molecular phylogeny of the still understudied 

marine tardigrades. 
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Chapter 3 

A Preliminary Inventory of Tardigrades on Plummers Island, Maryland 

 

Introduction 

     Biodiversity inventories are crucial to promoting environmental stewardship (NPS 

2010).  The presence or absence as well as abundance of certain taxa may indicate the 

health of an ecological system.  Lichens and mosses, for example, are known to 

accumulate heavy metal in their tissues that can be correlated with air or water pollution 

(Özyiğitoğlu 2020; Radziemska et al. 2019).  Moss- and lichen-dwelling animals such as 

nematodes, rotifers, and tardigrades can inform future strategies of conservation or 

remediation if their abundance or community composition changes in response to 

stressors, particularly pollution (e.g., Gerlach et al. 2013; Leetham et al. 1982).  Long-

term changes cannot be documented, however, without basic ecological data.  

Tardigrades are among the taxa whose local diversity is not well established and whose 

habitat preferences and trophic role are poorly understood.  Their geographic distribution 

as a phylum is cosmopolitan, but the mid-Atlantic region has scarcely been surveyed 

(Kaczmarek et al. 2016; Meyer 2013). Plummers Island, Maryland, within that region, is 

an area with enough habitat diversity to support a rich community and high abundance of 

tardigrades (Nelson & Bartels 2007; Simmons et al. 2016). 

     Plummers Island is a five-hectare island about 15 km northwest of the District of 

Columbia (Fig. 1B).  It lies at the northern bank of the Potomac River and is separated 

from mainland Maryland by a narrow culvert.  The island rises in two knolls over 90 and 

110 feet above sea level along gradual gradients in the East and North and steep gradients 
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in the South and West (Fig. 1C).  Areas of lowest elevation are frequently inundated by 

floodwater, while the highest areas may flood centennially (Fleming 2015).  Alluvial 

deposits at river level primarily support herbaceous vegetation.  Bedrock outcrops and 

colluvial boulders occur at middle to high elevations and support assemblages of 

cryptogams, which—particularly bryophytes and lichens—are commonly inhabited by 

tardigrades (Ramazzotti & Maucci 1983; Wells 2004).  Rainwater may also collect in 

depressions and fissures in the rocks to form ephemeral pools with subaqueous sediment 

and detritus that have been known to harbor freshwater tardigrade taxa (Ramazzotti & 

Maucci 1983).  The remaining terrain of the island is sparsely or densely wooded with 

broad-leaved trees whose bark may also support cryptogams that, along with leaf litter 

and underlying soil, may harbor tardigrades.  Low-lying riparian areas with immature, 

silty soil sustain sycamore, birch, and red maple.  At middle elevations, red oaks begin to 

appear, alongside basswood and tulip-poplar in mature, sandy soil.  Upland forests 

include hickories and oaks that are underlain by clayey hardpan (Fleming 2015; Wells 

2004).  The island’s forested landscape and geomorphological profile support 

representative fauna of which a catalogue is extensive but incomplete.    

     The natural history of Plummers Island is well documented.  Biological collecting on 

the island predates the turn of the twentieth century, and since its adoption in 1901 by the 

Washington Biologists’ Field Club as the organization’s base of operations has come to 

be known as “the most thoroughly studied island in North America” (Perry 2007).  Birds, 

mammals, reptiles, and amphibians have all been inventoried (Johnston & Winings 1987; 

Manville 1968) in an ongoing series of publications dedicated to the biodiversity of the 

island.  Seven invertebrate phyla (Annelida, Arthropoda, Bryozoa, Cnidaria, Mollusca, 



22 
 

 

Nematoda, and Platyhelminthes) are also recorded from the island, but not Tardigrada, 

even though this phylum has been documented in surrounding mid-Atlantic states and 

Maryland (Brown 2008; Kaczmarek 2016; Meyer 2013). 

     The mid-Atlantic region includes Delaware, Maryland, New Jersey, New York, 

Pennsylvania, Virginia, and West Virginia, as well as the District of Columbia (DC).  

Published records of non-marine tardigrades can be found for each of these locations 

except for Delaware, but only cumulatively do they include specimens collected from all 

known terrestrial and freshwater tardigrade habitats represented in the Mid-Atlantic 

region (Meyer 2013).  Aquatic tardigrades were recovered from groundwater and moss in 

New York (Kim-Koutsis and Miller 2019; Strayer et al. 1994), while liverworts yielded 

specimens of tardigrades in West Virginia (Tarter & Nelson 1994).  In New Jersey 

(Miller et al. in press; Shaw & Miller 2013), Maryland (Curtin 1957), and DC (Curtin 

1948; Marcus 1928), leaf litter, soil, moss, and tree bark contained tardigrades, as did 

commonly collected lichen and moss from Virginia (Riggin 1962) and Pennsylvania 

(Mitchell et al. 2009).  Hutchinson and Streu (1960) reported a tardigrade from New 

Jersey, but identification beyond phylum was not attempted and the specimen was not 

curated (George Hamilton and Herb Streu pers. comm.).  Just south of the mid-Atlantic 

region, however, a more comprehensive, multi-habitat inventory of tardigrades in Great 

Smoky Mountains National Park was undertaken, and 59 species were added to the list of 

known taxa in the park (Bartels & Nelson 2006; Nelson & Bartels 2007).  With this 

Plummers Island inventory, we add the phylum Tardigrada to the list of known taxa from 

the island and at least two new species to that of Maryland. 
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Methods 

     Plummers Island was visited July 12–13, 2018, concurrent with a low river stage (less 

than four feet) as recorded by the USGS water gauge near the Washington, D.C. Little 

Falls pump station.  The low water levels allowed for wading, rather than boating, across 

a culvert to the island (Ralph Eckerlin pers. comm.).  Thirty-five terrestrial and 15 

aquatic sample sites were chosen to ensure thorough sampling of the breadth of the island 

and its range of elevations (Fig. 1C).  Soil, leaf litter, moss, lichen, and aquatic samples 

were collected.  Soil was removed with a one-inch diameter corer, three inches into the 

soil, while leaf litter was collected in a single handful (about 125 cm3) per site.  Moss or 

lichen was separated from its substrate (trees, boulders, bedrock outcrops, or cabin roof) 

with a pocket knife in about 100-cm2 sections where possible.  Terrestrial samples were 

stored in paper bags.  A suspension of subaqueous detritus (about 100 mL) was siphoned 

with a turkey baster from the shallows of Rocky Run Culvert, the Potomac River, and an 

ephemeral pool in a rock fissure on the island.  Subaqueous samples were transferred to 

lidded plastic cups, which were placed in a cooler and later refrigerated at the Rutgers 

Pinelands Field Station, New Lisbon, New Jersey.   

      Samples of moss from only five of the 50 total sites in the present study and one from 

a pilot study were analyzed for species composition and abundance of tardigrades due to 

time constraints; the remaining 45 samples will be analyzed in a later study (Fig. 3.1C; 

Table 3.2).  The mosses were chosen based on their mat-forming habit and sediment-

deficient substrates of metadiamictitic bedrock outcrops or boulders (Fleming 2015; 

Glime 2017; Mägdefrau 1982); the author has most easily found tardigrades in samples 

with these attributes (pers. obs.).  Mosses from sites 3 and 18 and the pilot study all have 
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similar, branching stems in two rows; that from site 5 is julaceous—its stalks have 

densely overlapping leaves; that from site 16 has numerous leaves that radiate from its 

stalks; and the moss from site 23 has long, thin leaves that tend to the same side of a 

given stalk (Sargent & Lucas 2012).  Tentative identifications of the mosses processed 

are given in Table 3.2.  Each sample was allowed to air-dry for one week, then was 

separated into three, 0.25-g subsamples to account for tardigrades’ patchy distribution 

within microhabitats (Degma et al. 2011).  One, 0.25-g subsample was processed in the 

pilot study.  Subsamples were submerged in Poland Spring® or Wawa® spring water in 

individual glass dishes for 24 hours to relax tardigrades.  Tardigrades were retrieved, 

mounted, and photographed according to the light microscopy protocol described in 

Chapter 1.  One subsample each from the five sites in the present study and one 

individual from the pilot study were photographed.  Tardigrades were identified 

according to Pilato and Binda (2010).  Elevations were recorded with a Garmin Foretrex 

401 global positioning system and compared to Drake and Froelich (1997).  Moss was 

tentatively identified according to Sargent and Lucas (2012). 

     Collection was conducted under National Park Service Scientific Research and 

Collecting Permit number CHOH-2018-SCI-0016.  Slides will be deposited in the 

Smithsonian Institution, National Museum of Natural History, Department of 

Invertebrate Zoology, National Park Service collection.   

 

Results 

     Tardigrades were found at the five sites analyzed in the present study and one site 

analyzed in the pilot study (Table 1).  Two classes (Apotardigrada Guil et al., 2019 comb. 
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Schuster et al., 1982; and Eutardigrada Marcus, 1927) and three families (Hypsibiidae 

Pilato, 1969; Macrobiotidae Thulin, 1928; and Milnesiidae Ramazzotti, 1962) are 

represented.  Five specimens of the genus Milnesium Doyère, 1840 and three from 

Macrobiotus Schultze, 1834 were found at Site 3, while three specimens of Minibiotus 

Schuster, 1980 were recovered from Site 5.  A single representative each of Astatumen 

Pilato, 1997 and Diphascon Plate, 1889 were recovered from Site 5 and the pilot site, 

respectively, and are new records for the state of Maryland.  Specimens belonging to 

Macrobiotidae were recovered from all five sites in the present study.  Sites 3, 18, and 23 

included specimens belonging to Milnesiidae, while Site 5 and the pilot site included 

specimens belonging to Hypsibiidae.  The greatest abundance of tardigrades was found at 

Sites 18, 16, and 23, while Sites 3 and 5 yielded the fewest.  Eggs were recovered only 

from sites 16 and 18 and are of the Macrobiotidae type. 

 

Discussion 

     Tardigrade distribution has been shown to be influenced by dispersal mechanisms 

(Mogle et al. 2018).  The presence on Plummers Island of Diphascon and the seldom 

reported Astatumen may be attributed to avian ectozoochorous (extrabodily) or aeolian 

(wind-mediated) dispersal.  Nests and feathers of Neotropical migratory birds sampled in 

Kansas, Nebraska, and Massachusetts have yielded tardigrades, including Diphascon 

(Mogle et al. 2018).  Johnston and Winings (1987) recorded nine Neotropical migrants 

on Plummers Island whose migratory range includes Bolivia, Costa Rica, and Ecuador—

three countries with records of Astatumen (Schulenberg 2020).  Astatumen and 

Diphascon have also been recorded west of Plummers Island, in Ohio, where desiccated 



26 
 

 

tardigrades may be carried to the island by prevailing winds (Meininger 1985; Meyer et 

al. 2011).  Insects may also be vectors for dispersal of tardigrades as suggested by Pape 

(1986), who recovered tardigrades from bumblebee (Bombus) nests in Greenland.  

Bombus was recorded by Norden (2008) in her survey of bumblebees on Plummers 

Island.  In addition to aerial dispersal, water is capable of carrying and depositing 

tardigrades (Miller et al. 2020).  Curtin (1957) recovered Milnesium, Macrobiotus, and 

Minibiotus from Frederick County, Maryland within the Monocacy Watershed, which 

drains into the Potomac River above Plummers Island (ICPRB 2014).   

     Pollution may influence abundance of tardigrades, as Vargha et al. (2002) observed in 

Hungary.  Higher concentrations of atmospheric heavy metals—particularly cadmium—

that accumulated in moss significantly decreased abundances of tardigrades.  Similarly, 

Mitchell et al. (2009) noted that tardigrade abundances were positively correlated with 

distance from roads within a Pennsylvania college campus, while Hohl et al. (2001) 

found fewer tardigrades downwind of a coal-burning power plant than upwind in a study 

in Missouri.  In our study, airborne pollutants may explain the low abundance of 

tardigrades from sites 3 and 5, which are closer to the heavily trafficked American 

Legion Bridge than the sites with highest abundances—16, 18, and 23 (Hogan & 

Northam 2019).  This may also explain the absence of eggs in Sites 3 and 5.   

     The morphology of the mosses analyzed could also explain the presence and 

abundance of tardigrades and eggs (Nelson et al. 2018).  Site 5 had the lowest abundance 

of tardigrades, possibly owing to the julaceous habit of Plagiobryum; it has very tightly 

packed leaves along its stalk that may make it difficult for interstitial fauna to maneuver 

(pers. obs.).  The presence of eggs in only sites 16 and 18 may be attributed their distance 
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from the American Legion Bridge, but their absence in site 23 could be attributed to the 

‘wind-swept’ morphotype of Dicranum, which may preclude eggs from being retained on 

its leaves.  Generally, Macrobiotidae was by far the most frequently encountered family 

across the five sites analyzed, which is not unexpected as it is the most speciose family of 

tardigrades in the phylum (Degma et al. 2019) and has been found in six Mid-Atlantic 

states and DC (Kaczmarek et al. 2016; Meyer 2013).   

     Sampling effort was limited by time and accessibility.  The terrain of the island is 

precipitous certain areas, and its understory growth prohibitively thick in others.  Several 

attempts to sample southwestern escarpments were abandoned, as were densely foliated 

areas in the Northwest.  A several-day group foray would afford access to these 

unsampled areas.  Priority will also be given to resampling aquatic environments and 

sampling birds’ and bees’ nests.  Species-level identification of both tardigrades and 

cryptogams is necessary for statistical analyses and to draw informed conclusions about 

habitat preference, distribution, and abundance of tardigrades on Plummers Island.   
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Figure 1.1.  In toto lateral view of a heterotardigrade.  The animal is facing left.  1 = first 

median plate, 2 = second median plate, C′ = lateral appendage C, cA = cirrus A, cE = 

cirrus E, ce = external cirrus, ci = internal cirrus, cl = primary clava, cp = cephalic plate, 

cw1 = claws of leg I, D′ = lateral appendage D, I = scapular plate, II = first paired plate, 

III = second paired plate, IV = terminal plate, p = leg appendage, pa = cephalic papilla, 

vpA = ventral plate A, vpE = ventral plate E.  Detector bias on (SE).  700×. 7kV 
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Figure 1.2.  Ventral posterior view of a heterotardigrade.  an = anus, ba = bacteria, bs = 

basal spurs, cE = cirrus E, dc = dentate collar, go = gonopore, po = pores, vpE = ventral 

plate E.  Note that the dextral cE has broken off.  Detector bias on (SE). 1,800× 7kV. 
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Figure 1.3.  Lateral view of leg II (L2) of a heterotardigrade, with first and second paired 

plates (II and III) partially visible.  Patterning (□) is evident on the plate margins and on 

the leg.  ba = bacteria, C′ = lateral appendage C, p2 = leg appendage II, po = pores.  

Detector bias off (BSE).  4,000×. 10kV.   
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Figure 1.4.  Lateral view of the tip of one of a pair of piercing stylets (st) protruding from 

the mouth (mo) of a heterotardigrade.  Detector bias off (BSE).  35,000×. 10kV.   
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Figure 2.2.  Neoechiniscoides cf. pollocki.  (See Table 2.1 for abbreviations defined.)  A: in 

toto dorsal view with anus (an), gonopore (go), and claws (cw) visible.  Inset: female (♀) 

and male (♂) gonopores.  B: lateral view of head, showing mouth, cephalic papilla, and ce 

and ci terminating in star-like arrays of projections. C: laterodorsal view of cuticle, cl, and 

cA, with its proximal cuticular annulations.  D: cE.  E–H, p3, p2, p1, and p4.  A and inset, 

phase contrast (PC); B–H, SEM.  Scale bars:  A and inset, 10 µm; B–H, 1 µm.       
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Character 

(abbreviation) 

Present Study 
Hallas & Kristensen 

1982 

Adults Juveniles Holotype 

female 

Paratype 

male Avg. n SD Avg. n 

body length (L) 243.10 26 32.43 117.23 2 281 216 

body width (W) 90.31 7 18.87 45.11 1 119 76 

buccal canal (bc) 44.11 14 3.55 24.01 2 48 43 

bc external width 2.72 15 0.58 1.45 1 ----------- ----------- 

bc internal width 1.40 15 0.52 -------- -- ----------- ----------- 

placoids (pl) 13.39 17 1.92 6.37 2 19 11 

pharyngeal bulb (ph) 20.67 9 2.50 -------- -- 23 18 

ph width 21.50 12 4.26 -------- -- ----------- ----------- 

stylet sheath  26.09 16 3.49 -------- -- ----------- ----------- 

leg I appendage (p1) 3.78 1 0 1.72 1 ----------- ----------- 

leg II appendage (p2) 2.82 2 0.21 2.40 1 present present 

leg III appendage (p3) 9.38 16 1.42 6.65 2 12 10 

leg IV appendage (p4) 3.88 18 0.95 2.00 2 5.4 6.5 

internal cirrus (ci) 7.32 24 0.94 4.62 1 7.6 5.4 

external cirrus (ce) 4.86 25 1.00 3.50 1 7.6 5.4 

cirrus A (cA) 13.85 28 2.32 6.38 2 17 15 

cirrus E (cE) 14.85 20 3.19 8.74 2 18 16 

clava (cl) 4.44 28 0.67 2.69 2 5.4 5.9 

cephalic papilla (pa) 12.00 21 1.44 10.05 1 11 10 

stylets 55.06 1 0 -------- -- ----------- ----------- 

number of claws leg I 7.81 21 0.40 5.25 4 8 8 

number of claws leg II 7.90 21 0.30 4.50 4 8 8 

number of claws leg III 7.71 21 0.46 5.33 3 8 8 

number of claws leg IV 7.00 21 0 4 4 7 7 

 

 

 

  

Table 2.1.  Morphometrics of selected characters of Neoechiniscoides cf. pollocki 

(present study) and N. pollocki Hallas & Kristensen, 1982.  All measurements are lengths 

in µm unless otherwise noted.  Specimens from present study photographed with SEM 

are excluded.  Strikethroughs (---) indicate no available data. 
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Figure 3.1.  The location of Plummers Island within (A) the Mid-Atlantic region, (B) 

Maryland, and (C) the Potomac River.  C is modified from Drake & Froelich (1997).  

Terrestrial sampling sites are represented by circles (○) and aquatic sites by triangles (Δ) 

in C.  Enumerated circles indicate those sites whose samples have been completely 

processed.  Note that isoclines are measured in feet. A: DC = District of Columbia, DE = 

Delaware, MD = Maryland, NJ = New Jersey, NY = New York, PA = Pennsylvania, VA 

= Virginia, WV = West Virginia. C: P = pilot study, C = cabin.     
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Figure 3.2.  Some specimens recovered from Plummers Island.  A, buccal tube of 

Astatumen; B, bucco-pharyngeal apparatus of Diphascon; C, Macrobiotid egg; D, Claws 

IV of Astatumen; E, Macrobiotid claws IV; F, Claws I of Milnesium; and G, bucco-

pharyngeal apparatus of Macrobiotidae.  
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Tardigrades 
Site 

Totals Pilot 
3 5 16 18 23 

Apotardigrada        

Milnesiidae 2   1 2 5  

Milnesium (2)     (2)  

Eutardigrada        

Hypsibiidae  1    1  

Astatumen  (1)    (1)  

Diphascon       1* 

Macrobiotidae 11 4 34 25 22 96  

Macrobiotus (5)     (5)  

Minibiotus  (3)    (3)  

eggs   10* 18*  32*  

unknown    1  1  

Totals 13 5 34 27 24 103 N/A 

 

 

 

 

  

Table 3.1.  Occurrence and abundance of tardigrades across 

five study sites and one pilot site.  Genus abundances are 

included in family abundances.  *Egg totals and the single 

occurrence of Diphascon are not included in total abundances. 
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 Site 3 Site 5 Site 16 Site 18 Site 23 Pilot 

Moss Thuidiaceae Plagiobryum Hedwigia Thuidiaceae Dicranum Thuidiaceae 

Forest 

type 

Floodplain 

Terrace 

Central 

Appalachian 

Rich Red 

Oak 

Central 

Appalachian 

Rich Red  

Oak 

Potomac R. 

Bedrock 

Terrace 

Hardpan 

Potomac R. 

Bedrock 

Terrace 

Hardpan 

Potomac R. 

Bedrock 

Terrace 

Hardpan 

Elev. 59 90 50 122 77 121 

Abun. 13 5 34 27 24 N/A 

Taxa 
Milnesium 

Macrobiotus 

Astatumen 

Minibiotus 
Macrobiotidae 

Milnesiidae 

Macrobiotidae 

Unknown 

Milnesiidae 

Macrobiotidae 
Diphascon 

Eggs 0 0 10 18 0 N/A 

 

  

Table 3.2.  Characterization of sites analyzed in the present study and pilot study.  All 

mosses were collected on metadiamictite (Fleming 2015).  Forest types were characterized 

according to Simmons et al. (2016).  Elevations are in feet and were compared to Drake 

and Froelich (1997).  Mosses were tentatively identified according to Sargent & Lucas 

(2012). 
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APPENDIX 

 

Adult Character Ratios 

 Present Study Hallas & Kristensen 1982 

L/W 2.69 2.53 

bc/ph 2.13 1.99 

ph/pl 1.54 1.55 

bc/pl 3.29 3.01 

p2/p3 0.30 -------------------------------- 

p3/p4 2.42 1.96 

ci/ce 1.51 1.14 

ce/cE 0.33 0.34 

cE/cA 1.07 1.12 

cA/cl 3.12 3.28 

cl/pa 0.37 0.45 

  
Adult character ratios of Neoechiniscoides cf. pollocki 

(present study) and N. pollocki Hallas & Kristensen, 

1982.  (See Table 2.1 for abbreviations defined.)  

Strikethroughs (---) indicate no available data. 
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