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ABSTRACT OF THE DISSERTATION

Linear-in-Flux-Expression (LIFE) Approach to Dynamic Biological Networks

by NATHANIEL J. MERRILL

Dissertation Director:

Benedetto Piccoli

This work analyzes the dynamics of three distinct classes of biological systems.

The first is metabolic networks. The methodology named LIFE (Linear-in-Flux-

Expression) was developed with the purpose of studying and analyzing large metabolic

systems. With LIFE, the number of model parameters is reduced by accounting for

correlations among the components of the system. These systems can be associated to

graphs. General results on the stability of LIFE systems are discussed, particularly we

formulate necessary conditions on the graph’s structure to ensure the stability of the

dynamics. Moreover, stability analysis from related fields, such as Markov chains,

network flows, and compartmental systems, can also be applied. Control of LIFE

systems through the addition of drugs as well as modifying intakes is discussed. A

generalized graph object which incorporates hyperedges and uberedges is used to ap-

ply LIFE to metabolic networks, in particular to Mycobacterium tuberculosis (MTB).

Results from LIFE simulations on MTB carbon metabolism are presented via simu-

lations. Finally, the method allows us to rank 4-drug combinations in terms of their

effectiveness in destabilizing MTB metabolic networks, thus killing the bacterium.

The second class of systems is models for circadian rhythm. One of the essential

characteristics of an authentic circadian clock is that the free-running period sustains
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an approximately 24-hour cycle. The dynamics of the circadian clock is modified

by an external stimulus, called a zeitgeber. This modification process is known as

entrainment and operates to reset the phase and period of the circadian clock. When

analyzing the phase of entrainment of many individuals, it is often assumed that an

organism with a short period will have a phase advance, and a prolonged period will

have a phase delay; however, this does not explain all known experimental data, so a

Two-Step Entrainment model was developed. This work analyzes how parameters of

the model affect the dynamics and presents results fitting the Two-Step Entrainment

model to human data.

The third class of systems consists of ecological networks. The interactions of

species are often described via a network. Construction of networks in paleoecology

is challenging due to the lack of observations of interactions, as well as biases in the

preservation of species. The links of species in these networks must be inferred based

on properties such as body size, similarities to living species, genetic information

(when possible), and other known characteristics. Studying how paleo-networks have

changed and adapted through time could assist in predicting how current ecological

communities might react to environmental stressors. This work reconstructs networks

from arthropod data found in rodent middens. The dynamics of these networks over

20,000 years is analyzed, and network metrics such as connectance are compared to

modern networks.

iii



Acknowledgements

Thanks to the invaluable support from my wife, my advisor, and my committee.

iv



Contents

1 Equilibria for Large Metabolic Systems and the LIFE Approach 6

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 The LIFE Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 LIFE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 LIFE approach for Virtual Patients . . . . . . . . . . . . . . . 11

1.3 Key Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Stability of Metabolic Networks via LIFE 26

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Notation and preliminaries . . . . . . . . . . . . . . . . . . . . 28

2.2.2 LIFE systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.3 Special LIFE systems . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Equilibria for fixed metabolites . . . . . . . . . . . . . . . . . . . . . 39

2.3.1 Network flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.2 Extreme pathway algorithm for calculating the positive basis . 43

2.3.3 Extreme pathways provide a positive basis . . . . . . . . . . . 46

v



CONTENTS CONTENTS

2.4 Equilibria and asymptotic behavior of metabolites for fixed fluxes . . 49

2.4.1 Linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4.2 Special LIFE systems . . . . . . . . . . . . . . . . . . . . . . . 59

2.4.3 Zero-deficiency theory . . . . . . . . . . . . . . . . . . . . . . 64

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 Equilibria and control of metabolic networks with enhancers and

inhibitors 76

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2 Assumptions for Linear-in-flux-Expression . . . . . . . . . . . . . . . 79

3.3 Dynamics theories at work on Reverse Cholesterol Transport . . . . . 81

3.3.1 Linear RCT without intakes and excretions . . . . . . . . . . . 83

3.3.2 Linear RCT with intakes and excretions . . . . . . . . . . . . 85

3.3.3 Non-linear RCT . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4 Control of intakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.5 Metabolic networks with inhibitor and enhancer . . . . . . . . . . . . 95

3.5.1 Equilibria under Assumption (A) and (B) . . . . . . . . . . . 96

3.5.2 Dynamics under Assumption (D) . . . . . . . . . . . . . . . . 96

3.5.3 Unique equilibrium of the RCT network with a single enhancer 99

3.6 Drug discovery by control methods . . . . . . . . . . . . . . . . . . . 101

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4 Metabolic graphs, LIFE method and the modeling of drug action on

Mycobacterium tuberculosis 110

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.1.1 The LIFE method . . . . . . . . . . . . . . . . . . . . . . . . 111

4.1.2 Hyper, uber and metabolic graphs . . . . . . . . . . . . . . . . 112

4.1.3 Tuberculosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

vi



CONTENTS CONTENTS

4.2 Modeling metabolic networks with LIFE . . . . . . . . . . . . . . . . 114

4.2.1 Central Carbon Metabolism in Mycobacterium tuberculosis . . 116

4.3 Metabolic graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.3.1 Central Carbon Metabolism . . . . . . . . . . . . . . . . . . . 120

4.4 Metabolic dynamics with inhibitors and enhancers . . . . . . . . . . . 121

4.4.1 Exploring the space of equilibria with inhibitors and enhancers 130

4.5 Modeling Tuberculosis with metabolic graphs . . . . . . . . . . . . . 133

4.6 Appendix: Definitions for general metabolic ubergraphs . . . . . . . . 136

5 Testing four-drug combinations of tuberculosis treatment using mi-

croarray data and simulations via LIFE. 140

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.2.1 Microarray Datasets . . . . . . . . . . . . . . . . . . . . . . . 142

5.2.2 Filtering of Data . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.2.3 Significance Analysis of Microarrays . . . . . . . . . . . . . . . 145

5.2.4 Pathway Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.2.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.2.6 Drug Dosage . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.2.7 Central Carbon Metabolism in Mycobacterium tuberculosis . . 152

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.3.1 Drug Combinations . . . . . . . . . . . . . . . . . . . . . . . . 152

5.3.2 Drug Ranking Results . . . . . . . . . . . . . . . . . . . . . . 155

5.3.3 Simulating drug combinations on central carbon metabolism . 158

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6 A Two-step Model for Circadian Entrainment 164

6.1 Introduction to Circadian Rhythm . . . . . . . . . . . . . . . . . . . 164

vii



CONTENTS CONTENTS

6.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.3.1 Parameter Space . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.3.2 Range of Entrainment . . . . . . . . . . . . . . . . . . . . . . 173

6.3.3 Parameter Affect on Entrainment . . . . . . . . . . . . . . . . 174

6.3.4 Trajectory Fitting . . . . . . . . . . . . . . . . . . . . . . . . . 176

7 Ecological Networks Reconstructed from Paleomiddens 179

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.2 Paleomidden Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

viii



1

Introduction

Biological systems are inherently dynamic. Examples of dynamic networks are 1.)

interactions of metabolites in metabolic networks, 2.) cycling and entrainment of bi-

ological clocks in circadian rhythm, and 3.)the emergence and disappearance of species

in a paleoecological web. In this work, new methods for analyzing the dynamics of

these systems are explored.

These systems can be modeled by constructing networks that describe the interac-

tions of the variables. An advantage of network representation is that there is already

a rich theory of network analysis that can be used. Here we use this developed theory,

along with novel methods such as Linear-in-Flux-Expression (LIFE) and the two-step

entrainment model.

Metabolic Systems

Models in Quantitative Systems Pharmacology (QSP) [3, 108, 121, 129] aim to gain

information about drug discovery and optimization in silico. A potential advantage

of this is obtaining valuable knowledge before more expensive stages, such as animal

testing. Traditional methods represent a metabolic network as a directed graph, with

edges representing reactions and vertices representing metabolites. Fluxes associated

with the edges represent reaction rates. There are various challenges at modeling,

including the complexity of the involved networks. Linear techniques such as Flux

Balance Analysis, Markov Chains, Zero Deficiency Theory, and Laplacian Dynamics,

are often used due the large scale systems [4, 20, 27, 45, 60, 65]. These techniques

have had many successful uses, and have proved efficient due to their scalability in

addressing such problems [53, 74, 85, 106, 117].. Despite this success, QSP com-

monly assume that all fluxes are independent [2, 64, 126]. Independence of fluxes

is a reasonable assumption under special circumstances, but not when dealing with
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general networks. Moreover, it does not recognize the robustness found in metabolic

networks.

Nonlinear dynamics in metabolites are inherent in metabolic networks. For exam-

ple, consider the action of enzymes, genes, or other metabolites to regulate a reaction;

this would necessarily correspond to a nonlinear term for the metabolites involved.

Recently Flux Balance Analysis methods were extended to include nonlinear metabo-

lite dynamics. Linear-in-Flux-Expression (LIFE) [96] allows the leveraging of corre-

lations among the fluxes of the model at a steady state. The stoichiometric matrix is

used to create a system of Ordinary Differential Equations and study the dynamics

of the system. In the LIFE approach, the stoichiometric matrix differs from standard

definition as in [107, 137], in that it does not have restrictions on the dynamics of the

metabolites. We compare the LIFE method with other systems biology approaches,

highlighting which theory can be directly applied to this novel approach. The LIFE

method allows to identify several general conditions ensuring the stability of the sys-

tem. These conditions correspond to very natural assumptions for biological systems.

For instance, every node must have a path to an excretion is a necessary condition

for a LIFE system to have an equilibrium. To better describe biological networks,

features not present in traditional methods were added. A new mathematical object

called a metabolic graph is defined.

A metabolic graph differs from a directed graph in three main extensions: 1.

The inclusion of intakes and excretions to an external environment. Many biological

systems have inflows and outflows. To include these flows, we introduced virtual

nodes. Virtual nodes represent the outside environment and function as a source and

sink to the system. 2. Hyperedges. Some biological reactions include more than

one substrate or product, and so it is necessary to include edges which have multiple

starting or ending nodes [18, 138]. 3. Uberedges. The action of some metabolites or

enzymes will promote or inhibit a specific reaction. This corresponds to a generalized
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edge that begins at a node but ends at an edge. Mathematically we refer to these

types of edges as uberedges [68].

Metabolic graphs are a new object without developed theory. Here, we begin

to advance this theory, including proving a version of the Max-flow-min-cut theo-

rem [47] for metabolic graphs and providing general conditions for stability. Due to

their complexity, many systems may be unstable or support multiple equilibria. Us-

ing metabolic graphs, we apply LIFE to Mycobacterium tuberculosis (MTB) Central

Carbon Metabolism. Mycobacterium tuberculosis is known to endure hostile environ-

ments and is very difficult to treat [10, 26, 51, 109]. Using LIFE, we simulate the

effect of drug combinations on MTB metabolic networks to analyze the overall effect

that different treatments may have. The network is first analyzed on its own, then

the addition of drugs is done by adding uberedges to reactions known to have been

affected by the drug.

Circadian Rhythm

Circadian rhythms are changes in an organism that follow a nearly 24-hour cycle.

These rhythms are found in almost all organisms and are significant in predicting

future stressors [120] . The biological clocks governing circadian rhythms usually

entrain to an external signal called a zeitgeber. For circadian rhythms, the most

common zeitgeber is the day/night cycle of the sun. The process of entrainment

resets the clock, synchronizing the internal rhythm to the external environment.

A new model of circadian rhythm was developed in [86]. This model does not ex-

plain all biological resetting mechanisms for circadian rhythms but describes the effect

of these mechanisms. As such it can be applied to various species, including humans

and Neurospora crassa. Previous models were guided by a common assumption that

a long period would only lead to phase delay and a short period would lead only to

phase advance [1]. Although it is a widely accepted hypothesis, there exist examples
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in nature that do not follow this assumption [36, 37, 58, 82] . We thus decided to

develop a more general model capable to produce data in silico corresponding to the

behavior of such natural organisms. This gave rise to a two-step entrainment model

which can generate the wide range of results necessary to a wide range of data.

The potential of this model is analyzed to clearly explain the effects of each pa-

rameter, the reachable phase of entrainment values, and the range of entrainment.

A piece-wise analytic solution model is found which provides faster simulations, thus

greatly enhancing the ability to simulate many different conditions. We then use the

two-step entrainment model to fit phase data in humans from the work [58]. Unlike

other works, here we fit the entire phase trajectory, and not just the final phase.

The capacity to fit phase data, including that which does not follow the common

assumption, is an important step forward for circadian modeling.

Ecological Networks

One of the most fundamental elements of ecology is the interactions of species. Char-

acterizing these interactions is an important step in understanding how the commu-

nity functions. Ecological networks are dynamic and vary greatly over time and space,

and should not be treated as static objects [115]. Several significant questions in ecol-

ogy relate to how communities will change in response to climate and urbanization.

To better understand how communities may change in the future it is useful to study

how communities have changed in the past.

Analyzing interaction networks and their metrics helps to determine stability and

key species of the network. The data used in this work comes from rodent middens

which are between 400 and 40,000 years old. Because the species reactions cannot

be directly observed, the main difficulty becomes reconstructing realistic networks

based on this information. The methods of reconstruction are discussed and the

reconstructed networks are analyzed for comparison to modern networks as well as
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how they change through time.



Chapter 1

Equilibria for Large Metabolic

Systems and the LIFE Approach

1.1 Introduction

The rate of drug development has increased in recent years. With the improved

understanding of the clinically relevant differences among patient biology, there is a

growing need to develop treatments in the context of a specific patient. Quantita-

tive Systems Pharmacology (QSP) is an ideal tool for designing drugs and dosing

regimens with a consideration of a patient’s biology [48, 108]. In QSP, mathematical

models of biological systems are implemented in-silico. The effects of a treatment

can vary between individual patients. The reasons for this variability are not yet well

understood, however with QSP models we may gain understanding by testing a drug

on a Virtual Patient (briefly VP), an in-silico representation of a person’s response

to a drug.

QSP models can be tested on several VPs that sample the space of patient biolog-

ical networks, and the result of a simulation using a VP better predicts the response

to drug for a patient with similar biology to the VP. QSP models have been used for

6
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applications in modeling cholesterol, HIV, and arthritis among others [64, 94, 126].

These predictions compare the expected effectiveness of the drug with the current es-

tablished methods as well as predict the safety of new drug candidates. It is important

to note that the initial levels of metabolites (or more general, chemical compounds)

of patients receiving treatment can vary greatly, and even patients with similar base-

line levels may respond differently. These variations show that, for QSP models to

effectively predict patient response to a drug, there must be a wide range of VPs that

represent the variety of patient responses [2, 48, 129].

QSP models generate VPs from several different parameterizations. The purpose

of multiple parameterizations is to produce a wide range of responses that closely

matches the range of clinical data. The parameters selected are typically parameters

that have the greatest impact on the model and that vary across the patient popula-

tion. These parameters will be chosen to fit the desired range, and then qualified by

using a clinical dataset to test the model [2, 64, 50, 126]. The parameters used in QSP

models are often assumed to have little to no correlation, or correlation is ignored

completely [2, 64, 126]. Some patients may initially have similar baseline chemical

compound levels yet respond very differently to treatment, and understanding how a

perturbation of parameters effects the system will help predict patient response.

Traditional methods such as [102] focuses on linearity of the systems of Ordinary

Differential Equations (ODEs), representing the metabolic network, with respect to

the state of metabolites. Other methods represent the system of ODEs as a con-

stant matrix multiplied by a reaction rate vector containing metabolite values [137].

LIFE methodology relies on linearity with respect to the fluxes, thus allowing for

non-linearity in metabolites. Now, for given metabolite levels x one can define the

kernel K(x) as the null space of the stoichiometric matrix of metabolite reactions,

seen as a linear map from the space of fluxes to the space of metabolites. This paper

focuses on understanding the map x → K(x) from the space of metabolites to the
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space of subspaces of fluxes, also called Grassmannian. More precisely, we address

two main problems: the first is understanding the intersection of the kernels corre-

sponding to different levels of metabolites, while the second is finding all metabolite

levels such that a given flux belongs to the corresponding kernels. A number of results

for these two problems are presented in terms of properties of the graph representing

the metabolic network. Such results are illustrated with an example from the human

cholesterol metabolism and a simple toy network. We also present a practical appli-

cation for the LIFE approach; it can be used for QSP simulations, particularly how

VPs can be fit to clinical data using an optimization process.

1.2 The LIFE Approach

1.2.1 LIFE model

We indicate by x ∈ Rn the metabolite variables and by f ∈ Rm the flux variables. A

general system of ODEs which governs the quantities of x and f is written as

dx

dt
= F (x, f), (1.1)

df

dt
= G(x, f),

where F : Rn×Rm → Rn and G : Rn×Rm → Rm. In [60, 77], the authors show that

the dynamics described by G evolve over a much smaller time-scale than F . This is

referred to as “time-scale separation”. Based on time-scale separation arguments of

metabolic systems, we approximate the dynamics of the fluxes with G ≈ 0, and our

work focuses on the dynamics of the metabolites (F ), with the fluxes playing the role

of constant parameters.

Assuming G ≡ 0 and F linear in x, the usual method of writing the system of

Ordinary Differential Equations(ODEs) (1.1) governing metabolism is given by (see
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[60]):
dx

dt
= J(f) · x, (1.2)

where J(f) is an n× n matrix depending on the fluxes of the system.

Our method is also based on the assumption G ≡ 0, but asks for linearity of F with

respect to the fluxes rather than to the metabolites. Such assumption is more often

encountered when dealing with metabolic networks [96]. We call the Linear-in-Flux-

Expression (LIFE) approach the idea of using linearity with respect to fluxes to write

the dynamics as:
dx

dt
= S(x) · f, (1.3)

where f is the column vector of fluxes and S : Rn → Mn×m is called the stoichio-

metric matrix. One constructs the stoichiometric matrix from the metabolites and

the reactions that comprise a biochemical system. Each reaction corresponds to a

flux f that connects two distinct metabolites or represents an intake or an excretion

from the network. Each row of S corresponds to a metabolite and each column of S

corresponds to a flux.

We use generalized idea of a directed graph, where we allow inflows to a graph

from a general source, and outflows from the graph to a general sink. We say graph

for brevity in this paper.

Definition 1. The indegree of a node is the number of directed edges for which the

node is the terminal vertex. The outdegree of a node is the number of directed edges

for which the node is the initial vertex.

Definition 2. A source of a graph is a directed edge with a node representing a

compound only at the terminal end; the initial vertex has outdegree 1, indegree 0 and

is not represented in our system. This is equivalent to an exchange reaction entering

the system [107]. A sink of a graph is a directed edge with a node representing a

compound only at the initial end. The terminal vertex has indegree 1 and outdegree
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0, and is not represented in the system. This is equivalent to an exchange reaction

leaving the system.

Definition 3. The stoichiometric matrix depends on a state variable x, and is denoted

S(x), (or S for brevity). (S)ij = sij can be defined from a graph. If the edge fj has

initial vertex xi and terminal vertex xk, then
sij = −xi

skj = xi.

If the edge fj is a source with terminal vertex xk,

skj = 1.

If the edge fj is a sink with initial vertex xi,

sij = −xi.

Definition 4. A Weakly Connected Component of a graph is a maximum subgraph

such that an undirected path exists between every pair of nodes. A graph is weakly

connected if there exists such a path between every pair of nodes.

Definition 5. The grassmannian G(k, V ) is the k-dimensional linear subspace of a

space of dimension V .

The kernel of dimension d of a system is a subset of the Grassmannian(d,m).

We study the map x→ K(x) as it relates to perturbations of stable systems.

Lemma 1. Let x be the initial state for system (1.3), f ∈ K(x). Assume that all

eigenvalues of the jacobian matrix of the system at x have negative real part. Then
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there exists ε > 0 such that if y = x+ δ, |δ| < ε, y(·) is the solution starting at y

lim
t→+∞

y(t) ∈ K−1(f).

Proof. The assumption on the eigenvalues of the jacobian matrix imply the system is

Lyapunov stable at x, see theorem 4.1.2 of [17], which implies limt→+∞ S(y(t))f = 0

; we conclude limt→0 y(t) ∈ K−1(f).

Lemma 1 motivates our investigation of K−1(f) and will determine candidate

states to which a stable system will return after a perturbation.

Two main problems are investigated in this work.

• Problem 1: Characterize the intersections of the kernel for different states. For

x 6= y determine the intersection of the kernels K(x) ∩K(y).

• Problem 2: Given x, f ∈ K(x) compute K−1(f).

By exploring the map x → K(x) we will characterize K(x) ∩K(x̃) for some pertur-

bation of the state, x̃ 6= x. We show that for a fixed state x, K(x) ∩K(x̃) can have

any dimension depending on x̃. That is, for some x̃ there is a dim(K(x)∩K(x̃)) = 1,

and for some other x̃, dim(K(x) ∩K(x̃)) = 2, etc.

1.2.2 LIFE approach for Virtual Patients

Traditional QSP approaches perturb the fluxes of a system and analyze the response.

The LIFE method also perturbs the system, but assumes a steady state prior to

the perturbation. We can utilize K(x) to simulate VPs with the LIFE method,

and optimize the fluxes to simulate metabolite trajectories that approximate clinical

data. We find parameterizations of the system which minimize the distance between

compound trajectories and measurements (Fig. 1.1). The first step of the procedure

to fit our LIFE model is to generate a flux from K(x). We sample coefficients to
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use for a linear combination of kernel basis vectors. The coefficients of the basis

for the kernel are hereafter called parameters and are denoted ai, i ∈ {1, . . . , k} for

k = dim(K(x)). Different parameters give a different sample from the kernel, and

different samples produce different trajectories over time. We calculate the trajectory

of metabolites x(t) according to system (1.3), as well as solutions to a variational

system: vi ∈ Rn for i ∈ {1, . . . ,m}. More precisely, for f̂ , a flux sampled from K(x),

and dx
dt

= S(x) · f̂

dvi
dt

= Fi(x, vi, f̂)

Fi(y, z, f̂) = (D(S(x) · f) · z)∣∣x=y,f=f̂
+
∂(S(x) · f)|x=y

∂fi

We calculate trajectories of x and v by using a fourth order Runge-Kutta scheme. We

use v to calculate the gradient of the cost function and use steepest decent method

for minimizing this cost. For measurement of metabolites at time tj, (x̄j), we have

J =
∑
j

‖x(tj, a, x0)− x̄j‖2 (1.4)

∂J

∂fi
=
∑
j

〈2(x̂− x̄(tj)), vi(tj)〉 (1.5)

where vi(tj) is a value of vi corresponding to time tj. The derivative of the cost (1.5)

(see proposition 1 and 2 in [22]) is used to selected new parameters ai.

The steepest decent method can be implemented to update the coefficients.

anewi = aoldi − gJfj for i ∈ {1, . . . , k} (1.6)

where k = dim(K(x)), with g ∈ R+ an optimization parameter.

The LIFE method requires that we sample fluxes from the kernel K(x) of our

stoichiometric matrix S, and that all metabolites are positive values. Therefore we
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consider the intersection of the positive orthant with theK(x). A convex combination

of kernel basis vectors with positive entries will achieve this goal, however, it will only

describe a subset of the kernel, in general. This problem was recognized by Palsson,

[107]. In future work we will investigate this further.
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Figure 1.1: An example of optimization algorithm performed with the life method.
Each step of the procedure minimizes cost in (1.4) according to measurements (cyan
dot).

1.3 Key Example

A graph of a simple metabolic network is shown (Fig. 1.2). In this network are six

metabolites x = xi, i ∈ {1, ..., 6}. ẋi indicates the derivative of metabolite, xi. The

fluxes are fixed and our system models the dynamics of the metabolites with a given

flux.
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In Fig. 1.2, the fluxes inside rectangles {f1, f2, f3} represent constant rates,

whereas those in circles are first order rates. Specifically, the amount of x1 molecules

increases at a rate of f1 per hour. Linearity in the flux space of the LIFE method

facilitates the description for the kernel. We utilize fluxes from the kernel to analyze

the system at steady state.

Source Source1 Source2

x1 x2 x3

x4

x5 x6

f1 f2 f3

f4 f5
f6

f7 f8
f9 f10

Sink

ẋ1 = f1− x1 · f4
ẋ4 = x1 · f4 + x2 · f5 + x3 · f6 − (x4 · f7 + x4 · f8)

ẋ6 = x4 · f8 +
x5 · f9 − x6 · f10

metabolic
network

Figure 1.2: An example of a human cholesterol metabolic network with corresponding
LIFE equations.

For this example, S(x) is a 6 × 10 matrix, f is a vector composed of ten rate

constants, from Fig. 1.2. A similar method for modeling biochemical networks is

explained in [107], however S is not dependent on x in [107].

S(x) =

1 0 0 −x1 0 0 0 0 0 0

0 1 0 0 −x2 0 0 0 0 0

0 0 1 0 0 −x3 0 0 0 0

0 0 0 x1 x2 x3 −x4 −x4 0 0

0 0 0 0 0 0 x4 0 −x5 0

0 0 0 0 0 0 0 x4 x5 −x6


.

(1.7)

Stochiometric matrix (1.7) governs the metabolites shown in Fig. 1.2. We may write

this system of six ODEs from our sample in matrix form (1.7). One advantage of

writing our system this way is we can calculate the kernel of the flux space for large
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systems. The kernel of S(x) is a set of flux vectors. We call an element of this set f̂

f̂ = a1v1 + a2v2 + a3v3 + a4v4

= a1



x6

0

0

x6
x1

0

0

0

x6
x4

0

1



+ a2



0

0

0

0

0

0

x5
x4

−x5
x4

1

0



+ a3



−x3

0

x3

−x3
x1

0

1

0

0

0

0



+ a4



−x2

x2

0

−x2
x1

1

0

0

0

0

0



.

(1.8)

The kernel for equation (1.7) is given in equation (1.8). Note that there are four free

variables, a1, a2, a3, a4, in this kernel for any fixed set of metabolite levels, x.

1.4 Results

Lemma 2. Let S ∈ Mn×m, n < m, be a stoichiometric matrix and G the associated

directed graph. Assume G to be weakly connected with no sources or sinks. Denote

by si the ith row of S. Then we have,

α1 = α2 = · · · = αn ⇐⇒
n∑
i=1

αisi = ~0.

Proof. Because G has no sources and sinks S will have exactly two nonzero elements

in each column. This is because each column represents a flow from one node to

another.
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⇐= ) Fix a column j and let a, b be the rows with nonzero entries. Consider a

linear combination of the rows of S such that

n∑
i=1

αisi = ~0. (1.9)

Recall from definition (3) we have sa,j = −sb,j. Because a, b are the only nonzero

entries in column j, the jth entry of
∑n

i=1 αisi satisfies

αasa,j + αbsb,j = 0 =⇒ αa = αb.

Because G is weakly connected there exists a path between any pair of nodes. Select

two arbitrary nodes in the graph G and label them v,v′. Let W be the path between

v and v′ and label the nodes on the path W as v = v1, v2, . . . , vp−1, vp = v′. Let ji be

the edge connecting vi and vi+1. Then for any i, the jith column satisfies


si,ji = −si+1,ji

sk,ji = 0, for k 6= i, i+ 1.

Assume (1.9) then,

αisi,ji + αi+1si+1,ji = 0 =⇒ αi = αi+1.

Because ji can represent any edge on path W , we have α1 = α2, α2 = α3, . . . , αp−1 =

αp =⇒ α1 = α2 = · · · = αp. Because v, v′ were arbitrary nodes,

n∑
i=1

αisi = ~0 =⇒ α1 = α2 = · · · = αn. (1.10)

=⇒ ) We assume that α1 = α2 = · · · = αn. As before, fix a column j and let a, b be

the rows with nonzero entries. From definition (3) we have sa,j = −sb,j. Now consider
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the jth column of
∑n

i=1 αisi,
n∑
i=1

αisi,j (1.11)

which simplifies to

αasa,j + αbsb,j = αasa,j − αbsa,j = (αa − αb)sa,j = 0

This is true for each column, which gives us
∑n

i=1 αisi = ~0.

Proposition 1. Let S ∈ Mn×m, n < m, be a stoichiometric matrix and G the as-

sociated directed graph. Assume G to be weakly connected with no sources or sinks.

Then we have,

Rank(S) = n− 1.

Proof. The ( =⇒ ) of lemma 2 implies Rank(S) < n.

Now we show that Rank(S) ≥ n − 1. Consider the submatrix S∗ constructed by

removing the nth row from S. Then for s∗i the ith row of S∗,

n−1∑
i=1

αis
∗
i =

(
n∑
i=1

αisi

)
∣∣αn=0

. (1.12)

by (1.12) and lemma 2 It follows that

n∑
i=1

αis
∗
i = ~0 =⇒ αi = 0 for all i ∈ {1, . . . , n− 1}.

Therefore, Rank(S∗) = n−1 =⇒ n−1 ≤ Rank(S) < n and so Rank(S) = n−1.

A system with the properties of proposition 1 also satisfies the zero deficiency

theorem of [45], which implies it has one equilibrium solution.

Proposition 2. Let S ∈ Mn×m, n < m, be a stoichiometric matrix and G the asso-

ciated directed graph. Assume G to be weakly connected with at least one source and
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no sinks. Then we have,

Rank(S) = n.

Proof. First we show that for a graph G with a single source and no sinks, that for S,

the stoichiometric matrix for G, Rank(S) = n. Let the source be called fm+1 and the

terminal vertex of fm+1 be called x1. Let G∗ be the subgraph of G without the source,

and S∗ be the matrix for G∗. S∗ is a submatrix of S excluding the column containing

the source. We have rank(S∗) = n − 1. We can use elementary row operations to

change a row in S∗ without changing the rank of S∗. We replace the first row of S∗ with∑n
i=1 s

∗
i = ~0 and call this new matrix S1, rank(S1) = rank(S∗) = n− 1. Similarly, if

we append a column of zeros to the right side of S∗1 the rank will not change. We call

the matrix with the added column S2, rank(S2) = rank(S1) = rank(S∗) = n − 1.

S2 is S with the first row of S set to ~0. Now we replace the first row of S2 with

(s1,1, s1,2, . . . , s1,m−1, s1,m = 1) which gives us S. Because the first row is independent

to all others:

rank(S) = rank(S2) + 1 = n.

For ease of proof the graph contained no sinks. However, adding sinks to the

graph will not change the rank of the S. This is because S is already full rank and

adding a sink will append a new column to S. A graph with sources and no sinks is

not realistic as it will have continuous accumulation of metabolites.

Proposition 3. Let S be the stoichiometric matrix and G the associated directed

graph. Assume G to be weakly connected with no sources or sinks. Consider the kernel

of S, K(x), and assume that x̃ = cx for some c ∈ R. Then we have, K(x) = K(x̃).
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Proof. Let f̂ ∈ K(x), and f̆ ∈ K(x̃) then

S(x)f̂ = 0 =⇒ cS(x)f̂ = S(x̃)f̂ = 0

S(x̃)f̆ = 0 =⇒ cS(x)f̆ = 0.

(1.13)

Proposition 4. Let S be a stoichiometric matrix for a graph containing a directed

path along three nodes, and the middle node has only one incoming and one outgoing

edge. For a state x and different state x̃, if x̃ 6= cx for c ∈ R then

K(x) ∩K(x̃) = {~0}. (1.14)

Proof. G has directed path along three nodes, initial node x1, middle node x2, termi-

nal node x3; call edge connecting x1 to x2 as f1 the other edge is f2. Then the second

row of S is s2 = (−x1, x2, 0, . . . , 0) and

S(x)f = 0 =⇒ f1x1 = f2x2 =⇒ f1 = f2
x2

x1

S(x̃)f = 0 =⇒ f1x̃1 = f2x̃2 =⇒ f1 = f2
x̃2

x̃1

f ∈ K(x) ∩K(x̃), f 6= {~0} =⇒ f2
x2

x1

= f2
x̃2

x̃1

=⇒ x̃ = cx.

Proposition 5. Let S ∈ Mn×m, n < m, be a stoichiometric matrix and G the as-

sociated directed graph. Assume G to be weakly connected with one source and no

sinks. Let S∗ ∈ Mn×m−1, be a submatrix of S where the source is removed. (WLOG

let the source in G be represented by the last column of S). Consider the kernels of

S and S∗, K(x) and K∗(x) respectively and let B∗ be a basis of K∗(x). Let B be the

collection of vectors such that each b ∈ B is equal to a b∗ ∈ B∗ with a 0 appended as

the last entry for each vector. Then B is a basis for K(x).
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Proof. We prove:

1. for b ∈ B, Sb = ~0 and so b ∈ K(x).

2. B is an independent set with number of elements equal to dimension of K(x).

Let e be an n× 1 column vector containing a single 1 and the other entries 0.

Sn×(m+1)b =

(
S∗|e

) b∗

0

 .

Let bj be the jth entry of vector b. For Ai, the ith entry of the solution to Sb.

Ai =
m∑
j=1

Sijbj =
m−1∑
j=1

S∗ijb
∗
j + Si m · 0 = 0.

Appending a 0 to each vector of a linearly independent set gives an linearly indepen-

dent set. From propositions 1 and 2 we know that

Rank(S∗(x)) = n− 1, Rank(S(x)) = n.

The dimension of each kernel is the same (dim(K∗(x)) = (m − 1) − (n − 1) and

dim(K(x)) = m − n. The cardinality of B∗ = cardinality of B = dim(K(x)) =

dim(K∗(x)) because B is a basis and both kernels have the same dimension (though

the dimension of their ambient space differs), we conclude that B is a basis for K(x).

1.5 Example

Here we show a complete solution to problem 1. In this section we explore the kernel

of an example network. The initial state of the kernel will be characterized, and
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the intersection of this kernel with the kernels of perturbed metabolic states will be

analyzed.

S(x) is the stoichiometric matrix associated to the graph in Fig. 1.3

S(x) =



−x1 0 0 x4 −x1 0

x1 −x2 0 0 0 −x2

0 x2 −x3 0 x1 0

0 0 x3 −x4 0 x2


.

x1 x2

x3x4

f1

f2

f3

f4

f
5 f 6

Figure 1.3: A directed graph representing a biochemical system.

From proposition 1 we have rank(S) = 3, which implies the dimension of the

kernel is 3. The basis for the kernel is

(v1|v2|v3)T =


0 −1 −x2

x3
0 0 1

−1 −x1
x2

0 0 1 0

x4
x1

x4
x2

x4
x2

1 0 0

 .

A perturbation of x → x̃ will alter the basis vectors and thus change the kernel

K(x) → K(x̃). K(x̃) may have some non trivial intersection with K(x). Any flux

in the perturbed kernel can be represented by the perturbed basis vectors. For all
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f ∈ K(x̃) : f = λ̃1ṽ1 + λ̃2ṽ2 + λ̃3ṽ3 where each ṽi represents a perturbed basis vector

and each λ̃i ∈ R.

A flux f ∈ K(x) ∩K(x̃) can be found as a solution to the following equation:

λ1v1 + λ2v2 + λ3v3 = λ̃1ṽ1 + λ̃2ṽ2 + λ̃3ṽ3.

Comparing the equation by components, we have the conditions that must be satisfied

for any flux in the intersection.

λ1 = λ̃1, λ2 = λ̃2, λ3 = λ̃3 (1.15)
λ1

x4
x1
− λ2 = λ̃1

x̃4
x̃1
− λ̃2

λ1
x4
x2
− λ2

x1
x2
− λ3 = λ̃1

x̃4
x̃2
− λ̃2

x̃1
x̃2
− λ̃3

λ1
x4
x3
− λ3

x2
x3

= λ̃1
x̃4
x̃3
− λ̃3

x̃2
x̃3
.

(1.16)

With (1.15), we simplify system (1.16) to

x4

x1

=
x̃4

x̃1

(1.17)

λ1

(
x4

x2

− x̃4

x̃2

)
= λ2

(
x1

x2

− x̃1

x̃2

)
(1.18)

λ1

(
x4

x3

− x̃4

x̃3

)
= λ3

(
x2

x3

− x̃2

x̃3

)
. (1.19)

Depending on which of the conditions are met the dimension of the intersection

(dim(K(x)∩K(x̃))) can be determined. Different perturbations of x will be considered

that satisfy only some of these conditions. The following cases ((I) through (V)) show

results specific to which condition are satisfied.

(I) Let x̃ be a perturbation such that (1.17) is not satisfied, the intersection will be

trivial and dim(K(x) ∩K(x̃) = 0.
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(II) Let x̃ be a perturbation which satisfies (1.17) and

(
x4

x2

− x̃4

x̃2

)(
x1

x2

− x̃1

x̃2

)
6= 0,

(
x4

x3

− x̃4

x̃3

)(
x2

x3

− x̃2

x̃3

)
6= 0.

This allows equations (1.18) and (1.19) to be arranged in the following manner.

λ2 = λ1

x4
x2
− x̃4

x̃2
x1
x2
− x̃1

x̃2

, λ3 = λ1

x4
x3
− x̃4

x̃3
x2
x3
− x̃2

x̃3

.

This shows a relationship where both λ2 and λ3 depend on λ1 and the metabolites

xi. λ1 is the only free variable and so dim(K(x) ∩K(x̃)) = 1.

(III) Let x̃ satisfy (1.17). And also let
(
x4
x3
− x̃4

x̃3

)(
x2
x3
− x̃2

x̃3

)
6= 0, x4

x2
− x̃4

x̃2
= 0, x1

x2
−

x̃1
x̃2

= 0. Then (1.18) is satisfied regardless of the value of λ2. λ2 is a free variable

in addition to λ1 while λ3 is still dependent on the state x̃ and λ1. With two free

variables dim(K(x) ∩K(x̃)) = 2.

(IV) Let x̃ satisfy (1.17) and also let

x4

x3

− x̃4

x̃3

= 0,
x2

x3

− x̃2

x̃3

= 0 (1.20)

(
x4

x2

− x̃4

x̃2

)(
x1

x2

− x̃1

x̃2

)
6= 0. (1.21)
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O

x3

x2

x1

α

β

x

Figure 1.4: A 3-D representation of the metabolic state space which highlights states
x̃ with nontrivial intersections with the kernel of the initial state (represented by
x). A three dimensional representation is appropriate because (1.17) implies that
x1 and x4 are proportional. The line α represents case (IV) where x̃1, x̃2, x̃3 are
proportional to x1, x2, x3 respectively. States x̃ on this line will have kernels such
that dimension(K(x) ∩ K(x̃)) = 3. The plane β represents case (III) where only
x̃1, x̃2 are proportional to x1, x2.

Upon further inspection, however, we find that (1.17) and (1.20) implies
(
x4
x2
− x̃4

x̃2

)
=(

x1
x2
− x̃1

x̃2

)
= 0 which contradicts (1.21). Thus the perturbation given by case (IV)

doesn’t exist.

(V) Let x̃ satisfy (1.17). And let

x4

x2

− x̃4

x̃2

=
x1

x2

− x̃1

x̃2

=
x4

x3

− x̃4

x̃3

=
x2

x3

− x̃2

x̃3

= 0.

Equations (1.17), (1.18) and (1.19) are satisfied for any value of λ1, λ2 and λ3. With

three free variables dim(K(x) ∩ K(x̃)) = 3. Fig. 1.4 shows states x̃ for which

K(x) ∩ K(x̃) is non trivial. The reference state x is shown, and the entire space

represents other states x̃ such that equation (1.17) is satisfied.
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1.6 Conclusions

This work exploits the linearity of some metabolic systems with respect to fluxes.

Namely, we are able to see systematic relationships among fluxes at equilibrium as

opposed to treating all fluxes as independent. Propositions concerning the rank of

our stoichiometric matrix are presented, from which the dimension of the kernel may

be easily deducted.



Chapter 2

Stability of Metabolic Networks via

LIFE

2.1 Introduction

Quantitative Systems Pharmacology (QSP) aims to gain more information about a

potential drug treatment on a human patient before the more expensive stages of

development begin [108]. QSP models allow us to perform in silico experiments on

a simulated metabolic system that predicts the response of perturbing a flux. A

drug may be metabolized differently by various patients, and modelers working in

pharmacology must anticipate these differences. Building a profile of how the drug

affects different classes of simulated patients will help the developers of new drugs

understand the viability of a treatment and acquire insight into the mechanisms by

which the drug acts.

A recent advancement in QSP modeling called Linear-in-Flux-Expression (LIFE)

is a method of analyzing systems of Ordinary Differential Equations (ODEs) [96, 97].

Originally, LIFE was designed to analyze metabolic systems, which are composed of

Fluxes and Metabolites. Fluxes in the metabolic system are the rates of chemical

26
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reactions in the human body, and they determine the dynamics on the metabolites,

which are the various chemical compounds involved in metabolism. Modeling these

systems depends on choosing fluxes, which are difficult to measure directly, so that

the system effectively simulates human metabolism.

To implement LIFE on a metabolic network, the network must be written as a

directed graph [97]. The edges of the graph represent the reaction rates (fluxes),

and the vertices represent quantities of chemical compounds (metabolites). From

the graph we construct the stoichiometric matrix of the system. This stoichiometric

matrix is not the classical one mentioned by [107, 137]. The LIFE method is also

different from QSP models whose dynamics traditionally depend on a matrix con-

taining information about the flux of the system. In these classical QSP models the

dynamics of the metabolites are linear with respect to the metabolites. By contrast,

systems using the LIFE method are linear in fluxes and have a stoichiometric matrix

that is dependent on the metabolites.

Initially, the LIFE method was developed using the human cholesterol metabolism

network [96]. LIFE enables us to simply describe the correlations among the fluxes of

the model at steady state. There are generally many correlations among fluxes, and

maintaining these correlations leads to a more consistent response to perturbing the

fluxes in the system. This was advantageous to QSP modelers, who previously ana-

lyzed flux perturbations with little to no consideration to relationships among fluxes

[2]. Now, we expand our study of these systems, showing that with few assumptions,

systems that are linear in the flux is stable.

The LIFE method evolved from methods in systems biology [107]. Systems biol-

ogy, in conjunction with network flows [61, 47], Markov chains [27], laplacian dynam-

ics [102], control theory [17], and compartmental systems [20, 65] allow us to better

understand biological networks on which pharmacology models are based. The field

of compartmental systems focuses on models based on directed graphs. Vertices of
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the graph represent quantities whose dynamics are determined by the edges of the

graph, which represent fluxes among compartments. Markov chains study dynamics

on directed graphs as well, but by contrast, this field focuses on stochastic processes.

Control theory studies the way an external agent can alter the natural evolution of

a system, given a set of admissible controls. In pharmacology, metabolism follows

its natural evolution, and drugs serve as our controls. These fields have much to

contribute to systems pharmacology, and we summarize useful results. We identify

assumptions which are usually satisfied by real metabolic networks, guaranteeing sta-

bility of the metabolic system at a unique equilibrium.

The paper is organized as follows. In section 2.2, we describe the model system

for the LIFE approach in the form of a system of ODEs associated to a metabolic

networks, then show existence of positive solutions and provide results of equilibria

under general assumptions. Also special classes of LIFE systems are introduced.

Section 2.3 investigates the flow vectors for which a given metabolite vector x is an

equilibrium of the network, including the extreme pathways approach. On the other

side, Section 2.4 studies the opposite problem: find the metabolite vectors which are

equilibria of the network for a fixed flow vector. This is done first investigating the

relationships between linear LIFE systems and Markov chains, Laplacian dynamics

and linear compartmental systems. Then we deal with special classes of nonlinear

LIFE systems. Finally, a comparison between zero-deficiency theory is discussed. The

paper ends with conclusions in Section 2.5 and an Appendix containing examples.

2.2 System model

2.2.1 Notation and preliminaries

We indicate by R+ = [0,+∞) the set of positive real numbers, by Rn the Euclidean

real space of dimension n and by Mn×m the set of n × m matrices with real en-
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tries. Given a matrix S, we indicate by ST its transpose. Given d1, . . . , dn ∈ R,

diag(d1, . . . , dn) is the diagonal matrix with entries di on the diagonal. We denote by

1 a column vector with all entries equal to 1, of size clear from the context.

We introduce some terminology commonly used in graph theory. A directed graph

is a couple G = (V,E), with V = {v1, . . . , vn} the set of vertices and E ⊂ V ×

V the set of edges. For a graph with n vertices and m edges, ordering the edges

lexicographically, the incidence matrix is a matrix, Γ ∈ Mn×m such that Γij = 1 if

the jth edge is (vk, vi) for some vertex vk, Γij = −1 if the jth edge is (vi, vk) for some

vertex vk, and Γij = 0 otherwise. A path is a sequence of distinct vertices vi1 · · · vik ,

with (vij , vij+1
) ∈ E for j = 1, . . . , k− 1. A graph is strongly connected if there exists

a path between every pair of vertices. A strongly connected component of a directed

graph is a maximal strongly connected subgraph.

A terminal component of a directed graph G = (V,E) is a strongly connected

component G′ = (V ′, E ′), with V ′ ⊂ V , E ′ ⊂ E, such that there exists no edge

e = (v′, v), with v′ ∈ V ′ and v ∈ V \ V ′. An undirected path is a sequence of distinct

vertices vi1 , · · · , vik , with either (vij , vij+1
) ∈ E or (vij+1

, vij) ∈ E for j = 1, . . . , k− 1.

A directed graph is weakly connected if there exists an undirected path between every

pair of vertices. A weakly connected component of a directed graph is a maximal

weakly connected subgraph. A directed graph G = (V,E) is weakly reversible if every

weakly connected component is also strongly connected.

2.2.2 LIFE systems

Recall the LIFE model from section 1.2.1, we now illustrate how to construct a di-

rected graph from the metabolic network for the system (1.3). We represent metabo-

lites with vertices V = {v1, . . . , vn}. We construct a set of edges E ⊂ V × V to

represent reactions; each edge is associated to a flux from one metabolite to another,

notice that we do not have loops. To represent intakes and excretions, we introduce
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two virtual vertices, v0 and vn+1, not associated with any metabolite but rather rep-

resenting the external environment. We denote by I,X the set of vertices attached

to v0, vn+1, the vertices in I and X are called intake vertices and excretion vertices,

respectively. We also introduce edges (v0, w) with w ∈ I ⊂ V representing intakes,

and (w, vn+1), w ∈ X ⊂ V representing excretions. We use the extended graph

G̃ = (Ṽ , Ẽ) defined by Ṽ = V ∪ {v0, vn+1} = {v0, v1, . . . , vn, vn+1} and Ẽ collect-

ing edges in E together with intake and excretion edges. The rows of the matrix S

can be indexed by vertices in V and the columns by edges in Ẽ, thus we write Sve

for the entry corresponding to vertex v and edge e. Moreover we denote by xv the

metabolite corresponding to vertex v and by fe the flux corresponding to edge e. All

columns of S have zero sum, except those corresponding to intakes and excretions,

which have positive and negative sum, respectively. In simple words, the entry Sve(x)

is a function quantifying how much mass moves along edge e. We notice that, in

systems biology, researchers often refer to J(f) of (1.2) as the stoichiometric matrix,

see [107].

Example 1. To illustrate the concepts of graph with virtual vertices and stoichio-

metric matrix related to a metabolic network, we provide a toy example with linear

dynamics. Consider the system given by the following stoichiometric matrix and

fluxes vector:

S(x) =



1 −x1 −x1 0 0 0 x4

0 x1 0 −x2 0 0 0

0 0 x1 x2 −x3 −x3 0

0 0 0 0 x3 0 −x4


, f =



f(v0,v1)

f(v1,v2)

f(v1,v3)

f(v2,v3)

f(v3,v4)

f(v3,v5)

f(v4,v1)



.
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Then the corresponding graph is represented in Figure 2.1.

v0 v1 v2

v3v4 v5

f(v0,v1) f(v1,v2)

f(v2,v3)

f(v3,v4)

f(v4,v1)

f(v1,v3)

f(v3,v5)

Figure 2.1: A directed graph G̃ = (Ṽ , Ẽ) representing a biochemical system. The
rectangles indicate virtual vertices and the subgraph of circular vertices and edges
connecting them is G = (V,E).

Remark 1. It is worth a reminder that our stoichiometric matrix is different from the

traditional one defined by [107, 137], in which entries are stoichiometric coefficients,

i.e. do not depend on metabolites.

To correctly represent the reactions corresponding to fluxes (which take always

strictly positive values), we assume:

(A) For x ∈ (R+)n, it holds

Sve(x) =


He(x) > 0 if e = (w, v), w ∈ V and xv > 0 or e = (v0, v), v ∈ I

−He(x) < 0 if e = (v, w), w ∈ V and xv > 0 or e = (v, vn+1), v ∈ X and xv > 0

0 otherwise,

where He : Rn → R is a positive continuous function.

Notice that Assumption (A) implies that, for each v ∈ V ,

∑
v∈V

Sve(x) =


He(x) e = (v0, v̄), v̄ ∈ I,

−He(x) e = (v̄, vn+1), v̄ ∈ X,

0 otherwise,

(2.1)
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namely all columns of S have zero sum, except those corresponding to intakes and

excretions, which have positive and negative sum, respectively. Under Assumption

(A), the dynamics (1.3) can be interpreted as mass conservation law. Indeed, re-

writing (1.3) entrywise and using (A), we have

ẋv =
∑
e∈Ẽ

Sve(x)fe =
∑

w:(w,v)∈Ẽ

H(w,v)(x)f(w,v) −
∑

w:(v,w)∈Ẽ

H(v,w)(x)f(v,w) , (2.2)

which is the mass balance for metabolite xv: its variation is given by the sum of the

incoming flows, minus the sum of the outgoing flows. This is the analogous Kirchhoff’s

current law for electrical networks, with the difference that currents are allowed to

take negative values as well, while here metabolite variables are non-negative.

The total mass in the system is m =
∑

v∈V xv. From (2.2) we have

ṁ =
∑
v∈I

H(v0,v)(x)f(v0,v) −
∑
v∈X

H(v,vn+1)(x)f(v,vn+1) .

Clearly, in the case without intakes nor excretions, ṁ = 0, i.e. the total mass of a

closed system is constant in time.

Another remark which is useful is that, under Assumption (A), S(x) can be re-

written as S(x) = ΓD(x), where D(x) is a diagonal matrix of size m × m, with

diagonal entries given by He(x)’s, and Γ is obtained from the incidence matrix of G̃

by removing the first and last rows (corrseponding to v0 and vn+1). In the particular

case without intakes nor excretions, Γ is the incidence matrix of G.

In the remainder of this section we study the dynamics (1.3) under the very general

Assumption (A), while later in the paper we add other assumptions, restricting our

attention to systems for which stronger statements can be obtained. A first important

general property is that positivity of solution is guaranteed:

Proposition 6. Consider a system (1.3) satisfying (A) and the Cauchy problem with
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initial datum xv(0) = xv0. Assume that S is locally Lipschitz. If fe > 0 for every

e ∈ E and xv0 ≥ 0 for every v ∈ V , then there exists a local solution xv(·) defined on

[0, T ], T > 0, and xv(t) ≥ 0 for every t ∈ [0, T ].

Proof. Existence follows from Lipschitz condition, while positivity of solution follows

from the invariance of the set {x : xv ≥ 0}.

In the next Proposition we show that existence of nontrivial equilibria implies

some structure on the network: every vertex v for which there is a directed path from

some w ∈ I to v, must also have a directed path from v to some y ∈ X. This result

refines the space of networks with which we are concerned. More precisely:

Proposition 7. Consider a system (1.3) satisfying (A). Assume there exists an equi-

librium x̄ ∈ (R+)n for a flux vector f such that fe > 0 for every e ∈ Ẽ. Then for

every vertex v ∈ V for which there exists a path from I to v, there exists a path from

v to X.

Proof. Assume there exists an equilibrium x̄ as in the statement and, by contradiction,

a vertex v for which there exists a path from w ∈ I to v, but there exists no y ∈ X

to which v is connected. Since there is no path from v to X, either v belongs to

a terminal component with no excretion, or there is a path from v to a terminal

component with no excretion. Denote by GT = (VT , ET ) such a terminal component.

Since there are a path from w ∈ I to v and a (possibly trivial) path from v to VT ,

then there is also a path from v0 to VT . Denote by v0, v1 = w, . . . , v`−1, v` ∈ VT one

such a path, such that v`−1 /∈ VT (possibly the path is a single edge, in case w ∈ VT ).

It is easy to show that xvi > 0 for all i = 1, . . . , `, as follows. Considering

e = (v0, v1), by (A) we have Sv0,e(x̄) = He(x̄) > 0. Similarly, for every e′ = (v1, w
′),

xv1 = 0 implies Sv1,e′(x) = 0. This means we must have x̄v1 > 0, otherwise we would

have ẋv1 ≥ feHe(x̄) > 0 (where e = (v0, v1)), contradicting x̄ being an equilibrium.

Having proved that x̄v1 > 0, we can proceed by induction: for i = 1, . . . , `−1, x̄vi > 0
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implies x̄vi+1
> 0. The argument is the same as above, with a slight modification:

looking at e = (vi, vi+1), Svi,e(x̄) = He(x̄) > 0 thanks to Assumption (A) together

with x̄i > 0, while above we were in the case of an intake.

Finally we have a terminal component GT = (VT , ET ) with no excretion, and an

edge (v`−1, v`) with v` ∈ VT and v`−1 /∈ VT , such that either v`−1 = v0 or x̄v`−1
> 0.

In either case, considering e = (v`−1, v`), by (A) we have Sv`−1,e(x̄) = He(x̄) > 0.

Now consider the variation of mass in the component GT : since there is no outgoing

edge from GT , and there is at least the incoming edge e, we have d
dt

∑
v∈VT xv =∑

v∈VT ẋv ≥ Hefe > 0, contradicting the fact that x̄ is an equilibrium.

v0 v1 v2

v3v4 v5

f(v0,v1) f(v1,v2)

f(v2,v5)
f (v

2
,v 4
)

f(v3,v4)
f(v4,v3)

Figure 2.2: A directed graph G̃ = (Ṽ , Ẽ) illustrating Proposition 7. Vertices v3 and
v4 form a terminal component. There exists a path from v0 to v4 yet there is no path
from v4 to v5

The system associated to the graph in Figure 2.2 provides an explicit example

of the contradiction argument of Proposition 7. The vertices v3 and v4 violate the

condition of Proposition 7, since there is a path from the intake vertex v1 to v3 and

v4, and there is no path from v3 and v4 to the excretion vertex v2; hence, the system

does not admit any equilibrium. The proof argument, specialized to this example, is

to notice that v3 and v4 form a terminal component with no excretion, and to look at

the path v0, v1, v2, v4. Assuming that there is an equilibrium x̄, one shows first that

x̄v1 > 0 due to the intake, and then that x̄v1 > 0 implies also x̄v2 > 0. Notice that

ẋv3 + ẋv4 ≥ Sv2,(v2,v4)fv2,v4 (in this particular example, equality is actually true), and

the latter is > 0 since x̄v2 > 0, thus contradicting the fact that x̄ is an equilibrium:
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the mass xv3 + xv4 grows unbounded.

The same system of Figure 2.2 shows the necessity of the assumption that He(x) =

0 when xv = 0, e = (v, w) for Proposition 7 to hold. Indeed assume that H(v2,v5)(x)

= 1 for every x such that xv2 = 0 and that the other functions He, e = (v, w),

satisfy He(x) = xv. Let f be a flux vector with strictly positive components such

that f(v1,v2) = f(v2,v5). Then x̄ = (
f(v0,v1)
f(v1,v2)

, 0,
f(v4,v3)
f(v3,v4)

, 1) is an equilibrium.

Another example not satisfying the assumptions of Proposition 7 is shown in

Figure 2.3. This system admits an equilibrium under Assumption (A) even though

the vertex v3 does not have a path to v5. This is because there does not exist a path

from v0 to v3.

v0 v1 v2

v3v4 v5

f(v0,v1) f(v1,v2)

f(v2,v5)

f(v4,v3)

f (v
4
,v 2
)

Figure 2.3: A directed graph where vertices v3 and v4 do not have a path from v0 and
also have no path to v5. For an equilibrium, x̄, of this system under Assumption (A),
x̄v4 = 0 and x̄v3 ≥ xv3(0).

v1 v2

v3vn
· · ·

f(v1,v2)

f(v2,v3)f(vn,v1)

Figure 2.4: A directed cycle graph G = (V,E) with n vertices and no intakes nor
excretions. On such a LIFE system one can prescribe any desired dynamics.

For general systems (1.3) with Assumption (A) it is not possible to prove other
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general conclusions about equilibria, beside Propositions 6 and 7. Indeed consider the

simple metabolic network given in Figure 2.4. Under Assumption (A), the dynamics

is written as: 

ẋv1 = −f(v1,v2) ·H(v1,v2)(x) + f(vn,v1) ·H(vn,v1)(x)

ẋv2 = −f(v2,v3) ·H(v2,v3)(x) + f(v1,v2) ·H(v1,v2)(x)

ẋv3 = −f(v3,v4) ·H(v3,v4)(x) + f(v2,v3) ·H(v2,v3)(x)

...

ẋvn = −f(vn,v1) ·H(vn,v1)(x) + f(vn−1,vn) ·H(vn−1,vn)(x)

. (2.3)

We want to show that for any dynamical system in Rn on a compact set there exists

an equivalent dynamics defined on the cycle graph of Figure 2.4. In other words,

Asumption (A) is so general that we give Proposition 8 to show arbitrary dynamics

can be defined, and we focus on more specialized cases (Assumption (B), and (C)).

More precisely for every general dynamics



ẋv1 = F1(xv1 , xv2 , . . . , xvn)

ẋv2 = F2(xv1 , xv2 , . . . , xvn)

...

ẋvn = Fn(xv1 , xv2 , . . . , xvn)

. (2.4)

we look for a choice of the functions He and the fluxes fe realizing such equivalence.

Note that from (2.1), we have xvn = C − x1 − · · · − xn−1 which implies that

ẋvn = −ẋv1 − · · · − ẋvn−1 =
n−1∑
i=1

−Fi. (2.5)

Define the set T = ∪ni=1{x : xj ≥ 0 for all j, xi = 0 and x1 + · · · + xn ≤ 1} then we
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have the following:

Proposition 8. Consider system (2.4) and assume F1 = · · · = Fn = 0 on the set T .

Then there exist functions He and fluxes fe such that the dynamics (2.3) is equivalent

to (2.4) on the bounded set delimited by T .

Proof. Assign the functions H(vi,vj)(x) according to the following rule:

H(vi,vi+1)(x) =
∑
k≤i

[Fk]− +
∑
`>i

[F`]+ if i < n,

H(vn,v1)(x) =
n∑
k=1

[Fk]+,

(2.6)

where [F ]+ = max{F, 0} and [F ]− = max{−F, 0}. It is easy to verify that ẋvi = Fi(x)

for i < n and ẋvn = −
∑n

i=1 Fi = Fn(x) using (2.5). Moreover, because of the

assumption on Fi’s, the functions He satisfy (A), thus we are done.

2.2.3 Special LIFE systems

Here we introduce a special class of systems of type (1.3) with simplified dynamics. We

consider Assumption (A), and we impose further restriction on the functions He(x):

for an edge e = (v, w), we assume He to depend on xv only, and moreover we impose

the scalar function He(xv) to be strictly increasing. More precisely, Assumption (B)

is the following.

(B) It holds

Sve(x) =



−He(xv) e = (v, w), v ∈ V,w ∈ V ∪ {vn+1}

He(xw) e = (w, v), w ∈ V

1 e = (v0, v) v ∈ I

0 otherwise,

(2.7)
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and each He is a positive, differentiable, and strictly increasing function He :

R→ R, with He(0) = 0.

A typical example of a system verifying (B) is given by metabolic networks with

Hill functions representing reactions, i.e. He(xv) = xpev
K+xpev

with pe ∈ N, where K > 0

is the dissociation constant.

A further simplification occurs in the case where He(xv) is the same function

Hv(xv) for all edges e having v as an initial vertex, i.e. such that e = (v, w) for some

w. This gives Assumption (C), as follows.

(C) It holds

Sve(x) =



−Hv(xv) e = (v, w), v ∈ V,w ∈ V ∪ {vn+1}

Hw(xw) e = (w, v), w ∈ V

1 e = (v0, v) v ∈ I

0 otherwise,

and each Hv is a positive, differentiable, and strictly increasing function Hv :

R→ R, with Hv(0) = 0.

Under Assumption (C), the system ẋ = S(x)f can be equivalently re-written as

ẋ = J(f)h(x) + φ , (2.8)

where J(f) ∈Mn×n is defined by

Jij(f) =


f(vj ,vi) if (vj, vi) ∈ E

−
∑

w:(vi,w)∈Ẽ f(vi,w) ifj = i

0 otherwise,
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where h(x) is a vector of size n given by hi(x) = Hvi(xvi) and φ is a vector of size n

given by φi = f(v0,vi) if (v0, vi) ∈ Ẽ, and φi = 0 otherwise.

Finally, the simplest class of LIFE models we consider are linear systems, namely

systems satisfying Assumption (C), where eachHv(xv) is the identity functionHv(xv) =

xv.

Example 2.1 (continued). This example is a linear LIFE system. We can equiva-

lently re-write its dynamics ẋ = S(x)f as ẋ = J(f)x+ φ, with

J(f) =



−f(v1,v2)−f(v1,v3) 0 0 f(v4,v1)

f(v1,v2) −f(v2,v3) 0 0

f(v1,v3) f(v2,v3) −f(v3,v4)−f(v3,v5) 0

0 0 f(v3,v4) −f(v4,v1)


, φ =



f(v0,v1)

0

0

0


.

2.3 Equilibria for fixed metabolites

In this section we consider equilibrium solutions of the system (1.3) satisfying As-

sumption (A). In general one is interested in conditions guaranteeing existence of an

equilibrium and also in conditions necessary for uniqueness and stability of such an

equilibrium. There are two problems: for fixed metabolite concentrations x find all

flux vectors f for which x is an equilibrium, i.e. ẋ = S(x) · f = 0, and, vice versa,

for a fixed flux vector f , find all x that are equilibria. In this section we focus on the

first, while the latter is investigated in Section 2.4.

The set of flux vectors for which x is an equilibrium formed by all vectors f that

solve the equation S(x) · f = 0, i.e. the nullspace N (S(x)) of S(x). First, we discuss

the dimension of N (S(x)). Then, since fluxes must be positive (to have a correct

biological meaning), we focus on describing the cone N (S(x)) ∩ (R+)m. Recall that,

under Assumption (A), we can rewrite S(x) as S(x) = ΓD(x) where D(x) ∈Mm×m is
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a diagonal matrix with He(x)’s as entries and Γ is obtained from the incidence matrix

of G̃ by removing the first and last rows; in case there are no intakes nor excretions,

then Γ is the incidence matrix of G. Assuming that x has strictly positive entries,

(A) implies that all diagonal elements of D(x) are strictly positive, so that D(x) is

invertible. Hence, for Γ · (D(x) · f) = 0 to have non trivial solutions, the nullspace of

Γ must have dimension greater than zero.

We extend one of the results of [97] to get:

Proposition 9. Consider the system (1.3) with no intakes nor excretions satisfying

Assumption (A) and let G be the the associated graph. Let x ∈ Rn have strictly

positive entries and S(x) ∈Mn×m be the stoichiometric matrix, then

rank(S(x)) = n− `,

where ` is the number of weakly connected components of G.

Proof. We have S(x) = ΓD(x). As shown in Proposition 4.3 of [12] the rank of an

incidence matrix Γ is rank(Γ) = n− `. Since D(x) is full rank we have rank(S(x)) =

n− `.

Next we consider systems that contain both intakes and excretions. It was shown

in [97] that if intakes and excretions are added to a graph satisfying the conditions

of Proposition 9 then rank(S(x)) = n. We extend this result to get:

Proposition 10. Consider the system (1.3) satisfying Assumption (A) and let G be

the the associated graph. Let x ∈ Rn have strictly positive entries and S(x) ∈ Mn×m

be the stoichiometric matrix, then rank(S(x)) = n − k, where k is the number of

weakly connected components containing neither intake nor excretion vertices.

Proof. It was shown in [97] that if G is weakly connected and contains an intake

vertex then rank(S(x)) = n. The same argument from [97] can be also used for an
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excretion vertex and so if G is weakly connected and contains an excretion vertex we

also have rank(S(x)) = n. In the case where G is not weakly connected S(x) can be

rewritten as a block diagonal matrix

S(x) =


S1(x) 0

. . .

0 S`(x)


where each diagonal element Si(x) is the stoichiometric matrix of a weakly con-

nected component. If Si(x) contains an intake or excretion vertex then rank(Si(x))

= ni, where ni is the number of metabolites in Si(x). If Si(x) contains neither intake

nor excretion vertices then rank(Si(x)) = ni−1. This implies that S(x) has ni linearly

independent rows for each Si(x) with intake or excretion vertices and ni − 1 linearly

independent rows for each Si(x) with neither intake nor excretion vertices. Let k

represents the number of Si(x) with neither intake nor excretion vertices, the total

number of linearly independent rows in S is now expressed (
∑`

i=1(ni))− k = n− k.

Thus rank(S(x)) = n− k.

Notice that the rank of S(x) depends on the number of weakly connected compo-

nents of the graph, which is the same irrespective of the orientation of edges. However,

when we focus on the existence of non-trivial positive flows admitting an equilibrium

with strictly positive entries, the orientation of edges does matter, as we can see e.g.

from Proposition 7, where a necessary condition is given for existence of equilibria,

in terms of existence of suitable paths.

2.3.1 Network flows

The problem of finding positive flows admitting an equilibrium with strictly positive

entries has been extensively studied in the operations research literature under the
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name of ‘network flow’ problems [61]. In network flow problems one considers a

directed graph where edges represent flows between the vertices. The maximum flow

which an edge can support is called the capacity of the edge. In addition to capacity

each edge may also have a cost associated to it. Network flow problems assume that

the system is at equilibrium with respect to the vertices i.e. that the flow entering

and leaving a vertex must be the same. A flow that satisfies this assumption is

called a feasible flow. Finding feasible flows is the same as finding flows in the cone

N (S(x)) ∩ (R+)m with the further constraint that each flux must be less than its

capacity.

A flow is a mapping from f : E → (R+)m that satisfies 0 ≤ f(vi, vj) ≤ c(vi, vj)

(where c(vi, vj) is the capacity of the edge (vi, vj)) and
∑

(vi,vj)∈E f(vi, vj)−
∑

(vj ,vk)∈E f(vj, vk) =

0 [93]. One of the most common network flow problems is to find the maximum flow

of the network, i.e. the largest amount of total flow from a source to a sink. In [47]

the authors consider a network which contains exactly one source (v0) and one sink

(vn+1). They then prove the following result, known as max-flow min-cut theorem,

which characterizes the maximum flow as the minimum cut cacapity, where a cut set

is a set of edges whose removal disconnects the source from the sink, and the capacity

of a cut is the sum of the capacities of its edges.

Proposition 11 (Max-Flow Min-Cut Theorem). The maximum flow value obtainable

in a network is the minimum capacity of all cut sets which disconnect v0 and vn+1.

An implication of the max-flow min-cut theorem is that a feasible flow exists if

there is a path from v0 and vn+1. The following proposition extends this relationship:

Proposition 12. Given a LIFE system with graph G̃ and stoichiometric matrix S(x)

satisfying (A), fix an x ∈ (R+)n with strictly positive entries and for every v ∈ I fix

f̄v0,v > 0, i.e. fix arbitrary values for the intake flows. There exists f ∈ N (S(x)) ∩

(R+)m such that fv0,v = f̄v0,v for all v ∈ I if and only if for each v ∈ I there exists a

path to X.
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Proof. Consider the maximum flow problem on the graph G̃, where edges (v0, v)

have capacity f̄v0,v, and all other edges have infinite capacity. The feasible flows ϕ

for this network are in one-to-one correspondence with the equilibrium flows f ∈

N (S(x)) ∩ (R+)m such that fv0,v ≤ f̄v0,v for all v ∈ I; the correspondence is simply

given by fv0,v = ϕv0,v/Hv0,v(x) for all v ∈ I and fv,w = ϕv,w/Hv,w(x) for all w ∈ V .

If for all v ∈ I there is a path from v to X (and hence a path from v to vn+1), the

minimum cut is the removal of all edges (v0, v). The maximum flow ϕ∗ then has

ϕ∗v0,v = f̄v0,v, thus also ensuring the existence of an equilibrium flow f ∗ satisfying the

same.

If for some vi ∈ I there is no path from v to X, then all feasible flows ϕ satisfy

ϕv0,v = 0, and hence all equilibrium flows f satisfy fv0,v = 0 which contradicts the

assumption.

2.3.2 Extreme pathway algorithm for calculating the positive

basis

There are many standard methods for computing a basis of the nullspace of a matrix

[100], and hence to describe N (S(x)). Since we are interested in positive fluxes, we

are rather interested in the cone N (S(x))∩ (R+)m. One method to describe this cone

is to look for a positive basis, which is a minimal set of vectors generating the whole

cone via linear combinations with positive scalars, called positive combinations. The

use of positive combinations ensures that all generated vectors belong to the cone.

Minimality is equivalent to ask for the vectors to be positively linearly independent,

i.e. no vector can be expressed as a positive combination of the others. Since we allow

only positive combinations (and not every linear combination), typically a positive

basis has more vectors than a traditional basis. In [125] the authors prove that a flux

cone has a positive basis, and that the vectors of the positive basis are unique up to

multiplication by a positive scalar.
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Finding a positive basis for a cone is not as easy as finding a traditional basis. In

[107], Palsson describes a method to find a positive basis by using extreme pathways of

a metabolic network. The extreme pathways are a unique set of positively independent

flux vectors that represent the edges of the cone N (S(x)) ∩ (R+)m [107, 125].

Here we summarize a method to build extreme pathways described by [125]. We

start considering the equation V0 · S(x)T = C0, and the solution given by V0 = Im,

the m×m identity matrix, S(x) the stoichiometric matrix and C0 = S(x)T . At each

iteration new matrices Vi ∈Mni×m, Ci ∈Mni×n are defined which satisfy Vi ·S(x)T =

Ci.

Algorithm 1. The algorithm consists of the following steps:

Step 1. Select from Ci the first non-zero column (lexicographically), whose corre-

sponding metabolite is neither an intake vertex nor an excretion vertex, say ji. If no

such column exists jump to Step 5.

Step 2. Add to Ci all possible new rows, obtained using positive linear combinations

of two other rows, which have a zero on the column ji. Then define Ci+1 by removing

the old rows used to generate the new ones. Notice that Ci+1 has all zeros in column

ji.

Step 3. Define Vi+1 by adding to Vi the rows generated by the same combination as

those of Step 2 (to keep the validity of the equation V · S(x)T = C) and removing the

old rows.

Step 4. Remove positively linearly dependent rows from Vi+1. Remove the corre-

sponding rows from Ci+1.

Step 5. Repeat the steps 1-4 now considering first excretion vertices and then intake

vertices until all columns are 0.

If the algorithm stops at step m, then Cm = 0 (the matrix with all zero entries).

The rows of Vm are the vectors of a positive basis. Notice also that the number of



45

rows ni may increase or decrease during the various steps.

Originally in [107] the extreme pathways method was proposed for stoichiometric

matrices not dependent on x. We apply it here to the most general case of systems

(1.3) with Assumption (A), by fixing a desired metabolite variables vector x ∈ (R+)n

and using the extreme pathways method to characterize all fluxes vectors with positive

entries such that the corresponding LIFE system (1.3) admits x as an equilibrium.

To illustrate the process we report an example using the Reverse Cholesterol

Transport Network (RCT) from [96]. The RCT network is shown in Figure 2.5.

v0

v1 v2 v3

v4

v5 v6

f(v0,v1) f(v0,v2) f(v0,v3)

f(v1,v4) f(v2,v4)
f(v3,v4)

f(v4,v5) f(v4,v6)

f(v5,v6)
f(v6,vn+1)

vn+1

metabolic
network

Figure 2.5: Reverse Cholesterol Transport Network from [96]. This network contains
6 vertices which represent metabolites, 10 edges which represent fluxes and 2 virtual
vertices v0, vn+1. There are three intake vertices v1, v2, v3 and 1 excretion vertex v6.

Example 2. Finding Extreme Pathways of RCT network

We use Palsson’s algorithm for finding extreme pathways on the stoichiometric
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matrix from the RCT network. The stoichiometric matrix for RCT is given by:

S(x) =



1 0 0 −x1 0 0 0 0 0 0

0 1 0 0 −x2 0 0 0 0 0

0 0 1 0 0 −x3 0 0 0 0

0 0 0 x1 x2 x3 −x4 −x4 0 0

0 0 0 0 0 0 x4 0 −x5 0

0 0 0 0 0 0 0 x4 x5 −x6


For space, the complete calculations are continued in the Appendix.

2.3.3 Extreme pathways provide a positive basis

Let us first recall Farkas’ Lemma [52]. Here we use the notation x ≥ 0 to indicate

that every entry in the vector x is positive.

Lemma 3 (Farkas’ Lemma). Let A ∈ Mn×m and b ∈ Rn. For the equation Ax = b

exactly one is true:

1. There exists x ∈ Rm such that Ax = b and x ≥ 0.

2. There exists y ∈ Rn such that ATy ≥ 0 and bTy < 0.

Proposition 13. The extreme pathways of S(x) form a positive basis of N (S(x)) ∩

(R+)m.

Proof. There are three statements which must be shown to prove this Proposition.

Statement 1: The extreme pathway vectors (vi) are positively independent (system-

atically independent in terminology used in [107]).

Statement 2: The span of the extreme pathways vectors is contained in (N (S(x)) ∩

(R+)m) i.e.
∑

λi≥0 λivi ⊂ (N (S(x)) ∩ (R+)m).
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Statement 3: The extreme pathways vectors span (N (S(x))∩(R+)m) i.e. (N (S(x))∩

(R+)m) ⊂
∑

λi≥0 λivi.

Statement 1 follows from Step 4 of the algorithm.

Let us now prove Statement 2. Since the vectors corresponding to extreme

pathways are positive combinations of rows of matrices with positive entries, then

vi ∈ (R+)m for all i. We have Vn · S(x)T = Cn = 0, equivalently S(x) · V T
n = CT

n = 0.

This implies that the columns of V T
n in the nullspace of S(x), thus the rows of Vn in

the nullspace of S(x). Since both N (S(x) and (R+)m are closed for positive linear

combinations we are done.

Finally it remains to prove statement 3, in order to show (N (S(x)) ∩ (R+)m) ⊂∑
λi≥0 λivi we proceed as follows. First we show that after one iteration of the algo-

rithm the rows of V1 form a positive basis for vectors w such that the j1-th element of

S(x)w equals zero. After n iterations, we show that Vn is a positive basis for vectors

w ∈ N (S(x)).

For simplicity of notation, we assume j1 = 1. Define W1 to be the set of vectors

w such that the first entry of S(x)w equals zero. It is clear from the construction

of V1 that its rows belong to W1. It remains to be shown that the rows of V1 span

W1. Since V1 · S(x)T = C1, thus we can alternatively show that the columns of CT
1

span the subset of the range of S(x) with first entry equal to zero. In other words,

we must show that if
∑

λi≥0 λici,1 = 0, where ci,1 represents the first entry in the ci-th

row of C0, that the sum
∑

λi≥0 λici = 0 can also be represented using rows from C1.

We assume an ordering such that ci,1 ≥ 0 for i ≤ ` and ci,1 < 0 for i > `, each row in

C1 can be represented by ci + αi,jcj where i ≤ `, j > ` and αi,j =
−ci,1
cj,1
≥ 0. We need

to find µi,j such that, ∑
µi,j(ci + αi,jcj) =

n∑
i=1

λici. (2.9)

We can split the sum on the right hand side by considering the positive and
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negative entries separately,

∑
µi,j(ci + αi,jcj) =

∑̀
i=1

λici +
n∑

i=`+1

λici.

For λi, i ∈ {`+ 1, . . . , n} we can write:

∑̀
k=1

µk,iαk,i = λi

which gives: ∑̀
k=1

µk,i (−ck,1) = ci,1λi, i ∈ {`+ 1, . . . , n}. (2.10)

For λi, i ∈ {1, . . . , `} we can write:

n∑
k=`+1

µi,k = λi

which gives:
n∑

k=`+1

µi,kci,1 = ci,1λi, i ∈ {1, . . . , `}. (2.11)

The equations (2.10), (2.11) can be written in the following way,

` rows


n− ` rows

{



[c1,1] 0 · · · 0

0 [c2,1] · · · 0

...
...

...

0 0 · · · [c`,1]

−diag(c1,1) −diag(c2,1) · · · −diag(c`,1)


·



µ1,`+1

µ1,`+2

...

µ1,n

µ2,`+1

...

µ2,n

...

µ`,n



=



c1,1λ1

c2,1λ2

...

cn,1λn


(2.12)

where [ci,1] represents a 1× (n− `) vector with all entries equal to ci,1 and diag(ci,1) ∈
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M(n−`)×(n−`) a diagonal matrix with ci,1 on the diagonal. Let A, b be the matrix on

the left-hand side and the vector on the right-hand of equation (2.12), respectively.

We can then apply Farkas’ Lemma. Consider a vector y ∈ Rn such that AT · y ≥ 0,

then for the first row we have c1,1y1 − c1,1y`+1 ≥ 0. Further for any i = 1, . . . , `

and j = ` + 1, . . . , n we have ci,1yi − ci,1yj ≥ 0 which implies yi ≥ yj. Setting ȳ =

max(y`+1, . . . , yn) we have yi ≥ ȳ for i = 1, . . . , `. Since all cj,1 < 0 for j = `+1, . . . , n

and all λj ≥ 0 we have that yjcj,1λj ≥ ȳcj,1λj. Next we define ȳ = (ȳ, . . . , ȳ) ∈ Rn and

note that bTy ≥ bT ȳ. Since
∑

λi≥0 λici,1 = 0 we have bT ȳ = 0. Therefore condition

2 of Farkas’ Lemma fails. This implies that condition 1 is true and thus there exists

a set of positive µ’s that solve the system (2.12). Since a set of µ’s can be found we

have that after the first iteration of the algorithm the rows of V1 span W1. By similar

argument the rows of the Vi in subsequent iterations span the set of vectors w such

that the first i entries of S(x)w equal zero. After n iterations, the rows of Vn span

N (S(x)) ∩ (R+)m, thus we are done.

Example 3. Comparison of the standard and positive bases

Using the RCT network, an example is presented which compares a standard basis

of the nullspace and positive basis for the nullspace. Here we provide the calculations

needed to show Statement 2 and Statement 3 of Proposition 13 for the RCT. The

full details for this example are contained in the Appendix.

2.4 Equilibria and asymptotic behavior of metabo-

lites for fixed fluxes

In this section we characterize equilibria and the stability of LIFE systems with a

fixed flux vector. We start with linear systems, and then we consider special LIFE

systems, with Assumptions (B) and (C). LIFE systems satisfying at least Assumption

(A) are known as compartmental systems in the automatic control community [65, 20].
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We build upon the well-established results on linear compartmental systems to get

a full understanding of linear LIFE systems, as well as for special LIFE systems

satisfying Assumption (C). Notice that weakly connected components of G̃ correspond

to subsystems having no interaction with each other, so that we can study each weakly

connected component separately from the others. Hence, throughout this section, we

assume G̃ is weakly connected, without loss of generality.

2.4.1 Linear systems

In this section we study the properties of linear systems, i.e. special LIFE system (1.3)

satisfying Assumption (C) with fluxes Hv(xv) = xv, or, equivalently, a system (2.8),

with h(x) = x. We first focus on metabolic networks with no intakes nor excretions,

recalling results from a rich literature from different communities. For the case with

intakes and excretions, we make use of results for Compartmental Systems [21].

Linear system without intakes and excretions

In the case with no intakes nor excretions (also known as free closed system), the

linear LIFE dynamics become ẋ = J(f)x. Notice that J(f) is a Metzler matrix (i.e.

has non-negative off-diagonal entries), and all its columns sum to zero (1TJ(f) = 0T ).

This system is known as Laplacian dynamics, because L = −J(f)T is a weighted

Laplacian of the graph G defined as follows. Given the graph G and given strictly

positive weights fe associated with its edges (for us, the weights are the fluxes), the

weighted adjacency matrix A is defined by Aij = f(vi,vj) if (vi, vj) ∈ E, and Aij = 0

otherwise. The corresponding weighted Laplacian is L = D−A, where D = diag(A1)

is the diagonal matrix containing the weighted out-degrees, i.e. row-sums of A.

The eigenvalues of the Laplacian, and in particular its eigenvalue 0 and the cor-

responding eigenspace which is actually the set of equilibria of ẋ = J(f)x, have been

studied in graph theory (see e.g. [25]). The study of the spectrum of the Laplacian has
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received extensive attention also in the automatic control community, on one hand

because of the recent interest in the so-called consensus dynamics (see [20, Chapter

7]) ẋ = −Lx (which are different from the dynamics ẋ = J(f)x, since L = −J(f)T ,

but the eigenvalues of −L and J(f) are the same), and on the other hand because of

the interest in the linear compartmental system ẋ = J(f)x (see [20, Chapter 9]).

Laplacian dynamics have been introduced in the mathematical biology literature

by [102], together with a complete study of their equilibria and convergence properties.

Notice that in [102] the matrix J(f) itself is called a Laplacian, while in the graph

theory and control theory communities the name Laplacian refers to L = −J(f)T .

The dynamics ẋ = J(f)x is also very related to continuous-time Markov chains

(see e.g. the textbook [27]). Thus we elaborate on this, a homogeneous continuous-

time Markov chain over a finite state V = {1, . . . , n} is a stochastic process X(t)

taking values in V , that satisfies the Markov property:

for all times t0 ≤ t1 ≤ · · · ≤ th ≤ th+1,

Pr(Xth+1
= ih+1 | Xt0 = i0, Xt1 = i1, . . . , Xth = ih) = Pr(Xth+1

= ih+1 | Xth = ih),

and which is homogeneous in time:

Pr(Xth+1
= ih+1 | Xth = ih) = Pr(Xth+1−th = ih+1 | Xt0 = ih) = Pih,ih+1

(th+1 − th) .

P (t) is the matrix whose (i, j)-th entry represents the probability of transition from

state i to state j in an interval of time of length t. P (t) is assumed to be right-

differentiable, and with time derivative defined by Ṗ (t) = limh→0+(P (t+h)−P (t))/h.

The Markov chain is fully described by its generator matrix (or transition rate matrix )

defined by Q = Ṗ (0). Indeed, P (t) is related to Q by the Kolmogorov forward

equation Ṗ (t) = P (t)Q. The unique solution of the Cauchy problem Ṗ (t) = P (t)Q

with P (0) = I is P (t) = eQt. Denoting by π(t) a column vector whose ith entry is
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πi(t) = Pr(X(t) = i), we have that πT (t) = πT (0)P (t) = πT (0)eQt and hence is a

solution of π̇T = πTQ with given initial condition π(0).

The generator matrix Q is a Metzler matrix whose rows sum to 0 (Q1 = 0), and

hence there is an immediate equivalence between the dynamics π̇T = πTQ and the

linear LIFE system ẋ = J(f)x, simply by taking Q = J(f)T . In Markov chains, one

looks at π being a probability vector, namely having positive entries and
∑

i πi = 1.

In LIFE systems, we are also interested in a vector x with positive entries, but the

total mass could be arbitrary, so that one should set πi(0) = xvi(0)/m0, with m0 =∑
i xvi(0).

Based on all this rich literature, we recall here the results about equilibria and

their stability. The spectrum of J(f) is characterized as follows (see e.g. [102, Propo-

sition. 1]):

Proposition 14. Assume there are no intakes nor excretions, then:

• All eigenvalues of J(f) are either 0 or have strictly negative real part.

• The dimension of the nullspace of J(f) is equal to the algebraic multiplicity of

the 0 eigenvalue 1, and is equal to the number of terminal components in G.

• Moreover, denoting by G1, . . . , Gk the terminal components of G, there exists

a basis of the nullspace of J(f) composed of vectors π1, . . . , πk, such that vec-

tor πi has strictly positive entries in correspondence of vertices in Gi, and has

vanishing entries otherwise.

It is customary to ‘normalize’ the vectors π1, . . . , πk so that their entries sum to

1, so that they can be interpreted as probability vectors. Under this choice, the

restriction of vector πi to the terminal component Gi is the stationary distribution of

the Markov chain restricted to such component, i.e. its unique equilibrium with mass
1The algebraic multiplicity of an eigenvalue is its multiplicity as a root of the characteristic

polynomial, while its geometric multiplicity is the dimension of the corresponding eigenspace. In
the case of the zero eigenvalue, the eigenspace is the nullspace of the matrix.



53

1 (uniqueness is obtained from the fact that the terminal component is a strongly

connected component).

Notice that the dimension of the nullspace of an incidence matrix Γ (and hence of a

stoichiometrix matrix S(x)) is related to the number of weakly connected components,

while the dimension of the nullspace of a Laplacian matrix is related to strongly

connected components, and not all components matter, but only the terminal ones.

In the case where G has a unique terminal component, the nullspace of J(f)

has dimension one: the equilibrium is unique, up to a multiplicative factor which is

the initial total mass m0 =
∑

i xvi(0). In the case where G is strongly connected,

the whole graph is a single strongly connected component. In this case, not only the

nullspace of J(f) has dimension one, but also it is generated by a vector whose entries

are all strictly positive.

The spectral properties of J(f) given in Proposition 14 fully characterize the

asymptotic behavior of the linear system ẋ = J(f)x, by standard theory of linear

systems, giving the following:

Proposition 15. Consider the linear LIFE system with no intakes nor excretions

and denote by G1, . . . , Gk the terminal components of the associated graph G. The

following properties hold:

• The total mass of the system m =
∑

v∈V xv = m0 is constant in time.

• From any positive initial condition x(0), the system converges to an equilib-

rium, having strictly positive entries in correspondence of vertices of terminal

components, and 0 elsewhere.

• Moreover, if there is a unique terminal component, then the equilibrium is

uniquely determined by the initial total mass m0.
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Linear system with intakes and excretions

We now focus on linear systems with intakes and/or excretions, using results from

linear compartmental systems as summarized in [20, Chapter 9]. A first remark is

that, having introduced a single v0 from which all intake edges are originated, and a

single vn+1 to which all excretion edges are headed, we have a single weakly connected

component containing intakes and/or excretions. We restrict our attention to such a

weakly connected component, while other possible components with no intakes nor

excretions have a behavior described in Sect. 2.4.1.

The dynamics are given by ẋ = J(f)x+ φ, where vector φ represents the intakes.

Due to excretions J(f) does not have all column-sums equal to 0. This means that

−J(f)T is not any more a Laplacian, but it is a grounded Laplacian. The term

grounded Laplacian refers to a matrix obtained from a larger Laplacian matrix by

deleting the row and column corresponding to a given vertex; the name ‘grounded’

has an interpretation for electrical networks, where this corresponds to connecting the

given vertex to the ground. Consider the subgraph of G̃ where we have removed v0

but not vn+1, and consider the weighted Laplacian L ∈ M(n+1)×(n+1) of such a graph

(with weights equal to the fluxes), then define Lg by deleting the last row and last

column (associated with vn+1). The resulting grounded Laplacian is Lg is such that

J(f) = −LTg .

The spectral properties of J(f) are summarized as follows (see [20, Theorem 9.5

and Lemma 9.12]):

Proposition 16. Consider a linear system with intakes and/or excretions, then:

• All eigenvalues of J(f) are either 0 or have strictly negative real part.

• The dimension of the nullspace of J(f) is equal to the algebraic multiplicity

of the 0 eigenvalue, and is equal to the number of terminal components not

containing any excretion.
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In particular, the following are equivalent:

(a) For every v ∈ V there is a path from v to X.

(b) J(f) is Hurwitz stable (i.e. all its eigenvalues have strictly negative real part).

(c) J(f) is invertible.

Moreover, when J(f) is invertible, all entries of −J(f)−1 are positive; if G is strongly

connected, they are strictly positive.

Equilibria of the dynamics ẋ = J(f)x + φ are the solutions of the linear system

of equations J(f)x = −φ. By Proposition 16, if all vertices v have a path to some

excretions, then there is a unique equilibrium x̄ = −J(f)−1φ, and moreover all entries

of x̄ are positive. To study the general case, where vertices might or might not have a

path to some excretions, it is convenient to partition the system into two subsystems,

as follows. Partition the vertex set as V = V1∪V2, with V1 the set of v ∈ V such that

there is a path from v to vn+1. Without loss of generality, we can re-label vertices

in V so as to have vertices v1, . . . , vr ∈ V1 and vr+1, . . . , vn ∈ V2. According to this

decomposition, partition the vector x into two blocks x1 corresponding to V1 and x2

corresponding to V2, and similarly partition φ as φ1, φ2. Notice that there is no edge

from V2 to V1, since an edge (w, v) with v ∈ V1 implies that there is a path from v to

vn+1 and also a path from w to vn+1. Hence, we have:

J(f) =

 J1 0

J21 J2

 ,
and 

ẋ1 = J1x1 + φ1

ẋ2 = J2x2 + J21x1 + φ2.

(2.13)
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The first subsystem is called the reduced system, and its evolution is not affected by

the second subsystem. The matrix J1 is equal to the matrix J(f) of the graph H̃

obtained from G̃ as follows: for any edge (v, w) with v ∈ V1, w ∈ V2, remove the edge

(v, w) and add the edge (v, vn+1) with flow fv,vn+1 = fv,w; then remove all vertices in

V2 and all corresponding edges. By definition of V1, all vertices of H̃ have a path to

vn+1, and hence, by Proposition 16, J1 is invertible and Hurwitz stable, and −J−1
1

has positive entries.

For the second subsystem, it is easy to see that J2 is the matrix J(f) of the

subgraph K of G corresponding to vertices in V2. Hence, L = −JT2 is a Laplacian

matrix, and by Proposition 14 its nullspace is generated by vectors π1, . . . , πk, where

G1, . . . , Gk are the terminal components in K (same as the terminal components with

no excretions in G), and each vector πi has strictly positive entries corresponding to

vertices in Gi and is 0 elsewhere. Choosing each πi so that its entries sum to 1, the

restriction of πi to Gi is the stationary distribution of the corresponding Markov chain

restricted to Gi, namely the Markov chain whose generator matrix is the transpose

of the submatrix of J(f) corresponding to Gi.

These remarks, together with standard tools of analysis of linear dynamical sys-

tems, lead to the following proposition:

Proposition 17 ([21], Theorem 9.13). Consider a weakly connected linear LIFE

system with positive flows on all edges of G̃. From any positive initial condition,

the reduced system (namely the subsystem connected to X) converges to its unique

equilibrium with positive entries x̄1 = −J−1
1 φ1.

If there are some vertices not connected to X, then:

• If there is a terminal component GT with no excretions such that there is a

path from I to GT , then the mass in GT grows unbounded, and hence also

limt→∞ ‖x2(t)‖ = +∞ and limt→∞ ‖x(t)‖ = +∞.
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• If for all terminal components with no excretions G1, . . . , Gk there is no path

from I to Gi, then the mass of the system remains bounded, and moreover

limt→∞ x2(t) is some equilibrium point x̄2 (depending on the initial condition),

such that all entries of x̄2 corresponding to non-terminal components are 0,

while the restriction of x̄2 to a terminal component Gi is proportional to the

stationary distribution of the Markov chain with generator matrix Q equal to

the transpose of the submatrix of J(f) corresponding to Gi.
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Figure 2.6: The trajectories of the values of metabolites over 25 hours.

Example 4. In this example a simulation is used to verify the calculated equilibrium

found using Proposition 17. Here we use the RCT network shown in 2.5 and calculate

the equilibrium. Because every vertex of the RCT is connected to X we have that
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ẋ = J(f)x+ φ with,

J(f) =



−f(v1,v4) 0 0 0 0 0

0 −f(v2v4) 0 0 0 0

0 0 −f(v3v4) 0 0 0

f(v1v4) f(v2v4) f(v3v4) −f(v4v5) − f(v4v6) 0 0

0 0 0 f(v4v5) −f(v5v6) 0

0 0 0 f(v4v6) f(v5v6) −f(v6vn+1)


,

φ =



f(v0,v1)

f(v0,v2)

f(v0,v3)

0

0

0


. (2.14)

The vector of fluxes and initial metabolite values were randomized to obtain

f =



f(v0,v1)

f(v0,v2)

f(v0,v3)

f(v1,v4)

f(v2,v4)

f(v3,v4)

f(v4,v5)

f(v5,v6)

f(v5,v6)

f(v6,vn+1)



=



0.2729

0.0372

0.6733

0.4296

0.4517

0.6099

0.0594

0.3158

0.7727

0.6964



, x0 =



0.1253

0.1302

0.0924

0.0078

0.4231

0.6556


. (2.15)

Using these values the equilibrium was calculated to be x̄ = (0.6354, 0.0824,

1.1040, 2.6211, 0.2015, 1.4122). The RCT network with the randomized initial val-
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ues was simulated for 50 hours and the simulation results closely matched x̄. The

simulation results for the first 25 hours are shown in figure 2.6.

2.4.2 Special LIFE systems

In this section, we focus on special LIFE systems. We first recall some interesting

results from [92] valid under Assumption (B), and then we exploit them together

with the spectral properties of J(f) described in Sect. 2.4.1 in order to fully charac-

terize equilibria and convergence of special LIFE systems under Assumption (C). We

refer the reader to [65] for some results valid under great generality, with assump-

tions less restrictive than Assumption (B). As for linear systems, we first notice that

weakly connected components correspond to subsystems which have no influence on

each other, and hence can be studied separately; if there are any weakly connected

components with no intake nor excretion, they are subsystems with constant total

mass.

Proposition 18. ([92, Theorem 6]) Consider the special LIFE system under As-

sumption (B) with no intakes nor excretions. The following properties hold:

• The total mass of the system m =
∑

v∈V xv is constant in time.

• From any positive initial condition x(0), the system tends to the equilibrium set.

• Moreover, if there is a unique terminal component, then there exists a unique

equilibrium with positive entries with the same mass as the initial mass, and the

system converges to it.

For the general case with intakes and/or excretions, the following result holds on

the asymptotic behavior of the dynamics.

Proposition 19. ([92, Theorems 2 and 3]) For special LIFE systems under Assump-

tion (B), with a positive initial condition,
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• Trajectories are bounded if and only if there exists an equilibrium with positive

entries;

• If trajectories are bounded, then they approach an equilibrium set for t → ∞,

and if moreover the equilibrium set consists of isolated points, then they converge

to some equilibrium.

A caveat reported in [92] is that the second item in Proposition 19 does not rule

out the possibility to have non-periodic oscillatory trajectories that approach the

equilibrium set lying outside it, and approaching it rotating infinitely many times;

this can happen in the case of a connected compact equilibrium set.

Remark 2. Recall that, by Proposition 7, if there exists a vertex v ∈ V such that there

is a path from I to v and no path from v toX, then there exists no equilibrium. By the

first item of Proposition 19, this further implies that all trajectories are unbounded.

The following results concern the existence and uniqueness of equilibria.

Proposition 20. ([92, Theorems 4 and 5]) For special LIFE systems under Assump-

tion (B), the following holds.

• There exists an equilibrium with positive entries for arbitrary constant intakes

if and only if for all v ∈ V there is a path to X such that all edges in the path

have limxv→∞He(xv) = +∞;

• If there exists an equilibrium with positive entries, and if there exists a path

from all v ∈ V to X, then the equilibrium is unique.

Notice that in the first item, the ‘only if’ part is true only when we require existence

of equilibria with positive entries for completely arbitrary intakes: arbitrary intake

set I and arbitrary positive values of the corresponding fluxes; this strong condition

is not necessary to have an equilibrium with positive entries for a given set I and a

given value of the intake fluxes. Also notice that this statement considers fixed fluxes
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fe, differently from Proposition 10, where x is fixed and fluxes fe are allowed to vary

(except for intake fluxes); the crucial difference is that the product He(x)fe can be

made arbitrarily large in the context of Proposition 10, even in the case where He(x)

is bounded.

A remark about the second item is that, by Proposition 19, the existence and

uniqueness of the equilibrium with positive entries further implies that all trajectories

converge to such equilibrium.

To apply the first item of Proposition 19 or the second item of Proposition 20,

one needs to already have the knowledge about existence of an equilibrium with

positive entries. This happens for example in the case where one starts by fixing a

desired equilibrium with positive entries x̄, and then applies the extreme pathways

technique in order to design suitable fluxes ensuring that x̄ is an equilibrium of the

system. Under some assumptions on the graph, the above propositions then ensure

uniqueness of the equilibrium, and its global asymptotic stability.

Special LIFE systems under Assumption (C)

In the remainder of this section, we consider Assumption (C). In this case, recall that

the dynamics can be re-written as ẋ = J(f)h(x) + φ. Different from linear systems,

h(x) can contain non-linearities, but the matrix J(f) has the same definition as for

linear systems, so that its spectral properties are described by Propositions 14 and 16.

Also notice that equilibria, i.e. solutions of J(f)h(x) = −φ, can be found by solving

J(f)h = −φ, where h is an unknown vector in (R+)n, and then solving h(x) = h.

The latter is equivalent to solving Hvi(xvi) = hi, for i = 1, . . . , n.

We start by studying the case with no intakes nor excretions. In this case, by

Proposition 14, J(f)h = 0 means h ∈ N (J(f)), where the nullspaceN (J(f)) is gener-

ated by π1, . . . , πk, associated with terminal components G1, . . . , Gk. Without loss of

generality, we re-label vertices so that the first n1 vertices encompass the first terminal
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component G1, the following n2 vertices encompass the second terminal component

G2, and so on, up to the last nk vertices encompass the last terminal component Gk,

and finally the remaining vertices are not in any terminal component (say there are

n0 of them). Denote the corresponding subblocks of vector h as h(1), . . . , h(k) and h(0)

for the non-terminal ones, and similarly define x(1), . . . , x(k) and x(0) for vector x. By

Proposition 14, the nullspace of J(f) is N (J(f)) = {h ∈ (R+)n : h(j) = αjπ̃j, αj ∈

R and h(0) = 0 , for j ∈ {1, . . . , k}}, where π̃i is the restriction of π to the component

Gi, i.e. is a vector of size ni with strictly positive entries, representing the stationary

distribution of the Markov chain whose generator is the transpose of the restriction

of J(f) to Gi. Now we need to characterize the set of equilibria with positive entries

X̄ := {x ∈ (R+)n such that h(x) ∈ N (J(f))}. Recall that Hv(xv) are strictly in-

creasing functions, being 0 when xv = 0. Denote by Rv the range of Hv (for xv ≥ 0),

notice that either Rv = [0, hmax), or Rv = [0,+∞). Now denote by Hj the set of vec-

tors αjπ̃j such that αj ≥ 0 and [αjπ̃j]v ∈ Rv for all v in Gj. Then denote by H−1
j h(j)

the vector obtained from h(j) ∈ Hj by applying entry-wise the inverse functions H−1
v .

Finally we obtain X̄ = {x ∈ (R+)n such that x(j) = H−1
j h(j), h(j) ∈ Hj and h(0) = 0}.

Having characterized the set of equilibria with positive entries, now recall that

Proposition 18 applies, and trajectories remain bounded, with total mass constant in

time, and approach the above-described equilibrium set. We focus on the case with

intakes and/or excretions. The definition of the reduced system and the partitioning

in two subsystems introduced for linear systems applies also to special LIFE systems

under Assumption (C), with the only difference that now the dynamics are non-linear:


ẋ1 = J1h1(x1) + φ1

ẋ2 = J2h2(x2) + J21h1(x1) + φ2.

vectors h1(x1) and h2(x2) having replaced x1 and x2 in (2.13).
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Hence, one can obtain the following analogous of Proposition 17.

Proposition 21. Consider a weakly connected special LIFE system satisfying As-

sumption (C). Denote by Rv the range of the function Hv(xv) (for xv ≥ 0) and define

h̄ = −J−1
1 φ1. If h̄v ∈ Rv for all v ∈ V1, then from any initial condition, the reduced

system converges to its unique equilibrium x̄1 defined by [x̄1]v = H−1
v (h̄v). Otherwise,

the system has no equilibrium, and limt→∞ ‖x(t)‖ = +∞.

In the case where x1(t) converges to x̄1, if there are some vertices not connected

to X, then:

• If there exists a terminal component GT with no excretions such that there is

a path from I to GT , then the mass in GT grows unbounded, and hence also

limt→∞ ‖x2(t)‖ = +∞ and limt→∞ ‖x(t)‖ = +∞;

• If for all terminal components with no excretions G1, . . . , Gk there is no path

from I to Gi, then the mass of the system remains bounded, and moreover en-

tries of x2(t) corresponding to non-terminal components converge to zero, while

the restriction of x̄2 to a terminal component Gi approaches the equilibrium set

constructed as follows. The restriction of J2 to vertices in Gi has a nullspace

generated by a single positive vector π̃i; let Hi denote the subset of such nullspace

given by vectors h = απ̃i such that hv ∈ Rv for all vertices v of Gi; the equilib-

rium set is given by x’s such that there exist h ∈ Hi verifying xv = H−1
v (hi) for

all vertices v of Gi.

Proof. Recall that x1 is an equilibrium for ẋ1 = J1h1(x1)+φ1 if and only if J1h1(x1) =

−φ1. By Proposition 16, J1 is invertible and −J−1
1 has positive entries; define h̄ to

be the unique solution to J1h1 = −φ1. Notice that h̄ has all positive entries. If

all entries of h̄ are within the range of the corresponding function Hv(xv), then we

have a unique equilibrium with positive entries x̄1 obtained as in the statement of the
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proposition, and hence by Proposition 19 x1(t) converges to x̄. Otherwise, there exists

no equilibrium, and hence, by Proposition 19, the mass of system grows indefinitely.

If there is a terminal component with no excretions but connected to some intakes,

then by Proposition 17 there is no equilibrium, and hence by Proposition 19 the mass

of system grows indefinitely. If all terminal components with no excretions are not

connected to intakes, then the equilibrium set is obtained from the properties of

the nullspace of J2, given by Proposition 14. Moreover, Proposition 19 ensures that

trajectories remain bounded and approach the equilibrium set.

2.4.3 Zero-deficiency theory

In this section, we shortly recall the zero-deficiency theory, and compare it with our

results on equilibria of LIFE systems. Zero-deficiency theory arises in the literature

on chemical reaction networks, a seminal paper is [45]. Our short overview is based

on [31].

A free closed chemical reaction network with m reactions between p complexes

involving n species can be described by ẋ = SΓR(x) where S ∈ Mn×p, Γ ∈ Mp×m

is the incidence matrix of the network, and R(x) a column vector of size m. The

deficiency of the chemical reaction network is the difference of the dimensions of

the nullspaces of SΓ and Γ: δ = dim ker(SΓ) − dim ker(Γ), which is equivalent to

δ = rank(Γ) − rank(SΓ) and to δ = p − ` − rank(SΓ), where ` is the number of

weakly connected components. The first equivalence is due to rank-nullity Theorem,

and the second to the fact that rank(Γ) = p − `, since Γ is an incidence matrix

(Proposition 4.3 of [12]). The reaction rate vector R(x) is governed by the ‘mass-

action kinetics’: R(x) = KΨ(x), where K ∈ Mm×p and Ψ(x) is a vector of size p,

defined as follows: Kej = ke if complex j is the reactant complex of reaction e, Kij = 0

otherwise; Ψi(x) =
∏n

j=1 x
sji
j . Hence, the dynamics can be equivalently re-written as

ẋ = SΓKΨ(x). The following results hold:
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Proposition 22 (Zero-deficiency Theorem). Consider a free closed chemical reaction

network with mass-action kinetics. If its deficiency is zero, then: there exists an

equilibrium with strictly positive entries if and only if the system is weakly reversible

(i.e. each weakly connected component is also strongly connected).

Moreover, this strictly positive equilibrium is unique in each stoichiometric class

(i.e. each weakly connected component has a space of equilibria which has dimension

one, so that its equilibrium is unique up to a multiplicative constant representing the

total mass in the component), and it is locally asymptotically stable.

Notice the close resemblance with the results for linear LIFE systems in the case

with no intakes nor excretions, described in Propositions 14 and 15. It turns out that

a particular class of closed free chemical reaction networks with mass-action kinetics

and zero deficiency exactly coincides with linear LIFE systems with no intakes nor

excretions. Indeed, let p = n, let S be the identity matrix of size n, let K be defined

by Kej = fe if edge e is of the form e = (vj, w) and Kej = 0 otherwise; moreover

choose exponents sji to be zero and ones so that Ψ(x) = x. This gives exactly a

linear LIFE system with no intakes nor excretions. It is immediate to see that the

deficiency is zero, since S = I implies rank(SΓ) = rank(Γ).

In the more general case, free closed chemical reaction networks with mass-action

kinetics and zero deficiency are a class of LIFE systems with different assumptions

than those considered in this paper, e.g., they might not even satisfy Assumption (A),

due to the presence of a rectangular matrix S left-multiplying Γ, and often do not

satisfy Assumption (B), due to the dependence of entries of Ψ(x) on various entries

of x.
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2.5 Conclusion

For general LIFE systems (Assumption (A)), we show the existence of positive solu-

tions. Stability criteria have been shown for the structure of a graph associated to

LIFE systems. We show that further conclusions cannot be drawn in the general case

for LIFE systems because arbitrary dynamics may be defined.

For the problem of understanding equilibria for a fix set of metabolites, we show

that the rank of the stoichiometric matrix (and the nullspace of this matrix) are

determined by structural properties of the graph associated to the system, discuss

the effect of the associated graph having intake vertices and excretion vertices on the

rank of the stoichiometric matrix, and give necessary conditions on the structure of

the graph associated to LIFE systems for the existence of equilibria. More biologically

relevant equilibria of LIFE systems are those with all positive metabolites and fluxes

and we prove that the extreme pathways method for finding a positive basis describes

all such equilibria.

The field of network flows contributes to LIFE systems by way of the min cut max

flow theorem. We show the capacity of edges in network flows relates to saturation of

functions corresponding to edges of LIFE systems. The method of extreme pathways

to calculate a positive basis is proven to include the entire intersection of the nullspace

with the positive orthant. This basis is essential to describing equilibria of LIFE

systems.

Equilibria and asymptotic behavior of metabolites for fixed fluxes are studied. We

show that under stricter assumptions (Assumption (C)) we determine the eigenvalues

of the jacobian of the LIFE system as well as structure of the graph which admit

certain equilibria. We analyze the case with intakes and excretions versus the cases

without intakes or excretions.

Equilibria for LIFE systems with terminal components exist, but these equilibria

are dependent upon initial mass of the system. Furthermore, conditions are given
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for LIFE systems to tend to equilibrium from non-negative initial conditions. LIFE

systems under Assumption (B) have bounded solutions if and only if there exits a non-

negative equilibrium. Then for Assumption (B), we give conditions on the structure

of the associated graph for which nontrivial equilibria exist.

We show that LIFE systems with no intakes or excretions have “zero deficiency.”

The rank of the stoichiometric matrix (defined in this work) gives information about

the structure of the associated graph, specifically the connectivity of the graph and

the existence of strongly connected components. Zero deficiency theory also provides

information about the existence of equilibria with respect to this structure.

The structural conditions of graphs discussed in this work have implications on

metabolic networks. We have included results about networks which are considered

non-biological for the sake of completeness. These results allow a clear picture of the

structure of metabolic systems which are capable of admitting a biologically relevant

equilibrium. With this clear picture, we are able to determine metabolic networks for

which it is most advantageous to analyze using Linear-In-Flux-Expression.

Appendix

This Appendix contains the calculations for examples 2 and3. Example 2 illustrates

finding the extreme pathways of RCT using the algorithm described in Section 2.3.2.

Example 3 compares a standard basis and positive basis for RCT and shows that

when only the positive orthant is considered they describe the same space.

Example 2 continued. As shown previously, the stoichiometric matrix for the RCT
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is given by:

S(x) =



1 0 0 −x1 0 0 0 0 0 0

0 1 0 0 −x2 0 0 0 0 0

0 0 1 0 0 −x3 0 0 0 0

0 0 0 x1 x2 x3 −x4 −x4 0 0

0 0 0 0 0 0 x4 0 −x5 0

0 0 0 0 0 0 0 x4 x5 −x6


First let V0 be the m ×m identity matrix where m is the number of columns in

S. Then define C0 as follows, V0 ·ST = C0. To better illustrate the row combinations

in the algorithm a column is appended to C0 which labels the rows.

We have



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



· ST =



1 0 0 0 0 0 R1

0 1 0 0 0 0 R2

0 0 1 0 0 0 R3

−x1 0 0 x1 0 0 R4

0 −x2 0 x2 0 0 R5

0 0 −x3 x3 0 0 R6

0 0 0 −x4 x4 0 R7

0 0 0 −x4 0 x4 R8

0 0 0 0 −x5 x5 R9

0 0 0 0 0 −x6 R10



The next step is to identify any columns of C0 that have no sources or sinks. For

this example there are two columns, column 4 and column 5. Then we modify both

V0 and C0 by first copying all the rows with a zero in the entry of the first identified

column (column 4), then of the remaining rows add all possible positive combinations

of two rows which produce a zero in this column. Note that V0 is 10 × 10 and C0 is

10× 6.
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This gives us



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 x4
x1

0 0 1 0 0 0

0 0 0 x4
x1

0 0 0 1 0 0

0 0 0 0 x4
x2

0 1 0 0 0

0 0 0 0 x4
x2

0 0 1 0 0

0 0 0 0 0 x4
x3

1 0 0 0

0 0 0 0 0 x4
x3

0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



· ST =



1 0 0 0 0 0 R1

0 1 0 0 0 0 R2

0 0 1 0 0 0 R3

−x4 0 0 0 x4 0 x4
x1
R4 +R7

−x4 0 0 0 0 x4
x4
x1
R4 +R8

0 −x4 0 0 x4 0 x4
x2
R5 +R7

0 −x4 0 0 0 x4
x4
x2
R5 +R8

0 0 −x4 0 x4 0 x4
x3
R6 +R7

0 0 −x4 0 0 x4
x4
x3
R6 +R8

0 0 0 0 −x5 x5 R9

0 0 0 0 0 −x6 R10



Note that V1 is 11× 10 and C1 is 11× 6.

Now doing the same for column 5 gives



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 x4
x1

0 0 1 0 x4
x5

0

0 0 0 x4
x1

0 0 0 1 0 0

0 0 0 0 x4
x2

0 1 0 x4
x5

0

0 0 0 0 x4
x2

0 0 1 0 0

0 0 0 0 0 x4
x3

1 0 x4
x5

0

0 0 0 0 0 x4
x3

0 1 0 0

0 0 0 0 0 0 0 0 0 1



· ST =



1 0 0 0 0 0 R1

0 1 0 0 0 0 R2

0 0 1 0 0 0 R3

−x4 0 0 0 0 x4
x4
x1
R4 +R7 + x4

x5
R9

−x4 0 0 0 0 x4
x4
x1
R4 +R8

0 −x4 0 0 0 x4
x4
x2
R5 +R7 + x4

x5
R9

0 −x4 0 0 0 x4
x4
x2
R5 +R8

0 0 −x4 0 0 x4
x4
x3
R6 +R7 + x4

x5
R9

0 0 −x4 0 0 x4
x4
x3
R6 +R8

0 0 0 0 0 −x6 R10



Note that V2 is 10× 10 and C2 is 10× 6.

The same process is then followed for columns containing sources and sinks. Start-

ing at the rightmost column add all possible positive combinations of two rows that

create a 0 entry in this column. Do the same operations to both V2 and C2. Doing

this for just the rightmost column we have
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1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 x4
x1

0 0 1 0 x4
x5

x4
x6

0 0 0 x4
x1

0 0 0 1 0 x4
x6

0 0 0 0 x4
x2

0 1 0 x4
x5

x4
x6

0 0 0 0 x4
x2

0 0 1 0 x4
x6

0 0 0 0 0 x4
x3

1 0 x4
x5

x4
x6

0 0 0 0 0 x4
x3

0 1 0 x4
x6



· ST =



1 0 0 0 0 0 R1

0 1 0 0 0 0 R2

0 0 1 0 0 0 R3

−x4 0 0 0 0 0 x4
x1
R4 +R7 + x4

x5
R9 + x4

x6
R10

−x4 0 0 0 0 0 x4
x1
R4 +R8 + x4

x6
R10

0 −x4 0 0 0 0 x4
x2
R5 +R7 + x4

x5
R9 + x4

x6
R10

0 −x4 0 0 0 0 x4
x2
R5 +R8 + x4

x6
R10

0 0 −x4 0 0 0 x4
x3
R6 +R7 + x4

x5
R9 + x4

x6
R10

0 0 −x4 0 0 0 x4
x3
R6 +R8 + x4

x6
R10



V3 is 9× 10 and C3 is 9× 6. After the third column we have the following,



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 x4
x1

0 0 1 0 x4
x5

x4
x6

0 0 0 x4
x1

0 0 0 1 0 x4
x6

0 0 0 0 x4
x2

0 1 0 x4
x5

x4
x6

0 0 0 0 x4
x2

0 0 1 0 x4
x6

0 0 x4 0 0 x4
x3

1 0 x4
x5

x4
x6

0 0 x4 0 0 x4
x3

0 1 0 x4
x6



· ST =



1 0 0 0 0 0 R1

0 1 0 0 0 0 R2

−x4 0 0 0 0 0 x4
x1
R4 +R7 + x4

x5
R9 + x4

x6
R10

−x4 0 0 0 0 0 x4
x1
R4 +R8 + x4

x6
R10

0 −x4 0 0 0 0 x4
x2
R5 +R7 + x4

x5
R9 + x4

x6
R10

0 −x4 0 0 0 0 x4
x2
R5 +R8 + x4

x6
R10

0 0 0 0 0 0 x4R3 + x4
x3
R6 +R7 + x4

x5
R9 + x4

x6
R10

0 0 0 0 0 0 x4R3 + x4
x3
R6 +R8 + x4

x6
R10



V4 is 8× 10 and C4 is 8× 6. After the second column we have the following,



1 0 0 0 0 0 0 0 0 0

0 0 0 x4
x1

0 0 1 0 x4
x5

x4
x6

0 0 0 x4
x1

0 0 0 1 0 x4
x6

0 x4 0 0 x4
x2

0 1 0 x4
x5

x4
x6

0 x4 0 0 x4
x2

0 0 1 0 x4
x6

0 0 x4 0 0 x4
x3

1 0 x4
x5

x4
x6

0 0 x4 0 0 x4
x3

0 1 0 x4
x6



· ST =



1 0 0 0 0 0 R1

−x4 0 0 0 0 0 x4
x1
R4 +R7 + x4

x5
R9 + x4

x6
R10

−x4 0 0 0 0 0 x4
x1
R4 +R8 + x4

x6
R10

0 0 0 0 0 0 x4R2 + x4
x2
R5 +R7 + x4

x5
R9 + x4

x6
R10

0 0 0 0 0 0 x4R2 + x4
x2
R5 +R8 + x4

x6
R10

0 0 0 0 0 0 x4R3 + x4
x3
R6 +R7 + x4

x5
R9 + x4

x6
R10

0 0 0 0 0 0 x4R3 + x4
x3
R6 +R8 + x4

x6
R10
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V5 is 7× 10 and C5 is 7× 6. And finally,



x4 0 0 x4
x1

0 0 1 0 x4
x5

x4
x6

x4 0 0 x4
x1

0 0 0 1 0 x4
x6

0 x4 0 0 x4
x2

0 1 0 x4
x5

x4
x6

0 x4 0 0 x4
x2

0 0 1 0 x4
x6

0 0 x4 0 0 x4
x3

1 0 x4
x5

x4
x6

0 0 x4 0 0 x4
x3

0 1 0 x4
x6


· ST =



0 0 0 0 0 0 x4R1 + x4
x1
R4 +R7 + x4

x5
R9 + x4

x6
R10

0 0 0 0 0 0 x4R1 + x4
x1
R4 +R8 + x4

x6
R10

0 0 0 0 0 0 x4R2 + x4
x2
R5 +R7 + x4

x5
R9 + x4

x6
R10

0 0 0 0 0 0 x4R2 + x4
x2
R5 +R8 + x4

x6
R10

0 0 0 0 0 0 x4R3 + x4
x3
R6 +R7 + x4

x5
R9 + x4

x6
R10

0 0 0 0 0 0 x4R3 + x4
x3
R6 +R8 + x4

x6
R10



V6 is 6 × 10 and C6 is 6 × 6. The rows of V6 are the basis for N (S(x)). While the

dimN (S(x)) = 4, there are 6 extreme pathway vectors. These vectors are positive,

and positively linearly independent,

V6 =



x4 0 0 x4
x1

0 0 1 0 x4
x5

x4
x6

x4 0 0 x4
x1

0 0 0 1 0 x4
x6

0 x4 0 0 x4
x2

0 1 0 x4
x5

x4
x6

0 x4 0 0 x4
x2

0 0 1 0 x4
x6

0 0 x4 0 0 x4
x3

1 0 x4
x5

x4
x6

0 0 x4 0 0 x4
x3

0 1 0 x4
x6


.

Example 3 continued. The positive basis of S was found in example 2. This

basis has six vectors despite the four dimensional nullspace. Also note that the basis

vectors are not linearly independent, but positively linearly independent. The span
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of the positive basis vectors is shown below,

b1



x6

0

0

x6
x1

0

0

0

x6
x4

0

1



+ b2



x6

0

0

x6
x1

0

0

x6
x4

0

x6
x5

1



+ b3



0

x6

0

0

x6
x2

0

0

x6
x4

0

1



+ b4



0

x6

0

0

x6
x2

0

x6
x4

0

x6
x5

1



+ b5



0

0

x6

0

0

x6
x3

0

x6
x4

0

1



+ b6



0

0

x6

0

0

x6
x3

x6
x4

0

x6
x5

1



. (2.16)

Next the positive basis vectors for the nullspace must be intersected with the

positive orthant N (S(x)) ∩ (R+)m. When this span is intersected with the positive

orthant it is clear there is only one condition,

For all i, bi ≥ 0 bi ∈ R. (2.17)

We refer to this span intersected with the positive orthant as B.

For the stoichiometric matrix S(x) the basis for the null space was found. The
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span of the four basis vectors is shown below,

a1



x6

0

0

x6
x1

0

0

0

x6
x4

0

1



+ a2



0

0

0

0

0

0

x5
x4

−x5
x4

1

0



+ a3



−x3

0

x3

−x3
x1

0

1

0

0

0

0



+ a4



−x2

x2

0

−x2
x1

1

0

0

0

0

0



. (2.18)

To find the intersection of this span with the positive orthant, three conditions on

the ai must hold.


ai ≥ 0, for i ∈ {1, 2, 3, 4}

a1x6 ≥ a3x3 + a4x2,

a1x6 ≥ a2x5.

(2.19)

We refer to the intersection of this span with the positive orthant as C. We show

that under the conditions given, B = C.

First it is shown that B ⊂ C by showing that for an arbitrary set of bi ≥ 0, ai’s

can be chosen to reach the same vector. Using the following substitutions for ai it is
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clear that if bi ≥ 0 the inequalities of (2.19) are satisfied



a1 = b1 + b2 + b3 + b4 + b5 + b6,

a2 = (b2 + b4 + b6)x6
x5
,

a3 = (b5 + b6)x6
x3
,

a4 = (b3 + b4)x6
x2
.

(2.20)

This shows that any vector in B can be represented by vectors in C i.e. B ⊂ C.

Now it is shown that C ⊂ B. For arbitrary a’s which satisfy (2.19), the following

substitutions for b are used and the conditions of (2.17) are checked.



b1 = a1 − a3
x3
x6
− a4

x2
x6
− a2

x5
x6

+ b4 + b6,

b2 = a2
x5
x6
− b4 − b6,

b3 = a4
x2
x6
− b4,

b5 = a3
x3
x6
− b6.

(2.21)

To insure that (2.17) is satisfied the following inequalities must hold,

a1 + b4 + b6 ≥ a3
x3

x6

+ a4
x2

x6

+ a2
x5

x6

, (2.22)

a2
x5

x6

≥ b4 + b6, (2.23)

a4
x2

x6

≥ b4, (2.24)

a3
x3

x6

≥ b6. (2.25)

If choices for b4 and b6 can be found which satisfy these inequalities then we will

have C ⊂ B.
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We have the following two conditions:

Condition 1. a4
x2
x6

+ a3
x3
x6
≤ a2

x5
x6
. Setting b4 = a4

x2
x6

and b6 = a3
x3
x6

immediately

satisfies (2.23), (2.24), and (2.25). From (2.19) we have a1x6 ≥ a2x5 which means

that inequality (2.22) is satisfied.

Condition 2. a4
x2
x6

+ a3
x3
x6
> a2

x5
x6
.

Under Condition 2 three cases must be considered.

Case 1. a4
x2
x6
< a2

x5
x6
. In this case we set b4 = a4

x2
x6

and b6 = a2
x5
x6
− a4

x2
x6
. This

immediately satisfies (2.23) and (2.24). Since a4
x2
x6

+ a3
x3
x6
> a2

x5
x6

(2.25) is satisfied

as well. Then from (2.19) we have a1x6 ≥ a3x3 + a4x2, which means that (2.22) is

satisfied.

Case 2. a4
x2
x6
> a2

x5
x6

and a3
x3
x6
< a2

x5
x6
. In this case we set b6 = a3

x3
x6

and b4 = a2
x5
x6
−

a3
x3
x6
, this satisfies (2.23), (2.24), (2.25). And from (2.19) we have a1x6 ≥ a3x3 +a4x2,

which means that (2.22) is also satisfied.

Case 3. a4
x2
x6
> a2

x5
x6

and a3
x3
x6
> a2

x5
x6
. In this case we set b4 = b6 = 1

2
a2

x5
x6

which

satisfies (2.23), (2.24), (2.25). Then from (2.19) we have a1x6 ≥ a3x3 + a4x2, which

means that (2.22) is also satisfied.

Since the a′s were arbitrary and b′s are found which satisfy (2.17) this gives us

that C ⊂ B as desired.



Chapter 3

Equilibria and control of metabolic

networks with enhancers and

inhibitors

3.1 Introduction

Models in Quantitative Systems Pharmacology (briefly QSP) [3, 108, 121, 129] have

been used by the pharmaceutical industry in order to discover new drugs at less

cost. In modeling metabolic networks, bio-chemical reactions are organized into a

graph, with nodes representing metabolites and edges representing fluxes [96, 99, 107].

The dynamics is described by a Stoichiometric matrix encoding the kinetics of the

biochemical reactions.

QSP models are commonly used with the assumption that all fluxes are independent

or have insignificant correlation [2, 64, 126], which does not recognize the resilience

of metabolic networks. Thus, despite the vast knowledge by Systems Biology (as well

as other fields [107, 12, 25, 45, 65, 77, 92, 102]), researchers were unable to accurately

simulate large metabolic networks [48, 129] as an inexpensive alternative for clinical
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trials. A new method called Linear-in-Flux-Expression (briefly LIFE), where one

rewrites the system as linear with respect to the fluxes [96], has shown potential to

help pharmacology simulators recover crucial characteristics of metabolic networks.

This approach has been investigated [99] and currently works for mild nonlinearities,

however inhibitors, enhancers, and fully nonlinear dynamics are still not included.

Intakes Excretions

Network

𝑥𝑖

𝑥𝑗𝑓𝑒

Edge 𝑒

𝑥𝑖

𝑥𝑗𝑓𝑒

𝑥𝑘

𝑑𝑥

𝑑𝑡
= 𝑆(𝑥) ∙ 𝑓

𝑑𝑥𝑖
𝑑𝑡

= ⋯−𝐻𝑒 𝑥𝑖 ∙ 𝑓𝑒 +⋯

𝑑𝑥𝑖
𝑑𝑡

= ⋯−𝐻𝑒 𝑥𝑖 𝐾 𝑥𝑘 ∙ 𝑓𝑒 +⋯

Stoichiometric matrix S

Metabolite dynamics

Enhancer dynamics

Figure 3.1: Top Left: network with intakes and excretions from and to the exter-
nal environment. Nodes xis are composed of metabolite concentrations, fluxes fe
represent biochemical reactions. Top Right: Enhancer xk affects flux fe. Bottom:
network dynamics with Stoichiometric matrix S(x) (first equation). Dynamics of a
single metabolite xi is affected by flux fe via term He (second equation). Additional
terms such as K(xk) are added to include inhibitors and enhancers (third equation).

The aim of this work is to apply results from previous studies to actual networks and

extend our results to include control of the intakes and enhancer dynamics. Figure

3.1 depicts the main ideas. Metabolic networks naturally have intakes and excretions,

while fluxes fe are determined by kinetics of bio-chemical reactions. The LIFE ap-

proach consists of writing dynamics with Stoichiometric matrix S(x) that describes

the mass consumed and produced by the reactions. This matrix is dependent on the

metabolites (as opposed to classical S(f) dependent on fluxes) thus allowing nonlin-

ear dynamics in metabolites. A general condition on network topology (connection
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of every node to excretion, see [99]) guarantees existence and uniqueness of an equi-

librium x̄f for every flux vector f = {fe}. Thus network dynamics is captured by the

map f → x̄f with a multivalued inverse x→ F (x) (see [92, Theorem 4]).

We first show various theories applied to a small yet significant part of human

cholesterol metabolism, called “Reverse Cholesterol Transport” (briefly RCT). In par-

ticular, nonlinear dynamics implemented on RCT admits a unique stable equilibrium

(for fixed fluxes and intakes). This allows to study drug discovery by control meth-

ods. More precisely, we consider both control of intakes (corresponding to a diet

and/or supplements) and the introduction of enhancers and inhibitors (correspond-

ing to drugs). Also, control of inhibitors/enhancers is compared versus control of the

intakes.

The control of intakes is entirely similar to the problem of controlling inputs to

compartmental systems. The main difference here is in the assumptions on the specific

network dynamics. In particular, choosing Michaelis-Menten kinetic, which gives a

nonlinear dynamics in metabolites, one has to face the problem of saturation. The

latter may lead to non existence of equilibria. More precisely, since the kinetic can

support only a maximal level of discharge for a given metabolite, too high intakes

may cause the metabolite levels to increase indefinitely. By analyzing the map from

intakes to equilibria, we are able to compute the set of admissible intakes (compatible

with saturation levels) and thus reduce optimal control problems to finite-dimensional

optimization ones.

The action of inhibitors and enhancers is defined for general networks: Inhibitors

and enhancers augment other edges via multiplicative Michaelis-Menten kinetics. Ex-

istence, uniqueness and stability of equilibria is proved for the RCT example and

conjectures for general networks under suitable assumptions. The latter are entirely

similar to the case without enhancers and inhibitors, thus are expected to be satisfied

by most natural metabolic networks. Lastly, we describe a process of drug discov-
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ery by f augmenting the network with enhancers or inhibitors and finding optimal

controls.

The paper is organized as follows. Section 3.2 introduces the LIFE methods and

main definitions. Section 3.3 describes the Reverse Cholesterol Transport network

and provide various results by applying well-established theories. Section 3.4 con-

siders control problems for intakes, while Section 3.5 introduces the dynamics with

enhancer and inhibitors. Section 3.6 illustrated drug discovery by mean of enhancer

and inhibitors, and, finally, Section 3.7 contains conclusions.

3.2 Assumptions for Linear-in-flux-Expression

In this paper, our analysis is organized into sections with different assumptions on

the entries Sve of the stoichiometric matrix as function of the values of metabolites

and fluxes. The most general class of systems we consider satisfies the following

assumption. For x ∈ (R+)n, it holds:

(A) Sve(x) =


He(x) > 0 if (e = (w, v), w ∈ V, xw > 0) or (e = (v0, v), v ∈ I)

−He(x) < 0 if xv > 0 and (e = (v, w), w ∈ V ) or (e = (v, vn+1), v ∈ X)

0 otherwise

,

(3.1)

where He : Rn → R+ is continuous. Notice that Assumption (A) implies that, for

each v ∈ V ,

∑
v∈V

Sve(x) =


He(x) e = (v0, v̄), v̄ ∈ I,

−He(x) e = (v̄, vn+1), v̄ ∈ X,

0 otherwise.

(3.2)

All columns of S have zero sum, except those corresponding to intakes and excretions,

which have positive and negative sum, respectively. Under Assumption (A), the dy-
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namics (1.3) can be interpreted as mass conservation law. Here we introduce a special

class of systems of type (1.3) with simplified dynamics. We consider Assumption (A),

and we impose further restriction on the functions He(x): For an edge e = (v, w), we

assume He to depend on xv only, and moreover we impose the scalar function He(xv)

to be strictly increasing:

(B) Sve(x) =



= −He(xv) e = (v, w), v ∈ V,w ∈ V ∪ {vn+1}

= He(xw) e = (w, v), w ∈ V

= 1 e = (v0, v) v ∈ I

= 0 otherwise,

(3.3)

where He : R→ R+ is differentiable, strictly increasing, and He(0) = 0.

A typical example of a system verifying (B) is given by metabolic networks with Hill

functions representing reactions, i.e., He(xv) = xpev
K+xpev

with pe ∈ N, and K is called

the dissociation constant. LIFE approach allows a simple description of flux vector f

which permits the system to be in equilibrium; such vectors comprise the null space

of S(x). In previous work [99], the authors showed how the theory of Laplacian

dynamics, Markov chains, network flows, and compartmental systems apply to LIFE

systems. The results tell us how the structure of the graph of the metabolic network

affects existence, uniqueness, and stability of equilibria. An example of structure the

authors investigated in [99] is a terminal component of a network, which is a part of

the network not connected to excretions. The assumptions on S(x) and the structure

of the network allow also to compute equilibria related to a given flux vector f .
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3.3 Dynamics theories at work on Reverse Choles-

terol Transport

In this section, results from [99, 97] are applied to the example network of RCT [96].

RCT (see Figure 3.2) represents the mechanism of removal of cholesterol from plaques

in arteries. Here, we apply theory from [20] to derive equilibria and stability of the

RCT. The various mathematical approaches are applicable to this example as follows.

Linear systems without intakes nor excretions are related to continuous-time Markov

chains [27]. Linear systems with intakes and excretions from and to the external

environment are known as compartmental systems [20, 65]. Nonlinear systems are

studied using the results from [92].

The dynamics of the RCT network can be written as (1.3), with S : R → M6×10.

The matrix S is then the concatenation of S1−3 and S4−10 which are the submatrices

given by the first three columns and last seven columns respectively.

S1−3 =



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0


,

and S4−10 is given by:



−Hfe4
(xv1) 0 0 0 0 0 0

0 −Hfe5
(xv2) 0 0 0 0 0

0 0 −Hfe6
(xv3) 0 0 0 0

Hfe4
(xv1) Hfe5

(xv2) Hfe6
(xv3) −Hfe7

(xv4) −Hfe8
(xv4) 0 0

0 0 0 Hfe7
(xv4) 0 −Hfe9

(xv5) 0

0 0 0 0 Hfe8
(xv4) Hfe9

(xv5) −Hfe10
(xv6)


,
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while the flux vector f ∈ R10 is a 10× 1 vector (fi)i∈{1,...,10}.

v0 v1 v2 v3

v4

v5 v6 v7

e1

e 4 e 5

e
6

e
7

e9

e 8

e10

e2 e3

Figure 3.2: Reverse Cholesterol Transport Network. This network contains six ver-
tices which represent metabolites, ten edges which represent fluxes and two virtual
vertices v0, v7. There are three intake vertices v1, v2, v3 and one excretion vertex v6.

A further simplification is where He(xv) is the same function Hv(xv) for all edges e

having v as an initial vertex. This gives Assumption (C), as follows. For all x ∈ (R+)n,

(C) Sve(x) =



= −Hv(xv) e = (v, w), v ∈ V,w ∈ V ∪ {vn+1}

= Hw(xw) e = (w, v), w ∈ V

= 1 e = (v0, v) v ∈ I

= 0 otherwise,

and each Hv : R+ → R+, with Hv(0) = 0 is a differentiable and strictly increasing

function. The system can be equivalently re-written as:

ẋ = J(f)h(x) + φ, (3.4)

where h(x) =
(
h1(x1), · · · , hn(xn)

)T
, J(f) ∈ Mn×n (a n × n matrix with real

entries), and φ ∈ Rn. The intake vector φ is written as a n× 1 vector with a zero if

there is no intake flux from the outside environment and φei the value of the flux if
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there is an edge to vi. For the RCT network, J(f) and φ are given by:

J(f) =



−fe4 0 0 0 0 0

0 −fe5 0 0 0 0

0 0 −fe6 0 0 0

fe4 fe5 fe6 −fe7 − fe8 0 0

0 0 0 fe7 −fe9 0

0 0 0 fe8 fe9 −fe10


, φ =



fe1

fe2

fe3

0

0

0


. (3.5)

The following Proposition 23 (from [99]) shows that the existence of nontrivial

equilibria implies some network structure. We define the sets I, X, as the set of

vertices attached to v0, v7 respectively.

Proposition 23. Consider system (1.3) satisfying (A). Assume there exists an equi-

librium x̄ ∈ (R+)n for a flux vector f such that fe > 0 for every e ∈ E. Then for

every vertex v ∈ V for which there exists a path from I to v, there exists a path from

v to X.

The max-flow min-cut theorem [47] implies that a positive flux vector exists if

there is a path from v0 and vn+1 as shown by the following proposition.

Proposition 24. Consider system (1.3) satisfying (A), fix an x ∈ (R+)n and intake

flow vector φ̄ with strictly positive entries. Then there exists f ∈ (R+)m in the null

space of S(x) if and only if for each v ∈ I there exists a path to X.

3.3.1 Linear RCT without intakes and excretions

Assume the RCT network dynamics is linear, then the flow of mass along an edge

is proportional to the mass of the metabolite represented by the initial vertex. This

means that Assumption (C) is satisfied with h(x) from (3.4) such that h(x) = x.

When the network is isolated from the external environment, the dynamics can be
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written as ẋ = J̄(f)x, where J̄(f) is a Metzler matrix (i.e., has non-negative off-

diagonal entries), and all its columns sum to zero (1T J̄(f) = 0T ).

Let G′ be a graph associated to RCT network without intakes (remove two virtual

vertices v0, v7 and remove blue edges e1, e2, e3, e10 in Figure 3.2). We assume each

edge is associated with a strictly positive weight fe > 0. In the theory of Laplacian

dynamics [102], the matrix L = −J̄(f)T can be interpreted as a weighted Laplacian

of G′. The weighted adjacency matrix A is composed of elements Aij = f(vi,vj) if

(vi, vj) ∈ E, and Aij = 0 if there no directed edge from vj to vi. We defined a

diagonal matrix D that contains the row-sum of A indicating the weights leaving

from each vertex. The weighted Laplacian is given by L = D − A.

In the field of consensus dynamics [20, Theorem 6] systems are modeled using

the weighted Laplacian ẋ = −Lx. The dynamics is different from the linear LIFE

dynamics, but J̄(f) and −L have the same eigenvalues. The study of the spectrum

of the Laplacian has been investigated in the fields of graph theory and control [99].

The results of these fields apply to LIFE systems when we consider the metabolic

network with all intakes and excretions removed. Moreover, the RCT network without

intakes and excretions is related to a continuous-time Markov chain over a finite state

V = {v1, . . . , v6}. Thus results on Markov chains are applicable to LIFE systems.

The spectrum of J̄(f) and the asymptotic behavior of the dynamics are described by

the following proposition:

Proposition 25. Assume there are no intakes nor excretions, then:

(1) All eigenvalues of J̄(f) are either 0 or have strictly negative real part.

(2) The dimension of the nullspace of J̄(f) is equal to the algebraic multiplicity of the

0 eigenvalue, and is equal to the number of terminal components in the graph.

(3) From any positive initial condition, the system converges to an equilibrium, having

strictly positive entries in correspondence of vertices of terminal components, and 0

elsewhere.
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(4) The equilibrium is determined by the initial mass if there is a unique terminal

component.

The RCT network without intakes and excretions has a unique terminal compo-

nent made up of the singular vertex v6. Satisfying (1) and (2) of Proposition 25, the

eigenvalues of J̄(f) are: {0,−fe4 , −fe5 ,−fe6 ,−fe9 ,−(fe7 + fe8)}. Furthermore (3)

and (4) imply that all the initial mass in the RCT will converge to v6.

3.3.2 Linear RCT with intakes and excretions

In the case the linear RCT network interact with the environment via intakes and/or

excretions, the dynamics is given by ẋ = J(f)x + φ, where J(f) and φ is defined

in (3.5). The associated graph G is given by Figure 3.2. A directed graph is called

weakly connected if there exists an undirected path between each pair of vertices.

A weakly connected component of a directed graph is defined as a maximal weakly

connected subgraph. We notice that G is a weakly connected component including

v0 and v7. The rows of J(f) no longer sum to 0 because of a single element in the

last column representing excretion. Thus −J(f)T does not satisfy the definition of

weighted Laplacian. In [142] a term grounded Laplacian Lg is introduced. Lg can be

constructed by deleting the row and column corresponding to a given set of vertices

(called grounded vertices) from L. For RCT network, −J(f)T is a grounded Laplacian

Lg (see [99]). The spectrum of J(f) is described by:

Proposition 26. Consider a linear system with intakes and/or excretions, then the

following are equivalent:

(a) For every v ∈ V there is a path from v to X.

(b) J(f) is Hurwitz stable (i.e., all its eigenvalues have strictly negative real part).

(c) J(f) is invertible.

Moreover, when J(f) is invertible, all entries of −J(f)−1 are positive; if the graph is

strongly connected, all entries of −J(f)−1 are strictly positive.
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It is clear from Figure 3.2 that the RCT network with intake and excretion satisfies

(a). The Jacobian J(f) can be seen in equation 3.5, and the eigenvalues are: {−fe4 ,

−fe5 ,−fe6 ,−fe9 ,−fe10 ,−(fe7 + fe8)}, verifying (b).

3.3.3 Non-linear RCT

The non-linear RCT network satisfies Assumption (B) with h(x) may be non-linear,

e.g., h(x) = Hx
KM+x

is Michaelis-Menten type of equation, where H is the saturation

value, and KM is the Michaelis constant.

Proposition 27. ([92, Theorem 6]) Consider the non-linear system under Assump-

tion (B) with no intakes and excretions. The following properties hold:

(1) The total mass of the system m =
∑

v∈V xv is constant in time.

(2) From any positive initial condition x(0), the system tends to the equilibrium set.

(3) Moreover, if there is a unique terminal component, then there exists a unique equi-

librium with positive entries with the same mass as the initial mass, and the system

converges to it.

This means that despite the h(x) functions being non-linear, the RCT network

with no intakes and excretions will have constant total mass and the system tends to

the equilibrium set. For the general case with intakes and excretions, we recall results

from [92]:

Proposition 28. ([92, Theorems 2 and 3]) For a system with positive initial condi-

tion:

(1) Trajectories are bounded if and only if there exists an equilibrium with positive

entries.

(2) If trajectories are bounded, then they approach an equilibrium set for t → ∞. If

moreover the equilibrium set consists of isolated points, then they converge to some

equilibrium.
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The following results concern the existence and uniqueness of equilibria.

Proposition 29. ([92, Theorems 4 and 5]) Under Assumption (B) the following

holds,

(1) There exists an equilibrium with positive entries for arbitrary constant intakes if

and only if for all v ∈ V there is a path to X such that all edges in the path have

limxv→∞He(xv) = +∞.

(2) If there exists an equilibrium with positive entries, and all v ∈ V connect to X,

then the equilibrium is unique.

For the RCT network, for every vertex v ∈ I there is a path from v to X, there-

fore by Proposition 29 there is a unique equilibrium xeq and by Proposition 28 we

will approach the equilibrium as t → ∞. Under the stricter Assumption (C) this

equilibrium can be calculated analytically using equation 3.4 with h(x) being given

by:

(
fe1
fe4
,

fe2
fe5
,

fe3
fe6
,

fe1+fe2+fe3
fe7+fe8

,
fe7 (fe1+fe2+fe3 )

fe9 (fe7+fe8 )
,

fe1+fe2+fe3
fe10

)T
. (3.6)

The equilibrium xeq can then be calculated by computing the inverse of each hi(xi)

function.

3.4 Control of intakes

In this section, we focus on the special LIFE system under Assumption (C). Typically

f is fixed and x cannot be controlled directly, which leaves the intake vector φ as a

natural choice for control targets. We are interested in intakes φ that lead to an

equilibrium. In this section the inequality x > 0, respectively x ≥ 0, with x ∈ Rn, is

to be interpreted as xi > 0, respectively xi ≥ 0, for all i = 1, . . . , n.
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Proposition 30. Consider system (1.3) satisfying Assumption (C), then the set Φ

of intake vector φ giving rise to a positive equilibrium xφ > 0 is given by:

Φ = {φ|xφ := h−1(−J(f)−1φ) > 0}. (3.7)

Proof. The dynamics of systems under Assumption (C) can be rewritten as (3.4).

Thus the equilibrium of the system can be found by solving J(f)h(xφ) + φ = 0.

The control action is then captured by the map:

φ −→ xφ = h−1(−J(f)−1φ). (3.8)

However, to obtain admissible equilibria, we need to take into account the saturation

effect of nonlinear kinetics such as Michaelis-Menten:

Proposition 31. Consider system (1.3) with Assumption (C) holding true and the

function h(x) = (hi(xi))i∈{1,...,n} in (3.4) with hi(xi) : R+ → R+ being strictly increas-

ing and bounded by saturation values H = (Hi)i∈{1,...,n},

hi(xi) ≤ Hi, for all i = {1, . . . , n}. (3.9)

Then for the system to tend to an equilibrium the intake vector φ must satisfy

φ = −J(f)h(xφ) ≤ −J(f)H, for φ ∈ Φ and xφ ∈ R+. (3.10)

Proof. Under Assumption (C) the system can be written as (3.4). From (3.4) and

inequality (3.9), solving for φ we get (3.10).

We consider the following control problem:
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Definition 6. For a given system (1.3) satisfying Assumption (C), and a given desired

equilibrium xeq ∈ (R+)n, find the optimal intake vector φ that drives the system as

close as possible to xeq.

The solution is provided by the intake vector φ which minimizes the Euclidean

distance

||xφ − xeq|| =

√√√√ n∑
i=1

((xeq)i − (xφ)i)2. (3.11)

An alternative control problem is to minimize the distance of the kinetic vector h

instead of the metabolites:

Definition 7. For a given system (1.3) satisfying Assumption (C), and a given desired

equilibrium xeq ∈ (R+)n, find the optimal intake vector φ that drives the system

kinetic vector h(xφ) as close as possible to h(xeq).

The solution is given by the intake vector φ which minimizes the Euclidean dis-

tance

||h(xφ)− h(xeq)|| =

√√√√ n∑
i=1

((h(xeq))i − (h(xφ))i)2. (3.12)

Since h(xeq) = −J(f)−1φ is linear with respect to φ, for the second problem we can use

linear solvers to find the optimized φ. Therefore, the second control problem can be

solved much more efficiently. Notice that, in general, the two control problems are not

equivalent, since the solution minimizing (3.11) may be different than that minimizing

(3.12). However, we do expect the solution to the control problem of Definition 7 to

provide an ansatz toward the solution to the control problem of Definition 7. Indeed,

even if the level sets of the two functions (3.11) and (3.12) are different, they are both

convex and centered at the same point.

Let us now focus on the RCT network under Assumption (C) and explore the

map (3.8): h(x) is a 6 × 1 vector h(x) = hi(xi)i∈{1,...,6}. We choose kinetics of

Michaelis-Menten type with saturation value Hi ([66]), hi(xi) = Hixi
KM+xi

,where KM
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is the Michaelis constant. Our intake vector φ is a 6× 1 vector with last three com-

ponents vanishing. Figure 3.4 illustrated the bounds on the kinetic and the intakes.

O

h6

h5

h4

H4

H5

H6

O

φ3

φ2

φ1
φ̃

φ̃

φ̃

Figure 3.3: In blue the 3-dimensional cube, in the space (h4, h5, h6) of kinetics of last
three metabolites, satisfying the bounds given by the saturation values H4, H5 and
H6. Based on the conditions (3.13) and (3.14), the intake vector φ must belong to the
tetrahedron bounded by the coordinate planes and the standard simplex (in green).

The matrices φ, J(f), h, and H can be written in block form, then (3.10) becomes

φe
0

 =



φe1

φe2

φe3

0

0

0


=



fe4 0 0 0 0 0

0 fe5 0 0 0 0

0 0 fe6 0 0 0

−fe4 −fe5 −fe6 fe7 + fe8 0 0

0 0 0 −fe7 fe9 0

0 0 0 −fe8 −fe9 fe10





h1

h2

h3

h4

h5

h6


=

 D 0

J3 J4


he
hd

 ≤
 D 0

J3 J4


He

Hd

 .

So we have  φe = Dhe,

0 = J3he + J4hd.
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We define φ̃ = φe1 + φe2 + φe3 as the total mass flows in the system. Then

Hd ≥ hd = −J−1
4 (J3D

−1φe) =


1

fe7 + fe8
0 0

fe7
fe9(fe7 + fe8)

1

fe9
0

1

fe10

1

fe10

1

fe10



φ̃

0

0

 .

Observing the structure of Figure 3.2 and that the total outflow of a vertex must

equal the total inflow for an equilibrium state, we have

φei ≤ fei+3
Hi, i = 1, 2, 3, (3.13)

φ̃ ≤ min

{
H4(fe7 + fe8), H5

fe9(fe7 + fe8)

fe7
, H6fe10

}
. (3.14)

Having determined the bounds on φ for existence of an equilibrium, we explore the

map (3.8) on the subset describe by the bounds.

Some parameters in the RCT network are chosen a priori, such as the fluxes f ,

the given functions h(x), and the corresponding saturation values H. As a proof of

concept, we randomly sample f and the initial values for x from the uniform dis-

tribution with range (0, 1), randomly sample Hi from the uniform distribution with

range (0, 10), and randomly sample the desired equilibrium xeq from uniform distri-

bution (0, 3). We use these randomly generated data to test the effectiveness of the

optimization algorithm to drive the state to xeq = ((xeq)i)i∈{1,...,6}. xv4 corresponds to

the High-density lipoprotein (HDL), xv5 corresponds to the Very low-density lipopro-

tein (VLDL), and xv6 corresponds to the low-density lipoprotein (LDL). According to

[59], a high ratio indicates a higher risk of heart attack. A healthy state is considered

to have lower ratio of HDL+LDL
LDL

. The second control problem (Definition 7) can be

solved using the following optimization algorithm:

Algorithm 2. For assigned fluxes and kinetics:
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Step 1 : Calculate the Jacobian matrix J in (3.4) and the matrix −J(f)−1.

Step 2 : Implement linear least-square method to find φopti minimizing (3.12) with

inequality constraint −J(f)−1φ ≤ H and lower bound 0.

Step 3 : Calculate the cost and run simulation with optimized intakes φopti to verify

numerically the stability of dynamics.

Notice that not all combinations of sampled parameters lead to equilibrium: Here

we show an example leading with stability. To implement Algorithm 2, we use a

linear least-square solver in MATLAB (2018b) for Step 2, finding the optimized φopti

by minimizing the cost 1
2
||h(xφ)− h(xeq||22 = 1

2
|| − J(f)−1φ− h(xeq||22, which is half of

the square of (3.12). The flux vector is given by:

f =

(
0.71, 0.36, 0.40, 0.32, 0.23, 0.67, 0.96, 0.74, 0.44, 0.51

)T
(3.15)

and the initial value of metabolites is:

(
xv10 xv20 xv30 xv40 xv50 xv60

)T
=

(
0.87, 0.80, 0.35, 0.76, 0.62, 0.21

)T
. (3.16)

The kinetic h functions for all vertices are given by:

(
7.21 · xv1

1 + xv1

7.57 · xv2

1 + xv2

4.26 · xv3

1 + xv3

5.32 · xv4

1 + xv4

7.98 · xv5

1 + xv5

8.56 · xv1

1 + xv1

)T
,

while the saturation levels for h are:

H =

(
7.21, 7.57, 4.26, 5.32, 7.98, 8.56

)T
.

We randomly generate the equilibrium xeq to be matched:

xeq =

(
2.86, 2.50, 0.09, 0.64, 0.91, 2.98

)T
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with

h(xeq) =

(
5.34, 5.41, 0.36, 2.07, 3.81, 6.40

)T
.

The h(x)opti and (x)opti optimized by Algorithm 2 are:

h(x)opti =

(
5.34, 5.40, 0.35, 1.89, 4.12, 6.26

)T
,

(x)opti =

(
2.85, 2.50, 0.09, 0.55, 1.07, 2.73

)T
.

while the optimized intake vector is φopti =

(
φe1 , φe2 , φe3

)T
=

(
1.73, 1.24, 0.24

)T
.

In the following, we check the conditions (3.13) and (3.14):

φe1 = 1.73 < fe4H1 = 0.32× 7.21 = 2.31,

φe2 = 1.24 < fe5H2 = 0.23× 7.57 = 1.74,

φe3 = 0.24 < fe6H3 = 0.67× 4.26 = 2.85,

φ̃ = φe1 + φe2 + φe3 = 3.20 < min{9.02, 6.21, 4.38} = 4.38.
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Figure 3.4: The RCT network with fixed fluxes f in (3.15) and ini-
tial conditions in (3.16) with no controls. The given equilibrium is
xeq = (2.86, 2.50, 0.09, 0.64, 0.91, 2.98)T . The simulated equilibrium is xφ =
(0.440.27, 0.16, 0.20, 0.32, 0.52)T . The dots representing the given equilibrium lev-
els for six vertices (corresponding to the trajectory with the same color). The cost is
4.1828.
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Figure 3.5: The RCT network with optimized intakes value (control with intakes).
(xeq)opti = (2.85, 2.50, 0.09, 0.55, 1.07, 2.73)T . The cost is 0.3022.

We run the simulation with optimized intakes φopti and keep the other parameters

constant. Figures 3.4 and 3.5 show simulations for the not controlled case and the

one with optimized intakes. Notice that well approximate the desired equilibrium.
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3.5 Metabolic networks with inhibitor and enhancer

In order to include inhibitors and enhancers we introduce a new Assumption (D):

(D) Sve(x) =



= −He(xv) ·Ku(xu) e = (v, w), v ∈ V,w ∈ V ∪ {vn+1}, u ∈ V

= He(xw) ·Ku(xu) e = (w, v), w ∈ V

= 1 e = (v0, v) v ∈ I

= 0 otherwise,
(3.17)

where Hv :n→+ is differentiable and strictly increasing while Hv(0) = 0, Ku : R →

[0,+∞) is differentiable, monotonic, and Ku(0) = 1. Moreover, for enhancers Ku is

increasing while for inhibitors Ku is decreasing.

Let us clarify the differences among the assumptions we discuss. Assumption (A)

requires the function He(x) to be defined for each edge, continuous, and dependent

on the entire state x. Assumption (B) requires He(xv) to be defined for each edge,

continuous, and dependent on the metabolite associated to the initial vertex of edge

e. Assumption (C) requires Hv(xv) to be defined for the initial vertex of an edge,

differentiable and strictly increasing, Hv(0) = 0, and dependent on the metabolite

associated to the initial vertex of an edge. Therefore all edges with the same initial

vertex will be associated to the same function Hv(xv). For Assumption (D) the

function Hv(xv) is defined just as in Assumption (C), however entries of Sve(x) consist

of a product Hv(xv) ·Ku(xu). The factor Ku(xu) models the action of inhibitors or

enhancers. This represents nonlocal action, because the inhibitor or enhancer is not

necessarily nearby (in topological sense) the affected metabolites. Assumption (A) is

the most general with Assumption (B) implying Assumption (A), and Assumption

(C) implying (B), i.e., C =⇒ B =⇒ A. Assumption (D) also implies Assumption

(A), but is comparable with (B), i.e., D =⇒ A,D ; B,B ; D.
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To illustrate the effect of enhancers and inhibitors on dynamics under Assumption

(D), an example is shown on the RCT network of Figure 3.2, but with the addition

of a single enhancer. It is assumed that the metabolite v1 will act as an enhancer

for the edge fe7 . When the dynamics of this network are written , the stoichiometric

matrix S : R → M6×10 where S = (S1−3|S4−10) is different from Section 3.3 only by

the non-zero entries of the seventh column, i.e., S4−10 is given by



−Hv1(xv1) 0 0 0 0 0 0

0 −Hv2(xv2) 0 0 0 0 0

0 0 −Hv3(xv3) 0 0 0 0

Hv1(xv1) Hv2(xv2) Hv3(xv3) −Kv1(xv1) ·Hv4(xv4) −Hv4(xv4) 0 0

0 0 0 Kv1(xv1) ·Hv4(xv4) 0 −Hv5(xv5) 0

0 0 0 0 Hv4(xv4) Hv5(xv5) −Hv6(xv6)


.

3.5.1 Equilibria under Assumption (A) and (B)

The previous research focused on finding necessary and sufficient conditions for equi-

libria of (1.3), as well as the uniqueness and stability of such solutions, under As-

sumption (A) or (B). We aim at extending the results to the case of Assumption (D)

as well. The Propositions 23 and 24 work also for Assumption (A) and as such are

still applicable when inhibitors/enhancers are added as in Assumption (D). Propo-

sition 23 gives necessary structural conditions to obtain an equilibrium xeq for fixed

flux vector f , specifically that any vertex with a directed path from an intake, also

has a directed path to an excretion.

3.5.2 Dynamics under Assumption (D)

Without further assumptions on the system, there are few conclusions about these

types of equilibria. In Section 3.3, additional properties summarized in Assumptions

(B) and (C) were needed to prove uniqueness and stability for this type of equilib-

rium (see Propositions 28 and 29). To investigate equilibria for Assumption (D), we
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consider system (1.2). For a single enhancer or inhibitor, we may write the dynamics

as follows,

ẋ = J1(f)h(x) + J2(f)k(x) + φ (3.18)

where J1 is the Jacobian matrix removing the terms which are affected by inhibitors

or enhancers, h(x) is a column vector of size n given by hi(x) = Hvi(xvi), J2 is a

matrix with nonzero entries only in the column affected by the enhancer or inhibitor,

k is a column vector of size n representing inhibitors and enhancers given by ki(x) =

Kvj(xvj) ·Hvi(xvi) where vi is the node from which the edge begins and vj is the node

which acts as an inhibitor or enhancer, and φ is a vector of size n given by φi = fe(v0,vi)

if (v0, vi) ∈ Ẽ and φi = 0 otherwise. Note that multiple enhancers or inhibitors may

require additional matrices Ji. To see the possible necessity of added Ji matrices,

consider two edges e(vi, vj) and e(vi, vk) of a network that are enhanced by vm and

vn respectively. Since both edges begin at vi they would be in the same column of J2,

however enhancer vm is represented by ki(x) = Kvm(xvm) ·Hvi(xvi), and enhancer vn

is represented by ki(x) = Kvn(xvn) ·Hvi(xvi), because of this an additional J3 matrix

and k2 would be necessary.

Proposition 32. Consider system satisfying Assumption (D). For each vertex, if all

of the outgoing edges from the vertex are affected by at most one enhancer or inhibitor,

then the system can always be written as (3.18).

When all the edges leaving a vertex vi are affected by the same enhancer or

inhibitor vm, then ki(x) = Kvm(xvm) · Hvi(xvi), this allows the system to be written

as (3.18).

Our main conjecture is the following.

Conjecture 1. For a metabolic network under Assumption (D) containing enhancers

and inhibitors, the following holds.

• An equilibrium with positive entries for arbitrary intakes can exist only if for all
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v ∈ V there is a path to X such that all edges in the path have limxv→∞He(xv) =

+∞.

Under Assumption (D) with enhancers but no inhibitors the following hold.

• There exists an equilibrium with positive entries for arbitrary constant intakes

if and only if for all v ∈ V there is a path to X such that all edges in the path

have limxv→∞He(xv) = +∞.

• If there exists an equilibrium with positive entries, and there is a path from all

v ∈ V to X, then the equilibrium is unique.

It is expected that under Assumption (D) there exists an equilibrium if several

conditions are verified. Here it is shown that the Reverse Cholesterol Transport

network with the single enhancer (indicated previously) has a unique equilibrium. In

addition, simulations show that this equilibrium is stable.
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3.5.3 Unique equilibrium of the RCT network with a single

enhancer

Consider the RCT network with enhancer, then the system can be written as (3.18)

where J1(f), J2(f), h(x), k(x) and φ matrices are given by

J1 =



−fe4 0 0 0 0 0

0 −fe5 0 0 0 0

0 0 −fe6 0 0 0

fe4 fe5 fe6 −fe8 0 0

0 0 0 0 −fe9 0

0 0 0 fe8 fe9 −fe10


, h =



Hv1(xv1)

Hv2(xv2)

Hv3(xv3)

Hv4(xv4)

Hv5(xv5)

Hv6(xv6)


,

J2 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 −fe7 0 0

0 0 0 fe7 0 0

0 0 0 0 0 0


, k =



0

0

0

[Kv1(x1)] ·Hv4(xv4)

0

0


, φ =



fe1

fe2

fe3

0

0

0


.

We assume that the Hvi functions satisfy the additional condition that

lim
xv→∞

He(xv) = +∞. (3.19)

Condition (3.19) is required so that we are able to satisfy equation (3.10).

In order for the system to be at equilibrium it must satisfy

0 = J1(f)h(x) + J2(f)k(x) + φ, (3.20)
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which provides the following system of six equations,



−fe4 0 0 0 0 0

0 −fe5 0 0 0 0

0 0 −fe6 0 0 0

fe4 fe5 fe6 −fe8 0 0

0 0 0 0 −fe9 0

0 0 0 fe8 fe9 −fe10





Hv1(xv1)

Hv2(xv2)

Hv3(xv3)

Hv4(xv4)

Hv5(xv5)

Hv6(xv6)


=



0

0

0

−fe7 · (−[Kv1(xv1)Hv4(xv4)])

fe7 · (−[Kv1(xv1)Hv4(xv4)])

0


.

Immediately notice that the first equation gives −fv0Hv1(xv1) = −φ1. Since Hv1

is invertible and fe4 and fe1 are constants, this gives xv1 = H−1
v1

(
fe1
fe4

). Once the

equilibrium value of xv1 has been found, the equilibrium of Kv1(xv1) is determined.

Now let f ∗e7 = fe7 ×Kv1(xv1). Now we rewrite the system as J(f)h(x) + φ with,

J(f) =



−fe4 0 0 0 0 0

0 −fe5 0 0 0 0

0 0 −fe6 0 0 0

fe4 fe5 fe6 −f ∗e7 − fe8 0 0

0 0 0 f ∗e7 −fe9 0

0 0 0 fe8 fe9 −fe10


, φ =



fe1

fe2

fe3

0

0

0


,



Hv1(xv1)

Hv2(xv2)

Hv3(xv3)

Hv4(xv4)

Hv5(xv5)

Hv6(xv6)


. (3.21)

This system satisfies the assumptions of Proposition 29 and we conclude that the

RCT network has a unique equilibrium.

To show that the equilibrium solution for the RCT network is stable, simulations

were performed with fixed randomized fluxes (sampled from a uniform distribution

on interval [0,1]). Using the values of the flows the equilibrium was calculated, and

then compared with the metabolite levels reached in simulation. The calculated

equilibrium was reached in each simulation, suggesting that the RCT network is

asymptotically stable. Figure 3.6 shows the results of one such simulation.
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Figure 3.6: The trajectories of the values of metabolites over 50 hours. The simula-
tion results closely matched the calculated equilibrium values of x1 = 2.8081, x2 =
2.4811, x3 = 1.8517, x4 = 2.2699, x5 = 2.2943, x6 = 2.9901.

3.6 Drug discovery by control methods

Existence and uniqueness of equilibria for networks with enhancer and inhibitors (I-

E), as explored in Section 3.5, is the basis for studying drug discovery. Usually a drug

affects a flux as an enhancer or inhibitor, thus a new drug can be represented as a

specific extended network and flux vector f , see Figure 3.7. If networks including the

drug treatment effect satisfy the assumptions for uniqueness and stability of equilibria,

then we can predict the asymptotic state of the metabolic network, which is the unique

equilibrium xf corresponding to the flux vector f . In other words, one may reduce the

drug discovery problem to an optimization one using the map f → xf and studying

those f corresponding to potential drugs. More precisely we proceed as follows:

Step 1. Consider the extended networks as in Figure 3.7 and study conditions

on uniqueness and stability of equilibria using the methods of previous sections. As

shown in Section 3.5, Step 1 is not trivial. Indeed, the I-E dynamics are non local,
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Figure 3.7: Reverse Cholesterol Transport Network with added enhancer or inhibitor
metabolite v7 which acts on edge e7.

which means that the molecule affecting the specific reaction is not necessarily close in

the network topology (i.e., may belong to a far away component of the network). For a

given network G = (E, V ), we consider the extended version G̃ = (Ẽ, Ṽ ) as in Figure

3.7. More precisely, we add a new vertex representing the drug molecule and being

both an intake and excretion vertex (assuming the drug is administered and there is

a known excretion mechanism). Moreover, we add an edge from the drug molecule

to the affected flux edge e. We denote by fe,± the flux vector corresponding to the

extended network, where ± indicates the enhancer (+) or inhibitor (-) expected effect.

Notice that the source flux of the drug molecule depends on the scheduled treatment,

which may be given as pills, injections or others. For drug discovery purposes, we use

an average flux, while for simulations we may use a time-varying one.

Step 2. Study the map fe,± → xfe,± to minimize ‖x̄−xfe,±‖, where x̄ is a desired

“healthy" state. Step 1 ensures that the map fe,± → xfe,± is well defined. Using the

method of previous section, we can also compute explicitly this map under suitable

assumptions. The set of states R(xfe,±) that can be reached using the admissible

controls fe,± is called the reachable set, see [17]. In practice, we do not expect a

unique desired state to be defined, but rather a set of conditions which determine a
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desired or target set X of metabolic states deemed healthy. A successful treatment

prescribes the fluxes fe,± which will drive the patient’s current state x to some state

x̄∈X . If the reachable set and desired states are disjoint, i.e., R(xfe,±) ∩X = 0, then

we look for the xfe,± realizing the minimum distance from X .

Step 3. Introduce dynamic optimization criteria on the trajectory to xfe,± to

find the best fe,±. Consider the problem to minimize
∫ T

0
L(t, x)dt where L measures

the toxicity of the drug, see [24, 23]. In this case the dynamic of the drug is very

important. It also becomes important to take the dosing regimen into consideration,

which means using a time varying flux for the drug intake.

In the remainder of this section we give more details on 1-2, while 3 is saved for

future work. Let us give an explicit example of our approach:

Example 5. Figure 3.7 shows the RCT network with an added vertex v7 which

represents the drug. With the addition of the non-local enhancer or inhibitor the

stoichiometric matrix of the RCT needs an additional row and several additional

columns, and the flux vector f has the additional components f(v0,v7) , f(v7,vn+1). The

new S(x) matrix is a concatenation given by S1−3, S4−10, and S10−12, is shown below,

S1−3 =



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0



, S10−12 =



0 0

0 0

0 0

0 0

0 0

0 0

1 −1



,
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S4−10 =



−H(xv1) 0 0 0 0 0 0

0 −H(xv2) 0 0 0 0 0

0 0 −H(xv3) 0 0 0 0

H(xv1) H(xv2) H(xv3) −Kv7(xv7) ·H(xv4) −H(xv4) 0 0

0 0 0 Kv7(xv7) ·H(xv4) 0 −H(xv5) 0

0 0 0 0 H(xv4) H(xv5) −H(xv6)

0 0 0 0 0 0 0



where kv7 : R −→ [0,+∞) is differentiable, monotonic and kv7(0) = 1. For the

enhancer the function kv7(xv7) = 1 +
xv7
xv7+1

was used and for the inhibitor kv7(xv7) =

1 − xv7
xv7+1

. The addition of the drug allows a control on the system based on the

amount of drug used. It is assumed that the drug acts similarly to an enhancer in

that the mass of the drug will not be added to the network, but the drug will facilitate

the flow through the network by inhibiting or enhancing individual edges. Whether

to use an inhibitor or an enhancer drug, as well as how much drug to use depends on

the initial conditions of the network.

0.4 0.6 0.8 1 1.2 1.4 1.6

Drug

2.5

3

3.5

4

4.5

Figure 3.8: Graph showing the control of the system using drug as an inhibitor and
enhancer. The x-axis of the graph shows the amount of inhibition or enhancement of
edge e7 from the drug, the value 1 corresponds with no control and is marked in red.
The y-axis of the graph is the ratio between total cholesterol and HDL cholesterol, a
lower ratio is preferred. The red box highlight the dot (1.00, 3.60) which represents
the ratio with no control. The green box highlight the dot (0.82, 3.28) represent the
drug level to be used to match the ration obtained by cutting in half the intakes.
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Figure 3.9: Graph showing the control of the system using the intakes as a control.
The x-axis of the graph shows the total amount of intake. The y-axis of the graph
is the ratio between total cholesterol and HDL cholesterol, a lower ratio is preferred.
The red box highlight the dot (1.48, 3.60) which represents the ratio with no control.
The green box highlight the dot (0.74, 3.28) which represents the ratio with half of
the intakes. The magenta box highlight the dot (2.96, 5.29) which represents the
ratio with double intakes. The cyan pentagram highlight the dot (3.20, 5.96) which
represents the ratio with maximal intakes.

For cholesterol, the healthy state depends mostly on the ratio between total choles-

terol and HDL cholesterol. The range of what is considered a healthy ratio depend

on factors including age and gender, but in general a lower ratio of total cholesterol

to HDL is preferred. In the case of the RCT network the healthy state xfe,± depends

on the value of v4 (representing HDL) and v6 (representing LDL), more precisely the

ratio v4+v6
v4

. We examine whether an inhibitor or enhancer better lowers this ratio.

To do this a set of fluxes were chosen from a uniform distribution so that each flux

fi ∈ [0, 1]. The fluxes f11 (corresponding to e11) and f12 (corresponding to e12) di-

rectly correspond to the drug and are treated separately, with f12 being fixed at 1, and

f11 being the control variable. The result is rather intuitive, when the edge between

v4 and v5 is enhanced the value of v4 is lowered and the ratio increases, and when the

edge is inhibited the value of v4 increases and the ratio diminishes as seen in Figure

3.8. From the result it is clear that an inhibitor is the preferred type of drug for this

example.
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As explored in Section 3.4 the change in intakes also affects the state xfe,± . For com-

parison we also explored the effect of the intakes on the ratio v4+v6
v4

. Even when the

control of intake is possible, large changes may not be realistic. Figure 3.9 shows

how the ratio changes depending on the sum of the intake values. Comparing the

control of drug to the control of intakes (see green boxes) we see that the same ratio

is obtained by cutting in half intakes o using a drug that provides inhibition of the

flow e7 to 0.8 of its original value.

We show another example, where each metabolite has a desired target.

Example 6. Here we use the same initial conditions and target state from the ex-

ample in Section 3.4, for a reminder Figure 3.4 shows an initial simulation with no

control and highlights the desired equilibrium. Next, simulations are performed to

obtain the desired equilibrium using the added drug from v7 as a control. Two dif-

ferent kv7 functions were used, one representing an enhancer drug and the other an

inhibitor drug. As in the previous example, the enhancer function kv7(xv7) = 1+
xv7
xv7+1

and inhibitor function kv7(xv7) = 1− xv7
xv7+1

were used.

In the simulations it is assumed that the value of xv7 can be easily controlled and

kept at a constant value, this would correspond to a dosing regimen having constant

intake of drug. Simulations were performed with both enhancers and inhibitors to

find the best possible value of xv7 for both types of drug. When only drug control

was used it was found that using an inhibitor did not lower the cost between the

optimized equilibrium and the desired equilibrium. Using an enhancer function the

greater the value of xv7 , the lower the cost. The upper bound of xv7 = 1 was chosen,

which corresponds to enhancement of the edge e7 to 1.5 times its usual value and

reduces the total cost to 4.1782. The results of this optimization are shown in Figure

3.10.

The control of the drug in this simulation has several limitations. For instance,

only a single edge was targeted, whereas in pharmacology it is likely that many



107

0 2 4 6 8 10

Time (h)

0

0.5

1

1.5

2

2.5

3

M
e

ta
b

o
lit

e
 L

e
v
e

ls

(v
1
)
eq

(v
2
)
eq

(v
3
)
eq

(v
4
)
eq

(v
5
)
eq

(v
6
)
eq

v
1

v
2

v
3

v
4

v
5

v
6

Figure 3.10: Control of the system only using the drug as an enhancer. The
colored points show the desired equilibrium, while the lines show the actual
trajectory of the metabolite values. The simulated equilibrium is xdrug =
(0.44, 0.27, 0.16, 0.15, 0.39, 0.51). The cost is 4.1782. The value of xv7 is 1, which
corresponds to k(v7) = 1.5 enhance on edge e7.

different targets may be considered and tested. Combining both methods, we control

both the intakes and add a drug to act on e7. Using optimized intakes, it was found

that the inhibitor drug lowered the total cost between optimized equilibrium and the

desired equilibrium. The drugs’ optimal value was xv7 = 0.1765, which corresponds

to inhibition of the edge e7 to 0.85 times its usual value. The results are shown in

Figure 3.11.
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Table 3.1: The total least-squares cost between obtained and target state of four
different control schemes of RCT are displayed. The figures corresponding to the
full trajectories are found in Figure 3.4, Figure 3.5, Figure 3.10, and Figure 3.11
respectively.

RCT systems Cost
With no controls 4.1828
Control with intakes 0.3022
Control with drugs 4.1782
Control with intakes & drugs 0.2475

0 10 20 30 40 50 60 70 80 90 100

Time (h)

0

0.5

1

1.5

2

2.5

3

M
e
ta

b
o
lit

e
 L

e
v
e
ls

(v
1
)
eq

(v
2
)
eq

(v
3
)
eq

(v
4
)
eq

(v
5
)
eq

(v
6
)
eq

v
1

v
2

v
3

v
4

v
5

v
6

Figure 3.11: Control of the system by controlling the intakes and using
the drug as an inhibitor. The simulated equilibrium is xintakes&drug =
(2.85, 2.50, 0.09, 0.63, 0.92, 2.73). The cost is 0.2475. The value of xv7 is 0.1765, which
corresponds to k(v7) = 0.85 enhancement of e7.

Three methods of control are performed; control using intakes (Section 3.4), con-

trol using drug, and finally control using both intakes and drug. The results of all

three methods are summarized in Table 1. Controlling intakes rather than adding

drug produced better results, although drug targeting of additional edges may further

improve the drug results.
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3.7 Conclusion

LIFE methodology was constructed to provide a new approach to modeling metabolic

networks. Previously, in [99] the authors gave results which combined portions of

several different theories and re-purposed them to shed light on simulating metabolic

networks. The focus was on simple LIFE systems.

The intakes of a system are a reasonable target for control, and bio-molecules

acting as inhibitors and enhancers are important structure which contributes to the

stability of natural networks and often represent drug action. This work expanded the

exploration of LIFE by investigating control problems: Controlling the intakes and

controlling the inhibitor or enhancers of a network. Moreover, control methods are

applied to a toy but significant example network of human metabolism called reverse

cholesterol transport. To control the ratio of total cholesterol over HDL, the action of

a single inhibitor was equivalent to a dramatic reduction of the intakes (cut by half).

Our study on this network lead to conjectures about general networks. Future work

will include addressing these conjectures to expand on LIFE methodology.



Chapter 4

Metabolic graphs, LIFE method and

the modeling of drug action on

Mycobacterium tuberculosis

4.1 Introduction

The modeling of metabolic networks plays a crucial role in systems biology and has

many diverse applications, including in Quantitative Systems Pharmacology [108] for

drug discovery and optimization of drug treatments. There are various challenges at

modeling, including the complexity and dimensionality of the involved networks, often

times comprising hundreds of metabolites and thousands of reactions, enzymes and

genes. For this reason, only methods corresponding to linear dynamics presented the

characteristic of scalability and computability to address such problems. In this area,

Flux Balance Analysis (briefly FBA) plays a special role for its simplicity and many

successful uses, see [53, 74, 85, 106, 117]. Other linear techniques proved efficient, such

as zero deficiency theory, Markov chains, Laplacian dynamics [4, 20, 27, 45, 60, 65].

Beside the limitation of dealing only with linear dynamics, such methods mostly ne-

110
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glected the nonlinear effects related to the action of enzymes, the regulation effect of

genes and the action of drugs on genes. In mathematical terms, even if one accepts a

linear dynamics in terms of the metabolites, the action of enzymes, genes and drugs

affects fluxes among metabolites. For the example of a downregulation action of a

gene, then reducing a flux would necessarily correspond to a nonlinear term in the

dynamics of the involved metabolites. Even more, such action cannot be represented

in the usual language of graph theory, thus requiring the use of more general theories.

The present paper addresses such limitations using two main tools:

1. A new representation of metabolite dynamics called Linear-In-Flux-Expression

(briefly LIFE) to allow nonlinearities in the dynamics.

2. The use of metabolic graphs, based on hyper and uber-graphs, to allow the repre-

sentation of enzymes, genes and drug action.

The rest of this Introduction details the two main methods and provides a brief de-

scription of our main application: the action of antibiotics on the Mycobacterium

tuberculosis (briefly MTB).

The paper is organized as follows. Section 4.2 discuss the LIFE approach and pro-

vide basic definition, while in Section 4.2.1 we illustrate the central carbon metabolism

network of MTB. In particular the example shows the necessity of introducing the

concept of metabolic graph which is done in Section 4.3. Extension of LIFE to

metabolic graphs is done in Section 4.4 and the problem of existence and uniqueness

of equilibria is explored in Section 4.4.1. Application of the methods to drug action

on MTB (specifically synthesis of antibiotics) is illustrated in Section 4.5.

4.1.1 The LIFE method

Recently, flux balance analysis techniques were expanded to include nonlinear metabo-

lite dynamics. Linear-in-flux-Expression allow using correlations among fluxes to our

advantage. General conditions on network topology (connection of every node to ex-
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cretion, see [99]) guarantee existence and uniqueness of an equilibrium x̄f for every

flux vector f = {fe}, thus network asymptotic dynamics is captured by the map

f → x̄f . We will provide more detail below about the many results achievable by this

approach combining several different methods for modeling chemical systems, includ-

ing systems biology, zero deficiency theory, laplacian dynamics, and Markov chains

[107, 4, 20, 65, 45, 60, 27]. We will also refer the reader to [5, 96, 99] for a general

presentation of the LIFE approach.

4.1.2 Hyper, uber and metabolic graphs

As explained above FBA and other methods rely on representing the metabolic net-

work as a directed graph, where edges represent biochemical reaction. There are (at

least) three main limitations related to representing a complex metabolic network

with a standard directed graph and these are:

1. Most networks include inflows and outflows (also called intakes and excretions in

LIFE methodology) to the external environment or to other networks. Virtual nodes

to represent such flow must be included or, alternatively, one must include directed

edges with a node only on one end.

2. Some biochemical reactions necessarily involve more than two metabolites, e.g.

when two or more compounds interact to form a set of other compounds. Therefore

edges with multiple entering and exiting nodes must be included.

3. The action of enzymes, genes and drugs often times affect a specific reaction acting

as enhancer or inhibitors. Such actions can be represented by edges joining a node to

another edge.

All these extensions can be achieved by introducing appropriate generalization of the

concept of graph. In particular hypergraphs [18, 138] contain hyperedges with multi-

ple nodes, ubergraphs [68] include uberedges connecting node to other edges. We use

this tool to defined a generalized graph, called metabolic graph addressing the limita-
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Figure 4.1: We define a metabolic graph to have two added features compared to simple directed
graphs: 1. Left weighted hyperedge h will replace simple edges. These edges have weights assigned
to each branch of the hyperedge respecting the stoichiometry of the corresponding reaction; and 2.
Right enhancer or inhibitor dynamics acting on edge e. The inhibitor (enhancers) are included to
model the action of molecules inhibiting (promoting) the enzyme for a reaction corresponding to
edge e. The edges u1, u2 are called uberedges and connect a node to an edge.

tions 1-3. Figure 4.1 depicts the main idea behind the definition of metabolic graph.

Metabolic graphs are hypergraphs which may include an uberedge which connects a

node to a hyperedge.

4.1.3 Tuberculosis

The Mycobacterium tuberculosis (briefly MTB) has infected thirty percent of the

world’s population according to the World Health Organization(WHO). The WHO

declared tuberculosis (brifely TB) a global emergency in 1993 [103]. The bacterium

is known to endure hostile environments within the host organism through two main

factors 1. genetically diverse sub-populations [26, 10] and 2. a sophisticated gene reg-

ulatory network(briefly GRN) [10, 51, 109]. Developing new TB drugs with improved

effectiveness depends on modelling MTB in multiple metabolic states.

In the past, designing treatment for TB has been exceptionally difficult, often

requiring drug cocktails of up to four different drugs. In addition to multiple drugs,

treatment may last up to six months, and this duration along with complications due

to drug side effects can negatively effect patient compliance. Two main approaches

have been taken to improve TB treatment. the first approach is discovering more
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effective dosing regimens of these drug cocktails [28, 95, 135]

The second approach is to anticipate the response of the GRN to treatment[133,

75, 32]. This allows one to exploit the changing metabolism of MTB, but requires

accurate models of the response to drug treatment. Such models of MTB metabolism

are difficult to construct due to the numerous complex effects of the GRN on the

metabolic state as a consequence of environmental or internal chemical conditions.

In either approach, it is essential to model the individual drug interactions care-

fully so that a model can be built with a solid foundation. Modeling drug interac-

tions in an intuitive way requires us to allow structures where molecules or metabo-

lites inhibit or enhance a biochemical reaction. This action can be depicted as a

node attached to a hyperedge (connecting nodes which represent multiple reactant

metabolites to nodes representing products of the reaction).

4.2 Modeling metabolic networks with LIFE

Generalizing the dynamics of FBA, we focus on the following class of systems know

as LIFE, see (1.3).

Metabolic networks contain exchange fluxes representing incoming mass from

other parts of the network, or from the outside environment, and they are neces-

sary for the existence of equilibria. For traditional metabolic networks described by

a directed graph G = (V,E), directed edges from a virtual node v0 which acts as a

source to some node in the graph are called intakes, and edges from a node in the

graph to some virtual node vn+1 acting as a sink are called excretions.

Definition 8. Given a directed graph G = (V,E), an edge (v0, v1) ∈ E for the virtual

node v0, the edge (v0, v1) is called an intake, and v1 is an intake node. For the virtual

node vn+1 an edge (vj, vn+1) is called an excretion, and vj is an excretion node. The

set of intake nodes is denoted I, and the set of excretion nodes is denoted by J .
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A general assumption, still allowing significant results, is the following:

(H1) Sve(x) =



−Fe(xv) e = (v, w), v ∈ V,w ∈ V ∪ {vn+1}

Fe(xw) e = (w, v), w ∈ V

1 e = (v0, v) v ∈ I

0 otherwise,

where Fe : R+ → R+ is differentiable, strictly increasing, with Fe(0) = 0, for

R+ = {x ∈ R : x ≥ 0}. (H1) is a natural assumption on the system; the flow

from a metabolite will depend only on that metabolite, but for a metabolite with

multiple edges may have different kinetics with each reaction. This assumption also

includes nonlinear kinetics such as Michaelis-Menten [79] corresponding to Hill func-

tions Fv(xv) = xpv
K+xpv

with p ∈ N. Moreover, all columns of S have zero sum, except

those corresponding to intakes and excretions, which have positive and negative sum,

respectively. Therefore, the dynamics (1.3) can be interpreted as mass conservation

law. To be biologically meaningful, we further restrict to equilibria for which all

components of f and x are positive, thus rendering the problem nonlinear even for

linear dynamics. A previous result shows that under (H1), the existence of equilibria

depends on the structure of the network.

Proposition 33. Consider a system (1.3) satisfying (H1). Assume there exists an

equilibrium x̄ ∈ (R+)n for a flux vector f such that fe > 0 for every e ∈ Ẽ. Then for

every node v ∈ V for which there exists a path from I to v, there exists a path from

v to J .

This proposition is proven in [99]. We extend these results to metabolic networks

including enhancers and inhibitors as explained in Section 4.3.
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4.2.1 Central Carbon Metabolism in Mycobacterium tubercu-

losis

The dynamics described in the previous section can be used to model the flows of

a metabolic network. The entries of the stoichiometric matrix describe the mass

flowing along an edge of the network per time. The flux for each edge represents the

speed of this flow. We present an example metabolic network from [128] to motivate

expanding the LIFE method from section 4.2.

The Metabolic network shown in Figure 4.2 is the central carbon metabolism of

MTB derived from an infection in mouse. The network shown is a metabolic network

of MTB in a state of growing bacilli. This network depicts carbon from lipid and sugar

catabolism used by MTB for generating energy and biosynthetic precurors required

for growth. Specifically glucose is a product of catabolism and the cell uses this

energy to synthesize enzymes for the pentose phosphate pathway and provide ribose

5-P for nuclotide synthesis. Glycolysis yields metabolites phosphoenolpyruvate(PEP),

Pyruvate, and acetyl-CoA. Experiments showed that MTB preferentially uses fatty

acids as a carbon source. When MTB is in the “non-growing” state within mouse

infection, some of the genes required for this process are known to be upregulated.

These observations led to the proposal that MTB switches its carbon source from

sugars to fatty acids during the persistent phase of infection.
Simple directed edges, as in standard graphs, model most reactions in carbon metabolism.

However, the complete dynamics involves several hyperedges, i.e. generalized edges

connecting more than two nodes. The hyperedge labeled h1,2 consists of two distinct

directed hyperedges, each connecting three metabolites involved in a single chemical

reaction (the first having two reactants and the second having two products). The

details about the reactions are taken from the KEGG database [71]. In particular,

h1 describes a chemical reaction producing isocitrate from Oxaloacetate, and acetyl

CoA, and h2 uses isocitrate to produce acetyl CoA and oxaloacetate. The third hy-
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Figure 4.2: The central carbon metabolism of Mycobacterium tuberculosis with TB
drug action shown. The well known drug Clofazimine inhibits the reaction which
oxidizes malate. The edges labeled h1,2 represents two different hyperedges, and h3

is a third hyperedge connecting three metabolites.

peredge h3 models acetyl CoA reacting with glyoxylate to produce malate. We also

included the drug Clofazimine, which acts as an inhibitor on the malate-oxaloacetate

reaction.

The need to describe reactions depicted by the hyperedges and inhibitor in Figure 4.2

is what brings us to metabolic graphs and extending the LIFE method accordingly.

4.3 Metabolic graphs

To model intakes, excretions, general biochemical reactions, inhibitors and enhancers

acting on a metabolic network, we will introduce a new mathematical object called a

metabolic graph. Metabolice graphs are a subclass of ubergraph, a generalization of

hypergraphs introduced in [68] (here we use a different definition of ubergraph stated

in the Appendix).



118

Directed graph are commonly used to model metabolic networks, with nodes rep-

resenting metabolites and edges representing the biochemical reactions. A hypergraph

is a more general structure where an edge can connect more than two nodes. For the

following definitions, let V = {v1, . . . , vn} be a set of nodes and let P(V ) be the power

set of V .

Definition 9. A hyperedge h is a set of nodes connected to each other, i.e. h ∈

P(V ) \ {∅}. Note that the set h = {vi} indicates a loop edge connecting vi to itself.

Because chemical reactions of a metabolic network indicate a direction of flow, we

require hypergraphs to include direction.

Definition 10. A directed hyperedge is an ordered pair of two subsets of nodes, i.e.

h = (X, Y ) with X ∈ P(V ) or X = {v0}, Y ∈ P(V ∪ {vn+1}), where v0 (vn+1) is

a virtual node called the source (sink). Elements of X (Y ) are called initial nodes

(terminal nodes) for the hyperedge h. The set of directed hyperedges is denoted H.

When using a hyperedge to model reacting metabolites forming a product, we

encode the stoichiometry relationship on the a hyperedge via edge weights. It is

convenient to have notation for the cardinality of the sets of initial and terminal

nodes for a hyperedge.

Definition 11. Given a directed hyperedge h = (X, Y ), with X, Y ∈ P(V ), the

indegree of h is defined as

din(h) = |X|, (4.1)

and the outdegree of h is defined as

dout(h) = |Y | (4.2)

where | · | indicates the cardinality of a set.
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Definition 12. A weighted directed hyperedge is a couple H 3 h = (X, Y ) with

X ∈ P(V ) or X = {v0}, Y ∈ P(V ∪ {vn+1}), and corresponding weights Ψh : h 7→

(Ψout
h ,Ψin

h ) where Ψout
h : X 7→ R+ and Ψin

h : Y 7→ R+.

We are now ready to describe a mathematical representation of inhibitors and en-

hancers. More precisely, we want to consider metabolites influencing a given reaction.

This can be captured by new type of generalized edges, called an uberedge linking

nodes to directed hyper edges.

Definition 13. An e/i-uberedge is a couple u = (v, h) with v ∈ V, h ∈ H. We denote

the set of e/i-uberedges by U .

We are now ready to provide the definition of metabolic graph. For a complete

description of a metabolic networks, uberedges are endowed with a sign to indicate

their action as enhancer (+) or inhibitor (−). This subset of uberedges from a node

to a hyperedge are depth 2 uberedges according to the general definition of ubergraph

(see Appendix).

Definition 14. A metabolic graph is a weighted directed hypergraph endowed with

signed depth-2 uberedges connecting nodes to hyperedges. More precisely, a metabolic

graph is an ordered quintuplet G = (V,H,U ,ΨH,ΨU) where V = {v1, . . . , vn} is

the set of nodes, H is the set of directed hyperedges, ΨH = {Ψh : h ∈ H} is the

set of functions assigning weights to hyperedges, U is the set of e/i-uberedges and

ΨU : U 7→ {+,−}.

Definition 15. Given a metabolic graph G, a path is a sequence of distinct nodes

vi1 · · · vik , with (vij ∈ X, vij+1
∈ Y ) and (X, Y ) ∈ H for j = 1, . . . , k − 1. A graph

is strongly connected if there exists a path between every pair of nodes. A strongly

connected component of a directed graph is a maximal strongly connected subgraph.

A terminal component of a metabolic graph G is a strongly connected component
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corresponding to a subset of nodes V ′ ⊂ V , such that for v′ ∈ V ′ and v ∈ V \V ′ there

exists no hyperedge h = (X, Y ) with v′ ∈ X and v ∈ Y .

Definition 16. Given a metabolic graph G, Intakes (Excretions) are hyperedges

(X, Y ) such that X = {v0} (vn+1 ∈ Y ). Intake nodes are nodes v ∈ V such that there

exits a hyperedge (X, Y ) with X = {v0} and v ∈ Y . Excretion nodes are nodes v ∈ V

such that there exits a hyperedge (X, Y ) with v ∈ X and vn+1 ∈ Y . We indicate by

I the set of intake nodes and by J the set of excretion nodes.

4.3.1 Central Carbon Metabolism

Let us go back to the central carbon metabolism network of MTB represented in Fig-

ure 4.2. This network can be described by a metabolic graph G = (V,H,U ,ΨH,ΨU)

as follows. The set V of nodes is given by:

V = {v1, . . . , v11} = {glucose,PEP, pyruvate, acetyl CoA, isocitrate, oxaloacetate,

glyoxylate,malate, α− ketoglutarate, succinate,Clofazimine}.

The set of hyperedges H contains regular edges and three directed hyperedges:

h1 = ({acetyl CoA, oxaloacetate}, {isocitrate}),

h2 = ({isocitrate}, {acetyl CoA, oxaloacetate}),

and h3 = ({acetyl CoA, glyoxylate}, {malate}).

The set of uberedges U has only one uberedge:

u1 = (Clofazimine, ({malate}, {oxaloacetate})).

For simplicity the functions ΨH,ΨU are not listed, but can be deduced from the

KEGG database [71].

This graph is more descriptive of important functions of drug action on the metabolic

network, and it contains three hyperedges and a single uberedge. Each of the hyper-

edges combines three metabolites; h1,h3 have two reactants and one product whereas

h2 has two reactants and one product. The uberedge shown from Clofazimine to the

malate-oxaloacetate reaction indicates the well known TB drug “Clofazimine” acts as
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an inhibitor on a reaction which oxidizes malate.

4.4 Metabolic dynamics with inhibitors and enhancers

In the treatment of TB, drugs will act as enhancers and inhibitors to various edges in

the network, and so will appear as uberedges. In this section we define how enhancers

and inhibitors affect the dynamics as well as equilibria conditions. In order to include

enhancers and inhibitors (which serve as the initial nodes for uberedges) we introduce

a new assumption:

(H2) We assume that for every node v and hyperedge h = (X, Y ), with v ∈ X, the

following holds. Let Uh be the set of nodes w such that there exists e/i-uberedge

(w, h) ∈ U , then we have:

Svh(x) =



−αv · Fh(x) ·Kh(x) v ∈ X

αv · Fh(x) ·Kh(x) v ∈ Y

1 X = {v0}, v ∈ Y,

0 otherwise,

(4.3)

where αw = Ψin
h (w) if w ∈ X and αw = Ψout

h (w) if w ∈ Y are the stoichiometric

coefficients, Fh : Rdin(h) → R+ is given by

Fh(x) = min
w∈X

{
Fw,h(xw) · 1

αw

}
, (4.4)

Fw,h : R+ → R+ quantifies the potential flow of metabolite xw due to reaction h, and

Kh =
∏
w∈Uh

K(w,h)(xw), (4.5)
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where K(w,h) : R+ → R+ quantifies the action of metabolite xw on h, with the con-

vention that Kh = 1 if Uh = ∅.

The stoichiometric coefficients αw ∈ R for the reaction corresponding to hyperedge

hare normalized such that
∑

w∈X αw = 1 and
∑

w∈Y αw = 1. The functions Fw,h,

w ∈ Y are continuously differentiable. The functions K(w,h), w ∈ Uh, are continu-

ously differentiable, monotonic with K(w,h)(0) = 1. More precisely if ΨU((w, h)) = +

then K(w,h) is increasing (enhancer case), othwerwise K(w,h) is decreasing (inhibitor

case).

Similarly to (H1), under assumption (H2) each function Fw,h depends only on the

metabolite xw, but there is the additional factor K which corresponds to the action of

one or more e/i-uberedges. This gives a nonlocal dependence, with respect to network

topology, because the node(s) corresponding to an enhancer(s) or inhibitor(s) may be

anywhere in the network not necessarily close to the edge it is affecting.

We are ready to state our first result:

Proposition 34. Consider a system (1.3) satisfying (H2). Assume there exists an

equilibrium x̄ ∈ (R+)n for a flux vector f such that fh > 0 for every h ∈ H. Then

for every node v ∈ V for which there exists a path from the intake nodes to v, there

exists a path from v to the excretion nodes.

Proof. Assume there exists an equilibrium x̄ ∈ R+
n and, by contradiction, a node v

for which there exists a path from w, an intake node, to v, but there exists no path

from v to some excretion node. Since there is no path from v to excretion nodes,

either v belongs to a terminal component, or there is a path from v to a terminal

component with no excretion. Denote by VT ⊂ V the set of nodes of such a terminal

component. Since there is a path from w, an intake node, to v and a (possibly trivial)

path from v to VT , then there is also a path from intake nodes to VT . Denote by

v0, v1 = w, . . . , v`−1, v` one such a path, such that v`−1 /∈ VT and v` ∈ VT (possibly
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the path is a single hyperedge, in the case with w ∈ VT ).

It is easy to show that xvi > 0 for all i = 1, . . . , `, as follows. If h = (X, Y ) with

v0 ∈ X, v1 ∈ Y , then by (H2) we have Sv0,h(x̄) = 1. On the other side, for every

h′ = (X, Y ) with v1 ∈ X,w′ ∈ Y , xv1 = 0 implies Sv1,h′(x) = 0. Consequentially

xv1 = 0 implies ẋv1 ≥ αv1fhFh(x̄) > 0 (where h = (X, Y ) with v0 ∈ X, v1 ∈ Y ),

contradicting x̄ being an equilibrium. Having proved that x̄v1 > 0, we can proceed by

induction: for i = 1, . . . , ` − 1, x̄vi > 0 implies x̄vi+1
> 0. The argument is the same

as above, with a slight modification: looking at h = (X, Y ) with vi ∈ X, vi+1 ∈ Y ,

Svi+1,h(x̄) = αv · Fh(x̄) ·Kh(x̄) > 0 thanks to (H2) together with x̄i > 0, while above

we were in the case of an intake.

Finally we have a terminal component with no excretion, and a hyperedge h = (X, Y )

with v`−1 ∈ X, v` ∈ Y with v` ∈ VT and v`−1 /∈ VT , such that either v`−1 = v0 or

x̄v`−1
> 0. In either case, considering h̃ = (X, Y ) with v`−1 ∈ X, v` ∈ Y , by (H2) we

have Sv`,h̃(x̄) = αv` ·Fh̃(x̄)·Kh̃(x̄) > 0. Now consider the variation of mass in the nodes

of the component VT : since there are no hyperedges leaving VT , and there is at least

the incoming hyperedge h̃, we have d
dt

∑
v∈VT xv =

∑
v∈VT ẋv ≥ αv` ·Fh̃(x̄) ·Kh̃(x̄)fh̃ >

0, contradicting the fact that x̄ is an equilibrium.

For a system with fixed metabolites, the existence of feasible flows will depend on

network structure. The Max-flow-min-cut Theorem [47] implies that a feasible flow

exists if there is a path from intakes to excretions, and indeed this Theorem holds

true also for metabolic graphs providing suitable definitions.

Definition 17. A flow on a metabolic graph G = (V,H, U,ΨH,ΨU) is a function

g : H 7→ R+ such that g satisfies Kirchhoff’s law for metabolic graphs, i.e. for every

node v: ∑
h∈Γout(v)

Ψout
h (v) · g(h) =

∑
k∈Γin(v)

Ψin
k (v) · g(k) (4.6)

where Γout(v) = {(X, Y ) ∈ H : v ∈ X}, Γin(v) = {(W,Z) ∈ H : v ∈ Z}.
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Definition 18. For a given flow g on a metabolic graph G, the amount of flow from

v0 to vn+1 is v(g) =
∑

h∈H,v0∈X g(h) =
∑

h∈H,vn+1∈Y Ψout
h (vn+1) · g(h).

Maximal Flow Problem. Consider a metabolic graph with a function c : H 7→ R+

assigning to each edge a maximal capacity. The maximal flow problem is defined

max(v(g)) such that g(h) ≤ c(h) for every h ∈ H. (4.7)

We are now ready to define a cut.

Definition 19. Consider a metabolic graph G = (V,H,U ,ΨH,ΨU). Given S, T ⊂ V ,

we define H(S, T ) = {(X, Y ) ∈ H : X ∩ S 6= ∅ and Y ∩ T 6= ∅}, as the set of edges

connecting nodes of S to nodes of T .

Given a flow g on G, the total flow from nodes in S to nodes in T is defined by:

g(S, T ) =
∑

h=(X,Y )∈H(S,T ),i∈Y ∩T

αih.

Definition 20. Consider a metabolic graph G = (V,H,U ,ΨH,ΨU) with source v0,

and sink vn+1. Let S ⊂ V ∪ v0 be a set such that v0 ∈ S and vn+1 /∈ S and define

T = (V ∪ {vn+1}) \ S. Then the set of hyperedges CS = H(S, T ) is called a cut

separating v0 from vn+1. The capacity of the cut is defined by:

c(CS) =
∑
h∈CS

c(h). (4.8)

Notice that the capacity of the branch of hyperedge h adjacent to a node v can be

written as c(h) · αv.

The max flow of a directed graph is not necessarily unique. For a graph with a

directed cycle, the flow on the cycle can be increased (capacity permitting) without

violating Kirchoff’s law, or changing the total flow through the graph. For example,
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the directed graph in Figure 4.3 (left) admits the maximal flow defined by setting

the flow on edges (s,1),(1,2),(2,3) and (3,t) equal to 10 while the flow on (4,1),(3,4)

equal to 0. However, the maximal flow can also be achieved setting (s,1),(3,4),(4,1)

and (3,t) to 10 while the flow on (1,2),(2,3) to 20. Often when computing maximum

flow on directed graph the flow through cycles is eliminated. In a metabolic graph

with hyperedges, flow through cycles may be unavoidable. The metabolic graph in

4.3 (right) contains one hyperedge, with branches that are equally weighted, one of

them leading to a sink, while the other leads to a cycle. This network admits a unique

maximum flow. This is produced by setting (s,1),(3,4),(4,1) to 10 while the flow on

(1,2),(2,(3,t)) to 20. Note that setting the flow (2,(3,t)) to 20 will cause 10 to flow to

t and 10 to flow to 3 due to this hyperedge having equal weighting to its branches.

s 1 2

34
t10

∞
∞

∞
∞

10

s 1 2

34
t

2010
∞

∞
∞

Figure 4.3: A directed graph (left) and a metabolic graph (right) with similar structure. Capacities
are listed on edges and the hyperedge has a 1:1 ratio of flow for the two branches, i.e., 10 units flow
across each branch. The maximum flow for each graph is 10, however the metabolic graph has a
unique solution while the directed graph does not.

We are now ready to state the following:

Lemma 4. Given a flow g from v0 to vn+1, and a cut CS separating v0 from vn+1, it

holds: v(g) ≤ c(CS)

Proof. Fix a flow g and a cut CS separating v0 from vn+1. The amount of flow v(g)

is equal to the flow entering the graph, equivalently the amount of flow entering S.

We also have v(g) will equal the transfer of flow from S to T ,

v(g) = g(S, T )− g(T, S).
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Since flows are positive we have

g(S, T )− g(T, S) ≤ g(S, T ) =
∑

h=(X,Y )∈CS ,i∈Y ∩T

αih ≤
∑
h∈CS

h = c(CS).

Since Lemma 4 applies to every flow g and cut CS, we can take the maximum

over all flows and the minimum over all cuts to obtain

max(v(g)) ≤ min(c(S)). (4.9)

The following Proposition shows that, as for simple graphs, an equality holds in (4.9).

Proposition 35. (Max-flow-min-cut for Metabolic graphs) Formula (4.9) holds with

equality sign, i.e.:

max(v(g)) = min(CS)

Proof. Take a flow g such that v(g) is maximal. We construct a cut starting from

the intake nodes by recursion. Define S0 = I to be all intake nodes of the metabolic

graph. At each step ν, we define Sν+1 from Sν as follows:

1. If v ∈ Sν then v ∈ Sν+1,

2. if v1, v2 ∈ Sν , w ∈ V and there exists a hyperedge h = (X, Y ) such that v ∈

X,w ∈ Y and g(h) < c(h) or w ∈ X, v2 ∈ Y and g(h) > 0,then w ∈ Sν+1,

3. if v1, v2 ∈ Sν and there exists a hyperedge h = (X, Y ) such that v1 ∈ X, v2 ∈ Y ,

then for all w ∈ Y , w ∈ Sν+1

Clearly there will only be a finite number of steps until Sν is stable, i.e. no more

edges will be added after the ν̄ − th step. We define S = Sν̄ and T = V \ S.

We claim that vn+1 /∈ S. Assume, by contradiction that there exists a path vi1 , ..., vil
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such that vi1 = v0, vil = vn+1. Then define for k = 1, ..., l − 1,

εk = max

 ∑
h=(X,Y ):vik∈X,vik+1

∈Y

(c(h)− g(h)),
∑

h=(X,Y ):vik+1
∈X,vik∈Y

g(h)

 > 0

and ε = mink εk. We now define a new flow g̃ to reach a contradiction as follows. If

εk =
∑

h=(X,Y ):vik∈X,vik+1
∈Y (c(h)− g(h)), then for each h ∈ K1 we set

g̃(h) = g(h) + ε.

Otherwise we set

g̃(h) = g(h)− ε.

By construction g̃ is a flow, moreover v(g̃) = v(g) + ε. Then we reach a contradiction

for the maximality of v(g).

Define the cut CS = H(S, T ). Then the flow from v0 to vn+1 satisfies v(g) = g(S, T )−

g(T, S). Since g is maximal, we have g(T, S) = 0 and g(S, T ) =
∑

h∈CS
(g(h)) =∑

h∈CS
c(h) = c(CS). Therefore we have v(g) = c(S).

Definition 21. Given a metabolic graph with intakes, the vector φ̄ represents the

intake flows to each node, i.e. φ̄i = fh(v0,vi) if vi is an intake node and φ̄i = 0 otherwise.

Proposition 36. Given a system satisfying (H2), fix an x ∈ (R+)n and intake flow

vector φ̄ with strictly positive entries. There exists f ∈ (R+)m in the null space of

S(x) if and only if for each intake there exists a path to an excretion.

Proof. Consider the maximum flow problem on the metabolic graph G, where intake

edges hI have capacity φ̄, and all other edges have infinite capacity. The feasible

flows ϕ for this network are in one-to-one correspondence with the equilibrium fluxes

f ∈ N (S(x)) ∩ (R+)m (where N (S(x)) indicates the kernel of the matrix S(x)) such

that fh ≤ φ̄ for all h ∈ hI . The correspondence is simply given by fh = ϕh for all
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h ∈ hI and fh = ϕh/Fh(X) for all h = (X, Y ) ∈ H \ hI .

If for all h ∈ hI there is a path to an excretion, then the minimum cut is the collection

of all edges h ∈ hI . The maximum flow ϕ∗ then satisfies ϕ∗(hI) = φ̄, thus also ensuring

the existence of an equilibrium flux f ∗ satisfying the same property.

If for some h ∈ hI there is no path to an excretion, then all feasible flows ϕ satisfy

ϕh = 0, and hence all equilibrium fluxes f ∗ satisfy f ∗h = 0 which contradicts the

assumption.

1 2

3

Figure 4.4: In this metabolic graph node 2 acts as an inhibitor to an edge leaving itself.

In [92] several Propositions guarantee boundedness of solutions and no periodic oscil-

lation. Specifically, the main results are: (1) Trajectories are bounded if and only if

there exists an equilibrium with positive entries; (2) If trajectories are bounded, then

they approach an equilibrium set for t → ∞. These conclusions are also true under

assumption (H1) for simple graphs, but not under assumption (H2) for metabolic

graphs.

We start providing a counterexample via a small system of three nodes and one in-

hibitor, see Figure4.4. We assume (H2) to hold with F (xv) = xv for all nodes v,

K2(x2) =


1
3
((x− 6)2 + 5) x ≤ 6

5
3

6 < x,
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and stoichiometric matrix given by

S =


−x1 0 x2 0

x1 −x2 ·K2(x2) −x2 x3

0 x2 ·K2(x2) 0 −x3

 ,

with flux vector f = [1, 3, 3, 2]. The structure is visualized in Figure 4.4. This example

will admit an oscillatory solution because x2 ·K2(x2) is not monotone increasing and

has a negative slope for 1
3
(12 −

√
21) < x2 <

1
3
(12 +

√
21). The example reduces to

the example given in Remark 2 of [92], where further details can be found.

Under assumption (H1) we have several additional conditions which relate to existence

and uniqueness of equilibria. These results again depend on the structure of the

network as well as an additional constraint on the functions Fh. Adapted from [92,

Theorems 4 and 5] these are: (1) There exists an equilibrium with positive entries

for constant intakes if and only if for all v ∈ V there is a path to X such that all

edges in the path have limxv→∞He(xv) = +∞; (2) If there exists an equilibrium with

positive entries, and all v ∈ V connect to J , then the equilibrium is unique. Even if

we are able to relate the existence of equilibria to network structure via Proposition

34 and 36), uniqueness of equilibria may fail without further assumption. Moreover,

computation of equilibria is highly nontrivial. Indeed, for a simple graph with a single

enhancer or inhibitor, we can write the dynamics as follows

ẋ = J1(f)η(x) + J2(f)k(x) + φ (4.10)

where J1 is the Jacobian matrix without the edges affected by inhibitor/enhancer, J2

is a matrix with the edges affected by inhibitor/enhancer, ηi(x) = Fvi(xvi), φi = f(v0,vi)

if (v0, vi) ∈ E, and φi = 0 otherwise, and ki(x) = Kvj(xvj) · Fvi(xvi) if vj acts on an

edge starting from vi. If another node acts as an inhibitor, as it happens for the ad-
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dition of drug to the system, the size of J1, J2 would be adjusted accordingly. Clearly

(4.10) in general does not have a unique solution and the computation of solutions

can not be done analytically.

4.4.1 Exploring the space of equilibria with inhibitors and en-

hancers

In this Section we further explore the problem of uniqueness and stability of equilibria

for networks with enhancers and inhibitors. First, we provide an example of non-

uniqueness and a condition to ensure uniqueness. Let us define two classes of systems:

Class A. Enhancers and inhibitors act in cascade, see Figure 4.5 top.

Class B. Enhancers and inhibitors act in parallel, see Figure 4.5 bottom.

1

2

3

4

5

Class A

f3 f5

f4

f1

f2

f7

f6

1

2

3

4

5

Class B

f3 f5

f4

f1

f2

f7

f6

Figure 4.5: Two networks with inhibitors and enhancers. Class A (top): inhibitor/enhancers
behave sequentially: node 1 affects downstream f4 and so on. Class B (bottom), inhibitors/enhancers
act in parallel.

To precisely define Class A and Class B networks let us first define an uberpath and
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strictly upstream on a metabolic graph G = (V,H,U ,ΨH,ΨU).

Definition 22. An uber-path is a sequence of nodes (vk1 , . . . , vkm) such that for every

i = 1, . . . ,m−1 there is an hyperedge (X, Y ) ∈ H for which one of the following holds:

1) vki ∈ X, vki+1
∈ Y ; 2) (vki , (X, Y )) ∈ U , vki+1

∈ X ∪ Y ; 3) (vki+1
, (X, Y )) ∈ U ,

vki ∈ X ∪ Y .

Definition 23. A node v0 is upstream of node v1 if there exists a hyperpath from v0

to v1. A node v0 is strictly upstream of node v1 if v0 is upstream of v1 and there is

no uberpath from v1 to v0.

Definition 24. A network is called a Class A if: 1) there exists a sequence of en-

hancers or inhibitors (vk1 , . . . , vkm) such that vki is strictly upstream of vkj for all

i < j; 2) all enhancers (and inhibitors) are strictly upstream of nodes connected to

hyperedges that they enhance (inhibit). Precisely, part 2. means if there exists e/i-

uberedge u = (vj, h
∗) with h∗ = (X, Y ) then vj must be strictly upstream of every

node v ∈ X ∪ Y .

Networks that are not Class A are called Class B networks.

The conditions of Class A allow the equilibrium state of v1 ∈ I to be determined

based on the inflow and outflow for v1. The magnitude of the edge affected by v1

at equilibrium state can then be calculated. This will allow v1 to be determined

at equilibrium. Class A networks allow the equilibrium states of all enhancers or

inhibitors to be calculated this way, which can determine all fluxes (even those affected

by uberedges) in the system. Once all fluxes are determined, then the steady state

of every node in the network can be calculated for this a unique steady state. This is

shown in next:

Proposition 37. For a Class A network with a given flux, if there exists an equi-

librium with positive entries, and all v ∈ V connect to J , then the equilibrium is

unique.
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Proof. Let G be a Class A metabolic graph. Then there exists a sequence of n

enhancers or inhibitors (vk1 , . . . , vkm) ⊂ V with vki is strictly upstream of vki+1
, and

therefore all nodes upstream of vk1 are unaffected by enhanced edges. It follows that

xk1 has a unique steady state determined by fluxes corresponding to incoming and

outgoing edges. According to (H2):

ẋk1 =
∑

h∈Γin(vk1 )

Ψin
h (vk1)Fh(x)fh −

∑
h∈Γout(vk1 )

Ψout
h (vk1)Fh(x)fh. (4.11)

where we used the notation of Definition 17. If for all (X, Y ) ∈ Γin we have X ⊂ I

then for all vi ∈ X we can write

ẋi = fj0−
∑

h∈Γout(vk1 ) Ψout
h (vi)Fh(x)fh. This determines the steady state for xi, hence

all steady state quantities in equation (4.11) are known and the unique steady state

of xk1 is determined. The same can be obtained by recursion if the nodes vi are

connected to I by some path with hyperedges not affected by enhancers or inhibitors,

which is always the case because vk1 is the first node acting as enhancer or inhibitor.

Finally the value of xk1 is determined.

Similarly, vk2 may be the terminal node, or initial node for some edges that are not

affected by inhibitors or enhancers except possibly vk1 , for which the value of xk1 has

been determined. Denote the steady state value of xk1 as x̄k1 According to (H2),

either

ẋk2 =
∑

h∈Γin(vk2 ) Ψin
h (vk2)Fh(x)fh −

∑
h∈Γout(vk2 ) Ψout

h (vk2)Fh(x)fh or

ẋk2 =
∑

h∈Γin(vk2 ) Ψin
h (vk2)Fh(x)K(x̄k1)fh−

∑
h∈Γout(vk2 ) Ψout

h (vk2)Fh(x)K(x̄k1)fh, with

enhancer terms K(x̄k1) inserted. Therefore the value of xk2 is also determined.

By recursion, we can determine the value of all enhancers and inhibitors nodes, and

therefore, all enhanced or inhibited fluxes are determined.Finally we can determine

uniquely the value of all metabolites and fluxes.

Class B networks are not expected to have a unique equilibrium. For instance the
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network of Figure 4.5 bottom with Fi,h(xi) = xi
1+xi

andKi,h(xi) = 1
1+xi

has two possible

equilibria with values for x2 given by f3 x1
f1 (1+x1)

−1 and f2 (1+x1)
f4−f2 (1+x1)

. Choosing f{i=1,...,7} =

{1, 1, 12, 2, 2, 2, 2} the two equilibria have positive entries: x̃ = {1
2
, 3, 1, 1, 1} and

x̄ = {1
3
, 2, 1, 1, 1}, see Fig 4.6.
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Figure 4.6: Simulations for the class B system in Fig. 4.5. Top: Starting near the unstable
equilibrium x̃, the system tends to the stable one x̄. Bottom: Basin of attraction to x̄ in x1 − x2
space (marked with “X”) with filled blue circles for convergent initial data and hollow black circles
for divergent ones.

4.5 Modeling Tuberculosis with metabolic graphs

Here we focus on the synthesis of antibiotic network of MTB. Such a network is shown

in Figure 4.7 including the action of a set of antibiotics commonly used in cure of

tuberculosis. The action of drugs on edges is solely due to regulation of the enzyme for

the corresponding reaction. We see that a group of three drugs regulates an enzyme

for a reaction from node v1 to node v10, f(v1,v10) . In this case treatment with any

single drug (Amikacin, Capreomycin, or Clofazimine) will effect a single gene called

“Rv1475c.” Amikacin and Capreomycin will upregulate the gene, and Clofazimine will

down regulate the gene. For edge f(v3,v2), Clofazimine downregulates two genes, both

acting as enzymes for the corresponding reaction. For the excretion from node v2 out

of the subnetwork, four drugs (Amikacin, Clofazimine, Ethionamide, and Isoniasid)

all upregulate the gene Rv0211. The combination of downregulating f(v3,v2), and

upregulating the excretion from v2 will serve to lower the metabolite represented by
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Figure 4.7: A subnetwork of the MTB synthesis of antibiotics. The drugs written
show how they affect reactions (+ enhances the enzyme, - inhibits)

v2, namely Oxalacetic acid (chemical formula: C4H4O5). Figure 4.8 compares two

regimens with Rifapentine, showing more effectiveness of thee daily versus the weekly

treatment on the biosynthesis of antibiotic network.

The dynamics of the biosynthesis of antibiotics network (Fig. 4.7) can be written as

(1.3), where S : R→M10×28 is a sparse matrix.



−x1 x10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −x1 C1 −x1 x2 0 0 0 0

0 0 x3 −x2 −x2 C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x1 −x2 0 0 0 0

0 0 −x3 x2 0 0 0 0 0 0 −x3 x4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 x3 −x4 0 0 0 0 x5 −x4 0 0 0 0 0 0 0 0 C3 −x4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −x5 x6 −x5 x4 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 x7 −x6 x5 −x6 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 x8 −x7 0 0 0 0 −x7 x6 0 0 0 0 0 0 0 0 0 0 C4 −x7 0 0

0 0 0 0 0 0 −x8 x7 x9 −x8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −x9 x8 0 0 0 0 0 0 0 0 −x9 x10 0 0 0 0 0 0 0 0

x1 −x10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x9 −x10 0 0 0 0 0 0 0 0



(4.12)

We show a simulation of the MTB biosynthesis of antibiotics network (Figure 4.7)

to illustrate what can happen. Figure 4.8 will converge to different periodic solutions

based on the dosage chosen. The left hand side of Figure 4.8 shows the evolution

with an hourly treatment of Rifapentine, and the right hand side shows the evolution

with a weekly treatment. Note that most metabolites in the system converge to the
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same equilibrium value, however the metabolite labeled “node 6” has oscillations that

are centered around a very different value depending on dosage.
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Figure 4.8: Evolution of MTB biosynthesis of antibiotics. The first 200 hours are without drug,
then results with (left) daily one hour treatment with Rifapentine and (right) weekly treatment at
a higher dose.
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4.6 Appendix: Definitions for general metabolic uber-

graphs

For completeness, this section constructs a more general version of a directed hy-

pergraph, weighted directed hypergraph, and metabolic graph by building upon the

classical notions of a graph and hypergraph. For the following definitions, V is a set

of nodes, and P(S) is the power set of a set S.

Definition 25. A directed graph is a pair G = (V,E) where E is the set of ordered

pairs such as (vi, vj) with vi, vj ∈ V which indicates a directed edge, starting from

the initial node vi and pointing to the terminal node vj.

Definition 26. A weighted directed hyperedge is a couple H 3 h = (X, Y ) with

X ∈ P(V ) or X = {v0}, Y ∈ P(V ∪ {vn+1}), and corresponding weights Ψh : h 7→

(Ψout
h ,Ψin

h ) where Ψout
h : X 7→ R+ and Ψin

h : Y 7→ R+.

Definition 27. A weighted directed hypergraphG is an ordered tripletG = (V,H,ΨH)

where ΨH denotes the set of functions assigning weights to hyperedges, i.e. ΨH =

{Ψh : h ∈ H}.

As shown in Section 4.3, weighted directed hypergraphs are the right mathematical

object to describe biochemical reactions involving multiple compounds. Interestingly,

while the theory of (not directed) hypergraphs seems well developed [18, 138], directed

hypergraphs have been less explored in the literature.

We are now ready to introduce a general definition of ubergraphs. The concept

was introduced in [68], but the used definition appears to allow some pathological

examples, thus we provide an alternative definition below.

First, given a finite set of nodes V = {v1, . . . , vn} define recursively Pk as:

Pk = P

(
k−1⋃
i=0

Pi

)
\ {∅}, P0 = V (4.13)
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Definition 28. A depth-k ubergraph U is a k + 1-tuple G = (U0 = V, U1, . . . , Uk)

where Ui ⊆ Pi is a finite set of uberedges and Ui ⊂ P
(⋃k−1

i=0 Ui

)
\ {∅}. We call an

element of Ui a depth-i uberedge.

Let us provide some details on such definition. First notice that a depth-1 Uber-

graph is a classical hypergraph. Indeed in this case P1 = P (V )\{∅} which is precisely

the definition of the set of hyperedges.

In [68] the definition was slightly different allowing ∅ as an hyperedge. However,

this give rise to the problem of the meaning in models of an empty heperedge. The

problem becomes more dramatic for general depth k ubergraphs. Another difference

is that we force Ui to be subset of P
(⋃k−1

i=0 Ui

)
\ {∅}. If this is not the case, then we

may have depth-k uberedges which connect uberedges of lower depths, without them

being included in the ubergraph, see the following discussion for depth-2 ubergraphs.

Depth-2 ubergraphs contains more general uberedges than hypergraphs. More pre-

cisely, G = (V, U1, U2), where U1 is a set of hyperedges and U2 ⊂ P (V ∩ U1) \ {∅}.

Therefore u ∈ U2 is a set {vk1 , . . . , vkm , hi1,, . . . , hip} where vkl ∈ V and hil ∈ U1.

A particular case would be an uberedge {v, h}, v ∈ V , h ∈ U2, which could model

an enhancer or inhibitor action of metabolite xv on the reaction represented by the

hyperedge h. Let us remark again the importance of restricting the condition Ui ⊂ Pi

to the more stringent we use. If we impose only U2 ⊂ P2 then we could allow ubereges

of the type {v, h} with h /∈ U1, thus allowing metabolites to affect reactions which

are not in the model.

Example 7. Given a set of three nodes V = {v1, v2, v3} we want to explore depth-2

ubergraphs. First P1 = P (V ) \ {∅} thus

P1 = {{v1}, {v2}, {v3}, {v1, v2}, {v1, v3}, {v2, v3}, {v1, v2, v3}}.

In other words P1 contains all loops around nodes vi, regular edges and the only



138

possible (strict) hyperedge {v1, v2, v3}. U1 is any subset of P1. The cardinality of P1

is 23 − 1 = 7, since it is the power set of V excluding the empty set.

P2 = P (V ∪ P1)\{∅} contains all ubereges {vk1 , . . . , vkm , hi1,, . . . , hip}, with 0 ≤ m ≤

3, 0 ≤ p ≤ 3, m + p ≥ 1, vkl ∈ V and hil ∈ P1. P2, being a power set excluding the

empty set, has cardinality 23+23−1−1 = 210−1 = 1023. Notice that there are objects

not easily interpreted in P2, for instance the uberedge {{v1}}, that is the uberedge

which loops over the loop over v1.

Finally, the possible ubergraphs on three nodes are given by a triplet V, U1, U2. The

possible choices of U1 are among all subsets of P1 thus we do have 27 = 128. The

possible choices for U2, not taking into account U1, are given by 2|P2| = 21023 (where

we used | · | to indicate the cardinality of a set). However, as explained above, the

admissible U2 may be chosen only as subsets of P (V ∪ U1) \ {∅} thus the possible

choices are 223+|U1|−1.

As shown above, the set of ubergraphs can be extremely complex and of high

cardinality. Moreover, not all uberedges can be easily interpreted. Thus on one side

we would like to restrict the definition to allows only objects with modeling meaning,

but on the other side a further generalization is necessary to allow directed hper and

uberedges, weights and signs. This is achieved by next definition.

Definition 29. A depth-k metabolic graph is an ubergraph with (nontrivial) directed

weighted hyperedges and (nontrivial) directed signed uberedges of depth greater than

or equal to 2. More precisely it is a k + 3-tuple G = (V,H,ΨH, U2, . . . , Uk,ΨU) such

that the following holds: V is a finite set; H is the set of directed hyperedges (X, Y ),

X, Y ⊂ V , X, Y 6= ∅; ΨH = {Ψout
h ,Ψin

h }h∈H , Ψout
h : X → R+, Ψin

h : Y → R+, is the set

of weights; for j = 2, . . . , k, Uj = (X, Y ) with X, Y ⊂ P
(⋃j−1

i=0 Ui

)
\ {∅}, X, Y 6= ∅;

ΨU = {Ψj}2≤j≤k with Ψj : Uj → {−1,+1}.

Example 8. A depth-2 metabolic graph includes directed weighted hyperedges and

signed uberedges of the type (X, Y ) with X, Y containing nodes and hyperedges.
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Such a type of uberedge may represent the enhancer or inhibitor action of a set of

metabolites and reactions (those in X) over another set of metabolites and reactions

(those in Y ).

A depth-3 metabolic graph may also include the action of a depth-2 uberedge over

another set of depth-2 ubderedges. This type of edges may represent the effect of a

part of a metabolic network over another one by molecular mechanisms which are not

known.



Chapter 5

Testing four-drug combinations of

tuberculosis treatment using

microarray data and simulations via

LIFE.

5.1 Introduction

The bacterium Mycobacterium tuberculosis (brifly MTB) infects a large portion of

the population. The World Health Organization (briefly WHO) estimates that in

1999 there were 8.4 million new cases, up from 8 million in 1997. More recently, the

WHO also produced a list of prioritization of pathogens to guide drug discovery which

focuses on the risks the population faces from drug resistent bacterial infections with

an emphasis on TB [105].

Patients with TB are usually prescribed multiple antibiotics simultaneously. The

standard treatment for tuberculosis (briefly TB) commonly combines up to four drugs.

There are many antibiotics to choose from, and new drugs are currently being de-

140
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veloped. Determining the optimal set of dosages and drugs is costly. To test all

possibilities would require too much time and resources. Therefore, techniques to es-

timate the potential of a drug combination with minimal time and effort are valuable

in order to indicate which combinations are most justified for further investigation.

Such techniques as diagonal measurement of n-way drug interactions (briefly Dia-

MOND) [28] which serves to expedite the information given by a checkerboard assay,

Response Surface Methodology (briefly RSM) [76] which is a set of mathematical

and statistical tools that can be used to determine functional relationships between

drugs, and Central Composite Design (Briefly CCD) [8] which is used to extrapolate

chemical properties from a small number of precisely chosen experiments.

MTB has a refined gene regulatory network that allows for changes in the state

of its metabolism as a consequence of environmental or internal chemical conditions

[51, 109, 10]. This dynamic metabolic network causes challenges in modeling MTB

metabolism which leads to less predictable drug effects, impeding the development of

new TB treatment. Another aspect of TB infection that inhibits attempts to treat

infection is the formation of a caseum, a spheroid structure of necrotic cells that

drugs only partially penetrate [123, 127]. This work aims to extend models for drug

interactions by capturing the effect on more complex chemical reactions described

by hyperedges (reactions between more than two metabolites). Our main results are

1.ranking potential TB treatment according to microarray data of individual drugs

on MTB gene expression, and 2.to validate our techniques for modeling chemical

reactions as hyperedges and drug interactions.

The remainder of this paper is organized as follows: we characterize the microarray

data set that we use to perform analyses, and explain how we filter out significant

drug effects from the data. Approaches of quantifying the drug action on a network

are introduced, and 4-drug combinations are ranked accordingly. Next we explain

how chemical reactions between more than two metabolites are implemented. Then,
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the target reactions of the metabolic network per drug are shown. Moreover, the

dynamics of these reactions in the presence of drug is defined. Using pharmacokinetic

data to guide our choice of simulation parameters, example simulations are presented

and discussed.

5.2 Methods

5.2.1 Microarray Datasets

Microarray data showing the gene expression levels of MTB (strain H37Rv) genes

under different drug treatments was collected from NCBI’s Gene Expression Omnibus

(GEO) [43]. This data was contributed from the work [16] and is a transcriptional

profiling of MTB performed using 430 whole-genome microarrays to measure the

effects of 75 different drugs, drug combinations, or different growth conditions at

various times relative to a sample of logarithmically growing MTB. This data was

downloaded from GEO accession GSE1642.

The microarray gene expression data found in [16] represents the response of MTB

genes to treatment of a single drug after 6 hours. The value given in the dataset

represents the log base 2 transform of the gene expression values. For each trial there

are 4320 individual wells which contain sequences encoding genes or hypothetical

proteins.

Our focus is on 13 of the 75 reported drugs. These 13 drugs were chosen based

on begin part of PK studies of interest as well as being part of clinical trials. [].

Additionally each of the MTB microarray samples chosen to analyze were taken af-

ter 6 hours of drug exposure. Eleven of these have PK studies which are available,

specifically, Amikacin, Capreomycin, Clofazimine, Ethambutol (EMB), Ethionamide

(ETH), Isoniazid (INH), Levofloxacin, Pyrazinamide (PZA), Pretomanid, Rifapen-

tine, and Rifampicin. The remaining two drugs, Streptomycin and Ofloxacin were
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chosen because of their frequent use in clinical studies. For each drug there are at

least two trials performed. Many of the drugs also have trials at 2 separate doses.

Complete information about the drug trials and dosages can be seen in Table 5.1.

Drug MIC Dose 1 # of trials Dose 2 # of trials Dose 3 # of trials
Amikacin 1ug/mL 5ug/mL 2 10ug/mL 1
Capreomycin 50ug/ml 5ug/mL 2 10ug/mL 2
Clofazimine 1.25ug/ml 10ug/mL 1 13ug/mL 2
EMB 0.6ug/ml 10ug/mL 2
ETH 0.5ug/ml 12ug/mL 2 40ug/mL 2
INH 0.02ug/ml 0.2ug/mL 1 0.4ug/mL 2
Levofloxacin 1ug/ml 10ug/mL 2
PZA 10ug/ml 0.12mg/mL 2 1.2mg/mL 2
Pretomanid 0.4ug/ml 0.2ug/mL 2 0.4ug/mL 4 2ug/mL 2
Rifapentine N.D. 0.1ug/mL 2 0.5ug/mL 2
Rifampicin 0.4ug/ml 0.2ug/mL 2
Streptomycin 1ug/ml 2ug/mL 2 5ug/mL 2
Ofloxacin 1ug/ml 5ug/mL 2 10ug/mL 2
Capreomycin 2mg/mL 4mg/mL 1 8mg/mL 1
ETH 1mg/mL 2mg/mL 1 4mg/mL 1
INH 1.5ug/mL 3ug/mL 2 12ug/mL 1 24ug/mL 1
Moxifloxacin 0.4ug/mL 0.8ug/mL 1 1.6ug/mL 1 3.2ug/mL 1
Pretomanid 0.15ug/mL 0.3ug/mL 1 0.6ug/mL 1 1.2ug/mL 1
Rifampicin 0.1ug/mL 0.2ug/mL 1 0.4ug/mL 1
Streptomycin 1mg/mL 2mg/mL 2 4mg/mL 2 8mg/mL 1

Table 5.1: Table detailing dosage information and number of trials for various drug
treatments. The rows in white correspond with 6 hour trials from [16] while the
shaded rows in cyan correspond with 16 hour trials from [91]. The MIC given is the
minimum inhibition concentration reported in the paper [16]or [91].

Another source of microarray data was found in [91], downloaded from GEO ac-

cession GSE71200. In this data bacteria were expossed for 16 hours to concentrations

of each drug, at varying multiples of the drug’s minimum inhibitory concentration.

This dataset considered 9 drugs, 6 of which were also considered in [16]. These 6

drugs (Capreomycin, ETH, INH, Pretomanid, Rifampicin, Streptomycin) in addition

to Moxifloxacin were analyzed. Although there is a large overlap in genes analyzed,

the two datasets are not identical even when the same drug is considered. For each

drug trial in [91], there are 5250 wells, as oppposed to only 4320 in [16]. Because

of the differences in process of the two datasets, they are not directly comparable.

Therefore, we show our results of these datasets independent of each other throughout
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this work.

5.2.2 Filtering of Data

To analyze the consistency of a given drug’s effect on a gene in the microarray data,

the variability between different trials of the same drug were measured using the L1

norm. Taking the L1 norm between intra-drug trials confirmed that the microarray

data contains a lot of variability. Several filtering methods were constructed in order

to identify genes that had both a consistent and significant response to drug trials

which includes the Significance Analysys of Microarray (briefly SAM) technique for

significance [136]. The SAM technique seeks to further limit one’s false discover rate

for significant genes.

In order to determine significance, a threshold of ±1 was chosen. This threshold

corresponds with a gene having two times (or one half) its expression when untreated.

One method to consider whether a gene has significant response to a given drug is

if there was a consensus in every trial that the gene response was greater than the

threshold. Trials for which there was no data were ignored when considering the

consensus of trials for a drug, however if the trials lacking data for a gene were

greater than 50% of the trials with that drug, the gene was not considered significant

despite the remaining trials having a consensus above ±1. For the data from [16], out

of the 4320 microarray wells, there were 1165 that had a consensus of trials greater

than ±1 for at least one drug.

Significant genes could alternately be determined by the average response to a

drug. Similar to the consensus fold change, a threshold of ±1 was used such that

if a the gene responses to trials of one drug had a mean response greater than the

threshold it is considered significant.
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5.2.3 Significance Analysis of Microarrays

Another method to determine the consistencey and significance of a given drug’s ef-

fect is a method called Significance Analysis of Microarrays (briefly SAM) [136]. This

method uses the variation of a single gene between multiple trials to correct a signif-

icance estimate. Thus, the method lowers the false discovery rate while maintaining

a comparable level of genes identified as significant to the fold change method.

A brief look at the number of significant genes found under each method is shown

in Table 5.2. Differences in the methods are readily apparent, in general the Consensus

Significance is most restrictive with SAM having the highest number of significant

genes. The notable exceptions to this rule are drugs which had only two trials;

Rifampicin, EMB, and Levofloxacin. We chose to use SAM method to determine

significant genes, except for drugs which only had two trials, for which consensus

would be used. Among the SAM and Consensus significant genes there were several

cases for which the average mean fold change was near zero, despite being classified

as significant from the other methods. This is particularly concerning when using the

Consensus method, as it suggests that all of the trials were outside the ±1, however,

some trials were < −1 and others > +1. For the SAM method it may suggest that

although the gene had greater than expected expression, the overall effect was still

small. Because of this only genes which had a mean effect outside the threshold in

and were considered significant in another method were classified significant. The

gene sets used for each drug are shown in red in Table 5.2. For the remaining of the

paper when the term significant genes is used, it will refer to this set unless otherwise

stated.

Figure 5.1 shows the significant genes for these 13 drugs. For the data from [91],

there were 918 out of 5250 wells that were significant for at least one drug. Figure

5.2 shows the significant genes for these seven drugs.
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Drug Consensus Mean SAM Consensus & Mean SAM & Mean
PZA 43 160 647 43 47
EMB 48 63 6 46 0
Rifampicin 659 959 176 650 75
ETH 48 94 606 48 35
Amikacin 241 481 916 240 168
INH 65 105 625 64 36
Capreomycin 224 603 2236 224 361
Levofloxacin 68 109 2 68 0
Rifapentine 24 157 372 23 26
Clofazimine 251 388 858 251 133
Pretomanid 95 712 2485 95 499
Ofloxacin 72 129 1313 72 69
Streptomycin 23 187 1134 23 80

Table 5.2: A summary of the number of significant genes identified by various methods
is shown for a given drug. The highlighted cells indicate which method was chosen
for use in simulations.
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Figure 5.1: Plot of average value of significant gene expressions for the 13 drugs from [16]. The
colors/shapes indicate different drugs.
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Figure 5.2: Plot of average value of significant gene expressions for the 7 drugs in the data from
[91]. The colors/shapes indicate different drugs.

The simulations that we show later require a determination of which genes will

be actually affected by treatment, and we use the fourth method in the table: “mean

fold change > 1 & SAM.” EMB, Rifampicin, and levofloxacin have two microarray

experiments(because there are only two data points per drug per gene, SAM identifies

very few genes as significant).

The microarray data we analyze has a different number of microarray experiments

for each drug, shown in Table 5.1. The boshoff data includes three trials for Amikacin

(two low dose experiments, and one high), INH, and Clofazimine (two high dose

experiments, and one low).

All other drugs have at least two trials for each of two doses, additionally Pre-

tomanid has three doses (two trials for the low dose, four for medium, and two for

high).
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5.2.4 Pathway Analysis

Using Kyoto Encyclopedia of Genes and Genomes (KEGG) [73, 70, 72] allows the

linking between the genes and MTB metabolic pathways. The metabolic pathways in

KEGG are networks which can be represented by directed graphs, where the nodes

represent metabolites and the edges represent metabolic reactions. This was used to

identify which significant genes directly affect enzymes involved in reactions in MTB

metabolic pathways.

There are many genes which are not directly associated with any pathway are

likely not involved with enzyme creation or protein translation, but other processes

such as gene regulation. Genes may also be associated to a particular pathway, but

the association has yet to be determined, or is unknown to KEGG. Another case is

that of RNA sequences that code hypothetical proteins in MTB: of the 1165 RNA

sequences in the 6 hour drug tests only 1063 correspond with known MTB genes.

Similarly only 792 of the 918 RNA sequences of the 16 hour drug tests were associated

with known genes. Of these genes, only 398 (273) of them from [16] (from [91])

data were associated with a pathway in KEGG, these genes mapped to pathways is

shown in Figure 5.3 and 5.4. Additional work, perhaps analyzing the gene regulatory

network, is required to more precisely determine the function of genes not involved

with pathways.

Analyzing significantly affected genes and their corresponding pathways revealed

which pathways were targets regarding treatment. These pathways could be governing

mechanisms restricted by the drug, as well as pathways detailing the response of MTB

to the drugs.

5.2.5 Simulations

Linear-In-Flux-Expression is an extention of flux balance analysis which allows non-

linearities in metabolites while preserving linearity with respect to the flux. Dynamics
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Figure 5.3: This image shows the mapping of the 398 genes to the metabolic pathways.
Downregulated genes are shown in green downward facing triangles, upregulated genes
are shown in red upward facing triangles and genes that were upregulated by some
drugs and downregulated by others are shown as blue circles.

for a typical flux balance analysis system are defined as:

ẋ = S(f)ẋ. (5.1)

where x ∈ Rn is the vector of metabolite levels, f ∈ Rm is the vector of fluxes

and S is an n × n matrix called the stoichiometric matrix. Eq (5.2.5) is linear in

x. Commonly the dynamics of a biochemical system are non linear with respect

to x, such as Michaelis-Menten type kinetics, but the linearity with respect to f is

essentially part of the definition of flux.

LIFE, and other methods such as flux balance analysis rely on representing the

metabolic network as a directed graph, where edges represent biochemical reaction.

Recently in [98] features were added to LIFE systems in order for the model to be

more representative of notable biological features.
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Figure 5.4: This image shows the mapping of the 273 genes to the metabolic pathways.
Downregulated genes are shown in red downward facing triangles, upregulated genes
are shown in green upward facing triangles and genes that were upregulated by some
drugs and downregulated by others are shown as blue circles.

1. Most networks include inflows and outflows (also called intakes and excretions in

LIFE methodology) to the external environment or to other networks. Virtual nodes

to represent such flow must be included or, alternatively, one must include directed

edges with a node only on one end.

2. Some biochemical reactions necessarily involve more than two metabolites, e.g.

when two or more compounds interact to form a set of other compounds. Therefore

edges with multiple entering and exiting nodes must be included.

3. The action of enzymes, genes and drugs often times affect a specific reaction acting

as enhancer or inhibitors. Such actions can be represented by edges joining a node to

another edge.

Features 2 and 3 are represented in Figure 5.5.
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Figure 5.5: The dipicted features were added to LIFE dynamics in order to include
important features os biochemical reactions. Left: A hyperedge h which connects
three reactants to two products in a metabolic reaction. Each reactant and product
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are called “uberedges” and connect a metabolite or drug to an edge e.

5.2.6 Drug Dosage

Dosage information from a number of papers was used [95, 135, 131, 111, 46, 139,

104, 9, 146, 54]. These studies listed the halflife of the drugs in the bloodstream, as

well as the maximum amount found after a dose was given. When two studies gave

differing values, we used the average of the two values. Several of these maximum

concentrations were less than the dosages given in [16]. In each of these cases the

maximum concentration was still larger than the minimum inhibition concentration

reported in [16], we also note that for these drugs the dosage in [16] was much larger

than the minimum inhibition concentration. Because of this we assume that if MTB

was treated with the concentration of drug in the bloodstream it would have a similar

or greater effect than the concentrations used by [16]. Another issue with the dosages

found in the bloodstream and the dosages used in [16] is that it is not always clear

how much drug is able to penetrate into the MTB granulomas. Many models have

been created to address this [83, 29, 33, 118, 130, 90, 139], however, in our simulations

it is assumed that the entire concentration in the bloodstream will reach MTB. We

recognize that the amount of drug in the bloodstream and the amount which reaches
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MTB are different, but leave this for further exploration.

5.2.7 Central Carbon Metabolism in Mycobacterium tubercu-

losis

We utilize an example metabolic network from [128] to test our implementation of

hyperedges, and drug effects and compare with four drug rankings from section 5.3.2.

Recall the Metabolic network shown in Figure 4.2. This is the central carbon

metabolism of MTB derived from an infection in mouse. The network shown is a

metabolic network of MTB in a state of growing bacilli. This network depicts carbon

from lipid and sugar catabolism used by MTB for generating energy and biosynthetic

precurors required for growth. This network is of particular interest due the switching

that occurs whether MTB is in growing or non-growing state. Genes required for using

fatty acids as opposed to glucose are upregulated when MTB is in the non-growing

state, and the knowledge of how drugs affect this pathway could be beneficial for

halting MTB growth.

5.3 Results

5.3.1 Drug Combinations

Similarity Scores

It is important to consider not only the effect of a single drug, but how they work in

combination with each other. In cases where two drugs target the same genes, using

them in combination would be redundant []. In order to eliminate redundant gene

combinations the common significant genes between drugs and quantitative effect

on gene expression were analyzed. The common significant genes shows that drugs

have similar targets, although the effect may be very different. A table of overlap
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percentage is shown in Table 5.3. The total regulation effect gives a score on how

similarly the two drugs effect genes. This effect is achieved through the calculation

of a normalized L1 score between the significant genes of both drugs.
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PZA 1.00 0.02 0.17 0 0.29 0 0.24 0.05 0 0.22 0.07 0.05 0.05
EMB 0.02 1.00 0.15 0.23 0.21 0.19 0.13 0 0.02 0.08 0.06 0.02 0.04
Rifampicin 0.01 0.01 1.00 0.03 0.15 0.05 0.12 0.04 0.04 0.09 0.06 0.03 0.02
ETH 0 0.23 0.46 1.00 0.33 0.79 0.25 0.04 0.02 0.21 0.13 0.08 0.02
Amikacin 0.05 0.04 0.41 0.07 1.00 0.10 0.53 0.05 0.03 0.15 0.09 0.05 0.06
INH 0 0.14 0.51 0.58 0.37 1.00 0.20 0.03 0.03 0.14 0.14 0.09 0.02
Capreomycin 0.05 0.03 0.34 0.05 0.57 0.06 1.00 0.09 0.05 0.11 0.09 0.04 0.06
Levofloxacin 0.03 0 0.41 0.03 0.18 0.03 0.29 1.00 0.10 0.19 0.06 0.54 0.07
Rifapentine 0 0.04 0.96 0.04 0.33 0.08 0.46 0.29 1.00 0.17 0.08 0.04 0.29
Clofazimine 0.04 0.02 0.25 0.04 0.14 0.04 0.10 0.05 0.02 1.00 0.17 0.04 0.02
Pretomanid 0.03 0.03 0.38 0.06 0.23 0.10 0.20 0.04 0.02 0.46 1.00 0.02 0.02
Ofloxacin 0.03 0.01 0.28 0.06 0.17 0.08 0.11 0.51 0.01 0.14 0.03 1.00 0.04
Streptomycin 0.09 0.09 0.45 0.05 0.64 0.05 0.64 0.23 0.32 0.23 0.09 0.14 1.00

Table 5.3: Table showing the overlaping percentage of different drugs. Each row
shows the percentage of significant genes of that drug with the drugs of the column.
The yellow cells highlight more than 50% overlap, while the red cells highlight more
than 90% overlap. The green cells highlight the diagonal.

The number of common significant genes were plotted against a normalized L1

distance between the genes significant for either drug. A high L1 distance indicates

that the two drugs affect genes differently, while a low L1 distance indicates similar

effects. If the L1 distance is low, and the number of genes in common is high, this may

indicate that the drugs have a very similar effect. When considering drug regimens

it is important to consider how drugs will work in combination, and drugs that are

too similar should not be paired together.

Admissible Combinations

Our criteria for admissible combinations is as follows: when the normalized L1 dis-

tance between two drugs was less than 0.3 and more than 50% of the significant
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genes overlapped, drugs were considered to be similar drugs and avoided in drug

combination. Upon analysis of the drug data from [16], is was found that two drug

combinations, Levofloxacin with Ofloxacin and ETH with INH, met this criteria.

Another drug combination Rifapentine with Rifampicin, does not meet the criteria

because it does not have a low L1 distance, but over 95% of the genes affected by

Rifapentine were also affected by Rifampicin. This result is partly due to the fact

that Rifampicin has many more significant genes than Rifapentine, making it unre-

alistic to expect a low L1 distance. Because of the large overlap between these drugs,

Rifapentine and Rifampicin were also considered to be similar drugs. A near miss in

this criteria that could be considered in the future are the combination of Rifapentine

with Levofloxacin, which had an L1 distance of 0.2628, but share less than 30% of

their genes. Another near miss was Amikacin with Capreomycin, which share more

than 50% of significant genes but had an L1 distance of 0.3342.

Table 5.3 provides coverage information, however for a more comprehensive pair-

wise comparison between drugs, we observe the number of genes significantly affected

by the drugs as well as the L1-score of each drug’s affect. We plotted the drugs on

axes based on both pieces of information. The quadrants partitioning the plots clas-

sify pairs of drugs. For example, in the plot labeled “ETH” one can see that ETH

appears as a plotted point near (50,0). This reflects that ETH has 50 significant genes

in common with itself, and that the L1 distance d(ETH,ETH) is 0. It was indicated

that ETH and INH would not be prescribed together because they are very similar,

and this was corroborated by our similarity analysis; In the plot for ETH and INH

observe that the INH and ETH respectively are in the lower right, indicating that

they are similar. This is also clearly visible in Fig 5.6. Because INH and ETH are

in the lower right quadrant of the plot, these two drugs affect the same genes sig-

nificantly and in the same way (inhibition or promotion). In addition to disallowing

drugs that were too similar, the drugs Amikacin and Capreomycin were removed be-
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Figure 5.6: This plot shows the number of common significant genes vs the difference
in L1 score of the significant microarray data. Left shows the similarity of other drugs
to INH, while the right shows the similarity to ETH.

cause their primary treatment mode is injection. Table 5.4 summarizes the allowable

drug combinations.

This analysis was also performed for the dataset in [91]. There were two interesting

cases when considering similarity scores here. The first was was the pairing ETH

with INH. The L1 distance across significant genes was 0.2720, and over 50% of

the significant genes of INH are also significant genes of ETH, however only 42% of

the significant genes of ETH were also significant genes of INH. This is due to the

fact that there are more significant genes for ETH. Despite the discrepancy, ETH

with INH was deemed to be an inadmissible combination. The other case of note

is that of Streptomycin, which only had one gene which had consensus significance.

Because of the very low number of significant genes, the L1 distance and overlap with

Streptomycin doesn’t make for a good comparison.

5.3.2 Drug Ranking Results

After determining inadmissible drug pairings, all remaining 4-drug combinations were

ranked according to effect they had on MTB metabolic networks. This was done by
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Table 5.4: This table shows the admissible drug pairs. Cells that are green represent
an admissible combination, while red cells represent drugs that cannot appear in the
same combination treatment.

first establishing the top ten most affected MTB pathways when every drug was

considered. Using the top ten pathways considers only the pathways deemed most

important for a drug to limit. For each drug combination the total L1-score of the

affected genes were calculated for each pathway, then the ranking of the combination

was based on the sum of effect on the top ten pathways.

After the combination scores are calculated, the four drug regimen is ranked. Gen-

erating the bar graphs in Figure 5.7 we noticed that there was a minimal amount of

antagonism between the drugs that is not shown. Higher L1-scores favored combi-

nations with less antagonism, but also favored combinations with drugs that covered

many genes in significant pathways. We visually depict the total L1-score of combina-

tions, and indicate the breakdown of contributions from various drugs with segmented

bar graphs. Some drugs did show antagonism, where one drug in the 4-drug com-

bination affects a gene either positively or negatively, but a different drug in the
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combination had the opposite effect.
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Figure 5.7: 225 four-drug combinations were scored regarding the genes significantly
effected by drugs across the top ten significant metabolic pathways. This bar graph
shows the L1 score of each drug combination, and the contributions to the score from
each of the four drugs. Injectables such as Amikacin and Capreomycin were excluded.

To achieve this breakdown of contributions by each drug in the presence of antag-

onistic effects, we show the bar graph at the correct total hight (L1 score) and with

antagonism not explicitly shown, but instead all of the positive (negative) contribu-

tions for upregulation (downregulation) are rescaled to give the accurate total height

of the bars while maintaining a good estimate of contribution from each drug. For

example, the L1-scores in Figure 5.7, on average are 98% as large as they would be

when ignoring the antagonistic effects. The most dramatic case of this (PZA, Etham-

butol, Rifampicin, Isoniazid) is the new score is 91% of the score when ignoring the

antagonistic effects. Hence this breakdown given in the figures of contribution by

each drug is an appropriate estimate.

In Figure 5.7, the L1-scores of all significant genes in the top 10 pathways are
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summed to provide the total score, and this score is partitioned to observe the L1-

score contributions by each drug in the combination.

When filtering the microarray data by significant genes, a trend appeared that

rifampicin has the largest effect in combinations. This is consistent with the clinical

study of [14] which showed that many combinations with Rifampicin had culture neg-

ativity percentage of 85% after two months, while cultures without Rifampicin rarely

had above 50%. However we note that in [16], rifampicin had only two experiments

instead of three or four as with other drugs in the microarray data. Because of this

the Consensus significance was used for Rifampicin, which had a higher value than

for any other drug. When analyzing consensus genes from [91], rifampicin again had

the largest effect in combinations. This leads to the conclusion that rifampicin is an

important drug in treating TB, despite the discrepancy between consensus signifi-

cance and the SAM method. In the supplemental material of [14], they listed the

Beta regression coefficient for several individual drugs. Rifampicin had the strongest

effect, with a coefficient of 0.23. The next strongest effect was PZA, with a coefficient

of 0.1. Our rankings did show as large an effect for PZA as might be expected. Part

of this is due to the minimum fold change of ±1. As seen in Table 5.2 there are 647

genes of PZA shown to be significant by the SAM method, but only 47 of these had

a mean fold change of ±1.

5.3.3 Simulating drug combinations on central carbon metabolism

Six simulations are presented using the Carbon Metabolism network (mtu01200) from

KEGG. Four of these simulations were using data from the [16] dataset, while used

data from [91]. Using only genes which directly correspond to reactions in the Carbon

Metabolism network, the L1-scores of the 225 admissible drug combinations (15 for

[91]) were calculated. The combinations were ranked based on the L1-score for this

pathway and combinations were chosen to simulate such that results reflect a wide
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Figure 5.8: Carbon metabolism networks highlighting the metabolites that were af-
fected by the drug combinations Left: INH, Rifapentine, Levofloxacin, Clofazimine
and Right: Rifampicin, ETH, Levofloxacin, Pretomanid. The red nodes represent
metabolites which increased in mass, while green nodes decreased. Cyan lines repre-
sent intakes to the system while magenta represent excretions. Black edges represent
hyperedges. Green edges represent enhacned reactions. For the figure on the right,
the metabolite that increased the most was Fumarate, while the metabolite that
decreased the most was Carbon dioxide.

range of L1-scores. These combinations are: EMB, Rifapentine, ETH, Lefloxacin with

a score of 6.70, INH, Rifapentine, Levofloxacin, Clofazimine with a score of 15.75,

PZA, EMB, Rifampicin, Pretomanid with a score of 33.90, and Rifampicin, ETH,

Levofloxacin, Pretomanid with a score of 46.80. From the [91] data, the combinations

ETH, INH, Moxifloxacin, Pretomanid and ETH, INH, Moxifloxacin, Rifampicin were

chosen. The system was run for 200 hours in order to reach equilibrium, then the

drug treatment began. At this stage the fluxes were chosen to be uniform. Figure 5.8

and 5.9 show the simulation results of several drug combinations. The metabolites

that had significant changes are highlighted in green (decreased) or red (increased

metabolite levels).
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Figure 5.9: Carbon metabolism networks highlighting the metabolites that were af-
fected by the drug combinations Left: ETH INH Moxifloxacin Pretomanid and Right:
ETH INH Moxifloxacin Rifampicin. The red nodes represent metabolites which in-
creased in mass, while green nodes decreased. Cyan lines represent intakes to the
system while magenta represent excretions. Black edges represent hyperedges. Green
edges represent enhacned reactions. For the figure on the left, only two metabolites
were affected, Acetic acid increased in mass and Acetyl phosphate decreased. For the
figure on the right there were many changes. The most significant are the increases
of D-Methylmalonyl-CoA and beta-D-Glucose 6-phosphate.
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Figure 5.10: 10 hours of equilibrium followed by 336 hours of daily drug treatment.
Trajectories of metabolites in central carbon metabolism. Left shows the combina-
tion INH, Rifapentine, Levofloxacin, Clofazimine and Right shows the combination
Rifampicin, ETH, Levofloxacin, Pretomanid. Due to the system having many metabo-
lites, only the metabolites that had significant change are shown for each simulation.
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Figure 5.11: Simulations using data from [91]. Simulations had 10 hours of equilib-
rium followed by 336 hours of daily drug treatment. Trajectories of metabolites in
central carbon metabolism. Left shows the combination ETH INH Moxifloxacin Pre-
tomanid and Right shows the combination ETH INH Moxifloxacin Rifampicin. Due
to the system having many metabolites, only the metabolites that had significant
change are shown for each simulation.

5.4 Discussion

Significant results of the microarray data was the foundation for this analysis. There-

fore, a crucial step was to carefully choose our rules for a significant gene expression

result. The intersection of the set of genes determined to be significant via a minimum

fold change and the set of genes determined by SAM provided the best of both cases,

i.e. we could be sure that we see a measurable, significant effect of a drug and also

limit the false discovery rate of significant genes. Ideally the MTB gene expression

measurements in response to multiple drugs would be obtained using the same array

platform and experimental conditions, but this is difficult to obtain as most studies

focus on a single drug or a small group of drugs. We tested a novel way to determine

admissible drug combinations and rank the effectiveness of these combinations. We

then improved our model of metabolism by including two new features 1. a more

sophisticated framework for modeling drug action on enzymes and 2. a method of

modeling complex biochemical reactions involving more than two metabolites that

maintains dependencies among reactant variables. We incorporated this model in

simulations in order to compare top ranked drug combinations with their effects on
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metabolite trajectories.

Calculating the L1-scores for each drug as it pertained to microarray data allowed

us to calculate L1 distance between drug effects. An initial result of ranking drugs by

the L1-scores across significant genes in microarray data was predicting drugs that

cannot be used in combination treatment. For a pair of drugs, a low L1 distance,

and a high number of genes significant for both drugs (a high overlap) would suggest

that the drugs have behavior that is too similar. We recovered known pairs of drugs

considered inadmissible with each other in this way as a preliminary validation of the

L1-score. These results are shown in Table 5.3, and Table 5.4.

From figure 5.7 we see the dramatic effect of Rifampicin and Pretomanid. All 4-

drug combinations omitting both of these drugs have a total effect on gene expression

that is smaller than Rifampicin or Pretomanid alone. This highlights the importance

of these drugs to treatment, and suggested that we should test this with simulation.

On the other hand, combinations with a lower score that show dramatic results in a

clinical setting or simulation suggests importance of the pathways that they affect.

Metabolic graphs combined with LIFE methodology model drug treatment that in-

teract as inhibitors or enhancers of biochemical reactions, moreover these biochemical

reactions often should be depicted as hyperedges in a metabolic network as opposed

to simple edges. The additional modeling features of LIFE methodology account for

1. more sophisticated dynamics for drug interaction with reaction enzymes and 2.

reactions involving three or more metabolites and the dependence of these metabo-

lites on each other for a reaction to proceed. This framework allowed the last step

of our analysis, which was to compare a drug combination’s L1-score with simulated

treatment on a network (shown in Table 5.5).

Figure 5.8 and Figure 5.9 show exactly which nodes in the central carbon pathway

were affected most by drug treatment. Figure 5.10 and Figure 5.11 show correspond-

ing metabolite trajectories. The figure on the right of Figure 5.8 shows that Fumarate
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Drug Combination Sig. Gene L1 Simulation L1

Rifampicin, ETH, Levofloxacin, Pretomanid 46.7965 9.2416
PZA, EMB, Rifampicin, Pretomanid 33.9035 6.6246
INH, Rifapentine, Levofloxacin, Clofazimine 15.7467 0.4005
EMB, Rifapentine, ETH, Lefloxacin 6.7010 1.4407

Table 5.5: The L1 score based on a drug combination affect on significant genes and
system simulations. The simulation L1 is based on the difference of metabolites from
the system equilibrium when no drug is applied. Each combination is based on data
from [16].

increased the most and Carbon dioxide decreased the most. We show that microarray

data and simulation can suggest the most important pathways with regard to a com-

bination treatment, and the most important biomarkers therein. For example if it is

discovered that a patient has low Fumarate levels, then the combination {Rifampicin,

ETH, Levofloxacin, Pretomanid} may be the superior treatment.

Based on microarray data from the Sherman lab, the L1-score of drug combi-

nations had to be simulated for some network in order to compare the score with

metabolic effects of the drug combination. We chose central carbon metabolism for

its size and simplicity, as it has a relatively small number of hyperedges compared

to most metabolic pathways. We showed drug combinations of {ETH, INH, Moxi-

floxacin, and Pretomanit} and compared this to {ETH, INH, Moxifloxacin, and Ri-

fampicin} as those drugs interacted with many edges of the network, and were able

to illustrate the effect of including Rifampicin in treatment. The L1-scores we had

computed highlighted the dramatic impact of Rifampicin on gene expression, and we

wanted to explore its role in combination therapy.



Chapter 6

A Two-step Model for Circadian

Entrainment

[6] [113] [119] [87]

6.1 Introduction to Circadian Rhythm

Various organisms have biological rhythms that cycle daily, monthly, or at other

frequencies, these rhythms assist in predicting future stressors [120]. Biological clocks

that cycle near 24 hours are designated circadian rhythms. One hallmark of biological

clocks is that they will entrain to an external signal, called a zeitgeber. Entrainment

provides a source of clock resetting, allowing the organism to maintain synchronization

of its internal rhythm to the external environment. The mechanisms which regulate

natural rhythm processes, including clock resetting, vary among species. However,

the most significant zeitgeber for circadian rhythms is the sun.

Two notable aspects of circadian rhythm are the endogenous period and the phase

of entrainment. The endogenous period, or free-running period, is the length of time

it takes a biological rhythm to cycle in the absence of a zeitgeber [38]. The phase

refers to the difference between the peaks of the natural cycle and the zeitgeber cycle.

164
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Upon introduction to a new environment, the phase between the biological clock and

zeitgeber will be in constant flux. After entrainment, the phase difference becomes

stable, and its value is the phase of entrainment [7].

Many studies focus on the endogenous period of an organism. Genetic analysis

has concentrated on genes that affect the endogenous period [88, 145]. There have

been fewer studies that focus on finding genes that alter the phase of entrainment.

There is a common assumption that there is a simple relationship between the phase

of entrainment and the endogenous period, namely that the period mismatch and

phase of entrainment are negatively correlated. Variations of both period and phase

of entrainment exist in natural populations, suggesting natural selection could select

for either trait [30, 101].

Several circadian rhythm disorders are related to the phase of entrainment. Famil-

ial advanced sleep phase syndrome (FASPS) is associated with waking up and going

to sleep at earlier times than usual, while delayed sleep phase disorder (DSPD) marks

difficulty falling asleep at an appropriate time [82, 143]. These conditions motivate a

study of the phase of entrainment.

Previous work illustrates different views on the entrainment process, as well as

how to model the phase relationship between the circadian clock and zeitgeber clock.

Many mathematical models reproduce entrainment and simulate phase changes [1,

80, 132, 134]. However, many models only produce data that follow a simple rule; a

long endogenous period leads to phase delay, while a short endogenous period leads to

phase advance [1, 55]. Many studies show relationships between the endogenous pe-

riod and the phase that support this assumption [35, 62, 67, 124, 141]. An additional

paper concludes that the endogenous period can characterize phase phenotypes [63].

Finally, some research related to FASPS reports the human phenotype of an advanced

phase is associated with a shorter circadian period [143]. Despite its common usage,

there exists experimental data that does not follow this usual assumption. The same
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paper ([143]) that suggested a short period is associated with FASPS also states that

different mechanisms may regulate the period and phase, implying other period phase

relationships may be possible. Another group investigating FASPS found a variant

for which subjects have a standard circadian period, but still, develop FASPS [82].

While the elderly often have an advanced phase, this is not associated with a short-

ening of the circadian period [36, 37]. In [58], the period mismatch is not a predictor

for the phase of entrainment. A more general model that incorporates this data is

essential to analyze the phase of entrainment.

In [86], they developed a Two-Step Entrainment model. The main goal of this

model is to describe a wide range of period to phase relationships. The framework of

this model is to use three clocks, a zeitgeber, and SCN and an endogenous clock to

model entrainment. The SCN clock entrains to the zeitgeber, while the endogenous

entraining to the SCN thus it is two-step entrainment. This model can generate in-

silico data that does not follow the common assumption and can fit a more extensive

range of results. Here a two-step model is necessary, as single-step models (such as

[1]) have not yet generated this type of data.

A B

Figure 6.1: (A) Schematic illustrating a two-step entrainment process between the
zeitgeber and peripheral clock. In step 1, the SCN clock is entrained to the zeitgeber
during the entrainment window with strength cz. In step 2, the peripheral clock
is aligned to the SCN clock constantly with strength cs. (B) Evolution of phase
angles in one period through the plots of sine curves. The dotted line represents the
zeitgeber clock, and the solid line represents the peripheral clock. The time when
phase angles of the zeitgeber and peripheral clock are equals to π

2
are label as tZ and

tE, respectively. The phase difference is measured as φ = tZ − tE. A positive value
of φ indicates an advanced phase, a negative value of φ indicates a delayed phase.
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This work uses phase data from [58] to fit the model. Throughout their research,

they measured core body temperature and plasma melatonin rhythms to determine

phase differences. During their study, subjects free-cycle in constant-dark conditions,

then they were entrained by being exposed to light in the evening. While being

entrained, they measured the subjects’ core body temperature and plasma melatonin

rhythms to determine phase differences [58]. They provide phase data throughout

the experiment, not only the start and end, allowing fitting the entire trajectory of

the phase difference. This work analyzes the potential of the two-step entrainment

model. This includes the effects each parameter has on entrainment, the time it takes

to entrain [56], the range for which entrainment is possible, and the reachable phase

of entrainment values.

6.2 Mathematical Model

The two-step circadian model is based on the Kuramoto model [81] but has three

oscillators. These are the phase angle of the zeitgeber, the phase angle of the SCN,

and the phase angle of the peripheral clock. The SCN clock entrains to the zeitgeber

at a constant rate, yet the peripheral clock only entrains to the SCN during a small

window. Some studies suggest that entrainment doesn’t occur throughout the day but

during times such as dawn and dusk [110]. The two-step model uses an entrainment

window of 1 hour near dusk. The entrainment window can also be adjusted to suit

what is appropriate for different organisms [69]. [86] applied the two-step model to a

Neurospora system, whereas this work uses it to model human data.
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The following system of ODEs governs the dynamics of the three oscillators:



dθZ
dt

= 2π
T

dθS
dt

= 2π
τ

+ Ψ(θZ)(θZ(t)− θS(t))

dθE
dt

= 2π
τ

+ cs(θS(t− t0)− θE(t))

(6.1)

with:

Ψ(θZ) =


cz |θZ − π| < ε

0 otherwise.
(6.2)

The variable θZ represents the angle of the zeitgeber clock, the variable θS rep-

resents the angle of the SCN clock, and the variable θE represents the angle of the

endogenous clock. T represents the period of the zeitgeber, and τ represents the

period of the SCN and endogenous clocks. cz represents the entrainment strength be-

tween the SCN and the zeitgeber. The entrainment strength measures the intensity of

the light as well as the light sensitivity of the individual. cs represents the alignment

strength between endogenous and SCN. The alignment strength corresponds with

how the SCN relates to the endogenous. ε is the radius of the entrainment window.

Ψ(θZ) is the entrainment function, which will be zero except when the zeitgeber is

near dusk. Finally, t0 is the time offset between the endogenous and SCN clocks.

Because of the entrainment window, the system cannot be solved analytically.

Finding a partial piecewise solution is possible, and this solution can still be advan-

tageous. The following equations show the piecewise solution, with five additional

constants
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θZ =
2π

T
t+ k1, (6.3)

θS =


1
cz

2π
τ
− 1

cz
2π
T

+ θz + k2e
−czt , |θZ (mod 2π)− π| < ε

2π
τ
t+ k3 , otherwise

(6.4)

θE =


θs(t) + 1

cs
(2π
τ
− 2π

T
) + czk2e−czt

cs−cz + k4e
−cst , |θZ (mod 2π)− π| < ε

θs(t) + k5e
−cst , otherwise.

(6.5)

The initial values of k1, k3, k5 have biological meaning with k1 equal to the initial

phase angle of the zeitgeber (denoted by θZ0), k3 equal to the initial phase angle of

the SCN clock (denoted by θS0), and k5 + k3 equal to the initial phase angle of the

peripheral clock (denoted by θE0).

We simulated the system 6.3,6.4,6.5 using Matlab (2018a). To ensure continu-

ity of the piecewise solution, the constants k2-k5 must be re-solved whenever |θZ

(mod 2π) − π| = ε. In other words, whenever the entrainment window is entered or

exited, the k2-k5 must be resolved. Using this method of simulation is more than ten

times faster than the Runge-Kutta scheme of system 6.1 with similar accuracy. Upon

adding additional parameters finding a partial solution may not be possible, in which

case a Runge-Kutta scheme would be necessary. Figure 6.2 shows a comparison of

the endogenous clock evolution and phase difference for each method. Experimen-

tally, the daily progression of the phase is calculated by taking the phase difference

between the zeitgeber and the endogenous clock. Our simulations calculate the phase

difference by measuring the phase between the peaks of the endogenous clock and

the zeitgeber, i.e., the time the zeitgeber peaks minus the time the endogenous clock

peaks. This means that a negative phase of entrainment corresponds to a phase delay,

and a positive phase of entrainment corresponds to a phase advance [89].
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Figure 6.2: Simulations are performed by two different approaches with the same
parameters. A. The comparison between the phase angle of the endogenous clocks
simulated by two approaches. The differences is less than 0.01h. B. The comparison
between the phase differences simulated by two approaches. The phase differences
which are measured at noon of each day between the zeitgeber and the peripheral
clock. The parameters used are: T = 24, τ = 23, cz = 0.5, cs = 0.1, ε = π

24
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12
, θE = −π

4
.

6.3 Results

6.3.1 Parameter Space

Before fitting the model to real-world data, it is essential to understand the range of

the output. It is also critical to confirm that the two-step entrainment model produces
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results that both follow and do not follow the common assumption. To create a range

of reachable phases of entrainment values, the parameters, cz and τ , which have the

most substantial impact were varied. We used a comprehensive domain of both τ

and cz to capture modeling capabilities. The domain of τ ’s consisted of thirty-one

values, varying from 22.5-25.5 hours at 6-minute intervals, while cz’s consisted of

twenty-two values, ranging from 0.15-1.00 hours at intervals of 0.04. We fixed the

other parameters at cs = 0.26, T = 24hours, ε = π
24
, θZ0 = 0, θS0 = 0, and θE0 = 0

the ran simulations ran for 1100 hours. Figure 6.3 panel A shows the results of these

simulations. Each of the 682 tests entrained within 600 hours. Although there is a

large range of phases reached, 92% of the trials had a phase of entrainment within

[-6h to 4h].
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Figure 6.3: Simulations present the parameter space when varying τ and cz in a wide
range. (A) The trajectories of phase differences of all subjects (682 pairs of τ, cz) are
shown. (B) Fix cz at 0.76, the trajectories of phase differences change with varying
τ from 22.5 to 25.5. (C) Fix τ at 23.5, the trajectories of phase differences change
with varying cz from 0.15 to 1. (D) Fix τ at 24.5, the trajectories of phase differences
change with varying cz from 0.15 to 1. (E) 3D linear interpolate surface represents
the simulated Ψ vs. −cz, τ parameter space (all 682 data points are plotted.) (F)
3D linear interpolate surface represents the simulated ROE vs. −cz, τ parameter
space. In E (F), blue color corresponds to small values of POE (ROE), yellow color
corresponds to lager values of POE (ROE).

To determine when the model would produce results that did not follow the com-

mon assumption, τ and cz were varied individually. Panel B of Figure 6.3 shows that

when cz is fixed at a high value that no variation of τ produced results which did

not follow the common assumption. We used τ of 23.5 and 24.5 to test whether τ

values near 24 hours could produce results not following the common assumption, as

before cz varied from 0.15-1.00. Panel D that when τ = 24.5 did not produce any

results which don’t follow the common assumption, however, for τ = 23.5, small val-

ues of cz do produce results not following the common assumption. This shows that

the model can achieve results which do not follow the common assumption, although
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these results are still not a frequent occurrence.

Figure 6.3 panel E shows a 3-dimensional plot of the simulations performed varying

cz and τ . This plot shows how the phase of entrainment changes for each variable

and shows the manifold they exist on. Similarly, Figure 6.3 panel F shows the surface

relating the rate of entrainment to the variables of cz, τ .

6.3.2 Range of Entrainment

The previous section was primarily to understand how the phase of entrainment

would change with respect to cz and τ , and what entrainment values are possible.

This section deals with the range of entrainment, or what parameter combinations can

overcome τ−T period mismatches [55]. In [15], they used an Arnold Tongue to display

when entrainment strength could overcome period mismatch. To do this, they varied

the entrainment strength and zeitgeber period while keeping the endogenous period

constant. We create a comparable structure by varying the entrainment strength, cz,

entrainment window, ε, and zeitgeber period, T while keeping the endogenous period,

τ constant. Figure 6.4 shows the results of these variations. The 3-D Arnold Tongue

represents the range of entrainment for the SCN. To interpret the figure, any data

point that lies within the bounds represents conditions that will overcome the period

mismatch and entrain to the zeitgeber.
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Figure 6.4: A 3D Arnold Tongue represents the range of entrainment for the SCN
clock. The SCN clock is entrained to the zeitgeber when the data point locates above
the surface (inside). The SCN clock is always entrained when T= τ .

6.3.3 Parameter Affect on Entrainment

After the parameter space was determined, it is critical to understand how each

parameter influences the final entrainment value. The parameters cz, cs,ε, and t0 were

varied individually to find ranges that generate a reasonable phase of entrainment.

Three key indicators defined the differentiation among parameter outcomes. These

were 1. whether or not the system entrained, 2. the final entrainment value, and 3.

the rate of entrainment. Figure 6.5 shows the results of varying each parameter.
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Figure 6.5: Single parameter variations for the “average human" based on the 12
subjects. In each plot only one parameter varies while the others remain constant.
The legend represents the varying parameter values. The dashed line in each plot
represents the baseline parameter value which is held constant in all other plots
except for when it is the varied parameter. (A), (B), (C), (D), and (E) show how
trajectories change when only vary cz, cs, ε, t0, and τ , respectively.

The panels of Figure 6.5 show variations of each parameter. cz and e have similar

effects on the phase of entrainment. This similarity is due to the comparable functions

of these parameters; increasing cz increases the intensity of light, while e increases

the amount of light used in entrainment. Panel A shows the trials of cz from 0.46

to 1.06 at 0.1 increments. Panel C shows trials of ε varying from 6 minutes to 54

minutes in 8-minute increments. The parameter cs has a much smaller impact on the

system, with both the rate and phase of entrainment changing only slightly. Panel B

shows this effect. Panel D shows the variations of t0 from 0.50 hours to 3.5 hours by

0.5 hours increments. Varying t0 shifts the trajectory downward but doesn’t affect

the rate of entrainment. Finally, panel E shows that as τ varies from 23.93 hours to

24.53 hours by 0.1 hour, both the rate of entrainment and phase of entrainment are
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significantly changed.

An important observation from this variation is that the parameters are mono-

tonic. When a parameter changes, the phase of entrainment will change in a pre-

dictable direction, although the magnitude of this change depends on the current

parameter value. Another observation is that each parameter has different effects on

the phase of entrainment and the rate of entrainment. These effects are necessary to

consider when fitting data.

6.3.4 Trajectory Fitting

The two-step entrainment has a total of three oscillating clocks. Although the SCN

clock is necessary for the two-step entrainment process, trajectory fitting doesn’t use

the output from the SCN clock. The primary interest of trajectory fitting is to fit the

phase between the endogenous clock compared to the zeitgeber clock, particularly at

entrainment. To this end, the trajectory fitting weighs data near the entrainment to

be more significant than points near the commencement of the experiment. Giving

more weight to data near the end of the trial means the fitting favors phase of en-

trainment over the rate of entrainment. In most circumstances, both the phase of

entrainment and the rate of entrainment can have a suitable fit.

We used data from [58] in which they studied entraining patients to longer than

24-hour days. They used a zeitgeber period T = τ + 1 h and entrained 12 patients in

3 different light conditions, dim light 25 lux, room light of 100 lux, and a modulated

light exposure (MLE). Their experiment lasted 30 days, and they measured core

body temperature and plasma melatonin to determine circadian periods and phases.

They considered a subject entrained when the 95% confidence interval of their period

included the zeitgeber period [58]. They found that all four MLE and room light

patients entrained, while only one of the dim light patients entrained [58]. We use

their data to test the two-step entrainment model’s fitting ability.
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To simplify the parameter space, only two variables, CZ and t0, were used for

fitting. Using these parameters in combination, both the rate of entrainment and

phase of entrainment can be modified. The initial phase angles of each oscillator are

set equal to the initial phase difference of each subject. The variable cs was fixed

at 0.26, while epsilon was set at π
T
, which corresponds to a one-hour window for all

subjects.

Finding the best-fit values for cz, t0, and θE0 was done using a golden-section

search. All patients in the 100 lux and MLE experiments entrained, but only subject

2195, shown in Figure 6.6 panel A, entrained in the 25 lux. The optimal values of cz,

t0, and τ , as well as other parameter values for each patient are found in Table 6.1.

The fitting results show that subjects entrained in higher light intensities have larger

cz values.

A B

C D

Figure 6.6: Best fit curves from the TSE model to fit phase tracjectories of four
subjects from [58]. Panels A and B represent subjects 2195 and 2313 in 25 lux
conditions. Panel C represents subject 2123 in 100 lux conditions, and panle D
represent subject 2196 in MLE conditions.
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Light Conditions Subject T τ cz t0 θE0 θS0 Ψ cost

25lux

2195 24.47 23.47 0.74 1.11 0.30 -0.50 0.55 1.48
2209 24.58 23.58 0.14 1.25 -0.50 -0.60 6.05 3.06
22T1 24.75 23.75 0.03 0.88 0.13 -0.10 20.68 4.19
2313 25.05 24.05 0.09 1.50 0.05 -0.10 9.20 2.61

100lux

2123 25.24 24.24 0.30 0.94 0.30 -0.30 2.68 0.77
2072 25.33 24.33 0.44 1.21 0.30 0.00 1.35 1.42
2109 25.30 24.30 0.55 0.60 0.30 -0.50 1.51 1.47
22F2 25.24 24.24 0.57 0.82 0.27 -0.85 1.23 1.14

MLE

2082 25.49 24.35 0.74 0.79 0.30 0.00 1.11 0.41
2111 25.48 24.48 0.96 1.49 0.30 -0.60 -0.12 0.52
2196 24.87 23.87 0.86 2.46 0.30 0.30 -0.98 0.70
2210 25.25 24.25 0.75 0.94 0.30 -0.60 0.71 1.25

Table 6.1: Table shows Ψ and the optimized parameter values of cz, t0, θE0 for all 12
subjects.



Chapter 7

Ecological Networks Reconstructed

from Paleomiddens

7.1 Introduction

The interactions of organisms is at the root of ecology. A crucial step to fully un-

derstanding a community is to understand the interactions of its species [84]. A

significant question in ecology today is how communities will react to changes, in-

cluding changes in climate, introduction or loss of species, and urbanization. The

robustness of a community can be difficult to determine, and identification of key or

at risk species is not a simple task [57, 112].

Networks are a tool that help us describe the interactions of species [84, 115, 114].

Species are represented as nodes in the network while their interactions are directed

edges. A networks approach is advantageous as it makes relationships between species

explicit, as opposed to other methods which treat each species as independent [116].

Often in ecology the links between species cannot be precisely determined and must

be inferred through other methods. Some methods could include live or video obser-

vation of consumer-resource interactions, predation experiments in cage studies, prey

179
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baits, and molecular analysis of gut content [13]. A networks approach is used to

examine how entire communities might respond to change. Network dynamic models

can help determine the stability of the community, and centrality metrics can high-

light which species might be integral. Lotka–Volterra models can be used to predict

the equilibrium populations or which species may be heading toward extinction. A

limitation of modern networks is there is a limited temporal window. This scale

provides few changes in dynamics to analyze.

Paleoecological networks are promising for analyzing dynamics because of the

extended temporal window. This allows us to see changes in the community makeup,

such as addition or removal of species and links in the network. More importantly,

the ways communities have adapted in the past may help predict how ecological

systems may respond to environmental changes. Paleoecology presents difficulties as

there are additional biases not present when studying modern communities. There

are two primary sources of bias that can affect paleoecologic data. These are 1.

Taphonomic processes, which affect an organism’s likelihood of being preserved, and 2.

Time Averaging, where organisms from different time periods may be found preserved

together. These biases cause some uncertainty about the recovered data.

There are many unknowns when dealing with paleoecology. The links between

species are not recoverable, the population sizes may not be known, and there may

even be species that are absent as they were not preserved. Due to the unknowns

there are many methods of constructing paleoecological networks. The method used

will depend on the goals of the project, as well as the data available. In [144] they

integrated the depictions of animals from archeological sites to use in reconstructing

egyptian large mammal networks. Another study uses a number of ten categories to

specify links between ancient species [42]. These categories are (i) taxonomic unifor-

mitarianism, (ii) functional morphology, (iii) gut contents, (iv) damage patterns, (v)

stratigraphic co-occurrence, (vi) body size, (vii) coprolites, (viii) host relationship,
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(xi) chemical and isotopic signatures and (x) ichnological evidence. This approach

requires a very good resolution of the data, which may not always be present. [122]

uses metanetworks to sort the specific species into similar bins and record likely links

between the meta-species bins. Species specific networks can then be created by using

random draws to create links between species which exist in connecting bins. This

method is used primarily to determine the robustness of a network to cascading ex-

tinction effects. This work aims to use a method similar to [42] to recreate networks

based on information from rodent middens.

This work uses arthropod data, whose remains were found in rodent middens pre-

served in the Atacama desert [34]. Rodent middens are a combination of plant matter,

arthropod remains, and fecal remains of the rodent bonded by the urine. Middens are

often found in dry and arid climates and provide excellent preservation of material.

Despite the excellent preservation, there are several drawbacks to paleomidden data

[34]. First, a midden can be created in a few months, or over many years, possibly

even centuries. Second, creating a database of middens requires the collection of

many middens from the same area. Different middens, even from the same area, may

not have been created contemporarily, this can result in the data having irregular

and possibly significant temporal gaps. Despite middens being found in many loca-

tions around the world, and having good preservation properties for arthropods, there

has not yet been methods specifically focused on network reconstruction for middens.

Here we presents first steps for a systematic approach to recreate paleonetworks using

rodent middens.

7.2 Paleomidden Data

The paleomiddens were collected from two sites in the Atacama Desert, Lomas de

Tilocalar and Vegas de Tilocalar. Middens were collected from cavities in the rocks
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and cliffs in these locations. A total of 46 total middens were collected and analyzed,

14 from Vegas de Tilocalar and 32 from Lomas de Tilocalar.

There are three principal divisions of the data collected in [34]. These are the

Modern Dead (MD), Modern Living (ML), and Paleomiddens. Modern Dead were

dead arthropods collected from death assemblages collected close to paleomiddens

as well as from modern middens. The exact time of creation of modern middens is

unknown, however they are likely to have been created in the last few decades. In

the dataset Modern Dead assemblages are assumed to be from 50 years ago. Modern

Living is a combination of local live data and regional live data. The local live data

was collected through pitfall and sticky traps from within 15 meters of found midden.

Regional live is from between .5km 3km away from closest fossil. Associated with each

paleomidden are its latitude and longitude as well as its carbon-14 date. The most

recent paleomidden formed around 400 years ago, while the most ancient appeared

close to 40,900 years ago. Species data was collected from 42 different locations.

They collected paleomiddens at 26 locations, modern dead from 12 locations, and

information about modern living at 4 locations. There are a total of 85 different

morphospecies, however, only 43 of these appear in the paleomiddens. Additionally,

there are only 26 species that appear in both the paleomidden data and either modern

living or modern dead. Table 7.1 summarizes how many species appear in various

data partitions.

# of Species MD ML
Total 85 36 46
Paleo Middens 43 24 13
Modern Dead (MD) 36 36 14
Modern Living (ML) 46 14 46

Table 7.1: This table shows the number of species found in the different subsections
of the data. The columns MD (ML) show the number of species which are contained
in MD (ML) and the data partition described in the row.
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Spatial distribution of species and potential links

The places where a species is found are significant in determining its potential interac-

tions. Two species may interact even when not found at the same location. However,

the chance of interaction lowers as the distance between locations increases. The sizes

of the two midden collection sites were very different. The 14 middens collected at

the Vegas de Tilocalar site were collected in a 30 square kilometer area with a length

of about 12 kilometers. The Lomas de Tilocalar site was much larger, with middens

being collected from an area of nearly 300 square kilometer. Within the Lomas de

Tilocalar there were two main clusters of middens. The first had 18 middens and

has an area of 70 square kilometers, the second with 14 middens was more than 10

kilometers away from the first and has an area of 40 square kilometers.

The maximum distance between any two paleomiddens is 33 kilometers. Figure

7.1 shows the locations of all the paleomiddens. The x and y-axis of the figure show

the longitude and latitude, respectively. The horizontal red line shows a distance of

10 kilometers. The colors represnt how long ago the middens were formed, from the

figure there are no clear correlations with when the middens are formed and where

they are found. Figure 7.2 shows the locations of modern dead and modern living

collection.

Whether two species interact may also depend on the distributional range of each

species. Here we look at two species and how often their ranges overlap when consid-

ering several potential range values. We analyzed the potential range overlap between

Physogaster spp, a detrivore species, and Bothriuridae spp, a carnivore species, which

may interact. Only considering paleomidden appearances, Physogaster spp had 17

appearances, while Bothriuridae had 22. With a given range of zero, we examine how

often they appeared at the same locations. 11 of the 17 Physogaster appeared at a site

with Bothriuridae, while 10 of the 22 Bothriurid appeared at a site with Physogaster.

This gives a ratio of 11+10
17+22

or 53.8% of occurrences have overlapping range. When we
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0m range 500m range 2500m range
Ancient Middens 53.8% 69.2% 94.9%
Full Data 45.1% 82.4% 97.8%
Modern Dead 58.8% 70.6% 85.3%
Modern Living NA NA NA

Table 7.2: Spatial Comparison of Physogaster spp. and Bothriuridae spp. and how
often they appear within 0 km, 1 km and 5km of each other. Bothriuridae spp. does
not appear in the modern living set, which makes analysis not available.

extend the range of each species to 500 meters, this increases to 69.2%. Finally, when

we increased the range to 2500 meters, it is 94.9%. Table 7.2 shows this comparison

when all data is considered as well as when only modern dead information is consid-

ered. It is clear that the range of a species will increase its potential to react with

nearby species.
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Figure 7.1: Each point represents a location where paleomiddens were collected. The
x axis represents longitude while the y axis represents latitude of collected midden.
The color of the point represents how long ago the midden was formed, with cooler
colors representing recent middens while warmer colors represent older middens.
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Figure 7.2: Each point represents a location where data for Modern Living or Modern
Dead was collected. The x axis represents longitude while the y axis represents
latitude of collected midden.

Temporal resolution and species interactions

Another factor in whether species will interact is if they are found at the same time.

Due to taphonomic processes, it is possible that two species existed at the same time

but it is reflected in the record, or that two species appear to have coexisted in the

record when in reality they did not. The paleomiddens collected were created between

400 and 40,000 years ago, with the majority of them being more recent. Table 7.3

shows the number of middens more recent than several different dates. Similar to

before we investigate the appearances of two species in the record with respect to

time.
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Years Ago # of Midddens
20,000-40,900 3
10,000-20,000 6
5,000-10,000 9
1,000-5,000 19
400-1,000 9

Table 7.3: The dates of the middens found. There are a total of 46 middens ranging
from 400 years ago to 40,900 years ago. More middens are found closer to the present,
with only 9 being older than 10,000 years ago.

7.3 Approach

The process of inferring species reactions given the last of direct observation can be

difficult. While this is an issue in modern ecology as well, it is even more difficult in

paleoecology due to the taphonomic and time averaging biases which may be present.

There are a number of methods that have been used to recreate ancient networks

[144, 42].

One method, proposed by [40], uses ten categories to infer species interactions.

The ten categories used are (i) taxonomic uniformitarianism, (ii) functional morphol-

ogy, (iii) gut contents, (iv) damage patterns, (v) stratigraphic co-occurrence, (vi) body

size, (vii) coprolites, (viii) host relationship, (xi) chemical and isotopic signatures and

(x) ichnological evidence. Each category is either “yes” or “no”, and then link proba-

bilities based on the number of categories present for each species interaction. Using

this method they have links of three classes; certain, uncertain, and unlikely. When

a potential link has evidence from at least 3 categories, it is classified as certain, if

it has evidence from 2 categories it is uncertain, and if it has evidence from only 1

category it is unlikely. Unfortunately the extracted paleomidden data has not been

analyzed to the degree that all ten of the categories from [40] can be used. Here the

aim is to look specifically at three categories, these are taxonomic uniformitarianism,

stratigraphic co-occurrence, and body size. Rather than using “yes” and “no” for the
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categories, we consider that each category could have an associated metric, and the

overall probability of a link is a weighted sum of the categories.

Spatial Metric:

When we consider spatial information alone, a weighted sum can be used to assess

how likely species were to interact with each other. The species (A) will interact

with species (B) based on the nearest (B) found to each (A). Here information about

the range of species can assist in determining the interaction probability. We use an

expected interaction rate that two species have an interaction probability of 1
2
when

they are α meters apart. The probability that (A) interacts with (B) is,

int(A,B) =
1

n
· ( 1

d(A1,B)
α

+ 1
+

1
d(A2,B)

α
+ 1

+
1

d(A3,B)
α

+ 1
+ · · ·+ 1

d(An,B)
α

+ 1
(7.1)

Where d(Ai, B) is the distance in meters from that location of Ai to the nearest

B. The addition of 1 in the denominator assures there will be no division by zero

should two species be in the same location. The division by α guarantees the inter-

action probability of 1
2
when they are α meters apart. This distance can be adjusted

depending on the expected range of the interacting species.

Temporal Metric:

Similar to the spatial data, each sample has an associated date. The dates can be

used in a comparable manner to determine species interaction probability. Like the

spatial information, we can use a weighted average of the time between two species.

The primary difference is that the expected interaction rate is now such that species

have an interaction probability of 1
2
when they are β years apart. The probability
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that (A) interacts with (B) is then,

int(A,B) =
1

n
· ( 1

t(A1,B)
β

+ 1
+

1
t(A2,B)

β
+ 1

+
1

t(A3,B)
β

+ 1
+ · · ·+ 1

t(An,B)
β

+ 1
(7.2)

Spatial-Temporal Metric:

To use both the spatial and temporal distances simultaneously, we created a metric

to combine this information. The combined interaction probability is written:

int(A,B) =
1

n
· ( 1

dst(A1, B) + 1
+ · · ·+ 1

dst(An, B) + 1
) (7.3)

where dst(Ai, B) defines the closest Ai to B considering a weighted sum of both the

distance and time between them. More precisely, dst(Ai, B) = min
b∈B

(d(Ai,b)
α

+ t(Ai,b)
β

),

where d(Ai, b) is the distance between Ai and b and t(Ai, b) is the time between Ai

and b. Tables 7.4 and 7.5 show how the network changes as α and β are adjusted.

Based on this analysis the networks reconstructed in the Results used values of α and

β set to 1000 and 500 respectively.

Predator/prey:

We assume that predators will consume prey and possibly other predators, but that

prey will not consume other species. The data from paleomiddens contains 43 different

species. Five of the species are predators, two species are parasites, and the remaining

species are classified as prey. Since the parasites are not parasites for arthropods, they

are also classified as prey in the networks.

Body Size:

The size of a predator affects what size of prey it may eat. Prey that are too small

may contain too little energy to be worth capturing, while prey that are too large
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Meters # Links Species # L/S L/S2

1 48 28 1.714 0.061
1000 53 32 1.656 0.052
2000 55 33 1.667 0.051
3000 56 33 1.697 0.051
4000 57 33 1.727 0.052
5000 59 34 1.735 0.051
10000 68 38 1.789 0.047
20000 76 39 1.949 0.050
40000 80 39 2.051 0.053
∞ 101 43 2.349 0.055

Table 7.4: Variation of links and species as the spatial window α is varied. When
α = ∞ only the temporal window has any affect on the network. The temporal
window β is fixed at 1000.

may be too difficult to capture. In a study by [19], 80% of predators were larger

than their prey. They also found that the body mass ratio between predators and

prey increases with as the size of the predator increases, the ratio was also higher

for vertebrates than for invertebrates. Additionally for invertebrates they found no

habitat specific changes in body mass ratio. Body size can be used as a metric to

determine links between predators and their potential prey. The work [19] found

that the log10 ratio between terrestrial invertebrate predators and their prey to be

0.6±0.03. The exact mechanics for a how body size will affect link probabilities have

not yet been determined and will be implemented in future work.
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Years # Links Species # L/S L/S2

1 43 24 1.792 0.075
500 48 28 1.714 0.061
1000 53 32 1.656 0.052
1500 55 32 1.719 0.054
2000 56 33 1.697 0.051
2500 57 34 1.676 0.049
3000 58 35 1.657 0.047
4000 62 37 1.676 0.045
5000 64 37 1.730 0.047
10000 75 40 1.875 0.047
20000 83 41 2.024 0.049
40000 85 41 2.073 0.051
∞ 99 43 2.302 0.054

Table 7.5: Variation of links and species as the temporal window β is varied. When
β = ∞ only the spatial window has any affect on the network. The spatial window
α is fixed at 1000.

Reconstruction of Networks:

Networks were created and analyzed at 1,000-year intervals from 40,000 years ago to

the newest paleomidden (400 years ago). Although the oldest paleomiddens are more

than 40,000 years old, there is only a small amount of data preceding 20,000 years

ago. The time range for each species was determined to be their earliest appearance

in the paleomiddens to the most recent appearance in the paleomiddens, or in modern

communities. One consequence of this time range is that species will not leave and
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then return.

There are a number of important metrics in network ecology. Some of these

include Clustering Coefficient, Degree Distribution, Average Distance between nodes,

and Connectance [39]. This work focuses on connectance, which is the number links

per species squared [44, 11]. Other network properties change systematically with

connectance [140], and some studies suggest that stability of a network is correlated

with connectance [41, 49, 78]. We chose to compare connectance and number of total

links for the recreated networks at each 1000 year mark. Other properties are left to

further study.

7.4 Results

We compared the networks consisting of only the most significant links. Figure 7.4

shows all of the significant links and the species they connect. This network is time

averaged, and shows all species and links that had high probability at any period of

time. Figure 7.3 shows all of the potential links, with blue links being unlikely, yellow

being uncertain, and red being the most significant.

Table 7.6 lists the number of species, including number of predator and prey, the

links in the network, links per species and connectance of the network from 40,000-400

years ago. Upon comparison of connectance and links per species, several patterns

emerged. The connectance of the networks fit into three main groupings, more than

10,000 years ago, between 7,000 and 10,000 years ago, and 7,000 to 400 years ago.

Upon further investigation, this was found to be due to three main species. These

three species of prey do not appear closely in space or time to any predators, and so

do not have any links that were the highest significance category. When these species

become part of the network, the number of species increases, but the number of links

remains the same, which decreases connectance.
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Years Ago Species Predators Prey Links L/S Connectance
400 26 22 4 25 0.96 0.037
1000 29 24 5 31 1.07 0.037
4000 31 26 5 35 1.13 0.036
6000 30 25 5 33 1.1 0.037
7000 29 24 5 32 1.1 0.038
8000 27 22 5 32 1.19 0.044
9000 26 21 5 31 1.19 0.046
10000 22 18 4 27 1.23 0.056
13000 21 17 4 27 1.29 0.061
18000 11 10 1 8 0.73 0.066
35000 8 7 1 7 0.88 0.109
36000 4 4 0 0 0 0
40000 1 1 0 0 0 0

Table 7.6: Table showing the connectance of the most significant links every 1000
years. Years that are not present had no change from the previous (older) year.

The connectance found in these networks is lower than the connectance of recon-

structed networks in [42], however it is larger than the Messel lake and forest networks

of [40]. The work of [39, 42] suggests that modern networks have connectance around

0.10-0.15. This may suggest that our links need refining. Several possible refinements

include more accurately indicating the range of specific species, as well as considering

a larger number of links significant, such as all links with values > 0.5. Another

necessary refinement is to introduce the body size of the species. Unlike the previous

refinement, adding body size is expected to result in fewer links, as small species will

not be able to consume species that are too large.

7.5 Conclusion

This work presents an approach to recreate networks from rodent paleomiddens. The

most important novelty of this method is the use of a spatial-temporal metric which

allows a probability of interaction based on how close two species are in time and in

space. Differently than [40] this metric allows values other than just “yes” or “no”.
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In the current work the expected ranges of species were assumed to be the same,

however, this can be adjusted to give varying range depending on the expected range

of each species. This metric could also be combined with other potential measures

(such as body size, damage patterns, etc.) to give a more precise expected interaction

probability. The connectance of the recreated networks was compared with networks

from [42, 40] and were similar connectances found in these works, however, not in the

range of modern network connectance suggested in [39]. This may be due to the fact

we chose only the links which were most significant to be included in our recreated

networks. Tuning of what percentage determines a “significant” link could bring the

connectance into the desired range, however, this analysis has not been performed.

Further comparison in additional network metrics, such as centrality and average

path length, is needed to better determine how realistic these recreations are. This

method provides a tool for midden network reconstruction that can also be applied

to other midden systems in other locations.
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