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THESIS ABSTRACT 

Predictive Modeling for Chemical Developmental Toxicity Assessments 

by SWATI SHARMA 

 

Thesis Director: 

Dr. Hao Zhu 

Developmental toxicity is a critical health hazard that needs to be addressed in 

chemical risk assessments. Traditional animal testing for developmental toxicity 

evaluations is expensive, time consuming and requires a large number of animals. High 

throughput screening is one such low cost method that has been used to test a large number 

of chemicals for toxicity and computational modeling is a promising approach to quickly 

evaluate chemical toxicity. In this paper, we collected a large database consisting of 1,365 

unique chemicals with their in vivo developmental toxicity potentials from various sources. 

The database was searched against PubChem, a public repository, to establish in vitro 

bioprofiles of the chemicals. The PubChem in vitro assays were clustered based on 

relationships between structural fragments and cellular responses in the assays, to identify 

relevant assays that may reveal the underlying toxicity mechanisms for developmental 

toxicity. The PubChem in vitro assay clusters were used for read-across studies for 

predicting developmental toxicity and several clusters had high positive prediction rates in 

the cross-validation process. With further analysis, several interesting chemical toxic alerts 

were identified from the read-across studies for different clusters. These alerts can be used 

to establish molecular initiating events (MIE) in vitro and link to in vivo through an adverse 
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outcome pathway (AOP), to improve the read-across prediction rates. The results indicate 

that if a chemical contains the chemical toxic alert and shows active response in the relevant 

bioassay, it has high potential to be a developmental toxicant. Novel mechanisms for 

developmental toxicity were also revealed in this study. This modeling approach can be 

used to predict a new chemical for developmental toxicity and can be extended for use in 

other toxicity end points. 

Keywords: Developmental toxicity, read-across, chemical toxic alerts, molecular 

initiating event.  
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Introduction 

Using traditional animal testing models for chemical testing is very expensive, time 

consuming and requires a large number of animals.1 It also raises ethical concerns because 

of the cruelty to the animals. There are alternate approaches that have been taken in the 

past with an objective to reduce, refine and replace (3R’s) animal testing. High throughput 

screening is one such low cost method that has been used to test a large number of 

chemicals for toxicity.2  

Computational modeling is a promising approach to quickly and reliably evaluate 

chemical toxicity. Researchers have been using Quantitative Structure-Activity 

Relationship (QSAR) modeling, based on the assumption that similar chemicals tend to 

have similar activities. Although for complex toxicity end points such as developmental 

toxicity, just using chemical structure information to assess toxicity can be error prone, 

mainly when chemically similar compounds exhibit dissimilar activities (activity cliffs). In 

the past, there have been a number of reports describing QSAR to predict developmental 

toxicity using different software and methods. Many of these models have limitations of 

use because they used a small training data set to build the model, or they had a low 

active/inactive chemical ratio leading to poor predictive performance.3,4,5 Another alternate 

technique is read-across which relies on using toxicity information from structurally similar 

compounds to estimate the toxicity of new compounds. Earlier, read-across relied on 

chemical structure similarity only which could result in activity cliffs, but recently 

researchers have been including biological data in read-across.6 Previous studies had the 

disadvantage of manually selected limited biological data, including well-known toxicity 

mechanisms.7 
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In recent years, various programs have been undertaken to make large data publicly 

available. Environmental Protection Agency (EPA) initiated a program called ToxCast, 

where they used high-throughput screening and have screened about 4,500 chemicals for 

toxicity with an objective to lower costs, decrease animal use, increase throughput, provide 

coverage of mechanism and pathways, and increase the human relevancy of toxicity 

results.8 Tox21, is an ongoing collaborative initiative by the EPA, National Institutes of 

Health’s National Center for Advancing Translational Sciences (NCATS), the National 

Toxicology Program (NTP), and the Food and Drug Administration (FDA) started in 2008 

with similar objectives. They have tested over ten thousand chemicals for toxicity.9 

With the publicly available big data sets, there is an urgent need to analyze the data 

and infer novel mechanisms that scientists can use to predict hazards of new and existing 

chemicals. Developmental toxicity is the adverse effects on a developing organism that 

result from exposures prior to conception, during the prenatal period and postnatally up to 

the time of sexual maturity. Developmental toxicity end point is one of the important 

hazard end points in the risk assessment of chemicals that need to be addressed, but it has 

been a challenge due to the complexity of the endpoints.10,11,12 In this study, a large data 

set for developmental toxicity comprising of 1,365 unique compounds was collected. An 

in-house automated data mining tool was used to extract the biological data from PubChem 

for all the compounds to generate bioprofiles.13 The mechanistically similar PubChem 

bioassays were clustered together using chemical fingerprints of the compounds and 

chemical toxic alerts were identified from the clusters. Establishing chemical in vitro-in 

vivo relationships was the key component in this work (outlined in Fig. 1), that revealed 

developmental toxicity mechanisms.  
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Materials and Methods 

Developmental Toxicity Database 

 The database was collected from EPA ToxRefDB (https://www.epa.gov/chemical-

research/exploring-toxcast-data-downloadable-data) and the literature.4,10,11 The datasets 

were merged, curated with CaseUltra to remove all the duplicated compounds, mixtures  

and salts resulting in 1,365 unique compounds specific for developmental toxicity, from 

different species like rat, rabbit, mouse and dog. The dataset was either binary (compounds 

depicted as 1 for ‘toxic’ and 0 for ‘nontoxic’) or the cutoff was chosen by plotting the 

log10-transformed Lowest Observed Adverse Effect Levels (logLOAEL) values for 

modeling. The mid-point logLOAEL value of 1.32 (equivalent to LOAEL = 21 mg/kg/day) 

was chosen as the cutoff for determining toxicity in the ToxRefDB dataset, resulting in 382 

toxic and 378 nontoxic compounds. Compounds with LOAEL value  21 mg/kg/day were 

categorized as toxic (1) while compounds with LOAEL > 21 mg/kg/day were categorized 

as nontoxic (0). Overall, if a compound was toxic in at least one of the data sets, then it 

was considered as toxic for this study. This criterion resulted in 910 toxic and 455 nontoxic 

compounds in the dataset used as training set.  

An external validation test set collected from MultiCase was used to evaluate the 

generated models. This data set was also curated, refined by excluding the chemicals that 

were already included in the training set, resulting in 282 compounds: 120 toxic and 162 

nontoxic. 

Bioprofile Construction and Clustering of PubChem Bioassays 

 For the 1,365 compounds in the training set, in vitro bioassay data was extracted 

from a public repository, PubChem (https://pubchem.ncbi.nlm.nih.gov/) using an 

https://www/
https://pubchem.ncbi.nlm.nih.gov/
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automatic data mining portal (http://ciipro.rutgers.edu/).1,13 The bioassays with very 

limited data, including bioassays with less than five active responses across the training set 

compounds, were eliminated. The bioprofile comprised of the activity response for the 

1,365 compounds in the training set across 971 PubChem assays, constructed using the 

CIIPro portal (Fig 2). To cluster the mechanism-related bioassays, 729 chemical fragments 

relevant to toxicity (ToxPrint fingerprints) were generated using ChemoTyper.2, 14 The 

relationship between a ToxPrint fragment and a PubChem bioassay was determined using 

the Fisher’s exact test. The output of this test is a p-value, denoting the statistical 

significance between the fragment and bioassay activity and p-value <0.05 was considered 

to be statistically significant. Bioassays sharing many significant fragments could be 

mechanistically related and could reveal potential mechanisms for developmental toxicity 

for specific chemical toxicants. Jaccard dissimilarity (Jd) between each bioassay using the 

fragment profile was used to group similar assays, defined as: 

 

                                                   𝐽𝑑 = 1 − 
𝐴∩𝐵

𝐴∪𝐵
,                                                               (1) 

where A and B represent the sets of significant fragments for PubChem bioassays A and 

B, respectively. Jaccard dissimilarity allows for the representation of potential relationship 

among assays as a network graph. The network graph, where nodes represent the bioassay 

and edge represents the Jd values between two bioassays, was created using Gephi software 

(https://gephi.org) (version 0.9.1) (Fig. 3). Clusters of bioassays were determined using the 

Louvain modularity algorithm available within the Gephi software, using the resolution 

parameter to determine the assays within the same cluster.2 

 

http://ciipro.rutgers.edu/
https://gephi.org/
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Read-across study 

 Within each cluster of PubChem bioassays, a bioprofile based read-across study 

was performed and biosimilarity between two compounds was calculated based on the 

bioprofiles of the PubChem bioassays that formed the cluster. Biosimilarity between two 

compounds A and B can be calculated as: 

                     𝐵𝑖𝑜𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐴, 𝐵) =
|𝐴𝑎∩𝐵𝑎|+ |𝐴𝑖∩𝐵𝑖|.𝑤

|𝐴𝑎∩𝐵𝑎|+ |𝐴𝑖∩𝐵𝑖|.𝑤+ |𝐴𝑎∩𝐵𝑖|+ |𝐴𝑖∩𝐵𝑎|
                             (2) 

where Aa and Ba represents active responses in the bioassays and Ai and Bi represents 

inactive responses in the bioassays for the compounds A and B, respectively. The 

parameter w weights the inactive responses less than the active responses, since the 

proportion of active data, which has more significance, is much lower than the inactive 

data. w was calculated as the ratio of total active responses to total inactive responses for 

each cluster. As shown in previous studies, calculating biosimilarity alone can often lead 

to misleading results due to missing data.13 To overcome this, a parameter of confidence 

was added, calculated as: 

 

            𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (𝐴, 𝐵) =  |𝐴𝑎 ∩ 𝐵𝑎| + |𝐴𝑖 ∩ 𝐵𝑖|. 𝑤 + |𝐴𝑎 ∩ 𝐵𝑖| + |𝐴𝑖 ∩ 𝐵𝑎|          (3) 

 

Read across studies were performed for all the bioassay clusters and the modeling 

set results were evaluated by a five-fold cross validation. For five-fold cross validation, the 

modeling set was randomly divided into five parts and each time, four parts were used to 

build a model and the remaining one part was used as a test set for validation. This 

procedure was repeated five times so that each compound was predicted once. The 

compounds in the test set were predicted by its bio-nearest neighbor in the modeling set 
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using the selected PubChem assays in the cluster.15 The statistical parameters used to 

estimate model performance were specificity, sensitivity, correct classification rate (CCR) 

and positive predictive value (ppv) defined as:  

                                                     𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ,                                                 (4) 

                                                    𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
TN

TN+FP
 ,                                                 (5) 

                                           𝐶𝐶𝑅 = (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑒𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) 2⁄  ,                           (6) 

                                                      𝑝𝑝𝑣 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                               (7)  

where, TP represents the number of true positives (toxic compounds correctly predicted as 

toxic), FP represents the number of false positives (nontoxic compounds incorrectly 

predicted as toxic), TN represented as true negatives (nontoxic compounds correctly 

predicted as nontoxic) and FN represented as false negatives (toxic compounds incorrectly 

predicted as nontoxic).  

 To further improve developmental toxicity predictions, the read-across analysis 

was performed for a subset of compounds containing a specific chemical toxic alerts and 

the bioassay results.  

Quantitative Structure-Activity Relationship Models  

FCFP6 chemical descriptors that generate 1024 fingerprints generated using the 

rdkit package in python were used to describe the compounds in the database. Random 

Forest and Support Vector Machine (SVM) algorithms were implemented using the Python 

library scikit-learn to develop QSAR models. Random Forest in an ensemble algorithm 

consisting of constructing many decision trees and then combining the output among the 

trees to make a prediction.2 SVM algorithm predicts by discriminating between two classes 

(toxic vs nontoxic in this case) by generating a hyperplane that optimally separates the 
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classes after transforming the input data mathematically into a high-dimensional space.16 

QSAR models were generated based on the chemical structure information and toxicity 

response to predict the toxicity of new compounds. The developed models were evaluated 

by a five-fold cross validation and by validation of the external test set. The parameters 

used for evaluation were sensitivity, specificity and CCR (4, 5, 6). 

QSAR modeling approach was also used to fill the missing data for bioassay 

responses for selected bioassays. The training set was retrieved from PubChem for each 

PubChem Assay Identifier (AID) which included activity responses classified as active, 

inactive or inconclusive for all the tested compounds in each assay. All the inconclusive 

results were eliminated, and the active/inactive ratio was balanced by randomly selecting 

and eliminating compounds until an equal ratio was achieved.2 The chemical features for 

the compounds were described by rdkit (200 fingerprints) and ECFP6 (1024 fingerprints) 

chemical fingerprints. Random forest, SVM and Ada-boost algorithms in the Python scikit-

learn library were implemented to develop QSAR models. A five-fold cross validation was 

performed, and the models were evaluated by statistical parameters including sensitivity, 

specificity, CCR and ppv (4, 5, 6, 7). The external test set for the models were the 

compounds in the developmental toxicity database that had missing bioassay responses for 

the assays used in the read-across analysis. 

Predicting new compounds and identifying toxicity mechanism 

 The developmental toxicity of a new compound was evaluated by its bio-nearest 

neighbor, defined by biosimilarity, calculated by using activity responses for selected 

bioassays. Missing bioassay data can be predicted by QSAR modeling and chemical in 

vitro-in vivo relationship analyses can be performed by examining the chemical toxic alerts 
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of the compounds with their predicted bioassay responses. If the results showed significant 

improvement in predictivity, the relevant toxic alert was considered as a Molecular 

Initiating Event (MIE) for predicting developmental toxicity.15 In this way, new toxicity 

mechanisms can be revealed by linking chemical toxic alerts, relevant in vitro assays and 

in vivo developmental toxicity.2 

 

Results 

Developmental Toxicity Database Overview and Classification 

A large in-vivo developmental toxicity database, collected from various sources 

(Table 1) was curated, resulting in 1,365 unique compounds. Most of the datasets had 

compounds classified as developmental toxicants or non-developmental toxicants, 

categorized as 1 or 0 respectively for modeling purposes. For the ToxRefDB dataset, log 

transformed Lowest Observed Adverse Effect Levels (logLOAEL) values were used to 

classify toxicant and non-toxicant, applying a threshold of logLOAEL  1.32 was used to 

define toxic compounds, equivalent to LOAEL value  21 mg/kg/day. Merging the 

different datasets resulted in conflicting results for many of the compounds. Therefore, to 

define developmental toxicity, a compound with at least one toxic result was categorized 

as developmental toxicant. This resulted in 910 toxic and 455 non-toxic compounds 

comprising the training set for modeling. An external validation set of 120 toxic and 162 

non-toxic compounds was also collected. Principal Component Analysis (PCA) was 

performed using 206 MOE 2D descriptors to visualize the chemical space of all the 

compounds in the training and the validation sets, by selecting the top three principal 

components accounting for maximum variants (Fig. 4).   
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QSAR model for predicting chemical toxicity  

The QSAR model built from a modeling set with chemical structure and compound 

toxicity information was able to predict the toxicity of compounds that were not a part of 

the training set, based on their chemical structures. Model performance of the five-fold 

cross validation of the modeling set, shown in Fig. 5A, indicates that the models built using 

the random forest and support vector machine algorithms, performed similarly with a 

correct correlation rate of 0.65. The predictions for chemical toxicity of compounds in an 

external test set used for validation of the QSAR model were slightly lower than the five-

fold cross validation, with a correct correlation rate of 0.54 for both the random forest and 

support vector machine models (Fig. 5B). The moderate predictivity of the model could be 

because there were a few activity cliffs (data not shown), where chemically similar 

compounds showed opposite activities (toxicities). The performance of external test set 

predictions being lower than the five-fold cross validation was not new, it has been 

observed in previous QSAR studies.3 This is because the compounds present in the test set, 

might not be similar to compounds in the modeling set on which the model is built, so the 

predictions were expected to be slightly low. To overcome the problem of activity cliffs 

and to improve the model predictions, biological data was incorporated in the modeling.  

Read-across modeling of PubChem in vitro assay clusters  

Among the 18,403 in vitro assays retrieved from PubChem for the compounds in 

the modeling set, 971 assays had significant correlations (p-value < 0.05) with at least one 

ToxPrint chemical fragment resulting in 16,113 significant responses between chemical 

fragments and in vitro assay responses. Mechanistically related assays were clustered by 

calculating the Jaccard dissimilarity (Jd) between every pair of the bioassays and the pairs 
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with Jd values less than 0.75 were selected. In Fig. 3, nodes (dots) represent the assays and 

an edge represent two mechanistically related assay. The assay’s relationships were further 

analyzed to identify statistically significant clusters and distinguish them from pseudo-

clusters. There were 22 unique clusters identified, each shown by a different color in Fig. 

3, with a range 2-66 bioassays within a cluster, there were also some overlapping assays 

between the clusters.  

All the 22 bioassay clusters were evaluated for their ability to predict 

developmental toxicity. Read-across studies were performed within each cluster and 

evaluated using a five-fold cross validation within the training set. The parameters used to 

assess the predictivity for developmental toxicity were CCR, sensitivity, specificity and 

ppv (4, 5, 6, 7). The clusters above 60% ppv were further assessed to predict developmental 

toxicity (Fig. 6). 

Chemical toxic alerts identification and QSAR modeling to fill missing PubChem in-

vitro assay responses in the database. 

Chemical toxic alerts identified from the chemical structures of the compounds, 

were evaluated for their ability to improve developmental toxicity predictions. A chemical 

toxic alert could be interpreted as a Molecular Initiating Event (MIE) of a developmental 

toxicity pathway if compounds consisting the alert, showed active response in one or more 

relevant developmental toxicity-related bioassays and showed improved developmental 

toxicity cross-validation predictivity within a cluster. This establishes a chemical fragment 

in vitro-in vivo relationship to identify potential developmental toxicity mechanisms from 

predictions. Chemical toxic alerts within a cluster were restricted for further evaluation as 

a potential MIE by selecting the alerts that were present in five or more developmental 
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toxic compounds and the ppv of cross-validation was above 60%.  A complete dataset is 

required for a robust evaluation to establish a chemical fragment in vitro-in vivo 

relationship. To resolve the missing data issue, QSAR model predictions were used to fill 

the missing data for the compounds that contained the chemical toxic alert but had 

‘inconclusive’ response in the bioassay(s). The QSAR model predictivity of PubChem 

bioassay responses was around 75% in general, adding little uncertainty to the response 

predictions. Predicting bioassay responses and filling the missing data could support in 

revealing potential developmental toxicity mechanisms within each cluster. Investing the 

chemical toxic alerts of the compounds within a cluster can reveal a toxicophore related to 

developmental toxicity, which in turn can explain toxicity mechanisms by integrating the 

bioassay data.  

Molecular initiating events linking in vitro to in vivo and potential mechanisms for 

developmental toxicity. 

The chemical toxic alert in cluster 9 were identified as MIE (Fig 7), showed 

exceptional chemical in vitro-in vivo relationships. The compounds consisting of this alerts 

and their corresponding bioprofiles are shown in Fig 7. A compound consisting of the 

identified alert and showing active responses in the identified bioassays in the cluster, could 

be predicted as a developmental toxicant. The bioassays identified in cluster 9 were 

hormone receptor (namely, androgen receptor, progesterone receptor and thyroid receptor) 

antagonist assays. These hormone receptor pathways are essential for the normal 

development.17 Several known endocrine disrupting chemicals (EDCs) were also identified 

in this study, including triadimenol, diethylstilbestrol, oxybenzone and diethylstilbestrol 

dispropionate. Exposure to EDCs during early life stages is known to cause developmental 
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abnormalities. In addition, when EDCs bind to the hormone receptors as antagonists, the 

hormone function is disrupted.18   

 

Discussion 

 In this study, we applied a computational approach to automatically extract relevant 

data from rapidly evolving public sources like PubChem and perform read-across studies 

to predict chemical developmental toxicity. The QSAR models constructed based on 

chemical structure information could moderately predict developmental toxicity, and 

incorporating biological information proved important in improving developmental 

toxicity predictions. The crucial aspect of this study was to identify the chemical in vitro-

in vivo relationships that were used to identify MIEs with relevant bioassays. This shows 

promising potential for predicting developmental toxicity and identifying possible 

mechanisms that cause developmental toxicity. A compound containing a MIE and 

showing active response in the relevant bioassay(s) identified in this study, is predicted as 

a developmental toxicant. It is important to have sufficient bioassay data to evaluate 

compounds for developmental toxicity using this approach. For the compounds that have 

missing relevant bioassay responses, their bioactivity can be reported by testing the 

compounds in vitro for the bioassays or can be predicted with QSAR modeling. Although, 

using QSAR modeling undoubtedly induces a little uncertainty in the read-across model 

predictions.  

 Cluster 9 of the PubChem bioassays consists of several assays that are related to 

causing developmental toxicity. In the cluster, a group of hormone receptor antagonist 

assays were identified. Hormone receptors play an important role in the normal 
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development of body and inhibiting these hormone receptors by antagonist binding at early 

life stages is known to cause developmental defects. A chemical toxic alert was identified 

in the study (Fig. 7). We also identified several compounds that contained the toxic alert in 

the class of Endocrine Disrupting Chemicals (EDCs). EDCs are known to bind to hormone 

receptors, inhibiting their function and therefore, causing developmental toxicity.17,18 This 

is an important discovery as the mechanism for developmental toxicity is not 

straightforward and this finding elucidates an important mechanism that causes 

developmental toxicity. Hence, a compound containing the toxic alert identified in this 

study and showing active responses for the group of bioassays identified (Fig. 7) in the 

study can be interpreted as a developmental toxicant. 

 Using the in vitro assays data in read-across method, proved to overcome the 

activity cliffs issue that existed in QSAR modeling based on chemical information, as the 

predictions are no longer based on only the chemical structures which might result in 

activity cliffs.19  

  

Conclusion 

 Developmental toxicity end points are difficult to predict because there is a lot of 

diversity in the mechanism of actions that cause the developmental toxicity effects. The 

approach (Fig. 1) used in this study demonstrates the benefits of using both the chemical 

and the biological data, through chemical toxic alerts and in vitro assays respectively, in 

the read across predictions. The method can be used to predict a new compound for 

developmental toxicity using this information. Although, computational models are still 

not feasible to completely replace animal testing but, they can help in prioritizing the 

hazardous chemicals that can be linked to specific toxicity mechanisms and significantly 
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reduce the animal studies done. This approach can also be applied to other toxicity 

endpoints. 

 

Future Work 

Future research could involve generating proteochemometrics deep learning 

models to predict compound toxicity. In proteochemometrics, descriptors are generated for 

the ligand, target and ligand-target interactions. The descriptors can be fed to the deep 

learning models as an input layer and the results can be retrieved from the output layer to 

make toxicity predictions. This process has been successful for making accurate 

predictions in other studies and might even reveal some other mechanisms of 

developmental toxicity. 
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Fig. 1. Overview of the modeling approach used in this study to predict developmental 

toxicity. 
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Fig. 2. PubChem in vitro assay data generated for the training set compounds. Rows 

represent the compounds and columns represent the assays. The activity responses are 

depicted by different colors. 



 

 

17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

 

 

Fig. 3. PubChem assay clusters based on the relationship between structural fragments 

and cellular responses in the in vitro assays. Each assay cluster is represented by similar 

colored dots. 
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Fig. 4. Chemical space of the training set and test set compounds. 
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Fig. 5. QSAR model validation evaluated by sensitivity, specificity and correct 

correlation rate (CCR). (A) Five-fold cross validation of the training set. (B) Predictions 

of the external test set. 
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Fig. 6. Individual cluster model-specific positive predictive value (ppv) results from five-

fold cross validation of the training set. Numbers along the x-axis correspond to the 

bioassay clusters identified in the study. Cluster 5 and 21 had no ppv as the true positives 

were nil and were excluded from further analyses, all the other clusters had ppv > 60% 

were included in further analyses.   
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Chemical toxic alert: 

           

 

 

 

           

 

          Active response 

          Inactive response 

           

          Developmental toxicant 

          Non-toxicant 

 

In vitro assay description 

1259243 - Androgen receptor 

antagonist 

1347031 - Progesterone receptor 

antagonist 

743065 - Thyroid receptor 

antagonist 

743083 – Aromatase inhibitor 

Fig. 7. Representative chemical-in vitro-in vivo relationship heatmap. All the compounds 

contain the chemical toxic alert shown above. A compound was identified as 

developmental toxicant if it contained the toxic alert and showed active responses in three 

or more in vitro assays shown above. Missing assay responses were filled by QSAR 

modeling.  
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 Data Source 

(Size) 

Activity Value Binary Classification 

T
ra

in
in

g
 s

e
t 

ToxRefDB  

(760 compounds) 

LOAEL values LOAEL  21 as 1, 

LOAEL > 21 as 0 

M. Hewitt et al. 

(292 compounds) 

Developmental toxicant (D), 

Non-developmental Toxicant (N) 

D as 1, 

N as 0 

H. Zhang et al. 

(290 compounds) 

Developmental toxicant,  

Non-toxicant 

Developmental 

toxicant as 1, 

Non-toxicant as 0 

S. Wu et al. 

(609 compounds) 

Toxicant, 

Non-toxicant 

Toxicant as 1, 

Non-toxicant as 0 

T
es

t 

MultiCase 

(1252 compounds) 

Activity (1 or 0) same 

 

Table 1. Data sets used in the study. *LOAEL = Lowest Observed Adverse Effect Levels 
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