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Chemical toxicity assessment is important to public health since numerous 

chemicals are being used daily and the chemical exposed to human beings may cause 

potential toxic effects. Traditional methods for toxicity test of chemicals, such as standard 

rodent models, are expensive and time consuming. Along with the vibrant and rapid 

progress of chemical synthesis and biological screening technologies (e.g. high-throughput 

screening), immense in vitro toxicity data are generated daily and most of these data are 

available to the public through various data sharing project. The enormous toxicity data 

possess the intrinsic “five Vs” characteristics of big data (i.e. volume, velocity, variety, 

veracity and value), and moved traditional toxicology into a “big data” era. However, the 

relevance between these fast accumulating in vitro toxicity data with the immediate human 

toxicity effect is obscure. Computational modeling, originally as an alternative method to 

animal models, showed promising ability to bridge the public toxicity big data to potential 

chemical toxicity effects in human beings. Thus, it is necessary to develop novel 

computational models to answer the challenges brought by big data. In this dissertation, 

new computational models and associated modeling approaches were described for toxicity 
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assessments of chemicals using public big data. First, a method for the identification of 

uncertainty in the training data used for quantitative structure−activity relationship (QSAR) 

modeling was developed, which addressed potential issues relevant to veracity of toxicity 

data. Second, a hybrid read-across method was developed, which focused on handling the 

data obtained from various resources (i.e. the variety of toxicity big data). A hybrid read-

across study, which were based on the combination of chemical descriptors and biological 

data, showed better predictivity than traditional read-across results that were based on 

chemical similarity. Last, novel mechanism-driven read-across approach was developed 

specifically for chemical hepatotoxicity evaluations. A virtual adverse outcome pathway 

(vAOP) modeling tool were developed and validated using a large hepatotoxicity database. 

This read-across study showed promising applicability to the prediction of new compounds 

for their hepatotoxicity and answered the current five Vs challenges of toxicity big data.   
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Chapter 1 Current Stage of Computational Toxicology 

Numerous chemicals are used in our ordinary life and these chemicals exposed to 

human may cause either toxic or beneficial effect in the human body (Organization, 1978). 

Accurate and efficient toxicity assessment for chemicals is important for public health and 

it is also a critical component during drug discovery and development. The drug candidates 

are required to be extensively tested for their adverse effects to avoid the attrition in the 

drug development process (Schneider, 2018). Traditional methods for toxicity test of 

chemicals, such as standard rodent toxicological tests or alternative animal models (e.g. 

zebra fish and fruit fly), are expensive and time consuming (Hartung, 2009). Computational 

modeling, as an alternative method to animal models, became promising for chemical 

toxicity assessment. In the meanwhile, new technologies such as combinatorial chemistry, 

robots, and high throughput screening (HTS) techniques make it feasible to rapid screen 

thousands to millions of compounds against a specific target. For example, Brandish, Philip 

E., et al. used a cell-based high-throughput screening to screen a library containing more 

than 1 million compounds in less than 12 weeks for identifying cell-permeable inhibitors 

of D-amino acid oxidase (Brandish et al., 2006). These critical advancements are gaining 

increasing recognition in research areas, including the field of toxicology (H. Zhu et al., 

2014). Thus, there has been a rapid accumulation of toxicity data available to inform the 

toxicity assessment of chemicals. The large amount of accumulated toxicity data 

accelerated the progress of computational modeling for chemical toxicity assessment 

(Hartung, 2016). 
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Fast-growing Chemical Toxicity Data.  

With the critical achievements of the modern advanced techniques, large amount 

of data is generated daily and shared by public databases. Since the NIH Roadmap for 

medical research was launched in 2004 (Zerhouni, 2003), several molecular library 

screening centers have been funded  (Austin et al., 2004) and several HTS projects have 

been performed to experimentally test large chemical libraries. The recent data generation 

efforts in the area of toxicology are toxicity forecaster (ToxCast) initiated by the US 

Environmental Protection Agency (EPA) (Dix et al., 2007) and Toxicity Testing in the 

twenty-first century (Tox21), which was launched by the National Toxicology Program 

(NTP), the National Institutes of Health (NIH) Chemical Genomics Center (NCGC), and 

EPA (Collins et al., 2008; Hukkanen et al., 2016; Shukla et al., 2010). The direct results of 

these experimental screening method efforts, especially HTS, are the toxicity data currently 

public available through big data portals such as ChEMBL (Gaulton et al., 2017), PubChem 

(S. Kim et al., 2019), and etc. ChEMBL database (https://www.ebi.ac.uk/chembl/), which 

is a manually curated chemical database maintained by the European Bioinformatics 

Institute (EBI), of the European Molecular Biology Laboratory (EMBL) (Gaulton et al., 

2017). The EBI’s goal is to provide freely available data and bioinformatics services to the 

scientific community. As part of this goal, the ChEMBL database was constructed for 

experimental data of both chemical toxicity and absorption, distribution, metabolism, and 

excretion (ADME) properties. Now ChEMBL contains over 1.6 million compounds and 

over 1.2 million assays (Gaulton et al., 2017). Another large reservoir of bioassay data, 

PubChem (https://pubchem.ncbi.nlm.nih.gov/) is a public repository for chemical 

structures and their biological data, including the toxicity data from the screening centers 
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as described above (Y. Wang, Bolton, et al., 2009; Y. Wang, Xiao, et al., 2009). Figure 1-

1 shows the yearly increase in the number of PubChem compounds and bioassays. Over 

the past 12 years, the number of PubChem compounds increased from 19 million in 

September 2008 (Wheeler et al., 2008) to over 100 million in September 2019 (S. Kim et 

al., 2019). During the same period, the number of bioassays that were used to test these 

compounds increased from 1197 in September 2008 (Wheeler et al., 2008) to over 1.2 

million in September 2019, resulting in over five terabytes of data (S. Kim et al., 2019). 

 

Figure 1-1. The number of compounds and bioassays increase in PubChem within 12 
years. 

Data were collected from September 2008 to September 2019, PubChem compounds are 
in millions. Over the past 12 years, the number of PubChem compounds increased from 19 
million in September 2008 to over 100 million in September 2019. During the same period, 
the number of bioassays that were used to test these compounds increased from 1197 in 
September 2008 to over 1.2 million in September 2019, resulting in over five terabytes of 
data. 
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Five Vs Features of Toxicity Big Data 

The enormous toxicity data possess the intrinsic “five Vs” characteristics of big 

data (i.e. volume, velocity, variety, veracity and value) (Figure 1-2), moving traditional 

toxicology into a “big data” era (H. L. Ciallella & Zhu, 2019; McAfee & Brynjolfsson, 

2012; H. Zhu, 2020). The daily updated toxicology big data databases growing fast 

representing volume and velocity of data. These databases consist of large-scale datasets 

from various sources, which contain enormous number of chemical toxicity endpoints, 

which defined the variety of data. Besides these characteristics, owing to the nature of 

experimental protocols and the inconsistency of data quality, veracity indicates the data 

uncertainty from different sources and requires novel technologies for data curation and 

management. The value of data can be defined as the potential of data usefulness to lower 

the cost of chemical toxicity assessment.  

 

Figure 1-2. Five Vs scheme of toxicity big data. 

In the current big data era, the terms volume (data scale), velocity (data growth), variety 
(the diversity of data sources), veracity (data uncertainty) and value (data value) have been 
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used to characterize the currently available chemical, in vitro, and in vivo data for toxicity 
modeling purposes. 
 
Computational Modeling Approaches for Chemical Toxicity Evaluation 

Quantitative Structure−Activity Relationship (QSAR). Traditional 

computational toxicology approach is usually based on chemical similarity search, such as 

QSAR modeling (Hansch et al., 1995; T Wayne Schultz et al., 2003; Sprous et al., 2010). 

The basic hypothesis of this type of studies is “compounds in similar structures will have 

similar bioactivities”. Since QSAR approach was first developed by Hansch and Fujita in 

1964 (Hansch & Fujita, 1964), it has remained an efficient method to find a statistically 

significant correlation between the chemical structures and their properties and activities. 

In the early stage of QSAR application in computational toxicology, QSAR modeling was 

limited to small size dataset (e.g. number of compounds less than 10) and based on simple 

linear regression methods (Y. C. Martin, 2010) . In the last decades, QSAR has reached 

several milestones, including the development of novel chemical descriptors such as 

topological descriptors (Gozalbes et al., 2002) and molecular fingerprints (McGregor & 

Muskal, 1999; Willett, 2006), and the application of new nonlinear modeling algorithms 

such as random forest (Breiman, 2001), support vector machines (Cortes & Vapnik, 1995), 

and k- nearest neighbors (Altman, 1992). In the same period, model validation was 

emphasized and treated as a critical component of modeling procedure (Golbraikh & 

Tropsha, 2002). In addition, the applicability domain became a standard practice for model 

development (Hao Zhu, Alexander Tropsha, Denis Fourches, Alexandre Varnek, Ester 

Papa, Paola Gramatica, Tomas Oberg, Phuong Dao, Artem Cherkasov, 2008; Tetko et al., 

2008; Tropsha & Golbraikh, 2007; H. Zhu et al., 2009). The application of QSAR modeling 
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in chemical toxicity assessment has created big values by saving time and cost during 

virtual screen.  

Read-across. As another alternative technique to animal testing for toxicological 

assessment (T. W. Schultz et al., 2015), read-across is a promising low-cost method to 

evaluate the toxicity potential of new compounds (Ball et al., 2016). In a read-across study, 

the toxicity potential of a new compound will be evaluated by its most “similar” compound 

that has an experimental toxicity result (Ball et al., 2016). The similarity of compounds can 

be defined from chemical and/or biological properties. Based on the hypothesis that 

chemically similar compounds have similar bioactivities (Tropsha, 2012), QSAR models 

have been widely used for read-across studies. Due to the inherent complexity of biological 

systems, covering all potential factors contributing to multifaceted in vivo outcomes, such 

as hepatotoxicity, is difficult using available QSAR models.(Muster et al., 2008). Using 

only chemical similarity in read-across studies for complex toxicity endpoints has proved 

to be error-prone due to “activity cliffs” (i.e., structural similar compounds have different 

toxicity) (Medina-Franco et al., 2009; Stumpfe & Bajorath, 2012). In addition to chemical 

structural properties, the inclusion of biosimilarity rankings based on biological data adds 

extra strength to the utility of read-across (H. Zhu et al., 2016). There have been previous 

studies that used biological data to support read-across, such as the toxicants profiled by 

ToxCast biological data, in which read-across was performed using chemical responses 

from a set of in vitro bioassays (M. T. Martin et al., 2011; Reif et al., 2010; Rotroff et al., 

2013; Sipes et al., 2011, 2013). Because these bioassays were designed to reveal specific 

toxicity mechanisms, the predictions of new compounds can also be interpretable.  
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Data-driven profiling based on in vitro bioassay data. Biological data generated 

from high-throughput screening (HTS) of large chemical libraries contains rich toxicology 

information that has the potential to be integrated into toxicity research. Read-across is a 

promising method to utilize these biological data. Current available biological data for 

chemical toxicity are in large volume and growing in high velocity, thus, the key in the 

current toxicity big data scenario is to use an automatic data mining method to explore all 

relevant biological data, which is not limited to preselected in-house data, and perform 

read-across studies based on the biological data with high sparsity and variety. The data-

driven profiling method used in this dissertation is Chemical In vitro-In vivo Profiling 

(CIIPro) portal, which is a versatile workspace for users to profile compounds of interest 

with biological data from public resources (i.e. PubChem) and use these data for read-

across modeling (Russo et al., 2016).  

Challenges of Big Data Research in Computational Toxicology  

In the current big data scenario of toxicology, large amount of in vitro toxicity data 

is being accumulated. However, the relevance between these fast accumulating in vitro 

toxicity data with the immediate human toxicity effect is weak. It is important to be aware 

that the big data are not a prerequisite or guarantee for obtaining good predictive models 

(Schneider, 2018). Due to the five Vs characteristics of big data, successful practice of 

machine learning methods requires critical supports from the improvements of data mining, 

curation and management technologies (H. L. Ciallella & Zhu, 2019; Zhao & Zhu, 2018). 

It is urgent to develop novel approaches to deal with high volume, multidimensional, and 

high-sparse data sources for chemical toxicity assessment (Lu Zhang et al., 2017; H. Zhu, 

2020). Furthermore, due to the fact that mechanisms of chemical toxicity are always 
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complex, most of the data-driven computational models are regarded as “black box” 

(Fraczkiewicz et al., 2009; Polishchuk et al., 2013) for prediction of compound 

bioactivities. It is necessary to develop novel mechanism-driven models which could be 

used to indicate the toxicity mechanism from the prediction results. 

In this dissertation, novel computational models to aid in the toxicity assessment of 

chemicals in the current 'big data' era are introduced. Firstly, a new method for 

identification of uncertainty in the quantitative structure−activity relationship (QSAR) 

modeling data was developed, which was focused on handling the veracity of toxicity data. 

Simulated experimental errors were introduced into the modeling set, and the relationship 

between different ratio of questionable data in the modeling sets and the QSAR modeling 

performance was explored. Secondly, a hybrid read-across modeling method was 

investigated, which was focused on handling the variety of toxicity data. Traditional read-

across using only chemical data together with novel hybrid read-across using both chemical 

and biological data were studied. The hybrid read-across shown improved accuracy of 

toxicity predictions. Lastly, novel mechanism-driven read-across models for chemical 

hepatotoxicity were developed, which was focused on handling the volume, variety and 

veracity of toxicity data. A large in vivo hepatotoxicity database was constructed and 

curated, and mechanism-driven read-across model, also known as virtual adverse outcome 

pathway (vAOP) models, were developed and validated. Several mechanisms that might 

contribute to toxicity were derived from the modeling results.  
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Chapter 2 Identification of Experimental Errors in QSAR Modeling Sets 

Overview 

Quantitative structure−activity relationship (QSAR) models are statistical models, 

which build correlations between the chemical structure information (represented by a set 

of molecular descriptors) of compounds and their target biological activities (Sprous et al., 

2010). The datasets for QSAR modeling, which contain the structure information and 

activities of compounds, are generated by experimental scientists and available in various 

data sources. Along with the large chemical library and high throughput screening 

technologies being developed, numerous datasets have become available for modelers (H. 

Zhu et al., 2014). Popular data sources include general data deposit portals, such as 

PubChem (http://pubchem.ncbi.nlm.nih.gov), and databases for specific research interests, 

such as Toxicity ForeCaster (ToxCast) (https://www.epa.gov/chemical-research/toxicity-

forecastertoxcasttm-data) and ACuteTox (http://www.acutetox.eu/). However, the quality 

of data may be different based on the nature of experimental protocols. The usefulness of 

public data sources is questionable due to lack of the necessary quality control (Williams 

& Ekins, 2011). General concerns have been raised regarding irreproducible experimental 

data, (Bell et al., 2009; Ioannidis et al., 2009; Prinz et al., 2011) which is relatively common 

in complex biological testing (e.g., animal models).  

The major issues existing in the public data sources include (1) the incorrect 

representation of chemical structures (i.e., structural errors) and (2) inaccurate activity 

information (i.e., experimental errors). There have been many relevant works showing that 

noncurated chemical structures will result in models of poor accuracy and the curation of 

chemical structures will improve modeling predictivity (Fourches, Muratov, et al., 2010; 
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Young et al., 2008). The recent review (Fourches et al., 2015) by Fourches et al. indicates 

a standardized workflow can be used to greatly decrease the structural errors in the public 

datasets. However, besides the chemical structure information, the quality of QSAR 

models also strongly depends on the target biological data. Because of the inevitable 

experimental errors, it is hard to know which compounds in the modeling set contain 

incorrect experimental data. Reliable biological data in datasets are usually obtained by 

taking the average of multiple measurements (assuming that there is no systematic error in 

each measurement) (Hinkelmann & Kempthorne, 2008) and/or testing the compounds 

under multiple concentrations (Feinberg et al., 2004; Hinkelmann & Kempthorne, 2008) . 

Experimental errors normally occur when testing compounds just a single time and/or 

under a single concentration. Modeling datasets defined by a single measurement 

containing experimental errors will decrease the predictivity of the resulting QSAR models, 

according to a previous study (Wenlock & Carlsson, 2015). Recently, Cortes-Ciriano et al. 

(Cortes-Ciriano et al., 2015) simulated the experimental errors in QSAR modeling sets, 

and then compared the influence of different QSAR approaches on predictive accuracy. 

This study provides a practical reference for making a better decision about which 

modeling approach should be chosen depending on the quality of modeling sets. Roy et al. 

(Roy et al., 2017) have studied the relationship between systematic errors in the predictions 

and the applicability domain (AD) of QSAR modeling. They also exposed the flaw of using 

normal correlation coefficients to describe model predictivities (Roy et al., 2016). These 

previous studies mainly focus on the relationship between the predictivity of QSAR models 

and the quality of modeling sets or the selection of modeling approaches. However, there 

is no systematic study on how to obtain a reliable QSAR model from an error-ridden 
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modeling set (either a continuous set or a categorical set). Two relevant questions that have 

not been answered are (1) whether we can identify large experimental errors in the datasets, 

and (2) what we can do to improve models based on datasets with such errors. 

In the current big data scenario, numerous chemical datasets have become available 

for QSAR modeling studies (H. Zhu et al., 2014). However, the quality of different data 

sources may be different based on the nature of experimental protocols (Williams & Ekins, 

2011). Therefore, potential experimental errors in the modeling sets may lead to the 

development of poor QSAR models and further affect the predictions of new compounds. 

In this chapter, the relationship between the ratio of questionable data in the modeling sets 

and the QSAR modeling performance were explored. The questionable data were the 

simulated experimental errors (i.e., randomizing the activities of part of the compounds) 

introduced into the modeling set. A five-fold cross-validation process was used to evaluate 

the modeling performance and certain amount of simulated experimental errors could be 

identified through this process. After identification of simulated errors, different ratios of 

questionable data were removed from modeling sets. The remaining data were used to 

develop new QSAR models and these resulting models were also evaluated by predicting 

external sets of new compounds.  

Materials and Methods 

Datasets. The eight datasets used in this study (Table 2-1) were taken from public 

literature and extensively curated in house or obtained from Multicase Inc. (Beachwood, 

OH 44122). These datasets include four categorical and four continuous bioactivity 

endpoints. The sizes of both the two types of datasets vary from hundreds to thousands. 

These datasets represent diverse biological properties useful for drug design and/or 



5 
 

 

regulatory risk assessment. The BCRP (Sedykh et al., 2013), MDR1 (Sedykh et al., 2013), 

and BSEP (Mak et al., 2015) datasets represent inhibition of the respective membrane 

transporters. The AMES dataset is a large bacterial mutagenicity collection from public 

sources (Chemical Carcinogenesis Research Information System (CCRIS) Database. 

Bethesda (MD): National Library of Medicine (US), n.d.; Hansen et al., 2009). The ER 

dataset was collected from previous estrogen receptor binding studies and specifically 

refers to the chemical binding affinity of ERα (Liying Zhang et al., 2013). The EB dataset 

contains the results of Microtox testing of environmental bacteria (aerobic heterotrophs, 

nitrosomonas, methanogens, and photobacteria) by U.S. EPA. (Klopman & Stuart, 2003; 

Pangrekar et al., 1994). The remaining two datasets, FM and LD50, are whole animal 

toxicity endpoints, and represent the acute toxicity testing results against the fathead 

minnow and rat, respectively (Klopman et al., 2000; H. Zhu et al., 2009). 

Experimental error simulation. Different levels of experimental errors were 

simulated and introduced into each modeling set in this study. Three different strategies 

were used to simulate experimental errors based on the data type. For each categorical 

dataset, x% (x = 5, 10, 15, 20, 25, 50) compounds from the two classes were randomly 

selected and their activity categories were exchanged. These efforts resulted in six new 

modeling sets. Each new modeling set was labeled based on their levels of simulated 

experimental errors. For example, the AMES-x5 modeling set is the new AMES modeling 

set, when x% = 5% of modeling set compounds have simulated experimental errors. For 

continuous modeling sets, there are two strategies used in this study to simulate 

experimental errors: (1) progressive scrambling, in which compounds were sorted by their 

activities, and were assigned to n bins (n = 1, 2, 4, 5, 10, or 20), thus forming n subsets 
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based on activities. The activities of compounds within each bin were randomly shuffled, 

resulted in six new modeling sets; (2) the standard deviation of the activity was first derived 

in each dataset. Then, the standard deviation of each dataset was multiplied by a parameter 

k (k = 0.1, 0.2, 0.5, 1.0), and this result was denoted as sigma. Random values from zero-

centered normal distributions with each sigma were generated, and they were added to the 

activity value of each compound in the original modeling sets as errors. These efforts 

resulted in four new modeling sets. Thus, for continuous datasets, take LD50 data as 

example, the new modeling sets were named as LD50-n1, when n is 1, and LD50-k0.1, 

when k is 0.1. The first approach will generate relatively larger experimental errors than 

the second approach. Both methods were used to cover various types of existing continuous 

datasets (e.g., some datasets with relatively larger experimental errors). All of the 

experimental error simulation works were repeated five times. The results presented in this 

chapter were the averages of all of the five trials. 

Molecular descriptors. Molecular Operation Environment (MOE) software 

version 2015.10 (Molecular Operating Environment (MOE), n.d.) and Dragon version 6.0 

(Talete srl, n.d.) were used in this study for calculating 192 (MOE) and over 1500 (Dragon) 

2D chemical descriptors for compounds in each dataset. After that, for each dataset, all of 

the descriptor values were normalized to the range from 0 to 1, and redundant descriptors 

were excluded by deleting descriptors with low variance (standard deviation 0.95). The 

remaining 120−140 MOE descriptors and 700−1300 Dragon descriptors (actual numbers 

are dataset dependent) were used in the following modeling process. 

Modeling approaches. In this study, QSAR models were developed using two 

machine learning algorithms random forest (RF) and support vector machines (SVMs). In 
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the RF algorithm, which was developed by Breiman (Breiman, 2001), a random forest is a 

predictor that consists of many decision trees and makes a prediction that ensembles 

outputs from each individual tree. In this study, RF was implemented in R.2.15.1(R Core 

Team (2013)., n.d.) using the package “randomForest”. In the random forest modeling 

procedure, n samples were randomly drawn from the original data. These samples were 

used to construct n training sets and to build n trees. For each node of the tree, m descriptors 

were randomly chosen from the descriptors set. The best data split was calculated using 

these m descriptors for each training set. In this study, only the default parameter values (n 

= 500; m is the square root of the number of descriptors for category models and one-third 

of the number of descriptors for continuous models) were used for model development. 

The SVM algorithm was first developed by Cortes and Vapnik (Cortes & Vapnik, 1995). 

In this study, SVM was implemented in R.2.15.1(R Core Team (2013)., n.d.) using the 

package “e1071”. Basically, the SVM algorithm attempted to find the optimal separating 

hyperplane between two classes by maximizing the margin. The support vectors are the 

points, which fall within this margin. The outlier data points (i.e., data points on the “wrong” 

side of the margin) are weighted down to reduce their influence. In the nonlinear case, the 

data points are usually projected into a higher-dimensional space (to make them linearly 

separable) using kernel techniques. There are many types of SVM extensions in the 

package “e1071” based on different types of kernels. In this study, we used the eps-

regression SVM approach and its kernel type is radial basis. 

Applying AD. In this study, the AD was calculated from the distribution of 

Euclidean distances between each compound and its nearest neighbor in the modeling set 

using the relevant chemical descriptors. The threshold value to define AD for a QSAR 
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model places its boundary at one-half of the standard deviation calculated for the 

distribution of distances between each compound in the modeling set and its nearest 

neighbor in the same set. If the distance of the external compound from any of its nearest 

neighbors in the modeling set exceeds the threshold, the prediction is considered unreliable 

and excluded.  

Modeling workflow. The overall modeling workflow is as shown in Figure 2-1. 

Each dataset was divided into a modeling set (83.3% of the overall set) and a test set (16.7% 

of the overall set). The modeling sets were then modified by introducing different levels of 

simulated experimental errors (see the next section for details) and the external validation 

sets were set aside and used to test the predictivity of each model. Multiple QSAR models 

were first created using the original modeling sets, and then a consensus model A (shown 

in blue in Figure 2-1) was generated by averaging the results of all individual QSAR 

models that were developed using a combination of a single modeling approach (either RF 

or SVM) and a single type of descriptor (either MOE or Dragon). Then, QSAR models 

were also developed using modeling sets with different ratios of simulated errors, and a 

consensus model B (shown in orange in Figure 2-1) was generated as well. The five-fold 

cross-validation was carried out to show the performance of the resulting models. In the 

five-fold cross-validation process, each modeling set was randomly divided into five 

equivalent subsets. Each time, four subsets (80% of the modeling set compounds) were 

combined and used to develop QSAR models and the remaining one subset (20% of the 

modeling set compounds) was used as a test set for validating purposes (Figure 2-1). This 

procedure was repeated five times so that each modeling set compound was used for 

prediction once. The performances of the models were also tested by applying AD. Then, 
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the performance of the models by removing the modeling set compounds with large 

prediction errors were tested in the five-fold cross-validation process. By removing 

different ratios (i.e., ratio = 5, 10, 15, and 20%) of the modeling set compounds based on 

their prediction errors, the QSAR models were redeveloped by the reduced size modeling 

set. This effort resulted in the consensus model C (shown in green in Figure 2-1). 

Eventually, all QSAR models were compared to each other using the same excluded test 

set. 

 

Figure 2-1. Modeling workflow for identification of experimental errors in QSAR 
modeling sets. 

Three different types modeling sets were used for developing three types consensus QSAR 
models, A, B, and C. These models were validated using the same test set. 
 
Results and Discussion 

In this study, eight datasets with various bioactivities were used for modeling 

purposes. Some of them (e.g., AMES) have been extensively used in previous QSAR 

studies (Sedykh et al., 2013; Sushko et al., 2010; Liying Zhang et al., 2013; H. Zhu et al., 

2009). For this reason, the QSAR models developed in this study with the original 

modeling sets (without introducing simulated experimental errors or removing any 

compounds) have similar performances compared to those of previous studies. 
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Furthermore, according to previous studies, the consensus predictions (i.e., averaging 

predictions of all individual models) showed significant advantages compared to those of 

individual models, especially for external predictions (Hao Zhu, Alexander Tropsha, Denis 

Fourches, Alexandre Varnek, Ester Papa, Paola Gramatica, Tomas Oberg, Phuong Dao, 

Artem Cherkasov, 2008; Marlene T. Kim et al., 2014; Solimeo et al., 2012; W. Wang et 

al., 2015). Similarly, the consensus predictions obtained the highest accuracy for almost all 

models in this study (Tables 2-2 and 2-3). To avoid the complexity of comparing hundreds 

of different individual models, the consensus model performances for each dataset were 

compared in the following discussions. Test set prediction results of all consensus models 

are reported in Tables 2-4 and 2-5. Three methods (one for categorical datasets and two 

for continuous datasets) were used to simulate experimental errors in the modeling sets 

(see Materials and Methods section for details). After the simulated experimental errors 

were introduced into the modeling sets, the model performance in the five-fold cross-

validation for all datasets deteriorated. 

The major goal of this study is to identify experimental errors in a modeling set 

using QSAR approaches. To this end, five-fold cross-validation was performed for each 

model and consensus predictions were made based on the results of the five-fold cross-

validation of all individual models. The compounds in each dataset can be then sorted in 

decreasing order by their apparent prediction errors. The topmost compounds with the 

largest prediction errors can then be checked for the amount of introduced experimental 

noise. Plots on the left in Figure 2-2 shows the area under the receiver operating 

characteristic curve (ROC AUC) plot for each dataset when prioritizing compounds with 

simulated experimental errors by their cross-validation prediction errors between 
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experimental data and consensus predictions (ROC plots can be found in Figures 2-3 and 

2-4). After sorting the compounds by their prediction errors, it is noticeable from the ROC 

enrichment plots on the right in Figure 2-2 that the compounds with simulated 

experimental errors can be prioritized in most datasets. For example, in categorical datasets, 

the top 1% compounds from the MDR1-x5 modeling set obtained about 12.9 (in folds, 

compared with that of the random selection) of ROC enrichment and the top 20% 

compounds from MDR1-x5 modeling set obtained about 4.7 (in folds, compared with that 

of the random selection) of ROC enrichment. The other two categorical datasets, BSEP 

and AMES, have similar results compared to those of MDR1. However, the ROC 

enrichment in BCRP datasets is not as significant as that in the others. The BCRP set is the 

smallest dataset, which only contains about 300 compounds in the modeling set. The 

prediction accuracy of BCRP models is also worse than that for the other three datasets. It 

is thus reasonable to conclude that the impact of experimental errors on the QSAR 

modeling is stronger for small datasets than that for large datasets.  

In continuous datasets, due to the nature of the two methods used to simulate 

experimental errors, every compound contains a certain level of simulated error. The ROC 

AUC plots for continuous datasets are based on the ratio of prioritized simulated 

experimental errors in the whole dataset (i.e., the sum of simulated experimental errors in 

the prioritized compounds divided by the total error amount). Not surprisingly, the 

prioritization of compounds with simulated experimental errors is not as efficient as for 

categorical datasets because every compound carries some simulated experimental errors. 

The largest ROC AUC for continuous datasets is about 0.70, which is lower than that of 

categorical datasets. But the ROC enrichment plot of all continuous datasets still shows the 



12 
 

 

ability of the cross-validation of the modeling sets themselves to prioritize compounds with 

large errors. For example, in the case of strategy 1 (experimental error simulation strategy 

1, details are in the method part below), the top 1% compounds from the LD50-b20 

modeling set obtained about 4.2 (in folds, compared with that of the random selection) of 

ROC enrichment and the top 20% compounds from LD50-b20 modeling set obtained about 

2.3 (in folds, compared with that of the random selection) of ROC enrichment. In the case 

of strategy 2 (experimental error simulation strategy 2, details are in the method part below), 

the top 1% compounds from LD50-b20 modeling set obtained about 5.3 (in folds, 

compared with that of the random selection) of ROC enrichment and the top 20% 

compounds from LD50-b20 modeling set obtained about 2.3 (in folds, compared with that 

of the random selection) of ROC enrichment compared with that of the random selection. 

For both categorical and continuous datasets, when the level of simulated experimental 

errors increases (e.g., the ratio of compounds with simulated errors rises), the prioritization 

of compounds with simulated errors using QSAR modeling became less efficient (ROC 

enrichment plots in Figure 2-2, ROC enrichment heatmaps in Supporting Information). 

For example, in the categorical datasets (Figure 2-2), the top 1% compounds from MDR1-

x25 modeling set obtained about 3.8 (in folds, compared with that of the random selection) 

of ROC enrichment, which is much lower than that from the MDR1-x5 modeling set (12.9). 

A similar situation was found in the continuous datasets, the top 1% compounds from the 

FM-b5 modeling set obtained about 3.11 (in folds, compared with that of the random 

selection) of ROC enrichment, which is lower than that from the FM-b20 modeling set 

(4.9). And the top 1% compounds from the FM-k0.5 modeling set obtained about 4.8 (in 

folds, compared with that of the random selection) of ROC enrichment, which is lower 
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than that from the FM-k0.1 modeling set (5.6). When modeling sets contain a large amount 

of simulated experimental errors (e.g., MDR1-x50, EB-n1, and EB-k1.0, etc.), the 

prioritization of compounds with simulated errors using QSAR modeling is not better than 

random selection. The results indicate that the cross-validation of modeling sets themselves 

is capable of prioritizing compounds with experimental errors when (1) the modeling set 

is large enough and well curated; and (2) the level of experimental noise present in the 

dataset is not too high. These conditions are essential for obtaining good models, that is, 

those capable of capturing true data relationships.  
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 Figure 2-2. ROC AUC and ROC enrichment plots for each dataset. 

The area under the receiver operating characteristic curve (ROC AUC) plots for each 
dataset when prioritizing compounds with simulated experimental errors by their cross-
validation prediction errors between experimental data and consensus predictions. The x 
axis represented different amount of simulated errors in the modeling set. The y axis in 
ROC AUC plots (first column) represented AUC values of each ROC. In the ROC 
enrichment curves, y axis represented the AUC values of top 1% ranked compounds and 
top 20% ranked compounds, respectively, comparing to random selection. 
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Figure 2-3. ROC plots for categorical datasets. 

The receiver operating characteristic curve (ROC) plots for each categorical dataset when 
prioritizing compounds with simulated experimental errors by their cross-validation 
prediction errors between experimental data and consensus predictions. 
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Figure 2-4. AUC plots for continuous datasets.  
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The receiver operating characteristic curve (ROC) plots for each continuous dataset when 
prioritizing compounds with simulated experimental errors by their cross-validation 
prediction errors between experimental data and consensus predictions. 
 

Previous studies showed that applying the AD can improve model predictivity by 

removing compounds with unique structures (i.e., structure outliers (Hao Zhu, Alexander 

Tropsha, Denis Fourches, Alexandre Varnek, Ester Papa, Paola Gramatica, Tomas Oberg, 

Phuong Dao, Artem Cherkasov, 2008; Tetko et al., 2008; H. Zhu et al., 2009)). There is a 

recent report demonstrating the importance of checking model AD before comparing their 

predictivities (Roy et al., 2017). In this study, AD was also applied to all of the model 

predictions by calculating the Euclidean distance between an external compound to its 

nearest neighbor in the modeling set. The model predictivities for test sets have moderate 

improvements after applying AD (Tables 2-6 and 2-7). However, it is clear that the 

implementation of AD could not significantly improve the predictivity of the models based 

on modeling sets with simulated experimental errors. Similar to what has been shown in 

the above section, the predictivities of these models for test sets are still much lower than 

the models based on the original modeling sets. As shown in the above section, most 

compounds with simulated experimental errors in the modeling sets can be prioritized by 

the cross-validation procedure. It is noticeable that most of the compounds with simulated 

experimental errors can be excluded by removing the top 10−20% compounds, ranked by 

their prediction errors, from modeling sets. Therefore, different amounts of top-ranked 

compounds were removed from the sets, and the resultant new modeling sets were used to 

redevelop QSAR models using the same approaches. For each dataset, the top 5, 10, 15, 

and 20% compounds, which contain the highest cross-validation errors were removed to 

form four new modeling sets and the relevant QSAR models were developed accordingly. 
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Not surprisingly, the cross-validation results with reduced modeling sets showed better 

statistics (e.g., higher correct classification rate (CCR)) than in those with all simulated 

experimental errors (data not shown). In Figure 2-5, the test set validation results of these 

new QSAR models, generated using reduced modeling sets, were shown and compared 

with those generated using all compounds. The predictivity of the same test set compounds 

can truly reflect the model predictivity power for new (unseen to the model) compounds. 

The test set prediction results of these new QSAR models are presented in Tables 2-4 and 

2-5. The results of the above section showed that when the fraction of compounds with 

simulated experimental errors increased in the modeling set, the test set predictivity 

deteriorated (the first column on the left of each heatmap). However, although most of 

these experimental errors can be removed by ranking the modeling set compounds by 

cross-validation results, the test set predictivity of all of the models showed no 

improvement. For example, after removing 15% compounds from BSEP-x10 modeling 

sets, the ratio of compounds with experimental errors drops from about 10 to about 2%. 

But the CCR of model predictivity during test set validation has no significant change 

(Figure 2-5). Because R2 is not always suitable to describe model predictivity, especially 

for external compounds (Roy et al., 2016), here we used mean absolute error (MAE) as a 

criterion to compare the predictivities of continuous models and a similar situation was 

obtained in the continuous datasets. For example, the test set validation deteriorated after 

removing 10% compounds from the ER-n10 modeling set (the third row in the ER-n 

heatmap) and the ER-k0.2 modeling set (the third row in the ER-k heatmap). The MAE of 

test set prediction increased from 0.75 to 0.80 for ER-n10 datasets and to 0.79 for ER-k0.2 

datasets. All of the results above indicate that, although most compounds with simulated 
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experimental errors can be identified using the prioritization strategy based on the cross-

validation results, simply removing the suspicious compounds from the modeling sets did 

not improve the predictivity of QSAR models for test sets. When the top-ranked 

compounds are removed as described above, a certain number of compounds with the 

correct experimental values are removed as well. This step will not only decrease the AD 

of model, which normally depends on the size of the modeling set, but will also result in 

the overfitting issue, as reported previously (Hawkins, 2004).  

 

Figure 2-5. Comparison of test set prediction results for each model from different 
modeling sets.  

In each heatmap, x axis represents modeling sets with the top ranked 5, 10, 15, and 20% 
compounds removed by cross-validations, y axis represents modeling sets with different 
ratios of simulated experimental errors. 
 

Another interesting finding is that the predictivity of QSAR models for test sets 

seems unaffected when the ratio of simulated experimental errors is small in the modeling 

set (Figure 2-5). For example, among categorical datasets, the external predictivity of 

BSEP-x5 and BSEP-x10 models (CCR = 0.88 and 0.87, respectively) is similar to that 
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based on the original BSEP modeling set (CCR = 0.89). Among continuous datasets, the 

predictivities of the FM-n20 and FM-n10 models (R2 = 0.67 and 0.68, MAE = 0.57 and 

0.57) is similar to that based on the original FM modeling set (R2 = 0.66, MAE = 0.57). 

Similar situations can be found with other models/ modeling sets. We believe that two 

factors contribute to this observation. First, the models can tolerate and overcome the small 

amount of noise/errors in the dataset, if it is sufficiently large. Second, the inherent amount 

of noise present in the original experimental data (this amount depends on the endpoint) 

sets the upper limit on the evaluation accuracy of models, so that models based on controls 

and noisy datasets will not be easily distinguishable by performance, if their accuracy is 

close to or exceeds that limit. 

Conclusions  

In this study, four continuous and four categorical datasets were used to explore the 

relationship between the ratio of questionable data in the modeling sets and the QSAR 

modeling performance. By applying three experimental error simulation strategies on each 

dataset, more than 1800 various QSAR models were generated from all of the modeling 

sets with different ratios of simulated errors. The strategy for identification of experimental 

errors in modeling sets were described in detail. The compounds with relatively large 

prediction errors in the cross-validation process are likely to be those with simulated 

experimental errors. Thus, the cross-validation of modeling sets is able to prioritize 

compounds with experimental errors. This strategy will work efficiently when (1) the 

modeling set is large and highly curated for the structure information; and (2) the 

experimental error level is not too high (e.g., the ratio of compounds with errors is lower 

than 5−15% for a categorical dataset). After identifying the experimental errors in the 
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modeling sets by analyzing the cross-validation results, it was noticed that most of the 

simulated experimental errors can be excluded by removing a certain percentage of 

compounds with a high ranking of prediction error. Therefore, various amounts of top 

ranked compounds were removed from the modeling sets, and the resultant new modeling 

sets with different, reduced sizes were used to redevelop QSAR models. Test set 

validations for these new models were performed to evaluate their predictivities for new 

compounds. However, simply removing the suspicious compounds from the modeling sets 

did not improve the external predictivity of QSAR models. When the top-ranked 

compounds are removed, a certain number of compounds with true experimental values 

are also removed. This will not only decrease the prediction reliability but also result in the 

overfitting issue. Therefore, the suspicious compounds prioritized by cross-validation may 

be candidates for retesting to obtain the correct experimental values. If this is not possible, 

these sample points should be kept as they are, to allow model training to overcome these 

or at least to signify areas of chemical space, where prediction errors will be likely. 
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Chapter 3 Hybrid Read-Across Method to Evaluate Chemical Toxicity Based on 

Chemical Structure and Biological Data 

Overview 

Numerous chemicals are used in our ordinary life, and over 100,000 chemicals have 

been put on the market (Johnson et al., 2017). However, only a small portion of these 

compounds have been tested for their toxicity potentials, and the toxicities of a great 

number of new chemicals wait to be evaluated. Traditional experimental toxicology 

protocols are usually based on animal tests, which are expensive and time-consuming 

(Hartung, 2009). Moreover, these traditional protocols have raised ethical concerns 

regarding the well-being of animals (Balls, 1994; Baumans, 2004; Rollin, 2003). This 

situation leads to an urgent need to develop alternatives for animal tests, so the regulatory 

agencies are developing pre-screening and prioritization programs to fill toxicity data gaps. 

In 2007, the U.S. National Research Council recommended both high-throughput 

screening (HTS) and computational models as essential chemical toxicity evaluation tools 

in 21st-century toxicology (Gibb, 2008). The HTS techniques have been widely applied in 

chemical screening with advantages of low expenses and faster turnaround time, which 

resulted in rich biological data accumulating in publicly available databases (H. Zhu & Xia, 

2016). Motivated by these available data, computational toxicology has advanced to a big 

data era (H. Ciallella & Zhu, 2019; Zhao & Zhu, 2018; H. Zhu et al., 2014).  

Quantitative structure-activity relationship (QSAR) approaches have been widely 

used in traditional computational toxicology modeling (Hansch et al., 1995; T Wayne 

Schultz et al., 2003). QSAR models were based on the hypothesis that chemically similar 

compounds are likely to exhibit similar biological activities, including toxicities. Since all 
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QSAR models were developed based on chemical structure information, the “activity cliff” 

issue (Maggiora, 2006) (i.e., chemically similar compounds with distinctly different 

toxicity results) brings prediction errors to QSAR models, especially when using existing 

QSAR models to predict new compounds. 

Along with QSAR modeling studies in the past decade, the read-across strategy was 

developed to predict toxicity for new compounds using similar compounds with known 

toxicity results (S. Dimitrov & Mekenyan, 2010; Modi et al., 2012; Raies & Bajic, 2016; 

T W Schultz et al., 2015).Various software tools were developed to perform read-across 

studies in the toxicology field in recent years, such as ToxMatch and the OECD QSAR 

Toolbox. ToxMatch (Gallegos-Saliner et al., 2008; Van Ravenzwaay et al., 2016) is an 

open-source software application that encodes several chemical similarity calculation tools 

to facilitate the systematic development of chemical groupings and read-across. The OECD 

QSAR Toolbox (http://www.qsartoolbox.org/) (S. D. Dimitrov et al., 2016) is a software 

to systematically group chemicals into categories using chemical similarity read-across, 

trend analysis, or QSAR predictions. Similar to traditional QSAR models, these read-

across tools are only based on the chemical structure information, which cannot deal with 

predictions of complex biological activities (e.g., animal toxicity). In order to solve the 

above issue (Low et al., 2013), proposed a hybrid approach, termed as chemical-biological 

read-across (CBRA), that relies not only on chemical descriptors but also on biological 

profiles generated from short-term experimental assays (i.e., biological descriptors). 

However, the CBRA approach was based on a small set of assays, which were manually 

selected. This method is applicable only when all experimental assay data are available for 

compounds in the training set and the target new compounds. 
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In current big data scenario, biological data generated from high-throughput 

screening (HTS) of large chemical libraries contains rich toxicology information that has 

the potential to be integrated into toxicity research. It is necessary to develop an enhanced 

read-across method for chemical toxicity predictions. In this chapter, a new hybrid read-

across method to evaluate the chemical toxicity potentials was developed. Unlike 

traditional read-across methods, the similarity between two compounds in this study was 

calculated by combining chemical similarity, which was based on chemical structures, and 

biosimilarity, which was based on publicly available biological data. For biosimilarity 

searches, a large set of biological data was obtained and optimized from the PubChem 

database using the in-house Chemical In Vitro–In Vivo Profiling (CIIPro) portal (Russo et 

al., 2017). This hybrid read-across method showed advantages compared with the 

traditional read-across strategy on modeling and predicting both Ames mutagenicity - 

AMES dataset and acute oral toxicity – LD50 dataset. It could be used as a universal 

strategy to deal with other complex toxicity endpoints when extra biological data are 

available. 

Materials and Methods 

Datasets. The two toxicity datasets used in this study, AMES dataset and LD50 

dataset, were selected from the previous study in chapter 1. They were selected because 

they are two of the largest toxicity datasets available, which contain thousands of diverse 

compounds. AMES dataset contains 3,979 unique organic compounds with the Ames 

mutagenicity testing results collected from public sources (Hansen et al., 2009). These 

mutagenicity testing data were categorized as toxic (activity as 1) for 1,718 compounds 

and nontoxic (activity as 0) for 2,261 compounds. The LD50 dataset (H. Zhu et al., 2009) 
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contains 7,332 unique organic compounds with rat acute toxicity results. These acute 

toxicity results were previously collected and curated from ChemIDplus and shown as the 

lethal dose (unit as moles per kilogram) that causes the death of 50% testing rats (LD50). 

In this study, the quantitative toxicity results were expressed as the negative logarithm 

values of LD50(mol/kg) (-log10LD50) ranging from -0.343 to 10.207. 

Chemical similarity calculations. A total of 192 2-D chemical descriptors for each 

compound were generated using Molecular Operating Environment (MOE) software 

(version 2013) (Molecular Operating Environment (MOE), n.d.), such as physical 

properties, atom and bond counts, and van der Waals surface area information (Labute, 

2000). The descriptors were standardized and rescaled to range from 0 to 1. The set of 

MOE 2-D chemical descriptors for a compound could be treated as a 192-dimensional 

vector. The pairwise chemical similarity was calculated based on the Euclidean distance 

between two compounds, using Equation (1): 

𝑆"#$% = 1 − 𝑑*+" = 1 − ,∑ (𝑎0 − 𝑏0)3453
064      (1) 

Biosimilarity calculations. Biological data of all compounds in these two datasets 

were obtained from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/) (S. Kim et 

al., 2019) using the CIIPro portal (http://ciipro.rutgers.edu/) (Russo et al., 2016). The 

biosimilarity between two compounds was calculated using Equation (2): 

𝑆708 =
|:;∩=;|>|:?∩=?|∙A

			|:;∩=;|>|:?∩=?|∙A>|:;∩=?|>|:?∩=;|				
    (2) 

Here, Aa and Ba represent the active responses for compounds A and B in the same 

set of bioassays, respectively. And Ai and Bi represent the inactive responses. Previous 

study (Marlene Thai Kim et al., 2016) showed that the biosimilarity values rely on active 

data more than inactive data, since the active data indicates more significant information 



26 
 

 

than inactive. The term w weights the inactive responses less than active in biosimilarity 

calculations. In this study, w was defined as the ratio CDCEF	EGCHIJ	KJLMDNLJL
CDCEF	HNEGCHIJ	KJLMDNLJL

 for each 

compound pair and ranged from 0 to 1. 

Read-across predictions and evaluations. The read-across prediction of a 

compound in the test set was made by the nearest neighbor compound in the training set. 

For traditional read-across, the prediction was made by the toxicity value of its chemical 

nearest neighbor, which was identified by chemical similarity calculations. Furthermore, 

the hybrid read-across prediction was made by the toxicity value of its chemical and 

biological nearest neighbor, which was identified by calculating biosimilarity between the 

test set compound and its chemical nearest neighbor in the training set. Since the read-

across procedure was performed by using the above two datasets with different types of 

toxicity values, universal statistical metrics were needed to evaluate the performance of the 

models developed individually. The same parameters were used to evaluate the 

computational models in previous studies (Marlene T. Kim et al., 2014; Solimeo et al., 

2012; W. Wang et al., 2015). The results were harmonized by using 1) sensitivity 

(percentage of compounds predicted correctly within the toxic class, Equation (3)), 

specificity (percentage of com-pounds predicted correctly within the nontoxic class, 

Equation (4)), and CCR (correct classification rate or balanced accuracy, Equation (5)) for 

the AMES dataset; and 2) coefficient of determination (𝑅3 , Equation (6)) and mean 

absolute error (MAE, Equation (7)) for the LD50  dataset. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	 WX+$	Y8Z0W0[$Z
WX+$	Y8Z0W0[$Z	>	\]^Z$	_$`]W0[$Z

    (3) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = WX+$	_$`]W0[$Z
WX+$	_$`]W0[$Z	>	\]^Z$	Y8Z0W0[$Z

    (4) 
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𝐶𝐶𝑅 = e$_Z0W0[0Wf>eY$"0\0"0Wf
3

    (5) 

𝑅3 = X$`X$ZZ08_	Z+%	8\	Zg+]X$Z
W8W]^	Z+%	8\	Zg+]X$Z

    (6) 

𝑀𝐴𝐸 = 4
_
∑ |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑣𝑎𝑙𝑢𝑒0 − 𝑡𝑟𝑢𝑒	𝑣𝑎𝑙𝑢𝑒0|_
0     (7) 

Results 

Overview of the workflow. The workflow of the hybrid read-across models used 

in this study was shown in Figure 3-1. For all compounds in the test set, 192 MOE 2-D 

chemical descriptors were used to calculate the chemical similarity for identifying their 

chemical nearest neighbors in the training set. Then, PubChem bioassay profiling tool 

CIIPro was used to extract all relevant biological data and to generate bioprofiles for these 

compounds. Biosimilarity was calculated to determine, for a target compound, whether its 

chemical nearest neighbor is also biosimilar. A read-across toxicity prediction was made 

when the chemical nearest neighbor was also identified to be biosimilar. 

 

Figure 3-1. Hybrid read-across workflow. 

The original datasets were split into training set and testing set, then hybrid read-across 
models were developed by integrating the results of chemical and biological similarity 
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search. The target compound was predicted according to its chemical and biological 
nearest neighbor. 
 

Bioprofile generation. The bioprofile was generated by extracting all relevant 

biological data from PubChem database using the CIIPro portal for all the compounds in 

these two datasets. Over 50,000 PubChem bioassays with at least one compound in the 

datasets showing an active response were extracted as the original bioprofile. This original 

bioprofile contains over ten million datapoints for all the compounds in these two datasets. 

However, PubChem assays containing very few data points in the original bioprofile would 

be useless for read-across study. Thus, to optimize this original bioprofile, the bioassays 

with less than five active responses within either of the two datasets were removed. This 

effort resulted in1716 bioassays in the bioprofile for 2025 compounds in the AMES dataset, 

with a ratio of active data (value as 1) to inactive data (value as -1) of 8.38%, and 1091 

bioassays in the bioprofile for 2208 compounds in the LD50 dataset, with an active/inactive 

data ratio of 7.51%. The optimized bioprofiles could reveal rich biological information for 

compounds in these two datasets. For example, 4′-Chlorodiazepam (CID 1688), which is a 

mutagen in the AMES dataset, contains 69 PubChem bioassays testing results in the 

bioprofile and 21 of them were active responses. Most of these 21 PubChem bioassays are 

related totoxicity testing, such as a cytotoxicity assay (AID 449705) and hepatotoxicity 

related assays (AID 678712, 678713and etc.). Another compound, 4-Dihydroxypyrimidine 

(CID 1174) from the LD50 dataset, which has LD50 value of 0.00034 mol/kg, contains 651 

PubChem bioassays testing results in the bioprofile and 159 of them were active responses. 

Not surprisingly, most of these assays are also related to toxicity testing, including some 

assays from the Tox21 pro-gram related to identify antagonists of cell signaling pathways 

(AID 1224838, 1259244 and etc.). 
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Similarity calculation. Using chemical descriptors and bioprofiles generated 

above, pairwise similarity was calculated for all compounds in these two datasets, 

respectively. For each target compound, its nearest neighbor was defined as the most 

similar compound, which should be the compound with the largest 𝑆"#$% and/or 𝑆708 in the 

dataset. The hypothesis of traditional QSAR models and read-across studies is that 

chemically similar compounds have similar bioactivities. For this reason, it is worth to 

compare the two types of similarity indices based on chemical descriptors and bioprofiles. 

Figure 3-2 shows the distribution of compounds with at least one chemical nearest 

neighbor (𝑆"#$% > 0.80) for these two datasets. These compounds and their chemical 

nearest neighbors were also classified as biosimilar (𝑆708 > 0.80) and biodissimilar (𝑆708 <

0.80).  
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Figure 3-2. The comparison of biosimilarity results of the compounds with their chemical 
nearest neighbors for two datasets.  

(A) AMES dataset.  (B) LD50 dataset. A biosimilarity threshold (0.80) was set to evaluate 
whether a target compound and its chemical nearest neighbor are biologically similar or 
not. The blue columns represent the numbers of compounds which are also biosimilarity 
to their chemical nearest neighbors (Sbio>0.80); the red columns represent the numbers of 
compounds which are biodissimilar to their chemical nearest neighbors (Sbio<0.80).  

The similarity distribution in AMES dataset fulfilled the hypothesis of traditional 

read-across. As shown in Figure 3-2A, when two compounds are chemically similar, they 



31 
 

 

are more likely to be biosimilar (represented by blue bars) than biodissimilar (represented 

by orange bars). However, in LD50 dataset, two chemically similar compounds are likely 

to have dissimilar bioprofiles, as shown in Figure 3-2B. This result showed an opposite 

condition to the above hypothesis. These results indicated the reason that much better 

modeling results (i.e. higher predictivity) could be obtained previously from QSAR studies 

of Ames mutagenicity (Bakhtyari et al., 2013; Hillebrecht et al., 2011; Votano et al., 2004; 

C. Xu et al., 2012) than those of LD50 dataset (Devillers & Devillers, 2009; Lagunin et al., 

2011). In this study, it was also expected that read-across based on only chemical structures 

would likely to cause significant prediction errors for the acute oral toxicity. 

Read-across for toxicity prediction. In traditional read-across studies, prediction 

of a new compound was obtained from the experimental toxicity value of its nearest 

neighbor identified using chemical similarity. However, since biological systems are 

complex and two chemically similar compounds could show opposite toxic effect in 

biological test, prediction errors could always occur using the traditional read-across 

strategy. This issue is known as an “activity cliff” (Cruz-Monteagudo et al., 2014; 

Maggiora, 2006; Tropsha, 2010; H. Zhu et al., 2009). In order to solve this problem, a 

hybrid read-across study was performed based on the combination of chemical similarity 

and biosimilarity calculation. 

Figure 3-3 showed the distribution of read-across prediction for all target 

compounds on AMES dataset obtained from five-fold cross validation procedure. 

Traditionally the toxicity prediction of a target compound was made if there was a chemical 

nearest neigbor that could be identified from training set (i.e. 𝑆"#$% > 0.90 ). The 

predictivity of the traditional read-across was indicated as CCR of 0.80, sensitivity of 0.84 
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and specificity of 0.77 (Table 3-1). In this study, we further applied biosimilarity results 

into read-across prediction. To this end, the biosimilairty value of a compound with its 

chemical nearest neighbor was also calculated. Based on the correlation between chemical 

similarity and biosimilarity results, as shown in Figure 3-3, compound pairs (the target 

compound with its nearest neighbor) can be classified as: 1) both chemically similar 

(𝑆"#$% > 0.90) and biosimilar (𝑆708 > 0.80) (area A); 2) chemically similar (𝑆"#$% >

0.90) and biodissimilar (𝑆708 ≤ 0.80) (area B); 3) chemically dissimilar (𝑆"#$% ≤ 0.90) 

and biosimilar (𝑆708 > 0.80) (area C); or 4) chemically dissimilar (𝑆"#$% ≤ 0.90) and 

biodissimilar (𝑆708 ≤ 0.80) (area D). When the hybrid read-across was performed, a 

compound was predicted if its chemical nearest neighbor was also biosimilar (as area A in 

Figure 3-3). The predicitvity was moderately increased and CCR increased from 0.80 to 

0.82. (Table 3-1) 

 
Figure 3-3. The distribution of read-across predictions for compounds in AMES dataset.  

The green crosses are correct predictions and the red round dots are incorrect 
predictions.The read-across predictions were divided into four areas by using two threshold 
values (Chemical similarity = 0.90 and Biosimilarity = 0.80): The area A includes 
compound pairs with high chemical similarity and high biosimilarity; the area B includes 

C 
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compound pairs with high chemical similarity and low biosimilarity; the area C includes 
compound pairs with low chemical similarity and low biosimilarity; and the area D 
includes compound pairs with low chemical similarity and high biosimilarity. 

For LD50 dataset, traditional read-across strategy resulted in low prediction 

accuracy ( 𝑅3 = 0.33 , 	MAE = 0.55 ) (Table 3-1). Furthermore, we also integrated 

biosimilarity result into the traditional read-across prediction. Based on the correlation 

between chemical similarity and biosimilarity results, as shown in Figure 3-4, pairs of a 

target compound with its chemical nearest neighbor can be classified as: 1) both chemically 

similar (𝑆"#$% > 0.90) and biosimilar (𝑆708 > 0.80) (red dots); 2) chemically dissimilar 

(𝑆"#$% ≤ 0.90) and/or biosimilar (𝑆708 ≤ 0.80) (black dots). By applying hybrid read-

across approach, a compound was predicted by its chemical nearest neighbor if they are 

also biosimilar (as red dots in Figure 3-4). Through this way, the prediction accuracy was 

increased significantly (R3 = 0.54, MAE = 0.23)	(Table 3-1). 

 

Figure 3-4. The correlation between experimental and predicted acute toxicity values for 
compounds in LD50 dataset.  
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Values are shown as -log10LD50. The red dots represent compound pairs with high 
chemical similarity and high biosimilarity; the black dots represent pairs in other cases 
(i.e. either chemically dissimilar or biodissimilar). The dots between two dashed lines 
represent accurate predictions (absolute errors less than 0.50).  

Discussion 

The hybrid read-across approach used in this study increased predictivity for 

compounds in both datasets. The slight decrease of specificity of the AMES dataset fits to 

the results obtained from previous study (Ribay et al., 2016). The biosimilarity, which 

relies mostly on active data, is more meaningful for the predictions of toxicants instead of 

non-toxicants (Russo et al., 2019). With additional similarity calculations based on 

bioprofiles, read-across predictions can be strengthened by comparing the bioprofiles of 

chemical nearest neighbors. Several examples of the nearest neighbors (both chemically 

similar and biosimilar) identified by hybrid read-across models, were listed in the Tables 

3-2 and 3-3. 

By analyzing the bioprofiles, it is also feasible to find the “activity cliffs” existing 

in these two datasets. Tables 3-4 and 3-5 show five representative activity cliffs in these 

two datasets. Some of these nearest neighbor compounds are chemically similar but have 

opposite toxicity results. For example, masoprocol (CID 1593), which is a lipoxygenase 

inhibitor (Gowri et al., 2000), is shown as a mutagen in the AMES dataset. However, its 

chemical nearest neighbor diphenolic acid (CID 2265) is a non-mutagen in the AMES 

dataset. The only difference in the structures of these two compounds is the radical group 

between the two benzene rings (Table 3-4). If one of these two compounds is in the training 

set and the other is in the test set, a prediction error will occur. However, when comparing 

their bioprofiles, which are shown in Table 3-4, a significant difference can be noticed. 

Moreover, the biosimilarity value between these two compounds is only 0.189, indicating 
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the biodissimilarity of these two compounds. A similar condition can also be seen in the 

LD50 dataset (Table 3-5). For example, blasticidin S (CID 258) is an antibiotic isolated 

from Streptomyces griseochromogenes (Takeuchi et al., 1958) with a -log10LD50 value of 

4.706. Its chemical nearest neighbor AC1L1K32 (CID 5317), however, has a -log10LD50 

value of 1.913. The only difference in the structures of these two compounds is the 

substituent on the para-position of the benzene ring, which causes blasticidin S to be 

acutely toxic. The bio-similarity between these two compounds is 0.030. These two 

compounds can also potentially induce the “activity cliff” issue.  

Some compounds were considered to be chemical nearest neighbors based on 

calculation results, but they are not actually similar in structure. This issue is due to the 

limitation of chemical descriptors, which cannot distinguish their structural diversity. A 

potential solution is to use various chemical descriptors in the modeling process, such as 

reported in previous studies (Solimeo et al., 2012; Zhao et al., 2017). For example, as 

shown in Table 3-4, the compound with CID 926 is a dinucleotide and related to 

nicotinamide adenine dinucleotide (NAD) (Belenky et al., 2007) , a cofactor in cells. Its 

chemical nearest neighbor coumaphos (CID 2871) is an organothiophosphorus 

cholinesterase inhibitor that acts as an anthelmintic, insecticide, and as a nematocide 

(Gregorc et al., 2018). Their chemical similarity 𝑆"#$%  was 0.903 but their structures 

actually differ significantly. The biosimilarity calculation result (𝑆708 = 0.323) indicated 

their difference and can avoid this prediction error in read-across process. Previous QSAR 

models were usually questioned as “black box” (Fraczkiewicz et al., 2009; Polishchuk et 

al., 2013) by providing predictions without explaining the mechanisms of the toxicity. By 

examining the bioassays included in the bioprofiles, the hybrid read-across in this study 
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could reveal the potential toxicity mechanisms. For example, the bioprofiles in Table 3-4 

listed totally 12 PubChem bioassays (AIDs 651741, 651838, 720635, 720637, 743012, 

743014, 743015,743064, 743065, 743122, 1224892, 1259243). Among them, there were 

five assays related to cytotoxicity (AIDs 651838, 743012, 743014, 743015, 743064), two 

assays related to mitochondrial membrane potential testing (AIDs 720635, 720637), and 

five assays related to antagonists of signaling pathways (AIDs 651741, 743065, 743122, 

1224892, 1259243). These bioassays could be used for investigating the mechanism of 

compounds in the AMES dataset for their mutagenicity. Similar analysis could also be done 

for the LD50 dataset, all the information for bioassays list in Tables 3-4 and 3-5 could be 

found in detail from PubChem through their AID. Thus, using the hybrid read-across 

strategy demonstrated in this study, these prediction results could be further analyzed 

through investigating the bioprofiles. This strategy could be applied in future studies for 

other toxicity endpoint predictions. 

Conclusion 

Traditional read-across was based on the use of chemical structure information and 

in duce prediction errors in many toxicity studies. The availability of public bigdata sources 

provides rich biological data for the compounds of interest (e.g., environmental 

compounds). This study shows that the hybrid read-across, which was based on the 

combination of chemical structure information and biological data, has certain advantages 

compared with the traditional read-across, especially for complex animal toxicities (i.e., 

acute oral toxicity). Although the integration of biological data into the read-across 

procedure brought new challenges (e.g. biased data and missing data), the development of 

new similarity approaches can make this practice applicable to predict new compounds. 
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The bioprofiles generated from public biological data also provided new opportunities to 

reveal relevant toxicity mechanisms for potential toxicants. The hybrid read-across 

workflow developed in this study can be applied for other toxicity endpoints. The use of 

public big data sources in the predictive modeling can advance the computational 

toxicology into a big data era. 
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Chapter 4 Mechanism-Driven Read-Across of Chemical Hepatotoxicants Based on 

Chemical Structures and Biological Data 

Overview 

Drug hepatotoxicity is a critical concern of the pharmaceutical industry and the 

public. Drug-Induced Liver Injury (DILI) is one of the leading causes of liver failure 

cases(Reuben et al., 2010). One of the reasons for the postmarketing withdrawal of a drug 

is due to unexpected hepatotoxicity in patients, which is not fully recognized in the 

preclinical and clinical trials (Kaplowitz, 2005). Furthermore, traditional preclinical and 

clinical studies to evaluate drug hepatotoxicity are expensive and time consuming (Hartung, 

2009). With the advent of critical advancements in in vitro testing approaches as the 

alternatives to animal testing, in particular high-throughput screening (HTS), there has 

been a rapid accumulation of chemical toxicity data which can be used to better identify 

and prioritize chemical hazards (H. Ciallella & Zhu, 2019; J. Zhang et al., 2014). However, 

data obtained solely from available in vitro protocols have low correlation to hepatotoxicity 

risk and any single in vitro test cannot fully replace in vivo hepatotoxicity testing. As an 

alternative technique to animal testing for toxicological assessment (T W Schultz et al., 

2015), read-across is a promising low-cost method to evaluate the toxicity potential of new 

compounds (Ball et al., 2016). In a read-across study, the toxicity potential of a new 

compound will be evaluated by its most “similar” compound that has an experimental 

toxicity result (Ball et al., 2016). The similarity of compounds can be defined from 

chemical and/or biological properties. Based on the hypothesis that chemically similar 

compounds have similar bioactivities (Tropsha, 2012) , quantitative structure-activity 

relationship models, which have been widely used for read-across studies, were developed 
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by various machine learning approaches and chemical descriptors calculated from 

chemical structures (Solimeo et al., 2012; Liying Zhang et al., 2013; X. Zhu & Kruhlak, 

2014). Due to the inherent complexity of biological systems, covering all potential factors 

contributing to multifaceted in vivo outcomes, such as hepatotoxicity, is difficult using 

available quantitative structure-activity relationship models (Muster et al., 2008). Using 

only chemical similarity in readacross studies for complex toxicity endpoints has proved 

to be error-prone due to “activity cliffs” (ie, structural similar compounds have different 

toxicity) (Medina-Franco et al., 2009; Stumpfe & Bajorath, 2012). 

In addition to chemical structural properties, the inclusion of biosimilarity rankings 

based on biological data adds extra strength to the utility of read-across (H. Zhu et al., 

2016). There have been previous studies that used biological data to support read-across, 

such as the toxicants profiled by ToxCast biological data, in which read-across was 

performed using chemical responses from a set of in vitro bioassays (M. T. Martin et al., 

2011; Reif et al., 2010; Rotroff et al., 2013; Sipes et al., 2011, 2013). Because these 

bioassays were designed to reveal specific toxicity mechanisms, the predictions of new 

compounds can also be interpretable. Hewitt et al. (Hewitt et al., 2013) presented this read-

across scheme in a review of 2013 and several studies following this strategy were 

performed. For example, Liu et al. (J. Liu et al., 2015) used selected ToxCast assays and 

chemical structures to predict hepatotoxicity. Low et al. first used the combination of 

selected toxicogenomics data and chemical descriptors to create a hybrid model (Low et 

al., 2011) then extended this study by including gene expression data and cytotoxicity data 

(Low et al., 2013). However, the disadvantage of previous studies is that the read-across 

was limited by manually selected biological data, which only include limited well-known 
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toxicity mechanisms. Thus, they are not able to cover all potential mechanisms relevant to 

in vivo animal toxicity. The key in the current toxicity big data scenario is to use an 

automatic data mining method to explore all relevant biological data, which is not limited 

to preselected in-house data, and perform read-across studies based on the biological data 

with high sparsity and variety. We have reported several toxicity modeling studies that 

capitalize on the availability of big data (Marlene Thai Kim et al., 2016; Russo et al., 2019; 

J. Zhang et al., 2014). In one of these studies, Kim et al. (Marlene Thai Kim et al., 2016) 

developed a virtual Adverse Outcome Pathway (vAOP) model for around 1300 drugs with 

classified liver injury results. The vAOP model reported in this study consists of 4 oxidative 

stress assays that were automatically identified from millions of PubChem assays for target 

compounds. However, the vAOP model developed in this study yielded relatively low 

accuracy (around 60%) due to limited hepatotoxicity data available at that time. All 

compounds used for modeling were obtained from a single resource, which was the U.S. 

FDA DILI data (Chen et al., 2011). 

In the present study, a much larger database for hepatotoxicity was generated by 

summarizing and merging all current publicly available hepatotoxicity datasets, which 

consists of 4089 unique compounds with their hepatotoxicity categories defined in original 

sources. According to our best knowledge, so far this is the largest hepatotoxicity database 

curated for modeling purpose. An in-house automatic data mining portal was used to 

extract biological data from PubChem for all the compounds (Russo et al., 2017). The 

PubChem assays were analyzed and clustered using a novel approach developed in one of 

our recent studies (Russo et al., 2019). The read-across study was performed by calculating 

compound biosimilarity according to PubChem assay clusters, which were formed by 



41 
 

 

calculating chemical fragment-in vitro relationships and selected by their predictivity for 

hepatotoxicity. Furthermore, several vAOP models were developed by identifying 

compounds with the same chemical fragments, which were defined as initial molecular 

events of toxicity pathways, within the PubChem assay clusters. The resultant vAOP 

models not only have good predictivity of hepatotoxicity but also indicate new 

hepatotoxicity mechanisms. 

Materials and Methods 

Hepatotoxicity database. Hepatotoxicity data for chemicals were obtained from 

individual datasets in the literature as well as public database resources (Table 4-1). These 

datasets include various compounds with in vivo hepatotoxicity data defined using different 

standards. Compounds in datasets 1 (Ekins et al., 2010), 2 (Fourches, Barnes, et al., 2010), 

6 (Marlene Thai Kim et al., 2016), 7 (Mulliner et al., 2016), and 8 (Liew et al., 2011) were 

classified by 2 categories as hepatotoxic and nontoxic. Compounds in datasets 3 (R. Liu et 

al., 2015) and 5 (Chen et al., 2011) were classified by 3 categories as hepatotoxic, possible 

hepatotoxic, and nontoxic. Compounds in dataset 4 (Greene et al., 2010) were classified 

by 4 categories as HH (evidence for human hepatotoxicity), NE (no evidence for 

hepatotoxicity in any species), WE (weak evidence for human hepatotoxicity), and AH 

(evidence for animal hepatotoxicity but not tested in humans). The category standards for 

hepatotoxicity can be found in detail in the references for each dataset (Table 4-1). We 

harmonized various hepatotoxicity classifications into binary categories of 1 (hepatotoxic) 

and 0 (nontoxic) according to the standards described in these datasets. The details of 

criterion used for harmonization are listed in Table 4-1. The curation of chemical structures 

for individual datasets was performed using the chemical structure standardizer tool CASE 
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Ultra DataKurator 1.6.0.3 to remove inorganic compounds and mixtures. Then, duplicates 

within each dataset were removed by using the Python RDKit Chem module and CASE 

Ultra DataKurator. Finally, overlapping compounds were identified among individual 

datasets. These overlapping compounds may yield different hepatotoxicity classifications 

in various sources. In this study, if there were different classifications from different 

sources for a compound, this chemical was then categorized according to the majority 

classification from these source datasets. If there was no majority classification for an 

overlapping compound (i.e., the same count of records for both hepatotoxic and nontoxic), 

the compound was excluded from modeling. 

Overall read-across workflow. The overall read-across workflow was shown in 

Figure 4-1. After data curation, the hepatotoxicity database was randomly split into a 

modeling set (66.7%) and a test set (33.3%). The bioprofile for compounds in this database 

was generated using the in-house profiling tool CIIPro (Russo et al., 2016). Then, 

mechanistically similar PubChem assays were identified using chemical fragment-in vitro 

relationships (Russo et al., 2019) to form multiple assay clusters. The assay clusters were 

selected for read-across based on their cross-validation predictivity of hepatotoxicity 

within the modeling set. The predictions of test set compounds by read-across were 

performed based on biosimilarity calculations within the prioritized PubChem assay 

clusters. Furthermore, several chemical fragments were identified and integrated into read-

across as Molecular Initiating Events (MIEs) (see the following sections for details). The 

resultant vAOP models were also used to predict hepatotoxicity of the test set compounds. 
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Figure 4-1.Workflow for hepatotoxicity modeling. 

A comprehensive hepatotoxicity database was constructed, then it was split into modeling 
set and test set. Bioprofiles of the modeling set and test set were clustered based on 
chemical fragment-in vitro relationships. Read-across and vAOP models were developed 
for each cluster. 
 

PubChem assay clusters. To perform a mechanism-driven read-across, it is critical 

to identify mechanistic-related assays. To this end, we first generated chemical fragments 

for compounds in the whole database using ToxPrint Chemotypes from ChemoTyper, 

which yielded toxicity-related chemical fingerprints for compounds. Then, all compounds 

were profiled using an in-house automatic data mining tool CIIPro (Russo et al., 2016) to 

search against the PubChem database for all available biological data, and a bioprofile was 

generated for each compound. The chemical fragment-in vitro relationships were generated 

using a novel method described in a recent study (Russo et al., 2019). Briefly, the 

Hepatotoxicity
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Bioprofiling
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relationship between each chemical fragment and PubChem assay was determined using 

Fisher’s exact test. The output of this test is a p value denoting the statistical significance 

of the relationship between the fragment and assay activity. Any relationships between a 

fragment and assay with a p < .05 were considered to be statistically significant. PubChem 

assays sharing many significant fragments could be mechanistic related and/or unveil 

potential novel mechanisms of hepatotoxicity for specific chemical toxicants. To group 

similar assays, the Jaccard similarity between each assay was calculated based on the 

profile of the fragment assay relationships calculated above. Clusters of PubChem assays 

were determined by using an overlapping network detecting algorithm OSLOM 

(Lancichinetti et al., 2011). The implementing package used for our analysis is available 

online (http://www.oslom.org/), and all parameters were set by default. Then, the PubChem 

assay clustering results were imported into a software package Gephi (v. 0.9.1, 

www.gephi.org/) to visualize all assay clusters by applying the force-based layout 

algorithm ForceAtlas 2 with default parameters (Figure 4-2). 
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Figure 4-2. PubChem assay clusters based on chemical fragment-in vitro response 
relationships.  

Each dot indicates a unique PubChem assay. The assays (indicated by dots) with the same 
color belong to the same cluster except 78 assays (indicated by black dots) belong to more 
than 1 cluster. 
 

Read-across study. In this study, a bioprofile-based read-across (Figure 4-1) was 

performed within each PubChem assay cluster. Briefly, for an assay cluster, the similarity 

between any 2 compounds was calculated based on the bioprofiles consisting of the 

PubChem assays that formed this cluster. This biosimilarity calculation utilized the 

equation published in previous study (Russo et al., 2016) as following: 

𝑆708 = 	
|	:;	∩	=;	|	>	|	:?	∩	=?	|	∙	A

|	:;	∩	=;	|	>	|	:?	∩	=?	|	∙	A>	|	:;	∩	=?	|	>	|	:?	∩	=;	|	
                    (2) 

Because the bioprofile has missing data for most compounds in our datasets, an 

extra parameter confidence support was used to evaluate the biosimilarity confidence to 

avoid compounds only have few responses: 
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𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒	𝑠𝑢𝑝𝑝𝑜𝑟𝑡	(𝐴, 𝐵) 	= |	𝐴] 	∩ 	𝐵]	| 	+ 	 |	𝐴0 	∩ 	𝐵0	| +	 |	𝐴] 	∩ 	𝐵0	| 	+

	|	𝐴0 	∩ 	𝐵]	| (9) 

All PubChem assay clusters were used for read-across within the modeling set and 

the results were evaluated by the 5-fold cross-validation procedure. During this procedure, 

the modeling set was randomly divided into 5 equivalent subsets. Each time, 4 subsets (80% 

of the modeling set compounds) were combined as the training set and the remaining 1 

subset (20% of the modeling set compounds) was used as a test set to validate the selected 

PubChem assays in this cluster. The compounds in the test set were predicted by their bio-

nearest neighbors in the training set using the selected PubChem assays in the cluster. This 

procedure was repeated 5 times so that each modeling set compound was used for 

prediction once. Various statistical parameters were calculated to describe the read-across 

results, such as sensitivity, specificity, Correct Classification Rate (CCR), and positive 

predictive value (ppv). All the formulas of these universal statistical parameters are shown 

in the following: 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	 ��
(��>��)

      (3) 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	 ��
(��>��)

      (4) 

𝐶𝐶𝑅 = 	 Z$_Z0W0[0Wf>ZY$"0\0"0Wf
3

    (5) 

𝑝𝑝𝑣 = 	 ��
(��>��)

                     (10) 

where TP represents the number of true positives (toxic compounds correctly 

predicted as toxic), FP represents the number of false positives (nontoxic compounds 

incorrectly predicted as toxic), TN represents the number of true negatives (nontoxic 

compounds correctly predicted as nontoxic), and FN represents the number of false 
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negatives (toxic compounds incorrectly predicted as nontoxic). Furthermore, ChemoTyper 

chemical fragments, which were identified from toxic compounds within each assay cluster, 

were evaluated for their ability to improve hepatotoxicity predictions. In this effort, the 

read-across analysis was performed for a subset of compounds containing a specific 

fragment within each cluster. If the result showed significant improvement, the relevant 

chemical fragment was considered as a MIE of a vAOP model. 

Predicting new compounds. The hepatotoxicity of a new compound (e.g., a test 

set compound) was evaluated by its nearest neighbor compound in the modeling set defined 

by biosimilarity within a selected assay cluster. Furthermore, if a new compound contained 

an identified MIE, its biosimilarity was calculated with the modeling set compounds 

containing the same MIE within the relevant assay cluster for vAOP model predictions. 

Results 

Hepatotoxicity Database Overview. In this study, a large and diverse 

hepatotoxicity database was curated from various data sources. Because the original 

datasets contain in vivo hepatotoxicity data classified with different standards, it is 

necessary to harmonize the data into a binary classification (i.e., hepatotoxic and nontoxic) 

for model development (Table 4-1). However, among 1,639 compounds that were found 

in more than one original data source, 277 of them showed conflicting hepatotoxicity 

results. Then, to merge compounds with conflicting results from different sources, a 

majority rule was applied to define hepatotoxicity classifications for these compounds. 

Among the 4089 unique compounds in the original database, 3,790 compounds remained 

in the curated database and were categorized as hepatotoxic (1,549 compounds) or nontoxic 

(2,241 compounds). The whole database was randomly split into modeling and test sets, 



48 
 

 

which consist of 2,522 and 1,268 compounds, respectively. To show the chemical space of 

all the compounds, we performed a Principal Component Analysis study using 206 

Molecular Operating Environment (MOE) 2D descriptors. The top 3 principal components, 

which account for 57.4% variance, were used to construct the chemical space. Except 

several structural outliers, the modeling and test compounds cover a large and diverse space 

(Figure 4-3).  

 

Figure 4-3. Chemical space of the hepatotoxicity database. 

 3,790 compounds in the hepatotoxicity database were plot based on the top three principal 
components of 206 MOE 2D descriptors (57.4% variance explained). 

The relevant biological data for these 3,790 compounds were extracted from 

PubChem. The resulted bioprofile consisted of 43,224 PubChem assays, which contained 

880,449 data points. Furthermore, based on the chemical structures of these compounds, 
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729 ChemoTyper chemical fragments were identified. The chemical fragments and 

biological data were both large and diverse, thereby yielding useful information for the 

read-across studies described later. 

PubChem assay clustering result. Among the initial 43,224 assays within the 

bioprofile, 883 assays exhibited significant correlations (p < .05) with at least 1 

ChemoTyper chemical fragment, resulting in a total of 19,039 significant relationships 

between chemical structural fragments and in vitro responses. The Jaccard similarity score 

between any 2 assays was calculated based on “chemical fragment-in vitro response” 

relationships. Two assays were defined as “mechanistic-related” to each other if they have 

a Jaccard similarity score higher than 0.75. In Figure 4-2, 2 mechanistic-related assays, 

which are shown as dots, were connected by an edge. There were 804 assays with a Jaccard 

similarity score to their nearest neighbor assays of over 0.75 and their relationships were 

further analyzed using the overlapping network detecting algorithm OSLOM 

(Lancichinetti et al., 2011). OSLOM can estimate and distinguish statistically significant 

clusters from pseudo-clusters, and it also allows overlapping among various clusters. An 

assay cluster, which was generated by OSLOM analysis, contains a group of assays that 

are mechanistic related. An overlapped assay in 2 clusters represented a potential receptor 

existing in 2 different biological mechanisms. There were 32 unique clusters with 3–87 

assays per cluster that were identified using the OSLOM algorithm, as shown by different 

colors in Figure 4-2. The overlapping assays were colored as black. Information regarding 

the clustered assays is summarized in Table 4-2. 

Hepatotoxicity predictions of new compounds by read-across  
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All 32 PubChem assay clusters obtained from the above step were used for the read-

across study of hepatotoxicity. The predictivity of hepatotoxicity using assays in each 

cluster was first evaluated by the 5-fold cross-validation within the modeling set. 

Sensitivity, specificity, CCR, and ppv were calculated for all clusters and these parameters 

were used to analyze the predictivity of hepatotoxicity. The predictivity, shown by the ppv 

(Figure 4-4), indicates the potential applicability of using the assays within each cluster to 

evaluate chemical hepatotoxicity. The reason to use ppv as the major evaluation parameter 

is that the underlying mechanisms responsible for hepatotoxicity are vast and complicated, 

and thus, it is unlikely to expect a few PubChem assays to explain all potential hepatotoxic 

phenomena. When using PubChem assays for toxicity prediction, it is reasonable to expect 

a relatively high false negative rate (i.e., compounds inactive in a particular assay, yet 

active in other toxicity tests). Furthermore, the active data of a bioassay mean a specific 

chemical biological phenomenon (e.g., binding to a receptor and inhibition of an enzyme), 

which is more meaningful than inactive data when correlating to toxicity phenomena. Not 

surprisingly, most clusters have relatively low predictivity of hepatotoxicity (ppv 0.7). 

However, the read-across within cluster 5 showed ppv ¼ 1.0 from cross-validation 

assessments. This is due to the model overfitting, which could be indicated by their 

sensitivity, specificity, and CCR (Table 4-3). The sensitivity, specificity, and CCR are 1.00, 

0.00, and 0.50, respectively. These results indicated that only using ppv for model selection 

is flawed when the data size is small (i.e., the number of compounds tested by the 

associated cluster is small). ChemoTyper chemical fragments were further evaluated for 

their ability to improve hepatotoxicity predictions (details can be found in the Materials 

and Methods section). A chemical fragment was considered to be a MIE of a hepatotoxicity 
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pathway if modeling set compounds containing this fragment showed improved cross-

validation predictivity within an assay cluster. To minimize the effects of missing data on 

the model selection, only the clusters in which the read-across models have confidence 

support values larger than 5 were investigated. 4 criteria were applied to select chemical 

fragments as potential MIEs: (1) there are at least 5 hepatotoxic compounds containing the 

selected fragments, (2) ppv of cross-validation was above 60%, (3) ppv of cross-validation 

was improved by read-across within the compounds containing the fragment, and (4) the 

bioprofile of the compounds containing the fragment have < 65% missing data. Thus, 

several chemical fragments were selected and considered as MIEs. A compound containing 

a selected MIE will be predicted as hepatotoxic when it also shows active responses in the 

relevant pathway assays. The inclusion of MIEs into a pathway can not only improve the 

predictivity of read-across but also derive useful toxicity mechanisms based on the 

resultant vAOP models. However, due to the nature of ChemoTyper fingerprints, the 

resultant MIEs are general chemical fragments, which exist in many organic compounds. 

This issue is partially resolved in the current vAOP models with extra validation by 

biological testing against the assays selected for the pathways. This issue can be 

permanently resolved when more hepatotoxicity data are available in the future and more 

diverse chemical fragments were selected as MIEs, such as the structural alerts described 

in other studies with large amounts of data (Alves et al., 2016; R. Liu et al., 2015; Stepan 

et al., 2011; Sushko et al., 2010).  
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Figure 4-4. The ppv values of cross-validation predictions for different PubChem 
clusters. 

Read-across models were developed for each PubChem cluster, the ppv value of these 
models in five-fold cross-validation were presented in decreasing order. 
 

The top selected fragment, which was identified from Cluster 1 as a MIE, is a 6-

membered aromatic ring containing up to 1 nitrogen. The compounds containing this 

fragment and their corresponding bioprofiles, which were used for the read-across 

predictions, are shown in Figure 4-5. The assays (represented using PubChem AID in the 

following) in this cluster (Table 4-4) could be classified into 3 groups including (1) drug 

screening assays (AID 1876, 1877, 1883, 1886), (2) receptor binding assays (AID 485345, 

488953, 720572, 720692, 720725, 743239), and (3) biomarkers (AID 463097, 485298, 

493107). As shown, if a compound containing this identified chemical fragment (all 

compounds structures shown in Figure 4-6) and showed active results in these assays, it 

can be predicted as hepatotoxic (Figure 4-5). A portion of these hepatotoxic compounds 

included calcium channel blockers, such as felodipine (compound 633), nimodipine 

(compound 751), and nifedipine (compound 2996). As shown in Table 4-4, a number of 

the bioassays that informed the Cluster 1 vAOP model align with plausible mechanisms of 
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hepatotoxicity. These include altered signaling through the farnesoid X receptor (FXR) 

(AID 743239) and glucocorticoid receptor (AID 720692 and 720725) as well as inhibition 

of DNA repair pathways (AID 493107). Interestingly, there were some other compounds 

within this cluster, which neither containing this structural fragment nor have active 

responses in these assays, but are in fact hepatotoxic. For example, loxoprofen (compound 

2831), which only has inactive results in the assays in Cluster 1, can induce hepatotoxicity 

in humans (Greig & Garnock-Jones, 2016). According to the information on LiverTox®, 

the mechanism of loxoprofen produce hepatic injury is considered an idiosyncratic reaction 

likely involving an immunologic reaction (Shrestha et al., 2018) that cannot be detected by 

the in vitro assays in Cluster 1.  
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Figure 4-5. The vAOP model developed from Cluster 1.  

A compound (highlighted by yellow) was identified as toxic when it contains the chemical 
fragment (Molecular Initiating Event) and shows active responses (orange) in the selected 
PubChem assays. 
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Figure 4-6. Structures of compounds consisting of the MIE in the vAOP models of 
Cluster 1. 

MIEs are highlighted. A. modeling set compounds; B. test set compounds. 
 

There are 2 other structural fragments that were identified from Cluster 3 and 

Cluster 17, respectively. The fragment from Cluster 3 includes a phenoxyl group (Figure 

4-7). Hepatotoxicants containing this fragment include dichlorophene (compound 588), 

oxyquinoline sulfate (compound 766), pentachlorophenol (compound 1689), curcumin 

(compound 2579), and benzbromarone (compound 3427). According to the data on 

LIVERTOX®, the mechanism of hepatotoxicity induced by benzbromarone arises 

primarily from 2 processes; first, benzbromarone undergoes hepatic metabolism by 

CYP2C9 and second, the parent compound or its metabolites alter mitochondrial function 

(Kaufmann et al., 2005). The fragment from Cluster 17 represents a pyrimidine scaffold 

(Figure 4-8). Azathioprine (compound 2374) which is an imidazolyl derivative and 
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prodrug of mercaptopurine that inhibits cellular function by antagonism of purine 

metabolism contains this fragment. Azathioprine is associated with several forms of 

hepatotoxicity, including rises in serum aminotransferase levels, an acute cholestatic injury, 

and a chronic hepatic injury according to LIVERTOX® (Corley Jr et al., 1966; Mackay et 

al., 1964; Sparberg et al., 1969).The mechanism is not clear yet but is likely due to an 

immunological response to a metabolic byproduct (Aithal, 2011; Romagnuolo et al., 1998). 

Another drug containing this fragment, 6-mercaptopurine (compound 3088), is effective 

both as an anticancer and an immunosuppressive drug and is used to treat leukemia and 

autoimmune diseases (Björnsson et al., 2017). 6-Mercaptopurine causes direct, 

reproducible, dose-related hepatotoxicity in animal models (Clark et al., 1960; Einhorn & 

Davidsohn, 1964). The toxic effects of mercaptopurine, and particularly the myelotoxicity, 

have been linked to higher levels of methyl-mercaptopurine, a mercaptopurine metabolite 

(Nygaard et al., 2004).  
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Figure 4-7. The vAOP model identified from Cluster 3. 
A compound (highlighted by yellow) was identified as toxic when it contains the chemical 
fragment (Molecular Initiating Event) and shows active responses (orange) in the selected 
PubChem assays. 
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Figure 4-8. The vAOP model identified from Cluster 17. 

A compound (highlighted by yellow) was identified as toxic when it contains the chemical 
fragment (Molecular Initiating Event) and shows active responses (orange) in the selected 
PubChem assays. 

 
The derived vAOP model can be applied to evaluate hepatotoxicants in the test set. 

There was a total of 369 test set compounds that contained this MIE and 61 of them showed 

at least 1 active response in the Cluster 1 assays. Among these compounds, 12 of them had 

active responses in at least 4 assays (Figure 4-9) and were predicted to be hepatotoxic 

based on the resultant vAOP model with a predictive rate of 83.3%. As a comparison, these 

compounds were predicted using 2 DILI deep learning models recently developed (Y. Xu 

et al., 2015) and the predictive rates are 50% for DL-combined model and 70% for DL-

Liew model. Although only predicting 12 compounds is not statistically sufficient, this 

benchmark study showed the potential advantage of the vAOP model developed in this 
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study compared to other hepatotoxicity models. Structures for all 12 compounds are shown 

in Figure 4-6B. Among them, only 2 compounds, pimozide (compound 2561) and apigenin 

(compound 2841), were false positives. However, apigenin was reported to induce 

hepatotoxicity in Swiss mice (Singh et al., 2012), indicating a potential issue (i.e., 

experimental error) in the database constructed in this study. There is an alternate way to 

also validate the vAOP model. The PubChem compounds, which were not in our 

hepatotoxicity database but were tested against those Cluster 1 assays, were used for this 

validation purpose. There were 126 total compounds containing the MIE structure and 70 

of them have at least 1 active response among these assays. Among these compounds, 21 

compounds were predicted as hepatotoxic because they showed active responses in most 

of these assays. Literature searches were performed to investigate the toxicity potential of 

these prioritized compounds. There were 6 compounds (Table 4-5, represented using 

PubChem CID) with reported toxicity in previous studies. Among them, 2 are 

hepatotoxicants: clotrimazole (CID 2812 (W. Zhang et al., 2002)) and niclosamide (CID 

4477 (Vliet et al., 2018)). The other 4 compounds, eliprodil (CID 60703), 2-chloro-5-nitro-

N-phenylbenzamide (CID 644213), 1,10-phenanthroline (CID 1318), and ritanserin (CID 

5074), exhibit toxicity effects other than hepatotoxicity as shown as in Table 4-6. 
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Figure 4-9. Predicting new test set compounds using the vAOP model from Cluster 1.  

The active responses were counted by the positive results of the selected PubChem assays 
within the cluster (as listed in Table 4-4). 
 
Discussion  

We constructed a comprehensive hepatotoxicity database, automatically extracted 

relevant biological data from PubChem, and performed read-across studies for chemical 

hepatotoxicity. The key component of this study was to identify chemical fragment in vitro-

in vivo relationships, which were used to group PubChem assays that are mechanism 

similar and capable of evaluating hepatotoxicity. Furthermore, vAOP models were 

developed by integrating several chemical fragments as MIEs and PubChem assays as 

potential receptors biomarkers and cellular responses. New compounds containing the 

MIEs can be tested using the relevant assays to assess potential hepatotoxicity. Active 

responses from these assays indicate potential hepatotoxicity induced by pathway 

perturbations. Although the vAOP models developed in this study will not be sufficient to 

cover all the hepatotoxicity toxicity mechanisms, this work clearly indicates the benefits 

of using both chemical (i.e., chemical structure) and biological (in vitro bioassays) data 

into the read-across process. Hepatotoxicity mechanisms could be indicated from these 

models, including alterations in nuclear receptor signaling and inhibition of DNA repair. 
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With more data accumulated in the future, this workflow could be applied to other read-

across studies for toxicity assessment. 

  



63 
 

 

Chapter 5 Big Data Researches from Computational Toxicology to Drug Discovery 

Big Data Research in Computational Toxicology  

The Rise of big data heralds a profound change in the way that toxicologists 

perform their research. The big data era brings not only big progress but also big challenges 

(Bizer et al., 2011; Coveney et al., 2016; Marx, 2013). Although there are some preliminary 

studies, as described previous chapters, which successfully apply big data sources in 

computational toxicology studies, the urgent needs of new approaches in this area are 

described in the following.  

Experimental error is inevitable in public data sources. It is understandable that the 

quality of data may be vary on the basis of the nature of experimental protocols. Currently, 

the usefulness of public data sources is questionable owing to a lack of necessary quality 

control (Williams & Ekins, 2011). A general worry has been raised regarding 

irreproducible experimental data (Bell et al., 2009; Ioannidis et al., 2009; Prinz et al., 2011), 

which is relatively common in complicated biological testing (e.g., animal models). There 

is also a golden rule in computational modeling studies, which is the “trash in, trash out” 

principle (Hartung, 2016). For this reason, the veracity of big data, represented by the 

potential data quality of public data resources, is a critical issue that affects all relevant 

studies. Including the previous chapter, there have been many studies (Fourches et al., 2015; 

Fourches, Muratov, et al., 2010; Young et al., 2008) which have tried to address the 

incorrect chemical structure information. However, studies to automatically correct 

biological data errors are rare (Sedykh et al., 2011). After identification of experimental 

error data, extra experimental was still necessary to validate the suspected data. It is urgent 
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to create computational workflow to identify experimental errors for overcoming the data 

uncertainty in the toxicity big data. 

Although the current data growth (i.e., velocity of big data) is exceptional and there 

are many available data for well-known toxicants, the missing data (i.e., data lacking 

necessary toxicity data for target compounds) is still a common issue. As described above, 

read-across studies can be used to fill the data gap in some cases. However, a good read-

across practice can only be performed when an “unknown” compound has reliable 

predictions from its nearest neighbors (Hartung, 2016). For the “outliers” that are excluded 

because they are out of the applicability domain (AD) of available models (Jaworska et al., 

2005; Tetko et al., 2008), extra experimental testing is still necessary. For this reason, a 

well-defined and applicable AD is critical for any chemical risk assessment studies. 

Currently, the AD is normally defined by chemical similarity between the test set and 

modeling set compounds. To make the AD more applicable in big data studies, new 

methods need to be developed, such as the biosimilarity confidence that we have recently 

reported (Russo et al., 2017).  

Toxicology research becomes more complicated when various types of data (i.e., a 

variety of big data) are used in one study. This is the ultimate challenge of computational 

toxicology and new computational approaches are always needed to realize this goal. In 

the previous chapters, we described hybrid models and new computational approaches to 

use various types of toxicity data in the computational toxicity field (e.g., virtual Adverse 

Outcome Pathway – vAOP for hepatotoxicity prediction). In traditional Adverse Outcome 

Pathway (AOP), a molecular initiating event (MIE) and an adverse outcome (AO) are 
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linked by a linear way of one or more series of causally connected knowledge based key 

events (KE) for indicating the toxicity mechanism. Comparing with the traditional AOP, 

the chemical fragment of molecular initiating events (MIEs) in vAOP models are more 

general, and the key events (KE) in vAOP were indicated by a cluster of in vitro assays. 

vAOP models presented in previous chapter could handle large amount of in vitro assay 

information in the big data pool by applying the data-driven profiling tool (CIIPro) and 

various network detecting algorithm, however, more effort needed to be spent for a more 

accurate pathway based on levels of biological organization, from cellular level to tissue 

level, then to organ level, and finally an adverse outcome in organism level. It is necessary 

to develop novel computational workflow to mine useful information from data generated 

from various source, the current bioinformatics and cheminformatics modeling approaches 

and data analysis methods that have been developed in the past decade are not suitable for 

the requirements of big data analysis.  

Big data research will be one of the major efforts of modern toxicology in the future. 

With all the challenges bring by the five Vs features of big data, there is an urgent need for 

novel techniques in data mining/generation, curation, and analysis to fulfill the 

requirements of big data research in computational toxicity. The recent progress in 

computational toxicology described in this thesis can be viewed as leading in this direction. 

The success of data-driven studies will assist toxicologists by highlighting the value of the 

publicly available toxicity data and providing guidance for future experimental testing. 

Although these data-driven modeling are being used widely in computational toxicology, 

especially deep learning, they are still in the preliminary stage for this purpose. Coupled 

with the improvement of computer hardware and experimental screening techniques, 
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machine learning modeling will keep being critical to show the value of big data for 

computational toxicity studies.  

Big Data Research in Drug Discovery and Development 

Since the toxicity assessment of drug candidate is a critical process during the drug 

discovery and development, the challenge of big data research in computational toxicology 

also bring the Computer-Aided Drug Discovery (CADD) into big data era. Finding a new 

drug, such as an innovative small molecule with therapeutic effects in clinic practice, is 

one of the most challenging scientific endeavors because of long time and high costs of the 

research and development procedure. Critical bioactivities of drug candidates, including 

their efficacy, pharmacokinetics and adverse effects, need to be investigated and optimized 

during the pre-clinical and clinical studies. In the past decade, with the advanced chemical 

synthesis and biological screening technologies being developed, not only the toxicological 

data for small molecules, but also a large amount of biological data for millions of small 

molecules were generated and available in various databases.  

Summary of databases for drug discovery. Current accumulated big data for drug 

discovery purpose can be classified as 1) the comprehensive databases of chemical 

collections including drugs, drug derivatives (e.g. drug metabolites), lead compounds and 

drug candidates; 2) collections of drug targets including genomics and proteomics data, 3) 

databases storing biological data obtained from assay screening, metabolism information; 

and efficacy; 4) toxicology databases for drug side effects. All these databases (Table 5-1) 

consist of the current big data sources for drug discovery and development.  
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Besides the comprehensive chemical databases such as PubChem (S. Kim et al., 

2019) and ChEMBL (Bento et al., 2014), genomics and proteomics data are widely used 

for drug-target identification in the early exploration stage of drug discovery. The Binding 

Database (BindingDB) is a public, web- accessible resource of drug-target binding data, 

including data of measured binding affinities (Gilson et al., 2015). The targets included in 

BindingDB are proteins/enzymes that are considered as drug targets. BindingDB currently 

contains 1,756,093 binding data, for 7,371 protein targets and 780,240 small molecules 

(https://www.bindingdb.org/bind/index.jsp, accessed on 29 Oct, 2019). In the drug 

development stage, databases storing biological data obtained from assay screening, 

metabolism information, and efficacy are widely used. The Human Metabolome Database 

(HMDB) is a freely available electronic database containing detailed information about 

small molecule metabolites found in the human body (Wishart et al., 2018). It currently 

contains 114,162 metabolite entries including both water-soluble and lipid soluble 

metabolites. WOMBAT is a bioactivity database for lead and drug discovery (Olah et al., 

2008). WOMBAT currently contains 331,872 entries, representing 1,966 unique targets, 

with bioactivity annotations. DrugMatrix (Svoboda et al., 2019), on the other hand, focuses 

on the toxicogenomics data of about 600 drugs. The current DrugMatrix database contains 

large-scale rat gene expression data under drug treatment, mostly targeting several major 

organs (e.g., liver). Clinical data provide further drug side effect information. For example, 

AACT is a publicly available relational database that contains all information (protocol 

and result data elements) about every study registered in ClinicalTrials.gov (Zarin et al., 

2011). It contains about 324,429 research studies in all 50 states and in 209 countries. 

PharmaGKB (https://www.pharmgkb.org/) is a pharmacogenomics knowledge resource 
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that encompasses clinical information of drug molecules, containing 733 drugs with their 

clinical information. 

The databases in Table 5-1, which are all relevant to drug discovery, can also be 

classified based on the associated stage of drug discovery: early explorations, hit 

identifications, lead identifications, lead optimizations and clinical studies (Figure 5-1). 

When moving from early stage to clinic trials, the size of data becomes smaller because of 

limited data available in the late stages. Most of the databases in the second, third and 

fourth categories in Figure 5-1 consist of thousands to tens of thousands compounds and 

served to specific purposes, such as collecting data of drug candidates for their specific 

target binding affinities. Since the clinical studies for a new drug commonly need five 

phase stages (phase 0 – phase IV) and usually the last four stages involve lots of human 

participants, there are enormous data entries in clinical databases for one drug (Figure 5-

1). The clinical databases are consisted of thousands to hundreds of thousands data entries 

because one drug candidate normally have been extensively studied and generated a large 

amount of clinic data (Cook & Collins, 2015). Compared to them, the databases collecting 

general chemicals, including the property data (e.g. log P, solubility and etc) and general 

biological responses, have the largest size and always contain over 1 million compounds 

(Figure 5-1). Since the data are being collected from numerous sources, the variety and 

velocity of these databases are also the highest. These big data sources provide useful 

information for early drug discovery stages, but the four V features also brings new 

challenges. For example, 1,930 FDA approved small molecule drugs (molecular weight ≤ 

2,000) in e-Drug3D databases (Korotcov et al., 2017) were used to searched against both 

ChEMBL (Bento et al., 2014) and PubChem (S. Kim et al., 2019) for their assay testing 
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results by using in-house data profiling tool (Russo et al., 2017). There are 1,114 ChEMBL 

assays with testing results for at least 25 of these drug molecules, as shown in Figure 5-

2A. Meanwhile, all these drugs were tested against thousands of PubChem assays and 299 

assays have at least 25 active responses among these drug molecules (Figure 5-2B). There 

are more than two million data points in the response profile for ChEMBL and more than 

five hundred thousand of data points in the PubChem response profile. Nevertheless, many 

responses in these profiles were shown in gray as missing data (96% of the ChEMBL 

response profile in Figure 5-2A and 87% of the PubChem response profile in Figure 5-

2B) because these drug compounds were not tested against all these assays. Furthermore, 

the ratio of active responses in the PubChem data (e.g. 27% of all data in Figure 5-2B) is 

also biased. For example, acyclovir (CAS 59277-89-3) has 13 active and 204 inactive 

responses in these PubChem assays. Due to the nature of the HTS techniques, the general 

HTS data normally consist of much fewer actives than inactives (Russo et al., 2019; J. 

Zhang et al., 2014), especially for screening active hits against specific drug targets. In an 

early review of pharmacological data based on 4.8 million unique compounds, only about 

5.7% of these compounds were found to show one (or more) active biological response 

(Paolini et al., 2006), indicating that most of the testing results were inactives. Notably, 

some drugs, most which are chemotherapy agents, show high active responses in available 

data. For example, disulfiram (CAS 97-77-8) is a chemotherapy drug used to support the 

treatment of chronic alcoholism. It has the 163 active responses and 57 inactive results in 

the assays. As expected, these compounds normally have critical side effects and other off 

target bindings. 
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Figure 5-1. Size of available databases at different stages of drug discovery and 
development. 

The definition of the size for these databases was majorly based on the number of 
molecules being stored in these databases. The size of BindingDB, Supertarget, Binding 
MOAD, PDBbind- CN, AACT database, PharmaGKB and Approved drugs was defined 
by the data entries provided by the databases. 
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Figure 5-2. Biological data profiles of 1,930 FDA approved drugs represented by data 
from ChEMBL and PubChem. 

A) Data obtained from 1,114 ChEMBL assays, which have at least 25 testing results 
(shown as red spots) among these compounds; B) Data obtained from 299 PubChem 
assays, which have at least 25 active responses (shown as red spots) among these 
compounds. The grey spots indicate missing data (no data or “inconclusive” results) and 
the blue spots indicate inactives. 
 

Applications of computational models in drug discovery. The applications of 

machine learning approaches in drug discovery and development, especially the early 

stages, have been proved to be valuable. Besides QSAR and read-across approaches which 

were discussed in previous chapters, the advancement of computational power and the 

availability of biological data for drugs enabled the application of novel modeling 

techniques to address the new challenges brought by big data in drug discovery. Since the 

first application of the neural network modeling in drug discovery was reported in 1989 

(AOYAMA et al., 1989), various neural network approaches have been developed and 

applied to drug discovery (Baskin et al., 2016; Duch et al., 2007). Deep learning, based on 

artificial neural networks, was originally presented in the 1980s (Gawehn et al., 2016). 

However, deep learning did not show significant advantages over other machine learning 
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approaches in the early stage since the data used for model development are limited (Roy 

& Roy, 2009; Simmons et al., 2008). With increasing data size and computational power, 

deep learning has been applied to the life sciences and demonstrated its capability to 

identify complex patterns in biological systems (Gawehn et al., 2016; Lei Xie et al., 2017). 

In the QSAR machine learning challenge supported by Merck in 2012, the winning team 

used an ensemble of different machine learning methods including deep neural net (DNN) 

and showed significantly better performance than other machine learning approaches in 

their following study (Ma et al., 2015). The deep learning models in this study were based 

on a set of the traditional molecular descriptors, such as atom pairs (AP) (Björnsson et al., 

2017) and donor-acceptor pair (DP) (Kearsley et al., 1996). Later in 2014, the National 

Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health 

(NIH) launched a Tox21Challenge, in which the participates were asked to model around 

12,000 chemicals, including many drugs, for 12 different toxic effects (Huang et al., 2016). 

In this competition, DeepTox, a computational toxicity model based on deep learning had 

the highest performance of all computational methods (Mayr et al., 2016). In this study, 

the chemical descriptors used in DeepTox model were a large number of molecular 

descriptors calculated using computational tools such as off-the- shelf software and the 

JCompoundMapper (Mayr et al., 2016). There was another study reported a deep learning 

model to predict interactions between drugs and their biological targets based on 15,524 

drug-target pairs obtained from the DrugBank database, and the traditional molecular 

fingerprints - Extended Connectivity Fingerprints (ECFP) were used in this model (Wen et 

al., 2017). Except using molecular descriptors directly generated from chemical structures, 

there have been various deep learning studies for drug discovery using other data in the 
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recent studies. For example, Xie et al. (Lingwei Xie et al., 2018) reported a deep learning 

study for drug-target interaction prediction using transcriptome data in L1000 database 

obtained from the Library of Integrated Network-Based Cellular Signatures program 

(Sprague et al., 2014). Xu et al. presented another deep learning models using the drug 2D 

structure graphs as the input data for both liver toxicity prediction (Y. Xu et al., 2015) and 

acute oral toxicity prediction (Y. Xu et al., 2017). Furthermore, multi-task learning based 

on deep neural network (DNN) allows multiple related tasks to be modeled simultaneously. 

The multi-task learning studies proofed that DNN can reduce overfitting, solve issues of 

biased data, and identify variables from related tasks. Thus, multi-task learning has shown 

somewhat better performance compared to the traditional models for some datasets (Cai et 

al., 2019; Li et al., 2018; Wenzel et al., 2019; Y. Xu et al., 2017). However, there were also 

arguments that machine learning models still can achieve better results than deep learning 

(Russo et al., 2018; Zhou et al., 2018). Due to the complexity of biological system and five 

Vs features of big data for drug discovery, there is difficult to present a machine learning 

and/or deep learning method can be universally superior than others (Zhou et al., 2018). 

In current big data scenario, computational tools for drug discovery are driven by 

public data sources rapidly growing. The machine learning modeling and resulting models 

have been applied on almost all data generated from drug discovery and development 

procedure and proofed the value of big data by reducing the drug attritions. The challenges 

brought by the five V features of big data bring urgent requirements of developing novel 

approaches and algorithms. Besides the progress of machine learning (e.g. recent deep 

learning studies) described above the volume and velocity features need the database 

management, data curation and web portal design. The variety and veracity features require 
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the further refinements of experimental protocols, better quality controls and more 

transparent data report. There are still some clear disadvantages of existing databases and 

machine learning algorithms, including deep learning for drug discovery purposes. For 

example, most clinic data are still the treasure of pharmaceutical companies and not 

available for public studies. Furthermore, there are very few efforts to update the available 

CADD software with the newly developed algorithms and models. Most available 

prediction tools are still based on traditional QSAR approaches and have not been changed 

for years. Although being used widely in drug discovery, the applications of data-driven 

machine learning modeling, especially deep learning, are still in the preliminary stage for 

this purpose. Coupled with the improvement of computer hardware and experimental 

screening techniques, machine learning modeling will keep being critical to show the value 

of big data for drug discovery. 
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TABLES 

Table 2-1. Information of chemical datasets used in this study. 

 

  

Categoric
al sets size actives inactives description 

BCRP 395 178 217 inhibition of membrane 
transporters at 10 μM 

BSEP 725 303 422 bile salt efflux pump inhibition at 
100 μM 

MDR1 158
5 750 835 inhibition of membrane 

transporters at 10 μM 

AMES 397
9 1718 2261 bacterial mutagenicity Ames test 

Continuou
s sets size [Min;Max] mean±SD description 

ER 546 [−4.50; 
2.81] 

−0.03 ± 
1.57 relative binding affinity to ERα 

FM 675 [−5.94; 
2.00] 

−2.12 ± 
1.35 

LC50, toxicity to fathead 
minnow at 96 h exposure 

EB 899 [−2.18; 
6.34] 

 3.19 ± 
1.23 

IC50, toxicity to environmental 
bacteria  

LD50 733
2 

[−0.34;10.2
1] 

 2.54 ± 
0.96 LD50, rat acute toxicity, oral 
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Table 2-2. Five-fold cross-validation results for categorical datasets* 

 
Model 

 

BCRP 
Sensitivity Specificity CCR 

Cont
rol 

Individual 
models 

MOE_RF 0.750 0.823 0.787 
MOE_SVM 0.459 0.801 0.630 
Dragon_RF 0.743 0.829 0.786 
Dragon_SVM 0.486 0.845 0.666 

Consensus model 0.649 0.851 0.750 
-x5 Individual 

models 
MOE_RF 0.721 0.802 0.762 
MOE_SVM 0.367 0.846 0.607 
Dragon_RF 0.680 0.791 0.736 
Dragon_SVM 0.463 0.830 0.646 

Consensus model 0.585 0.824 0.705 
-x10 Individual 

models 
MOE_RF 0.664 0.767 0.716 
MOE_SVM 0.275 0.878 0.576 
Dragon_RF 0.624 0.733 0.679 
Dragon_SVM 0.389 0.844 0.617 

Consensus model 0.463 0.839 0.651 
-x15 Individual 

models 
MOE_RF 0.634 0.783 0.709 
MOE_SVM 0.214 0.940 0.577 
Dragon_RF 0.614 0.788 0.701 
Dragon_SVM 0.338 0.875 0.606 

Consensus model 0.434 0.902 0.668 
-x20 Individual 

models 
MOE_RF 0.662 0.729 0.696 
MOE_SVM 0.257 0.895 0.576 
Dragon_RF 0.662 0.740 0.701 
Dragon_SVM 0.405 0.801 0.603 

Consensus model 0.493 0.823 0.658 
-x25 Individual 

models 
MOE_RF 0.578 0.736 0.657 
MOE_SVM 0.238 0.912 0.575 
Dragon_RF 0.626 0.670 0.648 
Dragon_SVM 0.333 0.846 0.590 

Consensus model 0.361 0.857 0.609 
-x50 Individual 

models 
MOE_RF 0.442 0.566 0.504 
MOE_SVM 0.130 0.909 0.519 
Dragon_RF 0.409 0.560 0.485 
Dragon_SVM 0.136 0.869 0.502 

Consensus model 0.201 0.851 0.526 
*Results of one trail from the five repeats. 
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Table 2-2. (Continued.) 

 
Model 

 

BSEP 
Sensitivity Specificity CCR 

Cont
rol 

Individual 
models 

MOE_RF 0.831 0.883 0.857 
MOE_SVM 0.791 0.857 0.824 
Dragon_RF 0.803 0.871 0.837 
Dragon_SVM 0.791 0.840 0.816 

Consensus model 0.827 0.871 0.849 
-x5 Individual 

models 
MOE_RF 0.798 0.858 0.828 
MOE_SVM 0.710 0.852 0.781 
Dragon_RF 0.742 0.849 0.796 
Dragon_SVM 0.714 0.818 0.766 

Consensus model 0.774 0.847 0.810 
-x10 Individual 

models 
MOE_RF 0.731 0.849 0.790 
MOE_SVM 0.648 0.849 0.749 
Dragon_RF 0.711 0.815 0.763 
Dragon_SVM 0.648 0.803 0.726 

Consensus model 0.700 0.829 0.764 
-x15 Individual 

models 
MOE_RF 0.675 0.817 0.746 
MOE_SVM 0.580 0.862 0.721 
Dragon_RF 0.631 0.794 0.713 
Dragon_SVM 0.608 0.794 0.701 

Consensus model 0.643 0.831 0.737 
-x20 Individual 

models 
MOE_RF 0.612 0.769 0.691 
MOE_SVM 0.516 0.855 0.685 
Dragon_RF 0.605 0.763 0.684 
Dragon_SVM 0.469 0.824 0.646 

Consensus model 0.574 0.821 0.697 
-x25 Individual 

models 
MOE_RF 0.585 0.755 0.670 
MOE_SVM 0.316 0.860 0.588 
Dragon_RF 0.605 0.729 0.667 
Dragon_SVM 0.407 0.823 0.615 

Consensus model 0.486 0.818 0.652 
-x50 Individual 

models 
MOE_RF 0.246 0.750 0.498 
MOE_SVM 0.004 1.000 0.502 
Dragon_RF 0.213 0.728 0.470 
Dragon_SVM 0.000 1.000 0.500 

Consensus model 0.004 0.994 0.499 
*Results of one trail from the five repeats. 
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Table 2-2. (Continued.) 

 
Model 

 

MDR1 
Sensitivity Specificity CCR 

Cont
rol 

Individual 
models 

MOE_RF 0.903 0.891 0.897 
MOE_SVM 0.853 0.858 0.855 
Dragon_RF 0.905 0.891 0.898 
Dragon_SVM 0.913 0.838 0.875 

Consensus model 0.916 0.871 0.894 
-x5 Individual 

models 
MOE_RF 0.852 0.848 0.850 
MOE_SVM 0.812 0.822 0.817 
Dragon_RF 0.851 0.830 0.841 
Dragon_SVM 0.876 0.779 0.828 

Consensus model 0.871 0.822 0.846 
-x10 Individual 

models 
MOE_RF 0.797 0.823 0.810 
MOE_SVM 0.748 0.804 0.776 
Dragon_RF 0.796 0.810 0.803 
Dragon_SVM 0.816 0.766 0.791 

Consensus model 0.819 0.800 0.810 
-x15 Individual 

models 
MOE_RF 0.772 0.792 0.782 
MOE_SVM 0.758 0.775 0.766 
Dragon_RF 0.771 0.758 0.764 
Dragon_SVM 0.790 0.740 0.765 

Consensus model 0.795 0.755 0.775 
-x20 Individual 

models 
MOE_RF 0.704 0.779 0.741 
MOE_SVM 0.733 0.740 0.736 
Dragon_RF 0.686 0.761 0.724 
Dragon_SVM 0.731 0.718 0.725 

Consensus model 0.741 0.741 0.741 
-x25 Individual 

models 
MOE_RF 0.668 0.776 0.722 
MOE_SVM 0.646 0.726 0.686 
Dragon_RF 0.652 0.745 0.699 
Dragon_SVM 0.644 0.721 0.683 

Consensus model 0.684 0.754 0.719 
-x50 Individual 

models 
MOE_RF 0.459 0.568 0.513 
MOE_SVM 0.050 0.950 0.500 
Dragon_RF 0.456 0.585 0.520 
Dragon_SVM 0.000 1.000 0.500 

Consensus model 0.034 0.964 0.499 
*Results of one trail from the five repeats. 
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Table 2-2. (Continued.) 

 
Model 

 

AMES 
Sensitivity Specificity CCR 

Cont
rol 

Individual 
models 

MOE_RF 0.747 0.883 0.815 
MOE_SVM 0.715 0.822 0.768 
Dragon_RF 0.737 0.879 0.808 
Dragon_SVM 0.541 0.886 0.713 

Consensus model 0.727 0.893 0.810 
-x5 Individual 

models 
MOE_RF 0.697 0.858 0.777 
MOE_SVM 0.685 0.800 0.742 
Dragon_RF 0.704 0.843 0.773 
Dragon_SVM 0.492 0.884 0.688 

Consensus model 0.684 0.874 0.779 
-x10 Individual 

models 
MOE_RF 0.668 0.834 0.751 
MOE_SVM 0.661 0.780 0.721 
Dragon_RF 0.652 0.828 0.740 
Dragon_SVM 0.400 0.890 0.645 

Consensus model 0.635 0.849 0.742 
-x15 Individual 

models 
MOE_RF 0.629 0.806 0.718 
MOE_SVM 0.630 0.760 0.695 
Dragon_RF 0.613 0.795 0.704 
Dragon_SVM 0.410 0.861 0.635 

Consensus model 0.602 0.832 0.717 
-x20 Individual 

models 
MOE_RF 0.587 0.796 0.692 
MOE_SVM 0.611 0.743 0.677 
Dragon_RF 0.566 0.781 0.674 
Dragon_SVM 0.358 0.882 0.620 

Consensus model 0.552 0.823 0.687 
-x25 Individual 

models 
MOE_RF 0.536 0.765 0.650 
MOE_SVM 0.581 0.722 0.651 
Dragon_RF 0.508 0.758 0.633 
Dragon_SVM 0.218 0.909 0.564 

Consensus model 0.480 0.820 0.650 
-x50 Individual 

models 
MOE_RF 0.324 0.711 0.517 
MOE_SVM 0.000 1.000 0.500 
Dragon_RF 0.305 0.703 0.504 
Dragon_SVM 0.000 1.000 0.500 

Consensus model 0.001 1.000 0.500 
*Results of one trail from the five repeats. 
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Table 2-3. Five-fold cross-validation results for continuous datasets* 
 

Model 
 

ER 
MAE R2 

Control Individual models MOE_RF 0.668 0.833 
MOE_SVM 0.823 0.732 
Dragon_RF 0.730 0.803 
Dragon_SVM 1.066 0.643 

Consensus model 0.773 0.807 
-n20 Individual models MOE_RF 0.676 0.827 

MOE_SVM 0.826 0.736 
Dragon_RF 0.747 0.796 
Dragon_SVM 1.072 0.638 

Consensus model 0.777 0.804 
-n10 Individual models MOE_RF 0.693 0.824 

MOE_SVM 0.835 0.731 
Dragon_RF 0.757 0.792 
Dragon_SVM 1.073 0.630 

Consensus model 0.786 0.801 
-n5 Individual models MOE_RF 0.757 0.766 

MOE_SVM 0.894 0.667 
Dragon_RF 0.820 0.742 
Dragon_SVM 1.072 0.595 

Consensus model 0.837 0.746 
-n4 Individual models MOE_RF 0.807 0.726 

MOE_SVM 0.924 0.629 
Dragon_RF 0.863 0.693 
Dragon_SVM 1.090 0.546 

Consensus model 0.870 0.703 
-n2 Individual models MOE_RF 0.990 0.566 

MOE_SVM 1.047 0.487 
Dragon_RF 1.027 0.540 
Dragon_SVM 1.141 0.448 

Consensus model 1.010 0.565 
-n1 Individual models MOE_RF 1.428 0.022 

MOE_SVM 1.377 -0.013 
Dragon_RF 1.441 -0.049 
Dragon_SVM 1.348 0.026 

Consensus model 1.380 -0.010 
-k0.1 Individual models MOE_RF 0.673 0.831 

MOE_SVM 0.814 0.740 
Dragon_RF 0.738 0.801 
Dragon_SVM 1.063 0.647 

Consensus model 0.779 0.809 
-k0.2 Individual models MOE_RF 0.715 0.824 
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MOE_SVM 0.869 0.732 
Dragon_RF 0.772 0.800 
Dragon_SVM 1.128 0.641 

Consensus model 0.818 0.806 
-k0.5 Individual models MOE_RF 0.938 0.736 

MOE_SVM 1.017 0.663 
Dragon_RF 1.013 0.678 
Dragon_SVM 1.232 0.583 

Consensus model 0.996 0.717 
-k1.0 Individual models MOE_RF 1.413 0.563 

MOE_SVM 1.454 0.523 
Dragon_RF 1.441 0.544 
Dragon_SVM 1.599 0.448 

Consensus model 1.420 0.573 
 
*Results of one trail from the five repeats. 
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Table 2-3. (Continued.) 
Model 

 
FM 

MAE R2 
Control Individual models MOE_RF 0.614 0.774 

MOE_SVM 0.735 0.686 
Dragon_RF 0.643 0.753 
Dragon_SVM 0.773 0.693 

Consensus model 0.659 0.766 
-n20 Individual models MOE_RF 0.632 0.757 

MOE_SVM 0.746 0.683 
Dragon_RF 0.653 0.741 
Dragon_SVM 0.775 0.687 

Consensus model 0.665 0.758 
-n10 Individual models MOE_RF 0.637 0.757 

MOE_SVM 0.760 0.672 
Dragon_RF 0.663 0.736 
Dragon_SVM 0.786 0.673 

Consensus model 0.672 0.751 
-n5 Individual models MOE_RF 0.701 0.692 

MOE_SVM 0.792 0.614 
Dragon_RF 0.721 0.681 
Dragon_SVM 0.818 0.615 

Consensus model 0.718 0.691 
-n4 Individual models MOE_RF 0.760 0.651 

MOE_SVM 0.807 0.596 
Dragon_RF 0.779 0.624 
Dragon_SVM 0.824 0.593 

Consensus model 0.759 0.653 
-n2 Individual models MOE_RF 0.910 0.462 

MOE_SVM 0.949 0.388 
Dragon_RF 0.925 0.440 
Dragon_SVM 0.941 0.429 

Consensus model 0.897 0.470 
-n1 Individual models MOE_RF 1.094 0.017 

MOE_SVM 1.068 0.020 
Dragon_RF 1.093 0.036 
Dragon_SVM 1.062 -0.047 

Consensus model 1.064 0.023 
-k0.1 Individual models MOE_RF 0.623 0.771 

MOE_SVM 0.746 0.684 
Dragon_RF 0.665 0.744 
Dragon_SVM 0.781 0.692 

Consensus model 0.671 0.762 
-k0.2 Individual models MOE_RF 0.669 0.751 

MOE_SVM 0.764 0.674 
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Dragon_RF 0.686 0.736 
Dragon_SVM 0.809 0.684 

Consensus model 0.697 0.752 
-k0.5 Individual models MOE_RF 0.835 0.696 

MOE_SVM 0.907 0.629 
Dragon_RF 0.882 0.668 
Dragon_SVM 0.942 0.637 

Consensus model 0.858 0.697 
-k1.0 Individual models MOE_RF 1.406 0.498 

MOE_SVM 1.435 0.444 
Dragon_RF 1.421 0.484 
Dragon_SVM 1.486 0.455 

Consensus model 1.398 0.510 
 

  



84 
 

 

Table 2-3. (Continued.) 
Model 

 
EB 

MAE R2 
Control Individual models MOE_RF 0.575 0.776 

MOE_SVM 0.841 0.652 
Dragon_RF 0.595 0.764 
Dragon_SVM 0.706 0.718 

Consensus model 0.637 0.776 
-n20 Individual models MOE_RF 0.583 0.768 

MOE_SVM 0.843 0.625 
Dragon_RF 0.601 0.750 
Dragon_SVM 0.713 0.696 

Consensus model 0.641 0.762 
-n10 Individual models MOE_RF 0.596 0.751 

MOE_SVM 0.842 0.617 
Dragon_RF 0.614 0.741 
Dragon_SVM 0.708 0.682 

Consensus model 0.640 0.751 
-n5 Individual models MOE_RF 0.654 0.685 

MOE_SVM 0.840 0.585 
Dragon_RF 0.656 0.683 
Dragon_SVM 0.737 0.637 

Consensus model 0.666 0.695 
-n4 Individual models MOE_RF 0.702 0.647 

MOE_SVM 0.857 0.538 
Dragon_RF 0.720 0.621 
Dragon_SVM 0.764 0.571 

Consensus model 0.700 0.645 
-n2 Individual models MOE_RF 0.804 0.414 

MOE_SVM 0.861 0.359 
Dragon_RF 0.825 0.379 
Dragon_SVM 0.825 0.363 

Consensus model 0.794 0.417 
-n1 Individual models MOE_RF 0.997 -0.008 

MOE_SVM 0.945 -0.006 
Dragon_RF 0.996 -0.024 
Dragon_SVM 0.953 -0.065 

Consensus model 0.960 -0.024 
-k0.1 Individual models MOE_RF 0.586 0.771 

MOE_SVM 0.844 0.657 
Dragon_RF 0.604 0.764 
Dragon_SVM 0.714 0.718 

Consensus model 0.646 0.774 
-k0.2 Individual models MOE_RF 0.629 0.753 

MOE_SVM 0.875 0.639 
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Dragon_RF 0.630 0.754 
Dragon_SVM 0.752 0.702 

Consensus model 0.680 0.760 
-k0.5 Individual models MOE_RF 0.794 0.660 

MOE_SVM 0.969 0.576 
Dragon_RF 0.816 0.637 
Dragon_SVM 0.870 0.613 

Consensus model 0.824 0.661 
-k1.0 Individual models MOE_RF 1.164 0.485 

MOE_SVM 1.290 0.421 
Dragon_RF 1.165 0.483 
Dragon_SVM 1.201 0.478 

Consensus model 1.163 0.505 
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Table 2-3. (Continued.) 
Model 

 
LD50 

MAE R2 
Cont
rol 

Individual models MOE_RF 0.457 0.762 
MOE_SVM 0.581 0.578 
Dragon_RF 0.459 0.757 
Dragon_SVM 0.555 0.615 

Consensus model 0.492 0.730 
-n20 Individual models MOE_RF 0.463 0.755 

MOE_SVM 0.583 0.577 
Dragon_RF 0.466 0.752 
Dragon_SVM 0.557 0.617 

Consensus model 0.495 0.727 
-n10 Individual models MOE_RF 0.474 0.738 

MOE_SVM 0.583 0.567 
Dragon_RF 0.476 0.738 
Dragon_SVM 0.560 0.603 

Consensus model 0.500 0.712 
-n5 Individual models MOE_RF 0.513 0.678 

MOE_SVM 0.593 0.530 
Dragon_RF 0.511 0.679 
Dragon_SVM 0.572 0.566 

Consensus model 0.523 0.660 
-n4 Individual models MOE_RF 0.533 0.653 

MOE_SVM 0.602 0.515 
Dragon_RF 0.537 0.647 
Dragon_SVM 0.586 0.538 

Consensus model 0.541 0.634 
-n2 Individual models MOE_RF 0.647 0.440 

MOE_SVM 0.662 0.346 
Dragon_RF 0.648 0.438 
Dragon_SVM 0.656 0.354 

Consensus model 0.633 0.440 
-n1 Individual models MOE_RF 0.772 0.008 

MOE_SVM 0.734 0.000 
Dragon_RF 0.774 0.016 
Dragon_SVM 0.745 -0.003 

Consensus model 0.744 0.010 
-k0.1 Individual models MOE_RF 0.465 0.756 

MOE_SVM 0.586 0.574 
Dragon_RF 0.468 0.753 
Dragon_SVM 0.562 0.610 

Consensus model 0.499 0.726 
-k0.2 Individual models MOE_RF 0.488 0.746 

MOE_SVM 0.604 0.570 
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Dragon_RF 0.492 0.739 
Dragon_SVM 0.582 0.600 

Consensus model 0.520 0.715 
-k0.5 Individual models MOE_RF 0.616 0.671 

MOE_SVM 0.706 0.528 
Dragon_RF 0.622 0.665 
Dragon_SVM 0.694 0.540 

Consensus model 0.638 0.651 
-k1.0 Individual models MOE_RF 0.915 0.507 

MOE_SVM 0.969 0.404 
Dragon_RF 0.918 0.501 
Dragon_SVM 0.972 0.397 

Consensus model 0.923 0.500 
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Table 2-4. Test set prediction results for categorical datasets* 
 
Model BCRP 

Sensitivity Specificity CCR 
Control 0.667 0.861 0.764 
Control-r5 0.700 0.778 0.739 
Control-r10 0.667 0.806 0.736 
Control-r15 0.567 0.778 0.672 
Control-r20 0.433 0.861 0.647 
-x5 0.700 0.861 0.781 
-x5-r5 0.667 0.833 0.750 
-x5-r10 0.533 0.861 0.697 
-x5-r15 0.467 0.889 0.678 
-x5-r20 0.467 0.889 0.678 
-x10 0.700 0.889 0.794 
-x10-r5 0.600 0.889 0.744 
-x10-r10 0.433 0.861 0.647 
-x10-r15 0.367 0.889 0.628 
-x10-r20 0.367 0.889 0.628 
-x15 0.400 0.861 0.631 
-x15-r5 0.300 0.972 0.636 
-x15-r10 0.267 0.917 0.592 
-x15-r15 0.267 0.917 0.592 
-x15-r20 0.267 0.917 0.592 
-x20 0.600 0.944 0.772 
-x20-r5 0.500 0.917 0.708 
-x20-r10 0.433 0.917 0.675 
-x20-r15 0.333 0.944 0.639 
-x20-r20 0.333 0.889 0.611 
-x25 0.500 0.917 0.708 
-x25-r5 0.400 0.944 0.672 
-x25-r10 0.300 0.889 0.594 
-x25-r15 0.300 0.889 0.594 
-x25-r20 0.333 0.889 0.611 
-x50 0.233 0.583 0.408 
-x50-r5 0.200 0.639 0.419 
-x50-r10 0.167 0.694 0.431 
-x50-r15 0.167 0.778 0.472 
-x50-r20 0.133 0.889 0.511 

 
*Results are the consensus model predictions of one trail from the five repeats. 
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Table 2-4. (Continued.) 
 
Model BSEP 

Sensitivity Specificity CCR 
Control 0.857 0.917 0.887 
Control-r5 0.857 0.889 0.873 
Control-r10 0.857 0.833 0.845 
Control-r15 0.857 0.792 0.824 
Control-r20 0.816 0.792 0.804 
-x5 0.857 0.903 0.880 
-x5-r5 0.857 0.903 0.880 
-x5-r10 0.857 0.875 0.866 
-x5-r15 0.857 0.806 0.831 
-x5-r20 0.816 0.819 0.818 
-x10 0.857 0.931 0.894 
-x10-r5 0.857 0.931 0.894 
-x10-r10 0.857 0.903 0.880 
-x10-r15 0.837 0.861 0.849 
-x10-r20 0.837 0.861 0.849 
-x15 0.776 0.889 0.832 
-x15-r5 0.776 0.889 0.832 
-x15-r10 0.776 0.903 0.839 
-x15-r15 0.816 0.861 0.839 
-x15-r20 0.796 0.875 0.835 
-x20 0.837 0.944 0.891 
-x20-r5 0.796 0.944 0.870 
-x20-r10 0.837 0.958 0.898 
-x20-r15 0.816 0.944 0.880 
-x20-r20 0.776 0.917 0.846 
-x25 0.735 0.903 0.819 
-x25-r5 0.673 0.958 0.816 
-x25-r10 0.653 0.958 0.806 
-x25-r15 0.653 0.944 0.799 
-x25-r20 0.673 0.972 0.823 
-x50 0.020 0.875 0.448 
-x50-r5 0.020 0.917 0.469 
-x50-r10 0.000 0.986 0.493 
-x50-r15 0.000 0.986 0.493 
-x50-r20 0.000 0.986 0.493 

 
*Results are the consensus model predictions of one trail from the five repeats. 
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Table 2-4. (Continued.) 
 
Model MDR1 

Sensitivity Specificity CCR 
Control 0.941 0.897 0.919 
Control-r5 0.941 0.890 0.915 
Control-r10 0.941 0.883 0.912 
Control-r15 0.933 0.869 0.901 
Control-r20 0.924 0.869 0.897 
-x5 0.941 0.897 0.919 
-x5-r5 0.950 0.890 0.920 
-x5-r10 0.941 0.869 0.905 
-x5-r15 0.941 0.862 0.902 
-x5-r20 0.933 0.862 0.897 
-x10 0.899 0.876 0.888 
-x10-r5 0.908 0.869 0.888 
-x10-r10 0.899 0.869 0.884 
-x10-r15 0.908 0.862 0.885 
-x10-r20 0.908 0.855 0.881 
-x15 0.899 0.862 0.881 
-x15-r5 0.916 0.876 0.896 
-x15-r10 0.916 0.876 0.896 
-x15-r15 0.924 0.869 0.897 
-x15-r20 0.924 0.862 0.893 
-x20 0.874 0.869 0.871 
-x20-r5 0.882 0.862 0.872 
-x20-r10 0.882 0.862 0.872 
-x20-r15 0.899 0.876 0.888 
-x20-r20 0.899 0.869 0.884 
-x25 0.832 0.869 0.850 
-x25-r5 0.824 0.869 0.846 
-x25-r10 0.849 0.883 0.866 
-x25-r15 0.849 0.890 0.869 
-x25-r20 0.857 0.876 0.867 
-x50 0.109 0.683 0.396 
-x50-r5 0.076 0.731 0.403 
-x50-r10 0.059 0.786 0.423 
-x50-r15 0.000 0.972 0.486 
-x50-r20 0.000 0.972 0.486 

 
*Results are the consensus model predictions of one trail from the five repeats. 
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Table 2-4. (Continued.) 
 
Model AMES 

Sensitivity Specificity CCR 
Control 0.733 0.915 0.824 
Control-r5 0.733 0.915 0.824 
Control-r10 0.726 0.913 0.820 
Control-r15 0.737 0.907 0.822 
Control-r20 0.709 0.899 0.804 
-x5 0.730 0.926 0.828 
-x5-r5 0.723 0.923 0.823 
-x5-r10 0.719 0.923 0.821 
-x5-r15 0.705 0.926 0.816 
-x5-r20 0.695 0.913 0.804 
-x10 0.681 0.918 0.799 
-x10-r5 0.681 0.921 0.801 
-x10-r10 0.677 0.923 0.800 
-x10-r15 0.674 0.926 0.800 
-x10-r20 0.677 0.918 0.798 
-x15 0.691 0.921 0.806 
-x15-r5 0.705 0.926 0.816 
-x15-r10 0.681 0.923 0.802 
-x15-r15 0.681 0.929 0.805 
-x15-r20 0.667 0.923 0.795 
-x20 0.667 0.923 0.795 
-x20-r5 0.653 0.929 0.791 
-x20-r10 0.646 0.931 0.788 
-x20-r15 0.632 0.937 0.784 
-x20-r20 0.639 0.939 0.789 
-x25 0.632 0.947 0.789 
-x25-r5 0.632 0.952 0.792 
-x25-r10 0.614 0.958 0.786 
-x25-r15 0.611 0.960 0.785 
-x25-r20 0.607 0.960 0.784 
-x50 0.004 1.000 0.502 
-x50-r5 0.004 1.000 0.502 
-x50-r10 0.004 1.000 0.502 
-x50-r15 0.000 1.000 0.500 
-x50-r20 0.000 1.000 0.500 

 
*Results are the consensus model predictions of one trail from the five repeats. 
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Table 2-5. Test set prediction results for continuous datasets* 
Model ER FM 

MAE R2 MAE R2 
Control 0.739 0.806 0.569 0.815 
Control-r5 0.736 0.808 0.572 0.813 
Control-r10 0.736 0.808 0.572 0.813 
Control-r15 0.736 0.808 0.572 0.813 
Control-r20 0.736 0.808 0.572 0.813 
-n20 0.746 0.803 0.567 0.818 
-n20-r5 0.774 0.767 0.698 0.759 
-n20-r10 0.778 0.763 0.723 0.738 
-n20-r15 0.803 0.733 0.719 0.735 
-n20-r20 0.818 0.731 0.722 0.734 
-n10 0.747 0.805 0.575 0.815 
-n10-r5 0.771 0.775 0.628 0.792 
-n10-r10 0.795 0.746 0.701 0.760 
-n10-r15 0.797 0.745 0.715 0.748 
-n10-r20 0.826 0.729 0.726 0.738 
-n5 0.790 0.787 0.583 0.812 
-n5-r5 0.809 0.778 0.650 0.791 
-n5-r10 0.846 0.740 0.665 0.773 
-n5-r15 0.854 0.728 0.667 0.776 
-n5-r20 0.884 0.709 0.679 0.768 
-n4 0.788 0.814 0.609 0.804 
-n4-r5 0.813 0.779 0.644 0.789 
-n4-r10 0.846 0.747 0.684 0.770 
-n4-r15 0.870 0.716 0.709 0.748 
-n4-r20 0.880 0.709 0.716 0.749 
-n2 0.852 0.768 0.696 0.759 
-n2-r5 0.873 0.743 0.722 0.751 
-n2-r10 0.903 0.697 0.751 0.734 
-n2-r15 0.946 0.648 0.761 0.741 
-n2-r20 0.953 0.639 0.802 0.734 
-n1 1.339 -0.212 1.051 0.105 
-n1-r5 1.310 -0.230 1.022 0.192 
-n1-r10 1.299 -0.211 1.025 0.169 
-n1-r15 1.301 -0.305 1.032 0.117 
-n1-r20 1.321 -0.355 1.016 0.264 
-k0.1 0.744 0.807 0.575 0.811 
-k0.1-r5 0.773 0.776 0.699 0.751 
-k0.1-r10 0.789 0.756 0.704 0.740 
-k0.1-r15 0.797 0.744 0.717 0.727 
-k0.1-r20 0.818 0.733 0.721 0.733 
-k0.2 0.756 0.793 0.566 0.819 
-k0.2-r5 0.778 0.753 0.704 0.753 
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-k0.2-r10 0.784 0.743 0.712 0.742 
-k0.2-r15 0.801 0.732 0.722 0.732 
-k0.2-r20 0.814 0.725 0.729 0.739 
-k0.5 0.740 0.804 0.572 0.809 
-k0.5-r5 0.759 0.782 0.659 0.745 
-k0.5-r10 0.794 0.768 0.676 0.741 
-k0.5-r15 0.810 0.750 0.688 0.732 
-k0.5-r20 0.820 0.748 0.690 0.747 
-k1.0 0.777 0.763 0.618 0.794 
-k1.0-r5 0.831 0.713 0.712 0.747 
-k1.0-r10 0.850 0.711 0.731 0.739 
-k1.0-r15 0.901 0.679 0.752 0.723 
-k1.0-r20 0.936 0.625 0.759 0.713 

 
*Results are the consensus model predictions of one trail from the five repeats. 
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Table 2-5. (Continued.) 
Model ER FM 

MAE R2 MAE R2 
Control 0.626 0.722 0.476 0.751 
Control-r5 0.626 0.720 0.477 0.751 
Control-r10 0.626 0.720 0.477 0.751 
Control-r15 0.626 0.720 0.477 0.751 
Control-r20 0.626 0.720 0.477 0.751 
-n20 0.630 0.726 0.479 0.743 
-n20-r5 0.627 0.751 0.491 0.720 
-n20-r10 0.633 0.754 0.519 0.689 
-n20-r15 0.630 0.757 0.541 0.677 
-n20-r20 0.683 0.748 0.547 0.666 
-n10 0.607 0.756 0.482 0.738 
-n10-r5 0.619 0.758 0.511 0.709 
-n10-r10 0.667 0.752 0.522 0.691 
-n10-r15 0.675 0.750 0.531 0.677 
-n10-r20 0.686 0.739 0.536 0.669 
-n5 0.632 0.729 0.492 0.731 
-n5-r5 0.645 0.733 0.504 0.719 
-n5-r10 0.659 0.735 0.529 0.693 
-n5-r15 0.671 0.726 0.536 0.683 
-n5-r20 0.711 0.731 0.541 0.677 
-n4 0.631 0.741 0.501 0.721 
-n4-r5 0.686 0.751 0.513 0.709 
-n4-r10 0.701 0.736 0.536 0.686 
-n4-r15 0.715 0.726 0.546 0.674 
-n4-r20 0.722 0.719 0.550 0.663 
-n2 0.728 0.672 0.559 0.661 
-n2-r5 0.757 0.709 0.564 0.665 
-n2-r10 0.760 0.705 0.574 0.660 
-n2-r15 0.762 0.709 0.580 0.655 
-n2-r20 0.770 0.693 0.585 0.649 
-n1 1.000 -0.042 0.751 -0.048 
-n1-r5 0.964 0.055 0.737 -0.016 
-n1-r10 0.945 0.140 0.736 -0.026 
-n1-r15 0.948 0.125 0.737 -0.017 
-n1-r20 0.957 0.056 0.738 -0.034 
-k0.1 0.629 0.722 0.477 0.752 
-k0.1-r5 0.625 0.761 0.506 0.705 
-k0.1-r10 0.629 0.762 0.517 0.691 
-k0.1-r15 0.669 0.751 0.527 0.678 
-k0.1-r20 0.675 0.746 0.534 0.665 
-k0.2 0.616 0.732 0.478 0.750 
-k0.2-r5 0.615 0.762 0.506 0.707 
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-k0.2-r10 0.662 0.762 0.517 0.694 
-k0.2-r15 0.669 0.756 0.525 0.683 
-k0.2-r20 0.682 0.748 0.533 0.671 
-k0.5 0.642 0.710 0.484 0.740 
-k0.5-r5 0.636 0.734 0.512 0.700 
-k0.5-r10 0.642 0.741 0.520 0.689 
-k0.5-r15 0.692 0.735 0.527 0.681 
-k0.5-r20 0.702 0.730 0.548 0.667 
-k1.0 0.695 0.640 0.493 0.722 
-k1.0-r5 0.686 0.681 0.506 0.701 
-k1.0-r10 0.690 0.683 0.530 0.685 
-k1.0-r15 0.708 0.691 0.535 0.674 
-k1.0-r20 0.705 0.704 0.541 0.669 

 
*Results are the consensus model predictions of one trail from the five repeats. 
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Table 2-6. Applying AD for categorical datasets* 
 

Model 
BCRP BSEP 

CCR Coverage CCR Coverage 
Control 0.76 0.68 0.85 0.69 
Control-r5 0.71 0.68 0.83 0.69 
Control-r10 0.74 0.65 0.82 0.67 
Control-r15 0.65 0.65 0.80 0.68 
Control-r20 0.66 0.65 0.79 0.65 
-x5 0.80 0.68 0.85 0.69 
-x5-r5 0.76 0.68 0.85 0.69 
-x5-r10 0.71 0.65 0.86 0.67 
-x5-r15 0.69 0.65 0.81 0.68 
-x5-r20 0.68 0.65 0.80 0.65 
-x10 0.80 0.68 0.86 0.69 
-x10-r5 0.76 0.68 0.86 0.69 
-x10-r10 0.62 0.65 0.86 0.67 
-x10-r15 0.63 0.65 0.83 0.68 
-x10-r20 0.64 0.65 0.84 0.65 
-x15 0.63 0.68 0.83 0.69 
-x15-r5 0.64 0.68 0.83 0.69 
-x15-r10 0.59 0.65 0.83 0.67 
-x15-r15 0.59 0.65 0.82 0.68 
-x15-r20 0.61 0.65 0.80 0.65 
-x20 0.76 0.68 0.86 0.69 
-x20-r5 0.72 0.68 0.85 0.69 
-x20-r10 0.68 0.65 0.87 0.67 
-x20-r15 0.63 0.65 0.84 0.68 
-x20-r20 0.62 0.65 0.82 0.65 
-x25 0.72 0.68 0.81 0.69 
-x25-r5 0.68 0.68 0.78 0.69 
-x25-r10 0.59 0.65 0.78 0.67 
-x25-r15 0.59 0.65 0.75 0.68 
-x25-r20 0.60 0.65 0.80 0.65 
-x50 0.43 0.68 0.47 0.69 
-x50-r5 0.43 0.68 0.50 0.69 
-x50-r10 0.45 0.65 0.49 0.67 
-x50-r15 0.47 0.65 0.49 0.68 
-x50-r20 0.52 0.65 0.49 0.65 

*Results are the consensus model predictions of one trail from the five repeats 
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Table 2-6. (Continued.) 
 

Model MDR1 AMES 
CCR Coverage CCR Coverage 

Control 0.92 0.68 0.85 0.72 
Control-r5 0.96 0.31 0.86 0.72 
Control-r10 0.96 0.31 0.87 0.71 
Control-r15 0.96 0.31 0.86 0.81 
Control-r20 0.96 0.30 0.85 0.80 
-x5 0.92 0.68 0.86 0.72 
-x5-r5 0.96 0.31 0.86 0.72 
-x5-r10 0.96 0.31 0.87 0.71 
-x5-r15 0.96 0.31 0.85 0.81 
-x5-r20 0.97 0.30 0.85 0.80 
-x10 0.89 0.68 0.84 0.72 
-x10-r5 0.95 0.31 0.84 0.72 
-x10-r10 0.94 0.31 0.84 0.71 
-x10-r15 0.95 0.31 0.84 0.81 
-x10-r20 0.96 0.30 0.84 0.80 
-x15 0.87 0.68 0.84 0.72 
-x15-r5 0.95 0.31 0.85 0.72 
-x15-r10 0.95 0.31 0.85 0.71 
-x15-r15 0.95 0.31 0.84 0.81 
-x15-r20 0.96 0.30 0.84 0.80 
-x20 0.88 0.68 0.83 0.72 
-x20-r5 0.95 0.31 0.83 0.72 
-x20-r10 0.94 0.31 0.83 0.71 
-x20-r15 0.95 0.31 0.82 0.81 
-x20-r20 0.96 0.30 0.84 0.80 
-x25 0.84 0.68 0.82 0.72 
-x25-r5 0.91 0.31 0.82 0.72 
-x25-r10 0.93 0.31 0.83 0.71 
-x25-r15 0.93 0.31 0.82 0.81 
-x25-r20 0.94 0.30 0.82 0.80 
-x50 0.41 0.68 0.50 0.72 
-x50-r5 0.04 0.31 0.50 0.72 
-x50-r10 0.53 0.31 0.50 0.71 
-x50-r15 0.50 0.31 0.50 0.81 
-x50-r20 0.50 0.30 0.50 0.80 

*Results are the consensus model predictions of one trail from the five repeats 

  



98 
 

 

Table 2-7. Applying AD for continuous datasets* 
 
Model ER FM 

MAE R2 Coverage MAE R2 Coverage 
Control 0.60 0.64 0.83 0.68 0.73 0.89 
Control-r5 0.60 0.65 0.83 0.68 0.73 0.89 
Control-r10 0.60 0.65 0.83 0.68 0.73 0.89 
Control-r15 0.60 0.65 0.83 0.68 0.73 0.89 
Control-r20 0.60 0.65 0.83 0.68 0.73 0.89 
-n20 0.67 0.73 0.84 0.51 0.73 0.84 
-n20-r5 0.67 0.70 0.84 0.63 0.65 0.84 
-n20-r10 0.68 0.70 0.84 0.60 0.67 0.84 
-n20-r15 0.65 0.72 0.84 0.59 0.67 0.84 
-n20-r20 0.64 0.74 0.84 0.59 0.67 0.84 
-n10 0.68 0.73 0.84 0.52 0.71 0.84 
-n10-r5 0.69 0.70 0.84 0.67 0.58 0.84 
-n10-r10 0.66 0.72 0.84 0.62 0.65 0.84 
-n10-r15 0.66 0.72 0.84 0.61 0.67 0.84 
-n10-r20 0.64 0.75 0.84 0.60 0.68 0.84 
-n5 0.74 0.69 0.84 0.53 0.70 0.84 
-n5-r5 0.68 0.75 0.84 0.67 0.60 0.84 
-n5-r10 0.63 0.79 0.84 0.65 0.62 0.84 
-n5-r15 0.63 0.79 0.84 0.65 0.62 0.84 
-n5-r20 0.60 0.83 0.84 0.64 0.63 0.84 
-n4 0.74 0.73 0.84 0.53 0.70 0.84 
-n4-r5 0.69 0.75 0.84 0.67 0.60 0.84 
-n4-r10 0.64 0.79 0.84 0.65 0.62 0.84 
-n4-r15 0.61 0.81 0.84 0.65 0.62 0.84 
-n4-r20 0.61 0.81 0.84 0.64 0.63 0.84 
-n2 0.83 0.61 0.84 0.66 0.63 0.84 
-n2-r5 0.61 0.82 0.84 0.59 0.68 0.84 
-n2-r10 0.57 0.85 0.84 0.58 0.71 0.84 
-n2-r15 0.50 0.90 0.84 0.58 0.72 0.84 
-n2-r20 0.48 0.91 0.84 0.57 0.76 0.84 
-n1 1.34 0.04 0.84 1.03 0.00 0.84 
-n1-r5 0.06 1.30 0.84 0.02 0.99 0.84 
-n1-r10 0.05 1.29 0.84 0.01 1.00 0.84 
-n1-r15 0.14 1.30 0.84 0.01 1.00 0.84 
-n1-r20 0.17 1.32 0.84 0.07 0.99 0.84 
-k0.1 0.67 0.74 0.84 0.51 0.72 0.84 
-k0.1-r5 0.69 0.70 0.84 0.62 0.65 0.84 
-k0.1-r10 0.67 0.71 0.84 0.61 0.65 0.84 
-k0.1-r15 0.67 0.72 0.84 0.59 0.67 0.84 
-k0.1-r20 0.64 0.74 0.84 0.59 0.67 0.84 
-k0.2 0.68 0.71 0.84 0.51 0.73 0.84 
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-k0.2-r5 0.67 0.69 0.84 0.61 0.66 0.84 
-k0.2-r10 0.66 0.70 0.84 0.60 0.66 0.84 
-k0.2-r15 0.64 0.72 0.84 0.59 0.67 0.84 
-k0.2-r20 0.62 0.74 0.84 0.59 0.68 0.84 
-k0.5 0.67 0.74 0.84 0.51 0.71 0.84 
-k0.5-r5 0.70 0.69 0.84 0.62 0.60 0.84 
-k0.5-r10 0.68 0.73 0.84 0.61 0.62 0.84 
-k0.5-r15 0.65 0.75 0.84 0.59 0.64 0.84 
-k0.5-r20 0.64 0.76 0.84 0.62 0.64 0.84 
-k1.0 0.71 0.67 0.84 0.55 0.67 0.84 
-k1.0-r5 0.62 0.76 0.84 0.58 0.67 0.84 
-k1.0-r10 0.64 0.78 0.84 0.57 0.69 0.84 
-k1.0-r15 0.57 0.85 0.84 0.56 0.71 0.84 
-k1.0-r20 0.53 0.88 0.84 0.54 0.71 0.84 

*Results are the consensus model predictions of one trail from the five repeats 
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Table 2-7. (Continued.) 
Model EB LD50 

MAE R2 Coverage MAE R2 Coverage 
Control 0.53 0.73 0.89 0.44 0.64 0.76 
Control-r5 0.53 0.73 0.89 0.44 0.64 0.76 
Control-r10 0.53 0.73 0.89 0.44 0.64 0.76 
Control-r15 0.53 0.73 0.89 0.44 0.64 0.76 
Control-r20 0.53 0.73 0.89 0.44 0.64 0.76 
-n20 0.59 0.68 0.75 0.55 0.67 0.84 
-n20-r5 0.69 0.61 0.75 0.58 0.67 0.84 
-n20-r10 0.69 0.61 0.75 0.57 0.69 0.84 
-n20-r15 0.69 0.62 0.75 0.56 0.71 0.84 
-n20-r20 0.66 0.68 0.75 0.54 0.71 0.84 
-n10 0.58 0.70 0.75 0.44 0.64 0.68 
-n10-r5 0.69 0.60 0.75 0.61 0.46 0.68 
-n10-r10 0.67 0.66 0.75 0.57 0.49 0.68 
-n10-r15 0.66 0.67 0.75 0.56 0.51 0.68 
-n10-r20 0.64 0.68 0.75 0.54 0.52 0.68 
-n5 0.60 0.69 0.75 0.44 0.64 0.68 
-n5-r5 0.66 0.64 0.75 0.59 0.48 0.68 
-n5-r10 0.65 0.66 0.75 0.57 0.49 0.68 
-n5-r15 0.64 0.67 0.75 0.55 0.50 0.68 
-n5-r20 0.64 0.71 0.75 0.54 0.51 0.68 
-n4 0.62 0.66 0.75 0.46 0.62 0.68 
-n4-r5 0.66 0.69 0.75 0.60 0.48 0.68 
-n4-r10 0.64 0.70 0.75 0.58 0.50 0.68 
-n4-r15 0.62 0.71 0.75 0.56 0.51 0.68 
-n4-r20 0.63 0.72 0.75 0.56 0.52 0.68 
-n2 0.71 0.56 0.75 0.47 0.61 0.68 
-n2-r5 0.58 0.75 0.75 0.59 0.49 0.68 
-n2-r10 0.57 0.76 0.75 0.56 0.51 0.68 
-n2-r15 0.58 0.76 0.75 0.55 0.52 0.68 
-n2-r20 0.55 0.77 0.75 0.54 0.53 0.68 
-n1 1.01 0.01 0.75 0.55 0.52 0.68 
-n1-r5 0.00 0.96 0.75 0.53 0.55 0.68 
-n1-r10 0.01 0.94 0.75 0.52 0.57 0.68 
-n1-r15 0.02 0.93 0.75 0.52 0.57 0.68 
-n1-r20 0.00 0.95 0.75 0.51 0.58 0.68 
-k0.1 0.58 0.71 0.75 0.77 0.00 0.68 
-k0.1-r5 0.68 0.60 0.75 0.00 0.75 0.68 
-k0.1-r10 0.68 0.61 0.75 0.00 0.75 0.68 
-k0.1-r15 0.66 0.67 0.75 0.00 0.75 0.68 
-k0.1-r20 0.67 0.67 0.75 0.00 0.75 0.68 
-k0.2 0.57 0.72 0.75 0.44 0.66 0.68 
-k0.2-r5 0.69 0.60 0.75 0.59 0.48 0.68 
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-k0.2-r10 0.68 0.66 0.75 0.57 0.49 0.68 
-k0.2-r15 0.67 0.67 0.75 0.56 0.50 0.68 
-k0.2-r20 0.66 0.68 0.75 0.54 0.50 0.68 
-k0.5 0.62 0.68 0.75 0.44 0.66 0.68 
-k0.5-r5 0.65 0.63 0.75 0.59 0.48 0.68 
-k0.5-r10 0.65 0.64 0.75 0.57 0.49 0.68 
-k0.5-r15 0.65 0.69 0.75 0.56 0.50 0.68 
-k0.5-r20 0.65 0.70 0.75 0.55 0.50 0.68 
-k1.0 0.62 0.63 0.75 0.44 0.64 0.68 
-k1.0-r5 0.60 0.65 0.75 0.58 0.48 0.68 
-k1.0-r10 0.58 0.66 0.75 0.57 0.49 0.68 
-k1.0-r15 0.57 0.70 0.75 0.56 0.49 0.68 
-k1.0-r20 0.58 0.70 0.75 0.55 0.52 0.68 

*Results are the consensus model predictions of one trail from the five repeats. 
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Table 3-1. Comparisons of traditional read-across and hybrid read-across prediction 
results. 
 

Parameters Traditional read-across Hybrid read-across 
   
AMES Dataset     
Sensitivity 0.84 0.9 
Specificity 0.77 0.74 
Correct Classification Rate (CCR) 0.8 0.82 
   
LD50 Dataset     
R0

2 0.36 0.68 
Mean Absolute Error (MAE) 0.55 0.44 
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Table 3-2. The five representative compounds predicted correctly by their chemical nearest 
neighbor in AMES dataset. 
 

 
Bioprofile AID: 1195, 1996, 686978, 686979, 743012, 743014, 743015, 743064, 743065, 1159620, 
1224879, 1259243. 
* For bioprofiles, the red color indicates active response, blue color indicates inactive response and 
white color indicates no data available. 
*This bioprofile only consist of these bioassays that have the most active response data for all 
compounds on A area in Figure 3-3. 
Continue on next page 
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Table 3-2. (Continued) 

 
Bioprofile AID: 1195, 1996, 686978, 686979, 743012, 743014, 743015, 743064, 743065, 1159620, 
1224879, 1259243. 
* For bioprofiles, the red color indicates active response, blue color indicates inactive response and 
white color indicates no data available. 
*This bioprofile only consist of these bioassays that have the most active response data for all 
compounds on A area in Figure 3-3. 
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Table 3-3. The five representative compounds with low predictive errors  in the LD50 
dataset. 

 
*Bioprofile AID: 720635, 720637, 743012, 743014, 743015, 743065, 743083, 1224868, 
1224874, 1224886, 1259243. 
* For bioprofiles, the red color indicates active response, blue color indicates inactive response 
and white color indicates no data available. 
*This bioprofile only consist of these bioassays that have the most active response data for all 
compounds in red color in Figure 3-4. 
Continue on next page 
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Table 3-3. (Continued) 

 
*Bioprofile AID: 720635, 720637, 743012, 743014, 743015, 743065, 743083, 1224868, 1224874, 
1224886, 1259243. 
* For bioprofiles, the red color indicates active response, blue color indicates inactive response and 
white color indicates no data available. 
*This bioprofile only consist of these bioassays that have the most active response data for all 
compounds in red color in Figure 3-4. 
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Table 3-4. The five representative compounds and their chemical nearest neighbors in 
Ames mutagenicity dataset. 

 
*Bioprofiles AIDs: 651741, 651838, 720635, 720637, 743012, 743014, 743015, 743064, 743065, 
743122, 1224892, 1259243.  
*For bioprofiles, the red color indicates an active response, the blue color indicates an inactive 
response and white color indicates no data available. 
Continue on next page 
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Table 3-4. (Continued) 

 
*Bioprofiles AIDs: 651741, 651838, 720635, 720637, 743012, 743014, 743015, 743064, 743065, 
743122, 1224892, 1259243.  
*For bioprofiles, the red color indicates an active response, the blue color indicates an inactive 
response and white color indicates no data available. 
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Table 3-5. The five representative compounds and their chemical nearest neighbor in 
LD50 dataset. 

 
*Bioprofile AID: 720635, 720637, 743012, 743014, 743015, 743064, 743065, 1159529, 1224871, 
1224874, 1259243. 
*For bioprofiles, the red color indicates active response, blue color indicates inactive response and 
white color indicates no data available. 
Continue on next page 
 
  



110 
 

 

Table 3-5. (Continued) 

 
*Bioprofile AID: 720635, 720637, 743012, 743014, 743015, 743064, 743065, 1159529, 1224871, 
1224874, 1259243. 
*For bioprofiles, the red color indicates active response, blue color indicates inactive response and 
white color indicates no data available. 
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Table 4-1. General information of hepatotoxicity datasets. 
 

Dataset Size Original categories Species Rules of 
harmonization Reference 

1 534 1 or 0 (Hepatotoxic or 
not) Humans Same (Ekins et 

al., 2010) 

2 951 1 or 0 (Hepatotoxic or 
not) 

Humans, 
rodents, 
non-rodents 

Only human 
data were used 

(Fourches, 
Barnes, et 
al., 2010) 

3 605 
1, -1 or 0 (Hepatotoxic 
or not, and 
inconclusive) 

Humans Excluding 
inconclusives 

(R. Liu et 
al., 2015) 

4 627 HH, NE, WE, AH* Humans, 
animals 

HH, WE as 1; 
NE as 0 (AH 
were excluded) 

(Greene et 
al., 2010) 

5 287 Most, less and no 
concern for DILI Humans 

Most and less 
concern as 1; 
no concern as 0 

(Chen et al., 
2011) 

6 1314 1 or 0 (Hepatotoxic or 
not) Humans Same  

(Marlene 
Thai Kim et 
al., 2016) 

7 3712 1 or 0 (Hepatotoxic or 
not) 

Humans, 
animals 

Only human 
data were used 

(Mulliner et 
al., 2016) 

8 1274 1 or 0 (Hepatotoxic or 
not) Humans Same (Liew et al., 

2011) 
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Table 4-2. Information of PubChem assay clusters. 

Cluster Size Coverage Overlapped bioassays (AID) Color  

1 25 2.83% 1816, 1876, 1877, 1883, 1886, 
488953, 493107, 504690, 743445 #222034 

2 23 2.60% 167, 540, 602449, 651754, 651755, 
651802 #663931 

3 64 7.25% 485295, 588591, 588795 #45283c 
4 19 2.15% 2322, 2540, 588335 #8f563b 
5 16 1.81% 1446, 1486, 1825 #df7126 
6 67 7.59% 27, 29, 41, 87, 97, 101, 1688 #d9a066 

7 56 6.34% 

167, 651633, 651634, 651838, 
743084, 743194, 743211, 743213, 
743218, 743224, 1159520, 1159523, 
1159552, 1224837, 1224844, 
1224871, 1224872, 1224873, 
1224875, 1224877, 1224896 

#eec39a 

8 87 9.85% 

540, 651633, 651802, 651838, 
743084, 743194, 743224, 743228, 
1159520, 1224844, 1224875, 
1224896 

#fbf236 

9 83 9.40% 

575, 902, 943, 944, 1063, 1816, 
1876, 1877, 1883, 1886, 485344, 
488953, 488977, 488983, 489030, 
504652, 588834, 624031, 651634, 
652054, 743211, 743213, 743218, 
1117318, 1159552, 1224837, 
1224871, 1224872, 1224873, 
1224877 

#99e550 

10 40 4.53% 1063, 1461, 489030, 493107, 
588834, 602449, 652054 #6abe30 

11 61 6.91% NA #37946e 
12 3 0.34% NA #4b692f 

13 42 4.76% 
429, 894, 1460, 2322, 2540, 434973, 
485295, 588335, 588591, 588795, 
651768 

#524b24 

14 39 4.42% 894, 1460, 651754, 651755, 743228, 
1159523 #323c39 

15 9 1.02% NA #3f3f74 
16 5 0.57% NA #306082 
17 27 3.06% 1285, 1446, 1486, 1117352 #5b6ee1 
18 10 1.13% 1461 #639bff 
19 8 0.91% NA #5fcde4 
20 3 0.34% NA #cbdbfc 
21 3 0.34% NA #f5b8f4 
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22 18 2.04% 1285, 1825, 493033, 540336, 
602244, 624467 #9badb7 

23 4 0.45% NA #847e87 
24 47 5.32% 602244, 624467 #696a6a 
25 7 0.79% NA #595652 
26 10 1.13% NA #76428a 
27 21 2.38% 1117352 #ac3232 
28 9 1.02% 488977 #d95763 
29 31 3.51% 493033, 504690, 540336, 743445 #d77bba 
30 4 0.45% NA #8f974a 

31 19 2.15% 27, 29, 41, 87, 97, 101, 429, 1688, 
2540, 434973, 651768 #8a6f30 

32 25 2.83% 
575, 902, 943, 944, 485344, 488953, 
488977, 488983, 504652, 624031, 
1117318 

#f5b8f4 
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Table 4-3. Statistics parameters of read-across results for each cluster. 

 

  

Cluster ppv TP FP FN TN sensitivity specificity CCR 
1 0.88 15 2 0 0 1 0 0.5 
2 0.74 29 10 4 2 0.88 0.17 0.52 
3 0.63 10 6 0 11 1 0.65 0.82 
4 0.51 28 27 19 10 0.6 0.27 0.43 
5 1 7 0 0 0 1 0 0.5 
6 0.8 20 5 5 3 0.8 0.38 0.59 
7 0.46 21 25 9 10 0.7 0.29 0.49 
8 0.5 5 5 10 12 0.33 0.71 0.52 
9 0.89 8 1 2 1 0.8 0.5 0.65 
10 0.61 83 52 22 17 0.79 0.25 0.52 
11 0.64 133 75 28 21 0.83 0.22 0.52 
12 0.57 4 3 1 0 0.8 0 0.4 
13 0.64 7 4 5 7 0.58 0.64 0.61 
14 0.52 42 39 36 90 0.54 0.7 0.62 
15 0.91 31 3 0 0 1 0 0.5 
16 0.42 5 7 5 3 0.5 0.3 0.4 
17 0.64 7 4 1 0 0.88 0 0.44 
18 0.65 37 20 5 0 0.88 0 0.44 
19 0.31 10 22 7 4 0.59 0.15 0.37 
20 0.71 88 36 66 30 0.57 0.45 0.51 
21 0.58 19 14 2 2 0.9 0.13 0.51 
22 0.66 33 17 8 10 0.8 0.37 0.59 
23 0.86 6 1 2 5 0.75 0.83 0.79 
24 0.62 54 33 23 35 0.7 0.51 0.61 
25 0.56 27 21 9 3 0.75 0.13 0.44 
26 0.73 95 36 2 2 0.98 0.05 0.52 
27 0.7 50 21 9 9 0.85 0.3 0.57 
28 0.51 42 41 11 2 0.79 0.05 0.42 
29 0.41 26 38 21 22 0.55 0.37 0.46 
30 0.4 108 160 0 0 1 0 0.5 
31 0.52 33 31 11 10 0.75 0.24 0.5 
32 0.83 5 1 1 0 0.83 0 0.42 
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Table 4-4. General information regarding bioassays used in the vAOP model from 

Cluster 1. 

Bioassay 
AID 

Bioassay title Bioassay type Overlap* 

1876 qHTS For Differential Inhibitors Of 
Proliferation Of Plasmodium 
Falciparum Line 3D7 

Drug screen 
assays 

Yes 

1877 qHTS For Differential Inhibitors Of 
Proliferation Of Plasmodium 
Falciparum Line D10 

Yes 

1883 qHTS For Differential Inhibitors Of 
Proliferation Of Plasmodium 
Falciparum Line W2 

Yes 

1886 qHTS For Differential Inhibitors Of 
Proliferation Of Plasmodium 
Falciparum Line HB3 

Yes 

485345 qHTS Validation Assay to Find 
Inhibitors of Chronic Active B-Cell 
Receptor Signaling 

Receptor binding 
assays 

No 

488953 qHTS Validation Assay for Inhibitors of 
HP1-beta Chromodomain Interactions 
with Methylated Histone Tails 

Yes 

720572 qHTS For Activators Of Parkin 
Expression: LOPAC Validation Assay 
(NLuc Reporter) 

No 

720692 qHTS Assay To Identify Small 
Molecule Antagonists Of The 
Glucocorticoid Receptor (GR) 
Signaling Pathway 

No 

720725 qHTS Assay To Identify Small 
Molecule Antagonists Of The 
Glucocorticoid Receptor (GR) 
Signaling Pathway: Summary 

No 

743239 qHTS assay to identify small molecule 
agonists of the farnesoid-X-receptor 
(FXR) signaling pathway: Summary 

No 

463097 Validation screen for small molecules 
that induce DNA re-replication in MCF 
10A normal breast cells 

Biomarkers  No 

485298 qHTS Assay For Small Molecule 
Inhibitors Of Mitochondrial Division 
Or Activators Of Mitochondrial Fusion 

No 

493107 Validation screen for small molecules 
that inhibit ELG1-dependent DNA 

Yes 
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repair in human embryonic kidney 
(HEK293T) cells expressing luciferase-
tagged ELG1 
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Table 4-5. Prioritized potential hepatotoxicants using the vAOP model from Cluster 1. 
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Table 5-1. The current publicly available databases for drug discovery and development.  

 Database Description Size (as of 10/29/2019) Link 

 Enamine 
REAL 
Database 

It is a tool to find new hit 
molecules using large-
scale virtual screening and 
for searching analogs to 
the hit molecules. 

Over 700 million 
compounds that comply 
with “rule of 5” and 
Verber criteria 

https://ena
mine.net/hi
t-
finding/co
mpound-
collections/
real-
database 

 ZINC It contains compounds 
information including their 
2D/3D structure, 
purchasability, target, and 
biological related 
information. 

Over 230 million 
compounds in 3D 
formats and over 750 
million compounds for 
analog-searching 

http://zinc.
docking.or
g/  

 PubChem It contains chemical 
molecules (most of them 
are small molecules) 
information including their 
chemical structures, 
identifiers, chemical and 
physical properties, 
biological activities, safety 
and toxicity data. 

97 million compounds, 
236 million substances, 
268 million 
bioactivities  

https://pub
chem.ncbi.
nlm.nih.go
v/  

 ChemSpide
r 

It is a free chemical 
structure database 
providing fast access to 
over 67 million structures, 
properties, and associated 
information. 

Over 78 million 
compound structures 

http://www
.chemspide
r.com/  

A SCUBIDO
O 

It is a freely accessible 
database that currently 
holds 21 million virtual 
products originating from 
a small library of building 
blocks and a collection of 
robust organic reactions. 

21 million virtual 
products 

http://kolbl
ab.org/scub
idoo/index.
php  

 ChEMBL It is a manually curated 
database of bioactive 
molecules with drug-like 
properties. It brings 
together chemical, 
bioactivity and genomic 

Over 1.9 million 
compounds, 1.1 million 
assay information 

https://ww
w.ebi.ac.uk
/chembl/  
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data to aid the translation 
of genomic information 
into effective new drugs. 

 TCM-Mesh It is an integration of 
database and a data-mining 
system for network 
pharmacology analysis of 
all respects of TCM 
including herbs, herbal 
ingredients, targets, related 
disease, side effect and 
toxicity.  

383,840 compounds, 
6,235 herbs 

http://mesh
.tcm.micro
bioinforma
tics.org/  

 Super 
Natural II 

It contains natural 
compounds including 
information about the 
corresponding 2d 
structures, 
physicochemical 
properties, predicted 
toxicity class and potential 
vendors. 

325,508 natural 
compounds 

http://bioin
f-
applied.cha
rite.de/supe
rnatural_ne
w/index.ph
p  

 BIAdb It is a comprehensive 
database of 
benzylisoquinoline 
alkaloids which contains 
information about 846 
unique benzylisoquinoline 
alkaloids. 

About 846 unique 
benzylisoquinoline 
alkaloids 

https://web
s.iiitd.edu.i
n/raghava/
biadb/inde
x.html  

     

 AICD Anti-Inflammatory 
Compounds Databass 
(AICD) deposits 
compounds with potential 
anti-inflammation 
activities.  

79,781 small molecules http://9560
23.ichengy
un.net/AIC
D/index.ph
p 

 DrugBank It is a unique 
bioinformatics and 
cheminformatics resource 
that combines detailed 
drug data with 
comprehensive drug target 
information. 

13,441 drug entries https://ww
w.drugban
k.ca/  

B ReFRAME A screening library of 
12,000 molecules 
assembled by combining 
three databases (Clarivate 
Integrity, GVK Excelra 

12,000 molecules https://refra
medb.org/  
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GoStar and Citeline 
Pharmaprojects) to 
facilitate drug 
repurposing. 

 SuperDRU
G2 

It is a database containing 
approved/marketed drugs 
with regulatory details, 
chemical structures (2D 
and 3D), dosage, 
biological targets, 
physicochemical 
properties, external 
identifiers, side-effects 
and pharmacokinetic data. 

Over 4,600 active 
pharmaceutical 
ingredients 

http://chem
info.charite
.de/superdr
ug2/  

 Drugs@FD
A database 

Information of drugs at 
FDA. 

About 23,391 drug 
application records 

https://ww
w.fda.gov/
drugs/drug-
approvals-
and-
databases/d
rugsfda-
data-files 

 e-Drug3D It contains 1930 molecular 
structures approved by 
FDA between 1939 and 
2019 with a molecular 
weight < 2000. 

1,930 drugs https://che
moinfo.ipm
c.cnrs.fr/M
OLDB/ind
ex.php  

     

 BindingDB It is a public, web-
accessible database of 
measured binding 
affinities, focusing chiefly 
on the interactions of 
proteins considered to be 
candidate drug-targets 
with ligands that are small, 
drug-like molecules. 

1,756,093 binding data, 
for 7,371 protein targets 
and 780,240 small 
molecules 

http://www
.bindingdb.
org/bind/in
dex.jsp  

 Supertarget It is an extensive web 
resource for analyzing 
drug-target interactions. 

332,828 drug-target 
interactions 

http://insili
co.charite.d
e/supertarg
et/index.ph
p?site=hom
e 

 Ligand 
Expo 

It provides chemical and 
structural information 
about small molecules 

30,440 entries of ligand http://ligan
d-
expo.rutger
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within the structure entries 
of the Protein Data Bank. 

s.edu/index
.html  

 PDBeChe
m 

It is a consistent and 
enriched library of ligands, 
small molecules and 
monomers that are 
referenced as residues and 
hetgroups in PDB entries. 

Over 29,922 ligands https://ww
w.ebi.ac.uk
/pdbe-
srv/pdbech
em/  

C PDBbind-
CN 

It provides an essential 
linkage between energetic 
and structural information 
of biomolecular 
complexes, which is 
helpful for various 
computational and 
statistical studies on 
molecular recognition 
occurred in biological 
systems. 

19,588 biomolecular 
complexes 

http://www
.pdbbind-
cn.org/  

 STITCH It is a database that 
integrates information 
about interactions from 
metabolic pathways, 
crystal structures, binding 
experiments and drug–
target relationships 

Interactions for between 
300,000 small 
molecules and 2.6 
million proteins from 
1,133 organisms 

http://stitch
.embl.de/ 

 BioGRID The Biological General 
Repository for Interaction 
Datasets is an open access 
database on protein, 
genetic and chemical 
interactions for humans 
and all major model 
organism species and 
humans.  

1,753,686 protein and 
genetic interactions, 
28,093 chemical 
associations and 
874,796 post 
translational 
modifications from 
major model organism 
species. 

https://theb
iogrid.org/ 

 Binding 
MOAD 

It was created from a 
subset of the Protein Data 
Bank (PDB), containing 
every high-quality 
example of ligand-protein 
binding. 

36,047 protein-ligand 
structures, and 13,353 
binding data 

http://bindi
ngmoad.or
g/  

 GPCRdb GPCRdb contains the data 
of GPCRs including 
crystal structures, 
sequence alignments, and 
receptor mutations; which 

15,149 proteins, and 
144,917 ligands 

http://www
.gpcrdb.org 
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can be visualized in 
interactive diagrams, and it 
provides online analysis 
tools as well. 

 Guide to 
Pharmacol
ogy 

The IUPHAR/BPS Guide 
to PHARMACOLOGY is 
an open-access, expert-
curated database of 
molecular interactions 
between ligands and their 
targets.  

2,937 targets, and 9,859 
ligands 

https://ww
w.guidetop
harmacolo
gy.org/  

 GLASS GLASS (GPCR-Ligand 
Association) database is a 
manually curated 
repository for 
experimentally-validated 
GPCR-ligand interactions. 
Along with relevant GPCR 
and chemical information, 
GPCR-ligand association 
data are extracted and 
integrated into GLASS 
from literature and public 
databases. 

About 277,651 unique 
ligands and 3,048 
GPCRs. 

https://zhan
glab.ccmb.
med.umich
.edu/GLAS
S/  

     

 HMDB HMDB is a freely 
available electronic 
database containing 
detailed information about 
small molecule 
metabolites found in the 
human body. 

114,162 metabolite 
entries 

http://www
.hmdb.ca/a
bout  

 SMPDB SMPDB (The Small 
Molecule Pathway 
Database) is an interactive, 
visual database containing 
more than 30,000 small 
molecule pathways found 
in humans only. 

More than 30,000 small 
molecule pathways 

http://smpd
b.ca/  

 TTD TTD (Therapeutic Target 
Database) is a database to 
provide information about 
the known and explored 
therapeutic protein and 
nucleic acid targets, the 
targeted disease, pathway 
information and the 

2,589 targets, and 
31,614 drugs 

http://db.id
rblab.net/tt
d/  
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corresponding drugs 
directed at each of these 
targets. 

 BioCyc BioCyc is a collection of 
7,615 Pathway/Genome 
Databases. Each database 
in the BioCyc collection 
describes the genome and 
metabolic pathways of a 
single organism.  

7,615 pathway/genome 
databases 

https://bioc
yc.org/  

 BiGG The BiGG database is a 
metabolic reconstruction 
of human metabolism 
designed for systems 
biology simulation and 
metabolic flux balance 
modeling.  

2,004 proteins, 2,766 
metabolites, and 3,311 
metabolic and transport 
reactions 

http://bigg.
ucsd.edu/  

 BRENDA BRENDA is the main 
collection of enzyme 
functional data available to 
the scientific community. 

At least 40,000 different 
enzymes from more 
than 6,900 different 
organisms 

https://ww
w.brenda-
enzymes.or
g/ 

 Reactome Reactome is a curated, 
peer-reviewed 
knowledgbase of 
biological pathways, 
including metabolic 
pathways as well as 
protein trafficking and 
signaling pathways.  

Over 9,600 proteins, 
9,800 reactions and 
2,000 pathways for 
humans 

https://reac
tome.org/ 

D BioModels 
Database 

BioModels Database is a 
repository of 
computational models of 
biological processes. 
Models described from 
literature are manually 
curated and enriched with 
cross-references. 

6,753 patient-derived 
genome-scale 
metabolic models, 
112,898 metabolic 
models and so on. 

https://ww
w.ebi.ac.uk
/biomodels
-main/ 

 KEGG It is a database resource 
that integrates genomic, 
chemical and systemic 
functional information. 

18,652 metabolites https://ww
w.genome.j
p/kegg/  

 CARLSBA
D 

CARLSBAD is a database 
and knowledge inference 
system that integrates 
multiple bioactivity 
datasets in order to provide 

932,852  CARLSBAD 
activities, 890,323 
unique structure-target 
pairs, 3,542 targets, 

http://carls
bad.health.
unm.edu/ca
rlsbad/?mo
de=home 
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researchers with novel 
capabilities for the mining 
and exploration of 
available structure activity 
relationships (SAR) 
throughout chemical 
biology space. 

435,343 unique 
structures  

 WOMBAT WOMBAT contains 
331,872 entries, 
representing 1,966 unique 
targets, with bioactivity 
annotations. 

268,246 unique 
structures 

http://dud.d
ocking.org/
wombat/  

 Open NCI 
Database 

Open NCI Database is 
maintained by the National 
Cancer Institute (NCI). It 
contains small molecules 
information such as 
names, biological 
activities, structures. It is a 
very useful resource for 
researchers working in the 
filled of cancer/AIDS. 

Over 250,000 
compounds 

https://cact
us.nci.nih.g
ov/ncidb2.
2/  

 NPACT It provides information on 
the plant derived natural 
compound’s structure, 
properties (physical, 
elemental and 
topological), cancer type, 
cell lines, inhibitory values 
(IC50, ED50, EC50, 
GI50), molecular targets, 
commercial suppliers and 
drug likeness of 
compounds 

1,574 entries http://crdd.
osdd.net/ra
ghava/npac
t/  

 PKPB_DB The database contains 
physiological parameter 
values for humans from 
early childhood through 
senescence, and it intended 
to be used in PBPK 
modeling. It also contains 
similar data for animals 
(primarily rodents). 

N/A https://cfpu
b.epa.gov/n
cea/risk/rec
ordisplay.c
fm?deid=2
04443 

     

 T3DB It is a unique 
bioinformatics resource 
that combines detailed 

3,678 toxins http://www
.t3db.ca/  
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toxin data with 
comprehensive toxin 
target information. 

 DrugMatri
x 

The DrugMatrix database 
is one of the world’s 
largest toxicogenomic 
reference resources. 

About 600 drug 
molecules and 10,000 
genes 

https://ntp.
niehs.nih.g
ov/data/dru
gmatrix/ 

 ACToR It includes compounds 
computational toxicology 
information which 
includes high-throughput 
screening, chemical 
exposure, sustainable 
chemistry (chemical 
structures and 
physicochemical 
properties) and virtual 
tissues data. 

Over 500,000 
chemicals 

https://acto
r.epa.gov/a
ctor/home.
xhtml 

F SkinSensD
B 

SkinSensDB contains 
curated data from 
published AOP-related 
skin sensitization assays. 

710 unique chemicals https://cwt
ung.kmu.e
du.tw/skins
ensdb/ 

 SIDER It contains information on 
marketed medicines and 
their recorded adverse 
drug reactions, including 
side effect frequency, drug 
and side effect 
classifications. 

1,430 drugs with 5,868 
side effect information 

http://sidee
ffects.embl
.de/downlo
ad/  

 LTKB 
Benchmark 
Dataset 

LTKB-BD contains drugs 
whose potential to cause 
DILI (Drug-Induced Liver 
Injury) in humans has been 
established using the 
FDA-approved 
prescription drug labels. 

287 prescription drugs https://ww
w.fda.gov/s
cience-
research/liv
er-toxicity-
knowledge
-base-
ltkb/ltkb-
benchmark
-dataset 

 CTD The Comparative 
Toxicogenomics Database 
(CTD) is a premier public 
resource for literature-
based, manually curated 
associations between 
chemicals, gene products, 

13,378 unique 
chemicals and related 
information 

http://ctdba
se.org/ 
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phenotypes, diseases, and 
environmental exposures. 

     

 ClinicalTri
als.gov 

ClinicalTrials.gov is a 
database of privately and 
publicly funded clinical 
studies conducted around 
the world. 

About 324,429 research 
studies in all 50 states 
and in 209 countries 

https://clini
caltrials.go
v/ 

 AACT 
database 

AACT is a publicly 
available relational 
database that contains all 
information (protocol and 
result data elements) about 
every study registered in 
ClinicalTrials.gov. 
Content is downloaded 
from ClinicalTrials.gov 
daily and loaded into 
AACT. 

About 324,429 research 
studies in all 50 states 
and in 209 countries 

https://aact.
ctti-
clinicaltrial
s.org/ 

G EORTC 
Clinical 
Trials 
Database 

The EORTC Clinical 
Trials Database contains 
information about EORTC 
clinical trials and clinical 
trials from other 
organisations with 
EORTC participation. 

N/A https://ww
w.eortc.org
/clinical-
trials/ 

 Exposome-
Explorer 

Exposome-Explorer 
contains detailed 
information on the nature 
of biomarkers, populations 
and subjects where 
measured, samples 
analyzed, methods used 
for biomarker analyses, 
concentrations in 
biospecimens, correlations 
with external exposure 
measurements, and 
biological reproducibility 
over time. 

908 biomarkers http://expo
some-
explorer.iar
c.fr/ 

 PharmaGK
B 

PharmaGKB is a 
pharmacogenomics 
knowledge resource that 
encompasses clinical 
information of drug 
molecules. 

733 drugs with their 
clinical information 

https://ww
w.pharmgk
b.org/  
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