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ABSTRACT OF THE DISSERTATION

Two-stage Clinical Trial Designs with Survival Outcomes and

Adjustment for Misclassification in Predictive Biomarkers.

by Yanping Chen

Dissertation Directors: Professors Yong Lin and Shou-En Lu

Oncology indispensably leads us to personalized medicine, which allows an individual ap-

proach to be taken with each subject. Personalized oncology is based on pharmacogenomics

and the effect of genetic differences in individuals. Biomarkers detected using molecular biol-

ogy tools allow the molecular characterization of cancer signatures and provide information

relevant for personalized treatment. The key to success of these targeted therapy is to

identify a “predictive biomarker” and validate the “predictive biomarker” through random-

ized clinical trials. In this dissertation, we focus on biomarker based two-stage clinical trial

designs with survival outcomes.

In Part I of this dissertation, we assume that there is no misclassification of biomarker

and we design a two-stage adaptive enrichment clinical trial, based on a binary “predic-

tive”biomarker. At the interim analysis, based on the statistics observed from the biomarker

negative strata, a decision is made to either continue enrolling both biomarker positive and

biomarker negative subjects or enrich the remaining number of subjects only to biomarker

positive subjects.

In Part II, we address the issue of misclassification of biomarker which is common in

determining the predictive biomarker status. A two-stage stratified study design is proposed

and evaluated. We use the information obtained from both marker appeared-positive strata
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and marker appeared-negative strata, to solve the adjusted log rank statistics for true marker

positive and true marker negative group. No additional distributional assumption is needed

for this stratified designs.

In Part III, we extend the biomarker misclassification adjustment method to the two-

stage enrichment designs proposed in Part I. With some additional distributional assump-

tion (exponential distribution assumption for survival times), we can use the information

obtained from interim analysis, to help obtain the adjusted log rank statistics for the true

marker positive group, even though the marker appeared-negative group was discontinued

after interim analysis and no marker appeared-negative subjects are enrolled in Stage II.

Family-wise type I error control is achieved by considering correlation of log rank statis-

tics from the same and/or different stages. R-code is developed to calculate critical values,

to achieve specified global power, or specified marginal power, and to calculate sample size

as well.
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Chapter 1

Introduction

Cancer is one of the leading causes of death in the United States, second only to heart dis-

ease. The conventional cancer treatment has been chemotherapy. Chemotherapeutic drugs

are designed to target all rapidly dividing cells, including cancer cells and certain normal

cells. There has been growing interest in biomarker-driven personalized cancer therapy,

also known as precision medicine, or targeted therapy. Like conventional chemotherapy,

targeted cancer therapies use pharmacological agents that increase cell death and restrict

the spread of cancer. Targeted therapy stops the action of molecules that are key to the

growth of cancer cells. By acting on specific oncogenic proteins, rather than interfering

with all rapidly dividing cells, these targeted therapies hold promise for improved patient

outcomes.

There are two main types of targeted therapy: small molecule drugs and monoclonal

antibodies. Small molecule drugs enter cells and monoclonal antibodies are too large to

enter cells. Instead, monoclonal antibodies affect targets outside of cells or targets on cells’

surface. They have diverse mechanisms of action.

One of the first breakthrough of molecular target biology was imatinib, used for the

treatment of chronic myeloid leukemia (CML). Philadelphia chromosome, a unique charac-

teristic of CML, is related to BCR-Abl tyrosine kinase overexpression, which does not occur

in normal cells. Therefore, this selective BCR-Abl tyrosine kinase inhibitor, imatinib, could

suppress the growth of Philadelphia chromosome-positive CML with less harm to normal

cells.

In terms of targeted therapy, it is difficult to have a single therapy for all cancers, not

even for a single type of cancer. Therefore, the concept of personalized medicine becomes

relevant and points to the need to evaluate every patient according to his/her unique tumor
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phenotype. Consequently, the next step of targeted cancer therapy is the identification of

new specific targets. The identified target molecules will then be used for the identification of

the specific sub-population of patients who have the receptor of the identified target molecule

and therefore could benefit from the treatment. This is the major aim of “personalized

medicine”. The key to success of targeted therapy is to identify a “predictive biomarker”

and validate the “predictive biomarker” through clinical trials.

In medicine, a biological marker, or “biomarker” is, in the broadest sense, anything that

can be used as an indicator of a particular disease state or some other biological state of

an organism. Classically, the term referred to a basic laboratory parameter used to help

physicians diagnose a disease and select a course of treatment. For example, the detection

of the carcinoembryonic antigen (CEA) in blood samples has been an important diagnostic,

progression or recurrence marker especially for cancers of the gastrointestinal tract.

A variety of factors influence a patient’s clinical outcome, including intrinsic character-

istics of the patient, disease, or medical condition, and the effects of any treatments that

the patient receives. Some of the intrinsic characteristics may be reflected as prognostic

biomarkers, i.e., biomarkers used to identify likelihood of a clinical event, disease recur-

rence or progression in patients who have the disease or medical condition of interest, and

others as predictive biomarkers, i.e., biomarkers used to identify individuals who are more

likely than similar individuals without the biomarker to experience a favorable or unfa-

vorable effect from exposure to a medical product or an environmental agent. Prognostic

biomarkers and predictive biomarkers cannot generally be distinguished when only patients

who have received a particular therapy are studied. Some biomarkers are both prognostic

and predictive. Prognostic biomarkers are often identified from observational data and are

regularly used to identify patients more likely to have a particular outcome.

Even through there are circumstances in which preclinical and early clinical data pro-

vide such compelling evidence that a new treatment will not work in patients without the

biomarker, predictive biomarkers can only be properly validated in a prospectively designed

randomized controlled clinical trials: compare a treatment to a control in patients with and

without the biomarker.

In the past decades, a number of biomarker-based design solution have been proposed
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to study treatments within possibly heterogeneous patient subpopulations (ie, genomic

biomarker is predictive of treatment effect, and may or may not be prognostic of disease

response) (Shih and Lin, 2017; Renfro et al., 2016). These includes: 1) Targeted design (also

called enriched design): randomize only biomarker positive patients to treatment groups.

Using a genomic classifier to exclude patients from eligibility of a study requires a sub-

stantial level of confidence in the classifier, and a reproducible assay with a high level of

sensitivity and specificity; 2) Stratified design: for all-comes untargeted design, treatment

groups may not be balanced with respect to the biomarker-defined cohorts. A stratified

design randomize patients to treatment groups within marker-defined subgroup (treatment

groups are more likely balanced with respect to biomarker status). This design can de-

tect a statistical significant biomarker-by-treatment interaction effect, thereby statistically

confirming the predictive ability of the biomarker. This design often requires a relatively

large sample size, as its structure resembles multiple randomized trials conducted in par-

allel; 3) Precision medicine design (also named “marker-based strategy design): patients

are randomized into two arms: marker-dependent arm and marker-independent arm. For

marker-independent arm, patients are randomized to treatment groups (active treatment

T or control treatment C) without considering the biomarker status. In marker-dependent

arm, marker-positive patients receive the active treatment T and marker-negative subjects

receive control treatment C.

In lieu of the fixed designs that provides no flexibility, movements toward adaptive

biomarker based trial designs emerged. “Adaptive” refer to designs utilizing data accumu-

lated from patients early in the trial to prospectively shift accrual, eligibility, or objective

later on in the trial. Those adaptive design features an unselected randomized design with

sequential hypothesis testing in the overall and marker-positive subpopulations. A predic-

tive signature is developed in the first set of patients. When the overall test based on first

set of patients is negative, the subset treatment effect is evaluated in an independent second

set of patients.

Adaptive designs are intended to add efficiency to drug development process, allow

better use of available resources, enhance decision making, shorten development programs,

and more quickly arrive at correct decisions about the therapeutic value of a treatment for
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particular group of patients. They are the focus of this dissertation.
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Chapter 2

Literature review

2.1 Adaptive designs on time-to-event outcomes

2.1.1 Brannath’s confirmatory adaptive designs with Bayesian decision

tools

Primary objective:

The primary objectives of Brannath et al. (2009) study is (a) to confirm or disregard a

sub-population S, which is identified in a separate exploratory study, and (b) to confirm

the treatment effect of the novel therapy in the selected target population (that is, either in

the sub-population S or in the full population F). The primary endpoint is progression-free

survival (PFS), a time to event outcome.

Trial design:

The specific design comprises three stages defined by two interim analyses. The aim of

the first interim analysis is to decide whether to continue recruiting from F or to continue

recruiting patients only from S. The final analysis would consist of testing efficacy in both F

and S or only in S, respectively. The second interim analysis allows for possible early stop-

ping, without further adaption of the trial. This adaptive design is an adaptive phase II/III

seamless design with population selection at the first interim analysis and the possibility to

stop early for futility or early success at the second interim analysis.

Elucidating example:

The first interim analysis of the study, for the decision on trial adaption, is based on 170

events for F (i.e. 18.5% of the maximum of 918 events - total information). It is expected
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to take place 12 months after first patient first visit, when approximately 600 (50%) of the

patients are enrolled. The second interim analysis provides an opportunity of early stopping

for superiority. It takes place at approximately 60% of maximum event number, whether

the study continues in F (i.e. at 551 events out of a targeted 918 events for the final analysis

in F) or in S (i.e. at 384 events out of a targeted 640 events for the final analysis in S), at

which time all the patients are expected to be enrolled.

Multiplicity control within a stage:

The adaptive closed testing methodology is applied to obtain a valid multiple test procedure

for the hypotheses H
{F}
0 and H

{S}
0 . This requires combination tests for H

{F}
0 , H

{S}
0 and the

intersection hypothesis H
{S,F}
0 = H

{S}
0 ∩H{F}0 . The stage-wise p-value for p

{F}
i for H

{F}
0 ,

i = 1, 2, 3, are defined as above for the stratified logrank tests with strata for S and Sc; the

p-value p
{S}
i for H

{S}
0 are similar but based on unstratified logrank tests for patient in S.

The first stage p-value p
{S,F}
1 for H

{S,F}
0 is chosen to be the multiplicity adjusted p-value

according to Simes’ procedure

p
{S,F}
1 = min{2 min(p

{S}
1 , p

{F}
1 ),max(p

{S}
1 , p

{F}
1 )}.

p
{S,F}
i = min{2 min(p

{S}
i , p

{F}
i ),max(p

{S}
i , p

{F}
i )}, i = 2, 3.

Statistical method to analyze data from different stages:

For simplicity, the p-value combination test approach is followed to analyze data from dif-

ferent stage. In the three stage combination tests with inverse normal combination function,

the null H0 is rejected

1) at the first stage if

C1(p1) = Φ−1(1− p1) ≥ c1,

2) at the second stage if

C2(p1, p2) = {w1Φ−1(1− p1) + w2Φ−1(1− p2)}/
√
w2

1 + w2
2 ≥ c2,
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3) and at the last stage if

C3(p1, p2, p3) = w1Φ−1(1− p1) + w2Φ−1(1− p2) + w3Φ−1(1− p3) ≥ c3,

where wi > 0 are weights satisfying
∑3

i=1w
2
i = 1 and Φ−1 is the inverse of the standard

normal distribution function. The type of combination function, the weights wi and

the boundaries ci must be predefined in the protocol.

The designs allow possibility of stopping the trial with the acceptance of H0, which will

deflate the type I error rate, but does not account for this option in the determination of

ci. This has the advantage of not being bound to a specific futility rule at the time of study

start.

With a time to event endpoint, the stage-wise p-values could be based on increments of

the logrank scores Ui from the right-censored event times at stage i, p1 = Φ{U1/
√
I1} and

pi = Φ{(Ui − Ui−1)/
√
Ii − Ii−1} for i = 2, 3 where Ii is the variance estimate of Ui, i.e. the

observed Fisher’s information at stage i. If the increments Ui − Ui−1 are independent and

normally distributed with mean 0, and the variance of Ui − Ui−1 is consistently estimated

by Ii − Ii−1.

Patient selection decision Hypothesis testing strategies

Continue with sub-population, Reject H
{S}
0 if C2(p

{S,F}
1 , p

{S}
2 ) ≥ c2

H
{S}
0 of primary interest and C2(p

{S}
1 , p

{S}
2 ) ≥ c2 at 2nd interim

or if C3(p
{S,F}
1 , p

{S}
2 , p

{S}
3 ) ≥ c3

and C2(p
{S}
1 , p

{S}
2 , p

{S}
3 ) ≥ c3

Continue with full population, Reject H
{F}
0 if C2(p

{S,F}
1 , p

{S,F}
2 ) ≥ c2

H
{F}
0 and H

{S}
0 of primary interest and C2(p

{F}
1 , p

{F}
2 ) ≥ c2 at 2nd interim

The trial can be terminated at the first interim analysis with the rejection of H
{S}
0 and

H
{F}
0 if p

{S}
1 and p

{F}
1 are both less or equal to 1− Φ(c1).

Patient selection rule at the first interim analysis:

Bayesian decision tools are applied in patient selection at the first interim analysis point.
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Given the interim data, predictive probabilities will be used to estimate how likely the

various null hypothesis are to be rejected, where posterior probabilities can be used to

estimate the treatment effect in different populations.

Three predictive probabilities are calculated at the interim analysis, the probability to

reject H
{S}
0 when continuing with sub-population S only (denoted by PP {S}), the proba-

bility to reject H
{F}
0 or H

{S}
0 when continuing with F (denoted by PP {F}). The posterior

probability P {S
c} that θ{S

c} ≤ log(δ) where δ is the predefined desired clinical effect, i.e the

posterior probability that the treatment does achieve the desired efficacy in population Sc .

The decision rules at interim are:

1) Stop the study for futility if PP {F} ≤ π{F} and PP {S} ≤ π{S}, where π{F} and π{S}

are pre-defined.

2) Continue to stage 2 with S when PP {S} > π{S} and PP {F} ≤ π{F}.

3) Continue to stage 2 with S when PP {F} > π{F} , PP {S} > π{S} and the posterior

probability P {S
c} is below π{S

c}.

4) Continue to stage 2 with F when PP {F} > π{F} , PP {S} > π{S} and P {S
c} ≥ π{S

c}.

5) Continue to stage 2 with F when PPP {F} > π{F} and PP {S} ≤ π{S}.

For details to calculate the posterior and predictive probabilities, see Brannath et al. (2009).

The rejection boundaries were set according to an O’Brien-Fleming α-spending function

at one-sided level 0.025 with the rejection boundaries c1 = 4.97, c2 = 2.644 and c3 = 1.984.

Note that C1(p1) ≥ c1 is equivalent to p1 ≤ 1.32× 10−6 = 1− Φ(c1).

2.1.2 Jenkins’ adaptive seamless phase II/III design with subpopulation

selection using correlated survival endpoints

Primary objectives:

The primary objectives of Jenkins et al. (2001) study are (a) to confirm or disregard a

sub-population Sc; and (b) to confirm increased efficacy with the new treatment in the
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selected target population, both the full population (F ) and subgroup (S). The subgroup

S is clearly defined at the start of the trial.

Study design:

The study is a randomized, parallel group clinical trial with two arms, experimental and

control. There will be two distinct stages, an interim analysis takes place based on stage

1 subjects only, where the final analysis is based on all subjects. At the interim analysis,

which considers a short-term intermediate time-to-event endpoint, the trial can either:

1) continue in co-primary population F and S, or

2) continue in subgroup S only, or

3) continue in the full population F without analysis in S, or

4) stop for futility

Elucidating example:

The interim analysis occurs after 200 PFS events from the 300 patients recruited to the

stage 1. A further 800 patients are then recruited to the stage 2 if the trial continues in the

full population or co-primary case, with 400 recruited if only the subgroup S is continued

in the stage 2. The final analysis based on overall survival (OS) is performed when 250

deaths have occurred in stage 1 subjects and stage 2 subjects have produced 500 deaths in

the full or co-primary case or 250 deaths in the subgroup S only case.

Multiplicity control at final analysis:

Within each population, there is a single null hypothesis of no difference between arms (de-

noted as HF
0 and HS

0 ). The alternative hypothesis is that the new treatment demonstrates

increased efficacy over the comparator in terms of prolonging OS (denoted as HF
1 and HS

1 ).

The closure principle is used to control the family-wise error rate at a nominal level α.

The closure principle consider all possible intersection hypotheses ∩Hj
0 , where the Hj

0 are

in the set of original null hypotheses {HF
0 , H

S
0 }. This produces three hypotheses, HF

0 , H
S
0 ,
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and also HFS
0 , which specifies that there is no survival difference in either F, or S. A

null hypothesis Hj
0 is rejected overall if all intersection hypotheses that imply Hj

0 are also

rejected. For example, HF
0 can only be rejected overall if individual tests reject both HF

0

and HFS
0 at level α.

For subjects recruited in stage i ∈ {1, 2} the p-values for testing HF
0 and HS

0 will be

denoted pFi and pSi , respectively. Specifically, pF1 and pS1 are based on the OS data for

subjects recruited in stage 1 using their OS through stages 1 and 2, while pF2 and pS2 are

calculated from OS for stage 2 subjects only. The stage i p-values corresponding to HFS
0 ,

pFSi is a function of pFi and pSi correcting for multiplicity. A Hochberg correction with equal

weighting of HF
0 and HS

0 gives pFSi = min{2 min(p
{S}
i , p

{F}
i ),max(p

{S}
i , p

{F}
i )} .

Statistical method to analyze data from different stages:

The final analysis on all subjects use an inverse-normal combination test, which controls the

type-I error rate, regardless of the decision at the interim analysis. Weights w1 and w2, with

w1 =
√
N1/(N1 +N2), w2 =

√
N2/(N1 +N2), are specified to combine the p-values from

each stage and the null hypothesis is rejected if C(p1, p2) = {w1Φ−1(1 − p1) + w2Φ−1(1 −

p2)} ≥ c. For a one-side significance level of 0.025, c=1.96.

The weights and p-values to be used in combination tests are shown below.

• Co-primary case - when considering both HF
0 and HS

0

– Testing HF
0 : w1Φ−1(1− pF1 ) + w2Φ−1(1− pF2 )

– Testing HS
0 : w1Φ−1(1− pS1 ) + w2Φ−1(1− pS2 )

– Testing HFS
0 : w1Φ−1(1− pFS1 ) + w2Φ−1(1− pFS2 )

• F only case - when considering HF
0 only

– Testing HF
0 : w1Φ−1(1− pF1 ) + w2Φ−1(1− pF2 )

– Testing HFS
0 : w1Φ−1(1− pFS1 ) + w2Φ−1(1− pFS2 )

• S only case - when considering HF
0 only

– Testing HS
0 : w1Φ−1(1− pS1 ) + w2Φ−1(1− pS2 )



11

– Testing HFS
0 : w1Φ−1(1− pFS1 ) + w2Φ−1(1− pFS2 )

Patient selection rule at the interim analysis:

The decisions about which hypothesis to proceed to test will be made at the interim analysis.

Interim decision rules are based on the estimated hazard ratios for PFS within the full

population and the subgroup S. Target values are set and the trial only continues in those

subgroups for which the estimated hazard ratio exceeds the target.

PFS hazard ratio estimated ĤR
F
< 0.8 ĤR

F
≥ 0.8

at the interim analysis

ĤR
S
< 0.6 Continue co-primary Continue subgroup S only

ĤR
S
≥ 0.6 Continue population F only Stop for futility

2.1.3 Friede’s conditional error function approach for subgroup selection

in adaptive clinical trials

Primary objective:

The primary objectives of Friede et al. (2012) study are (a) to confirm or disregard a sub-

population Sc; and (b) to confirm increased efficacy with the new treatment in the selected

target population, both the full population (F ) and subgroup (S). The subgroup S is clearly

defined at the start of the trial.

Study design:

The trial consists of two stages: interim analysis and final analysis. A decision is made

at the interim analysis whether to continue with comparing the experimental and control

treatments in both the subgroup and the full population, in the full population alone or in

the subgroup alone, this decision being taken on the basis of either a short-term endpoint,

or the long-term endpoint (same as the final analysis) observed at the interim analysis. The

final analysis is based on the long-term endpoint, i.e., overall survival (OS).
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Multiplicity control within a stage:

A method proposed by Spiessens and Debois (2010) is used to control the FWER of the

multiple tests in subgroup and full population within a stage. In particular, H
{S}
0 is tested

at the nominal level α1 with the use of Z{S}. H
{F}
0 is tested at the nominal level α2 with

the use of Z{F}. Reject H
{F,S}
0 if either of these tests reject, that is, if Z{S} > zα1 or

Z{F} > zα2 . To control the test of the intersection hypothesis at level α , it is thus required

that

P
(
Z{S} > zα1 or Z{F} > zα2 |H

{F,S}
0

)
= α,

this implies

P
(
Z{S} ≤ zα1 or Z{F} > zα2 |H

{F,S}
0

)
= α− α1.

Since Z{S} is based on a subset of the data used to calculate Z{F} , their joint distribution

under H
{F,S}
0 is, analogy to that obtained in the group-sequential setting, given by

 Z{S}

Z{F}

 ∼MN

 0

0

 ,

 1
√
τ

√
τ 1

 ,

where τ is the fraction of information in the subsample with respect to that in the full

population, usually approximately equal to the proportion of observations in the subsample.

Given α1, we can obtain the value of α2 to achieve overall specified error rate control for

the intersection hypothesis, H
{F,S}
0 , with the use of numerical integration as following:

∫ zα1

−∞
Φ

(
zα2 −

√
τz{F}√

1− τ

)
Φ(z{F})dz{F} = 1− α.

Statistical method to analyze data from different stages:

Conditional error function appproach is applied to analyze data.

Let Z
{F}
1 and Z

{S}
1 denote standardized test statistics for the full population and the

subpopulation based on observed stage 1 data. As explained previously, these are based on

the long-term endpoint data, so these may not be available at the time of interim analysis for

subgroup selection. Furthermore, Let Z
{F}
2 and Z

{S}
2 denote standardized test statistics for
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the full population and the subpopulation based on observed new stage 2 data. The second

stage test statistics are independent of the first stage statistics. let w1 and w2 be weights

with w2
1+ w2

2 = 1 and w2
i proportional to the stage wise sample size at stage i for i = 1, 2. Let

S
{F}
1 = w1Z

{F}
1 , S

{S}
1 = w1Z

{S}
1 , S

{F}
2 = w1Z

{F}
1 + w2Z

{F}
2 and S

{S}
2 = w1Z

{S}
1 + w2Z

{S}
2 .

Then under the intersection hypothesis H
{F,S}
0 , we have


S
{F}
1

S
{S}
1

S
{F}
2

S
{S}
2

 ∼MN




0

0

0

0

 ,


w2

1 w2
1

√
τ w2

1 w2
1

√
τ

w2
1

√
τ w2

1 w2
1

√
τ w2

1

w2
1 w2

1

√
τ 1

√
τ

w2
1

√
τ w2

1

√
τ 1



 .

Patient selection rule at interim analysis:

Interim selection ε-rules.

In terms of subgroup selection, continue with both full population and subpopulation if

the corresponding Z-statistics are sufficiently close to each other and otherwise to continue

only with the population with the maximal test statistics, that is, to continue in the second

stage with populations i ∈ {F, S} for which Z
{i}
1 ≥ max(Z

{F}
1 , Z

{S}
1 } − ε with ε ≥ 0. The

rule with ε = 0 means that only the tests regarding the population with the maximal test

statistic is taken forward. If the adaption is based on an early outcome rather than the

final outcome, then Z
{F}
1 and Z

{S}
1 are replaced by the respective statistics Z

{F}∗
1 and Z

{S}∗
1

obtained on the basis of the early outcome data.

2.1.4 Mehta’s biomarker driven population enrichment for adaptive on-

cology trials

Primary objective:

The primary objectives of Mehta et al. (2014) study are (a) to confirm or disregard a sub-

population S; and (b) to confirm increased efficacy with the new treatment in the selected

target population, both the full population (F ) and subgroup (S). The subgroup S is clearly

defined at the start of the trial.
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Study design:

This trial is two-stage design, in which an experimental arm (E) is compared to a control arm

(C) with respect to a time-to-event endpoint, say survival. Patients arriving in staggered

fashion from some population F are stratified on the basis of a binary biomarker into

subgroup S or subgroup S and then randomized to one of the two treatment arms. Let

θS and θS denote the negative log hazard ratio of E relative to C in subgroup S and S,

respectively. Testing null hypothesis HS : θS ≤ 0 and HS : θS ≤ 0 against one-sided

alternatives, with strong control of the family-wise error rate (FWER). At the interim

analysis, the data are unblinded, and a decision is taken to either continue with F for the

reminder of the trial, drop S and continue with S for the reminder of the trial, or terminate

the trial for futility. This can maximize the power to reject HS by enriching the reminder

of the trial with subgroup S patient only.

Non-small cell lung cancer trial example:

A numerical example is presented: the trial itself is hypothetical. But the design inputs are

realistic, being based on real trial data. The hypothetical trial is to compare an experimental

drug (Treatment E) to standard of care (Treatment C) in patients with metastatic non-

small cell lung cancer. The primary endpoint is the same at interim and final analysis, i.e.,

progression free survival (PFS). The experiment drug is targeted at an biomarker which

partitioned the population into subgroup S and subgroup S. The prior belief is that the

hazard ratio for the treatment E versus treatment C is between 0.5 and 0.6 in subgroup S,

where in subgroup S, it is not expected to be any lower than 0.8. The total sample size

is 160. In the first stage, 80 patients are recruited (including 40 patients from subgroup S

and 40 patients from subgroup S). The interim analysis is performed when the required 80

patients are enrolled in the study. One of three decisions is taken based on the results of

the interim analysis:

1) Recruit the remaining 80 patients in equal numbers for each subgroup so that 40

patients are enrolled from subgroup S and 40 patients from subgroup S.

2) Drop subgroup S. and recruit the remaining 80 patients from subgroup S only.
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3) Terminate the trial for futility.

Multiplicity control within a stage:

Closed testing procedure with the conditional error rate approach is applied to adjust for

multiplicity. This implies that the three hypotheses, HS , HS , and H{S,S} = HS∩ HS must

each to be controlled at level α. It is convenient to formulate this requirement in terms of

the decision of the decision function ψS , ψS , and ψ{S,S} such as the following: ψS = 1 if HS

is rejected and 0 otherwise; ψS = 1 if HS is rejected and 0 otherwise; ψ{S,S} = 1 if H{S,S}

is rejected and 0 otherwise. We require E0(ψS) = E0(ψS) = E0(ψ{S,S}) = α where E0(.)

denotes expectation under the appropriate null hypothesis.

Let TS
kS

(TS
kS

) be the logrank score for testing the null hypothesis HS (HS) after observ-

ing kS(kS) deaths in subgroup S (S). Then the decision function ψSand ψS are indicator

variables ψS = I(TS
kS
> cS) and ψS = I(TS

ks
> cS) for suitable critical boundaries cS and cS ,

respectively, that satisfy the level requirement. The decision function for the intersection

hypothesis is the indicator variable ψ{S,S} = I((TS
kS
, TS

kS
) ∈ R) where R is a rejection region

of the form

R = {(tS , tS)|((tS > dS) ∪ (tS > dS)}.

Statistical method for adaptive feature at interim:

The type I error of the modified design will be protected if the conditional error rates of the

test of HS and H{S,S} in the modified design are bounded by the corresponding conditional

error rates of the original design. To be specific, if it is decided to drop subgroup S at

the interim analysis, and possibly increase the number of events for the subgroup S from

kS to k̃S , we must define a new final decision function ΨS for testing HS and H{S,S} that

preserves the conditional rejection probabilities

E0(ΨS |X) ≤ E0(ψS |X) and E0(ΨS |X) ≤ E0(ψ{S,S}|X),

where X is the set of all interim information on patients in S and S used for the decision

on the design modification. It may be impossible to explicitly specify the vector X, which
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includes observed times-to-event as well as preliminary information correlated with time-

to-event from patients who have not yet reached the endpoint. However, it is sufficient to

condition on a random vector Y for which you can compute the conditional expectations

E0(ψS |Y ), E0(ψ{S,S}|Y ), and E0(ΨS |Y ), and which has the property thatX is stochastically

independent of the decisions functions ψS , ψ{S,S}, and ΨS given Y . The conditional rejection

probability (CRP) principle requires the new decision function to satisfy

E0(ΨS |Y ) ≤ E0(ψS |Y ) and E0(ΨS |Y ) ≤ E0(ψ{S,S}|Y ).

The new decision function is an indicator variable of the form ΨS = I(TS
k̃S

> c̃S). If

subgroup S is not dropped at the interim analysis, then of course ΨS will not be computed

and HS will be rejected by a closed test in accordance with the decision function ψS , ψS ,and

ψ{S,S}.

At the calendar time of the interim analysis, a subset S
′ ⊆ S of patients has been

randomized, of whom a subset of patients S
′
dead has already died, while its complement

S
′
risk consists of patients in S

′
still at risk.The subsets S

′
, S
′

dead, S
′

risk are defined similarly.

Our method permits the use of all available information in S
′
and S

′
, including even the

information about early outcomes like PFS or tumor regression in S
′
risk and S

′

risk, for the

interim decision making.

It is necessary to specify the following quantities prior to unblinding the interim data:

1) Specify kS and kS , the total number of events to be obtained from subgroups S and

S, respectively, at the time of the final analysis under the original design.

2) Specify kS
′

, the contribution from the subset S
′

to kS . This specification is needed to

ensure that the conditioning event Y will be properly defined even if recruitment to

S is stopped after the interim analysis.Ideally, kS
′

should be chosen so that the arrival

of the last of the kS
′

events in S
′
is closely aligned in calendar time with the arrival of

the last of the kSevents in S.

The conditional events are defined as following:

a) The conditional events from S
′
: The conditioning event is TS

′

kS
, the logrank statistics
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calculated from patients belonging to subset S
′

at the time of the arrival of the kSth

event from subgroup S. This implies that the conditioning events is not observed at

the time of the interim analysis but rather at the time of the pre-planned final analysis

for HS under the original design. Let S
′′

= S\S′denote the subset of patients in S

that are enrolled after the interim analysis. Let kS
′

be the contribution from patients

in subset S
′
to the kS events required from subgroup S.

b) The conditional events from S
′
: Let S

′′
= S\S

′
denote the subset of patients in S

that are enrolled after the interim analysis under the original design. Pre-specifying

the total number of events recruited from S is kS with the first kS
′

of these events

to be contributed from subset S
′
. Therefore, the number of events to be contributed

from subset S
′′
must be kS

′′

= kS − kS
′

. Not that kS and kS
′

are pre-specified, kS
′′

is

well defined even if recruitment to subgroup S is stopped after the interim analysis.

The conditioning event is TS
′

(kS
′
,kS
′′

)
. A logrank statistics computed from patients

belonging to subset S
′
⊆ S as follows:

i) If S is dropped at the interim analysis, TS
′

(kS
′
,kS
′′

)
is computed at the calendar

time that kS
′

events have arrived from S
′
⊆ S.

ii) If S is not dropped at the interim analysis, TS
′

(kS
′
,kS
′′

)
is computed at the later of

the two calendar times when either kS
′

events have arrived from S
′

or kSevents

have arrived from S , with only the first kS
′

events have arrived from S
′

con-

tributing to the calculation of the statistic.

c) The conditioning event Y is thus the pair of logrank statistics

(
TS
′

ks , T
S
′

(kS
′
,kS
′′

)

)
.

Suppose the trial is modified at the interim analysis, by discontinuing enrollment to

subgroup S, and possibly increasing the number of events in S from kS to k̃S for the

final analysis. In order to preserve the type I error, the new critical value c̃S must

satisfy the following CRP condition:

P0

(
TS
k̃S
> c̃S |TS

′

k̃S

)
≤ min

{
P0

(
TSkS > cS |TS

′

kS

)
, P0

(
(TSks , T

S
kS

) ∈ R|TS
′

kS , T
S
′

(kS
′
,kS
′′

)

)}

where P0(.) denotes probability under the appropriate null hypothesis and TS
k̃S

is the
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logrank statistics computed at the time of the final analysis, when k̃S events have

arrived from patients in subgroup S.

Under the null hypothesis HS , asymptotically, TS
′

kS
and TS

kS
− TS

′

kS
are independent at

information time kS ; Similarly, TS
′

kS
and TS

kS
−TS

′

kS
are independent at information time kS .

It is this stochastic independence that permits interim decision to be based on all available

stage 1 data without influencing the final number of events to be realized from the stage 1

recruits.

The interim decision rules:

Simple decision rules, based on conditional power, are utilized for interim decision. Let

CPS and CPS denote the conditional power, under the original design, to reject HS and

HS . Then

1) if ĤRS , the estimate of the hazard ratio for treatment versus control in subgroup S,

is less than A, terminate the trial for futility;

2) if conditional power CPS > B and CPS < C, stop further enrollment to subgroup S

and enroll all remaining patients to subgroup S; and otherwise;

3) continue to the end of the trial with both subgroups.

2.2 Adaptive enrichment designs on continuous outcomes

2.2.1 Wang et al. (2007)’s adaptive stratified enrichment design

Wang et al. (2007) introduced one of the first biomarker-based clinical trial designs which

allowed mid-trial adaption based on the results of interim analyses. The design is a two-

stage adaptive design. The first stage is a stratified design based on biomarker status of

the patients. At an interim analysis, if the experiment treatment effects reach a futility

threshold in the marker-negative group, accrual of marker-negative patients is terminated.

The remaining sample size is re-allocated to marker-positive patients. In that case, the

primary hypothesis tested at the trial’s conclusion is the treatment effect in marker-positive

subgroup. On the other hand, if the futility is not reached in the marker-negative group at
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the interim analysis, the trial continues as stratified design. In this case, the design performs

both overall and subgroup-specific tests of treatment effects at the final analysis timepoint

with trial-wise type I error control. Wang et al. (2007)’s approach applies for continuous

endpoints (or asymptotic normally distributed endpoints). More recent advancement in

adaptive enrichment designs includes the development approaches suitable for time-to-event

endpoints.

2.2.2 Lin et al.’s two-stage enrichment design with adjustment for mis-

classification in predictive biomarkers

Unlike the traditional stratified designs using patient’s baseline characteristics such as gen-

der, age, race, or ECOG performance status, the biomarker status and classification rule

are prone to errors due to imperfect assays and/or classification rules. In 2019, Lin, Shih,

and Lu introduced a two-stage enrichment design with adjustment for misclassification in

predictive biomarkers. The design scheme is similar to Wang et al. (2007)’s adaptive strati-

fied enrichment design, but with classification errors. The design was intended for normally

or asymptotic normally distributed outcomes. The following is the diagram of the stratified

two-stage enrichment design with misclassification in predictive biomarkers.

The diagram of the stratified two-stage enrichment design:

Stage I

Stratification

tN

↗

↘

Marker-appeared Positive −→

q = P (M = 1)

Marker-appeared Negative

1− q = P (M = 0) −→

Randomization

r : (1− r)

Randomization

r : (1− r)

↗

↘

↗

↘

A = T

(µT∗;σ
2
T∗)

A = C

(µC∗;σ
2
C∗)

A = T

(µTφ;σ2
Tφ)

A = C

(µCφ;σ2
Cφ)
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Stage II

Accept H0

in Stage I



IIA : Not futile for

Marker-Negative

Cohort, then

stratify (1− t)N

patients same as

Stratified Design

IIB : futile for

Marker-Negative

Cohort

↗

↘

−→

Marker-appeared Positive

q = P (M = 1) −→

Marker-appeared Negative

1− q = P (M = 0) −→

Recruit additional

(1− t)N Patients only to −→

Marker-appeared Positive

Randomization

r : (1− r)

Randomization

r : (1− r)

Randomization

r : (1− r)

↗

↘

↗

↘

↗

↘

A = T

(µT∗;σ
2
T∗)

A = C

(µC∗;σ
2
C∗)

A = T

(µTφ;σ2
Tφ)

A = C

(µTφ;σ2
Cφ)

A = T

(µT∗;σ
2
T∗)

A = C

(µC∗;σ
2
C∗)

where N is the total sample size in the study, t is the information assigned for Stage I, q

is the prevalence rate of biomarker-appeared positive, r is the randomization proportion

to receive the active treatment, and µ, σ2 are the corresponding mean and variance for

designated treatment group.
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Chapter 3

Research questions and objectives

3.1 Study populations and outcomes

We want to design adaptive clinical trials with survival outcomes in the following setting:

1. A diagnostic test is available to partition patients into predictive biomarker positive

S+ and negative S−;

2. A predictive biomarker with biological basis is identified with the assumption of con-

siderable treatment efficacy in S+ but little in S−.

As we know, even though there is a strong biological basis for the above assumption, the

ultimate proof that a biomarker is predictive can only come from a randomized clinical

trial.

3.2 Hypothesis testing

For the clinical study based on the predictive biomarker, we are interested in the treatment

effect on the overall patient population as well as for the marker-positive cohort. With

survival outcomes, the treatment effect will be based on either difference in survival functions

or the hazard functions.

In terms of survival function, we are interested in testing hypothesis of the treatment

difference for the overall patient population, that is

H0a : ST (t) = SC(t) vs. H1a : ST (t) 6= SC(t),
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and in testing hypothesis of the treatment difference for the marker-positive cohort,

H0+ : S+T (t) = S+C(t) vs. H1+ : S+T (t) 6= S+C(t),

where ST (t) is the survival function for the overall population who receive the active treat-

ment, and SC(t) is the survival function for the overall population who receive the control

treatment, where S+T (t) is the survival function for the biomarker positive subjects who

receive the active treatment, and S+C(t) is the survival function for the biomarker positive

subjects who receive the control treatment.

In terms of hazard functions, the hypotheses can be written as follows. For the overall

patient population, testing

H0a : λT (t) = λC(t) vs. H1a : λT (t) 6= λC(t),

and for the marker-positive cohort, testing

H0+ : λ+T (t) = λ+C(t) vs. H1+ : λ+T (t) 6= λ+C(t),

where λT (t) is the hazard function for the overall population who receive the active treat-

ment, and λC(t) is the survival function for the overall population who receive the control

treatment, where λ+T (t) is the hazard function for the biomarker positive subjects who

receive the active treatment, and λ+C(t) is the hazard function for the biomarker positive

subjects who receive the control treatment.

Since we are pursuing either treatment effect on the overall population or only the

marker-positive cohort, we are testing the compositive hypotheses as shown below.

In terms of survival functions,

H0 : ST (t) = SC(t) & S+T (t) = S+C(t) vs.

H1 : ST (t) 6= SC(t) or S+T (t) 6= S+C(t).
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In terms of hazard,

H0 : λT (t) = λC(t) & λ+T (t) = λ+C(t) vs.

H1 : λT (t) 6= λC(t) or λ+T (t) 6= λ+C(t).

Since these two hypotheses are equivalent, in the later chapters, we will discuss only

in terms of hazard functions difference between the active treatment versus the control in

respective subpopulations. The test will be based on log rank statistics.

3.3 Research objectives

In Part I, our goal is to construct a two-stage enrichment design to compare the treatment

arm (T ) to a control arm (C) with respect to a time-to-event endpoint, assuming no mis-

classification of biomarker status. That is to say, our biomarker classification is perfect, and

our stratified design is based on true biomarker status. At interim analysis, after certain

number of events are observed based on the Stage I subjects (i.e., tN to enroll), a decision

is made whether to recruit the Stage II subjects either 1) from full population F (enroll

the rest (1 − t)N planned subjects from full population); or 2) from subgroup S+ only

(enrich and enroll the rest (1 − t)N planned subjects from subgroup S+ only). The final

analysis is performed when a pre-specified number of events from Stage I subjects and a

pre-sepcified number of events from Stage II subjects are observed. Both interim analysis

and final analysis are based on the same time-to-event endpoints.

In Part II, our goal is to construct a two-stage stratified design to compare the treat-

ment arm (T ) to a control arm (C) with respect to a time-to-event endpoint, when the

biomarker classification is subjected to errors (there is misclassification for biomarker). In

this case, our stratified design is based on the biomarker-appeared status. This study is

of importance because the biomarker misclassification is very common. For instance, in

phase I KEYNOTE-001 trial, the method for biomarker classification is imperfect, with

λsen = λspec ≈ 0.80 (see Garon et al., 2015 and Herbst et al., 2016). A two-stage group

sequential trial is designed in this setting.
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In Part III, we extend the misclassification adjustments to the two-stage enrichment

design discussed in Part I.

Here is how the dissertation is organized:

Part I. Two-stage enrichment design without misclassification of predictive biomarker.

Part II. Two-stage stratified design with misclassification of predictive biomarker.

Part III. Two-stage enrichment design with misclassification of predictive biomarker.



Part I

Two-Stage Enrichment Design

Assuming No Misclassification

25
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Chapter 4

Statistical methods for two-stage enrichment design

In this chapter, we develop a two-stage enrichment design with survival outcomes. Log rank

statistics are derived for testing the treatment effects. To simplify the problem and set the

frame work in the later chapters, we assume there are no biomarker misclassifications in this

chapter. Therefore, our two-arm randomized clinical trial is stratified by the true biomarker

status in this chapter instead of by biomarker-appeared status (with misclassification) for

the later chapters. Sequential tests and methods to control family-wise type I error rate are

detailed. Power and sample size calculations are shown.

4.1 Two-stage adaptive enrichment design for survival outcome

The following shows the diagram of the two-stage enrichment design we will discuss in this

chapter.
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where D denotes the true marker status, t represents the fraction of the total sample

size N that is allocated to Stage I, and q represents the prevalence rate of the biomarker

positive. The statistics Qji is defined in Section 4.4, i = +,− (marker positive, negative)

and j = 1, 2, 2A, 2B for analysis time/scenarios in the subsequent sections.

4.2 Stratified randomization based on true marker status

Stratified randomization is based on true marker status, assuming that the biomarker clas-

sification is perfect, with randomization ratio of r to 1− r (i.e., assign r percent of patients

to active treatment and 1− r percent of patients to control treatment) where 0 < r < 1.

At kth event time, let nik be the total number of subjects at risk, dik be the total number

of events for ith marker group, where i = +,−. Let d
(1)
+ and d

(2)
+ be the total number of

events for marker positive group from event time 0 to specified interim analysis time T1 and

final analysis time T2 (for both active treatment and control group) within marker positive

strata, respectively.

Death At risk at kth event time

dijk nijk; i = +,−; j = T,C

dik nik = niTk + niCk; i = +,−; j = T,C

Note: i indexes for marker status: i = + for marker positive; i = − for marker negative;

j indexes for treatment group: j = T for active treatment, j = C for control treatment.

Let Q denote log rank statistic; Q
(j)
i be the log rank statistic for i = +,− (marker positive,

negative) and j =1, 2, 2A, 2B for analysis time/scenarios in the subsequent sections.

4.3 Difference between observed events and expected events in marker

positive group

Let total number of deaths at kth event time be d+k = d+Tk + d+Ck for marker positive

group. Consider the difference between observed number of deaths and the expected number

of deaths in active treated group at kth event time, we have

d+Tk −
d+kn+Tk

n+k
= −d+Ck +

d+kn+Ck

n+k
,
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and the variance of d+Tk

V̂ ar(d+Tk|n+k) =
n+Tkn+Ckd+k(n+k − d+k)

n2
+k(n+k − 1)

.

Let

Q+ =

d+∑
k=1

(d+Tk −
d+kn+Tk

n+k
).

We have

V̂ ar(Q+) =

d+∑
k=1

n+Tkn+Ckd+k(n+k − d+k)

n2
+k(n+k − 1)

and asymptotically

Q2
+

V̂ ar(Q+)

D−→ χ2
1.

This test statistic based on the difference between observed number of events and expected

number of events is closely related to the hazard rate difference in two groups, when the

difference is expressed using counting process (FlemingHarrington, 1991).

4.4 Statistical method for two-stage adaptive enrichment design for sur-

vival outcome

We are considering a two-stage design with one interim analysis at time T1 and final analysis

time at time T2. In total, N subjects are planned for the two stages, with tN subjects

enrolled in Stage I (from start time T0 to interim analysis time T1). Among subjects

enrolled in Stage I, let n
(1)
+ be expected total number of subjects (enrolled in Stage I) in

marker positive group and n
(1)
− be expected total number of subjects (enrolled in Stage I)

in marker negative group; n
(1)
+ + n

(1)
− = tN, and n

(1)
+ = ptN.

Asymptotic distribution of log-rank statistics

Let Q
(1)
+ and Q

(1)
− be log rank statistics at interim analysis time T1, for marker positive

strata and negative strata, respectively.

E(Q
(1)
i ) = E

 ∑
k|tk≤T1

(diTk −
di+kniTk
ni+k

)

 ,
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where i = + for marker positive and i = − for marker negative group.

At the interim analysis T1, let d
(1)
+ be the expected number of deaths in marker positive

group and Q
(1)
+ =

d
(1)
+∑
k=1

(d+Tk − d+kn+Tk

n+k
), and µ

(1)
+ be the asymptotic mean of Q

(1)
+ :

µ
(1)
+ = r(1− r)d(1)

+ log θ+,

where θ+ is the hazard ratio between the active treatment and the control for marker

positive group (Schoenfeld, 1981).

The asymptotic variance (σ
(1)
+ )2 of Q

(1)
+ is r(1 − r)d

(1)
+ . The standardized log-rank

statistic for marker positive group is

Z
(1)
+ = (Q

(1)
+ − µ

(1)
+ )/σ

(1)
+

D−→ N(0, 1).

Similarly let Q
(1)
− denote the log rank statistic at interim analysis time T1 for the marker

negative group. Let d
(1)
− be expected number of death in marker negative group and Q

(1)
− =

d
(1)
−∑
k=1

(d−Tk − d−n−Tk
n−

), and µ
(1)
− be the asymptotic mean of Q

(1)
− :

µ
(1)
− = r(1− r)d(1)

− log θ−,

where θ− is the hazard ratio between active treatment and control for marker negative

group.

The asymptotic variance (σ
(1)
− )2 of Q

(1)
− is r(1 − r)d

(1)
− . The standardized log rank

statistic for marker negative group is:

Z
(1)
− = (Q

(1)
− − µ

(1)
− )/σ−

D−→ N(0, 1).

At the interim analysis, when there is no misclassification, Q
(1)
+ and Q

(1)
− are independent.

The test statistic Q(1) for overall treatment effect at interim analysis time T1 can be

defined as a weighted sum of treatment effects for marker positive strata (with weight w+)

and marker negative strata (with weight w−). Note: w+ and w− can be any positive number
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and the sum of them don’t have to be 1. There are two weighting scenarios reported in

Shih and Lin (2017): when w+ = w− = 1, the absolute treatment effect can be obtained;

when w+ = p, and w− = 1− p, treatment utility is constructed. We use the latter weights

in this and later chapters to construct the treatment utility.

Let

Q(1) = pQ
(1)
+ /σ

(1)
+ + (1− p)Q(1)

− /σ
(1)
− .

The variance of Q(1) is

V ar(Q(1)) = (σ(1))2 = p2 + (1− p)2.

Under H0

Z(1) =
Q(1)√

V ar(Q(1))
=
Q(1)

σ(1)

d−→ N(0, 1).

At interim analysis time T1, a futility criterion (Q
(1)
− ≥ c0) for marker-negative subjects

will be used, to decide the enrollment pattern for Stage II, between two mutually exclusive

scenarios IIA and IIB:

IIA: Enroll full population (both marker positive and marker negative subjects) for the

remaining (1− t)N , when Q
(1)
− < c0;

IIB: Stop enrolling marker-negative subjects and only enroll (1 − t)N marker positive

subjects for Stage II, when Q
(1)
− ≥ c0.

Going to Stage II, under scenario IIA , we continue enrolling (1−t)N marker-unselected

subjects, the corresponding test statistics at the final analysis time T2 are as follows.

Let Q
(2)
+ and Q

(2)
− be log rank statistics, and d

(2)
+ , d

(2)
− be the expected number of deaths

at time T2 for subjects enrolled in Stage I, while Q
(2A)
+ and Q

(2A)
− the log rank statistics,

and d
(2A)
+ , d

(2A)
− the expected number of death at time T2 for subjects enrolled in Stage II.

Then the standardized log rank statistic at final analysis time T2 for marker positive strata

is

Z+ =
(
Q

(2)
+ +Q

(2A)
+

)
/

√(
V ar(Q

(2)
+ ) + V ar(Q

(2A)
+ )

)
,
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where Q
(2)
+ and Q

(2A)
+ are independent, Q

(2)
+ contains data for patients enrolled in Stage I

(from T0 to T2), and Q
(2A)
+ contains data from patients enrolled in Stage II (from T1 to T2).

We have

E(Q
(2)
+ ) = E

 ∑
k|tk≤T2

(d+Tk −
d+kn+Tk

n+k
)

 = r(1− r)d(2)
+ log θ+,

E(Q
(2A)
+ ) = E

 ∑
k|T1<tk≤T2

(d+Tk −
d+kn+Tk

n+k
)

 = r(1− r)d(2A)
+ log θ+,

and

V ar(Q
(2)
+ ) = (σ

(2)
+ )2 = r(1− r)d(2)

+ ,

V ar(Q
(2A)
+ ) = (σ

(2A)
+ )2 = r(1− r)d(2A)

+ .

Similarly, the standardized log rank statistic for marker negative group at time T2 is:

Z− =
(
Q

(2)
− +Q

(2A)
−

)
/

√(
V ar(Q

(2)
− ) + V ar(Q

(2A)
− )

)
,

where Q
(2)
− and Q

(2A)
− are independent. We have

E(Q
(2)
− ) = E

 ∑
k|tk≤T2

(d−Tk −
d−kn−Tk
n−+k

)

 = r(1− r)d(2)
− log θ0,

E(Q
(2A)
− ) = E

 ∑
k|T1<tk≤T2

(d−Tk −
d−kn−Tk
n−k

)

 = r(1− r)d(2A)
− log θ−,

and

V ar(Q
(2)
− ) = (σ

(2)
− )2 = r(1− r)d(2)

− ,

V ar(Q
(2A)
− ) = (σ

(2A)
− )2 = r(1− r)d(2A)

− .

The test statistic for overall treatment effect at time T2 is

Q = pQ+/σ+ + (1− p)Q−/σ−,
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and the variance of Q is

V ar(Q) = σ2 = p2 + (1− p)2.

Under H0,

Z =
Q√

V ar(Q)
=
Q

σ

d−→ N(0, 1).

Under scenario IIB , we enroll (1 − t)N marker positive subjects, the corresponding test

statistics at time T2 are shown as following.

Let Q
(2B)
+ be the log rank statistic at the time T2, for subjects enrolled in Stage II. Then

the log rank statistic Q+ = Q
(2)
+ +Q

(2B)
+ at final analysis time T2 is

Z+ =
(
Q

(2)
+ +Q

(2B)
+

)
/

√(
V ar(Q

(2)
+ ) + V ar(Q

(2B)
+ )

)
,

where Q
(2)
+ and Q

(2B)
+ are independent. Q

(2)
+ contains data for patients enrolled in Stage I at

time from T0 to T2, and Q
(2B)
+ contains data for patients enrolled in Stage II at time from

T1 to T2.

E(Q
(2B)
+ ) = E

 ∑
k|T1<tk≤T2

(d+Tk −
d+kn+Tk

n+k
)

 = r(1− r)d(2B)
+ log θ+,

and

V ar(Q
(2B)
+ ) = (σ

(2B)
+ )2 = r(1− r)d(2B)

+ .

Under H0,

Z+ =
Q+√

V ar(Q+)
=
Q+

σ+

d−→ N(0, 1).

4.4.1 Correlation of the test statistics

To control the type I error rate and to estimate the power, we need to calculate the

correlation matrix of
(
Z(+), Z

(1)
+ , Z

(1)
− , Z, Z+

)
with respect to scenario IIA and that of(

Z(1), Z
(1)
+ , Z

(1)
− , Z+

)
with respect to scenario IIB, and use it in the asymptotic joint mul-

tivariate normal distribution.
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1) For scenario IIA, between the Z-statistics of Stage I, we have

Cov(Z(1), Z
(1)
+ ) =

p

σ(1)
=

p√
p2 + (1− p)2

,

Cov(Z(1), Z
(1)
− ) =

(1− p)
σ(1)

=
1− p√

p2 + (1− p)2
.

Between the Z-statistics of Stage I and Stage II,

Cov(Z,Z
(1)
+ ) =

pσ
(1)
+√

p2 + (1− p)2σ+

=
pσ

(1)
+

σσ+
,

Cov(Z,Z
(1)
− ) =

(1− p)σ(1)
−√

p2 + (1− p)2σ−
=

(1− p)σ(1)
−

σσ−
,

Cov(Z,Z(1)) =
p2σ

(1)
+ /σ+ + (1− p)2σ

(1)
− /σ−

p2 + (1− p)2
=
p2σ

(1)
1 /σ+ + (1− p)2σ

(1)
− /σ−

σ2
,

Cov(Z+, Z
(1)) =

pσ
(1)
+√

p2 + (1− p)2σ+

=
pσ

(1)
+

σσ+
,

Cov(Z+, Z
(1)
+ ) =

σ
(1)
+

σ+
,

Cov(Z+, Z) =
p√

p2 + (1− p)2
=
p

σ
.

In summary, the covariance matrix of the Z-statistics under scenario IIA is:

Cov

((
Z(1), Z

(1)
+ , Z

(1)
− , Z, Z+

)T)

=



1 p
σ(1)

(1−p)
σ(1)

p2σ
(1)
+ /σ++(1−p)2σ(1)

− /σ−
σ2

pσ
(1)
+

σσ+

1 0
pσ

(1)
+

σσ+

σ
(1)
+

σ+

1
(1−p)σ(1)

−
σσ−

0

1 p
σ

1



2) For scenario IIB, between the Z-statistics of Stage I, we have

Cov(Z(1), Z
(1)
+ ) =

p√
p2 + (1− p)2

,
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Cov(Z(1), Z
(1)
− ) =

1− p√
p2 + (1− p)2

.

Between the Z-statistics from Stage I and Stage II,

Cov(Z+, Z
(1)
+ ) =

σ
(1)
+

σ1
,

Cov(Z+, Z
(1)) =

pσ
(1)
+√

p2 + (1− p)2σ1

.

In summary, the covariance matrix of the Z-statistics under scenario IIB is

Cov

((
Z(1), Z

(1)
+ , Z

(1)
− , Z+

)T)

=


1 p√

p2+(1−p)2
1−p√

p2+(1−p)2
pσ

(1)
+√

p2+(1−p)2σ+

1 0
σ
(1)
+

σ+

1 0

1


.

Summarize all, the correlation matrix for standardized log-rank statistics is

Cov

((
Z(1), Z

(1)
+ , Z

(1)
− , Z, Z+, Z+

)T)

=



1 p
σ(1)

(1−p)
σ(1)

p2σ
(1)
+ /σ++(1−p)2σ(1)

− /σ−
σ2

pσ
(1)
+

σσ+

pσ
(1)
+√

p2+(1−p)2σ+

1 0
pσ

(1)
+

σσ+

σ
(1)
+

σ+

σ
(1)
+

σ+

1
(1−p)σ(1)

−
σσ−

0 0

1 p
σ ∗

1 ∗

1


.

4.4.2 Type I error α allocation and critical values

For our two-stage enrichment design, we split the overall alpha (e.g., α = 0.025) between

the two stages, following a similar method described by Lin et al. (2019). In Stage I, α1, a
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fraction of the overall alpha, is allocated to test the global hypothesis H0.

α1 = P (Reject H0|H0)

= P0(Z(1) < −c1 or Z
(1)
+ < −c2)

= P0(Z(1) < −c1) + P0(Z(1) ≥ −c1 or Z
(1)
+ < −c2)

= α1a + α1b.

The critical value c1 is obtained by allocating α1a, a portion of α1, for testing H0a. Then

c2 can be solved for testing H0+ in the above equation.

For Stage II, the overall alphaα − α1, is left to spend between the mutually exclusive

scenarios IIA and IIB. We allocate α2, a fraction of α − α1 for the tests in scenario IIA

and the rest α2∗ = α− α1 − α2 for scenario IIB.

α− α1 = P (Accept H0 at Stage I, Reject H0 at Stage II in case of IIA )

+ P (Accept H0 at Stage I, Reject H0+ at Stage II in case of IIB )

= α2 + α2∗.

A futility criterion for marker-negative subjects will be used to determine α2 and α2∗. This

is done through a pre-specified threshold value c0 for the test statistic Z
(1)
− through futility

probability Fp = P0(Z
(1)
− ≥ c0). For example, if we want the futility probability to be 75%

(50%), then from P0(Z
(1)
− ≥ c0) = 0.75 (0.50), c0 = −0.6745 (0.0).

Scenario IIA : If testing for treatment effect on marker negative group is not futile,

i.e., Z
(1)
− < c0, the study is continued with both marker-status cohorts and test H0 at Stage

II. The alpha is controlled by

α2 = P (Accept H0 at Stage I, Reject H0 at Stage II in case of IIA )

= P0(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z

(1)
− < c0, Z < −b1)

+ P0(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z

(1)
− < c0, Z ≥ −b1, Z+ < −b2)

= α2a + (α2 − α2a).
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That is, the critical value b1 is obtained by allocating a portion α2a of α2 for testing H0a.

Then b2 can be solved for testing H0+ in the above equation.

Scenario IIB : when the test for treatment effect on marker negative group is futile,

i.e., Z
(1)
− ≥ c0, the study is continued with enriching marker-postive cohort only and test

for H0+ at Stage IIB. The Type I error is controlled by

α2∗ = P (Accept H0 at Stage I, Reject H0+ at Stage II in case of IIB )

= P0(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z

(1)
− ≥ c0, Z+ < −b3),

with the critical value b3 solved numerically using the correlation matrix.

The strategy to allocating α to either IIA or IIB is an important design consideration

(Lin, Shih, and Lu, 2019). To utilize full α in both IIA and IIB scenarios, we split α− α1

into IIA and IIB as the follows. Since the trial will only be in one scenario or the other, it

would be ideal to maximize the α in both scenarios. Toward this end, we can first rewrite

α2 and α2∗, respectively, as

α2 = [P0(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z < −b1)|Z(1)

− < c0)

+ P0(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z ≥ −b1, Z+ < −b2)|Z(1)

− < c0]P0(Z
(1)
− < c0)

and

α2∗ = P0(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z+ < −b3|Z(1)

− ≥ c0)P0(Z
(1)
− ≥ c0).

Next, if we split α − α1 into IIA and IIB with the same proportion as the odds of

P0(Z
(1)
0 < c0) to P0(Z

(1)
− ≥ c0), i.e.,

α2

α2∗
=
P0(Z

(1)
− < c0)

P0(Z
(1)
− ≥ c0)

=
1−Fp
Fp

,

then we have

α− α1 = [P0(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z < −b1)|Z(1)

− < c0)

+ P0(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z ≥ −b1, Z+ < −b2)|Z(1)

− < c0],
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and

α− α1 = P0(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z+ < −b3|Z(1)

− ≥ c0).

This indicates that with the above alpha allocation strategy, the corresponding type I error

in Stage II is α − α1 for either IIA or IIB. When the odds of nonfutility versus futility

P0(Z
(1)
− <c0)

P0(Z
(1)
− ≥c0)

is predetermined, the critical values can be calculated.

Table 4.1 gives some examples for the calculated critical values based on some commonly

used design parameters.

Table 4.1: Critcal Values When α = 0.025, α+ = 0.004, α2 = 0.021, r = 0.5

Fp Info p c0 c1 c2 b1 b2 b3

0.5 0.3 0.3 0 -2.878 -2.866 -2.517 -2.250 -2.023

0.4 0 -2.878 -2.848 -2.506 -2.215 -2.021

0.5 0 -2.878 -2.816 -2.487 -2.165 -2.019

0.5 0.3 0 -2.878 -2.866 -2.509 -2.234 -2.156

0.4 0 -2.878 -2.848 -2.503 -2.196 -2.012

0.5 0 -2.878 -2.816 -2.488 -2.142 -2.009

0.75 0.3 0.3 -0.674 -2.878 -2.866 -2.701 -2.245 -2.023

0.4 -0.674 -2.878 -2.848 -2.677 -2.206 -2.021

0.5 -0.674 -2.878 -2.816 -2.636 -2.153 -2.019

0.5 0.3 -0.674 -2.878 -2.866 -2.716 -2.224 -2.015

0.4 -0.674 -2.878 -2.848 -2.698 -2.180 -2.012

0.5 -0.674 -2.878 -2.816 -2.663 -2.122 -2.009

4.4.3 Global and marginal power

Under the alternative, we have

Z(1) ∼ AN(
pd

(1)
+ r(1− r) log θ+ + (1− p)d(1)

− r(1− r) log θ−√
p2d

(1)
+ r(1− r) + (1− p)2d

(1)
− r(1− r)

, 1) ,

Z
(1)
+ ∼ AN(

√
d

(1)
+ r(1− r) log θ+, 1) ,

Z
(1)
− ∼ AN(

√
d

(1)
− r(1− r) log θ−, 1),

Z ∼ AN(
p(d

(2)
+ + d

(2A)
+ )r(1− r) log θ+ + (1− p)(d(2)

− + d
(2A)
− )r(1− r) log θ−√

p2(d
(2)
+ + d

(2A)
+ )r(1− r) + (1− p)2(d

(2)
− + d

(2A)
− )r(1− r)

, 1) ,
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Z1 ∼ AN(

√
(d

(2)
+ + d

(2A)
+ )r(1− r) log θ+, 1) ,

Z1 ∼ AN(

√
(d

(2)
+ + d

(2B)
+ )r(1− r) log θ+, 1).

(4.1)

The global power is

1− β = P (Reject H0|H1)

= P (Reject H0a or Reject H0+|H1)

= P1(Z(1) < −c1 or Z
(1)
+ < −c2)

+ P1(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z

(1)
− < c0, Z < −b1)

+ P1(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z

(1)
− < c0, Z ≥ −b1, Z+ < −b2)

+ P1(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z

(1)
− ≥ c0, Z+ < −b3)

= p1 + p2a + p2+ + p2+,

where

p1 = P (Reject H0a or Reject H0+ at Stage I|H1)

= P1(Z(1) < −c1 or Z
(1)
+ < −c2),

p2a = P (Accept H0 at Stage I and Re ject H0a at Stage IIA |H1)

= P1(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z

(1)
− < c0, Z < −b1),

p2+ = P (Accept H0 at Stage I, Accept H0a and at Stage IIA but Re ject H0+ at Stage IIA |H1)

= P1(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z

(1)
− < c0, Z ≥ −b1, Z+ < −b2),

p2+ = P (Accept H0 at Stage I and Reject H0+ at Stage IIB |H1)

= P1(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z

(1)
− ≥ c0, Z+ < −b3).
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Power for testing the treatment effect in the overall cohort is

1− βa = P (Re ject H0a|H1)

= P (Re ject H0a at Stage I) +P( Re ject H0a at Stage IIA)

= P1(Z(1) < −c1) + p2a

= p1a + p2a.

Power for testing the treatment effect in the marker-positive cohort is

1− β+ = P (Reject H0+|H1)

= P (Reject H0+ at Stage I) + P (Reject H0+ at Stage IIA)

+ P (Reject H0+ at Stage IIB)

= P1(Z
(1)
+ < −c2) + P1(Z(1) ≥ −c1 , Z

(1)
+ ≥ −c2, Z

(1)
− < c0, Z1 < −b2)

+ P1(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z

(1)
− ≥ c0, Z+ < −b3).

4.4.4 Sample size calculations

Given the global type I error and power, assuming that we have the estimated prevalence

rate p, the sample size need to detect the treatment effect can be found based on the

formulas in Section 4.4.2 and Section 4.4.3 after we specify the design parameters in these

sections.

To be more specific, given the design parameters shown in Section 4.4.2, we find the

critical values first based on the formulas in Section 4.4.2. Notice that the critical values

are based on the distributions under null hypothesis and do not depend on the sample size.

Next using these critical values and the formulas shown in Section 4.4.3, we can determine

the sample size needed to achieve the specified power of specific type (global, overall or

marker positive), through optimization programming algorithms to find the solution and

round up the the nearest integer. R-code is developed to calculate the needed sample size

(or the number of events) and results are illustrated in Chapter 5.



40

Chapter 5

Numeric examples

5.1 Simulation setup

Consider a total of N = 1000 subjects for Stage I and Stage II, with a prevalence rate of

p = 0.3, 0.4, or 0.5 for biomarker positive (S+). Randomization to active treatment T or

placebo treatment C will be stratified by biomarker status with a randomization ratio of

r to 1 − r, to T or C, respectively. In Stage I, we plan to enroll tN (t = 0.7) subjects

(i.e., 7 months from the start of the study is needed for enrollment). A decision is made

at interim analysis T1 (information time: info = 0.3 or info = 0.5), to continue enrolling

biomarker-unselected subjects (under scenario IIA) or to enroll only biomarker positive

subjects under scenario IIB, with a plan to enroll additional (1− t)N subjects in Stage II.

After the recruitment is complete, the study will follow-up to time T2, when final analysis is

performed. In addition, we assume that subject recruitment follows a uniform distribution,

and survival times are exponentially distributed.

The primary composite hypothesis is about survival in marker positive subjects and/or

in overall subjects. The null hypothesis is that the hazard rates for treatment and placebo

group are equal within marker positive subjects and within the overall population. The

hazard rate for active treated S+ group is λ+T , and hazard rate for placebo treated S+

group is λ+C ; and the hazard rates for marker negative group S− are λ−T for active treated,

and λ−C for placebo, respectively.

We consider the simple case without biomarker misclassification (λsen = λspec = 1.0)

and simulate the data for both Stage I and Stage II for 3000 times to obtain the observed

global power through simulation. For each of 3000 simulation runs, data from patients

enrolled in Stage I and from patients enrolled under Scenarios IIA and IIB are simulated

independently. When the futility criteria is not met at interim analysis time in the final
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data analysis time T1, we use all data from patients enrolled in Stage I and data from

patients enrolled in Stage II under Scenario IIA in the final data analysis time T2. If the

futility criteria is met at interim analysis time T1, we use data from marker positive patients

enrolled in Stage I and data from patients enrolled in Stage II under Scenario IIB in the

final data analysis time T2.

5.2 Nominal versus observed type I error rate under different scenarios

We check type I error rate under the following parameters: the hazard rate for treated

S+ group is λ+T = 1/15 and hazard rate for placebo treated S+ group is λ+C = 1/15.

There are no treatment effect for marker negative group S−, where the hazard rates are

λ−T = λ−C = 1/10.

We simulate the trials data for 3000 times, to obtain the empirical type I error rate. For

each of 3000 simulation runs, at interim analysis time T1, we first calculated the log rank

statistics for marker postie cohort, marker negative cohort, and the overall population. A

decision is made at T1 for Stage II enrollment: two mutually exclusive scenario IIA or IIB.

The nominal and empirical type I error rates are shown in Table 5.1. As we can see

from Table 5.1, the empirical type I error rate is close to the nominal type I error 0.025,

across different prevalence rate (0.3, 0.4, 0.5), different information time of interim analysis

(information time of 0.3 and 0.5), different futility probability (0.5 and 0.75), and different

null hypothesis (all hazard rates are equal to 1/10 for biomaker negative cohort and equal

to 1/15 for biomarker positive cohort, but with no treatment effect).
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Table 5.1: The Nominal and Empirical Global Type I Error Rate for H0 when λ−T = λ−C =
1/10, d=750, 3000 runs

Empirical

Fp Info p Nominal λ+T = λ+C = 1/10 λ+T = λ+C = 1/15

0.5 0.3 0.3 0.025 0.0233 0.0257

0.4 0.025 0.0247 0.0290

0.5 0.025 0.0237 0.0303

0.5 0.3 0.025 0.0267 0.0267

0.4 0.025 0.0280 0.0280

0.5 0.025 0.0283 0.0283

0.75 0.3 0.3 0.025 0.0217 0.0233

0.4 0.025 0.0237 0.0277

0.5 0.025 0.0223 0.0293

0.5 0.3 0.025 0.0260 0.0240

0.4 0.025 0.0240 0.0267

0.5 0.025 0.0247 0.0280

5.3 Theoretical versus empirical power under different scenarios

In this simulation, the critical values are based on α = 0.025, α1 = 0.004, r = 0.5. The

theoretical and empirical power for global, overall, and positive groups are shown in Table

5.2.

As we can see from Table 5.2, when there is treatment effect only in biomarker positive

cohort and no treatment effect in biomarker negative cohort, the empirical powers (global

power, overall power, and positive cohort power) are also close to the corresponding the-

oretical powers, across different prevalence rate (0.3, 0.4, 0.5), different information time

of interim analysis (information time of 0.3 and 0.5), different futility probability (0.5 and

0.75). In the current set-up, since there is no treatment effect in biomarker negative cohort,

the overall power (power for overall population) is low.
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Table 5.2: The Theoretical and Empirical Power for H1, H1a and H1+ when λ−T = λ−C =
λ+C = 1/10 and λ+T = 1/15 , N=1000, d=750, 3000 runs

Global Power Overall Power Positive Cohort Power

Fp Info p Theoretical Empirical Theoretical Empirical Theoretical Empirical

0.5 0.3 0.3 0.846 0.850 0.070 0.074 0.834 0.837

0.4 0.928 0.922 0.174 0.180 0.912 0.908

0.5 0.969 0.969 0.320 0.320 0.950 0.952

0.5 0.3 0.849 0.858 0.066 0.078 0.836 0.843

0.4 0.946 0.923 0.113 0.175 0.931 0.906

0.5 0.970 0.970 0.321 0.326 0.950 0.951

0.75 0.3 0.3 0.884 0.848 0.042 0.056 0.874 0.838

0.4 0.944 0.923 0.103 0.150 0.930 0.909

0.5 0.975 0.969 0.195 0.296 0.956 0.952

0.5 0.3 0.849 0.857 0.066 0.057 0.836 0.845

0.4 0.930 0.923 0.164 0.149 0.913 0.908

0.5 0.976 0.971 0.239 0.302 0.957 0.953

Figures 5.1, 5.2, and 5.3 show the contour plots of power surfaces for global (testing H1),

overall population (testing H1a) and marker-positive population (testing H1+) hypotheses,

respectively, across −0.10 ≥ δ ≥ −0.40 and −0.10 ≥ δ+ ≥ −0.40 by n and p assuming

α = 0.025, α1 = 0.004, w+ = p, w− = 1− p, c0 = 0, δ = pδ+ + (1− p)δ−, r = 0.5.

From Figure 5.1, the global power increases with increasing treatment effect for overall

population and/or positive population (decreasing δ and/or decreasing δ+).

From Figure 5.2, the power for overall population increases with increasing treatment

effect for overall population when treatment effect for positive population is fixed (decreasing

δ).

From Figure 5.3, the power for positive subgroup increases with increasing treatment

effect for positive population (decreasing δ+) but decreases with increasing treatment effect

for overall population (decreasing δ).
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Global power by p and n
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Figure 5.1: Contour plot of global power surface
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Power for full population by p and n
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Figure 5.2: Contour plot of power surface for overall population
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Power for positive subgroup by p and n
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Figure 5.3: Contour plot of power surface for biomarker positive subgroup

Table 5.3 shows the sample size needed to achieve specified global and marginal power

for biomarker positive subgroup in some commonly used situations. In the table, we assume

the same α allocation, δ = −0.15 (the log-hazard ratio for the overall cohort), and δ+ =

−0.3,−0.4, or −0.5 (the log-hazard ratio for the marker positive cohort).

From the table, for example, if a target of 90% global power for testing H1 is requested

when the prevalence rate is 0.4 and interim analysis is performed at information time of

0.5, a total sample size of 871 is needed. If the target of 80% biomarker positive marginal

power is requested for testing H1+ when the prevalence rate is 0.4 and interim analysis is
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performed at information time of 0.5, a total sample size of 678 is needed.

Table 5.3: Total Sample Size to Achieve Specified Global Power H1 when α = 0.025, α1 =
0.004,Fp = 0.5, r = 0.5, and δ = p log θ+ + (1− p) log θ− = −0.15

Global Power under H1 Marginal Power under H1+

90% power 80% power 90% power 80% power

Information Information Information Information

p δ+ 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5

0.3 -0.3 2005 2019 1492 1503 3056 3598 1907 2061

-0.4 1183 1184 879 878 1307 1328 946 957

-0.5 744 735 556 547 774 768 574 584

0.4 -0.3 1592 1565 1174 1172 1860 1929 1316 1344

-0.4 879 871 661 652 920 913 685 678

-0.5 555 541 416 408 563 552 424 413

0.5 -0.3 1271 1255 950 943 1367 1364 1004 1000

-0.4 701 688 529 519 717 703 539 528

-0.5 442 433 336 326 445 472 339 329
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Chapter 6

Methods for two-stage stratified design with biomarker

misclassification adjustment

6.1 Design diagram

The following shows the diagram of the two-stage stratified design based on marker appear-

ance status.

where Qji is log rank statistic, with i = ∗, φ (marker-appeared positive, appeared nega-

tive) and j =1, 2, 2A for analysis time/scenarios, M denotes the marker-appeared status,

t represents the fraction of the total sample size N that is allocated to Stage I, q is the

prevalence rate of biomarker-appeared positive, and r is the randomization proportion to

active treatment group. The definition of Qji can be found in 6.4.2 and 6.4.3.
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6.2 Positive and negative predictive values

Denote true marker positive prevalence P (D = +) = p; true marker index D = + or −, for

positive or negative true marker status, respectively; marker-appeared status index M = ∗

or φ, for appeared positive or appeared negative status, respectively. The stratified ran-

domization designs are based on marker-appeared status with sensitivity λsen and specificity

λspec.

Probability of M = ∗, where marker-appeared status is positive, is

q = P (M = ∗) = pλsen + (1− p)(1− λspec).

The positive predictive value (PPV) = P (D = +|M = ∗) is

τ =
pλsen

pλsen + (1− p)(1− λspec)
=
pλsen
q

.

The negative predictive value (NPV) = P (D = −|M = φ) is

η =
(1− p)λspec

1− P (M = ∗)
=

(1− p)λspec
1− q

.

Note: when λsen = λspec = 1, q = p and τ = η = 1.

Let the ratio of randomization assignment of active treatment to control be r to 1− r,

where 0 < r < 1.

6.3 Difference between number of events and expected number of events

when stratified by marker-appeared status under misclassification

Consider the difference between observed number of death diTk and the expected number

of death EiTk in active treatment group at kth event time in marker-appeared stratum i,

where i = ∗ for marker-appeared positive and i = φ for marker-appeared negative, we have

diTk − EiTk = diTk −
di+kY iTk

Y i+k

.
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Let Y ∗+k be the total number of subjects, including both active-treated and control, at risk

at kth event time.

The estimated variance of d∗Tk − E∗Tk is

V̂ ar(d∗Tk − E∗Tk) = V̂ ar(d∗Tk) =
Y ∗TkY ∗Ckd∗+k(Y ∗+k − d∗+k)

Y
2
∗+k(Y ∗+k − 1)

.

Similarly we have the formula for marker-appeared negative strata when ∗ is replaced by φ.

Let Qi be the log-rank statistic in the marker-appeared status strata i

Qi =

K∑
k=1

(
diTk −

di+kY iTk

Y i+k

)

where i = ∗, φ. We have

V̂ ar(Qi) =
K∑
k=1

V̂ ar(diTk)

=
K∑
k=1

{
Y iTkY iCkdi+k(Y i+k − di+k)

Y
2
i+k(Y i+k − 1)

}

Under null,

Qi√
V̂ ar(Qi)

d−→ N(0, 1).

6.4 Asympototic distribution of adjusted log-rank statistics with marker

misclassification

6.4.1 Expected number of events

For Stage I enrolled subjects in marker-appeared positive group, let n
(1)
∗+ = τn

(1)
∗ be the

expected total number of subjects in the marker-appeared positive group with true marker

positive status, and n
(1)
∗− = (1 − τ)n

(1)
∗ be the expected number of subjects in marker-

appeared positive group with true marker negative status, where n
(1)
∗ is the expected number

of subjects with marker-appeared positive status.

Similarly, let n
(1)
φ+ = (1 − η)n

(1)
φ be the expected total number of subjects in marker-

appeared negative group with true marker positive status and n
(1)
φ− = ηn

(1)
φ be the expected
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total number of subjects in the marker-appeared negative group with true marker negative

status, where n
(1)
φ is the expected number of subjects with marker-appeared negative status.

Let n
(1)
i be the expected number of subjects enrolled at Stage I with true marker status

i , i = + indicating true marker positive; i = − indicating true marker negative.

At pre-determined interim analysis time T1, let the probability to observe an event in

true marker positive group (including both active and control treatment) be π
(1)
+ , and let

the probability to observe an event in true marker negative group (including both active

and control treatment) be π
(1)
− . Then, the expected number of events at interim analysis

time T1 for marker-appeared positive group is

E(D
(1)
∗ ) = τn

(1)
∗ π

(1)
+ + (1− τ)n

(1)
∗ π

(1)
− ,

the expected number of events at interim analysis time T1 for marker-appeared negative

group is

E(D
(1)
φ ) = (1− η)n

(1)
φ π

(1)
+ + ηn

(1)
φ π

(1)
− .

6.4.2 Adjusted log rank statistics at interim analysis

Let Q
(1)
∗ and Q

(1)
φ be the log rank statistics at the interim analysis for marker-appeared

positive strata and marker-appeared negative strata, respectively, then

E(Q
(1)
∗ ) = r(1− r)τn(1)

∗ π
(1)
+ log

λ+T

λ+C
+ r(1− r)(1− τ)n

(1)
∗ π

(1)
− log

λ−T
λ−C

, (6.1)

E(Q
(1)
φ ) = r(1− r)(1− η)n

(1)
φ π

(1)
+ log

λ+T

λ+C
+ r(1− r)ηn(1)

φ π
(1)
− log

λ−T
λ−C

. (6.2)

From Equations 6.1 and 6.2, we get

r(1− r)n(1)
+ π

(1)
+ log

λ+T

λ+C

=
τn

(1)
∗ + (1− η)n

(1)
φ

n
(1)
∗ n

(1)
φ

ηn
(1)
φ E(Q

(1)
∗ )− (1− τ)n

(1)
∗ E(Q

(1)
φ )

τ + η − 1

=
τq + (1− η)(1− q)

q(1− q)
η(1− q)E(Q

(1)
∗ )− (1− τ)qE(Q

(1)
φ )

τ + η − 1
, (6.3)
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r(1− r)n(1)
− π

(1)
− log

λ−T
λ−C

=
(1− τ)n

(1)
∗ + ηn

(1)
φ

n
(1)
∗ n

(1)
φ

−(1− η)n
(1)
φ E(Q

(1)
∗ ) + τn

(1)
∗ E(Q

(1)
φ )

τ + η − 1

=
(1− τ)q + η(1− q)

q(1− q)
−(1− η)(1− q)E(Q

(1)
∗ ) + τqE(Q

(1)
φ )

τ + η − 1
. (6.4)

Let

Q
(1)
+ =

τq + (1− η)(1− q)
q(1− q)

η(1− q)Q(1)
∗ − (1− τ)qQ

(1)
φ

τ + η − 1
, (6.5)

Q
(1)
− =

(1− τ)q + η(1− q)
q(1− q)

−(1− η)(1− q)Q(1)
∗ + τqQ

(1)
φ

τ + η − 1
. (6.6)

Then we have

E(Q
(1)
+ ) = r(1− r)n(1)

+ π
(1)
+ log

λ+T

λ+C
,

E(Q
(1)
− ) = r(1− r)n(1)

− π
(1)
− log

λ−T
λ−C

,

and their variances

V ar(Q
(1)
+ ) =

(
τq + (1− η)(1− q)
q(1− q)(τ + η − 1)

)2 (
(1− q)2η2V ar(Q

(1)
∗ ) + q2(1− τ)2V ar(Q

(1)
φ )
)
,

V ar(Q
(1)
− ) =

(
(1− τ)q + η(1− q)
q(1− q)(τ + η − 1)

)2 (
(1− q)2(1− η)2V ar(Q

(1)
∗ ) + q2τ2V ar(Q

(1)
φ )
)
.

Therefore we use Q
(1)
+ and Q

(1)
− , unbiased estimators for the true effects, as test statistics to

test treatment effects on true marker positive and negative groups, respectively. This also

implies that the adjusted log rank statistic for the overall population (based on true marker

positive group and true marker negative group) at the interim analysis time T1 is

Q(1) = pQ
(1)
+ /σ

(1)
+ + (1− p)Q(1)

− /σ
(1)
− ,
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and

V ar(Q(1)) = p2+(1−p)2−2p(1−p)(η(1−η)(1−q)2V ar(Q
(1)
∗ )+τ(1−τ)q2V ar(Q

(1)
φ ))/(σ

(1)
+ σ

(1)
− ).

The adjusted standardized log rank statistic for true marker positive group at interim

analysis T1 is

Z
(1)
+ =

Q
(1)
+√

V ar(Q
(1)
+ )

=
Q

(1)
+

σ
(1)
+

,

where

σ
(1)
+ =

(
τq + (1− η)(1− q)
q(1− q)(τ + η − 1)

)√
(1− q)2η2V ar(Q

(1)
∗ ) + q2(1− τ)2V ar(Q

(1)
φ ).

Similarly the adjusted standardized log rank statistic for true marker negative group at

interim analysis T1 is

Z
(1)
− =

Q
(1)
−√

V ar(Q
(1)
− )

=
Q

(1)
−

σ
(1)
−
,

where

σ
(1)
− =

(
(1− τ)q + η(1− q)
q(1− q)(τ + η − 1)

)√
(1− q)2(1− η)2V ar(Q

(1)
∗ ) + q2τ2V ar(Q

(1)
φ ).

The adjusted standardized log rank statistic for overall population at interim analysis

T1 is

Z(1) =
Q(1)√

V ar(Q(1))
=
Q(1)

σ(1)
=
pZ

(1)
+ + (1− p)Z(1)

−
σ(1)

,

where

(σ(1))2 = p2+(1−p)2−2p(1−p)(η(1−η)(1−q)2V ar(Q
(1)
∗ )+τ(1−τ)q2V ar(Q

(1)
φ ))/(σ

(1)
+ σ

(1)
0 ).

6.4.3 Adjusted log rank statistics at final analysis

Log rank statistics for subjects recruited at Stage I at final analysis time T2

Let Q
(2)
∗ and Q

(2)
φ be the log rank statistics at final analysis time T2 for the subjects recruited
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at Stage I (recruited between study start time T0 and the interim analysis time T1), then

E(Q
(2)
∗ ) = r(1− r)τn(1)

∗ π
(2)
+ log

λ+T

λ+C
+ r(1− r)(1− τ)n

(1)
∗ π

(2)
− log

λ−T
λ−C

, (6.7)

E(Q
(2)
φ ) = r(1− r)(1− η)n

(1)
φ π

(2)
+ log

λ+T

λ+C
+ r(1− r)ηn(1)

φ π
(2)
− log

λ−T
λ−C

. (6.8)

From Equations 6.7 and 6.8, we get

r(1− r)n(1)
+ π

(2)
+ log

λ+T

λ+C
=
τq + (1− η)(1− q)

q(1− q)
η(1− q)E(Q

(2)
∗ )− (1− τ)qE(Q

(2)
φ )

τ + η − 1
,

r(1− r)n(1)
− π

(2)
− log

λ−T
λ−C

=
(1− τq + η(1− q)

q(1− q)
−(1− η)(1− q)E(Q

(2)
∗ ) + τqE(Q

(2)
φ )

τ + η − 1
.

Let

Q
(2)
+ =

τq + (1− η)(1− q)
q(1− q)

η(1− q)Q(2)
∗ − (1− τ)qQ

(2)
φ

τ + η − 1
,

Q
(2)
− =

(1− τq + η(1− q)
q(1− q)

−(1− η)(1− q)Q(2)
∗ + τqQ

(2)
φ

τ + η − 1
,

Then we have

E(Q
(2)
+ ) = r(1− r)n(1)

+ π
(2)
+ log

λ+T

λ+C
,

E(Q
(2)
− ) = r(1− r)n(1)

− π
(2)
− log

λ−T
λ−C

.

and their variances

V ar(Q
(2)
+ ) =

(
τq + (1− η)(1− q)
q(1− q)(τ + η − 1)

)2 (
(1− q)2η2V ar(Q

(2)
∗ ) + q2(1− τ)2V ar(Q

(2)
φ )
)
,

V ar(Q
(2)
− ) =

(
(1− τ)q + η(1− q)
q(1− q)(τ + η − 1)

)2 (
(1− q)2(1− η)2V ar(Q

(2)
∗ ) + q2τ2V ar(Q

(2)
φ )
)
.

Therefore the test statistics Q
(2)
+ and Q

(2)
− , unbiased estimators for the true effects, are

constructed as test statistics to test treatment effects at final analysis time T2 on true

marker positive and negative groups, respectively, for subjects enrolled at Stage I.

Log rank statistics for subjects recruited at Stage II

Let Q
(2A)
∗ and Q

(2A)
φ be the log rank statistics at final analysis time T2 for the subjects
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recruited at Stage II, in addition, let the probability to observe an event at final analysis

time T2 in true marker positive group be π̃+ (including both active and control treatment),

and let π̃− be the probability to observe an event in true marker negative group (including

both active and control treatment), then

E(Q
(2A)
∗ ) = r(1− r)τn(2A)

∗ π̃+ log
λ+T

λ+C
+ r(1− r)(1− τ)n

(2A)
∗ π̃− log

λ−T
λ−C

, (6.9)

E(Q
(2A)
φ ) = r(1− r)(1− η)n

(2A)
φ π̃+ log

λ+T

λ+C
+ r(1− r)ηn(2A)

φ π̃− log
λ−T
λ−C

. (6.10)

From Equations 6.9 and 6.10, we get

r(1− r)n(2A)
+ π̃+ log

λ+T

λ+C
=
τq + (1− η)(1− q)

q(1− q)
η(1− q)E(Q

(2A)
∗ )− (1− τ)qE(Q

(2A)
φ )

τ + η − 1
,

r(1− r)n(2A)
− π̃− log

λ−T
λ−C

=
(1− τ)q + η(1− q)

q(1− q)
−(1− η)(1− q)E(Q

(2A)
∗ ) + τqE(Q

(2A)
φ )

τ + η − 1
.

Let

Q
(2A)
+ =

τq + (1− η)(1− q)
q(1− q)

η(1− q)Q(2A)
∗ − (1− τ)qQ

(2A)
φ

τ + η − 1
,

Q
(2A)
− =

(1− τ)q + η(1− q)
q(1− q)

−(1− η)(1− q)Q(2A)
∗ + τqQ

(2A)
φ

τ + η − 1
,

then we have

E(Q
(2A)
+ ) = r(1− r)n(2A)

+ π̃+ log
λ+T

λ+C
,

E(Q
(2A)
− ) = r(1− r)n(2A)

− π̃− log
λ−T
λ−C

,

and their variances are

V ar(Q
(2A)
+ ) =

(
τq + (1− η)(1− q)
q(1− q)(τ + η − 1)

)2 (
((1− q)η)2V ar(Q

(2A)
∗ ) + (q(1− τ))2V ar(Q

(2A)
φ )

)
,

V ar(Q
(2A)
− ) =

(
(1− τ)q + η(1− q)
q(1− q)(τ + η − 1)

)2 (
((1− q)(1− η))2V ar(Q

(2A)
∗ ) + (qτ)2V ar(Q

(2A)
φ )

)
.
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Therefore the test statistics Q
(2A)
+ and Q

(2A)
− , unbiased estimators for the true effects, are

constructed as test statistics to test treatment effects on true marker positive and negative

groups, respectively, for subjects enrolled at Stage II. This also implies that at the final

analysis time T2, the following statistics Q+ and Q− based on the rank statistics for testing

treatment effects on marker-appeared status can be used for testing treatment effects on

the true marker positive and negative groups, respectively, and Q can be used for testing

treatment effect on the overall population.

Q+ = Q
(2)
+ +Q

(2A)
+ ,

V ar(Q+) = σ2
+ = V ar(Q

(2)
+ ) + V ar(Q

(2A)
+ ),

Q− = Q
(2)
− +Q

(2A)
− ,

V ar(Q−) = σ2
− = V ar(Q

(2)
− ) + V ar(Q

(2A)
− ),

and

Q = pQ+/σ+ + (1− p)Q−/σ−,

V ar(Q) = p2 + (1− p)2− 2p(1− p)(η(1− η)(1− q)2V ar(Q∗) + τ(1− τ)q2V ar(Qφ))/(σ+σ−).

The standardized log rank statistic for the true marker-positive group at the final anal-

ysis time T2 is

Z+ =
Q+√

V ar(Q+)
=
Q

(2)
+ +Q

(2A)
+

σ+

where

σ2
+ =

(
τq + (1− η)(1− q)
q(1− q)(τ + η − 1)

)2 (
(1− q)2η2V ar(Q

(2)
∗ ) + q2(1− τ)2V ar(Q

(2)
φ )
)

+

(
τq + (1− η)(1− q)
q(1− q)(τ + η − 1)

)2 (
((1− q)η)2V ar(Q

(2A)
∗ ) + (q(1− τ))2V ar(Q

(2A)
φ )

)
.

The standardized log rank statistic for the true marker-negative group is

Z− =
Q−√

V ar(Q−)
=
Q−

σ
(1)
−
,
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where

σ2
− =

(
(1− τ)q + η(1− q)
q(1− q)(τ + η − 1)

)2 (
(1− q)2(1− η)2V ar(Q

(2)
∗ ) + q2τ2V ar(Q

(2)
φ )
)

+

(
(1− τ)q + η(1− q)
q(1− q)(τ + η − 1)

)2 (
((1− q)(1− η))2V ar(Q

(2A)
∗ ) + (qτ)2V ar(Q

(2A)
φ )

)
.

The standardized log rank statistic for overall population after the misclassification

adjustment is

Z =
Q√

V ar(Q)
=
Q

σ
=
pZ1 + (1− p)Z0

σ

where

σ2 = p2 + (1− p)2 − 2p(1− p)(η(1− η)(1− q)2V ar(Q∗) + τ(1− τ)q2V ar(Qφ))/(σ+σ−).

As we can see, to obtain log rank statistic for true marker positive group and true

marker negative group shown by equation (6.3) and (6.4), we use both equation (6.1) and

(6.2), since π+ and π− are different for different analysis time point (T1 or T2). In this

setting, we can adjust the misclassification without additional distributional assumptions.

This is in contrast to the adaptive enrichment designs in Part III, for which if we restrict our

enrolling criteria to only marker-appeared positive strata (after interim analysis), we only

have one equation observed and can not solve two unknown parameters without additional

assumptions, for true marker positive group and true marker negative group for the subjects

who are enrolled in Stage II.

6.5 Correlations between test statistics

Let

A =
τq + (1− η)(1− q)
q(1− q)(τ + η − 1)

,

B =
(1− τ)q + η(1− q)
q(1− q)(τ + η − 1)

,

F1 = (1− q)2η2V ar(Q
(1)
∗ ) + q2(1− τ)2V ar(Q

(1)
φ ),

F2 = (1− q)2η2V ar(Q∗) + q2(1− τ)2V ar(Qφ),
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G1 = η(1− η)(1− q)2V ar(Q
(1)
∗ ) + τ(1− τ)q2V ar(Q

(1)
φ ),

G2 = η(1− η)(1− q)2V ar(Q∗) + τ(1− τ)q2V ar(Qφ),

H1 = (1− q)2(1− η)2V ar(Q
(1)
∗ ) + q2τ2V ar(Q

(1)
φ ),

H2 = (1− q)2(1− η)2V ar(Q∗) + q2τ2V ar(Qφ),

C1 =
p√

p2 + (1− p)2 − 2p(1− p)G1

,

D1 =
1− p√

p2 + (1− p)2 − 2p(1− p)G1

,

C2 =
p√

p2 + (1− p)2 − 2p(1− p)G2

,

D2 =
1− p√

p2 + (1− p)2 − 2p(1− p)G2

,

E = C1C2
σ

(1)
+

σ+
+D1D2

σ
(1)
−
σ−
−ABG1(

C1D2

σ−σ
(1)
1

+
C2D1

σ+σ
(1)
−

).

The covariance between standardized log rank statistics for true marker positive and

true marker negative test at interim analysis is

Cov(Z
(1)
+ , Z

(1)
− ) = −

{
AB

(
η(1− η)(1− q)2V ar(Q

(1)
∗ ) + τ(1− τ)q2V ar(Q

(1)
φ )
)}

/σ
(1)
+ σ

(1)
−

= − ABG1

σ
(1)
+ σ

(1)
−

The covariance between standardized log rank statistics for true marker positive sub-

group and overall population at interim analysis is

Cov(Z
(1)
+ , Z(1)) = C1 +D1Cov(Z

(1)
+ , Z

(1)
− ) = C1 −

ABD1G1

σ
(1)
+ σ

(1)
−

.

The covariance between standardized log rank statistics for true marker negative sub-

group and overall population at interim analysis is

Cov(Z
(1)
− , Z(1)) = D1 + C1Cov(Z

(1)
+ , Z

(1)
− ) = D1 −

ABC1G1

σ
(1)
+ σ

(1)
−

.
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The covariance between standardized log rank statistics for true marker positive sub-

group and true marker negative subgroup at final analysis time is

Cov(Z+, Z−) = −AB
{(
η(1− η)(1− q)2V ar(Q∗) + τ(1− τ)q2V ar(Qφ)

)}
/σ+σ−

= −ABG2

σ+σ−
.

The covariance between standardized log rank statistics for true marker positive sub-

group and overall population at final analysis time is

Cov(Z+, Z) = C2 +D2Cov(Z+, Z−)

= C2 −
ABD2G2

σ+σ−
.

The covariance between standardized log rank statistics for true marker negative sub-

group and overall population at final analysis time is

Cov(Z−, Z) = D2 + C2Cov(Z+, Z−)

= D2 −
ABC2G2

σ+σ−
.

The covariance between standardized log rank statistics for true marker negative sub-

group (interim) and true marker negative subgroup (final) is

Cov(Z−, Z
(1)
− ) = σ

(1)
− /σ−.

The covariance between standardized log rank statistics for true marker positive sub-

group (interim) and true marker positive subgroup (final) is

Cov(Z+, Z
(1)
+ ) = σ

(1)
+ /σ+.



61

The covariance between standardized log rank statistics for true marker positive sub-

group (interim) and overall population (final) is

Cov(Z,Z
(1)
+ ) = C2Cov(Z+, Z

(1)
+ ) +D2Cov(Z−, Z

(1)
+ )

= C2
σ

(1)
+

σ+
− ABD2G1

σ0σ
(1)
+

.

The covariance between standardized log rank statistics for true marker negative sub-

group (interim) and overall population (final) is

Cov(Z,Z
(1)
− ) = C2Cov(Z+, Z

(1)
− ) +D2Cov(Z−, Z

(1)
− )

= −ABC2G1

σ+σ
(1)
−

+D2σ
(1)
− /σ−.

The covariance between standardized log rank statistics for true marker positive sub-

group (interim) and marker negative subgroup (final) is

Cov(Z−, Z
(1)
+ ) = −AB

{
η(1− η)(1− q)2V ar(Q

(1)
∗ ) + q2(1− τ)τV ar(Q

(1)
φ )
}
/σ−σ

(1)
1

=
−ABG1

σ−σ
(1)
+

.

The covariance between standardized log rank statistics for true marker negative sub-

group (interim) and marker positive subgroup (final) is

Cov(Z+, Z
(1)
− ) = −AB

{
η(1− η)(1− q)2V ar(Q

(1)
∗ ) + q2(1− τ)τV ar(Q

(1)
φ )
}
/σ+σ

(1)
0

=
−ABG1

σ+σ
(1)
−

.

The covariance between standardized log rank statistics for overall population (interim)

and marker positive subgroup (final) is

Cov(Z+, Z
(1)) = C1Cov(Z+, Z

(1)
+ ) +D1Cov(Z+, Z

(1)
− )

= C1
σ

(1)
+

σ+
− ABD1G1

σ1σ
(1)
−

.
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The covariance between standardized log rank statistics for overall population (interim)

and marker negative subgroup (final) is

Cov(Z−, Z
(1)) = C1Cov(Z−, Z

(1)
+ ) +D1Cov(Z−, Z

(1)
− )

=
−ABC1G1

σ−σ
(1)
+

+D1
σ

(1)
0

σ−
.

The covariance between standardized log rank statistics for overall population (interim)

and overall population (final) is

Cov(Z,Z(1)) = Cov(
pZ+ + (1− p)Z−

σ
,
pZ

(1)
+ + (1− p)Z(1)

−
σ(1)

)

= C1C2
σ

(1)
+

σ+
+D1D2

σ
(1)
0

σ−
−ABG1(

C1D2

σ−σ
(1)
+

+
C2D1

σ+σ
(1)
−

).

In summary, the correlation matrix between the standardized log rank statistics is:

Cov

((
Z(1), Z

(1)
+ , Z

(1)
− , Z, Z+, Z−

)T)
=

1 C1 − ABD1G1

σ
(1)
+ σ

(1)
−

D1 − ABC1G1

σ
(1)
+ σ

(1)
−

E C1
σ
(1)
+

σ+
− ABD1G1

σ+σ
(1)
−

−ABC1G1

σ−σ
(1)
+

+D1
σ
(1)
−
σ−

1 −ABG1

σ
(1)
+ σ

(1)
−

C2
σ
(1)
+

σ+
− ABD2G1

σ−σ
(1)
+

σ
(1)
+ /σ+

−ABG1

σ−σ
(1)
+

1 −ABC2G1

σ+σ
(1)
−

+D2σ
(1)
0 /σ−

−ABG1

σ+σ
(1)
−

σ
(1)
− /σ−

1 C2 − ABD2G2
σ+σ−

D2 − ABC2G2
σ+σ−

1 −ABG2
σ+σ−

1



6.6 Asymptotic distribution of test statistics

Given t,N, p, λsen, λspec, then q, τ, η are fixed. Under the alternative, given π
(1)
+ , π

(2)
+ ,

π̃+, π
(1)
− , π

(2)
− , π̃−, and assumption of proportional hazard log θ+ = log

λ+T
λ+C

, and log θ− =

log
λ−T
λ−C

. Asymptotically, we have

Z
(1)
+ ∼ AN(

√
tNr(1− r)

π
(1)
+ log θ+√

m1
, 1) , (6.11)

Z
(1)
− ∼ AN(

√
tNr(1− r)

π
(1)
− log θ−√

m0
, 1) ,
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Z(1) ∼ AN(

√
tNr(1− r){pπ(1)

+ log θ+/
√
m1 + (1− p)π(1)

− log θ−/
√
m0}√

p2 + (1− p)2 − 2p(1− p)m2/
√
m1m0

, 1) ,

Z+ ∼ AN(
√
Nr(1− r)

tπ
(2)
+ + (1− t)π̃+√

m3
log θ+, 1) ,

Z− ∼ AN(
√
Nr(1− r)

tπ
(2)
− + (1− t)π̃−√

m4
log θ−, 1) ,

Z ∼ AN(

√
Nr(1− r){p[tπ(2)

+ + (1− t)π̃+] log θ+√
m3

+ (1− p)[tπ(2)
− + (1− t)π̃−] log θ−√

m4
}√

p2 + (1− p)2 − 2p(1− p)m5/
√
m3m4

, 1),

where

m1 = η2(1− q)2{τqπ(1)
+ + (1− τ)qπ

(1)
− }A2 + (1− τ)2q2{(1− η)(1− q)π(1)

+

+ η(1− q)π(1)
− }A2,

m0 = (1− η)2(1− q)2{τqπ(1)
+ + (1− τ)qπ

(1)
− }B2 + τ2q2{(1− η)(1− q)π(1)

+

+ η(1− q)π(1)
− }B2,

m2 = ABη(1− η)(1− q)2{r(1− r)tN [τqπ
(1)
+ +AB(1− τ)qπ

(1)
− ]}

+ τ(1− τ)q2{r(1− r)tN [(1− η)(1− q)π(1)
+ + η(1− q)π(1)

− ]},

m3 = A2η2(1− q)2{t[τqπ(2)
+ + (1− τ)qπ

(2)
− ] + (1− t)[τqπ̃+ + (1− τ)qπ̃−]}

+A2(1− τ)2q2{t[(1− η)(1− q)π(2)
+ + η(1− q)π(2)

− ]

+ (1− t)[(1− η)(1− q)π̃+ + η(1− q)π̃−]},

m4 = B2(1− η)2(1− q)2{t[τqπ(2)
+ + (1− τ)qπ

(2)
− ] + (1− t)[τqπ̃+ + (1− τ)qπ̃−]}

+B2τ2q2{t[(1− η)(1− q)π(2)
+ + η(1− q)π(2)

− ]

+ (1− t)[(1− η)(1− q)π̃+ + η(1− q)π̃−]},

m5 = ABη(1− η)(1− q)2r(1− r){tN [τqπ
(2)
+ + (1− τ)qπ

(2)
− ]

+ (1− t)N [τqπ̃+ + (1− τ)qπ̃−]}

+ABτ(1− τ)q2r(1− r){tN [(1− η)(1− q)π(2)
+ + η(1− q)π(2)

− ]

+ (1− t)N [(1− η)(1− q)π̃+ + η(1− q)π̃−]}.
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6.7 Type I error α allocation and critical values

For the two-stage stratified designs, we can split the overall alpha (e.g, α = 0.025) between

the two stages, following a traditional sequential design. In Stage I, a fraction of the overall

alpha, α1, is allocated to test the global hypothesis H0

α1 = P (Reject H0|H0)

= P0(Z(1) < −c1 or Z
(1)
+ < −c2)

= P0(Z(1) < −c1) + P0(Z(1) ≥ −c1 or Z
(1)
+ < −c2)

= α1a + α1b.

The critical value c1 is obtained by allocating a portion α1a of α1, for testing H0a, Then c2

can be solved for testing H0+ in the above equation.

For Stage II, the overall alpha is left with α− α1, where

α− α1 = P (Accept H0 at Stage I, Reject H0 at Stage II)

= α2.

We have

α2 = P (Accept H0 at Stage I, Reject H0 at Stage II)

= P0(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z < −b1)

+ P0(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z ≥ −b1, Z+ < −b2)

= α2a + (α2 − α2a).

That is, the critical value b1 is obtained by allocating α2a, a portion of α2, for testing H0a.

Then b2 can be solved for testing H0+ in the above equation.

Tables 6.1 and 6.2 show the critical values for some commonly used situations. Informa-

tion time is 0.3 and 0.5, respectively. From the tables, we can see when the prevalence rate,

λsen , and λspec are fixed, changing information time form 0.3 to 0.5 does not change the
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critical value for overall population (c1) and for marker-positive population (c2) at interim

analysis, but change the critical values for overall population (b1) and for marker-positive

population (b2) at final analysis time.

Table 6.1: Critical Values When α = 0.025, α+ = 0.004, α2 = 0.021, r = 0.5 and info=0.3

λsen λspec p c1 c2 b1 b2

1.0 1.0 0.3 -2.878 -2.866 -2.287 -2.255

0.4 -2.878 -2.848 -2.286 -2.224

0.5 -2.878 -2.816 -2.284 -2.178

0.95 0.95 0.3 -2.878 -2.871 -2.288 -2.267

0.4 -2.878 -2.857 -2.286 -2.238

0.5 -2.878 -2.826 -2.285 -2.192

0.9 0.9 0.3 -2.878 -2.875 -2.288 -2.276

0.4 -2.878 -2.864 -2.287 -2.252

0.5 -2.878 -2.836 -2.285 -2.205

0.85 0.85 0.3 -2.878 -2.877 -2.289 -2.283

0.4 -2.878 -2.870 -2.288 -2.264

0.5 -2.878 -2.845 -2.286 -2.219

0.8 0.8 0.3 -2.878 -2.878 -2.289 -2.287

0.4 -2.878 -2.874 -2.288 -2.274

0.5 -2.878 -2.854 -2.286 -2.233

0.75 0.75 0.3 -2.878 -2.878 -2.289 -2.289

0.4 -2.878 -2.877 -2.288 -2.282

0.5 -2.878 -2.861 -2.270 -2.231

0.7 0.7 0.3 -2.878 -2.878 -2.290 -2.290

0.4 -2.878 -2.878 -2.274 -2.272

0.5 -2.878 -2.867 -2.287 -2.258

1 0.8 0.3 -2.878 -2.876 -2.288 -2.279

0.4 -2.878 -2.865 -2.287 -2.253

0.5 -2.878 -2.835 -2.285 -2.204

0.8 1 0.3 -2.878 -2.872 -2.288 -2.268

0.4 -2.878 -2.860 -2.287 -2.245

0.5 -2.878 -2.834 -2.285 -2.202
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Table 6.2: Critical Values When α = 0.025, α+ = 0.004, α2 = 0.021, r = 0.5 and info=0.5

λsen λspec p c1 c2 b1 b2

1.0 1.0 0.3 -2.878 -2.866 -2.271 -2.240

0.4 -2.878 -2.848 -2.269 -2.210

0.5 -2.878 -2.816 -2.266 -2.164

0.95 0.95 0.3 -2.878 -2.871 -2.272 -2.252

0.4 -2.878 -2.857 -2.270 -2.224

0.5 -2.878 -2.826 -2.266 -2.177

0.9 0.9 0.3 -2.878 -2.875 -2.273 -2.261

0.4 -2.878 -2.864 -2.271 -2.237

0.5 -2.878 -2.836 -2.267 -2.191

0.85 0.85 0.3 -2.878 -2.877 -2.274 -2.268

0.4 -2.878 -2.870 -2.272 -2.249

0.5 -2.878 -2.845 -2.268 -2.205

0.8 0.8 0.3 -2.878 -2.878 -2.274 -2.272

0.4 -2.878 -2.874 -2.273 -2.259

0.5 -2.878 -2.854 -2.269 -2.219

0.75 0.75 0.3 -2.878 -2.878 -2.274 -2.274

0.4 -2.878 -2.877 -2.274 -2.267

0.5 -2.878 -2.861 -2.270 -2.231

0.7 0.7 0.3 -2.878 -2.878 -2.275 -2.275

0.4 -2.878 -2.878 -2.274 -2.272

0.5 -2.878 -2.867 -2.271 -2.243

1 0.8 0.3 -2.878 -2.876 -2.273 -2.264

0.4 -2.878 -2.865 -2.271 -2.239

0.5 -2.878 -2.835 -2.267 -2.189

0.8 1 0.3 -2.878 -2.872 -2.272 -2.254

0.4 -2.878 -2.860 -2.270 -2.231

0.5 -2.878 -2.834 -2.267 -2.188
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6.8 Global and marginal power

The global power is

1− β = P (Reject H0|H1)

= P (Reject H0a or Reject H0+|H1)

= P1(Z(1) < −c1 or Z
(1)
+ < −c2)

+ P1(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z < −b1)

+ P1(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z ≥ −b1, Z+ < −b2)

= p1 + p2a + p2+

where

p1 = P (Reject H0a or Reject H0+ at Stage I|H1)

= P1(Z(1) < −c1 or Z
(1)
+ < −c2),

and

p2a = P (Accept H0 at Stage I and Re ject H0a at Stage IIA |H1)

= P1(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z

(1)
− < c0, Z < −b1).

Power for testing the treatment effect in the overall cohort is

1− βa = P (Re ject H0a|H1)

= P (Re ject H0a at Stage I) +P( Re ject H0a at Stage IIA)

= P1(Z(1) < −c1) + p2a

= p1a + p2a.

Power for testing the treatment effect in the marker-positive cohort is

1− β+ = P (Reject H0+|H1)
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= P (Reject H0+ at Stage I) + P (Reject H0+ at Stage II)

= P1(Z
(1)
+ < −c2) + P1(Z(1) ≥ −c1 , Z

(1)
+ ≥ −c2, Z+ < −b2).

6.9 Sample size calculations

Given the global type I error and power, assuming that we have the estimated prevalence

rate p, sensitivity λsen and specificity λspec from previous studies, the sample size needed to

detect the treatment effect can be found based on the formulas in Section 6.7 and Section

6.8 after we specify the design parameters in these sections.

To be more specific, given the design parameters shown in Section 6.7, we find the

critical values first based on the formulas in Section 6.7. Notice that the critical values are

based on the distributions under null hypothesis and do not depend on the sample size.

Next using these critical values and the formulas shown in Section 6.8, we can determine

the sample size needed to achieve the specified power of specific type (global, overall or

marker positive), through optimization programming algorithms to find the solution and

round up the the nearest integer. R-code is developed to calculate the needed sample size

(the number of events) and results are illustrated in Chapter 7.
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Chapter 7

Numeric examples

.

7.1 Simulation set-up

Consider a total number of subjects N=1000 for both Stage I and Stage II, with a prevalence

rate p (0.3, 0.4, or 0.5) for biomarker positive (S+). Subjects enrollment is expected to

complete in 10 months. Randomization to active treatment T or control treatment C will

be stratified by marker-appeared status with a randomization ratio of r to 1 − r, to T

or C, respectively. After the recruitment is complete, the study will follow-up to interim

analysis time T1 and final analysis time T2. Assume subject recruitment follow a uniform

distribution. Survival times are exponentially distributed.

The null hypothesis is the hazard rates for treatment and control group are equal.

Exponential distributions are assumed to simulate the trials. The hazard rate for treated

in true marker positive S+ group is λ+T , and hazard rate for control treated in true marker

positive S+ group is λ+C . The hazard rates for true marker negative group S− are λ−T

and λ−C .

We consider 9 different combinations of sensitivity and specificity (λsen = λspec = 0.7

to 1.0, λsen = 1 and λspec = 0.8, or λsen = 0.8 and λspec = 1.0), and simulate the trials for

3000 times for each combination of sensitivity and specificity.

The nominal and empirical global type I error rate are shown in Table 7.1. As we can

see from Table 7.1, the empirical type I error rates are close to the nominal type I error rate

0.025, across different prevalence rate (0.3, 0.4, 0.5), different sensitivity λsen and specificity

λspec combinations from 1.0 to 0.7.
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Table 7.1: The Nominal and Empirical Global Type I Error Rate for H0 when λ−T = λ−C =
1/10 and λ+T = λ+C = 1/15, Info=0.5, N=1000, d=750, 3000 runs

Nominal Empirical

λsen λspec p global type I global type I

1.0 1.0 0.3 0.025 0.0250

0.4 0.025 0.0273

0.5 0.025 0.0250

0.95 0.95 0.3 0.025 0.0240

0.4 0.025 0.0273

0.5 0.025 0.0257

0.9 0.9 0.3 0.025 0.0253

0.4 0.025 0.0260

0.5 0.025 0.0270

0.85 0.85 0.3 0.025 0.0270

0.4 0.025 0.0277

0.5 0.025 0.0220

0.8 0.8 0.3 0.025 0.0290

0.4 0.025 0.0287

0.5 0.025 0.0250

0.75 0.75 0.3 0.025 0.0280

0.4 0.025 0.0257

0.5 0.025 0.0250

0.7 0.7 0.3 0.025 0.0253

0.4 0.025 0.0263

0.5 0.025 0.0263

1 0.8 0.3 0.025 0.0263

0.4 0.025 0.0277

0.5 0.025 0.0283

0.8 1 0.3 0.025 0.0267

0.4 0.025 0.0250

0.5 0.025 0.0247
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7.2 Theoretical versus empirical power under different scenarios

The theoretical and empirical global, overall, and positive subgroup power are shown in

Table 7.2.

In this simulation, we use α = 0.025, α+ = 0.004, r = 0.5 to calculate the critical

values. As we can see from Table 7.2, when there is treatment effect only in biomarker

positive cohort and no treatment effect in biomarker negative cohort, the empirical powers

(global power, overall power, and positive cohort power) are close to the corresponding

theoretical powers, across different prevalence rate (0.3, 0.4, 0.5) under different combination

of biomarker sensitivity λsen and specificity λspec (from 1.0 to 0.7). In the current set-up,

since there is no treatment effect in biomarker negative cohort, the overall power is low.

Table 7.2: The Theoretical and Empirical Power when λ−T = λ−C = λ+C = 1/10 and
λ+T = 1/15, Info = 0.5, N=1000, d=750, 3000 runs

Global Power Overall Power Positive Group Power

λsen λspec p Theoretical Empirical Theoretical Empirical Theoretical Empirical

1.0 1.0 0.3 0.772 0.764 0.099 0.094 0.754 0.747

0.4 0.895 0.888 0.233 0.226 0.874 0.869

0.5 0.958 0.954 0.445 0.448 0.936 0.937

0.95 0.95 0.3 0.688 0.685 0.099 0.096 0.660 0.664

0.4 0.849 0.848 0.247 0.255 0.814 0.812

0.5 0.938 0.931 0.481 0.480 0.897 0.895

0.9 0.9 0.3 0.595 0.600 0.097 0.099 0.553 0.559

0.4 0.790 0.789 0.257 0.265 0.732 0.727

0.5 0.910 0.906 0.517 0.530 0.840 0.835

0.85 0.85 0.3 0.495 0.504 0.092 0.098 0.440 0.445

0.4 0.719 0.718 0.262 0.281 0.628 0.623

0.5 0.874 0.886 0.552 0.576 0.755 0.765

0.8 0.8 0.3 0.395 0.409 0.084 0.094 0.331 0.338

0.4 0.634 0.643 0.262 0.281 0.506 0.500

0.5 0.832 0.842 0.583 0.607 0.639 0.632

0.75 0.75 0.3 0.300 0.313 0.073 0.075 0.233 0.246

0.4 0.544 0.563 0.253 0.281 0.376 0.376

0.5 0.786 0.802 0.608 0.641 0.495 0.499

0.7 0.7 0.3 0.213 0.226 0.061 0.064 0.153 0.163

0.4 0.447 0.483 0.235 0.261 0.253 0.267

0.5 0.742 0.761 0.626 0.664 0.340 0.338

1 0.8 0.3 0.558 0.567 0.095 0.096 0.512 0.522

0.4 0.781 0.783 0.259 0.264 0.718 0.723

0.5 0.913 0.917 0.514 0.523 0.846 0.848

0.8 1 0.3 0.674 0.666 0.099 0.098 0.643 0.634

0.4 0.823 0.807 0.252 0.263 0.777 0.762

0.5 0.917 0.913 0.508 0.518 0.855 0.851
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Figures 7.1, 7.2, and 7.3 show the contour plots of power surfaces for global (testing H1),

overall population (testing H1a) and marker-positive population (testing H1+) hypotheses,

respectively, across −0.10 ≥ δ ≥ −0.40 and −0.10 ≥ δ+ ≥ −0.40 by n, p assuming α =

0.025, α1 = 0.004, w+ = p, w− = 1− p, δ = pδ+ + (1− p)δ−, r = 0.5.

The power increases as n, p, λsen, or λspec increases as well. For example, with p = 0.5,

and n = 500, δ = −0.15, and δ+ = −0.4, Figure 7.1.A with λsen = λspec = 1 shows power

70%. However, Figure 7.1.D shows power only about 45%. We also see the λsen has less

impact than λspec in terms of power.

From Figure 7.1, the global power increases with increasing treatment effect for overall

population and positive population (decreasing δ and/or decreasing δ+).

From Figure 7.2, the power for overall population increases with increasing treatment

effect for overall population when treatment effect for positive population is fixed (decreasing

δ).

From Figure 7.3, the power for positive subgroup increases with increasing treatment

effect for positive population (decreasing δ+) but decreases with increasing treatment effect

for overall population (decreasing δ).

Tables 7.3 and 7.4 show the sample size needed to achieve specified global and marginal

power for marker positive subgroup, respectively. To illustrate sample size calculation, with

the same α allocation, λsen = λspec = 0.8, and treatment effects δ = −0.15 (the log-hazard

ratio for the overall cohort), and δ+ = −0.4 (the log-hazard ratio for the marker positive

cohort). For instance, assuming a target of 90% global power for testing H1 when prevalence

is 0.4 and interim analysis is performed at information time of 0.5, a total sample size 2062

is needed (see Table 7.3). If the target of 80% biomarker positive marginal power is needed

for testing H1+ when prevalence is 0.4 and interim analysis is performed at information

time of 0.5, a total sample size of 2043 is needed (see Table 7.4).
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A. For λsen = 1 and λspec = 1 by p and n
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Figure 7.1: Contour plot of global power surface
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B. For λsen = 1 and λspec = 0.8 by p and n
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Figure 7.2: Contour plot of power surface for overall population
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Figure 7.3: Contour plot of power surface for marker positive subgroup
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Table 7.3: Total Sample Size to Achieve Specified Global Power H1 when α = 0.025, α+ =
0.004, r = 0.5, and δ = p log θ+ + (1− p) log θ− = −0.15, δ+ = log θ+ = −0.4.

90% power 80% power

p λsen λspec Info=0.3 Info=0.5 Info=0.3 Info=0.5

0.3 1 1 1399 1385 1061 1049

0.95 0.95 1647 1631 1249 1235

0.9 0.9 1959 1938 1487 1470

0.85 0.85 2356 2331 1794 1772

0.8 0.8 2878 2843 2203 2174

0.75 0.75 3606 3557 2783 2744

0.7 0.7 4730 4667 3702 3649

1 0.8 2094 2071 1591 1572

0.8 1 1695 1679 1286 1272

0.4 1 1 1065 1056 808 800

0.95 0.95 1225 1214 929 919

0.9 0.9 1434 1422 1087 1076

0.85 0.85 1712 1696 1298 1283

0.8 0.8 2085 2062 1582 1563

0.75 0.75 2589 2560 1971 1947

0.7 0.7 3292 3252 2525 2490

1 0.8 1471 1458 1115 1103

0.8 1 1318 1307 999 989

0.5 1 1 839 833 636 630

0.95 0.95 946 938 717 710

0.9 0.9 1090 1080 826 818

0.85 0.85 1287 1276 974 964

0.8 0.8 1559 1544 1177 1165

0.75 0.75 1926 1906 1453 1436

0.7 0.7 2388 2363 1803 1782

1 0.8 1075 1065 815 807

0.8 1 1051 1043 796 788
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Table 7.4: Total Sample Size to Achieve Specified Marginal Power H1+ when α =
0.025, α1 = 0.004, r = 0.5, and δ = p log θ+ + (1− p) log θ− = −0.15, δ+ = log θ+ = −0.4.

90% power 80% power

p λsen λspec Info=0.3 Info=0.5 Info=0.3 Info=0.5

0.3 1 1 1561 1567 1162 1162

0.95 0.95 1947 1983 1428 1438

0.9 0.9 2524 2664 1803 1840

0.85 0.85 3507 4136 2364 2463

0.8 0.8 14594 8538 3258 3561

0.75 0.75 24612 14406 4837 6852

0.7 0.7 40364 23643 30359 17734

1 0.8 2820 3055 1983 2037

0.8 1 2027 2072 1482 1495

0.4 1 1 1116 1107 842 836

0.95 0.95 1318 1311 989 984

0.9 0.9 1606 1616 1194 1196

0.85 0.85 2053 2109 1499 1516

0.8 0.8 2828 3082 1982 2043

0.75 0.75 11111 6687 2825 3056

0.7 0.7 22606 13251 4600 7854

1 0.8 1662 1676 1233 1236

0.8 1 1440 1440 1077 1075

0.5 1 1 855 845 647 641

0.95 0.95 977 968 738 762

0.9 0.9 1151 1143 865 860

0.85 0.85 1416 1420 1054 1055

0.8 0.8 1865 1914 1356 1374

0.75 0.75 2820 3232 1888 1989

0.7 0.7 13913 8240 3094 4084

1 0.8 1133 1125 852 847

0.8 1 1101 1093 830 824
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Chapter 8

Keytruda trial examples

8.1 Misclassification of predictive biomarkers

Immunotherapy is a new paradigm for the treatment of non-small-cell cancer (NSCLC),

and targeting the PD-1/PD-L1 pathway is a promising therapeutic option. Pembrolizumab

is a new immunotherapy that blocks the PD-1 pathway and restores the body’s immune

response against cancer cells and allows the immune system to recognize and kill cancer

cells. We use the KEYNOTE-10 trial as an example to illustrate our method. This was

a (phase 2/3) randomized trial to study Pembrolizumab versus Docetaxel for previously

treated, PD-L1-positive, advance NSCLC patients (Herbst et al., 2016). This trial stratified

qualified subjects by biomarker’s TPS (tumor proportion score ≥50% vs 1-49% ), which

measured the extent of PD-L1 expression, then randomized subjects with 1:1:1 ratio to

three treatment groups within each high and low TPS stratum. The companion diagnostic

assay for PD-L1 expression was the Dako EnVision FLEX+HRP-Polymer kit using the

22C3 antibody clone, which was validated in the phase 1 KEYNOTE-001 trial (Garon

et al., 2015). Here, we use the phase 1 KEYNOTE-001 data as the basis to ”redesign”

the KEYNOTE-10 as an ”imaginary” two-stage stratified trial to illustrate our method.

For illustration, also, since there was no significant difference between the two test doses of

Pembrolizumab, we only look at the Pembrolizumab 2 mg (Pem) versus Docetaxel (Dox),

which is the control/standard-of-care.

From the phase 1 KEYNOTE-001 trial, the prevalence was about 0.39 for TPS <1%,

0.38 for TPS = 1-49%, and 0.23 for TPS ≥50%; λsen = λspec = 0.8. Thus, we estimate

the prevalence rate of the PD-L1 true ”strongly positive” (TPS ≥ 50%) among the PD-

L1 positive (TPS > 1%) NSCLC patients being p ≈ 0.40, the appeared PD-L1 ”strongly

positive” prevalence is q = P (M = ∗) = pλsen + (1 − p)(1 − λspec) = 0.40 × 0.80 + (1 −
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0.40)(1−0.80) = 0.44. Hence PPV = τ = pλsen
pλsen+(1−p)(1−λspec) = pλsen

q = 0.4×0.8
0.44 = 0.73, and

NPV = η =
(1−p)λspec
1−P (M=∗) =

(1−p)λspec
1−q = (1−0.4)×0.8

1−0.44 = 0.86. The real phase 2/3 KEYNOTE-10

trial had both overall survival and progression-free survival (PFS) as primary end-points, We

only use PFS for the ”imaginary” trial for illustration purpose. Suppose that the overall

(one-sided) α = 0.025 and an interim analysis planned at info = 0.5, with α1 = 0.004

allocated for Stage I. As stated in the work of Herbst et al. (2016), the study aimed to show

a benefit of Pem over Dox in PFS in patients with TPS ≥ 50% as well as in the whole

TPS ≥ 1% cohort, so we allocate α1a = α1b = α1
2 = 0.002. Then α2 = 0.021 for Stage II,

an equal amount 0.0105 (= α2/2) of α2 is used for testing treatment effect on the overall

cohort and for testing treatment effect on the PD-L1 strongly positive subset.

From the reports by Herbst et al. (2016), the total enrollment time is 19 months for

688 subjects. We expect a total of 688 × 0.92= 632 PFS events at the end of the trial.

In Stage I, we plan to enroll 70% subjects (13.3 months from the start of the study). A

decision is made at interim analysis T1 (information: info = 0.5, when 316= 632 × 0.5

PFS is expected). If the null hypothesis is accepted at interim analysis, enroll additional

30% subjects in Stage II. After the recruitment is complete, the study will follow-up to

calendar time T2. When the final analysis is performed, the total number of 632 PFS are

observed, with 461 PFS events from Stage I enrolled subjects and 171 PFS events from

Stage II enrolled subjects. The number of PFS events from Stage I and Stage II enrolled

subjects were determined, to make sure the number of events arrives approximately at the

same calendar time.

To illustrate power calculation, we take the treatment effect information from Herbst

et al. (2016). Assume PFS times are exponentially distributed. The hazard rate for treated

S+ group is λ+T = 9.90, and hazard rate for control treated S+ group is λ+C = 5.85. The

hazard rates for marker negative group S− are λ−T = 5.14 and λ−C = 5.85. These de-

sign parameters lead to the critical values (c1, c2, b1, b2) = (−2.878,−2.848,−2.269,−2.211)

when λsen = λspec = 1, and critical values (c1, c2, b1, b2) = (−2.878,−2.874,−2.273,−2.260)

when λsen = λspec = 0.8. With a total of N = 688 patients and prevalence rate p = 0.4,

we expected the power to test global hypothesis H1 to be 97%, the power to test H1+ to

be 97%, and the power to test H1a to be 5.7%, when λsen = λspec = 1. However, when
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λsen = λspec = 0.8, with a total of N = 688 patients and prevalence rate p = 0.4, we

expected the power to test global hypothesis H1 to be 72%, the power to test H1+ to be

70%, and the power to test H1a to be 8.0%.

To illustrate sample size calculation, with the same α allocation, λsen = λspec = 0.8, and

treatment effects δ = the log-hazard ratio (Dox vs Pem) = −0.128 for the overall cohort,

and δ+ = the log-hazard ratio (Dox vs Pem) = −0.528 for the marker positive cohort. Trials

usually aim a power of either 80% or 90% for the marker positive subset. Assuming a target

of 90% power for testing H0+, a total sample size of 1125 is needed. The global power for

the composite hypothesis is 91 %, and the power for the overall cohort is 10%. If the target

of 80% power is for testing H1+, a total sample size of 855 is needed. The global power for

the composite hypothesis H1 is 82 %, and the power for the overall cohort H1a is 9.2%.
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Chapter 9

Methods for biomarker misclassification adjustment

9.1 Design diagram

The following shows the diagram of the two-stage enrichment design based on marker ap-

pearance status.

where Qji is log rank statistics, where i = ∗, φ (marker-appeared positive, appeared neg-

ative) and j =1, 2, 2A, 2B for analysis time/scenarios, M denotes the marker-apppeared

status, t represents the fraction of the total sample size N that is allocated to Stage I, q

is the prevalence rate for biomarker-appeared positive status, and r is the randomization

probability to active treatment group. The definition of Qji can be found in 9.3.2, 9.3.3 and

9.3.4.
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9.2 Difference between observed number of events and expected number

of events in stratas by marker-appeared status

Consider the difference between observed number of death diTk and the expected number

of death EiTk in active treatment group at kth event time in ith marker-appeared strata

(where i = ∗ : marker-appeared positive; i = φ : marker-appeared negative), we have

diTk − EiTk = diTk −
di+kY iTk

Y i+k

.

Let the total number of subjects (including both active treated and control) at risk be

Y ∗+k at kth event time. The estimated variance of d∗Tk − E∗Tk is

V̂ ar(d∗Tk − E∗Tk) = V̂ ar(d∗Tk) =
Y ∗TkY ∗Ckd∗+k(Y ∗+k − d∗+k)

Y
2
∗+k(Y ∗+k − 1)

.

This can be applied to marker-appeared negative cohort as well.

Let Qi be log-rank statistic in ith marker-appeared status strata:

Qi =
K∑
k=1

(diTk −
di+kY iTk

Y i+k

)

where i = ∗, φ. We have

V̂ ar(Qi) =

K∑
k=1

V̂ ar(diTk)

=
K∑
k=1

{
Y iTkY iCkdi+k(Y i+k − di+k)

Y
2
i+k(Y i+k − 1)

}

and under null,

Q2
i√

V̂ ar(Qi)

d→ N(0, 1).
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9.3 Asympototic distribution of adjusted log rank statistics with marker

misclassification

9.3.1 Expected number of events

Consider Stage I enrolled subjects who were in marker-appeared positive group. Let n
(1)
∗+ =

τn
(1)
∗ be expected total number of subjects in marker-appeared positive group with true

marker positive status and n
(1)
∗− = (1 − τ)n

(1)
∗ be expected total number of subjects in

marker-appeared positive group with true marker negative status, where n
(1)
∗ is the expected

number of subjects with marker-appeared positive status.

Similarly, let n
(1)
φ+ = (1−η)n

(1)
φ be expected total number of subjects in marker-appeared

negative group with true marker positive status and n
(1)
φ− = ηn

(1)
φ be expected total number

of subjects in marker-appeared negative group with true marker negative status, where n
(1)
φ

is the expected number of subjects with marker-appeared negative status.

Let n
(1)
i be the expected number of subjects with true ith marker status (i = + for true

marker positive; i = − for true marker negative).

At pre-determined analysis time (index k), let the probability to observe an event in

true marker ith group with jth treatment π
(k)
ij , where i = + for true marker positive; i = 0

for true marker negative; j = T for active treatment; j = C for control treatment; k = 1

for subjects recruited at Stage I at interim analysis time ; k = 2 for subjects recruited at

Stage I at final analysis time ; k = 2A for subjects recruited at Stage II under IIA scenario

at final analysis time; k = 2B for subjects recruited at Stage II under IIB scenario at final

analysis time ; and

π
(k)
i = rπ

(k)
iT + (1− r)π(k)

iC ,

where i = +,−.

Then, the expected number of events at time T1 for marker-appeared positive group is

E(D
(1)
∗ ) = τn

(1)
∗ (rπ

(1)
+T + (1− r)π(1)

+C) + (1− τ)n
(1)
∗ (rπ

(1)
−T + (1− r)π(1)

−C).
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The expected total number of events at time T1 for marker-appeared negative group is

E(D
(1)
φ ) = (1− η)n

(1)
φ (rπ

(1)
+T + (1− r)π(1)

+C) + ηn
(1)
φ (rπ

(1)
−T + (1− r)π(1)

−C).

9.3.2 Adjusted log rank statistics at interim analysis

Let Q
(1)
∗ and Q

(1)
φ be log rank statistics at time of interim analysis for marker-appeared

positive and marker-appeared negative strata, respectively, we have

E(Q
(1)
∗ ) = r(1− r)τn(1)

∗ (rπ
(1)
+T + (1− r)π(1)

+C)(1) log
λ+T

λ+C

+ r(1− r)(1− τ)n
(1)
∗ (rπ

(1)
−T + (1− r)π(1)

−C) log
λ−T
λ−C

, (9.1)

E(Q
(1)
φ ) = r(1− r)(1− η)n

(1)
φ (rπ

(1)
+T + (1− r)π(1)

+C) log
λ+T

λ+C

+ r(1− r)ηn(1)
φ (rπ

(1)
−T + (1− r)π(1)

−C) log
λ−T
λ−C

. (9.2)

From Equations 9.1 and 9.2, we get

r(1− r)n(1)
+ (rπ

(1)
+T + (1− r)π(1)

+C) log
λ+T

λ+C

=
τq + (1− η)(1− q)

q(1− q)
η(1− q)E(Q

(1)
∗ )− (1− τ)qE(Q

(1)
φ )

τ + η − 1
,

r(1− r)n(1)
− (rπ

(1)
−T + (1− r)π(1)

−C) log
λ−T
λ−C

=
(1− τ)q + η(1− q)

q(1− q)
−(1− η)(1− q)E(Q

(1)
∗ ) + τqE(Q

(1)
φ )

τ + η − 1
.

Let

Q
(1)
+ =

τq + (1− η)(1− q)
q(1− q)

η(1− q)Q(1)
∗ − (1− τ)qQ

(1)
φ

τ + η − 1
,

Q
(1)
− =

(1− τ)q + η(1− q)
q(1− q)

−(1− η)(1− q)Q(1)
∗ + τqQ

(1)
φ

τ + η − 1
,

we have

E(Q
(1)
+ ) = r(1− r)n(1)

+ (rπ
(1)
+T + (1− r)π(1)

+C) log
λ+T

λ+C
,
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E(Q
(1)
− ) = r(1− r)n(1)

− (rπ
(1)
−T + (1− r)π(1)

−C) log
λ−T
λ−C

,

and their variances are

V ar(Q
(1)
+ ) =

(
σ

(1)
+

)2

=

(
τq + (1− η)(1− q)
q(1− q)(τ + η − 1)

)2 (
(1− q)2η2V ar(Q

(1)
∗ ) + q2(1− τ)2V ar(Q

(1)
φ )
)
,

V ar(Q
(1)
− )) =

(
σ

(1)
−

)2

=

(
(1− τ)q + η(1− q)
q(1− q)(τ + η − 1)

)2 (
(1− q)2(1− η)2V ar(Q

(1)
∗ ) + q2τ2V ar(Q

(1)
φ )
)
.

Therefore the test statistics Q
(1)
+ and Q

(1)
− , unbiased estimators for the true effects, are

constructed as test statistics to test treatment effects on true marker positive and negative

groups, respectively. This also implies that the adjusted log rank statistic for the overall

population (based on true marker positive group and true marker negative group) at the

interim analysis time T1 is

Q(1) = pQ
(1)
+ /σ

(1)
+ + (1− p)Q(1)

− /σ
(1)
−

with its variance

V ar(Q(1)) = p2+(1−p)2−2p(1−p)(η(1−η)(1−q)2V ar(Q
(1)
∗ )+τ(1−τ)q2V ar(Q

(1)
φ ))/(σ

(1)
+ σ

(1)
− )

The standardized adjusted log rank statistic for the true marker positive group at the

interim analysis T1 is

Z
(1)
+ =

Q
(1)
1√

V ar(Q
(1)
+ )

=
Q

(1)
+

σ
(1)
+

,

where

σ
(1)
+ =

(
τq + (1− η)(1− q)
q(1− q)(τ + η − 1)

)√
(1− q)2η2V ar(Q

(1)
∗ ) + q2(1− τ)2V ar(Q

(1)
φ ).
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The standardized adjusted log rank statistic for true marker negative group at interim

analysis T1 is

Z
(1)
− =

Q
(1)
−√

V ar(Q
(1)
− )

=
Q

(1)
−

σ
(1)
−
,

where

σ
(1)
− =

(
(1− τ)q + η(1− q)
q(1− q)(τ + η − 1)

)√
(1− q)2(1− η)2V ar(Q

(1)
∗ ) + q2τ2V ar(Q

(1)
φ ).

The standardized adjusted log rank statistic for overall population at interim analysis

T1 is

Z(1) =
Q(1)√

V ar(Q(1))
=
Q(1)

σ(1)
=
pZ

(1)
+ + (1− p)Z(1)

−√
p2 + (1− p)2

where

(σ(1))2 = p2+(1−p)2−2p(1−p)(η(1−η)(1−q)2V ar(Q
(1)
∗ )+τ(1−τ)q2V ar(Q

(1)
φ ))/(σ

(1)
+ σ

(1)
0 ).

At interim analysis time T1, a futility criterion (Q
(1)
− ≥ c0) for marker-negative sub-

jects will be used, to decide the enrollment pattern for Stage II, as two mutually exclusive

scenarios IIA and IIB:

Scenario IIA : Enroll full population (both marker-appeared positive and marker-appeared

negative subjects) for the remaining (1− t)N , when Q
(1)
− < c0;

Scenario IIB : Stop enrolling marker-negative subjects and only enroll (1− t)N marker-

appeared positive subjects for Stage II, when Q
(1)
− ≥ c0.

9.3.3 Adjusted log rank statistics at final analysis under Scenario IIA

Scenario IIA : We enroll (1 − t)N marker-unselected subjects, the corresponding test

statistics at the final analysis time t2 are derived as follows.

Let Q
(2)
∗ and Q

(2)
φ be log rank statistics at final analysis T2 for the subjects recruited at
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Stage I:

E(Q
(2)
∗ ) = r(1− r)τn(1)

∗ (rπ
(2)
+T + (1− r)π(2)

+C) log
λ+T

λ+C

+ r(1− r)(1− τ)n
(1)
∗ (rπ

(2)
−T + (1− r)π(2)

−C) log
λ−T
λ−C

, (9.3)

E(Q
(2)
φ ) = r(1− r)(1− η)n

(1)
φ (rπ

(2)
+T + (1− r)π(2)

+C) log
λ+T

λ+C

+ r(1− r)ηn(1)
φ (rπ

(2)
−T + (1− r)π(2)

−C) log
λ−T
λ−C

. (9.4)

From Equations 9.3 and 9.4, we get

r(1− r)n(1)
+ (rπ

(2)
+T + (1− r)π(2)

+C) log
λ+T

λ+C

=
τq + (1− η)(1− q)

q(1− q)
η(1− q)E(Q

(2)
∗ )− (1− τ)qE(Q

(2)
φ )

τ + η − 1
,

r(1− r)n(1)
− (rπ

(2)
−T + (1− r)π(2)

−C) log
λ−T
λ−C

=
(1− τ)q + η(1− q)

q(1− q)
−(1− η)(1− q)E(Q

(2)
∗ ) + τqE(Q

(2)
φ )

τ + η − 1
.

Let

Q
(2)
+ =

τq + (1− η)(1− q)
q(1− q)

η(1− q)Q(2)
∗ − (1− τ)qQ

(2)
φ

τ + η − 1
,

Q
(2)
− =

(1− τ)q + η(1− q)
q(1− q)

−(1− η)(1− q)Q(2)
∗ + τqQ

(2)
φ

τ + η − 1
,

we have

E(Q
(2)
+ ) = r(1− r)n(1)

+ (rπ
(2)
+T + (1− r)π(2)

+C) log
λ+T

λ+C
,

E(Q
(2)
− ) = r(1− r)n(1)

− (rπ
(2)
−T + (1− r)π(2)

−C) log
λ−T
λ−C

.
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and their variances are

V ar(Q
(2)
+ ) =

(
τq + (1− η)(1− q)
q(1− q)(τ + η − 1)

)2 (
(1− q)2η2V ar(Q

(2)
∗ ) + q2(1− τ)2V ar(Q

(2)
φ )
)
,

V ar(Q
(2)
− ) =

(
(1− τ)q + η(1− q)
q(1− q)(τ + η − 1)

)2 (
(1− q)2(1− η)2V ar(Q

(2)
∗ ) + q2τ2V ar(Q

(2)
φ )
)
.

Therefore the test statistics Q
(2)
+ and Q

(2)
− , unbiased estimators for the true effects, are

constructed as test statistics to test treatment effects on true marker positive and negative

groups, respectively, for the subjects enrolled at Stage I at final analysis time T2.

Let Q
(2A)
∗ and Q

(2A)
φ be the log rank statistics at the final analysis time T2 for the

subjects recruited at Stage II, then their expected values are

E(Q
(2A)
∗ ) = r(1− r)τn(2A)

∗ (rπ
(2A)
+T + (1− r)π(2A)

+C ) log
λ+T

λ+C

+ r(1− r)(1− τ)n
(2A)
∗ (rπ

(2A)
−T + (1− r)π(2A)

−C ) log
λ−T
λ−C

, (9.5)

E(Q
(2A)
φ ) = r(1− r)(1− η)n

(2A)
φ (rπ

(2A)
+T + (1− r)π(2A)

+C ) log
λ+T

λ+C

+ r(1− r)ηn(2A)
φ (rπ

(2A)
−T + (1− r)π(2A)

−C ) log
λ−T
λ−C

. (9.6)

From Equations 9.5 and 9.6, we get

r(1− r)n(2A)
+ (rπ

(2A)
+T + (1− r)π(2A)

+C ) log
λ+T

λ+C

=
τq + (1− η)(1− q)

q(1− q)
η(1− q)E(Q

(2A)
∗ )− (1− τ)qE(Q

(2A)
φ )

τ + η − 1
,

r(1− r)n(2A)
− (rπ

(2A)
−T + (1− r)π(2A)

−C ) log
λ−T
λ−C

=
(1− τ)q + η(1− q)

q(1− q)
−(1− η)(1− q)E(Q

(2A)
∗ ) + τqE(Q

(2A)
φ )

τ + η − 1
.

Let

Q
(2A)
+ =

τq + (1− η)(1− q)
q(1− q)

η(1− q)Q(2A)
∗ − (1− τ)qQ

(2A)
φ

τ + η − 1
,
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Q
(2A)
− =

(1− τ)q + η(1− q)
q(1− q)

−(1− η)(1− q)Q(2A)
∗ + τqQ

(2A)
φ

τ + η − 1
,

we have

E(Q
(2A)
+ ) = r(1− r)n(2A)

+ (rπ
(2A)
+T + (1− r)π(2A)

+C ) log
λ+T

λ+C
,

E(Q
(2A)
− ) = r(1− r)n(2A)

− (rπ
(2A)
−T + (1− r)π(2A)

−C ) log
λ−T
λ−C

,

and their variances are

V ar(Q
(2A)
+ ) =

(
τq + (1− η)(1− q)
q(1− q)(τ + η − 1)

)2 (
((1− q)η)2V ar(Q

(2A)
∗ ) + (q(1− τ))2V ar(Q

(2A)
φ )

)
,

V ar(Q
(2A)
− ) =

(
(1− τ)q + η(1− q)
q(1− q)(τ + η − 1)

)2 (
((1− q)(1− η))2V ar(Q

(2A))
∗ + (qτ)2V ar(Q

(2A)
φ )

)
.

Therefore the test statistics Q
(2A)
+ and Q

(2A)
− , unbiased estimators for the true effects, are

constructed as test statistics to test treatment effects on true marker positive and negative

groups, respectively, for subjects enrolled at Stage II under Scenario IIA. This also implies

that, at final analysis time T2, the adjusted log rank statistics and their variances for the

true marker positive group Q+ and true marker negative group Q− can be found

Q+ = Q
(2)
+ +Q

(2A)
+ ,

V ar(Q+) = V ar(Q
(2)
+ ) + V ar(Q

(2A)
+ ),

and

Q− = Q
(2)
− +Q

(2A)
− ,

V ar(Q−) = V ar(Q
(2)
− ) + V ar(Q

(2A)
− ).

The log rank statistic for overall population after misclassification adjustment is

Q = pQ+/σ+ + (1− p)Q−/σ−,
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and its variance

V ar(Q) = p2 + (1− p)2− 2p(1− p)(η(1− η)(1− q)2V ar(Q∗) + τ(1− τ)q2V ar(Qφ))/(σ+σ−).

The standardized adjusted log rank statistic for true marker positive group at final

analysis T2 is

Z+ =
Q+√

V ar(Q+)
=
Q

(2)
+ +Q

(2A)
+

σ+

where

σ2
+ =

(
τq + (1− η)(1− q)
q(1− q)(τ + η − 1)

)2 (
(1− q)2η2V ar(Q

(2)
∗ ) + q2(1− τ)2V ar(Q

(2)
φ )
)

+

(
τq + (1− η)(1− q)
q(1− q)(τ + η − 1)

)2 (
((1− q)η)2V ar(Q

(2A)
∗ ) + (q(1− τ))2V ar(Q

(2A)
φ )

)
.

The standardized adjusted log rank statistic for true marker negative group at final

analysis T2 is

Z− =
Q−√

V ar(Q−)
=
Q−

σ
(1)
−
,

where

σ2
− =

(
(1− τ)q + η(1− q)
q(1− q)(τ + η − 1)

)2 (
(1− q)2(1− η)2V ar(Q

(2)
∗ ) + q2τ2V ar(Q

(2)
φ )
)

+

(
(1− τ)q + η(1− q)
q(1− q)(τ + η − 1)

)2 (
((1− q)(1− η))2V ar(Q

(2A)
∗ ) + (qτ)2V ar(Q

(2A)
φ )

)
.

The standardized adjusted log rank statistic for overall population at final analysis T2:

Z =
Q√

V ar(Q)
=
Q

σ
=
pZ+ + (1− p)Z−

σ
,

where

σ2 = p2 + (1− p)2 − 2p(1− p)(η(1− η)(1− q)2V ar(Q∗) + τ(1− τ)q2V ar(Qφ))/(σ+σ−).
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9.3.4 Adjusted log rank statistics at final analysis under Scenario IIB

1) Construct Log rank Statistics Q
(2B)
+ at Final Analysis

We enroll (1−t)N marker-appeared positive subjects, the corresponding test statistics

at final analysis time T2 are as follows. Let Q
(2B)
∗ be log rank statistic at final analysis

time T2 for the subjects recruited at Stage II under IIB scenario, while Q
(2B)
φ is no

longer available because the futility rule is applied and the marker-appeared negative

stratum is not enrolled. Previously we showed that we can obtain adjusted log rank

statistics at time T2 for true marker positive group for subjects recruited at Stage II

E(Q
(2B)
+ ) = n

(2B)
+ (rπ

(2B)
+T + (1− r)π(2B)

+C ) log
λ+T

λ+C

=
τq + (1− η)(1− q)

q(1− q)
η(1− q)E(Q

(2B)
∗ )− (1− τ)qE(Q

(2B)
φ )

τ + η − 1
,

where Q
(2B)
∗ is observed and Q

(2B)
φ is not observed. Next, a method is shown to

estimate Q
(2B)
φ , then use it to obtain Q

(2B)
+ at the final analysis.

2) Methods to solve Q
(2B)
φ

E(Q
(2B)
φ ) = r(1− r)(1− η)n

(2B)
φ (rπ

(2B)
+T + (1− r)π(2B)

+C ) log
λ+T

λ+C

+ r(1− r)ηn(2B)
φ (rπ

(2B)
−T + (1− r)π(2B)

−C ) log
λ−T
λ−C

• If assuming proportional hazard and exponential distribution, we need π
(2B)
+T ,

π
(2B)
+C , π

(2B)
−T , π

(2B)
−C to estimate Q

(2B)
φ . Similarly, we need π

(2)
+T , π

(2)
+C , π

(2)
−T , π

(2)
−C to

estimate U
(2)
φ (will be presented later).

Needed

Q
(2B)
φ : π

(2B)
+T , π

(2B)
+C , π

(2B)
−T , π

(2B)
−C

U
(2)
φ : π

(2)
+T , π

(2)
+C , π

(2)
−T , π

(2)
−C

• We use method described by Schoenfeld (1983). Denote an accrual period a as

the period during which patients enter the study, and a follow-up period f as
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the period from the end of accrual until the analysis of the data. The proportion

of patients that will survive is the average of the survival curve from Time f

to Time a + f , provided that patients enter the trial at a constant rate. If the

survival is exponentially distributed within each treatment group with the true

marker status, one can estimate the proportion expected to die as π
(k)
ij from

πij = 1− exp

(
− f

λij

)[
1− exp

(
− a

λij

)]/( a

λij

)

where a is accrual time and f is follow-up time.

• Use information from interim analysis time T1, we can obtain a total of 4 equa-

tions

∗T : (1− τ)π
(1)
−T + τπ

(1)
+T = E( d∗Tn∗T

),

∗C : (1− τ)π
(1)
−C + τπ

(1)
+C = E( d∗Cn∗C

),

φT : ηπ
(1)
−T + (1− η)π

(1)
+T = E(

dφT
nφT

),

φC : ηπ
(1)
−C + (1− η)π

(1)
+C = E(

dφC
nφC

),

where each πij is a function of λij by Schoenfeld method, where i = +,−;

j = T,C. Now, we have 4 linear equations to solve 4 unknowns, we can obtain

close form solution for λ+T , λ+C , λ−T , λ−C .

• With λij , we can estimate π
(k)
ij , where k = 2, 2B, since we know the accrual time

and follow-up time for subject enrolled after interim analysis.

• Assume the constant log hazard ratios log
λ+T
λ+C

and log
λ−T
λ−C

, and estimate

them using the information from interim analysis.

log
λ+T

λ+C
=
τq + (1− η)(1− q)

q(1− q)
η(1− q)E(Q

(1)
∗ )− (1− τ)qE(Q

(1)
φ )

τ + η − 1

× 1

n
(1)
+ (rπ

(1)
+T + (1− r)π(1)

+C)
,

log
λ−T
λ−C

=
(1− τ)q + η(1− q)

q(1− q)
−(1− η)(1− q)E(Q

(1)
∗ ) + τqE(Q

(1)
φ )

τ + η − 1
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× 1

n
(1)
− (rπ

(1)
−T + (1− r)π(1)

−C)
.

3) Estimate Q
(2B)
φ

With λij in hand, we can estimate π
(2B)
ij , and then Q

(2B)
φ as follows.

Q
(2B)
φ = n

(2B)
φ {(1− η)

rπ
(2B)
+T + (1− r)π(2B)

+C

n
(1)
+ [rπ

(1)
+T + (1− r)π(1)

+C ]

×A[η(1− q)Q(1)
∗ − (1− τ)qQ

(1)
φ ]

+ η
rπ

(2B)
−T + (1− r)π(2B)

−C

n
(1)
− [rπ

(1)
−T + (1− r)π(1)

−C ]
B[−(1− η)(1− q)Q(1)

∗ + τqQ
(1)
φ ]},

where

A =
τq + (1− η)(1− q)
q(1− q)(τ + η − 1)

,

B =
(1− τ)q + η(1− q)
q(1− q)(τ + η − 1)

.

4) Estimate U
(2)
φ

Apply the same method to estimate π
(2)
ij and the unobserved log rank statistic U

(2)
φ

for marker-appeared negative group at final analysis time under scenario IIB, to

distinguish it from Q
(2)
φ , which is observed under IIA scenario.

U
(2)
φ = n

(1)
φ {(1− η)

rπ
(2)
+T + (1− r)π(2)

+C

n
(1)
+ [rπ

(1)
+T + (1− r)π(1)

+C ]

×A[η(1− q)Q(1)
∗ − (1− τ)qQ

(1)
φ ]

+ η
rπ

(2)
−T + (1− r)π(2)

−C

n
(1)
− [rπ

(1)
−T + (1− r)π(1)

−C ]
B[−(1− η)(1− q)Q(1)

∗ + τqQ
(1)
φ ]}

5) Estimate log rank statistic at final analysis time uner IIB

Finally, under scenario IIB, let Q+ be log rank statistic for marker positive group at
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final analysis time T2. Test statistic Q+ under IIB Scenario is

Q+ = U
(2)
+ +Q

(2B)
+

= Aη(1− q)(Q(2)
∗ +Q

(2B)
∗ )−A(1− τ)q(U

(2)
φ +Q

(2B)
φ )

= Aη(1− q)(Q(2)
∗ +Q

(2B)
∗ )

−A(1− τ)q[E(n
(2B)
φ )η(1− η)(1− q)(

Aπ̂
(2B)
+

n
(1)
+ π̂

(1)
+

−
Bπ̂

(2B)
−

n
(1)
− π̂

(1)
−

)

+ n
(1)
φ η(1− η)(1− q)(

Aπ̂
(2)
+

n
(1)
+ π̂

(1)
+

−
Bπ̂

(2)
−

n
(1)
− π̂

(1)
−

)]Q
(1)
∗

−A(1− τ)q[−(1− η)(1− τ)qA(
E(n

(2B)
φ )π̂

(2B)
+

n
(1)
+ π̂

(1)
+

+
n

(1)
φ π̂

(2)
+

n
(1)
− π̂

(1)
+

)

+ η(1− τ)qB(
E(n

(2B)
φ )π̂

(2B)
+

n
(1)
+ π̂

(1)
+

+
n

(1)
φ π̂

(2)
+

n
(1)
− π̂

(1)
+

)]Q
(1)
φ .

In addition, we have

E(Q+) = E(U
(2)
+ ) + E(Q

(2B)
+ )

= Aη(1− q)(E(Q
(2)
∗ ) + E(Q

(2B)
∗ ))−A(1− τ)q(E(U

(2)
φ ) + E(Q

(2B)
φ ))

= Aη(1− q)(E(Q
(2)
∗ ) + E(Q

(2B)
∗ ))

−A(1− τ)q[n
(2B)
φ η(1− η)(1− q)(

Aπ
(2B)
+

n
(1)
+ π

(1)
+

−
Bπ

(2B)
−

n
(1)
− π

(1)
−

)

+ n
(1)
φ η(1− η)(1− q)(

Aπ
(2)
+

n
(1)
+ π

(1)
+

−
Bπ

(2)
−

n
(1)
− π

(1)
−

)]E(Q
(1)
∗ )

−A(1− τ)q[−(1− η)(1− τ)qA(
n

(2B)
φ π

(2B)
+

n
(1)
+ π

(1)
+

+
n

(1)
φ π

(2)
+

n
(1)
− π

(1)
+

)

+ η(1− τ)qB(
n

(2B)
φ π

(2B)
+

n
(1)
+ π

(1)
+

+
n

(1)
φ π

(2)
+

n
(1)
− π

(1)
+

)]E(Q
(1)
φ ),

V ar(Q+) = V ar(U
(2)
+ ) + V ar(Q

(2B)
+ )

= {Aη(1− q)}2(V ar(Q
(2)
∗ ) + V ar(Q

(2B)
∗ ))

+ {A(1− τ)q[n
(2B)
φ η(1− η)(1− q)(

Aπ
(2B)
+

n
(1)
+ π

(1)
+

−
Bπ

(2B)
−

n
(1)
− π

(1)
−

)
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+ n
(1)
φ η(1− η)(1− q)(

Aπ
(2)
+

n
(1)
+ π

(1)
+

−
Bπ

(2)
−

n
(1)
− π

(1)
−

)]}2V ar(Q(1)
∗ )

+ {A(1− τ)q[−(1− η)(1− τ)qA(
n

(2B)
φ π

(2B)
+

n
(1)
+ π

(1)
+

+
n

(1)
φ π

(2)
+

n
(1)
− π

(1)
+

)

+ η(1− τ)qB(
n

(2B)
φ π

(2B)
+

n
(1)
+ π

(1)
+

+
n

(1)
φ π

(2)
+

n
(1)
− π

(1)
+

)]}2V ar(Q(1)
φ )

− {Aη(1− q)}A(1− τ)q[n
(2B)
φ η(1− η)(1− q)( Aπ

(2B)
1t

n
(1)
+ π

(1)
+

−
Bπ

(2B)
−

n
(1)
− π

(1)
−

)

+ n
(1)
φ η(1− η)(1− q)(

Aπ
(2)
+

n
(1)
+ π

(1)
1t

−
Bπ

(2)
−

n
(1)
− π

(1)
−

)]V ar(Q
(1)
∗ ).

Let σ+ =
√
V ar(Q+), then we have

Z+ =
Q+

σ+
.

9.4 Correlations between standardized adjusted log rank statistics

Let

A =
τq + (1− η)(1− q)
q(1− q)(τ + η − 1)

,

B =
(1− τ)q + η(1− q)
q(1− q)(τ + η − 1)

,

F1 = (1− q)2η2V ar(Q
(1)
∗ ) + q2(1− τ)2V ar(Q

(1)
φ ),

F2 = (1− q)2η2V ar(Q∗) + q2(1− τ)2V ar(Qφ),

G1 = η(1− η)(1− q)2V ar(Q
(1)
∗ ) + τ(1− τ)q2V ar(Q

(1)
φ ),

G2 = η(1− η)(1− q)2V ar(Q∗) + τ(1− τ)q2V ar(Qφ),

H1 = (1− q)2(1− η)2V ar(Q
(1)
∗ ) + q2τ2V ar(Q

(1)
φ ),

H2 = (1− q)2(1− η)2V ar(Q∗) + q2τ2V ar(Qφ),

C1 =
p√

p2 + (1− p)2 − 2p(1− p)G1

,

D1 =
1− p√

p2 + (1− p)2 − 2p(1− p)G1

,



97

C2 =
p√

p2 + (1− p)2 − 2p(1− p)G2

,

D2 =
1− p√

p2 + (1− p)2 − 2p(1− p)G2

,

E = C1C2
σ

(1)
+

σ+
+D1D2

σ
(1)
−
σ−
−ABG1(

C1D2

σ−σ
(1)
1

+
C2D1

σ+σ
(1)
−

),

and

E1 = V ar(Q
(1)
∗ ){η2(1− q)2

− η2(1− q)2(1− τ)q(1− η)[A
n

(2B)
φ (rπ

(2B)
+T + (1− r)π(2B)

+C )

n
(1)
+ (rπ

(1)
+T + (1− r)π(1)

+C)

+A
n

(1)
φ (rπ

(2)
+T + (1− r)π(2)

+C)

n
(1)
+ (rπ

(1)
+T + (1− r)π(1)

+C)
−B

n
(2B)
φ (rπ

(2B)
−T + (1− r)π(2B)

−C )

n
(1)
− (rπ

(1)
−T + (1− r)π(1)

−C)

−B
n

(1)
φ (rπ

(2)
−T + (1− r)π(2)

−C)

n
(1)
− (rπ

(1)
−T + (1− r)π(1)

−C)
]}

+ V ar(Q
(1)
φ )(1− τ)2q2{−(1− τ)q(1− η)[A

n
(2B)
φ (rπ

(2B)
+T + (1− r)π(2B)

+C )

n
(1)
+ (rπ

(1)
+T + (1− r)π(1)

+C)

+A
n

(1)
φ (rπ

(2)
+T + (1− r)π(2)

+C)

n
(1)
+ (rπ

(1)
+T + (1− r)π(1)

+C)
]

+ τqη[B
n

(2B)
φ (rπ

(2B)
−T + (1− r)π(2B)

−C )

n
(1)
− (rπ

(1)
−T + (1− r)π(1)

−C)
−B

n
(1)
φ (rπ

(2)
−T + (1− r)π(2)

−C)

n
(1)
− (rπ

(1)
−T + (1− r)π(1)

−C)
]},

E2 = V ar(Q
(1)
∗ ){−η(1− η)(1− q)2

+ η(1− η)2q(1− q)2(1− τ)[A
n

(2B)
φ (rπ

(2B)
+T + (1− r)π(2B)

+C )

n
(1)
+ (rπ

(1)
+T + (1− r)π(1)

+C)

+A
n

(1)
φ (rπ

(2)
+T + (1− r)π(2)

+C)

n
(1)
+ (rπ

(1)
+T + (1− r)π(1)

+C)
−B

n
(2B)
φ (rπ

(2B)
−T + (1− r)π(2B)

−C )

n
(1)
− (rπ

(1)
−T + (1− r)π(1)

−C)

−B
n

(1)
φ (rπ

(2)
−T + (1− r)π(2)

−C)

n
(1)
− (rπ

(1)
−T + (1− r)π(1)

−C)
]}

+ V ar(Q
(1)
φ )(1− τ)τq2{q(1− τ)(1− η)[A

n
(2B)
φ (rπ

(2B)
+T + (1− r)π(2B)

+C )

n
(1)
+ (rπ

(1)
+T + (1− r)π(1)

+C)
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+A
n

(1)
φ (rπ

(2)
+T + (1− r)π(2)

+C)

n
(1)
+ (rπ

(1)
+T + (1− r)π(1)

+C)
]− qτη[B

n
(2B)
φ (rπ

(2B)
−T + (1− r)π(2B)

−C )

n
(1)
− (rπ

(1)
−T + (1− r)π(1)

−C)

+B
n

(1)
φ (rπ

(2)
−T + (1− r)π(2)

−C)

n
(1)
− (rπ

(1)
−T + (1− r)π(1)

−C)
]}.

The covariance between standardized adjusted log rank statistics for true marker positive

and true marker negative test at interim analysis is

Cov(Z
(1)
+ , Z

(1)
− ) = −

{
AB

(
η(1− η)(1− q)2V ar(Q

(1)
∗ ) + τ(1− τ)q2V ar(Q

(1)
φ )
)}

/σ
(1)
+ σ

(1)
−

= − ABG1

σ
(1)
+ σ

(1)
−
.

The covariance between standardized adjusted log rank statistics for true marker positive

subgroup and overall population at interim analysis is

Cov(Z
(1)
+ , Z(1)) = C1 +D1Cov(Z

(1)
+ , Z

(1)
− ) = C1 −

ABD1G1

σ
(1)
+ σ

(1)
−

.

The covariance between standardized adjusted log rank statistics for true marker nega-

tive subgroup and overall population at interim analysis is

Cov(Z
(1)
− , Z(1)) = D1 + C1Cov(Z

(1)
+ , Z

(1)
− ) = D1 −

ABC1G1

σ
(1)
+ σ

(1)
−

.

The covariance between standardized adjusted log rank statistics for true marker positive

subgroup and true marker negative subgroup at final analysis time is

Cov(Z+, Z−) = −AB
{(
η(1− η)(1− q)2V ar(Q∗) + τ(1− τ)q2V ar(Qφ)

)}
/σ+σ−

= −ABG2

σ+σ−
.

The covariance between standardized adjusted log rank statistics for true marker positive

subgroup and overall population at final analysis time is

Cov(Z+, Z) = C2 +D2Cov(Z1, Z0)
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= C2 −
ABD2G2

σ+σ−
.

The covariance between standardized adjusted log rank statistics for true marker nega-

tive subgroup and overall population at final analysis time is

Cov(Z−, Z) = D2 + C2Cov(Z+, Z−)

= D2 −
ABC2G2

σ+σ−
.

The covariance between standardized adjusted log rank statistics for true marker nega-

tive subgroup (interim) and true marker negative subgroup (final) is

Cov(Z−, Z
(1)
− ) = σ

(1)
− /σ−.

The covariance between standardized adjusted log rank statistics for true marker positive

subgroup (interim) and true marker positive subgroup (final) is

Cov(Z+, Z
(1)
+ ) = σ

(1)
+ /σ+.

The covariance between standardized adjusted log rank statistics for true marker positive

subgroup (interim) and overall population (final) is

Cov(Z,Z
(1)
+ ) = C2Cov(Z+, Z

(1)
+ ) +D2Cov(Z−, Z

(1)
+ )

= C2
σ

(1)
+

σ+
− ABD2G1

σ0σ
(1)
+

.

The covariance between standardized adjusted log rank statistics for true marker nega-

tive subgroup (interim) and overall population (final) is

Cov(Z,Z
(1)
− ) = C2Cov(Z+, Z

(1)
− ) +D2Cov(Z−, Z

(1)
− )

= −ABC2G1

σ+σ
(1)
−

+D2σ
(1)
− /σ−.

The covariance between standardized adjusted log rank statistics for true marker positive
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subgroup (interim) and marker negative subgroup (final) is

Cov(Z−, Z
(1)
+ ) = −AB

{
η(1− η)(1− q)2V ar(Q

(1)
∗ ) + q2(1− τ)τV ar(Q

(1)
φ )
}
/σ−σ

(1)
1

=
−ABG1

σ−σ
(1)
+

.

The covariance between standardized adjusted log rank statistics for true marker nega-

tive subgroup (interim) and marker positive subgroup (final) is

Cov(Z+, Z
(1)
− ) = −AB

{
η(1− η)(1− q)2V ar(Q

(1)
∗ ) + q2(1− τ)τV ar(Q

(1)
φ )
}
/σ+σ

(1)
0

=
−ABG1

σ+σ
(1)
−

.

The covariance between standardized adjusted log rank statistics for overall population

(interim) and marker positive subgroup (final) is

Cov(Z+, Z
(1)) = C1Cov(Z+, Z

(1)
+ ) +D1Cov(Z+, Z

(1)
− )

= C1
σ

(1)
+

σ+
− ABD1G1

σ1σ
(1)
−

.

The covariance between standardized adjusted log rank statistics for overall population

(interim) and marker negative subgroup (final) is

Cov(Z−, Z
(1)) = C1Cov(Z−, Z

(1)
+ ) +D1Cov(Z−, Z

(1)
− )

=
−ABC1G1

σ−σ
(1)
+

+D1
σ

(1)
0

σ−
.

The covariance between standardized adjusted log rank statistics for overall population

(interim) and overall population (final) is

Cov(Z,Z(1)) = Cov(
pZ+ + (1− p)Z−

σ
,
pZ

(1)
+ + (1− p)Z(1)

−
σ(1)

)

= C1C2
σ

(1)
+

σ+
+D1D2

σ
(1)
0

σ−
−ABG1(

C1D2

σ−σ
(1)
+

+
C2D1

σ+σ
(1)
−

).

The covariance between standardized adjusted log rank statistics for true marker positive
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under IIB and true marker positive test statistics at interim analysis is

Cov(Z+, Z
(1)
+ ) =

E1

σ
(1)
+ σ+

.

The covariance between standardized adjusted log rank statistics for true marker positive

under IIB and true marker negative test statistics at interim analysis is

Cov(Z+, Z
(1)
− ) =

E2

σ
(1)
− σ+

.

The covariance between standardized adjusted log rank statistics for true marker positive

subgroup under IIB scenario and overall population at interim analysis is

Cov(Z+, Z
(1)) = C1Cov(Z+, Z

(1)
+ ) +D1Cov(Z+, Z

(1)
− )

=
C1E1

σ
(1)
+ σ1

+
D1E2

σ
(1)
− σ1

.

In summary, the correlation matrix for standardized adjusted log rank statistics is

Cov

((
Z(1), Z

(1)
+ , Z

(1)
− , Z, Z+, Z+

)T)
=

1 C1 − ABD1G1

σ
(1)
+ σ

(1)
−

D1 − ABC1G1

σ
(1)
+ σ

(1)
−

E C1
σ
(1)
+

σ+
− ABD1G1

σ+σ
(1)
−

C1E1

σ
(1)
+ σ+

+ D1E2

σ
(1)
− σ+

1 −ABG1

σ
(1)
+ σ

(1)
−

C2
σ
(1)
+

σ+
− ABD2G1

σ−σ
(1)
+

σ
(1)
+ /σ+

E1

σ
(1)
+ σ+

1 −ABC2G1

σ+σ
(1)
−

+D2σ
(1)
− /σ−

−ABG1

σ+σ
(1)
−

E2

σ
(1)
− σ+

1 C2 − ABD2G2

σ+σ−
∗

1 ∗
1


9.5 Asympototic distribution of test statistics under alternative

Given t,N, p, λsen, λspec, then q, τ, η are fixed. Under the alternative, given π
(1)
+ , π

(2)
+ , π̃+,

π
(1)
− , π

(2)
− , π̃−, and π

(2b)
+ , and the assumptions of proportional hazard log θ+ = log

λ+T
λ+C

, and

log θ− = log
λ−T
λ−C

. Asymptotically, we have

Z
(1)
+ ∼ AN(

√
tNr(1− r)

π
(1)
+ log θ+√

m1
, 1) , (9.7)



102

Z
(1)
− ∼ AN(

√
tNr(1− r)

π
(1)
− log θ−√

m0
, 1),

Z(1) ∼ AN(

√
tNr(1− r){pπ(1)

+ log θ+/
√
m1 + (1− p)π(1)

− log θ−/
√
m0}√

p2 + (1− p)2 − 2p(1− p)m2/
√
m1m0

, 1)

Z+ ∼ AN(
√
Nr(1− r)

tπ
(2)
+ + (1− t)π̃+√

m3
log θ+, 1) ,

Z− ∼ AN(
√
Nr(1− r)

tπ
(2)
− + (1− t)π̃−√

m4
log θ−, 1),

Z ∼ AN(

√
Nr(1− r){p[tπ(2)

+ + (1− t)π̃+] log θ+√
m3

+ (1− p)[tπ(2)
− + (1− t)π̃−] log θ−√

m4
}√

p2 + (1− p)2 − 2p(1− p)m5/
√
m3m4

, 1),

Z+ ∼ N(
√
r(1− r)

tNπ
(2)
+ log θ1 + (1− t)Nπ(2B)

+ log θ+/q

A
√
m6

, 1),

where

m1 = η2(1− q)2{τqπ(1)
+ + (1− τ)qπ

(1)
− }A2 + (1− τ)2q2{(1− η)(1− q)π(1)

+

+ η(1− q)π(1)
− }A2,

m0 = (1− η)2(1− q)2{τqπ(1)
+ + (1− τ)qπ

(1)
− }B2 + τ2q2{(1− η)(1− q)π(1)

+

+ η(1− q)π(1)
− }B2,

m2 = ABη(1− η)(1− q)2{r(1− r)tN [τqπ
(1)
+ +AB(1− τ)qπ

(1)
− ]}

+ τ(1− τ)q2{r(1− r)tN [(1− η)(1− q)π(1)
+ + η(1− q)π(1)

− ]},

m3 = A2η2(1− q)2{t[τqπ(2)
+ + (1− τ)qπ

(2)
− ] + (1− t)[τqπ̃1t + (1− τ)qπ̃−]}

+A2(1− τ)2q2{t[(1− η)(1− q)π(2)
+ + η(1− q)π(2)

− ]

+ (1− t)[(1− η)(1− q)π̃1t + η(1− q)π̃−]},

m4 = B2(1− η)2(1− q)2{t[τqπ(2)
+ + (1− τ)qπ

(2)
− ] + (1− t)[τqπ̃+ + (1− τ)qπ̃−]}

+B2τ2q2{t[(1− η)(1− q)π(2)
+ + η(1− q)π(2)

− ]

+ (1− t)[(1− η)(1− q)π̃+ + η(1− q)π̃−]},

m5 = ABη(1− η)(1− q)2r(1− r){tN [τqπ
(2)
+ + (1− τ)qπ

(2)
− ] + (1− t)N [τqπ̃+

+ (1− τ)qπ̃−]}

+ABτ(1− τ)q2r(1− r){tN [(1− η)(1− q)π(2)
+ + η(1− q)π(2)

− ]

+ (1− t)N [(1− η)(1− q)π̃+ + η(1− q)π̃−]},
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m6 = η2(1− q)2 ([τqπ
(2B)
+ + (1− τ)qπ

(2B)
− ](1− t)N/q + [τqπ

(2)
+ + (1− τ)qπ

(2)
− ]tN)

+ (1− τ)2q2{A(
N(1− t)(1− q)π(2B)

+

qn
(1)
+ π

(1)
+

+
n

(1)
φ π

(2)
+

n
(1)
+ π

(1)
+

)(1− η)η(1− q)

−B(
n

(2B)
φ π

(2B)
−

n
(1)
− π

(1)
−

+
n

(1)
φ π

(2)
−

n
(1)
− π

(1)
−

)(1− q)(1− η)η}2tN [τqπ
(1)
+ + (1− τ)qπ

(0)
+ ]

+ (1− τ)2q2{−(1− η)(1− τ)qA(
N(1− t)(1− q)π(2B)

+

qn
(1)
+ π

(1)
+

+
n

(1)
φ π

(2)
+

n
(1)
+ π

(1)
+

)

+ ηqτB(
n

(2B)
φ π

(2B)
−

n
(1)
− π

(1)
−

+
n

(1)
φ π

(2)
−

n
(1)
− π

(1)
−

)}2tN [(1− η)(1− q)π(1)
+ + η(1− q)π(0)

+ ]

− η(1− q)(1− τ)q{A(
N(1− t)(1− q)π(2B)

+

qn
(1)
+ π

(1)
+

+
n

(1)
φ π

(2)
+

n
(1)
+ π

(1)
+

)(1− η)η(1− q)

−B(
n

(2B)
φ π

(2B)
−

n
(1)
− π

(1)
−

+
n

(1)
φ π

(2)
−

n
(1)
− π

(1)
−

)(1− q)(1− η)η}2tN [τqπ
(1)
+ + (1− τ)qπ

(0)
+ ].

9.6 Type I error α allocation and critical values

For our two-stage enrichment design, we split the overall alpha (e.g, α = 0.025) between the

two stages, following a similar method described by Lin et al. (2019). In Stage I, a fraction

of the overall alpha, α1, is allocated to test the global hypothesis H0, we have

α1 = P (Reject H0|H0)

= P0(Z(1) < −c1 or Z
(1)
+ < −c2)

= P0(Z(1) < −c1) + P0(Z(1) ≥ −c1 or Z
(1)
+ < −c2)

= α1a + α1b.

The critical value c1 is obtained by allocating a portion α1a of α1 for testing H0a, then c2

can be solved for testing H0+ in the above equation.

For Stage II, the overall alpha is left with α − α1, to be used between the mutually

exclusive Scenarios IIA and IIB. We allocate α2, a fraction of α − α1, for the tests in

scenario IIA and the rest α2∗ = α− α1 − α2 for scenario IIB,

α− α1 = P (Accept H0 at Stage I, Reject H0 at Stage II in case of IIA )
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+ P (Accept H0 at Stage I, Reject H0+ at Stage II in case of IIB )

= α2 + α2∗.

A futility criterion for marker-negative subjects will be used to determine α2 and α2∗. This

is done through a pre-specified threshold value c0 for the test statistic Z
(1)
− through futility

probability Fp = P0(Z
(1)
− ≥ c0). For example, if we want the futility probability to be 75%

(50%), then from P0(Z
(1)
− ≥ c0) = 0.75 (0.50) , c0 = −0.6745 (0.0).

In case of scenario IIA, the test treatment passes the pre-defined futility threshold value

c0, Z
(1)
− < c0. The study is continued with both marker-status cohorts and test H0 at Stage

II. The alpha is controlled by

α2 = P (Accept H0 at Stage I, Reject H0 at Stage II in case of IIA )

= P0(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z

(1)
− < c0, Z < −b1)

+ P0(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z

(1)
− < c0, Z ≥ −b1, Z+ < −b2)

= α2a + (α2 − α2a).

That is, the critical value b1 is obtained by allocating a portion α2a of α2, for testing H0a.

Then b2 can be solved for testing H0+ in the above equation.

In case of scenario IIB, the test treatment is futile on marker-negative group, i.e.,

Z
(1)
− ≥ c0. The study is continued with enriching marker-positive group. We test only

H0+ at final analysis time under scenario IIB. The alpha is controlled by

α2∗ = P (Accept H0 at Stage I, Reject H0+ at Stage II in case of IIB )

= P0(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z

(1)
− ≥ c0, Z+ < −b3).

with the critical value b3 solved numerically using the correlation matrix.

The strategy to allocating α to either IIA or IIB is an important design consideration

(Lin et al., 2019). To utilize full α in both IIA and IIB scenarios, we split α− α1 into IIA

and IIB as follows. Since the trial will only be in one scenario or the other, it would be

ideal to maximize the α in both scenarios. Toward this end, we can first rewrite α2 and
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α2∗, respectively, as

α2 = [P0(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z < −b1)|Z(1)

− < c0)

+ P0(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z ≥ −b1, Z+ < −b2)|Z(1)

− < c0]P0(Z
(1)
− < c0)

and

α2∗ = P0(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z+ < −b3|Z(1)

− ≥ c0)P0(Z
(1)
− ≥ c0).

Next, if we split α−α1 into IIA and IIB with the same proportion as the odds of P0(Z
(1)
0 <

c0) to P0(Z
(1)
− ≥ c0), ie,

α2

α2∗
=
P0(Z

(1)
− < c0)

P0(Z
(1)
− ≥ c0)

=
1−Fp
Fp

then we have

α− α1 = [P0(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z < −b1)|Z(1)

− < c0)

+ P0(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z ≥ −b1, Z+ < −b2)|Z(1)

− < c0]

and

α− α1 = P0(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z+ < −b3|Z(1)

− ≥ c0).

This indicates that with the above alpha allocation strategy, the corresponding conditional

type I error is α − α1 for either IIA or IIB. When the odds of nonfutility versus futility

P0(Z
(1)
− <c0)

P0(Z
(1)
− ≥c0)

is predetermined, the critical values can be calculated.

Tables 9.1 and 9.2 (information time is 0.3 and 0.5, respectively) show the critical values

for some commonly used situations. When the prevalence rate p, λsen , and λspec are fixed,

changing information time form 0.3 to 0.5 does not change the critical value for overall

population (c1) and for marker-positive population (c2) at interim analysis, but change the

critical values for overall population (b1) and for marker-positive population (b2) under IIA

and the critical values for marker-positive population (b3) under IIB at final analysis time.
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Table 9.1: Critical Values When α = 0.025, α+ = 0.004, α2 = 0.021, r = 0.5,Fp = 0.5

λsen λspec Info p c1 c2 b1 b2 b3

1.0 1.0 0.3 0.3 -2.878 -2.866 -2.517 -2.251 -2.023

0.4 -2.878 -2.848 -2.507 -2.216 -2.021

0.5 -2.878 -2.816 -2.488 -2.165 -2.019

0.95 0.95 0.3 0.3 -2.878 -2.871 -2.517 -2.214 -2.070

0.4 -2.878 -2.857 -2.505 -2.183 -2.047

0.5 -2.878 -2.826 -2.484 -2.132 -2.041

0.9 0.9 0.3 0.3 -2.878 -2.875 -2.517 -2.166 -2.171

0.4 -2.878 -2.864 -2.504 -2.141 -2.097

0.5 -2.878 -2.836 -2.476 -2.090 -2.072

0.85 0.85 0.3 0.3 -2.878 -2.877 -2.517 -2.108 -2.262

0.4 -2.878 -2.870 -2.502 -2.088 -2.165

0.5 -2.878 -2.845 -2.473 -1.955 -2.106

0.8 0.8 0.3 0.3 -2.878 -2.878 -2.517 -2.036 -2.289

0.4 -2.878 -2.874 -2.500 -2.022 -2.232

0.5 -2.878 -2.854 -2.462 -1.857 -2.150

0.75 0.75 0.3 0.3 -2.878 -2.878 -2.518 -1.952 -2.289

0.4 -2.878 -2.877 -2.498 -1.944 -2.275

0.5 -2.878 -2.861 -2.446 -1.742 -2.193

0.7 0.7 0.3 0.3 -2.878 -2.878 -2.519 -1.860 -2.288

0.4 -2.878 -2.878 -2.498 -1.857 -2.284

0.5 -2.878 -2.867 -2.424 -1.615 -2.229

1 0.8 0.3 0.3 -2.878 -2.876 -2.517 -2.144 -2.270

0.4 -2.878 -2.865 -2.503 -2.131 -2.156

0.5 -2.878 -2.835 -2.481 -2.038 -2.046

0.8 1 0.3 0.3 -2.878 -2.872 -2.517 -2.209 -2.067

0.4 -2.878 -2.860 -2.505 -2.167 -1.910

0.5 -2.878 -2.834 -2.482 -2.051 -2.094
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Table 9.2: Critical Values When α = 0.025, α+ = 0.004, α2 = 0.021, r = 0.5,Fp = 0.5

λsen λspec Info p c1 c2 b1 b2 b3

1.0 1.0 0.5 0.3 -2.878 -2.866 -2.509 -2.234 -2.016

0.4 -2.878 -2.848 -2.503 -2.196 -2.012

0.5 -2.878 -2.816 -2.489 -2.142 -2.009

0.95 0.95 0.5 0.3 -2.878 -2.871 -2.510 -2.183 -2.056

0.4 -2.878 -2.857 -2.503 -2.150 -2.038

0.5 -2.878 -2.826 -2.485 -2.095 -2.034

0.9 0.9 0.5 0.3 -2.878 -2.875 -2.511 -2.118 -2.142

0.4 -2.878 -2.864 -2.502 -2.090 -2.084

0.5 -2.878 -2.836 -2.481 -2.033 -2.066

0.85 0.85 0.5 0.3 -2.878 -2.877 -2.511 -2.035 -2.232

0.4 -2.878 -2.870 -2.502 -2.013 -2.145

0.5 -2.878 -2.845 -2.473 -1.955 -2.106

0.8 0.8 0.5 0.3 -2.878 -2.878 -2.512 -1.932 -2.274

0.4 -2.878 -2.874 -2.501 -1.915 -2.208

0.5 -2.878 -2.854 -2.462 -1.857 -2.150

0.75 0.75 0.5 0.3 -2.878 -2.878 -2.512 -1.811 -2.279

0.4 -2.878 -2.877 -2.500 -1.798 -2.255

0.5 -2.878 -2.861 -2.446 -1.742 -2.193

0.7 0.7 0.5 0.3 -2.878 -2.878 -2.512 -1.670 -2.280

0.4 -2.878 -2.878 -2.500 -1.665 -2.270

0.5 -2.878 -2.867 -2.424 -1.615 -2.229

1 0.8 0.5 0.3 -2.878 -2.876 -2.511 -2.087 -2.235

0.4 -2.878 -2.865 -2.502 -2.077 -2.115

0.5 -2.878 -2.835 -2.481 -2.038 -2.046

0.8 1 0.5 0.3 -2.878 -2.872 -2.510 -2.176 -2.071

0.4 -2.878 -2.860 -2.503 -2.125 -2.083

0.5 -2.878 -2.834 -2.482 -2.051 -2.094

9.7 Global and marginal power

The global power is

1− β = P (Reject H0|H1)

= P (Reject H0a or Reject H0+|H1)
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= P1(Z(1) < −c1 or Z
(1)
+ < −c2)

+ P1(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z

(1)
− < c0, Z < −b1)

+ P1(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z

(1)
− < c0, Z ≥ −b1, Z+ < −b2)

+ P1(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z

(1)
− ≥ c0, Z+ < −b3)

= p1 + p2a + p2+ + p2+,

where

p1 = P (Reject H0a or Reject H0+ at Stage I|H1)

= P1(Z(1) < −c1 or Z
(1)
+ < −c2),

p2a = P (Accept H0 at Stage I and Reject H0a at Stage IIA |H1)

= P1(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z

(1)
− < c0, Z < −b1),

p2+ = P (Accept H0 at Stage I, Accept H0a at Stage IIA but Reject H0+ at Stage IIA |H1)

= P1(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z

(1)
− < c0, Z ≥ −b1, Z+ < −b2),

p2+ = P (Accept H0 at Stage I and Reject H0+ at Stage IIB |H1)

= P1(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z

(1)
− ≥ c0, Z+ < −b3),

and P1(·) is the probability under alternative.

Power for testing the treatment effect in the overall cohort is

1− βa = P (Reject H0a|H1)

= P (Reject H0a at Stage I) +P(Reject H0a at Stage IIA)

= P1(Z(1) < −c1) + p2a

= p1a + p2a.
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Power for testing the treatment effect in the marker-positive cohort is:

1− β+ = P (Reject H0+|H1)

= P (Reject H0+ at Stage I) + P (Reject H0+ at IIA) + P (Reject H0+ at IIB)

= P1(Z
(1)
+ < −c2) + P1(Z(1) ≥ −c1 , Z

(1)
+ ≥ −c2, Z

(1)
− < c0, Z+ < −b2)

+ P1(Z(1) ≥ −c1 , Z
(1)
+ ≥ −c2, Z

(1)
− ≥ c0, Z+ < −b3).

9.8 Sample size calculations

Similar to Section 6.9, given the global type I error and power, assuming that we have

the estimated prevalence rate p, sensitivity λsen and specificity λspec from previous studies,

the sample size need to detect the treatment effect can be found based on the formulas in

Section 9.6 and Section 9.7 after we specify the design parameters in these sections.

To be more specific, given the design parameters shown in Section 9.6, we find the

critical values first based on the formulas in Section 9.6. Notice that the critical values are

based on the distributions under null hypothesis and do not depend on the sample size.

Next using these critical values and the formulas shown in Section 9.7, we can determine

the sample size needed to achieve the specified power of specific type (global, overall or

marker positive), through optimization programming algorithms to find the solution and

round up the the nearest integer. R-code is developed to calculate the needed sample size

(the number of events) and results are illustrated in chapter 10.
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Chapter 10

Numeric examples

10.1 Simulation set-up

Considera total number of subjects N=1000 for both Stage I and Stage II, with a prevalence

rate p (0.3, 0.4, or 0.5) for biomarker positive (S+). Randomization to active treatment T

or control treatment C will be stratified by marker-appeared status with a randomization

ratio of (r to 1 − r, to T or C, respectively). In Stage I, we plan to enroll tN (t = 0.7)

subjects (i.e., 7 months from the start of the study). A decision is made at interim analysis

T1 (information: info = 0.5), to continue enrolling biomarker-unselected subjects (under

scenario IIA) or to enroll only biomarker-appeared positive subjects under scenario IIB,

with a plan to enroll additional (1 − t)N subjects in Stage II. After the recruitment is

complete, the study will follow-up to time T2, when the final analysis is performed (the

total number of events are observed, with pre-specified events from Stage I enrolled subjects

and pre-specified events from Stage II enrolled subjects being observed). Assume subject

recruitment follow a uniform distribution. Survival times are exponentially distributed.

The null hypothesis is the hazard rates for treatment and control group are equal.

Exponential distributions are assumed to simulate the trials. The hazard rate for treated

true marker positive S+ group is λ+T , and hazard rate for control treated true marker

positive S+ group is λ+C . The hazard rates for true marker negative group S− are λ−T

and λ−C .

We consider 9 different combinations of sensitivity and specificity (λsen = λspec = 0.7

to 1.0, λsen = 1 and λspec = 0.8, or λsen = 0.8 and λspec = 1.0), and simulate the trials for

3000 times for each combination of sensitivity and specificity.

The nominal and empirical global type I error are shown in Table 10.1. As we can see
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from table 10.1, the empirical type I errors are close to the nominal type I error 0.025,

across different prevalence rate (0.3, 0.4, 0.5), different sensitivity λsen and specificity λspec

combinations from 1.0 to 0.7.

Table 10.1: The Nominal and Observed Type I Error for H0 when λ−T = λ−C = 1/10 and
λ+T = λ+C = 1/15, Info=0.5, N=1000, d=750, 3000 runs

Nominal Empirical
λsen λspec p global type I global type I
1.0 1.0 0.3 0.025 0.0173

0.4 0.025 0.0163
0.5 0.025 0.0210

0.95 0.95 0.3 0.025 0.0157
0.4 0.025 0.0167
0.5 0.025 0.0173

0.9 0.9 0.3 0.025 0.0200
0.4 0.025 0.0143
0.5 0.025 0.0143

0.85 0.85 0.3 0.025 0.0233
0.4 0.025 0.0187
0.5 0.025 0.0170

0.8 0.8 0.3 0.025 0.0203
0.4 0.025 0.0203
0.5 0.025 0.0177

0.75 0.75 0.3 0.025 0.0227
0.4 0.025 0.0220
0.5 0.025 0.0207

0.7 0.7 0.3 0.025 0.0240
0.4 0.025 0.0210
0.5 0.025 0.0190

1 0.8 0.3 0.025 0.0153
0.4 0.025 0.0160
0.5 0.025 0.0180

0.8 1 0.3 0.025 0.0203
0.4 0.025 0.0197
0.5 0.025 0.0170

10.2 Theoretical vs. empirical power under different scenarios

The theoretical and empirical global, overall, and marker positive subgroup powers are

shown in Table 10.2. In this simulation, we use α = 0.025, α+ = 0.004, r = 0.5 to calculate



112

the critical values. As we can see from Table 10.2, when there is treatment effect only

in biomarker positive cohort and no treatment effect in biomarker negative cohort, the

empirical powers (global power, overall power, and positive cohort power) are close to

the corresponding theoretical powers, across different prevalence rate (0.3, 0.4, 0.5) under

different combination of biomarker sensitivity λsen and specificity λspec (from 1.0 to 0.7).

In the current set-up, since there is no treatment effect in biomarker negative cohort, the

overall power is low.

Table 10.2: The Theoretical and Empirical Power when λ−T = λ−C = λ+C = 1/10 and
λ+T = 1/15,Fp = 0.5, Info = 0.5, N=1000, d=750, 3000 runs

Global Power Full cohort Power Positive Cohort Power

λsen λspec p Theoretical Empirical Theoretical Empirical Theoretical Empirical

1.0 1.0 0.3 0.842 0.851 0.066 0.061 0.829 0.841

0.4 0.925 0.930 0.163 0.150 0.907 0.916

0.5 0.967 0.969 0.320 0.301 0.947 0.950

0.95 0.95 0.3 0.766 0.786 0.066 0.063 0.746 0.771

0.4 0.886 0.897 0.171 0.159 0.858 0.873

0.5 0.950 0.958 0.343 0.334 0.916 0.926

0.9 0.9 0.3 0.676 0.686 0.064 0.065 0.649 0.661

0.4 0.834 0.838 0.177 0.171 0.792 0.803

0.5 0.925 0.936 0.363 0.355 0.868 0.878

0.85 0.85 0.3 0.572 0.580 0.059 0.060 0.539 0.548

0.4 0.768 0.784 0.178 0.182 0.709 0.734

0.5 0.889 0.910 0.379 0.375 0.802 0.824

0.8 0.8 0.3 0.446 0.431 0.053 0.054 0.408 0.395

0.4 0.688 0.710 0.174 0.180 0.610 0.639

0.5 0.842 0.872 0.386 0.401 0.713 0.733

0.75 0.75 0.3 0.294 0.282 0.046 0.046 0.256 0.244

0.4 0.589 0.605 0.164 0.177 0.493 0.509

0.5 0.778 0.826 0.385 0.396 0.599 0.647

0.7 0.7 0.3 0.184 0.183 0.038 0.040 0.149 0.144

0.4 0.460 0.474 0.149 0.158 0.350 0.361

0.5 0.698 0.762 0.385 0.395 0.463 0.524

1 0.8 0.3 0.610 0.620 0.062 0.060 0.581 0.593

0.4 0.817 0.824 0.178 0.174 0.774 0.785

0.5 0.925 0.940 0.362 0.356 0.871 0.882

0.8 1 0.3 0.775 0.789 0.066 0.064 0.754 0.767

0.4 0.875 0.887 0.174 0.169 0.842 0.859

0.5 0.938 0.947 0.359 0.359 0.888 0.896
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Figures 10.1, 10.2, and 10.3 show the contour plots of power surfaces for global (test-

ing H1), overall population (testing H1a) and marker-positive population (testing H1+)

hypotheses, respectively, across −0.10 ≥ δ ≥ −0.40 and −0.10 ≥ δ+ ≥ −0.40 by n, p

assuming α = 0.025, α1 = 0.004, w+ = p, w− = 1 − p, δ = pδ+ + (1 − p)δ−, r = 0.5. The

power increases as n, p, λsen, or λspec increases as well. For example, with p = 0.5 and

n = 500, δ = −0.15, and δ+ = −0.4, Figure 10.1.A with λsen = λspec = 1 shows global

power of 75%; however, Figure 10.1.D shows global power only about 50%. We also see

the λsen has less impact than λspec on the global power. In addition, from Figure 10.1, the

global power increases with increasing treatment effects for overall population and marker

positive population (decreasing δ and/or decreasing δ+).

From Figure 10.2, the power for overall population increases with increasing treatment

effect for overall population when treatment effect for positive population is fixed (decreasing

δ).

From Figure 10.3, the power for positive subgroup increases with increasing treatment

effect for positive population (decreasing δ+) but decreases with increasing treatment effect

for overall population (decreasing δ).

Tables 10.3 and 10.4 show the sample size needed to achieve specified global and marginal

power for marker positive subgroup, respectively. For illustration, assume the same α

allocation, λsen = λspec = 0.8, and treatment effect δ = −0.15 (the log-hazard ratio for

the overall cohort), and δ+ = −0.4 (the log-hazard ratio for the marker positive cohort).

Assuming a target of 90% global power for testing H1 when prevalence is 0.4 and interim

analysis is performed at information time of 0.5, a total sample size of 1837 is needed as

shown in Table 10.3. Assuming the target of 80% marginal power for testing treatment effect

on biomarker positive cohort (testing H1+) when prevalence is 0.4 and interim analysis is

performed at information time of 0.5, a total sample size of 1652 is needed as shown in

Table 10.4.
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A. For λsen = 1 and λspec = 1 by p and n
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B. For λsen = 1 and λspec = 0.8 by p and n
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C. For λsen = 0.8 and λspec = 1 by p and n
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D. For λsen = 0.8 and λspec = 0.8 by p and n
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Figure 10.1: Contour plot of global power surface
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A. For λsen = 1 and λspec = 1 by p and n
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B. For λsen = 1 and λspec = 0.8 by p and n
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C. For λsen = 0.8 and λspec = 1 by p and n
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D. For λsen = 0.8 and λspec = 0.8 by p and n
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Figure 10.2: Contour plot of power surface for overall cohort effect
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A. For λsen = 1 and λspec = 1 by p and n
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B. For λsen = 1 and λspec = 0.8 by p and n
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Figure 10.3: Contour plot of power surface for marker positive cohort effect
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Table 10.3: Total Sample Size to Achieve Specified Global Power H1 when α = 0.025, α+ =
0.004,Fp = 0.5, r = 0.5, and δ = p log θ+ + (1− p) log θ− = −0.15, δ+ = log θ+ = −0.4.

90% power 80% power
p λsen λspec Info=0.3 Info=0.5 Info=0.3 Info=0.5

0.3 1 1 1259 1261 936 935
0.95 0.95 1496 1492 1116 1111
0.9 0.9 1786 1768 1337 1321
0.85 0.85 2165 2108 1632 1582
0.8 0.8 2754 2565 2112 1947
0.75 0.75 4055 3375 3147 2623
0.7 0.7 7750 5329 5566 4117
1 0.8 1984 1925 1500 1448

0.8 1 1498 1496 1105 1102
0.4 1 1 943 931 708 698

0.95 0.95 1092 1078 819 809
0.9 0.9 1283 1266 963 949
0.85 0.85 1537 1510 1155 1133
0.8 0.8 1891 1837 1424 1382
0.75 0.75 2446 2316 1853 1749
0.7 0.7 3604 3185 2738 2421
1 0.8 1349 1327 1015 997

0.8 1 1132 1116 845 833
0.5 1 1 754 741 568 558

0.95 0.95 852 841 643 633
0.9 0.9 983 972 741 731
0.85 0.85 1161 1147 874 863
0.8 0.8 1409 1391 1060 1046
0.75 0.75 1771 1747 1332 1312
0.7 0.7 2342 2299 1761 1724
1 0.8 988 973 745 732

0.8 1 912 899 687 677
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Table 10.4: Total Sample Size to Achieve Specified Marginal Power H1+ when α =
0.025, α+ = 0.004,Fp = 0.5, r = 0.5, and δ = p log θ+ + (1 − p) log θ− = −0.15, δ+ =
log θ+ = −0.4.

90% power 80% power
p λsen λspec Info=0.3 Info=0.5 Info=0.3 Info=0.5

0.3 1 1 1397 1422 1012 1024
0.95 0.95 1736 1793 1242 1262
0.9 0.9 2217 2362 1550 1581
0.85 0.85 2976 3568 1992 2032
0.8 0.8 14595 8513 2733 2742
0.75 0.75 24613 14404 4343 4193
0.7 0.7 40364 23643 30360 17725
1 0.8 2517 2709 1760 1768

0.8 1 1766 1836 1244 1267
0.4 1 1 985 975 733 726

0.95 0.95 1162 1159 859 854
0.9 0.9 1408 1414 1031 1030
0.85 0.85 1769 483 1274 1276
0.8 0.8 2363 2539 1646 1652
0.75 0.75 11109 6586 2291 2315
0.7 0.7 22606 13249 3790 4188
1 0.8 1488 1494 1090 1086

0.8 1 1223 1222 896 892
0.5 1 1 768 755 577 567

0.95 0.95 878 866 658 649
0.9 0.9 1030 1021 767 760
0.85 0.85 1250 1251 921 919
0.8 0.8 1598 1644 1153 1163
0.75 0.75 2271 2667 1540 1596
0.7 0.7 13912 8231 2319 2801
1 0.8 1033 1021 769 760

0.8 1 950 939 708 700
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Chapter 11

Keytruda trial examples

11.1 Misclassification of predictive biomarkers

Immunotherapy is a new paradigm for the treatment of non-small-cell cancer (NSCLC),

and targeting the PD-1/PD-L1 pathway is a promising therapeutic option. Pembrolizumab

is a new immunotherapy that blocks the PD-1 pathway and restores the body’s immune

response against cancer cells and allows the immune system to recognize and kill cancer cells.

We use the KEYNOTE-10 trial as an example to illustrate our method. This was a (phase

2/3) randomized trial to study Pembrolizumab versus Docetaxel for previously treated, PD-

L1-positive, advance NSCLC patients (Herbst et al., 2016). This trial stratified qualified

subjects by biomarker’s TPS (tumor proportion score ≥50% vs 1-49% ), which measured the

extent of PD-L1 expression, then randomized subjects with 1:1:1 ratio to three treatment

groups within each high and low TPS stratum. The companion diagnostic assay for PD-

L1 expression was the Dako EnVision FLEX+HRP-Polymer kit using the 22C3 antibody

clone, which was validated in the phase 1 KEYNOTE-001 trial (Garon et al., 2015). Here,

we use the phase 1 KEYNOTE-001 data as the basis to ”redesign” the KEYNOTE-10 as

an ”imaginary” two-stage enrichment trial to illustrate our method. Since there was no

significant difference between the two test doses of Pembrolizumab, we only look at the

Pembrolizumab 2 mg (Pem) versus Docetaxel (Dox), which is the control/standard-of-care.

From the phase 1 KEYNOTE-001 trial, the prevalence rate was about 0.39 for TPS <1%,

0.38 for TPS = 1-49%, and 0.23 for TPS ≥50%; λsen = λspec = 0.8. Thus, we estimate

the prevalence rate of the PD-L1 true ”strongly positive” (TPS ≥ 50%) among the PD-

L1 positive (TPS > 1%) NSCLC patients being p ≈ 0.40; the appeared PD-L1 ”strongly

positive” prevalence is q = P (M = ∗) = pλsen + (1 − p)(1 − λspec) = 0.40 × 0.80 + (1 −

0.40)(1−0.80) = 0.44. Hence PPV = τ = pλsen
pλsen+(1−p)(1−λspec) = pλsen

q = 0.4×0.8
0.44 = 0.73, and
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NPV = η =
(1−p)λspec
1−P (M=∗) =

(1−p)λspec
1−q = (1−0.4)×0.8

1−0.44 = 0.86. The real phase 2/3 KEYNOTE-10

trial had both overall survival and progression-free survival (PFS) as primary end-points, We

only use PFS for the ”imaginary” trial for illustration purpose. Suppose that the overall

(one-sided) α = 0.025 and an interim analysis planned at info = 0.5, with α1 = 0.004

allocated for Stage I. As stated in the work of Herbst et al. (2016), the study aimed to show

a benefit of Pem over Dox in PFS in patients with TPS ≥ 50% as well as in the whole

TPS ≥ 1% cohort, so we allocate α1a = α1b = α1
2 = 0.002. Moreover, assume that we set

the futility probability for the PD-L1 ”weakly positive” (TPS 1-49%) subset to be 50% (

implying Fp = 0.5 and c0 = 0). Then α2 = 0.0105 for Stage IIA, and an equal amount of

0.0105 for Stage IIB. In the case of IIA, we further allocate 0.00525 for testing the overall

cohort and equally the test 0.00525 for the PD-L1 strongly positive subset.

From the reports by Herbst et al. (2016), the total enrollment time is 19 months for 688

subjects. We expect a total of 688 × 0.92= 632 PFS events at the end of the trial. In Stage

I, we plan to enroll 70% subjects (13.3 months from the start of the study). A decision

is made at interim analysis T1 (information: info = 0.5, when 316 = 632 × 0.5 PFS is

expected), to continue enrolling biomarker-unselected subjects (under scenario IIA) or to

enroll only biomarker positive subjects under scenario IIB, with a plan to enroll additional

30% subjects in Stage II. After the recruitment is complete, the study will follow-up to

calendar time T2, when the final analysis is performed (under scenario IIA, a total number

of 632 PFS are observed, with 461 PFS events from Stage I enrolled subjects and 171 PFS

events from Stage II enrolled subjects; under scenario IIB, a total number of 133 PFS events

from Stage II enrolled marker-appeared positive subjects). The number of PFS events from

Stage I and Stage II enrolled subjects were determined, to make sure the number of events

arrives approximately at the same calendar time.

To illustrate power calculation, we take the treatment effect information from Herbst

et al. (2016). Assume PFS times are exponentially distributed. The hazard rate for

treated S+ group is λ+T = 9.90, and hazard rate for control treated S+ group is λ+C =

5.85. The hazard rates for marker negative group S− are λ−T = 5.14 and λ−C = 5.85.

These design parameters lead to the critical values (c1, c2, b1, b2, b3) = (−2.878,−2.848,

−2.503,−2.197,−2.015) when λsen = λspec = 1; and critical values (c1, c2, b1, b2, b3) =
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(−2.878,−2.874,−2.501,−1.918,−2.215) when λsen = λspec = 0.8. With a total of N = 688

patients and prevalence rate p = 0.4, we expected the power to test global hypothesis H1

to be 99%, the power to test H1+ to be 99%, and the power to test H1a to be 3.5%, when

λsen = λspec = 1. However, when λsen = λspec = 0.8, with a total of N = 688 patients and

prevalence rate p = 0.4, we expected the power to test global hypothesis H1 to be 82%, the

power to test H1+ is 81%, and the power to test H1a to be 4.4%.

To illustrate sample size calculation, with the same α allocation, λsen = λspec = 0.8,

and treatment effect δ = the log-hazard ratio (Dox vs Pem)= −0.128 for the overall cohort,

and δ+ = the log-hazard ratio (Dox vs Pem)= −0.528 for the marker positive cohort. Trials

usually aim a power of either 80% or 90% for the marker positive subset. Assuming a target

of 90% power for testing H1+, a total sample size of 893 is needed. The global power for

the composite hypothesis H1 is 91%, and the power for the overall cohort H1a is 5%. If the

target of 80% power is for testing H1+, a total sample size of 670 is needed. The global

power for the composite hypothesis H1 is 81%, and the power for the overall cohort H1a is

4.4%.
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Chapter 12

Summary

In part I, a two-stage adaptive enrichment clinical trial with survival outcome is designed,

based on a binary predictive biomarker. We assume that the classification of the binary

biomarker in part I is perfect.

In part II, misclassification of the binary predictive biomarker is considered. We use

the information obtained from both marker appeared-positive strata and marker appeared-

negative strata to solve the adjusted log rank statistics for true marker positive and true

marker negative group. No additional distributional assumption is needed for the group

sequential designs we used in this part.

In part III, misclassification adjustment is extended to a two-stage enrichment designs.

In the final analysis time T2, with additional distributional assumption (exponential distri-

bution assumption for survival times), we can use the information obtained from interim

analysis time T1, to help obtain the adjusted log rank statistics for the true marker positive

group, even though the marker-appeared negative group was discontinued after the interim

analysis time T1 and no marker-appeared negative subjects are enrolled in Stage II.

In all three parts above, family-wise type I error rate is controlled by using the correla-

tions between the log rank statistics within and between the stages. R-code is developed to

calculate critical values, achieved global power, and marginal powers, and to calculate the

sample size needed to achieve specified global power and marginal powers as well.
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Chapter 13

Appendix — lost to follow up

13.1 Simulation results for two-stage stratified design with lost to follow

up

13.1.1 Simulation set-up

Consider a total number of subjects N=1000 for both Stage I and Stage II, with a prevalence

rate p (0.3, 0.4, or 0.5) for biomarker positive (S+). subjects enrollment is expected to

complete in 10 months. Randomization to active treatment T or placebo treatment C will be

stratified by marker-appeared status with a randomization of T and C with ratio of r to 1−r.

After the recruitment is complete, the study will follow-up to interim analysis time T1 and

final analysis time T2. Assume subject recruitment follow a uniform distribution. Survival

times are exponentially distributed. The time of lost to follow up is exponentially

distributed with a rate λcensor = 0.00427 = 1/234.

The null hypothesis is the hazard rates for treatment and placebo group are equal.

Exponential distributions are assumed to simulate the trials. The hazard rate for treated

true marker positive S+ group is λ+T , and hazard rate for placebo treated true marker

positive S+ group is λ+C . The hazard rates for true marker negative group S− are λ−T

and λ−C .

We consider 9 different combinations of sensitivity and specificity (λsen = λspec = 0.7

to 1.0, λsen = 1 and λspec = 0.8, or λsen = 0.8 and λspec = 1.0), and simulate the trials for

3000 times for each combination of sensitivity and specificity.

The nominal and empirical global type I error rates are shown in Table 13.1. As we

can see from Table 13.1, the empirical type I error rates are close to the nominal type I

error rate 0.025, across different prevalence rate (0.3, 0.4, 0.5), different sensitivity λsen and
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specificity λspec combinations from 1.0 to 0.7.

Table 13.1: The Nominal and Empirical Global Type I Error Ratefor H0 when λ−T =
λ−C = 1/10 and λ+T = λ+C = 1/15, Info=0.5, N=1000, d=750, 3000 runs

Global type I

λsen λspec p Nominal Empirical

1.0 1.0 0.3 0.025 0.0227

0.4 0.025 0.0223

0.5 0.025 0.0210

0.95 0.95 0.3 0.025 0.0207

0.4 0.025 0.0217

0.5 0.025 0.0267

0.9 0.9 0.3 0.025 0.0193

0.4 0.025 0.0223

0.5 0.025 0.0233

0.85 0.85 0.3 0.025 0.0250

0.4 0.025 0.0200

0.5 0.025 0.0227

0.8 0.8 0.3 0.025 0.0210

0.4 0.025 0.0233

0.5 0.025 0.0217

0.75 0.75 0.3 0.025 0.0240

0.4 0.025 0.0193

0.5 0.025 0.0237

0.7 0.7 0.3 0.025 0.0297

0.4 0.025 0.0203

0.5 0.025 0.0187

1 0.8 0.3 0.025 0.0197

0.4 0.025 0.0247

0.5 0.025 0.0220

0.8 1 0.3 0.025 0.0237

0.4 0.025 0.0217

0.5 0.025 0.0207
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13.1.2 Theoretical vs. empirical power under different scenarios

In this simulation, the critical values are based on α = 0.025, α1 = 0.004, r = 0.5. The the-

oretical and empirical global, overall, and positive cohort powers are shown in Table 13.2.

As we can see from Table 13.2, when there is treatment effect only in biomarker positive

cohort and no treatment effect in biomarker negative cohort, the empirical powers (global

power, overall power, and marker positive cohort power) are close to the corresponding the-

oretical powers, across different prevalence rate (0.3, 0.4, 0.5) under different combinations

of biomarker sensitivity λsen and specificity λspec (from 1.0 to 0.7). In the current set-up,

since there is no treatment effect in biomarker negative cohort, the overall power is low.

Table 13.2: The Theoretical and Empirical Power when λ−T = λ−C = λ+C = 1/10 and
λ+T = 1/15, λcensor = 1/234,Fp = 0.5 , N=1000, d=750, 3000 runs

Global Power Full cohort Power Positive Cohort Power

λsen λspec p Theoretical Empirical Theoretical Empirical Theoretical Empirical

1.0 1.0 0.3 0.773 0.767 0.099 0.103 0.755 0.747

0.4 0.895 0.897 0.233 0.230 0.875 0.878

0.5 0.958 0.958 0.445 0.458 0.936 0.943

0.95 0.95 0.3 0.690 0.693 0.100 0.109 0.661 0.665

0.4 0.850 0.854 0.247 0.249 0.815 0.829

0.5 0.938 0.932 0.481 0.496 0.898 0.903

0.9 0.9 0.3 0.596 0.601 0.097 0.103 0.554 0.555

0.4 0.792 0.786 0.258 0.267 0.733 0.739

0.5 0.910 0.916 0.518 0.540 0.840 0.848

0.85 0.85 0.3 0.497 0.508 0.092 0.097 0.442 0.456

0.4 0.720 0.712 0.263 0.275 0.629 0.630

0.5 0.875 0.877 0.553 0.579 0.756 0.763

0.8 0.8 0.3 0.397 0.404 0.084 0.085 0.332 0.338

0.4 0.637 0.636 0.262 0.282 0.507 0.500

0.5 0.833 0.835 0.584 0.605 0.640 0.653

0.75 0.75 0.3 0.301 0.308 0.073 0.080 0.234 0.236

0.4 0.546 0.551 0.254 0.274 0.377 0.375

0.5 0.787 0.796 0.609 0.640 0.496 0.496

0.7 0.7 0.3 0.213 0.225 0.073 0.064 0.153 0.162

0.4 0.448 0.455 0.236 0.266 0.254 0.246

0.5 0.744 0.755 0.627 0.666 0.340 0.343

1 0.8 0.3 0.559 0.577 0.096 0.100 0.512 0.534

0.4 0.782 0.787 0.259 0.263 0.719 0.737

0.5 0.915 0.913 0.515 0.536 0.847 0.853

0.8 1 0.3 0.675 0.667 0.099 0.110 0.644 0.631

0.4 0.824 0.814 0.252 0.263 0.778 0.774

0.5 0.917 0.918 0.509 0.534 0.856 0.853
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13.2 Simulation results for two-stage enrichment design with lost to fol-

low up

13.2.1 Simulation set-up

Consider a total number of subjects N=1000 for both Stage I and Stage II, with a prevalence

rate p (0.3, 0.4, or 0.5) for biomarker positive (S+). Randomization to active treatment T

or placebo treatment C will be stratified by marker-appeared status with a randomization

ratio of r to 1 − r, to T or C, respectively. In Stage I, we plan to enroll tN (t = 0.7)

subjects (i.e., 7 months from the start of the study). A decision is made at interim analysis

t1 (information: info = 0.5), to continue enrolling biomarker-unselected subjects under

scenario IIA or to enroll only biomarker positive subjects under scenario IIB, with a plan

to enroll additional (1−t)N subjects in Stage II. After the recruitment is complete, the study

will follow-up to time T2, when the final analysis is performed. The total number of events

are observed, with per-specified events from Stage I enrolled subjects and per-specified

events from Stage II enrolled subjects being observed. Assume subject recruitment follow

a uniform distribution. Survival times are exponentially distributed. The time of lost to

follow up is exponentially distributed with a rate λcensor = 0.00427 = 1/234.

The null hypothesis is the hazard rates for treatment and placebo group are equal.

Exponential distributions are assumed to simulate the trials. The hazard rate for treated

true marker positive S+ group is λ+T , and the hazard rate for placebo treated in true

marker positive S+ group is λ+C . The hazard rates for true marker negative group S− are

λ−T and λ−C .

We consider 9 different combinations of sensitivity and specificity (λsen = λspec = 0.7 to

1.0, λsen = 1 and λspec = 0.8, or λsen = 0.8 and λspec = 1.0), and simulate the trials for 3000

times for each combination of sensitivity and specificity. The nominal and empirical global

type I error rates are shown in Table 13.3. As we can see from Table 13.3, the empirical

type I error rates are close to the nominal type I error rate 0.025, across different prevalence

rate (0.3, 0.4, 0.5), different sensitivity λsen and specificity λspec combinations from 1.0 to

0.7.
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Table 13.3: The Nominal and Empirical Global Type I Error Rate for H0 when λ−T =
λ−C = 1/10 and λ+T = λ+C = 1/10,Fp = 0.5, Info=0.3, N=1000, d=750, 3000 runs

Global type I

λsen λspec p Nominal Empirical

1.0 1.0 0.3 0.025 0.0280

0.4 0.025 0.0223

0.5 0.025 0.0280

0.95 0.95 0.3 0.025 0.0297

0.4 0.025 0.0277

0.5 0.025 0.0293

0.9 0.9 0.3 0.025 0.0260

0.4 0.025 0.0243

0.5 0.025 0.0287

0.85 0.85 0.3 0.025 0.0263

0.4 0.025 0.0247

0.5 0.025 0.0290

0.8 0.8 0.3 0.025 0.0267

0.4 0.025 0.0183

0.5 0.025 0.0233

0.75 0.75 0.3 0.025 0.0250

0.4 0.025 0.0240

0.5 0.025 0.0280

0.7 0.7 0.3 0.025 0.0203

0.4 0.025 0.0267

0.5 0.025 0.0233

1 0.8 0.3 0.025 0.0290

0.4 0.025 0.0243

0.5 0.025 0.0280

0.8 1 0.3 0.025 0.0327

0.4 0.025 0.0257

0.5 0.025 0.0277
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13.2.2 Theoretical vs. empirical power under different scenarios

In this simulation, we use α = 0.025, α1 = 0.004, r = 0.5 to calculate the critical values.

The theoretical and empirical global, overall, and positive subgroup powers are shown in

Table 13.4. As we can see from Table 13.4, when there is treatment effect only in biomarker

positive cohort and no treatment effect in biomarker negative cohort, the empirical powers

(global power, overall power, and positive cohort power) are close to the corresponding the-

oretical powers, across different prevalence rate (0.3, 0.4, 0.5) under different combinations

of biomarker sensitivity λsen and specificity λspec (from 1.0 to 0.7). In the current set-up,

since there is no treatment effect in biomarker negative cohort, the overall power is low.

Table 13.4: The Theoretical and Empirical Power when λ−T = λ−C = λ+C = 1/10 and
λ+T = 1/15, λcensor = 1/234,Fp = 0.5 , N=1000, d=750, 3000 runs

Global Power Full cohort Power Positive Cohort Power

λsen λspec p Theoretical Empirical Theoretical Empirical Theoretical Empirical

1.0 1.0 0.3 0.847 0.835 0.070 0.066 0.834 0.823

0.4 0.925 0.929 0.163 0.152 0.908 0.914

0.5 0.968 0.972 0.320 0.371 0.947 0.949

0.95 0.95 0.3 0.766 0.773 0.066 0.070 0.747 0.754

0.4 0.886 0.899 0.172 0.174 0.859 0.874

0.5 0.950 0.957 0.343 0.338 0.916 0.923

0.9 0.9 0.3 0.678 0.702 0.064 0.067 0.650 0.675

0.4 0.835 0.854 0.177 0.183 0.793 0.813

0.5 0.925 0.938 0.364 0.369 0.869 0.882

0.85 0.85 0.3 0.574 0.592 0.060 0.058 0.540 0.558

0.4 0.769 0.802 0.179 0.193 0.711 0.743

0.5 0.890 0.916 0.380 0.386 0.803 0.830

0.8 0.8 0.3 0.447 0.449 0.054 0.055 0.409 0.413

0.4 0.689 0.727 0.175 0.198 0.612 0.645

0.5 0.842 0.872 0.387 0.401 0.714 0.740

0.75 0.75 0.3 0.295 0.303 0.046 0.049 0.256 0.263

0.4 0.591 0.635 0.165 0.195 0.494 0.523

0.5 0.779 0.832 0.386 0.399 0.601 0.646

0.7 0.7 0.3 0.185 0.187 0.038 0.045 0.149 0.146

0.4 0.461 0.478 0.149 0.169 0.351 0.351

0.5 0.699 0.775 0.386 0.411 0.464 0.531

1 0.8 0.3 0.612 0.643 0.062 0.060 0.583 0.613

0.4 0.818 0.844 0.178 0.182 0.775 0.801

0.5 0.925 0.936 0.362 0.363 0.871 0.887

0.8 1 0.3 0.775 0.771 0.066 0.068 0.775 0.752

0.4 0.876 0.882 0.175 0.181 0.842 0.846

0.5 0.938 0.941 0.359 0.365 0.888 0.894
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