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ABSTRACT 

Background: Cardiovascular disease is a prominent burden on modern day society. A 

wide variety of medical devices have been necessary in the treatment and therapy of 

disease that affect the cardiovascular system. Despite the ubiquitous nature of these 

devices, limited research exists regarding patient safety and device failure. The US Food 

and Drug Administration collects medical device data but the problem codes assigned to 

events as well as data integrity are problematic means of understanding the device 

failures and patient outcomes.  

Methods: Supervised machine learning and data filtering methods were used to create 

tags and identify cardiac medical device failures that were related to: migration, extrusion 

and expulsion between 1997 and 2017. The results were then used to analyze patient 

outcomes.  

Results: Approximately 20% to 21% of cardiac devices were identified from the base 

dataset, and of that .69% pertained to migrations, extrusions and expulsions. When 

evaluating results of cardiac and non-cardiac devices, injury was the most frequently 

occurring adverse outcome of the three failures. Death was an uncommon outcome in 

cardiac and non-cardiac failures, resulting in low percentages. Statistical significance 

between cardiac and non-cardiac injury was found. The problem codes associated with 

records as well as names for devices were unreliable within the realm of this research.  

Conclusions: Cardiac medical devices account for approximately 20% to 21% of overall 

medical device events reported to the FDA each year. The risk of injury for medical 

device failures are high, and data would be more useful for research if accessible and 

accurate.   
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Chapter I 

 

 

I. INTRODUCTION 

 

 

 

 1.1 Statement 

     Medical devices, which are also referred to as medical technology, consists of a wide 

range of applications and potential usages. This large domain plays a very important role 

in the delivery of healthcare to patients. It consists of instruments, machines or 

apparatuses that aid in various aspects of healthcare such as, but not limited to: 

prevention, diagnosis, treatment, therapy, monitoring, correction or management of a 

disease or illness.  

     Although medical devices are immensely useful in healthcare, they are not without 

risk of failure. For medical devices that are implanted into the body, the risk of expulsion, 

extrusion or migration remains and can vary depending upon the device, medical 

condition and past medical history of the patient, as well as timing of the procedure to 

implant the device and the placement of the device. When a device migrates within the 

body, is exposed in anyway, or is expelled from the body, there is potential that this 

failure causes harm to the patient. A device manufacturer would need to know this and 

determine if this device is safe for use by the public. There was a point in history in 

which the use of certain medical devices carried a very high risk to patients, coupled with 
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less regulation. In our current age, there is improved technology overall, which includes 

computing that aids in data collection and tracking, which results in improved processes 

to ensure the device is safe for public use and mandatory federal oversight.  

     There is a lack of existing medical device safety research outside treatment relating to 

select areas. This research would like to address device expulsion, extrusion and 

migration relating specifically to cardiac devices. What is the frequency of these failures 

in cardiac medical devices? How harmful are these failures to patients? These questions 

were addressed in research.  

1.2 Background 

     Exploratory research was first conducted to examine if our initial questions have been 

answered or if there is currently existing data and/or research that addresses them.  The 

goal is to locate research that addresses medical device expulsion, extrusion and 

migration in cardiac devices. After review of existing literature and resources it is 

determined that the current body of research does not adequately answer the proposed 

questions. There is an abundance of research related to intrauterine devices (IUDs) 

expulsion and migration, but greatly lacking when related to other types of medical 

devices. There is a public Food and Drug Administration dataset that appears to have a 

comprehensive amount of information that should be useful in this research.  

     In our research, we have found Manufacturer and User Facility Database (MAUDE), 

answers our initial questions regarding cardiac devices. This database consists of data 

regarding adverse events involving medical devices, and is part of Food and Drug 

Administration's requirement to provide surveillance for device malfunctions, injuries or 

deaths. The database contains downloadable information relating to each reported event, 
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device involved, pertinent patient information, and narrative text. The MAUDE database 

has been used in other research and will be addressed in the Literature Review of this 

research.
1
 

      The amount of data, robustness, as well as the data organization made it a very 

appealing and viable option for analysis. Data between years 1997 and 2017 will be 

utilized in this research to understand the problem domain over a period of time. Upon 

examination of the data, specific hypotheses were formed, which inspired research into 

the area. In the following sections, preliminary research approaches will be discussed in 

further detail.  

1.2.1 Exploratory Research 

1.2.1.1. Data 

     The MAUDE data files were downloaded from Food and Drug Administration's 

website on March 3rd, 2019. The datasets were imported using Python 3.7 within a 

Jupyter environment. Jupyter is an open-source web application that promotes ease of 

sharing code and visualizations. This environment was chosen due to the ease of viewing 

code and visualizations over the project's evolution. Below are the datasets that have been 

imported for further analysis.  

Dataset Entails 
Count of 

Records 

deviceproblemcodes 

List of all problem codes to classify device 

failures. 
939 

mdrfoiThru2018 

Master list of all events of failures from 1991 

to 2018. 

7,174,549 

mdrfoiChange Changes to master list event reports. 153,802 
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foidevproblem 

The crosswalk to map problem codes to 

device failures. 
4,801,575 

Foidevthru1997 Device data pertaining to failures to 1997. 
136,359 

Foidev1998 Device data pertaining to failures for 1998. 
63,440 

Foidev1999 Device data pertaining to failures for 1999. 
52,880 

Foidev2000 Device data pertaining to failures for 2000. 
52,965 

Foidev2001 Device data pertaining to failures for 2001. 
58,067 

Foidev2002 Device data pertaining to failures for 2002. 
65,808 

Foidev2003 Device data pertaining to failures for 2003. 
66,952 

Foidev2004 Device data pertaining to failures for 2004. 
57,045 

Foidev2005 Device data pertaining to failures for 2005. 
93,413 

Foidev2006 Device data pertaining to failures for 2006. 
133,789 

Foidev2007 Device data pertaining to failures for 2007. 
149,334 

Foidev2008 Device data pertaining to failures for 2008. 
163,545 

Foidev2009 Device data pertaining to failures for 2009. 
218,727 

Foidev2010 Device data pertaining to failures for 2010. 
335,190 

Foidev2011 Device data pertaining to failures for 2011. 
416,047 

Foidev2012 Device data pertaining to failures for 2012. 
521,049 

Foidev2013 Device data pertaining to failures for 2013. 
639,922 

Foidev2014 Device data pertaining to failures for 2014. 
864,887 

Foidev2015 Device data pertaining to failures for 2015. 
965,466 

Foidev2016 Device data pertaining to failures for 2016. 
870,910 

Foidev2017 Device data pertaining to failures for 2017. 
941,114 
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foitext1997 Text data on failures for year 1997. 91,008 

foitext1998 Text data on failures for year 1998. 68,315 

foitext1999 Text data on failures for year 1999. 51,118 

foitext2000 Text data on failures for 2000. 52.624 

foitext2001 
Text data on failures for 2001. 57,985 

foitext2002 
Text data on failures for 2002. 64,858 

foitext2003 
Text data on failures for 2003. 66,240 

foitext2004 
Text data on failures for 2004. 56,116 

foitext2005 
Text data on failures for 2005. 95,043 

foitext2006 
Text data on failures for 2006. 177,413 

foitext2007 
Text data on failures for 2007. 232,626 

foitext2008 
Text data on failures for 2008. 

264,965 

foitext2009 
Text data on failures for 2009. 

387,875 

foitext2010 
Text data on failures for 2010. 

697,250 

foitext2011 
Text data on failures for 2011. 

971,968 

foitext2012 Text data on failures for 2012. 
1,252,909 

foitext2013 Text data on failures for 2013. 
1,562,584 

foitext2014 Text data on failures for 2014. 
1,987,842 

foitext2015 Text data on failures for 2015. 
2,305,931 

foitext2016 Text data on failures for 2016. 
2,239,516 

foitext2017 Text data on failures for 2017. 
2,301,104 

foitextChange Changes and updates to text data files. 
350,313 

patientThru2018 Patient base file of reported outcomes 
7,824,299 
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Table 1: Imported MAUDE datasets into Jupyter environment 

 

 1.2.1.2 Overall Device Events 

     There is a total of 7,174,549 records in the Master Record table by year, starting in 

1991. Interestingly enough, the reported events have steadily increased every year. The 

earliest stages of reported events were very low, so this dataset may not be fully 

representative of the amount of device failures.  

Table 2: Total Reported Events by Year 

 

associated with device events through 2018. 

patientChange Changes and updates to patient base file  
153,818 

Year Events 

 

Year Events 

 

Year Events 

1991 15 

 

2001 58,391 

 

2011 410,694 

1992 3,098 

 

2002 69,349 

 

2012 452,552 

1993 4,408 

 

2003 75,971 

 

2013 577,463 

1994 11,272 

 

2004 81,268 

 

2014 635,952 

1995 9,758 

 

2005 98,874 

 

2015 704,106 

1996 32,789 

 

2006 119,513 

 

2016 755,692 

1997 77,691 

 

2007 171,020 

 

2017 903,826 

1998 61,652 

 

2008 193,221 

 

2018 1,028,953 

1999 52,909 

 

2009 239,974 

 

Total 7,174,549 

2000 52,570 

 

2010 291,568 
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Figure 1: Overall Device Failures by Year 

     The years of interest for this project are 1997 through 2017, totaling a span of twenty 

years. During this time period there were 6,084,256 reported events. The theory in 

choosing this timeframe is this span of time is comprehensive and expansive to produce a 

statistically significant result as well as providing enough data points for building a 

robust machine learning model.  

 

 

 

 

 

 

 

 

Table 3: Reported Events by Year Project Subset 

  

Year Events 
 

 Year Events 

1997 77,691 
 

 2008 193,221 

1998 61,652 
 

 2009 239,974 

1999 52,909 
 

 2010 291,568 

2000 52,570 
 

 2011 410,694 

2001 58,391 
 

 2012 452,552 

2002 69,349 
 

 2013 577,463 

2003 75,971 
 

 2014 635,952 

2004 81,268 
 

 2015 704,106 

2005 98,874 
 

 2016 755,692 

2006 119,513 
 

 2017 903,826 

2007 171,020 
 

 Total 6,084,256 
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1.2.1.3 Cardiac Specific Device Events 

     In reviewing the data, there are 939 problem codes. Two codes relate to general 

migration - 1395 and 1203, two describes expulsion-1395 and 2933. Interestingly 

enough, there are four problem codes to describe extrusion: 2934, 2979, 2618 and 2154. 

Problem 1203 refers to the migration of electrodes, and is relevant to this research given 

that cardiac devices routinely involves electrodes for cardiac monitoring.  

Device Problem Code Problem Description 

1203 Electrode(s), migration of 

1395 Migration or Expulsion of Device 

2154 Implant extrusion 

2618 Extrusion, impending 

2933 Expulsion 

2934 Extrusion 

2979 Material Protrusion/Extrusion 

Table 4: Problem Codes Associated with Migration, Expulsion and Extrusion 

     Within the problem codes mapping dataset crosswalk (foidevproblem), we have 

identified an initial set that are direct matches with the identified seven problem codes to 

validate if there are records associated with the codes. After cleaning and pre-processing 

the data, we were able to produce a combined dataset between several records that 

identified the number of cardiac records that pertain to the problem codes of interest. We 

have examined these values as a whole and by year.  
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Table 5: Total Cardiac Device Failures of Interest by Code 

 

 

Figure 2: Cardiac Device Migrations, Extrusions and Expulsions by Year 
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Year 

Cardiac Device Migrations, Extrusions and Expulsions 

Code 1395 

Code 2933 

Code 1203 

Code 2934 

Code 2154 

Code 2618 

Code 2979 

Problem Code Within Cardiac Records 

1395 2,956 

2933 4 

2934 7 

2979 89 

2618 0 

2154 2 

1203 6 
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Count of Migration, Extrusion and Expulsion Events by Year 

Year Code 

1395 

Code 

2933 

Code 

1203 

Code 

2934 

Code 

2154 

Code 

2618 

Code 

2979 

1997 1  1     

1998 30    1   

1999 43    1   

2000 11       

2001   1     

2002 1       

2003 1       

2004 3       

2005 3  1     

2006 58       

2007 61  2     

2008 72       

2009 92  1     

2010 128      1 

2011 198      1 

2012 119       

2013 23      1 

2014 37   1    

2015 200                

1  

 1   8 

2016 831                

1  

 2   22 

2017 1044                

2  

 3   56 

Total 2,956 4 6 7 2 0 89 

Table 6: Cardiac Device Migration, Expulsions and Extrusions by Year by Code 

 

     The distribution between the seven codes by year are highly asymmetrical, due to a 

lack of reporting. Code 1395 has a far higher number of reported events after 2005. It is 

difficult to determine if there was a trend with the cardiac device failures, given the 

sporadic nature in the number of failures. It is interesting to note, that were no reports 
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found for code 2618. Also, there were no reported events for code 2933 and 2934 prior to 

2014. It is very likely that problem codes 2933(expulsion), 2934 and 2618 (extrusion), 

were newly added codes according to documentation. Equally interesting, is that at the 

start of reporting there were few reports of failures in general, but towards the end of the 

period of interest (years 2016 and 2017), reported the highest number of cardiac related 

migrations, extrusions and expulsions than prior years. This reflects a loose pattern in the 

overall number of device failures and is likely that reporting and data initiatives greatly 

improved over time, which thus captured a higher number of failures.  

Year Cardiac 

Events 

Cardiac Migrations, Expulsions and 

Expulsions 

1997                    131                                                                               2  

1998                 4,349                                                                             31  

1999                 5,480                                                                             44  

2000                 4,369                                                                             11  

2001                 1,734                                                                               1  

2002                 1,750                                                                               1  

2003                 1,499                                                                               1  

2004                 2,095                                                                               3  

2005                 2,222                                                                               4  

2006                 9,475                                                                             58  

2007               12,029                                                                             63  

2008               12,298                                                                             72  

2009               16,558                                                                             93  

2010               20,870                                                                           129  

2011               24,201                                                                           199  

2012               12,513                                                                           119  

2013                 3,366                                                                             24  

2014               12,041                                                                             38  

2015               22,670                                                                           210  

2016               53,580                                                                           856  

2017               94,727                                                                        1,105  

 Total              317,957                                                                        3,064  

Table 7: Comparison of Overall Cardiac Device Failures and Cardiac Migration 

Extrusion and Expulsion Failures by Year 
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Year 

Total 

Events 

Cardiac 

Expulsions, 

Migrations and 

Extrusions 

 

Year 

Total 

Events 

Cardiac 

Expulsions, 

Migrations and 

Extrusions 

1997 77,691 2 

 

2008 193,221 72 

1998 61,652 31 

 

2009 239,974 93 

1999 52,909 44 

 

2010 291,568 129 

2000 52,570 11 

 

2011 410,694 199 

2001 58,391 1 

 

2012 452,552 119 

2002 69,349 1 

 

2013 577,463 24 

2003 75,971 1 

 

2014 635,952 38 

2004 81,268 3 

 

2015 704,106 210 

2005 98,874 4 

 

2016 755,692 856 

2006 119,513 58 

 

2017 903,826 1,105 

2007 171,020 63 

 
Total 6,084,256 3,064 

Table 8: Comparison of Overall Medical Device Failures and Cardiac Migration and 

Expulsion Failures by Year 

 

     Within total device failures as well as total cardiac device failures, cardiac migrations, 

extrusions and expulsions account for a small percentage of the data.  Of the total 

317,957 unique cardiac device failures reported from 1997 to 2017, just 1%, or 3,064 

were cardiac migrations, extrusions or expulsions. In reviewing the overall 6,084,256 

device failures for the time period of interest, only .05%, are the failures of interest. 

Given these low percentages of reported expulsion, extrusion and migration events, there 

are concerns regarding the reliability and accuracy of actual failures. Given that cardiac 

devices account for 5% of all device failures, the result is unexpected. There is a chance 

that there are truly low reported events with expulsions, extrusions and migrations, but 

that will be tested with further research.  
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Figure 3: Overall Cardiac Device Failures by Year 

 

1.2.1.4 The Healthcare Cost and Utilization Project (HCUP) 

 The Healthcare Cost and Utilization Project (HCUP) is a collection of health-

related databases and tools through a partnership sponsored by the Agency for Healthcare 

Research and Quality (AHRQ) .
2
 This system provides longitudinal hospital care data and 

information from across the United States. Using this database, we researched 

hospitalizations and discharges from 1997 through 2014, using specific ICD-9 CM codes 

that would be representative of the types of failures of interest. The purpose is to compare 

MAUDE cardiac device results with another source for validation.  
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ICD-9 

CM 

Description 

996.00 Mechanical complication of unspecified 

cardiac device, implant and graft 

996.01 Mechanical complication due to cardiac 

pacemaker (electrode) 

996.02 Mechanical complication due to heart valve 

prosthesis 

996.03 Mechanical complication due to coronary 

bypass graft 

996.04 Mechanical complication of automatic 

implantable cardiac defibrillator 

996.09 Other mechanical complication of cardiac 

device, implant, and graft 

996.1 Mechanical complication of other vascular 

device, implant, and graft 

996.72 Other complications due to other cardiac 

device, implant, and graft 

996.74 Other complications due to other vascular 

device, implant and graft 

Table 9: HCUP ICD-9 Codes Associated with Cardiac Implant Malfunctions 
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 In reviewing data from HCUP, there have been a consistent number of cardiac 

device malfunctions each year, resulting in more than 1 million discharges. From 2001 to 

2003 there was an increase in cases, then there was a decrease in 2004. After that point 

the number of cases found consistency. The results from HCUP far exceed our initial 

MAUDE cardiac device figures. HCUP data follows a reasonable, consistent pattern, 

while initial MAUDE results do not follow a similar pattern.  

Year Cardiac Device 

Malfunction 

Discharges 

1997                            71,081  

1998                            69,754  

1999                            70,026  

2000                            80,295  

2001                          103,131  

2002                          108,167  

2003                          109,992  

2004                            92,760  

2005                            91,086  

2006                            99,521  

2007                            90,809  

2008                            99,504  

2009                            97,405  

2010                            88,923  

2011                            92,324  

2012                            90,340  

2013                            84,950  

2014                            82,480  

Total                       1,622,548  

Table 10: HCUP Cardiac Device Malfunction Discharges by Year 
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Figure 4: HCUP Cardiac Device Malfunction Discharges by Year 

1.3 Initial Findings 

         The initial research regarding MAUDE datasets has rendered concerns about using 

the provided problem device codes. Using the designated codes alone has proven to be 

unreliable, due to the remarkably low reported number of records despite the high 

number of overall failures. From years 1997 to 2017, there have been an overall 

6,084,256 total reported device failures, and of those 317,957 were cardiac device 

failures. Of those cardiac failures, 1% have been noted to be expulsions, extrusions or 

migrations based on the codes that pertain to the specific failures. Cardiac device 

migrations, extrusions and expulsions account for only .05% of the total device failures, 

which is unexpected due to the size of the dataset and initial assumptions. Although 

device failures overall have seen steady increases, cardiac devices have not followed an 

obvious pattern. When researching HCUP data hospitalizations and discharges, there 

were more than 1 million records related to cardiac device complications, which far 

exceeds the initial results from MAUDE. From HCUP there were a consistent number of 
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cases from our sample from 1997 through 2014. Concerning MAUDE, there were several 

years in which data was not present, or in very low numbers. Given the overall 

distribution of the dataset, it is surprising to observe years in which there was a lack of 

reported failures that is consistent among seven distinct problem device codes.  

     Issues regarding MAUDE problem device coding has suggested that the data may be 

susceptible to human issues that ultimately lead to a lack of reporting. The MAUDE 

reporting datasets consists of a mixture of voluntary, user facility, and manufacturer 

reports. The rigor and process involved in obtaining the data is unknown. Due to the 

issues regarding the MAUDE problem codes, we will not be able to use them as a reliable 

classification method of cardiac devices and failures. Unfortunately, there is not a reliable 

and accurate method of answering initial research questions that exists at this time. 

However, we have been able to identify another method for the identification and 

classification of devices that should render favorable results.  

     In addition to the MAUDE datasets that have been useful in mapping to problem 

codes, such as device and master events, MAUDE also has available textual files that 

accompany failures. Upon further examination these textual files, which are specified by 

each year in which the event occurred, contains useful information regarding events in a 

narrative format. To further explore the text files, we chose to perform a simple keyword 

and phrase search to describe migration, extrusion and expulsion. In performing these 

searches within the column that contains the textual event information, we were able to 

identify approximately 5,646 events in which there was a cardiac device migration, 

extrusion or expulsion. This is more than 2,500 devices that were not identified prior. 
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     Based on the promising results and valuable information captured, we will proceed 

with utilizing the MAUDE textual column as the means to classify cardiac devices 

extrusions, migrations and expulsions. First, we will identify cardiac devices as done 

initially with MAUDE device files based on generic device information. Generic device 

information describes the type of device as a high level means of classification. Next, the 

goal is to classify migrations, extrusions and expulsions with the textual files in two 

categories A: a cardiac device migration, extrusion or expulsion, and B: not a cardiac 

device migration, extrusion or expulsion. After that point, based on the results obtained, it 

will be likely to answer the proposed research hypotheses.  

1.4 Hypotheses 

     Based upon findings within preliminary research, in addition to the initial research 

goals, we have identified the following research hypotheses: 

I. In the initial research, only a very small percentage of overall device 

failures are related to cardiac expulsions, migrations and extrusions 

(.05%). Based upon the lack of reporting and years in which data is 

unavailable, our assumptions have led us to believe that these results are 

inaccurate. Our expectation is that a larger percentage of cardiac device 

failures should include these failures.  

II. Cardiac devices are implanted to a relatively high degree in the United 

States, and based upon the provided data, there has been an increase in 

general device failures with a strong upward trend, each year. According 

to the data obtained from HCUP, a consistent number of hospitalizations 

are related to cardiac device malfunctions each year. Based upon this 
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information, we expect to identify more cardiac devices than the current 

5% we have identified.  

III. Cardiac device implantation is considered major surgery, with serious 

complications if the device malfunctions or fails. Having the device 

migrate to another area, become partially or fully exposed, or is expelled 

from the original location may have fatal outcomes for the patient. We 

hypothesize patient outcomes related to cardiac migrations, extrusions and 

expulsions to be largely fatal.  

1.5 Relevance of Study  

     This research is relevant and necessary within the greater scientific and medical 

community due to these key reasons: 

     There is limited data regarding medical device failures as a whole. From there, there is 

an even further limited amount of research regarding specific cardiac device failures. 

Performing research such as this, will aid others while creating a standard for future 

research about devices. The hope is that this will spur initiatives in creating structure 

around medical data and information in general that is accurate and reliable. That may 

mean mandatory reporting requirements from device manufacturers and clinical facilities. 

Having data that is openly available and structured will allow for more knowledge 

transfer and analysis to share with the larger community.  

     Using machine learning and natural language processing in the realm and health and 

patient outcomes will be useful for not only the scientific and medical community, but for 

society. Machine learning allows to analyze large amounts of records and make 

inferences from it, far more than what a human can analyze in the same amount of time. 
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Clinicians can be able to utilize this information to aid them in decision-making and 

providing more effective care to patients by being able to understand a problem on a 

larger scale. In using machine learning, can segue into other approaches that will be 

useful in understanding health. This research will be a step towards being able to help 

patients on a larger scale and being able to improve health and lives.  
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Chapter II 

 

 

II. LITERATURE REVIEW 

 

 

 

2.1 Introduction 

     Medical devices include a large range and variety of instruments that have a specific 

purpose relating to health. The United States Food and Drug Administration (FDA) 

defines a device as "an instrument, apparatus, implement, machine, contrivance, implant, 

in vitro reagent, or other similar or related article, including a component part, or 

accessory which is: 
3
 

1. recognized in the official National Formulary, or the United States Pharmacopoeia, 

or any supplement to them, 

2. intended for use in the diagnosis of disease or other conditions, or in the cure, 

mitigation, treatment, or prevention of disease, in man or other animals, or 

3. intended to affect the structure or any function of the body of man or other animals, 

and which does not achieve its primary intended purposes through chemical action 

within or on the body of man or other animals and which is not dependent upon 

being metabolized for the achievement of its primary intended purposes. The term 

"device" does not include software functions excluded pursuant to section 520(o).'' 
3
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     The Food and Drug Administration is responsible for ensuring the safety and 

efficacy of drugs. After the Federal Food Drug and Cosmetics Act of 1976, the 

responsibility of the Food and Drug Administration was expanded to also include 

medical devices.
4
 During this time, the Federal Food and Drug Administration created a 

classification system for medical devices based upon their risk of injury to the public. 

The devices' classification will determine the regulatory process involved in approving 

the device for the public. Below is the classification system regarding medical devices: 

Class Risk   

Class I  Low risk of injury or illness. 

 

  Requires the least number of regulatory requirements. 

Class II Moderate risk of injury or illness. 

 

  Requires a more rigorous regulatory process than Class I devices, and 

must demonstrate they will perform as expected.  

Class III High risk of illness or injury. 

 

  Requires the highest level of pre-market approval required by the FDA, 

requiring sufficient scientific evidence of safety and efficacy.  

Table 11: Medical Device Classification 
6
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     In order to approve a medical device to be used by the public requires a lengthy 

process and can represent a succession of iterations of precious devices.
5
 There are 

currently three processes to obtain FDA marketing approval for medical devices. There 

is a large percentage of Class I devices that qualify for "exempt" status in which the 

device does not need a proof of safety or efficacy, and can forgo the standard process. 

However, the manufacturer is required to register their establishment and list their 

devices with the FDA.
6
 The three basic processes are outlines below:  

Process Description 

Premarket Notification [510(k)]  This submission is required to for any new 

device in which there is not a presence of a 

similar device to prove safety and efficacy.  

Premarket Approval (PMA)  This application is required of Class III 

devices to demonstrate safety and efficacy. 

Humanitarian Device Exemption 

(HDE) 

This is a marketing application for a 

Humanitarian Use Device (HUD).  "A 

HUD is defined as a medical device 

intended to benefit patients in the treatment 

or diagnosis of a disease or condition that 

affects or is manifested in not more than 

8,000 individuals in the United States per 

year." 

Table 12: FDA Medical Device Approval Processes 
6
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     A cardiovascular device, or cardiac device, is a medical device that is used to treat 

diseases and conditions related to the cardiovascular system. The cardiovascular system 

is composed of the heart and the circulatory system. The goal of the cardiovascular 

system is to transport oxygen and nutrients to cells while circulating blood throughout 

the body. Cardiac devices are available in a variety of platforms and apparatuses, and 

are available to be worn on the outside of the body, as well as implanted in the body. It 

is important to understand the underlying issue of why patients will require cardiac 

devices, and the disease or condition they are intended to treat.  

 

Figure 5: Depiction of The Cardiovascular System 
7
 

2.2 The Heart 

     The human heart is one of the first organs to develop and is an essential organ. 

Weighing at roughly 7 to 13 ounces, the function of the heart is to collect blood from the 
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body's tissues and pump blood to the lungs.
8
 From the lungs the heart pumps blood out to 

the body. The heart is composed of cardiac muscle and myocardium (muscular heart 

tissue), and consists of four chambers, which contracts in a steady rhythm know as a 

heartbeat. The two upper chambers of the heart, can be viewed as the receiving chambers 

and are the atria, separated into the left and right atrium. The two lower chambers, can be 

viewed as the pumping chambers, are the left and right ventricles.
9 

The division of the 

right and left side of the heart is to prevent contamination of blood. Deoxygenated blood 

is collected in the right side of the heart, while oxygenated blood is collected in the left. 

The heart also consists of four valves that allows blood flow: tricuspid, mitral, pulmonary 

and aortic.
8,9

 The purpose of these valves is to maintain a one-way flow of blood. 

 

Figure 6: Depiction of Blood Flow to and From the Human Heart 
10

 

     Blood is collected from the tissues through two large veins- the superior vena cava 

(head, neck and upper limbs), and the inferior vena cava (lower limbs and truck). The 

deoxygenated blood received from these veins are collected in the right atrium. The blood 

then exits the right atrium through the tricuspid valve, entering the right ventricle, where 
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the blood exits through the pulmonary valve. From that point, the blood then enters the 

pulmonary artery, where the blood is directed to the right and left lungs.
8,9

 Oxygenated 

blood returns from the lungs through the pulmonary veins and enters the left atrium. The 

blood exits the left atrium through the mitral valve where it enters the left ventricle. At 

this time, the blood exits the left ventricle through the aortic valve, entering the aortic 

arch, then the aorta. The purpose of the aorta; the largest artery in the human body, is to 

distribute oxygenated blood to the rest of the body.  

     Blood is supplied to the heart by its own vascular system, called coronary circulation. 

Coronary arteries supply blood to the myocardium (muscular heart tissue) and 

epicardium (tissue surrounding the heart). In this process, blood flows from the heart 

through the coronary arteries, and returns back to the heart through cardiac veins. There 

are eight coronary arteries in the heart: right coronary artery, sinoatrial nodal artery, right 

marginal artery, posterior descending artery, left coronary artery, left circumflex artery, 

left marginal artery and left anterior descending artery. Coronary arteries are considered 

to be end arteries in which they supply blood without overlap from other arteries. A 

blockage in one of these arteries translates to ischemic damage. There are three major 

systems of cardiac veins- tributaries of the coronary sinus, anterior cardiac veins and 

atrial cardiac veins. The coronary sinus is the largest vein of the heart and is a collection 

of veins that form the sinus: great cardiac vein, middle cardiac vein, small cardiac vein, 

posterior vein of left ventricle, oblique vein of left atrium, right marginal vein and left 

marginal vein.  
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Figure 7: Depiction of Coronary Circulation 
11

 

2.2.1 Cardiovascular Diseases 

     Heart disease and cardiovascular disease is often used interchangeably, but 

cardiovascular disease refers to the numerous conditions that affect the heart, arteries, 

veins, and capillaries, while heart disease refers to conditions that affect the heart and its 

functioning. It is important to note, all heart diseases are cardiovascular diseases, but not 

all cardiovascular diseases are heart diseases.
12

 

     Cardiovascular disease is the global leading cause of death. In the United States, 

cardiovascular disease affects 1 in 4 people. The most common disease is coronary heart 

disease (CHD), and is also known as coronary artery disease (CAD), and is caused by 

the accumulation of plaque buildup within the coronary arteries. This buildup, is 

referred to as atherosclerosis, and causes the arteries to narrow, thus decreasing blood 

flow to the heart.
13

 This decrease in blood flow may cause a wide array of symptoms 

and a blockage can ultimately cause a heart attack, or myocardial infarction.
14

 

     Another term, which is often used interchangeably to atherosclerosis, is 

arteriosclerosis. Arteriosclerosis specifically refers to the hardening and thickening of 
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the arterial walls, ultimately restricting blood flow to the heart and/or other organs. 

Atherosclerosis is a form of Arteriosclerosis, and both conditions can exist 

simultaneously. At times, Arteriosclerosis can develop into atherosclerosis, since the 

two conditions are closely related.
15

 

 

Figure 8: Depiction of Atherosclerosis 
13

 

 

     The site of the plaque buildup will determine the type of heart disease. For instance, 

Peripheral artery disease is atherosclerosis of the arteries that provide blood flow to the 

extremities such as the arms and legs. Reduced blood flow or blockage to these areas 

may result in various symptoms including but not limited to: numbness, pain, and 

infections in the extremities.
16

 Severe peripheral artery disease that has not been treated 

can have serious complications such as critical limb ischemia. Critical limb ischemia is 

defined as tissue loss/gangrene, impaired blood flow and claudication due to peripheral 

artery disease being present.
17,18,19

  

     Carotid artery disease is atherosclerosis of the arteries located in the neck (carotid 

arteries) that provide blood flow to the brain. Decreased blood flow or a blockage may 

result in stroke.
20

There are three classifications of strokes. Ischemic strokes account for 
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the majority of strokes and this is the blockage of the arteries that supply blood to the 

brain. A hemorrhagic stroke is due to a leak or rupture of an artery in the brain. A 

transient ischemic attack (TIA) is a temporary blockage of blood to the brain, and 

typically lasts less than 5 minutes. A transient ischemic attack is an indication of a 

future stroke.
21

 

     Myocardial Infarction is also known as a heart attack and occurs due to impaired 

blood flow to the heart.
20

 A sudden blockage can be due to a blood clot that has formed 

in a coronary artery that has been narrowed due to the presence of atherosclerosis. 

Myocardial infarction can occur without the presence of a blood clot as well, given the 

demand for oxygen cannot be met with the current supply. A common cause of 

myocardial infarction is atherosclerosis, and the risk factors for both conditions are 

nearly identical.  

     Atrial Fibrillation is a condition that describes irregular heartbeat causing the 

chambers of the heart to beat differently from one another. This irregularity causes the 

lower chambers of the heart to not fill entirely or pump enough blood to the lungs and 

body. The lower chamber of the heart may pool with blood which potentially leads to 

clotting, stroke or other heart-related conditions that have serious complications if left 

untreated.
22 

Heart arrhythmia is a condition when the heart beats irregularly. This 

irregularity includes tachycardia (heart beats too rapidly), and bradycardia (heart beats 

too slowly). Complications may include heart failure, which describes the heart's 

inability to work efficiently and meet the demands of the body.  



44 
 

 

Figure 9: Depiction of The Human Heart 
23

 

     As mentioned above, heart failure is defined as the heart failing to work efficiently. 

In other words, the heart fails to pump enough blood to meet the demands of the body.         

Heart failure can affect the left side of the heart, right side, or potentially both. Left 

sided heart failure involves the left heart ventricle failing to pump enough blood for the 

body. Right sided heart failure involves the right ventricle failing to pump enough blood 

for the body and the accumulation of blood in the veins which causes swelling in the 

body. Biventricular heart failure is defined as both sides of the heart being affected.
24,25

  

    Congestive heart failure (CHF), is often used interchangeably as heart failure, but The 

American Heart Association defines congestive heart failure as the heart’s inability to 

pump blood to meet the demands of the body and additionally, “when the heart does not 

circulate blood normally, the kidneys receive less blood and filter less fluid out of the 

circulation into the urine. The extra fluid in the circulation builds up in the lungs, the 

liver, around the eyes, and sometimes in the legs. "This is called fluid "congestion" and 

for this reason doctors call this congestive heart failure." 
26
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     Heart valve disease is defined as one or more valves in the heart are not functioning 

properly. The human heart has four valves: aortic, tricuspid, pulmonary and mitral.
27

 

Regurgitation occurs when the heart valve does not completely close and blood flows 

back into the heart. This over time can cause thickening of the left ventricle due to 

overworking to remove the excess blood and may result in fluid buildup in the lungs. 

Stenosis occurs when the valve becomes thickened and can restrict or limit blood flow 

causing a gradual thickening of the heart.  
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2.2.2 Cardiac Medical Devices 

     Cardiac disease has at times required surgical intervention and the placement of a 

medical device. There are various types of devices that address disease and provides 

therapeutic benefit. Below are examples of cardiac devices that exist today and what they 

are meant to treat: 

Table 13: Cardiac Devices and Therapeutic Benefit 
28,29,30

 

  

Cardiac Device Therapeutic Benefit 

Left Ventricular 

Assist Device 

Aids the pumping ability of the heart-eliminating the need 

for a heart transplant. 

Coronary Stent 
Widens the artery increasing adequate blood flow to heart, 

usually performed after a balloon angioplasty. 

Pacemaker Aids in regulating heart rhythm. 

Biventricular 

Pacemaker 
Corrects contractions of lower left ventricle. 

Implantable 

Cardioverter 

Defibrillator (ICD) 

Detects heart rhythm and sends a shock to correct rhythm 

when necessary. 

Implantable Cardiac 

Loop Recorder 

Records heart's rhythm to determine source of irregular 

events. 

Cardiac Monitor Monitors heart activity. 

Artificial Valve Replaces heart valve after dysfunction/disease. 

Left Atrial 

Appendance Closure 

Effective for patients with atrial fibrillation to prevent blood 

clots entering the bloodstream to cause a stroke. 



47 
 

2.2.2.1 Coronary Stents 

     Coronary angioplasty, also called a percutaneous angioplasty, is a procedure to widen 

restricted arteries. During this procedure, a balloon tipped catheter that is designed to 

inflate, is inserted into the patient's arm or leg locating the artery. The inflated balloon 

will to push plaque against the artery's walls to widen the path for blood flow. It is likely 

that during this procedure, a device called a stent will be placed inside the artery. A stent 

acts as a prop or structure to keep the artery widened to maintain blood flow. There are 

stents that have a drug coating on them, called drug eluting stents and are designed to 

slowly release a drug to deter the formation of scar tissue within the artery.
31,32 

 

2.2.2.2 Pacemakers 

     A pacemaker is a device that is placed in the chest or abdomen to control abnormal 

heart rhythms, or arrhythmias. This device is typically placed after an initial procedure to 

address the heart's abnormality. Pacemakers monitor heartbeat, and will send electrical 

signals to the heart to speed or slow down the heart rate depending on the condition. A 

pacemaker is also useful in ensuring the chambers of the heart are pumping normally as 

well normal ventricle contraction.
33,34

 

2.2.2.3 Left Atrial Appendage Closure Device 

     A left atrial appendance closure is a procedure performed to seal this area if there is 

risk of developing blood clots and subsequently suffering a stroke. This procedure is 

recommended for patients that do not have a valve disease and are unable to take 

Coumadin, which is a blood thinning prescription. A left atrial appendance closure device 

is inserted similarly to a stent, and then a narrow tube guides the device to left atrial 
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appendage of the heart. A relatively new device called the Watchman is giving patients 

an alternative to life-long medication use.
35,36

 

2.2.2.4 Implantable Cardioverter Defibrillator (ICD) 

     An implantable cardioverter defibrillator (ICD) is a small device that is implanted into 

the chest to detect deadly arrhythmias and restore heart beat if and when the heart stops,  

known as cardiac arrest.
37

 This device is a recommended option for patients that have 

survived a prior cardiac arrest, the presence of a condition that causes unpredictable heart 

rhythms, poor heart functioning and/or sarcoidosis, which is a condition that causes the 

growth of granulomas (cluster of cells or localized inflammation). An implantable 

cardioverter defibrillator can be a necessary life saving device. This device will send 

shocks to the heart to restore normal heart rhythm, or a high energy shock to restore 

functioning if necessary. Many Implantable cardioverter defibrillators can also act as a 

pacemaker and monitor the heart.
38,39

 

2.2.2.5 Left Ventricular Assist Device (LVAD) 

     Patients that have experienced heart failure, may have a left ventricular assist device 

(LVAD) implanted onto their hearts. This device is a mechanical pump that is designed 

to assist the left ventricle of the heart to pump blood to the body.
40,41,42 

It consists of the 

pump, an outside battery, controller and line to control the pump. This treatment can 

eliminate the need for a heart transplant for some patients. Other times, a left ventricular 

assist device is a viable replacement as a patient awaits a heart transplant, in this case this 

is known as bridge-to-transplantation. Destination therapy is the term for the type of 

therapy that will benefit patients long term from the use of this device. These patients are 

not eligible for a heart transplant.
42,43 
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2.2.2.6 Heart Valve Surgery 

     Heart valve surgery encompasses procedures to repair or replace one or more heart 

valves after being affected by disease or dysfunction. Heart valve repair involves 

repairing the current valve so that it functions normally, such as covering perforations in 

a valve, removing excess valve tissue, or separating valve flaps that have merged at some 

point. If the valve cannot be repaired, it can be replaced by either a mechanical valve or a 

biological tissue valve based upon the determination of best course of treatment, which 

varies by patient.
42

 Mechanical valves are longer lasting than a tissue valves, however, 

they will require treatment of blood thinning medications to prevent the formation of 

blood clots. Biological tissue valves may or may not need blood thinning treatment.
43 

 

2.2.2.7 Cardiac Monitor 

     A cardiac monitor simply monitors and captures information regarding the heart 

rhythm of a patient. This is useful regarding events that may happen infrequently, and/or 

aid in the process of diagnosing a condition. A cardiac monitor can be implanted into the 

body or be worn outside the body.
44

 The length of monitoring depends on the patient's 

specific symptoms or condition. A cardiac loop recorder is another type of cardiac 

monitor that allows for long term monitoring, up to three years.
45

 

2.2.3 Cardiac Device Migration, Extrusion and Expulsion 

     The FDA defines migration as the undesired movement of the device from the original 

or intended source.
46

 Expulsion of a medical device refers to the unintended movement of 

the device from inside the body to the outside. Extrusion refers to a device that is fully or 

partially exposed. After research regarding the unintended movement of cardiac devices, 

the term extrusion was more commonly referred to than expulsion. In cardiac devices, 
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that require leads or wires that attach to an organ such as the heart, complete expulsion 

from the body would be unlikely.  

     In medical devices such as intrauterine devices (IUDs), which are a method of birth 

control, complete expulsion is possible given that the device is placed inside the uterus, 

held in place by the frame of the device. There is a thin string that is attached to the 

device that extends outside of the vagina. The device may be expelled from the uterus for 

various reasons, or the string that is attached to the device may be unintentionally pulled, 

subsequently pulling the device out. In the case of a patient with a completely extruded 

pacemaker, it was noted that this failure is extremely rare and a potentially fatal 

complication.
47 

In a similar case regarding a completely extruded defibrillator, the device 

migrated under the skin and eventually became exposed. The site of exposure had 

experienced rare skin erosion and due to an exposed device, infection became present 

which required treatment and removal of the device.
48

 

     Device migration is a serious complication of cardiac device implantation, and can 

lead to other serious complications requiring re-operation. Re-operation is an undesirable 

result as well as a risk factor in cardiac device implantation.
49

 In device migrations, 

dislodgement with leads (wires that attach to the device for functionality), is likely which 

poses an additional risk for complications. It has been noted there is a likely relationship 

between device migrations and infection.  

     Device infections are associated with morbidity, mortality and increased hospital 

length of stay. Due to these factors, there is an increased cost associated with device 

infection.
50

 Extraction of the device, proper medication therapy to treat the infection and 

subsequent device replacement resulted in a more favorable outcome for the patient.
51

 



51 
 

Not properly treating the prior infection and addressing the issues that lead to the initial 

infection, resulted in an infection relapse or another poor outcome.
51

 Relapse is defined 

as the reoccurrence of the infection with a similar type of organism within one year of 

treatment of the initial infection.
51

 

2.3 Machine Learning 

2.3.1 Definition  

     The application of machine learning has grown exponentially within the past decade 

due to its potential benefits and uses. The field has progressed from curiosity to 

widespread practical and commercial use. Many applications and software have a 

predictive component, and machine learning is now the method of choice for 

development. One informal definition of machine learning as explained by Mathworks: 

"Machine learning is a data analytics technique that teaches computers to learn from 

experience."
52

 Another definition of machine learning as explained by IBM is: 

"Machine learning is a form of artificial intelligence that enables a system to learn from 

data rather than through explicit programming."
53

 

     The effects of machine learning can be observed across a range of industries where 

data is a necessary tool for operation.
54

 The concept of learning can be defined as the 

problem of improving a measure of performance when executing a task, through 

iterative experience. Experience refers to historical information that is available to the 

learner (machine learning algorithm), which is generally the form of data and made 

available for analysis. The goal of machine learning is to make accurate predictions 

using prior data or experience.
55

 As an example, in the case of classifying undesirable 

unimportant emails (spam), the task is to assign "spam", or "not spam" to any given 
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email. The performance metric to improve is the accuracy in the spam classifier, and the 

training dataset will consist of prior emails that have already been classified 

appropriately.
54

 

     This research involves machine learning regarding medical devices, which is related 

to health. Machine learning within healthcare and biomedical communities has seen 

immense growth and the need for accurate analysis, early disease detection and patient 

care continues to grow along with population and advances in technology/data usage. 

Within clinical environments, there is now access to medical data from electronic health 

records (EHR), and the introduction of various telehealth and telematics paradigms, 

such as the collection of mobile users' data in real time.
56

 

     Machine learning is further understood by overarching learning classifications: 

supervised, unsupervised and semi-supervised. This research will also look to 

understand natural language processing, which is the ability of the algorithm to 

understand human language. This research will depend heavily upon textual fields to 

identify and classify cardiac medical devices.  

2.3.2 Supervised Learning 

     In supervised learning, the learner receives a set of labeled data (known examples), as 

training input and makes predictions for all unseen data points. The spam detection 

problem discussed in the previous section is a classic example of supervised learning.
55

 

Supervised learning can be classified into two major types of problems: classification and 

regression.  In classification, the goal is to predict a class label, which is a choice from 

presented groups.
57

 In classification, at times the case is distinguishing between two 

classes which is known as binary classification. Classification problems can be compared 
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to yes/no questions such as, "cardiac device" or "not a cardiac device".  In regression, the 

goal is to predict a value. An example of a regression problem, is to predict the value of a 

home based upon the square footage.
57

 There are various algorithms that are common in 

supervised learning. 

2.3.2.1 Decision Trees 

     A decision tree is a type of classifier that consist of a collection of decision nodes 

arranged in a tree structure. This particular algorithm is used in classification and 

regression problems. Each node is associated with a particular parameter, or a terminal 

node.
58

 A terminal node is also referred to as a leaf. Decision trees are similar to if/else 

questions, then eventually leading to a decision.
57 

Learning in a decision tree is the ability 

to arrive at the accurate answer, with the least number of if/else questions. A random 

forest is a collection of decision trees, where each tree is slightly different from one 

another. A collection of multiple machine learning models are called ensembles, and 

random forest is a common example.  

 

Figure 10: Decision Tree for Breast Cancer Screening Options 
59
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Figure 11: Random Forest 
60

 

2.3.2.2 Logistic Regression 

     Logistic regression is an appropriate algorithm when the dependent variable is 

dichotomous (binary). In contrast, linear regression describes when the dependent 

variable is continuous. Logistic and linear regression are commonly used for 

classification tasks. Logistic regression models the chance of an outcome based on 

individual characteristics.
61

 The logarithm of chance will be modeled, given that outcome 

is ultimately an odds ratio. Below is the algorithm describing this: 

 

 

Equation 1: Logistic Regression 

Where π indicates the probability of an event and βi are the regression coefficients 

associated with the reference group and the xi explanatory variables. What is present is a 
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binary output variable (Y), and we are interested in modeling the conditional probability 

Pr(Y = 1|X = x) as a function of x; any unknown parameters in 

the function are to be estimated by maximum likelihood. Below is the formal logistic 

regression equation.
62

 

 

Equation 2: Formal Logistic Regression Equation 

 

Solving for p results in this: 

 

Equation 3: Solving for P in Logistic Regression 

 

To minimize the error rate (misclassification), we should predict Y = 1 when p ≥ 0.5 

and Y = 0 when p < 0.5. This means estimating 1 whenever β0 + x β is non-negative, 

and 0. Ultimately, logistic regression results in a linear classifier.  

2.3.2.3 Naive Bayes 

     Naive Bayes is a probabilistic classifier that originates from Bayes' Theorem. This 

particular algorithm has been a popular choice for text classification due to its simplicity, 

ease of use and efficiency. Bayes' Theorem gives the probability of a certain hypothesis, 

regarding the data. This method of thinking of an event is called diachronic 

interpretation. This refers to something that is happening over time; changing the 

probability of the hypotheses over time, as new data is seen.
63   
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Bayes' Theorem is described as:
 

 

Equation 4: Bayes' Theorem 
63 

Three distribution models; Bernoulli, multinomial and Poisson models have been 

incorporated into the Bayesian framework. 
64

  

2.3.2.4 Support Vector Machines 

     Support Vector Machines (SVM) is a method for building a classifier. Its goal is to 

create a decision boundary between dichotomous classes that enables the prediction of 

labels from one or more feature vectors.
65

 In this learning algorithm, only a subset of the 

training points matters for defining a decision boundary, or hyperplane.
66

 These points 

that reside on the border between the boundaries are called support vectors. For the 

classification, the SVM finds a maximum margin hyperplane with normal vector w~ that 

divides the two classes. SVM can be applied to classification or regression problems. The 

following two figures illustrates this concept: 

 

Figure 12: Linear SVM Model with Two Classes 
65 
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   In a labeled dataset, the equation is as follows:  

(x1, y1), ..., (xn, yn), xi  ∈ R
d
 and yi ∈ (−1, +1) 

Equation 5: Support Vector Machines  

 

Regarding this equation, xi is a feature vector representation and yi represents class label 

of a training compound i. The optimal hyperplane can then be defined as:  

 

wx
T
 + b=0 

Equation 6: Optimal Hyperplane 

 

In this equation, w is the weight vector, x is the input feature vector, and b is the bias. 

The w and b would satisfy inequalities in the following training set:  

 

wxi 
T
 + b ≥ +1 if yi =1 wxi 

T 
+ b ≤ −1 if yi = –1 

Equation 7: Satisfying Inequalities in the Training Set 

 

The objective of training an SVM model is to find the w and b in order for the hyperplane 

can separate the data and maximize the margin.
65, 66

 

2.3.3 Unsupervised Learning 

     In unsupervised learning, the learner receives unlabeled data (unknown examples), as 

training input and makes predictions for all unseen data points. Since there are no labeled 

examples available, it can be difficult to quantitatively evaluate the performance of a 
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learner. Clustering and dimensionality reduction are example of unsupervised learning 

problems.
54

 Unsupervised learning can be viewed as in a free-form manner being able to 

find patterns and structure from input data.
66 

Two common algorithms within this realm 

are k-means clustering and principal component analysis.  

2.3.3.1 Clustering 

     Clustering involves separation of the data into groups, aptly named clusters. 

Clustering algorithms assign a value to each data point indicating the cluster that the 

point belongs to.
67

 K-means clustering is a commonly used clustering algorithm in data 

science. K-means accomplishes two things: finds the most optimal centroids by first (1) 

alternating between assigning data points to clusters based on the present centroids and 

(2) choosing centroids based on the current assignment of data points to clusters. The 

algorithm finishes its task when there are no longer changes or clusters to assign to. The 

following is a figure that visualizes assignment of cluster in k-means algorithm.
67

 

 

Figure 13: K-Means Algorithm 
67

 

     In figure 13, the training data points are the dots, and cluster centroids are the crosses. 

Box (a) Is the original dataset. Box (b) Is the random initial cluster centroids. Boxes (c-f) 

are depictions of two iterations of k-means. In each iteration, each training example was 
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assigned to the nearest cluster (shown by "painting" the training examples the same color 

as the cluster centroid to which is assigned); then each cluster centroid was moved to the 

mean of the points assigned to it.
67

 

2.3.3.2 Principal Component Analysis 

     Principal Component Analysis (PCA), is similar to k-means clustering in that it finds 

patterns without prior knowledge about whether the samples originate from the same 

group or distinctively different. 
68 

PCA reduces dimensions by projecting them to lower 

dimensions, aptly named principal components. The goal of this task is to find the best 

summary of data with the points, essentially minimizing the distance and variance 

identifying clusters of similarity.  

 

Figure 14: PCA Dimensionality Reduction 
68

 

 

In Figure 14, (a) represents projection along a path, which is illustrated with the solid 

point, (b) represents the projections of points (a) onto a line, (c) the subsequent 

minimizing of the distances between points.
 68
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2.3.4 Reinforcement Learning 

     This algorithm involves the concept that the training example does not contain the 

target output, but contains potential output with a measure of the value of that particular 

output.
64

 In other words, the learner is not given the answer, but given choices, and must 

discover through learning what action provides the greatest reward.
69 

A famous example 

in reinforcement learning is regarding the computer program AlphaGo, a Google 

creation, that beat a human professional Go player. Go is an ancient East Asian game, 

thought to have originated in China, that requires skill and strategy and has many 

possible positions for victory. AlphaGo's first match was against a reigning champion, 

named Fan Hui, and next was against the 18-time Go champion Lee Se-dol.  

2.3.5 Natural Language Processing 

     Natural language processing (NLP), allows the computer to learn human language. 

Computational linguistics, and NLP are synonymous as it relates to the subfield of 

artificial intelligence dedicated to using computational techniques to learn, understand, 

and produce human language content.
70

 Natural languages contain large diverse 

vocabularies, words with various meanings and speakers with accents. Humans make 

linguistic errors in writing and speaking, leaving things to be ambiguous and 

mispronunciations. The skillful of use of language is what makes humans unique. Given 

the importance of language as well as the complexity of it, is why NLP research is so 

important. This method of data processing can be useful in healthcare and the medical 

field in which there are robust text and narrative fields that are typically underutilized. As 

in our particular research, the textual fields will be utilized in MAUDE to gain more 

insight about the device failure and the effects on the patient. In a preliminary analysis, 
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the textual fields revealed information not found in other fields. Traditional NLP has 

relied upon rule-based processing, which was found to be very labor-intensive due to the 

necessary constant maintenance as the context and language changes.
71 

In modern 

methods, SVM, Naive Bayes and Convolutional Neural Network (CNNs) algorithms are 

used to identify and classify text, where the model learn directly from sets of text.  

2.3.6 Gradient Descent  

     In machine learning gradient descent is described as optimization algorithms to adjust 

parameters with the purpose of finding the minimum of the cost function.
72

 In gradient 

descent, there is a local minimum and a global minimum. A local minimum is the 

smallest value of the cost function, usually within a particular range, whereas a global 

minimum spans the entire domain of the function. The cost function also known as the 

loss function, measures how well the parameters are performing on the training dataset. 

This function allows the algorithm to minimize the error. The gradient is a vector that 

directs to the steepest descent, with the length dependent upon the steepness of the 

gradient. Gradient descent identifies the optimal value and adjusts iteratively.  

 

𝑏 = 𝑎 − 𝜕∇𝐹(𝑎) 

 

Equation 8: Gradient Descent 
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Figure 15: Gradient Descent 
72

 

2.3.7 Deep Learning 

     Deep learning is a subset of machine learning that has been inspired by the structure of 

the human brain. This structure is referred to as an artificial neural network. The 

fundamental building blocks of deep learning is the perceptron-which refers to a single 

neuron in a neural network. We live in a data-centric society with far easier access to 

data. Deep learning algorithms are massively parallelizable and benefits from our modern 

GPU architecture. Building and deploying deep learning algorithms have become rather 

simple for the general public, with a worldwide community willing to share methods and 

information.  

     Traditional machine learning algorithms typically have defined sets of data, and they 

work to extract these features as part of their pipeline. Deep learning takes traditional 

machine learning a step further and learns directly from the data, instead of being hand-

engineered from the data professional. Hand-engineering took considerable domain 

expertise to design the feature extractor that would be able to detect or classify patterns.
73

 

Deep learning represents a hierarchal model capable of various levels of abstraction. 

Deep learning has rendered promising results regarding natural language processing, in 

areas such as topic classification, sentiment analysis and in the translation of languages.
73
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Forward propagation is how the data is “fed” or input through this single unit. This 

process is the method in which predictions are made. 

 

Figure 16: The Perceptron 
74

 

© MIT 6.S191: Introduction to Deep Learning 

introtodeeplearning.com 

 

     A set of inputs are defined X1 through Xm and multiply each input by corresponding 

weight 0 through 0m, take the weighted combinations of all inputs, sum them and pass 

through a nonlinear activation function which then produces output  . Bias allows the 

activation function to shift in some way and is represented by 00. The bias allows the 

model to find the best fit in the data. The activation function is represented by g and is 

always nonlinear. Activation functions introduce nonlinearities into the network, 

establishing flexibility for a wider variety of boundaries. Using a linear function with 

nonlinear data, the resulting output will only be linear. This can lead to data points being 

misclassified. There are different types of activation functions to consider. The sigmoid 

function is the commonly used to produce probability outputs.  

http://introtodeeplearning.com/
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Equation 9: Sigmoid Function 

 

Figure 17: Sigmoid Function 
75

 

 

 

Equation 10: Hyperbolic Tangent 

 

Figure 18: Hyperbolic Tangent 
75 

  



65 
 

 

Equation 11: ReLU  

 

Figure 19: Rectified Linear Unit (ReLU) 
75

 

 

      In order to train neural networks, stochastic gradient descent is widely used. 

Previously gradient descent was described as an algorithm to find the minimum in the 

loss function. Stochastic gradient descent is a variation of gradient descent in which the 

gradient is computed using a single training example. This method is computationally 

less expensive than traditional gradient descent which computes gradient for each data 

point. However, one issue is that stochastic gradient descent can be "noisy", consisting of 

irrelevant data points, and may not be representative of the true gradient.
73

 A solution to 

this issue is to use "mini batches" or smaller segments of the data, and compute average 

gradient across data points and to use those as estimates of the true gradient. This method 

parallelizes computation and achieves significant speed allowing for faster training. 

Another benefit is larger learning rates and smoother convergence. The mini batch 

method can render overall favorable results over stochastic gradient descent.  
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     Backpropagation is the tool gradient descent uses to calculate the loss in the loss 

function. Once there are outputs generated from the forward propagation process, the loss 

then gets calculated for said output. Then gradient descent updates the weights with the 

purpose of minimizing loss. This is in a sense working "backward" through the network 

to find these values. Backpropagation are the partial derivatives of the error function with 

respect to individual weights in the network to use in gradient descent. Backpropagation 

applies the chain rule through all possible paths in network.  

 

Figure 20: Chain Rule 
76

 

     As mentioned previously, sigmoid functions have been popular activation functions 

due to their ability to produce easily understandable outputs between zero and one. 

Outputs are not zero centered, which can make gradient of weights either positive or 

negative. If a local gradient is small, it can lead to vanishing gradients, which occurs the 

more layers that are added to the neural network and as the gradients of the loss function 

approaches zero. Hyperbolic tangent functions produce a zero centered output between 

one and negative one. This function can also suffer from vanishing gradients. Rectified 

linear units (ReLU), produces an output that is less than zero when X is zero, and linear 

with a slope of one when X is greater than zero. ReLU learns faster and more efficiently 
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and avoids vanishing gradient problem. Because of this, ReLU is becoming a popular 

choice for neural networks.  

     A single layer neural network, is a shallow, one-layer deep network. The hidden layers 

are not directly observable. A deep neural network is to stack fully connected layers and 

the weights between layers. The underlying building block remains the perception. Multi-

output perceptions describe every node being connected to every node in another layer.  

 

 

Figure 21: Single Layer Neural Network 
77

 

2.3.7.1 Convolutional Neural Networks 

     Convolutional Neural Networks (CNN), have been used primarily for image 

processing, but has shown promise in other data analysis. This is a neural network 

designed to process data that are in array format.
73

 CNNs are comprised of hidden layers 

and pooling layers. The hidden layers, called convolutional layers, can receive input, 

transforms the input, and then output to the next layer. Units in a convolutional layer are 

organized in feature maps, connected to local patches in the feature maps of the previous 

layers a set of weights called a filter bank.
73

 Within each convolutional layer, this is 

where specification of filters are determined.  
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     The filters are the backbone to the layer, in which patterns are able to be detected from 

data. A filter can be described a matrix, with a determined number of rows and columns 

and the values within the matrix are initialized with random values. When the 

convolutional layer receives input, based upon the filter, the filter will "slide" over each 

set of pixels until it has viewed every block of data from the image, for example. The 

input plane receives data that are relatively normal sized and centered.
78

 This process of 

moving over the data or sliding, is referred to as convolving, or a convolution operation. 

After the filter has convolved the entire input of data, there will be a new representation 

of the input, which will be made up the entire matrix of stored dot product returned from 

the filter.  

 

Figure 22: Convolutional Neural Network in Image Processing 
78

 

2.3.7.2 Recurrent Neural Networks 

     A Recurrent Neural Network (RNN), is the output becoming the input for the network. 

This is particularly useful for sequenced data, that varies in size, such as speech or audio. 

This neural network can be described as a linear map. Each step in the neural network is 

dependent upon the output the previous step's output.
79 

RNNs have shown to be 

problematic during training due to backpropagated units grow or shrink during each time 
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step, so during several iterations, they may either explode or simply vanish.
73

 In order to 

address this issue, Long Short Term Memory Model (LSTM), can be used which is a 

gating mechanism. This is used to maintain and update the states of the model outside of 

normal execution flow. Within an LTSM memory unit consists of an information cell, 

and three gates: keep gate, read gate and write gate. The write gate, or input gate is 

responsible for writing data into the memory cell. The read gate, also known as the output 

gate is responsible reading data from the information cell and sending that back to the 

RNN as input. The keep gate, also known as the forget gate, maintains or deletes data 

from the information cell. By manipulating these gates, an RNN can remember only what 

is useful. These functions are similar to a neuron in a neural network. They are 

multiplicative, sigmoid activated nodes. LTSM networks have proven to be more 

effective that RNNs when there are several layers at each step enabling for deeper 

recognition of data.  

 

Figure 23: Recurrent Neural Network in Clickbait Detection 
79

 

 

     Figure 22 conveys the RNN architecture used for the detection of clickbait, which are 

internet ads that are designed to gain the attention of the viewer and at times leading to 
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disingenuous websites. The architecture consists of an embedding layer, hidden layer and 

an output layer. The embedding layer transforms the word into embedded features that 

can be input into the hidden layer. The hidden layer is where the RNN resides, and the 

output layer is where the data learned from the RNN is passed through and classified as 

either "clickbait", or "not clickbait." 
79
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Chapter III 

 

 

III. METHODS 

 

 

 

3.1 Introduction 

There are three goals associated with this research: 

Goal 1: To identify cardiac medical devices.  

Goal 2: To identify cardiac device failures: expulsion, extrusion and migration. 

Goal 3: To identify patient outcomes associated with device failures.  

     In order to identify cardiac medical devices, and subsequently classify the particular 

failures of interest within the 13 million records of narrative text, we have used a 

supervised machine learning method. Using the device failure reports contained in the 

Manufacturer and User Facility Device Experience (MAUDE) dataset, events were 

categorized into positive or negative classes, denoting records of interest versus records 

that are not of interest. The process of developing models began with algorithm and 

approach selection, then proceeded to model training and tuning, leading to evaluation of 

results. Results were evaluated through data visualization, statistical measures and 

manual reviews. Initial data preprocessing and exploratory analysis will be performed 
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within a Python Jupyter environment, and subsequent machine learning performed within 

a Microsoft Azure Machine Learning environment. This is an interactive, virtual 

environment designed to create and deploy machine learning models.  

3.2 Identification 

     It was essential to address this research in various steps with two methods to evaluate 

model performance. Research Goals 1 through 3 was addressed by way of two 

approaches: first with a Naive Bayes classifier, and second with a Decision Tree 

classifier.  

3.2.1 Classes 

     In order to classify the records for a model that is both simplistic and effective in 

nature, it was necessary to classify each report of cardiac medical device failures from 

MAUDE into a negative or positive class.  

For identification of cardiac devices: 

1. Class One: cardiac device  

2. Class Two: non-cardiac device 

For the identification of the three distinct failures, the identified cardiac devices were 

categorized into three classes:  

Extrusion 

1. Class One: extrusion 

2. Class Two: non-extrusion 
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Expulsion 

1. Class One: expulsion 

2. Class Two: non-expulsion 

Migration 

1. Class One: migration 

2. Class Two: non-migration 

3.2.2 Data 

     Data for this research was obtained through the U.S. Food and Drug Administration's 

website, as described in section 1.2.1.1. The first step of this process was exploratory data 

analysis, in which the variables of interest were carefully analyzed for appropriateness for 

this research. The files were extracted as text files from the website and stored in a 

Jupyter environment for analysis. Data encompassing a twenty-year span (1997-2017) 

was of interest, reasoning being to find the most statistically significant result as possible 

and to observe device failures over a period of time. A twenty-year span of time would 

have the capacity to render reliable results, and given the size of the dataset, would not 

suffer from a lack of data. Lastly, a larger dataset would allow for more options in 

research approaches and a wider variety of machine learning algorithms.  

     Originally, four sets of files were joined to create the foundation file to be used for 

machine learning models and consisted of: device failure codes, narrative text files, 

master record of device failures and device information. Upon evaluation after merging 

these four datasets on a unique key, it was clear that incorporating the problem device 

codes of interest relating to device migration, extrusion and expulsion greatly limited the 
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foundational dataset. Given that it has been determined that the problem device codes are 

not a sufficient representation to the extent of failures, they were excluded after the initial 

exploratory analysis. Excluding these codes resulted in a dataset that represented the 

large breadth of the original master file and will be more representative of the true extent 

of cardiac medical device failures. There can be multiple text files associated with a 

record, resulting in a 1:M relationship. The following table represents a tabulation of 

unique key values as well as non-unique.  

Unique MDR_REPORT_KEY 

 

Non-Unique MDR_REPORT_KEY 

Year Count 

 
Year Count 

1997 

            

74,769  

 

1997 

              

88,952  

1998 

            

60,123  

 

1998 

              

67,340  

1999 

            

50,985  

 

1999 

              

52,365  

2000 

            

50,761  

 

2000 

              

52,586  

2001 

            

57,180  

 

2001 

              

59,712  

2002 67,728  

 

2002 71,776  

2003 

            

73,205  

 

2003 

              

78,122  

2004 

            

78,034  

 

2004 

              

89,526  

2005 

            

97,233  

 

2005 

            

109,298  

2006 

          

117,571  

 

2006 

            

164,384  

2007 

          

158,166  

 

2007 

            

281,729  

2008 

          

174,180  

 

2008 

            

321,324  

2009 

          

217,779  

 

2009 

            

427,646  

2010 

          

280,022  

 

2010 

            

615,603  

2011 

          

410,388  

 

2011 

            

971,106  
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2012 

          

451,624  

 

2012 

         

1,096,668  

2013 

          

576,720  

 

2013 

         

1,406,995  

2014 

          

632,178  

 

2014 

         

1,448,863  

2015 

          

698,810  

 

2015 

         

1,712,872  

2016 

          

755,005  

 

2016 

         

1,960,366  

2017 

          

898,961  

 

2017 

         

2,255,884  

Total  

       

5,981,422  

 
Total  

       

13,333,117  

Table 14: Narrative Text Files  

3.2.2.1 Data Fields 

     MAUDE files consist of pipe delimited values. Each record is associated with an 

MDR_REPORT_KEY, which is the unique key from which the records were joined upon 

across various datasets. In order to understand if an adverse event occurred, the 

ADVERSE_EVENT_FLAG specifies a value of either a "Y' for yes, or an "N" for no. In 

tracking outcomes such as a serious injury, malfunction or fatality, the EVENT_TYPE 

field was utilized. The caveat in using this value is that the REPORT_SOURCE_CODE 

must be an "M", the value for a manufacturer report. In order to classify each device, the 

GENERIC_NAME was used as a filter method. To determine the type of cardiac device 

failure, the contents in FOI_TEXT was most useful in this task. When the information 

about the type of device was unavailable within the generic name field, the contents in 

FOI_TEXT was meaningful in extracting that information.  
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Field Entails 

MDR_REPORT_KEY Unique identifier for each record. This 

field was used as the unique key in order 

to associate records across datasets.  

REPORT_SOURCE_CODE Used to denote the source of the report.  

REPORT_NUMBER Report number for each record. A report 

number may be associated with more 

than one failure.  

DATE_RECEIVED Date report was received. 

ADVERSE_EVENT_FLAG This field indicates if an adverse event 

occurred.                                                                                                                                  

Y = Yes 

N = No 

U = Unknown 

* = No answer provided 

EVENT_TYPE This relates to the outcome. Only 

relevant for REPORT_SOURCE_TYPE 

=M.                                                                                        

D = Death 

IN = Injury 

IL = Injury 

IJ = Injury 

M = Malfunction 

O = Other 

* = No answer provided 

FOI_TEXT Narrative text field containing 

information regarding the event.  

GENERIC_NAME The generic name of the device involved 

in the failure. This field will be used to 

classify the cardiac devices.  

Table 15: MAUDE Fields 

3.2.3 Textual Preprocessing 

     To prepare the fields for analysis, textual preprocessing was performed as an initial 

step. To simplify analysis, all fields were converted to strings. The fields that were 

denoted as text, were normalized as uppercase input. In textual analysis, when string 

fields have differing input (such as lower case and upper case), the input will be 

recognized as unique, even in the case of the word being identical-such as cardiac and 
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CARDIAC. Leading and trailing whitespaces were removed from FOI_TEXT and 

GENERIC_NAME, as well as special characters and punctuation by way of a python 

regular expression function.  

     As mentioned in section 3.2.2, there can be multiple textual records associated with 

one MDR_REPORT_KEY, resulting in a 1:M association. A single device can 

experience multiple events or failures, and of varying types. For purposes of developing a 

machine learning methodology that results in the best potential outcome, it is best 

practice to have one textual record to be associated with one unique key. This technique 

will be useful for the classifier to correctly identify the cardiac device, as well as 

determining the failures of interest: extrusion, expulsion and migration. If there are 

multiple textual records associated with one unique key, it may be difficult for the 

algorithm to determine the true nature of the device; as the algorithm will likely view 

each separate record as a unique event, rather than an identical device with a different 

failure type. In order to solve the issue, the textual files were concatenated into one 

record and joined on the corresponding unique key. This resulted in an extended textual 

column devoid of punctuation and a 1:1 association.  

     A list of more than 200 cardiac-related terms were used as reference in order to 

designate a subset of the data. In order to train a supervised learning classifier, the 

algorithm requires a set of labeled examples to learn from, in order to estimate labels for 

unseen data. These labeled examples consisted of both known cardiac devices, designated 

with a 1, as well as known non-cardiac devices, designated with a 0. In total, the subset 

consisted of 1,000,000 labeled examples-randomly selected non-cardiac and randomly 

selected cardiac designations. This value is approximately the equivalent to 18% of the 
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total number of records used in this research, after the data was normalized and combined 

in preparation for analysis, referenced in section 3.2.2, table 12. The reason why a larger 

number of records were selected for labeling is due to the necessity to include as much 

data as possible to return an acceptable result depending upon the data analysis approach. 

The records that were not used in the initial set will be used for validation. 

     Upon separating the data into two distinct groups, it was apparent there were 

differences between them. The sizes of the groups were unequal (there were more non-

cardiac devices than cardiac). Analyzing the subsets in both partially and fully labeled 

devices, the differences remain that there were more non-cardiac devices present within 

the MAUDE dataset. 

Cardiac Devices Non-Cardiac Devices Total 

1,183,941 4,448,315 5,632,256 

Table 16: MAUDE Cardiac and Non-Cardiac Device Counts 

Cardiac Device Count 

(Unique) 

Non-Cardiac Device Count 

(Unique) Total 

17,673  119,544 137,217  

Table 17: MAUDE Cardiac and Non-Cardiac Unique Device Counts 

 

Fully labeled cardiac devices account for more than 20% of the overall MAUDE dataset, 

with 80% belonging to non-cardiac devices. This outcome was to be expected. In 

reviewing unique device counts, there are fewer uniquely labeled cardiac devices than in 

the non-cardiac device group due to the popular usage of certain cardiac devices. 

Performing a manual review of the top 20 largest devices among both groups, the 

outcome was as expected, with that the most common devices were listed.  
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Figure 24: Labeled Device Groups  

 

3.2.4 Classifier 

     In selecting a classifier, several different algorithms were considered to determine 

their performance in their ability to identify cardiac devices. We took an experimental 

process approach to observe various models' output, and ultimately chose the model with 

the best performance.  



80 
 

Naive Bayes  

     This algorithm was chosen as the baseline model due to its simplicity, and prior 

examples of uses for textual analysis. The Naive Bayes classifier is based on the 

assumption that all features are independent of one another.
80

 This algorithm, based upon 

Bayes' Rule, is a conditional probability model based upon X to predict the variable Y. 

To revisit the section 2.3.2.3, Bayes' Theorem stipulates that: 

Pr 𝑋 = 𝑥 𝑌 = 𝑦 =
Pr(Y = y|X = x)Pr(X = x)

dxPr(Y = y)
 

Equation 12: Bayes' Rule  

 

Decision Trees 

     Decision trees, can be useful in textual and sentiment analysis, with many examples of 

this particular type of analysis. This algorithm was chosen due to its simplicity and ability 

to work with textual data of this format. As mentioned in section 2.3.2.1, this algorithm is 

similar to if/else questions, leading to a decision. In this case, there are two classes: a 

positive cardiac device, and a negative non-cardiac device. Based upon the textual 

column, the algorithm would arrive at the correct option.  

3.2.5 Bias 

     Bias is an important aspect in machine learning. A model is said to have low bias 

when it predicts well on the training data. High bias is when the model does poorly on the 

training data, which is known as underfitting. High bias is also known as high variance, 

which describes the variance of error of the model due to sensitivity in small variations in 

the dataset. When a model underfits, it can be attributed to the model being too simplistic 
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for the data, or the features chosen for the model are not appropriate. Overfitting, on the 

other hand, is due to the classifier learning the training data very well, but is simply 

memorizing rather than learning, thus predicting poorly on the test data set, which leads 

to poor predictions. An overfitting model can be attributed to a model that is too complex 

for the data, or there are too many features in comparison to the number of training 

examples.  

3.2.6 Training Data Generation 

     Feature engineering is the process of converting data into numeric elements. In order 

to classify the devices and failures, a numeric value needed to be assigned to them as a 

labeling method for the algorithm to recognize. It was imperative to first be mindful of 

the questions this research was looking to answer and to choose features that would be 

most appropriate. We are looking for a variable to be stored in X, which is the input 

variable, which will be used to predict Y. In this case, the text columns, 

GENERIC_NAME and FOI_TEXT are the inputs, and the Y will be created and either a 

0 or 1 will be stored as the output. The 0 or 1 represents either positive or negative-

cardiac device or non-cardiac device, or failure of interest, or not the failure of interest. 

This relationship can be described mathematically as: 

𝑌 = 𝑓(𝑋) 

 

Equation 13: Learning a Function 

The algorithm will learn the relationship between the X and Y and apply that relationship 

to classify unseen data. So, we should be able to input into the algorithm devices not 

before mentioned and it should fairly accurately predict whether it is a cardiac device or 
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not. Similar result for a migration, expulsion or extrusion case. The features that were 

most appropriate in this work was: 

Classification of Devices: 

X: GENERIC_NAME 

Y: 0, 1  

Classification of Migration, Expulsion and Extrusion Failures: 

X: FOI_TEXT 

Y: 0,1 

     Training data is imperative for the model to learn patterns from the data. The model 

did not have appropriate labeled examples, therefore, they needed to be generated. To 

revisit section 3.2.3, GENERIC_NAME is the column in which the common device name 

was stored. Using the common name of the device and comparing it against a 200+ list of 

cardiac terms, the device was labeled with a 1 (positive class), or 0 (negative class). An 

empty column named CARDIAC was created to store the value. Any device name that 

did not meet the list of cardiac terms, were deemed as non-cardiac and stored in a 

separate dataframe. The python code below demonstrates the method in which labeling 

was conducted.  
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Figure 25: Python Code for Labeling Cardiac Devices 

     349,166 null value of GENERIC_NAME records were omitted from the base dataset, 

which left a remaining count of 5,632,256 records for analysis. In total, 18% of the 

overall data was labeled with a 1 or 0, at 1,000,000 records. The unlabeled device records 

are for the purpose of testing and validation.  

     A similar method was employed for labeling the three types of device failures: 

expulsion, extrusion and migration. FOI_TEXT contained narrative text that was key to 

the type of failures that occurred during that particular event. Three empty columns were 

created in order to store the positive and negative class of 0 or 1 pertaining to each 

failure. Using a string pattern match, those records that were positive matches were 

classified as belonging to that failure. The failures were split into cardiac and non-cardiac 

groups for better understanding of the data. Below are examples of the code used to 

identify and label migration failures as well as the end result.  

 

Figure 26: Python Code for Labeling Migration Failures 
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Figure 27: Labeled Migration Example 

     Labeling the three specific failures rendered different results from labeling the types 

of devices. There was a total of 14,486 records that belonged to the three groups. 

However, when analyzing the failures pertaining specifically to cardiac devices greatly 

reduced the subset to 8,851 records. The number of records for expulsion were especially 

low; with 267 preliminary identified records, which will be challenging for a machine 

learning algorithm.  

     The normalized datasets were extracted from python in the form of text files and 

imported to a Microsoft Azure Machine Learning environment.  

1. Training/Testing  

The training and testing dataset contained the 1,000,000 labeled device records for the 

classifier-500,000 positive and 500,000 negative as well as 4,632,256 unlabeled records.  

2. Failures  

The Failures dataset contained 14,486 labeled examples using narrative text to identify 

cardiac device migration, expulsion and extrusion.  

3.2.6.1 Feature Extraction 

     Both the Naive Bayes and Decision Tree Analysis models relied upon tokenization 

and vectorization in order to normalize and transform the text into features for use by the 
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algorithms. Tokenization is the process in which the text can be separated into smaller 

pieces of information so that the machine learning can identify the input. Vectorization 

converts text in a document to a matrix. In the Microsoft Azure environment, this was 

represented by Preprocess Text step.  

3.2.6.2 Pipeline 

     The Naive Bayes model was first established with a pipeline. The purpose of a 

pipeline is an organized set of steps to train a machine learning model. First was an 

instantiated Naive Bayes algorithm, expressed as MultinomialNB() in python. This step 

simply takes a class and creates an object that can be used.  

 

Figure 28: Microsoft Naive Bayes Machine Learning Model 
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3.2.7 Model Training  

     The Naive Bayes algorithm was used as the initial model for classification of devices 

and failures. A decision tree model was the validation model. The main data was split 

into training and testing sets, at 70% training (3,942,579 records), and 30% testing 

(1,689,677 records). The failures dataset followed a similar method, with a 70% training 

(10,140 records) and 30% testing ratio (4,346 records).  

3.2.8 Hyperparameter Tuning  

     Hyperparameter tuning was completed once the initial model had been developed and 

the results observed. This step is to further optimize the model and improve its 

performance. This step is always necessary when creating machine learning algorithms.  

3.2.9. Model Scoring 

     The Classification Summary Report is produced after the machine learning model has 

been trained, and as a means to assess the model. Each element of the report is explored 

below. 

Precision 

     Precision is the ratio of correct positive predictions in relation to the overall number of 

predictions. 
81 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

Equation 14: Precision 
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Recall 

     Recall is the ratio of correct positive predictions to the overall positive examples 

available within the data.
81

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

Equation 15: Recall 

F1-score 

     In statistical analysis this score represents the overall measure of a model's accuracy, 

that is a combination of precision and recall. This measure is what is usually referenced 

in assessing the performance of a machine learning model, but it is not meant to be the 

sole point of assessment.  

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Equation 16: F1 Score 
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Accuracy 

     Accuracy is defined as the number of correctly classified examples in relation to the 

total number of examples.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

Equation 17: Accuracy 

 

3.3 Outcomes 

     In reviewing patient outcomes, the goal is to come to a conclusion about the injury the 

failure had upon the patient. There are three groups that were analyzed once the cardiac 

devices were identified, in the context of a positive (cardiac) and negative (non-cardiac 

group:  

Extrusion 

1. Class One: extrusion 

2. Class Two: non-extrusion 

Expulsion 

1. Class One: expulsion 

2. Class Two: non-expulsion 
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Migration 

1. Class One: migration 

2. Class Two: non-migration 

     There were 8,851 cardiac device records that belonged to the three failures of interest. 

The vast majority of the failures belonged to the migration group, with extrusion being 

second largest and expulsion being last. In order to determine the effect on the patient, a 

combination of statistical and manual analyses was performed to further understand 

outcomes. Frequency of event types were observed within each group: death, injury, 

malfunction and unknown/other. A chi-squared test was performed to compare the results 

of each device failure between cardiac and non-cardiac groups. The hypothesis is that 

there is a statistical difference between the cardiac and non-cardiac group in one or more 

failures. As mentioned in section 3.2.2.1 only REPORT_SOURCE_TYPE =M were 

considered when determining outcomes as per MAUDE documentation.  

  



90 
 

 

  Extrusion Expulsion Migration Grand Total 

Cardiac 

                       

1,721  

                           

79  

                        

7,051           8,851  

Non-

Cardiac 

                       

1,812  

                         

188  

                        

3,635           5,635  

Total 

                       

3,533  

                         

267  

                      

10,686         14,486  

Table 18: Number of Cardiac and Non-Cardiac Migrations, Extrusions and Expulsions 

Failures 

 

Figure 29: Number of Cardiac and Non-Cardiac Migrations, Extrusions and Expulsions 

Failures 

  



91 
 

 

 

 

 

 

 

Chapter IV 

 

 

IV. RESULTS 

 

 

 

 4.1 Introduction 

     The machine learning text classification was performed and 21% of the testing set was 

identified as cardiac devices (349,776 records). These cardiac devices were then 

associated to narrative records to analyze failures of migration, expulsion and extrusion. 

There were more than 14,486 positive cases relating to these three failures, and within the 

realm of cardiac devices specifically, there were 8,851 identified records. The largest 

percentage of the cardiac device failures belong to migration, second to extrusion and 

lastly to expulsion. Unique cardiac device failures within the migration group belonged to 

certain devices, mostly pertaining to stents and leads.  

     In our initial findings in section 1.3, cardiac medical device failures accounted for a 

very small percent of the overall data, at just 5%, and the failures of interest accounted 

for .05%. Currently, within the machine learning test set combined with pattern string 

matching, cardiac device failures have consistently accounted for more than 20% of the 
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overall device data (15% increase). We have proven our initial hypothesis from section 

1.4 to be correct as a larger percentage of cardiac devices were identified. This result 

more closely resembled cardiac device hospitalization discharge data from HCUP. 

Within HCUP data for select years, cardiac device discharges were no less than 80,000 

per year on average. The specific failures interest, account for .69% of identified cardiac 

devices and .14% of overall devices. The low percentages of migration, expulsion and 

extrusion represent the rare nature of these occurrences or perhaps that these types of 

failures were likely not identified in a consistent manner within the textual notes 

explored.  

4.2 Machine Learning Outcomes  

4.2.1 Identification of Cardiac Devices 

     To identify cardiac medical devices, a Naive Bayes and Decision Tree model were 

used. Naive Bayes outperformed Decision Tree on nearly every measure. In evaluating 

the initial untuned results from each algorithm, Decision Tree performed especially 

poorly on the identification of actual cardiac devices within the testing set, which resulted 

in a 56.7% accuracy score. In stark contrast, Naive Bayes untuned model results 

performed exceptionally well, resulting in the trained model identifying the pattern, with 

a relatively low number of mistakes. The accuracy, recall and F1 scores were all in the 

high 90% range. When manually reviewing results from the scored test set, many of the 

devices were correctly labeled. Due to these results Naive Bayes was also used in order to 

identify the three cardiac device failures of interest.  
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Figure 30: Naive Bayes Model Output 

 

Figure 31: Decision Tree Model Output 

4.2.2 Identification of Cardiac Device Failures 

     Once the cardiac devices had been identified through an acceptable model, the task of 

identifying the failures of interest was performed. Naive Bayes performed well in the 

identification of cardiac device migration, but was unable to render similar results among 

expulsion and extrusion. The most likely reason for the poor results was there was not 

enough labeled data points within each failure category to train the model. Migration had 

the most examples within the dataset within a total of 10,686 of cardiac and non-cardiac 

records. Expulsion had the least with just 267 identified cardiac and non-cardiac records. 

The results are a direct reflection of the amount of data presented to the model.  
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Figure 32: Migration Device Failures 

 

Figure 33: Extrusion Device Failures 

 

Figure 34: Expulsion Device Failures 

 

4.3 Common Cardiac Devices 

     In observing the most frequently occurring cardiac devices, it was apparent that there 

were many identical devices and devices that served a similar purpose, but were 

identified as being unique due to variations in their labels. It is clear that the most 

common device among the three groups are coronary stents. The migration group also 
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contains devices related to spinal cord leads in error, due to the naming convention being 

similar to cardiac leads. 

 

Figure 35: Migration Failures Common Devices 

 

Figure 36: Expulsion Failures Common Devices 
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Figure 37: Extrusion Failures Common Devices 

4.4 Patient Outcomes 

     Injury was the most common outcome within the three failure groups and between 

cardiac and non-cardiac. Expulsion has proven to be a rare failure overall, with a total of 

267 total identified records. The percentages reflect the rare nature of this failure from 

our analysis. To revisit our hypotheses from section 1.4, it was theorized that device 

failures of this nature would be largely fatal; that has not been proven with our analyses. 

The results were analyzed within in each failure category rather than as a whole. In other 

words, 206 patients of the total 7,051 with a cardiac device migration died. This value 

was divided by the overall number of cardiac migrations, resulting in the percentage of 

2.9%. 

     Death was an uncommon outcome within the data as a whole; cardiac device failures 

had the highest death percentage at 5% for expulsion and 2.9% for migrations, compared 

to non-cardiac migrations 1.3%, and 1.4% non-cardiac extrusions. Interesting to note, 
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injury is the most commonly identified failure, within all three groups; cardiac or non-

cardiac.  This outcome represents the highest impact to patients representing 79.3% of 

cardiac migrations, 76.8% of non-cardiac migrations and 85.8% of non-cardiac 

extrusions. It is clear within these three failures, that if and when they occur, the outcome 

of injury is the most likely risk to patients rather than death. Non-cardiac extrusion, the 

injury percentage was 85.8%, in contrast to cardiac extrusion at 11.6%, which may reveal 

that cardiac extrusion is somewhat of a rare failure while extrusion of another device is 

far higher. Results obtained from a chi-squared test that compared each failure by its 

cardiac and non-cardiac counterpart, tested the hypothesis whether there was a 

statistically significant result between the groups. Upon reviewing the P-value of each 

outcome group, the value exceeded 0.05 in all but injury. We reject the null hypothesis 

for injury; yet fail to reject the null hypothesis for death, malfunction, other and 

unknown.  

Death Observed 

 Migration Extrusion Expulsion Grand 

Total 

Cardiac             206                     8                     4             218  

Non-Cardiac               49                   26                    -                 75  

Grand Total             255                   34                     4             293  

     

Death Expected 

 Migration Extrusion Expulsion Grand 

Total 

Cardiac 189.72696 25.29692833 2.976109215 218 

Non-Cardiac 65.273038 8.703071672 1.023890785 75 

Grand Total 255 34 4 293 

p-value 3.05E-12    

 Table 19: Outcome of Death for Migration, Expulsion and Extrusion Chi-Squared Test 

  



98 
 

Injured Observed 

 Migration Extrusion Expulsion Total 

Cardiac          5,592            200                 25           5,817  

Non-Cardiac          2,789         1,554               105           4,448  

Grand Total          8,381         1,754               130         10,265  

     

Injured Expected 

 Migration Extrusion Expulsion Total 

Cardiac 4749.3694 993.9618 73.6687774 5817 

Non-Cardiac 3631.6306 760.0382 56.3312226 4448 

Grand Total          8,381         1,754               130         10,265  

p-value 0.00    

 Table 20: Outcome of Injured for Migration, Expulsion and Extrusion Chi-Squared Test 

 

Malfunction Observed 

 Migration Extrusion Expulsion Grand Total 

Cardiac             114                     

7  

                   

2  

           123  

Non-Cardiac             141                     

6  

                   

6  

           153  

Grand Total             255                   

13  

                   

8  

           276  

     

Malfunction Expected 

 Migration Extrusion Expulsion Grand Total 

Cardiac 113.6413 5.79347826

1 

3.56521739

1 
123 

Non-Cardiac 141.3587 7.20652173

9 

4.43478260

9 
153 

Grand Total 255 13 8 276 

p-value 0.429    

 Table 21: Outcome of Malfunction for Migration, Expulsion and Extrusion Chi-Squared 

Test 
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Other Observed 

 Migration Extrusion Expulsion Grand 

Total 

Cardiac                  14             -                       1               15  

Non-Cardiac                  21              6                     3               30  

Grand Total                  35              6                     4               45  

     

Other Expected 

 Migration Extrusion Expulsion Grand 

Total 

Cardiac 11.66666667 2 1.333333333 15 

Non-Cardiac 23.33333333 4 2.666666667 30 

Grand Total 35 6 4 45 

p-value 0.148    

 Table 22: Outcome of Other for Migration, Expulsion and Extrusion Chi-Squared Test 

 

Unknown Observed 

 Migration Extrusion Expulsion Grand Total 

Cardiac                    8                    -                      -                     8  

Non-Cardiac                    5                     4                     1                 10  

Grand Total                  13                     4                     1                 18  

     

Unknown Expected  

 Migration Extrusion Expulsion Grand Total 

Cardiac 5.777777778 1.777777778 0.444444444 8 

Non-Cardiac 7.222222222 2.222222222 0.555555556 10 

Grand Total 13 4 1 18 

p-value 0.063    

 Table 23: Outcome of Unknown for Migration, Expulsion and Extrusion Chi-Squared 

Test 
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Figure 38: Cardiac vs. Non-Cardiac Device Outcomes 

Cardiac  

   Cohort   Died   Injured  

 

Malfunction   Other  

 

Unknown  

 

Migration  

         

7,051  

         

206  

         

5,592              114  

          

14              8  

 

Expulsion  

              

79  

             

4  

              

25                  2  

            

1            -    

 

Extrusion  

         

1,721  

             

8  

            

200                  7            -              -    

        Non-Cardiac  

   Cohort   Died   Injured  

 

Malfunction   Other  

 

Unknown  

 

Migration  

         

3,632  

           

49  

         

2,789              141  

          

21              5  

 

Expulsion  

              

188             -    

            

105                  6  

            

3              1  

 

Extrusion  1,811           

           

26  

         

1,554                  6  

            

6              4  

Table 24: Cardiac vs. Non-Cardiac Device Outcomes Within Failure Group 
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 Cardiac Cohort   

Died  

 

Injured  

 

Malfunction  

 

Other  

 

Unknown  

 Migration  2.9% 79.3% 1.6% 0.2% 0.1% 

 Expulsion  5.1% 31.6% 2.5% 1.3% 0.0% 

 Extrusion  0.5% 11.6% 0.4% 0.0% 0.0% 

      

 Non Cardiac Cohort   

Died  

 

Injured  

 

Malfunction  

 

Other  

 

Unknown  

 Non Cardiac Migration  1.3% 76.8% 3.9% 0.6% 0.1% 

 Non Cardiac 

Expulsion  

0.0% 55.9% 3.2% 1.6% 0.5% 

 Non Cardiac Extrusion  1.4% 85.8% 0.3% 0.3% 0.2% 

Table 25: Cardiac vs. Non-Cardiac Device Outcome Percentages Within Failure Group 
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Chapter V 

 

 

V. DISCUSSION 

 

 

 

 5.1 Research 

     In this research, we have determined that a large percentage of overall medical device 

failures reported in the MAUDE database are cardiac in nature. This research was 

iterative and sought objective answers within the data. A combination of data analysis, 

predictive analysis, and statistical analysis was employed to evaluate results. An iterative 

approach was beneficial in order to adjust approach when it was clear that the prior 

approach was inappropriate. During this research, we have observed the obvious 

implication of device failures and how injury can be likely, but obtaining the data and 

performing analysis is time consuming for the average person. Upon searching The 

FDA's website, there is not a user-friendly option to view the data for insights for 

consumers to understand the implications of device failures and making informed 

decisions before treatment.  
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5.2 Limitations 

5.2.1 Data Integrity 

     This research had several limitations that affected overall results. Although the dataset 

from MAUDE was expansive, data integrity was less than ideal. This is partially due to a 

variety of sources have submitted reports to the FDA, without any clear consistency in 

how this is done. The problem codes being unreliable made the identification of a variety 

of other failures more difficult, since there was not a structured method to obtain this 

information. Device names were used to identify cardiac devices and narrative text was 

used to identify the failures of interest.  

     There were nearly 350,000 records that did not have a device name associated with the 

record, which made determining the nature of the device challenging, so they were 

omitted for purposes of this research. Within the remaining device names, there were 

some devices that were included that were not actually cardiac related-yet had similar 

names to other cardiac devices. Upon evaluating the most commonly occurring device 

names, many were similar where it is likely that the devices are identical in their 

treatment, with variations in their names. In using narrative text, in order to initially 

identify the failures of interest for machine learning, too few fit pattern string matching 

that pertained to migration, extrusion and expulsion. It may be likely that more records 

that pertain to these failures exist within the MAUDE, but are referred to differently than 

what was used in this research. This is also where having reliable problem codes would 

be useful.  
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5.2.2 Machine Learning 

     The performance of each machine learning algorithm depended heavily upon the 

volume and quality of data. Naive Bayes in the identification of cardiac devices 

performed well, due to labeling 1 million records, while Naive Bayes for the 2 of the 3 

device failures performed very poorly. This was a direct result of simply not offering the 

algorithm enough data to train well. Being able to provide more labeled data points to the 

algorithm can be beneficial in building solutions that are meaningful.  

5.2.3 Patient Outcomes 

     Due to the obvious data integrity issues, and problematic results in training machine 

learning algorithms on too few records, this affects the results for patient outcomes. We 

have attempted to provide good faith effort in providing an objective analysis of patient 

outcomes, this should be viewed as a semblance of what is occurring rather than of 

absolute accuracy. The Healthcare Cost and Utilization Project (HCUP) database was 

used as a comparison of patient outcomes in assessing injury. Device migration injury 

was the most prevalent outcome within MAUDE data between both cardiac and non-

cardiac groups. Within HCUP, we selected specific ICD-10 codes (T82), to capture 

cardiac device migration or displacement. The total number of discharges for year 2016 

was 3,675. This value supports our findings within MAUDE that migration injury is a 

prevalent failure type.  
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VI. SUMMARY AND CONCULSIONS 

 

 

 

 6.1 Summary 

     Cardiovascular disease is prevalent throughout society, being the leading cause of 

death of adults worldwide. One of the many ways to address disease that affect the 

cardiovascular system is through medical devices. We referred to these medical devices 

as cardiac. We sought to explore what portion of medical device failures were meant to 

treat this particular disease and what impact did their failures have upon patient safety. 

We choose three failures in this research: migration, extrusion and expulsion. We 

performed a literature review on the topic of cardiac medical devices as well as cardiac 

medical device migration, extrusion and expulsion. The body of research available is 

limited at this time, and was scarce regarding the three failures of interest.  

     The FDA collects data regarding medical device failures, and the data is available to 

the public through a database known as Manufacturer and User Facility Device 
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Experience (MAUDE). This database contains records since the early 90's, and each 

record contains information about the event, pertinent patient information, and narrative 

text. Within the research conducted, we focused on years events reported between 1997 

and 2017, in order to have a large enough dataset to perform advanced analysis. The data 

was downloaded from the MAUDE website in the form of textual files. To identify 

cardiac medical devices, we used pattern string matching within certain fields. The initial 

results in pattern string matching returned an unusually small number of devices, at just 

5% of total device failures from the time period of interest. The result did not align with 

our assumptions that cardiac medical devices will be a large portion of our dataset 

considering cardiovascular disease is a worldwide health issue. We used a generic name 

field associated with each record that once mapped with a list of cardiac terms proven a 

reliable means of basic identification.  

     To identify failures of interest, we began to use the problem code information 

provided with the events. The problem codes were a map of problems that were used to 

classify and describe failures. Upon reviewing problem codes, it was clear that using 

these as a means to identify failures would not be acceptable as this only rendered 3,064 

(.05% of initial identified cardiac devices). When researching the phenomena in more 

detail, it was clear that problem codes were not a reliable means of understanding 

failures, due to the very low values, that were inconsistent with the number of events. 

Based on our observations, we needed to pursue alternative means to classifying cardiac 

devices and subsequently identifying failures in an iterative step-process. Upon review of 

the narrative textual files associated with each event, we have found that this information 
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to be more reliable and consistent than problem codes, and may be useful in the 

identification of failures.  

     Once the alternative methods were applied for both identification and for failure 

analysis, there were more than 13 million textual records to accompany the nearly 6 

million initially identified cardiac records. Given the vast amount of records, machine 

learning was a practical means of analyzing the records for further insights. In order to 

generate a training set for the model, we needed to label a subset of the data as both a 

positive class (cardiac) and a negative class (non-cardiac), we wanted to ensure the 

algorithm also identifies a similar number of cardiac devices. We used a random seed and 

labeled an equal number of records (1 million, 500,000 each class), that we used to train 

the machine learning classifiers. We employed two supervised learning approaches for 

classification: Naive Bayes as the base algorithm, and Decision Tree for a validation 

model.  

     The results from Naïve Bayes was consistent with our initial estimation that roughly 

20% of the overall medical devices were cardiac in nature based upon results from the 

testing output. The Naïve Bayes model identified 21% of the data as cardiac devices. 

However, results from the Decision Tree model were less than ideal in which the model 

was unable to generalize well, likely due to a poor choice in classifier. A similar 

approach was used to identify the three failures of interest, using narrative text. An initial 

dataset was identified, and a labeled set was provided to a Naïve Bayes classifier. 

Migration accounted for the largest portion of the three failures, while expulsion and 

extrusion suffered from few records identified. Due to this, the model that was trained 
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with migration failures performed well, while the other two failures were not able to 

generalize and produce an acceptable output.  

     In measuring patient outcomes, the groups were analyzed in the context of a positive 

and negative group (cardiac vs. non-cardiac) and a chi-squared test was performed to 

determine statistical significance. There was no statistical significance found within the 

categories of: death, malfunction, other or unknown. However, within the category of 

injury there was a statistically significant result, with the p-value being less than 0.05. 

Migration injury was the most frequent outcome of the cardiac group at 79.3%, with 

expulsion following at 31.6%, and lastly extrusion at 11.6%.  

The non-cardiac cohort outcome of injury was more than 50% for each failure, with 

extrusion accounting for 85.8% of patients with a non-cardiac extrusion failure. Our 

initial assumption was a failure of migration, expulsion or extrusion would be largely 

fatal, however, our findings were unable to support that assumption. We have concluded 

that the risk of serious injury is high when a patient experiences a medical device 

migration, expulsion or extrusion. Although death is a relatively uncommon outcome, it 

accounted for nearly 3% of cardiac migrations, and 5% of cardiac expulsions. These 

outcomes should be made clear to any patient that is considering receiving a device to 

treat a condition; injury is likely if the device has one of these specific failures.   

6.2 Conclusions 

     Between 1997 and 2017, we have found a total of approximately 20% to 21% of all 

medical device failures reported to the FDA to be cardiac in nature. This confirms our 

original hypothesis that a large portion of medical device failure would consist of cardiac 
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devices. We discovered through our research that certain device failures have a high risk 

of injury to the patient, and it seems that injury can include a number of outcomes that 

fall outside of death. While death was uncommon, it occurred nearly 3% within the 

cardiac migration group, 5% within the cardiac expulsion group, and far less with non- 

cardiac extrusion and expulsion. Our original hypothesis was that cardiac migrations, 

expulsion and extrusions to be largely fatal was not proven, however, cardiac and non-

cardiac migrations, extrusions and expulsions possess a high likelihood of injury to the 

patient.  

6.3 Recommendations 

     The original purpose of this research was to contribute to the greater scientific and 

research community by generating new insights regarding the safety of cardiac medical 

devices, and to help create a standard for medical device data collection and oversight. 

The goal of this research is also to advocate for data transparency and information 

sharing for the research community and medical device patients. In favor of this goal, we 

offer recommendations for further research and to the FDA.  

6.3.1 FDA 

     The FDA having these files available for research is a useful endeavor in evaluating 

the safety of medical devices, but due to obvious limitations it is questionable as to 

whether this goal is being satisfied. In order to perform analysis, a series of textual files 

need to be downloaded into a database and then associated to one another. We 

recommend this process to be simplified and provided in a user-friendly data portal 

where data can be downloaded that accompanies data visualization such as a dashboard, 
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that produces clear, understandable output. A data portal that is intuitive, that anyone, of 

relatively any background can use with ease. In reviewing the current data portal, it does 

not give a hierarchy of device type, and one must search through the Product Classes in 

order to get a basic understanding of what condition the device was used to treat. The 

output of results is less than ideal.  

     We recommend the FDA ensures the quality of the data in submissions and provides 

structured fields whenever possible. This may include streamlining the process for 

submitters to submit data to the FDA, in again, a more user-friendly-manner such as a 

web-based portal. A method for streamlining this process would include a combination of 

dictation to text, having a facility code/physician code that auto fills when the submitter 

signs into the portal, and barcode tracking when a new device is received by the facility 

by physician. This method would also include a dictation to text method for capturing the 

device failure and narrative summarizing the event that would associate a problem code 

with the report, so the submitter would not need to search for the code themselves. This 

method should be completely paperless, and requiring only a few minutes per report. This 

type of solution would ease the need to spend hours typing and collating information, 

which can be difficult for health professionals that are busy and/or cannot easily locate 

the information. The quality of the data deeply affects the quality of resulting analyses. If 

starting with poor data, this will unfortunately result in poor insights. This includes 

requiring certain fields contain information and not have the option to leave them blank. 

Our solution for auto filling that information that cannot be left blank will be a sound 

method to address this. We have noticed in our analysis that there were many fields that 
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were left empty, greatly limiting the effectiveness of certain fields. The fields that were 

affected by lacking or missing information that greatly affected our research: 

-Problem Codes 

-Generic Device Name 

-Facility 

-Location 

     We have found a significant number of records did not contain problem codes at all, 

as well as generic device names. Due to this, we were unable to use problem codes as a 

reliable method of classifying failure types. Due to a lack of generic device names, we 

were unable to use those records and as a result, they were excluded. Allowing for a 

streamlined manner for data to be submitted, as well as requiring certain fields containing 

information will likely result in higher data volume and quality. Without information 

about the facility as well as location of the event negatively impacted the ability to 

perform geographic and cluster analyses. This information would be particularly useful 

for patients to identify problematic facilities and to perhaps seek care elsewhere.  

     We recommend that devices be listed under a device type based upon where in the 

body they are meant to treat in a user-friendly manner, such as a data visualization as 

mentioned above. In this visualization or filter a user can select the part of body where 

the device will be implanted. In our case, we were interested in cardiovascular devices. 

From there, a user can then select the problem codes of interest and a time period. At that 
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point, output that contains count by year will be produced, and an option to download the 

dataset will be visible to the user.  

     We highly recommend the FDA being more transparent about the data they receive 

and provide through the same data visualization portal as recommended above, a user-

friendly web report that updates quarterly on the state of medical devices. The general 

public is largely unaware regarding the safety and efficacy of medical devices, which is 

harmful. Many patients only are aware of medical device issues once they have 

negatively affected large groups of people and/or after a class action lawsuit. Allowing a 

more informed patient population will be crucial for them to understand potential risks 

and common issues with medical devices so they are able to take precautions, or perhaps 

make other decisions. But, patients cannot do this, unless they are aware of this 

information to begin with. patient health should be prioritized over monetary gain. In 

conclusion, we recommend the FDA address these key issues: 

-Provide a streamlined web portal for data download. Allow for data download in various 

file formats.  

-Provide a dashboard where interested parties can explore medical device failure trends 

that include patient outcomes, by time period, facility, geographic location, problem 

codes, device type/generic device name and implantation site (part of body). 

-Streamline the submission process by providing a web portal that auto fills information 

such as the name of physician, facility, and the devices that were received by the 

facility/physician. Using a dictation to text solution, the submitter can briefly summarize 
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the event/issues with the device, and from there, they keywords and context can be 

captured that will associate the report with a problem code(s).  

-More transparency in the information that is received by the FDA, by making good faith 

effort in education g the general public of medical device risks and potential outcomes by 

use of available data and information as mentioned above.  

6.3.2 Further Research 

     This research provided some semblance into the state of cardiac medical device 

related to very specific failures. There are numerous opportunities for further research on 

this topic, or related topics.  

     Machine learning for the classification of medical devices has shown promise to 

analyze large datasets. Further research could extend to include a wider variety of 

medical devices, or the full spectrum of devices. Further classification of devices would 

be able to address medical device safety as a whole. Targeted research from this point can 

include patient demographics, barriers to access of care, and geographic analysis such as 

where in the country are certain types of devices failures occurring. There may be 

clusters of device failures indicating an issue with the manufacturing of a device or an 

issue with a particular medical facility. As far as patient demographics, such as age or 

race, there are many sources that support research proving marginalized groups are 

unable to receive medical care or the same level of medical care as other groups.  

     There is a great opportunity to transform MAUDE data into a user-friendly, visual 

format to increase consumer engagement and interest in this information. There are many 

examples of organizations that have disseminated information in a usable manner, such 
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as the CDC. The MAUDE database, while containing valuable information, is difficult to 

navigate, and the way to understand insights from it requires downloading multiple 

textual files and analyzing them. This is not something a potential patient will do to 

understand risks of certain medical devices. A user friendly-dashboard(s) will engage 

more, inform more, and offer a transparent alternative to what is currently available.  

     Finally, there is an opportunity for the combination of MAUDE with other health 

surveillance programs. At the time we are conducting this research, the COVID-19 

pandemic has affected the lives of millions of people worldwide. As this novel virus 

continues to claim the lives of many, it would be useful to know if/how medical devices 

affect patient outcomes. We are finding that open collaboration of health programs is 

essential in being able to provide better care that can save lives.  
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