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ABSTRACT 

Background: Despite recent advances in discovering a wide array of novel 

chemotherapy agents, identification of patients with poor and favorable treatment 

response prior to treatment administration remains a major challenge in clinical oncology 

and cancer management. 

Methods: We have developed a genome-wide systematic computational framework to 

uncover an interplay between transcriptomic and epigenomic mechanisms that elucidate 

the complexity of chemotherapy response in cancer patients. Our approach integrates 

transcriptomic (i.e., mRNA expression) and epigenomic (i.e., DNA methylation) patient 

profiles to uncover molecular pathways with significant alterations on transcriptomic and 

epigenomic levels that can distinguish favorable from poor treatment response. 

Results: We have tested our approach on patients with lung adenocarcinoma who 

received a carboplatin and paclitaxel combination chemotherapy (i.e., carboplatin-

paclitaxel), a standard-of-care for treating advanced lung cancer. Our integrative 

approach identified seven molecular pathways with significant alterations on 

transcriptomic and epigenomic levels that distinguish favorable from poor carboplatin-

paclitaxel response, including chemokine receptors bind chemokines, mRNA splicing, G 

alpha (s) signalling events, immune network for IgA production, etc. We have 

demonstrated that these pathways can classify patients based on their risk to developing 

carboplatin- paclitaxel resistance in an independent patient cohort  (log-rank p-value = 

0.0081) and their predictive ability is independent of and is not affected by (i) signatures 

of lung cancer aggressiveness, and (ii) commonly utilized covariates, such as age, gender, 
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and disease stage at diagnosis (adjusted hazard ratio = 14.0). To demonstrate 

generalizability of our approach, we have applied our algorithm across additional 

chemotherapy regimens (i.e., cisplatin-vinorelbine, oxaliplatin-fluorouracil) and cancer 

types (i.e., lung squamous cell carcinoma, and colorectal adenocarcinoma); and have 

demonstrated our method’s ability to accurately predict patients’ treatment response. 

Conclusions: We propose that our approach can be utilized to identify transcriptomic and 

epigenomic altered pathways implicated in primary chemoresponse and effectively 

classify patients who would benefit from specific chemotherapy regimens or are at risk of 

resistance, which will significantly improve personalized therapeutic strategies and 

informed clinical decision making. 
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CHAPTER I 

1 INTRODUCTION 

1.1 Background, Literature Review and Statement of the Problem 

Despite recent advances in diagnosis and treatment, the five-year survival rate in 

lung cancer (17.7%) is lower than in colon (64.4%), breast (89.7%), and prostate (98.9%) 

cancer combined1, which represents a major cause of cancer-related mortality and 

morbidity in both men and women in the United States1. Historically lung cancers were 

divided into Small cell lung carcinoma (SCLC) and Non-small cell lung carcinoma 

(NSCLC)2. (i) SCLC (10-15% of all lung cancers) is an aggressive neuroendocrine tumor 

consisting of small tumor cells deriving from epithelial and neuroendocrine cells. These 

are disseminated diseases in which a central tumor mass is usually never found, but which 

have more favorable prognoses overall than non-small cell lung cancers3. (ii) NSCLC  is a 

heterogeneous aggregate of malignancies, its represents approximately 80-85% of all lung 

cancers, carry a worse prognosis, and are subdivided into three major subtypes: lung 

adenocarcinoma (40% of all lung cancers), squamous cell carcinoma (25% of all lung 

cancers), and large cell carcinoma (10% of all lung cancers)4.  

Lung adenocarcinoma often occurs in the outer or peripheral areas of the lungs, and 

frequently develops at multiple sites in the lungs and spread throughout the alveolar 
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surface5. Patients with lung adenocarcinoma in advanced stages (and most recently, in 

earlier stages) are subjected to standard-of-care adjuvant chemotherapy6-8 and despite 

improved survival for a group of patients 9-12, nearly 50% of the patients develop resistance 

to the administered treatment, which results in advanced metastatic progression and 

lethality 13,14. The majority of patients with LUAD lack clinically actionable mutations and 

are commonly administered a doublet chemotherapy (i.e., platinum-based chemotherapy 

often combined with plant alkaloids and/or antimetabolites) to improve response rates and 

survival15-18. Most recently, treatment for LUAD has also included immune checkpoint 

inhibitors, yet they are not curative for most patients19. The heterogeneity of response to 

the standard-of-care therapies and rapidly emerging treatment resistance remain major 

challenges in lung cancer management. Prioritization of patients based on their risk of 

developing resistance prior to therapy administration would improve disease course and 

enhance informed clinical decision making at large. 

Resistance to chemotherapy treatment is known to occur through several 

mechanisms: (i) defect in DNA repair mechanisms, including increased nucleotide 

excision repair, or loss of mismatch repair20,21; (ii) defect in apoptosis pathway22-24, 

including mutation in p5325,26; (iii)  drug transporter ABC (ATP binding cassette) including 

P-gp (P-glycoproteins) and MDRs (Multi-drug resistance associated proteins) involved in 

the efflux of chemotherapeutic drug27,28; (iv) alteration of enzyme expression (e.g., 

glutathione, metallothionein) enhance drug sequestration29-32; (v)  alteration of drug target 

by mutation 33; and (vi) EGFR-mediated PI3K/Akt and NF-kB pathway dysregulation 34. 

Even though these mechanisms have been widely investigated, effective prioritization of 
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patients for specific chemotherapy regimens has remained a central challenge in clinical 

oncology. 

In recent years, several successful attempts35-44 have improved classification of 

LUAD based on markers of overall disease aggressiveness, including mutations in 

oncogenes (EGFR 35, KRAS36, MET 41); proto-oncogenes (AKT142, ERBB237, BRAF38), 

and tumor suppressor genes (TP5339, PTEN40, CDKN2A43, STK1144). Despite being 

successful as prognostic markers of LUAD aggressiveness, they have not been associated 

with the complexity of therapeutic response yet45,46, suggesting that more complex 

mechanisms might be at play in this malignancy.  

Recently, multiple transcriptomic and epigenomic alterations have been 

highlighted to play a role in primary and secondary chemoresistance across various 

cancer types47-52. For example, studies focused on transcriptomic alterations have 

demonstrated that: MDR1 amplification is implicated in acquired resistance to 

anthracyclines, vinca alkaloids, and other antineoplastic chemotherapies in breast 

cancer47; over-expression of dihydrodiol dehydrogenase enzyme is central in resistance to 

cisplatin in ovarian cancer48; and higher genomic instability due to p53 inactivation is 

essential in resistance to platinum-based chemotherapy in ovarian cancer49. In parallel, 

epigenomic-centered studies have demonstrated that: genome-wide hypermethylation is 

implicated in resistance to antineoplastic fotemustine in melanoma50; hypermethylation 

of DKK3 leads to docetaxel resistance in non-small cell lung cancer51; and 

hypomethylation of MIR663A induce cyclophosphamide and docetaxel resistance in 

breast cancer52. Given the success of individual transcriptomic and epigenomic 

determinants of chemoresponse, a systematic genome-wide investigation of the interplay 
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between transcriptomic and epigenomic mechanisms implicated in resistance can provide 

valuable predictive markers of predisposition to chemotherapy failure. 

In the last decade, several computational methods have been successfully applied 

to understand cancer initiation and progression through integration of transcriptomic and 

epigenomic data, including correlation of mRNA expression and DNA methylation 

and/or copy number variations53-55, linear regression connecting DNA methylation sites 

and mRNA expression of the site-harboring genes56, network-based integration of mRNA 

expression and DNA methylation and/or copy number variations57-59. Even though 

successful in identifying clinically relevant signatures of disease progression, these 

methods have not yet fully explored the interplay between transcriptomic and epigenomic 

mechanisms altered in molecular pathways implicated in chemo response, which would 

shed light on complex molecular mechanisms that govern therapeutic resistance. 

1.2 Research Objectives 

In this work, we develop a generalizable computational framework to identify 

molecular pathways altered on transcriptomic (i.e., mRNA expression) and epigenomic 

(i.e., DNA methylation) levels that govern resistance to chemotherapy. We name our 

approach pathCHEMO – uncovering transcriptomic and epigenomic pathways 

implicated in CHEMOresistance. Our overall idea is that pathways that are altered on 

both mRNA expression and DNA methylation levels are more likely to capture complex 

relationships implicated in therapeutic resistance and overcome noise present in any 

single experiment or data type (see the example of pathway alterations on both 

transcriptomic and epigenomic levels in Figure. 1).  
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Figure 1. Schematic representation of pathway altered on both transcriptomic and 

epigenomic levels.  

Pathway genes affected on transcriptomic and epigenomic levels in G alpha (s) signalling 

events pathway are represented by ovals, where their colors correspond to either over-

expression (red), under-expression (blue) or no differential expression (white). Small 

satellite circles represent over-methylation (red) or under-methylation (blue). 
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In addition, our approach provides several important advantages that tackle complexity of 

treatment response. First, it uncovers molecular pathways altered on both transcriptomic 

and epigenomic levels, which increases the likelihood to identify functionally relevant 

alterations. Second, these pathways can be utilized as effective markers of primary 

chemoresistance to predict patients with poor and favorable response, even prior to 

therapy administration. Finally, it uncovers molecular pathways, rather than single 

determinants, thus providing potential functional candidates for therapeutic intervention 

to preclude or overcome resistance. 

1.3 Overview of the Study 

Motivated by the need for markers of chemoresponse in lung cancer, we analyze 

profiles of patients with LUAD from The Cancer Genome Atlas (TCGA-LUAD)60, 

which received adjuvant standard-of-care chemotherapy (i.e., a combination of platinum-

based carboplatin and plant alkaloid paclitaxel). pathCHEMO identifies seven molecular 

pathways altered on transcriptomic and epigenomic levels that differentiate patients with 

poor and favorable carboplatin-paclitaxel response. We demonstrate that the activity of 

these pathways as well as their representative read-out genes, can serve as molecular 

markers to identify patients at risk of resistance to carboplatin-paclitaxel in an 

independent patient cohort18 (log-rank p-value = 0.0081, hazard ratio = 10) and can 

predict the risk of resistance to carboplatin-paclitaxel combination for new patients (i.e., 

through leave-one-out cross-validation). We also confirm significant non-random 

predictive ability of our identified seven candidate pathways, when compared to seven 

pathways selected at random (random model p-value < 0.007) and show that our 
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approach outperforms other commonly utilized methods (e.g., linear regression, support 

vector machine, and random forest) in identifying patients at risk of resistance to 

chemotherapy (Area Under the Receiver Operating Characteristics (AUROC) = 

0.98)56,61,62. In addition, we demonstrate that our model is independent of, and is not 

affected by commonly used covariates (i.e., age, gender, and disease stage at diagnosis) 

and by the known signatures of lung cancer aggressiveness (adjusted hazard ratio = 14, 

hazard p-value = 0.03).  

Finally, we extend our approach to additional chemo combinations (i.e., a 

combination of platinum-based cisplatin and plant alkaloid vinorelbine, and a 

combination of platinum-based oxaliplatin and antimetabolite agent fluorouracil) and 

additional cancer types (i.e., lung squamous cell carcinoma and colorectal 

adenocarcinoma)17,63 and demonstrate accuracy and general applicability of our approach 

(log-rank p-value < 0.03, hazard ratio > 3.5 across cancer types and chemotherapy-

regimens). We propose that our model can be used to pre-screen patients and prioritize 

them for specific chemotherapy treatments. 
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CHAPTER II 

2 METHODS 

2.1 Lung Adenocarcinoma patient cohorts 

For this study, LUAD patient cohorts were obtained from publicly available data 

sources (Supplementary Table 1), which include The Cancer Genome Atlas-Lung 

Adenocarcinoma (TCGA-LUAD)64, Tang et al. (GSE42127)18, Der et al. (GSE50081)65, 

and Zhu et al. (GSE14814)17 datasets. The primary LUAD patient cohort, utilized for 

reconstruction of transcriptomic and epigenomic signatures of chemoresistance, was 

obtained from The Cancer Genome Atlas (TCGA-LUAD) project64 and downloaded from 

the Genomics Data Commons database (GDC, https://portal.gdc.cancer.gov/) on 

February 2017. Clinical information (i.e., clinical file, follow-up, and treatment data) for 

these datasets were obtained from the TCGA GDC legacy archive 

(https://portal.gdc.cancer.gov/legacy-archive/). 

2.2 Gene expression and DNA methylation analysis 

For RNA-seq analysis, we normalized and stabilized variance for raw RNA-seq 

counts using DESeq266 R package. DNA methylation values for each site were reported 

as β (Beta) values, which were subsequently converted to M-values as suggested in67 

when parametric analysis was utilized, using beta2m function in Lumi68 R package.  

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/legacy-archive/
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2.3 Defining signatures of chemotherapy response 

To determine molecular characteristics that differ between poor response and 

favorable response, we defined signatures of treatment response on transcriptomic (i.e., 

differential expression) and epigenomic (i.e., differential methylation) levels between 

poor response and favorable response patient groups using two-sample two-tailed Welch 

t-test (t.test function in R)69  in R studio version 3.3.270, such that differential expression 

signature was defined as a list of genes ranked on their differential expression (i.e., t-test 

values) and differential methylation signature was defined as a list of genes based on the 

differential methylation of the corresponding site (i.e., t-test values). We coupled this 

analysis with signatures defined based on a fold change and obtained similar results. For 

DNA methylation signature, we performed analysis two ways: selected one CpG site per 

gene through the coefficient of variation analysis, where a site with the highest 

coefficient of variation was selected for each gene; and considered all CpG sites for 

signature reconstruction, yielding similar results.  

2.4  Transcriptomic and epigenomic pathway enrichment analysis 

To identify molecular pathways altered on transcriptomic and epigenomic levels 

(Figure 1), we first performed pathway enrichment analysis on differential expression 

signature and differential methylation signature (as in Figure 2). For this, we used the 

comprehensive C2 pathway database71 (http://software.broadinstitute.org/gsea/msigdb), 

which includes 833 pathways from REACTOME72, KEGG73, and BIOCARTA74 

databases, and implemented pathway enrichment analysis using Gene Set Enrichment 

http://software.broadinstitute.org/gsea/msigdb
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Figure 2. Schematic flow representation of pathCHEMO 
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Analysis (GSEA)75, where differential expression and differential methylation signatures 

were used as a reference and collection of genes from each pathway was used as a query 

gene set. Normalized Enrichment Scores (NESs), and p-values were estimated using 

1,000 gene permutations. This analysis estimated NESs for each of the 833 pathways, 

which reflects the extent to which each pathway is enriched in the treatment response 

signature and defines a so-called pathway activity. Positive NES would reflect pathway 

enrichment in the over-expressed part of the signature (e.g., majority of pathway genes 

being over-expressed) and negative NES would reflect pathway enrichment in the under-

expressed part of the signature (e.g., majority of pathway genes being under-expressed). 

We refer to such pathway enrichment analysis as signed as it considers over- and under-

expression of genes (with direction). Signed pathway enrichment analysis was performed 

on the differential methylation signature of treatment response in the similar manner. 

Further, to overcome limitations of such (i.e., signed) pathway enrichment 

analysis, which assumes that the pathway will be enriched only if majority of genes in the 

pathway are changed in the same direction (i.e., either over-expressed or under-

expressed, but not both), we performed absolute valued analysis. For this, the pathway 

enrichment analysis was run on the absolute valued differential expression signature, 

where signature t-stat values are absolute valued to collapse positive and negative 

signature tails, as was previously done in76. In this case, positive NESs reflect enrichment 

in the differentially expressed part of the signature (which includes both over-expressed 

and under-expressed genes) and negative NESs reflect enrichment in the non-

differentially expressed part of the signature (and are therefore not considered). This 

absolute valued pathway enrichment analysis discovers pathways whose genes might be 
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changed in both directions (both over-expressed and under-expressed) as it estimates the 

enrichment in the differentially expressed tail of the signature (irrespective of sign). Such 

absolute valued pathway enrichment analysis defined NESs for each of 833 pathways, as 

above. Absolute valued pathway enrichment analysis was performed on the differential 

methylation signature of treatment response in the similar manner (Supplementary Figure 

2). 

The next essential step was to then integrate NESs from signed and absolute 

valued pathway enrichment analysis so that for each pathway a final integrative NES was 

defined as an NES with the lowest p-value between signed and absolute valued pathway 

analyses (note, that negative NES values for absolute valued analysis are not considered 

as they reflect enrichment in the non-changed part of the signature). The advantage of 

such integration is two-fold: it captures pathways whose genes are strictly over-expressed 

or under-expressed in each pathway, and whose genes are changed in both directions 

(i.e., such pathway would contain genes that are over-expressed and genes that are under-

expressed), thus increasing the probability to identify functionally relevant molecular 

determinants. Similar logic applies to the methylation signatures. Such integration of 

signed and absolute valued NESs defined composite expression pathway signature and 

composite methylation pathway signature (Supplementary Figure 3). 

2.5 Transcriptomic and epigenomic pathway integration 

We have employed GSEA to compare composite expression pathway signature 

and composite methylation pathway signature to identify pathways that are affected on 

both transcriptomic and epigenomic levels (i.e., belong to the leading edge from the 
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GSEA analysis). To assure that we can identify pathways which are over-expressed and 

under-methylated; under-expressed and over-methylated; differentially expressed and 

differentially methylated etc., each pathway signature was ranked based on the absolute 

values of their NESs and used for subsequent GSEA comparative analysis. 

For this pathway-based GSEA, we utilized composite expression pathway 

signature as a reference signature and top pathways from the composite methylation 

pathway signature as a query pathway set. To accurately define query pathway set, which 

should assure strongest enrichment between pathway signatures, we varied the threshold 

for the query pathway set between 0.001 and 0.05 (width of each step = 0.005) and 

estimated the strength of enrichment between the two signatures at each threshold. Since 

GSEA is a probabilistic algorithm, for each threshold, GSEA was run 100 times and 

average NES for the enrichment was reported. Threshold with the highest average NES 

then reflects the optimal threshold which corresponds to the strongest enrichment 

between the composite expression pathway signature and the composite methylation 

pathway signature, used for subsequent analysis. GSEA analysis between the composite 

expression pathway signature and the composite methylation pathway signature at the 

optimal threshold identified a set of pathways (e.g., for carboplatin-paclitaxel response 

LUAD, we identified 28 pathways) of treatment response altered on both transcriptomic 

and epigenomic levels. 

One of the limitations of the pathways from the C2 collection is that they often 

represent a parent-child relationship, where a parent pathway (e.g., cell cycle) would 

encompass all genes in its child pathways (i.e., cell cycle phase). Such overlap produces 

data redundancy and can result in model overfitting as the same pathways are fit in the 
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model repeatedly. To overcome this limitation and to eliminate pathways with heavy 

overlaps, we performed Fisher Exact Test (fisher.test function in R) and compared 

leading edge genes for each pair of pathways from our analysis (e.g., for all 28 pathways, 

resulting in (28 choose 2 = 378) comparisons). From each group of parent-children 

pathways which shared a large number of overlapping genes, we selected one 

representative pathway with the NES corresponding to the lowest p-value, which defined 

a final set of pathways (e.g., for carboplatin-paclitaxel response LUAD, we identified 

seven pathways) maximally non-overlapping non-redundant pathways used for 

subsequent analysis.  

2.6 Comparing expression and methylation predictive ability 

 To examine if, in our candidate pathways, both data types (i.e., mRNA 

expression or DNA methylation) have equivalent ability to predict therapeutic response, 

we compared the performance of candidate pathways utilizing their activity levels based 

on expression only and activity levels based on methylation only, separately. To compare 

pathway performances based on each data type, we first scaled both expression and 

methylation data matrices (i.e., z-scored on genes or sites) in the discovery (i.e., TCGA-

LUAD) cohort, which defined single-sample differential expression and single-sample 

differential methylation signatures, respectively (Supplementary Figure 4). Each sample 

was then used for signed and absolute valued pathway enrichment analysis (separately for 

expression and for methylation, as above), where each single-sample signature was used 

as a reference and genes from each of seven candidate pathways were used as a query set 

thus producing a pathway activity signature for each patient. These single-sample 
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expression and methylation pathway signatures were then used to evaluate predictive 

ability of seven pathways (for expression and methylation, separately), using logistic 

regression modeling followed by ROC analysis. The logistic regression analysis was 

done using glm function and ROC analysis was done using pROC77 and ggplot278 

package in R.  

2.7 Validation and robustness in independent clinical cohorts  

To evaluate clinical significance of the candidate molecular pathways, we 

examined their ability to predict patients at risk of chemoresistance in an independent 

clinical cohort from the Tang et al.18 dataset, and used survival status during the clinical 

study (1996 to 2007) as a clinical endpoint (time to event or follow-up was estimated 

between the start of carboplatin-paclitaxel treatment and death or follow-up, respectively; 

maximum time to event/follow-up is 2,567 days). First, we estimated activity levels of 

the candidate pathways in the independent clinical Tang et al. cohort on a single-sample 

level, as above. The activity levels (i.e., NESs) of the candidate pathways were then 

subjected to t-Distributed Stochastic Neighbor Embedding (t-SNE) clustering79 

(implemented through Rtsne80 package in R), a non-linear dimensionality reduction 

technique which chooses two similarity measures between pairs of points of high 

dimensional input space and low-dimensional embedding space. First, it constructs a 

probability distribution over the pairs of high dimensional space (i.e., 7-dimension in our 

case) in such a way that similar points are exhibited by nearby instances, while dissimilar 

points are exhibited by distant instances. Second, it constructs a similar probability 

distribution over the points in low-dimensional embedding space and tries to minimize 
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the Kullback-Leibler divergence81 (i.e., KL divergence) between the high dimensional 

data and low dimensional anticipated data at each point. Therefore, patients with similar 

pathway activity levels will be anticipated as nearby instances while patients with 

dissimilar pathway activity levels will be anticipated as dissimilar instances. The 

advantage of t-SNE lies in its ability to reduce dimensions from seven (maximum 

possible in our analysis) to two and effectively identify groups of patients that share 

similar pathway activity levels. This analysis stratified patients into two groups: a group 

with overall increased composite pathways’ activities and a group with overall decreased 

composite pathways’ activities. We then evaluated if these patient groups differ in their 

response to carboplatin-paclitaxel treatment using Kaplan-Meier survival analysis82, and 

Cox proportional hazards model83 via survival84, ggplot278 and survminer85 R packages. 

In order to evaluate if a random set of pathways can perform as well as our 

identified seven pathways, we compared the predictive ability of our seven candidate 

pathways to the predictive ability of seven pathways selected at random. For this, we 

built a random model, where seven pathways were selected at random and their activity 

levels were utilized to stratify patients based on their treatment response, with subsequent 

evaluation using Kaplan-Meier survival analysis. Random selection was done 10,000 

times and the empirical p-value was estimated as a number of times Kaplan-Meier log-

rank p-value for seven candidate molecular pathways outperformed the results at random. 

We have also employed a second random model, where we evaluated the effect of 

selecting random patient groups. 

Finally, to estimate the accuracy with which our model can predict treatment 

response for a new incoming patient, we simulated this process using leave-one-out 
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cross-validation (LOOCV)86. In LOOCV, one patient is removed; and the model is 

trained on the rest of the patients. The patient that was removed is considered as a new 

incoming patient, subjected to predictive analysis, and is assigned a risk of developing 

resistance. This process was repeated for all patients. We implemented the predictive 

model for LOOCV using generalized linear modeling (e.g., utilizing multivariable 

logistic regression) through glm87 function and ggplot278 package in R.  

2.8 Comprehensive comparative analysis 

To assess advantages of our approach, we have compared its predictive 

performance to other commonly utilized approaches, including linear regression 

modeling, support vector machine, and random forest; and evaluated if our approach can 

be affected by commonly used covariates or known signatures of lung cancer 

aggressiveness. 

To demonstrate the advantages of our approach over other commonly utilized 

methods, we compared its performance: first, to Panja et al.56 method, Epigenomic and 

Genomic mechanisms of treatment Resistance (Epi2GenR), which utilized linear 

regression to integrate DNA methylation and mRNA expression data; second, to Zhong et 

al.62 method, based on support vector machine (SVM) algorithm which utilized mRNA 

expression patient profiles; and finally, to Yu et al.61 method, Personalized REgimen 

Selection (PRES) method, based on random forest machine learning approach which 

utilizes mRNA expression patient profiles. We followed the selection and cross-

validation techniques suggested in each of the above publications to carefully compare 

their performance to our approach. Epi2GenR utilized the same signature as utilized in 
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our study. To apply SVM and PRES correctly, we split our validation set into 70:30 

proportion subsets, where 70% of the validation set were used for model training and 

30% for model validation. Predictive ability of the identified candidates from each of 

these methods was evaluated using ROC, Kaplan-Meier survival, and hazard ratio 

analyses through survival84, survcomp88, and survminer85 packages in R. 

Next, we evaluated if any of commonly used covariates (i.e., age, gender, and 

disease stage at diagnosis) and known signatures of lung cancer aggressiveness (from 

Larsen et al.89, Beer et al.90, and Tang et al.18 described above) can predict therapeutic 

response or can affect predictive ability of the identified seven candidate pathways. For 

this, we utilized the multivariable Cox proportional hazards model83 (using coxph 

function in R) and stratified Kaplan-Meier survival analysis through survival, and 

survminer packages in R.  

2.9 Pathway activity read-outs  

To identify pathway read-outs, we looked for genes inside each pathway, which 

were altered on transcriptomic and/or epigenomic levels (i.e., belong to the leading edge 

from the pathway enrichment analysis); correlated with pathway activity levels (i.e., 

correlation between NESs and a candidate gene across all patients, measured by Pearson 

correlation, cor.test function in R); and associated with carboplatin-paclitaxel response 

(i.e., Cox proportional hazards model through coxph in R, using likelihood-ratio test as 

reliable for small sample sizes91). Likelihood-ratio test p-values were then combined with 

Pearson correlation p-values using Fisher’s method (metap R package) and utilized to 
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make final gene selection. Visualization of the resulting read-outs was done using 

Cytoscape92.  

2.10 Model generalizability 

To test the generalizability of our model, we applied our method to additional 

chemotherapy combinations (i.e., cisplatin-vinorelbine and oxaliplatin-fluorouracil) and 

additional cancer types (i.e., lung squamous cell carcinoma and colorectal 

adenocarcinoma) (Supplementary Table 2-4). In particular, we investigated response to: 

cisplatin (platinum-based alkylating chemotherapy) and vinorelbine (non-platinum based 

plant alkaloid chemotherapy) response in lung adenocarcinoma (LUAD); cisplatin-

vinorelbine response in lung squamous cell carcinoma (LUSC); and oxaliplatin 

(platinum-based alkylating chemotherapy), fluorouracil (antimetabolite chemotherapy) 

and, folinic acid (chemotherapy protective drug often given with fluorouracil to improves 

the binding; also known as leucovorin) (i.e., FOLFOX) response in colorectal 

adenocarcinoma (COAD). 

For signature development, we utilized primary tumor samples from TCGA-

LUAD/TCGA-LUSC/TCGA-COAD (n = 8), for patients without neo-adjuvant treatment 

(i.e., no pre-treatment), who received adjuvant chemotherapies of interest and were 

further monitored for new tumor events (as defined above).  

For clinical validation of response to cisplatin-vinorelbine combination in LUAD 

we utilized the Zhu et al. patient cohort 17 (GSE14814), which included LUAD tumors 

obtained at surgery (n = 39), treated with adjuvant cisplatin-vinorelbine chemotherapy. In 

this cohort, lung cancer-related death was used as a clinical endpoint and time to event 
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was calculated between the start of cisplatin-vinorelbine treatment and lung-cancer 

related death (for patients with this event) or to follow-up (for censored patients), with 

maximum time to event/follow-up 3,390 days. 

For clinical validation of response to cisplatin-vinorelbine combination in lung 

squamous cell carcinoma (LUSC) we utilized a different subset of patients from the Zhu 

et al. patient cohort17 (GSE14814), which were patient with LUSC whose tumors were 

obtained at surgery (n = 26) and who were treated with adjuvant cisplatin-vinorelbine 

chemotherapy. In this cohort, lung cancer-related death was used as a clinical endpoint 

and time to event was calculated between the start of cisplatin-vinorelbine treatment and 

lung-cancer related death (for patients with this event) or to follow-up (for censored 

patients), with maximum time to event/follow-up 3,318 days. 

Finally, for validation of FOLFOX combination in colorectal adenocarcinoma 

(COAD) we utilized Marisa et al. patient cohort63 (GSE39582), which includes COAD 

tumors obtained at surgery (n = 23), treated with adjuvant FOLFOX chemotherapies. In 

this cohort, relapse-free survival (i.e., where relapse was defined as locoregional or 

distant recurrence) was used as a clinical endpoint and time to event was calculated 

between the start of FOLFOX treatment to relapse (for patients with this event) or to 

follow-up (for censored patients), with maximum time to event/follow-up 2,790 days.  

To investigate pathways overlaps, we employed Fisher Exact Test (fisher.test 

function in R) on the leading edge genes from the transcriptomic and epigenomic 

pathways (i.e., genes that contribute to the enrichment of biological pathways in 

corresponding signatures). All resulting p-values are corrected for multiple hypotheses 

testing using FDR. 
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CHAPTER III 

3 RESULTS 

3.1 pathCHEMO Overview 

We have developed a genome-wide computational approach pathCHEMO that 

integrates mRNA expression and DNA methylation patient profiles to identify pathways 

altered on both transcriptomic and epigenomic levels (as demonstrated in Figure 1) that 

differentiate poor from favorable response to chemotherapy-regimens. Here, we briefly 

outline the major steps of our integrative algorithm (Figure 2). Step1: our algorithm 

identifies two groups of patients, which will be used to define a chemotherapy response 

signature: patients that failed a specific chemotherapy-regimens (e.g., developed 

metastasis within 1 year after therapy administration), and patients with favorable 

chemotherapy response (e.g., remained disease-free for more than 2 years after 

chemotherapy administration). Step 2: it compares transcriptomic (mRNA expression) 

and epigenomic (DNA methylation) profiles between these two groups of patients, which 

define differential transcriptomic signature and differential epigenomic signature of 

chemoresponse. Step 3: Such signatures are then individually subjected to signed and 

absolute valued pathway enrichment analyses, which are then integrated and define 

molecular pathways affected in either one direction (i.e., containing either over-expressed 

or under-expressed genes) or both directions (i.e., containing both over-expressed and 
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under-expressed genes) enriched in the transcriptomic signature, and similarly pathways 

affected in either one direction or both directions on the epigenomic level, enriched in the 

epigenomic signature. Step 4: These transcriptomic and epigenomic pathway signatures 

are then integrated to define a set of pathways that control both transcriptomic and 

epigenomic programs disrupted in resistance. Step 5: Such candidate pathways and their 

read-out genes are subjected to validation studies, where they are evaluated for their 

ability to predict therapeutic response in independent patient cohorts, through 

multivariable survival analysis. Step 6: Finally, the identified pathways are used to assign 

individual risk of resistance for new incoming patients. 

3.2 Defining molecular signatures of chemoresponse 

We tested our approach to evaluate response to standard-of-care doublet 

chemotherapy, which contains carboplatin and paclitaxel (i.e., carboplatin-paclitaxel), in 

LUAD patients. For this, we have analyzed clinical and molecular profiles of patient with 

LUAD in the TCGA clinical cohort60. To study primary resistance to this chemo 

combination, we specifically selected primary tumors from patients that did not receive 

any neoadjuvant therapy, were treated with adjuvant carboplatin-paclitaxel chemo 

regimen, and were further monitored for disease progression (n = 14) (Supplementary 

Table 1). Each patient that received carboplatin-paclitaxel was evaluated for his/her time 

to tumor relapse defined as time between the start of carboplatin-paclitaxel administration 

and a new tumor event (defined as tumor re-occurrence, local or distant metastases). To 

accurately uncover signal that differentiates poor from favorable treatment response, we 

employed an extreme-responder analysis, widely utilized by us56,76,93 and others94,95, 

where two groups of patients with drastically different treatment response (i.e., favorable 
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response and poor response) are compared for differences in their molecular profiles to 

capture the most prominent molecular signal. To assure that the comparison groups are 

balanced with respect to initial age, gender, disease stage at diagnosis (i.e., initial disease 

aggressiveness), smoking status etc., we performed stratified sub-sampling (which 

identifies patient groups with similar distributions for these variables) and identified 

Table 1. Clinical profiles of carboplatin-paclitaxel treated patients from the TCGA-

LUAD cohort (n = 8). 

 

Treatment 

response 

Patient 

ID 

Time 

to 

event 

or 

follow-

up 

(days) Age Gender 

Disease 

stage at 

diagnosis 

Smoking 

status 

Observed 

treatment 

related 

event or 

follow-up 

poor  

response 

6712 116 71 male IIA 4 

new tumor 

event 

5051 122 42 female IIIA 4 

new tumor 

event 

6979 138 59 female IIB 3 

new tumor 

event 

A4VP 153 66 female IIIA 4 

new tumor 

event 

favorable  

response 

4666 744 52 female IV 4 

no event, 

follow-up 

5899 784 58 male IIA 2 

no event, 

follow-up 

1678 1,120 70 female IIB 3 

no event, 

follow-up 

1596 2,031 55 male IIB 2 

no event, 

follow-up 

Notes: NA = not available.  

Smoking status: 1 = lifelong non-smoker (< 100 cigarettes smoked in Lifetime), 2 = 

current smoker (includes daily smokers and non-daily smokers (or occasional 

smokers), 3 = current reformed smoker for > 15 years, 4 = current reformed smoker 

for ≤ 15 years, 5 = current reformed smoker, duration not specified, and 6 = 

smoking history not documented. 
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patients that experienced relapse within 1 year of carboplatin-paclitaxel start (i.e., poor 

response, n = 4); and patients that did not experience any events for more than 2 years 

(i.e., favorable response, n = 4) (Table 1).  

To uncover a complex interplay between transcriptomic and epigenomic 

mechanisms implicated in response to chemotherapy, we compared poor response and 

favorable response groups based on their mRNA expression and DNA methylation 

profiles using two-sample two-tailed Welch t-test69 and re-confirmed with fold change 

(as described in the Methods section), which defined carboplatin-paclitaxel response 

differential gene expression signature and carboplatin-paclitaxel response differential 

methylation signature.  

3.3 Integrative analysis identified pathways of resistance 

To understand molecular mechanisms that govern chemoresponse, we next sought 

to identify molecular pathways that control transcriptomic and epigenomic signatures of 

carboplatin-paclitaxel resistance (Figure 1). For this, we subjected the carboplatin-

paclitaxel response differential expression signature and carboplatin-paclitaxel response 

differential methylation signature to pathway enrichment analysis using the 

comprehensive C2 pathway database71 (which includes 833 pathways from 

REACTOME72, KEGG73, and BIOCARTA74 databases). Pathway enrichment was 

performed using Gene Set Enrichment Analysis (GSEA)75. This analysis estimated 

Normalized Enrichment Score (i.e., NES) for each of the 833 pathways, which reflects 

the extent to which each pathway is enriched in the treatment response signature, also 

referred to as pathway activity. A list of 833 pathways ranked by their enrichment (i.e., 

NESs) in the carboplatin-paclitaxel response differential expression signature defined 
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carboplatin-paclitaxel response differential expression pathway signature and a list of 833 

pathways ranked by their enrichment (i.e., NESs) in the carboplatin-paclitaxel response 

methylation signature defined carboplatin-paclitaxel response differential methylation 

pathway signature (as described in the Methods section). To account both for the 

pathways that have majority of their genes affected in the same direction (e.g., majority 

of genes being either over-expressed or under-expressed) and pathways that have genes 

affected in different directions: some genes affected in one direction (e.g., over-

expressed) and some in an opposite direction (e.g., under-expressed), we have performed 

both signed and absolute valued pathway enrichment analysis with their subsequent 

integration (as described in the Methods section), which defined carboplatin-paclitaxel 

response composite expression pathway signature and carboplatin-paclitaxel response 

composite methylation pathway signature. 

Further, to define interplay between complex mechanisms implicated in 

chemoresistance, we sought to identify molecular pathways that are affected on both 

transcriptomic (i.e., mRNA expression) and epigenomic (i.e., DNA methylation) levels 

and which would capture pathway genes affected: only on transcriptomic level, only on 

epigenomic level, or both levels (as in Figure 1). To achieve this goal (Figure 3a), we 

compared the carboplatin-paclitaxel response composite expression pathway signature (as 

a reference) and carboplatin-paclitaxel response composite methylation pathway 

signature (as a query pathway set) using GSEA (the threshold for the query pathway set 

at p-value ≤ 0.001 was selected as in Figure 3b, as described in the Methods section), 

which identified seven molecular pathways with significant alterations on both 

transcriptomic and epigenomic levels (GSEA NES = 2.75, p-value < 0.001) (Figure 3c,  
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Figure 3. Integrative genome-wide transcriptomic and epigenomic analysis identifies 

candidate molecular pathways of chemotherapy response. 

(a) Schematic representation of the integrative transcriptomic and epigenomic analysis: 

(i) patients are defined by their response to chemotherapy, (ii) analysis of transcriptomic 

and epigenomic patient profiles, (iii) integrative transcriptomic and epigenomic analysis 

identifies candidate pathways affected on both transcriptomic and epigenomic levels, and 

(iv) multi-modal validation of candidate pathways. (b) Box and whisker plot depicting p-

value cutoff for query carboplatin-paclitaxel response composite methylation pathway 

signature (x-axis) and NESs from the corresponding GSEA comparison between 

composite methylation and expression pathways signatures (y-axis), based on analysis in 

TCGA-LUAD patient cohort. Arrow indicated optimal p-value threshold, which results in 

the strongest GSEA enrichment. (c) GSEA comparing carboplatin-paclitaxel response 

composite expression pathway signature (reference) and carboplatin-paclitaxel response 

composite methylation pathway signature (query, NES p ≤ 0.001), based on analysis in 

TCGA-LUAD patient cohort. Horizontal red bar indicates leading edge pathways altered 

on both transcriptomic and epigenomic levels. NES and p-value were estimated using 

1,000 pathway permutations. (d) ROC analysis comparing ability of the seven candidate 

pathways to predict carboplatin-paclitaxel where their activity is defined based on their 

expression values (green) or methylation values (blue). AUROC is indicated. 
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as described in the Methods section). These pathways included chemokine receptors bind 

chemokines, mRNA splicing, G alpha (s) signalling events, intestinal immune network for 

IgA production, metabolism of proteins, RNA degradation, and cell cycle mitotic. 

To confirm that these identified seven molecular pathways are robust to the 

choice of the statistical methods used to define treatment response signatures, we have 

also performed our analysis using signatures defined using all DNA methylation sites and 

using non-parametric tests. First, we defined differential methylation signature with all 

DNA methylation sites considered (Supplementary Figure 1a). Second, we defined 

differential methylation signature using fold change (Supplementary Figure 1b). Finally, 

we defined both differential expression and differential methylation signatures using fold 

change (Supplementary Figure 1c). Analyses using all of these signatures identified the 

same seven candidate pathways (GSEA NES > 2.45, p-value < 0.001), demonstrating 

robustness of our analysis regardless of the signature choice.  

To investigate if mRNA expression or DNA methylation carries more weight in 

the predictive ability of our seven candidate pathways, we have performed Receiver 

Operating Characteristic (ROC) analysis96 based on pathway activities in each patient 

sample (i.e., through single-sample pathway analysis, as described in the Methods 

section), defined on either expression levels or methylation levels of the pathway genes 

(as described in the Methods section). The predictive ability was measured using Area 

under ROC (AUROC), which reflected how well each data type separates poor response 

and favorable response patients in the TCGA-LUAD patient cohort (the AUROC value of 

0.5 indicates random predictor and 1 indicates a perfect predictor). Our analysis 

demonstrated that both expression levels (AUROC = 0.987) and methylation levels  
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Figure 4. Transcriptomic and epigenomic alterations in candidate pathways of 

carboplatin-paclitaxel response. 

(a) Representative molecular pathways altered on both transcriptomic and epigenomic 

levels, visualized through circlize R package. Genes from the leading edge in each 

pathway are represented as differentially expressed (pink), methylated (grey) and both 

differentially expressed and methylated (yellow). Width of each connecting line is 

proportional to the extent of differential expression and differential methylation. 

Pathways are depicting as follows: (i) chemokine receptors bind chemokines pathway (19 

differentially expressed genes, 4 differentially methylated genes, and 8 differentially 

expressed and methylated genes), (ii) mRNA splicing pathway (21 differentially 

expressed genes, 39 differentially methylated genes, and 28 differentially expressed and 

methylated genes), and (iii) G alpha (s) signalling events pathway (37 differentially 

expressed genes, 8 differentially methylated genes, and 4 differentially expressed and 

methylated genes). (b) In the seven candidate pathway network visual representation, 

nodes correspond to the genes, which are connected to central pathway-membership 

circles (i.e., indicating pathway membership). Gene colors describe differential 

expression (pink), differential methylation (grey) and both differential expression and 

methylation (yellow). Network was constructed with ggnetwork R packages. 
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(AUROC = 0.965) of seven candidate pathways are highly predictive of poor response 

vs. favorable response separation (Figure 3d), indicating that they both can be used to 

identify patients at risk of developing chemoresistance.  

We further evaluated a topological structure of transcriptomic and epigenomic 

alterations within each identified pathway. Firstly, we examined to which extent genes 

from each pathway were affected on transcriptomic or on epigenomic levels (Figure 4a, 

and Supplementary Figure 5) and have observed that seven pathways exercised different 

patterns of transcriptomic and epigenomic alterations. For example, majority of genes 

from G alpha (s) signalling events pathway were altered on their mRNA level (i.e., 

Figure 4a, nodes in pink) while genes from the mRNA splicing pathway were heavily 

altered on DNA methylation level (Figure 4a, nodes in grey) and on both mRNA  

expression and DNA methylation levels (Figure 4a, nodes in yellow). Secondly, we 

examined connectivity within and between the pathway genes, where an edge within the 

pathway corresponds to the pathway membership and connecting edge between pathways 

shows shared genes and demonstrated that our candidate pathways share little overlap 

(Figure 4b). Finally, we examined differentially methylated sites harbored in genes from 

the seven pathways and evaluated their regions/locations on the genome (Figure 5a), 

where regions were defined as TSS200 (i.e., 200 base pairs upstream of transcription start 

site, TSS), TSS1500 (i.e., 1500 base pairs upstream of TSS200), 5’UTR, 1st exon, gene 

body,  
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Figure 5. Region-based analysis of differentially methylated sites in seven candidate 

pathways. 

(a) Schematic representation of regions (TSS1500, TSS200, 5’UTR, first exon, gene 

body, and 3’UTR) used to profile differentially methylated sites in the 

HumanMethylation450 array. (b) Bar plot representation of region distribution for 

pathway genes harboring differentially methylated sites. 

and 3’UTR. In fact, the majority of pathways have methylated sites overrepresented in 

TSS200+TSS1500 regions, indicating a possible interaction with the transcription 

machinery binding at the promoter/enhancer regions97. An exception was Immune 
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network for IgA production pathway, whose sites were heavily enriched in the gene body, 

indicating their potential interaction with alternative splicing machinery98 (Figure 5b). 

3.4 Validation in independent patient cohorts  

Our next essential step was to evaluate if the candidate molecular pathways can 

stratify patients based on the risk of failing chemotherapy in an independent, non-

overlapping patient cohort (Figure 6a). For this, we first considered a Tang et al. cohort18 

(Supplementary Table 1) from the University of Texas MD Anderson Cancer Center, 

which contains LUAD primary tumor samples obtained at surgery (n = 39) collected 

between 1996 to 2007, followed by treatment with carboplatin and a taxane (e.g., 

paclitaxel) and monitored for further disease progression for 11 years. In this cohort, 

survival status during the clinical study (1996 to 2007) was used as a clinical endpoint 

and time to this event was calculated between the start of carboplatin-paclitaxel treatment 

to death (for patients with this event) or to follow-up (for censored patients). Similar to 

the analysis above, we evaluated activity levels of seven candidate pathways in each 

patient sample (i.e., through single-sample pathway analysis, as described in the Methods 

section) and employed t-Distributed Stochastic Neighbor Embedding (t-SNE) 

clustering79, which stratified patients into two groups based on pathway activity levels 

(Figure 6b): one group with increased composite pathways’ activities (orange) and one 

group with decreased composite pathways’ activities (green). We then subjected these 

patient groups to Kaplan-Meier survival analysis and Cox proportional hazards model 

(Fig. 4c), which demonstrated that these groups had a significant difference in their  



32 
 

 

Figure 6. Candidate molecular pathways stratify patients based on response to 

carboplatin-taxane in an independent cohort. 

(a) Validation strategy, as follows: (i) molecular transcriptomic and epigenomic profiling 

of patients, (ii) predicting patients’ risk of developing chemoresistance, and (iii) informed 

clinical decision making based on patients personalized risks. (b) t-SNE clustering of 

lung adenocarcinoma patients treated with carboplatin-taxane (e.g., paclitaxel) from the 

Tang et al. validation cohort (n = 39 biologically independent patient samples), based on 

activity levels of seven candidate pathways. Among two groups green group (n = 21 

biologically independent patient samples) corresponds to patients with low composite 

activity levels of candidate pathways and orange group (n = 18 biologically independent 

patient samples) corresponds to patients with high composite activity levels of candidate 

pathways. (c) Kaplan-Meier survival analysis to estimate difference in response to 

carboplatin-taxane (e.g., paclitaxel) between two patient groups is identified in (b). Log-

rank p-value and number of patients in each group are indicated. (d) Two random models 

indicate non-random predictive ability of our model in the Tang et al. validation cohort: 

random model 1 (steel-blue) is defined based on to seven pathways selected at random, 

and random model 2 (goldenrod) is defined based on to equally–sized patient groups 

selected at random. 
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response to carboplatin-paclitaxel (log-rank p-value = 0.0081, hazard ratio = 10) (as 

described in the Methods section).  

To evaluate non-randomness of this result, we compared predictive ability of our 

candidate seven pathways to the predictive ability of seven pathways selected at random 

(as described in the Methods section), which demonstrated that ability of the candidate 

seven pathways to predict carboplatin-paclitaxel response is highly non-random 

compared to 10,000 randomly selected pathways (Figure 6d, random model 1: p-value = 

0.003). We paralleled this analysis with evaluation if patient groups stratified by our 

model are different in their treatment response compared to patient groups chosen at 

random, which were shown to be highly non-random (Figure 6d, random model 2: p-

value = 0.007). 

Further, we simulated a situation when a new incoming patient is diagnosed with 

LUAD and needs to be assigned the risk of developing resistance to carboplatin-

paclitaxel utilizing leave-one-out cross-validation (LOOCV)86 in the Tang et al. 

validation cohort18. In LOOCV, one patient is removed, and the model is trained on the 

rest of the patients. Then the patient that was removed is subjected to predictive analysis 

and is assigned a risk of developing resistance (i.e., simulating a scenario of a new 

incoming patient). This process is repeated for all patients (as described in the Methods 

section). LOOCV analysis demonstrated that our model has high accuracy in as described 

in the Methods section predicting poor and favorable carboplatin-paclitaxel response for 

a new incoming patient (Figure 7a). 

Finally, to determine that our candidate pathways specifically distinguish 

carboplatin-paclitaxel response and not disease aggressiveness, we have evaluated if the  
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Figure 7. Candidate molecular pathways predict response to carboplatin-taxane and are 

not predictive of lung cancer aggressiveness. 

(a) Leave-one-out cross-validation (LOOCV) in the Tang et al. (n = 39) validation 

cohort. Correctly predicted patients with favorable response to carboplatin-taxane (e.g., 

paclitaxel) (green) and patients with poor response to carboplatin-taxane (e.g., paclitaxel) 

(orange) are indicated. (b-g) Kaplan-Meier survival analysis shows no significant 

difference between untreated patients based on the overall lung cancer aggressiveness in 

(b-d) Der et al. (n = 127) and (e-g) Tang et al. (n = 94) observational (i.e., not treated) 

patient cohorts. Log-rank p-value and the number of patients in each group are indicated. 
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pathways can also separate patients based on their lung cancer aggressiveness. For this, 

we evaluated the predictive ability of our candidate pathways on the LUAD patient 

cohorts that did not receive any treatment after surgery (we used these cohorts as negative 

controls). These datasets (Supplementary Table 1) included: Der et al.65 LUAD tumor 

samples (n = 127) collected through surgery between 1996 and 2005 at Princess Margaret 

Cancer Centre, and Tang et al.18 provisional cohort, which includes LUAD tumor 

samples (n = 94) collected through surgery between 1996 and 2007 at The University of 

Texas MD Anderson Cancer Center. These negative control patient cohorts did not 

receive any subsequent treatment but were monitored for disease progression (for Der et 

al. lung cancer-related death was used as a clinical endpoint and for Tang et al. survival 

status during the clinical study (1996 to 2007) was used as a clinical endpoint). Kaplan-

Meier survival analysis on these datasets demonstrated that our candidate seven pathways 

did not separate patients based on the disease progression in both unstratified and 

stratified (i.e., based on tumor stages) analyses Der et al. (Figure 7b-d, log-rank p-value = 

0.68), and Tang et al. (Figure 7e-g, log-rank p-value = 0.35) and are in fact specific for 

carboplatin-paclitaxel response. 

3.5 Comprehensive comparative analysis 

To assess advantages of our approach, we have compared its predictive 

performance to other commonly utilized methods, including methods based on linear 

regression modeling, support vector machine (SVM), and random forest; and evaluated if 

our approach can be affected by commonly utilized covariates or known signatures of 

lung cancer aggressiveness. 
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First, to measure the advantage of our model over other commonly utilized 

methods, we have compared predictive performance of our model (as described in the 

Methods section) to Panja et al.56 method, Epi2GenR, based on linear regression 

integration between DNA methylation and mRNA expression patient profiles, which  

 

Figure 8. Comparative performance analysis confirms robust predictive ability of 

pathCHEMO. 

(a-b) Comparison of pathCHEMO (turquoise) to other commonly utilized methods, 

including Panja et al. Epi2GenR (yellow), Zhong et al. SVM (light blue), Yu et al. PRES 

random forest (dark blue) using (a) ROC analysis (with AUROC indicated) and (b) 

Kaplan-Meier and Cox proportional hazards model (with log-rank p-value and hazard 

ratio indicated) in Tang et al. validation cohort. (c) Multivariable Cox proportional 

hazards analysis demonstrating adjustment of seven candidate pathways for common 

covariates (i.e., age, gender, and stage at diagnosis). Hazard p-value is indicated. 

identified 35 site-gene pairs as candidate markers of carboplatin-paclitaxel response. 

Second, our model was compared to Zhong et al.62 method based support vector machine 
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(SVM) analysis, which identified 104 candidate genes. Finally, our model was evaluated 

against Yu et al.61 method PRES, based on random forest algorithm, which identified 3 

candidates of carboplatin-paclitaxel response. We first compared ability of the identified 

candidates from each method to separate patients with poor and favorable carboplatin-

paclitaxel response in the Tang et al. dataset using ROC analysis, which demonstrated 

advantage of pathCHEMO over other commonly utilized methods (Figure 8a, 

AUROCpathCHEMO = 0.98, AUROCEpi2GenR = 0.92, AUROCSVM = 0.86, AUROCPRES = 

0.66). Furthermore, we compared ability of these methods to predict response to 

carboplatin-paclitaxel in the Tang et al. validation set (as above), through Kaplan-Meier 

survival analysis (Figure 8b: log-rank p-valuepathCHEMO = 0.008, log-rank p-valueEpi2GenR = 

0.04, log-rank p-valueSVM = 0.06, log-rank p-valuePRES = 0.82) and Cox proportional 

hazards model (Figure 8b: hazard ratiopathCHEMO = 10.1, hazard ratioEpi2GenR = 4.0, hazard 

ratioSVM = 5.4, hazard ratioPRES = 1.3), which confirmed that pathCHEMO outperformed 

other commonly used methods in its ability to predict therapeutic response.  

Second, to assure that our model is not affected by commonly utilized covariates 

(i.e., age, gender, and disease stage at diagnosis), we have evaluated their effect through 

multivariable (i.e., adjusted) Cox proportional hazards model83 on the Tang et al. dataset 

(as described in the Methods section), which demonstrated that these covariates are not 

predictive of treatment response and do not affect predictive ability of our model (Figure 

8c). Furthermore, to re-confirm this result we performed stratified Kaplan-Meier survival 

analysis; where we stratified the Tang et al. validation cohort into patient groups based 

on: age (< median age and >= median age); gender (i.e., female and male); and disease  
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Figure 9. Stratified Kaplan-Meier survival analysis demonstrates independence of the 

candidate pathways from the common covariates. 

Stratified Kaplan-Meier survival analysis in the Tang et al. patient cohort (n = 39) based 

on common prognostic covariates: (a) age-specific analysis (greater than and less than 

median age); (b) gender-specific analysis (female and male), and (c) diseases stage at 

diagnosis (I and II-III). C-index and number of patients in each group are indicated. 
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stage at diagnosis (stage I, and stages II and III), which confirmed that ability of our 

model to predict chemotherapy response does not depend on commonly utilized 

covariates and is indeed indicative of a therapeutic response to carboplatin-paclitaxel 

(Figure 9). 

Finally, to assure that our model is not affected by markers of overall tumor 

aggressiveness, we tested if any known prognostic signatures of lung cancer 

aggressiveness can predict carboplatin-paclitaxel response or affect predictive ability of 

our model. For this, we first selected known prognostic signatures of lung cancer 

aggressiveness including: Larsen et al.89 (54 prognostic markers); Beer et al.90 (50 

prognostic markers); and Tang et al.18 (12 prognostic markers) (Figure 10) and utilized 

them in multivariable Cox proportional hazards model, as above. Our analysis 

demonstrated that these prognostic signatures were not predictive of carboplatin-

paclitaxel response and did not affect the predictive ability of our seven candidate 

pathways (Figure 10). 

 

Figure 10. Comparative performance analysis of known markers of lung cancer 

aggressiveness confirms significant predictive ability of pathCHEMO. 

Multivariable Cox proportional hazards analysis demonstrating adjustment of seven 

candidate pathways for signatures of lung cancer aggressiveness, including Larsen et al. 

(54 lung adenocarcinoma markers), Beer et al. (50 lung adenocarcinoma markers), and 

Tang et al. (12 non-small cell lung cancer markers). Hazard p-value is indicated. 
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3.6 Pathway activity read-outs  

Molecular pathways are comprised of multiple genes, which complicate their 

clinical applicability as markers of treatment response. To tackle this limitation, we 

 

Figure 11. Network representation of candidate molecular pathways with their read-out 

genes. 

Network representation of the candidate pathways, where leading edge genes correspond 

to nodes and their sizes indicates –log based 2 of Fisher’s combined p-values (i.e., 

combining likelihood-ratio test p-value for association with treatment response and 

Pearson correlation p-value for correlation with pathway activity). Largest nodes 

correspond to readout genes, for each pathway. Gene colors depict differential expression 

(pink), differential methylation (grey), and both differential expression and methylation 

(yellow). 
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looked for genes which could serve as read-outs of pathway’s activity implicated in 

therapeutic response. Specifically, we looked for genes inside each pathway, which were: 

first, altered on transcriptomic and/or epigenomic levels; second, correlated with pathway 

activity levels (i.e., NESs in each patient); and finally, associated with carboplatin-

paclitaxel response (as described in the Methods section). This analysis identified seven 

read-out genes (i.e., FGFR1OP, CCL22, CCR9, LSM7, PDE7A, CCT4, and POLR2C), 

which: first, accurately reflected activity levels of their corresponding pathways; second, 

were associated with treatment response; and finally, achieved identical accuracy in 

predicting patients at risk of carboplatin-paclitaxel resistance (Figure 11, Table 2 , log-

rank p-value = 0.0043, hazard ratio = 6.28). We propose that these seven read-out genes 

can be used as markers of carboplatin-paclitaxel response and can be easily adopted in 

the clinic. 

3.7 Model generalizability 

In order to test the general applicability of pathCHEMO, we applied our approach 

across additional chemotherapy combinations and cancer types. In particular, we 

extended pathCHEMO to: cisplatin-vinorelbine response in lung adenocarcinoma, 

cisplatin-vinorelbine response in lung squamous cell carcinoma, and folinic acid, 

fluorouracil, and oxaliplatin (i.e., FOLFOX) response in colorectal adenocarcinoma 

(Supplementary Table 2-4). First, we applied our approach to additional chemo-

combination (i.e., cisplatin-vinorelbine) administered to lung adenocarcinoma (TCGA-

LUAD) patients (Supplementary Table 2), which identified a set of three molecular 

pathways as markers of cisplatin-vinorelbine resistance (GSEA NES = 2.51, p-value < 
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0.001) (Figure 12a) and their corresponding read-out genes (Table 2). These pathways 

included metabolism of nucleotides, actin Y, and ribosome pathways. We validated these 

predictions using the Zhu et al.17 cohort from the National Cancer Institute of Canada  

 

Figure 12. Identification of pathways of treatment resistance across chemo-regimens and 

cancer types. 

pathCHEMO discovery in (a) cisplatin-vinorelbine treated lung adenocarcinoma patients 

(TCGA-LUAD), (b) cisplatin-vinorelbine treated lung squamous cell carcinoma patients 

(TCGA-LUSC), and (c) FOLFOX (folinic acid, fluorouracil, and oxaliplatin) treated 

colorectal adenocarcinoma patients (TCGA-COAD). (top) Box and whisker plots 

depicting p-value cutoff discovery for query treatment response composite methylation 

pathway signature (x-axis) and NESs from the corresponding GSEA comparison between 

treatment response composite methylation and expression pathways signatures (y-axis). 

Arrows indicate optimal p-value thresholds, resulting in the most significant GSEA 

enrichment. (bottom) GSEAs comparing indicated treatment response composite 

expression pathway signatures (reference) and indicated treatment response composite 

methylation pathway signatures (query). Horizontal red bars indicate leading edge 

pathways altered on both transcriptomic and epigenomic levels. NES and p-value were 

estimated using 1,000 pathway permutations. 
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Clinical Trials Group (Supplementary Table 2), which contains LUAD tumor samples (n 

= 39) collected through surgery, for patients that received adjuvant cisplatin-vinorelbine, 

and demonstrated that three candidate pathways can predict poor and favorable cisplatin-

vinorelbine response in patients with LUAD (lung cancer-related death used as a clinical 

endpoint) using Kaplan-Meier survival analysis and Cox proportional hazards model 

(Figure 13a, log-rank p-value = 0.0048, hazard ratio = 3.64).  

 

Figure 13. pathCHEMO accurately identifies pathways of treatment resistance across 

chemo-regimens and cancer types. 

Treatment related Kaplan-Meier survival analysis in (a) cisplatin-vinorelbine treated lung 

adenocarcinoma (LUAD) patients in the Zhu et al. patient cohort (n = 39 biologically 

independent patient samples), (b) cisplatin-vinorelbine treated lung squamous cell 

carcinoma (LUSC) patients in the Zhu et al. patient cohort (n = 26 biologically 

independent patient samples), and (c) FOLFOX (folinic acid, fluorouracil, and 

oxaliplatin) treated colorectal adenocarcinoma (COAD) patients in the Marisa et al. 

patient cohort (n = 23 biologically independent patient samples), demonstrating ability of 

identified candidate pathways (for each analysis) to predict treatment response. Log rank 

p-value and number of patients in each group are indicated. 

Next, we applied our approach to cisplatin-vinorelbine treated lung squamous cell 

carcinoma (TCGA-LUSC) patients (Supplementary Table 3) and identified a set of six 
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molecular pathways (GSEA NES = 1.67, p-value < 0.001) (Figure 12b) including 

neuroactive ligand-receptor interaction, SLC-mediated transmembrane transport, 

transport of mature mRNA derived from an intron-containing transcript, cytokine-cytokine 

receptor interaction, DNA repair, and translation pathways and their corresponding read-

out genes (Table 2). We validated these predictions using the Zhu et al. patient cohort17 

(Supplementary Table 3), which contains LUSC primary tumor samples (n = 26) collected 

through surgery, for patients that received adjuvant cisplatin-vinorelbine treatment, and 

demonstrated that six candidate pathways can accurately predict poor and favorable 

cisplatin-vinorelbine response in patients with LUSC (lung cancer-related death used as 

clinical endpoint) (Figure 13b, log-rank p-value = 0.026, hazard ratio = 7.94).  

Lastly, we applied our approach to patients with colorectal adenocarcinoma (TCGA-

COAD) that received FOLFOX (i.e., folinic acid, fluorouracil, and oxaliplatin) 

combination (Supplementary Table 4), which identified five molecular pathways as 

markers of FOLFOX resistance (GSEA NES = 2.02, p-value < 0.001) (Supplementary 

Figure 8c). These pathways included processing of capped intron containing pre mRNA, S 

phase, elongation and processing of capped transcripts, metabolism of proteins, and 

calcium signaling pathways and their corresponding read-out genes (Table 2). We 

validated these predictions using an independent patient cohort, Marisa et al.63 

(Supplementary Table 4) from the French National Cartes d'Identité des Tumeurs (CIT), 

which contains COAD tumor samples (n = 23) collected through surgery followed by 

adjuvant treatment with FOLFOX monitored for further disease progression (i.e., defined 

as locoregional or distant recurrence) and demonstrated that five candidate pathways can 

predict poor and favorable FOLFOX response in patients with COAD (Figure 13c, log- 
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Table 2.  Identified candidate pathways (carboplatin-paclitaxel treated LUAD, cisplatin-

vinorelbine treated LUAD, cisplatin-vinorelbine treated LUSC, and FOLFOX (folinic 

acid, fluorouracil, oxaliplatin) treated COAD) readout, source, and contribution to cancer 

Cancer 

types & 

treatments 

Candidate pathways Readout Source 
Contribution to cancer 

 

LUAD_CP 

chemokine receptors 

bind chemokines 
CCL22  

promotes bone metastasis in 

lung cancer99 

mRNA splicing POLR2C  
therapeutic target in breast 

cancer100 

G alpha (s) signalling 

events 
PDE7A  

prognostic marker of lung 

cancer90 

intestinal immune 

network for IgA 

production 

CCR9  

prognostic marker of non-

small cell lung cancer101, 

etoposide resistance in 

prostate cancer102, cisplatin 

resistance in breast103 and 

ovarian104 cancers 

metabolism of 

proteins 
CCT4  

therapeutic target in lung 

cancer105 

RNA degradation LSM7  
diagnostic marker of thyroid 

cancer106 

cell cycle mitotic FGFR1OP  
prognostic biomarker and 

therapeutic target in lung 

cancer107 

LUAD_CV 

metabolism of 

nucleotides  
DTYMK  

therapeutic target for 

LKB1-deficient lung 

cancer108 

actin Y ARPC1A  
novel marker of pancreatic 

cancer109 

ribosome RPLP2  
prognostic marker in 

gynecologic tumor110 and in 

gastric cancer111 

LUSC 

cytokine-cytokine 

receptor interaction 
CCL11  

biomarker of ovarian 

cancer112 

neuroactive ligand-

receptor interaction 
GABRA1  

DNA methylation markers 

in colorectal cancer113 

DNA repair  ERCC1  
prognostic marker in 

prostate114, and bladder115 

cancer 

SLC-mediated 

transmembrane 

transport  

SLC44A4  
novel target for prostate 

and pancreatic cancer116 

translation RPL14  

molecular marker for 

esophageal squamous cell 

carcinoma117 
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Cancer 

types & 

treatments 

Candidate pathways Readout Source 
Contribution to cancer 

 

LUSC 

transport of mature 

mRNA derived from 

an intron-containing 

transcript 

U2AF1  
contributes to cancer 

progression118 

COAD 

elongation and 

processing of capped 

transcripts  

SF3B3   
therapeutic target for ER-

positive breast cancer119 

processing of capped 

intron containing pre 

mRNA  

PRPF6  
tumor marker in colon 

cancer120 

metabolism of protein PFDN1  

promotes epithelial-

mesenchymal transition 

(EMT) and lung cancer 

progression121 

S phase  CDC25B  
prognostic marker in non-

small cell lung cancer122 

calcium signaling  MYLK3  
biomarker in ovarian 

cancer123 

Notes: LUAD_CP = lung adenocarcinoma treated with carboplatin and paclitaxel; 

LUAD_CV = lung adenocarcinoma treated with cisplatin and vinorelbine; LUSC = lung 

squamous cell carcinoma treated with cisplatin and vinorelbine; COAD = colon 

adenocarcinoma treated with FOLFOX (folinic acid, fluorouracil, oxaliplatin); Source 

(fourth column): readout in each pathway are represented as differentially expressed 

(pink), methylated (grey) and both differentially expressed and methylated (yellow).  
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rank p-value = 0.01, hazard ratio = 6.21).  

Interestingly, when evaluating overlaps between pathways across different chemo-

treatments and cancers, we have noticed that even though some biological pathways might 

be overlapping, their overlapping genes exhibit totally different behaviors (e.g., are over-

expressed for one chemo-regimen and are under-expressed for another etc.), thus 

demonstrating drastically different patterns of pathway dysregulations inherent for each 

specific chemo-regiment and for each cancer type.  

Furthermore, we have identified readout genes and clinical utility for these 

identified molecular pathways, which demonstrated identical accuracy in predicting 

patients at risk of treatment resistance in lung adenocarcinoma (Table 2, log-rank p-value 

= 0.0027, hazard ratio = 4.64), lung squamous cell carcinoma (Table 2, log-rank p-value = 

0.0004 , hazard ratio = 17.90), and colon adenocarcinoma (Table 2, log-rank p-value = 

0.0039, hazard ratio = 6.251). 

Taken together, these analyses demonstrate the general applicability of our 

method across various chemotherapy-regimens and cancer types and builds a foundation 

for our long-term goal to enhance personalized therapeutic advice and improve patient 

care and clinical decision support at large. 
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CHAPTER IV 

4 DISCUSSION 

We have introduced a systematic generalizable computational approach 

pathCHEMO to uncover molecular pathways that govern complex transcriptomic and 

epigenomic mechanisms implicated in chemotherapy response. Firstly, the distinguishing 

feature of pathCHEMO is in the identification of molecular pathways altered on both 

transcriptomic and epigenomic levels, which increases the likelihood of elucidating 

functionally relevant alterations. Secondly, the identified pathways constitute not only 

molecular markers for predictive analysis but also valuable candidates for therapeutic 

targeting to preclude or overcome resistance. Thirdly, our approach is generalizable and 

has been successfully applied to additional chemotherapy-regimens and cancer types, 

where it demonstrated the high accuracy of its predictions. Fourthly, pathCHEMO 

predicts patients at risk of developing resistance to specific chemotherapy, even prior to 

therapy administration, which builds a platform for optimal treatment planning and 

personalized therapeutic advice. Finally, to the best of our knowledge, pathCHEMO is 

the first computational predictive effort of its kind in chemotherapy resistance space, with 

near-term potential to improve informed clinical decision-making and cancer 

management.  
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We used pathCHEMO to elucidate mechanisms of resistance to carboplatin–

paclitaxel chemotherapy in lung adenocarcinoma and identified seven molecular 

pathways implicated in resistance, including chemokine receptors bind chemokines, 

mRNA splicing, G alpha (s) signalling events, intestinal immune network for IgA 

production, metabolism of proteins, RNA degradation, and cell cycle mitotic pathways. 

Interestingly, paclitaxel resistance has been shown to be modulated by Hippo signaling 

pathway in breast cancer124, which is directly activated by our candidate G alpha (s) 

signalling events pathway125. Furthermore, chemokine receptors bind chemokines 

pathway is directly associated126 with cytokine and inflammatory response pathway, 

which modulates carboplatin resistance in ovarian cancer127. Finally, cell cycle mitotic 

pathway has been shown to be directly affected by paclitaxel128 and carboplatin-

paclitaxel129,130 treatments in ovarian cancer. Thus, primary (i.e., before therapy 

administration) dysregulation in these pathways might affect drug mechanism of action 

and can be utilized to identify patients at risk of resistance. 

Interestingly, one of the identified pathways, G alpha (s) signalling events 

pathway, is involved in mediation of extracellular signaling and activation of Protein 

Kinase A (PKA), a known player in cancer cell invasion and metastasis. Recently, PKA 

has been shown to play a central role in resistance to tamoxifen in breast cancer131, and 

disease progression in prostate cancer132. PKA has been known to contribute to lung 

cancer tumorigenesis by interacting with RAS oncogenic pathway and promoting 

epithelial-mesenchymal transition (EMT) during hypoxia. Several recent studies have 

confirmed the role of EMT as a key player in acquired (i.e., caused by the treatment) 

resistance to chemotherapy including acquired resistance to gemcitabine in pancreatic 
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cancer133, to paclitaxel in ovarian cancer134, and to gefitinib in lung cancer135, 

emphasizing importance of further investigating EMT as a mechanism of primary 

resistance to chemotherapy in lung adenocarcinoma.  

4.1 Limitations and future directions 

In addition to EMT, the development of neuroendocrine phenotype has been 

shown to be a major emerging player in acquired therapeutic resistance in lung 

cancer136,137. Recent studies have demonstrated that 50% of patients with metastatic lung 

adenocarcinoma, which were treated with erlotinib and acquired resistance to it, had a 

histological transformation to large cell neuroendocrine carcinoma (LCNEC), leading to 

increased metastatic burden and lethality138,139. Therefore, further investigation of the role 

of EMT and neuroendocrine markers and their interplay with transcriptomic and 

epigenomic molecular alterations are necessary for comprehensive understanding of 

complex mechanisms involved in resistance to chemotherapy and will contribute a 

central focus of our subsequent studies. 
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CHAPTER V 

5 CONCLUSIONS 

In summary, we have introduced a generalized applicable integrative 

transcriptomic and epigenomic approach that discovered molecular pathways implicated 

in chemotherapy resistance in lung adenocarcinoma. We recommend that these molecular 

pathways can (i) used as a predictive marker to accurately predict response to 

chemotherapy regimens across independent patient cohorts; (ii) prioritize patients who 

would benefit from chemotherapy regimens and patients at risk of resistance that should 

be offered personalized therapeutic advice for alternative regimen. Furthermore, we 

propose that such chemo-resistance biological pathways may serve as predictive markers 

to infer the potential efficacy of drug treatments in patients. Additionally, pathCHEMO 

should be applicable for identifying molecular pathway that point toward treatment 

response and improve personalized therapeutic advice in cancer and other diseases.  
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Appendix A 

Supplementary Materials 
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Supplementary Figure  1. Comparative testing of treatment response signatures 

demonstrates their robustness. 

GSEAs comparing (a) treatment response composite expression pathway signature 

(reference) and treatment response composite methylation pathway signature constructed 

considering all CpG DNA methylation sites (query), (b) treatment response composite 

expression pathway signature (reference) and treatment response composite methylation 

pathway signature(query), where methylation signature was defined using fold change, 

and (c) treatment response composite expression pathway signature (reference) and 

treatment response composite methylation pathway signature (query), where both 

signatures were defined using fold change. Horizontal red bars indicate leading edge 

pathways altered on both transcriptomic and epigenomic levels. NES and p-value were 

estimated using 1,000 pathway permutations. 
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Supplementary Figure  2. Schematic representation of pathCHEMO 

(a) schematic representation of molecular profiles (i.e., gene expression) for poor 

response and favorable response patients group (top) and by comparing this molecular 

profiles we define reference signature of treatment response which is a list of genes 

ranked by their differential expression (bottom) from most overexpressed (bottom left, 

red) to most under-expressed (bottom right, blue). (b) Schematic representation of 

pathway genes; (c) and how pathway genes map on the reference signature. In the 

majority of cases, we see those pathway genes fall all over the signature, but our main 

goal is to look for pathway that will map (d) over-expressed part of the signature; (e) 

under-expressed part of the signature and (f) both over and under expressed part of the 

signature; (g) Same logic applied to methylation, over-methylation, under-methylation 

and both over and under methylation. 
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Supplementary Figure  3. Schematic representation of integrative multi-omic pathway 

enrichment analysis. 
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Supplementary Figure  4. Schematic representation of single sample pathway 

enrichment analysis. 
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Supplementary Figure  5.  Transcriptomic and epigenomic alterations in selected 

candidate molecular pathways of carboplatin-paclitaxel. 

Representative molecular pathways altered on both transcriptomic and epigenomic levels. 

Genes from the leading edge in each pathway are represented as differentially expressed 

(pink), methylated (grey) and both differentially expressed and methylated (yellow). 

Width of each connecting line is proportional to the extent of differential expression and 

differential methylation. Pathways are depicting as follows: (i) intestinal immune network 

for IgA production pathway (20 differentially expressed genes, 9 differentially 

methylated genes, and 6 differentially expressed and methylated genes), (ii) metabolism 

of proteins pathway (47 differentially expressed genes, 53 differentially methylated 

genes, and 62 differentially expressed and methylated genes), (iii) RNA degradation 

pathway (7 differentially expressed genes, 21 differentially methylated genes, and 13 

differentially expressed and methylated genes), and (iv) cell cycle mitotic pathway (75 

differentially expressed genes, 64 differentially methylated genes, and 100 differentially 

expressed and methylated genes). Pathways were visualized using circlize140 package in 

R. 
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Supplementary Table 1. Clinical and pathological features of lung adenocarcinoma 

patient cohorts treated with carboplatin-paclitaxel, used for discovery, validation, and 

negative controls. 

  Signature discovery Validation  Negative controls 

Description TCGA 
Tang et al. 

(treated) 

Tang et al.  

(not treated) 

Der et al.  

(not treated) 

Accession # TCGA-LUAD64 GSE4212718 GSE4212718 GSE5008166 

Platform 

Illumina HiSeq 2000 

(mRNA expression) 
Illumina 

HumanWG-6 

v3.0 

expression 

beadchip 

Illumina 

HumanWG-

6 v3.0 

expression 

beadchip 

Affymetrix 

Human 

Genome U133 

Plus 2.0 Array 

Illumina Infinium 

Human Methylation 

(HM450) array 

(DNA methylation) 

Patients 14 39 94 127 

Sample collection surgery surgery surgery surgery 

Histological subtype     

NA 

NA 

NA 

  

NA 

NA 

NA 

  

 NA 

NA 

NA 

mixed 1  

acinar 1 

NOS 12 

Anatomic Site     

NA 

NA 

NA 

NA 

NA 

  

NA 

NA 

NA 

NA 

NA 

  

NA 

NA 

NA 

NA 

NA 

Left-Upper 5 

Left-Lower 2 

Right-Lower  1 

Right-Middle 2 

Right-Upper 4 

Gender         

Female 9 16 49 62 

Male 5 23 45 65 

Tumor Stage          

IA  NA 1 31 36 

IB 1  21 36 56 

IIA 1 1 5 7 

IIB 4 5 11 28 

IIIA 4 3 4  NA 

IIIB  1 8 5  NA 

IV 1 NA 1  NA 

NA 2 NA 1  NA 

Smoking Status     

NA 

NA 

NA 

NA 

  

NA 

NA 

NA 

NA 

  

NA 

NA 

NA 

NA 

1 2 

2 4 

3 3 

4 5 

Notes: NA = Not available, NOS = Not otherwise specified. Smoking status: 1 = lifelong non-

smoker (<100 cigarettes smoked in Lifetime), 2 = current smoker (includes daily smokers and 

non-daily smokers (or occasional smokers), 3 = current reformed smoker for > 15 years, 4 = 

current reformed smoker for ≤ 15 years. 
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Supplementary Table 2. Clinical and pathological features of lung adenocarcinoma 

patient cohorts treated with cisplatin-vinorelbine, used for discovery and validation  

  Signature discovery  Validation  

Description TCGA  Zhu et al. 

Accession # TCGA-LUAD64 GSE1481417 

Platform 

Illumina HiSeq 2000 (mRNA expression) Affymetrix 

Human Genome 

U133A 
Illumina Infinium Human Methylation 

(HM450) array (DNA methylation) 

Patients 8 39 

Sample collection surgery surgery 

Histological subtype     

mixed 6  NA 

acinar 1 9 

papillary NA 5 

mucinous NA 1 

lepidic NA 1 

solid NA 9 

NOS 1 14 

Anatomic Site     

NA 

NA 

NA 

NA 

NA 

Left-Upper 2 

Left-Lower NA 

Right-Lower 2 

Right-Middle 1 

Right-Upper 3 

Gender     

Female 5 20 

Male 3 19 

Tumor Stage 

(Pathological) 
    

IA  NA  8 

IB 1 14 

II  NA NA 

IIA 3 11 

IIB 1 6 

IIIA 2  NA 

IIIB  NA  NA 

IV 1  NA 

Smoking Status     

NA 

NA 

NA 

NA 

1 1 

2 NA 

3 4 

4 3 

Notes: NA = Not available, NOS = Not otherwise specified. 

Smoking status: 1 = lifelong non-smoker (<100 cigarettes smoked in Lifetime), 2 = current 

smoker (includes daily smokers and non-daily smokers (or occasional smokers), 3 = current 

reformed smoker for > 15 years, 4 = current reformed smoker for ≤ 15 years. 
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Supplementary Table 3. Clinical and pathological features of lung squamous cell 

carcinoma patient cohorts treated with cisplatin-vinorelbine, used for discovery and 

validation. 

  Signature discovery  Validation  

Description TCGA  Zhu et al.  

Accession # TCGA-LUSC141 GSE1481417 

Platform 

Illumina HiSeq 2000 (mRNA expression) 
Affymetrix Human 

Genome U133A 
Illumina Infinium Human Methylation 

(HM450) array (DNA methylation) 

Patients 8 26 

Sample collection surgery surgery 

Histological subtype     

NOS 8 26 

Anatomic Site     

NA 

NA 

NA 

NA 

NA 

Left-Upper 2 

Left-Lower NA 

Right-Lower 4 

Right-Middle 1 

Right-Upper 1 

Gender     

Female 1 3 

Male 7 23 

Tumor Stage 

(Pathological) 
    

I  NA 13 

IA  NA  NA 

IB 2  NA 

II  NA 13 

IIA 1  NA 

IIB 4  NA 

IIIA 1  NA 

IIIB NA  NA 

IV NA  NA 

Smoking Status     

NA 

NA 

NA 

NA 

1  NA 

2 NA 

3 2 

4 6 

Notes: NA = Not available, NOS = Not otherwise specified. 

Smoking status: 1 = lifelong non-smoker (<100 cigarettes smoked in Lifetime), 2 = current 

smoker (includes daily smokers and non-daily smokers (or occasional smokers), 3 = current 

reformed smoker for > 15 years, 4 = current reformed smoker for ≤ 15 years. 
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Supplementary Table 4. Clinical and pathological features of colorectal adenocarcinoma 

patient cohorts treated with FOLFOX (folinic acid, fluorouracil, oxaliplatin), used for 

discovery and validation. 

  Signature discovery  Validation  

Description TCGA Marisa et al. 

Accession # TCGA-COAD142 GSE3958263 

Platform 

Illumina HiSeq 2000 (mRNA expression) Affymetrix Human 

Genome U133 Plus 

2.0 Array 
Illumina Infinium Human Methylation 

(HM450) array (DNA methylation) 

Patients 8 23 

Sample collection surgery surgery 

Histological subtype     

 NA 

 NA 

 NA 

 NA 

 NA 

Ascending Colon 1 

Cecum 2 

Descending Colon 1 

Sigmoid Colon 3 

NA 1 

Gender     

Female 4 8 

Male 4 15 

Tumor Stage 

(Pathological) 
    

I NA NA 

IA NA NA 

IB NA NA 

II NA NA 

IIA 1 2 

IIB NA 1 

III 1 NA 

IIIA 1 3 

IIIB 4 3 

IIIC 1 3 

IV NA 11 

Notes: NA = Not available. 

 

 

 

  



 

62 
 

References 

1. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA: a cancer journal for 

clinicians. Jan 2017;67(1):7-30. 

2. Hanna JM, Onaitis MW. Cell of origin of lung cancer. Journal of Carcinogenesis. 

2013;12. 

3. Byers LA, Rudin CM. Small cell lung cancer: where do we go from here? 

Cancer. Mar 1 2015;121(5):664-672. 

4. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung 

cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clinic 

proceedings. May 2008;83(5):584-594. 

5. Travis WD, Brambilla E, Noguchi M, et al. International association for the study 

of lung cancer/american thoracic society/european respiratory society 

international multidisciplinary classification of lung adenocarcinoma. Journal of 

thoracic oncology : official publication of the International Association for the 

Study of Lung Cancer. Feb 2011;6(2):244-285. 

6. Blum RH. Adjuvant Chemotherapy for Lung Cancer — A New Standard of Care. 

New England Journal of Medicine. 2004;350(4):404-405. 

7. Arriagada R, Bergman B, Dunant A, Le Chevalier T, Pignon JP, Vansteenkiste J. 

Cisplatin-based adjuvant chemotherapy in patients with completely resected non-

small-cell lung cancer. The New England journal of medicine. Jan 22 

2004;350(4):351-360. 

8. Douillard JY, Rosell R, De Lena M, et al. Adjuvant vinorelbine plus cisplatin 

versus observation in patients with completely resected stage IB-IIIA non-small-

cell lung cancer (Adjuvant Navelbine International Trialist Association 

[ANITA]): a randomised controlled trial. The Lancet. Oncology. Sep 

2006;7(9):719-727. 



 

63 
 

9. Rapp E, Pater JL, Willan A, et al. Chemotherapy can prolong survival in patients 

with advanced non-small-cell lung cancer--report of a Canadian multicenter 

randomized trial. Journal of clinical oncology : official journal of the American 

Society of Clinical Oncology. Apr 1988;6(4):633-641. 

10. Anderson H, Hopwood P, Stephens RJ, et al. Gemcitabine plus best supportive 

care (BSC) vs BSC in inoperable non-small cell lung cancer--a randomized trial 

with quality of life as the primary outcome. UK NSCLC Gemcitabine Group. 

Non-Small Cell Lung Cancer. British journal of cancer. Aug 2000;83(4):447-453. 

11. Lilenbaum R, Villaflor VM, Langer C, et al. Single-agent versus combination 

chemotherapy in patients with advanced non-small cell lung cancer and a 

performance status of 2: prognostic factors and treatment selection based on two 

large randomized clinical trials. Journal of thoracic oncology : official 

publication of the International Association for the Study of Lung Cancer. Jul 

2009;4(7):869-874. 

12. Depierre A, Chastang C, Quoix E, et al. Vinorelbine versus vinorelbine plus 

cisplatin in advanced non-small cell lung cancer: a randomized trial. Annals of 

oncology : official journal of the European Society for Medical Oncology. Jan 

1994;5(1):37-42. 

13. Merk J, Rolff J, Dorn C, Leschber G, Fichtner I. Chemoresistance in non-small-

cell lung cancer: can multidrug resistance markers predict the response of 

xenograft lung cancer models to chemotherapy? European Journal of Cardio-

Thoracic Surgery. 2011;40(1):e29-e33. 

14. Scagliotti GV, Parikh P, von Pawel J, et al. Phase III study comparing cisplatin 

plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients 

with advanced-stage non-small-cell lung cancer. Journal of clinical oncology : 

official journal of the American Society of Clinical Oncology. Jul 20 

2008;26(21):3543-3551. 



 

64 
 

15. Pfister DG, Johnson DH, Azzoli CG, et al. American Society of Clinical 

Oncology treatment of unresectable non-small-cell lung cancer guideline: update 

2003. Journal of clinical oncology : official journal of the American Society of 

Clinical Oncology. Jan 15 2004;22(2):330-353. 

16. Lilenbaum RC, Herndon JE, 2nd, List MA, et al. Single-agent versus combination 

chemotherapy in advanced non-small-cell lung cancer: the cancer and leukemia 

group B (study 9730). Journal of clinical oncology : official journal of the 

American Society of Clinical Oncology. Jan 1 2005;23(1):190-196. 

17. Zhu CQ, Ding K, Strumpf D, et al. Prognostic and predictive gene signature for 

adjuvant chemotherapy in resected non-small-cell lung cancer. Journal of clinical 

oncology : official journal of the American Society of Clinical Oncology. Oct 10 

2010;28(29):4417-4424. 

18. Tang H, Xiao G, Behrens C, et al. A 12-gene set predicts survival benefits from 

adjuvant chemotherapy in non-small cell lung cancer patients. Clinical cancer 

research : an official journal of the American Association for Cancer Research. 

Mar 15 2013;19(6):1577-1586. 

19. Reck M, Rodriguez-Abreu D, Robinson AG, et al. Pembrolizumab versus 

Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. The New 

England journal of medicine. Nov 10 2016;375(19):1823-1833. 

20. Galluzzi L, Senovilla L, Vitale I, et al. Molecular mechanisms of cisplatin 

resistance. Oncogene. Apr 12 2012;31(15):1869-1883. 

21. Olaussen KA, Dunant A, Fouret P, et al. DNA repair by ERCC1 in non-small-cell 

lung cancer and cisplatin-based adjuvant chemotherapy. The New England 

journal of medicine. Sep 7 2006;355(10):983-991. 

22. Ikuta K, Takemura K, Kihara M, et al. Defects in apoptotic signal transduction in 

cisplatin-resistant non-small cell lung cancer cells. Oncology reports. Jun 

2005;13(6):1229-1234. 



 

65 
 

23. Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics 

and chemotherapy. Cell. Jan 25 2002;108(2):153-164. 

24. Dive C, Hickman JA. Drug-target interactions: only the first step in the 

commitment to a programmed cell death? British journal of cancer. Jul 

1991;64(1):192-196. 

25. Rusch V, Klimstra D, Venkatraman E, et al. Aberrant p53 expression predicts 

clinical resistance to cisplatin-based chemotherapy in locally advanced non-small 

cell lung cancer. Cancer research. Nov 1 1995;55(21):5038-5042. 

26. Lin X, Howell SB. DNA mismatch repair and p53 function are major 

determinants of the rate of development of cisplatin resistance. Molecular Cancer 

Therapeutics. 2006;5(5):1239-1247. 

27. Berger W, Setinek U, Hollaus P, et al. Multidrug resistance markers P-

glycoprotein, multidrug resistance protein 1, and lung resistance protein in non-

small cell lung cancer: prognostic implications. Journal of cancer research and 

clinical oncology. Jun 2005;131(6):355-363. 

28. Young LC, Campling BG, Cole SP, Deeley RG, Gerlach JH. Multidrug resistance 

proteins MRP3, MRP1, and MRP2 in lung cancer: correlation of protein levels 

with drug response and messenger RNA levels. Clinical cancer research : an 

official journal of the American Association for Cancer Research. Jun 

2001;7(6):1798-1804. 

29. Miyara H, Hida T, Nishida K, et al. Modification of Chemo-radiosensitivity of a 

Human Lung Cancer Cell Line by Introduction of the Glutathione S-transferase φ 

Gene. Japanese journal of clinical oncology. 1996;26(1):1-5. 

30. Kasahara K, Fujiwara Y, Nishio K, et al. Metallothionein content correlates with 

the sensitivity of human small cell lung cancer cell lines to cisplatin. Cancer 

research. Jun 15 1991;51(12):3237-3242. 



 

66 
 

31. Lewis AD, Hayes JD, Wolf CR. Glutathione and glutathione-dependent enzymes 

in ovarian adenocarcinoma cell lines derived from a patient before and after the 

onset of drug resistance: intrinsic differences and cell cycle effects. 

Carcinogenesis. 1988;9(7):1283-1287. 

32. Godwin AK, Meister A, O'Dwyer PJ, Huang CS, Hamilton TC, Anderson ME. 

High resistance to cisplatin in human ovarian cancer cell lines is associated with 

marked increase of glutathione synthesis. Proceedings of the National Academy of 

Sciences. 1992;89(7):3070-3074. 

33. Kobayashi S, Boggon TJ, Dayaram T, et al. EGFR mutation and resistance of 

non-small-cell lung cancer to gefitinib. The New England journal of medicine. 

Feb 24 2005;352(8):786-792. 

34. Kuroda H, Takeno M, Murakami S, Miyazawa N, Kaneko T, Ishigatsubo Y. 

Inhibition of heme oxygenase-1 with an epidermal growth factor receptor 

inhibitor and cisplatin decreases proliferation of lung cancer A549 cells. Lung 

Cancer. 2010;67(1):31-36. 

35. Langevin SM, Kratzke RA, Kelsey KT. Epigenetics of Lung Cancer. 

Translational research : the journal of laboratory and clinical medicine. Jan 

2015;165(1):74-90. 

36. Rodenhuis S, Slebos RJ, Boot AJ, et al. Incidence and possible clinical 

significance of K-ras oncogene activation in adenocarcinoma of the human lung. 

Cancer research. Oct 15 1988;48(20):5738-5741. 

37. Stephens P, Hunter C, Bignell G, et al. Lung cancer: intragenic ERBB2 kinase 

mutations in tumours. Nature. Sep 30 2004;431(7008):525-526. 

38. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human 

cancer. Nature. Jun 27 2002;417(6892):949-954. 



 

67 
 

39. Takahashi T, Nau MM, Chiba I, et al. p53: a frequent target for genetic 

abnormalities in lung cancer. Science (New York, N.Y.). Oct 27 

1989;246(4929):491-494. 

40. Forgacs E, Biesterveld EJ, Sekido Y, et al. Mutation analysis of the 

PTEN/MMAC1 gene in lung cancer. Oncogene. Sep 24 1998;17(12):1557-1565. 

41. Kong-Beltran M, Seshagiri S, Zha J, et al. Somatic mutations lead to an 

oncogenic deletion of met in lung cancer. Cancer research. Jan 01 

2006;66(1):283-289. 

42. Carpten JD, Faber AL, Horn C, et al. A transforming mutation in the pleckstrin 

homology domain of AKT1 in cancer. Nature. Jul 26 2007;448(7152):439-444. 

43. Packenham JP, Taylor JA, White CM, Anna CH, Barrett JC, Devereux TR. 

Homozygous deletions at chromosome 9p21 and mutation analysis of p16 and 

p15 in microdissected primary non-small cell lung cancers. Clinical cancer 

research : an official journal of the American Association for Cancer Research. 

Jul 1995;1(7):687-690. 

44. Sanchez-Cespedes M, Parrella P, Esteller M, et al. Inactivation of LKB1/STK11 

is a common event in adenocarcinomas of the lung. Cancer research. Jul 01 

2002;62(13):3659-3662. 

45. Pao W, Wang TY, Riely GJ, et al. KRAS mutations and primary resistance of 

lung adenocarcinomas to gefitinib or erlotinib. PLoS medicine. Jan 2005;2(1):e17. 

46. Khoo C, Rogers TM, Fellowes A, Bell A, Fox S. Molecular methods for somatic 

mutation testing in lung adenocarcinoma: EGFR and beyond. Translational Lung 

Cancer Research. Apr 2015;4(2):126-141. 

47. Yang X, Uziely B, Groshen S, et al. MDR1 gene expression in primary and 

advanced breast cancer. Laboratory investigation; a journal of technical methods 

and pathology. Mar 1999;79(3):271-280. 



 

68 
 

48. Deng HB, Parekh HK, Chow K-C, Simpkins H. Increased expression of 

dihydrodiol dehydrogenase induces resistance to cisplatin in human ovarian 

carcinoma cells. Journal of Biological Chemistry. 2002;277(17):15035-15043. 

49. Petty R, Evans A, Duncan I, Kurbacher C, Cree I. Drug resistance in ovarian 

cancer - the role of p53. Pathology oncology research : POR. 1998;4(2):97-102. 

50. Christmann M, Pick M, Lage H, Schadendorf D, Kaina B. Acquired resistance of 

melanoma cells to the antineoplastic agent fotemustine is caused by reactivation 

of the DNA repair gene MGMT. International journal of cancer. Apr 01 

2001;92(1):123-129. 

51. Tao L, Huang G, Chen Y, Chen L. DNA methylation of DKK3 modulates 

docetaxel chemoresistance in human nonsmall cell lung cancer cell. Cancer 

biotherapy & radiopharmaceuticals. Mar 2015;30(2):100-106. 

52. Hu H, Li S, Cui X, et al. The overexpression of hypomethylated miR-663 induces 

chemotherapy resistance in human breast cancer cells by targeting heparin sulfate 

proteoglycan 2 (HSPG2). The Journal of biological chemistry. Apr 19 

2013;288(16):10973-10985. 

53. Lokk K, Vooder T, Kolde R, et al. Methylation Markers of Early-Stage Non-

Small Cell Lung Cancer. PLOS ONE. 2012;7(6):e39813. 

54. Lockwood WW, Thu KL, Lin L, et al. Integrative Genomics Identified RFC3 as 

an Amplified Candidate Oncogene in Esophageal Adenocarcinoma. Clinical 

cancer research : an official journal of the American Association for Cancer 

Research. Apr 1 2012;18(7):1936-1946. 

55. Rhee J-K, Kim K, Chae H, et al. Integrated analysis of genome-wide DNA 

methylation and gene expression profiles in molecular subtypes of breast cancer. 

Nucleic Acids Research. 2013;41(18):8464-8474. 



 

69 
 

56. Panja S, Hayati S, Epsi NJ, Parrott JS, Mitrofanova A. Integrative (epi) Genomic 

Analysis to Predict Response to Androgen-Deprivation Therapy in Prostate 

Cancer. EBioMedicine. 2018/04/12/ 2018. 

57. Figueroa ME, Reimers M, Thompson RF, et al. An Integrative Genomic and 

Epigenomic Approach for the Study of Transcriptional Regulation. PLOS ONE. 

2008;3(3):e1882. 

58. Selamat SA, Chung BS, Girard L, et al. Genome-scale analysis of DNA 

methylation in lung adenocarcinoma and integration with mRNA expression. 

Genome research. Jul 2012;22(7):1197-1211. 

59. Ma X, Liu Z, Zhang Z, Huang X, Tang W. Multiple network algorithm for 

epigenetic modules via the integration of genome-wide DNA methylation and 

gene expression data. BMC Bioinformatics. 2017/01/31 2017;18(1):72. 

60. TCGA. Comprehensive molecular profiling of lung adenocarcinoma. Nature. Jul 

31 2014;511(7511):543-550. 

61. Yu K, Sang QA, Lung PY, et al. Personalized chemotherapy selection for breast 

cancer using gene expression profiles. Scientific reports. Mar 3 2017;7:43294. 

62. Zhong Q, Fang J, Huang Z, et al. A response prediction model for taxane, 

cisplatin, and 5-fluorouracil chemotherapy in hypopharyngeal carcinoma. 

Scientific reports. Aug 23 2018;8(1):12675. 

63. Marisa L, de Reyniès A, Duval A, et al. Gene expression classification of colon 

cancer into molecular subtypes: characterization, validation, and prognostic value. 

PLoS medicine. May 2013;10(5):e1001453. 

64. Comprehensive molecular profiling of lung adenocarcinoma. Nature. Jul 31 

2014;511(7511):543-550. 

65. Der SD, Sykes J, Pintilie M, et al. Validation of a histology-independent 

prognostic gene signature for early-stage, non-small-cell lung cancer including 



 

70 
 

stage IA patients. Journal of thoracic oncology : official publication of the 

International Association for the Study of Lung Cancer. Jan 2014;9(1):59-64. 

66. Love MI, Huber W, Anders S. Moderated estimation of fold change and 

dispersion for RNA-seq data with DESeq2. Genome Biology. 2014;15(12):550. 

67. Du P, Zhang X, Huang C-C, et al. Comparison of Beta-value and M-value 

methods for quantifying methylation levels by microarray analysis. BMC 

Bioinformatics. 2010// 2010;11(1):587. 

68. Du P, Kibbe WA, Lin SM. lumi: a pipeline for processing Illumina microarray. 

Bioinformatics (Oxford, England). Jul 1 2008;24(13):1547-1548. 

69. Welch BL. The generalisation of student's problems when several different 

population variances are involved. Biometrika. 1947;34(1-2):28-35. 

70. Team RC. R: A language and environment for statistical computing. Vienna, 

Austria: R Foundation for Statistical Computing; 2016. 2017. 

71. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, 

Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics 

(Oxford, England). Jun 15 2011;27(12):1739-1740. 

72. Fabregat A, Sidiropoulos K, Garapati P, et al. The Reactome pathway 

Knowledgebase. Nucleic Acids Res. Jan 4 2016;44(D1):D481-487. 

73. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto 

Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999;27(1):29-34. 

74. Nishimura D. BioCarta. Biotech Software & Internet Report: The Computer 

Software Journal for Scient. 2001;2(3):117-120. 

75. Subramanian A, Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, 

M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., Mesirov, J. P. 



 

71 
 

Gene set enrichment analysis: a knowledge-based approach for interpreting 

genome-wide expression profiles. 2005(102):15545-15550. 

76. Dutta A, Panja S, Virk RK, et al. Co-clinical Analysis of a Genetically 

Engineered Mouse Model and Human Prostate Cancer Reveals Significance of 

NKX3.1 Expression for Response to 5alpha-reductase Inhibition. European 

urology. Oct 2017;72(4):499-506. 

77. Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ 

to analyze and compare ROC curves. BMC bioinformatics. 2011;12(1):77. 

78. Wickham H. ggplot2: elegant graphics for data analysis. J Stat Softw. 

2010;35(1):65-88. 

79. Maaten Lvd, Hinton G. Visualizing data using t-SNE. Journal of Machine 

Learning Research. 2008;9(Nov):2579-2605. 

80. Maaten LVD. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. 

Res. 2014;15(1):3221-3245. 

81. Kullback S, Leibler RA. On Information and Sufficiency. Ann. Math. Statist. 

1951/03 1951;22(1):79-86. 

82. Kaplan EL, Meier P. Nonparametric Estimation from Incomplete Observations. 

Journal of the American Statistical Association. 1958/06/01 1958;53(282):457-

481. 

83. Cox DR. Regression Models and Life-Tables. Journal of the Royal Statistical 

Society. Series B (Methodological). 1972;34(2):187-220. 

84. Therneau T. A package for survival analysis in S. R package version 2.38. 

Retrived from http://CRAN. R-project. org/package= survival. 2015. 

85. Kassambara A. Kosinski M. survminer: drawing survival curves using ‘ggplot2’. 

R package version 0.2. 4. 2016. 

http://cran/


 

72 
 

86. Stone M. Cross-validatory choice and assessment of statistical predictions. 

Journal of the royal statistical society. Series B (Methodological). 1974:111-147. 

87. Chambers J, Hastie T, Pregibon D. Statistical Models in S. 1990; Heidelberg. 

88. Schröder MS, Culhane AC, Quackenbush J, Haibe-Kains B. survcomp: an 

R/Bioconductor package for performance assessment and comparison of survival 

models. Bioinformatics (Oxford, England). Nov 15 2011;27(22):3206-3208. 

89. Larsen JE, Pavey SJ, Passmore LH, Bowman RV, Hayward NK, Fong KM. Gene 

expression signature predicts recurrence in lung adenocarcinoma. Clinical cancer 

research : an official journal of the American Association for Cancer Research. 

May 15 2007;13(10):2946-2954. 

90. Beer DG, Kardia SL, Huang CC, et al. Gene-expression profiles predict survival 

of patients with lung adenocarcinoma. Nature medicine. Aug 2002;8(8):816-824. 

91. Oliveira NL, Pereira CAdB, Diniz MA, Polpo A. A discussion on significance 

indices for contingency tables under small sample sizes. PLOS ONE. 

2018;13(8):e0199102. 

92. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for 

integrated models of biomolecular interaction networks. Genome research. Nov 

2003;13(11):2498-2504. 

93. Zou M, Toivanen R, Mitrofanova A, et al. Transdifferentiation as a Mechanism of 

Treatment Resistance in a Mouse Model of Castration-Resistant Prostate Cancer. 

Cancer discovery. Jul 2017;7(7):736-749. 

94. Unnikrishnan A, Papaemmanuil E, Beck D, et al. Integrative Genomics Identifies 

the Molecular Basis of Resistance to Azacitidine Therapy in Myelodysplastic 

Syndromes. Cell reports. Jul 18 2017;20(3):572-585. 



 

73 
 

95. Jiang P, Sellers WR, Liu XS. Big Data Approaches for Modeling Response and 

Resistance to Cancer Drugs. Annual Review of Biomedical Data Science. 

2018;1(1):1-27. 

96. Metz CE. Basic principles of ROC analysis. Seminars in nuclear medicine. Oct 

1978;8(4):283-298. 

97. Zhang XY, Ehrlich KC, Wang RY, Ehrlich M. Effect of site-specific DNA 

methylation and mutagenesis on recognition by methylated DNA-binding protein 

from human placenta. Nucleic Acids Res. Nov 11 1986;14(21):8387-8397. 

98. Laurent L, Wong E, Li G, et al. Dynamic changes in the human methylome 

during differentiation. Genome research. Mar 2010;20(3):320-331. 

99. Nakamura ES, Koizumi K, Kobayashi M, et al. RANKL-induced 

CCL22/macrophage-derived chemokine produced from osteoclasts potentially 

promotes the bone metastasis of lung cancer expressing its receptor CCR4. 

Clinical & experimental metastasis. 2006;23(1):9-18. 

100. Grinchuk OV, Motakis E, Yenamandra SP, et al. Sense-antisense gene-pairs in 

breast cancer and associated pathological pathways. Oncotarget. Dec 8 

2015;6(39):42197-42221. 

101. Gupta P, Sharma PK, Mir H, et al. CCR9/CCL25 expression in non-small cell 

lung cancer correlates with aggressive disease and mediates key steps of 

metastasis. Oncotarget. Oct 30 2014;5(20):10170-10179. 

102. Sharma PK, Singh R, Novakovic KR, Eaton JW, Grizzle WE, Singh S. CCR9 

mediates PI3K/AKT-dependent antiapoptotic signals in prostate cancer cells and 

inhibition of CCR9-CCL25 interaction enhances the cytotoxic effects of 

etoposide. International journal of cancer. Nov 1 2010;127(9):2020-2030. 

103. Johnson-Holiday C, Singh R, Johnson EL, Grizzle WE, Lillard JW, Jr., Singh S. 

CCR9-CCL25 interactions promote cisplatin resistance in breast cancer cell 



 

74 
 

through Akt activation in a PI3K-dependent and FAK-independent fashion. World 

journal of surgical oncology. May 3 2011;9:46. 

104. Johnson EL, Singh R, Johnson-Holiday CM, et al. CCR9 interactions support 

ovarian cancer cell survival and resistance to cisplatin-induced apoptosis in a 

PI3K-dependent and FAK-independent fashion. Journal of ovarian research. Jun 

17 2010;3:15. 

105. Vishnubhotla P, Carr AC, Khaled A, Bassiouni R, Khaled AR. CT20p as a 

therapeutic for lung cancer with elevated chaperonin containing TCP1 (CCT) 

expression levels. Journal of Clinical Oncology. 2017;35(15_suppl):e23163-

e23163. 

106. Tomei S, Marchetti I, Zavaglia K, et al. A molecular computational model 

improves the preoperative diagnosis of thyroid nodules. BMC cancer. Sep 7 

2012;12:396. 

107. Mano Y, Takahashi K, Ishikawa N, et al. Fibroblast growth factor receptor 1 

oncogene partner as a novel prognostic biomarker and therapeutic target for lung 

cancer. Cancer science. Dec 2007;98(12):1902-1913. 

108. Liu Y, Marks K, Cowley GS, et al. Metabolic and functional genomic studies 

identify deoxythymidylate kinase as a target in LKB1-mutant lung cancer. Cancer 

discovery. Aug 2013;3(8):870-879. 

109. Laurila E, Savinainen K, Kuuselo R, Karhu R, Kallioniemi A. Characterization of 

the 7q21-q22 amplicon identifies ARPC1A, a subunit of the Arp2/3 complex, as a 

regulator of cell migration and invasion in pancreatic cancer. Genes, 

chromosomes & cancer. Apr 2009;48(4):330-339. 

110. Artero-Castro A, Castellvi J, García A, Hernández J, y Cajal SR, LLeonart ME. 

Expression of the ribosomal proteins Rplp0, Rplp1, and Rplp2 in gynecologic 

tumors. Human pathology. 2011;42(2):194-203. 



 

75 
 

111. Zhang Y-Z, Zhang L-H, Gao Y, et al. Discovery and validation of prognostic 

markers in gastric cancer by genome-wide expression profiling. World journal of 

gastroenterology: WJG. 2011;17(13):1710. 

112. Levina V, Nolen BM, Marrangoni AM, et al. Role of eotaxin-1 signaling in 

ovarian cancer. Clinical cancer research : an official journal of the American 

Association for Cancer Research. Apr 15 2009;15(8):2647-2656. 

113. Lee S, Oh T, Chung H, et al. Identification of GABRA1 and LAMA2 as new 

DNA methylation markers in colorectal cancer. International journal of oncology. 

2012;40(3):889-898. 

114. Jacobsen F, Taskin B, Melling N, et al. Increased ERCC1 expression is linked to 

chromosomal aberrations and adverse tumor biology in prostate cancer. BMC 

cancer. 2017;17(1):504. 

115. Bellmunt J, Group OboSOG, Paz-Ares L, et al. Gene expression of ERCC1 as a 

novel prognostic marker in advanced bladder cancer patients receiving cisplatin-

based chemotherapy. Annals of Oncology. 2007;18(3):522-528. 

116. Mattie M, Raitano A, Morrison K, et al. The discovery and preclinical 

development of ASG-5ME, an antibody–drug conjugate targeting SLC44A4-

positive epithelial tumors including pancreatic and prostate cancer. Molecular 

cancer therapeutics. 2016;15(11):2679-2687. 

117. Huang XP, Zhao CX, Li QJ, et al. Alteration of RPL14 in squamous cell 

carcinomas and preneoplastic lesions of the esophagus. Gene. Jan 17 

2006;366(1):161-168. 

118. Palangat M, Anastasakis DG, Fei DL, et al. The splicing factor U2AF1 

contributes to cancer progression through a noncanonical role in translation 

regulation. Genes & development. May 1 2019;33(9-10):482-497. 

119. Gokmen-Polar Y, Neelamraju Y, Goswami CP, et al. Expression levels of SF3B3 

correlate with prognosis and endocrine resistance in estrogen receptor-positive 



 

76 
 

breast cancer. Modern pathology : an official journal of the United States and 

Canadian Academy of Pathology, Inc. May 2015;28(5):677-685. 

120. Adler AS, McCleland ML, Yee S, et al. An integrative analysis of colon cancer 

identifies an essential function for PRPF6 in tumor growth. Genes & 

development. May 15 2014;28(10):1068-1084. 

121. Wang D, Shi W, Tang Y, et al. Prefoldin 1 promotes EMT and lung cancer 

progression by suppressing cyclin A expression. Oncogene. 10/03/online 

2016;36:885. 

122. Sasaki H, Yukiue H, Kobayashi Y, et al. Expression of the cdc25B gene as a 

prognosis marker in non-small cell lung cancer. Cancer letters. Nov 28 

2001;173(2):187-192. 

123. Phelps DL, Borley JV, Flower KJ, et al. Methylation of MYLK3 gene promoter 

region: a biomarker to stratify surgical care in ovarian cancer in a multicentre 

study. British journal of cancer. May 9 2017;116(10):1287-1293. 

124. Lai D, Ho KC, Hao Y, Yang X. Taxol resistance in breast cancer cells is mediated 

by the hippo pathway component TAZ and its downstream transcriptional targets 

Cyr61 and CTGF. Cancer research. Apr 1 2011;71(7):2728-2738. 

125. Yu FX, Zhang Y, Park HW, et al. Protein kinase A activates the Hippo pathway 

to modulate cell proliferation and differentiation. Genes & development. Jun 1 

2013;27(11):1223-1232. 

126. Chow MT, Luster AD. Chemokines in cancer. Cancer immunology research. Dec 

2014;2(12):1125-1131. 

127. Konstantinopoulos PA, Fountzilas E, Pillay K, et al. Carboplatin-induced gene 

expression changes in vitro are prognostic of survival in epithelial ovarian cancer. 

BMC medical genomics. 2008;1:59. 



 

77 
 

128. Chong T, Sarac A, Yao CQ, et al. Deregulation of the spindle assembly 

checkpoint is associated with paclitaxel resistance in ovarian cancer. Journal of 

ovarian research. 2018;11(1):27. 

129. Bicaku E, Xiong Y, Marchion DC, et al. In vitro analysis of ovarian cancer 

response to cisplatin, carboplatin, and paclitaxel identifies common pathways that 

are also associated with overall patient survival. British Journal Of Cancer. 

05/17/online 2012;106:1967. 

130. Koussounadis A, Langdon SP, Harrison DJ, Smith VA. Chemotherapy-induced 

dynamic gene expression changes in vivo are prognostic in ovarian cancer. Br J 

Cancer. Jun 10 2014;110(12):2975-2984. 

131. Michalides R, Griekspoor A, Balkenende A, et al. Tamoxifen resistance by a 

conformational arrest of the estrogen receptor alpha after PKA activation in breast 

cancer. Cancer cell. Jun 2004;5(6):597-605. 

132. Merkle D, Hoffmann R. Roles of cAMP and cAMP-dependent protein kinase in 

the progression of prostate cancer: cross-talk with the androgen receptor. Cellular 

signalling. Mar 2011;23(3):507-515. 

133. Elaskalani O, Razak NB, Falasca M, Metharom P. Epithelial-mesenchymal 

transition as a therapeutic target for overcoming chemoresistance in pancreatic 

cancer. World journal of gastrointestinal oncology. Jan 15 2017;9(1):37-41. 

134. Kajiyama H, Shibata K, Terauchi M, et al. Chemoresistance to paclitaxel induces 

epithelial-mesenchymal transition and enhances metastatic potential for epithelial 

ovarian carcinoma cells. International journal of oncology. Aug 2007;31(2):277-

283. 

135. Rho JK, Choi YJ, Lee JK, et al. Epithelial to mesenchymal transition derived 

from repeated exposure to gefitinib determines the sensitivity to EGFR inhibitors 

in A549, a non-small cell lung cancer cell line. Lung cancer (Amsterdam, 

Netherlands). Feb 2009;63(2):219-226. 



 

78 
 

136. Sequist LV, Waltman BA, Dias-Santagata D, et al. Genotypic and histological 

evolution of lung cancers acquiring resistance to EGFR inhibitors. Science 

translational medicine. Mar 23 2011;3(75):75ra26. 

137. Zhao J, Shao J, Zhao R, et al. Histological evolution from primary lung 

adenocarcinoma harboring EGFR mutation to high-grade neuroendocrine 

carcinoma. Thoracic cancer. Jan 2018;9(1):129-135. 

138. Lim JU, Woo IS, Jung YH, et al. Transformation into large-cell neuroendocrine 

carcinoma associated with acquired resistance to erlotinib in nonsmall cell lung 

cancer. The Korean journal of internal medicine. Nov 2014;29(6):830-833. 

139. Baglivo S, Ludovini V, Sidoni A, et al. Large Cell Neuroendocrine Carcinoma 

Transformation and <em>EGFR</em>-T790M Mutation as Coexisting 

Mechanisms of Acquired Resistance to EGFR-TKIs in Lung Cancer. Mayo Clinic 

Proceedings. 2017;92(8):1304-1311. 

140. Gu Z, Gu L, Eils R, Schlesner M, Brors B. circlize Implements and enhances 

circular visualization in R. Bioinformatics (Oxford, England). Oct 

2014;30(19):2811-2812. 

141. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 

Sep 27 2012;489(7417):519-525. 

142. Comprehensive molecular characterization of human colon and rectal cancer. 

Nature. Jul 18 2012;487(7407):330-337. 

 

  



 

79 
 

This page intentionally left blank 


