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ABSTRACT 

Despite recent advances in diagnosis, classification, and therapeutic management, 

breast cancer (BC) remains one of the leading causes of cancer-related death in women 

worldwide. Nearly 70% of all diagnosed cases of breast tumors are Estrogen Receptor 

positive (ER+) and thus anti-estrogen therapy, such as tamoxifen, has become the standard-

of-care for patients with ER+ breast cancers. Yet, nearly 30% of patients treated with 

tamoxifen develop resistance, ultimately leading to metastasis and lethality. Prioritization 

of breast cancer patients based on the risk of resistance to tamoxifen plays a significant role 

in personalized therapeutic planning and improving disease course and outcomes. In this 

work, we demonstrate that a genome-wide pathway-centric computational framework 

elucidates molecular pathways as markers of tamoxifen resistance in ER+ breast cancer 

patients. Through the association of pathway activity and response to tamoxifen, we 

identified five biological pathways and demonstrated their ability to predict the risk of 

tamoxifen resistance in two independent patient cohorts (Test cohort1: log-rank p-value = 

0.02, adjusted HR = 3.11; Test cohort2: log-rank p-value = 0.01, adjusted HR = 4.24). 

Importantly, as a negative control, we have demonstrated that the identified 5 candidate 

pathways did not classify patients simply based on the disease aggressiveness and that 

pathways of aggressiveness do not overlap with the 5 candidate pathways. Finally, we have 

compared our pathway signature to other known signatures of tamoxifen response and have 

shown superiority of our pathway-based approach (adjusted hazard ratio = 3.11, hazard p-

value=0.0278). Thus, we propose that the identified pathways as well as their 

representative read-out-genes can be utilized to prioritize patients who would benefit from 
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tamoxifen treatment and patients at risk of tamoxifen resistance that should be offered 

alternative regimens. 
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                                                     Chapter I 

INTRODUCTION 

 

1.1 Background, Literature Review and Statement of the Problem 

Despite recent advances in diagnosis, classification, and therapeutic management, breast 

cancer (BC) remains one of the leading causes of cancer-related death in women 

worldwide.1-3 The main molecular subtypes of BC are based on the gene expression 

profiling, including  luminal A, luminal B, HER2-enriched, and triple-negative/basal-like 

(Table 1). 1 The luminal type of breast cancer, which is mainly categorized by estrogen 

receptor-positive (ER+), is morphologically well-differentiated and displays a 

comparatively good prognosis compared with ER− breast cancers which tend to be poorly 

differentiated and display a poor prognosis. 1 However, the studies have shown that 65–

70% of breast cancers are luminal A and B tumors, whereas about 10% of breast cancers 

are HER2-enriched tumors and 10–19 % of breast cancers are basal-like tumors.1 Those 

molecular classifications of BC subtypes significantly enhanced our understanding of the 

complicated properties of various breast tumors, their clinical overall outcomes, and their 

treatment responses. 1 
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Table 1.  

 

Different Characteristics of breast Cancer subtypes.  

 

 

Nearly 70% of all diagnosed cases of breast tumors are ER+,4,5 making treatments 

with anti-estrogen effects in the breast cells, such as tamoxifen, the standard-of-care for 

patients with ER+ breast cancers.4,6-9 Despite the significant success of tamoxifen 

administration, nearly 30% of treated patients develop therapeutic resistance, ultimately 

leading to metastasis and lethality.1,10 Therefore, prioritization of patients based on the risk 

of resistance to tamoxifen before treatment administration could play a significant role in 

personalize therapeutic planning for patients with ER+ breast cancer and builds a 

foundation to improve disease course and outcomes. In addition, identifying which patients 

are not likely to develop tamoxifen resistance is equally as important as identifying which 

patients are at high risk for developing tamoxifen resistance.  

Breast Cancer Molecular Subtypes 

 

 

Subtypes                                                                         Characteristics  

Luminal A ER+ and/or PR+, HER2- and Ki-67 ≤14% 

Luminal B ER+ and/or PR+, HER2+/- and Ki-67 

>14%/any Ki-67 

HER2 –Enriched/Non-Luminal ER-, PR-, HER2+ and any Ki-67 

Triple Negative/Basal-Like ER-, PR-, HER2- and any Ki-67 
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Tamoxifen is a selective estrogen receptor modulator (SERM) and has agonist or 

antagonist activity depending on the tissue type.11 In the breast cells, tamoxifen directly 

binds to the ER, blocking estrogen from attaching to the receptor and thus inhibiting the 

activity of estrogen-regulated genes and causing the repression of estrogenic effects.4,5,12,13 

However, the emergence of alternative mechanisms of estrogenic stimulation has been 

shown to cause emergence of resistance to tamoxifen. For example, some studies have 

demonstrated that ER+ breast cancers that overexpress HER2 and EGFR can activate the 

components of downstream signaling pathways which then stimulate both ER and estrogen 

receptor co-activator AIB1, and thus induce the estrogen agonistic activity of tamoxifen in 

breast cancer cells.14,15 Another study noticed that the increased expression of HER2 

signaling can also downregulate progesterone receptor (PR) levels in the ER+ breast 

tumors, where losing the PR expression serves as a biomarker of hyperactive growth factor 

signaling, leading to another possible mechanism of tamoxifen resistance.16 Despite the 

emerging role of HER2 in tamoxifen resistance, it only accounts for 10% of ER+ breast 

cancers,12,17 suggesting more complex resistance mechanisms in these cases, presenting a 

central clinical problem for patients with ER+ breast cancer.4,5,10,12  

In recent years, several groups have developed gene expression signatures of 

tamoxifen response for ER+ patients, including 10 gene-signature by Men et al.,18 21 gene-

signature by Paik et al.19 (known as Oncotype DX) and 2 gene-signature by Ma et al.20 

While these signatures provide substantial advances to our understanding of individual 

genes involved in resistance, they do not yet capture the complex interplay between 

biological mechanisms that governs tamoxifen resistance. Here we propose a pathway-

centric computational framework to elucidate tamoxifen resistance and demonstrate that it 
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outperforms known gene-based approaches. Advantages of our pathway-based approach 

lies in (i) its ability to identify a tightly connected cooperative group of genes unified by 

the same function;21-23 (ii) studying molecular pathways, rather than individual genes, 

produces more reliable read-out outputs as they are less susceptible to experimental noise;24 

(iii) pathway-level view enhances our understanding of the biological mechanisms related 

to disease and treatment response;25-28 and finally (iv) looking at alterations in biological 

pathways enhances the likelihood of identifying potential therapeutic targets to preclude or 

overcome resistance.  

1.2 Research Hypotheses 

We suggest that the defined candidate pathways as well as their representative read-

out-genes can potentially be used to identify patients who would benefit from the tamoxifen 

treatment as their first-line therapy and those at risk of developing therapy failure, even 

prior to treatment administration, which enhances the personalized and precision treatment 

strategy.  In fact, identifying which patients are not likely to develop tamoxifen resistance 

is equally as important as identifying which patients are at high risk for developing 

tamoxifen resistance. While the identified molecular pathways act as promising predictive 

markers for treatment response, they can also be potential candidates for therapeutic target 

to prevent resistance. Although this work is focused on identifying patients with high 

potential to antiestrogen resistance, our approach can be broadly applicable to other 

therapeutic interventions and diseases.  

1.3 An Overview of the Study 
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            In this work, we have established a systematic pathway-centric computational 

framework to elucidate molecular pathways as markers of tamoxifen resistance in ER+ 

breast cancer patients. Through the analysis of pathway activity in each ER+ patient and 

their association with response to tamoxifen (n = 53), we identified five biological 

pathways as pathways essential for tamoxifen resistance: Retrograde Neurotrophin 

Signalling, Loss of NLP from Mitotic Centrosomes, RNA Polymerase III Transcription 

Initiation from Type 2 Promoter, EIF2 pathway, and Valine, Leucine and Isoleucine 

Biosynthesis. We have demonstrated the ability of the identified five (5) candidate 

pathways to predict the risk of tamoxifen resistance in two independent patient cohorts29 

(Test cohort 1, n = 66 : log-rank p-value = 0.02, accuracy in leave one out cross-validation 

(LOOCV) = 85.8%; Test cohort 2, n = 77: log-rank p-value = 0.01, accuracy in LOOCV = 

82.5%) and their independence from known covariates, such as age, tumor grade, tumor 

size, lymph node status, and PR status, as the absence of PR in ER+ tumor can be an 

indicator of HER2 activation and an aggressive phenotype16 (Test cohort 1, adjusted hazard 

ratio = 3.11; Test cohort 2, adjusted hazard ratio = 4.24). In addition, we have shown 

significant non-random predictive ability of our pathways, when compared to pathways 

chosen at random (random model p-value=0.031). Furthermore, we performed stratified 

Kaplan-Meier survival analysis, where we evaluated predictive ability of our candidates on 

patient groups divided by PR status, age groups, and luminal subtypes and demonstrated 

that the five candidate pathways can predict risk of resistance to tamoxifen in each group.  

Importantly, as a negative control, we have demonstrated that the identified five candidate 

pathways did not classify patients simply based on the disease aggressiveness (log-rank p-

value = 0.7, hazard ratio = 1.246) and that in fact pathways associated with disease 
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aggressiveness do not overlap with the five candidate pathways. We have compared our 

method to other computational techniques to tackle treatment response, including Epsi et 

al.27 (which utilized extreme-responder analysis, using tails of the treatment response 

distribution to define a treatment response signature), Zhong et al.30 (which used Support 

Vector Machine approach as a base), and Yu et al.31 (which uses random forest approach 

as a base) and demonstrated that our method outperforms these techniques in predicting 

risk of resistance to tamoxifen.  Further, we have compared our pathway signature to other 

known signatures of tamoxifen response18-20 and have shown the superiority of our 

pathway-based approach (adjusted hazard ratio = 3.11, hazard p-value = 0.0278). Finally, 

we identified 5 read-out genes that can function as biomarker to identify patients at risk of 

developing resistance to tamoxifen in testing cohort. Thus, we propose that the identified 

five candidate pathways and their corresponding read-out genes can potentially be used to 

prioritize patients who would benefit from tamoxifen treatment as their first-line therapy, 

and to identify patients at risk of tamoxifen resistance who should be offered an alternative 

regimen plan. 
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Chapter II 

METHODS 

2.1 Patient cohorts utilized in this study 

All gene expression datasets of patients with ER+ breast cancer were obtained from 

publicly available GEO data repository32 from multi-institutional multi-PI comprehensive 

Loi et al.29 study GSE6532  (Figure 1, Table 2): (i) KIT-GSE6532 utilized as a Training 

cohort; (ii) GUYT-GSE6532, utilized as Test cohort 1; (iii) OXFT-GSE6532, utilized as a 

Test cohort 2; and (iv) KIU-GSE6532, utilized as a negative control cohort. Training cohort 

contains patient profiles of primary ER+ breast tumors (n = 57), archived at the Uppsala 

University Hospital (Uppsala, Sweden), profiled on Affymetrix Human Genome U133A 

array and Affymetrix Human Genome U133B array. Test cohort 1 contains patient profiles 

of primary tumors from patients with ER+ breast cancer (n = 70), archived at the Guy’s 

Hospital (London, United Kingdom), profiled on Affymetrix Human Genome U133 Plus 

2.0 Array. Test cohort 2 contains patient profiles of primary ER+ breast tumors (n = 77), 

archived at the John Radcliffe Hospital (Oxford, United Kingdom), profiled on Affymetrix 

Human Genome U133A, B array. Negative control cohort consists of not-treated patients 

with ER+ primary breast tumors (n = 51), profiled on Affymetrix Human Genome U133A, 

B array. All primary tumors samples in Training and Test cohorts collected through 

surgery, diagnosed between 1980 and 1995 and received tamoxifen-only treatment for 5 

years post-diagnosis as their adjuvant treatment. 
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Figure 1. 

 

Schematic representation of the utilization of independent patient cohorts for Training, 

Testing, and negative-control purposes utilized in this study. 
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Table 2.  

Clinical characteristics of datasets used for Training and Testing analysis 

 

Characteristics 

 

Training 

cohort 

KIT-GSE6532 

Test cohort 1 

GUYT-

GSE6532 

Test cohort 2 

OXFT-

GSE6532  

Negative-

control 

cohort  

KIU-

GSE6532  

Platform 

 

Affymetrix 

Human 

Genome 

U133A, B array 

 

Affymetrix 

Human Genome 

U133 Plus 2.0 

Array 

 

Affymetrix 

Human Genome 

U133A, B array 

 

Affymetrix 

Human 

Genome 

U133A, B 

array 

 

Total number of 

patients  

 

57 70 77 51 

PAM50 

Classification 

 

Luminal A 

Luminal B 

*Other subtypes 

 

 

 

45 

8 

4 

 

 

 

27 

39 

4 

 

 

 

61 

16 

- 

 

 

 

43 

4 

4 

Number of 

patients  

utilized in our 

study 

(other subtypes 

excluded) 

53 66 77 47 

Number of 

events  

22/53 (41.5%) 19/66 (28.78%) 20/77 (25.97%) 17/47 

(36.17%) 

 

Age 

 

=<50 

 >50 

 

 

1 

52 

 

 

3 

63 

 

 

 

13 

64 

 

 

 

19 

28 

 

Histological 

grade 

 

1 

2 

3 

 

 

 

 

10 

37 

6 

 

 

 

 

17 

36 

13 

 

 

 

 

17 

46 

14 

 

 

 

 

22 

20 

5 
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Tumor size 

 

 ≤2 cm 

 >2 cm 

 

 

 

19 

34 

 

 

 

35 

31 

 

 

 

35 

42 

 

 

 

26 

21 

 

Lymph node 

status 

 

Negative 

Positive 

 

 

 

 

14 

39 

 

 

 

 

22 

44 

 

 

 

 

48 

29 

 

 

 

 

47 

- 

 

PR status 

 

Negative 

Positive 

 

 

4 

49 

 

 

 

16 

50 

 

 

 

- 

- 

 

 

1 

46 

 

Note: * other subtypes = HER2-enriched, basal-like, or normal-like. 

 

2.2 Data normalization 

For each gene expression microarray dataset, matrix of RMA (Robust Microarray 

Analysis) normalized signal intensity values were used.48 Using the current annotation file 

from GEO and the latest Affymetrix annotation files from Thermo Fisher database,33 each 

probe set ID was annotated to gene ID, thereafter, probe IDs that annotated to different 

gene IDs or did not annotate to any gene ID were excluded. When multiple probe set IDs 

were mapped to the same gene, probes with the highest coefficient variation (CV) over all 

samples were selected. The CV for each probe was computed by dividing the standard 

deviation of expression values among all sample population by the mean expression 

value.34,35 

 

2.3 Determining the molecular subtypes of breast cancer patients 
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Gene expression classifier (PAM50) of the breast cancer subtypes was applied to 

assign BC patients to one of the intrinsic molecular subtypes: luminal A, luminal B, HER2-

enriched, triple-negative/basal-like, and normal-like.36,37 The subtype classification of each 

patient was determined based on the closeness between the average expression profile of 

50 genes in each subtype centroid and the corresponding gene expression pattern of patient 

tumor, where the distances measured utilizing Spearman's rank correlation.36 From genefu 

package in R, intrinsic.cluster.predict function with pam5038 was utilized to eliminate 

samples with HER2-enriched, triple-negative/basal-like, and normal-like subtypes (i.e., 

non ER+).  

 

2.4 Single-Sample Gene Set Enrichment Analysis (ssGSEA) 

For single-sample analysis, gene expression values for each gene were transformed 

into standardized scores (i.e., z-scores) in order to bring the expression level into a common 

scale across all samples.39,40 Z-score for each gene was computed by subtracting the 

average intensity of the gene from the intensity of this gene in each sample and dividing it 

by the standard deviation (SD) across all samples.39 In this way, each gene’s mean is 

standardized to 0 and standard deviation to 1. Ranked list of z-scored for each gene for a 

given sample then defines a single-sample signature, utilized for further pathway 

enrichment analysis. 

For pathway enrichment analysis, we utilized Reactome,41 BioCarta42 and KEGG43 

databases,  which contains 833 biological pathways, and implemented single-sample 

GSEA (i.e., ssGSEA44,45),  where each single-sample signature was used as a reference, 
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and each pathway (i.e., genes from each pathway) was used as a query set. The GSEA 

normalized enrichment scores (NESs), and p-values were assessed utilizing 1,000 gene 

permutations. NES for each of the 833 pathways (i.e., also referred to as pathway activity 

levels) indicated how much each pathway is overrepresented in each single-sample 

signature. In particular, the positive NES would indicate a pathways enrichment in the top 

of the rank-ordered list (i.e., overexpressed part) of the signature and the negative NES 

would indicate pathway enrichment in the bottom of the rank ordered list (i.e., 

underexpressed part) of the signature.  

 

2.5 Associating the activity levels of molecular pathways with therapeutic response 

The activity levels of each pathway (i.e., NES) were then associated with tamoxifen 

response using Cox proportional hazards model,46 adjusted for common covariates, such 

as age, tumor grade, tumor size, lymph node status, and PR status. For this, we utilized R 

coxph function from survival package.47 To establish a robust threshold which should be 

utilized to select most significantly associated pathways, we evaluated predictive ability of 

the pathways as a group (starting from the most significant pathway and then adding the 

next most significant pathway, one at a time). Thus, the groups of pathways that were 

evaluated were (i) Pathway 1; (ii) Pathways 1 and 2; (iii) Pathways 1, 2, and 3; etc. until 

all pathways were utilized. We then evaluated predicted ability of each group and recorded 

them (see Results). The cutoff point was determined as the one, where the addition of a 

pathway would not benefit an overall predictive ability of the group. 
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Furthermore, given that many of the 833 pathways exhibit parent-child 

relationships are heavily overlapping, we examined all final pathways that had the above 

relationships and if such dispute occurred, we prioritized pathways with higher association 

with tamoxifen response.  

 

2.6 Clinical validation in independent patient cohorts 

For validation studies, the activity levels of the five candidate pathways were used 

to stratify patients based on the risk of relapse due to treatment resistance in independent 

Test cohorts. Patient cohorts were subjected to t-SNE clustering, a widely-utilized 

dimensionality reduction technique,48 using all pairs of high-dimensional (i.e., 5-

dimensions in this study) points.49,50 In fact, t-SNE reduces high-dimensional dataset (i.e., 

5-dimensional) in a low-dimensional (i.e., 2-dimensional) space and successfully 

distinguishes groups of patients that have similar pathway activity levels. Subsequently, k-

means clustering51 was utilized on t-SNE-derived the low-dimensional (i.e., 2-

dimensional) space to obtain two groups of patients with distinct pathway activity 

patterns,49,50 using kmeans function in R.52  

The ability of the activity levels of the 5 molecular pathways to efficiently 

distinguish patient clusters was determined through receiver operating characteristics 

(ROC) analysis53 on multiple (i.e., multivariable) logistic regression model, where 

normalized enrichment scores of 5 pathways were used as input parameters (i.e., 

independent/predictor variables)  and patient clusters were utilized as a dependent/response 

variable. ROC curves were assessed using the area under the curve (AUC),54 where AUC 
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score of 0.5 indicates a random predictor. The logistic regression analysis was conducted 

using glm55 function, and ROC analysis was performed using  pROC56 and ggplot2 

packages in R.  

Differences in therapeutic response between the patient groups were evaluated 

through Kaplan-Meier treatment-related survival analysis57 and Cox proportional hazards 

model using survival and survminer packages 46 in R. Log-rank p-value was utilized to 

assess the statistical significance of the Kaplan-Meier survival analysis and Wald p-value 

and hazard ratio were utilized for multivariable Cox proportional hazards model through 

survdiff and coxph functions from survival package.  

To estimate the predictive accuracy of our model and obtain a more accurate 

indication of how well our finding behaves toward a new incoming patient, we conducted 

Leave-one-out cross-validation (LOOCV).58 In this method, one patient is 

“excluded/eliminated” and the rest of the patients are utilized for training purposes to the 

regression model. After that, a removed patient is assumed to be a new incoming patient 

and is assigned a risk of developing tamoxifen resistance. This process is repeated for each 

patient within a given dataset.  LOOCV was implemented for multiple logistic regression 

model, where patient clusters membership was used as a response variable and normalized 

enrichment scores of our candidate pathways were utilized as input parameters. The logistic 

regression analysis was performed using glm55 function, and LOOCV analysis was 

prepared using cv.glm function from boot package in R.  

To evaluate non-random predictive ability of the defined 5 candidate pathways, we 

used random model prepared by selecting 5 biological pathways at random, thereby we 

investigated the statistical significance of our finding by comparing the ability of the 
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candidate pathways to predict tamoxifen response to random equally-sized pathways. In 

details, 5 pathways were randomly chosen 1000 times from a total of 833 molecular 

pathways produced from Reactome, BioCarta and KEGG databases, and subsequently 

Kaplan-Meier survival analysis was utilized to evaluate the ability of random selected 5 

pathways to predict therapeutic response. The empirical p-value for the significance was 

estimated as the number of times predictive ability of 5 random pathways reached or 

exceeded performance of our candidate 5 pathways. 

 

2.7 Comparative analysis to other commonly utilized approaches 

To assess the superiority of our approach over other commonly used techniques, 

we compared its performance to (i) extreme-responder analysis;27 (ii) SVM;30 and (iii) 

PRES random forest.31 In each case, we utilized Training cohort for model training and 

Test cohort 1 for model validation. We compared groups of patients with poor and 

favorable response to tamoxifen in the Training cohort  by selecting: patients that 

experienced events within 1 year of tamoxifen administration (i.e., non-responders, n = 4); 

and patients that did not experience any relapses for more than 9 years (i.e., responders, n 

= 4) to define a differential expression signature of tamoxifen response (i.e., through two-

sample two-tailed Welch t-test59 through t.test function in R). For Epsi et al method, we 

then subjected the differential expression signature to pathway enrichment analysis, where 

this signature was used as a reference and groups of genes from each pathway was used as 

a query gene set, and treated most significant pathways as candidate pathway markers. For 

SVM and PRES random forest, we subjected the differential expression signature (i.e., 

based on the proposed significance level) to the model training using Training cohort. The 
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SVM analysis was performed using svm function from e1071 package, and PRES random 

forest analysis was prepared using train function from caret package in R. Predictive 

ability of the identified predictions was evaluated using Cox proportional hazards model 

through survival and survminer packages in R. 

 

2.8 Pathway activity read-outs 

To determine read-out genes of pathway’s activity, we examined genes inside each 

molecular pathway, which were (i) changed on expression levels (i.e., leading edge genes 

from the single sample pathway enrichment output); (ii) correlated with pathway activity 

outputs (i.e., correlation analysis between a leading edge gene and NESs across all patients) 

through Spearman correlation using cor.test function in R ; and (iii) combined with tamoxifen 

response through univariable Cox proportional hazards model using adjusted hazard p-

value (i.e., through coxph function). Finally, the adjusted hazard p-values were associated 

with Spearman correlation p-values to select the candidate genes.   

 

2.9 Statistical analysis  

Statistical analysis was performed using R studio version 3.5.1 for statistical 

computing. For single-sample analysis, data were z-scored on individual gene level. For 

this, the mean and standard deviation was first estimated for each gene across all samples 

in the dataset. Subsequently, z-score for each gene was defined as the difference between 

its own intensity value and the mean of that gene across the samples and divided by the 

standard deviation for that gene. The ranked list of z-scores for each gene in a sample then 
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defined single-sample signature.  Pathway activity levels were estimated as Normalized 

Enrichment Scored (NESs) from the Gene Set Enrichment Analysis (GSEA), where NESs 

and p-values were estimated using 1,000 gene permutations. Cox proportional hazards 

model was utilized to associate pathway activity levels with treatment-related relapse-free 

survival (tRFS). When adjusting for common covariates multivariable Cox proportional 

hazards model was utilized, where its significance was reported using hazards ratio, 

hazards p-value, and Wald test. Kaplan-Meier survival analysis was utilized to estimate 

difference in treatment-related survival between two groups of patients, with log-rank p-

value used to estimate significance.     

 

2.10 Data availability 

Data utilized for Training and Testing and their clinical characteristics are freely 

available from GEO repository GSE6532.  
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Chapter III 

RESULTS 

3.1 Overview 

            We present a genome-wide pathway-centric computational analysis to identify 

molecular pathways predictive of risk of resistance to tamoxifen in ER+ breast cancer 

patients. Our approach has the following steps:  

Training phase (Figure 2A): (i) activity levels of biological pathways is estimated in each 

ER+ breast cancer patient (across a wide spectrum of responses, present in a clinical 

setting) that received adjuvant tamoxifen (Figure 1, Table 2); (ii) these pathway activity 

levels are then associated with tamoxifen treatment response across all patients, adjusted 

for common covariates;  

Testing phase (Figure 2B): (iii) pathways that are significantly associated with the risk of 

tamoxifen resistance are then subjected to clinical validation analysis in independent 

patient cohorts (Figure 1, Table 2), for their ability to predict tamoxifen resistance for new 

incoming patients; (iv) finally, ability of the candidate pathways to predict the risk of 

tamoxifen resistance is compared to other known gene signatures of resistance and overall 

disease aggressiveness, alongside comparison to other methods. 

 

 

 

https://els-jbs-prod-cdn.literatumonline.com/cms/attachment/2119432766/2093750632/gr1.jpg
https://els-jbs-prod-cdn.literatumonline.com/cms/attachment/2119432766/2093750632/gr1.jpg
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Figure 2. 

 

Schematic representation of the pathway-centric approach. (A) Training phase: 

identification of molecular pathways of tamoxifen resistance. (B) Testing phase: clinical 

validation of identified candidate pathways and multi-modal prediction evaluation. 
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3.2 Training phase: identifying molecular pathways that govern primary tamoxifen 

resistance 

To accurately define therapeutic response to tamoxifen in ER+ breast cancer 

patients, we carefully selected gene expression profiles for the Training cohort (Loi et al.,29 

KIT-GSE6532) of primary ER+ breast tumors collected through surgery, not subjected to 

any neoadjuvant (i.e., prior to sample collection) treatment, and administered adjuvant (i.e., 

post-operative) 5-year long tamoxifen administration, with available clinical follow-up 

data (n = 57) (Figure 1, Table 2).  

To avoid inconsistencies in BC classification, we subjected patient profiles of the 

Training cohort to a 50-gene Prediction Analysis of Microarrays panel36 (PAM50) 

classification. PAM50 classification categorized BC patients from the Training cohort into 

the five intrinsic molecular subtypes: luminal A, luminal B, human epidermal growth factor 

receptor 2 (HER2)-enriched, triple-negative/basal-like, and normal-like, known to differ in 

their clinical outcomes60,61 and therapy choice.62 ER+ BC, which is the phenotype of 

interest in our study, is contained within the luminal A and luminal B subtypes and is 

excluded from HER2-enriched, triple-negative/basal-like, and normal-like subtypes (Table 

2). Out of 57 post-operative tamoxifen-treated patients, 4 patients were classified as HER2-

enriched, basal-like, or normal-like, and thus were excluded from further analysis. 

Our objective was to evaluate tamoxifen response across all 53 patient samples (on 

the individual-patient level) and associate them with changes in biological pathway 

activities (Figure 3A). In order to be able to evaluate each patient sample individually, we 

scaled (i.e., z-scored, see Methods) gene expression profiles on individual gene levels so 

that each gene had mean 0 and standard deviation 1 over all samples in the Training 



21 
 

cohort.39 The list of genes ranked by their z-scores in each sample then defined an 

individual-patient signature. We then utilized each individual-patient signature to evaluate 

activity levels of biological pathways using single-sample Gene Set Enrichment Analysis 

(ssGSEA),44,45 where pathways were obtained from Reactome,41 BioCarta42 and KEGG43 

databases, corresponding to 833 pathways. For this analysis, each patient signature was 

used as a reference and each pathway as a query gene set. Activity levels of biological 

pathways were defined by their enrichment in each patient signature, mathematically 

represented by the Normalized Enrichment Scores (NES) from the GSEA analysis, where 

positive NES corresponds to enrichment in the over-expressed part of the signature and 

negative NES corresponds to enrichment in the under-expressed part of the signature 

(Figure 2A, Figure 3A). 
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Figure 3. 

 

Training phase: pathway-centric approach identifies five biological pathways that govern 

tamoxifen response. (A) Schematic representation of the Testing phase of our approach: 

(left) patient molecular profiles are collected and analyzed; (middle) pathway activities are 

estimated in each patient using single-patient pathway enrichment analysis; (right) 

pathway activities are associated with response to tamoxifen using Cox proportional 

hazards modeling and are adjusted to common covariates, including age, tumor grade, 

tumor size (> 2 cm vs  ≤ 2 cm), lymph node status, and PR status. (B) Graphical illustration 

of tamoxifen-related treatment response or follow-up. Time to event (top): time interval 

between tamoxifen administration and earliest relapse is indicated by green line. Time to 

follow-up (bottom): time interval between tamoxifen administration and latest follow-up 

date is indicated by brown line (no tamoxifen-related events observed). (C) Heatmap 

representation of the pathway activity levels (i.e., NES) and their association with time to 

tamoxifen-related relapse or follow-up, in the Training cohort. Green line marks the group 

of patients with tamoxifen-related relapse, sorted from the shortest to the longest time to 

relapse. Brown line marks the group of patients with follow-up and without disease relapse 

until the latest follow-up, sorted from the shortest to longest time to follow-up. 
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Next essential step in our analysis was to associate changes in pathway activity 

levels to tamoxifen treatment response. In general, we defined treatment-related relapse 

free survival (tRFS) as the interval between tamoxifen administration (which occurred 

immediately after surgery) and the earliest relapse (defined as local, regional, or distant 

metastasis) or the latest follow-up (these patients did not develop an event until their latest 

follow-up). When a patient had a relapse during or after the therapy administration, time to 

therapy related relapse was defined from therapy start to the earliest relapse (Figure 3B, 

top schematics, green line). When a patient never experienced a relapse, therapy-related 

relapse-free survival was measured from therapy start to the latest follow-up (Figure 3B, 

bottom schematics, brown line). In this dataset, 41.5% of patients experienced tamoxifen-

related events (i.e., relapse), making it ideally suited for Training purposes. 

To estimate association between the activity levels of the biological pathways and 

tRFS across a wide spectrum of tamoxifen response (taking into account a heterogeneity 

of response to tamoxifen, present in a clinical setting), we utilized Cox proportional hazards 

model,46 ideally suited when time to event or follow-up is available. The Cox proportional 

hazards model was estimated between each pathway activity level (i.e., NESs, 

independent/predictor variable) and tamoxifen tRFS (i.e., dependent/response variable) 

across all 53 patients in the Training cohort. Furthermore, to account for the effect of other 

factors, this analysis was adjusted for commonly utilized covariates, as suggested in,63 such 

as age, tumor grade, tumor size (> 2 cm vs  ≤ 2 cm), lymph node status, and PR status (note 

that decreased PR levels are associated with increased HER2 signaling16) (Figure 3A). 

Such analysis identified five molecular pathways (Figure 3C, Table 3), most significantly 

associated with response to tamoxifen (hazard p-value ≤ 0.00075, Figure 4A-B, see 

https://els-jbs-prod-cdn.literatumonline.com/cms/attachment/2119432766/2093750633/gr2.jpg
https://els-jbs-prod-cdn.literatumonline.com/cms/attachment/2119432766/2093750633/gr2.jpg
https://els-jbs-prod-cdn.literatumonline.com/cms/attachment/2119432766/2093750633/gr2.jpg
https://els-jbs-prod-cdn.literatumonline.com/cms/attachment/2119432766/2093750633/gr2.jpg
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Methods), including Retrograde Neurotrophin Signalling, Loss of NLP from Mitotic 

Centrosomes, RNA Polymerase III Transcription Initiation from Type 2 Promoter, EIF2 

pathway, and Valine Leucine and Isoleucine Biosynthesis, adjusting for parent-child 

relationships inherent in pathway databases (see Methods, Figure 5). 

 

Table 3.  

Five molecular candidate pathways and their corresponding significance levels. 

 

 

 

 

 

Pathway Names Adjusted Hazard 

ratio (95%CI) 

Adjusted 

Hazard p-

value 

REACTOME: RETROGRADE 

NEUROTROPHIN SIGNALLING 

2.31(1.48-3.60)     0.00021 

REACTOME: LOSS OF NLP FROM MITOTIC 

CENTROSOMES 

1.73(1.28-2.33)     0.00029 

REACTOME: RNA POLYMERASE III 

TRANSCRIPTION INITIATION FROM TYPE 

2 PROMOTER 

1.97(1.33-2.91)     0.0006 

BIOCARTA: EIF2 PATHWAY 1.84(1.30-2.59)    0.00053 

KEGG: VALINE LEUCINE AND 

ISOLEUCINE BIOSYNTHESIS 

1.78(1.27- 2.50)    0.00075 

Note: CI: confidence intervals. 

https://els-jbs-prod-cdn.literatumonline.com/cms/attachment/2119432766/2093750633/gr2.jpg
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Figure 4.  

 

Comprehensive threshold analysis identifies pathway significance level.  Threshold 

analysis in the Training cohort utilizing Cox proportional hazards model on the group of 

pathways (starting from the most significant pathways and adding the next most significant 

pathway, one at a time). Cutoff point was determined as a point on the graph when adding 

any additional pathway would not improve the model significance. Adjusted hazard p-

value (A) and adjusted Cox Wald p-value (B) are used as threshold-deciding criteria. 
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 Figure 5. 

 

 

 

 

Graphical representation of the five candidate pathways and their significantly contributing 

genes.  Network-based representation of the five candidate pathways. Selected genes 

shown (brown nodes) correspond to genes that contribute to significant enrichment of each 

pathway in the patient single-sample signatures. Node sizes represent number of times each 

gene appears in the leading edge in the single-sample pathway enrichment analysis (i.e., 

indicating significant changes in activity of this pathway across Training cohort).   
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3.3 Testing phase: clinical validation in independent patient cohorts 

 The next essential step in our analysis was to evaluate the ability of five candidate 

pathways to predict treatment response to tamoxifen in independent non-overlapping 

clinical cohorts. For this, we utilized two patient cohorts for testing/validation purposes: 

(i) Test cohort 129 (GUYT-GSE6532, n = 70) of primary breast tumors obtained at surgery, 

from patients that did not receive any neoadjuvant treatment and received only adjuvant 

tamoxifen, with 28.78% of patients having tamoxifen-related events (Table 2); and (ii) Test 

cohort 229  (OXFT-GSE6532, n = 77) of primary breast tumors obtained at surgery, from 

patients that did not receive any neoadjuvant treatment and received only adjuvant 

tamoxifen, with 25.97% of patients with tamoxifen-related events. Both Test cohorts had 

clinical characteristics, neoadjuvant, and adjuvant conditions comparable to the Training 

cohort (Table 2). Similar to the analysis done on the Training cohort, we performed PAM50 

classification on the two Test cohorts, eliminating 4 patients from Test cohort 1 and 

keeping all patients for Test cohort 2.   

Our main objective was to investigate if activity levels of the five candidate 

pathways could predict risk of resistance to tamoxifen in two independent Test cohorts.  

For this, we estimated activity levels for five candidate pathways in each patient in the Test 

cohorts (similarly to Training cohorts, see Methods) and subjected patients to t-distributed 

Stochastic Neighbor Embedding (t-SNE) clustering48 as suggested in49 for investigation of 

samples relationships.  T-SNE analysis, which displays five-dimensional dataset in a two-

dimensional space, stratified patients into two groups based on their pathway activity 

levels. The low-dimensional output (i.e., 2-dimensional) of t-SNE were then subjected to 

the k-means clustering51 to correctly assign group membership  (Figure 6A for Test cohort 

https://els-jbs-prod-cdn.literatumonline.com/cms/attachment/2119432766/2093750636/gr5.jpg
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1 and Figure 6C for Test cohort 2) one group with increased pathways’ activities (orange) 

and one group with decreased pathways’ activities (turquoise), mimicking the relationship 

that was observed in the Training cohort (Figure 3C). We confirmed the strength of group 

separation through Receiver Operating Characteristic (ROC) analysis53 using multiple 

logistic regression model (Figure 7A-B), where normalized enrichment scores of 5 

pathways were used as input parameters (i.e., independent/predictor variables) and selected 

patient groups were utilized as a dependent/response variable. The efficiency of ROC 

analysis was estimated using area under the curve (AUC),54 where AUC of 0.5 denotes a 

random predictor and AUC score of 1 denotes a perfect predictor (i.e., full separation of 

the patient groups). This analysis confirmed that the activity levels of the five candidate 

pathways can be effectively used for classifying patients into distinct groups (Test cohort 

1, AUC = 0.929; Test cohort 2, AUC = 0.867). 

https://els-jbs-prod-cdn.literatumonline.com/cms/attachment/2119432766/2093750636/gr5.jpg
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Figure 6. 
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ROC analysis demonstrated significant separation of patient groups based on activity 

levels of the five candidate pathways. ROC analysis to show significance of the 

separation between patient groups in Figure 6 A, C.  Area under the curve (AUC) is 

reported. 

 

To assess if these patient groups significantly differ in their tamoxifen response, we 

analyzed therapy-related relapse-free survivals between the groups using Kaplan-Meier 

survival analysis57 and Cox proportional hazards model,46 which demonstrated that the 

The five candidate pathways predict patients at risk of tamoxifen resistance in independent 

patient cohorts. (A, C) T-SNE and subsequent k-means clustering of Test cohort 1 (A) and 

Test cohort 2 (C) based on activity levels of the five candidate pathways demonstrates 

patient separation into two groups: orange group (with overall increased activity levels of 

the five candidate pathways) and turquoise group (with overall decreased activity levels of 

the five candidate pathways). (B, D) Kaplan-Meier treatment-related survival analysis 

comparing two patient groups in Test cohort 1 (B) and in Test cohort 2 (D).  Log-rank p-

values and adjusted hazard ratios are indicated. (E, F) Leave-one-out cross-validation 

(LOOCV) correctly identified patients with poor response to tamoxifen (orange) and 

patients with favorable response to tamoxifen (turquoise) in Test cohort 1 (E) and Test 

cohort 2 (F). Accuracy values (%) are indicated. (G) Random model to assess the ability 

of the 5 candidate pathways selected at random to differentiate samples into groups with 

various tamoxifen response. The significance of the predictive ability of our defined 5 

molecular pathways is shown by the distributions of log-rank p-values from the random 

model. 

 

Figure 7. 
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identified patient groups had a significant difference in their response to tamoxifen (Test 

cohort 1, log-rank p-value = 0.02, Figure 6B; Test cohort 2, log-rank p-value = 0.01, Figure 

6D). We have also adjusted these analyses for common covariates63 (i.e., age, tumor grade, 

tumor size, lymph node status, and PR status), demonstrating that these covariates did not 

significantly impact the predictive ability of our findings (Test cohort 1, adjusted hazard 

ratio = 3.11, adjusted hazard p-value = 0.044, 95% confidence interval CI: = 1.03-9.396, 

Figure 6B; Test cohort 2, adjusted hazard ratio = 4.24, adjusted hazard p-value = 0.012, 

CI: 1.3708- 13.120, Figure 6D).  

Further, we evaluated predictive accuracy of our model in the two test cohorts using 

Leave-one-out cross-validation (LOOCV), which simulates a situation when a new 

incoming patient needs to be evaluated for her risks of developing resistance to tamoxifen. 

In particular, in LOOCV, one patient is “removed”, and the model is trained on the 

remaining patients, followed by the prediction of risk of resistance for the removed patient. 

The process is repeated for each patient. Using this analysis, we demonstrated the accurate 

performance of our model in predicting poor and favorable tamoxifen response for new 

incoming patients (Test cohort 1, accuracy for LOOCV = 85.8%, Figure 6E; Test cohort 2, 

accuracy for LOOCV = 82.5%, Figure 6F). Finally, to evaluate if any set of five pathways 

selected at random could classify patients based on tamoxifen response, we have performed 

random model analysis, where selected five pathways at random 1,000 times and evaluated 

their predictive ability using Kaplan-Meier survival analysis, as above. The empirical p-

value for the random model was estimated as the number of times log-rank p-values of five 

pathways chosen at random reached or exceeded the output of our 5 candidate pathways, 

which confirmed significant non-randomness of our candidate pathways predictive ability 

https://els-jbs-prod-cdn.literatumonline.com/cms/attachment/2119432766/2093750636/gr5.jpg
https://els-jbs-prod-cdn.literatumonline.com/cms/attachment/2119432766/2093750636/gr5.jpg
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(Test cohort 1, random model p-value = 0.031, Figure 6G). Taken together, these findings 

indicate that the five-candidate pathway signature could successfully predict patients at 

risk of tamoxifen resistance in independent patient cohorts. 

 

3.4 Comprehensive comparison of tamoxifen response and overall disease 

aggressiveness 

A fundamental question in studying therapeutic response lies in its comparison to 

and differentiation from overall disease aggressiveness. Our comprehensive investigation 

of this question was four-fold: (i) we identified pathways implicated in disease 

aggressiveness and compared their overlap with the candidate five pathways of tamoxifen 

response; (ii) we evaluated if the five candidate pathways can predict breast cancer 

aggressiveness in an independent (negative control) cohort; (iii) we evaluated the ability of 

the five candidate pathways to predict tamoxifen response based on PR status (known 

indicator of breast cancer aggressiveness), age categories (as patients aged 50 years or older 

shows poorer relative survival rates than younger patients 64) and luminal subtypes (as 

luminal B type have a poorer prognosis than luminal A type 65); and (iv) we evaluated if 

known published signatures of disease aggressiveness could predict response to tamoxifen.    

First, to examine if our 5 candidate pathways overlap with pathways implicated in 

disease aggressiveness, we developed treatment-free prognostic pathway signature using a 

patient cohort that received surgery only (KIU-GSE6532, n = 51, negative control 

cohort).29 Out of 51 surgery-treated patients, 4 patients were removed, based on the PAM50 

classification. We further applied our single-sample pathway-based discovery approach  (as 

in the Training phase) and associated them to the RFS, which identified 3 pathways of 
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aggressiveness (see Methods) that showed no overlap with the five candidate pathways, 

signifying that none of our candidates are involved in cancer severity and are indeed 

specific to tamoxifen response.  

 

Figure 8.  

 

Five candidate pathways do not predict overall disease aggressiveness. (A) T-SNE and 

subsequent k-means clustering based on the activity levels of the five candidate pathways 

in the negative control cohort. (B) Kaplan-Meier survival analysis on negative control 

cohort confirms that the five candidate pathways do not predict disease aggressiveness. 

Log-rank p-value and hazard ratio are indicated.  
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Figure 9.  

 

 
 

Stratified analysis demonstrates that predictive ability of the five candidate pathways is not 

dependent on the PR status. Patients in Test cohort 1 were stratified based on their 

progesterone PR status: Progesterone-positive (A, B) and Progesterone-negative (C, D).  

T-SNE with subsequent k-means clustering on PR+ (A) and PR- (C) patient subgroups. 

Kaplan-Meier survival analysis for PR+ (B) and PR- (D) patient groups. Log-rank p-values 

are indicated.   
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Secondly, we evaluated if the five candidate pathways could separate patients based 

on overall disease aggressiveness. For this, we evaluated predictive ability of the five 

candidate pathways on the BC patient cohort that did not receive any treatment after 

surgery (negative control cohort, as above). We subjected the dataset to the single-sample 

pathway enrichment analysis (for the five candidate pathways, similarly to Test cohorts 

analysis). T-SNE clustering (Figure 8A) and subsequent Kaplan-Meier survival analysis 

(Figure 8B) on this cohort demonstrated that the five pathways do not separate patients 

base on their disease aggressiveness (hazard ratio = 1.2, log-rank p-value = 0.7, RFS was 

considered as a clinical endpoint), but rather specific for tamoxifen response. We have also 

examined the effect of covariates (i.e., age, tumor grade, tumor size, and PR status), on 

disease progression in this setting and demonstrated that our candidate pathways remain 

insignificant, with tumor size significantly contributing to the disease progression (adjusted 

hazard p-value = 0.0307). 

Third, given that the PR receptor status (which also reflects HER2 signaling) is a 

known indicator of breast cancer aggressiveness, we performed a stratified Kaplan-Meier 

analysis on Test cohort 1 (for which this information was available). For this, we divided 

Test cohort 1 into two groups: one with PR-positive status and one with PR-negative status. 

We then subjected both cohorts separately to t-SNE clustering, which have demonstrated 

that the five candidate pathways separated each cohort into patient sub-groups with high 

and low levels of pathway activities (Figure 9A for patients with PR-positive tumors and 

Figure 9C for patients with PR-negative tumors). Subsequent Kaplan-Meier survival 

analysis (Figure 9B and Figure 9D, respectively) showed that these patient-subgroups 

significantly differ in their response to treatment (patients with PR-positive tumors, log-

https://els-jbs-prod-cdn.literatumonline.com/cms/attachment/2119432766/2093750636/gr5.jpg
https://els-jbs-prod-cdn.literatumonline.com/cms/attachment/2119432766/2093750636/gr5.jpg
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rank p-value = 0.02, Figure 9B; patients with PR-negative tumors, log-rank p-value = 0.01, 

Figure 9D), demonstrating that our five candidate pathways are able to predict patients at 

risk of tamoxifen resistance regardless of the PR-status.  

Figure 10.  

     

Stratified analysis demonstrates that predictive ability of the five candidate pathways does 

not depend on the age groups and luminal subtypes. Stratified Kaplan-Meier survival 

analysis was conducted using different age groups in Test cohort 2 (A, B) and luminal 

subtypes in Test cohort 1 (C, D). 

 

c-index = 0.756  c-index = 0.616  

c-index = 0..657  c-index = 0.658  
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In fact, different age categories and luminal subtypes are also known indicators of 

worse prognosis in breast cancer. Thus, we conducted stratified Kaplan-Meier analysis (as 

above); where we stratified Test cohort 2 into patient groups based on age (< 50 years and 

>=50 years), and Test cohort 1 into patient groups based on luminal subtypes (luminal A 

and luminal B). Kaplan-Meier survival analysis showed clear separation between patient 

groups (Figure 10 A-D). Our analysis demonstrated that the predictive ability of these 

candidate pathways does not depend on known characteristics of breast cancer 

aggressiveness.  

Figure 11.  

 

Five candidate pathways are not affected by overall disease aggressiveness. Multivariable 

Cox proportional hazards model representing analysis for five candidate pathways adjusted 

for various prognostic signatures in breast cancer, including Wang et al. (76 prognostic 

markers, with 57 present on U133 Plus 2.0) and van‘t Veer et al. (70 prognostic markers, 

with 53 present on U133 Plus 2.0).  Adjusted hazard p-values are reported. 
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Finally, to demonstrate that the predictive ability of the five candidate pathways is 

not affected by other known markers of disease aggressiveness, we investigated if 

commonly known gene-based prognostic signatures can predict tamoxifen response or 

affect predictive ability of the candidate five pathways. For this, we gathered several known 

signatures of overall BC aggressiveness (i.e., prognostic signatures), including Wang et al. 

signature66 (76 prognostic markers, with 57 present on U133 Plus 2.0) and van‘t Veer et 

al. signature67 (70 prognostic markers, with 53 present on U133 Plus 2.0) and subjected 

them to adjusted multivariable Cox proportional hazards model, alongside the five 

candidate pathway signature, in the Test cohort 1. This analysis confirmed that the 

prognostic signatures were not predictive of tamoxifen response and did not impact 

predictive ability of the five candidate pathways (adjusted hazard p-value = 0.03, Figure 

11). Taken together, these findings indicate that our five-pathway signature of tamoxifen 

response is not indicative of overall breast cancer aggressiveness and is indeed specific to 

response to tamoxifen. 

 

3.5 Comparative analysis to commonly utilized methods and known signatures of 

tamoxifen response 

To evaluate predictive advantages of the five candidate pathways, we took a 

comprehensive approach and first (i) compared the predictive ability of the five candidate 

pathways to predictions from other commonly used methods, including approaches based 

on extreme-responder analysis (i.e., tails of the distribution), support vector machine 

(SVM), and random forest; and second (ii) assessed if the predictive ability of the five 

candidate pathways outperforms other known signatures of tamoxifen response.  
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Figure 12. 

 

Predictive ability of the five candidate pathways outperforms markers from other methods 

and known signatures of tamoxifen response. (A, B) Comparison of the predictive ability 

of the five candidate pathways (blue) to the candidate identified by other approaches, 

including Epsi et al. extreme-responder analysis (green), Zhong et al. SVM-based method 

(brown) and Yu et al. PRES random forest-based method (pink), through unadjusted (A) 

and adjusted for common covariates (B) Cox proportional hazards model. P-values for 

unadjusted and adjusted hazard ratios are indicated. (C) Multivariable Cox proportional 

hazards model representing analysis for the five candidate pathways adjusted for different 

predictive signatures of tamoxifen response, including Men et al. (10 predictive markers, 

with 9 present on U133 Plus 2.0), Paik et al. (Oncotype DX, 21 predictive markers), and 

Ma et al. (2 predictive markers). Adjusted hazard p-values are indicated. 

 

First, we compared predictive ability of the five candidate pathways to predictions 

from other commonly utilized methods, such as (i) Epsi et al.27 method, which utilized 

extreme-responder analysis, using tails of the treatment response distribution to define a 

treatment response signature; (ii) Zhong et al.30 method , which used Support Vector 

Machine approach as a base; and (iii) Yu et al.31 method, also referred to as Personalized 

REgimen Selection (PRES), which used random forest approach as a base (see Methods). 

To assure that all methods are comparable to our pathway-centric method, we trained Epsi 

et al., Zhong et al., and Yu et al. methods on the Training cohort, with each producing a 

list of predictions (112 predictions for Epsi et al.; 5 predictions for Zhong et al.; and 3 
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predictions for Yu et al.). We then followed by validating these predictions on the Test 

cohort 1, similarly to our pathway-centric method. Such analysis demonstrated that the five 

candidate pathways outperform all three methods in their ability to predict the risk of 

tamoxifen treatment resistance (Figure 12A: five candidate pathways, hazard ratio = 2.91, 

hazard p-value = 0.031; Epsi et al., hazard ratio = 2.79, hazard p-value = 0.038; Zhong et 

al., hazard ratio = 2.53, hazard p-value = 0.063; Yu et al., hazard ratio = 2.48, hazard p-

value = 0.058). Furthermore, we adjusted these analyses for the effect of common 

covariates (similarly to our original training phase), including age, tumor grade, tumor size, 

lymph node status and PR status and re-confirmed that the five candidate pathways retain 

their significant predictive ability and outperform the other methods (Figure 12B: five 

candidate pathways, adjusted hazard ratio = 3.11, adjusted hazard p-value = 0.044; Epsi et 

al., adjusted hazard ratio = 2.48, adjusted hazard p-value = 0.076; Zhong et al., adjusted 

hazard ratio = 2.96, adjusted hazard p-value = 0.05; Yu et al., adjusted hazard ratio = 2.81, 

adjusted hazard p-value = 0.054). 

Finally, to confirm that the predictive ability of the five candidate pathways 

outperforms other known signatures in their ability to predict tamoxifen treatment 

response, we selected known signature of tamoxifen response (i.e., predictive signatures), 

such as (i) Men et al.18 (10 predictive markers, with 9 present on U133 Plus 2.0); (ii) Paik 

et al.19 (also now as Oncotype DX, 21 predictive markers); and (iii) Ma et al.20 (2 predictive 

markers) (Figure 12C) and used them in adjusted multivariable Cox proportional hazards 

model, alongside the five candidate pathway signature, utilizing Test cohort 1, as above. 

This analysis demonstrated that the additional predictive signatures do not significantly 

affect the ability of the five candidate pathways to predict the risk of tamoxifen resistance 
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(Figure 12C, adjusted hazards p-value = 0.03). Taken together, these results demonstrate 

that the five-candidate pathway signature can be utilized to predict patients at risk of 

developing resistance to tamoxifen in a clinical setting and build a foundation for 

personalized therapeutic advice for patients with ER+ breast cancer.  

Figure 13. 

 

The five read-out genes predict patients at risk of tamoxifen resistance in independent 

patient cohort. (A) T-SNE and subsequent k-means clustering of Test cohort 1 based on 

gene expression of the five read-out genes demonstrates patient separation into two groups. 

(B) Kaplan-Meier treatment-related survival analysis comparing two patient groups in Test 

cohort 1. Log-rank p-value and hazard ratio are indicated.  
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Table 4. 

Five read-out genes and their corresponding significance levels. 

Read-out genes Spearman correlation 

p-value 

Adjusted Hazard p-

value 

AP2S1 0.0000278 0.0185 

CDC2 0.00000035 0.0063 

GTF3C3 0.00000004 0.00133 

EIF2AK3 0.00000542 0.019 

LARS 0.00000013 0.019 

 

3.6 Pathway activity read-outs 

For this, we examined genes which could function as read-outs of activity levels of 

pathways that involved in treatment response. In details, we examined genes inside each 

molecular pathway, which were (i) changed on expression levels (i.e., from leading edge 

in pathway enrichment outputs); (ii) correlated with pathway activity outputs (i.e., NESs); 

and (iii) combined with tamoxifen response (see Methods, Table 4 ). This analysis defined 5 

read-out genes (i.e., AP2S1, CDC2, GTF3C3, EIF2AK3, and LARS) that were 

significantly related to therapeutic response (Test cohort1: log-rank p-value = 0.03, hazard 

ratio = 3.76, Figure 13 A-B). In fact, these findings showed a high predictive ability in 

identifying patients at risk of resistance. We suggest that these 5 read-out genes can be 

utilized as biomarker of tamoxifen resistance and will be more useful in the clinic. 
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Chapter IV 

 

DISCUSSION 

 

In this study, we have demonstrated that a pathway-centric genome-side 

computational approach is able to uncover biological pathways, highly associated with risk 

of tamoxifen resistance in ER+ breast cancer patients. The important advantage of our 

approach is that it identifies a tightly connected group of genes - biological pathways - as 

opposed to individual (possibly distantly connected genes), thus (i) decreasing the chances 

of experimental noise present in biological experiments; (ii) improving our understanding 

of the mechanisms implicated in therapeutic resistance; and (iii) increasing the likelihood 

of identifying a functionally relevant signature, which could be utilized to study 

mechanisms of primary resistance and their potential therapeutic targeting. Furthermore, 

these biological pathways are highly associated with a wide spectrum of treatment 

responses (as opposed to selecting a limited category of patients for analysis), reflecting 

heterogeneity of response to tamoxifen present in a clinical setting. Even though this work 

is focused on identifying cases of resistance to tamoxifen, our method can be broadly 

applicable to other therapeutic interventions and cancer types. 

          Our computational analysis has identified five molecular pathways implicated in 

tamoxifen resistance, including (i) Retrograde Neurotrophin Signalling, (ii) Loss of NLP 

from Mitotic Centrosomes, (iii) RNA Polymerase III Transcription Initiation from Type 2 

Promoter, (iv) EIF2 pathway, and (v) Valine Leucine and Isoleucine Biosynthesis. 

Interestingly, many of these pathways have been shown to be closely related to 

carcinogenic mechanisms and therapeutic response in various cancers. In particular, the 
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Retrograde Neurotrophin Signalling pathway is implicated in metabolic detoxification, 

mitosis, clathrin-mediated vesicles development, and enriched with bladder cancer 

predisposition loci.68 One of the genes from this pathway, Neurotrophic tyrosine kinase 

receptor type 1 (NTRK1), is a recognized oncogene frequently altered in various tumor 

types69 and its gene fusions have previously been identified in glioblastoma,69 colon 

cancer,70 papillary thyroid carcinoma,71 and non-small cell lung cancers.72 Clinical 

studies of tumor response to NTRK1 fusion-targeted therapy have indicated that this 

oncogene represents a treatment target in  human cancer.73 

Ninein-like protein (NLP) (i.e., also known as NINL) is a part of the Loss of NLP 

from the Mitotic Centrosomes pathway. The role of human centrosomal NLP expression in 

breast, lung, ovarian, head and neck cancers has been widely demonstrated.74 The NLP 

gene amplification accounts for NLP overexpression in human breast and lung cancer 

cells.74 The deregulated expression of NLP in cell models leads to mitotic spindle 

aberrations, spindle checkpoint defects, chromosomal missegregation, cytokinesis failure, 

stimulation of chromosomal instability, anchorage-independent growth, and cell malignant 

transformation.74 Recently, it has been discovered that NLP co-localizes and interacts with 

BRCA1 at inter-phasic centrosome and thus the disruptions of BRCA1 function could 

affect NLP co-localization to centrosomes and induce the genomic instability.75 

Interestingly, it has been reported that the NLP overexpression may also cause breast 

cancer resistance to paclitaxel chemotherapy.76 Furthermore, a positive correlation 

between expression of NLP and PLK1 (i.e., another gene implicated in the Loss of NLP 

from the Mitotic Centrosomes pathway) has recently been discovered, implicated in 
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chemoresistance, particularly to taxane agents76  and tumor growth in general, in breast 

cancer and other cancer types.76,77  

For the RNA Polymerase III Transcription Initiation from RNA polymerase II 

Promoter Sites, the global gene expression is increased in eukaryotic cells as RNA 

polymerase II transcribes protein-coding genes to yield mRNA, miRNA, snRNA, and 

snoRNA genes while RNA polymerase III transcribes the genes for 5S rRNA and 

tRNAs.78,79 However, in yeast (S. cerevisiae), RNA polymerase III complex has been 

shown to act as heterochromatin barriers,80 and any change in heterochromatin would be 

potentially very important for cancer development. A broad spectrum of cancer cell types 

has been observed to display a highly regulated and elevated level of RNA polymerase III 

transcript expression.81,82 

In the Eukaryotic Initiation Factor 2 (eIF2) pathway, phosphorylation of eIF2α has 

been shown to play a significant role in maintaining normal cellular homeostasis and 

regulating cell growth,83 with dysregulation of eIF2 signaling pathway stimulating the 

cancerous tumors transformation.84 The overexpression of eIF2α has been observed in 

several cancers, such as gastrointestinal cancer85 and non-Hodgkin's lymphomas86 and has 

been proposed as a potential therapeutic target.87 

Finally, in the Valine Leucine and Isoleucine Biosynthesis pathway, valine, leucine, 

and isoleucine are important branched-chain amino acids (BCAAs) for normal growth and 

development.88 In the BCAA catabolism pathway, the first step is transamination, 

catalyzed by the branched chain amino acid transferase isozymes BCATs: a mitochondrial 

(BCATm) and a cytosolic (BCATc) isozyme.89-91 Mitochondrial BCATm (BCAT2) 

expression can drive the development of pancreatic ductal adenocarcinoma under the 
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regulation of the mitochondrial malic enzyme 2.92,93  Malic enzyme 2 and malic enzyme 3 

are oxidative decarboxylation that stimulate malate to pyruvate and are considered 

important elements during mitochondrial reactive oxygen species homeostasis and 

NADPH production.93 Studies have reported that incorporating the molecular and 

metabolomic examination of malic enzyme-deficient cells showed a decrease in NADPH 

generation and an increase in reactive oxygen species level. 93 These alterations catalyze 

AMPK which consequently functions to inhibit SREBP1 and thereby suppresses its target 

genes including the BCAT2.  BCAT2 stimulates the transfer of the amino group of BCAAs 

to α-ketoglutarate and thus generates glutamate, which in turns enhance de novo nucleotide 

synthesis. Therefore, the deficiency of the mitochondrial malic enzyme, which causes a 

reduction in NADPH synthesis, plays a critical role in the therapeutic strategy for the 

treatment of patients with complex disease. 93 

         Cytosolic BCATc (BCAT1) is overexpressed in glioblastoma,94 nasopharyngeal 

carcinoma,95 and cancers with elevated c-MYC.95 It has been recommended to consider 

BCAT1 as a promising target for glioblastoma and nasopharyngeal carcinoma 

treatments.94,95 We propose that the identified candidate pathways should be investigated 

for their potential use as isolated treatment targets or in combination with ER-targeting 

agents for ER+ breast cancer patients at risk of developing resistance to tamoxifen. 

One of the limitations of our study is in the limited availability of the epigenomic 

profiles for our patient cohorts. In fact, DNA and histone methylation has been suggested 

to be responsible for inactivation of ER.96  Thus, further examination of the role of 

epigenomic modulations and their interplay with transcriptomic changes is an invaluable 
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next step for in-depth understanding of molecular mechanisms implicated in hormone 

therapy resistance.  

Furthermore, miRNAs (micro-RNAs) have received substantial attention for their 

role in regulating pathway functionality.97 For example, miR-15a/miR-16’s deletion or 

down-regulation contributes to dysregulated of cell cycle in chronic lymphocytic 

leukemia98 and non-small cell lung cancer.99 Even though miRNA data are not available in 

our cohorts, we foresee the importance of miRNA analysis for further understanding 

mechanisms of pathway dysregulation, especially when applies to therapeutic 

resistance.100-102 The presence of miRNAs in tumor-derived exosomes has recently been 

postulated to play important roles in facilitating metastasis, and this work suggests that 

exosomes containing tumor-derived miRNAs which regulate one of these five pathways 

may also play a role in the spread of tamoxifen resistance. 103 

In addition, availability of single-cell profiles for investigation of therapeutic 

response has proven to be invaluable104 in understanding of therapeutic targets for complex 

diseases, including cancer. Thus, as such profiles become available, we foresee their 

immediate utilization for elucidation of mechanisms of primary and secondary therapy 

resistance, and we investigate the miRNAs which are known to regulate any of the 5 

molecular pathways.  
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                                                             Chapter V 

CONCLUSIONS 

In conclusion, we have demonstrated that a systematic computational pathway-

centric method could identify molecular pathways to predict tamoxifen resistance, 

including (i) Retrograde Neurotrophin Signalling, (ii) Loss of NLP from Mitotic 

Centrosomes, (iii) RNA Polymerase III Transcription Initiation from Type 2 Promoter, (iv) 

EIF2 pathway, and (v) Valine Leucine and Isoleucine Biosynthesis. We propose that our 

finding can be ultimately utilized to prioritize and determine (i) cases at higher risk of 

developing resistance to tamoxifen that should be considered for alternative treatment 

manipulations (for instance, alternative endocrine therapy, radiation therapy, or 

chemotherapy etc.) and (ii) cases who would benefit maximally from tamoxifen therapy.  
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