
REAL-TIME AUTONOMIC DECISION MAKING
UNDER UNCERTAIN ENVIRONMENTS FOR

UAV-BASED SEARCH-AND-RESCUE MISSIONS

by

VIDYASAGAR SADHU

A dissertation submitted to the

Graduate School–New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Prof. Dario Pompili

and approved by

New Brunswick, New Jersey

October, 2020

c© 2020

Vidyasagar Sadhu

ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

Real-Time Autonomic Decision Making Under Uncertain

Environments For UAV-Based Search-And-Rescue Missions

By Vidyasagar Sadhu

Dissertation Director:

Prof. Dario Pompili

Real-time smart and autonomous decision making in an Intelligent Physical System (IPS),

e.g., an autonomous car or Unmanned Aerial Vehicle (UAV), involves two main stages—

sensing (collection and then transformation of sensor data into actionable knowledge

by giving semantic meaning to the raw data) and planning (making real-time decisions

using this knowledge). The challenges faced by an IPS during these two stages include

coping with the various forms of uncertainty caused by the (non-stationary) changing

environment in which the IPS acts. These sources of uncertainty can be broadly clas-

sified into the following categories—data-quantity and -quality uncertainty, model and

parameter uncertainty, environmental uncertainty, multi-agent non-stationarity, com-

munication uncertainty, partial observability, and computing-resource uncertainty. Fur-

ther, the degree of uncertainty in all these sources changes with time, introducing yet

another challenge.

In this dissertation, I propose novel solutions to deal with environmental, multi-agent

non-stationarity, partial observability, and communication uncertainties, and present

advanced techniques for real-time and autonomous operation of an IPS—or a group of

IPSs—acting in a dynamic and unknown environment, primarily targeting UAV-based

real-time autonomic search of objects/victims in a post-disaster scenario. To this end,

I propose the following techniques needed to address the challenges mentioned above.

ii

• Multi-IPS coordination—making high-level decisions in coordination with other

UAVs acting in the environment in order to maximize the mission objective; this

is challenging as the environment appears non-stationary from the view of any

one UAV as other UAVs are taking actions independently. For this, I propose an

actor-critic based Multi-Agent Deep Reinforcement Learning (MADRL) frame-

work where the critic is trained in a centralized manner and the actor is decen-

tralized and is used during deployment (testing).

• Imperfect communication and partial observability—the communication among the

UAVs may not be perfect resulting in packet drops and delays; moreover, each

UAV may not be able to observe the underlying state fully due to restricted field

of view of the camera. For this, I propose to enhance the MADRL framework by

augmenting it with Recurrent Neural Networks (RNNs) such as Long Short-Term

Memory (LSTM) Neural Networks (NNs) to maintain state over time and to solve

the partial observability/limited communication problem.

• Context-awareness and validation—context is a generic term used to denote the

operating conditions e.g., environmental light/weather conditions, remaining op-

erational time of a UAV, time, location, etc. It is well-known that context-aware

decision making yields better results than decision making done without taking

context into account; this means that it is important to validate the context

(obtained from sensors) especially in some secure missions. For this, I propose

a Hidden Markov Model (HMM) based context modeling and prediction engine

leveraging the history of personal and group behavior of the UAV; the proposed

model can be used to predict the current (and also future) context of the UAV,

which can be used to validate the sensor context.

• On-board proactive real-time monitoring and anomaly detection—as the UAVs are

operating in a dynamic/uncertain environment, it is paramount to monitor proac-

tively the operation of the UAV. For this, I propose a Convolutional Neural Net-

work (CNN) and bi-directional LSTM (bi-LSTM) NN-based multi-task learning

framework for real-time anomaly detection using UAV scalar sensor (non-image)

iii

data, e.g., accelerometer and gyroscope obtained from the on-board Inertial Mea-

surement Unit (IMU).

• On-board diagnosis and anomaly identification—after detecting that an anomaly

has happened, it is important to also classify/identify/diagnose the type of anomaly

so as to determine which (sequence of) corrective actions need to be performed.

For this, I propose a CNN-biLSTM based deep network classifier for classification

of (pre-known) anomalies using IMU data; I also profile the performance of these

techniques when run on drone-mountable/comparable hardware such as NVIDIA

Jetson TX2 Graphical Processing Unit (GPU), Raspberry Pi B, etc.

Finally, I thoroughly validate and assess the performance of all the techniques pro-

posed in this dissertation towards enabling the application of real-time autonomous

search missions using a group of UAVs operating under uncertain environments via

computer simulations, hardware-in-the-loop emulations, and real-world experiments.

iv

Acknowledgements

I would like to express my deepest gratitude and sincere appreciation to my Ph.D.

advisor, Dr. Dario Pompili, for his constant support, guidance, and encouragement

throughout the course of my doctoral study and research. I have always been inspired

by his in-depth interdisciplinary knowledge as well as by his vision and aspiration for

high-quality research. From Dr. Pompili I have learned how to always keep the bar high

and to strive for the best possible achievement. I am honored to have been working

under his supervision and I simply cannot thank him enough for his constant advice on

the many aspects of a doctoral student’s life and research career.

I would like to extend my gratitude to Drs. Saman Zonouz, Roberto Tron, and

Bo Yuan for serving as committee members in my qualifying exam first, in my thesis

proposal later, and ultimately in my dissertation defense. I sincerely thank them very

much for their valuable comments and suggestions on various aspects of my research

since the early days of my Ph.D program. I would also like to thank Drs. Teruhisa

Misu and Akshay Nambi for being my collaborators and mentors during my three-

month summer internships with Honda Research Institute USA, Mountain View, CA

and with Microsoft Research, Bengaluru, India, respectively. Their invaluable industrial

and research experience has helped me make strong connections between theoretical

research and real-world problems.

I am also grateful to Drs. Waheed Bajwa, Shantenu Jha, and Salim El Rouayheb

for serving as the committee members for my PhD qualifying examination and for their

helpful feedback and advice, which have helped me in the latter part of my PhD career.

I am also grateful to Drs. Saman Zonouz and Abdeslam Boularias for being my course

instructors during the initial years of my PhD; they further strengthened my interest in

Reinforcement Learning and Artificial Intelligence domains.

v

I would like to thank all the CPS Lab members and collaborators, Xueyuan Zhao,

Mehdi Rahmati, Parul Pandey, Gabriel Salles-Loustau, Chuanneng Sun, Khizar Anjum,

Yung-Ting Hsieh, Anthony Yang, Sanjana Devaraj, Mohammad Nadeem, Wenjie Chen,

Ayman Younis, Parsa Hosseini, and Abolfazl Hajisami for the discussions and collabo-

rations. My sincerest thanks to all the co-authors of my publications. I would like to

also thank all my wonderful friends at Rutgers University, especially Rohith Jagannath,

Vishwanath Sindagi, Sriharsha Etigowni, Amol Kumtakar, Sudarshan Kolar, Abhilash

Narayana, Ravi Kumar, Naveen Yerratha, and Pankaj Shukla for making my Ph.D.

student life enjoyable.

I am grateful for the financial support from the Department of Electrical and Com-

puter Engineering, Rutgers University and from the Department of Homeland Secu-

rity Science & Technology Directorate (DHS S&T) Cyber Security Division (Contract

No. D15PC00159), Office of Naval Research (YIP Grant No. 11028418), National Science

Foundation (NSF) (Grant Nos. NRI-1734362, RTML-1937403), which have provided me

with the necessary resources to carry on research and finish this dissertation.

Last, but not least, I would like to thank my parents, Mr. Veeranjaneyulu Sadhu

and Mrs. Anasuya Devi, my aunt, Mrs. Visalakshmi Sadhu, my uncle, Mr. Narasimha

Murthy Sadhu, my brother and sister-in-law, Mr. Hanumantha Kumar Sadhu and Mrs.

Satya Mrudula Vellala, my wife, Mrs. Sravani Prakki, my in-laws Mr. Bhagiratha Sarma

Prakki and Mrs. Kalyani Prakki, and all my relatives for the continued understanding,

moral support and encouragement. Their unconditional love and support have given me

the strength to chase my dreams and aspirations. To them, I dedicate this dissertation.

vi

Dedication

To my parents, uncle, aunt, brother, sister-in-law, wife, and in-laws

vii

Table of Contents

Abstract . ii

Acknowledgements . v

Dedication . vii

List of Tables . vii

List of Figures . viii

1. Introduction . 1

1.1. Overview and Motivation . 1

1.2. Research Objectives . 3

1.3. Dissertation Organization . 7

2. Autonomous Data Collection via Multi-Agent Reinforcement Learning

for Disaster Situational Awareness . 10

2.1. Introduction . 10

2.2. Related Work . 12

2.3. Proposed Solution . 14

2.4. Performance Evaluation . 21

2.5. Summary . 27

3. Aerial-DeepSearch: Distributed Multi-Agent Deep Reinforcement Learn-

ing for Search Missions . 29

3.1. Introduction . 29

3.2. Related Work . 32

3.3. Proposed Solution . 35

viii

3.4. Performance Evaluation . 42

3.5. Summary . 51

4. HCFContext: UAV Context Inference via Sequential History-based

Collaborative Filtering . 53

4.1. Introduction . 53

4.2. Related Work . 56

4.3. Proposed Solution . 59

4.4. Performance Evaluation . 71

4.5. Summary . 83

5. Deep Multi-Task Learning for Fault/Anomaly Detection Using Scalar

Sensor Data . 84

5.1. Introduction . 85

5.2. Related Work . 88

5.3. Proposed Solution . 91

5.4. Performance Evaluation . 97

5.5. Summary . 105

6. On-board Deep-learning-based UAV Fault Cause Detection and Iden-

tification . 106

6.1. Introduction . 106

6.2. Related Work . 109

6.3. Proposed Solution . 110

6.4. Performance Evaluation . 117

6.5. Summary . 123

7. Conclusion and Future Directions . 125

7.1. Summary of Dissertation Contributions 125

7.2. Future Directions . 126

References . 132

ix

List of Tables

4.1. Example context observations of user u for times t = 1, ..., T 59

4.2. Lifemap dataset analysis (9 weeks, 5 users, 1 hour sampling). 71

4.3. Use case illustrating the predictions (with corresponding maximum prob-

abilities) at 1 pm on one Tuesday in the test period. 76

5.1. Distribution of maneuvers/labels in the Honda Driving Dataset (HDD). 99

5.2. Comparison of normalized reconstruction MSE losses. 102

5.3. Comparison of qualitative results by analyzing top 0.01% scores. 102

5.4. Comparison of normalized reconstruction MSE losses (without U-turn

data). 104

5.5. Comparison of percentage of U-turns detected (qualitative results) by

analyzing top anomaly scores. 105

6.1. Inference times for autoencoder (AutoEnc) on different hardware platforms.123

vii

List of Figures

2.1. Argus use case: a building on fire and its modelization with human

agents (A,B,C) and flying drones (D). 11

2.2. Argus high-level architecture. 12

2.3. (a) Original Image (for 3D reconstruction); (b) Sparse 3D reconstruction

showing camera positions at the bottom; (c) Dense 3D reconstruction. . 16

2.4. Variation of T , α to perform periodic exploration. 20

2.5. Argus android app: (a) sensor options User Interface (UI); (b) initial

instruction; (c) camera UI and feedback (Up/Down/Right/Left). 20

2.6. Incident scene [1] with 4x4 MDP grid shown in white. 21

2.7. (a) Final Q-Values calculated by our framework using distributed Q-

learning; (b) Final values (which are maximum Q-values in each state)

calculated by our framework with arrow heads showing the optimal ac-

tions for each state. We can notice that fire states have higher values

compared to the others and the optimal policy indicated by arrow heads

leads the agents to the fire states (middle two cells in the second row)

where they stay most of the time. 22

2.8. Time steps needed for convergence (i.e., full exploration) as the number

of agents increases for different learning rates (we assume one second per

move/step). 23

viii

2.9. (a) Time spent in fire states [%] vs. temperature half life (1 agent);

(b) Time spent in fire states [%] vs. learning rate half life (1 agent).

These are for an allotted time of 180 timesteps. We can observe that the

percentage of time spent on fire states reduces as Thalf increases. This

is because there is more exploration as Thalf increases, thus reducing the

time spent on fire states. We observe a similar behavior in Fig. 2.9(b). . 24

2.10. Time spent in fire states [%] vs. temperature half life (10 Agents). . . . 25

2.11. (a) Time spent in fire states [%] vs. learning rate half life (10 Agents); (b)

Time spent in fire states [%] as the time allotted to the agents increases

(T, α = 50). 26

2.12. Random fire occurrences and model adaptation. 26

2.13. (a) 3D reconstruction in an indoor environment using single drone [2];

(b) 3D reconstruction in an outdoor environment using two drones [3]. . 27

3.1. Illustrative example of a search for ‘red sedan car’ using two aerial drones

in AirSim simulator [4]. 30

3.2. (a) Actor-Critic architecture [5], where the TD-error of critic is used to

update both the critic and the actor; (b) Multi-agent Actor-Critic (MADAC)

framework—with three UAVs and three targets in the grid environment—

for illustration purpose; (c) (Top) Actor architecture of UAV 1; (Bottom)

Critic architecture of UAV 1. Similar architectures can be assumed for

other two UAVs. 35

3.3. Critic augmented with LSTM layer to handle imperfect communication

and partial observability scenarios. Actor has similar architecture. 41

3.4. Average reward of the agents vs. number of training episodes when num-

ber of agents = (a) 2; (b) 4; (c) 6. (grid size=100 × 100; number of

targets=100) . 43

ix

3.5. (a) Total reward split across different components as training progresses

(100 × 100 gird with 100 targets and 4 agents); Trajectory followed by

the UAVs when the location of targets is (b) same between training and

testing; (c) different between training and testing. The targets shown are

all the targets in the environment. We can notice that there are more

steps in (c) than in (b). A video demo of these trajectories over time can

be seen at [6]. 44

3.6. (a) Number of steps vs. number of agents (grid size=100 × 100; number

of targets=100); (b) Number of steps vs. number of targets (grid size=100

× 100; number of agents=4); (c) Number of steps vs. grid size (number

of agents=4; number of targets=100). 46

3.7. (a) Number of steps vs. pts for different detection percentages when

ptr = 0; Advantage in number of steps with respect to ptr = 0 when

(b) ptr = 0.1; (c) ptr = 0.5. Advantage of LSTM in number of steps

with respect of not using LSTM for different values of pts and detection

percentages, when (d) ptr = 0; (e) ptr = 0.1; (f) ptr = 0.5; (number of

agents=4; grid size=100 × 100, number of targets=100). 49

3.8. Comparison of performance in terms of number of steps vs. detection

percentage across with- and without-LSTM models and different ptr val-

ues when (a) pts = 0; (b) pts = 0.1; (c) pts = 0.5; (no. of agents=4; grid

size=100 × 100, no. of targets=100). 51

4.1. A user’s personal (left) and group/collaborative filtering (right) behavior

that can provide some clues about user’s context at any given time. . . . 54

4.2. Plate notation of HCFContext . F is the total number of features, VF

denotes the total number of possible values for feature F , |Ft| = |Vt|

denotes the number of features observed at time t, M is the number of

users, and K is the number of hidden context states. 61

4.3. Perplexity vs. K: (a) 1 user case; (b) 2 user case. These figures help

identify the best 2 user groups (most related two users). 71

4.4. Perplexity vs. K: (a) 3 user case; (b) 4 and all user case. 72

x

4.5. (a) Log likelihood of the training data and time taken vs. number of it-

erations of EM algorithm for different models; (b) Comparison of perfor-

mance (HPContext + HCFContext (2) + HCFContext (3)) for different

choices of test data - first, mid, and last three weeks. 72

4.6. Average accuracy of the proposed models—HPContext , HPContext +

HCFContext (2), HPContext + HCFContext (2) + HCFContext (3) in

predicting the respective features at different times in a day (averaged

over all 21 test days/4 runs). 75

4.7. Percentage of excellent/good/bad predictions—(a)-(c) at different times

of day; (d)-(f) for different days of week. 78

4.8. (a) Comparison of performance among HPContext , HCFContext (with

fixed optimal user group), HCFContext (with dynamic optimal user group).

(b) Worst-case errors of parameters [10 runs] (%). (c) Time taken to run

Algorithm 4.1 for different number of training (time) samples vs. key

length (bits). 81

5.1. A high-level overview of the proposed multi-task deep learning based

approach for anomaly detection in multi-modal time-series driving dataset. 86

5.2. LSTM Autoencoder—the encoder cells encode the input data into a rep-

resentation that is stored in the cell state of the last encoder LSTM cell.

The decoder cells take it as input and try to generate the time series data. 91

5.3. (Top) After the model is trained, we fit the reconstruction errors to a mul-

tivariate gaussian model; (Bottom) Given a test data point, we first find

the reconstruction error and then find the Mahalanobis distance/score of

this point with respect to the fitted gaussian distribution. Top scores can

then be analyzed as per requirements. 92

5.4. Convolutional and bi-LSTM encoder of the proposed multi-tasking learn-

ing framework in Fig. 5.2. 94

5.5. Convolutional bi-LSTM decoder for task A (autoencoder) in Fig. 5.1.

Here fw and bw refer to forward and backward respectively 95

xi

5.6. Greedy symbol decoder for task B (maneuver predictor) in Fig. 5.1. . . . 96

5.7. Scaled anomaly scores that leverages the maneuver predictions of task B

to reduce number of false positives compared to the scores in Fig. 5.3. . 96

5.8. A screenshot of the driving scene (as taken from the driving vehicle) from

the HDD dataset [7]. 98

5.9. Comparison of reconstruction MSE loss performance on test data between

multi-task learning (our approach) and a standalone autoencoder. 100

5.10. Comparison of performance on test data between multi-task learning

(our approach) and standalone symbol predictor: (a) cross-entropy loss;

(b) symbol prediction accuracy [%]. 100

5.11. Reconstruction performance of turn data between multi-task learning

(our approach) and standalone autoencoder: (a) left turn; (b) right turn;

(c) U-turn. 101

5.12. (Top) Comparison of eval data MSE reconstruction loss between multi-

task learning (our approach) and multi-class LSTM autoencoder. (Bot-

tom) Zoomed version of above showing MSE reconstruction loss for 150

to 300 training epochs, for clear visualization. 103

6.1. An overview of our proposed on-board deep-learning based UAV fault

detection and identification/classification framework. 107

6.2. Convolutional and bi-LSTM encoder (top) and decoder (bottom) of the

proposed autoencoder. 112

6.3. Proposed deep CNN and bi-LSTM architecture for fault classification.

For 1D Conv. and bi-LSTM layers, please refer the encoder in Fig. 6.2. . 113

6.5. (a) Training reconstruction loss across each channel and combined data

(experimental data); Receiver Operating Characteristic (ROC) curve for

different number of channels and window sizes—(b) experimental data;

(c) simulation data. 115

6.6. (a) Crazyflie 2.0 drone used for experiments; (b) Accuracy using magne-

tometer data; (c) Comparison of test accuracy across different channels. 116

xii

6.7. (a) A snapshot from AirSim simulator [4] shows an aerial vehicle flying

in an urban environment. The inset shows depth, object segmentation

and front camera streams generated in real time; (b) Three-dimensional

accelerometer data from the simulator after one of the propeller’s RPM

is made zero (simulating broken propeller crash); (c) The architecture of

the simulator depicting the core components and their mutual interactions.119

6.8. (a) Cross-entropy loss vs. number of training epochs for both train data

and test data; (b) Accuracy vs. number of training epochs compared

between DCLNN (ours) and SVM classifier for both train and test data;

(c) Accuracy on test data when the channel data fed to the network is

varied. 121

xiii

1

Chapter 1

Introduction

1.1 Overview and Motivation

Real-time smart and autonomic decision making in an Intelligent Physical System (IPS)

e.g., an autonomous drone or car, involves two major stages—(1) sensing (of sensor data

and then transformation into actionable knowledge) and (2) planning (taking decisions

using this knowledge). Sensing refers to reading data from on-board sensors such as In-

ertial Measurement Unit (IMU) or externally-mounted sensors such as LiDAR/Camera

sensors [8–15]. Planning refers to operating the IPS at a high-level such as navigation,

so as to execute the human-provided top-level instructions.

The challenges faced by an IPS during these two stages include coping with various

forms of uncertainty, caused by the dynamic environment in which the IPS acts. These

sources of uncertainty can be broadly classified into the following categories

1. data-quantity and -quality uncertainty : Data quantity uncertainty refers to how

much data needs to be sampled from sensors in order to extract meaningful in-

formation and generate effective decisions in a timely fashion. Data quality un-

certainty refers to noise associated with sensor and actuator data (control input),

which could be due to faulty sensors/actuators or malicious sensors/actuators

that may have been hacked. In general the challenges arising from data quan-

tity/quality need to be dealt with jointly as they are intertwined; as a matter

of fact, data-quantity and -quality uncertainties, if unchecked, may propagate up

the “raw data→information→knowledge” chain and have an adverse effect on the

relevance of the generated results.

2. model and parameter uncertainty : Model/parameter uncertainty refers broadly to

2

the uncertainty in what model/parameters need(s) to be used to process the data

and generate outputs (e.g., a neural network vs. a Support Vector Machine (SVM)

model to detect anomalies from sensor data). This can be distinguished into two

types—parameter uncertainty and model uncertainty: knowing the model but not

its parameters refers to parameter uncertainty, whereas not knowing the model

altogether refers to model uncertainty. Model and parameter uncertainties are

especially important to an IPS system such as a drone because of the next form of

uncertainty viz., uncertain and dynamic environment in which it operates. While it

is possible to fully model/control the process and environment for certain scenarios

(e.g., industrial chemical plants) it is difficult to model the environment in case of

a drone or car.

3. environment uncertainty : Environmental uncertainties refer to unknown and chang-

ing environment in which the IPS acts. These uncertainties can be either acci-

dental or malicious. Examples of the former are hits of a drone by a bird re-

sulting in breaking of blades, engine failures, etc. or real-life sudden events such

as wind changes, all events that cannot be easily predicted. The latter encom-

passes intentional attacks such as a compromised/hacked sensor resulting in data

uncertainties. Environmental uncertainties indirectly are the source of model and

parameter uncertainties.

4. communication uncertainty : Communication uncertainty refers to imperfect com-

munication with other IPSs acting in the mission. This could be due to sev-

eral factors including network impairments, interference, geographical and pri-

vacy/security constraints.

5. partial observability : Partial observability is a challenge where the agent/IPS is not

able to observe the entire state for decision making. It is only able to receive partial

observations from the environment, using which, it has to make decisions. This

could be due to limited field of view of the IPS camera, occlusions/obstructions,

etc. In multi-agent settings, this could be due to limited communication among

the agents.

3

6. computing-resource uncertainty : Computing-resource uncertainty refers to the non

deterministic availability of sufficient computing resources needed for timely de-

cision making. In case of a single IPS such as a drone, though this uncertainty

refers to competition for CPU cycles among different applications running at the

same time, this is not significant. This is especially important for a network/team

of IPSs where the computation may be shared with other IPSs. Also, this form of

uncertainty may not be key for non-real-time systems.

Notice that the degree of uncertainty in all these sources (data, models, and envi-

ronment) changes with time, introducing yet another challenge.

1.2 Research Objectives

In this dissertation, I focus on dealing with environmental and communication uncer-

tainties and partial observability. The main research objective of this proposal is develop

real-time and autonomic solutions to the problems/challenges mentioned above. Here au-

tonomic refers to properties such as self-coordination, self-optimization, and self-healing.

Research Objectives: The following are the research objectives: (i) take high-

level instructions from humans and execute them autonomously—either via pre-programmed

flight plans or complex Artificial-Intelligence (AI) algorithms—with minimal human in-

tervention (which is needed to reduce human-induced errors and to deal with human

resource scarcity). For example, two requirements in the case of autonomous data col-

lection for disaster regions are coverage and privacy preservation (e.g., obscuring the

faces of people who do not want to be found). The IPS should be able to provide full

coverage of the entire situation in an autonomous manner by sensing the current state,

reasoning on what needs to be captured (e.g., more information pertaining to relevant

regions such as fire regions in case of forest fires or as indicated by humans), communi-

cating with other IPSs, and acting appropriately to accomplish the mission. In case of

a team of IPSs/drones mapping/sensing a region, a good coordination is needed among

themselves so as to not collide, to divide the task at hand into multiple subtasks, and

then to assign those subtasks to different agents in order to maximize the amount of

4

useful information collected. In such cases, additional coordination with humans may

also be needed. Furthermore, with privacy becoming an important requirement in peo-

ple’ lives, it is essential that the IPSs behave ethically by not capturing any private

information of people who chose to be so.

(ii) specifically considering the application of ‘search’ missions using a group of

UAVs, the first main challenge is represented by the fact that the environment is typically

unknown and needs to be explored. Existing formulations represent the environment as

a 2-D grid map (also known as a occupancy map), and use frontier-based/reinforcement

learning-based approaches which are mostly limited to single agents. The second major

challenge is the coordination of multiple agents. Technically, this is due to the fact

that the environment, from the point of view of any given agent, is non-stationary, due

the actions of other agents. In case of aerial multi-UAV SAR missions, most existing

multi-agent techniques focus on the offline planning of routes that obtain the best cov-

erage in an apriori fully known environment; such plans are not generalizable to new

environments.

(iii) decision making that takes context into account yields better results; here the

context can comprise of several attributes such as location, time, remaining operational

time, environmental conditions such as light levels. In some secure missions, it is not

recommended to rely solely on the context obtained from sensors (such as camera, GPS,

etc.) as they could be hacked unknowingly. As decision making relies on context, it is

very important to validate the context from sensors, before using it for decision making.

(iv) as the UAV(s) are operating in a dynamic and uncertain environment, it should

proactively monitor its operation so as to detect if it has deviated from the normal

operation i.e., if it has entered any danger mode. For example, in the case of a drone, if

a propeller breaks down due to wear or any other reason, the drone should first detect

that something abnormal has happened;

(v) it should identify/diagnose the type of misoperation so as to determine what

(series of) corrective actions to pursue. For example, in case of a drone, the action to

take differs between the cases of a gradual wind change and a malicious attack on the

propellers causing an irregular Revolutions Per Minute (RPMs) of the rotor blades (e.g.,

5

opposite direction/different RPMs).

Contributions: In this dissertation, I propose solutions to address the above men-

tioned challenges and research objectives. In particular, novel reinforcement learning

based techniques are proposed to impart self-coordination and self-optimization capa-

bilities, while novel neural-network based techniques for proactive fault detection and

classification bestow the self-healing property. Specifically,

(i) in order to address the multi-UAV coordination problem, as a preliminary step,

I consider the example of coordinated (media) data collection (among drones and hu-

man bystanders) from a disaster scenario, based on human-provided directions such

as whether to give importance to total coverage, or to some specific scenarios (e.g.,

fire regions in case of a fire accident). For this, I design a Multi-Agent Reinforcement

Learning (MARL) framework based on Q-learning that uses a centralized Q-table for

all agents (drones/human bystanders). This framework has been tested via simula-

tions and shows that the exploration time significantly reduces as the number of agents

participating in the solution increases.

(ii) the preliminary MARL framework proposed above has several limitations such

as—(a) unable to scale to high-dimensional state and action spaces; (b) prone to sin-

gle point of failure due to centralized updating of Q-table; (c) prone to divergence

when distributed/local Q-tables are considered due to the non-stationary issue—this

is because the environment appears non-stationary from the view of any one agent as

other agents are taking actions independently, violating the Markov conditions required

for convergence. In order to address these limitations, I propose and implement a dis-

tributed actor-critic based Multi-Agent Deep Reinforcement Learning (MADRL) frame-

work for multi-agent real-time coordination with special attention to the application of

victim/object search in dynamic and unknown environment such as a post-disaster sce-

nario. The proposed framework leverages deep reinforcement learning to address the

scalability issues and “centralized training with decentralized execution” approach to

address the remaining two issues.

(iii) in order to validate the context obtained from sensors (for secure missions), I

6

propose two stochastic models based on the theory of Hidden Markov Models (HMMs)—

personalized model (HPContext) and collaborative filtering model (HCFContext). The

former predicts the current context using sequential history of the UAV’s past contextual

observations; the latter enhances HPContext with collaborative filtering features, which

enables it to predict the current context of the primary UAV based on the context

observations of UAVs related to the primary UAV, e.g., UAVs operating in the same

mission, following same paths, etc. Furthermore, in collaborative filtering based multi-

party settings as above, where the private information of different entities is used to

collectively build a model as above, it is important to preserve each party’s privacy

i.e., hide the information of one party from the other. For this, I propose a a privacy-

preserving method to derive HCFContext model parameters based on the concepts of

homomorphic encryption.

(iv) in order to bestow the self-healing capability, I first propose a deep multi-task

learning based anomaly detection framework that takes scalar sensor (e.g., accelerom-

eter, gyroscope, etc.) data to detect if the UAV has entered any potentially abnormal

situation/danger mode. The proposed multi-task anomaly detection framework con-

sists of two tasks which complement each other, in that, one task acts as a regularizer

for the other so as to improve the former’s performance and vice-versa. The first task

consist of Convolutional Neural Network (CNN) and bi-directional Long Short Term

Memory (bi-LSTM) Neural Network autoencoder, while the second task consists of

CNN and bi-LSTM symbol predictor. While this work is originally developed to detect

anomalies in driving data, I borrow some of the ideas proposed here for UAV anomaly

detection discussed in the next point. The proposed deep multi-task learning framework

has been tested on 150 hours of driving data collected by the autonomous car division of

Honda Research Institute USA. The framework has shown promise in detecting different

types of anomalies such as sudden braking and abnormal lane changes. It also performed

better when compared to baseline approach such as a simple LSTM autoencoder and

its multi-class variant.

(v) I extend the above framework for UAV fault detection and classification. In par-

ticular, I design a CNN and bi-LSTM neural network autoencoder to detect abnormal

7

UAV operation and a CNN-biLSTM neural network classifier to identify/classify the

type of anomaly the UAV has encountered. Since it is not feasible to list all the types

of anomalies that a UAV will encounter beforehand, we assume a subset of anomalies

viz., all the combinations of broken propeller scenarios (one/two/three propeller break-

downs) to collect data and test our classifier. To show the real-time capabilities of our

algorithms, We have profiled these algorithms on a drone-comparable/mountable hard-

ware such as Nvidia Jetson TX2 GPU to find out the times required for inference. We

show that the inference times are appropriate for real-time operation/intervention.

(vi) I validate and assess the performance of all the above proposed solutions es-

pecially the self-coordination, self-optimization, self-healing and real-time aspects via

computer simulations, hardware-in-the-loop emulations and real-world experiments.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows.

Chapter 2 details our solution for MARL based autonomous and coordinated

data collection from disaster regions. The proposed Multi-Agent Reinforcement Learn-

ing (MARL) framework allows for coordinated (media) data collection (among different

drones and human bystanders) from a disaster scenario, based on human-provided direc-

tions such as whether to give importance to total coverage, or to some specific scenarios

(e.g., fire regions in case of a fire accident). This proposed MARL framework has been

tested via simulations and results that the exploration time significantly reduces as the

number of agents (drones/human bystanders) participating in the solution increases.

Chapter 3 presents our approach of designing a novel actor-critic based MADRL

framework for autonomous aerial exploration of an area for target detection using a

group of UAVs. In this approach, each UAV maintains a neural-network based actor

and critic networks, where the critic is trained by augmenting it with the state and

action information of all other UAVs during training. Such a critic is used to update

the parameters of the actor network during training. During testing, only the actor

network is used without using the actions of other UAVs. We also augment the actor

8

and critic networks with LSTMs so as to deal with imperfect communications and partial

observability scenarios. We test our approach via Python simulations in a grid-world

based environment with full, partial observability and limited communication scenarios.

Chapter 4 presents our privacy-preserving, sequential history-based personalized

and collaborative-filtering techniques for context modeling and prediction. Specifically,

we first propose a stochastic model based on Hidden Markov Model (HMM) theory

for learning the personal sequential patterns from the contextual history of a UAV.

We then enhance it by also learning the UAV’s group contextual patterns via HMM

based collaborative filtering. Lastly, we also present privacy-preserving algorithms for

multi-party parameter estimation of the proposed HMM models using homomorphic

encryption. Our approach can be used to validate and/or enhance the sensor context in

certain secure missions. Their feasibility for practical deployment is shown by evaluating

on a real-life dataset with over 80% accuracy.

Chapter 5 details our solution for anomaly detection via deep multi-task learning

framework consisting of CNN and bi-LSTM autoencoder and a symbol predictor, that

takes scalar sensor data as input. The proposed deep multi-task learning based anomaly

detection framework takes scalar sensor (e.g., accelerometer, gyroscope, etc.) data to

detect if the IPS has entered any potentially abnormal situation/danger mode. The

framework consists of two tasks which complement each other, in that, one task acts

as a regularizer for the other so as to improve the former’s performance. The first task

consist of Convolutional Neural Network (CNN) and bi-directional Long Short Term

Memory (bi-LSTM) Neural Network autoencoder, while the second task consists of

CNN and bi-LSTM symbol predictor. The proposed deep multi-task learning framework

has been tested on 150 hours of driving data collected by the autonomous car division

of Honda Research Institute. The framework has shown promise in detecting different

types of anomalies such as sudden braking and abnormal lane changes. It also performed

better when compared to baseline approach such as a simple LSTM autoencoder and

its multi-class variant.

Chapter 6 details our solution for UAV anomaly detection and classification via

CNN-biLSTM deep network classifier with scalar sensor data as input. The proposed

9

CNN-biLSTM neural network classifier identifies the type of anomaly the UAV has

encountered. Since it is not feasible to list all the types of anomalies that an IPS will

encounter beforehand, we assume a subset of anomalies viz., all the combinations of

broken propeller scenarios (one/two/three propeller breakdowns) to collect data and

test our classifier. We have profiled the algorithm on a drone-comparable/mountable

hardware such as Nvidia Jetson TX2 to find out the running times for inference. We

show that the running times are appropriate for real-time operation/intervention.

Chapter 7 provides a conclusion to the thesis and also presents future research

directions to further extend the state-of-the-art for each of the above chapters.

10

Chapter 2

Autonomous Data Collection via Multi-Agent
Reinforcement Learning for Disaster Situational Awareness

Disaster management involves a very large number of heterogeneous agents in an un-

controlled and potentially hostile environment. These agents include victims and the

rescue personnel that eventually intervene. Situational-awareness techniques involving

better incident management strategies would help to reduce disaster damage.

2.1 Introduction

Motivation: Traditionally, incident reporting relies on expensive information col-

lection from authorities. These reportings happen most often in an offline manner

and fail to provide ahead of time actionable information to incident response team.

However, in these situations it is common to find people present at those locations

(bystanders/onlookers) to record the scene using their smartphones. Very few of the

existing incident response frameworks take advantage of this valuable information. We

argue that this information is valuable because it is first hand, real time and local,

and could provide fine-grained information about the scene. Also, in some cases, this

information can be complemented by drones taking pictures or videos of the disaster

scene.

Our Approach: Contrary to existing solutions such as those based on CCTV

cameras, our solution, Argus (from Argus Panoptes, the “all-seeing" 100-eye giant in the

Greek mythology), utilizes this valuable information coming directly from the bystanders

and also provides a base framework wherein both the drones/robots and humans can

collaboratively work to provide valuable and fine-grained information to the rescue au-

thorities. Argus is implemented as a mobile application that can be installed on the

11

S1 S2 S3

S4 S5 S6

S7 S8 S9

A
B

D

C

Figure 2.1: Argus use case: a building on fire and its modelization with human

agents (A,B,C) and flying drones (D).

users’ smartphones to capture and process data such as images of the incident scene.

We then consolidate this valuable data into an easy-to-visualize form such as a 3D map

of the disaster scene in real time. The reasons to consider 3D maps over scanning in-

dividual images is as follows: (i) it is difficult to process individual images one by one

as they could be in huge number; (ii) there could be redundant/duplicate images e.g.,

same image from different angles;However, these same reasons become advantageous for

3D reconstruction as it needs several images from different views. Also, generating a 3D

model from a sequence of images is much cheaper than using other techniques such as

3D scanners. We believe that integrating other well-known technologies such as audio

source separation into our framework can add value (such as to prioritize some regions

over others). We will investigate it as part of our future work. In this chapter, we make

use of a Multi-Agent Reinforcement Learning (MARL) framework for adaptive and ef-

fective data collection. The reasons for considering MARL are as follows: (1) to enable

full coverage of the scene, without which most of the images would correspond to a few

conspicuous regions only (e.g., fire regions); (2) to enable fine-grained (high resolution

in 3D maps) coverage in regions of interest specific to the operating personnel (e.g.,

behind the building). A high-level overview of our framework can be seen in Fig. 2.2.

Main contributions can be summarized as follows:

12

����

����	
���

����������	�
���

�������

����

�	�����	�

�������	���
��
��������	
������	��

�����������

���������	�������

����������� ��������	��	 �������

���

�	�
���

��������

�������

��������

������

Figure 2.2: Argus high-level architecture.

• A Multi-Agent Reinforcement Learning (MARL) based framework for real-time

coordinated incident response data collection using both human-bystanders and

drones.

• Evaluation of the MARL framework through simulations to find optimal design

parameters and to study its behavior for random fire occurrences.

Chapter Outline: In Sect. 2.2, we position our work with respect to state-of-

the-art in related research. In Sect. 2.3, we present the Argus architecture and the

system design including the MARL and Q-learning frameworks. In Sect. 2.4, we study

our framework by varying the design parameters and also evaluate its performance for

random fire occurrences. Finally, we summarize the chapter in Sect. 2.5.

2.2 Related Work

MARL has been investigated for various emergency scenarios previously. For exam-

ple, the applicability and usefulness of MARL to building evacuation simulations for

emergency/disaster situations and to model a large building containing multi-agent

heterogeneous population attempting to evacuate in the presence of a non-stationary

fire is investigated in [16]. In [17], design and development of a mobile system is pre-

sented that reconstructs 3D model of a building’s interior structure in real time and

fuses the visualization with the image of a thermal camera. RescueNet [18] proposes

13

a networking paradigm based on MARL to enable reliable and high data-rate wireless

multimedia communication among public safety agencies using mission policies that en-

able graceful degradation in the Quality of Service (QoS) of the incumbent networks

in times of emergency. The RoboCup Rescue project [19] hosts yearly competitions to

promote research and development in the rescue management of disaster situations such

as earthquakes, fires, etc. The goal of the agent competition is to implement control

policies for emergency services such that the maximum number of lives are saved and

fires extinguished.

Several works focus on modeling incident response operations but very few can be

used in real disasters as there are several challenges to be tackled in practical situa-

tions [20–29]. Various solutions for real-time monitoring of incident zones including

interactive systems are proposed in [30, 31]. Design and implementation of a frame-

work to simulate incident response such as building evacuation with modeling victims

as agents with specific set of properties such as their visibility is presented in [32]. A

multiple-agent Markov Decision Process (MDP) model is leveraged to synchronize the

actions of the response team after an incident in [33]. None of these frameworks use

MARL for data collection from the bystanders to create 3D maps as we do.

Regarding MARL, there are two types of frameworks, cooperative and competi-

tive [34]. In the former the agents work cooperatively towards a common goal (with

same rewards), while in latter agents compete against each other with opposite rewards

(e.g., the sum of the rewards of all agents is zero). Our scenario corresponds to the

former one. A simple MARL framework for cooperative agents without assuming any

coordination among the agents is proposed in [35]. Each agent maintains a local Q-table

and a policy, both of which are updated only if there is an improvement in the Q-values.

However, for each local (state, action) pair, it requires that the other agents’ actions

happen infinitely often, which may not be practical in time-constrained scenarios. The

idea of Q-value sharing is proposed in [36, 37]. We make use of similar concept ex-

cept that all agents share the same Q-table instead of individual tables with knowledge

sharing as they propose, and also our application setting is different from theirs.

14

2.3 Proposed Solution

Argus use case: Fig. 2.1 presents a use-case scenario for Argus, which shows a build-

ing (represented by cube) on fire. Other use cases could be large forest fires, flooding,

a terrorist attack, etc. Argus is installed as a mobile phone application and directs by-

standers present at the incident zone on what actions to take (e.g., what pictures to take

using their smartphones) to gather relevant information pertaining to the incident zone.

This is achieved as follows. Argus decomposes the incident zone into multiple subzones

with sufficient overlap. For example, in the case of building on fire, each subzone could

correspond to a face or corner of the building with corners enabling overlap between the

faces of the building. Each subzone is further divided into a rectangular grid consisting

of states S0, ...S9, as shown in Fig. 2.1. The grid size is determined based on several

factors such as the area of the incident scene, distance between the incident scene and

the bystanders, etc., which we will investigate in more detail in future work. Each grid

is cast as a Markov Decision Process (MDP), which is solved using MARL (specifically

Q-learning as we will explain later) with agents being the bystanders around the incident

zone (A,B,C) and any drones (D) that can assist humans in the data-gathering process.

RL is a model-free process in that, it has the advantage of not knowing the state tran-

sition probabilities in advance. The actions are the standard actions of a grid world

environment e.g., “Up”, “Down”, “Right”, “Left”. The Argus mobile application, which

interfaces with the MARL framework running in the cloud, directs the agents (humans

or drones) on what information to collect from the incident zone by giving directions

such as “Left," “Up," etc. The drones could take part in the process just as humans or

could complement them by capturing information that may not be accessible to humans

(for example, a forest/dense plant covering along one face of the building that is not

accessible to humans) or they could be assigned special tasks to capture information in

regions where it is incomplete and immediately needed. As mentioned earlier, we have

chosen to create a 3D map of the disaster scene, in which case the information gathered

from the agents will be images or videos of the disaster scene. We aim at providing

near real-time 3D mapping of the disaster scene so that the rescue personnel are aware

15

of the entire situation, know where to immediately focus their attention on or plan ap-

propriately. We used a GUI program called VisualSFM [38] for the 3D reconstruction,

which consists of two parts, a well-known Structure From Motion (SFM) algorithm [39]

for sparse 3D and CMVS/PMVS [39] for dense 3D reconstruction. Fig. 2.3(b) and

Fig. 2.3(c), respectively, show the sparse and the dense 3D reconstruction of a building

(Fig. 2.3(a)) using SFM and PMVS/CMVS packages found in VisualSfM. We have used

12 images of the building taken from different views using LG D800 smartphone with

1 MP resolution. We would like to mention that in real incidents it is realistic to assume

to have hundreds of images, making the reconstruction more detailed. Also, there will

be a higher resolution in areas of interest such as fire regions, damage regions, etc. as

they will be the reward states in MARL, as we explain below.

Argus architecture: Our framework consists of the following parts, as shown in

Fig. 2.2: 1. A client-side data-collection framework that is part of the mobile application

for collecting image and/or audio data from the users smartphone (audio data can

provide additional situational awareness information about the incident zone e.g., baby

cries which needs to be given more importance) 2. A server side, MARL framework

that interfaces with the mobile application (MARL Interface) and directs the agents on

what parts of the disaster scene to capture by providing directions such as “Left," “Up,"

etc. 3. A server-side data-processing framework that uses the images and/or audio data

sent by the clients to generate 3D maps and other processing tasks (such as audio source

separation). This processed data in the form of 3D maps is then sent to rescue office

personnel who are in a position to guide rescue personnel using this information. The

MARL framework directs the agents (humans/drones) to capture photos in a proper

way, i.e., capturing a few photos to give the context and many others primarily focused

around the regions of interest. Our framework achieves this by assigning more rewards

to the data corresponding to interest regions. We make use of distributed Q-learning

to solve our MARL problem. During the exploration phase of Q-learning, the agents

explore the entire disaster scene to find reward states. This phase ends when the Q-

values converge and simultaneously helps create a coarse 3D map of the entire scene.

Then, during the exploitation phase, more time is spent in reward states to create a

16

(a)

(b)

(c)

Figure 2.3: (a) Original Image (for 3D reconstruction); (b) Sparse 3D reconstruction

showing camera positions at the bottom; (c) Dense 3D reconstruction.

finer 3D maps of those regions. We chose Q-learning as it is model free and can adapt

to changing environments (such as fire propagation).

System Design: We now describe our MARL framework consisting of a distributed

17

Q-learning approach for exploration and of a periodic exploration-exploitation mecha-

nism to capture the dynamicity of the environment. To reiterate, our MARL framework

is used for data collection only. As the images are obtained, 3D reconstruction is done

using those images in real time, as mentioned in Sect. 2.3.

MARL Framework: Although our framework is quite general and can be applied to

any scenario, in order to be concrete we will continue with our example of “building

on fire” scenario as in Fig. 2.1. We formulate the problem as a MDP as follows. We

divide the building into 8 surface views consisting of 4 faces and 4 corners assuming a

regular cuboid structure. Each surface and corner are modeled as a rectangular grid,

and the bystanders present near that view are assigned to that particular MDP making

that process a Multi-Agent System (MAS). In case of corners, the grid is created by

stitching some portions from both the constituent faces to enable overlap with the faces.

Each MDP acts independently of others. Images from all MDPs are fused to form the

3D map of the building. The states are the cells (x,y) of the grid. For now, let us

assume that the humans (agents) participating in our framework are static and can

only pan or tilt their phones. An agent is said to be in a state (x,y) if it positions its

smartphone camera focusing/centering on the cell (x,y). The actions for each state are

that of a standard grid-world MDP: {Left, Right, Up, Down}. Here, Left and Right

are realized by panning (rotating along vertical axis) the phone by a specific angle θx

in those directions. Two continuous Right actions would mean panning by 2θx to the

right and so on. On similar lines, Up and Down are realized by tilting (rotating along

horizontal axis) the phone by a specific angle θy. We could make use of gyroscopes in the

phone to provide feedback to the users on when to stop panning (or tilting) the phone

when they have covered an angle of θx (or θy) in the specified directions. Whenever an

agent takes an action to move to a different state, it captures the image of the current

state (grid cell in the MDP) before panning/tilting the phone. This image determines

the reward the agent receives for that state. In other words, our reward is dependent on

the state alone rather than on the state-action-state sequence. Since the regions with

more fire are of primary interest, more rewards are assigned if a higher percentage of

fire pixels is detected in the image. In order to avoid cheating by the bystanders (in

18

the event of providing incentives to bystanders to use our application, which we will

consider in our future work), we normalize this by the used zoom factor (Eq. 2.1) to

bring to a standard zoom value. We note that the reward can be changed as per the

application requirements. If uniform coverage is the final goal, incomplete regions will

be reward states (e.g., images corresponding to cells with a low number of visits so far).

Using this approach, the algorithm can gear the agents to capture images of interest to

the user, where our reward is,

r(s) =
%(fire-pixels)
zoom-factor

. (2.1)

Finally, the size of the grid and θx, θy will be determined by these factors: the dimension

of the incident zone, the average distance of the agents from the incident zone, and the

average capture angle of the agents’ devices.

1) Distributed Q-Learning: Q-learning [5] consists of learning/updating Q-values

which are also called ‘state-action’ values. Q-value for a particular state and action

pair and policy, indicates the long term reward the agent receives by taking that action

in that state and following that policy thereafter. In Q-learning the agent learns from

each experience as it interacts with the environment and updates its Q-values based

on the reward that it gets from this experience. Let us denote the set of all states s

as S, the set of all actions a as A, and the reward as r. A single experience with the

environment at time t can be represented by the tuple (st, at, rt, st+1). This means the

agent was in state st, took action at, received reward rt, and landed in state st+1. The

agent learns (updates its Q-values) through a series of such experiences. We discount

the rewards obtained from future experiences as we consider the present rewards to be

more valuable than the future ones (which are more uncertain due to the probabilistic

nature of RL). Let us denote the Q-value of a state-action pair at time t as Qt(st, at).

With the experience from (st, at, rt, st+1), the Q-value can be updated as follows,

Qπt+1(st, at)← Qπt (st, at) + α[rt + γmaxaQ
π
t (st+1, a)−Qπt (st, at)], (2.2)

where π is the policy being followed, α is the learning rate and γ is the discount factor.

As can be seen from (2.2), Q-values are updated based on the immediate reward, rt,

19

and on the optimal expected return, γmaxaQt(st+1, a). Note that the learning rate α

is set to a large number in the beginning and is slowly reduced to ensure convergence.

Given that we have a MARL problem, we make use of distributed Q-learning (slightly

modified from [36,37]) where the agents share the same Q-values using a shared database

(with synchronous read/write) to expedite the exploration process. We would like to

clarify that it is still a multi-agent system except that the Q-values are the same for

all. Each agent still acts independently. As all agents are exploring in parallel and

making use of the knowledge/experience gained from all other agents (Q-values), the

exploration process is greatly sped up.

2) Periodic Exploration: There are two well-known exploration strategies: ε-greedy

approach and Boltzmann exploration. Even though both strategies drive the random-

ness in selecting action to reduce over time, there is a disadvantage with the former as

ε-greedy gives equal importance to all actions in case it needs to select a random action

(with probability ε) with no regard to the Q-values. Let us say there are 3 actions with

decreasing Q-values other than the optimal action, which has even higher Q-value. In

case of ε-greedy, all 3 actions are given equal importance whereas it would be desirable

to assign a probability that is directly proportional to the Q-value. Boltzmann explo-

ration achieves this, where the probability of selecting an action at time t (πt(a|s)) is

directly related to its Q-value (proportional to eQt(s,a)/T),

πt(a|s) =
eQt(s,a)/T∑

a′∈A e
Qt(s,a′)/T

. (2.3)

Here, the temperature parameter, T , decides the amount of exploration or exploitation;

if T is large, all actions have almost equal probability resulting in pure exploration

whereas when T tends to 0 the optimal action has the highest probability, resulting in

pure exploitation. In order to adapt to the dynamicity of the environment, we enable

periodic exploitation. In each period, there is a short exploration phase followed by a

long exploitation phase. Accordingly, we vary the exploration parameter (T) and the

learning rate (α) in a periodic fashion (Fig. 2.4). We note there are two extremes to

this mechanism. On one extreme there is a need to account for random occurrences

of fire in scenarios where the environment changes randomly, e.g., during a terrorist

20

0 100 200 300 400 500 600

Time (s)

0

0.5

1

T
, A

lp
ha

Figure 2.4: Variation of T , α to perform periodic exploration.

(a) (b) (c)

Figure 2.5: Argus android app: (a) sensor options User Interface (UI); (b) initial

instruction; (c) camera UI and feedback (Up/Down/Right/Left).

attack; in these cases, we reset the Q-values and the exploration parameter (Boltzmann

temperature) across periods to enable new learning. On the other extreme, we have

situations such as slow fire propagation where there is no significant change in the

environment across periods; in this case, it is preferable to carry forward the Q-values

to the next period so to leverage the learning in the previous period. The exploration

parameter, T , too can be reduced quickly in the next period to enable less exploration

and more exploitation. In both cases, the period will depend on the rate of dynamicity

of the scene.

Smartphone Application: Fig. 2.5 shows some screen-shots of our application.

21

Figure 2.6: Incident scene [1] with 4x4 MDP grid shown in white.

We enable the users to share other sensor information such as camera, microphone,

GPS, accelerometer, gyroscope as this will help in the 3D reconstruction (Fig. 2.5(a));

Fig. 2.5(b) shows the camera interface asking users to point towards incident zone. After

capturing the image, Fig. 2.5(c) shows the action to tilt ‘Up’ (indicated by UP arrow)

before taking the next picture. The app has an option to specify the upload server. In

a real deployment, this will be the IP address of the central server in Fig. 2.2.

2.4 Performance Evaluation

We evaluated our MARL framework based on distributed Q-learning in terms of key

metrics such as percentage of time spent by agents on capturing the fire states (reward-

states) vs. non-fire states as the parameters of the framework including the number

of agents, decay rate of Boltzmann temperature, and learning rate are varied; also,

we tested how well the algorithm adapts to random incidents. We coded the MARL

framework in Python using distributed Q-learning on a 4x4 MDP grid shown in Fig. 2.6

with S13 as the start state.

We remind the reader that the fire region will be divided into multiple MDPs where

each MDP corresponds to a single surface of building, a corner of the building, or some

other view of the incident scene. A rectangular grid will be overlaid on each of the views

where the ensuing MDP will be solved. Fig. 2.6 shows an example of this scenario (the

picture is sourced from the Internet [1]). A 4x4 grid is overlaid on the incident zone,

22

(a) (b)

Figure 2.7: (a) Final Q-Values calculated by our framework using distributed Q-

learning; (b) Final values (which are maximum Q-values in each state) calculated by

our framework with arrow heads showing the optimal actions for each state. We can

notice that fire states have higher values compared to the others and the optimal policy

indicated by arrow heads leads the agents to the fire states (middle two cells in the

second row) where they stay most of the time.

which means we have 16 states/cells in the MDP. Each agent’s action in a state will

include capturing a picture of the state (centering smartphone on the state) along with

the physical action of panning/tilting. Since we do not have pictures of the incident

scene in Fig. 2.6, we approximated the image of each state to the grid piece obtained

by dividing the picture in Fig. 2.6, as per the white grid lines. Unlike in this simplified

scenario, in reality we would have multiple pictures of each state captured by different

agents at different times and the reward would be calculated as the percentage of fire

pixels in those images. Using these approximated images (grid pieces), we calculated

the percentage of fire pixels in them and then normalized it to obtain the rewards for

these states. We can observe that only states S2, S3, S6, S7 have non-zero rewards. We

ran the distributed Q-learning with discount factor of 0.9 until convergence of the values

23

0 5 10 15 20 25 30 35 40 45 50

Number of Agents

101

102

103

104

T
im

e
st

ep
s

ne
ed

ed
 fo

r
fu

ll
ex

pl
or

at
io

n
(s

)

Alpha=0.9
Alpha=0.8
Alpha=0.7
Alpha0.6
Alpha=0.5

Figure 2.8: Time steps needed for convergence (i.e., full exploration) as the number of

agents increases for different learning rates (we assume one second per move/step).

of the states. Note that all the agents share the same Q-values in our distributed Q-

learning approach. The final Q-values and state values (which are maximum Q-values

in each state) are shown in Fig. 2.7(a) and Fig. 2.7(b), respectively. We can notice

from Fig. 2.7(b) that fire states have higher values compared to the others and that the

rewards propagate to surrounding states. Also, the optimal policy indicated by arrow

heads leads the agent to the fire states where it stays most of the time.

Exploration vs. number of agents: Fig. 2.8 shows the number of MDP time

steps needed for full exploration of the 4x4 MDP grid shown in Fig. 2.6 for different

values of fixed learning rate, α. We can see that the number of steps needed reduces

drastically (from around 3000 to 80) as the number of agents increases, which shows the

benefits of distributed Q learning and availability of multiple bystanders at the incident

zone. We can also notice that α = 0.9 is the best as the agents learn faster and take

less number of steps to reach convergence. We also note that in practice there is no

need to wait until full convergence of the values as policy converges faster than values

(so the transition to the exploitation phase is faster). We also make an assumption that

each time step in the Q-learning corresponds to about one second in wall-clock time.

The decay in Boltzmann temperature T (same for α) is modeled as a radioactive decay,

T = Tmin + (Tmax − Tmin)e
− log 2
Thalf

t
.

24

20 40 60 80 100 120 140 160 180 200

Boltzmann Temperature Half Life (THalf)

20

25

30

35

40

45

50

55

60

65

P
er

ce
nt

ag
e

tim
e

sp
en

t i
n

fir
e

st
at

es
 (

ex
pl

oi
ta

tio
n)

 fo
r

1
A

ge
nt

AlphaHalf = 25
AlphaHalf = 50
AlphaHalf = 75
AlphaHalf = 100
AlphaHalf = 125
AlphaHalf = 150

(a)

20 40 60 80 100 120 140 160 180 200

Learning Rate Half Life (AlphaHalf)

25

30

35

40

45

50

55

60

65

70

P
er

ce
nt

ag
e

tim
e

sp
en

t i
n

fir
e

st
at

es
 (

ex
pl

oi
ta

tio
n)

 fo
r

1
A

ge
nt

THalf = 25
THalf = 50
THalf = 75
THalf = 100
THalf = 125
THalf = 150

(b)

Figure 2.9: (a) Time spent in fire states [%] vs. temperature half life (1 agent); (b) Time

spent in fire states [%] vs. learning rate half life (1 agent). These are for an allotted

time of 180 timesteps. We can observe that the percentage of time spent on fire states

reduces as Thalf increases. This is because there is more exploration as Thalf increases,

thus reducing the time spent on fire states. We observe a similar behavior in Fig. 2.9(b).

Time spent in fire states vs. α and T : Fig. 2.9(a) shows the percentage of time

spent in fire states as Thalf is varied for different values of αhalf for single-agent case

with 180 time steps (3 minutes) (we have plotted the variation with different time steps

in Fig. 2.11(b)). We know that Thalf is inversely proportional to the decay rate. Large

Thalf values correspond to more exploration and less exploitation, and viceversa. We

can observe that the percentage of time spent on fire states reduces as Thalf increases.

This is because there is more exploration as Thalf increases, thus reducing the time

spent on fire states. We observe a similar behavior in Fig. 2.9(b), which shows the

percentage of time spent in fire states as αhalf is varied for different values of Thalf also

for a single agent with three minutes of allotted time. These results are averaged over

50 runs to account for randomicity present in the action selection that is based on the

values of Thalf . The ratio of exploitation to exploration can initially be around 75:25.

Later this can be adaptively changed based on fire propagation. For example, if fire is

spreading more rapidly, we would want to change this ratio to 90:10. However, we note

25

20 40 60 80 100 120 140 160 180 200

Boltzmann Temperature Half Life (THalf)

50

55

60

65

70

75

80

85

90

P
er

ce
nt

ag
e

sp
en

t i
n

fir
e

st
at

es
 (

ex
pl

oi
ta

tio
n)

 fo
r

10
 A

ge
nt

s

AlphaHalf = 25
AlphaHalf = 50
AlphaHalf = 75
AlphaHalf = 100
AlphaHalf = 125
AlphaHalf = 150

Figure 2.10: Time spent in fire states [%] vs. temperature half life (10 Agents).

that a single agent is not able to reach 70% exploitation within the time allotted, but it

is able to reach more than 75% exploitation when the time allotted is increased to five

minutes. In order to show the benefits of multiple agents, we ran the same simulation

with ten agents. The results are depicted in Fig. 2.10 and Fig. 2.11(a), which show that

there is an improvement in the percentage of time spent in the fire states compared to

the one-agent case. These results help us determine the values of the design parameters

Thalf , αhalf based on the exploitation-exploration ratio preferences. For example, if we

have ten agents and we prefer them to stay in fire regions for 75% of time (in 3-minute

window), we set αhalf = Thalf = 50.

Time spent in fire states vs. time allotted: Fig. 2.11(b) shows the percentage

of time spent in fire states as the time allotted to the agents increases from one to

ten minutes for different number of agents. We have set αhalf = Thalf = 50 based

on our previous observation. We can note that the percentage increases both as the

time allotted increases as well as the number of agents increases. However, we note a

saturation behavior in both, implying that there is a minimum amount of time needed

for exploration.

Model adaptation to random fire occurrences: To evaluate our algorithm’s

ability to adapt to dynamic environments, we evaluated our MARL framework as the fire

position changes every three minutes in a random manner, as shown in Fig. 2.12. We can

26

20 40 60 80 100 120 140 160 180 200

Learning Rate Half Life (AlphaHalf)

50

55

60

65

70

75

80

85

90

P
er

ce
nt

ag
e

sp
en

t i
n

fir
e

st
at

es
 (

ex
pl

oi
ta

tio
n)

 fo
r

10
 A

ge
nt

s

THalf = 25
THalf = 50
THalf = 75
THalf = 100
THalf = 125
THalf = 150

(a)

1 2 3 4 5 6 7 8 9 10

Time Alloted (min)

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

tim
e

sp
en

t i
n

fir
e

st
at

es
 (

ex
pl

oi
ta

tio
n)

1 Agent
2 Agents
3 Agents
5 Agents
10 Agents
15 Agents

(b)

Figure 2.11: (a) Time spent in fire states [%] vs. learning rate half life (10 Agents); (b)

Time spent in fire states [%] as the time allotted to the agents increases (T, α = 50).

�� �� �� ��

�� �� �� �	

�
 ��� ������

��� ��� ��� ���

(a)

�� �� �� ��

�� �� �� �	

�
 ��� ������

��� ��� ��� ���

(b)

�� �� �� ��

�� �� �� �	

�
 ��� ������

��� ��� ��� ���

(c)

(d) (e) (f)

Figure 2.12: Random fire occurrences and model adaptation.

see that the system is able to adapt to change in fire positions by adaptively changing

the percentage of time spent in fire states. We have enabled periodic exploration with

27

(a) (b)

Figure 2.13: (a) 3D reconstruction in an indoor environment using single drone [2]; (b)

3D reconstruction in an outdoor environment using two drones [3].

resetting of parameters, i.e., Q-values to 0, Thalf = αhalf = 50.

Video demos: A demo video (screenshot shown in Fig. 2.13(a)) showing dense

3D point cloud construction in real time using one drone in an indoor environment

(controlled via a laptop) can be found in [2]. The same (screenshot shown in Fig. 2.13(b))

involving two autonomous drones in an outdoor environment implementing multi-agent

reinforcement learning to accelerate the 3D reconstruction can be seen in [3]. Another

informative video demo that is complimentary to the above ones—showing how 3D

reconstruction can be performed using the MARL framework and the mobile application

developed as part of this chapter—can be found at [40].

2.5 Summary

We presented Argus, a Multi-Agent Reinforcement Learning (MARL) framework (im-

plemented as a mobile application plus a backend server) for cooperative data collection

to build a 3D mapping of the disaster scene using agents present around the incident

zone to facilitate the rescue operations.

The proposed framework leverages the first-hand information available at the in-

cident zone so as to perform coordinated data collection using MARL. However, the

28

proposed framework does not scale with the state and action spaces as the Q-table be-

comes larger and cannot hold Q-values for large number of state and action spaces. We

will deal with this shortcoming in the next chapter.

29

Chapter 3

Aerial-DeepSearch: Distributed Multi-Agent Deep
Reinforcement Learning for Search Missions

Disaster management discussed in previous chapter also involves searching for vic-

tims/objects using a group of drones. While, in the previous chapter, we have explored

the possibility of using the bystanders and drones for coordinated disaster scene data

collection using multi-agent reinforcement learning, in this chapter, we focus on using a

group of drones to perform a coordinated search using multi-agent deep reinforcement

learning that also addresses some of the weaknesses of the simple MARL framework

presented in the previous chapter.

Search and Rescue (SAR) operations are very important in disaster response. SAR

usually consists of the search for and provision of aid to people who are in distress

or imminent danger. The search part can also be extended to generic targets that

are of importance to the mission e.g., certain vehicles (see Fig. 3.1), people who pose

threat to public safety, lost animals, or valuable equipment. The general field of SAR

includes many specialty sub-fields, typically determined by the type of terrain the search

is conducted over; these include SAR using ground or surface versus aerial vehicles in

mountain, marine, urban, or battlefield environments.

3.1 Introduction

Motivation: The first main challenge in SAR missions is represented by the fact that

the environment is typically unknown and needs to be explored. Existing formulations

represent the environment as a 2-D grid map (also known as occupancy map), and

use a frontier-based approach, where the frontier is defined as key points or cells on

the grid that are on the boundary of the already explored area; the algorithms then

30

Figure 3.1: Illustrative example of a search for ‘red sedan car’ using two aerial drones

in AirSim simulator [4].

determine a part of the frontier to explore next using utility or cost-based approaches.

While in the former (utility-based approaches), importance is given to the expected new

information gain, in the latter (cost-based approaches), energy expended and distance

traveled are given more importance. The utility or cost functions are typically hand-

crafted for specific environments using domain knowledge; for instance, the expected

information gain is different in a marine environment with a small number of sparse

obstacles, versus maze-like urban environments, and the movement cost depends on

the terrain type or wind conditions. Such approaches can therefore show significant

performance drops when presented with new, significantly different environments. To

counter this problem, Learning-based and Deep-Reinforcement-Learning-(DRL) based

approaches learn the utility or cost based on the environment (specific examples are

discussed in the next section); however, they are mostly limited to single agents.

The second major challenge in SAR is the coordination of multiple agents (when

available). Technically, this is due to the fact that the environment, from the point of

view of any given agent, is non-stationary, due to the actions of other agents. Most

existing multi-agent techniques (including those specializing to aerial multi-UAV SAR

missions) focus on the offline planning of routes that obtain the best coverage in an

apriori fully known environment; such plans are not generalizable to new environments.

Our Approach: In order to address the shortcomings of the existing SAR ap-

proaches mentioned earlier, we propose a novel Multi-Agent Deep Reinforcement Learn-

ing (MADRL) multi-UAV solution for autonomous exploration of unknown regions and

31

target search. We consider a 2-D grid-based environment model, where each cell might

arbitrarily contain a target, and we assume that each UAV has knowledge (either via

direct observation, or communication) of the positions (cell coordinates) of every other

UAV (full observability). The goal of our framework is to coordinate the agents to

explore the environment while (i) avoiding overlaps between the UAVs’ observations

(which would correspond to wastage of resources); (ii) finding all the targets in the

least amount of time; (iii) avoiding collisions. Our MADRL framework builds upon the

actor critic architecture [41]. During training, a critic neural network that has access

to the states and actions of all other UAVs is learned on each UAV. The critic on each

UAV is used to provide feedback on the actions generated for the current state by the

actor network on that UAV. The feedback is in terms of the long term reward (i.e.,

Q-value) obtained by the UAV for taking those actions in the current state. Using

such feedback from critic, the parameters/weights of the actor network are updated in

the direction suggested by the critic. The training is done in simulated environments,

where each UAV broadcasts its actions to all other agents. During testing, when the

UAVs are deployed for actual search missions, only the individual actors are used for

generating the actions of each UAV, based on the current state information, i.e., the

relative positions of all UAVs in a fully observable environment. Our framework also

deals with partial observability and limited communication scenarios—where each UAV

is able to observe the positions of other agents (or other agents may transmit their

observations) only occasionally (instead of continuously) due to imperfect communica-

tion or restriction on the sensing range due to geographical constraints. For this, we

propose to augment the actor and critic networks with recurrent neural networks such

as Long Short Term Memory (LSTM) neural networks so that each agent can integrate

its history/state information over time. Though we test our framework in a grid en-

vironment, our framework could be extended to non-grid or image-based environments

where the state consists of the images observed by the UAVs, and the actions consist

of continuous variables such as position and velocity. We will explore this in our future

work (Sect. 3.5).

Main contributions can be summarized as follows:

32

• We propose Multi-Agent Distributed Actor Critic (MADAC) framework for multi-

UAV coordination for aerial search missions of unknown regions.

• We realize the actor-critic framework on a distributed group of embodied agents

(UAVs) instead of computing threads on a computer.

• We propose to handle imperfect communication and partial observability issues by

augmenting our MADAC architecture with Recurrent Neural Networks (RNNs).

• We validate the proposed framework against other existing algorithms in a grid-

world environment under both ideal and non-ideal communication settings.

Chapter Outline: In Sect. 3.2, we position our work with respect to existing

techniques for SAR missions (both aerial and ground robots). In Sect. 3.3, we present

our proposed approach, and in Sect. 3.4, we evaluate our model via simulations in a

grid-world environment. Finally, in Sect. 3.5, we summarize the chapter.

3.2 Related Work

We now position our work with respect to the state of the art in multi-agent cooperation

for search and rescue missions. We divide the existing work on multi-agent coordination

according to ground/terrestrial and aerial SAR.

Terrestrial SAR: There are some traditional works where a ground robot searches

the environment in Urban Search and Rescue (USAR) missions using frontier-based ap-

proaches. A frontier is defined as a key point on the boundary of an already explored

area; hence further expanding the frontier will enable the robot to explore unseen re-

gions. As mentioned before, these approaches can be either utility- or cost-based. For

example, Niroui et al. [42] proposed a hierarchical Partially Observable Markov Decision

Process (POMDP) for the ground robot to explore an USAR area. The authors pro-

posed a utility-based approach that weighted the terrain type (open unvisited, unvisited

climbable, unknown obstacle), neighbouring cell states and travel distance to determine

an exploration frontier. Basilico et al. [43] propose a multi-criteria-based utility ap-

proach to determine the next frontier to explore based on the distance to the frontier,

33

information gain and ability to communicate information back to a base station. Mei

et al. [44] propose a cost-based approach to select frontier locations using the robot’s

orientation, such that repeated navigation of the same area is minimized. Most of these

approaches are limited to a single agent, and also use parameters/weights tuned that are

tune for specific environments, and they do not perform well in different environments.

Approaches based on Deep Reinforcement Learning (DRL) have been proposed to

alleviate such problems and adapt to more general environments. They are also able to

take high-dimensional state spaces such as an image as input. Tai et al. [45] propose a

Deep Q Network (DQN) using Convolutional Neural Networks (CNNs) for exploring a

corridor environment using depth information from an RGB-D sensor. Zhang et al. [46]

designed an exploration strategy to learn representations of a global map from sensor

data using the Simultaneous Localization and Mapping (SLAM) framework and LSTM

neural networks. Niroui et al. [47] present a RL architecture based on Asynchronous

Advantage Actor Critic (A3C) to determine an optimal exploration strategy (best fron-

tier to explore next) using the map of the environment and the location of the robot and

the frontier locations as image input. Unlike our multi-agent coordination approach, all

these approaches are limited to a single agent.

Aerial SAR: Existing works that enable SAR missions using aerial robots [48] can

be broadly categorized into traditional offline optimization (both single and multiple

UAVs) and reinforcement learning based approaches (single UAV).

In terms of single UAV traditional optimization based approaches, Delmerico et

al. [49] designed an active autonomous exploration strategy for an aerial robot to find

the best path for ground robots in SAR missions. Specifically, the problem is modeled

as an optimization problem that aims to minimize the number of visited waypoints

for the aerial robot, and the traversal time of the ground robot. Sampedro et al. [50]

designed a fully autonomous aerial robot for SAR applications in indoor environments

using learning-based techniques. The proposed solution generates way points for the

robot offline by applying a K-means clustering over points randomly distributed over

the area to be explored. In terms of multi-UAV approaches, Yanmaz et al. [51] have

designed a multi-UAV system for SAR missions. Here, a central base station generates

34

sufficiently spaced preplanned waypoints for each UAV so as to sweep the whole area.

Khan et al. [52] propose a multi-UAV cooperative search algorithm based on Multiple

Traveling Salesman Problem (MTSP). The authors model the environment as a 2-D

grid with search targets randomly spread across the grid. The proposed algorithm

generates a set of waypoints (cells to traverse) for the UAVs so as to minimize the

search time while considering sensing and communication limitations. Hu et al. [53]

developed a probabilistic model for multi-UAV vision-based cooperative target search.

A 2-D probability map of the environment is iteratively updated using measurement

data and information shared among agents, and the control inputs/trajectories of the

UAVs are obtained by maximizing the total coverage area/information gain.

In terms of reinforcement learning based approaches, Zuluaga et al. [54] proposed a

Deep Q Network for autonomous SAR missions for a single UAV where the reward is

based on the area of the observed image occupied by the target object. Sadhu et al. [55]

present a Multi-Agent Reinforcement Learning (MARL) framework for coordinated ex-

ploration (data collection) of a disaster scene using bystanders/UAVs to build 3D maps

of the incident scene. The proposed approach uses a centralized Q-table which is prone

to single point of failure, and also cannot scale to large state spaces as it uses traditional

table-based Q-learning.

In contrast to the above approaches, we propose a multi-UAV system based on actor-

critic architecture for cooperative target search in unknown regions. In our approach,

during training, a critic that considers the actions and states of all the UAVs is used to

update the parameters of the actor network on each UAV. During testing/deployment,

only the actor network is used to generate the actions based on the current state. Such

an approach is not feasible with Multi-Agent Deep Q Networks (MADQN), as it cannot

have different information during training and testing. Also, our approach is able to

handle partial observability and imperfect communication scenarios and is environment

agnostic (it can be readily deployed in any new environment that can be simulated)

and leverages the capabilities of several UAVs to perform the search mission in the least

amount of time without collision.

35

(a) (b)

(c)

Figure 3.2: (a) Actor-Critic architecture [5], where the TD-error of critic is used to up-

date both the critic and the actor; (b) Multi-agent Actor-Critic (MADAC) framework—

with three UAVs and three targets in the grid environment—for illustration purpose;

(c) (Top) Actor architecture of UAV 1; (Bottom) Critic architecture of UAV 1. Similar

architectures can be assumed for other two UAVs.

3.3 Proposed Solution

We present a brief background about DRL approaches before presenting our solution.

Background on Reinforcement Learning: In the previous chapter, we have

discussed about simple Q-learning. In this chapter, we go a step ahead and discuss

36

about Deep Q-learning and advanced RL algorithm known as actor-critic. We consider a

multi-agent extension of Markov Decision Processes (MDPs) called Partially Observable

Markov Games (POMGs) [56, 57]. A Markov game for N agents is defined by a set of

states S describing the possible configurations of all agents, a set of actions A1, ...,AN ,

and a set of observations O1, ...,ON for each agent. To choose actions, each agent i uses

a stochastic policy πθi : Oi×Ai 7→ [0, 1], which produces the next state according to the

state transition function T : S ×A1 × ...×AN 7→ S (here θi represents the parameters

of the policy/actor network of agent i, which is sometimes omitted from the subscript

of π for the sake of simplicity). Each agent i obtains rewards as a function of the state

and its action ri : S × Ai 7→ R, and receives a private observation correlated with the

state oi : S 7→ Oi. The initial states are determined by a distribution ρ : S 7→ [0, 1].

Each agent i aims to maximize its own total expected return E[Ri =
∑T

t=0 γ
trti], where

γ ∈ [0, 1] is a discount factor, and T is the time horizon.

Q-Learning and Deep Q-Networks (DQN): Q-Learning and DQN [58] are popular

methods in reinforcement learning and have been previously applied to multi-agent

settings [59]. Q-Learning makes use of an action-value function for policy π defined

as Qπ(s, a) = E[R|st = s, at = a], which denotes the expected long term return the

agent receives by taking action a in state s and then following the policy π there-

after. This Q function can be recursively rewritten using Bellman expectation equa-

tion as Qπ(s, a) = Es′ [r(s, a) + γEa′∼π[Qπ(s′, a′)]], where r(s, a) denotes the immediate

reward received by the agent and s′, the next state. Here, the distribution of the

next state, s′ depends on the current action taken, a. DQN is an off-policy algorithm

that learns the optimal action-value function Q∗ corresponding to the optimal policy

using bootstrapping/Temporal-Difference (TD) learning [5], by minimizing the loss,

L(θ) = Es,a,r,s′ [(Q∗(s, a|θ) − y)2], where, y = r(s, a) + γmaxa′ Q̄
∗(s′, a′) and Q̄ is a

target Q function whose parameters are periodically updated with the most recent θ,

to help stabilize learning. Another crucial component of stabilizing DQN training is

the use of an Experience Replay (ER) buffer D containing tuples (s, a, r, s′) from which

samples are drawn randomly to train the DQN. Q-Learning can be directly applied to

multi-agent settings by having each agent i learn an independently optimal function

37

Qi [60]. However, because agents are independently updating their policies as learning

progresses, the environment appears non-stationary from the point of view of any one

agent, violating one of the assumptions on the Markov process that is required for con-

vergence. Moreover, the ER buffer cannot be used in such a setting as state transition

probabilities, P (s′|s, a, π1, ..., πN) change when any agent’s policy, πi changes.

Policy Gradient (PG) Algorithms: Policy gradient methods are another popular

choice for a variety of RL tasks, from continuous control [61] to Atari game-playing [62].

The main idea is to directly adjust the parameters θ of the policy in order to maximize

the objective J(θ) = Es∼pπ ,a∼πθ [R] (where pπ, the state visitation (occupancy measure)

distribution, is the discounted sum of probabilities of visiting a given state when the

policy, πθ, is followed indefinitely) by taking steps in the direction of ∇θJ(θ). Using the

Q function defined above, the gradient of the policy can be written as [41],

∇θJ(θ) = Es∼pπ ,a∼πθ [∇θ log πθ(a|s)Qπ(s, a)], (3.1)

The policy gradient theorem has given rise to several practical algorithms, which differ

in how they estimate Qπ. For example, one could learn an approximation of the true

action-value function Qπ(s, a) by e.g. TD learning described above; this Qπ(s, a) is

called the critic and leads to a variety of actor-critic [5] algorithms (see Fig. 3.2(a)). In

these algorithms, as can be seen from (3.1), the actor’s parameters, θ are updated with

the help of the critic, Qπ. Policy gradient methods are known to exhibit high variance

gradient estimates as the trajectories (state-action pairs) generated by the policy can

be widely different. This is exacerbated in multi-agent settings, since an agent’s reward

usually depends on the actions of many agents, the reward conditioned only on the

agent’s own actions (i.e., when the actions of other agents are not considered in the

agent’s optimization process) exhibits much more variability, thereby increasing the

variance of its gradients. Also, the use of baselines, such as value function baselines

typically used to reduce high variance in policy gradient methods, is not effective in

multi-agent settings due to the non-stationarity issues mentioned above.

Deterministic Policy Gradient (DPG) Algorithms: It is also possible to extend the

policy gradient framework to deterministic policies [63] µθ : S 7→ A. In particular, under

38

certain conditions, we can write the gradient of the objective J(θ) = Es∼pµ [R(s, µ(s))]

as,

∇θJ(θ) = Es∼D[∇θµθ(s)∇aQµ(s, a)|a=µθ(s)] (3.2)

Deep Deterministic Policy Gradient (DDPG) [61] is a variant of DPG where the policy

µ and critic Qµ are approximated with deep neural networks. DDPG is also an off-

policy algorithm, and samples trajectories from a replay buffer of experiences (that are

stored throughout training) to train the actor and critic networks. DDPG also makes

use of a target network, as in DQN [58]. The Q function is calculated by minimizing

the loss L(θ) = Es,a,r,s′ [(Qµθ(s, a) − y)2], where y = r(s, a) + γQµθ′ (s′, µθ′(s
′)). The

parameters θ′ of the target Q function Qµθ′ (s′, a′) are frozen for multiple time steps and

updated with the parameters θ periodically to ensure stability of convergence. Both

standard policy gradient methods and DQN are not particularly suited to multi-agent

settings, as they do not directly consider the policies of other agents (non-stationarity

issue mentioned above). A better approach is one that considers the policies of other

agents in its Q function during training, but only uses agents’ local policy π during

execution [59].

Distributed Actor-Critic for UAV Search Missions We extend DDPG [57,61]

using the idea presented in [59] for multi-UAV search missions, where different actors

are realized as UAVs instead of as computer threads. Unlike DQN, where a single agent

is represented by a single neural network, actor-critic methods utilize multiple versions

of the above to learn more efficiently. In actor-critic methods there are multiple work-

ers/actors with their own set of network parameters. Each of these agents interacts with

the environment in parallel. The reason this works better than having a single agent

(beyond the speedup of getting more work done) is that the experience of each agent

is independent. This way the overall experience available for training becomes more

diverse. Generally the different actors are realized as threads in a computer system to

speed up the training process. We call our framework Multi-Agent Distributed Actor

Critic (MADAC), where we realize actor-critic on a distributed system with commu-

nication and observation uncertainties. In our framework, where actors are realized as

real systems such as UAVs exhibits the following characteristics: (i) able to learn quickly

39

by virtue of parallel training and exploration of the environment; (ii) able to converge

sooner and exploit the learned information in real time (see Sect. 3.4); (iii) deal with

imperfect communication and partial observability challenges.

We consider N UAVs, U1, ...UN , operating in an M ×P grid space (see Fig. 3.2(b)),

cooperatively executing the aerial search mission where the targets are located in random

cells. The state of UAV i, at time t, xit is represented as the concatenation of the agent’s

own cell coordinates, (ii, ji) and relative cell coordinates of other agents as observed from

Ui. Generally the neural network’s output depends on the order of concatenation (i.e.,

output changes when the order changes), but it is possible to reduce this dependence

by training the network with all possible orders (which we will consider in future work).

Denote the policies of N UAVs with π = {π1, ..., πN} parameterized by θθθ = {θ1, ..., θN}.

Actor/policy network of UAV i, πi, shown in Fig. 3.2(c) (top), takes the state, xit

as input and gives the action probabilities over the four actions (moving East, West,

North, South from the current cell position). We can write the gradient, ∇θiJ(θi), of

the expected return for UAV i, J(θi) = E[Ri] as,

Es∼pµ,ai∼πi [∇θi log πi(ai|oi)Qπi (x, a1, . . . , aN)]. (3.3)

where Qπi (x, a1, . . . , aN) is critic for Ui—shown in Fig. 3.2(c) (bottom) for i = 1, N = 3.

It takes as input the states of all UAVs, [x1t, ...xNt], actions of all UAVs, [a1, . . . , aN]

(obtained from their respective actor networks), and outputs the Q-value for agent

i. In order to simplify the problem, we will consider deterministic policies, µθi w.r.t.

parameters θi (abbreviated as µi). The policy gradient, ∇θiJ(µi), can then be written

as [63],

Ex,a∼D[∇θiµi(ai|oi)∇aiQµi (x, a1, ..., aN)|ai=µi(oi)], (3.4)

where the experience replay buffer D contains the tuples (x,x′, a1, . . . , aN , r1, . . . , rN),

recording experiences of all UAVs. The critic for UAV i, Qµi is updated as:

L(θi) = Ex,a,r,x′ [(Q
µ
i (x, a1, . . . , aN)− y)2],

y = ri(oi, ai) + γ Qµ
′

i (x′, a′1, . . . , a
′
N)
∣∣
a′j=µ

′
j(oj)

(3.5)

where µ′ = {µθ′1 , ..., µθ′N } is the set of target policies with delayed parameters θ′i and ri is

the reward given to UAV i. The reward ri is calculated as the weighted combination of

40

four components, ri = wdrdi+werei+wcrci+wtrti, as follows: (i) detection reward, rdi:

if the UAV detects the target in its current cell, a positive reward is assigned; (ii) explo-

ration reward, rei: if the UAV visits an unexplored cell, it gets a positive reward; (iii) col-

lision reward, rci: if the action of the current UAV causes a collision (i.e., moves to a cell

where there is another UAV already positioned), it receives a negative reward (this can

also be defined in terms of inter-UAV distance/spatial closeness among UAVs between

two time steps); (iv) time penalty, rti: a negative reward for each time step where (i) and

(ii) are not awarded to the agent. The weights for these rewards are determined based

on the application scenario. If there is some prior information about the locations of the

targets, then wd, we are assigned a high value during training, as the learned information

can be directly applicable to the testing scenario. In case, the environment is completely

unknown, we should be given high value, while wd should be given a low value as the

there may not be any correlation between the locations of the targets during training

and deployment. As the critic on each UAV is considering the actions taken by all other

UAVs, the environment is stationary even as the policies of the agents are changing since

P (s′|s, a1, ..., aN , π1, ..., πN) = P (s′|s, a1, ..., aN) = P (s′|s, a1, ..., aN , π′1, ..., π′N) for any

πi 6= π′i. This is not the case if we do not explicitly condition on the actions of other

UAVs. From (3.5), we can note that, each UAV requires the observations and policies of

other UAVs to perform an update to its critic. This may not be a restrictive assumption

especially when the training is performed in simulated environments. Details on the

training procedure are given in Sect. 3.4.

Actor and Critic Networks: Fig. 3.2(c) (Top) shows our actor architecture consisting

mainly of fully connected layers as the input (UAV’s state) is a 1-D vector. We consider

tanh and leaky Rectified Linear Unit (ReLU) as our activation functions because of their

well-known advantages [64]. After the fully connected layers, we have a softmax layer to

generate probabilities for different actions on the grid—East (E), West (W), North (N),

South (S). Fig. 3.2(c) (Bottom) shows our critic architecture which takes the states and

actions of all UAVs as input. As the state vectors have more elements than the action

vectors, we first pass the state vectors through fully connected layers with leaky ReLU

activation functions. These outputs are then passed through fully connected layers

41

Figure 3.3: Critic augmented with LSTM layer to handle imperfect communication and

partial observability scenarios. Actor has similar architecture.

without any activation function (i.e., linear operation of weight multiplication and bias

addition) to be added with similar outputs from the action vectors. The sum is then

passed through leaky ReLU activation function followed by fully connected layers with

single output and no (linear) activation function to obtain a single Q value. The actor

and critic networks are updated using (3.4) and (3.5) respectively, using experiences

sampled from ER buffer.

Imperfect Communication and Partial Observability: Full or partial observability is

defined in terms of being able to observe the state information of other UAVs. In a

fully observable setting, each UAV is able to observe the state information of all other

UAVs, whereas in a partially-observable scenario, states of only some (probably nearby)

UAVs is observable. On the other hand, imperfect communication affects the availability

of action information of other UAVs as such information is only available when other

UAVs transmit it. To study such scenarios, we define a parameter, p, to indicate the

link failure probability between any two agents. This means that p = 0 corresponds

to perfect communication scenario where as for example, p = 0.1 indicates that 10%

of the communication packets (containing the action information) corresponding to a

link between two UAVs are dropped. At any time step, if the communication packet

containing the action information of the transmitting UAV is dropped, the last known

42

action of that UAV is used by the receiving UAV. We now describe our enhanced archi-

tecture to improve performance in situations with imperfect communication and partial

observability. Fig. 3.3 shows our proposed critic architecture, where we have augmented

the critic architecture in Fig. 3.2(c) (Bottom) with Long Short Term Memory (LSTM)

units. Actor network can also be modified in a similar manner. The critic network

now processes experience (state and action) information from the previous timesteps to

learn the underlying temporal patterns in them. The LSTM units process such temporal

information (from previous sequence of experiences) to better estimate the underlying

state, than just using the current experience. In Fig. 3.3, l denotes the LSTM sequence

length. Using a high value for l translates to better performance but higher computa-

tional complexity and vice-versa. Due to the computational complexity introduced due

to LSTMs, it may be beneficial to use them (depending on the available resources) only

for p 6= 0 scenarios (see Sect. 3.4).

3.4 Performance Evaluation

In this section, we first describe our simulation, training, and testing setup and then

evaluate the performance of our solution under two scenarios: (i) ideal communication,

where each UAV has access to the state and action information of all the other agents at

each time step; (ii) non-ideal communication where, depending on the link failure prob-

ability we define below, UAVs sometimes cannot receive the state/action information

from other UAVs and need to rely on the last observed values.

Comparison Plan: In our MADAC algorithm, we consider a critic on each UAV

that has access to the state and action information of all other UAVs during training.

During testing, each UAV has access only to the states of all other UAVs as we assume

full observability. We compare our approach with three other algorithms: (i) Multi-

Agent Deep Q Network (MADQN), where each UAV observes/receives the states (but

not actions) of all other UAVs and independently updates its Deep Q Network based on

its own experiences; the Q-Network does not receive the actions of other agents during

training, as it must do so during testing also, which is prohibitive; (ii) Multi-Agent

Q-Learning (which we simply call Multi-Agent Reinforcement Learning (MARL) to be

43

0 50 100 150 200 250 300 350
Number of Episodes

200

0

200

400

600

800

1000

1200
Re

wa
rd

s
MADAC (ours)
DMAAC
MADQN
MARL

(a)

0 100 200 300 400 500 600
#episodes

100

0

100

200

300

400

500

Re
wa

rd
s

MADAC (ours)
DMAAC
MADQN
MARL

(b)

0 100 200 300 400 500 600
Number of Episodes

200

0

200

400

600

Re
wa

rd
s

MADAC (ours)
DMAAC
MADQN
MARL

(c)

Figure 3.4: Average reward of the agents vs. number of training episodes when number

of agents = (a) 2; (b) 4; (c) 6. (grid size=100 × 100; number of targets=100)

consistent with previous literature [55]), which is a simplification of the MADQN, where

each agent maintains a Q-table instead of Deep Q-Network; (iii) Multi-Agent Distributed

Actor Critic with Decentralized critic (DMAAC). This is an extension of MADQN where

each agent instead of maintaining a single Q-network, maintains both an actor and critic

network. However, the critic network is trained in a similar manner to DQN i.e., does

not receive action information from other agents and hence is desynchronized from the

critics of others.

Training and Inference Setup: We used a grid-world like environment defined in

the OpenAI Gym environment [65] to implement our MADAC architecture in Tensorflow

(Python). As in Fig. 3.2(c) (Top), we use a simple two-layer fully connected neural

44

0 100 200 300 400 500 600
Number of Episodes

200

0

200

400

600

800

Re
wa

rd

Total Reward
Exploration
Detection
Duplicate
Collision
Out of Grid

(a)

10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10
10
9
8
7
6
5
4
3
2
1
0
1
2
3
4
5
6
7
8
9

10
agent1
agent2
targets
staring point

(b)

10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10
10
9
8
7
6
5
4
3
2
1
0
1
2
3
4
5
6
7
8
9

10
agent1
agent2
targets
staring point

(c)

Figure 3.5: (a) Total reward split across different components as training progresses

(100 × 100 gird with 100 targets and 4 agents); Trajectory followed by the UAVs when

the location of targets is (b) same between training and testing; (c) different between

training and testing. The targets shown are all the targets in the environment. We can

notice that there are more steps in (c) than in (b). A video demo of these trajectories

over time can be seen at [6].

network as actor with 50 units each. For the critic (Fig. 3.2(c) (Bottom)), a two-layer

fully-connected neural network with 100 and 50 units is used to process the state and a

one-layer network with 50 units is used to process the action. The outputs of both are

added and fed to a one-layer network with 50-units followed by a one layer network with

one output unit (final Q-value). We used a learning rate of 0.001 for training the actor

and critic networks. Training consists of running several episodes and updating the

45

actor and critic networks based on the past experiences. In each episode, first we start

with action generated by the actor network (we also add Ornstein-Uhlenbeck noise [61]

to the output of the actor network to encourage exploration before selecting the final

action). The action is executed in the environment to collect the experience at each

timestep in the form of 〈state, action, reward, next_state, fail〉. Each UAV stores

such experience tuples to its own Experience Replay (ER) buffer. Here state, action,

next-state consists of states, actions and next-states of all the UAVs, while reward is

specific to the agent; fail indicates when the UAV either collides with another UAV,

or goes out of the boundaries of the grid. If the ER buffer is full, a random entry

is removed and filled with the new experience (random replacement is better so as to

not be biased towards older or newer experiences). Also, at each time step, the agent

randomly samples a batch-size number (we used 32) of experiences from this ER buffer

to train first the critic network followed by the actor network (as actor is updated based

on critic according to (3.4)). Using ER buffer is known to stabilize convergence and

also learn from a variety of experiences instead of the immediate experiences produced

by the current policy. Once the training is finished, we use (i.e., perform inference

with) the trained models to evaluate the performance of our approach as the number

of targets, UAVs and cell size is varied. As the agents might collide or go out of grid

during inference (in which case, the episode ends), we average the results over several

episodes and plot the corresponding confidence intervals with the mean.

Ideal Communication Scenario: In this subsection, we consider the ideal com-

munication scenario where all the communication links among the agents are working

perfectly (i.e., p = 0).

Episode reward vs. No. of training episodes: To evaluate how different models learn

as the training progresses, we have plotted the average reward received by the agents

versus the training episodes for different number of agents in Fig. 3.4. The simulation

is conducted in a 100 × 100 grid world with 100 targets randomly deployed. When

the number of agents is small (2 in Fig. 3.4(a)), it is clear that both MADQN and

MADAC converge to a similar level of reward after certain number of episodes. How-

ever, as the number of agents increase (4 in Fig. 3.4(b), 6 in Fig. 3.4(c)), we can find

46

10 20 30 40 50 60 70 80 90
Peercent of targets detected (%)

103

104

105

Nu
m

be
r o

f S
te

ps

MADAC (ours)
DMAAC
MADQN
MARL

(a)

2 3 4 5 6
Number of Agents

104

Nu
m

be
r o

f S
te

ps

MADAC (ours)
DMAAC
MADQN
MARL

(b)

50 75 100 125 150
Grid Size

103

104

Nu
m

be
r o

f S
te

ps

MADAC (ours)
DMAAC
MADQN
MARL

(c)

Figure 3.6: (a) Number of steps vs. number of agents (grid size=100 × 100; number

of targets=100); (b) Number of steps vs. number of targets (grid size=100 × 100;

number of agents=4); (c) Number of steps vs. grid size (number of agents=4; number

of targets=100).

MADQN, MARL and DMAAC have difficulty converging owing to the non-stationarity

issue mentioned in Sect. 3.3. From these figures, we can observe that MADAC has

better performance on multi-agent tasks, especially when the number of agents is high.

Analyzing the learning process and the learned model: Fig. 3.5(a) shows the differ-

ent components of total reward (100 × 100 grid with 100 targets and 4 agents) viz.,

exploration (+5), collision (-100), detection (+5), going out of grid (-100) and duplicate

exploration (-5) (i.e., revisiting already explored cells), as the training progresses. We

47

can notice that for several episodes, the positive rewards stay close to zero, while nega-

tive rewards stay negative. This means that agents are mostly colliding or going out of

the grid. The cause of high collisions in the beginning is because the starting positions

of the agents are very close and they can easily collide with another one even in one

single (wrong) step. However, after about 400 episodes, we can notice that the agents

experienced the exploration reward, which encourages them to subsequently explore

more often. At the same time (as the agents are exploring new regions), we can notice

that the collision and detection rewards show improvement. Fig. 3.5(b) and Fig. 3.5(c)

show a sample trajectory followed by two agents in a 10 × 10 grid with 10 targets when

the location of the targets is fixed (exploration reward is +1, detection reward is +10)

and varying (exploration reward is +5, detection reward is +5) between training and

testing sessions, respectively. From the trajectories we can notice that, in the former,

agents do less exploration and more detection, and vice-versa in the latter.

Time taken vs. Percentage of target detection: While testing the performance of

models, it is important to observe how much time is needed to detect a certain per-

centage of targets We considered four UAVs and 100 targets randomly deployed in a

100×100 grid to study this behavior. Fig. 3.6(a) shows this result, where, we can notice

that MADAC is the fastest one to detect a certain percentage of targets. Even though

the curves for different algorithms seem close, the y-axis is in log-scale, which trans-

lates to considerable difference. Moreover, it is to be noted that—even though from

Figs. 3.4(c), 3.4(b), DMAAC, MADQN and MARL seem to have difficulty in learning

compared to MADAC—random actions can also result in detection of targets due to

the nature of the problem. From Fig. 3.6(a), we can also notice an exponential rela-

tionship (linear in logarithmic scale) between steps required vs. detection percentage.

In particular, we can note that, MADAC requires about 10000 steps to achieve 90%

detection.

Time taken vs. No. of UAVs: To verify the assumption that more UAVs can accel-

erate the search mission, we evaluate the time taken to detect 60% of targets against the

number of UAVs for a fixed grid size of 100× 100 with 100 targets randomly placed in

it. As shown in Fig. 3.6(b), when the number of UAVs increase, we can notice that the

48

number of steps needed to search reduces, as UAVs can simultaneously search different

regions when trained properly. We can again notice that MADAC achieves the best

performance as it takes the least number of steps to complete the search.

Time taken for search vs. Cell size of the grid: In a common SAR task, the area to

search significantly influences the detection performance of the UAVs. Also, the search

area is very large compared to the field of view of the UAV (considering near ground

flight required for small object detection e.g., humans or animals). Hence, it is better to

consider large grid sizes such as from 50× 50 to 150× 150. We compared the detection

performance (in terms of number of steps required by four UAVs to detect 60% of targets

out of 100 randomly deployed in a 100 × 100 grid scenario) vs. different grid sizes in

Fig. 3.6(c). As the size of the grid increases, the density of targets decreases forcing the

UAVs to take more number of steps. It is also clear that MADAC outperforms others.

Non-ideal Communication Scenario: In this subsection, we evaluate the perfor-

mance of our MADAC model under non-ideal communication and partial observability

settings (in both training and testing phases). Both imperfect communication and par-

tial observability is achieved by setting p 6= 0. This is because, the communication

packet sent by one UAV (A) to other UAV (B) contains both state and action infor-

mation. When this packet is dropped due to p 6= 0, B has no access to A’s action and

is also not able to observe its state. We consider two types of p—ptr (p used to train

the models), pts (p used during testing). Given this, we study three aspects: (i) when

trained with ptr = 0 (i.e., assuming perfect communication), how the performance de-

grades during testing when pts 6= 0; (ii) train the models assuming ptr 6= 0, to study if

that imparts some robustness during testing when pts is non-zero; (iii) study the benefits

of LSTM-enhanced models for both, ptr 6= 0 and pts 6= 0.

Ideal Training and Non-Ideal Testing: In real search missions, communications among

UAVs are not reliable (e.g., in disaster scenes). Therefore, we test how our MADAC

model—that was trained under ideal communication scenarios (i.e., p = 0)—performs

when deployed in non-ideal communication scenarios (i.e., p 6= 0). In this scenario,

ptr = 0 but pts is varied from 0.002 till 1 by doubling every step in 10 steps. Fig. 3.7(a)

shows this scenario for 100× 100 grid, 100 targets and 4 UAVs. We can notice that as

49

10 2 10 1 100

Failure Probability During Testing (pts) (ptr = 0)

103

104
Nu

m
be

r o
f S

te
ps

% Detect=10
% Detect=20
% Detect=30
% Detect=40
% Detect=50
% Detect=60

(a)

10 2 10 1 100

Failure Probability During Testing (pts) (ptr = 0.1)

20000

15000

10000

5000

0

5000

10000

Ad
va

nt
ag

e
in

 S
te

ps
 w

ith
 p

tr
=

0

% Detect=10
% Detect=20
% Detect=30
% Detect=40
% Detect=50
% Detect=60

(b)

10 2 10 1 100

Failure Probability During Testing (pts) (ptr = 0.5)

5000

0

5000

10000

15000

Ad
va

nt
ag

e
in

 S
te

ps
 w

ith
 p

tr
=

0

% Detect=10
% Detect=20
% Detect=30
% Detect=40
% Detect=50
% Detect=60

(c)

10 2 10 1 100

Failure Probability During Testing (pts) (ptr = 0)

2000

0

2000

4000

6000

8000

10000

12000

14000

Ad
va

nt
ag

e
of

 L
ST

M
 [#

 S
te

ps
] % Detect=10

% Detect=20
% Detect=30
% Detect=40
% Detect=50
% Detect=60

(d)

10 2 10 1 100

Failure Probability During Testing (pts) (ptr = 0.1)

0

5000

10000

15000

20000

Ad
va

nt
ag

e
of

 L
ST

M
 [#

 S
te

ps
] % Detect=10

% Detect=20
% Detect=30
% Detect=40
% Detect=50
% Detect=60

(e)

10 2 10 1 100

Failure Probability During Testing (pts) (ptr = 0.5)

0

2000

4000

6000

8000

10000

12000

Ad
va

nt
ag

e
of

 L
ST

M
 [#

 S
te

ps
] % Detect=10

% Detect=20
% Detect=30
% Detect=40
% Detect=50
% Detect=60

(f)

Figure 3.7: (a) Number of steps vs. pts for different detection percentages when ptr = 0;

Advantage in number of steps with respect to ptr = 0 when (b) ptr = 0.1; (c) ptr = 0.5.

Advantage of LSTM in number of steps with respect of not using LSTM for different

values of pts and detection percentages, when (d) ptr = 0; (e) ptr = 0.1; (f) ptr = 0.5;

(number of agents=4; grid size=100 × 100, number of targets=100).

50

pts increases, more number of steps are needed to achieve a given detection percentage.

Non-ideal Training and Non-ideal Testing: We would like to study whether training

the models with ptr 6= 0 imparts any robustness to handle ptr 6= 0. Fig. 3.7(b) considers

this scenario, where we plot the advantage in steps (i.e., less number of steps) with

respect to ptr = 0 (i.e., the number of steps are relative to Fig. 3.7(a)), when we train

the models with ptr = 0.1. Fig. 3.7(b) plots similar metric for ptr = 0.5. In the following

discussion, we will categorize p into three levels: low (p < 0.1), medium (0.1 ≤ p ≤ 0.5),

high (p > 0.5). From these two figures, we can notice that: (i) for low pts, it is better

to train with low ptr (= 0); (ii) for medium pts, it is better to train with medium ptr

(= 0.1); (iii) for high pts, it is better to train with high ptr (= 0.5). This shows that

there is a correspondence between ptr and pts. Hence it is advantageous to store models

trained with various ptr values onboard (if possible) and choose the best model based

on real-time pts estimated during deployment using the communication link.

Advantage of LSTM: We now study the benefit of including LSTM layer in our

actor and critic networks for different ptr and pts values. For this we considered l = 5

(LSTM sequence length) and 32 as the LSTM unit size. We store sequential experience

data corresponding to 20 episodes. Whenever a new episode is generated, the data

corresponding to one of the episodes is randomly replaced with the new episode data.

Each entry in the training batch is sampled as follows: we randomly select an episode

out of the 20 available ones; we then randomly sample l = 5 sequential experiences from

this episode. We have used Tensorflow’s tf.dynamic_rnn [66] to deal with scenarios

where the episode length is less than l. Fig. 3.7(d) plots the advantage in steps (i.e.,

less number of steps) compared to without LSTM (i.e., Fig. 3.7(a)) for ptr = 0 scenario.

Similarly, Figs. 3.7(e), 3.7(f) plot the advantage in steps for using the LSTM models

with respect to not using LSTM, for ptr = 0.1 and ptr = 0.5 respectively. From these

figures, we can notice that, adding LSTM does not provide significant benefits for low

pts, but is definitely advantageous for medium and high pts values. Similarly, we can

notice from Fig. 3.8 that the advantage of using LSTM is more evident with high ptr

values—we can observe that the blue curve corresponding to LSTM models trained with

ptr = 0.5 gives the best performance of all.

51

10 20 30 40 50 60
Proportion of Targets Detected [%] (pts = 0)

103

104

Nu
m

be
r o

f S
te

ps

LSTM, ptr = 0
LSTM, ptr = 0.1
LSTM, ptr = 0.5

ptr = 0
ptr = 0.1
ptr = 0.5

(a)

10 20 30 40 50 60
Proportion of Targets Detected [%] (pts = 0.1)

103

Nu
m

be
r o

f S
te

ps

LSTM, ptr = 0
LSTM, ptr = 0.1
LSTM, ptr = 0.5

ptr = 0
ptr = 0.1
ptr = 0.5

(b)

10 20 30 40 50 60
Proportion of Targets Detected [%] (pts = 0.5)

103

104

Nu
m

be
r o

f S
te

ps

LSTM, ptr = 0
LSTM, ptr = 0.1
LSTM, ptr = 0.5

ptr = 0
ptr = 0.1
ptr = 0.5

(c)

Figure 3.8: Comparison of performance in terms of number of steps vs. detection per-

centage across with- and without-LSTMmodels and different ptr values when (a) pts = 0;

(b) pts = 0.1; (c) pts = 0.5; (no. of agents=4; grid size=100 × 100, no. of targets=100).

In summary, we can note that adding LSTM is beneficial in both ptr 6= 0 and pts 6= 0

cases. Specifically, more is the benefit with higher pts and higher ptr scenarios.

3.5 Summary

We have presented a multi-agent deep reinforcement learning algorithm based on multi-

agent distributed actor-critic framework for multi-UAV search missions. Specifically,

during training, the critic on each UAV is augmented with the states (i.e., full observ-

ability) and actions of all UAVs to solve the non-stationarity problem inherent to multi-

agent settings. The proposed framework is evaluated both under ideal and non-ideal

52

communication settings and shown to perform better than other MARL algorithms.

53

Chapter 4

HCFContext: UAV Context Inference via Sequential
History-based Collaborative Filtering

In this chapter, we mainly propose techniques for context (e.g., current location, battery

level, etc.) modeling and prediction for mobile phones. The same techniques (i.e.,

context modeling and prediction)are equally applicable for a group of UAVs executing

a mission/task, as we explain later in Chapter 7. In case of UAVs, the context can be

a combination of location, remaining operational time, etc. Henceforth in this chapter,

we will focus mainly on the context attributes of a mobile phone only.

Mobile device applications provide an increasing number of features customized to

match users’ needs. These needs are very often inferred from specific features such as

the user location, activity (e.g., running, walking, driving), surrounding people, inter-

acting people, the current app usage on the device, etc. These features collectively

define a specific user (mobile) context. Mobile applications are increasingly making use

of these contexts such as location-based services (e.g., Foursquare, Google Now, Weather

updates, etc.), enhanced reality applications (Pokemon GO [67]), continuous authenti-

cation, etc. However, to enable these services, context inference is a much needed and

important step.

4.1 Introduction

Most of the existing work focuses on obtaining mobile context instantaneously from sen-

sors which could possibly be hacked, noisy or insufficient and as such cannot be relied in

certain security applications. For example, see our previous work on privacy-preserving,

distributed, smartphone localization framework [68]. Hence we take a different approach

to that problem in this chapter by modeling mobile context based on past context data.

54

� �

� �

� �

�����	

��	�

���������������

���� �����

��������

�����	� �

���������

�!�

Figure 4.1: A user’s personal (left) and group/collaborative filtering (right) behavior

that can provide some clues about user’s context at any given time.

There are many advantages of modeling the user context by leveraging the sequential

nature of context information in a user’s history as it can be used to predict the current

or future contexts. The former can be used to validate and/or enhance the possibly

hacked/noisy/insufficient sensor context, while the latter can provide some information

ahead of time to the benefit of the user [69]. For example, a user’s general routine during

weekdays could be to head first to Starbucks near his home, then to his work and then

to Gym and back to home as shown in Fig. 4.1(left). The learned model will capture this

behavior and can be used to validate the location of the user obtained via GPS at 5:30

pm to be at Gym (current context prediction) or display coupons related to Starbucks on

his phone in advance (future context prediction). The latter can be leveraged by mobile

personal assistant technologies such as Apple Siri/Google Now for user’s benefit.

Motivation: One of the context-aware services is the enterprise data access control

as in [70], where policies are defined for enterprise data access based on the phone’s

context (e.g., connectedWi-Fi, Cell ID, time, etc.). For example, a policy may be defined

to allow the phone to be used to attend a confidential meeting or open a confidential

document only when the phone’s context is found to be within a given location and

time. In these secure scenarios, it is not suggested to rely solely on the context obtained

from the phone’s sensors (e.g., GPS/WiFi and System clock to give location and time)

because they could be hacked unknowingly to the user. For example, a virus might change

the system clock to show different time or spoof the GPS [71] to show different location.

55

However it is hard to hack a model (more so, a collaborative one) that is learned over

a long period of time. Hence our solution can be used to validate the context directly

obtained from sensors at that instant. Secondly, it is possible that context from sensors is

noisy (due to malfunction) or does not contain enough information. For example, in the

case of a tablet or old mobile phone, it may not be able to acquire (accurate) GPS signal.

As such it will be helpful if there is another way of obtaining this information such that

it complements the context from sensors. Thirdly, as mentioned earlier, future context

prediction is useful in certain context-aware services such as mobile personal assistant

technologies (Google Now, Apple Siri, etc.), which can help pre-fetch information/pre-

plan based on the predicted context.

Our Approach: In order to address the above issues, we first propose a personal-

ized model (HPContext) (where HP stands for History-based Personalized) that predicts

the user’s context based on its past sequential history of contexts. Obtaining context

through two approaches—sensors and personalized model—adds an extra layer of confi-

dence to the obtained context. However, the following situations are possible: contexts

obtained from both approaches are very different, contexts from one of the approaches

is not available (e.g., GPS may not be available from phone sensors indoors, etc.) or

insufficient leading to uncertainty. In such situations, assuming the user is closely con-

nected to a group of people (e.g., same team colleagues in the company as shown in

Fig. 4.1(right), gym friends, family members, etc.), it is possible that the context of other

members in that group of people can provide additional information about his/her con-

text. For example, assume users A and D often go to lunch together (learned via model).

Now somehow if it is known that D is going to “Restaurant1” tomorrow for lunch, it is

most likely that the context of user A tomorrow around 1 pm is “having lunch with D at

Restaurant1" without having to rely on A’s phone sensors at that instant. The chapter

explores this aspect of context to provide a second layer of confidence to the context

(over and above the personalized model). For this purpose, we propose to use such

context obtained through collaborative filtering of the contexts of users closely related

to the primary user (HCFContext , where HCF stands for History-based Collaborative

Filtering). To the authors’ best knowledge, this is the first work to explore collaborative

56

filtering for mobile contexts that can be used to validate and/or enhance the current

context obtained from sensors or predict the future context for mobile personal assis-

tant technologies. Additionally we present a privacy-preserving method for parameter

estimation (training) of HCFContext , as users may not be willing to share their private

data with each other for the same.

Main Contributions can be summarized as follows.

• We propose a personalized (HPContext) and collaborative filtering (HCFContext)

model to predict the users context at any given instant (including future) based

on the sequential history of past contexts and based on the theory of Hidden

Markov Models (HMMs). We design a novel emission model for these HMMs by

considering the unique features and the practicalities of a mobile context (e.g.,

GPS from sensors may not be always available).

• We present a homomorphic encryption based privacy-preserving approach for

training the HCFContext .

• We validate the efficacy of the proposed models by testing them on a real-life

data set belonging to five graduate students collected over two months. We also

evaluate our privacy-preserving approach to study its trade-offs.

Chapter Outline: In Sect. 4.2, we present the related work and position our chap-

ter. In Sect. 4.3, we discuss the proposed models, (HPContext , HCFContext) and the

privacy-preserving approach for the parameter estimation of HCFContext . In Sect. 4.4,

we present the results of our proposed approaches. Finally, in Sect. 4.5, we summarize

the chapter.

4.2 Related Work

In this section, we position our work with respect to previous works (i) that obtain

context with and without users sequential history, (ii) via local collaborative sensing,

and (iii) related to privacy-preserving collaborative filtering.

57

Without Sequential History: There is existing work on modeling mobile con-

texts without considering the sequential nature of context information. For example,

Bao et al. [72] propose an unsupervised approach to model mobile context from raw

contextual data using Latent Dirichlet Allocation (LDA). Srinivasan et al. [73] mine the

co-occurrences of certain context attributes; frequently and simultaneously occurring

context attributes are formulated as association rules to predict what else the user will

do (e.g., read comics) given a current context attribute (e.g., listen to jazz). However,

unlike ours these approaches do not exploit temporal dependencies among contexts but

only consider the behavior at a given instant.

With Sequential History: There is also work that exploits the sequential/temporal

dependencies between contexts. For example, Mukherji et al. [74] present Mobile Se-

quence Miner (MSM) framework that mines frequent sequences occurring in app usage

patterns, location visits, and call logs using a frequency-based approach. Farrahi et

al. [75] present a probabilistic approach to mine mobile phone data (e.g., location) se-

quences using Distant N-Gram Topic Model (DNTM) where they model the sequence to

be dependent on the starting element of the sequence. There are works that model the

user activity using HMM based on sensor measurements [76–79]. For example, Trabelsi

et al. [80] propose an unsupervised approach for activity recognition based on HMM re-

gression where they segment the sensor data into multiple activities. Cilla et al. [81] use

HMM for human activity recognition, with features selected using genetic algorithms

that maximize the accuracy of the HMM. Mannini et al. [76] use HMMs for human

physical activity classification from on-body accelerometers where they have modeled

the HMM emission probabilities as Gaussian Mixture Models (GMMs). Brand et al. [78]

and Oliver et al. [79] use HMM for detecting human activities and interactions in video.

Lin et al. [77] use feature-guided HMM to segment automatically and identify human

motion for physical rehabilitation exercises. Even though these approaches exploit the

sequential nature of contextual information, they neither consider collaborative filtering

nor privacy-preserving aspects like we do. We claim that collaborative filtering context

has additional context information than context obtained from personal history alone.

58

Local Collaborative Sensing: There are also works on local collaborative sens-

ing; however, these works do not consider the sequential nature of past information

into the collaboration process [82]. For example, Honicky et al. [83], while monitoring

air quality by integrating air-quality sensors into mobile phones, use collaboration to

improve accuracy in over-sampled regions by averaging the readings from several nearby

sensors. Castro et al. [82] use collaborative sensing to decide which mobile phone should

capture audio when two or more devices are potentially recording a similar audio signal

to reduce energy consumption. Mantyjarvi et al. [84] present a collaborative sensing

approach where a device, upon noticing a change in its local context beyond a threshold

value, requests contexts from its surrounding devices so as to increase the accuracy of

its context vector. Miluzzo et al. [85] use collaboration to increase the confidence of

the sensed context through consensus of contexts sensed at surrounding devices. These

approaches however do not consider past sequential nature of context information into

collaboration. Here, each device carries out its own sensing independently of others, and

then consensus is applied to increase the confidence. In all these works, collaboration

is mostly used as a form of “averaging"; also, these approaches do not consider the past

sequential nature of context information in the collaboration process.

Privacy-preserving Collaborative Filtering: There is existing literature in the

domain of privacy-preserving collaborative filtering and HMM techniques, which can

be broadly classified into two categories—data perturbation/randomization to hide the

original data albeit with accuracy loss and data encryption with typically no accuracy

loss albeit with higher computational complexity. On the former, Polat et al. [86] and

Parameswaran et al. [87] present privacy-preserving collaborative filtering techniques

based on randomized perturbation and data obfuscation respectively. On the latter,

Guo et al. [88] present a privacy-preserving Markov model for sequence classification

using homomorphic and ElGamal cryptographic systems. Nguyen et al. [89] present a

homomorphic encryption based technique for a multi-party HMM. Renckes et al. [90]

present a homomorphic-encryption-based method for HMM parameter estimation and

forecasting for vertically and horizontally distributed data. More works in this category

can be found in [91–94]. We present an approach, designed specifically for our scenario,

59

Table 4.1: Example context observations of user u for times t = 1, ..., T .

Time (t) Context observation of user u at time t (Otu)

t1
WiFi: wifi1, CellID: cid1, LAC: lac1, Battery Level: high, Battery Status: discharg-

ing, Day Period: morning, Day of week: Monday, Holiday: No

t2
WiFi: wifi2, CellID: cid2, LAC: lac2, Battery Level: medium, Battery Status: dis-

charging, Day Period: noon, Day of week: Monday, Holiday: No

...........

tT
WiFi: wifi1, CellID: cid1, LAC: lac1, Battery Level: low, Battery Status: charging,

Day Period: night, Day of week: Sunday, Holiday: Yes

that extends the ideas in this category for privacy preserving multi-party parameter

estimation of our HCFContext model.

4.3 Proposed Solution

In this section, we describeHPContext andHCFContext models and a privacy-preserving

approach for parameter estimation of HCFContext .

Problem Formulation: We present here the proposed HCFContext model by design-

ing a novel emission model of a HMM taking into account the multi-user collaborative

filtering aspects, as well as the unique features of the mobile context and its practical

issues such as feature unavailability. We first start with notation—capital letters de-

note random variables, whereas their small equivalents are their realizations. A vector

variable will be indicated in bold. We model context (Ct) as the latent variable of the

HMM. For a given user, the observation corresponding to a context state at time t will

be called context observations (Ot). An example of a user’s context observations from

time t = 1...T is shown in Table 4.1. Each observation, Ot, consists of a set of contextual

feature-value pairs. These observations are obtained at regular time intervals (e.g., a

minute to four hours). It can be seen as an example from the table that the context

observation at t = t1 corresponds to morning when the user is at home (battery is high,

probably because the user charges her phone the previous night). The observation at

60

t = t2, say after 4 hours, can be interpreted as being at office or workplace (change of

WiFi, Cell ID, etc.) with battery level being in medium range. Finally, the observation

at t = tT (after several days) can be taken to be again at home in the night. We assume

that K number of latent context states spans across these T observations. Considering

users u = 1, ...,M , each user has a similar set of T observations. Plate notation [95] for

our HCFContext model for M users is shown in Fig. 4.2. In plate notation, the number

of different categorical values a random variable can take is shown inside the circle or

rectangle. A circle is used for a random variable while a rectangle is generally used for

hyperparameters. Observable variables are shaded. The number of repetitions of a rect-

angular block is shown at its bottom right corner. For a given user u, the observation

at time t, Otu is a set of feature-value pairs (as in a row of Table 4.1). We can write

Otu = (ftu,vtu) = (ft,u,i, vt,u,i)
|ftu|
i=1 , where |ftu| is the number of available features of

user u, at time t. Generation of each variable in Fig. 4.2 is described next.

Initial State Model: A prior distribution of contexts, π is generated from prior Dirichlet

distribution, η. C1 is then generated from π. We will assume a total of K possible

context states for HCFContext over all M users.

Transition Model: A prior transition distribution of contexts, ρct−1 = ρk, is generated

from a prior Dirichlet distribution, ωk. Ct is then generated from ρct−1 for a given Ct−1.

Note that ρk and ωk can take a total of K categorical values (Ct, current state) for each

k (Ct−1, previous state).

Novel Emission Model: For Ot generation under each Ct, since features are not always

available (e.g., GPS is not available when indoor or underground, etc.), we will define a

separate distribution for features (Ft) to account for their availability and then another

distribution to obtain the values (Vt) for those features at time t, as illustrated in Fig. 4.2.

Ft is dependent on Ct, whereas Vt is dependent on both Ct and Ft. An initial feature

distribution, θct,ft = θk,f , is generated from a prior Dirichlet distribution, δk,f . Feature

Ft is then generated from θk,f , which can take two categorical values—whether the

feature is present or not for the given context, ck. We will assume a total of F possible

features over all observations of all users. A prior value distribution, φct,ft = φk,f , is

generated from a prior Dirichlet distribution, λk,f . Value Vt is then generated from φct,ft

61

�
� �

�

� �

�

��
�

�
�

�

��

�

CtC1 CT

Vt Ft θkf

δkf

ϕkf

λkf

ρk
ωkπη

��
�
�

�

���

������

���

��

Figure 4.2: Plate notation of HCFContext . F is the total number of features, VF denotes

the total number of possible values for feature F , |Ft| = |Vt| denotes the number of

features observed at time t, M is the number of users, and K is the number of hidden

context states.

for a given context ct and feature ft,i. For a given feature f , we will assume V can take Vf

possible values. The priors will be chosen such that the summation and non-negativity

constraints on the parameters are satisfied and also to encode prior information. For

example, if it is known that a user frequently moves between home to work, the prior

parameter for this transition, (ωk), is given a high value. Priors are important to obtain

Maximum A Posteriori (MAP) estimates as Maximum Likelihood (ML) estimates fare

poorly with limited training data.

Parameter Estimation (Training): Given these parameters, Ψ = {Π, P,Θ,Φ}, the

parameter space of π, ρk, θk, φk,f and their hyperparameters, {η, ω, δ, λ}, we can write

down the joint probability of all latent contexts C = {C1, ...CT } and all context obser-

vations, O = {O1, ...OT }, as P (C,O | Ψ, η, ω, δ, λ) as follows:

P (C,O | Ψ, η, ω, δ, λ) =

∫
P (π | η)P (c1 | π)dπ

×
∫ K∏

k=1

P (ρk | ωk)
T∏
t=2

P (ct | ct−1, ρct−1)dρ

×
∫ K∏

k=1

F∏
f=1

P (θk,f | δk,f)

M∏
u=1

T∏
t=1

2∏
i=1

P (ft,i,u | ct, θct)dθ

62

×
∫ K∏

k=1

F∏
f=1

P (φk,f | λk,f)

M∏
u=1

T∏
t=1

Vf∏
i=1

P (vt,i,u | ct, ft,i,u, φct,ft)dφ. (4.1)

In the above equation, note that the integration is carried out over the entire space of

the respective parameters (Π, P,Θ,Φ).

Likelihood of the observations O is then,

L(O) =
∑
c

P (C,O | Ψ, η, ω, δ, λ). (4.2)

Training the HMM involves finding the parameters Ψ that maximize the likelihood

in (4.2). Given the complex nature of (4.2), it is very difficult to derive a closed-

form solution of Ψ. Hence, we make use of an iterative approach called Expectation

Maximization (EM). The EM algorithm consists of two steps, Expectation Step (E-

Step) and Maximization Step (M-Step), that need to be iterated until the convergence

of the likelihood.

In the E-Step, we assume the parameters are fixed (from the previous iteration,

Ψprev) and calculate the posterior distribution of the latent variables p(C | O,Ψprev).

Using this posterior distribution, we calculate the expectation of the logarithm of the

complete-data likelihood (including the latent context variables), Q(Ψ,Ψprev), as fol-

lows [96],

Q(Ψ,Ψprev) =
∑
c

p(C | O,Ψprev) lnp(C,O | Ψ) (4.3)

We will introduce two new variables, γ(Ct) and ξ(Ct−1, Ct), to simplify the expression

in (4.3),

γ(Ct) = p(Ct | O,Ψprev), (4.4)

ξ(Ct−1, Ct) = p(Ct−1, Ct | O,Ψprev). (4.5)

To simplify notation, we will denote γ(Ct = ctk) = γ(ctk) and similarly for ξ(ct−1,j , ctk).

After plugging (4.1) in (4.3), and using the definitions of γ(Ct) and ξ(Ct−1, Ct), we can

rewrite (4.3) as follows,

Q(Ψ,Ψprev) =

K∑
k=1

γ(c1k) lnπk

63

+

T∑
t=2

K∑
j=1

K∑
k=1

ξ(ct−1,j , ctk) ln ρjk

+

M∑
u=1

T∑
t=1

K∑
k=1

ft∑
i=1

γ(ctk) ln p(ft,i,u | ctk, θk,f)

+

M∑
u=1

T∑
t=1

K∑
k=1

ft∑
i=1

γ(ctk) ln p(vt,i,u | ft,i,u, ctk, φk,f). (4.6)

In the M-Step, we treat γ(Ct) and ξ(Ct−1, Ct) as constants and find the parameters

Ψcurr that maximize Q(Ψ,Ψprev) i.e.,

Ψcurr = argmax
Ψ

Q(Ψ,Ψprev). (4.7)

This maximization can be carried out using Lagrange multipliers [96] with Ψcurr as

(note M for collaborative filtering),

πk =
γ(c1k) + ηk∑K

k′=1(γ(c1k′) + η′k)
, (4.8)

ρkj =

∑T
t=2 ξ(ct−1,k, ctj) + ωkj∑K

j′=1

∑T
t=2 ξ(ct−1,k, ctj′) +

∑K
j′=1 ωkj′

, (4.9)

θk,f =

∑T
t=1 γ(ctk)

∑M
u=1 I(f ∈ ftu) + δk,f

M
∑T

t=1 γ(ctk) +
∑F

f ′=1 δk,f ′
, (4.10)

φk,f,v =

∑M
u=1

∑
t:f∈ftu γ(ctk)I(vt,f,u = v) + λk,f,v∑M

u=1

∑
t:f∈ftu γ(ctk) +

∑Vf
v′=1 λk,f,v′

, (4.11)

where I(x) is the indicator function with I(x) = 1 if x is true and 0 otherwise. In

order to evaluate efficiently γ(Ct) and ξ(Ct−1, Ct) of the E-Step, we will follow the

forward-backward algorithm [96], for which we will define two new variables,

α(Ct)
.
= p(o1:t, Ct), (4.12)

β(Ct)
.
= p(ot+1:T | Ct). (4.13)

We can now write γ(Ct) and ξ(Ct−1, Ct) in terms of α(Ct) and β(Ct) as follows:

γ(Ct) = p(Ct | O) =
p(O | Ct)
p(O)

(4.14)

=
p(o1:t | Ct)p(ot+1:T | Ct)p(Ct)

p(O)
(4.15)

=
α(Ct)β(Ct)

p(O)
, (4.16)

64

where (4.15) is a result of independence (d-separation). Upon summing (4.16) on both

sides over Ct, we find that the left-hand side sums up to one, giving us the relation

between the likelihood function, p(O), and α(Ct) and β(Ct),

p(O) =
∑
Ct

α(Ct)β(Ct) (4.17)

We can express ξ(Ct−1, Ct) in a similar manner,

ξ(Ct−1, Ct) = p(Ct−1, Ct | O) =
p(O | Ct−1, p(Ct)Ct−1, Ct)

p(O)
(4.18)

=
p(o1:t−1 | Ct−1)p(ot | Ct)p(ot+1:T | Ct)p(Ct | Ct−1)p(Ct−1)

p(O)
(4.19)

=
α(Ct−1)p(ot | Ct)p(Ct | Ct−1)β(Ct)

p(O)
, (4.20)

where (4.19) is again a result of d-separation rule.

Hence, we have:

γ(Ct) =
α(Ct)β(Ct)

p(O)
, (4.21)

ξ(Ct−1, Ct) =
α(Ct−1)p(ot | Ct)p(Ct | Ct−1)β(Ct)

p(O)
(4.22)

Given this, the variables, α(Ct), β(Ct) can now be recursively computed (forward

and backward relations) respectively as follows,

α(Ct) = p(ot | Ct)
∑
Ct−1

α(Ct−1)p(Ct | Ct−1), (4.23)

β(Ct) =
∑
Ct+1

β(Ct+1)p(ot+1 | Ct+1)p(Ct+1 | Ct), (4.24)

where β(cTk) = 1 for k = 1, ...,K. Using these definitions, we can rewrite the likelihood,

p(O), as follows,

p(O) =

K∑
k=1

α(cTk). (4.25)

We will now express α(Ct) and β(Ct) in terms of the parameters Ψprev. Before that,

we will compute the full observation probability p(ot | ctk) = µtk,

µtk = p(ot | ctk) =
M∏
u=1

µtku =
M∏
u=1

∏
f∈ftu
v∈vtu

θk,f φk,f,v. (4.26)

65

We can now express the forward relation in (4.23) in terms of the parameters as follows,

α(c1k) = πkµ1k (for t = 1), (4.27)

α(ctk) = µtk

K∑
j=1

α(ct−1,j)ρjk (for t = 2 to T). (4.28)

Similarly, we can express the backward relation in (4.24) as follows,

β(ctk) =
K∑
j=1

β(ct+1,j)µt+1,jρkj . (4.29)

Finally, we can express ξ(Ct−1, Ct) and γ(Ct) in (4.20) and then γ(Ct) as follows,

ξ(ct−1,j ,tk) =
α(ct−1,j)µtkρjkβ(ctk)∑K

k=1 α(cTk)
, (4.30)

γ(ctk) =

K∑
j=1

ξ(ct−1,j , ctk). (4.31)

In (4.30) and (4.31), we have expressed γ(Ct) and ξ(Ct−1, Ct) fully in terms of

parameters Ψ (we used (4.27), (4.28), and (4.29) to substitute for α(Ct) and β(Ct)).

This constitutes the main computation in the E-Step, which in turn involves computing

the likelihood as in (4.25). On the other hand, we have expressed in (4.8), (4.9), (4.10),

and (4.11) Ψ in terms of γ(Ct) and ξ(Ct−1, Ct), which constitutes the main computation

in the M-Step. Hence, by iterating between the two steps until the likelihood in (4.25)

converges, we will be able to obtain stable parameters. This completes the training of

HCFContext to obtain its parameters from the training data.

Prediction: We will now use the learned parameters to predict the future observations

given past observations. This will be done by first finding the distribution over future

states and then by multiplying the distribution over the observations given the future

state. In our case, since the observations are feature-value pairs, we will first calculate

the distribution over features and then the distribution over values given features. Given

that the user has made a sequence of past ‘t’ observations, o1:t = {o1, ...,ot}, the

probability that a feature f , and then a value v for that feature, will be observed at

time t+ 1 can be computed, respectively, as follows,

p(f ∈ ft+1 | o1:t) =

K∑
k=1

p(ct+1,k | o1:t) · θk,f , (4.32)

66

p(vt+1,f = v | o1:t) =

K∑
k=1

p(ct+1,k | o1:t) · φk,f,v, (4.33)

Note that p(ct+1,k | o1:t) in (4.32), (4.33) is computed as,

p(ctk | o1:t) =
K∑
j=1

p(ct+1,k | ctj)p(ctj | o1:t), (4.34)

where p(ct+1,k | ctj) = ρjk and p(ctj | o1:t) can be recursively computed using a proce-

dure similar to (4.28) (forward algorithm),

α′(ctk) = p(ctk | o1:t) (4.35)

=
p(ot | ctk)

∑K
j=1 p(ctk | ct−1,j)p(ct−1,j | o1:t−1)∑K

k=1 p(ot | ctk)
∑K

j=1 p(ctk | ct−1,j)p(ct−1,j | o1:t−1)
(4.36)

=
µtk
∑K

j=1 ρjkα
′(ct−1,j)∑K

k=1 µtk
∑K

j=1 ρjkα
′(ct−1,j)

(4.37)

We compute (4.32), (4.33) over all features, fi : i = {1, ..., F}, all corresponding values

vj : j = {1, ..., Vfi} and pick the most probable ones to get feature-value pairs at t+ 1.

Determining the Number of Hidden Contexts: So far we have assumed that the

number of hidden contexts K is given; however, in general this number needs to be

determined automatically from the data. We will now detail an original approach to

determine the best K assuming it lies in the range Krange = [Kmin,Kmax] and that the

extremes can be approximately obtained from prior information about the data. To de-

termine the best K ∈ Krange, we will define a metric called Perplexity that determines

how well the chosen K fits for prediction tasks over the testing set. Perplexity [97],

usually used in machine learning perplexity is a measurement of how well a probability

distribution or probability model predicts a sample. It can be used to compare probabil-

ity models. A low perplexity indicates the probability distribution is good at predicting

the sample. In our scenario, we define the perplexity to be the prediction probability

over a sequence of observations given a sequence of past observations from the testing

set. It can be written as follows,

Perplexity = exp

(
− log p(ot+1:T | o1:t)∑M

u=1

∑T
t=t+1 |otu|

)
, (4.38)

67

where |otu| is the number of features observed at time t for user u and p(ot+1:T | o1:t)

can be determined as follows,

p(ot+1:T | o1:t) =
K∑
k=1

p(ctk | o1:t)p(ot+1:T | ctk), (4.39)

where p(ctk | o1:t) = α′(ctk) (can be computed similar to (4.37) or (4.23)) and p(ot+1:T |

ctk) = β(ctk) (can be computed using (4.29)). Intuitively, a small perplexity is desired

as explained above. Although in general the perplexity reduces as K increases, a large

K is not preferred due to the risk of overfitting. Hence, we make use of the rate of

decrease in perplexity to determine when to stop increasing K, e.g., if it falls below a

threshold (say 10%), we stop K at that value.

HPContext Model: Personalized model is just a special case of the above collaborative

filtering model when the number of users is one (i.e., M = 1). The main difference is in

the observation probability. Specifically, for user u,

µtk = p(otu | ctk) = µtku =
∏
f∈ftu
v∈vtu

θk,f φk,f,v. (4.40)

Remaining equations remain the same with setting M = 1.

Privacy-preserving Multi-party Computing: Since the users could possibly be in

different contexts while training it is important to preserve their privacy. In this section,

we develop algorithms for multi-party parameter estimation of HCFContext while pre-

serving each party’s privacy. Hence model parameters need to be jointly estimated when

the individual observations are encrypted. Since the model parameters Ψ are known

to everyone, the prediction can be carried out by each party on their own. Before we

present the algorithms, we provide the threat/adversary model.

Threat/Adversary Model: We use a semi-honest setting, where parties keep all their

intermediate computations private, and we assume that Pm will not collude with P1 and

disclose encrypted values received. The key generation in our security model will be fol-

lowing a standard key exchange mechanism [98] without the need of a third party entity.

Consequently, through underlying guarantees by the cryptographic multi-party compu-

tation primitives, any malicious party (either compromised by an external adversary or

playing as an insider threat) cannot get access to private observations of other parties

68

without authorization. Compared to past similar solutions that extract context based

on phone sensors, for secure policy enforcement (e.g., Swirls [70]), our proposed col-

laborative filtering-based solution uses sensor information from multiple parties. Past

techniques (e.g., Swirls [70]), which rely on sensor measurements from only one device,

assume that device’s operating system as the Trusted Computing Base (TCB) [99].

Hence, if the device is compromised, no security properties can be guaranteed because

the sensor measurements may be corrupted. However, in our case, the use of measure-

ments from multiple devices raises the security bar against such adversaries. One may

argue that the models themselves may be unreliable as they are based on historical

sensor data. Our approach provides protection against this point by comparing sensor

context with that obtained from HPContext and HCFContext , and alerting the user in

case of significant differences and also adaptively learning to ignore false positives based

on similar such observances in the past.

Algorithms: The algorithms we developed for this (extended from [89]) are based on

the following well-known primitives—homomorphic encryption [100], secure logsum, and

secure negation [101] which are briefly introduced below.

Homomorphic Encryption: It relies on a public-private crypto-system that has the

property of mirroring plaintext operations on ciphertexts while not revealing either

the parameters of the operation or the result. In practice, it allows us to perform

computations on the encrypted text. As such, the following homomorphic properties

hold for the Paillier crypto-system: D[E[s1] × E[s2]] ∼ s1 + s2 and also D[E[s1]
s2] ∼

s1 × s2, for some plain-texts, s1, s2 (here E and D stand for encryption and decryption

respectively; E not to be confused with ‘expectation’). Accordingly, we can add or

multiply numbers by respectively multiplying or taking the exponent of their ciphertext.

For further details on the Paillier crypto-system, please see [100].

Secure Logsum: Secure logsum is a simple protocol that uses the homomorphic prop-

erties of the Paillier crypto-system. Consider two parties a and b where a has a vector

of encrypted values (E[log x1], E[log x2], . . . E[log xn]), and b holds the decryption key.

a and b want to jointly compute E[log
∑n

i=1 aixi], for a public vector (a1, ..., an). This

operation relies on computing for both parties the vector (E[x1], . . . , E[xn]) using the

69

Algorithm 4.1 Secure multi-party computation of P (O | Ψ).
Input: Parties P1, P2, . . . , PM know the model Ψ. Each party has a set of private observations

Otu=(f1u,v1u), (f2u,v2u), . . . , (fTu,vTu).

Output: P (O | Ψ, η, ω, δ, λ) =
∑K
k=1 α(cTk)

Initialization (t=1):

1: for k = 1, . . . ,K do

2: for all Pq 6=m do

3: Pq sends E[log(µ1kx)] to Pm,

4: end for

5: Pm computes E[log(
∏M
u=1 µ1ku)] using (4.26)

6: Pm computes E[log(α(c1k))] using (4.27)

7: end for

Induction:

8: for t = 2, . . . , T do

9: Repeat steps 2-6, replacing time index with t, so that Pm obtains E[log(
∏M
u=1 µtju)] for j =

1, . . . ,K.

10: for k = 1, . . . ,K do

11: Pm and P1 use the secure logsum protocol to compute E[log
∑K
j=1 α(ct−1,j)ρjk],

12: Pm computes E[log(α(ctk))] using (4.28)

13: end for

14: end for

Termination:

15: Pm and P1 use the secure logsum protocol to compute E[logP (O | Ψ)] = E[log
∑K
k=1 α(cTk)],

16: P1 decrypts the result and sends the value to Pm.

secure exponent protocol. Details of these protocols can be found in [101].

Secure Negation: The presented algorithm also relies on the ability of two parties a

and b to compute the encrypted negation E[−x] of an encrypted value E[x]. This can

be easily done using the basic application of homomorphic encryption outlined above.

The proposed algorithm for secure multi-party computation of data likelihood, P (O |

Ψ) is shown in self-explanatory Algorithm 4.1 (E in the algorithm refers to encrypted

value and not expectation). It details the steps the M parties need to undertake to

jointly compute α(·) (as per (4.27), (4.28)) and the log likelihood of their observa-

tion data given the model parameters, P (O | Ψ). We assume only one party (P1 in

Algo. 4.1) has both the private and public keys, while the remaining M − 1 parties

(Pm | m = 2, . . . ,M) have only the public key. Hence all parties encrypt their private

70

Algorithm 4.2 Secure multi-party estimation of Ψ.
Input: E[logα(ct)], E[log β(ct)], and E[logP (O | Ψ)].

Output: The updated model parameters Ψ = {Π, P,Θ,Φ}

1: for t = 2, . . . , T do

2: for k = 1, . . . ,K do

3: for j = 1, . . . ,K do

4: Pm computes E[log ξ(ct−1,j , ctk)] by taking the log of (4.30)

5: end for

6: Pm and P1 use the secure logsum to compute E[log γ(ctk)] from (4.31)

7: end for

8: end for

9: Pm uses (4.8), (4.9) to update E[log πk], E[log ρkj].

10: Pm then updates E[log θk,f] and E[log φk,f,v] as in (4.10) and (4.11), for the M parties using the

secure logsum and negation protocols.

observation data and send it to Pm, where m can be any one of 2, . . . ,M , which does

the computations on this private encrypted data (as it cannot decrypt it since it has

only the public key). Whenever it needs to compute secure logsum and secure negation

protocols, it consults P1 which has the private key. Algo. 4.1 can be similarly used to

compute β(·) as per (4.29). The proposed algorithm for secure multi-party estimation of

model parameters, Ψ is shown in Algo. 4.2. It details the steps taken by the M parties

to estimate Ψ using P (O | Ψ), α(·), β(·) computed from Algo. 4.1. In Algo. 4.2, Pm first

computes ξ(ct−1,j , ctk), γ(ctk) as per (4.30) and (4.31) respectively. It then computes the

model parameters, Ψ as per eqs. (4.8) to (4.11).

Computational Complexity: The computational complexity of Algo. 4.1 can be seen

as O(MK2T) due to twice-nested for-loop operating for T timesteps for each party, while

it is O(MK3T) for Algo. 4.2 due to triple-nested for-loop, (lines 1− 3).

Floating Point and Negative Numbers: Our algorithms need to encrypt the HMM

parameters, which are real numbers. We translate between floating-point numbers and

non-negative integers by scaling and rounding off the values. Let c be the scaling

factor. A real number r is translated to integer r̄ = bcrc, where bxc is the largest

integer ≤ x. We incorporate this operation into the encryption and decryption as

E′[r] = E[r̄] = E[bcrc], and D′[E′[r]] = r̄/c ≈ r. For negative numbers, we use modulo

n arithmetic, i.e., negative numbers are represented by their modular additive inverse.

71

Table 4.2: Lifemap dataset analysis (9 weeks, 5 users, 1 hour sampling).

Feature Values VF

WiFi MAC values of max dBm Access Points 440

Place Name User defined place name values 168

Cell ID Cell ID values 316

LAC Location Area Code values 33

Batt. Level Low (< 35%), Medium (35%− 65%), High (65%− 85%), Full (> 85%) 4

Batt. Status Charging, Discharging, Full 4

Day Period Morning: {7 to 11 am}; Noon: {11 am to 2 pm}; Afternoon: {2 to

6 pm}; Evening: {6 to 9 pm}; Night: {9 pm to 7 am}

5

Day Name Mon, Tue, Wed, Thu, Fri, Sat, Sun 7

Holiday Yes, No 2

0 10 20 30 40 50 60 70

Number of hidden context states (K)

4

6

8

10

12

14

16

18

20

22

A
ve

ra
g
e
 P

e
rp

le
xi

ty

User A
User B
User C
User D
User E

(a)

0 10 20 30 40 50 60

Number of hidden context states (K)

5

10

15

20

25

30

A
ve

ra
g
e
 P

e
rp

le
xi

ty

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10

(b)

Figure 4.3: Perplexity vs. K: (a) 1 user case; (b) 2 user case. These figures help

identify the best 2 user groups (most related two users).

For r < 0, E′[r̄] = E′[r̄+n]. This means our r is limited to range [−n/(2c), (n−1)/(2c)].

4.4 Performance Evaluation

We describe the experimental setup and results, and evaluate the performance of the

privacy-preserving algorithms.

72

0 10 20 30 40 50 60

Number of hidden context states (K)

6

8

10

12

14

16

18

20

22

24

26

A
ve

ra
g
e
 P

e
rp

le
xi

ty

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10

(a)

0 10 20 30 40 50 60

Number of hidden context states (K)

8

10

12

14

16

18

20

22

A
ve

ra
g
e
 P

e
rp

le
xi

ty

Group 1
Group 2
Group 3
Group 4
Group 5
All Users

(b)

Figure 4.4: Perplexity vs. K: (a) 3 user case; (b) 4 and all user case.

0 2 4 6 8 10 12
Iteration Number of EM Algorithm

−90000

−80000

−70000

−60000

−50000

−40000

−30000

−20000

−10000

0

L
o
g

L
ik

e
li

h
o
o
d

,
P
(O

|Ψ
)

0

1000

2000

3000

4000

5000

6000

7000

T
im

e
ta

k
e
n

(s
e
c
)

HPContext

HCFContext(2 Users)

HCFContext(3 Users)

(a)

12am 3am 6am 9am 12pm 3pm 6pm 9pm

Time of Day

40

50

60

70

80

90

P
e
r
c
e
n

ta
g
e

o
f

c
o
r
r
e
c
t

p
r
e
d

ic
ti

o
n

s
o
v
e
r

a
l
l

fe
a

tu
r
e
s

1-3 week Test

4-6 week Test

7-9 week Test

(b)

Figure 4.5: (a) Log likelihood of the training data and time taken vs. number of itera-

tions of EM algorithm for different models; (b) Comparison of performance (HPContext

+ HCFContext (2) + HCFContext (3)) for different choices of test data - first, mid, and

last three weeks.

Dataset and Experiment Description: To validate our models, we have used the

LifeMap dataset [102], which is freely available online. This dataset consists of fine-

grained mobility data such as WiFi fingerprints (MAC address and signal strengths of

surrounding Wi-Fi APs), user-defined types of places (workplace, cafeteria, etc.), cell

tower ID, etc. These details of 10 users are logged every 2 to 5 minutes for about

73

two months (which is the overlap time among all users) in Seoul, Korea. The users

are graduate students of the same lab in the university and as such the data suits

our application. We have chosen data corresponding to five users for a period of nine

weeks for our experiments. Username, gender and the number of places visited in

total for these five users are as follows—GS2 (A), M, 163; GS3 (B), M, 297; GS4 (C),

F, 209; GS7 (D), M, 289; GS12 (E), M, 376. The average number of places visited

per user is about 270. However, the number of frequently visited places for each user

ranges from 8 to 35 (median 20). We also down sampled the data to 1 hour period

to ease the computations i.e., the time instants t and t + 1 are separated by 1 hour.

This also means the trained models will be able to capture mostly only those contexts

with stay duration of the order of an hour or more. Six weeks of data is used for

training and the remaining three week data is used for testing. The list of features

we have used from this dataset is shown in Table 4.2. Here VF corresponds to the

total number of values taken by that feature. In case of ‘Holiday’, Saturday, Sunday

and any public holidays are considered as holidays. In cases where a certain feature’s

value is missing, we model it as if the feature is not available at that time using θk,f .

We have empirically set η = {1/K, ..1/K}, ωk = {50/K, ...50/K}, δ = {1, 10}, λ =

{0.01, ...0.01} in our experiments [103] (K is the number of hidden context states). All

our results (implemented in Python) are generated on an Intel 4-core i7-2600 CPU @

3.40GHz, with 8 GB of RAM. We did not consider a larger dataset as our main idea is

to apply collaborative filtering across the user’s closely related users such as labmates,

roommates, etc. Also, we could not find larger datasets with similar features.

Perplexity vs. K and Optimal Group Selection: Fig. 4.3(a) shows the averaged

perplexity values for different number of hidden states, K, for one user case. Since this is

a one user case it corresponds to HPContext . The perplexity is calculated by predicting

the observations at the next 12 time instants in the test data given the preceding 12

observations on the same day. This has been done over all the days in the three week

test data and the results are averaged. From Fig. 4.3(a), we can observe that perplexity

reduces as K increases with a pattern of diminishing returns. We can observe that user

A has the best perplexity and K = 10 provides a good balance between perplexity and

74

complexity introduced due to higher K values. Fig. 4.3(b) shows similar result for 2

users. Since we have 2 users, we have a total of 10-user groups (5C2 combinations). We

can observe that Group 10 consisting of users A,C has the best perplexity and K = 15

provides a good tradeoff. This means that the two users in Group 10 have more similar

patterns than the users in other groups. Fig. 4.4(a) shows similar result for 3 users. We

can observe that Group 2 (users A,C,D) has the best perplexity with K = 25 providing

good tradeoff. Similarly, for 4 user case, we can observe from Fig. 4.4(b), that Group 1

(users A,B,C,D) has best perplexity values and K = 25 provides a good balance. For

all user case in the same figure, we can see that K = 25 provides a good tradeoff. Hence

these results can be used to select most related users in a group of 2/3/4, etc. Even

though it takes time to find the optimal group via this approach, we feel it is acceptable

as it is done only once offline. For the results below, whenever a user or a group of users

is mentioned, we considered the above best groups and optimal K values. To illustrate

the benefits of collaborative filtering contexts, we considered only 2 and 3 user groups

as benefits diminish with increase in group size.

Log Likelihood Convergence, Training Times: Fig. 4.5(a) shows the log likelihood

(LL) of the training data, P (O | Ψ), versus the iteration number in the EM algorithm

(which is used to estimate parameters of HCFContext) for different models. We have

considered six weeks of training data so, T = 6× 7× 24. We can see that the LLs have

converged and the model significantly improves the initial LL values (up to 30%). We can

notice that LLs have approximately converged after ncon = 3 iterations. Even then, the

converged LLs have lower values due to large number of values for certain features (such

as WiFi APs which has about 440 unique values) which makes the value probabilities,

φk,f,v, very small. In fact, we encountered underflow problem due to multiplication of

several small probabilities and then using such a value in the denominator resulting in

nan values. In order to solve this problem, we have used scaling approach [104] for α, β

values. Fig. 4.5(a) also shows the time taken in seconds vs. iterations of EM algorithm.

The corresponding time for ncon = 3 is about 200, 800, 1500 seconds respectively for

the three models. These durations are reasonable considering that the training is run

offline and very less often. Both these results are averaged over 4 runs and we can

75

12am 3am 6am 9am 12pm 3pm 6pm 9pm

Time of Day

0

20

40

60

80

100

A
ve

ra
g

e
A

c
c
u

ra
c
y

(o
ve

r
a

ll
te

s
t

d
a
y
s
)

WiFi-AP

MobileMiner

HPC

HPC+HCFC(2)

HPC+HCFC(2)+HCFC(3)

(a)

12am 3am 6am 9am 12pm 3pm 6pm 9pm

Time of Day

0

20

40

60

80

100

A
ve

ra
g

e
A

c
c
u

ra
c
y

(o
ve

r
a

ll
te

s
t

d
a
y
s
)

Cell-ID

MobileMiner

HPC

HPC+HCFC(2)

HPC+HCFC(2)+HCFC(3)

(b)

12am 3am 6am 9am 12pm 3pm 6pm 9pm

Time of Day

0

20

40

60

80

100

A
ve

ra
g

e
A

c
c
u

ra
c
y

(o
ve

r
a

ll
te

s
t

d
a
y
s
)

LAC

MobileMiner

HPC

HPC+HCFC(2)

HPC+HCFC(2)+HCFC(3)

(c)

12am 3am 6am 9am 12pm 3pm 6pm 9pm

Time of Day

0

20

40

60

80

100

A
ve

ra
g

e
A

c
c
u

ra
c
y

(o
ve

r
a

ll
te

s
t

d
a
y
s
)

Place-Name

MobileMiner

HPC

HPC+HCFC(2)

HPC+HCFC(2)+HCFC(3)

(d)

12am 3am 6am 9am 12pm 3pm 6pm 9pm

Time of Day

0

20

40

60

80

100

A
ve

ra
g

e
A

c
c
u

ra
c
y

(o
ve

r
a

ll
te

s
t

d
a
y
s
)

Battery-Level

MobileMiner

HPC

HPC+HCFC(2)

HPC+HCFC(2)+HCFC(3)

(e)

12am 3am 6am 9am 12pm 3pm 6pm 9pm

Time of Day

0

20

40

60

80

100

A
ve

ra
g

e
A

c
c
u

ra
c
y

(o
ve

r
a

ll
te

s
t

d
a
y
s
)

Holiday

MobileMiner

HPC

HPC+HCFC(2)

HPC+HCFC(2)+HCFC(3)

(f)

Figure 4.6: Average accuracy of the proposed models—HPContext , HPContext + HCF-

Context (2), HPContext + HCFContext (2) + HCFContext (3) in predicting the respec-

tive features at different times in a day (averaged over all 21 test days/4 runs).

notice that the 95% confidence intervals are too minute to be noticed.

76

T
ab

le
4.
3:

U
se

ca
se

ill
us
tr
at
in
g
th
e
pr
ed
ic
ti
on

s
(w

it
h
co
rr
es
po

nd
in
g
m
ax

im
um

pr
ob

ab
ili
ti
es
)
at

1
pm

on
on

e
T
ue

sd
ay

in
th
e
te
st

pe
ri
od

.

F
ea

tu
re

s
G

ro
u
n
d

T
ru

th
(A

)
H

P
C

(A
)

H
C

F
C

(A
,C

)
H

C
F
C

(A
,C

,D
)

H
P

C
(A

)
+

H
C

F
C

(A
,C

)

H
P

C
(A

)
+

H
C

F
C

(A
,C

)
+

H
C

F
C

(A
,C

,D
)

W
i-F

iA
P

00
:b
l:f
2:
9b

:0
5:
76

00
:o

g:
1f

:2
e:

4n
:6

c

(0
.3

2)

00
:b
l:f
2:
9b

:0
5:
76

(0
.4
3)

00
:b
l:f
2:
9b

:0
5:
76

(0
.4
1)

00
:b
l:f
2:
9b

:0
5:
76

(0
.2
7)

00
:b
l:f
2:
9b

:0
5:
76

(0
.3
2)

P
la
ce

N
am

e

F
00
7

F
00
7
(0
.8
4)

B
00

3
(0

.4
8)

J0
23

(0
.3

1)
F
00
7
(0
.5
7)

F
00
7
(0
.4
1)

C
el
lI
D

42
53
41
64

42
53
41
64

(0
.6
2)

42
53
41
64

(0
.4
4)

48
75

98
36

(0
.3

)
42
53
41
64

(0
.5
3)

42
53
41
64

(0
.3
9)

L
A
C

85
13

93
53

(0
.3

2)
85
13

(0
.4
7)

85
13

(0
.5
7)

93
53

(0
.3

6)
85
13

(0
.4
1)

B
at
te
ry

L
ev
el

H
ig
h

H
ig
h
(0
.8
9)

M
ed

iu
m

(0
.4

1)
M

ed
iu

m
(0

.3
2)

H
ig
h
(0
.5
7)

H
ig
h
(0
.4
2)

B
at
te
ry

St
at
us

D
is
ch
ar
gi
ng

D
is
ch
ar
gi
ng

(0
.9
5)

D
is
ch
ar
gi
ng

(0
.9
3)

D
is
ch
ar
gi
ng

(0
.8
1)

D
is
ch
ar
gi
ng

(0
.9
4)

D
is
ch
ar
gi
ng

(0
.8
9)

D
ay

P
er
io
d

A
ft
er
no

on
A
ft
er
no

on
(0
.7
2)

A
ft
er
no

on
(0
.8
2)

A
ft
er
no

on
(0
.7
3)

A
ft
er
no

on
(0
.7
7)

A
ft
er
no

on
(0
.7
5)

D
ay

N
am

e

T
ue

sd
ay

T
ue

sd
ay

(0
.5
9)

T
ue

sd
ay

(0
.6
8)

T
ue

sd
ay

(0
.7
3)

T
ue

sd
ay

(0
.6
3)

T
ue

sd
ay

(0
.6
7)

H
ol
id
ay

N
o

Y
es

(0
.6

)
N
o
(0
.7
)

N
o
(0
.7
5)

N
o
(0
.5
5)

N
o
(0
.6
2)

77

Prediction Performance—A Use Case: We relate to the “lunch” use case mentioned

in Sect. 4.1. We considered user A for this purpose and his most related 2 and 3 user

groups as found from above—(A,C) and (A,C,D)—and the corresponding models, HP-

Context , HCFContext (2), and HCFContext (3), respectively (please note this notation

to be used in rest of the chapter). We first illustrate the prediction results using a known

use case as follows. We manually observed from the data that users A,C,D usually go to

lunch together on weekdays around 12−2 pm. We wanted to check whether our models

are able to capture this group behavior. Hence we predicted the contextual feature-

values of user A at 1 pm on one randomly selected weekday (Tuesday) in the test period

given the observations of previous one-day duration using the above models. Table 4.3

shows the results of different models along with ground truth (column 2). All entries

correspond to maximum probability values with those probabilities shown in brackets.

Incorrect predictions are depicted in bold. We can notice that HPContext (col. 3) does

a good job in predicting the personalized features such as Place Name, Battery Level but

makes 3 incorrect predictions for more general features such as LAC, Holiday, etc. Note

that each feature is predicted independently, e.g., predicting Place Name correctly does

not necessarily mean Wi-Fi AP prediction is correct. Interestingly, HCFContext (cols.

4,5) makes correct predictions for those general features but fares badly for personalized

features. Hence we combined the two models to obtain better predictions (as can be

seen in last two columns) as follows. In case of HPContext + HCFContext (2), we first

average the probabilities of values predicted by both models and then take the feature

value with the highest average probability. We do similarly for HPC + HCFC (2) +

HCFC (3) (here HPC refers to HPContext and HCFC to HCFContext for simplicity).

Prediction Performance—Overall: To evaluate the overall performance, we pre-

dicted all the contextual feature value pairs of user A at 3 hour increments in the entire

3-week testing period (i.e., 3 × 7 × 8 in total) given the past observations of one-day

duration. In order to compare with other closest approaches, we considered Mobile

Miner [73], which is the current state-of-the-art machine learning algorithm to mine

contextual co-occurrences. Each feature is considered to be independently co-occurring

with the time of day and day of week (as opposed to sequentially occurring in our case),

78

12am 3am 6am 9am 12pm 3pm 6pm 9pm

Time of Day

0

20

40

60

80

100

P
e
rc

e
n

ta
g
e

o
f

E
x

c
e
ll

e
n

t
p

re
d

ic
ti

o
n

s

HPC

HPC + HCFC(2)

HPC + HCFC(2) + HCFC(3)

(a)

12am 3am 6am 9am 12pm 3pm 6pm 9pm

Time of Day

0

20

40

60

80

100

P
e
rc

e
n

ta
g
e

o
f

G
o

o
d

p
re

d
ic

ti
o
n

s

HPC

HPC + HCFC(2)

HPC + HCFC(2) + HCFC(3)

(b)

12am 3am 6am 9am 12pm 3pm 6pm 9pm

Time of Day

0

20

40

60

80

100

P
e
rc

e
n

ta
g
e

o
f

B
a

d
p

re
d

ic
ti

o
n

s

HPC

HPC + HCFC(2)

HPC + HCFC(2) + HCFC(3)

(c)

Sun Mon Tue Wed Thu Fri Sat

Day of Week

0

20

40

60

80

100

P
e
rc

e
n

ta
g
e

o
f

E
x

c
e
ll

e
n

t
p

re
d

ic
ti

o
n

s

HPC

HPC + HCFC(2)

HPC + HCFC(2) + HCFC(3)

(d)

Sun Mon Tue Wed Thu Fri Sat

Day of Week

0

20

40

60

80

100

P
e
rc

e
n

ta
g
e

o
f

G
o

o
d

p
re

d
ic

ti
o
n

s

HPC

HPC + HCFC(2)

HPC + HCFC(2) + HCFC(3)

(e)

Sun Mon Tue Wed Thu Fri Sat

Day of Week

0

20

40

60

80

100

P
e
rc

e
n

ta
g
e

o
f

B
a

d
p

re
d

ic
ti

o
n

s

HPC

HPC + HCFC(2)

HPC + HCFC(2) + HCFC(3)

(f)

Figure 4.7: Percentage of excellent/good/bad predictions—(a)-(c) at different times of

day; (d)-(f) for different days of week.

and is modeled using Multinomial Logistic Regression. Fig. 4.6 shows the average pre-

diction accuracy (percentage of correct predictions) for each feature at different times in

a day (averaged over all the 21 days). Even though we are able to predict at the hourly

79

level (due to the upsampling mentioned earlier), we show only at 3-hour intervals for

clarity. These simulations are also run for 4 runs (to account for randomicities such as

random initialization of the model parameters) and the confidence intervals are shown.

We have shown results only for six features consisting of four location features—Wi-

Fi AP, Place Name, Cell ID, Location Area Code (LAC), one device feature—Battery

Level and one time feature—Holiday. Others follow similar pattern.

First of all we can notice that the proposed models perform better than Mobile Miner.

Second, in case of proposed models, we can notice that the accuracy slightly drops

during mid-day compared to other times. The reasons for this drop as follows—(1) the

user is more mobile during those times introducing randomness into the data making

the model hard to learn; (2) the average number of places visited by each user is 270

(as indicated above) and the K value chosen (as a tradeoff between complexity and

accuracy) is less than that; (3) the data is down-sampled to one hour interval, meaning,

any places with stay duration less than one hour will not be captured well. However it is

important to note that the accuracy in such cases is still on an average about 75% which

is reasonable to validate/complement the context from sensors. During other times of

the day, we can notice that the accuracy is about 90%, which means the models are able

to predict the values of those contextual features correctly 90% of the time. Third, we

can notice that HPC + HCFC (2) model improves accuracy over HPC to a maximum

of 15% especially in more general features such as LAC, Holiday. In case of personalized

features such as Place Name, Battery Level, the improvement is minor. We also notice

that the additional improvement from HCFC (3) is again minor, about 5%. In total,

HCFC contributes upto 20% improvement in accuracy. We have also plotted similar

results for each day of the week but could not include them due to space limitations. In

addition to above trends in generic/personalized features vs. models, we have noticed

a drop in accuracy over weekends (to around 75% on average) again owing to increased

mobility with less sequential behavior. The average accuracy is about 80% to 90% for

the rest of the days (HPC + HCFC (2) + HCFC (3) model).

Prediction Quality: Next, we tested our models’ prediction quality by testing how

many of the features (all in Table 4.2) the models are able to predict correctly at a given

80

time of day. For this purpose, we created three categories—Excellent, Good, Bad. If the

model is able to predict at least 7 features out of 9 correctly at a given instant, we call

it Excellent prediction. Similarly we call 4/5/6 features prediction, a Good prediction

and 1/2/3 (0 is not included) features prediction, a Bad prediction. For example, the

prediction corresponding to HPC(A) in Table 4.3 is considered a Good prediction,

while that belonging to HPC(A) + HCFC(A,C), an Excellent prediction. Fig. 4.7

shows these results (averaged) for different times of day and days of week. In both sets

of figures, we can notice that the percentage of Excellent cases is at least 50%. Secondly,

the percentage of Excellent cases is more than Good cases which in turn is more than

the Bad cases (in particular the Bad cases are very less, comparatively speaking).

Test Data Rotation: The performance of the models when the test data chosen is the

first (1-3), middle (4-6) and last (7-9) three weeks is shown in Fig. 4.5(b), which shows

the percentage of correct predictions across all features and test days for different choices

of test data (results shown only for HPC + HCFC (2) + HCFC (3) for clarity). We can

notice that the performance is roughly the same showing robustness of the proposed

models to choice of test data and their ability to fully learn users’ sequential patterns

using 6 weeks train data.

Contextual Optimal User Group Selection: So far, for a given user, A, we have

found the optimal user groups considering all times of the day. However, it is more

beneficial to find the optimal user group based on the time of the day which is more

realistic. For example, for a given user, the closely related users during the office hours

may be different from the closely related users during home hours. Taking this idea

into account, we have found the most closely related user for user A (i.e., optimal 2-

user group) at different times of the day using the perplexity method mentioned earlier.

Instead of averaging across all times of the day, we find the user group with minimum

average perplexity at each time instant of the day. The results are as follows—(12am,B),

(3am,B), (6am,B), (9am,C), (12pm,C), (3pm,C), (6pm,C), (9pm,D).

Prediction Using Only HCFContext : We now predict the feature-value pairs of

user A at all time instants in the test period using only the collaborative filtering model,

HCFC (2), with dynamic optimal 2-user group obtained from above. Fig. 4.8(a) shows

81

12am 3am 6am 9am 12pm 3pm 6pm 9pm

Time of Day

0

20

40

60

80

100

A
ve

ra
g

e
A

c
c
u

ra
c
y

(o
ve

r
a

ll
fe

a
tu

re
s
,

te
s
t

d
a
y
s
)

HPC(A)

HCFC(A,C)

HCFC(A,dynamic)

(a) (b)

100 200 300 400 500 600 700 800 900

Number of time samples (T)

0

500

1000

1500

2000

2500

3000

T
im

e
ta

ke
n

(s
ec

)

64 bits
128 bits
256 bits

(c)

Figure 4.8: (a) Comparison of performance among HPContext , HCFContext (with fixed

optimal user group), HCFContext (with dynamic optimal user group). (b) Worst-case

errors of parameters [10 runs] (%). (c) Time taken to run Algorithm 4.1 for different

number of training (time) samples vs. key length (bits).

the performance of that model compared against two other models—the personalized

model HPC and HCFC (2) with fixed optimal 2-user group (A,C). We can notice that

dynamic HCFC performs close to HPC and better than fixed HCFC. This indicates that

personalized context can be obtained from collaborative filtering of contexts correspond-

ing to user’s closely related users with appropriate dynamic (i.e., time of day/activity

the user is performing) selection of closely related users.

Privacy-preserving Algorithms: To evaluate the performance of Algorithms 4.1,

4.2, we tested them on a simple HMM with M = 2 parties, K = 2 hidden states and

|ftu = 6| observation states per hidden state. We evaluated both the amount of error

82

introduced (due to scaling as mentioned previously) as well as the time taken to train

the HMM and run the predictions. For the former, we calculated the error by comparing

with the non-privacy preserving case. We varied the key length (bits) n and the scaling

factor c. The worst-case errors over 10 runs with T = 1000 samples, as percentages, for

different parameters is shown in Fig. 4.8(b). We notice that the error reduces as scaling

factor increases (as expected). Similarly, as the key length increases, the error reduces

and also security increases. We can notice that for large keys and reasonable scaling

factors, the error due to integer approximation and consequent over- or underflow is

insignificant (about 2% in the worst case over all parameters). This shows that the

effect on the prediction accuracy results above will not be drastic. However, the price

is in terms of run-time. Fig.. 4.8(c) shows the average run-times of Algorithm 4.1 vs.

the number of time samples as well as the key length (with c = 106). We can see

that the time taken varies linearly with the number of samples used. However, the

relation seems to be approximately quadratic with key-length. This result shows the

tradeoff between security and run-time. As the key-length is increased, more is the

security, less is the amount of error introduced, however the run-times are more. Hence

a suitable key length should be chosen that is a compromise between security/error and

run-time. The run-times for Algorithm 4.2 are on average five times more. However

these algorithms need to be run only for training the HCFContext which is run very less

frequently and offline. Moreover, we will leverage recent advances in encryption and

multi-party computation algorithms such as [105] to help further reduce the runtimes

of these algorithms, as part of future work.

Real-time Inference and Cold-start: Once the training is complete, model param-

eters are known to each device. Prediction, then, just involves evaluating (4.32), (4.33)

by plugging in the learned parameters. These are just a few arithmetic operations and

do not involve any compute-intensive encryption/decryption algorithms unlike training

which happens offline. Hence, our approach will not have any problems in practical

implementations i.e., making predictions in real time. Furthermore, to combat the cold-

start problem akin to collaborative filtering based approaches, we suggest to—(i) use

83

sensor context and also obtain user validation for additional security in case of secu-

rity based applications such as Swirls [70]; (ii) use sensor context + HPContext until

HCFContext is learnt well.

Energy Considerations: Note that all of the features we worked with are passive,

i.e., do not require active probing that consumes energy. One exception is the Wi-Fi,

which needs to be turned ON in case it is not ON. In all other cases, we piggyback on

the sensor data already available on the phone, reducing energy consumption.

4.5 Summary

We proposed and evaluated (on a real-life dataset with over 80% accuracy) privacy-

preserving, sequential history-based personalized and collaborative-filtering models, for

current and future mobile context prediction to validate and/or enhance the sensor

context. Their feasibility for practical deployment in security applications and/or mobile

personal assistant technologies is shown.

84

Chapter 5

Deep Multi-Task Learning for Fault/Anomaly Detection
Using Scalar Sensor Data

We have seen in previous chapters how to design coordinated target search and coor-

dinated data collection in a post-disaster scenario using a group of IPSs (UAVs) via

reinforcement learning based techniques. As these IPSs are operating in a highly dy-

namic and uncertain environment such as a post-disaster scenario, it is paramount to

continuously monitor their operation and proactively detect and diagnose any anoma-

lous behavior. As such, in this chapter, we will focus on developing anomaly detection

techniques using scalar sensor data of the IPS. Specifically, we will develop techniques

in the context of autonomous ground vehicles, which we will then extend to autonomous

UAVs in the next chapter.

Autonomous Driving (AD) aka self-driving vehicles are cars or trucks in which human

drivers are never required to take control to safely operate the vehicle. They combine

sensors and software to control, navigate, and drive the vehicle. Though still in its

infancy, self-driving technology is becoming increasingly common and could radically

transform our transportation system economy and society. Many thousands of people

die in motor vehicle crashes every year in the United States (more than 30,000 in 2015);

self-driving vehicles could, hypothetically, reduce that number—software could prove

to be less error-prone than humans. Based on automaker and technology company

estimates, level 4 (the car is fully-autonomous in some driving scenarios, though not all)

self-driving cars could be for sale in the next several years [106].

85

5.1 Introduction

Motivation: Currently, safety is an overarching concern in AD technology, that is pre-

venting its full deployment in real world. The question to answer is whether the AD

system can handle potentially dangerous and anomalous driving situations. Before AD

systems can be fully deployed, they need to know how to handle such scenarios, which

in turn calls for heavy training of an AD system on such scenarios. The challenge lies

in that, these scenarios are very rare. They constitute the ‘long tail of rare events’

and comprise less than 0.01% of all events in a given driving dataset. Hence Artifi-

cial Intelligence (AI) technology need to be used to both mine these “gems” in a given

dataset and then to train the AD system to handle such ‘special’ situations. Detecting

such anomalous driving scenarios that is crucial to building fail-safe AD systems offers

two advantages—both offline and online. In the former, given a dataset, the identi-

fied anomalous driving scenarios can be used to train an AD system to better handle

such scenarios. This can be achieved, for example, via weighted training—give more

weight to learning anomalous scenarios than normal scenarios. For online purposes,

detecting anomalous driving scenarios ahead of time can help prevent accidents in some

cases, by taking a corrective action so as to steer the system in a safe direction (e.g.,

apply appropriate control signals or if possible, handing over the control to a human

driver). We specifically consider only the Controller Area Network (CAN) bus sensor

data such as pedal pressure, steer angle, etc. (multi-modal time-series data) due to

its simplicity, while still providing valuable (though not complete) information about

the driving profile; augmenting with video data will be our future work. We consider

any unusual pattern (such as abruptness, rarity, etc.) among different modalities as a

sign of an anomaly. Such a pattern could have happened due to unusual reaction of

driver on the pedal, accelerator, steering wheel, etc. which in turn implies the driver

has gone through a challenging (anomalous) driving situation. Though model-based

(rule-based) approaches can be used to detect anomalies in multi-modal time-series

data, they work reliably only for simple cases such as threshold based anomaly detec-

tion (speed/deceleration greater than a threshold, etc.). It is difficult as well as tedious

86

���������	
����

����
�� �������

�

�

�

�

�

�

�

�

�

���
���	 ���
���	

�	���

�	���

Figure 5.1: A high-level overview of the proposed multi-task deep learning based ap-

proach for anomaly detection in multi-modal time-series driving dataset.

to compose rules for complex and even unknown (apriori) situations. On the other

hand, data-driven approaches, can learn representations directly from the data, and use

them to detect anomalies. This gives them the ability to detect complex and unknown

anomalies directly from data. Although, the performance of data-driven approaches is

only as good as the data, this limitation can be addressed to some extent, when large

amount of data is considered for training. In data-driven approaches, deep-learning

based approaches (as opposed to classical machine learning techniques) are especially

interesting due to their ability to learn the features on their own without the need

for expert domain-expertise. Existing deep learning approaches for anomaly detection

in multi-modal time series data include reconstruction-error based approaches such as

Long Short Term Memory (LSTM) autoencoders. These approaches do not perform

well in the case where multiple “normal” situations (multiple positive classes) exist with

“class imbalance” problem. In case of driving data, these classes correspond to right-

turn, going-straight, U-turn, etc. where the data for U-turn is far lesser than the data

for going-straight. There is a higher chance that the classifier in these approaches over-

fits smaller (less-frequent) classes resulting in poor performance. Since reconstruction

error is used as a measure of anomaly by these approaches, they classify the less fre-

quent normal classes (e.g., U-turn) also as anomalous, further degrading the algorithm

performance for anomaly detection.

Our Approach: We make the observation that, while reconstruction-error based

87

approaches perform poorly with rare but non-anomalous events, their performance can

be greatly improved with the help of simple domain-knowledge (availability of maneuver

labels in our case). Leveraging these maneuver labels, we add a symbol predictor to

the autoencoder system (creating a multi-task learning system) which acts as a reg-

ularizer to the autoencoder, thereby achieving better performance than a standalone

autoencoder system. The proposed deep multi-task learning based anomaly detection

system is shown in Fig. 5.1. The two tasks in the proposed approach are a convolutional

bi-directional LSTM (bi-LSTM) autoencoder and a convolutional bi-LSTM sequence-

to-sequence (seq2seq) symbol predictor (in contrast to simple LSTM predictor that

predicts raw sensor data rather than symbols). In the seq2seq predictor, the predicted

symbols/labels correspond to automobile’s next series of maneuvers (e.g., going-straight,

left-turn, etc.). These labels are obtained from manually annotated driving data. We

show that the proposed multi-task learning approach performs better than existing deep

learning based anomaly detection approaches such as LSTM autoencoder and LSTM

predictor as one task acts as a regularizer for the other. In addition to reconstructing the

input data (via autoencoder), the network is also constrained to predict the next series

of maneuvers (via symbol predictor) and as such the chance of overfitting is reduced.

This is because, in a usual autoencoder system, there is a possibility of not learning

good representations of the input data and blindly reproduce the input. In our system,

such risk is reduced (i.e., the system learns good representations) because it is forced to

also predict the future, hence it cannot blindly memorize the input. Such a regularizer

system also helps solve the problem of overfitting to smaller classes mentioned above.

Secondly, the proposed multi-task learning approach leverages these maneuver labels to

define a custom anomaly metric (rather than simple reconstruction error) that weighs

down detection of rare but non-anomalous patterns such as U-turns as anomalies. The

approach has been tested on 150 hours of raw driving data [7] in and around Mountain

View, California, USA and is shown to perform better than state-of-the-art approach,

LSTM-based autoencoder [107].

Main contributions can be summarized as follows.

• We propose a novel multi-task learning (convolutional BiLSTM autoencoder and

88

symbol predictor) approach for detecting anomalous driving with multiple “nor-

mal” classes and a class imbalance problem. Our approach leverages simple

domain-knowledge (manuever labels) to build a regularizer system that reduces

overfitting and enhances overall reconstruction performance.

• We propose an anomaly scoring metric that leverages the frequency of maneuver

labels from the training data to reduce the cases where rare, but non-anomalous,

events are classified as anomalies.

• We evaluated our approach both quantitatively and qualitatively on 150 hours

of real driving data and compare it with state-of-the-art LSTM autoencoder and

multi-class LSTM autoencoder approaches to show its advantages over them.

Chapter Outline: In Sect. 5.2, we position our work with respect to state of the art;

in Sect. 5.3, we present our approach, and in Sect. 5.4, we evaluate it both quantitatively

and qualitatively on real driving data. Finally, in Sect. 5.5, we summarize the chapter.

5.2 Related Work

In this section, we describe important related work in the domain of anomaly de-

tection for multi-modal/multi-variate time series data. Anomaly detection is gener-

ally an unsupervised machine learning (ML) technique due to lack of sufficient ex-

amples for the anomalous class. Within unsupervised learning, it can be broadly

classified into the following categories—contextual anomaly detection, ensemble based

methods and finally deep learning approaches. These methods internally use statisti-

cal/regression/rule based approaches, dimensionality reduction, distribution based ap-

proaches. In statistical/rule-based approaches, features are generally hand-made from

the data such as mean, variance, entropy, energy, etc. Certain statistical tests/formal

rule checking actions are performed on these features to determine if the data is anoma-

lous. In dimensionality reduction, the data is projected onto a low-dimensional repre-

sentation (such as princial components in Principal Component Analysis (PCA)). The

idea is that, this low-dimensional representation captures the most important features

of the input data. Then clustering techniques such as k-means or Gaussian Mixture

89

Models (GMMs) are used to cluster these low-dimensional features to identify anoma-

lies. In distribution-based approaches, the training data is fit to a distribution (such

as multi-variate gaussian distribution or a mixture of them). Then given a test point,

distance is calculated of this test point from the fitted distribution, for example, using

Mahalanobis distance that represents the measure of anomaly.

Contextual anomaly detection: An anomaly may not be considered anomaly

when the context under which it happens is well-known. For example, the CANbus

sensor data of a car may look anomalous when the car is taking a U-turn, which is not

considered an anomaly. This is also called seasonal anomaly detection in other domains

such as building energy consumption, retail sales, etc. Hayes et al. [108] and Capozzoli

et al. [109] present a two-step approach for contextual anomaly detection. In the former,

in step 1, only the sensor’s past data is used to identify anomalous behavior. For this it

uses univariate Gaussian function. Later in step 2, if the output of step 1 is found to be

anomalous, then it passes to step 2 to check if it is contextually anomalous or not. Twit-

ter [110] recently published a seasonal anomaly detection framework based on Seasonal

Hybrid Extreme Studentized Deviate test (S-H-ESD). Netflix [111] recently released an

approach for anomaly detection in big data using Robust PCA (RPCA). Even though

Netflix’s approach seemed successful, their statistical approach relies on high dimen-

sionality datasets to compute a low rank approximation which limits its applicability.

This is because PCA makes the assumption that the lower-level representation has a

linear relation with the input while there is a possibility of non-linear relationships as

well. Finally, Toledano et al. [112] propose a bank filter and fast autocorrelation based

approach for large scale time-series data considering seasonal variations.

Ensemble based methods: In ensemble learning, different models are trained on

the same data (or random sets of samples from the original data) and a majority voting

(or another fusion technique) is used to decide the final output. Another advantage of

ensemble learning is that the member models are chosen such that they are complemen-

tary to each other in terms of their strengths/weaknesses, i.e., the weaknesses of one

are compensated by the strengths of the other. For example, Araya et al. [113], pro-

posed an ensemble based collective and contextual anomaly detection framework. The

90

ensemble consisted of pattern recognition algorithms such as Autoencoder and PCA, as

well as prediction based anomaly detectors such as Support Vector Regression (SVR)

and Random Forest. They showed that the ensemble classifier is able to perform well

compared to the base classifiers.

Deep learning methods: In deep learning techniques, the features are generally

learned by the classifier itself, so there is no need to hand-engineer these features. The

techniques within this can be broadly classified into two categories: (i) Representation

learning for reconstruction: Here the input data is mapped to a latent space (gener-

ally lower dimension than input data) using an encoder and then the latent space is

remapped to input space using a decoder. The latent space captures a representation

of the input data similar to PCA. The reconstruction error at the end of this process

is a measure of anomaly. Autoencoders [114] are prime examples in this category. For

example, Malhotra et al. [107] present an LSTM based encoder-decoder approach for

multi-sensor time-series anomaly detection. The approach has been tested on multi-

ple datasets including power demand, space shuttle valve, medical cardiac data and a

proprietary engine data and showed promising results. (ii) Predictive modeling: Here

the current/future data is predicted from past data using LSTM modules that capture

long term temporal behavior. The prediction error is a measure of anomaly. LSTM

sequence predictors are examples in this category. For example, Taylor et al. [115] pro-

posed an LSTM predictor based anomaly detection framework for automobiles based on

Controller Area Network (CAN) bus data of an automobile similar to ours. Hallac et

al. [116] present an embedding approach for drive2vec which can be used to encode the

identity of the driver. However this approach only complements ours, as our approach

can work both with raw data as well as embedded data. Malhotra et al. [117] proposed

an LSTM based predictor for anomaly in time series data that is shown to perform well

on four kinds of datasets mentioned above.

In contrast to these approaches, we propose a multi-task deep learning based ap-

proach, that overcomes the shortcomings on (i) and (ii) by— incorporating a built-in

regularizer (as one task acts as regularizer for the other) and leveraging domain knowl-

edge (such that rare but non-anomalous maneuvers such as U-turns are not classified

91

/670 /670 /670��� /670 /670 /670���

(�

P�

E�

H�

G�

G�

L�

Q�

J

L�

[�

L�

[�

LQ

[Q

D�

�

D�

�

DQ

�

(QFRGHUV 'HFRGHUV

Figure 5.2: LSTM Autoencoder—the encoder cells encode the input data into a repre-

sentation that is stored in the cell state of the last encoder LSTM cell. The decoder

cells take it as input and try to generate the time series data.

as anomalies).

5.3 Proposed Solution

In this section, we first explain the LSTM autoencoder (reconstruction-error) based

approach [107] which is currently the best performing (unsupervised) anomaly detec-

tion framework for multi-modal time-series data. We then present our semi-supervised

approach for anomaly detection in driving data which leverages the maneuver labels

to improve the performance. Anomaly detection using unsupervised learning consists

of two steps. In step 1, the system is trained with several normal examples to learn

representations of the input data e.g., GMM clustering. Because we are dealing with

temporal data, a sliding window approach needs to be adopted to learn these represen-

tations. In step 2, given a test data point, we define an anomaly score based on the

learned representations, e.g., distance from the mean of the cluster.

LSTM Autoencoder (Existing Approach): Fig. 5.2 shows the LSTM autoen-

coder high-level architecture. Input time series data, {x0, x1, ...xn}, of size n+ 1 (corre-

sponding to one window of data segmented from full data) is fed to the encoders which

consist of n+ 1 LSTM cells. Each LSTM cell encodes its input and the cell state from

previous cell into its own cell state, which is passed onto the next LSTM cell. Finally,

the cell state of the last LSTM cell has the encoded representation—which we call em-

bedding—of all the input data x. The size of this embedding is equal to the number of

units (also called hidden size) in the last LSTM cell. The decoders similarly consist of

92

7UDLQ�'DWD
5HFRQ�

(UURUV
1 ��� ��

7UDLQHG�
0RGHO

)LW��
*DXVVLDQ�

[��

7HVW�'DWD
5HFRQ��

(UURUV�

0DKDODQRELV
'LVWDQFH
6FRUHV�

$QDO\]H

7RS�������

7UDLQHG�
0RGHO

5DQN�
6FRUHV�

� í � � í ��[W �7� í� [W
í íííííííííííííííí

¥[W

1 ��� ��

Figure 5.3: (Top) After the model is trained, we fit the reconstruction errors to a

multivariate gaussian model; (Bottom) Given a test data point, we first find the recon-

struction error and then find the Mahalanobis distance/score of this point with respect

to the fitted gaussian distribution. Top scores can then be analyzed as per requirements.

a series of LSTM cells, however the input to these decoders is given as zero as the goal

is to regenerate the input data. Another approach of feeding the output of the previous

cell (ai) as input to the next cell is also possible. The first decoder LSTM cell takes

the embedding as one of the inputs (the other input being zero) and passes on its cell

state to the next decoder cell. The process is repeated for n+1 time steps. During each

step, the LSTM cell generates an output ai, finally resulting in {a0, a1, ...an} after n+ 1

steps. The network is trained by minimizing the difference, |x−a|2 using stochastic gra-

dient descent and backpropagation. After sufficient (successful) training, the network

is able to learn good representations of the input data stored in its embedding, which

completes step 1. The network is then able to reconstruct new data very well i.e., with

lower reconstruction error, as long as it has seen similar pattern data during training.

However, when the network is fed with data that has completely different pattern than

is used during training, there will be a large reconstruction error.

Though reconstruction error can directly be used as a measure of anomaly for

step 2, better results can be achieved, with further processing. The method currently

adopted [107] is shown in Fig. 5.3. After the network is trained, the train data is again

fed to the trained network to capture the reconstruction errors. These errors are then

fit to a multivariate Gaussian distribution as shown in Fig. 5.3. The intuition behind

93

this is that the reconstruction errors comprise a mixture of multiple Gaussians each

corresponding to one of the maneuver classes. Hence, better results can be obtained by

clustering these reconstruction errors using a multivariate Gaussian or a Gaussian Mix-

ture Model (GMM), so the anomalous points can be easily identified using a distance

metric. Therefore, given a test data point, the reconstruction error is first calculated

using the trained model. Mahalanobis distance of the error is then calculated with re-

spect to the fitted gaussian model using the formula shown in Fig. 5.3. These distances,

which are considered anomaly scores are then sorted in decreasing order and analyzed

as per requirements e.g., analyze top 0.01%.

Multi-task Learning (Proposed Approach): As mentioned earlier, fully unsu-

pervised reconstruction error based approaches such as LSTM autoencoder fare poorly

when there are rare occurring positive (non-anomalous) classes in the data. For such

relatively rare cases, the network is unable to extract representations as it has not seen

such data sufficiently during training, thereby producing large reconstruction error. We

solve this problem, by designing a semi-supervised multi-task learning framework that

leverages driving maneuver labels as shown in Fig. 5.1. Here task A is the autoencoder,

while task B is a symbol/maneuver predictor. Task B acts as a regularizer to the autoen-

coder as the overall network is also constrained to predict the next series of maneuvers

apart from reconstructing the input data. For this to be possible, better representations

need to learned by the network that can help in both reconstruction and prediction.

This combined (multi-task) system performs better reconstruction than a standalone

autoencoder. Similarly, autoencoder system (task A) acts as a regularizer for symbol

predictor (task B). This is because autoencoder helps in learning good representations

of the input data. These representations can then be used by the symbol predictor

to predict next series of maneuvers. Hence, in a similar way as mentioned above, the

combined system produces a better symbol predictor than a standalone symbol predic-

tor. Both these are possible as both tasks mutually help each other. Our approach is

semi-supervised as we make use of maneuver labels to design a regularizer in Task B,

but is not supervised as we do not have anomaly and non-anomaly labels. We will now

explain the encoder and the decoders of both tasks in detail.

94

):�
/670�

):�
/670�

):�
/670�

%:�
/670�

%:�
/670�

%:�
/670�

):�
/670�

):�
/670�

):�
/670�

%:�
/670�

%:�
/670�

%:�
/670�

W� W��W�

W

�'�&RQYROXWLRQ

0XOWL�OD\HU�%L�/670�

�(QFRGHU

��#��[�

��� ��� ��� ���

�#��[� ��#��[� ��#��[�

��[���
�'�&RQY�

�VDPH��
SDGGLQJ�

�VDPH��
SDGGLQJ�

�VDPH��
SDGGLQJ�

W

��[���
�'�&RQY�

��[���
�'�&RQY�

EZB�

IZB�

EZB�

IZB�

Figure 5.4: Convolutional and bi-LSTM encoder of the proposed multi-tasking learning

framework in Fig. 5.2.

Convolutional bi-LSTM Encoder: The basic encoder in an LSTM autoencoder

(Fig. 5.2) does not perform sufficiently well as it not does take into account: (i) inter

channel correlations (ii) directionality of data. We design an encoder that addresses

these issues as shown in Fig. 5.4. It consists of a series of 1-dimensional (1D) convo-

lutional layers followed by bi-directional LSTM layers. The convolutional layers help

in capturing inter-channel spatial correlations, while the LSTM layers help in captur-

ing inter- and intra-channel temporal correlations. Unidirectional LSTM layers capture

temporal patterns only in one-direction, while the data might exhibit interesting pat-

terns in both directions. Hence to capture these patterns, we have a second set of LSTM

cells for which the data is fed in the reverse order. Further, we have multiple layers of

these bi-directional LSTM (bi-LSTM) layers to extract more hierarchical information.

All the data that has been processed through multiple convolutional and bi-LSTM lay-

ers is available in the cell states of final LSTM cells. This is the output of the encoder

which will be fed as input to the decoder tasks.

Decoder (Autoencoder, Task A): The decoder in autoencoder (task A) performs

encoder operations in reverse order so as to reconstruct the input data (Fig. 5.5). It first

consists of bi-LSTM layers which take the final cell states from encoder as one of the

95

Figure 5.5: Convolutional bi-LSTM decoder for task A (autoencoder) in Fig. 5.1. Here

fw and bw refer to forward and backward respectively

inputs (the other input being zero). As mentioned previously, the other input (other

than the previous cell state) can be either zero or the output of the previous LSTM

cell. The outputs of LSTM layers are fed as input to a series of 1D de-convolutional

layers which approximate the reverse of convolution (also called transposed convolution)

to generate data with same shape as that of input data to encoder.

Decoder (Predictor, Task B): The decoder of the symbol predictor (task B)

is shown in Fig. 5.6. It takes only forward cell states from encoder as it has only uni-

directional (forward) LSTM layers. It adopts a greedy decoder, where the most probable

symbol output of the previous LSTM cell is fed as input to the next LSTM cell. The

first LSTM cell takes a special symbol <SOS>, denoting start of sequence, as input.

Likewise, the last LSTM cell generates <EOS> symbol, denoting end of sequence. The

output symbols of all the LSTM cells is the predicted series of next maneuvers (Left

Turn, Left Turn, ... Left Turn in Fig. 5.6).

Training (Step 1): The loss function for Task A is the Mean Square Error (MSE)

between the input data to encoder and the output of decoder. The loss function for

Task B is weighted cross-entropy loss with weights being the inverse of the frequency of

maneuvers in the train data. That is, the weight for symbol, s = ws = 1/fks , where fs is

96

Figure 5.6: Greedy symbol decoder for task B (maneuver predictor) in Fig. 5.1.

the frequency ratio of maneuver s in the train data and k is determined empirically for

best results. The overall network is trained by minimizing the weighted losses of task A,

task B and regularization losses. That is, the overall loss is LO = wALA+wBLB+wRLR,

where wA, wB , wR are the weights for LA, LB, LR, the task A, task B and regularization

loss respectively. The weights can be optimized in an empirical manner by searching the

parameter space exhaustively. To limit the search time, quantization can be adopted.

Inference (Step 2): During inference, given a test data point, an anomaly score

is calculated as mentioned in Fig. 5.3. This anomaly score (say ai), however fares

Figure 5.7: Scaled anomaly scores that leverages the maneuver predictions of task B to

reduce number of false positives compared to the scores in Fig. 5.3.

97

poorly with rare positive classes leading to multiple false positives. In order to address

this problem, we define a new anomaly score leveraging the predicted maneuvers from

task B as shown in Fig. 5.7. Assume s0, s1, ...sn correspond to the maneuvers pre-

dicted by task B. We then calculate the negative log-likelihood of such a sequence using

−∑n
i=1 log[p(si)] (we assume independence for simplicity). Note that the i in the above

expression is a running variable and is not related to ai in Fig. 5.3. This calculated

value is low for more frequent maneuvers (e.g., going-straight) and high for rare maneu-

vers (e.g., U-turns). We divide ai with this value to obtain the scaled anomaly score.

This is high for more-frequent maneuvers and low for less-frequent maneuvers such as

U-turns. This can also be interpreted in a Bayesian manner as follows: the inverse of

the negative log-likelihood can be considered the prior, while ai can be considered as

the conditional/likelihood, making the scaled anomaly score the posterior. In this way,

rare but non-anomalous situations are weighed down leading to lesser false positives.

5.4 Performance Evaluation

In this section, we first explain the experimental setup (data and training) then present

quantitative and qualitative results for two scenarios—comparison with unsupervised

LSTM autoencoder (without using the information of maneuver labels) and semi-supervised

multi-class LSTM autoencoder (that uses the information of maneuver labels).

Dataset description: We evaluated our approach on a 150 hours HDD driving

dataset [7], which is collected from February 2017 to March 2018, predominantly during

day-time. A screenshot of the driving scene as taken from the driving vehicle can be

seen in Fig. 5.8. The data consists of Controller Area Network (CAN) bus data that has

information about six driving modalities—steer angle, steer speed, speed, yaw, pedal

angle and pedal pressure. The data has been downsampled to 5 Hz from the original

100 Hz as we observed better results with lower sampled data. Since this is time-

series data, we adopted a sliding-window approach as follows. For both autoencoder

and symbol predictor, the size of the input window is 5 secs, with a stride length of

0.5 secs. For symbol predictor, the size of prediction window is 3 secs. In order to obtain

meaningful results (e.g., anomalous results corresponding to when the car is parked are

98

Figure 5.8: A screenshot of the driving scene (as taken from the driving vehicle) from

the HDD dataset [7].

not useful), we filtered out those windows where the maximum speed of the vehicle is less

than 15 mph. This results in a total of 762671 datapoints (windows). We then scaled this

data between 0 and 1 in order to make the network invariant to scales of data. Of this

data, 70% is used for training the models and rest for evaluating the performance (i.e.,

533869 windows for train and 228802 windows for test). Table 5.1 shows the annotated

maneuvers/labels present in the HDD dataset (‘Background’ indicates going-straight)

with corresponding percentage of occurrence.

Training: We used tensorflow to build, train and test the models with a minibatch

size of 512 windows. Weights for reconstruction loss (task A), cross-entropy loss (task B)

and regularization loss have been set empirically as follows—wA = 1, wB = 0.001 and

wR = 0.0001. We used k = 0.5 to scale the weights in cross-entropy loss as mentioned

previously. We used two-layers of bi-LSTMs with a hidden size 256 units for each LSTM

cell. We trained the overall network for about 300 epochs using Adam optimizer [118]

with a learning rate of 0.01 and epsilon value of 0.01.

Comparison with LSTM autoencoder: We compare our approach with fully

99

Table 5.1: Distribution of maneuvers/labels in the Honda Driving Dataset (HDD).

Label Percent [%]

Background 87.15

Intersection Passing 6.00

Left turn 2.58

Right turn 2.31

Left lane change 0.54

Right lane change 0.50

Crosswalk passing 0.27

U-turn 0.23

Left lane branch 0.20

Right lane branch 0.08

Merge 0.14

unsupervised LSTM autoencoder. The network architecture, training method and pa-

rameters are similar to that of the LSTM autoencoder part of our multi-task network.

Quantitative results: After the network has been trained, we tested it on evalua-

tion/test data. Fig. 5.9 compares the reconstruction MSE loss between our approach

and LSTM autoencoder vs. the number of epochs on test data. We can notice that

our approach converges to a lower loss. Table 5.2 shows the average normalized recon-

struction loss on test data for different modalities between our approach (multi-task

learning) and LSTM autoencoder. We can notice that, our approach results in lower

reconstruction loss with 33% lower error (0.2) compared to the standalone autoencoder

(0.3) in the ‘combined’ category. This shows that the combined system does a bet-

ter job of learning representations than the standalone autoencoder, resulting in lower

loss. Fig. 5.10(a) compares the weighted cross-entropy loss between our approach and

a standalone symbol predictor. We can notice that our approach achieves lower loss

than the symbol predictor. Also, we can observe that by coupling an autoencoder to

a symbol predictor, the zig-zag behavior of the latter has been smoothed out. We can

observe similar behavior in Fig. 5.10(b) for symbol prediction accuracy (as our data is

annotated with maneuvers, we are able to calculate the maneuver prediction accuracy

100

Figure 5.9: Comparison of reconstruction MSE loss performance on test data between

multi-task learning (our approach) and a standalone autoencoder.

(a) (b)

Figure 5.10: Comparison of performance on test data between multi-task learning

(our approach) and standalone symbol predictor: (a) cross-entropy loss; (b) symbol

prediction accuracy [%].

101

(a) (b)

(c)

Figure 5.11: Reconstruction performance of turn data between multi-task learning (our

approach) and standalone autoencoder: (a) left turn; (b) right turn; (c) U-turn.

with respect to ground truth). Fig. 5.11 compares the reconstruction performance of

three sample turns in test data—Left, Right, U—between our approach and standalone

autoencoder. Here, the steer angle data has been scaled to be between 0 and 1. We

can notice in all three cases that our approach does a better job of reconstruction when

compared to original data

102

Table 5.2: Comparison of normalized reconstruction MSE losses.

Feature LSTM Autoen-

coder [107]

Our Approach

Steer Angle 0.0005 0.0003

Steer Speed 0.0004 0.0003

Speed 0.0004 0.0003

Yaw 0.0004 0.0003

Pedal Angle 0.0012 0.0012

Pedal Pressure 0.0012 0.0003

Combined 0.3043 0.2082

Table 5.3: Comparison of qualitative results by analyzing top 0.01% scores.

Category LSTM Autoen-

coder [107]

Our Approach Our Approach

(Scaled Scores)

Speed 21.7% 21.7% 30.4%

K-turns 13.0% 8.8% 17.4%

U-turns 4.4% - -

Lane Change 34.8% 47.8% 39.1%

Normal 26.1% 21.7% 13.1%

Total 100% (23) 100% (23) 100% (23)

Qualitative results: After the network is trained, the reconstruction errors (of dimen-

sion 25 due to 5 Hz sampling for 5 secs) for each modality are fit to 25-variable gaussian

distribution as explained previously. We also considered another modality which is a

combination of all of them. The errors corresponding to this combined modality are

fit to a 300-variable (25 × 6) gaussian distribution. We then passed the test data (in

windows) to the network and calculated the Mahalanobis distances (anomaly scores) for

each window of data as per Fig. 5.3. We also calculated the scaled anomaly scores using

the predicted maneuvers by dividing the anomaly scores with the negative log-likelihood

of the predicted maneuvers as per Fig. 5.7. For both cases (scaled and non-scaled), we

analyzed the top 0.01% scores and their corresponding windows. For this purpose, we

103

0 5 10 15 20 25 30
Training Epochs (x10)

0.0

2.5

5.0

7.5

10.0

12.5

Ev
al
 D

at
a
Re

co
ns

. L
os

s Multi-task
Multi-class

16 18 20 22 24 26 28 30
Training Epochs (x10)

0.3

0.4

0.5
Ev

al
 D

at
a
Re

co
ns

. L
os

s Multi-task
Multi-class

Figure 5.12: (Top) Comparison of eval data MSE reconstruction loss between multi-

task learning (our approach) and multi-class LSTM autoencoder. (Bottom) Zoomed

version of above showing MSE reconstruction loss for 150 to 300 training epochs, for

clear visualization.

extracted the video segment corresponding to each window and manually inspected to

check if there is any anomalous behavior. By analyzing the video segments correspond-

ing to top 0.01% anomaly scores, we could classify them into five categories—‘Speed’

anomalies (e.g., abrupt braking), ‘K-turns’, ‘U-turns’, ‘Unusual lane change’ and finally

‘Normal’ (no anomaly has been noticed when inspected visually). We have summarized

our analysis results in Table 5.3. We can notice that, while the autoencoder classifies

U-turns as anomalous, our approach (both scaled and unscaled) does not. We can also

notice that our scaled approach classifies lesser ‘Normal’ and more ‘Speed’ anomalies.

By comparing, the percentage of ‘Normal’ cases classified as anomalous, we can tell

that scaled approach performs better than unscaled, which in turns performs better

than standalone autoencoder approach. A video demo showing the different kinds of

anomalies (listed in Table 5.3) detected using the above approaches is at [119].

Comparison with multi-class/ensemble LSTM autoencoder: While the above

104

Table 5.4: Comparison of normalized reconstruction MSE losses (without U-turn data).

Feature Multi-class LSTM Autoencoder Our Approach

Steer Angle 0.0007 0.0004

Steer Speed 0.0005 0.0004

Speed 0.0006 0.0004

Yaw 0.0006 0.0003

Pedal Angle 0.0014 0.0013

Pedal Pressure 0.0012 0.0004

Combined 0.4058 0.2456

fully unsupervised LSTM autoencoder did not make use of the maneuver labels, we com-

pared our approach with multi-class LSTM autoencoder that makes use of the maneuver

labels like our approach. For this purpose and in order to test the performance of the

algorithms, we considered one of the maneuvers viz., U-turn as an anomaly. That is,

after we split the entire data into train and test data windows, we discarded those win-

dows in the train data where the majority maneuver is a U-turn. The remaining train

data, which is mainly devoid of any U-turn windows, is fed to our multi-task classifier.

For multi-class LSTM autoencoder, we further divided this training data into 10 parts,

each part corresponding to one of the 10 maneuvers in Table 5.1 except U-turn. Then

we trained 10 LSTM autoencoder classifiers (i.e., an ensemble) corresponding to these

10 maneuvers by providing only the data specific to that maneuver. When given a test

data/window, each of the 10 classifiers are used to find 10 reconstruction loss values.

Then the lowest of these is considered the reconstruction loss for that test data point.

Quantitative results. Fig. 5.12 shows the quantitative results, which compare the eval

data MSE reconstruction loss between our approach (Multi-task) and multi-class LSTM

autoencoder approach as the number of training epochs is increased. We recall that the

reconstruction loss for multi-class approach is obtained as the lowest reconstruction loss

corresponding to 10 different class (maneuver)-specific autoencoder classifiers. We can

observe that Multi-task approach finally achieves a lower loss compared to multi-class

approach. The final (after 300 epochs of training) reconstruction loss on the eval/test

105

Table 5.5: Comparison of percentage of U-turns detected (qualitative results) by ana-

lyzing top anomaly scores.

Percentile Top

Scores

Multi-class LSTM

Autoencoder

Our Approach Our Approach

(Scaled Scores)

0.001 0.39% (3/765) 1.70% (13/765) 7.97% (61/765)

0.01 1.96% (15/765) 7.97% (61/765) 29.02% (222/765)

0.1 13.33% (102/765) 17.25% (132/765) 48.63% (372/765)

0.5 73.46% (562/765) 52.68% (403/765) 84.44% (646/765)

1 100.00% (765/765) 99.87% (764/765) 100.00% (765/765)

data for each feature is summarized in Table 5.4. We can notice that our approach

achieves lower reconstruction error for all features, compared to multi-class approach.

Qualitative results. In order to evaluate the qualitative performance of the algo-

rithms, we first sorted the reconstruction losses/scores in decreasing order and then

found the number of U-turn windows detected in the test data by each approach in

the top 0.001, 0.01, 0.1, 0.5, 1 percentile anomaly scores. The results are shown in Ta-

ble 5.5. For our multi-task approach, we have two scenarios—actual reconstruction loss

and scaled reconstruction loss. Considering especially the top percentiles, we can notice

that our approach with scaled scores performs better than our approach with normal

scores which in turn performs better than the multi-class approach. For example, con-

sidering the top 0.001 percentile anomaly scores for each approach—our approach with

scaled scores is able to detect 7.97% i.e., 61 of a total 765 U-turn windows in test data

(consisting of 228802 windows), while this number is 1.7% for our approach with actual

scores and only 0.39% for multi-class autoencoder approach.

5.5 Summary

In this chapter, we have presented a multi-task learning based anomaly detection frame-

work that performs better than existing LSTM autoencoder based approaches. We

leverage domain knowledge to reduce false positives. We have qualitatively and quanti-

tatively showed the benefits of the proposed approach on 150 hours of driving data.

106

Chapter 6

On-board Deep-learning-based UAV Fault Cause Detection
and Identification

We have seen in the previous chapter techniques for anomaly detection from multi-modal

scalar sensor data, with specific application to driving data. In this chapter, we extend

some of those techniques for anomaly detection in Unmanned Aerial Vehicle (UAV)

sensor data. Further, we will also propose techniques for anomaly identification from

the same sensor data.

The advancement in the technology of UAVs/drones and concern of safety are

pushing many government and defense organizations to use UAVs for surveillance. E-

shopping companies like Amazon are planning to use UAVs for home delivery of their

products. Further, drones are also being planned for use as mobile air-policing vehicles

in some countries. The advantage that drones can replace humans in potentially danger-

ous situations is the main factor behind investing and researching on UAV technology

and solutions.

6.1 Introduction

Drones or UAVs are Cyber Physical Systems (CPS) with the increase of which, there are

risks of both physical as well as cyber attacks on them [120]. Examples of cyber attacks

are GPS spoofing attacks [121], signal jamming, control command attacks, attacks on

sensors [122], keylogging virus, etc. Examples of physical attacks (both unintentional

and intentional) are bird hits, abrupt wind changes, broken propellers, etc. Large sized

drones/UAVs are capable of killing people if they fall from heights due to the massive

potential energy possessed by them. The increase in use of drones/UAVs currently and

in projected future makes real-time incident analysis for drones or UAVs a priority.

107

CNN-BiLSTM
Encoder

CNN-BiLSTM
Decoder

NN
Classifier

Segmented
Scalar Sensor

Data

Parrot Bebop 2
with Nvidia

Jetson TX2 GPU

Only if
Anomaly
Detected

Detection

Classification

Figure 6.1: An overview of our proposed on-board deep-learning based UAV fault de-

tection and identification/classification framework.

The hobbyists owning drones/UAVs, researchers and the government all will be more

curious to know the cause that prevented UAVs from not reaching its destination or

deviated from its intended path. As such UAV fault/anomaly detection as well as cause

identification are important. Firstly it is important to detect when the UAV’s operation

deviates from the normal. Once it is determined that something is anomalous, more

resources can be utilized to identify the cause. Identifying reasons for failure is important

so that appropriate action can be taken to minimize further loss. For example, in the

case of a car, knowing that the failure is caused by a flat tire will help to avoid actions

such as sudden braking which will further exacerbate the situation (as it results in

loss of control). Similarly in case of a flying object, for certain failures, gliding may

be the best solution instead of the much obvious landing. On the other hand Artificial

Intelligence (AI) based data driven techniques are increasingly being used to solve many

complex problems in several domains relating to autonomous vehicles [119, 123, 124],

smartphones [125–127], among others.

Our Approach: Direct and continuous analysis of sensor data for real-time iden-

tification of faults is not recommended due to two reasons—(i) it is computationally

prohibitive especially on resource constrained devices such as UAVs as it requires pro-

cessing huge set of sensor data; (ii) it requires significant amount of precious on-board

memory resources to store the real-time stream of sensor data. Hence, considering the

resource constraints [128,129] of these devices, we adopt a two-step approach (Fig. 6.1)

108

where in the identification/classification step is carried out only if an anomalous be-

havior is detected in the sensor data. Unlike the previous works which are mostly

model-based [130], we follow a completely (sensor) data-driven approach (using UAV

Inertial Measurement Unit (IMU) sensor data such as accelerometer, gyroscope, etc.)

for both detection and identification steps.

The reason for choosing data-driven approach (such as deep learning techniques) over

traditional model-based approaches are as follows. Deep learning techniques—(a) have

ability to learn complex patterns especially non-linear functions; the sensor data of a

UAV at times of potential crash events (such as broken propeller) is highly non-linear

and complex in nature; (b) have no requirement to manually design the features from

the data—the layers in a deep network learn meaningful features on their own during

the training process. This also translates to another advantage of not needing domain

expertise to extract the features; (c) can work with unlabeled data in unsupervised

fashion to generate features. This is very much beneficial for crash-like scenarios due

to scarce availability of labelled data. To this end, we propose a novel Convolutional

Neural Network (CNN) and bidirectional-Long Short Term Memory (bi-LSTM) deep

neural network based autoencoder for detection of faults/anomalous patterns followed

by a CNN-LSTM deep network for their classification/identification.

Main Contributions can be summarized as follows.

• We propose a novel Convolutional Neural Network (CNN) and bidirectional Long

Short Term Memory (bi-LSTM) based deep autoencoder network architecture for

real-time detection of anomalous patterns in UAV IMU sensor data.

• We propose a novel CNN and LSTM based deep neural network classifier for real-

time identification of the (cause of) fault/attack/crash based on the UAV IMU

sensor data.

• We induce crash scenarios by modifying the firmware internals of both the AirSim

drone simulator as well as a real drone [131].

• We validate the proposed models via both experiments and simulations. According

to the results, our solution is able to detect anomalies with over 90% accuracy and

109

can classify drone mis-operations correctly with about 99% (simulation data) and

upto 85% accuracy (experimental data).

Chapter Outline: In Sect. 6.2, we review related work. In Sect. 6.3, we describe

our UAV fault/crash detection and identification methods. In Sect. 6.4, we present both

experimental and simulation results. Finally, in Sect. 6.5, we summarize the chapter.

6.2 Related Work

We position our work with respect to the related work that can be classified into the

following categories: (i) Fault Detection and Identification (FDI); (ii) anomaly detection;

(iii); deep learning approaches. The related work presented below corresponding to (ii)

and (iii) should be read in conjunction with similar content presented in the previous

chapter.

Fault Detection and Identification (FDI): Much of the existing work on FDI

focuses on faults in sensors/actuators in the UAV. For example, Panitsrisit et al. [132]

propose a hardware duplication system consisting of piezoresistive sensor, pressure sen-

sor, and current sensors to detect faults in the elevator of the UAV. Any abnormal

outputs from these sensors will be detected as a failure. Rago et al. [133] present a FDI

method for the failure of sensors/actuators based on Interacting Multiple-Model (IMM)

Kalman Filter approach. Actuator/sensor failures are represented by a change in the

model representing the dynamics (measurements) of the system. Drozeski et al. [134]

present an FDI method using three-layer feed-forward neural network based on state

information. Heredia et al. [135] uses Observer/Kalman Identification (OKID) estima-

tor to estimate the system state from measured input-output data. Detection of faults

is done by noting deviation from the expected output beyond an accepted threshold.

They use a separate estimator for each output to make the identification problem trivial.

Taking a different approach, Suarez et al. [136] use kalman filtering in combination with

visual techniques such as 3D projection from two observers to detect faults in the target

UAV in a multi-UAV setting.

Anomaly Detection: Anomaly detection is generally an unsupervised machine

110

learning (ML) technique due to lack of sufficient examples for the anomalous class.

Within unsupervised learning, it can be broadly classified into the following categories

—statistical/regression, dimensionality reduction and distribution-based approaches. In

statistical approaches [113], features are generally hand-made from the data such as

mean, variance, entropy, etc. Certain statistical tests/formal rule checking actions are

performed on these features to determine if the data is anomalous. However these

approaches work only when the anomalous patterns are known apriori so they can be

monitored on the sensor data. In dimensionality reduction, the data is projected onto a

low-dimensional representation (such as principal components in Principal Component

Analysis (PCA)). The idea is that, this low-dimensional representation captures the

most important features of the input data. Then clustering techniques such as k-means

or Gaussian Mixture Models (GMMs) are used to cluster these low-dimensional features

to identify anomalies. In distribution-based approaches, the training data is fit to a

distribution (such as multi-variate gaussian distribution or a mixture of them). Then

given a test point, distance is calculated of this test point from the fitted distribution

(e.g., Mahalanobis distance) representing the measure of anomaly.

Deep-learning Approaches: Deep-learning techniques have been widely used to

solve many problems in different domains. For example, deep neural network architec-

tures have been used to predict seizures [137], deep CNNs have been used extensively

in content recommendation [138], speech recognition [139], computer vision [140], etc.

On the other hand, RNNs and LSTMs have been used for Model Predictive Control

based robotic manipulation [141], language modeling [142], phoneme recognition [143],

etc. To the authors’ best knowledge, deep learning techniques have never been used

to detect/identify the cause of the UAV crashes based on sensor data. In this chapter,

we propose novel deep learning architectures to detect and identify the cause of UAV

crashes or crash-like scenarios from drone’s IMU data.

6.3 Proposed Solution

In this section, we first explain our CNN bi-LSTM autoencoder network to detect anoma-

lies followed by CNN bi-LSTM network classifier to identify anomalies.

111

CNN and bi-LSTM based Detector (‘AutoEnc’): Anomaly detection using

unsupervised learning consists of two steps. In step 1, the system is trained with several

normal examples to learn representations of the input data e.g., GMM clustering. Be-

cause we are dealing with temporal data, a sliding window approach needs to be adopted

to learn these representations. In step 2, given a test data point, we define an anomaly

score based on the learned representations, e.g., distance from the mean of the cluster.

In an LSTM autoencoder, input time series data, {x0, x1, ...xn}, of size n + 1 (corre-

sponding to one window of data segmented from full data) is fed to the encoders which

consist of n+1 LSTM cells. The output of the last LSTM cell—called the embedding—

is fed as input to a series of n+ 1 LSTM cells to generate an output, {a0, a1, ...an}. The

autoencoder is trained by minimizing the mean squared reconstruction error between

input and output as in |x− a|2.

Convolutional bi-LSTM Encoder: The basic encoder in an LSTM autoencoder does

not perform sufficiently well as it not does take into account: (i) inter channel/modal

correlations (ii) directionality of data. We design an encoder that addresses these issues

as shown in Fig. 6.2(top). It consists of a series of 1-dimensional (1D) convolutional

layers followed by bi-LSTM layers. The convolutional layers help in capturing inter-

channel spatial correlations, while the LSTM layers help in capturing inter- and intra-

channel temporal correlations. The number of filters, the size of filter kernel and the

type of padding (with a default stride length of 1) is indicated in Fig. 6.2(top). For

example, in the first convolution step, 48 filters of size 5 × 1 are applied to the input

data of size, 25 × 1 × 6 (assuming a 6-channel input data), to result in an output of

size, 25 × 1 × 48. Unidirectional LSTM layers capture temporal patterns only in one-

direction, while the data might exhibit interesting patterns in both directions. Hence

to capture these patterns, we have a second set of LSTM cells for which the data is

fed in the reverse order. Further, we have multiple layers of these bi-LSTM layers to

extract more hierarchical information. All the data that has been processed through

multiple convolutional and bi-LSTM layers is available in the cell states of final LSTM

cells. This is the output of the encoder which will be fed as input to our decoder.

112

FW
LSTM

FW
LSTM

FW
LSTM

BW
LSTM

BW
LSTM

BW
LSTM

FW
LSTM

FW
LSTM

FW
LSTM

BW
LSTM

BW
LSTM

BW
LSTM

t0 t24t1
t

1D Convolution

96@25x1

...

6@25x1 48@25x1 64@25x1

5 x 1
1D Conv

"same"
padding

"same"
padding

"same"
padding

t

5 x 1
1D Conv

3 x 1
1D Conv

bw_1

fw_1

bw_0

fw_0

Multi-layer Bi-LSTM Encoder

FW
LSTM

FW
LSTM

FW
LSTM

BW
LSTM

BW
LSTM

BW
LSTM

FW
LSTM

FW
LSTM

FW
LSTM

BW
LSTM

BW
LSTM

BW
LSTM

t

...

512@25x1 64@25x1 48@25x1 6@25x1

3 x 1
1D DeConv

"same"
padding

"same"
padding

"same"
padding

t

5 x 1
1D DeConv

5 x 1
1D DeConv

t0 t24t1

Multi-layer Bi-LSTM Decoder

1D DeConvolution

bw_1

fw_1

bw_0

fw_0

Figure 6.2: Convolutional and bi-LSTM encoder (top) and decoder (bottom) of the

proposed autoencoder.

113

Multi-modal
Scalar

Sensor Data

1D Conv.
Layers

Bi-LSTM
Layers

Fully
connected

Layers

Softmax
Layer

Window
Data

Same
Padding

Concat.
Output

No.of
Classes

Re-use Encoder Layers

Figure 6.3: Proposed deep CNN and bi-LSTM architecture for fault classification. For

1D Conv. and bi-LSTM layers, please refer the encoder in Fig. 6.2.

Convolutional bi-LSTM Decoder : The decoder performs encoder operations in re-

verse order so as to reconstruct the input data (Fig. 6.2(bottom)). It first consists of

bi-LSTM layers which take the final cell states from encoder as one of the inputs (the

other input being zero). Other input (other than the previous cell state) can be either

zero or the output of the previous LSTM cell. The outputs of LSTM layers are fed

as input to a series of 1D de-convolutional layers which perform reverse of convolution

(also called transposed convolution) to generate data with same shape as that of input

data to encoder (6-channel 1D data of length 25).

Though reconstruction error can directly be used as a measure of anomaly for step 2,

we design an enhanced method with further processing to obtain better results (Fig. 5.3).

After the network is trained, the train data is again fed to the trained network to

capture the reconstruction errors. These errors are then fit to a multivariate gaussian

distribution. Given a test data point, the reconstruction error is first calculated using

the trained model. Mahalanobis distance of the error is then calculated with respect to

the fitted gaussian model using the formula shown in Fig. 5.3. These distances, which

are considered anomaly scores are then sorted in decreasing order and analyzed as per

requirements e.g., top 0.01%.

CNN and LSTM based Classifier (‘DCLNN’): We consider the drone’s sensor

signatures in crash or crash-like scenarios to be very valuable. These signatures are

mostly unique to the events that caused them. As such, we claim that these signatures

can be used to identify those events by building a classifier mapping sensor signatures to

events that caused them. For example, the data collected from the 3DR Solo drone [144]

after a propeller was broken is shown in Fig. 6.4. The plots show that the drone was

at stable state when one of its propellers was broken, this resulted in large variations

114

-100

-50

0

50

170 175 180 185 190 195 200

Se
n

so
r

D
at

a

Time (s)

Roll

-80

-60

-40

-20

0

20

170 175 180 185 190 195 200

Se
n

so
r

D
at

a

Time (s)

Pitch

150

200

250

300

170 175 180 185 190 195 200

Se
n

so
r

D
at

a

Time (s)

Yaw

-10

-5

0

5

170 175 180 185 190 195 200

Se
n

so
r

D
at

a

Time (s)

Accelaration Data on x axis

-10

-5

0

5

10

170 175 180 185 190 195 200

Se
n

so
r

D
at

a

Time (s)

Acceleration Data on Y axis

-15

-10

-5

0

170 175 180 185 190 195 200

Se
n

so
r

D
at

a

Time (s)

Acceleration Data on Z axis

Figure 6.4: Sensor data corresponding to broken propeller scenario.

in the accelerometer and pitch-roll-yaw data (unique signatures) since the drone accel-

erates in a particular direction after the thrust on the broken propeller is zero. These

signatures are zoomed to show the variation. Other sensor data such as gyroscope and

magnetometer show similar variations (not shown).

We propose a novel CNN and bi-LSTM based architecture to classify the sensor

data in real-time to identify any potential crash scenarios. This is useful in two ways—

(a) it can be used for recovery planning to stabilize the drone using either redundant

hardware or designing appropriate controller techniques that work only based on less

than usual number of actuators; (b) in cases where the crash is unavoidable, the logged

sensor data can be used to identify the cause of the crash offline. The proposed deep

architecture is shown in Fig. 6.3. It consists of convolutional layers in the beginning as

in the case of ‘AutoEnc’ to extract important static/spatial features followed by LSTM

layers to capture the dynamic/temporal variations in the sensor data. As such the

encoder layers in Fig. 6.2 can be reused as shown in both Fig. 6.3 and Fig. 6.1. At

every convolutional layer, each channel is processed by multiple kernels/filters resulting

in those many feature maps in the subsequent layer. The output of the convolutional

layers is time-wise unrolled and passed through bi-LSTM layers to capture the temporal

115

(a)

(b) (c)

Figure 6.5: (a) Training reconstruction loss across each channel and combined data (ex-

perimental data); Receiver Operating Characteristic (ROC) curve for different number

of channels and window sizes—(b) experimental data; (c) simulation data.

dependencies in both directions. The concatenated outputs (of forward and backward

LSTM layers) are then passed through a series of fully connected layers ending in the

softmax layer (of length equal to number of classes) that computes the probabilities of

different classes. We do not use pooling layers after convolutional layers as our input

data has been segmented into windows and the output of the convolutional layers need

to be passed through time-series LSTM layers [145]. We also introduce dropout at

several layers in our architectures wherein, some of the activations chosen randomly are

116

(a)

(b) (c)

Figure 6.6: (a) Crazyflie 2.0 drone used for experiments; (b) Accuracy using magne-

tometer data; (c) Comparison of test accuracy across different channels.

made zero. This will act as regularization and help prevent the network to depend on

some idiosyncrasies and instead learn the general structure.

Real-time operation. Once the models are trained offline, detection and (if necessary)

identification can be done in real-time as it comprises only of segmenting the streaming

sensor data and applying a few matrix multiplications to arrive at the result. Identi-

fication step is carried out only if the anomaly scores from detection step is beyond a

threshold. Once the cause is identified/diagnosed in real-time, appropriate actions can

be taken to stabilize/safeguard the drone operation.

117

6.4 Performance Evaluation

In this section, we first present our experimental and simulation setup followed by

detection and identification results. For each case, we compare our approach with

traditional machine learning classifiers such as SVM.

Experimental Setup: Crash data in Fig. 6.4 is collected using 3DR Solo drone.

However, we could not use the same drone for experiments as it weighs 1500 grams

and easily gets damaged when it falls from heights. This is more relevant in the case

of deep learning where more amount of data needs to be collected to train the models.

For this purpose, we used another small drone, called CrazyFlie 2.0 [131], shown in

Fig. 6.6(a) weighing just 37 grams and much more robust to falls. In order to evaluate

our approach, we considered a total of 15 crash scenarios (classes)—all combinations

of one/two/three/four propeller breakdown cases. We modified the drone firmware by

assigning a value of zero to the variables representing the propeller Revolutions Per

Minute (RPM) at appropriate levels within the software to induce crash. However, due

to firmware limitations, we could not successfully induce the following cases—all four

cases of three-propeller breakdown and 2 cases of diagonal two-propeller breakdown,

resulting in only 9 classes totally. We collected the data for 30 runs; in each run, the

drone would have a 2 second upflight time, an 8 seconds of hovering time followed by

crash corresponding to one of the 9 classes. We collected Accelerometer, Gyroscope and

Magnetometer data sampled at 100 Hz (maximum supported rate) for each crash event.

Training Description: We used 70% of data for training and 30% for testing in

both experiments and simulations. Since our data is time-series, we processed it into

windows of size 100, 50, 25 timesteps with a stride length of 10 for suitable analysis.

All the data till the crash is used for training/testing AutoEnc as it considered normal

operation. Transition data at the time of crash is used for training/testing DCLNN

along with corresponding class label (i.e., crash scenario mentioned above). We used

tensorflow to build, train and test our models with a minibatch size of 512 windows.

The number and the size of filters used for CNN layers is as shown in Fig. 6.2. We used

two-layers of bi-LSTMs with a hidden size of 256 units for each LSTM cell. We trained

118

the overall network for 100− 300 epochs using Adam optimizer [118] with learning rate

of 0.01 and epsilon of 0.01.

Detection Results: Fig. 6.5(a) shows the training reconstruction loss of the ex-

perimental data for our AutoEnc model over several training epochs for 6-channels

(accelerometer and gyroscope) individually and in combined form. We can notice that

as the model learns, the reconstruction loss decreases and converges. We considered

detection as a binary problem. Fig. 6.5(b) shows the Receiver Operating Character-

istic (ROC) curve for the experimental data compared with SVM classifier (with best

parameters: Radial Basis Function (RBF) kernel, C = 10, γ = 0.1). We can notice

that: (i) accuracy increases as the number of channels or the window size considered is

increased; (ii) AutoEnc performs better than SVM except for the 3-channel, 25 window

size case. We believe the reason is due to lack of sufficient data for training AutoEnc

(as AutoEnc is a deep learning network more data is required to train the model). For

the same reason, this behavior is not observed in 6-channel case. Fig. 6.5(c) shows the

ROC curve results for our simulation data (we describe the simulator setup and data

collection below). We can observe accuracy greater than 97% and also notice that we

do not observe the similar problem observed in experimental data.

As can be observed from these experimental results, the detection accuracy can still

be improved. We believe the reason for this is the unstable nature of our drone (Crazyflie

2.0) used for experiments. As the drone is very light weight (only 37 grams) and hard

to control, it exhibits a certain element of randomness. This is also reflected in crash

signatures making it hard for the network to learn meaningful representations as we show

below for experimental data. On the other hand, we are also restricted in using larger

drones due to—(i) state laws prohibiting flying drones outdoors without an expensive

license and it is very risky to fly these drones indoors; (ii) these drones get easily damaged

when they fall from heights making them unsuitable for crash experiments. To find a

sweet spot between these two extremes, we decided to use a realistic drone simulator to

circumvent these problems. We felt the simulation should not be simplistic, ignoring the

physical aspects including environmental objects such as trees and poles, kinematics

such as drag, fiction and gravity, etc. For these reasons, we adopted Microsoft’s AirSim

119

(a) (b)

(c)

Figure 6.7: (a) A snapshot from AirSim simulator [4] shows an aerial vehicle flying in

an urban environment. The inset shows depth, object segmentation and front camera

streams generated in real time; (b) Three-dimensional accelerometer data from the

simulator after one of the propeller’s RPM is made zero (simulating broken propeller

crash); (c) The architecture of the simulator depicting the core components and their

mutual interactions.

drone simulator [146] which is an open-source simulator written in C++. The simulator

tries to simulate the real-world as closely as possible by trying to include all effects

involved including collisions (see Fig. 6.7(a) for a screenshot of the simulator).

120

Simulator Setup: We first describe the simulator architecture followed by data

collection method.

Simulator Architecture: The core components of AirSim include environment model,

vehicle model, physics engine, sensor models, rendering interface, public API layer and

an interface layer for vehicle firmware as depicted in Fig. 6.7(c). It is necessary to have

simulated environments have reasonable details. For this purpose, AirSim leverages

rendering technologies implemented by Unreal engine [147]. In addition, AirSim also

utilizes the underlying pipeline in the Unreal engine to detect collisions. The AirSim

code base is implemented as a plugin for the Unreal engine. For in-depth details on

different realistic models used in the simulator, please refer [146].

Inducing Crash: In order to simulate a broken propeller, we make its RPM to zero by

supplying zero current to its motor. However, for this to work successfully, it is necessary

to constantly provide zero current to the effected motor. A one-time operation would

not be sufficient as the currents to the motors are generated in a high-frequency update

loop using a PID controller and hence correct current values (which do not induce

crash) are provided to the motors in subsequent update loops. Hence, we modified the

firmware code to make the effected propeller’s motor current to zero inside the update

loop itself so that its RPM is continuously zero, resulting in a crash. Fig. 6.7(b) shows

the accelerometer data (x,y,z axes) after the crash is induced by making the RPM of one

of the propellers to zero. By comparing with the actual drone crash data (accelerometer)

from 3DR Solo drone in Fig. 6.4, we can see that the simulation data is more complex

and hence difficult to learn than the former. We successfully simulated all 15 crash

scenarios (classes). In all these scenarios, we collected 18-channel data viz., linear and

angular versions of acceleration, velocity, and position along all the three axes from the

start of the crash until the end. We repeated this experiment 300 times to account

for noises and gather sufficient data. For results below, we used only 3-channel linear

acceleration data (instead of all 18 channels), unless otherwise specified, as there is a

need to limit the amount of data to process on a real drone.

Identification/Classification Results: We used our DCLNN architecture in

121

(a) (b)

(c)

Figure 6.8: (a) Cross-entropy loss vs. number of training epochs for both train data

and test data; (b) Accuracy vs. number of training epochs compared between DCLNN

(ours) and SVM classifier for both train and test data; (c) Accuracy on test data when

the channel data fed to the network is varied.

Fig. 6.3 with three convolutional layers ([48, 64, 96] filters with kernel sizes [5, 5, 3]) fol-

lowed by two bi-directional LSTM layers (128 units) and one dense/softmax layer. The

training is performed for 15 epochs in mini-batches of size 64 using Adam optimizer and

categorical cross entropy as loss function. We now present identification results using

experimental data.

122

Comparison with SVM: Fig. 6.6(b) shows the accuracy of our model (DCLNN) com-

pared against classical machine learning classifier such as Support Vector Machine (SVM).

Accuracy is defined as the percentage of windows classified correctly. We can notice

that DCLNN’s accuracy increases as the training is carried out over several epochs

(cross-entropy loss also reduces accordingly but is not plotted due to space limitations),

reaching to 70% finally. We can also notice that it performs better than SVM classifier

(RBF kernel, C = 10, γ = 0.01), which could only achieve 54% accuracy. Due to space

limitations, we have shown comparison only with Magnetometer data; in other channels

too, DCLNN performs better than SVM in a similar manner.

Variation with Channels: There is a need to limit the amount of data processed

during inference considering the resource scarcity of UAVs. We were curious if all the

channels contributed equally to the learning of the network. For this purpose, we trained

our network by giving different channel data each time and plotting accuracy on test

data as shown in Fig. 6.6(c). We can notice that in 3-channel scenario, Magnetometer

performs best with 70% accuracy, while combining all 9-channel data yields an accuracy

of about 85%. We now present results corresponding to simulation data.

Comparison with SVM: Fig. 6.8(a) shows the training and testing loss as our net-

work is trained over several epochs. We notice that the loss reduces and converges to

a value. This indicates that the network is learning over time and fits the data reason-

ably. Fig. 6.8(b) shows the accuracy of our model (DCLNN) compared against SVM.

Interestingly, after only 3 epochs, DCLNN almost converged with about 90% accuracy

(with final value around 93%). The test accuracy also finally converges to 93%, whereas

SVM classifier (RBF kernel, C = 100, γ = 0.01) achieves only 85% accuracy. We did

not plot F1-score as our class distribution is equal.

Variation with Channels: Fig. 6.8(c) shows the variation with channel data. We can

see that 3-channel gyroscope data works better (with about 98% accuracy) than 3-

channel accelerometer (93% accuracy) data. Within 3-channel gyroscope, we can notice

that axes Y and Z give better performance than axis X. By knowing this, we can discard

axis X data and only process axes Y and Z to limit the amount of computation. We

can see that axes Y and Z combined can give an accuracy of about 87% accuracy, which

123

Table 6.1: Inference times for autoencoder (AutoEnc) on different hardware platforms.

No. Chans. Desktop

(Training)

Desktop

(Inference)

Raspberry Pi

(Inference)

Jetson TX2

(Inference)

1 (x/y/z) 202 ms 82 ms 312 ms 83 ms

2 (xy/yz/xz) 386 ms 87 ms 372 ms 92 ms

3 (xyz) 561 ms 95 ms 484 ms 101 ms

could be sufficient in some cases.

Raspberry-Pi and Nvidia Jetson Profiling: The above results are obtained on a desk-

top computer with Intel QuadCore i7-2600 3.4 GHz processor with 8GB RAM. However,

we wanted to know how long it takes to do inference on hardware that can be mounted

on a drone and powered using a drone battery. For this purpose, we considered two

embedded computing devices—Raspberry Pi 3 Model B and Nvidia Jetson TX2 mod-

ule, both of which can be mounted on a drone to augment its computing capabilities.

The former has a QuadCore 1.2 GHz Broadcom BCM2837 processor with 1GB RAM,

the latter has Quadcore 2 GHz ARM processor with 8GB of CUDA-compatible graphic

memory. The results are shown in Table 6.1. The numbers indicate the time taken

to do inference on a single window of data (100 samples) with the specified number of

channels and the hardware. These numbers show that AutoEnc is amenable for real-

time inference on a drone aiding in detection of potentially danger modes. Specifically,

we can observe that in the case of Nvidia Jetson TX2, the results are impressive around

100 ms or less, which means the drone can do inference on the last one second of sensor

data every 100 ms. It is to be noted that, while new sensor data is sampled every 10

ms, it may not be necessary to do the inference at the same speed.

Video Demo: A video demo of the crash experiments performed on Crazyflie 2.0

drone and using AirSim simulator can be found at [148].

6.5 Summary

We proposed novel deep architectures to detect and identify the cause of the malfunction.

We have shown that the proposed architecture is able to achieve over 90% accuracy for

124

detection and upto 85% accuracy for identification over experimental data (all-channels

combined) and 99% over simulation data (just 3-channels).

125

Chapter 7

Conclusion and Future Directions

This chapter summarizes the main contributions of this dissertation and discusses future

research directions that are worth investigating leveraging the frameworks proposed in

this dissertation.

7.1 Summary of Dissertation Contributions

This dissertation provides techniques for real-time autonomic decision making using a

group of Intelligent Physical Systems (IPSs) acting in a dynamic and uncertain environ-

ment. We specifically considered the application of target/object search using a team

of UAVs in a post-disaster scenario. This dissertation discusses the techniques neces-

sary to achieve its objective viz., self-coordination and self-optimization via multi-UAV

coordination, and self-healing via proactive monitoring and lastly, the real-time aspects.

Towards this, firstly, we presented a simple approach based on Multi-Agent Rein-

forcement Learning (MARL) for coordinated data collection in a disaster scenario using

human bystanders and UAVs.

Secondly, we extended this simplistic multi-UAV coordination framework to dis-

tributed actor-critic based Multi-Agent Deep Reinforcement Learning (MADRL) frame-

work which allows high-dimensional state and action spaces, distributed coordination,

unlike the MARL framework. Also this framework addresses the non-stationarity prob-

lem inherent to multi-agent settings, which cannot be handled by the MARL framework.

Thirdly, as context constitutes an important ingredient for decision making, it is

vital to validate the sensor context of the UAV in certain secure missions. Towards this,

we proposed techniques for context modeling and prediction leveraging the theory of

Hidden Markov Models (HMMs). The proposed models capture both the personal and

126

group behavior aspects of an UAV from its history of contextual observations.

Fourthly, as the UAVs are operating in a dynamic and uncertain environment, we

proposed techniques for real-time monitoring of the operation of the UAV. This consti-

tutes techniques for real-time anomaly detection and classification, that can later enable

the correct sequence of remedial actions.

Generalizability: The proposed techniques can be generalized to any group of UAVs

operating in a dynamic/uncertain environment.

7.2 Future Directions

In order to further expand the state-of-the-art, we present possible future research di-

rections for each chapter below.

Chapter 2: Firstly, two different kinds of agents can be introduced—human bystanders

and rescue personnel each with a different set of actions. Specifically bystanders are

assumed to be static with four actions of panning/tilting the phone, while rescue per-

sonnel have additional actions of translation (East, West, North, South). Secondly, as

privacy is an important aspect, Privacy-Preserving Multi-Agent Deep Reinforcement

Learning (PPMADRL) framework can be studied that accounts for user privacy while

the media data is being captured by the agents (human bystanders/rescue personnel).

Lastly, distributed and local processing using mobile computing paradigm can be inves-

tigated for 3D reconstruction as the internet connection may not be reliable in disaster

scenarios.

Chapter 3: Firstly, the proposed framework can be extended to non-grid/image based

environments. In non-grid/image environments, the observation is the current image

seen by the UAV. The state consists of the concatenation of UAV’s own observation

and the similarity with respect to the other agents’ observations calculated using image

similarity metrics. The actor and critic architectures can be augmented with Convo-

lutional Neural Networks (CNNs) to process image state spaces. For exploration, each

UAV maintains a buffer of previously visited images and compares the current image

with the images in its buffer to determine novelty/exploration reward. Collision reward

127

can be formulated by comparing the similarity of the UAV’s observations with other

UAVs’ observations between two consecutive time instants.

Secondly, in this chapter, we have assumed that the communication among the

UAVs is synchronous i.e., all UAVs sending their states and actions to other UAVs every

time instant, although occasional communication failures are handled by the proposed

framework. In some scenarios, it is possible that the team of UAVs working on a mission

are split into several subteams either voluntarily due to privacy/security/geographical

constraints or involuntarily due to prolonged communication failures. In such scenarios,

asynchronous coordination of the UAVs is necessary, for which Multi-Agent Hierarchical

Deep Reinforcement Learning (MAHDRL) framework can be explored. In this frame-

work, an additional RL process is run on a server that coordinates the actions of the

subteams. HRL is a powerful framework as there are two RL processes running on two

hierarchical levels (server and UAVs). For example, such a framework can be used to co-

ordinate among subteams of UAVs operating on a joint national security mission, where

the subteams belong to different agencies e.g., Federal Emergency Management Agency

(FEMA) and Department of Homeland Security (DHS). Another application can be

using Autonomous Underwater Vehicles (AUVs) for underwater adaptive sampling of

interesting phenomenon such as water pH, dissolved oxygen levels. In this scenario,

communication among the AUV underwater is difficult due to the water medium and

hence, they need to surface and coordinate via an Autonomous Surface Vehicle (ASV).

The overall goal of adaptive sampling is realized via MAHDRL framework where (i) an

RL process running on the ASV is used to optimize the resurfacing time for each AUV

(i.e., determine how long each AUV should stay underwater and perform adaptive sam-

pling before surfacing and coordinating with the ASV); (ii) an RL process running on

each AUV is optimized to perform the function of adaptive sampling.

Chapter 4: Firstly, we have observed that using homomorphic encryption has sig-

nificantly increased the training (parameter estimation) time of the HMM algorithms.

Hence, reducing these training times leveraging suboptimal encryption algorithms can

be investigated; Secondly, it is known that LSTMs are able to capture both long term

and short term temporal dependencies in time-series data. Hence, deep learning based

128

LSTMs can be investigated to model the personal and group behaviours instead of

the traditional ML based HMMs. Also, HMMs follow Markov property which means

that they are not able to capture dependencies more than one time step into the past,

unlike LSTMs. Performance of HMM and LSTM based approaches can be compared

and contrasted. Thirdly, it will be interesting to study how the training of the LSTM

network can be carried out preserving the privacy of the users’ data. For example, com-

bining LSTMs and encryption can be investigated. Lastly, while the proposed context

modeling and prediction techniques have been validated for the case of mobile phones,

the techniques are equally applicable and extensible to UAVs. It will be interesting

to investigate how the remaining operational time, and other indoor locations can be

predicted ahead of time to the benefit of the UAV. In particular, the application of

multi-UAV package delivery consisting of several hops passing through both indoor and

outdoor environments can be considered. In such a scenario, each UAV will establish

some sort of personal and group activities (e.g., follow a particular order of hops very

frequently) over time, which can enhance the overall productivity of the application via

collaborative filtering based knowledge sharing.

Chapter 5: Firstly, more investigation of False Positives (FP) and False Nega-

tives (FNs) can be carried out. For FNs, an existing heuristic based video anomaly

detection technique can be used to identify anomalies which can then be filtered by

humans. Given this ground truth information, it can be studied if the proposed mod-

els are able to capture these anomalies. For FPs, we have seen some artifacts in the

data corresponding to ‘Normal’ (FP) cases (leading them to be classified as anoma-

lous). Nevertheless, it is important to investigate why some other ‘Normal’ (FP) cases

are still classified as anomalous. Secondly, the proposed anomaly detection technique

can be enhanced by leveraging the video data in two ways: (i) an iterative approach

can be adopted where the anomalies detected using video data can be used to improve

(e.g., via cross-comparison) the anomalies detected using the CANbus scalar data and

vice-versa. At the end of this iterative approach, an improved anomaly detection frame-

work using just the scalar data can be obtained; (ii) a multi-modal anomaly detection

framework consisting of both scalar and video data can be investigated to enhance the

129

overall accuracy. Thirdly, Generative Adversarial Networks (GANs) have shown some

promising results recently in the domain of Computer Vision (CV) for tasks such as

image denoising, image-to-image and text-to-image translation among others. Consid-

ering this, novel variants of GANs, in addition to Variational AutoEncoders (VAEs)

(both of which are generative models like the autoencoders presented in this chapter)

can be investigated in further improving the anomaly detection performance. Lastly, it

is worth investigating on how to extend the symbol predictor (of the multi-task learning

framework presented in this chapter) to UAVs. One way can be to encode the maneuvers

of the UAV similarly to that of the car such as ‘take off’, ‘veer left’, ‘hover’, ‘land’, etc.

This will help in being able to extend the multi-task learning based anomaly detection

to UAV data.

Chapter 6: The profiling of these algorithms on NVIDIA Jetson TX2 GPU shows

that it takes about 100 ms to run the detection algorithm for each window of data.

While this may be necessary for real-time operation in some applications, it is still

high for some other time-critical applications/missions. There are several opportunities

for extending the work presented in this chapter. Firstly, software optimizations can

be investigated such as model pruning, distillation, teacher-student approach among

others to further reduce the inference times albeit with certain performance degradation.

Secondly, hardware optimizations can be investigated such as realizing the algorithms on

an FPGA device instead of a GPU device, as the former provides faster inference time

than the latter for Machine Learning (ML) algorithms. Other optimizations include

FPGA optimization, implementations on analog hardware.

Thirdly, a hardware-software approach such as mixed/hybrid analog-digital ML sys-

tem can be adopted. The reasons to consider a mixed analog-digital system are as

follows: (a) when executing the same image-classification workload, the FPGA con-

sumes about a couple of Watts, while the GPU consumes about twice as much in both

training and inference phases. This means that these devices cannot be ON contin-

uously (e.g., for continuous anomaly detection) as the remaining operational time is

a valuable resource in case of UAV. (b) analog hardware is known to be fast and en-

ergy efficient compared to digital systems due to (i) avoiding the use of power-hungry

130

Analog-to-Digital Converters (ADCs) and (ii) the processing time of an analog circuit

is faster than a digital circuit if the operations are done by the laws of circuits and

the signal-processing chain is short (since ADCs are not part of the signal-processing

chain in the analog domain) [149]. The basic multiplication and summation opera-

tions can be realized very efficiently in the analog domain using memristor crossbar

arrays [150]. The best of both analog and digital circuits can be taken to investigate

a mixed analog-digital hardware/software co-designed system, where the analog part is

used as a pre-stage to identify interesting cases that will be worked upon in detail by the

complex cascaded digital system. Specifically, such a system consists of processing the

data in two domains, first energy-efficient but less accurate ‘Analog’ stage, followed by

the less energy-efficient albeit more accurate ‘Digital’ stage. Digital system consisting

of FPGA is triggered only when the analog system’s output goes high (i.e., positive

indication of anomaly). Furthermore, in the analog domain, all the available sensor

data is first grouped intoM groups. Data/signals in each group can be first compressed

using Analog Joint Source Channel Coding [151] by dedicated analog circuits to obtain

the low-dimension compressed sensing data. These M compressed signals are then fed

to analog memristor crossbar array [150], which implements a neural network in the

analog domain using memristor devices. Analog memristor crossbar array hardware

realizes efficiently multiplication and addition operations, leveraging the Ohm’s law and

the Kirchhoff’s Current Law (KCL) of circuits to provide ultra-low-power and high-

speed realizations. This analog sensing system has very low false negatives (i.e., it does

not miss any positive detection), but might not be good with respect to false positives.

This is when the digital system is activated. Such digital system, in fact, does not run

continuously but only when a detection is triggered by the analog system. Hence, the

overall system conserves power via: (i) not running the FPGA inference continuously,

which is of the order of few mW; (ii) compressing the signals via AJSCC so as to work

in the compressed domain; (iii) running inference in the analog domain as there is no

need to use power-hungry ADCs. Hence, any false positives detected by the analog sys-

tem are reprocessed in the digital system for accurate detection. The digital system is

also designed to perform advanced operations such as: (i) quantification/classification of

131

anomalies; (ii) retraining the neural networks so as to personalize the anomaly detection

specific to the UAV. Note that the digital realization of ML does not have computation

constraints, therefore is suited for algorithms that cannot be efficiently realized by analog

circuits.

Fourthly, the proposed models can be tested on (i) more crash/attack scenarios

e.g., partially broken but functional propellers, cyber attacks, bird hits (simulated via

abruptly pulling the UAV using a rope), sudden wind gusts (simulated via subjecting

the flying UAV to air from a strong fan), etc.; and (ii) on heterogeneous UAV plat-

forms to assess their overall generalizability potential. Lastly, we only discussed fault

detection and diagnosis so far. Real decision-making/intervention methodologies can be

investigated to prevent crash/further malfunctioning from the identified misoperation.

For example, recovery of the UAV in AirSim simulator when one propeller is broken

can be demonstrated such as: immediately after the algorithm detects which propeller

is broken, necessary control has to be applied to the corresponding motors, so that the

UAV stabilizes on only two or three working propellers.

In summary, we can notice that several new and exciting research directions can be

pursued starting from the research techniques presented in this dissertation. The pro-

posed new directions cut across several domains including Machine Learning/Artificial

Intelligence, biosensing, smartphone sensing, human-computer interaction, multi-UAV

coordination among other domains.

132

References

[1] UPI.com, “St. Louis firefighters work to contain a fire on the roof of an apartment
building during a five alarm fire in St. Louis on July 17, 2012.” https://www.upi.
com/News_Photos/Features/Firefighters-in-St-Louis/6861/ph4/, 2012.

[2] “Video Demo: Real-time 3D Reconstruction Using Single Drone.” https://www.
youtube.com/watch?v=NFlVvXDjh9g.

[3] “Video Demo: Multi-Agent Reinforcement Learning based 3D Reconstruction Us-
ing Drones.” https://www.dropbox.com/s/qv499apo74ulcx2/capstone.mp4.

[4] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-Fidelity Visual and
Physical Simulation for Autonomous Vehicles,” in Field and Service Robotics,
2017.

[5] R. S. Sutton and A. G. Barto, Reinforcement learning : an introduction. MIT
Press, 1998.

[6] “Video Demo of Agents Trajectories with Same and Different Positions
of Targets During Training and Testing.” https://www.dropbox.com/sh/
vzjs044nn7ek0m0/AADHfab3xX0YUoXmRMSXMM3oa?dl=0, 2020.

[7] V. Ramanishka, Y.-T. Chen, T. Misu, and K. Saenko, “Toward Driving Scene
Understanding: A Dataset for Learning Driver Behavior and Causal Reasoning,”
in Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[8] M. J. Olsen, K. F. Cheung, Y. YamazakI, S. Butcher, M. Garlock, S. Yim, S. Mc-
Garity, I. Robertson, L. Burgos, and Y. L. Young, “Damage assessment of the
2010 chile earthquake and tsunami using terrestrial laser scanning,” Earthquake
Spectra, vol. 28, no. S1, pp. S179–S197, 2010.

[9] G. Chock, L. Carden, I. Robertson, M. Olsen, and G. Yu, “Tohoku tsunami-
induced building failure analysis with implications for us tsunami and seismic
design codes,” Earthquake Spectra, vol. 29, no. s1, pp. S99–S126, 2013.

[10] J. Gong and A. Maher, “Use of mobile lidar data to assess hurricane damage and
visualize community vulnerability,” Transportation Research Record: Journal of
the Transportation Research Board, no. 2459, pp. 119–126, 2014.

[11] A. G. Kashani, P. S. Crawford, S. K. Biswas, A. J. Graettinger, and D. Grau,
“Automated tornado damage assessment and wind speed estimation based on ter-
restrial laser scanning,” Journal of Computing in Civil Engineering, vol. 29, no. 3,
p. 04014051, 2014.

https://www.upi.com/News_Photos/Features/Firefighters-in-St-Louis/6861/ph4/
https://www.upi.com/News_Photos/Features/Firefighters-in-St-Louis/6861/ph4/
https://www.youtube.com/watch?v=NFlVvXDjh9g
https://www.youtube.com/watch?v=NFlVvXDjh9g
https://www.dropbox.com/s/qv499apo74ulcx2/capstone.mp4
https://www.dropbox.com/sh/vzjs044nn7ek0m0/AADHfab3xX0YUoXmRMSXMM3oa?dl=0
https://www.dropbox.com/sh/vzjs044nn7ek0m0/AADHfab3xX0YUoXmRMSXMM3oa?dl=0

133

[12] A. Hatzikyriakou, N. Lin, J. Gong, S. Xian, X. Hu, and A. Kennedy, “Component-
based vulnerability analysis for residential structures subjected to storm surge
impact from hurricane sandy,” Natural Hazards Review, p. 05015005, 2015.

[13] M. J. Olsen, F. Kuester, B. J. Chang, and T. C. Hutchinson, “Terrestrial laser
scanning-based structural damage assessment,” Journal of Computing in Civil
Engineering, vol. 24, no. 3, pp. 264–272, 2009.

[14] S. C. Yim, K. F. Cheung, M. J. Olsen, and Y. Yamazaki, “Tohoku tsunami survey,
modeling and probabilistic load estimation applications,” in Proc. of the Interna-
tional Symposium on Engineering Lessons Learned from the 2011 Great East Japan
Earthquake, pp. 430–443, 2012.

[15] A. G. Kashani and A. J. Graettinger, “Cluster-based roof covering damage detec-
tion in ground-based lidar data,” Automation in Construction, vol. 58, pp. 19–27,
2015.

[16] A. Wharton, Simulation and Investigation of Multi-Agent Reinforcement Learning
for Building Evacuation Scenarios (Master Thesis). PhD thesis, St Catherine’s
College, 2009.

[17] C. Schönauer, E. Vonach, G. Gerstweiler, and H. Kaufmann, “3D Building Re-
construction and Thermal Mapping in Fire Brigade Operations,” in Proc. of the
Augmented Human International Conference, AH ’13, (New York, NY, USA),
pp. 202–205, ACM, 2013.

[18] E. K. Lee, H. Viswanathan, and D. Pompili, “RescueNet: Reinforcement-
Learning-based Communication Framework for Emergency Networking,” Com-
puter Networks (Elsevier), vol. 98, pp. 14–28, apr 2016.

[19] RoboCup Federation, “RoboCup Rescue Project.” http://www.robocuprescue.
org/wiki/index.php?title=Main_Page.

[20] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “TaintDroid: an information-flow tracking system
for realtime privacy monitoring on smartphones,” ACM Transactions on Computer
Systems (TOCS), vol. 32, no. 2, p. 5, 2014.

[21] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Investigating user
privacy in android ad libraries,” in Workshop on Mobile Security Technologies
(MoST), Citeseer, 2012.

[22] D. Damopoulos, G. Kambourakis, M. Anagnostopoulos, S. Gritzalis, and J. H.
Park, “User privacy and modern mobile services: are they on the same path?,”
Personal and ubiquitous computing, vol. 17, no. 7, pp. 1437–1448, 2013.

[23] E. Toch, “Crowdsourcing privacy preferences in context-aware applications,” Per-
sonal and ubiquitous computing, vol. 18, no. 1, pp. 129–141, 2014.

[24] S. Trepte and L. Reinecke, Privacy online: Perspectives on privacy and self-
disclosure in the social web. Springer Science & Business Media, 2011.

http://www.robocuprescue.org/wiki/index.php?title=Main_Page
http://www.robocuprescue.org/wiki/index.php?title=Main_Page

134

[25] H. To, G. Ghinita, and C. Shahabi, “A framework for protecting worker location
privacy in spatial crowdsourcing,” Proceedings of the VLDB Endowment, vol. 7,
no. 10, pp. 919–930, 2014.

[26] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, “Android
permissions: User attention, comprehension, and behavior,” in Proceedings of the
Eighth Symposium on Usable Privacy and Security, p. 3, ACM, 2012.

[27] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji, “A methodology
for empirical analysis of permission-based security models and its application to
android,” in Proceedings of the 17th ACM conference on Computer and communi-
cations security, pp. 73–84, ACM, 2010.

[28] W. Enck, “Defending users against smartphone apps: Techniques and future di-
rections,” in Information Systems Security, pp. 49–70, Springer, 2011.

[29] 2013. German state fines Google for Street View data breach; available at http:
//www.reuters.com/article/us-google-privacy-idUSBRE93L0VU20130422.

[30] S. Mehrotra, C. T. Butts, D. Kalashnikov, N. Venkatasubramanian, R. R. Rao,
G. Chockalingam, R. Eguchi, B. J. Adams, and C. Huyck, “Project RESCUE:
challenges in responding to the unexpected,” in Electronic Imaging 2004, pp. 179–
192, 2003.

[31] M. Kyng, E. T. Nielsen, and M. Kristensen, “Challenges in Designing Interac-
tive Systems for Emergency Response,” in Proc. of the Conference on Designing
Interactive Systems, DIS ’06, (New York, NY, USA), pp. 301–310, ACM, 2006.

[32] V. Balasubramanian, D. Massaguer, S. Mehrotra, and N. Venkatasubramanian,
“DrillSim: A Simulation Framework for Emergency Response Drills,” in Intelli-
gence and Security Informatics, vol. 3975 of Lecture Notes in Computer Science,
pp. 237–248, Springer Berlin Heidelberg, 2006.

[33] S. D. Ramchurn, F. Wu, W. Jiang, J. E. Fischer, S. Reece, S. Roberts, T. Rod-
den, C. Greenhalgh, and N. R. Jennings, “Human–agent collaboration for disaster
response,” Autonomous Agents and Multi-Agent Systems, pp. 1–30, 2015.

[34] L. Busoniu, R. Babuska, and B. De Schutter, “A Comprehensive Survey of Mul-
tiagent Reinforcement Learning,” Systems, Man, and Cybernetics, Part C: Appli-
cations and Reviews, IEEE Transactions on, vol. 38, pp. 156–172, mar 2008.

[35] M. Lauer and M. A. Riedmiller, “An Algorithm for Distributed Reinforcement
Learning in Cooperative Multi-Agent Systems,” in Proceedings of the Seventeenth
International Conference on Machine Learning, ICML ’00, (San Francisco, CA,
USA), pp. 535–542, Morgan Kaufmann Publishers Inc., 2000.

[36] C. Mariano and E. Morales, “A New Distributed Reinforcement Learning Algo-
rithm for Multiple Objective Optimization Problems,” in Advances in Artificial
Intelligence (M. Monard and J. Sichman, eds.), vol. 1952 of Lecture Notes in
Computer Science, pp. 290–299, Springer Berlin Heidelberg, 2000.

http://www.reuters.com/article/us-google-privacy-idUSBRE93L0VU20130422
http://www.reuters.com/article/us-google-privacy-idUSBRE93L0VU20130422

135

[37] J. Huang, B. Yang, and D.-y. Liu, “A Distributed Q-Learning Algorithm for Multi-
Agent Team Coordination,” in Machine Learning and Cybernetics, 2005. Proceed-
ings of 2005 International Conference on, vol. 1, pp. 108–113, aug 2005.

[38] C. Wu, “VisualSFM: A Visual Structure from Motion System.” http://ccwu.me/
vsfm/, 2011.

[39] S. McCann, “3D Reconstruction from Multiple Images,” tech. rep., Stanford Uni-
versity, 2015.

[40] “Video Demo: Smartphone-enabled Human-robot Cooperation for Disaster Sit-
uational Awareness.” https://www.dropbox.com/s/1fx8odlyirudxuc/Argus_
demo_v2.mp4?dl=0, 2015.

[41] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy Gradient Meth-
ods for Reinforcement Learning with Function Approximation,” in Proceedings
of the 12th International Conference on Neural Information Processing Systems,
NIPS’99, (Cambridge, MA, USA), pp. 1057–1063, MIT Press, 1999.

[42] F. Niroui, B. Sprenger, and G. Nejat, “Robot exploration in unknown cluttered
environments when dealing with uncertainty,” in Proceedings - 2017 IEEE 5th In-
ternational Symposium on Robotics and Intelligent Sensors, IRIS 2017, vol. 2018-
Janua, pp. 224–229, Institute of Electrical and Electronics Engineers Inc., jan
2018.

[43] N. Basilico and F. Amigoni, “Exploration strategies based on multi-criteria deci-
sion making for searching environments in rescue operations,” Autonomous Robots,
vol. 31, pp. 401–417, nov 2011.

[44] Y. Mei, Y. H. Lu, C. S. Lee, and Y. C. Hu, “Energy-efficient mobile robot ex-
ploration,” in Proceedings - IEEE International Conference on Robotics and Au-
tomation, vol. 2006, pp. 505–511, 2006.

[45] T. Lei and L. Ming, “A robot exploration strategy based on Q-learning network,”
in 2016 IEEE International Conference on Real-Time Computing and Robotics,
RCAR 2016, pp. 57–62, Institute of Electrical and Electronics Engineers Inc., dec
2016.

[46] J. Zhang, L. Tai, J. Boedecker, W. Burgard, and M. Liu, “Neural SLAM: Learning
to Explore with External Memory,” DeepAI, jun 2017.

[47] F. Niroui, K. Zhang, Z. Kashino, and G. Nejat, “Deep Reinforcement Learning
Robot for Search and Rescue Applications: Exploration in Unknown Cluttered
Environments,” IEEE Robotics and Automation Letters, vol. 4, pp. 610–617, apr
2019.

[48] J. Euler, A. Horn, D. Haumann, J. Adamy, and O. V. Stryk, “Cooperative n-
boundary tracking in large scale environments,” in 2012 IEEE 9th International
Conference on Mobile Ad-Hoc and Sensor Systems (MASS 2012), vol. Supplement,
pp. 1–6, 2012.

http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
https://www.dropbox.com/s/1fx8odlyirudxuc/Argus_demo_v2.mp4?dl=0
https://www.dropbox.com/s/1fx8odlyirudxuc/Argus_demo_v2.mp4?dl=0

136

[49] J. Delmerico, E. Mueggler, J. Nitsch, and D. Scaramuzza, “Active Autonomous
Aerial Exploration for Ground Robot Path Planning,” IEEE Robotics and Au-
tomation Letters, vol. 2, pp. 664–671, apr 2017.

[50] C. Sampedro, A. Rodriguez-Ramos, H. Bavle, A. Carrio, P. de la Puente, and
P. Campoy, “A Fully-Autonomous Aerial Robot for Search and Rescue Appli-
cations in Indoor Environments using Learning-Based Techniques,” Journal of
Intelligent and Robotic Systems: Theory and Applications, vol. 95, pp. 601–627,
aug 2019.

[51] E. Yanmaz, S. Yahyanejad, B. Rinner, H. Hellwagner, and C. Bettstetter, “Drone
networks: Communications, coordination, and sensing,” Ad Hoc Networks, vol. 68,
pp. 1–15, jan 2018.

[52] A. Khan, E. Yanmaz, and B. Rinner, “Information Exchange and Decision Making
in Micro Aerial Vehicle Networks for Cooperative Search,” IEEE Transactions on
Control of Network Systems, vol. 2, no. 4, pp. 335–347, 2015.

[53] J. Hu, L. Xie, and J. Xu, “Vision-based multi-agent cooperative target search,” in
2012 12th International Conference on Control, Automation, Robotics and Vision,
ICARCV 2012, pp. 895–900, 2012.

[54] J. G. C. Zuluaga, J. P. Leidig, C. Trefftz, and G. Wolffe, “Deep Reinforcement
Learning for Autonomous Search and Rescue,” in Proceedings of the IEEE Na-
tional Aerospace Electronics Conference, NAECON, vol. 2018-July, pp. 521–524,
Institute of Electrical and Electronics Engineers Inc., dec 2018.

[55] V. Sadhu, G. Salles-Loustau, D. Pompili, S. Zonouz, and V. Sritapan, “Argus:
Smartphone-enabled human cooperation via multi-agent reinforcement learning
for disaster situational awareness,” in IEEE International Conference on Auto-
nomic Computing (ICAC), 2016.

[56] M. L. Littman, “Markov Games as a Framework for Multi-Agent Reinforcement
Learning,” in Proceedings of the Eleventh International Conference on Interna-
tional Conference on Machine Learning, ICML’94, (San Francisco, CA, USA),
pp. 157–163, Morgan Kaufmann Publishers Inc., 1994.

[57] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-Agent
Actor-Critic for Mixed Cooperative-Competitive Environments,” in Proceedings
of the 31st International Conference on Neural Information Processing Systems,
NIPS’17, (Red Hook, NY, USA), pp. 6382–6393, Curran Associates Inc., 2017.

[58] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beat-
tie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and
D. Hassabis, “Human-level control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529–533, 2015.

[59] J. N. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson, “Learning to Commu-
nicate with Deep Multi-Agent Reinforcement Learning,” in Proceedings of the 30th
International Conference on Neural Information Processing Systems, NIPS’16,
(Red Hook, NY, USA), pp. 2145–2153, Curran Associates Inc., 2016.

137

[60] M. Tan, “Machine learning : proceedings of the tenth international conference,
University of Massachusetts, Amherst, June 27-29, 1993,” in Proceedings of the
Tenth International Conference on Machine Learning, (Amherst, MA), p. 348,
Morgan Kaufmann Pub, 1993.

[61] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” in Interna-
tional Conference on Learning Representations (ICLR), 2015.

[62] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Harley, T. P. Lillicrap, D. Silver,
and K. Kavukcuoglu, “Asynchronous Methods for Deep Reinforcement Learning,”
in Proceedings of the 33rd International Conference on International Conference
on Machine Learning - Volume 48, ICML’16, pp. 1928–1937, JMLR.org, 2016.

[63] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “De-
terministic policy gradient algorithms,” in Proc. of International Conference on
Machine Learning (ICML), 2014.

[64] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” Commun. ACM, vol. 60, pp. 84–90, may 2017.

[65] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “OpenAI Gym,” 2016.

[66] TensorFlow Core v2.3.0, “Dynamic RNN.” https://www.tensorflow.org/api_
docs/python/tf/compat/v1/nn/dynamic_rnn, 2018.

[67] Niantic, “Pokemon Go.” http://www.pokemongo.com, 2016.

[68] V. Sadhu, D. Pompili, S. Zonouz, and V. Sritapan, “CollabLoc: Privacy-preserving
multi-modal localization via collaborative information fusion,” in IEEE Interna-
tional Conference on Computer Communications and Networks (ICCCN), (Van-
couver, BC), 2017.

[69] V. Pejovic and M. Musolesi, “Anticipatory Mobile Computing: A Survey of the
State of the Art and Research Challenges,” ACM Comput. Surv., vol. 47, apr 2015.

[70] G. Salles-Loustau, L. Garcia, K. Joshi, and S. Zonouz, “Don’t just BYOD,
Bring-Your-Own-App Too! Protection via Virtual Micro Security Perimeters,”
in IEEE/IFIP International Conference on Dependable Systems Networks, jun
2016.

[71] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun, “On the re-
quirements for successful GPS spoofing attacks,” in Proceedings of the 18th ACM
conference on Computer and communications security - CCS ’11, (New York, NY,
USA), p. 75, ACM Press, 2011.

[72] T. Bao, H. Cao, E. Chen, J. Tian, and H. Xiong, “An Unsupervised Approach
to Modeling Personalized Contexts of Mobile Users,” in 2010 IEEE International
Conference on Data Mining, pp. 38–47, IEEE, dec 2010.

https://www.tensorflow.org/api_docs/ python/tf/compat/v1/nn/dynamic_rnn
https://www.tensorflow.org/api_docs/ python/tf/compat/v1/nn/dynamic_rnn
http://www.pokemongo.com

138

[73] V. Srinivasan, S. Moghaddam, A. Mukherji, K. K. Rachuri, C. Xu, and E. M.
Tapia, “MobileMiner: mining your frequent patterns on your phone,” in Proceed-
ings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous
Computing - UbiComp ’14 Adjunct, (New York, NY, USA), pp. 389–400, ACM
Press, 2014.

[74] A. Mukherji, V. Srinivasan, and E. Welbourne, “Adding intelligence to your mobile
device via on-device sequential pattern mining,” in Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing Adjunct
Publication - UbiComp ’14 Adjunct, (New York, NY, USA), pp. 1005–1014, ACM
Press, 2014.

[75] K. Farrahi and D. Gatica-Perez, “A probabilistic approach to mining mobile phone
data sequences,” Personal and Ubiquitous Computing, vol. 18, pp. 223–238, jan
2014.

[76] A. Mannini and A. M. Sabatini, “Machine Learning Methods for Classifying Hu-
man Physical Activity from On-Body Accelerometers,” Sensors, vol. 10, pp. 1154–
1175, feb 2010.

[77] D. K. Jonathan Feng-shun Lin, “Automatic Human Motion Segmentation and
Identification using Feature Guided HMM for Physical Rehabilitation Exercises,”
in IEEE/RSJ Int. Workshop Conf. Intelligent Robots and Systems (IROS), Robot.
Neurology Rehab., 2011.

[78] M. Brand and V. Kettnaker, “Discovery and segmentation of activities in video,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8,
pp. 844–851, 2000.

[79] N. Oliver, B. Rosario, and A. Pentland, “A Bayesian computer vision system
for modeling human interactions,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 22, no. 8, pp. 831–843, 2000.

[80] D. Trabelsi, S. Mohammed, F. Chamroukhi, L. Oukhellou, and Y. Amirat, “An
Unsupervised Approach for Automatic Activity Recognition based on Hidden
Markov Model Regression,” IEEE Transactions on Automation Science and En-
gineering, vol. 10, pp. 829–835, jul 2013.

[81] R. Cilla, M. A. Patricio, J. García, A. Berlanga, and J. M. Molina, “Recognizing
Human Activities from Sensors Using Hidden Markov Models Constructed by
Feature Selection Techniques,” Algorithms, vol. 2, pp. 282–300, feb 2009.

[82] L. A. Castro, J. Beltrán, M. Perez, E. Quintana, J. Favela, E. Chávez, M. Ro-
driguez, and R. Navarro, “Collaborative Opportunistic Sensing with Mobile
Phones,” in Proceedings of the 2014 ACM International Joint Conference on Per-
vasive and Ubiquitous Computing: Adjunct Publication, UbiComp ’14 Adjunct,
(New York, NY, USA), pp. 1265–1272, ACM, 2014.

[83] R. Honicky, E. A. Brewer, E. Paulos, and R. White, “N-smarts: Networked Suite
of Mobile Atmospheric Real-time Sensors,” in Proceedings of the Second ACM
SIGCOMM Workshop on Networked Systems for Developing Regions, NSDR ’08,
(New York, NY, USA), pp. 25–30, ACM, 2008.

139

[84] J. Mantyjarvi, J. Himberg, and P. Huuskonen, “Collaborative context recogni-
tion for handheld devices,” in Proc. of the International Conference on Pervasive
Computing and Communications (PerCom), IEEE, mar 2003.

[85] E. Miluzzo, C. T. Cornelius, A. Ramaswamy, T. Choudhury, Z. Liu, and A. T.
Campbell, “Darwin Phones: The Evolution of Sensing and Inference on Mobile
Phones,” in Proc. of the International Conference on Mobile Systems, Applica-
tions, and Services (MobiSys), (New York, NY, USA), ACM, 2010.

[86] H. Polat and W. Du, “Privacy-preserving collaborative filtering using randomized
perturbation techniques,” in Proceedings of the Third IEEE International Con-
ference on Data Mining, (Melbourne, Florida), p. 756, IEEE Computer Society,
2003.

[87] R. Parameswaran and D. M. Blough, “Privacy Preserving Collaborative Filtering
Using Data Obfuscation,” in 2007 IEEE International Conference on Granular
Computing (GRC 2007), pp. 380–380, IEEE, nov 2007.

[88] S. Guo, S. Zhong, and A. Zhang, “A Privacy Preserving Markov Model for Se-
quence Classification,” in Proceedings of the International Conference on Bioin-
formatics, Computational Biology and Biomedical Informatics - BCB’13, (New
York, NY, USA), pp. 561–568, ACM Press, 2007.

[89] H. X. Nguyen and M. Roughan, “Multi-Observer Privacy-Preserving Hidden
Markov Models,” IEEE Transactions on Signal Processing, vol. 61, pp. 6010–6019,
dec 2013.

[90] S. Renckes, H. Polat, and Y. Oysal, “Providing predictions on distributed HMMs
with privacy,” Artificial Intelligence Review, vol. 28, pp. 343–362, dec 2007.

[91] H. Kikuchi, H. Kizawa, and M. Tada, “Privacy-Preserving Collaborative Filter-
ing Schemes,” in 2009 International Conference on Availability, Reliability and
Security, pp. 911–916, IEEE, 2009.

[92] W. Ahmad and A. Khokhar, “An Architecture for Privacy Preserving Collabora-
tive Filtering on Web Portals,” in Third International Symposium on Information
Assurance and Security, pp. 273–278, IEEE, aug 2007.

[93] S. Katzenbeisser and M. Petkovic, “Privacy-Preserving Recommendation Systems
for Consumer Healthcare Services,” in 2008 Third International Conference on
Availability, Reliability and Security, pp. 889–895, IEEE, mar 2008.

[94] J. Canny, “Collaborative Filtering with Privacy,” in Proceedings of the 2002 IEEE
Symposium on Security and Privacy, p. 308, IEEE Computer Society Press, 2002.

[95] Wikipedia, “Plate Notation.” https : / / en . wikipedia . org / wiki / Plate _
notation.

[96] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.

[97] A. Gruber, W. Yair, and Michal Rosen-Zvi, “Hidden Topic Markov Models.,”
AISTATS, vol. 7, pp. 163–170, 2007.

https://en.wikipedia.org/wiki/Plate_notation
https://en.wikipedia.org/wiki/Plate_notation

140

[98] A. Chopra, “Comparative Analysis of Key Exchange Algorithms in Cryptography
and its Implementation,” IMS Manthan (The Journal of Innovations), vol. 8, no. 2,
2015.

[99] R. L. Sahita, U. S. Warrier, P. Dewan, and R. S. Narjala, “Executing trusted
applications with reduced trusted computing base,” 2014.

[100] P. Paillier, “Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes,” in Advances in Cryptology — EUROCRYPT ’99, pp. 223–238, Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999.

[101] M. Pathak, S. Rane, W. Sun, and B. Raj, “Privacy preserving probabilistic in-
ference with Hidden Markov Models,” in 2011 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 5868–5871, IEEE, may
2011.

[102] Y. Chon, E. Talipov, H. Shin, and H. Cha, “Mobility prediction-based smartphone
energy optimization for everyday location monitoring,” in Proceedings of the 9th
ACM Conference on Embedded Networked Sensor Systems - SenSys ’11, (New
York, NY, USA), p. 82, ACM Press, 2011.

[103] G. Heinrich, “Parameter estimation for text analysis,” tech. rep., University of
Leipzig, 2008.

[104] P. Blunsom, “Hidden Markov Models,” tech. rep., Dept. of Computer Science,
Utah State University, 2004.

[105] R. Bitar, P. Parag, and S. El Rouayheb, “Minimizing Latency for Secure Dis-
tributed Computing,” in IEEE International Symposium on Information Theory
(ISIT), (Aachen), IEEE, 2017.

[106] Digital Trends, “Volvo to Release Level 4 Autonomous XC90 in 2021.” https:
//www.digitaltrends.com/cars/volvo-xc-90-level-4-autonomy/.

[107] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and G. Shroff,
“LSTM-based Encoder-Decoder for Multi-sensor Anomaly Detection,” in Anomaly
Detection Workshop, International Conference on Machine Learning (ICML),
(New York, NY, USA), 2016.

[108] M. A. Hayes and M. A. Capretz, “Contextual anomaly detection framework for
big sensor data,” Journal of Big Data, vol. 2, p. 2, dec 2015.

[109] A. Capozzoli, F. Lauro, and I. Khan, “Fault detection analysis using data mining
techniques for a cluster of smart office buildings,” Expert Systems with Applica-
tions, vol. 42, pp. 4324–4338, jun 2015.

[110] Twitter, “Introducing practical and robust anomaly detection in a time
series.” https : / / blog . twitter . com / engineering / en _ us / a / 2015 /
introducing-practical-and-robust-anomaly-detection-in-a-time-series.
html, 2015.

[111] Netflix, “RAD—Outlier Detection on Big Data.” http://techblog.netflix.
com/2015/02/rad-outlier-detection-on-big-data.html, 2015.

https://www.digitaltrends.com/cars/volvo-xc-90-level-4-autonomy/
https://www.digitaltrends.com/cars/volvo-xc-90-level-4-autonomy/
https://blog.twitter.com/engineering/en_us/a/2015/introducing-practical-and-robust-anomaly-detection-in-a-time-series.html
https://blog.twitter.com/engineering/en_us/a/2015/introducing-practical-and-robust-anomaly-detection-in-a-time-series.html
https://blog.twitter.com/engineering/en_us/a/2015/introducing-practical-and-robust-anomaly-detection-in-a-time-series.html
http://techblog.netflix.com/2015/02/rad-outlier-detection-on-big-data.html
http://techblog.netflix.com/2015/02/rad-outlier-detection-on-big-data.html

141

[112] M. Toledano, I. Cohen, Y. Ben-Simhon, and I. Tadeski, “Real-time anomaly de-
tection system for time series at scale,” in Proceedings of the KDD: Workshop
on Anomaly Detection in Finance, vol. 71 of Proceedings of Machine Learning
Research, pp. 56–65, 2018.

[113] D. B. Araya, K. Grolinger, H. F. ElYamany, M. A. Capretz, and G. Bitsuam-
lak, “An ensemble learning framework for anomaly detection in building energy
consumption,” Energy and Buildings, vol. 144, pp. 191–206, jun 2017.

[114] M. Hasan, J. Choi, J. Neumann, A. K. Roy-Chowdhury, and L. S. Davis, “Learning
Temporal Regularity in Video Sequences,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), jun 2016.

[115] A. Taylor, S. Leblanc, and N. Japkowicz, “Anomaly Detection in Automobile Con-
trol Network Data with Long Short-Term Memory Networks,” in 2016 IEEE Inter-
national Conference on Data Science and Advanced Analytics (DSAA), pp. 130–
139, IEEE, oct 2016.

[116] D. Hallac, S. Bhooshan, M. Chen, K. Abida, R. Sosic, and J. Leskovec, “Drive2Vec:
Multiscale State-Space Embedding of Vehicular Sensor Data,” in 2018 21st Inter-
national Conference on Intelligent Transportation Systems (ITSC), pp. 3233–3238,
IEEE, nov 2018.

[117] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long Short Term Memory Net-
works for Anomaly Detection in Time Series,” in European Symposium on Artifi-
cial Neural Networks, (Bruges Belgium), 2015.

[118] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” in
International Conference on Learning Representations, (San Diego, CA, USA),
may 2015.

[119] V. Sadhu, T. Misu, and D. Pompili, “Deep Multi-Task Learning for Anomalous
Driving Detection Using CAN Bus Scalar Sensor Data,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 1–6, 2019.

[120] K. Hartmann and C. Steup, “The vulnerability of uavs to cyber attacks-an ap-
proach to the risk assessment,” in Cyber Conflict (CyCon), 2013 5th International
Conference on, pp. 1–23, IEEE, 2013.

[121] A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys, “Unmanned
aircraft capture and control via gps spoofing,” Journal of Field Robotics, vol. 31,
no. 4, pp. 617–636, 2014.

[122] Y. Son, H. Shin, D. Kim, Y. Park, J. Noh, K. Choi, J. Choi, Y. Kim, et al., “Rock-
ing drones with intentional sound noise on gyroscopic sensors,” in Proceedings of
the 24th USENIX Conference on Security Symposium, pp. 881–896, USENIX As-
sociation, 2015.

[123] M. Rahmati, M. Nadeem, V. Sadhu, and D. Pompili, “UW-MARL: Multi-Agent
Reinforcement Learning for Underwater Adaptive Sampling using Autonomous
Vehicles,” in ACM International Conference on Underwater Networks and Systems
(WUWNet), (Atlanta, GA, USA), pp. 1–6, oct 2019.

142

[124] W. Chen, M. Rahmati, V. Sadhu, and D. Pompili, “Real-time Image Enhance-
ment for Vision-based Autonomous Underwater Vehicle Navigation in Murky Wa-
ters,” in ACM International Conference on Underwater Networks and Systems
(WUWNet), (Atlanta, GA, USA), pp. 1–8, oct 2019.

[125] V. Sadhu, S. Zonouz, V. Sritapan, and D. Pompili, “HCFContext: Smartphone
Context Inference via Sequential History-based Collaborative Filtering,” in IEEE
International Conference on Pervasive Computing and Communications (Per-
Com), pp. 1–10, mar 2019.

[126] V. Sadhu, G. Salles-Loustau, D. Pompili, S. Zonouz, and V. Sritapan, “Argus:
Smartphone-enabled human cooperation for disaster situational awareness via
MARL,” in IEEE International Conference on Pervasive Computing and Com-
munications Workshops, PerCom Workshops, 2017.

[127] V. Sadhu, S. Zonouz, V. Sritapan, and D. Pompili, “CollabLoc: Privacy-preserving
Multi-modal Collaborative Mobile Phone Localization,” IEEE Transactions on
Mobile Computing, pp. 1–13, 2019.

[128] X. Zhao, V. Sadhu, and D. Pompili, “Analog Signal Compression and Multiplexing
Techniques for Healthcare Internet of Things,” in IEEE International Conference
on Mobile Ad Hoc and Sensor Systems (MASS), 2017.

[129] M. Rahmati, V. Sadhu, and D. Pompili, “ECO-UW IoT: Eco-friendly Reliable and
Persistent Data Transmission in Underwater Internet of Things,” in Annual IEEE
International Conference on Sensing, Communication, and Networking (SECON),
(Boston, MA, USA), pp. 1–9, jun 2019.

[130] A. Hasan, V. Tofterup, and K. Jensen, “Model-based fail-safe module for au-
tonomous multirotor UAVs with parachute systems,” in 2019 International Con-
ference on Unmanned Aircraft Systems, ICUAS 2019, pp. 406–412, Institute of
Electrical and Electronics Engineers Inc., jun 2019.

[131] Bitcraze, “Crazyflie 2.0.” https://www.bitcraze.io/crazyflie-2/.

[132] P. Panitsrisit and A. Ruangwiset, “Sensor system for fault detection identifica-
tion and accommodation of elevator of uav,” in SICE Annual Conference 2011,
pp. 1035–1040, Sept 2011.

[133] C. Rago, R. Prasanth, R. K. Mehra, and R. Fortenbaugh, “Failure detection and
identification and fault tolerant control using the imm-kf with applications to
the eagle-eye uav,” in Proceedings of the 37th IEEE Conference on Decision and
Control (Cat. No.98CH36171), vol. 4, pp. 4208–4213 vol.4, Dec 1998.

[134] G. R. Drozeski, B. Saha, and G. J. Vachtsevanos, “A fault detection and reconfig-
urable control architecture for unmanned aerial vehicles,” in 2005 IEEE Aerospace
Conference, pp. 1–9, IEEE, 2005.

[135] G. Heredia and A. Ollero, “Sensor fault detection in small autonomous helicopters
using observer/kalman filter identification,” in 2009 IEEE International Confer-
ence on Mechatronics, pp. 1–6, April 2009.

https://www.bitcraze.io/crazyflie-2/

143

[136] A. Suarez, G. Heredia, and A. Ollero, “Cooperative sensor fault recovery in multi-
uav systems,” in 2016 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1188–1193, IEEE, 2016.

[137] M.-P. Hosseini, H. Soltanian-Zadeh, K. Elisevich, and D. Pompili, “Cloud-based
deep learning of big eeg data for epileptic seizure prediction,” in IEEE Global
Conference on Signal and Information Processing (GlobalSIP), IEEE, 2016.

[138] A. van den Oord, S. Dieleman, and B. Schrauwen, “Deep content-based music
recommendation,” in Proceedings of the 26th International Conference on Neural
Information Processing Systems, pp. 2643–2651, Curran Associates Inc., 2013.

[139] T. N. Sainath, B. Kingsbury, G. Saon, H. Soltau, A.-r. Mohamed, G. Dahl, and
B. Ramabhadran, “Deep Convolutional Neural Networks for Large-scale Speech
Tasks,” Neural Networks, vol. 64, pp. 39–48, 2015.

[140] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing
Systems, ACM, 2012.

[141] I. Lenz, R. Knepper, and A. Saxena, “Deepmpc: Learning deep latent features for
model predictive control,” in RSS, 2015.

[142] T. Mikolov, S. Kombrink, L. Burget, J. Cernocky, and S. Khudanpur, “Extensions
of recurrent neural network language model,” in 2011 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pp. 5528–5531, IEEE,
may 2011.

[143] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep re-
current neural networks,” in 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 6645–6649, IEEE, may 2013.

[144] 3DR, “Solo Drone.” https://3dr.com/solo-drone/.

[145] F. Ordóñez and D. Roggen, “Deep Convolutional and LSTM Recurrent Neural
Networks for Multimodal Wearable Activity Recognition,” Sensors, vol. 16, p. 115,
jan 2016.

[146] Microsoft Research, “AirSim: High-Fidelity Visual and Physical Simulation for
Autonomous Vehicles.” https://github.com/Microsoft/AirSim.

[147] B. Karis and E. Games, “Real Shading in Unreal Engine 4,” in Physically Based
Shading Theory Practice, 2013.

[148] V. Sadhu, S. Zonouz, and D. Pompili, “On-board Deep-learning-based Unmanned
Aerial Vehicle Fault Cause Detection and Identification,” in International Confer-
ence on Robotics and Automation (ICRA), pp. 1–7, 2020.

[149] S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, C. di Nolfo, S. Sidler,
M. Giordano, M. Bodini, N. C. P. Farinha, B. Killeen, C. Cheng, Y. Jaoudi,
and G. W. Burr, “Equivalent-accuracy accelerated neural-network training using
analogue memory,” Nature, vol. 558, no. 7708, pp. 60–67, 2018.

https://3dr.com/solo-drone/
https://github.com/Microsoft/AirSim

144

[150] C. Li, Z. Wang, M. Rao, D. Belkin, W. Song, H. Jiang, P. Yan, Y. Li, P. Lin,
M. Hu, N. Ge, J. P. Strachan, M. Barnell, Q. Wu, R. S. Williams, J. J. Yang, and
Q. Xia, “Long short-term memory networks in memristor crossbar arrays,” Nature
Machine Intelligence, vol. 1, no. 1, pp. 49–57, 2019.

[151] V. Sadhu, S. Devaraj, and D. Pompili, “Towards Ultra-Low-Power Realization of
Analog Joint Source-Channel Coding using MOSFETs,” in IEEE International
Symposium on Circuits and Systems (ISCAS), (Sapporo, Japan), pp. 1–5, may
2019.

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Overview and Motivation
	Research Objectives
	Dissertation Organization

	Autonomous Data Collection via Multi-Agent Reinforcement Learning for Disaster Situational Awareness
	Introduction
	Related Work
	Proposed Solution
	Performance Evaluation
	Summary

	Aerial-DeepSearch: Distributed Multi-Agent Deep Reinforcement Learning for Search Missions
	Introduction
	Related Work
	Proposed Solution
	Performance Evaluation
	Summary

	HCFContext: UAV Context Inference via Sequential History-based Collaborative Filtering
	Introduction
	Related Work
	Proposed Solution
	Performance Evaluation
	Summary

	Deep Multi-Task Learning for Fault/Anomaly Detection Using Scalar Sensor Data
	Introduction
	Related Work
	Proposed Solution
	Performance Evaluation
	Summary

	On-board Deep-learning-based UAV Fault Cause Detection and Identification
	Introduction
	Related Work
	Proposed Solution
	Performance Evaluation
	Summary

	Conclusion and Future Directions
	Summary of Dissertation Contributions
	Future Directions

	References

