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ABSTRACT OF THE DISSERTATION 

This dissertation presents a framework that determines the optimal integrated system 

hardening and system restoration strategies. The objective is to improve system resilience 

while minimizing total cost including investment cost and system damage cost in the 

event of system failure propagation. The successful functioning of modern society is 

increasingly dependent upon various crucial infrastructure systems, such as power grids 

and communication systems, which all comprise a large collection of interconnected sub-

systems. The reliability and resilience of these network systems becomes a matter of 

great concern due to the inevitable occurrence of system failures and their probable 

disastrous aftereffects. Although it is uncommon for many applications, there are still 

many examples of massive cascading failures in various real-world network systems. In 

this research, the mechanism of cascading failures in network systems is investigated, 

taking into account practical network load dynamics as well as multiple dependencies 

between and inside systems. A new resilience metric which can be used to evaluate 

system resiliency loss caused by system disruptions is proposed. Then focusing on 

electricity system, the influence of cascading failures in power generation and 

transmission system is extended to local power distribution systems to analyze the 

resilience of the entire electrical power system. System hardening strategies and system 

restoration strategies are jointly optimized with the consideration of the existing 

interaction between each other. The effects of installing distributed energy resources to 

end users in electricity system, for instance solar array and battery storage, as a type of 

system hardening measure to improve electric power system resilience are investigated. 

The effectiveness of restoration strategies with different restoration prioritizations on 
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reducing the influence of cascading failures on resilience is explored. Finally, an 

approach to relate the improved system resilience to the reduction in economic losses is 

developed. Optimization methods are proposed to achieve a balance between the 

investment of resilience enhancement driven actions, such as system hardening planning 

and restoration decisions, and system damage cost, for example, unsatisfied customer 

demand cost. As a result, system resilience targets are better integrated into the 

investment of resilience enhancement measures. The proposed methodology can be 

utilized as a decision-making tool for future resilient network systems, for example, 

electric power system, design and restoration. Together, this research is useful to mitigate 

and rescue the system from the next cascading failures with the application of effectively 

integrated system hardening and restoration strategies for resilience enhancement with 

minimized total cost.  
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1. Introduction 

This dissertation presents a framework to jointly optimize system hardening 

strategies and system restoration strategies to enhance system resilience against cascading 

failures throughout the system. This is accomplished by taking account of the mixed 

impacts of network load dynamics and system dependency, with the goal of minimizing 

total cost which include investment cost and economic loss from system failures. 

The functioning of society is more and more dependent on large-scale network 

systems, such as power grids, water/gas supply networks and transportation networks, to 

deliver services to consumers. For example, the quality of our daily life largely depends 

on the continuous availability of the electricity supply. However, because of the 

increasingly complicated functional and structural dependencies existing within and 

between network systems, even an initially small part of system failure can cause large 

scale outages on these real-life network systems via network load redistribution. These 

failure propagations through diverse types of network systems are named cascading 

failures, which can be disastrous, affecting hundreds of millions of people with 

inestimable costs [1-3]. For instance, the great Northeast blackout of 2003 was initiated 

by several broken power transmission lines in Ohio. It eventually caused a widespread 

power outage in eight U.S. states and the Canadian province of Ontario, affecting 50 

million people [4]. Figure 1.1 indicates the blackout affected area in North America. 
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Figure 1.1. The 2003 grid outage affected area in the United States and Canada 

As a result, increasing system robustness against disruptive events, for instance, 

natural disasters, and effective response to system failures in order to mitigate the 

resulting damage of the system are of great significance. In other words, the central 

question is to find the optimal system hardening strategy and system restoration strategy 

to enhance system resilience in order to reduce potential system damages caused by 

cascading failures. Since various investments are involved in system hardening actions 

and system restoration in practice, the problem translates into a search of an optimal 

balance between investment cost and economic loss from system damage. 

Existing cascading failure research shows that both local load redistribution and 

global load redistribution after system failure occur have been applied, but both of them 

can exist in real cases considering the influences of multiple system dependencies. Thus, 

further work should focus on the mixed network load dynamics and system dependency 
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in order to better understand the failure propagation mechanism. To be specific, previous 

research of cascading failures in electric power systems only considers power generation 

and transmission system while resilience is defined and analyzed for power distribution 

systems. Therefore, the impacts of cascading failures in the bulk power system should be 

extended to local power distribution systems and end users in order to enhance resilience 

of the entire electrical power system. Problems that are related to system hardening 

actions and system restoration have been widely studied. However, most of the work 

done neglects the underlying relationship between the effects of system hardening actions 

and system restoration, and optimizes system hardening strategy and system restoration 

strategy separately. It is necessary to examine the effects between system hardening and 

restoration in order to effectively enhance system resilience. Furthermore, there is a 

practical need to develop an approach to relate improved system resilience to reduction in 

economic losses in order to optimize the balance between investment of resilience 

requirement driven actions, such as system hardening planning and restoration decisions, 

and constrained system damage cost.  

Above all, this research mainly focuses on the joint optimization of system hardening 

and restoration strategies that can effectively improve system resilience against cascading 

failures by taking account of the underlying relationship between system hardening and 

restoration actions and practical network load redistribution, as well as multiple system 

dependencies. Moreover, the optimization framework is able to minimize the total 

involved cost, which includes investment cost of system hardening and restoration, as 

well as penalty cost of system performance loss. In this way, the proposed joint optimal 

system hardening and restoration strategies would contribute to the goals of enhancing 
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system resilience regarding cascading failures, reducing investment cost and loss of 

system performance cost, as well as incorporating renewable energy sources into 

electricity system as a bonus. 

1.1 Problem statement 

The main objective of this research is to jointly optimize system hardening and 

restoration strategies for system resilience enhancement regarding cascading failures 

while minimizing system total cost. System total cost which includes investment cost, 

such as information cost for restoration, recruiting cost of repair crews and distributed 

energy resources (DER) installation cost for end users, as well as system damage cost, for 

example, cost of unsatisfied demand because of grid outage. System resilience is 

measured by a proposed resilience metric for interdependent network systems subjected 

to mixed cascading failures taking into account the impact of multiple system 

dependencies and network load dynamics. The influence of cascading failures in power 

generation and transmission systems is extended to power distribution systems in order to 

be in accordance with real cases. Except for traditional system hardening measures, DER 

installation for end users in local power distribution systems is applied to provide power 

for customers during grid outages in order to improve the entire electricity system 

resilience. Sustainable and renewable energy are incorporated into the electrical power 

system in this way.  

Figure 1.2 illustrates the framework of this research, which mainly includes five 

phases: 1) Previous work extension, 2) Cascading failure modeling with system 

dependency, 3) System resilience-based optimization of restoration, 4) System hardening 

for resilience enhancement and economic benefits, 5) Validation the integral optimization 
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of system hardening and restoration on interdependent network systems. The relationship 

between each part of this research is also illustrated in Figure 1.2.  

Establish real-world network 
systems considering system 

dependencies

Analyze the influence of  
system dependencies on 

restoration effects

Extension of Previous Work 

Simulate cascading failures 
and restoration actions on 

those network systems

Consider DERs installation as 
hardening measures and 

multiple restore actions with 
uncertainty

Integrate hardening and 
restoration strategies together 

for resilience enhancement

Resilience Enhancement by 
Hardening and Restoration

Investigate the interplay 
between hardening and 

restoration methods

Budget is taken into account 
on system hardening and 

restoration actions

Develop system optimization 
framework from economy and 

resilience aspects

System Optimization with 
Economic Analysis 

Minimize total cost for system 
optimization including damage 

cost and investment cost

Propose a time-dependent, 
performance-based, 
normalized and cost 

concerned resilience metric

Apply and compare different 
resilience metrics for model 

validation

System Resilience Metric

Consider various system 
performance measurements for 

resilience metrics

Implement different types of 
triggers for cascading failures 

Conduct mixed cascading 
failures with models of 

multiple types of dependencies

Cascading Failures 
Considering Dependency

Perform local and global load 
redistribution models for 

propogation of overloaded 
failures 

Develop interdependent 
network systems with 
dependencies among 

components and sub-systems 

Evaluate optimization 
framework for resilience 

enhancement on 
interdependent network 

systems

Validation on Interdependent 
Network Systems

Establish power grids consist 
of a bulk power system and 
local distribution systems 

based on real data

System Resilience-based 
Optimization 

Figure 1.2. The diagram of research components 

Extension of my previous work on real-world network systems modeling supports 

further cascading failure modeling considering multiple system dependencies. Then, the 

new metric of system resilience regarding cascading failures in network systems can be 

proposed. Analysis of the influence of system dependency on restoration effects helps us 

to understand the mechanism of restoration against system failures, which starts the work 

of resilience enhancement by optimizing system hardening and restoration. Then, the 

integrated optimization of system hardening and system restoration with minimized total 

cost can be conducted. Finally, the proposed methodology is validated by testing on 
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interdependent network systems, for instance, the electric power system. More 

specifically, the five research phases are as follows: 

Phase I: Extension of previous work  

The first phase of this research is to establish network systems considering system 

dependency. Mixed cascading failures are simulated in these network systems, and then 

apply common and typical restoration strategies to examine the difference between 

restoration effects. Details are provided in Section 3. Eventually, the joint influence of 

system dependency and restoration strength on the effectiveness of different restoration 

polices is explored. 

Phase II: Cascading failure modeling with load dynamics and system dependencies 

The second phase in this work is to develop cascading failure models that combine 

local and global load dynamics for overloaded failure propagations in network systems. 

Multiple system dependencies and their different impacts are also taken into account in 

the process of cascading failures. A cascading failure model that integrates the impacts of 

cascading failures in bulk power system on local customers is developed. In addition, 

different system disturbances for cascading failures are taken into consideration. 

Phase III: System resilience-based optimization of restoration 

The third phase is to propose a time-dependent, performance-based, normalized and 

cost concerned resilience metric based on real cases. Different system 

performance/quality measurements can be adopted for resilience measurement based on 

the new metric. As a consequence, the resulting resilience-based optimal solutions and 

findings are more general and more practical. The effectiveness of different restoration 
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strategies with distinct restoration prioritizations on mitigating resilience loss result from 

cascading failures are explored.  

Phase IV: Resilience enhancement with backup energy system 

The task is conducted considering the installation of DER to end users in electricity 

system as a hardening measure. Taking solar array and battery storage as an example of 

DER, the grid-outage resilience and economic benefits result from DER investment are 

analyzed. The trade-off between DER investments as a pre-disruption hardening planning 

and the economic loss of unsatisfied customer load is explored. In addition, the impacts 

of economic trends of important factors on DER investment optimization are also 

investigated. 

Phase V: Integral optimization of system hardening and restoration 

New approaches for integrated optimization of hardening and restoration measures to 

enhance system resilience against cascading failures are proposed. Since a cost budget is 

applied to system hardening and restoration investment in real cases, the objective is to 

minimize system total cost, including investment cost and system damage cost. The 

interplay between the effectiveness of hardening strategies and restoration strategies and 

the influence of different system disruption is considered. Overall, the task is to develop a 

system optimization framework from economic and resilience perspectives.  

An electric power system model which consists of a bulk power system and several 

distribution systems is developed. Multiple dependencies exist among system 

components, and between the bulk system and distribution systems in the electricity 

system model. The proposed optimization framework regarding system hardening and 

restoration is applied on the interdependent electric power system for validation. 
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1.2 Motivation of research 

Real-world network systems, such as power grids and transportation networks, are 

critical to people’s daily lives and modern economies. However, the increasing system 

scale and complex dependencies inside of these network systems contribute to the spread 

of failures within these systems and severe damage of system performance as a result. 

We have experienced massive cascading failures in different systems all over the world, 

for instance, high-impact power grid outages, although lots of efforts have been 

performed to prevent failure propagation throughout the systems. 

Thus, investigating the mechanism of cascading failures and understanding the 

underlying relationship between the effects of system hardening actions and system 

restoration actions, in response to system catastrophic breakdown, is crucial. In addition, 

finding approaches to jointly minimize the investment cost of system hardening and 

restoration measures, which are designed for system resilience enhancement. These 

measures are implemented to reduce the penalty cost of system performance loss, which 

is attractive to researchers and practitioners. Overall, optimal integration of system 

hardening and restoration strategies together, in order to improve system resilience with 

minimized total cost, are of great significance from both system resilience and economic 

perspectives. Therefore, this research can be useful for practical applications. 

1.3 Research contributions 

In this research, a general modeling and optimization framework is developed that 

can be customized or tailored for many different kinds of network system resilience 

enhancement problems, while the example and case studies mainly focus on electric 

power system. The scope of this work is to establish an approach to jointly optimize 
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system hardening and restoration actions to enhance system resilience considering system 

dependency with minimized total cost. Total cost includes investment and damage cost 

caused by cascading failures over the system. There are three major research objectives, 

which are shown as follows: 

1) New cascading failure models are developed taking account of the combined 

impacts of network load dynamics and network dependency on failure 

propagation. 

2) A simulation-based approach is established to integrate the impacts of cascading 

failures in bulk power system, the effects of system hardening actions and system 

restoration on the whole electricity system. 

3) New methods to simultaneously optimize system hardening actions and 

restoration in order to minimize investment cost and system damage cost, and to 

enhance system resilience are developed. 

Overall, this research, taking electricity system as an example of network systems, 

explores the relationship between the cascading failures in bulk power system, the 

resulting impacts on the entire electrical power system including end users, and the joint 

effects of system hardening and restoration measures on electricity system resilience 

enhancement. 

1.3.1 Theoretical contributions 

Three contributions of this work are related to the problem domain, which is flow 

network system optimization regarding resilience enhancement and economic viability 

taking into account system dependency. The contributions are shown as follows: 
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1) Combining local load redistribution and global load redistribution regarding 

network load dynamics, as well as system dependency in modeling cascading 

failures in network systems. 

2) Linking system failure propagation, system hardening and restoration actions 

together via hierarchical system modeling. 

3) Developing a new iterative method to search the feasible solutions for minimized 

total cost incorporating resilience enhancement, and to explore the relationship 

between decision variables regarding system hardening and restoration strategies. 

As a result, the optimization method can yield robust candidate solutions. 

The first theoretical contribution is the development of cascading failure models 

considering (1) both local load redistribution and global load redistribution after failure 

occurs, and (2) multiple system dependencies’ influences. There are many cascading 

failure studies that take into consideration network load dynamics, either load 

redistributed locally or load redistributed globally after failure happens. Nevertheless, 

these studies seldom consider that network load can be redistributed in the local 

neighborhood of failure components and redistributed globally together according to the 

network topology. Moreover, multiple system dependencies within network systems have 

been proven to be able to significantly influence failure propagation process. Thus, an 

approach that considers both local and global load redistribution is developed to model 

network load dynamics regarding cascading failures. A new method is established to 

describe multiple system dependencies, in which network load is divided into two parts: 

passing by load and local customer load for certain network systems. Together, new 
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cascading failures models that describe different failures iteratively occurring in network 

systems driven by network load dynamics and system dependency is proposed. 

The second theoretical contribution arises from the hierarchical structure of many 

network systems. This work is the first attempt at linking cascading failures in the central 

system to local subsystems, as well as the joint effects of system hardening and 

restoration on the entire network system. Thus, the results and findings are more general 

and realistic than previous research because of the existence of multiple dependencies 

within and between real-world network systems. 

The third theoretical contribution stems from the optimization problem regarding 

cost-effective system resilience enhancement. In order to find the optimal combination of 

system hardening strategy and restoration strategy, two methods for sampling system 

hardening measures and restoration measures in the feasible sets are proposed. Especially, 

a two-stage optimization method is developed to compensate for the uncertainty of 

system disruptions. The iterative procedure continues until the predetermined 

requirements of resilience have been satisfied in order to determine near-optimal (optimal) 

solutions. 

1.3.2 Applied contributions 

There are two major contributions of this research that are related to electric power 

system resilience enhancement, and can also be adopted for other real-world applications. 

These contributions include the following: 

1) Extending the impacts of cascading failures in bulk power system to power 

distribution systems with end users for integrated analysis of electricity system 

resilience. 
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2) Collectively optimizing system hardening and system restoration measures for 

enhancing electricity system resilience, and simultaneously minimizing related 

investment costs and economic loss from cascading failures. 

The first applied contribution is integrating the impacts of cascading failures in bulk 

power system to end users through local power distribution systems. Previous studies on 

cascading failures in electricity system have an underlying assumption that cascading 

failures occur in generation and transmission systems, while the resilience in electricity 

system is mainly defined in power distribution systems. It is apparent that failures in bulk 

power system influence the operation of power distribution systems. Therefore, this 

research establishes and illustrates the link between cascading failures in bulk power 

system with power distribution system resilience, which offers a way to investigate the 

resilience of the whole electricity system regarding cascading failures.  

The second applied contribution is jointly optimizing electricity system hardening 

and restoration strategies, and integrating system investment, system damage cost with 

resilience requirement in the objective function of the problem. The relationship between 

the effects of system hardening actions and restoration is investigated to effectively 

enhance system resilience. The minimization of the objective function makes the problem 

more practical because the trade-off regarding total cost is incorporated with resilience 

targets, which is important and necessary in real-world cases. It can be used to validate 

the optimization solutions for enhancing system resilience from an economic perspective. 
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2 Background and Literature Review 

This review focuses on the resilience of electric power systems and how to enhance 

system resilience by developing optimal integrated hardening and restoration policies 

regarding cascading failures. First, a definition of electric power systems and their 

constitution is given in Section 1. Existing research on reliability of electric power 

systems is presented in Section 2. Section 3 reviews the trend of research on cascading 

failures in complex network systems. Then the state of current research on system 

resilience is introduced in Section 4. Finally, current research on system resilience 

enhancement is reviewed in Section 5. 

2.1 Research on electric power system reliability 

The electric power system is one of the most complex manmade technical systems in 

the world. It consists of the Bulk power system (BPS), which refers to the generation and 

transmission systems that facilitate the operation of an interconnected electric supply, and 

several power distribution systems which provide the final links between BPS and the 

industrial, commercial and residential customers [5, 6]. As of the end of August 2016, 

there were about 7,658 power plants in the United States that have operational generators 

with nameplate electricity generation capacities of at least 1 megawatt (MW) [7]. The 

transmission network in the 48 contiguous states is composed of approximately 697,000 

circuit-miles of power lines and 21,500 substations operating at voltages of 100 kilovolts 

(kV) and above [8]. 

Electricity is produced at generation facilities and transported to population centers 

by high-voltage transmission lines. After arriving at population centers, electricity enters 

local distribution systems where it travels through a series of low-voltage lines in a 
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process called “stepping down” before reaching homes, offices, and other locations for 

consumption [9]. Figure 2.1 illustrates the basic structure of the U.S. Electric Grid. 

 

Figure 2.1. Basic structure of U.S. Electric Grid (Canada Power System Outage Task 

Force [9]) 

Critical infrastructure sectors have grown increasingly reliant on continued grid 

operations; for example, the interdependency of electric and natural gas systems is 

growing [10]. Likewise, in order to function, the electric grid increasingly depends on 

other infrastructure, such as the communications systems necessary for controlling 

electric grid systems [11]. Because all economic sectors and critical infrastructures are 

heavily dependent on electricity to provide essential services to support modern society 

and economy [10], and power outages would shut down many other major infrastructure 

components [12], electric power systems serve as a critical foundation for human life. 

Electricity is at the center of key infrastructure systems that support these sectors, 

including transportation, oil and gas production, water, communications and information, 

and finance. These critical networks are increasingly converging, sharing resources and 

synergistic interactions via common architectures as shown in Figure 2.2. 
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Figure 2.2. U.S. Critical Infrastructure Depend on Electricity (Source: Finster 2016 [10]) 

2.1.1 Introduction to electric power system reliability 

Because of the crucial role played by electric power systems in modern society, 

power system outages can cause devastating impacts on many areas, such as the economy 

and national security [1, 2, 13]. Data suggest that electricity system outages attributable 

to weather-related events are increasing, costing the U.S. economy an estimated $20 

billion to $55 billion annually [14]. For instance, the 2003 North American Blackout, 

which originated in Ohio state, finally affected millions of people for up to 4 days [4]. 

Reliability of electric power systems becomes a fundamental need and requirement 

across the entire economy [10], and it has been an important focus of researchers and 

engineers of different fields for many years. For example, by considering hurricane 

damage, Winkler et al. [15] illustrated that topological properties integrated with power 
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component fragility models can elucidate the contribution of system topology and spatial 

features to overall reliability of the power transmission system and distribution system. 

The reliability of the BPS is regulated by the U.S. federal government, and the 

reliability of the power distribution system is regulated at a state level [5]. While there 

exists a national, North American Electric Reliability Corporation (NERC) - mandated, 

definition of reliability for the BPS (Reliability Performance Gap, Adequacy Gap, 

Violation Index and Severity Risk Index), there is no standard definition for reliability of 

the distribution systems. The reliability of power distribution systems is regulated at the 

state level and varies greatly. The System Average Interruption Frequency Index (SAIFI), 

the System Average Interruption Duration Index (SAIDI), the Customer Average 

Interruption Duration Index (CAIDI) have been the most commonly used outage indices 

for power distribution systems [16].  

NERC’s traditional definition of “reliability” was ubiquitous throughout the electric 

utility industry, and consists of two fundamental concepts ⎯ adequacy and operating 

reliability [17]. Adequacy is the ability of the electric system to supply the aggregate 

electric power and energy requirements of the electricity consumers at all times, taking 

into account scheduled and reasonably expected unscheduled outages of system 

components. Operating reliability is the ability of the electric system to withstand sudden 

disturbances such as electric short circuits or unanticipated loss of system components. 

Nateghi et al. [5] provided recommendations for improving power transmission and 

distribution system reliability after finding that risk indices for transmission system and 

reliability indices for distribution system do not fully capture risks and reliability states of 

 
 



17 
 

these systems. Both practices fail to adequately account for risks and reliability issues 

associated with extreme events, and the impact of multiple system dependencies. 

2.1.2 Reliability analysis of bulk power system 

BPS includes generation plants and power transmission network. The transmission 

system transports electricity from generation facilities to the distributors, which connects 

power generators across the entire grid. Damage to the transmission system or 

unscheduled shutdowns of power stations, while infrequent, can result in more 

widespread major power outages that affect large numbers of customers and large total 

loads with significant consequences [10, 18]. 

Reliability of BPS has been studied for decades [19, 20]. Kintner-Meyer et al. [21] 

divided reliability into two sub-properties, i.e., operational reliability and planning 

reliability. These two sub-properties of reliability are different in timescales in which 

they are considered and measured. The metrics used for operational reliability of the BPS 

are: Area Control Error, Control Performance Standard 1 and Frequency and severity of 

emergency events. NERC regional entities primarily set standards for long term bulk 

power system planning reliability, including loss of load probability, loss of load hours, 

loss of load expectation, expected unserved energy, availability of supply with dual fuel 

or firm fuel contracts and flexible capacity [21]. 

Zio et al. [22] proposed an algorithm to evaluate the service reliability performance 

characteristics of the network and its related vulnerabilities, which consists of three 

nested cycles of randomization. Lin et al. [23] assumed power transmission network is 

stochastic and focused on searching for the optimal transmission line assignment such 

that network reliability is maximized. A genetic algorithm based method was developed 
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to solve this assignment problem and applied to a real power transmission network to 

demonstrate the computational efficiency. Rei et al. [24] applied a sequential Monte 

Carlo to model non-Markovian processes such as control actions, restoration stages and 

cascading events in BPS, and calculate both the probability for restoration and also 

reliability indices depending upon consequences of disturbances and the nature of the 

component failures. 

Dong and Cui [25] proposed a normalized CASCADE model, two modified 

cascading models, and all of which are structure free. The time factor is considered by 

assuming that there is a period of time for nodes to fail after the load on them exceeds 

their thresholds. The time period follows an exponential distribution, e.g., the overloaded 

failure occurs at time Xi, i ≥  1, then the interval time between two consecutive 

overloaded failures, Yi = Xi - Xi-1, with a probability density function ( ) tf t e µµ −= . Each 

generation of failures occurs due to the additional load caused by the last round of 

overloaded failures. 

System reliability under these three cascading models is analyzed with the following 

formulae, e.g., for the system which works if at least one component works, system 

reliability R(t) is calculated by Eq. (2.1). 
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( ) 1 ( , ) 1 ( ( ) ) ( , )

n n
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i

µ µ−

=

> = − ∑  denotes cascades have already stopped before time t. 

It times the later item in above equation means before time t, all components have already 

failed, i.e., the system has failed before time t. However, the assumption that additional 

load caused by disturbances is added to all working components without priority are not 
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the real cases in most of the time. The current research seldom considers the interplay 

between multiple dependencies among components and power load dynamics, which 

impacts BPS reliability a lot and needs more exploration.  

2.1.3 Reliability analysis of power distribution system 

Power distribution system consists of all power system components at voltage levels 

below the transmission substations [5]. The metrics used for power distribution system 

reliability are the Average System Availability Index (ASAI), SAIFI, SAIDI and CAIDI 

as mentioned before [26, 27]. It should be emphasized that understanding and ensuring 

the reliability of the power distribution systems is very important since roughly 90% of 

electricity outages occur along distribution systems, although transmission system 

outages do occur [9]. In fact, failures on the power distribution system are typically 

responsible for more than 90 percent of electricity interruptions, both in terms of the 

duration and frequency of outages, which are largely due to weather-related events [10, 

28]. 

Many research works have been focused on power distribution system reliability [29, 

30]. By using data mining technologies, Guikema et al. predicted the number of utility 

electric poles that needed to be replaced based on past damage data prestorm [31]. Li et al. 

[32] introduced a probabilistic wind storm model and weather-dependent component 

failure models by using real database. Then, an enhanced sequential Monte Carlo method 

is applied to carry out risk analysis on distribution systems. Marnay et al. [33] expanded 

the model to include an assessment of distribution network reliability. However, they did 

not include siting of resources or contingencies. Hayashi and Matsuki [34] applied an 

algorithm to decide optimal configuration of a distribution system considering N - 1 
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security. The model determines whether the switches are active or not, which decides 

whether distribution generators connect to the grid. Bie et al. [35] adopted a non-

sequential Monte Carlo simulation method to evaluate the reliability of distribution 

systems with the consideration of multiple contingencies within networks. 

Wang and Rong [36] applied a local load redistribution rule on cascading model of 

edge overload failures to investigate the effects of three edges attack strategies on 

robustness of western U.S. power grid [37] which has 4941 nodes and 6594 edges, and 

identified key edges being prone to trigger universal cascading failures. 

Alvehag and Soder [38] proposed a time-sequential Monte Carlo reliability model 

that treats variations in failure rate and restoration time of distribution system as a 

function of severe weather intensity and duration. The expected total failure rate of 

overhead lines under certain wind speed and lightning density is derived as Eq. (2.2), 

which equals to the summation of probability of weather condition times the expected 

failure rate under that weather condition. 

( ) ( ) ( )( ( ), ( )) ( ( )) ( ( ))hw hw n
g wind lightning g norm

tot tot tot

T T TE w t N t E w t E N t
T T T

l l l l= + +             (2.2) 

The restoration time for overhead lines is defined by Eq. (2.3), which is the product 

of weight factors for severe weather, hourly variations, daily variations, and reference 

restoration time under normal weather. 

( ) ( ( ), ( )) ( ) ( )w g d h normr t f w t N t f t f t r=                                              (2.3) 

Nonhomogeneous Poisson Process (NHPP) are used to model when severe weather 

occurs and conclude that weather stochasticity significantly impacts the variance in 

reliability performance indices for SAIDI and energy not supplied (ENS). Issicaba et al. 

[39] presented an adequacy and security evaluation of distribution system in order to 
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assess the impact of device protection and controls on reliability indices and other 

performance metrics for distribution systems with ongoing integration of DER under 

various operational states. 

According to the literature review, it can be seen that the current research does not 

consider the relationship between reliability of BPS and reliability of power distribution 

system even though it exists. In addition, the criteria of electric power system failure and 

the mechanism of failure propagation on BPS and power distribution system still need 

further investigation. 

2.2 Research on cascading failures in complex network systems 

As manmade technical systems such as transportation systems, electric power 

systems and telecommunications are becoming increasingly widely used, economic and 

social well-being depend on the secure and reliable operation of these complex systems 

[22]. However, recent worldwide events, such as the 2003 blackout in Italy, the 2003 

North American blackout and 2012 Hurricane Sandy blackout have shown the increased 

system vulnerability [40]. Initial failures of components of these systems, even small 

ones, can trigger failure propagation by multiple dependencies, which spread adverse 

effects on a very large scale, severely impacting the whole system performance. That can 

be called cascading failures. 

Cascading failures are network failures which occur in various real-life network 

systems, such as power grids and transportation systems. Generally, a network system 

carries a flow of some particular resource (electricity, gas, data packets, information, etc.). 

Each node individually experiences a load, and in normal circumstances, this load does 

not exceed the capacity of that node. 
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Cascade failures are commonly initiated in the following way; when a heavily loaded 

network node is lost for some reasons, the load on that node (i.e. the flow passing through 

it) must be redistributed to other nodes in the network system. This load redistribution 

might cause other nodes to exceed their capacity, triggering their breakdown. Even if an 

overloaded node does not actually fail, the pre-designed protection mechanisms inside the 

network may shut it down, in order to prevent damage to this node [41]. Therefore, the 

number of failed or stressed nodes increases, propagating through the network system. In 

particularly severe cases, the entire network is influenced. 

Although cascading failures occur with a low probability, a sharp degradation of 

system performance, even the collapse of much of the complex system, will be 

experienced when they occur [42-45]. Some massive cascading failures have taken place 

in complex communication network systems, social network systems and economic 

network systems [46]. Therefore, the study of this phenomenon is particularly significant. 

Many researchers have studied cascading failures in complex systems, and many 

models have been proposed for describing the process of cascades [47, 48]. Current 

cascading failures models mainly include load-capacity models [49-51], binary influence 

models [52], sand pile models [53, 54], optimal power algorithm (OPA) models [55, 56] 

and CASCADE models [57, 58]. OPA models and CASCADE models are focus on 

cascading failures in electric power systems. 

Dependence relationships among network nodes, except for topological connectivity 

links, also accelerate the propagation of network failures and affect the mechanism of 

cascading failures [59-61]. Past incidents have demonstrated the cascading impacts posed 

by interdependencies, by highlighting ways that the electric grid depends on other sectors, 
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including the communications infrastructure and information systems. For instance, the 

2003 Northeastern Blackout, which began initially with power lines in contact with tree 

branches, was magnified by a series of cascading computer failures that affected airline 

operations, the financial and banking sector, blood, and potable water supplies, and other 

critical services [11]. Hence, modeling and simulation of cascading failures considering 

interdependencies between network systems and dependencies inside the network system 

becomes a vital field of research [62-66]. 

Especially for electric power systems, cascading failures are common and have 

devastating influence [44, 63, 67, 68]. Recent blackouts, for example, the massive 

blackout in India [69] have illustrated the importance of studying on cascading failures in 

electric power systems, and other research on power systems with cascading failure 

analysis has been carried out [70, 71]. Although modeling of the mechanism of cascading 

failures on BPS has been studied more recently, the impacts of it on power distribution 

systems, which together form the entire electric power systems, are lack of discussion 

and need further research. 

2.3 Research on system resilience 

In this section, current definitions of system resilience in different areas and popular 

resilience models are introduced. Then previous research on resilience enhancement of 

electric power systems is presented, including current system hardening strategies and 

restoration strategies. 

2.3.1 System resilience definitions and models 

The general use of the word “resilience” implies the ability of a system to withstand 

or quickly return to normal condition after the occurrence of an event that disrupts its 
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state. Resiliency threats tend to be idiosyncratic, of low probability, and of varying 

degrees of magnitude in terms of scale and duration. The types of uncertainties and the 

capacities to respond to them differentiate resiliency from reliability [21].  

Modeling and evaluating system resilience, especially the complex and large-scale 

systems, has recently raised significant interest among both practitioners and researchers. 

It is contributed to several definitions of system resilience and some approaches to 

measure it, across many disciplines. Hollnagel et al. [72] defined engineering resilience 

as the intrinsic ability of a system to adjust its functionality in the presence of a 

disturbance and unpredicted changes. A typical definition of time-dependent resilience 

metric is illustrated in Figure 2.3 [73], 

 

Figure 2.3. System performance for resilience description [73] 
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Resilience is represented by the ratio of system recovery at time t to the total system 

loss caused by disruptive event ej, ϕ  is a measure of system performance in Eq. (2.4). 

This system resilience includes reliability, vulnerability, and recoverability. In this work, 
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a case study performed on a road network system is used to demonstrate the applicability 

of the proposed resilience metrics and to show how to develop effective resilience design 

strategies. Time and cost required to restore each component are assumed to be constant 

in the case study, and restoration strategies decide sequences in which the components 

are restored. 

Some other definitions of system resilience are also proposed as follow. 

1) Bruneau et al. [74] introduced resilience Loss (RL) which can be illustrated as the 

shaded area in Figure 2.4 and Eq. (2.5). Larger RL value indicates lower system resilience. 

 

Figure 2.4. Illustration of resilience loss 
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where disruption occurs at t0, system returns to pre-disruption state at t1. System quality 

level at time t is represent by Q(t), which could be several performance parameters. 

Assume planned quality of system is 100. 

2) Rose [75] proposed time-dependent recovery within dynamic resilience. The 

measure, DR, is a function of SOHR(ti), system output under hastened condition and 

SOWR(ti), system output without hastened at the ith step of recovery as shown in Figure 

2.5 and Eq. (2.6). The value of this dynamic resilience is not bonded between 0 - 1. 
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Figure 2.5. Dynamic resilience 
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Due to the crucial socioeconomic role of infrastructure systems such as water 

distribution systems, nuclear plants, and transportation systems, research work has 

recently focused on infrastructure resilience. Omer M et al. [76] defined the ratio of the 

closeness centrality of the network before and after disruption is resilience metric for 

infrastructure network. Closeness centrality is determined based on the accessibility of a 

node to the rest of the network. Ouyang and Wang [77] applied five types of joint 

restoration strategies to an interdependent power and gas system under multiple hurricane 

hazards as an example. Cascading failures within and across this interdependent system 

are simulated, where the unidirectional links from power system to gas system constitute 

the only interdependencies. 

MacKenzie and Zobel [78] investigated methods of resources allocation prior to 

disruptions to enhance resilience, either lessen adverse impact from disruption or shorten 
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recovery time. Resilience is calculated as the product of disruption impact and recovery 

time. For example, the linear function of allocation effectiveness is provided as Eq. (2.7), 

( )  ( ) , , 0, 0T T T TX X X XX z X a z T z T a z a a= − = − > >                           (2.7) 

where  ,X T  are the baseline average loss and recovery time if no resources are allocated. 

Xz is the amount of resources allocated to lessen the disruption impact, Tz  is the amount 

allocated to improve the recovery time, a are effectiveness parameters. Three kinds of 

uncertainties of above four variables are considered to optimize resource allocation for 

maximum expectation resilience. Specific projects to pursue to restore resilience are also 

discussed based on cost effectiveness of projects. 

Vugrin et al. [79] introduced resilience cost index, which is composed of loss costs 

posed by disruptive events and recovery costs. Ash and Newth [80] first proposed an 

optimized model of links reassignment for resilient complex networks against cascading 

failures. Then, they analyzed the impact of network topology statistics on resilience. 

Impacts of interdependency within infrastructure networks on system resilience are 

translated into loss incurred, extent of and duration of system inoperability by Baroud et 

al [81]. They presented a stochastic approach to compute metrics of resilience of an 

interdependent network after a disruption: loss of service cost, total network restoration 

cost and cost of interdependent impacts. The third one is to measure multi-industry 

impacts of resilience in infrastructure network by integrating a network resilience model 

and an economic interdependency model. Barker et al. [82] introduced two resilience-

based component importance measures. The first one measures how adverse effect on 

system resilience could be if one component is affected by a disruption event. The second 

measures how positive effect on system resilience could be if one component is protected 
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from being disrupted. Stochastic terms were used to define the recovery time of 

component and quantity the extent of damage on component. Pant et al. [83] proposed 

stochastic and time dependent metrics of system resilience, time to total system 

restoration, time to full system service resilience and time to a% Resilience. The 

presented recovery strategies deciding the order of failed components being repaired and 

recovery time of each failed component. The effects of recovery strategies are evaluated 

by resilience and the three recovery measures. Zobel [84] extended a multi-dimensional 

approach to fit resilience function to the preference and priorities of a decision maker. 

The figure of different combinations of X and T could be obtained with fixed value of 

resilience function R (proportional to X×T, based on resilience triangle), where X is loss 

of system performance and T is the recovery time. Then this resilience figure could be 

divided by different threshold values of X and T based on preference of decision maker. 

Many studies have already been conducted on resilience of electric power systems. 

Resilience reflects the ability of the system to respond to the threat of non-routine 

disruptions that are difficult to predict or plan for. However, reliability risks are driven by 

common, internal, but uncertain factors such as generator and transmission line outages, 

load variability, and intermittent and variable wind and solar generation. The 

idiosyncratic and low-probability nature of resilience risks makes measuring and 

valuating resilience challenging [21].  

Unlike reliability, there are no commonly used metrics for measuring grid resilience. 

Several resilience metrics and measures have been proposed; whereas there has been no 

coordinated industry or government initiative to develop a consensus on or implement 

standardized resilience metrics [10].  
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It should be noted that infrastructure resilience which considers both 

interdependencies and restoration processes is seldom addressed in previous research. 

More work is needed to incorporate existing interdependent infrastructure models with 

the study of interdependent resilience [85]. At the same time, planning for system 

resilience makes resilience quantifying research applicable and usable, which is of great 

significance and needs exploration.  

2.3.2 Research on resilience enhancement of electric power systems 

Because of the significance of electric power systems and common cascading 

failures in them, research has been carried out on developing and evaluating methods of 

maintenance to restore electric power systems from disruptions, and methods of 

hardening to avoid further system loss [86, 87]. 

Resilience is typically achieved through hardening or recovery. Hardening refers to 

physically changing infrastructure to make it better able to withstand the impacts of 

weather events or attacks. Recovery refers to the ability of systems to recover quickly 

from damage typically through storage and redundancy. It does not prevent damage but 

enables the system to continue operating despite damage or rapid return to normal 

operations [88]. 

System-wide reliability and resilience can be supported by a diverse portfolio of 

generation resources that limit over-dependence on any single fuel or technology type, 

plus demand-side resources that reduce overall demand and better customers in the event 

of a widespread extreme event [88]. 

Resilience enhancement initiatives are generally focused on achieving at least one of 

three primary goals: (1) preventing or minimizing damage to help avoid or reduce 
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adverse events; (2) expanding alternatives and enabling systems to continue operating 

despite damage; and/or (3) promoting a rapid return to normal operations when a 

disruption occurs (i.e., speed the rate of recovery) [10]. 

The Electric Power Research Institute (EPRI) states that enhanced power system 

resiliency is based on three elements: 1) damage prevention which includes the 

application of engineering designs and advanced technologies that harden the power 

system to limit damage, 2) system recovery which use tools and techniques to restore 

service as soon as practicable, and 3) survivability, which means use technologies to aid 

consumers, communities and institutions in continuing some level of normal function 

without complete access to the normal sources [89]. According to EPRI’s research [89], 

there are fourteen actions can be taken in a number of areas to enhance the transmission 

system’s resiliency, such as targeted transmission undergrounding and vegetation 

management. Based on the reliability measure of average total duration of the 

interruptions experienced by a customer, more than 90% of the minutes lost by 

consumers annually are attributable to distribution events [89]. Several actions can be 

taken to prevent damage to the distribution system, including vegetation management, 

targeted undergrounding and overhead distribution reinforcement, etc [89]. 

Liu et al. [90] studied the effects of restoration strategies executed during cascading 

failures on power transmission system reliability. The restoration strategies differ in 

terms of restoration timing in overloaded cascading processes and restoration strength 

(probability of fully repairing a failed component). Additional disturbances, which could 

be positive or negative, are also added to functional components due to restoration. When 

restoration disturbance is positive, restoration will increase load of functional 
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components while failed components are restored with probability. Total number of 

failed components ES and total system load fluctuation (SLF) caused by cascading 

process are applied to compare effects of different restoration strategies. System load 

fluctuations LF during cascading failures are collected to track system evolution. Load 

fluctuation of system at time t is the absolute difference between total system load at time 

t and initial total system load. Theoretical probability of total number of failed 

components coincides well with the numerical simulations. The proposed framework of 

restoration is applied to western U.S. power transmission grid for model validation, 

except for analysis based on multiple simulated networks.  

Tokgoz et al. presented a methodology to assess the resilience of electric power 

distribution poles against wind-related events. It provided a metric to evaluate the 

resilience of poles under pre-disaster and post-disaster conditions [91]. Pham et al. [92] 

presented a new restoration procedure by using dispersed generation (DG) for 

distribution system based on an adapted branch-and-band algorithm to reduce out-of-

service load volume and duration of restoration process. Simulation results illustrated the 

proposed procedure and benefit of using DG in distribution system restoration. 

Mo and Sansavini [93] proposed a defense strategy with regard to optimizing the 

fraction of resource allocated on enhancing component protection and increasing unit 

redundancy for minimizing expected damage costs of Cyber Physical System (CPS). The 

expected damage costs for CPS include unsupplied system demand and inherent value of 

cyber-physical unit which is composed of a cyber component with several physical 

components. Uncertainties about cyber-attack time and defender’s estimation about it are 

described by truncated normal distribution. Impacts of these uncertainties on defense 
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strategies are also analyzed, but they do not consider component dependency, other types 

of triggering failures and cascading failures. Hou et al. [94] presented generic restoration 

milestones (GRMs) to provide specific restoration strategies based on actual system 

conditions. This obtained decision support tool could reduce restoration times to improve 

system reliability. 

Madathil [95] developed a mathematical model to help decision makers optimally 

design and operate a cost-effective and resilient microgrid with the consideration of N - 1 

system security on generator and line contingencies. The solutions from the proposed 

time-efficient algorithms using real system data recommend that build redundant 

lines/dispatching power efficiently for off-grid microgrids could help to improve network 

reliability at reduced cost when compared with installing backup generators. Gutfraind 

[96] introduced an optimization method for robust constructing networks with high 

passive cascade resilience. Synthetic networks were able to be constructed to achieve 

structural cascade resilience and efficiency. It suggests that network optimization can 

significantly improve the fitness and cascade resilience of networks.  

Many efforts have been made to prevent cascading failures on electric power systems, 

such as capacity redundancy design [97], N - 1 criterion consideration [98] and optimal 

transmission lines layout for resilient power supply with minimized cost [99]. Recovery 

actions after cascades occur are also studied, such as microgrids with black start [100, 

101], Self-healing system [102], failed components removal [103], load redistribution 

control or load shedding [104-106], load-capacity optimal distribution with local or 

global redistribution models [107, 108], as well as other restoration planning and actions 

[109-111].  
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Figueroa-Candia et al. [29] proposed a modeling approach to perform optimization 

on the restoration policies for power distribution systems subjected to extreme weather 

events in order to meet resilience targets while lowering cost. New resiliency metrics to 

evaluate the effectiveness of restoration policies are developed, and it is demonstrated 

that the efficacy of restoration strategies and resiliency metrics are closely linked and 

there is a trade-off between these two choices. However, the dependencies among system 

components have not been taken into consideration, so as well cascading failures in 

electric power systems. 

DER are important parts of the electric power system, such as solar array generation 

and energy storage, which can work in islanded mode during grid outages and supply 

power to end users instead of power grids [112, 113]. For instance, solar arrays combined 

with battery systems are a model for strengthening the resilience of distributed power 

generation to reduce power interruptions of critical facilities [114, 115].  

Although there is an increasing growth of DER installation due to DER price decline, 

they remain relatively expensive, such as solar module and battery. Thus, optimization of 

DER investment, for example, optimal installing size of battery backup storage, as a 

hardening strategy to provide power resiliency during grid outage is pressing and 

significant from both resilience enhancement and economical perspectives, which need 

further exploration [116]. 

Additionally, Castillo [117] concluded that there has not been an effective and 

unanimous approach to relate reliability and resiliency to market efficiency and economic 

losses. Future work in this area can further address integrating the risk analysis of power 

outages into investment and restoration planning decisions in order to better incorporate 
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grid resilience targets, restoration strategies, the adoption of smart grid techniques, and 

hardening of critical components. 
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3 Cascading failure modeling with system dependency  

The preliminary results of this research mainly include three parts. First, the current 

cascading failure model is improved by taking account of the combined impacts of 

network load dynamics and system dependency on failure propagation. System 

dependency is described by dependence clusters and two types of system failures 

iteratively occur throughout the system. Then, based on the proposed mixed cascading 

failure model, different restoration strategies are performed to mitigate the impact of 

system failures and reduce performance loss in network systems. The impacts of 

dependence characteristics on the effects of restoration strategies are investigated in order 

to determine the optimal restoration strategies for specific network systems. In the end, 

economic and resilience benefit analysis of installing battery storage to solar array 

generation for end users in power distribution systems has been conducted. It is a system 

hardening measure to provide power resilience during grid outage which can be initiated 

by cascading failures in power generation and transmission system. The details of each 

part of research results are introduced as follows. 

3.1 Modelling mixed cascading failures with local load dynamics and dependency  

In this part, a new cascading failure model has been developed to analyze the mixed 

types of system failures spread over network systems [118]. Previous cascading failure 

models, which focus on network load dynamics, provide alternative approaches to 

analyze cascading process of failures in network systems. However, these studies seldom 

consider the joint impacts of multiple system dependencies among network nodes, which 

exert a great impact on network system dynamic behaviors. The new model extends 
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previous research by taking both load dynamics and network dependency which forms 

dependence clusters into consideration in a single/isolated nework.  

Dependence clusters are proposed to represent the dependence relationships of 

network nodes apart from the topological connectivity links of the network. These 

dependence clusters include the network nodes with dependence interactions between 

each other that are beyond the topological connections. This type of single network 

containing dependence clusters is presented in Figure 3.1. 

The network topological structure has network nodes denoted by points, as depicted 

in Figure 3.1. The solid lines in Figure 3.1 represent the topological links in the network 

while the nodes depending on each other by dependence links are represented by dashed 

lines. The dependence groups are circled, which identify the dependence clusters of 

nodes in the network.  

 

Figure 3.1. Illustration of a single network with dependence clusters of nodes 

A single network is defined to be an unweighted, undirected, self-loop free and 

single edge graph Net. It is represented by an adjacent matrix containing N nodes 

{ }1 2, ..., Nv v v  and M edges { }1 2, ,..., Me e e . For instance, network nodes can represent 
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power stations (or sub-stations) and edges could represent power transmission elements 

in power grids. If there is a topological link between two network nodes, the weight of 

the edge representing this link in an adjacent matrix is 1. If there is no topological link 

between two nodes, the corresponding edge weight is 0. 

It is assumed that network load only transmits along the shortest paths between every 

pair of network nodes, where paths consist of edges (topological links) between nodes. 

The length of a path is calculated by summing the weights of edges along the path. If 

there is no path between a pair of nodes, the distance between these two nodes is assumed 

to be infinite. 

3.1.1 Preliminary model 

In this section, it is assumed that load on node i at time t, ( )iL t , is defined as the 

“betweenness centrality” [119] of node i at time t, which can be calculated by Eq. (3.1). 

( , )( ) , ,
( )

sl
i

s i l sl

i tL t i s l N
t

s
s≠ ≠

= ∈∑ ，                                                    (3.1) 

where ( )sl ts  is the number of shortest paths between nodes s and l at time t. ( , )sl i ts  

denotes the number of shortest paths between nodes s and l passing through node i at time 

t. s, l can be any nodes in the network. 

Other methods of defining load and modeling flow in network systems have been 

proposed, but the load adopted here has been widely used to depict the real flow in 

network systems [103, 105, 120, 121], such as current for power grids and traffic for 

transportation networks. Node load is calculated based on the algorithm presented in 

[122]. Node capacity denotes the maximum load that a node can process without 

congestion. A nonlinear capacity-load model is used to define the capacity of each 
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network node [108] as Eq. (3.2): 

( )1(0) (0) , 1, 2,..., , 1, 0 1i i iC L L i Nµα α µ−= + = ≥ < <                           (3.2) 

where Ci denotes the capacity of network node i. Li(0) is the load of node i at initial time t 

= 0. α and µ denote the parameters to modify network node capacity. The effects of these 

two parameters were discussed in the papers [50, 108], and both of them are applied to 

describe the nonlinear characteristic of node capacity and load. 

The proposed mixed cascading failures model includes two types of network failures. 

First, as assumed in traditional cascading failures models, only dynamic network load 

distribution is treated as the cause of cascading failures. For this kind of failures, failed 

nodes and their connected links are disconnected from the network. As a result, some 

shortest paths between pairs of nodes in the network are changed. Network load is then 

redistributed along the latest shortest paths which can cause more load added to some 

working nodes. Once the load exceeds node capacity, these nodes are considered to be 

overloaded breakdown. They are removed from the network and then compositions of 

some sets of shortest paths in the network are changed again. New rounds of network 

load redistribution along with the updated shortest paths and overload cascading failures 

ensued are iteratively triggered in this way. This is the load dynamics-caused failure. 

Second, taking into account the impacts of dependence relationships among network 

nodes, immediate failures of entire dependence clusters of network nodes occur if any 

nodes belonging to these dependence clusters break down. This is dependence-caused 

failure. Eq. (3.3) defines this type of failure, 
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where Dep(vi,l) denotes whether network node vi fails given dependence cluster l 

collapses. 1 means that node vi immediately fails because it belongs to cluster l, while 0 

means that node vi does not belong to dependence cluster l and is not impacted by the 

collapse of cluster l. In actual systems, multiple dependencies are often highly complex, 

for example, there can be dependencies between different clusters in some systems, but 

here the impact of dependency inside clusters on cascades is only considered. This is a 

reasonable assumption that is considered in many common applications [61, 65, 66]. 

Nodes that break down in any one of these two processes could cause the other 

failure process. For example, a network node failure caused by overload (i.e., load 

dynamics-caused failure) leads to direct failures of other nodes which belong to the same 

dependence cluster with the overloaded nodes, i.e., dependence-caused failures occur. It 

changes network topology and consequently, a subsequent round of network load 

redistribution is triggered, which might cause new overloaded node failures. The iterative 

process of these two types of failures is briefly shown by the four steps in Figure 3.2. It 

should be noted that in Figure 3.2, dots represent network nodes, and solid lines denote 

topological links. Circles represent dependence clusters and dashed lines denote 

dependency links between dependent nodes. Once a node failure occurs, it is 

disconnected from the network system along with the edges connected to it. 

Since dependency among network nodes and topological connectivity links are 

assumed to be unrelated, node failures caused by node dependency are independent of 

network structure. According to the proposed model, after a fraction of node breakdown, 

the failures of nodes caused by dependence clusters and load dynamics recursively occur, 

leading to a mixed process of cascading failures. 
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Figure 3.2. Cascading process of two types of failures in a network with dependence 

clusters 

3.1.2 Network cascading failure process 

The main steps of the simulation, including two iterative failure processes are 

depicted as follows, 

Step 1) a. Construct Net(N, M), and calculate the size of largest connected 

component of the network (LCC).  

b. Determine dependence clusters in Net(N, M). 

Step 2) Allocate capacity of each node based on Eq. (3.2). 

Step 3) a. Select failures on nodes randomly as initial failures. 

b. Remove all failed nodes and their connected edges from the network. 

Step 4) a. Determine network nodes within the dependence clusters which include 

initially failed nodes. 
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b. Remove those nodes along with their connected edges from the network. 

Step 5) Update shortest paths in the network based on current network structure. 

Step 6) Calculate load on each node at time t, ( ) , ,iL t i N∈  after new round of load 

redistribution. 

Step 7) If ( ) , ,i iL t C i N> ∈ remove the overloaded nodes and other nodes of the 

same dependence clusters. Then go back to Step 5. If not, go to Step 8.  

Step 8) Calculate the final size of LCC and the number of iterations of cascades, T. 

Simulation ends. 

The parameter used to evaluate the effect of mixed cascading failures on network 

structure is G, which indicates network connectivity, and is shown as Eq. (3.4), 

F

I

NG N=                                                                   (3.4) 

where NI is the initial size of LCC before cascading starts, and NF is the final size of LCC 

of the network when cascading stop. As G decreases, a greater proportion of network 

collapse is because of cascading failures. T is the duration of cascading failures until it 

reaches the stop criteria in the simulation. It is used to evaluate the speed of failure 

propagation, which. 

3.1.3 Numerical examples 

Network examples with the sizes of dependence clusters of nodes following Poisson 

distribution or approximated by a truncated normal distribution are investigated, 

respectively. Simulations are performed on a general network structure, ER random 

network [123], which was proposed by Erdos and Renyi. It is a typical model for 
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constructing random networks, whose load distribution and node degree distribution 

follow Poisson distributions. 

3.1.3.1 Poisson distribution of dependence clusters 

The case that sizes of dependence clusters follow a shifted or scale adjusted Poisson 

distribution with D ≥ 1 is studied, i.e., the probability P(D) that a node belongs to a 

dependence cluster of size D is given by Eq. (3.5) [66], 

( ) ( )
1

1 !
D eP D

D
λλ − −

=
−

, for D ≥ 1                                                     (3.5) 

where ( ) 1D sizeλ = − − . D-size denotes the mean size of dependence clusters in the 

network, that is, the average number of nodes included in a dependence cluster.  

The impact of the only parameter, mean size of dependence clusters D-size, on 

network robustness against cascading failures is explored. Figures 3.3 and 3.4 present the 

changing values of G and T obtained in cascading simulation using the proposed mixed 

cascading model. The networks in Figures 3.3 and 3.4 have N = 1000 and K = 10. K is the 

average degree of network nodes, i.e., average number of topological links that a node 

has in the ER random network. The parameters for Ci are α = 1.05 and µ = 0.5. Nrem is 

the number of network nodes randomly failed at the beginning of the cascading 

simulation.  

Every point in the plotted curves in Figure 3.3 corresponds to an average of 20 

random initial failure triggers on 20 different randomly generated ER random networks 

with the same pair of (N, K). Note that because the curves shown in the figures are 

average simulation results, those curves may not be as smooth as theoretical results 

would suggest. The atypical behavior of some curves is attributed to the randomness 

associated with simulation. 
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Figure 3.3 shows the results of parameter G vs. Nrem, while Figure 3.4 shows the 

results of parameter T vs. Nrem. Four subgraphs (a), (b), (c), (d) in the figures present the 

simulation results considering dependence clusters of different mean sizes, i.e., D-size = 2 

to 5. The plotted curves in the figures mainly present the simulation results (points) 

which are close to the transition point (critical point). 

 

Figure 3.3. Simulation results of G for mixed cascading failures 
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Figure 3.4. Simulation results of T for mixed cascading failures 

As illustrated in Figure 3.3, phase transition occurs as the changing trend of G vs. 

Nrem. Parameter G sharply drops as Nrem increases to the critical transition threshold 

value, NremC, for D-size = 3 to 5, i.e., first-order phase transition occurs, and the network 

system breaks down directly to the totally collapsed state. NremC indicates the critical 

number of nodes initially removed which cause collapse of the network. The network 

collapses when the number of initially removed nodes is larger than NremC, otherwise, 

the network does not collapse although cascading failures still can occur. 

The network, which undergoes a first-order transition of cascades, indicates that the 

size of LCC abruptly decreases, i.e., indicator G goes down discontinuously from large 

value (for Nrem < NremC) to almost zero (for Nrem > NremC). Such a network is 

obviously more vulnerable than a network that is subjected to a second-order transition of 

cascading failures, where G continuously decreases from a finite value to almost zero at 
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transition point NremC. When the number of network nodes initially failed equals or is 

larger than NremC, the initiated cascading failures collapse the network very quickly, 

meaning the network is completely fragmented. Thus, NremC could be used as an 

indicator to show the robustness of a network to cascading failures triggered by random 

node failures. 

With D-size = 2 or 1 (dependency is not considered in the cascades when D-size = 1), 

G changes continually as Nrem changes, which indicates the occurrence of a second-

order phase transition. In Figure 3.4, the peaks of changing trends of T also emphasize the 

transition points NremC, which are consistent with NremC as shown in Figure 3.3. 

Moreover, as illustrated in both figures, as mean size D-size increases, the value of 

critical transition point NremC decreases. 

The results of transition points NremC and evaluation parameter Tc in the cascading 

simulation in Figures 3.3 and 3.4 are shown in Table 3.1. 

Table 3.1. Tc vs. NremC with different D-size under two cascading failure models 

 Poisson distribution of dependence 
cluster 

Without 
dependence 

clusters D-size 2 3 4 5 

NremC 18 13 9 7 46 

Tc 11.57 8.6 7.4 6.2 20.75 

Based on the simulation results in Table 3.1, conclusions about mixed cascading 

failures are as follows. 

1) When the sizes of dependence clusters of network nodes follow the Poisson 

distribution, the process of cascading failures changes from a continuous second-

order phase transition to a discontinuous first-order phase transition, compared with 

the cascading process without considering node dependency. As can be seen from 
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Table 3.1, NremC and Tc of the combined cascading networks (first-order phase 

transition) are much smaller than that of cascades without dependence clusters 

(second-order phase transition). This indicates that the robustness of the network 

when exposed to mixed cascading failures is less. Similar conclusions were observed 

in previous papers which focus on interdependence networks [63]. Change in the type 

of phase transition explains why mixed cascading failures is much more damaging in 

the network.  

2) D-size exerts a notable influence on the effect of dependence clusters on mixed 

cascading failures. As shown in the results and figures, Tc and NremC decrease if D-

size increases. This means that the effect of dependence clusters on network 

robustness is higher when D-size increases. It indicates that for larger D-size, the 

impact of dependence clusters is more noticeable causing failure propagation. This 

observation is in agreement with the previous findings about the impact of parameter 

D-size in [51] which assumes all dependence clusters in the network have the same 

fixed sizes. 

3) Compared with the findings in [51] with the same network, the values of Tc obtained 

in the new mixed cascading simulation are larger given the same values of D-size. 

This is likely because the dependence clusters considered in [26] are mean size, but 

they have randomly different sizes in the network for the proposed new model. 

Then, the impact of the average degree of network node is presented, which is an 

important network topological property, denoted by K on network robustness regarding 

mixed cascading failures. The obtained simulation results on the ER random network (N 

= 1000) with several values of K are illustrated in Figure 3.5. 
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Figure 3.5. Transition points of mixed cascades under different average degree 

NremC are plotted in Figure 3.5 as a function of D-size under different values of K. 

These trends of NremC clearly show that D-size impacts network robustness to mixed 

cascading failures in ER random networks with different average degree. Small NremC 

indicates that robustness of the network against mixed cascading failures is poor. In other 

words, breakdown of just a few nodes could trigger the mixed cascades that collapse the 

entire network. It should be noted that D-size = 1 indicates a network without dependence 

clusters of nodes. It can be observed that values of NremC for D-size = 1 differ from that 

under 2D size− ≥ . The appearance of change in phase transition of cascading failures is 

caused by D-size. Moreover, it can be seen from Figure 3.5 that, with the same D-size, as 

K increases, NremC also increases. The ER random networks with larger average degree 

K are more robust to mixed cascading failures triggered by random failures of network 

nodes. 
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3.1.3.2 Normal distribution of dependence clusters 

The next case is that the dependence clusters of nodes in a single network follow a 

truncated normal distribution. The normal distribution is a continuous random variable 

distribution, while the number of nodes is discrete. However, the random number of 

nodes can be approximated using a normal distribution probability density function. 

Based on the probability density function of the normal distribution, the probability of a 

random node belong to a dependence cluster of size D, P(D), is approximated based on 

Eq. (3.6), 

2 2( ( )) /2 ,1 2( ) 1( )
0, otherwise

D D sizebe D D sizeP D
s− − − < < − −= 


                                   (3.6) 

where b is a normalization constant so that the sum of probabilities for all D is one. The 

purpose of setting P(D) > 0 only for the range that 1 < D < 2(D-size) - 1 is to have the 

distribution symmetrical around D-size. The assumption of dependence clusters contains 

two parameters, mean size of dependence clusters D-size and variance of cluster size, σ2. 

First, it is assumed that the variance σ2 is fixed, and then the impact of different 

values of D-size is investigated on mixed cascading failures, shown as G and T in Figures 

3.6 and 3.7. The networks used to conduct the simulations are ER random networks with 

N = 1000, K = 10, α = 1.05 and µ = 0.5. 
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Figure 3.6. Simulation results of G for mixed cascading failures 

 

Figure 3.7. Simulation results of T for mixed cascading failures 
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Table 3.2. Tc vs. NremC with different D-size with two cascading failure models 

 Normal distribution of dependence cluster Without 
dependence 

clusters D-size 2 3 4 5 

NremC 20 11 8 7 46 

Tc 10.1 8.15 7.125 6.2 20.75 

 
Similar to the Poisson distribution analysis, the cascading process changes from 

second-order phase transition to first-order phase transition when considering dependence 

clusters approximated by a normal distribution (D-size > 1) based on the results of 

transition threshold NremC. NremC decreases as D-size increases, which means the 

network is less stable. The values of Tc also become smaller as D-size increases, which 

means that the network collapses faster when caused by mixed cascading failures. 

The impact of values of parameter σ on mixed cascading failures in ER random 

networks (N = 1000, K = 10) is discussed, according to the results of evaluation 

parameters G and T, similar to the analysis performed on the impact of D-size on mixed 

cascading networks. Figures 3.8 to 3.9 show the results of G and T vs. Nrem with 

different values of σ with fixed D-size. NOTE: In the figures, Qvar = σ. 
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Figure 3.8. Simulation results of G for mixed cascading failures (D-size = 4) 

 

Figure 3.9. Simulation results of T for mixed cascading failures (D-size = 4) 
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Figure 3.10. Simulation results of G for mixed cascades (D-size = 2) 

 

Figure 3.11. Simulation results of T for mixed cascades (D-size = 2) 
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Table 3.3. Tc vs. NremC with different σ and fixed D-size 

 D-size = 4 D-size = 2 Without 
dependence 

clusters σ 0.8 1.6 2.4 3.2 0.8 1.6 2.4 3.2 

NremC 8 8 9 10 14 17 18 22 46 

Tc 6.625 7.125 7.175 7.05 10.475 10.55 10.625 10.7 20.75 

  
Figures 3.8 and 3.9 shows the results of G and T as a function of Nrem for four 

values of σ, i.e., 0.8, 1.6, 2.4 and 3.2, with D-size = 4. It can be observed from the results 

that the process of cascading failures becomes a first-order phase transition with 

dependence clusters normally distributed. Figures 3.10 and 3.11 present the changing 

trends of G and T as a function of Nrem for four different values of σ with D-size = 2. 

The process of cascades also becomes a first-order phase transition under this assumption 

of truncated normal distributions. The size of dependence clusters, which is normally 

distributed around mean size D-size, becomes more highly variable as σ becomes larger. 

Combined with the previous results, it is observed that the first-order transition threshold, 

NremC, increases as σ becomes larger. This indicates that the network becomes more 

stable. 

After analysis of the results obtained for the normal distribution, there is an 

underlying relationship between the impact of variance σ2 and mean size D-size on 

network robustness. Figure 3.12 shows the results of NremC vs. σ under different D-size 

on ER random networks with N = 1000, K = 10. 
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Figure 3.12. NremC vs. σ with different D-size under mixed cascades 

As shown in Figure 3.12, aside from the increase of σ that contributes to larger 

NremC, different value of D-size also impacts the effect of σ on network robustness. The 

two dotted lines, indicated as fit-1 and fit-2 in Figure 3.12, are the lines indicating the 

changing trends of NremC with two values of D-size, 2 and 4, respectively. The slope of 

fit-1 is k = 2.75 (for D-size = 2), while the slope of fit-2 is k = 0.875 (for D-size = 4). The 

effect of σ on transition threshold NremC, that is the impact of σ on network robustness 

to mixed cascading failures, becomes weaker for larger mean size D-size. 

The impact of average degree of network, K, on network robustness with mixed 

cascading failures and normally distributed size of dependence clusters is also considered. 

The simulation results of NremC as a function of D-size with several values of K and 

fixed σ, on ER random networks (N = 1000) are shown in Figure 3.13. 
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Figure 3.13. Transition points NremC vs. D-size of mixed cascades under different K 

It can be seen from Figure 3.13 that the values of NremC are larger for ER random 

networks with larger average degree K, which indicates that ER random networks with 

higher average node degree possess a stronger robustness to mixed cascading failures. 
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the combined impacts of network load dynamics and network dependency on failure 

propagation through network systems, and to explore specific effects of common types of 

network dependencies on network robustness. 
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considered load dynamics or the impact of node dependency, but not both. Moreover, 

statistical distributions are applied to establish dependence clusters of network nodes to 

depict node dependency, which is consistent with actual functioning networks [66]. 

Consequently, this model can be used as a basis for analyzing cascading failures and their 

impacts on network performance, which provide a better understanding of the process of 

failure propagation in real-life networked systems. 

A more realistic simulation of cascading failures is developed so the results and 

findings are more general than previous research. Research findings show that the 

robustness of the network, considering dependent nodes with mixed cascading failures, 

becomes poor. This is a new conclusion for single-structure network with the new model 

of mixed cascading failures. This conclusion is consistent with the finding of previous 

papers which test on interdependence network systems. The network deteriorates rapidly 

in a form of a first-order phase transition when a critical number of nodes initially fail. 

Both the mean size of dependence clusters and average degree of nodes have a large 

impact on network robustness to cascading failures. A larger mean size of dependence 

clusters cause more harm to network robustness, while a larger average degree of node 

produce stronger network robustness. When the dependence clusters are approximated by 

a normal distribution, it is observed that mean size of clusters and variance of size of 

clusters are related to each other. Larger mean size of clusters minimizes the effect of a 

larger variance of clusters on improving network robustness. Findings from this research 

can be useful for a better understanding of the impact of important factors on cascading 

failures. For example, systems with higher average degree are more robust to mixed 

cascading failures than the networks with lower average degree. Thus average degree in 
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real network system is an important factor for a network to maintain connectivity when it 

is subject to cascading failures. This finding could be helpful when evaluating robustness 

of some real network systems to cascading failures. 

In this work, ER random networks subject to mixed cascading failures that are 

initiated by random failures of nodes are investigated. Other general types of network 

topological structures could be considered to extend the study of the mixed cascading 

process. System failures all originated in nodes since the effect of dependence clusters of 

nodes on network robustness is analyzed. Another case is when failures originate from 

the links of the network, which exists in some real-world systems, and this could be 

investigated further. The study of mixed cascading failures triggered by intentional 

attacks, i.e., cascades triggered by malicious attacks on some important network nodes, is 

an- other direction for further research. 

The assumption that immediate collapse of a dependence cluster occurs if any 

dependent nodes inside break down is made to depict the impacts of system dependency 

on failure propagation. It represents very strong dependency strength. They may not be 

the cases for some real-world applications. Therefore, system dependency strength 

regarding failure propagation is then described by the dependence cluster collapsing 

threshold (CCT) [124]. It means that a dependence cluster instantly collapses, i.e., all 

nodes belonging to this cluster break down if the percentage of failed dependent nodes 

belonging to this dependence cluster exceeds CCT (%). A smaller value of CCT indicates 

stronger dependency strength between network nodes, which means that dependent node 

failures in a dependence cluster have a great impact on other functional nodes in the same 

dependence cluster. The applications of this improved system dependency modeling on 
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resilience-based system restoration optimization against cascading failures are presented 

in Section 4. 

3.2 Mixed cascading failure model combining local load and global load dynamics  

Network system characteristics, system load dynamics and system dependency, 

which are taken into account in this research, have been proved to have great impacts on 

cascading failures. In terms of system load dynamics, for instance, electricity 

transmission in electric power systems influence system overloaded failure propagation 

process [90]. System load distribution mechanisms vary in different real-world systems, 

which is dependent on system characteristics, such as system services and system 

dependencies [125]. 

In the work that is presented in Section 3.1, system dependencies have been 

described by dependence clusters which could immediately collapse because of 

dependent component failures. However, it may not always be the case in reality. For 

example, system dependency might mainly impact the load sharing mechanism among 

the dependent nodes inside the dependency clusters. Thus, the propagation of system 

overload failures is influenced by system dependency indirectly. 

Local load redistribution models and global load redistribution models have been 

used to describe how system load dynamics influence cascading failures [25, 36]. A local 

load redistribution model means failed system components mainly impact the functional 

neighboring components. For example, it assumes that failed node load will be locally 

redistributed so only neighboring components could be impacted and potentially failed 

due to overload. The local load redistribution model has been used in Section 3.1. The 

global load redistribution model assumes that system component failures could cause 
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disturbance to the functional components which are not subject to a localization 

constraint, i.e., component failures initiate global network load redistribution. These two 

load redistribution mechanisms can be simultaneously found in some real-world systems 

based on the system properties [126]. However, current cascading failure models rarely 

consider nor properly depict this phenomenon. In this section, a mixed cascading failure 

model that combines local load dynamics and global load dynamics considering the 

influence of system dependency are presented.  

3.2.1 Preliminary cascading failure and recovery process 

In the new model, specifically for global load redistribution, every time there are new 

node failures in a dependence cluster, part of the load on the failed nodes will be 

transferred to the functional nodes in the same dependence cluster. It depicts the impact 

of global load dynamics on cascading failures resulting from system dependency. 

Anytime when node load exceeds node capacity, system node fails under overload status. 

In addition, system nodes are not functional when they are disconnected from LCC 

during the cascading-restoration process. It is based on the percolation-like process that is 

observed in some real-world applications [127]. Figure 3.14 illustrates when system 

nodes become non-functional once they are disconnected from LCC. 
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Figure 3.14. Functional failure occurs when system nodes are disconnected from LCC 

According to the new model, mixed cascading failures are explored taking into 

account the joint impacts of local load dynamics and global load dynamics result from 

system dependency, as well as percolation feature. 

When a failed system node i is restored, some load is assumed to be transferred back 

to node i from the functional neighboring nodes and working dependent nodes of node i 

that have previously received the load from node i when it failed. 

This new cascading failure model, including the recovery process regarding load 

dynamics, captures some essential features of cascading failure process. It is helpful to 

understand the failure propagation mechanism and recovery process of network systems 

with load dynamics and multiple dependencies [128]. 

3.2.2 Cascading failure modeling with local load and passing by load 

In the cascading failure modeling, different metrics have been applied to measure 

system load. For example, “betweenness centrality” [119] is used in the mixed cascading 

failure modeling presented in Section 3.1. CASCADE model is another popular model 

which is initially proposed to examine overload failure propagation in power 
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transmission system [129, 130].  

In this work, network load on system node i at time t, ( )iL t , is assumed to consist of 

two parts, local customer load , ( )i cL t  and passing by load , ( )i dL t . This assumption is 

made based on the observation of some real-world network systems. In these network 

systems, system nodes are not only able to transfer load between each other, they also 

exchange load with local load points to provide services. A good example is electricity 

system. The centralized generation units (e.g., power plants) not only transfer electricity 

between each other, but also provide electricity to customers through local distribution 

systems. Therefore, it is reasonable to assume that passing by load and local customer 

load compose the total load on a system node. In some real-world network systems, local 

customer load of a system node is related to the amount of services provided by the node, 

while passing by load is related to node degree/connections. A hub node tends to process 

high passing by load. 

Considering the electricity system, local customer load is assumed to depend on the 

number of customers connected to the node, and passing by load depends on the node 

degree. The reason lies in that more customer connections on a node tend to result in a 

larger amount of local customer load on this node, and higher node degree tends to 

contribute to higher passing by load. In total, the initial load on node i at time t0 can be 

presented as follows, 

1 1
0 , 0 , 0( ) ( ) ( )

c d
i iP P

i i c i dL t L t L t− −= +     (3.7) 

where c
iP  denotes the normalized number of customers connected to node i. It includes 

all customers that receive the electricity provided by node i. d
iP  denotes the normalized 
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number of node degree. It includes all neighboring nodes that have direct connections 

with node i. Similar to CASCADE model [129], the initial local customer load , 0( )i cL t  

and passing by load , 0( )i dL t  on node i at time t0 are assumed to follow certain 

distributions [90]. For example, both of them follow a truncated normal distribution with 

a specific load range [Lmin, Lmax] [131].  

2 2
0( ( ) ) / 2

0 min max
max min

0

2 , ( ) ( , )
( ( ))=

0, otherwise

i l lL t
l

i
l l

i
l l

e L t L L
L Lf L t

ms  s π
mm

ss

− −
∈

   − −Φ − Φ    
   



  (3.8) 

where 2
0( ( )) ( , )i l lf L t N µ σ , and 0( )iL t  represents , 0( )i cL t  or , 0( )i dL t . 

Based on real-world network system features, instead of assuming network 

components are identical with the same capacity in CASCADE model, a nonlinear 

capacity-load model is adopted to quantify network node capacity [108]. 

As of system dependency modeling, network nodes belong to a dependency cluster 

when they provide services for the same customers. Dependency cluster size follows a 

certain distribution as mentioned in Section 3.1. The meaning of customers and 

dependency clusters vary in different real-world applications. In electricity system, 

customers are different facilities, such as residential and business. Dependency clusters 

are formed by the power generation units that provide electricity for the same customers 

through population centers/substations. Figure 3.15 illustrates the basic formation of an 

electricity system. 
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Figure 3.15. Main components of an electricity system 

An example of a dependency cluster is indicated in Figure 3.15. There is no direct 

connection between two centralized generation units a and b. However, there is 

dependency relationship between them since they provide electricity for the same 

customers through population center c. Based on the proposed mixed cascading failure 

model, failure of any one of these two nodes would cause the increase of local customer 

load on the other node, as dictated by the load sharing mechanism. As can be seen, the 

dependent nodes in a dependence cluster are not limited by distance but rather depend on 

the existence of functional dependency relationship.  

The model illustrated in Figure 3.15 for the electric power systems is a typical 

interdependent network system, because system dependencies are considered exist not 

only among system components, but also between the bulk system and power distribution 

systems. Electricity transmission is simulated as system load flow. 

The cascading-restoration process regarding load dynamics can be described as 

follows, 
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,
, ,

,

( )
( )

| ( )|
i c

i j c
i c

L t
L t

k t
∆ =      (3.9) 

where , , ( )i j cL t∆  denotes the local customer load of failed node i that is equally distributed 

to its working dependent node j at time t when node i fails. ki c(t) is the set of functional 

dependent nodes of node i at time t. Li,c(t) denotes the local customer load on node i at 

time t when it fails. 

,
, ,

,

( )
( )

| ( )|
i d

i j d
i d

L t
L t

k t
∆ =      (3.10) 

Similarly, , , ( )i j dL t∆  denotes the passing by load of failed node i that is equally 

distributed to its working neighbor node j at time t when node i fails. Nodes i and j are 

neighbors if there is direct connection between them. ki,d(t) is the set of functional 

neighbor nodes of node i at time t. Li,d(t) denotes the passing by load on node i at time t 

when node i fails. 

The working neighbors and working dependent nodes of node i, which received its 

load when node i broke down, will transfer the load back to node i when it is recovered. 

For example, node i is restored at time t’ after it failed at time t. As introduced above, 

network load on an arbitrary system node j at time t’, can be defined as 

' '
, ,( ') ( ) ( )j j c j dL t L t L t= + . Local customer load '

, ( )i cL t  and passing by load '
, ( )i dL t  on a 

failed node i which is recovered at time t’ can be presented as follows, 

'
, , , ,

'
,

, ,

( ) | | ( ), ( )
( )=

( ), ( )
c

i j c c m m c i c
m ND

i c

i c i c

L t NF p L t k t
L t

L t k t
∈

D + ≠ ∅

 = ∅

∑
  (3.12) 
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where

{ } { }' '
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| 0 ( ) ( ) ( ) .

d n d i j d i d

d m d i j d i d

NF n L t L t n k t
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= > D ∩ ∈

= < ≤ D ∩ ∈
 

pm is uniformly distributed in (0,1), which decides the amount load transferred back to the 

recovered node from node m. Note that the load on the functional neighbor nodes and 

functional dependent nodes, which transfer load back to the recovered nodes, is reduced 

accordingly. 

Overall, a new mixed cascading failure model is developed considering the joint 

impacts of system local load redistribution and global load redistribution that pertain to 

system dependency. Instead of causing immediate dependence cluster collapse as in 

section 3.1, system dependency accelerates overload failure propagation indirectly by 

impacting load sharing in this model. Node load consists of local customer load and 

passing by load with distinct dynamic distribution mechanisms based on network system 

characteristics. The new mixed cascading failure model is applied to extend the influence 

of cascading failures in power transmission system to local customers. It also helps to 

investigate the interplay between the effects of system hardening strategies and 

restoration strategies against cascading failures. The applications of this new mixed 

cascading failure model are presented in section 6. 
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4 Resilience-based restoration selection against cascading failures 

In this section, the effects of restoration strategies on recovering network systems 

from cascading failures are investigated considering the impacts of multiple network 

system properties. Specifically, the mixed cascading failure model presented in section 

3.1 is applied while the impact of system dependence on failure propagation is improved 

based on real cases. A new system resiliency metric for resiliency loss evaluation, which 

is time-dependent, performance-based and normalized, is proposed in this work. Two 

other system performance measurements, system connectivity G and recovery time T are 

used to evaluate restoration effects. Four restoration strategies in terms of different 

restoration priority targets are applied to two typical synthetic network models and a real-

world network system in the case studies for validation. The influence of system 

dependency characteristics and the relationship among them and restoration effects on 

system resiliency against cascading failures are explored. Then, a recovery framework 

against cascading failures is proposed, which considers the changing importance of 

system components during the cascading-recovery process for optimizing resource 

allocation. The recovery framework combines global network connectivity importance 

with other restoration preference for updating restoration priority targets. Efficient 

detection of system node importance regarding global network connectivity is provided 

with graph embedding and deep reinforcement learning. Overall, the results and findings 

provide references about the selection of resilience-based restoration strategy for real-

world network system applications against cascading failures. 
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4.1 System modeling and dependence impact 

As introduced in section 3.1, dependence clusters are proposed to represent the 

dependence relationships of network nodes apart from the topological connections. Since 

multiple dependencies can exist between network components, they may result in various 

dependence strengths, which influence cascading failures [59]. In this section, 

dependency strength is investigated by introducing dependence cluster collapsing 

threshold, CCT [124]. A dependence cluster instantly collapses, i.e., all nodes belonging 

to this cluster break down, once the proportion of failed nodes belonging to this 

dependence cluster exceeds CCT. Smaller CCT means stronger dependency strength 

among network nodes. It means that failed nodes in a dependence cluster have more 

significant impact on the functional nodes belonging to the same dependence cluster. The 

size of system dependence clusters is assumed to follow a shifted/scale adjusted Poisson 

distribution. The probability of a network node belonging to a dependence cluster of a 

specific size is determined according to Eq. (3.5). 

The mixed cascading failure model proposed in section 3.1, which includes two 

types of network failures: overloaded failures caused by load dynamics and dependence 

failures caused by dependence node clusters, is employed in this section. First, some 

system components break down because of initial interruptions. These failed components 

can be considered as if they have been removed from the whole network. The network 

topology then changes, and so does the shortest paths between nodes that network load 

passes through. Network load carried by the failed components is redirected to nearby 

functional components. This redistribution may cause these functional nodes to exceed 

their capacity resulting in overloaded failures. At the same time, immediate collapses of 

 
 



68 
 

dependence clusters may result from overloaded failures once CCT is reached. In return, 

dependence failures also accelerate load dynamic redistribution, which triggers more 

overloaded failures. In this way, two types of failures iteratively propagate through the 

network system. 

In the network system, ijed  depicts the topological connection between system node 

i and node j. ijed  is assumed to be 0 or 1.  = 1ijed  if there is a direct topological 

connection between node i and node j. While  = 0ijed  indicates that there is no edge 

between these two nodes. It is assumed that network load transmits on edges (topological 

connections) that form the network topology, and it only transmits along the shortest 

paths between every pair of network nodes. A path consists of edges (topological 

connections) between the two targeted nodes. Thus, the length of a path equals the 

number of edges along this path. If there is no path between a selected pair of nodes, the 

distance between the two nodes is infinite. ijE , defined in Eq. (4.1), is used to depict the 

efficiency of the shortest path between node i and node j, i.e., the most efficient path 

regarding load transmission. 

1
1

ij
k

E
ed

−
 

=  
 
∑      (4.1) 

Network efficiency E(GP) defined in Eq. (4.2) is used as the system performance to 

evaluate network recovery level in terms of transmission efficiency [132]. 

1( )
( 1)

p

p ij
i j G

E G E
N N ≠ ∈

=
− ∑     (4.2) 

Higher E(Gp) indicates more efficient transmission of network load. Network load is 

presented by “betweenness centrality”, which is calculated by Eq. (3.1). Network 
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connectivity is measured by G, which is defined in Eq. (3.4). G decreases when failures 

occur, and the network falls apart. G equals 1 if no failures happen in the network. Here, 

T denotes the time to restore a network system from cascading failures to the 

predetermined level. A shorter time T is better.  

Node capacity is determined according to Eq. (3.2). Based on the mixed cascading 

failure model proposed in section 3.1, a node becomes overloaded and breakdown once 

the load on a node exceeds node capacity. The load on the failed node is preferably 

redistributed to the functional nodes in its local neighborhood nodes. 

The main steps to model the process of mixed cascading failure propagation and 

restoration implementation are briefly introduced as follows: 

Step 1) Total N network nodes are initially functional with capacity allocated. All 

dependence clusters in the network are determined. 

Step 2) Randomly select system nodes to break down due to initial interruptions.  

Step 3) Dependence clusters collapse if CCT is exceeded. Update network 

topology. 

Step 4) Network load are dynamically redistributed over current network structure. 

Overloaded nodes fail. 

Step 5) Failed nodes are selected to start repair activity with probability p with a 

required repair time. 

Step 6) Go back to Step 3, until network is recovered to the predetermined level. 

Network performance measurements are collected during the cascading-restoration 

process. 
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4.2 Resilience measurement and restoration strategies 

Although some resilience metrics have been presented to describe system resilience 

in different areas, there are no standardized metrics for system resilience, especially for 

measuring electric power system resilience. A new resilience metric, ( )tℜ , which 

measures system resilience loss due to system failures is proposed. Figure 4.1 shows the 

changing trend of one type of system quality measures, Q(t), which evolves as time goes 

on when cascading failures occur in the system and restoration actions are performed as 

well. 

 

Figure 4.1. Changing trend of quality measure Q(t) after failures occur and restoration 

implementation 

A disruptive event happens at time tI. It triggers cascading failures in the network 

system, which result in the degradation of quality measure Q(t). After conducting 

restoration strategies for a while, Q(t) is recovered to a predetermined level at time te. In 

general, ( ) ( )I eQ t Q t≥ , where Q(tI) denotes the initial level of Q(t) without any 

interruptions and Q(te) denotes the recovered steady level of system performance. System 

resilience loss up to time t is measured by a time-dependent metric, ( )tℜ . ( )tℜ  is defined 
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as the proportion of the lost quality measure Q(t) resulted from cascading failures in the 

system with respect to a comparative Q(t) if there is no failure up to time t. ( )tℜ  is 

formulated in Eq. (4.3). 

( )

0,

( ) ( ) ( )
,

( )( )
I

I
t

It
I

I I

t t

t Q t Q t dt
t t

Q t t t

≤
ℜ = −

>
−

∫     (4.3) 

where 0 ( ) 1, [0, ]et t t≤ ℜ ≤ ∈ . It is clearly that smaller ( )tℜ  indicates less resilience loss. 

First, this new metric considers the time that the system stays in each stage since 

system resilience changes, such as the stage that cascading failures occur which cause 

system performance degrading, and the stage that restoration actions are taken which lead 

to system performance recovering. Second, this system resilience metric is related to the 

measurement of a specific system performance, Q(t). Because system performance can be 

measured from different perspectives and resilience is also a type of system property, the 

considered system performance should be reflected from system resilience metrics. In the 

end, this resilience metric is quantitative and normalized between [0, 1], which is 

important to make resilience of different systems comparable and make system resilience 

to be understandable. Thus, this metric can be applied to different types of systems for 

resilience analysis given that there is no generally accepted resilience metric currently. In 

this section, network load is adopted as Q(t) to calculate resiliency loss ( )tℜ  with respect 

to system load demand and supply capability. 

As mentioned above, four different restoration strategies are adopted to recover the 

system when cascading failures occur. They are introduced as follows, 

(1) Random repair strategy (RR): RR is the default restoration strategy and is applied for 
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comparison purposes. The failed network nodes, where repair activity has not yet 

started, are selected to be repaired at each round of inspection based on repair 

proportion Rp. It denotes the proportion of failed components, whose repairing 

activities have not yet begun, that can start to be repaired; 

(2) High degree first repair strategy (HDFR): HDFR is targeted for the repair order 

assigned according to the degree of failed nodes. Node degree denotes the number of 

topological connections that a node has with other nodes. Failed components, of 

which repairing has not yet started, are repaired in descending order of node degree, 

i.e., network nodes with higher node degrees are repaired with higher priority. 

(3) Short time first repair strategy (STFR): STFR involves the repair order assigned 

based on the required repair time of failed nodes. The restoration prioritizes the failed 

nodes that require shorter repair time. 

(4) High load first repair strategy (HLFR): HLFR strategy prioritizes repair according to 

the amount of load carried by the failed nodes. Failed nodes of which repair activity 

has not yet started at inspection are repaired in descending order of the amount of 

load passed through.  

Note that there must be an exact ordered list of repair actions, so ties, which occur 

when the failed nodes, of which the repairing has not started, at the inspection have the 

same condition (the same degree, the same required repair time or the same load) are 

broken according to the first fail first repair policy. The repair activity of failed nodes, 

once started, will not stop until they are completed in this work. For simplicity, it is 

assumed that the restoration resources are available to do so. The number of new repair 

activities of failed nodes, which get started at each round of inspection for different 
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restoration strategies, is decided by the repair proportion Rp and the total number of failed 

nodes, where repair activity has not started yet. 

4.3 Numerical examples on synthetic networks and real-world network system 

In this section, the mixed cascading failure model is performed on two synthetic 

network models and one real-world network topology, respectively. In this way, the 

impacts of network dependency characteristics and load dynamics on restoration effects 

regarding system resiliency are investigated. 

In this work, the repair proportion Rp is set to be 0.7, i.e., the proportion of failed 

nodes whose repair activities have not yet started can be selected to start repairing is 0.7 

at each round of inspection. For generalization, multiple simulations are conducted under 

the same condition to calculate the average of resilience loss and other system 

performance measurements. A simulation process includes failure propagation and 

restoration implementation. Simulation data is collected since cascading failures happen 

until network efficiency is recovered to 95% of its initial level, i.e., it denotes the 

predetermined recovery level. In this work, the required repair time of each failed node is 

randomly selected between 1 to 3 time units, i.e., time steps in the simulation. In the 

model, the time to restore a network system to the predetermined level, T, is represented 

by the total number of iterations of the simulated failure propagation process under 

restoration implementation, until reaching the predetermined recovery level. Each 

simulation iteration represents a fixed duration of time. 

Cascading failures are triggered by randomly selecting failures on network nodes as 

initial failures. The triggering mechanism depicts random failures of system components 

to simulate exposure to some extreme event that causes multiple failures. Different 
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numbers of initially failed nodes (Nrem) are considered in this work, which are 9, 15, 21, 

27, 33, 39, 45, 51, 57 and 63. To minimize random errors, simulation results for a 

specific Nrem correspond to the average of results over many realizations of randomly 

selecting nodes to fail. 

4.3.1 Example of U.S. top 500 airport network 

A case study is first conducted on the U.S. top 500 airport network topology [133]. 

This real-world network system comprises of 500 nodes and 2980 edges. Nodes denote 

airports and edges denote the connections between airports. 30 simulations are performed 

to obtain averages of the resiliency metric, resiliency loss, and other system performance 

measurements. Four restoration strategies are applied to the network system, respectively, 

to analyze the impacts of dependency characteristics and load dynamics on restoration 

effects against mixed cascading failures. Figure 4.2 illustrates the changing trend of 

network efficiency for the U.S. top 500 airport network after simulated cascading failures 

occur and implementing restoration. 

 

Figure 4.2. Network efficiency vs. time after cascading failures occur and RR restoration 

implementation. Nrem = 63, D-size = 8, CCT = 0.7. 
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Based on Figure 4.2, it can be seen that initial failures occur at time t = 1, at the same 

time, restoration strategy is performed on the network system. Initially, network 

efficiency quickly declines. Then it rises with fluctuations as time goes on. The 

fluctuation of network efficiency during the process indicates network performance loss 

due to cascading failures. The results shown in Figure 4.2 are in accordance with that in 

Figure 4.1. 

1) Test on random repair strategy: 

First, the results of resiliency metric and system performance measurements 

regarding mixed cascading failures under RR strategy are presented. Figure 4.3 presents 

average resilience loss and G vs. Nrem in ER networks with different CCT and D-size. 

 

Figure 4.3. Average results of resiliency loss and G as a function of Nrem. Note: 

Scenarios are considered with different CCT and D-size. CCT = 0.5, 0.7, 0.9, D-size = 2, 

4, 6, 8, 10, respectively. 
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According to Figure 4.3, resiliency loss increases as Nrem increase. This trend slows 

down as CCT increases when Nrem is large. It can be explained that strong dependency 

strength, indicated by small CCT, can accelerate failure propagation. The three lower 

subfigures show that G decreases with an increasing Nrem. It means that larger Nrem 

triggers more devastating cascading failures, which results in more damage to system 

connectivity. While it can be observed that the rate of G declining decreases as Nrem 

increases.  

Table 4.1 presents the average results of resiliency loss and T. Based on Table 4.1, it 

can be seen that the smallest resiliency loss is achieved when CCT = 0.9, while D-size 

does not show noticeable impacts on resiliency loss or T. 

Table 4.1. Average resiliency loss and T for different Nrem 

Resiliency 
Loss (%) 

D-size Aver-
age T D-size Aver-

age 2 4 6 8 10 2 4 6 8 10 

CCT = 0.5 12.3 12.
0 

12.
0 

12.
1 

12.
1 12.1 CCT = 

0.5 3.5 3.
4 3.5 3.1 3.4 3.4 

CCT = 0.7 11.8 11.
8 

11.
9 

12.
3 

12.
2 12.0 CCT = 

0.7 3.4 3.
4 3.4 3.7 3.7 3.5 

CCT = 0.9 12.1 12.
0 

11.
8 

11.
8 

11.
6 11.9 CCT = 

0.9 3.4 3.
6 3.4 3.2 3 3.3 

Average 12.1 11.
9 

11.
9 

12.
1 

12.
0 12.0 Average 3.4 3.

5 3.4 3.3 3.4 3.4 

 
As mentioned above, every point in the plotted curves in the figures in this case 

study are the simulation results corresponding to an average of 30 random initial failure 

triggers. It should be noted that since the curves shown in the figures are average 

simulation results, those curves may not behave smoothly like theoretical results. The 

atypical behavior of some points results from the randomness associated with simulation. 

2) Test on high degree first repair strategy: 

The results obtained by applying HDFR strategy are presented in Figure 4.4. 
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Scenarios with different CCT and D-size are considered. Figure 4.4 shows the average 

results of resiliency loss and G. 

 

Figure 4.4. Average results of resiliency loss and G as a function of Nrem for HDFR 

Based on three upper subfigures in Figure 4.4, resiliency loss increases when Nrem 

increases, while the trend is abating when CCT increases. It can be observed that the 

smallest resiliency loss is obtained when CCT = 0.9 compared to that when CCT = 0.5 or 

CCT = 0.7 with large Nrem. As to G, it shows the same trend as is observed for RR 

strategy. G decreases as Nrem increases while the rate of decline for G slows down.  

Table 4.2 presents the average results of resiliency loss and T as follows. The results 

show that resiliency loss would be aggravated by stronger dependence strength indicated 

by smaller CCT, while D-size does not simply have a monotonic influence on system 

resiliency. 
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Table 4.2. Average of resiliency loss and T for different Nrem 

Resiliency 
Loss (%) 

D-size Aver-
age T D-size Aver-

age 2 4 6 8 10 2 4 6 8 10 

CCT = 0.5 11.6 11.8 11.5 11.6 11.7 11.6 CCT = 
0.5 2.6 2.6 2.6 2.6 2.6 2.6 

CCT = 0.7 11.6 11.4 11.0 11.4 11.2 11.3 CCT = 
0.7 2.5 2.5 2.4 2.6 2.5 2.5 

CCT = 0.9 11.5 10.9 10.8 11.7 11.2 11.2 CCT = 
0.9 2.7 2.4 2.5 2.7 2.5 2.6 

Average 11.6 11.4 11.1 11.6 11.4 11.4 Average 2.6 2.5 2.5 2.6 2.5 2.6 
 

3) Test on short time first repair strategy: 

Average resiliency loss and T for different CCT and D-size with STFR strategy are 

presented in Figure 4.5. Both resiliency loss and T increases as Nrem increases. It means 

that larger Nrem would aggravate cascading failures. In addition, thresholds can be 

observed from the changing trends of resiliency loss and T as Nrem increases. The 

growth rate of resiliency loss and T decreases when Nrem exceeds a certain threshold.  

Average results over different Nrem are presented in Table 4.3. The results in Table 

4.3 demonstrate that larger CCT contributes to smaller resiliency loss and shorter T when 

STFR strategy is implemented. 
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Figure 4.5. Average results of resiliency loss and T as a function of Nrem. Note: Different 

CCT and D-size are considered, i.e., CCT = 0.5, 0.7, 0.9, D-size = 2, 4, 6, 8, 10, 

respectively. 

Table 4.3. Average results of resiliency loss and T for different Nrem 

Resiliency 
Loss (%) 

D-size Aver-
age T D-size Aver-

age 2 4 6 8 10 2 4 6 8 10 

CCT = 0.5 11.3 11.2 11.1 10.8 10.4 11.0 CCT = 
0.5 3.5 3.6 3.7 3.6 3.2 3.5 

CCT = 0.7 10.8 11.3 10.8 10.7 10.6 10.8 CCT = 
0.7 3.5 3.6 3.5 3.4 3.4 3.5 

CCT = 0.9 11.2 10.3 10.1 10.6 10.4 10.5 CCT = 
0.9 3.3 3.2 3.2 3.4 3.3 3.3 

Average 11.1 10.9 10.7 10.7 10.5 10.8 Average 3.4 3.5 3.5 3.5 3.3 3.4 
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4) High load first repair strategy: 

The trends of average G and T with increasing Nrem under HLFR strategy are 

presented in Figure 4.6. Scenarios with different assumptions of CCT and D-size (CCT = 

0.5, 0.7, 0.9, D-size = 2, 4, 6, 8, 10, respectively) are investigated. 

 

Figure 4.6. Average results of G and T as a function of number of Nrem 

According to Figure 4.6, the changing trends of G and T as Nrem increases are in 

accordance with what was observed previously. There is a noticeable threshold where the 

growth rate of T gets reduced when Nrem exceeds. The thresholds in the changing trend 

of G and the changing trend of T are almost the same, i.e., Nrem is around 20.  

The average results for different Nrem are presented in Table 4.4. Based on Table 4.4, 

average resiliency loss reduces as CCT increases, whereas the impacts of D-size on 

resiliency loss and T do not show a monotonic behavior. 
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Table 4.4. Average of resiliency loss and T for different Nrem 

Resilien
cy 

Loss 
(%) 

D-size 
Avera

ge T 

D-size 
Avera

ge 2 4 6 8 10 2 4 6 8 10 

CCT = 
0.5 11.3 11.

2 
11.
5 

11.
4 10.7 11.2 CCT = 

0.5 2.6 2.
6 2.6 2.6 2.5 2.6 

CCT = 
0.7 10.6 11.

0 
11.
2 

11.
3 11.5 11.1 CCT = 

0.7 2.5 2.
5 2.5 2.6 2.5 2.5 

CCT = 
0.9 11.3 11.

5 
10.
6 

11.
1 10.7 11.0 CCT = 

0.9 2.6 2.
6 2.5 2.6 2.5 2.6 

Average 11.1 11.
2 

11.
1 

11.
3 11.0 11.1 Average 2.6 2.

6 2.5 2.6 2.5 2.6 

 

 

Figure 4.7 Average resiliency loss, G and T over D-size vs. Nrem under four restoration 

strategies 

Figure 4.7 presents the average resiliency loss, G and T over different D-size 

assumptions  (D-size = 2, 4, 6, 8, 10) for three CCT (CCT = 0.5, 0.7, and 0.9) for the four 

restoration strategies. It can be seen from Figure 4.7 that the largest resiliency loss is 
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obtained by using RR strategy. The smallest resiliency loss, and almost the best system 

connectivity (the biggest G), are achieved by conducting STFR strategy. Whereas the 

longest repair time T is incurred by adopting STFR strategy. The shortest repair time T 

can be achieved by employing HDFR strategy or HLFR strategy. 

4.3.2 Example of ER random network model 

In this section, numeric examples are conducted on ER network models. In order to 

make a comparison with the results obtained from the U.S. top 500 airport network, the 

ER networks used in this work contain 500 nodes and average node degree K of 11.92. 

Note that all the following results from ER networks are averaged over 90 realizations. 

1) Test on random repair strategy: 

First, RR strategy is performed on ER networks. The numerical results of average 

resiliency loss and G are illustrated in Figure 4.8. Scenarios for different CCT and D-size 

are considered, i.e., CCT = 0.5, 0.7, 0.9, D-size = 2, 4, 6, 8, 10, respectively. 
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Figure 4.8. Average results of resiliency loss and G as a function of Nrem 

Considering resiliency loss, it increases as Nrem increases no matter the value of 

CCT or D-size. The incremental speed of resiliency loss increases noticeably when Nrem 

surpasses a threshold. It indicates that the effectiveness of RR strategy on reducing 

resiliency loss decreases when Nrem is large enough to exceed a certain threshold. As for 

G, it declines sharply as Nrem increases initially, while the rate of decline decreases when 

Nrem exceeds a threshold. Note that the thresholds of Nrem regarding the trends of 

resiliency loss and G are almost the same. It means that system connectivity stays the 

same after network efficiency is recovered to the predetermined level, although resiliency 

loss increases as Nrem increases.  

Table 4.5 presents the average results of resiliency loss and T over different Nrem. 
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resiliency loss. T is decreases as CCT increases or D-size decreases. It can be an 

indication that stronger dependence characteristics (either stronger dependence strength 

or larger scale of dependence cluster) impair restoration effects against cascading failures. 

Table 4.5. Average results of resiliency loss and T for different Nrem 

Resilienc
y 

Loss (%) 

D-size Aver-
age T 

D-size Aver-
age 2 4 6 8 10 2 4 6 8 10 

CCT = 
0.5 

14.
8 

16.
0 

16.
1 

16.
1 15.8 15.8 CCT = 

0.5 
10.
4 17.2 18.

4 
19.
6 

20.
1 17.1 

CCT = 
0.7 

13.
0 

13.
5 

13.
4 

13.
6 13.7 13.4 CCT = 

0.7 7.1 7.6 7.9 7.9 7.5 7.6 

CCT = 
0.9 

13.
3 

13.
7 

13.
5 

13.
1 13.5 13.4 CCT = 

0.9 7.6 7.5 7.6 7.1 7.8 7.5 

Average 13.
7 

14.
4 

14.
3 

14.
3 14.3 14.2 Average 8.4 10.8 11.

3 
11.
5 

11.
8 10.8 

 
2) Test on high degree first repair strategy: 

Average results of resiliency loss, G and T vs. Nrem for the HDFR strategy are 

presented in Figure 4.9. According to Figure 4.9, both resiliency loss and T increase when 

Nrem increases, while G decreases as Nrem increases. Table 4.6 shows the average 

results of resiliency loss and recovery resiliency. It should be noted that different D-size 

does not cause a notable difference regarding three measurements under HDFR strategy, 

i.e., there is a significant overlap between the plotted curves obtained from different D-

size. 
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Figure 4.9. Average results of resiliency loss, G and T as a function of Nrem 

Table 4.6. Average resiliency loss and T for different Nrem 

Resilience 
Loss (%) 

D-size Avera-
ge T D-size Avera-

ge 2 4 6 8 10 2 4 6 8 10 
CCT = 

0.5 9.0 9.3 9.2 9.1 8.8 9.1 CCT = 
0.5 2.3 2.4 2.4 2.4 2.3 2.4 

CCT = 
0.7 8.6 8.7 8.8 8.6 8.6 8.7 CCT = 

0.7 2.3 2.3 2.3 2.3 2.3 2.3 

CCT = 
0.9 8.7 8.6 8.7 8.7 8.7 8.7 CCT = 

0.9 2.3 2.3 2.3 2.3 2.3 2.3 

Average 8.8 8.9 8.9 8.8 8.7 8.8 Average 2.3 2.3 2.3 2.3 2.3 2.3 
 
Similar to what was observed previously, the biggest resiliency loss and the largest T 

are obtained with the smallest CCT. It means that weak dependency strength denoted by 

large CCT contributes to high network resilience against cascading failures. 
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3) Test on short time first repair strategy: 

Average resilience loss, G and T with different number of Nrem under STFR strategy 

are presented in Figure 4.10. Different D-size and CCT are considered separately. 

 

Figure 4.10. Average results of resilience loss, G and T as a function of Nrem. Scenarios 

with different CCT and D-size are considered (CCT = 0.5, 0.7, 0.9, D-size = 2, 4, 6, 8, 10). 

Different from the figures obtained from other scenarios, the results presented in 

Figure 4.10 show the remarkable impacts of CCT. Although the changing trends of 

resilience loss, G and T as Nrem increases are consistent with what was observed before, 

it can be clearly seen that larger CCT contributes to larger resilience loss and longer T. 
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Table 4.7. Average resilience loss and T for different Nrem 

Resilienc
e 

Loss (%) 

D-size Aver
-age T 

D-size Aver
-age 2 4 6 8 10 2 4 6 8 10 

CCT = 
0.5 11.5 12.

5 
12.
8 

12.
0 

12.
1 12.2 CCT = 

0.5 
9.
2 

17.
1 

17.
8 

15.
4 

15.
2 14.9 

CCT = 
0.7 10.3 10.

6 
11.
0 

10.
8 

10.
4 10.6 CCT = 

0.7 
6.
3 7.2 7.8 7.5 6.6 7.1 

CCT = 
0.9 10.3 10.

8 
10.
5 

10.
7 9.7 10.4 CCT = 

0.9 6 6.8 6.4 7 5.6 6.4 

Average 10.7 11.
3 

11.
4 

11.
2 

10.
7 11.1 Averag

e 
7.
2 

10.
4 

10.
7 

10.
0 9.1 9.5 

 
The results presented in Table 4.7 illustrate that both resilience loss and T can be 

reduced by increasing CCT, i.e., weakening the strength of dependencies among network 

nodes. Besides, resilience loss, G and T possess the similar relationship with Nrem as 

observed above. Resilience loss and T increase as Nrem increases, whereas G decreases 

as Nrem increases. 

4) Test on high load first repair strategy: 

Finally, HLFR strategy is applied regarding mixed cascading failures. The numerical 

results of average G and T under HLFR strategy are presented in Figure 4.11. The 

changing trends of G and T in Figure 4.11 are similar to what was previously presented in 

Figure 4.9. G decreases while T increases as Nrem increases. We can also observe the 

thresholds regarding the changing rate of G and T once Nrem exceeds. 

 
 



88 
 

 

Figure 4.11. Average results of G and T as a function of Nrem under different CCT and 

D-size 

Table 4.8. Average of resilience loss and T for different Nrem 

Resilience 
Loss (%) 

D-size Aver-
age T D-size Aver-

age 2 4 6 8 10 2 4 6 8 10 
CCT = 

0.5 9.1 9.2 9.1 9.0 8.9 9.1 CCT = 
0.5 2.4 2.4 2.4 2.4 2.4 2.4 

CCT = 
0.7 8.8 8.6 8.6 8.8 8.7 8.7 CCT = 

0.7 2.4 2.3 2.3 2.3 2.3 2.3 

CCT = 
0.9 8.4 8.8 8.6 8.6 8.6 8.6 CCT = 

0.9 2.3 2.3 2.3 2.3 2.3 2.3 

Average 8.8 8.9 8.8 8.8 8.7 8.8 Average 2.4 2.3 2.3 2.3 2.3 2.3 
 
According to Table 4.8, average resilience loss continues to decrease when CCT 

increases, i.e., weaken dependency strength can help to reduce system load loss caused 

by cascading failures. It is consistent with the results obtained in above cases. 
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Figure 4.12 Average resilience loss, G and T over D-size vs. Nrem for three CCT under 

four restoration strategies 

Figure 4.12 presents average resilience loss, G and T for different D-size (D-size = 2, 

4, 6, 8, 10) under four restoration strategies. Based on Figure 4.12, the biggest resilience 

loss is incurred by using RR strategy, while the smallest resilience loss and the shortest T 

are achieved by conducting HDFR strategy or HLFR strategy. The largest G is achieved 

by adopting STFR strategy, whereas the corresponding T and resilience loss is less 

desirable compared with that under HDFR strategy or HLFR strategy. In addition, 

resilience loss and T under RR strategy or STFR strategy are the most undesirable when 

CCT = 0.5. It indicates that the restoration effects of these two strategies are weakened by 

strong dependence strength. 
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4.3.3 Example of BA scale free network model 

Another numerical example is performed on Barabási-Albert (BA) scale-free 

network [134]. BA network model is a widely used model to depict scale-free networks. 

These types of networks have a power-law distribution of node degree. The distribution 

probability that network nodes have degree k is ( ) , 3rP k k r− ≈: . This property has been 

observed in many real-life networks such as power grids, communication networks, and 

the internet [135]. In this work, the adopted BA networks that have the same number of 

nodes and edges with the networks used above (500 nodes and 2980 edges). Note that all 

the following results are average results over 90 simulation realizations. 

1) Test on random repair strategy: 

 

Figure 4.13. Average results of resilience loss, G and T as a function of Nrem 
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Firstly, RR strategy is applied to the BA network. The results of average resilience 

loss, G and T are presented in Figure 4.13. Average resilience loss and T increase while G 

decreases as Nrem increases. The trends are in accordance with the results obtained 

previously. It means that a larger number of initially failed nodes contribute to higher 

resilience loss and longer repair time to recover the system to the predetermined level. It 

can be observed that the growth rate of T and the rate of decline of G dramatically change 

when Nrem exceeds the same threshold.  

Average of resilience loss and T for different Nrem are presented in Table 4.9. 

According to Table 4.9, resilience loss decreases when CCT increases, and the longest 

average T results from the network with the smallest CCT. It can be explained that 

network systems with weak dependency strength, denoted by big CCT, have better 

resilience against cascading failures. 

Table 4.9. Average of resilience loss and T for different Nrem 

Resilienc
e 

Loss (%) 

D-size Aver-
age T 

D-size Aver-
age 2 4 6 8 10 2 4 6 8 10 

CCT = 
0.5 

11.
9 

12.
7 

12.
3 

12.
1 

11.
9 12.2 

CCT = 
0.5 3.5 3.

6 3.5 3.6 3.5 3.5 

CCT = 
0.7 

11.
2 

11.
7 

11.
5 

11.
2 

11.
3 11.4 

CCT = 
0.7 3.3 3.

4 3.3 3.3 3.3 3.3 

CCT = 
0.9 

11.
4 

11.
6 

11.
3 

11.
2 

11.
0 11.3 

CCT = 
0.9 3.3 3.

3 3.3 3.4 3.2 3.3 

Average 11.
5 

12.
0 

11.
7 

11.
5 

11.
4 11.6 Average 3.4 

3.
4 3.4 3.4 3.3 3.4 
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2) Test on high degree first repair strategy: 

 

Figure 4.14. Average results of G and T as a function of number of Nrem 

HDFR strategy is employed on BA networks regarding cascading failures. The 

average results of G and T are shown in Figure 4.14. Similar to what was observed before 

about the changing trends of G and T vs. Nrem, there is a noticeable threshold that the 

decreasing of G and the increasing of T slows down when Nrem surpasses that threshold.  

The average numerical results for different Nrem are presented in Table 4.10. Based 

on Table 4.10, larger CCT leads to smaller resilience loss and shorter T. It is consistent 

with the results obtained from other network cases. 
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Table 4.10. Average results of resilience loss and T for different Nrem 

Resilienc
e 

Loss (%) 

D-size Aver-
age T 

D-size Aver-
age 2 4 6 8 10 2 4 6 8 10 

CCT = 
0.5 

10.
9 

11.
1 

11.
3 

11.
0 

11.
0 11.1 CCT = 

0.5 2.6 2.
6 2.6 2.6 2.6 2.6 

CCT = 
0.7 

10.
6 

10.
9 

10.
1 

10.
4 

10.
5 10.5 CCT = 

0.7 2.5 2.
5 2.4 2.5 2.5 2.5 

CCT = 
0.9 

10.
8 

10.
3 

10.
6 

10.
6 

10.
2 10.5 CCT = 

0.9 2.5 2.
4 2.4 2.5 2.4 2.4 

Average 10.
8 

10.
8 

10.
7 

10.
7 

10.
6 10.7 Average 2.5 2.

5 2.5 2.5 2.5 2.5 

 

3) Short time first repair strategy: 

 

Figure 4.15. Average results of G and T as a function of number of Nrem 

The results of average G and T obtained from using STFR strategy with different 

CCT and D-size are presented in Figure 4.15. G decreases and T increases as Nrem 

increases based on Figure 4.15, whereas the decreasing rate of G and increasing rate of T 
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wane when Nrem exceeds a certain threshold. It can be an indication that the 

effectiveness of STFR strategy is gradually diminished regarding the mixed cascading 

failures caused by a larger number of initially failed nodes.  

Table 4.11. Average of resilience loss and T for different Nrem 

Resilienc
e 

Loss (%) 

D-size Avera
-ge T 

D-size Avera
-ge 2 4 6 8 10 2 4 6 8 10 

CCT = 
0.5 

10.
4 

10.
9 

10.
5 

11.
1 10.9 10.8 CCT = 

0.5 3.5 3.
7 3.6 3.6 3.7 3.6 

CCT = 
0.7 

10.
0 

10.
5 

10.
3 

10.
3 10.2 10.3 CCT = 

0.7 3.4 3.
5 3.4 3.5 3.4 3.4 

CCT = 
0.9 

10.
2 9.9 10.

3 
10.
5 10.2 10.2 CCT = 

0.9 3.3 3.
4 3.4 3.5 3.4 3.4 

Average 10.
2 

10.
4 

10.
4 

10.
6 10.4 10.4 Average 3.4 3.

5 3.5 3.5 3.5 3.5 

  
Corresponding average results of G and T for different values of Nrem are presented 

in Table 4.11. The results in Table 4.11 show that resilience loss decreases as CCT 

increases, and the longest T is achieved with the smallest CCT. It can be explained that 

weak dependency strength, reducing the impacts of failed components on other functional 

ones, leading to less resilience loss due to cascading failures and shorter system repair 

time as well. 

4) Test on high load first repair strategy: 

In the end, HLFR strategy is performed on BA networks with different dependence 

characteristics, i.e., CCT = 0.5, 0.7, 0.9, D-size = 2, 4, 6, 8, 10, respectively. The average 

results of G and T are presented in Figure 4.16. According to Figure 4.16, G decreases 

while T increases when Nrem increases. The changing rates of G and T decrease when 

Nrem exceeds a certain threshold.  
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Average resilience loss and T are presented in Table 4.12. The results shown in Table 

4.12 illustrate that resilience loss is reduced if CCT is increased. It is in accordance with 

the results obtained from the above cases.  

 

Figure 4.16 Average results of G and T as a function of number of Nrem 

Table 4.12. Average of resilience loss and T for all considered Nrem 

Resilience 
Loss (%) 

D-size Aver-
age T D-size Aver-

age 2 4 6 8 10 2 4 6 8 10 
CCT = 

0.5 11.0 11.2 11.0 11.2 10.9 11.1 
CCT = 

0.5 2.6 2.6 2.6 2.6 2.6 2.6 

CCT = 
0.7 10.7 10.5 10.7 10.5 10.6 10.6 

CCT = 
0.7 2.5 2.5 2.5 2.5 2.5 2.5 

CCT = 
0.9 10.5 10.3 10.6 10.4 10.7 10.5 

CCT = 
0.9 2.5 2.5 2.5 2.5 2.5 2.5 

Average 10.7 10.7 10.8 10.7 10.7 10.7 Average 2.5 2.5 2.5 2.5 2.5 2.5 
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Figure 4.17 Average resilience loss, G and T over D-size vs. Nrem under different 

restoration strategies 

Figure 4.17 presents average resilience loss, G and T over different D-size (D-size = 

2, 4, 6, 8, 10) for the four restoration strategies for three different CCT. It can be seen 

from Figure 4.17 that RR strategy leads to the biggest resilience loss, whereas the 

resilience loss resulted from other restoration strategies does not have a remarkable 

difference. It is clear that the largest G is obtained by employing STFR strategy, 

especially, when Nrem is large. For T, the shortest T is achieved by applying HDFR 

strategy or HLFR strategy, whereas it takes longer T for network efficiency to be 

recovered to the predetermined level when using STFR strategy or RR strategy.  

Overall, the average resilience loss, G and T over different dependence 

characteristics, CCT and D-size, for each network system under four different restoration 
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strategies are presented in Table 4.13. It should be mentioned again that the restoration 

process is stopped when network efficiency is recovered to 95% of its initial value in this 

work. 

Table 4.13. Average measurements under four restoration strategies for three network 

systems 

Average 

results 

U.S. top500 airport network ER network BA network 

Resilience 

loss 
G T 

Resilience 

loss 
G T 

Resilience 

loss 
G T 

RR 12.0% 0.954 3.4 14.2% 0.964 10.8 11.6% 0.960 3.4 

HDFR 11.4% 0.954 2.6 8.8% 0.962 2.3 10.7% 0.958 2.5 

STFR 10.8% 0.956 3.4 11.1% 0.966 9.5 10.4% 0.962 3.5 

HLFR 11.1% 0.954 2.6 8.8% 0.962 2.3 10.7% 0.958 2.5 

Average 11.3% 0.955 3 10.7% 0.964 6.2 10.9% 0.960 3 

 
Based on Table 4.13, the following findings can be obtained, 

(1) As the baseline restoration strategy, the biggest resilience loss and the longest total 

repair time T (except for BA network) are obtained by applying RR strategy. 

(2) The shortest total repair time T can be achieved by employing HDFR or HLFR 

strategies. Meanwhile, less resilience loss is obtained when compared with that of the 

RR strategy. However, the smallest G results from applying HDFR strategy or HLFR 

strategy. 

(3) As to STFR strategy, it contributes to the largest LCC and the least resilience loss 

except for ER network, while the total repair time T is longer than that under HDFR 

or HLFR strategy. 

(1) In comparison with the U.S. top 500 airport topology and BA networks, ER networks 
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possess better resilience against mixed cascading failures regarding resilience loss 

and network connectivity after applying restoration strategies. However, it takes a 

longer time for the network system to be recovered to the predetermined level. 

4.3.4 Summary 

In this work, optimal selection of resilience-based restoration against cascading 

failures considering the impacts of network dependence characteristics is performed. 

Dependence clusters are modeled and taken into account for accelerating failure 

propagation, which contributes to mixed cascading failures. Numerical examples are 

performed on the U.S. top 500 airport network structure and synthetic network models 

with employing four restoration prioritization strategies. The impacts of system 

dependence characteristics and their interactions with the effectiveness of restoration 

strategies regarding cascading failures are explored. In order to perform a comprehensive 

evaluation, network resilience loss, caused by cascading failures, is evaluated in terms of 

network load. Two measurements with respect to network connectivity and restoration 

time-efficiency are adopted, and network transmission efficiency is applied to define 

recovery level. 

In summary, strong dependence strength, which may enhance system operation 

efficiency, impairs system resilience against cascading failures because the influence of 

failed components is aggravated. According to the results, larger CCT leads to smaller 

resilience loss, shorter system repair time T no matter which restoration strategy is 

applied. In other words, weak dependence strength also helps to improve restoration 

effects to reduce resilience loss and shorten repair time. However, D-size, which indicates 
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the dependence scale, does not show a monotonic impact on system resilience or 

restoration effects.  

Based on the results, restoration prioritization strategy selection should be carefully 

made according to a specific preference. The best recovery of network connectivity can 

be achieved by applying STFR strategy, while the expected system repair time is longer. 

HDFR strategy and HLFR strategy are the choices if shorter system repair time is 

preferred with an acceptable resilience loss. The results can be useful to provide a basis 

for selecting restoration prioritization strategy regarding resilience enhancement for 

different network systems with specific properties. It also provides insights for 

integrating restoration effects with system dependency impacts to mitigate the intensity 

and extent of cascading failures effectively. 

Since available budgets for restoration investment are limited in reality, budget 

constraints can be incorporated regarding restoration optimization from an economic 

aspect for future research. More restoration strategies can be applied to other real-world 

network systems with different modeling of system dependency and network load 

dynamics. 

4.4  A recovery framework with deep graph learning 

Although efforts have been made to prevent cascading failures, high-impact 

cascading failures still occur for various reasons. One of the main reasons is that a large 

network system comprises many different components. System component importance 

for restoration changes as system structure changes by the ongoing failures. Therefore, 

identifying important system components from the real-time system structure during 

failure propagation and system recovery is critical to allocate limited recovery resources 
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efficiently. However, most current restoration strategies determine restoration priority 

based on a steady or fixed network property.  

Among network topology features, minimum vertex cover (MVC) - a key system 

component/node subset with a minimized number of nodes so that all system edges are 

covered - can be used to identify critical system components in terms of global network 

connectivity importance. MVC has already been applied to different research fields such 

as network security [136], computational biology [137], and text summarization [138]. 

In this section, a recovery framework for system resilience enhancement against 

cascading failures by considering real-time MVC importance is proposed. The 

framework is developed based on quick system MVC identification using structural 

graph embedding technique and deep reinforcement learning (RL)-based graph learning. 

By incorporating MVC into existing restoration strategies, the framework can optimize 

resource allocation during the recovery process by real-time updating restoration priority 

targets. 

4.4.1 Main assumptions 

The mixed cascading failure model proposed in section 3.1 is also applied in this 

work. The sizes of dependence clusters in the network system follows a shifted/scale 

adjusted Poisson distribution, which is described based on Eq. (3.5), and the impact of 

dependence clusters on failure propagation is implemented by CCT. The resilience loss 

metric that is proposed in section 4.2 is adopted to evaluate the restoration effects of the 

recovery work. Network load is also used as Q(t) for calculating resilience loss in terms 

of network load demand and supply capability. The predetermined system recovery level 

is measured by network efficiency, as was described previously. The time to restore the 
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network system to the predetermined level during the cascading-restoration process, T, 

reflects the restoration effects in terms of downgrading operation time. It is obviously that 

shorter T is more desirable. 

For comparison, three different existing restoration strategies with specific 

preferences are employed to restore the network system against cascading failures. (1) 

The high-degree first repair (HDFR) strategy is designed for the repair order assigned 

based on the degree (the number of topological connections) of failed nodes (i.e., this 

strategy has the preference that network nodes with higher node degrees are repaired with 

higher priority). (2) The shortest-time first repair (STFR) strategy assigns the repair order 

according to the required repair time of failed nodes. The restoration prioritizes the failed 

nodes that require shorter repair time. (3) The high load first repair (HLFR) strategy 

prioritizes repair based on the amount of load transmitted through the failed nodes (i.e., 

this strategy has the preference that network nodes that carry higher loads are repaired 

with higher priority). 

Ties, which occur when failed nodes have the same conditions (i.e., degree, required 

repair time, and load), are broken according to the first fail first repair policy. Once 

started, the repair activities of failed nodes do not stop until they are completed. For 

simplicity, it is assumed that the restoration resources are available to complete repairs. 

The number of new repairing activities of failed nodes, which begin at each round of 

inspection for different restoration strategies, is decided by the repair proportion Rp and 

the total number of failed nodes in which repair activities have not yet started at the time 

of inspection. 
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As was mentioned previously, existing restoration strategies with specific 

preferences rarely, if ever, consider component importance changing during the 

cascading-restoration process. Therefore, identifying important components based on 

MVC from the real-time network structure is of practical significance for updating 

restoration priority targets during the recovery process for effective restoration. A 

recovery framework is proposed that can combine real-time MVC importance with other 

preferences according to customers’ desirability (e.g., network transmission importance) 

to restore network system from the cascading failures effectively. Case studies are 

implemented on different network systems to demonstrate the effectiveness of the 

proposed framework. The details of the recovery framework are presented in the 

following sections. 

4.4.2 Deep graph learning for MVC detection  

MVC is an NP (non-deterministic polynomial-time) - hard computational problems, 

which means it requires exponential time algorithms to search for the optimal solution. 

Traditional methods to solve MVC can be divided into three categories: exact algorithms, 

approximation algorithms, and heuristic algorithms. Exact algorithms are based on 

enumeration or linear programming, which have exponential time complexity and are not 

practical for large-scale graphs. Approximation algorithms (if they are available) are 

faster with polynomial time complexity but do not guarantee solution quality and are not 

practically applicable. Heuristic algorithms are fast but do not guarantee solution quality, 

and they require expert knowledge and repeated designs for different problems. RL has 

shown its potential in optimization and management [139], and can be combined with 

graph embeddings to derive an MVC solution efficiently. A state-of-the-art, high-
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performance deep graph analysis environment (OpenGraphGym) [140] is adopted to 

support MVC estimation in a very short period of time to provide a real-time reference 

for restoration priority updates in practice. The OpenGraphGym helps to use several 

graph embeddings to represent graph attributes and features; it adopts several RL 

algorithms for an optimal solution for graph-based programs. Structure2vec graph 

embedding is used [141], and a deep Q learning algorithm is adopted [142] to find an 

optimal solution of MVC (Figure 4.18). 

As shown in Figure 4.18, two major parts of the framework are graph embedding and 

the RL Q function. Two steps are illustrated in the figure. At each step, graph embedding 

takes the graph as the input and produces the embeddings for all nodes in the graph. Then, 

the embeddings for all nodes are sent to the RL Q function. The RL Q function computes 

the scores for all nodes in the graph (shown as q in Figure 4.18). The node with the 

highest score (q2) in the first round is marked and added to the partial solution. In Figure 

4.18, two blue nodes are included in the partial solution. 

 

Figure 4.18. Diagram of the advanced RL-based graph learning for MVC detection. 
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By adding a node to the partial solution at each step, this approach provides a ranked 

MVC solution, which means that early selected nodes in an MVC solution generally 

contribute more to the final optimal MVC solution than late selected nodes. To further 

improve the computational efficiency to deliver a reasonable MVC solution, small graphs 

are used to train an MVC graph agent within the OpenGraphGym that can provide a 

reasonable MVC solution for relatively large graphs, which enables real-time MVC 

detection for real-world large scale networks. This acceleration is valid when the training 

graphs and testing graphs are of the same graph type and degree distribution.  

Because MVC identifies important network nodes from the perspective of global 

network connectivity, the proposed recovery framework combines it with the existing 

restoration strategies with other prioritization preferences for optimal restoration resource 

allocation. In this work, real-time MVC is incorporated with HLFR and STFR, 

respectively. The first/top u percentage of the nodes in MVC (the most vital nodes in an 

MVC optimal solution) is assigned with a high restoration priority. Then, the repairing of 

other failed nodes, which do not belong to these top u percentage of MVC nodes, started 

according to HLFR or STFR. The order to start the repairing activities of the top u 

percentage MVC nodes, if their repairing had not yet started, is assigned based on their 

ranking inside of MVC. The restoration prioritization of MVC in the recovery framework 

is indicated as u. 

The main steps of implementing the recovery framework with real-time MVC 

detection for system restoration prioritization against cascading failures are briefly 

presented as follows: 
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Step 1) All network nodes are initially functional with limited capacity. 

Dependence clusters are created. Detect MVC node set of the network system. 

Step 2) Randomly select nodes to break down because of initial disturbances. 

Step 3) Dependence clusters collapse if CCT is exceeded. Update the network 

structure. 

Step 4) Network loads are dynamically redistributed over the current network 

structure. Overloaded nodes break down. 

Step 5) Failed nodes are arranged to start the repairing activities based on the 

restoration strategy considering MVC importance. 

Step 6) Quickly detect MVC from the current network structure. 

Step 7) Return to Step 3 until system is recovered to the predetermined level. 

The performance of the network system is recorded during the process of cascading 

failures with restoration implementation. 

4.4.3 Case studies 

Two case studies are conducted on a synthetic network structure and on a real-world 

network system structure. The results are presented in the following sections. To prove 

the effectiveness of the proposed recovery framework, three existing restoration 

strategies introduced previously are implemented for comparison. The results under the 

existing restoration strategies are used to compare with results from the MVC-based 

recovery framework. 

4.4.3.1 Experiments with synthetic networks 

In this case study, the mixed cascading failures are performed on BA scale-free 

networks with maintenance implementation. The main assumptions made in the 
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numerical simulation are as follows, the required repair time for failed nodes are 

independent random variables that are uniformly distributed in [1, 4] in terms of 

simulation steps. Each simulation step represents a fixed duration of time. Once started, 

the repairing of a node does not stop until it is completed. CCT is 0.7, i.e., dependence 

clusters instantly collapse once the failed nodes inside exceeds 70%. The maintenance 

process stops when network efficiency is recovered to 95% of its initial value. The 

proportion of total failed network nodes, where repair activities have not yet started, are 

selected to start repairing at each round of inspection, Rp = 0.6.  

The adopted BA network examples have 250 nodes with an approximate edge 

probability of 0.1. To minimize random errors, the cascading failures triggered by 10 

different sets of initial random failures of nodes, for each of which they randomly 

generated a different number of BA network realizations following the specific network 

scale is implemented. The 10 sets of different numbers of randomly initial failed nodes 

(Nrem) are 9, 15, 21, 27, 33, 39, 45, 51, 57 and 63, accounting for about 4 to 25% of the 

total network nodes. 

1) MVC graph agent development and implementation 

To improve computational efficiency, 400 BA graphs of 20 nodes with an 

approximate edge probability of 0.1 is created to train the MVC graph agent. These 

training BA graphs are generated using the function “barabasi_albert_graph” in the graph 

manipulation library networkX [143]. This function can be used to create scale-free 

networks using BA network model [134].  

The trained MVC graph agent is tested on random graphs. For the targeted 250-node 

BA networks with edge probability around 0.1, the agent provided the MVC solution 
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with the average size of 202, whereas the average size of MVC solutions given by a 2-opt 

MVC solver in networkX is around 225. The solution size obtained from the networkX 

solver is theoretically guaranteed to be less than two times the optimal solution size [144]. 

Based on the trained MVC graph agent, MVC is estimated from the real-time BA 

network structure changed by the ongoing cascading failures and maintenance 

implementation. Then, the restoration priority is updated according to the current MVC 

and the other maintenance preference.  

2) Results and discussion  

MVC is combined with HLFR and STFR, respectively, to perform the proposed 

recovery framework to dynamically update the maintenance priority. The parameter u, 

which determines the top percentage of MVC nodes that have high maintenance priorities, 

are top 10%, top 30%, top 50% of the nodes in MVC, respectively. Figure 4.19 presents 

the average resilience loss and T vs. Nrem in BA networks under the proposed recovery 

framework and three existing restoration strategies. The presented results under the 

existing restoration strategies for each Nrem correspond to an average of over 90 network 

realizations. The results under MVC-based recovery strategies are averaged over 20 

realizations. Scenarios with different D-size are also considered, i.e., D-size = 4, 8, 12, 16, 

respectively. The curves shown in Figure 4.19 are averaged over the results of the 

scenarios with the four values of D-size. 
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Figure 4.19 Average results of resilience loss and T as a function of Nrem for the 

proposed recovery framework vs. existing restoration strategies 

As shown in Figure 4.19, resilience loss increases as Nrem increases because a larger 

number of nodes randomly selected as initial failures would trigger more dramatic 

cascading failures, which leads to more damage to the system performance. STFR shows 

better maintenance effects on reducing resilience loss than those of HDFR and HLFR. 

MVC+STFR presents the best maintenance effects on mitigating resilience loss, and 

MVC+HLFR performs better than HLFR. T also increases as Nrem increases, which is 

consistent with the changing trend of resilience loss, ℜ(𝑇𝑇). Restoring network system 

takes more time from the cascading failures caused by a larger v to the predetermined 

level. The longest T is incurred using STFR, and the shortest T is achieved with HDFR or 

HLFR. The MVC-based recovery framework clearly shortens T when compared with the 
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corresponding existing restoration strategies. Additionally, the threshold can be observed 

from the changing trend of T as Nrem increases. The growth rate of T decreases when v 

exceeds a certain threshold. Table 4.14 presents the average results of T and resilience 

loss for different scenarios under the existing restoration strategies and the proposed 

recovery framework incorporating MVC. 

Table 4.14: Average results under different restoration strategies 

Restoration strategy Average T Average resilience loss (%) 

HDFR 3.7 14.10 
HLFR 3.7 14.03 

MVC+HLFR 3.6 13.69 
STFR 4.8 12.49 

MVC+STFR 4.5 12.23 
 

According to Table 4.14, MVC+STFR, which combining global network 

connectivity importance with repair time preference, performs better than STFR. 

MVC+HLFR, which considers the importance of global network connectivity and 

transmission capability, has better restoration effects than HLFR. These results indicate 

that the proposed recovery framework updating the restoration priority by incorporating 

real-time MVC importance with other restoration prioritizations has better maintenance 

effects on reducing resilience loss and shortening T than the existing strategies. 

4.4.3.2 Experiments with the US Top 500 airport network 

Disruptions of air transportation systems, caused by events, such as extreme weather 

and attacks, can lead to huge economic losses [145]. Studies have been conducted on the 

robustness of air transportation networks subject to interruptions [146, 147]. A case study 

is conducted on the US top 500 airport network with the largest amount of traffic from 

publicly available data [133]. This real-world network system consists of 500 nodes and 

2,980 edges. Network nodes denote airports, and edges represent air routes between 
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airports. Mixed cascading failures and restoration are implemented into this system to 

investigate the maintenance effects of different strategies. Figure 4.20 depicts the US top 

500 airport network using the visualization tool Gephi [140]. The darker colors represent 

the nodes with more significant degrees. Some hub nodes have larger degrees than other 

nodes. 

 

Figure 4.20. Visualization of the US top 500 airport infrastructure network 

1) MVC graph agent development and implementation 

1,000 training networks by randomly removing a part of the nodes from the original 

airport network is generated. The number of nodes in the training networks ranged from 

300 to 480 based on the observation of the number of functional nodes in the system 

during the recovery process. The number for different sizes of training networks is 

presented in Table 4.15. 
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Table 4.15 The percentage of training graphs with different sizes 

Number of nodes Percentage of the networks accounted for 
total training networks (%) 

480 40 
460 10 

440 10 
420 10 
400 7.5 
380 7.5 
360 5 
340 5 
320 2.5 
300 2.5 

 
The average size of the MVC solution found by the trained agent (around 234) is 

better than that from the 2-opt solver in the networkX library, which is 294. 

The maintenance actions are implemented once the cascading failures are triggered. 

MVC is calculated from the real-time BA network structure during the recovery process 

based on the trained MVC agent. Then, restoration priority targets are updated according 

to the current MVC and the other maintenance preference that is considered. 

2) Results and discussion 

Similar to the previous case study, the values of parameter u are set to be top 10%, 

30%, 50%, respectively, for simulation in this case study. Figure 4.21 shows the average 

resilience loss ℜ(𝑇𝑇) and T vs. Nrem for the proposed recovery framework and three 

existing restoration strategies. The results shown in Figure 4.21 under each Nrem are 

averaged over the results of 90 network realizations for each existing restoration strategy, 

whereas the results under the recovery framework considering MVC are averaged over 

10 realizations because it is a fixed network topology. To reduce the bias result from 

network dependency, scenarios with different D-size (D-size = 4, 8, 12, 16, respectively) 

are considered, and the results are averaged for these different scenarios regarding D-size. 
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Figure 4.21. Average results of resilience loss and T as a function of Nrem for different 

restoration strategies 

Similar to what is observed from the results on BA networks, resilience loss ( )Tℜ  

and T increase as Nrem increases in the airport network. Figure 4.21 shows that the 

difference between the maintenance effects of different restoration strategies regarding 

resilience loss are not as large as those in BA networks. However, the restoration 

strategies that incorporate MVC importance (i.e., MVC+STFR and MVC+HLFR) still 

contribute to less resilience loss in most of the Nrem. A shorter T is achieved by applying 

HDFR, HLFR, and MVC+HLFR. A longer T is needed for network efficiency to be 

recovered to the predetermined level when applying STFR, whereas T is shortened with 

MVC+STFR. 
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It also can be seen from Figure 4.21 that the growth rate of T is reduced when v 

exceeds a noticeable threshold. The threshold of v in the changing trend of T is around 20 

(i.e., about 4% of the total network nodes). This finding is in accordance with the results 

in [148] under different repair strength and dependency strength. It indicates the 

robustness of the US top 500 airport network to cascading failures regarding recovery 

time. Table 4.16 presents the average results regarding D-size for different scenarios 

under the existing restoration strategies and the proposed recovery framework 

incorporating MVC. 

Table 4.16: Average results under different restoration strategies 

Restoration strategy Average T Average resilience loss (%) 

HDFR 4 13.11 
HLFR 4 12.83 

MVC+HLFR 4 12.71 
STFR 6 12.36 

MVC+STFR 5.5 12.19 
 

Based on Table 4.16, HLFR and STFR show better maintenance effects when 

considering global connectivity importance based on MVC detection, which is consistent 

with the results presented in Figure 4.16. 

4.4.4 Summary  

In this work, a network recovery framework that updates restoration priority targets 

based on the changing importance of system components during the process of cascading 

failures and restoration is presented. The recovery framework incorporates global 

network connectivity importance represented by MVC to existing restoration 

prioritization strategies to optimize the restoration priority at each round of inspection. 

Efficient MVC calculation from the updating network structure is the key step, and a 
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desirable solution through OpenGraphGym with graph embedding and deep 

reinforcement learning is provided. 

Case studies are conducted on BA networks and the US top 500 airport network by 

employing the proposed recovery framework against cascading failures. MVC estimation 

is incorporated into two existing restoration strategies with different restoration 

prioritization weights. Restoration effects in terms of resilience loss regarding network 

load and recovery time are remarkably improved by considering real-time MVC in the 

restoration prioritization strategy, which demonstrates the effectiveness of the proposed 

recovery framework.  

This work supports the necessity and significance of updating the restoration priority 

based on the importance of system components during system recovery. The recovery 

framework can be applied to other real-life network systems in the next work and will 

include monetary costs and benefits to make a real-world optimization problem. To make 

the framework more practical, quick detection of MVC in a large network system is one 

direction of the future work. How to determine the importance of MVC during joint 

restoration prioritization remains an unexplored question, which is complicated by 

extending to a general network topology. This question will be another direction of future 

research. 

5 Resilience enhancement with optimal backup energy system 

Power systems with solar photovoltaic (PV) arrays combined with battery storage are 

becoming increasingly used because of their capability of working in power island mode, 

especially during power grid outages, to provide backup energy for customers. Thus, PV 

+ battery system, as an example of DER, can be installed as a hardening measure to 

 
 



115 
 

enhance the resilience of electricity system subject to cascading failures. Although a 

battery has many advantages, its current price is still relatively high when compared with 

that of other types of energy storages. In this work, the benefit of installing PV + battery 

system as a hardening measure to help customer access electricity when grid outage 

occurs is explored. Both power resilience and economic factors are taken into account in 

order to obtain optimal solution. The impacts of the changing trends of some important 

factors, for example, battery price, on system optimization to achieve resilience and 

economic benefits are also investigated. 

5.1 Economic and resilience benefit of incorporating battery to photovoltaic array 

First, the research focuses on optimizing battery sizes for PV + battery systems with 

given solar arrays, i.e., solar array is already installed. The optimal investment on battery 

storage is to make the backup system provide power resilience economically. 

5.1.1 Problem formulation and main assumptions 

An optimization method based on PV + battery system operation simulation during 

grid interruption is developed to investigate the effects of battery size on system output 

reliability level of meeting load demand with minimum cost. The main variables and 

parameters considered in the optimization problem are as follows: 

1) System total cost (STC), which is the objective of the optimization problem that 

needs to be minimized. It has two parts, investment cost of adding a battery, and 

loss of load cost which is the incurred cost of unsatisfied load demand of 

customers. 

2) Solar irradiation variation, which represents the solar radiation input of solar PV 

array. In this part, real solar insolation data of hourly GHI [149] (global 
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horizontal irradiance, combining both direct and scattered light hitting a level 

local reference plane) is taken into account. 

3) Load demand variation, which is the electricity usage demand of customers. 

Actual data of load demand of specific model facilities from [150] are applied in 

this part. 

4) Loss of load probability (LOLP), which is calculated as the proportion of time 

when load demand of facilities cannot be met by PV + battery system during grid 

outage. It is adopted as one of the reliability metrics for the electricity supply of 

PV + battery system, which has already been used by some researchers to 

develop sizing algorithms to minimize system cost [151, 152].  

5) Chance constraint probability (CCP), which is estimated as the proportion of grid 

outages in which the LOLP constraint is satisfied by the islanding operation of 

the PV + battery system with a specific battery size, i.e., an estimate of the 

probability that the LOLP constraint can be met by the PV + battery system 

energy supply during system outage. 

The optimization problem is to minimize system total cost incurred when a PV + 

battery system works in an island mode during grid outage. The corresponding 

optimization formulation is present as follows [153]. 
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The objective function consists of two items, Brb which represents battery 

investment cost and 
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∑ ∑ ∑  which denotes the net present 

value of total cost of unsatisfied load demand during grid failure. Br is battery capacity 

(kWh), and Pb denotes battery price ($/kWh). VOLL is the penalty cost of lost load 

($/kWh), which is a typical monetary expression for the costs caused by electricity 
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interruptions [154, 155]. Ty is the planning time horizon in years, and r is the discount 

rate. Nk is the random set of outages in year k, while Okj is the random set of time 

intervals for outage j in year k. tkji denotes the ith time interval for the jth outage in year k. 

Time is a discrete parameter in the formulation with increments of Δt, which means one 

hour in this formulation. 

Eq. (5.1) presents the amount of load demand, AEL(tkji), which is not satisfied by the 

PV + battery system at time tkji. Bmin is minimum battery energy value (kWh). QB(tkji) is 

the energy stored in battery (kWh) at time tkji. P(tkji) is the power generated by PV array 

(kW) at time tkji. D(tkji) is load demand (kW) at time tkji. e represents the efficiency of 

discharging/charging process of battery. If the load demand for an outage hour is fully 

satisfied by the PV + battery system, there is no loss of load cost for this hour. However, 

if the hourly load demand is not fully satisfied, then it is assumed that the whole demand 

for this hour is lost. Eq. (5.2) presents the change of energy stored in battery over a short 

time period Δt due to power generation of PV array and load demand of facilities. It 

describes the energy balance of the PV + battery system, and many previous methods are 

proposed based on this topic [156]. Eq. (5.3) denotes the energy produced by the PV 

array at time tkji. η is the energy conversion efficiency of PV array. I(tkji) is solar 

irradiation (W/m2) at time tkji. A is PV array area (m2). Eq. (5.4) denotes how Bmin is 

calculated with DoD, which is the abbreviation of the maximum depth of discharge of a 

battery (%). Eq. (5.5) defines the calculation of LOLP of each grid outage and the 

expected value of LOLP, which indicate the islanded generation reliability of the PV + 

battery system. β is the upper bound for the expected value of LOLP. LOLPkj is defined 

as the proportion of time when load demand of customers cannot be met by PV + battery 
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system during the jth grid outage of year k. Eq. (5.6) presents the definition of CCP, 

which incorporates the LOLP constraint for each grid outage. The LOLP constraint for 

each grid outage is limited to be not more than γ. 1 – τ denotes the minimum desired CCP. 

It is apparent that the smaller τ, β and γ are, the stricter power supply reliability 

constraints are. 

Like other industrial systems, the life cycle of a PV + battery system should be taken 

into consideration when analyzing cost-benefit problem. Whereby, the investment of 

battery is designed for 20-year operation of a PV + battery system in the simulation 

model [157], i.e., decisions for the PV + battery system are made considering 20 years of 

operation, and the corresponding loss of load cost is accumulated for these 20 years. It 

should be noted that loss of load cost in each year is calculated as the present value with 

discount rate of 4% in order to be considered as one part of objective function, because 

the investment of battery is at the beginning of the first year. 

Three metrics are used to evaluate the islanding capability of the PV + battery system 

from both economical and reliability perspectives, system total cost, CCP and system 

achieved LOLP. System achieved LOLP denotes the actual expected LOLP achieved by 

islanding mode of PV + battery system during 20 years of operation. CCP and system 

achieved LOLP together represent the reliability level of the PV + battery system power 

supply during grid outages. Note that each curve shown in the following figures are the 

average results over 100,000 simulations. 

It is assumed that grid outage duration follows a shifted or scale adjusted Poisson 

distribution in which the duration is larger than 0, and the expected outage duration is 

approximately equal to CAIDI. The number of outages per year equals to SAIFI. Note 
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that CAIDI is applied with the unit of hours in this section. The starting time of a grid 

outage is assumed to be uniformly distributed throughout a year. It is also assumed that 

VOLL is uniformly distributed in a specific range, which is determined based on the 

criticality of facilities. The value of VOLL is randomly selected within a range because 

the economic impact of each outage varies depending on the specific functions or unique 

characteristics of different facilities. 

5.1.2 Simulation process 

The main procedures of time series simulation of PV + battery system working in 

island mode during grid outage are shown in Figure 5.1. The main steps of the proposed 

simulation method are described as follows, 

Step 1) Select the values of random parameters, i.e., the starting time of each grid 

outage, outage duration and number of grid outages each year.  

Step 2) Incrementally enumerate and evaluate for all considered array sizes. 

Step 3) Incrementally enumerate and evaluate for all simulations of grid outages. 

Step 4) The hourly electricity generation of PV array during the outage is 

calculated based on solar irradiation data. 

Step 5) The VOLL is chose in a specified range for each grid outage.  

Step 6) Simulate the charging and discharging process of the battery over outage 

duration. The amount of lost load and the associated cost are then computed. 

Step 7) Return to Step 3. 

Step 8) Compute STC and reliability metrics (i.e., system achieved LOLP and 

CCP) for the specific array size. 

Step 9) Return to Step 2. 
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Figure 5.1. Diagram of the main simulation steps 

5.1.3 Numerical examples and analysis 

In this section, numerical examples are performed based on the simulation-based 

optimization method. A hospital facility, subject to grid interruption and served only by 

the PV + battery system during outage, is selected for demonstration purposes. The 

hospital is located in Islip, Long Island, NY, U.S.  

The existences of natural and unavoidable variabilities of some realistic factors that 

are associated with PV + battery system operation have been analyzed by some 

researchers [158, 159]. Here the impact of an important factor, battery price, on optimal 

battery sizing of PV + battery systems is explored. Furthermore, sensitivity analysis of 

the relationship between STC and power supply reliability of the PV + battery system is 
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carried out. 

1) Case study 

For the following numerical examples, the current battery price equals 162 $/kWh 

[160]. VOLL is within the selected 90% confidence-level (CL) range of (5 $/kWh-25 

$/kWh), which is based on the expectation of VOLL level in 2030 [161]. The solar 

radiation profile and load profile of the facilities that used in this part are for Islip, Long 

Island, NY, U.S. [149, 150]. It is commonly assumed that the generator efficiency 

remains constant [162], here the PV array conversion efficiency is set to be 16% [163]. 

Efficiency of the battery charging/discharging process is set to be 85%, and DoD is 70%. 

Values of CAIDI and SAIFI are 8.23 and 1.17 for the Long Island, NY area [164]. 

The analysis is performed first on the hospital application. The selected, model 

hospital is a large (average load demand is 1,138 kW) and critical facility, so VOLL for 

this facility is selected between 22 $/kWh and 25 $/kWh. The constraint for system 

achieved LOLP is set to be 10%. The optimization model is to determine optimal battery 

size for a PV array that has already been selected or installed. Here three specific solar 

array sizes, 200 m2, 5200 m2 and 10,200 m2 are considered with battery capacities 

ranging from 200 kWh to 20,000 kWh. It should be noted that each grid outage is 

considered to be independent. 
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Figure 5.2. Probability distributions of hourly PV generation and demand power through 

an entire year 

Figure 5.2 shows the probability distributions for hourly energy generated by the PV 

array and hourly load demand vs. the fraction of hours in a year that experience less PV 

energy generation or less load demand. As the labeled dots show, the probability that a 

randomly chosen hourly PV generation from the largest PV array size of 10,200 m2 is 

less than 730 kW is about 83%, while the probability that a randomly chosen hourly 

demand power is less than 730 kW is around 4%. Thus, the hourly energy generated by 

the three considered solar array sizes can rarely satisfy the hourly load demand. Note that 

since there is no sunlight during night, there is an approximately 50% probability that a 

randomly chosen PV hourly energy generation is 0 kWh. 
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Figure 5.3. Proportion of outage hours when load demand is satisfied by different PV + 

battery systems through all simulated grid outages 

Figure 5.3 presents the simulation results that the proportion of outage hours when 

load demand is satisfied by the PV + battery system as a function of battery capacity 

under three considered PV array sizes. As it can be observed, the increasing trend of each 

curve can be divided into three different stages. Stage 1 shows the initial sharp increasing 

trend of the curves. This sharp increase can be explained that the proportion of outage 

hours when load demand is satisfied increases remarkably if a battery is added to a PV 

system. The larger the battery capacity, the higher the proportion of outage time when 

load demand is satisfied. According to Figure 5.2, the maximum hourly load demand for 

this hospital is 1,554 kW. Thus, if the battery capacity exceeds 1,554 kWh, the fully 

charged battery alone can provide enough energy for a single hour outage, whereas 

smaller batteries might fail to do this unless the solar array output is large enough to fill 

the gap for the first hour (and perhaps successive hours). Then stage 2 comes as battery 
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capacity increases, which shows a reasonably stable linear relationship between battery 

capacity and the proportion of outage hours when load demand is satisfied. When battery 

capacity goes beyond the battery capacity corresponding to the lowest STC, the growth 

trend of the curves becomes flatter. The proportion of outage time when load demand is 

satisfied finally goes up to near 100 % as battery capacity continues to increase, which 

denotes stage 3. 

 

Figure 5.4. The enlarged view of initial part of curves in Figure 5.5 

The initial part of Figure 5.3 is illustrated in an enlarged view in Figure 5.4, which 

highlights the change of slope after battery capacity becomes large enough to meet 

average hourly load demand. Besides, generation of the increasing sized solar array 

compensates for batteries that are not big enough. 
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Figure 5.5. Total cost for islanding operation of PV + battery systems with different 

battery capacities and array sizes 

STC is graphed in Figure 5.5 which shows the three distinct stages as well. In stage 1, 

it can be seen that STC for the cases with 200 m2 and 5,200 m2 array sizes actually 

increases when a small battery is added to the PV system. It is attributed to the large 

difference between load demand and PV energy generation as shown in Figure 5.2. As it 

can be seen from Figure 5.4, until battery capacity goes up to around 900 kWh for the 

array size of 200 m2 and 400 kWh for the array size of 5,200 m2, the proportion of outage 

time when load demand is satisfied stays at 0%. Thus, the addition of a small battery does 

not help to noticeably reduce the unsatisfied load demand, and the increasing investment 

of battery contributes to a higher system total cost. After battery capacity exceeds these 

threshold values (as it is shown in Figure 5.4), the proportion of outage time with 

satisfied demand increases as battery capacity increases, and the obtained significant 

reduction of unsatisfied load demand drives system total cost down sharply. Considering 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Battery Capacity (kWh) 10
4

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Sy
st

em
 T

ot
al

 C
os

t (
$)

10
6

Array: 200 m
2

Array: 5200 m
2

Array: 10200 m
2

Stage

2

Stage

3

Stage

1

X: 1.199e+04

Y: 2.762e+06

X: 1800

Y: 3.236e+06

Optimal battery

capacities based on

10% LOLP constraint

 
 



127 
 

the case with 10,200 m2 array size, the initial system total cost without investment of 

battery (i.e., only loss of load cost incurred) is much smaller than that of other two cases, 

since the PV system with an array size of 10,200 m2 alone can approximately satisfy the 

load demand of 4% of the outage time. According to Figure 5.4 and Figure 5.5, the 

increasing battery capacity continually decreases system total cost in stage 1 for this 

large-array case.  

Considering an array size of 5,200 m2 as an example, after the battery capacity 

exceeds the threshold value of 1,800 kWh, it enters into stage 2, where the decreasing 

rate of system total cost slows down and there is a linear trend as battery capacity 

increases. It corresponds to the stage 2 indicated in Figure 5.3, where the proportion of 

outage time when load demand is satisfied increases linearly with the increase of battery 

capacity. After the battery capacity exceeds about 12,000 kWh, as it is labeled in Figure 

5.5, it comes to stage 3, where the increasing investment cost of adding more battery 

capacity leads to a higher system total cost instead. This is because increasing battery 

capacity in stage 3 does not increase the proportion of outage hours when load demand is 

satisfied as efficiently as it does in stage 2, as it is shown in stage 3 in Figure 5.3.  

Table 5.1. Total cost of PV + battery system operation in island mode with combination 

of battery and array sizing 

System total cost (× 𝟏𝟏𝟏𝟏𝟔𝟔$) 
Array size (m2) 

200 5,200 10,200 

Battery Capacity (kWh) 

200 3.54 3.54 3.31 
10,250 3.11 2.77 2.48 
11,990 3.09 2.75 2.52 
12,480 3.08 2.76 2.54 

Note: Values in bold are the lowest system total cost corresponding to each PV array size. 

Table 5.1 presents the system total cost for the three considered array sizes and the 
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battery capacities which correspond to the lowest system total cost for each specific array. 

The smallest battery tested (200 kWh) is also included as this nearly represents the 

baseline lost-load system cost as a comparison. Based on the results in Table 5.1, it can 

be observed that the lowest system total cost for a given PV array size decreases as the 

PV array size increases, and the corresponding battery capacity decreases as well. This is 

because a larger PV array generates more electricity (subject to the sunlight variability), 

which contributes to less loss of load cost leading to a lower system total cost and a 

smaller required battery capacity to address power needs during an outage. All of these 

minimum cost battery/array configurations yield substantial financial savings compared 

to the baseline. The optimal battery capacities satisfying 10% LOLP constraints are also 

labeled in Figure 5.5, which, for the present scenario, are larger than the battery 

capacities corresponding to the lowest system total cost. 

 

Figure 5.6. Chance constraint probability for islanding operation of PV + battery system 

with different array sizes 
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Table 5.2. Chance constraint probability of PV + battery system islanding operation with 
different combinations of battery and array sizing 

Chance constraint probability (%) 
Array size (m2) 

200 5,200 10,200 

Battery Capacity (kWh) 
10,250 18.32 26.90 40.63 
11,990 28.92 40.84 54.65 
12,480 32.69 44.95 58.57 

Note: Values in bold are chance constraint probabilities corresponding to each scenario with the lowest 
system total cost. 
 

It can be seen from Figure 5.6 that the optimal battery capacities which meet the 10% 

LOLP constraint are larger than the battery capacities which achieve the lowest system 

total cost. Higher chance constraint probabilities, which indicate more reliable islanding 

energy supply of PV + battery systems, could also be achieved with these optimal battery 

capacities. 

 

Figure 5.7. Achieved LOLP for islanding operation of PV + battery system with different 

array sizes 
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Table 5.3. Achieved LOLP of PV + battery system islanding operation with combination 

of battery and array sizing 

System achieved LOLP (%) 
Array size (m2) 

200 5,200 10,200 

Battery Capacity (kWh) 
10,250 33.95 25.67 19.46 
11,990 25.39 17.86 12.95 
12,480 23.09 16.02 11.44 

Note: Values in bold are system achieved LOLP corresponding to each scenario with optimal system total 

cost. 

The upper labeled dots in Figure 5.7 are system achieved LOLP corresponding to the 

lowest system total cost. System achieved LOLP denotes the real LOLP achieved by 

islanding mode of PV + battery system during grid outage. The optimal battery capacities 

which meet the 10% LOLP constraint are also highlighted in the figure, which (in this 

case) are larger than the battery capacities achieving the lowest system total cost. 

2) Impact of battery price 

This analysis is performed by exploring the scenario of a decrease in battery price, 

while other parameters stay the same as they are used before. Results are shown in Figure 

5.8 to 5.10, which are compared with the figures obtained in the above case study section.  

The impact of battery price is investigated in terms of system total cost, chance 

constraint probability and system achieved LOLP. Battery price is changed from 162 

$/kWh (the current price) to 74 $/kWh (a forecasted price, which comes from Bloomberg 

New Energy Finance for 2030 [160]). For the following Figure 5.8 to 5.10, Figures 5.8 

(a), 5.9 (a) and 5.10 (a) are obtained by using the current battery price (162 $/kWh) while 

Figures 5.8 (b), 5.9 (b) and 5.10 (b) are obtained by adopting the forecasted battery price 

(74 $/kWh). 
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The simulation results presented in Figures 5.8 to 5.10 show the difference in system 

total cost, chance constraint probability and system achieved LOLP caused by a likely 

future reduction in battery prices. 

 

Figure 5.8. Total cost for islanding operation of PV + battery system with different array 

sizes vs. battery capacity for the case of current battery price 162 $/kWh (a) and the case 

of forecasted battery price 74 $/kWh (b) 
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Figure 5.9. Chance constraint probability for islanding operation of PV + battery system 
with different array sizes vs. battery capacity for the case of current battery price 162 

$/kWh (a) and the case of future battery price 74 $/kWh (b) 

 

Figure 5.10. Achieved LOLP for islanding operation of PV + battery system with 

different array sizes vs. battery capacity for the case of current battery price 162 $/kWh (a) 

and the case of future battery price 74 $/kWh (b) 
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The simulation results showed in Figures 5.8 to 5.10 illustrate the effect that battery 

price has on system total cost and system power supply reliability. The change in terms of 

system total cost is clear, as it can be seen from Figure 5.8. The system total cost figure, 

shown in Figure 5.8 (b), becomes less symmetrical, and the lowest system total cost is 

achieved for larger battery capacities compared to the previous case shown in Figure 5.8 

(a). Chance constraint probability corresponding to the lowest system total cost with PV 

array size 10,200 m2 changes from 40.63% to 78.88%. System achieved LOLP with the 

lowest system total cost changes from 19.46% to 5.41%. The most important thing to 

notice in Figure 5.10 (b) is that the battery capacities corresponding to the lowest system 

total cost are actually the optimal battery capacities based on the 10% LOLP constraint. 

The reason for these changes can be found in the definition of system total cost in the 

formulation. System total cost consists of two parts, investment cost of battery capacity 

and loss of load cost.  Investment cost of battery capacity decreases as the battery price 

decreases, which means system total cost depends more on loss of load cost than before, 

so the need to meet the demand becomes more urgent. 

3) Sensitivity analysis 

A sensitivity analysis has also been conducted in terms of system total cost and the 

two reliability metrics. The relationship between every 1% decrease of system achieved 

LOLP (or 1% increase of chance constraint probability) and the corresponding change of 

system total cost has been investigated, i.e., how system total cost changes (higher or 

lower) is examined while the reliability performance of the system is improving. One 

specific array size is taken as an example. Figure 5.11 and Figure 5.12 are provided to 

demonstrate sensitivity analysis results. 
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Figure 5.11 shows the results of sensitivity analysis of system total cost vs. system 

achieved LOLP. An example of how Figure 5.11 should be interpreted as the following. 

The circle point (13, 12,490) indicates that a positive cost increase of $12,490 will be 

incurred if system achieved LOLP decreasing from 13% to 12% is desired because more 

battery capacity would need to be purchased. 

 

Figure 5.11. Sensitivity analysis of cost change and achieved LOLP 

Figure 5.12 (a) shows the results of sensitivity analysis of system total cost and 

chance constraint probability. An important characteristic that can be observed from both 

Figure 5.11 and Figure 5.12 (a) is the presence of cross points, i.e., points where the 

system reliability improvement is accompanied with a decrease in system total cost. That 

is justified by simultaneously looking at Figure 5.12 (a) and Figure 5.12 (b). 
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Figure 5.12. (a) Sensitivity analysis of cost change and chance constraint probability. (b) 

System total cost vs. battery capacity 
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the simulation results obtained from different facilities might be compared. A necessary 

assumption here is that the facilities under comparison should have a reasonably similar 

load profile throughout the whole year. 

The comparison is extended to add three other facilities to test the extension of the 

proposed method. An illustration of the above-mentioned procedure is given in Figure 

5.13, by presenting the simulation results from four different types of facilities. The 

considered facilities are a hospital, a large hotel, a primary school, and a small office all 

located in Islip, Long Island, NY, U.S., though they each have different load profiles and 

VOLL significance. 

 

Figure 5.13. Scaled system total cost vs. battery capacity/average hourly load demand 

(kWh/kW) for all four facilities 
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total cost for each facility is distinct, the scaled optimal battery capacity for each facility 

is quite similar. Therefore, by using the procedure described in this section, decision-

makers could quickly make comparisons between a reference facility and a facility of 

their interest with a given PV + battery system from output reliability and economic 

perspectives. 

Overall, the finding shows that the decline of battery price not only reduces the 

lowest system total cost but also improves islanded system generation reliability. The 

proposed methodology for optimizing battery capacity added to PV array systems can 

make them grid-outage resilient and economically viable, which can be utilized as a 

decision-making tool for future PV + battery system expansion. 

Based on the preliminary results, following are my current research contributions: 

1) A mixed cascading failure model is proposed, which can be applied to properly 

simulate the cascades in network systems, like power grids, caused by load 

dynamics and node dependency. Moreover, statistical distributions are used to 

establish dependence clusters of network nodes for the modeling of node 

dependency, which is consistent with real-world functioning networks. 

Consequently, the proposed model can be used as a basis for analyzing cascading 

failures and their impacts on network system performance, which provide a better 

understanding of the process of failure propagation in real-life networked systems. 

2) The effects of different restoration strategies regarding restoration strength are 

evaluated based on system resilience loss during the process of mixed cascading 

failures. How system dependency, which is described by multiple dependence 

characteristics, influences the effects of restoration actions against cascading 
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failures is also investigated. Accordingly, optimal system restoration strategies for 

system resilience enhancement by effectively reducing the intensity and extent of 

cascading failures can be designed for specific real-world network systems. 

3) A mathematical model has been formulated to optimize battery capacity for a PV 

+ battery system starting with a given PV array size in the face of grid outage. 

Moreover, a simulation-based optimization method has been developed according 

to the mathematical model. Based on the proposed approach, the optimum system 

is able to meet load demand of facilities during grid outage for a certain reliability 

level with minimal cost. As a result, the presented methodology is helpful for 

future design of grid outage-resilient PV + battery systems from both economical 

and reliability perspectives. 

5.2 Interplay between storage investment and resilience loss considering economic 

trends 

In this section, the influence of battery price and VOLL, affecting PV + battery 

system optimal sizing, are explored from power supply resilience and economic 

perspectives. A case study which considers a PV + battery system working in island 

mode following a grid outage is modeled, according to a simulation-based optimization 

method [153]. The findings can be used for the future optimal design of PV + battery 

systems taking into account the trade-off between the impact of battery price and VOLL. 

5.2.1 Methodology 

First, the modeling of power grid outages is introduced. The rigorous mathematical 

formulation of PV + battery system optimization regarding energy supply resilience 
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during grid outages is presented. Then the simulation-based method to implement system 

optimization and main assumptions are presented. 

5.2.1.1 Grid outage modeling 

It is necessary to introduce the approach used for modeling grid outages. Firstly, Nk is 

defined as a random set of all grid outages that occurred in year k, while Ojk is defined as 

a random set of all discrete time intervals of grid outage j in year k. Time, with 

increments of Δt, is a discrete variable in the formulation. Therefore, tijk denotes the ith 

time interval for the jth outage in year k. Finally, the indicator function ( )δ ijkt  shows 

whether the demand at the ith time interval for the jth outage in year k is satisfied or not. It 

takes the value of 1 when the demand is lost for the corresponding time interval, while it 

is 0 in the opposite case. 

Furthermore, it is assumed that the duration of the jth grid outage in year k, Tjk, is a 

random variable, following a scale adjusted Poisson distribution in which Tjk > 0. 

Therefore, the total grid outage time in year k is
k

jk
j N

T
∈
∑ . K denotes the planning time 

horizon in years, so the cumulative outage time during the planning horizon is 
1 k

K

jk
k j N

T
= ∈

∑ ∑ . 

Based on the definition of ( )δ ijkt , the outage time with unmet load demand in year k can 

now be defined as ( )
k jk

ijk
j N i O

t tδ
∈ ∈

∆∑ ∑ , while the cumulative outage time with unmet load 

demand can be defined as 
1

( )
k jk

K

ijk
k j N i O

t tδ
= ∈ ∈

∆∑ ∑ ∑ . Similarly, the unmet load demand in year 

k is ( ) ( )δ
∈ ∈

∆∑ ∑
k jk

ijk ijk
j N i O

t ∆ t t  where D(tijk) is the demand, and the cumulative unmet load 
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can be calculated as 
1

( ) ( )δ
= ∈ ∈

∆∑ ∑ ∑
k jk

K

ijk ijk
k j N i O

t ∆ t t . Meanwhile, the starting time of each 

simulated grid outage is assumed to be uniformly distributed throughout the year. 

In this work, CAIDI and SAIFI data are also applied to model power grid outages. In 

order to be consistent with real-world cases, grid outages are modeled based on CAIDI 

and SAIFI as follows: 

{ }CAIDI, , 1, 2,3,...,jk kE T j N k K  = ∀ ∈ ∈   

{ }SAIFI, 1,2,3,...,kE N k K  = ∀ ∈   

kN  = number of grid outages in year k 

The expected time duration of a grid outage equals CAIDI, while the expected 

number of grid outages per year equals SAIFI. 

5.2.1.2 System optimization formulation 

The problem formulation is presented in this section. The objective is to minimize 

TSC, including battery investment combined with the cost of unsatisfied customer 

demand when the PV + battery system works in the island mode during grid outages (for 

as long as the available battery charge allows). In the proposed model, there are 

constraints for energy balance, energy generation and the reliability metrics, i.e., LOLP 

and CCP. 

The formulation of the PV + battery optimization problem, which is an extension of 

the model presented by Zhou et al., [153] is illustrated as follows, 

1
min (1 ) ( ) ( )

k jk

K
k

r ijk ijk
k j N i O

B b VOLL r t D t tδ−

= ∈ ∈

+ + D∑ ∑ ∑

 
{ }s.t. ( ) ( ) , , , 1, 2,3,...,ijk ijk jk kP t I t A i O j N k Kη= ∀ ∈ ∈ ∈                                                (5.7) 
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( )min 1rB B DoD= −                                                                                                  (5.8) 

{ }1( ) , , 1, 2,3,...,= ∀ ∈ ∈B jk c r kQ t I B j N k K                                                          (5.9) 

{ } ( )

( )

( )

( )

min

( 1)

min

min ( ) ( ) , , if ( ) ( ) ( )

( ) ( ) ( ) ,
( )

if ( ) ( ) ( )

, if ( ) ( ) ( )
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ljk

ljk

ljk
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ljk

ljk

ljk

t t

B ljk ljk r B ljk pt

t t
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B l jk t t

B ljk p rt

t t

r B ljk pt
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∫

∫

∫ rB


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

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


>
 

{ } { }' ', , 1,2,3,..., where maxjk k jk jk jkl O j N k K O O O∀ ∈ ∈ ∈ = −                                 (5.10) 

( ) min1, if ( ) ( ) ( )
( )

0, otherwise
δ

+∆ + − <= 


∫
ljk

ljk

t t

B ljk pt
ijk

Q t P u C ∆ u e δu B
t                                   (5.11) 
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{ } 1

1

1, if
Pr , where

0, otherwise
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β γ λ= ∈
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k j N jk
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                (5.13) 

{ }, 1,2,3,...,kj N k K∀ ∈ ∈ , min 0, 0, 0 , , 1α β γ≥ ≥ ≤ ≤rB B  

The objective function consists of two different terms. The first term, rB b , refers to 
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the battery investment cost. The second term, 
1

(1 ) ( ) ( )
k jk

K
k

ijk ijk
k j N i O

VOLL r t D t tδ−

= ∈ ∈

+ D∑ ∑ ∑ , 

refers to the present value of the cost of lost load demand of customers during grid 

outages. These two terms of the objective function compose TSC, which needs to be 

minimized. The objective function is stochastic due to the random sets Nk and Ojk 

involved in the second term. As mentioned earlier, Nk is the random set of grid outages 

for year k and Ojk is the random set of time intervals of outage j for year k. It should be 

noted that this stochastic problem is transformed to be solvable by minimizing the 

expected value of the stochastic cost objective. More specifically, the transformation was 

done by calculating the estimated expected values instead while using the proposed 

simulation-based optimization method and numerous iterations. Concerning the grid 

outage modeling adopted in this work, CAIDI and SAIFI are used as the expected values 

of the duration of a grid outage and the number of outages per year, respectively. Thus, 

based on the grid outage modeling method described in section 5.2.1.1, it is possible to 

calculate the outage time with unmet load, the amount unmet load itself and the 

associated penalty costs of unmet load. 

The first constraint determines the energy generated by the PV array at time tijk. The 

second constraint denotes the calculation of minB  based on DoD. The third constraint 

defines the amount of energy stored in the battery at the beginning of each outage, where 

Ic is used to decide the initial charging state of the battery. It depends on several realistic 

factors, for example, self-discharge of a battery (%/month), which is an important feature 

of a battery. For the case of a lead-acid battery, it is equal to 2-5%/month, while for 

lithium-ion battery, self-discharge is 1%/month [165]. The fourth constraint focuses on 
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the energy balance of PV + battery systems during grid outages. It describes the change 

of energy stored in the battery over a short time period Δt due to battery charging from 

PV array generation or battery discharging to satisfy the load demand of customers. 

When a PV + battery system islands during an outage, non-critical load demand of 

facilities may be shed, so the PV + battery system only needs to meet the proportion of 

critical load demand, which is denoted by Cp [166]. The fifth constraint presents the 

condition under which the indicator function δ(tijk) equals 1 or 0, which indicates whether 

the load demand at time tijk is lost or not. The sixth constraint indicates the reliability of 

the islanding generation of the PV + battery system, with α as the upper bound for the 

expected value of LOLP. LOLPjk is defined as the proportion of time when load demand 

of customers cannot be met by PV + battery system during the jth grid outage for year k. 

The definition of CCP is given in the seventh constraint, which incorporates the LOLP 

constraint. 

The simulation-based optimization approach that proposed in section 5.1.2 is used 

here to solve the problem. Based on the proposed approach, optimal battery capacity 

combined with a predetermined PV array can be obtained. The simulations are conducted 

under different combinations of battery price and VOLL in order to investigate the 

interplay between them. Different battery capacities are evaluated from both economic 

and reliability aspects according to the simulated grid outages.  

To obtain the expected values of stochastic functions used in the analyses, it is 

necessary to introduce some new notation. S denotes the total number of simulated grid 

outages. Gs is the random simulated set of time intervals for the sth simulated outage and 

tis is the ith time interval of the sth simulated outage. Cs and LOLPs are the cost of lost 
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load and loss of load probability corresponding to the sth simulated outage. Note that in 

the simulation model Δt = 1 hour, but it could be any other incremental value. The 

estimators for the expected values of the cost of lost load, LOLP and CCP, which is 

defined as the probability that the LOLP constraint is satisfied, regarding the simulated 

grid outages are presented as follows: 

[ ] ( ) ( )1ˆ , where
s

S

s
s

s is is
i G

C
E C VOLL C t D t

S
δ=

∈

= =
∑

∑                                         (5.14) 

[ ] 1

( )
ˆ , where s

S

iss
i Gs

s
s

tLOLP
E LOLP LOLP

S G

δ
∈== =
∑∑

                                         (5.15) 

[ ] { } 1 1, ifˆ P̂r , where
0, otherwise

S

s
ss

jk s

LOLP
E CCP LOLP

S

λ β
β λ=

≤
= ≤ = = 



∑
    (5.16) 

Other important assumptions are made as follows, the efficiency of PV array 

conversion in the simulation, η, is assumed to be 16% [167]. The efficiency of battery 

charging/discharging process, e, is assumed to be 85% and DoD is 70%. As to the 

reliability constraints of this problem, α is set to be 0.13, β is 0.2 and γ is assumed to be 

0.7. Because of the intended use of battery storage as an energy backup system for 

facility electrification, it should be classified as an energy-oriented and long-duration 

battery storage system [161]. For all the above reasons, discharging the battery is not 

allowed during normal grid operation, which apparently leads to 1=cI , i.e., the battery is 

considered fully charged at the starting time of each outage. Because of the criticality of a 

hospital as a test case, Cp is set to be 80%, which determines the proportion of critical 

load demand of hospital that needs to be met during grid outages. 
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5.2.2 Case study 

A hospital is an excellent and insightful test case to serve as the facility to implement 

the proposed mathematical model. During the design of energy backup systems, the 

criticality of buildings is one of the most significant independent variables because it 

dictates the strictness of the system modeler. Therefore, the high-reliability standards 

required for the operation of a hospital and the high penalty costs for unmet load demand 

make this specific facility a good test case. In this case study, the adopted CAIDI and 

SAIFI are 8.23 hours/interruption and 1.17 interruptions/year for the Long Island, NY 

area [164], where the actual historical solar irradiation data and the hospital load profile 

are selected [149, 150]. NREL provides data for a typical meteorological year (TMY), 

which are exactly the data used in this case study for the entire 20-year planning horizon.  

5.2.2.1 Main assumptions 

Battery price and VOLL are the most significant parameters of the proposed model. 

Moreover, the anticipated decline in battery price could even be accelerated in the near 

future, for example, the second life of electrical vehicle batteries [168]. To consider price 

fluctuations and variations, it is assumed that battery price is varying within the range of 

20 $/kWh to 220 $/kWh in the simulation. In addition, VOLL is varying within the 

selected 90% confidence level (CL) range of 5 $/kWh to 25 $/kWh, which is based on the 

expectation of VOLL level in 2030 [161].  

For the purposes of research, a 2-way factorial experimental design is used and 

analyzed, with battery price and VOLL being the two factors. In total, 11 distinct VOLL 

values and 11 distinct battery prices are considered, which means that an 11x11 factorial 

design with a total of 121 treatments is applied. The measurements are the battery 
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capacities required for the optimal TSC, the actual optimal TSC, the expected LOLP, and 

the CCP, which are obtained from 1,000 independent simulation runs for each treatment. 

Convergence analysis has been done to determine that 1,000 is the proper simulation 

number for each combination of VOLL and battery price to obtain the representative 

aggregated values. For instance, the standard deviation for optimal TSC is $853.29 and 

for the expected LOLP is 0.0063 in the constrained scenario when battery price is 60 

$/kWh and VOLL is 17 $/kWh. The photovoltaic array size considered in the analysis is 

6,000 m2. 

The problem is analyzed under two different scenarios, which are defined as follows:  

1) The unconstrained case, in which the optimal TSC corresponds to the minimum 

TSC of the PV + battery system, without imposing any reliability criteria or constraints. 

2) The constrained case, in which the optimal TSC is the minimum TSC of the PV + 

battery system which also satisfies all the reliability criteria of the problem. 

The distinction between the two scenarios is noticeable. Because the battery sizes 

contributing to the unconstrained optimal TSC are different from that contributing to the 

constrained optimal TSC unless the former ones are also able to satisfy the reliability 

constraints.  

Figures 5.14 to 5.21 are 3D figures (presented in subfigures (a)) and contour figures 

(presented in subfigures (b)) of the experiment results regarding the two factors, i.e., 

battery price and VOLL, being indicated in the horizontal axis and vertical axis, 

respectively. In the third axis, the presented variables are the battery size, TSC, the 

expected LOLP, and the CCP, respectively. 
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5.2.2.2 Results and discussion 

First, the unconstrained case with optimal TSC is conducted. Then the optimal TSC 

in the constrained case is presented, as they are defined before.  

1) Unconstrained scenario 

The results shown in Figures 5.14 to 5.17 correspond to the unconstrained case 

where the optimal TSC is achieved. Battery capacities that contribute to the unconstrained 

optimal TSC under different combinations of battery price and VOLL are shown in Figure 

5.14 a) (3D figure), and Figure 5.14 b) (2D figure with contours). In Figures 5.15 to 5.17, 

the horizontal and the vertical axes are the same with Figure 5.14, but the third axes are 

the TSC, the expected LOLP and the CCP, respectively. Figures 5.14 to 5.17 are 

presented in pairwise comparisons, which is easy to be interpreted individually. 

 

Figure 5.14 a). Battery capacity for the unconstrained scenario as a function of battery 

price and VOLL 
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Figure 5.14 b). Contours corresponding to Figure 5.14 a) 

 

Figure 5.15 a). Optimal TSC for the unconstrained scenario as a function of battery price 

and VOLL 
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Figure 5.15 b). Contours corresponding to Figure 5.15 a) 

 

Figure 5.16 a). Expected LOLP for the unconstrained scenario as a function of battery 

price and VOLL 
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Figure 5.16 b). Contours corresponding to Figure 5.16 a) 

 

Figure 5.17 a). CCP for the unconstrained scenario as a function of battery price and 

VOLL 
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Figure 5.17 b). Contours corresponding to Figure 5.17 a) 

 
An important observation from Figure 5.14 a) is that the battery capacities, which are 

required for the optimal TSC, increase when battery price decreases or when VOLL 

increases. As can be observed, the required optimal TSC increases when battery price 

decreases from 200 $/kWh to 40 $/kWh with the same VOLL of 15 $/kWh or when VOLL 

increases from 9 $/kWh to 21 $/kWh with the same battery price of 120 $/kWh. These 

results are in agreement with previous findings [153] that lower battery price leads to a 

larger required battery to achieve the optimal TSC. When Figure 1a) is analyzed together 

with Figure 5.14 b), a big plateau is noticeable in the region of low values of VOLL and 

high values of battery price. This plateau clearly indicates that if it is more affordable to 

allow demand lost during grid outages than to invest batteries, only small batteries are 

required for optimal TSC in the unconstrained scenario. 

In Figure 5.15 a) it can also be observed that the optimal TSC increases when the 

battery price and/or VOLL increases, which is actually in accordance with what would be 
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expected. However, an important feature of Figure 5.15 b) is that in the upper-left part, 

the change rate of the optimal TSC with respect to battery price is much greater than that 

of the optimal TSC with respect to VOLL. Noticing the lower-right of Figure 5.15 b), the 

change rate of the optimal TSC with respect to battery price becomes smaller than that of 

the optimal TSC with respect to VOLL. This phenomenon can be explained by observing 

Figures 5.14 a) and 5.14 b). When it is economical to invest in batteries, the optimal 

battery capacities are close to the upper limit required by the facility load profile and 

outage statistics and are independent of the VOLL. It leads to the similar investment cost 

and outage costs, which is not the case when battery investment costs become higher. 

According to Figure 5.16 a), the expected LOLP corresponding to the optimal TSC 

decreases only when battery price decreases or VOLL increases. On the contrary, it can be 

observed from Figure 5.17 a) that the CCP shows the opposite behavior. Nevertheless, 

the most interesting feature that should be highlighted is the two plateaus that exist in 

Figures 5.16 a) and 5.16 b). The first one, which occupies the high VOLL and low battery 

price area, indicates that it is cost-effective to invest in bigger batteries to achieve a very 

low expected LOLP. The other plateau, found in the low VOLL and high battery price 

area, shows the opposite results. If the penalty cost of lost demand is low while the 

batteries are expensive, it is preferable to endure lost demand during outages instead of 

investing more in battery storage. These two plateaus can also be observed in Figures 

5.17 a) and 5.17 b) but in different and opposite regions. The CCP is very high when it is 

economical to invest in battery storage and simultaneously expensive to afford the lost 

demand during outages, while the CCP becomes very low when the opposite conditions 

are considered. 
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2) Constrained scenario 

The results shown in Figures 5.18 to 5.21 correspond to the case where the optimal 

TSC is achieved while adhering to the predetermined reliability constraints. Battery 

capacities that contribute to the constrained optimal TSC with different combinations of 

battery price and VOLL are shown in Figure 5.18 a) (3D figure) and Figure 5.18 b) (2D 

figure with contours). In Figures 5.19 to 5.21, the horizontal and the vertical axes are the 

same as Figure 5.18, but the third axis of these figures is the constrained optimal TSC, the 

expected LOLP, and the CCP, respectively. 

 

Figure 5.18 a). Battery capacity for the constrained scenario as a function of battery price 

and VOLL 
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Figure 5.18 b). Contours corresponding to Figure 5.18 a) 

 

Figure 5.19 a). Optimal TSC for the constrained scenario as a function of battery price 

and VOLL 
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Figure 5.19 b). Contours corresponding to Figure 5.19 a) 

 

Figure 5.20 a). Expected LOLP for the constrained scenario as a function of battery price 

and VOLL 
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Figure 5.20 b). Contours corresponding to Figure 5.20 a) 

 

Figure 5.21 a). CCP for the constrained scenario as a function of battery price and VOLL 
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Figure 5.21 b). Contours corresponding to Figure 5.21 a) 

Figure 5.18 a) indicates that for battery prices higher than 100 $/kWh, the required 

battery capacities for the optimal TSC have very small variations among them. This fact 

is independent of the VOLL. Furthermore, the battery capacity that is required to achieve 

the optimal TSC increases negligibly as VOLL increases, for example, when VOLL 

increases from 9 $/kWh to 21 $/kWh with the battery price of 120 $/kWh. 

Figures 5.19 a) and 5.19 b) present the most consistent and smoothest trend among 

all figures. In Figure 5.19 b), the change rate of the optimal TSC with respect to battery 

price is greater than the change rate of the optimal TSC with respect to VOLL. However, 

the latter rate of change becomes greater in the high battery price area. 

Finally, the big plateau appearing in Figures 5.20 a) and 5.20 b) should be compared 

with the plateau in Figures 5.18 a) and 5.18 b). When it is expensive to invest in a battery 

and the economic losses of load demand are relatively low, the required battery capacities 

barely satisfy the reliability constraints. When compared with Figure 5.18 a), it can be 

20 40 60 80 100 120 140 160 180 200 220

Battery Price ($/kWh)

5

10

15

20

25

V
O

LL
 ($

/k
W

h)

 
 



158 
 

observed that the PV + battery systems with the lowest TSC can also satisfy the 

predetermined LOLP constraint when battery price is low. It denotes that the decline of 

battery price not only decreases the lowest TSC but also enhances system output 

capability in island mode because the system planner can afford to buy a larger battery 

for the system. Conclusions extracted from the existing plateau in Figures 5.21 a) and 

5.21 b) are consistent with the previous results observed in Figures 5.18 and 5.20. In the 

region where battery price is high, the CCP constraint is almost tight for the system with 

optimal battery size. Similarly, it can be observed in the plateau of Figure 5.18 a) that 

when it is not cost-efficient to invest in battery storage, the systems with optimal battery 

capacities can barely satisfy the CCP constraint. Lastly, for the same region, the expected 

LOLP is very close to its upper limit, as it can be seen in Figure 5.20 a). 

3) Discussion 

Besides the general conclusions described above, it would be valuable if the obtained 

results are interpreted from a more specific scope of the hospital. It means that the 

attention should be given to the high VOLL and the low battery price based on the 

forecasted decline in battery prices [169]. Furthermore, the discussion only focuses on 

Figures 5.18 to 5.21, which correspond to the constrained cases where a relatively strict 

LOLP constraint is satisfied. This is supported by the high priority that resilience 

possesses in critical facilities, like a hospital. The results obtained from the two scenarios 

are provided in Tables 5.4 and 5.5: 
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Table 5.4 Results of optimal TSC and corresponding batteries under the two scenarios 

 Optimal TSC (×105 $) Corresponding batteries (×103 kWh) 

($/kWh) Unconstrained 
scenario Constrained scenario Unconstrained 

scenario Constrained scenario 

VOLL 
b 9 15 21 9 15 21 9 15 21 9 15 21 

120 9.96 14.42 16.27 13.8 14.87 16.34 1.51 7.54 9.4 10.05 9.94 10.1 
200 11.12 16.86 22.11 22.53 23.24 24.37 0.20 1.51 2.99 10.34 10.14 10.03 

 
Table 5.5 Results of system achieved expected LOLP and CCP corresponding to 

optimal TSC in the two scenarios 

 Expected LOLP System achieved CCP 

($/kWh) Unconstrained 
scenario Constrained scenario Unconstrained 

scenario Constrained scenario 

VOLL 
b 9 15 21 9 15 21 9 15 21 9 15 21 

120 0.76 0.26 0.15 0.13 0.13 0.13 0.02 0.43 0.64 0.70 0.70 0.70 
200 0.99 0.77 0.63 0.13 0.13 0.13 <0.01 0.02 0.06 0.70 0.70 0.70 

 
It can be seen from Tables 5.4 and 5.5 that optimal TSC obtained in the constrained 

scenario is higher than that in the unconstrained scenario. The corresponding batteries in 

the two scenarios show a similar difference. It indicates that in order to meet the 

predetermined reliability constraints, i.e., LOLP ≤ 0.13 and CCP > 0.7, in the constrained 

scenario, larger batteries should be installed which contribute to higher TSC. Note that 

the expected LOLP and system achieved CCP in Tables 5.4 and 5.5 are the same under 

the considered battery price and VOLL in the constrained scenario. It is because when it is 

more affordable to endure the economic losses of lost load demand than to invest in a 

large battery, the battery capacities required for the optimal TSC are small, a fact that 

forces the system to barely satisfy the given reliability constraints. 

There is a pressing need to install relatively large batteries for such critical 

applications, as can be observed in Figure 5.18 a). This trend is expected to remain the 

same or even to be intensified in the future when battery prices decrease, which makes 
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energy storage systems more cost-efficient. However, there is also great potential ahead 

because when battery investment costs decrease, the corresponding TSC can be 

anticipated to be reduced accordingly, as Figures 5.19 a) and 5.19 b) suggest. To further 

strengthen this argument, it can be concluded that the forecasted changing trend of 

battery price would also bring positive influence on system resilience. As Figure 5.20 a) 

illustrates, the system designer would be able to decrease the budget and also enhance the 

energy system resilience. 

To summarize, there are some interesting relationships among the contour trends 

shown in Figure 5.18 and Figures 5.20 to 5.21, which are collectively presented in Figure 

5.22. 

 

Figure 5.22. Comparison among battery capacity, expected LOLP and CCP for the 

constrained case 
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critical contours in Figure 5.22 a): the required battery is close to 11,000 kWh; b): the 

expected LOLP is close to 0.1; and c): the CCP is close to 0.75.  

Table 5.6 Selected points in three critical contours with the same battery price and VOLL 

in Figure 5.22 

Evaluation Metrics  Figure 5.22 a) 
(kWh) Figure 5.22 b) Figure 5.22c) 

[Battery price, VOLL] 
[40,9] 10890 0.095 0.787 

[100,21] 11090 0.103 0.756 
[120,25] 11030 0.093 0.794 

 
The impacts of VOLL and battery price on the required batteries, the expected LOLP, 

and the CCP become insignificant after exceeding the critical contours. The explanation 

for this phenomenon is that there are specific combinations of VOLL and battery price, 

upon which the battery capacities that contribute to the optimal TSC make both the 

expected LOLP and the CCP constraints not binding. It indicates that even lower TSC can 

be achieved with the desired system islanding output reliability. 

4) Analysis of variance (ANOVA) 

In this section, a linear regression model is fit using VOLL and battery price as the 

independent variables, and the TSC for the unconstrained case as the response variable. 

The purpose is to prove the significance of these two parameters and their interaction in 

determining the unconstrained optimal TSC. In Table 5.7, a summary of an ANOVA 

Table for estimated coefficients of the linear model is presented. 

Table 5.7 Estimated coefficients of the linear regression model 

 Estimate Standard Error tStatistic p-Value 
Intercept 5.76e+5 68,072 8.45 <0.01 

VOLL -9,207.7 4,181.6 -2.2 0.02963 
Battery price -1,239.5 501.83 -2.47 0.01495 

VOLL × Battery price 509.6 30.827 16.531 <0.01 
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The ANOVA Table shows some interesting and conclusive results. The p-value for 

both linear terms and the interaction term, i.e., VOLL, battery price, and VOLL × Battery 

price is lower than a significance level of 0.05. The findings regarding the main effects of 

VOLL and battery price are expected by considering the previous results because both 

factors are apparently of high significance. The analysis of variance provides strong 

evidence that both terms play a crucial role in the final output. Moreover, the R-squared 

is 0.946, which clearly indicates that the linear model is indeed a good model choice. 

The interaction between these two factors requires a more thorough investigation. 

There is interplay between the impact of VOLL and battery price on system optimal 

configuration, and the ANOVA table demonstrates this in a most convincing way. 

Figures 5.23 and 5.24, which refer to the unconstrained scenario, are shown as follows to 

illustrate the inter-relationship. It can be observed that the optimal TSC is higher with a 

higher VOLL. Besides, the slope of a curve that is obtained with a specific VOLL 

increases as VOLL increases, i.e., the optimal TSC increases faster as battery prices 

increase with a larger VOLL. It indicates that the effect that the optimal TSC decreases as 

battery price decreases becomes stronger for a higher VOLL. We can also see that the 

optimal TSC stabilizes after battery price exceeds a threshold, as shown in Figure 5.23. 
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Figure 5.23. Optimal TSC for the unconstrained case as a function of battery price 

 

Figure 5.24. Optimal TSC for the unconstrained case as a function of VOLL 
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increases as battery price increases, i.e., the optimal TSC increases faster as VOLL 

increases with a larger battery price. It denotes that the effect that the optimal TSC 

increases as VOLL increases becomes stronger for a higher battery price. After VOLL 

exceeds a threshold, the increasing trend of VOLL does not notably impact the TSC. 

The noticeable difference of changing trends of TSC as battery capacity changes 

caused by the change of VOLL can be observed from Figures 5.25 a) and c). It shows that 

investing in battery storage can actually reduce TSC when VOLL is high. While it 

becomes less economically viable to install batteries as battery price increases. 

 

Figure 5.25. TSC as a function of battery capacity with different VOLL and battery price 

It can be seen from Figure 5.25 that TSC for the cases with the battery capacity of 

1,000 – 2,000 kWh actually increases when VOLL is small and battery price is high. It is 
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as well as the penalty cost of unsatisfied load, while the investment of battery contributes 

to a higher total system cost. After battery capacity exceeds the threshold values around 

1,000 to 2,000 kWh, the proportion of outage time with satisfied demand increases as 

battery capacity increases, and the obtained significant reduction of unsatisfied load 

demand drives total system cost down sharply. 

Similarly, there is a distinct difference between the changing trends of TSC observed 

in Figs. 5.25 b) and d), which is attributed to the change in battery price. VOLL influences 

if it is cost-effective to invest in battery storage, especially when battery price is high. It 

can be concluded that high VOLL drives TSC up no matter how large battery is invested. 

It is clearly shown in the analyses that the future decline in battery price will 

crucially affect applications where the associated value of lost load is high. Consequently, 

it is necessary to combine the latter result with the interaction that exists between value of 

lost load and battery price for future optimization of PV + battery system. Although in 

general it is observed that higher value of lost load results in higher total system cost, it is 

also showed that this relationship becomes weaker as the battery price decreases. This 

finding brings great potential for all kinds of applications especially for applications 

whose energy backup systems need to be highly reliable and efficient.  

Section 4 presents the research work about optimal resilience-based restoration 

selection against cascading failures. Section 5 investigates the impacts of system 

hardening by investment of backup energy system against grid outages. These two parts 

of work are separately considered when performing optimization. Therefore, it leads to a 

further research direction: integrated optimization of system hardening and restoration for 

resilience enhancement against cascading failures. This research focus on the decision 
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making considering the total cost about system investment, restoration cost and economic 

loss caused by system disturbances simultaneously. This work is presented in section 6. 

6 Joint optimization of system hardening and restoration 

In this section, an optimization framework is proposed against cascading failures in 

network systems by jointly optimizing system hardening and system restoration strategies 

regarding resilience enhancement and economic benefits. Traditionally, system hardening 

or design and restoration actions are employed sequentially. In this work, an integrated 

optimization approach is developed to solve the problem with the objective function that 

minimizes total cost, including hardening cost, restoration cost and economic loss caused 

by cascading failures. 

In this work, system hardening planning refers to the actions that are conducted 

before the occurrence of system disruptions, such as natural disasters or man-made 

hazards [170]. For example, the deployment of hardening or prevention resources, such 

as fire and chemical protection facilities, can provide hazard control in the early stages of 

fire and leakage of dangerous goods at transportation stations. Access of system 

component characteristics, such as operation and service information, is helpful for 

hardening resources allocation, which can mitigate system vulnerability and reduce the 

potential loss by quickly returning system to normal operations after a failure. System 

hardening planning is related to diverse factors, such as component hardening priority, 

component recovery time and system information availability. The foundation of 

reasonable allocation of hardening resources is to identify important system components.  

System restoration actions, involving many factors, such as repairing prioritization 

and repair crew planning, which impact restoration efficacies, are usually performed after 
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the occurrence of system disruptions. Restoration actions, as post disruption responses, 

aim to reduce the impact of system disruptions and restore the system back to the desired 

performance.  

Most of current research focuses on either hardening planning optimization or 

restoration measure optimization [108, 153, 171-173]. For example, system hardening 

decisions in redundancy allocation problem are made independently from restoration 

measures. However, there are interplays between the effects of system hardening 

measures and that of restoration measures, especially considering the uncertainty 

associated with system disruptions. Hardening measures are designed to prevent system 

failure from happening or mitigate the losses caused by potential risks. Proper 

deployment of hardening resources, such as security resources and hot standby equipment, 

can reduce the failure of alternative equipment or shorten its recovery time, which 

provides better external conditions for restoration implementation. While the effect of 

restoration actions on reducing the influence of system disruptions is impacted by distinct 

pre-disruption hardening planning. Therefore, the interaction between system hardening 

and restoration should be considered in order to integrate them for effectively reducing 

system damage caused by system disruptions with uncertainty. 

In this section, the proposed optimization framework is applied to the modelled 

electricity system which is subjected to the mixed cascading failures proposed in section 

3.2. The influence of cascading failures in power generation and transmission system on 

local customers through population centers is explored. The impacts of multiple system 

characteristics, such as system dependency and system load level, on the effectiveness of 

system hardening and restoration actions are also investigated. Except for resilience loss 
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metric ( )tℜ , other measurements regarding system reliability and system performance, 

such as CCP and system connectivity G, are applied to evaluate the efficacy of integrated 

hardening and restoration. Different system hardening strategies and restoration strategies 

are taken into consideration against failure propagation. The application of the integrated 

optimization approach is tested and validated on the network systems subjected to 

different disruptions in numerical examples. 

6.1 Combined optimization of hardening and restoration incorporating resilience 

benefits 

In this section, system hardening actions combined with restoration measures are 

optimized to mitigate the impacts of cascading failures triggered by different system 

disruptions. In real cases, the budget for system hardening investment and restoration 

measures is limited. For hardening planning, investment cost includes cost of adding 

redundant components, cost for obtaining information of system characteristics and 

failure events, and cost of DER installation for energy system, etc. As to restoration 

actions, the related cost includes cost of maintaining repair crews. System damage and 

other adverse impacts of cascading failures usually lead to economic loss. CCP constraint 

with respect to resilience loss ( )tℜ  is incorporated into the objective function. In this 

way, the combined optimization of system hardening and restoration can meet the desired 

resilience requirement with economic viability. 

The electricity system model introduced in section 3.2 is applied as the targeted 

network system in this work. The resilience-based problem is to determine the optimal 

integrated system hardening measures and restoration measures with minimum total cost, 

which includes cost of restoration exertion, cost of information acquisition for hardening 
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and cost of damage caused by cascading failures. System disturbances with uncertainty 

due to unplanned variation or changing operating conditions emerge during real-world 

system operation. The problem is subject to CCP requirements regarding resilience loss 

constraints for scenarios with different disturbances. The disturbances can be represented 

by a random vector U, where 1 2( , ,..., )kU U U=U  include k different disturbance factors, 

such as disturbance type and severity, with uncertainties. Different scenarios in terms of 

disturbance would impact system hardening and restoration optimization results. 

In the following case studies, initial system disruption severity is the only 

disturbance factor used to separate scenarios. 1 2( , ,..., )lu u u=u , where ul is a determined 

level of initial system disturbance severity in scenario l. To be more specific, initial 

system disruption severity is evaluated by the number of initially failed system 

components. It should be noted that the initially failed system components may result 

from random internal failures or external disturbances in real cases. More initial system 

component failures means a more severe disturbance which tends to trigger more 

dramatic system failure propagation. 

6.1.1 Problem formulation 

The problem is to jointly optimize system hardening and restoration measures with 

economic viability, i.e., minimizing investment cost and economic loss. Resilience 

constraints are predetermined for different scenarios. Firstly, the components of the 

objective function in the optimization problem are introduced as follows, 

 

1) Hardening cost 
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Access of system component information, for instance system component work-load, 

is helpful to deploy prevention resources which can reduce the potential of component 

failure and shorten the recovery time of the component when it fails. As to the electricity 

system model, there is investment cost of collecting the information of customers 

connected to the system component in the power transmission system. It determines the 

level of customer information available to the system component. As mentioned above, 

with the availability of customer information, the corresponding system component can 

be hardened up to a certain level. In this work, system component hardening is able to 

reduce the component initial failure probability and shorten its recovery time. Therefore, 

more customer information accessed, which requires more information investment cost, 

leads to better system component hardening. The hardening cost for scenario i is defined 

as follows, 

( )( )
1

, ( ) ,
c

i

K
in ino
i i d dk k

d O k
C u n C

ϕω

ϕ ω ρ
∈ =

Φ = ∑ ∑ρ     (6.1) 

( ), ( )ϕ ωΦ ρ  is the set of available hardening measures for decision makers. Decision 

variable φ denotes a particular hardening strategy, which ranks system components based 

on their importance with a prioritization preference. ρ(ω) denotes the vector that contains 

the specific hardening level for each considered component, i.e., the level of customer 

information available to the corresponding component. In this work, the hardening level 

accociated with hardening information cost decides the reduction of initial component 

failure probability and the reducion of component repair time. ω denotes the percentage 

of highly ranked system components by hardening strategy that are considered for 

hardening. ρd denotes the hardening level of node d, 0 1dρ≤ ≤ . iOϕω  is the set of highly 
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ranked nodes that are considered for hardening in scenario i based on the hardening 

strategy φ and the hardening scope ω. ino
kC  is the cost of accessing the information of 

type k customer, which is a fixed value. ndk is the number of type k customers connected 

to node d. Total Kc types of customers exist in the network system. The hardening cost 

for node d is proportional to the number of connected customers and factored by the 

hardening level ρd. ( ), ( )ϕ ωΦ ρ  denotes the decision variables for sytem hardening. 

2) Restoration cost 

In this work, the cost of hiring restoration crews to repair failed nodes is named 

restoration cost. It depends on many factors, such as restoration strategy which ranks the 

failed nodes for repairing prioritization based on their importance and the number of 

available crews that are hired. Total restoration cost for scenario i is defined in Eq. (6.2), 

( )( )
1

, ( ) , ( , ),
c

r r
i i f if

f
C c u C lϕ ω π

=

Φ Π = ∑ρ     (6.2) 

, [1, ]
( ),

r
b rr

f r r
b v r r

C f c
C

C C f c c f c

 == 
+ − ≥ ≥

     (6.3) 

( ),cπΠ  is the set of available restoration measures for decision makers. π  

represents a particular restoration strategy which ranks the failed nodes for repairing 

based on node importance. c denotes the number of hired crews. It is assumed that cr 

crews are regularly hired under normal circumstances. The cost for each regular crew to 

do repairing is r
bC  per unit time. More restoration crews can be hired with higher cost for 

repairing per unit time and less working efficiency, which is defined by Eq. (6.3). r
vC  

denotes the increment of hiring cost per unit time as the number of hired crews increases. 

lif denotes the total repairing time performed by the fth crew in scenario i. It should be 
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noted that lif is influenced by system disturbance, hardening measures and restoration 

measures, which also impact restoration cost. 

3) Economic loss 

As to the electricity system, when cascading failures occur in power transmission 

system, customers might be disconnected from the power grids because of tripped system 

components, such as transformers and transmission lines. It leads to economic loss since 

the power load of customers is no longer satisfied. The economic loss result from 

disconnected customers due to failed system nodes is presented as follows, 

( )( )
1

C , ( ) , ( , ), ( )
ij

i

Q
los los
i i ijq ijq

j UF q
c u C gj ω π

∈ =

F Π = ∑ ∑ρ    (6.4) 

( )1

1 1
( ) + 2

c cK K
los f v
ijq ijq ijk k ijk k ijq ijq

k k
C g n C n C g g β−

= =

= −∑ ∑     (6.5) 

( )los
ijq ijqC g  denotes the economic loss due to the qth failure of system node j with the 

failure time ijqg  in scenario i. UFi is the set of nodes that failed in scenario i. Qij denotes 

the number of times that node j failed in scenario i. There are two types of cost associated 

with customers when they are disconnected from the power grids. f
kC  is the fixed penalty 

cost when a type k customer is offline/disconnected from the electric power system. nijk 

denotes the number of type k customers connected to node j in scenario i. v
kC  is the 

baseline variable cost per unit time associated with a type k customer when it is offline. 

1(2 )v
k ijq ijqC g g β−−  denotes the variable cost of a type k disconnected customer, which 

nonlinearly increases as the failure time of node j, ijqg , increases. β is the parameter that 

decides the increase rate of variable cost associated with disconnected customers, 

0 1β≤ ≤ . 
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4) Objective function including resilience constraint 

The total cost for scenario i with disturbance severity ui that needs to be minimized 

in the optimization problem is presented as follows, 

( )( ) ( )( ) ( )( )
( )( )

C , ( ) , ( , ), , ( ) , , ( ) , ( , ),

C , ( ) , ( , ),

tot in r
i i i i i i

los
i i

c u C u C c u

c u

ϕ ω π ϕ ω ϕ ω π

ϕ ω π

Φ Π = Φ + Φ Π

+ Φ Π

ρ ρ ρ

ρ
 (6.6) 

Total cost includes information investment of hardening, restoration cost for hiring 

crews and economic loss when customers are disconnected from the system. The CCP 

constraint for scenario i with disruption severity ui in terms of resilience loss is provided 

by Eq. (6.7), 

( )( ) ( )( ){ }, ( ) , ( , ), Pr , ( ) , ( , ), 0i i i i i ic u c uγ ϕ ω π ν ϕ ω π θΦ P = − ℜ Φ P ≤ ≤ρ ρ   (6.7) 

where vi denotes the constraint for CCP in scenario i, 0 1iν≤ ≤ . θi is the resilience loss 

constraint for scenario i, 0 1iθ≤ ≤ . Resilience loss ( )( , ( ) , ( , ), )i ic uϕ ω πℜ Φ Πρ  in 

scenario i is obtained with a targeted system performance according to Eq. (4.3). System 

resilience loss during the cascading-restoration process depends on the selected hardening 

measures, restoration measures and system disruption. In the following case studies, the 

number of customers functionally connected to the electricity system is adopted as the 

system performance to evaluate system resilience loss. It reflects system service level 

with respect to customer accessibility. 

Different from the work presented in sections 4 and 5, where resilience loss ( )tℜ  

and CCP constraint are applied separately regarding resilience enhancement, CCP 

constraint in terms of resilience loss ( )tℜ  is incorporated directly into the objective 

function of the optimization problem in this work.  
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In order to incorporate resilience constraint into the objective function, Karush-

Kuhn-Tucker (KKT) approach is applied, which converts the problem to be an 

unconstrained one. The new variables λ named KKT multipliers are introduced in the 

problem which forms a new objective function, the generalized Lagrangian. The 

generalized Lagrangian over all considered scenarios are defined as follows, 

( ) ( ) ( )( )
=1

, ( ), , , , C ( , ( )), ( , ), ( , ( )), ( , ),
I

tot
i i i i i

i
L c c u c uϕ ω π ϕ ω π λ γ ϕ ω π= − Φ Π − Φ Π∑ρ u λ ρ ρ

(6.8) 

where λi is given for scenario i. I is the number of considered scenarios with different 

disturbance severities. The feasible solution of the new problem 

( )
,, ( ), ,

max min , ( ), , , ,
c

L c
ϕ ω π

ϕ ω π
≥λ λ 0ρ

ρ u λ  is also the optimal solution of the original optimization 

problem ( )
, ( ), , =1
max C ( , ( )), ( , ),

I
tot
i ic i

c u
ϕ ω π

ϕ ω π− Φ Π∑ρ
ρ  which is subject to CCP constraints 

defined in Eq. (6.7). It can be proved with proper KKT multipliers λ as follows, 
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ε
ϕ ω π
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∑λ,λ 0
ρ u λ

ρ
  (6.9) 

where ( )( ) { }{ }| , ( ) , ( , ), 0, 1,2,...,i iFS c u i Iε γ ϕ ω π= F Π ≤ ∈ρ . Resilience loss becomes 

cost-concerned when it is incorporated into the objective function since it impacts the 

optimized total cost. Note that KKT multipliers λi denote the penalty weight when CCP 

constraint regarding resilience loss for scenario i is violated. In some real-world cases, λi 

represents the penalty with monetary cost when the resilience requirement is not satisfied. 
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6.1.2 Simulation-based optimization 

A simulation-based optimization method is used to solve the problem. The major 

simulation procedures and main assumptions are presented in this section. The simulation 

describes the cascading-restoration process with pre-disruption system hardening. The 

optimal combination of system hardening and restoration considering the impacts of 

different system disruptions can be determined from both economic and resilience 

aspects. Note that different system disruptions are simulated by conducting scenarios 

with distinct disruption severities, which is used to mimic real-world system disturbances 

with uncertainty. 

To obtain the expected values of stochastic functions used in the optimization 

problem, multiple simulation results are obtained to approximate the expected values. I is 

the number of scenarios with different disruption severities u are considered in the 

simulations. MS denotes the number of simulations conducted for each scenario with a 

specific disruption severity. The estimators for the expected values of resilience loss and 

CCP regarding the simulated cascading failures are presented as follows. Based on Eq. 

(6.7), CCP is an estimated probability, that the resilience loss for the simulated cascading 

failures in scenario i is not more than θi, should be larger than vi. 

( )( ){ } ( )1 1, if  (1 )
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0, otherwise
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im im im
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As mentioned above, θi is the resilience loss constraint for scenario i with disruption 

severity ui, 0 1iθ≤ ≤ . δim is the indicator function and equals 1 if the resilience loss of the 

mth simulation in scenario i satisfies the constraint, otherwise it is 0. Qim(t) is the system 

performance, which is adopted to evaluate resilience loss, at time t. ts is the time when 

system disruption occurs.     Tim(1 – τ) is the time period from the beginning of system 

interruption till a specific performance, is recovered to be a predetermined level, 1 – τ 

percentage of its initial value. 0 1τ≤ ≤ . It denotes the stop criteria. There is a hard 

constraint, H, on the recovery time, i.e., (1 )imT Hτ− ≤ . 

Based on Eqs. (6.1) - (6.5), the estimators for the expected values of total cost, 

including hardening cost, restoration cost and economic loss of customers, resulting from 

the simulated cascading failures are shown as follows, 
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( )1
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1 , , 0 1, 0 1, 0 1, 0 1,1 , 1, 1, 1r rw im cc c C T H I MS Kβ rw  τ≤ ≤ < < ≤ < ≤ < ≤ < ≤ ≤ ≥ ≥ ≥
(6.18) 

As introduced previously, ( ), ( )ϕ ωΦ ρ  represents the set of available hardening 

measures, including hardening ranking strategy and hardening level. ( , )cπΠ  denotes the 

set of restoration actions available to be employed, including restoration ranking strategy 

and the number of hiring crews. These are decision variables of the problem. There is a 

hard constraint on the maximum number of crews that can be hired for restoration, Crw. It 

indicates the capability of assigned or available restoration resources. Total repairing time 

performed by the fth crew in the mth simulation of scenario i, limf(ui, 1 - τ), is mainly 

impacted by the predetermined recovery level     1 - τ and disruption severity ui, but it is 

also impacted by φ, ρ(ω), π and c. gimjq, denoting the failure time of node j in its qth 

failure during the mth simulation of scenario i, is impacted by external factors, ui, 1 – τ, 

and hardening and restoration decisions, φ, ρ(ω), π and c. As presented in Eq. (6.14), the 

hardening investment cost is subject to a budget Bd. 

As mentioned above, pre-disruption hardening can reduce the potential of system 

node failure and shorten the recovery time of failed nodes. In this work, the original 

probability of a system node that breaks down as initial failure to trigger cascading 

failures follows a certain distribution. While the actual probability of node d selected as 

initial failure to simulate system disruption depends on its hardening level ρd in the mth 

simulation under scenario i, 

( )1 ,a o
d d d imP P d Oϕωρ= − ∈     (6.19) 
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where a
dP  is the actual probability that node i is selected as initial failure resulting from 

system disruptions. o
dP  denotes the original probability of node i to be initially failed. 

Higher hardening level contributes to lower potential of node failure. 

Similarly, the original repair time of failed system nodes is assumed to follow a 

certain distribution. While the actual repair time of a failed node i depends on the 

hardening level applied to node i, ρi, and the working efficiency of the fth crew that 

repairs node i. Actual repair time of node i, ar
iT , based on original repair time, or

iT , is 

obtained as follows, 

(1 )(1 ( ))ar or
i i i f rT T e f cr= − + −     (6.20) 

where ef denotes the decrease rate of crew working efficiency as extra crews are hired, 

i.e., when c > cr. Less crew working efficiency indicates longer time for the crew to fully 

restore a failed system node. It is obvious that actual repair time of failed system nodes is 

related to the failure time of system nodes and the working time of crews, which 

influences total cost. As a result, there is a trade-off between hardening investment, 

restoration investment and system damage cost. 

The main steps of the simulation, including pre-disruption hardening, cascading 

failures and post-disruption restoration response are depicted as follows, 

Step 1) a. Establish Net(N, M). Calculate the initial size of LCC. 

 b. Determine dependence clusters in Net(N, M). 

Step 2) a. Assign capacity to system node according to Eq. (3.2). 

 b. Apply hardening measures. 

Step 3) a. Initial system node failures occur associated with probabilities result 

from system disruption. 
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 b. Failed nodes and their connected edges are not functional. 

Step 4) a. Update network structure. System components which do not belong to 

current   LCC are not functional. 

 b. Failed node loads are redistributed locally and globally. 

Step 5) a. Failed nodes are repaired by crews based on restoration strategy. 

 b. Overload system nodes break down and their connected edges are not 

functional. Go back to Step 4 until a specific system performance is 

recovered to a predetermined level. Then simulation ends. 

6.1.3 Case study 

In this section, the optimization problem is solved numerically to show some insights 

on the integration of system hardening and restoration to enhance system resilience 

against cascading failures in different scenarios. 

The electricity system model proposed in section 3.2 is used to build power grids 

including centralized generation units, power transmission system and customers 

connected into the power grids through population centers and distribution systems (See 

Figure 3.15). Different kinds of customers associated with multiple types of monetary 

cost are taken into account in the problem. As introduced in section 6.1.1, these types of 

monetary cost include fixed cost once a customer is disconnected from the power grids 

[$/cust.], variable cost per unit time when a customer becomes disconnected from the 

power grids [$/Δt cust.], and investment cost [$/cust.] of collecting customer information 

to provide reference for hardening the system nodes that provide them with electricity. 
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6.1.3.1 Main assumptions and setting 

BA network model is adopted to build up power generation and transmission system. 

In the simulation, BA network contains 250 nodes and 498 edges. Nodes denote 

centralized generation units and edges denote transmission lines. Four types of customers, 

residential, small business, commercial and Gov./Public, are taken into consideration of 

which the electricity demand should be met by the power grids [29]. There are in total 

1,250 customers in the network system and these four types of customers account for 

65%, 20%, 10%, 5% of the entire customers, respectively. The unit simulation time Δt is 

assumed to represent 1 hour. Three types of cost associated with different customers are 

given in Table 6.1. 

Table 6.1 Three types of costs associated with four kinds of customers 

 Residential Small business Commercial Gov./Public 
Variable cost [$/hr cust.] 100 200 300 1000 

Fixed cost [$/cust.] 200 20000 5000 50000 
Information cost [$/cust.] 100 400 800 3000 

 
The assumptions about decision variables regarding hardening and restoration are 

presented as follows, 

A hardening strategy φ ranks system nodes based on a specific preference, and 

higher ranking nodes have higher priority to be hardened. Only the top ω percentage of 

ranked nodes are considered for hardening. ω is a continuous variable which is between 

[0.1, 0.7]. The hardening level for any selected node is also a continuous variable, which 

is between [0.05, 0.5]. The candidate hardening strategies are: 

1) High number of customer-connected nodes first hardening (NOCH): System 

nodes are ranked based on the number of customers that are connected to them. More 

connected customers indicate broader services provided by the system node. 
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2) High-degree nodes first hardening (HDH): System nodes are ranked according to 

their node degree. Higher degree indicates more importance on transferring system load. 

Node with higher degree has priority to be hardened. 

3) High-load nodes first hardening (HLH): System nodes are ranked according to 

their load. Higher node load indicates more importance of the node in terms of 

transferring system load and satisfy customer load requirement. Node with higher load 

has priority to be hardened. 

A restoration strategy π also ranks system nodes based on a specific preference. 

Higher ranked nodes are prioritized to start repairing when they failed. The candidate 

restoration strategies are: 

1) High degree first repair strategy (HDFR): Details of this restoration strategy are 

presented in section 4.2. 

2) Short time first repair strategy (STFR): Details of this restoration strategy are 

presented in section 4.2. 

3) High load first repair strategy (HLFR): This restoration strategy is presented in 

section 4.2. 

4) First fail first repair (FFFR): This strategy means that the repairing of failed 

nodes is started follows the order that they failed. This is a default restoration 

strategy and is applied for comparison purposes. 

5) High number of customer-connected nodes first repair (NOCR): Failed nodes, of 

which repairing have not yet started, are repaired in a descending order of the 

number of connected customers, i.e., network nodes with more connected 

customers are repaired with higher priority. 
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6) Fastest customer repair (FCR): The repairing of failed nodes is ordered by most 

customers restored per time unit, i.e., the failed node that has the largest 

customer-reconnected to the power grids to repair time ratio is repaired first. 

It should be noted that there must be an exact ordered list of repair actions. Ties, 

which occur when the failed nodes of which the repairing has not started at the inspection 

have the same condition, e.g., the same degree, are broken according to FFFR. The repair 

activity of failed nodes, once started, will not stop until they are completed.  

In practice, there are more candidate hardening and restoration strategies. However, 

the adopted ones help to illustrate the effects of joint hardening and restoration that can 

also be generalized for other strategies. 

The availability of restoration resources depends on the number of hired crews. In 

this case study, the maximum number of crews that can be hired c is between [10, 36]. 

The number of regular crews cr = 13. The cost for hiring a regular crew to do repairing r
bc

= 200 $/hr. The extra cost for hiring each extra crew to perform repairing r
vc = 100 $/hr, 

and the decrease rate of repairing efficiency ef = 5% for each extra crew. In this case 

study, the original node repair time is distributed uniformly in [1, 8], which is based on 

CAIDI data, 8.23 hr/interruption [164]. The original probability that a node is selected as 

initial failure is uniformly distributed in [0, 1]. Actual node repair time and initial failure 

probability are determined based on Eq. (6.19) and Eq. (6.20). Hardening cost constraint 

Bd = $ 90,000. 

System node local customer load and passing by load depend on its customer 

connections and node degree. According to Eqs. (3.7) and (3.8), system node load can be 

obtained. The base load follows a truncated normal distribution, where µ = 0.5, σ = 0.45. 
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Lmin = 0, Lmax = 1. When a node fails, its passing by load is equally distributed to its 

functional neighboring nodes, i.e., the nodes that have direct connections via transmission 

lines. Its local customer load is equally distributed to its dependent nodes, i.e., the 

centralized generation units that provide electricity for the same customers (See Figure 

3.15). The cascading and recovery process regarding load dynamics is presented in 

section 3.2.2.  

The number of online customers, i.e., the customers that are connected to the 

electricity system and can access the electricity, is adopted as the system performance to 

evaluate resilience loss. All customers are connected to the electricity system before 

system disruption. The number of functional system nodes is used as the system 

performance to evaluate the recovery level. τ = 2%, denotes the stop criteria of the 

recovery process. The hard constraint on the recovery time H = 100. 

The number of initially failed nodes is used to describe system disruption severity, 

which is the considered disruption factor in this work. More initially failed nodes indicate 

a more severe system disruption, which would trigger larger scale failure propagation. 

Since system disruptions are associated with uncertainty, the combined optimization of 

system hardening and restoration is performed for cascading failures caused by 

disruptions with different severities. 

This mixed-integer optimization problem is solved using genetic algorithm in C++. 

The decision variables are φ, ω, ρ(ω), π, c. Since the number of variables in ρ(ω) depends 

on ω, the total number of decision variables is also a decision variable. These decision 

variables are a string of genes of each member of the population. The fitness value of 

each member is the objective function, which is calculated based on Eq. (6.8). 
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Tournament selection is applied to make sure that the better members in the generation 

likely survive. 

6.1.3.2 Numerical examples 

In the first example, the values of parameters used in GA implementation are 

introduced. Pos denotes the population size, Pos = 15. Gen is the maximum number of 

generations, Gen = 80. Pxo is the probability of crossover, Pxo = 0.8. Pmu = 0.25 denotes 

the probability of mutation. Tor denotes the number members randomly selected at each 

round of tournament selection, Tor = 3. GA algorithm is performed multiple times in 

order to check the convergence of the optimal solution. 

In this example, the combined optimization of hardening and restoration is targeted 

for two scenarios with different system disruption severities, u1 = 9, u2 = 51. The first 

scenario has 9 system nodes breakdown as initial disruptions, and the second scenario has 

51 system nodes breakdown as initial disruptions. Based on Eq. (6.19), the set of initially 

failed nodes are not only determined by their initial failure probabilities, but also 

impacted by the corresponding hardening levels. It leads to uncertainty regarding system 

disruptions, so simulations are conducted multiple times for each scenario. In this 

example, MS = 100, i.e., 100 simulations are performed for scenario with specific number 

of initially failed nodes. Resilience loss constraints θ1 = 0.005, θ2 = 0.3. CCP constraints 

v1 = 0.7, v2 = 0.8. KKT multiplier λi = 108. i = 1, 2, denotes scenario 1 and 2. Mean 

dependence cluster size, D-size = 8. The load-capacity model parameters α =0.75, µ = 0.2. 

Figure 6.1 shows the fitness value of the best member in each generation in 6 GA 

implementations. 
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Figure 6.1 Fitness of the best member vs. generation in 6 GA implementations 

It can be observed from Figure 6.1 that the fitness of the best member dramatically 

increases as generation increases in the early stage. Then the best fitness turns to be stable 

as generation continues to increase. It can be seen that the best fitness of different GA 

implementation converges after about 30 generations. The best solutions of 6 GA 

implementations are presented in Table 6.2. 

Table 6.2. Best solutions of 6 GA implementations 

GA φ π c ω Best fitness Total cost ($) 
1 2 2 15 0.53 (132) 32906212 16093787 
2 2 2 14 0.647 (161) 31712357 16287642 
3 2 2 30 0.155 (38) 30695065 16304934 
4 3 2 20 0.638 (159) 31902220 16097779 
5 2 2 22 0.325 (81) 32056749 15943250 
6 2 2 29 0.406 (101) 30888800 16111199 

 
According to Table 6.2, HDFR restoration strategy is selected for all GA 

implementations, which indicates that HDFR strategy performs better in recovery system 

0 10 20 30 40 50 60 70 80 90

Generation

-8

-6

-4

-2

0

2

4

Be
st

 fi
tn

es
s

10
7

 
 



186 
 

from cascading failures. The desired number of hired crews is bigger than the number of 

regular crews (cr = 13). It means extra crews are worth to be fired to recover system from 

cascading failures. The best fitness is the objective function of the problem, and total cost 

includes hardening investment, restoration cost and economic loss. As shown in Table 

6.2, best fitness and total cost converge from different GA implementations. The 

difference in the selection of hardening strategy, the number of hired crews, and the 

percentage of nodes to be hardened results from the uncertainty associated with the set of 

initially failed nodes, repair time of failed nodes, etc.  

In the second example, Pos = 15. Gen = 40. Pxo = 0.8. Pmu = 0.25. Tor = 2. GA 

algorithm is performed 5 times to check the convergence of the optimal solution. The 

targeted two scenarios with disruption severities, u1 = 9, u2 = 51. 80 simulations are also 

performed for each scenario. For the two scenarios, resilience loss constraints θ1 = 0.005, 

θ2 = 0.3. CCP constraints v1 = 0.7, v2 = 0.8. KKT multiplier λi = 108. i = 1, 2. Mean 

dependence cluster size, D-size = 8. The load-capacity model parameter α = 0.75. In this 

case, the average node capacity is reduced which indicates the increased node load level. 

Figure 6.2 shows the fitness value of the best member in each generation in 5 GA 

implementations. 
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Figure 6.2 Fitness of the best member vs. generation in 5 GA implementations 

Based on Figure 6.2, that fitness of the best member also dramatically increases as 

generation increases at the beginning. The best fitness of different GA implementations 

converges as generation increases. The best solutions of 5 GA implementations are 

presented in Table 6.3. 

Table 6.3. Best solutions of 5 GA implementations 

GA φ π c ω Best fitness Total cost ($) 
1 2 2 20 0.227 (56) 21,016,212 16,483,787 
2 3 2 17 0.569 (142) 23,653,151 16,346,848 
3 3 2 22 0.327 (81) 24,617,962 16,632,037 
4 3 2 24 0.608 (152) 28,759,033 16,240,966 
5 2 2 30 0.241 (60) 22,677,975 17,322,024 

 
It can be observed from Table 6.3 that HDFR restoration strategy is selected as the 

best solution for all GA implementations, which is consistent with the findings from the 

last example. The desired hardening strategy is either HDH strategy or HLH strategy. 
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The uncertainty associated with the set of initially failed nodes in each scenario 

contributes to the difference of the desired hardening measure selection. However, the 

best fitness and total cost obtained from different GA implementations are very close. 

The hardening levels for the top ω percentage of system nodes that are ranked by 

hardening strategy are also obtained. Table 6.4 presents the desired hardening levels from 

the 1st node to the 56th nodes (ω = 0.227, total 56 nodes are hardened), from no. 1 GA 

implementation. 

Table 6.4. The best hardening levels for the top ranked nodes from no. 1 GA 

implementation 

0.184 0.304 0.264 0.473 0.078 0.35 0.321 0.408 
0.061 0.491 0.466 0.078 0.076 0.147 0.141 0.125 
0.119 0.255 0.278 0.338 0.211 0.439 0.175 0.05 
0.445 0.125 0.177 0.051 0.343 0.128 0.169 0.301 
0.311 0.113 0.479 0.104 0.336 0.387 0.276 0.494 
0.485 0.368 0.257 0.259 0.381 0.296 0.204 0.095 
0.125 0.086 0.361 0.285 0.398 0.058 0.476 0.468 

 
According to Eq. (6.19) and Eq. (6.20), the actual probability of a system node 

breaking down as an initial failure and the actual required repair time of a failed node 

depends on its hardening level. 

6.1.3.3 Impact of system dependence 

According to the model proposed in section 3.2, system dependence is described by 

dependence clusters. In this section, the impact of mean dependence cluster size, D-size, 

on the combined optimization solution of hardening and restoration is explored. 

In the first case, D-size = 8 and 16 are taken into account, separately. Pos = 15. Gen 

= 45. Pxo = 0.8. Pmu = 0.25. Tor = 3. GA is performed 6 times for each D-size to check 

the convergence of the optimal solution. The considered two scenarios have disruption 
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severities, u1 = 39, u2 = 51, respectively. 100 simulations are performed for each scenario. 

For the two scenarios, resilience loss constraints θ1 = 0.25, θ2 = 0.3. CCP constraints vi = 

0.8, KKT multiplier λi = 108. i = 1, 2. The load-capacity model parameter α = 0.75. Figure 

6.3 shows the best member of each generation from different GA implementations under 

two D-size. Table 6.5 presents the results of GA optimization under two D-size 

assumptions. 

 

Figure 6.3 Fitness of the best member vs. generation from different GA implementations 

under different D-size 
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Table 6.5. Best solutions of 6 GA implementations under different D-size 

 D-size = 8 D-size = 16 

GA φ π c ω 
Best 

fitness 

Total cost 

($) 
φ π c ω 

Best 

fitness 

Total cost 

($) 

1 2 2 22 0.644 8625996 31374002 2 2 25 0.457 9253339 30746659 

2 2 2 23 0.628 8248724 30751274 2 2 18 0.561 9624012 30375986 

3 2 2 18 0.541 8568942 31431056 2 2 16 0.575 9272982 30727016 

4 2 2 19 0.525 9003355 30996643 2 2 21 0.662 9655526 30344472 

5 2 2 20 0.452 8824330 31175668 2 2 18 0.648 9544954 30455044 

6 2 2 22 0.479 9079421 30920577 2 2 22 0.478 9605371 30394627 

 
According to Figure 6.3, the best fitness values of different GA implementations 

converge as generation increases no matter what D-size is. Based on the results presented 

in Table 6.5, the best fitness under D-size = 16 is bigger than that obtained from D-size = 

8 on average, while the trend of total cost under these two D-size examples is opposite. A 

bigger D-size contributes to smaller total cost on average and larger fitness, which are 

desired.  

The other case is also conducted to explore the impact of mean dependence cluster 

size, D-size = 8 and 16, respectively. In this case, Pos = 15. Gen = 60. Pxo = 0.8. Pmu = 

0.25. Tor = 2. GA is performed 5 times for each D-size to check the convergence of the 

optimal solutions. The considered two scenarios have different disruption severities, u1 = 

9, u2 = 51, respectively. 80 simulations are performed for each scenario. For the two 

scenarios, resilience loss constraints θ1 = 0.005, θ2 = 0.3. CCP constraints v1 = 0.7, v2 = 

0.8. KKT multiplier λi = 108, i = 1, 2. The load - capacity model parameter α = 0.75. 

Figure 6.4 illustrates the best fitness of each generation from different GA 
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implementations under two D-size. Table 6.6 presents GA optimization results under two 

D-size examples. 

 

Figure 6.4 Fitness of the best member vs. generation from different GA implementations 

with D-size = 8 and D-size = 16, respectively 

Table 6.6 Best solutions of 5 GA implementations under different D-size 

 D-size = 8 D-size = 16 

GA φ π c ω 
Best 

fitness 

Total cost 

($) 
φ π c ω 

Best 

fitness 

Total cost 

($) 

1 2 2 15 0.566 16406445 14843554 3 2 23 0.46 35393634 14606365 

2 3 2 21 0.388 17851637 14648362 3 2 18 0.529 35343310 14656689 

3 2 2 33 0.6 18621216 15128783 3 2 22 0.528 35428779 14571220 

4 2 2 30 0.55 17694914 14805085 3 2 23 0.655 35186550 14813449 

5 2 2 29 0.554 16666721 14583278 1 2 35 0.517 33781703 16218296 
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It can be seen from Figure 6.4 that the best fitness values of GA implementations are 

becoming stable and close as generation increases, which indicates convergence of the 

optimal solution. Based on the results in Table 6.6, the best fitness values under D-size = 

16 are bigger than that under D-size = 8 on average. While the average total cost under D-

size =8 is bigger than that obtained when D-size = 16. According to Eq. (6.8), these 

results indicate that larger D-size leads to better system resilience recovery with smaller 

total cost. The findings in the above two cases are consistent. 

When D-size is decreased, it has two implications. First, smaller mean size of 

dependence clusters means that customers receive electricity from fewer system nodes 

(centralized generation units). It may increase the chance of customer disconnections 

when system node failure propagates. Second, smaller mean dependence cluster size 

decreases the local customer load sharing scale, which helps to reduce the occurrence of 

overload node failures. Therefore, a trade-off results from decreasing mean dependence 

cluster size. In the above two cases, the impact of smaller mean dependence cluster size 

on customer disconnections is overwhelming. It increases recovery time and resilience 

loss, so achieved CCP is decreased while total cost is increased. As a result, the fitness of 

the desired hardening and restoration is decreased with a smaller D-size. 

As mentioned before, distinct system disturbances might occur in real cases. The 

proposed combined optimization method simultaneously selects a set of hardening and 

restoration measures for all system disruptions. This method is helpful to minimize total 

cost while satisfying resilience requirements. However, post-disruption response needs 

not to be the same for different system disruptions. It is reasonable to implement 

restoration measures according to each specific system disruption while considering the 
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impact of pre-disruption hardening. Further research about two-stage optimization of 

system hardening and restoration is presented in the following section. 

6.2 Two-stage optimization of system hardening and restoration 

The integrated optimization of system hardening and restoration includes two stages, 

where the first stage focus on pre-disruption hardening measures. After system disruption 

occurs, the second stage decisions about restoration as post-disruption response are 

determined. The second stage decision is able to compensate for the impacts that result 

from the first stage decisions according to the system disruptions. Therefore, the first 

stage decision variables include hardening strategy φ, the percentage of top ranked nodes 

considered for hardening, ω (%) and the hardening levels of selected nodes, ρ(ω). These 

decisions are made before system disruptions occur. The second stage decision variables 

include restoration strategy π, and the number of hired crews c. They are determined after 

the disruptions. 

The objective function of the two-stage optimization problem is formulated as 

follows, 

( )( ) ( ) ( )( )
1

max , ( ) C ( , ( )), ( , ), ( , ( )), ( , ),
I

in ad
i i i i i i

i
C p c cϕ ω ϕ ω pλ  γ ϕ ω p

=

− Φ − Φ Π − Φ Π∑ρ ρ u ρ u

where 

( ) ( )( ) ( )( )C ( , ( )), ( , ), =C , ( ) , ( , ), , ( ) , ( , ),ad los r
i i i i i ic c C cϕ ω π ϕ ω π ϕ ω πΦ Π Φ Π + Φ Πρ u ρ u ρ u . 

It denotes the post-disruption cost which includes economic loss and restoration cost. The 

difference between this objective function and the previous one is that the restoration 

measures are determined based on different system disruptions given that hardening 

measures have been decided. pi denotes the probability that scenario i occurs. System 

disruption severity represented by the number of initially failed nodes is also considered 
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as the system disruption factor. Other assumptions are the same with the problem 

formulated in section 6.1. GA is used to solve the mixed-integer optimization problem. 

Case studies are conducted to check the convergence of the optimal solutions and 

illustrate the impacts of system dependence. The two-stage optimization method is also 

compared with the combined optimization method proposed in section 6.1 to evaluate the 

effectiveness. 

6.2.1 Convergence of the optimal solution 

In the first case, D-size = 16. Pos = 15. Gen = 50. Pxo = 0.8. Pmu = 0.2. Tor = 3. GA 

is performed 8 times to check the convergence of the optimal solution. Two scenarios 

with disruption severities, u1 = 9, u2 = 51, are considered. p1 = 50%, p2 = 50%. 80 

simulations are performed for each scenario. For the two scenarios, resilience loss 

constraints θ1 = 0.005, θ2 = 0.3. CCP constraints v1 = 0.7, v2 = 0.8, KKT multiplier λi = 

108. i = 1, 2. The load-capacity model parameter α = 0.8. Figure 6.5 shows the best 

member of each generation from different GA implementations. Table 6.7 presents the 

results of GA optimization. 
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Figure 6.5 The best fitness vs. generation from 8 GA implementations 

It can be seen from Figure 6.5 that the fitness value of the best member dramatically 

increases as generation increases. Then the best fitness becomes stable as generation 

continues to increase. The fitness values of some optimal solutions from different GA 

implementations are very close while the difference caused by the uncertainties 

associated with the factors, such as specific initially failed nodes and required node repair 

time. The best solutions of 8 GA implementations are presented in Table 6.7. 
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Table 6.7. Best solutions of 8 GA implementations 

GA φ ω π1 c1 π2 c2 Best fitness 
1 3 0.212 3 29 2 19 15,703,357 
2 2 0.415 5 26 2 26 15,566,674 
3 3 0.678 5 18 2 23 15,022,402 
4 2 0.481 2 31 2 24 15,289,276 
5 3 0.239 7 13 2 31 15,513,261 
6 2 0.526 3 18 2 16 16,003,121 
7 1 0.122 7 11 2 18 16,286,233 
8 2 0.257 5 21 2 27 15,726,109 

 
As shown in Table 6.7, different restoration strategies are selected for recovering the 

system subjected to different disruptions with the same hardening measures. It indicates 

that different restoration measures are implemented to compensate for the influence of 

distinct disruptions in order to minimize the total cost.  

In the second case, D-size = 16. Pos = 13. Gen = 100. Pxo = 0.8. Pmu = 0.2. Tor = 3. 

GA is performed 10 times to check the convergence of the optimal solution. Two 

scenarios with disruption severities, u1 = 39, u2 = 51, are considered. p1 = 50%, p2 = 50%. 

90 simulations are performed for each scenario. For the two scenarios, resilience loss 

constraints θ1 = 0.25, θ2 = 0.3. CCP constraints vi = 0.8, KKT multiplier λi = 108. i = 1, 2. 

The load-capacity model parameter α = 0.85. Figure 6.6 shows the best member of each 

generation from 10 GA implementations. Table 6.8 presents the corresponding GA 

optimization results. 
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Figure 6.6 The best fitness vs. generation from 10 GA implementations 

Based on Figure 6.6, the fitness value of the best member in each generation 

increases as generation increases at the early stage. Then the best fitness converges, and 

the best fitness values of the optimal solutions from different GA implementations are 

very close. The best solutions of 10 GA implementations are shown in Table 6.8. 

Table 6.8. Best solutions of 10 GA implementations 

GA φ ω π1 c1 π2 c2 Best fitness 
1 3 0.527 7 33 2 16 12,110,872 
2 3 0.594 3 29 2 18 11,772,188 
3 3 0.464 3 26 2 16 12,014,471 
4 3 0.626 3 32 2 18 11,907,575 
5 3 0.568 3 26 2 33 11,479,518 
6 3 0.519 3 33 2 24 11,892,123 
7 3 0.616 2 27 2 20 10,134,641 
8 3 0.562 3 31 2 20 12,115,718 
9 3 0.51 2 29 2 18 10,550,590 

10 3 0.539 3 22 2 17 12,156,483 
 
Similar to the results of the first case, different restoration measures are conducted 

for two scenarios with different disruption severities given the same hardening measures 
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are employed before system disruptions occur. Based on Table 6.8, HLH strategy is 

selected as the best hardening strategy, and HDFR strategy is selected as the restoration 

strategy for the second scenario with the highest disruption severity for all GA 

implementations. It indicates that the HDFR strategy recovers the system from severe 

disruptions effectively. Although there are uncertainties brought by initially failed node 

sets, required node repair time and load dynamics, the best fitness of different GA 

implementations are very close. 

6.2.2 Impact of dependence 

In this section, the impact of mean dependence cluster size, D-size, on the two-stage 

optimization regarding system hardening and restoration is analyzed. 

In the numeric example, D-size = 8 and 16 are taken into consideration. Pos = 13. 

Gen = 80. Pxo = 0.8. Pmu = 0.2. Tor = 3. GA is implemented 10 times for each D-size to 

check the convergence of the optimal solution. Three scenarios have disruption severities, 

u1 = 39, u2 = 51, u3 = 63. 80 simulations are performed for each scenario. For three 

scenarios, resilience loss constraints θ1 = 0.25, θ2 = 0.3, θ3 = 0.35. CCP constraints vi = 

0.8, KKT multiplier λi = 108. i = 1, 2, 3. The load-capacity model parameter α = 0.85. 

Figure 6.7 illustrates the best member of each generation from 10 GA implementations 

under D-size = 8. Figure 6.8 presents the best fitness of each generation from 10 GA 

implementations under D-size = 16. Table 6.9 and Table 6.10 present GA optimization 

results under two D-size assumptions, respectively. 
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Figure 6.7 The best fitness vs. generation from 10 GA implementations (D-size = 8) 

 

Figure 6.8 The best fitness vs. generation from 10 GA implementations (D-size = 16) 
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Both Figure 6.7 and 6.8 show that the best fitness converges as generation 

continuously increases after the dramatic changes with small generations. Table 6.9 

presents GA optimization results under D-size = 8. Table 6.10 presents GA optimization 

results under D-size = 16. 

Table 6.9. Best solutions of 10 GA implementations with D-size = 8 
GA φ ω π1 c1 π2 c2 π3 c3 Best fitness 
1 3 0.466 3 22 2 19 2 22 9,921,656 
2 3 0.637 3 31 2 21 2 26 10,062,186 
3 3 0.605 3 32 2 23 2 26 9,949,473 
4 3 0.666 7 29 2 27 2 19 10,030,016 
5 3 0.601 7 23 2 29 2 26 8,971,830 
6 2 0.572 2 22 2 18 2 26 8,647,374 
7 2 0.525 2 29 2 28 2 34 8,429,707 
8 3 0.498 7 35 2 19 2 27 9,870,839 
9 2 0.456 2 26 2 19 2 32 8,395,838 

10 3 0.615 7 23 2 27 2 26 9,861,324 

Table 6.10. Best solutions of 10 GA implementations with D-size = 16 

GA φ ω π1 c1 π2 c2 π3 c3 Best fitness 
1 2 0.367 3 20 2 19 2 17 10,163,213 
2 3 0.545 7 25 2 19 2 17 10,285,389 
3 3 0.534 7 25 2 20 2 17 10,272,538 
4 1 0.609 3 23 2 22 2 27 10,145,439 
5 3 0.678 7 27 2 25 2 16 10,431,056 
6 2 0.584 3 30 2 21 2 13 10,230,641 
7 3 0.625 3 28 2 19 2 19 10,200,502 
8 3 0.695 3 29 2 18 2 17 10,183,446 
9 3 0.43 3 27 2 17 2 16 10,116,163 

10 3 0.604 7 26 2 33 2 18 10,305,952 
 

According to Tables 6.9 and 6.10, higher best fitness value is obtained with bigger 

D-size, which is in accordance with the findings obtained in section 6.1.3.3. It can be 

observed that different restoration measures are adopted for different scenarios with 

distinct severities with the same pre-disruption hardening measures. HDFR strategy is 

selected for the scenarios with more initially failed nodes, i.e., more severe system 

disruptions. It means that HDFR strategy is more effective to rank failed nodes for 

repairing prioritization compared with other restoration strategies. 
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6.2.3 Comparison of two integrated optimization methods 

In this section, numeric examples are conducted to compare the effectiveness of the 

combined optimization method proposed in section 6.1 and the two-stage optimization 

method. Note that the adopted network system structure, dependence clusters, customer 

connections are the same for the two integrated optimization methods. The uncertainties 

are mainly associated with the set of initially failed nodes, actual required repair time of 

system nodes and local customer load recovery level. 

In the numeric example, D-size = 8. Pos = 15. Gen = 50. Pxo = 0.8. Pmu = 0.25. Tor 

= 3. Two scenarios have disruption severities, u1 = 9, u2 = 51 are considered. 80 

simulations are performed for each scenario. For two scenarios, resilience loss constraints 

θ1 = 0.005, θ2 = 0.3. CCP constraints v1 = 0.7, v2 = 0.8, KKT multiplier λi = 108. i = 1, 2. 

The load-capacity model parameter α = 0.8. GA is implemented 6 times for the two-stage 

optimization for each D-size while 4 GA implementations are conducted for the 

combined optimization proposed in section 6.1. Figure 6.9 illustrates the best fitness of 

each generation from different GA implementations.  
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Figure 6.9 The best fitness vs. generation from GA implementations under two 

optimization methods 

According to Figure 6.9, the best fitness values obtained from the two optimization 

methods are different. The best fitness from the two-stage optimization method is larger 

than that obtained from the combined optimization method. It demonstrates the higher 

effectiveness of two-stage optimization method compared with that of the combined 

optimization method. Post-disruption response made according to the specific system 

disruption contributes to better restoration effects. The best fitness firstly dramatically 

increases and then converges as generation increases no matter which optimization 

method is applied. Table 6.11 presents GA optimization results under the two-stage 

optimization method while Table 6.12 presents the results under the combined 

optimization method. 
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Table 6.11. Best solutions of 6 GA implementations under the two-stage optimization 

method 

 Two-stage optimization method 

GA φ ω π1 c1 π2 c2 Best fitness Total cost ($) 

1 3 0.354 7 16 2 35 29,813,408 15,186,591 

2 3 0.583 7 10 2 17 30,206,355 14,793,644 

3 2 0.606 4 25 2 29 27,896,282 14,603,717 

4 2 0.603 4 27 2 23 29,483,082 14,266,917 

5 3 0.684 6 31 2 19 31,666,285 14,583,714 

6 1 0.511 3 12 2 25 27,711,897 14,788,102 

Table 6.12. Best solutions of 4 GA implementations under the combined optimization 

method 

 Combined optimization method 

GA φ π c ω Best fitness Total cost ($) 

1 1 2 29 0.601 31,398,243 14,851,756 

2 3 2 18 0.6 28,641,764 15,108,235 

3 3 2 26 0.475 27,544,700 14,955,299 

4 2 2 17 0.633 29,356,332 14,393,667 

 
Based on Tables 6.11 and 6.12, the best fitness obtained from the two-stage 

optimization method is bigger than that obtained from the combined optimization method 

on average, which is more desirable. It proves that the two-stage optimization method is 

more efficient to optimize system hardening and restoration when compared with the 

combined optimization method. 

In the second example, D-size = 8. Pos = 15. Gen = 50. Pxo = 0.8. Pmu = 0.25. Tor = 

3. Two scenarios have disruption severities, u1 = 9, u2 = 51 are considered. 80 simulations 
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are performed for each scenario. For two scenarios, resilience loss constraints θ1 = 0.005, 

θ2 = 0.3. CCP constraints v1 = 0.7, v2 = 0.8, KKT multiplier λi = 108. i = 1, 2. The load-

capacity model parameter α = 0.75. GA is implemented 6 times for both two-stage 

optimization method and combined optimization method for each D-size. Figure 6.10 

illustrates the best fitness of each generation from different GA implementations. 

 

Figure 6.10 The best fitness vs. generation from GA implementations under two 
optimization methods 

As shown in Figure 6.10, the best fitness of each generation under each GA 

implementation becomes stable gradually as the number of generation increases. The best 

fitness values of some GA implementations are very close. Table 6.13 and Table 6.14 

present the optimization results under two different optimization methods. 
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Table 6.13. Best solutions of 6 GA implementations under the two-stage optimization 

method 

 Two-stage optimization method 

GA φ ω π1 c1 π2 c2 Best fitness Total cost ($) 

1 2 0.64 6 29 2 17 19,513,472 16,736,527 

2 3 0.489 3 20 2 26 18,365,547 16,634,453 

3 2 0.156 3 22 2 16 19,627,534 17,872,465 

4 2 0.566 4 23 2 23 21,283,420 16216579 

5 2 0.442 7 35 2 17 16,941,406 16808593 

6 2 0.584 3 35 2 28 17,700,804 16049195 

Table 6.14. Best solutions of 6 GA implementations under the combined optimization 

method 

 Combined optimization method 

GA φ π c ω Best fitness Total cost ($) 

1 3 2 22 0.522 14,416,787 16,833,213 

2 2 2 17 0.54 14,499,439 16,750,560 

3 2 2 21 0.469 18,572,326 16,427,673 

4 2 2 25 0.562 15,8843,55 16,615,644 

5 2 2 24 0.626 17,775,396 15,974,603 

6 2 2 16 0.342 16,609,312 17,140,687 

 
Based on Table 6.13, different restoration strategies and the number of crews are 

hired to recover the system subjected to two disruptions with different severities. 

Although the decisions about hardening and restoration are not exactly the same, which is 

attributed to the uncertainties of the initially failed nodes, actual node repair time and 

customer load recovery level, the best fitness values of different GA implementations are 
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still close. According to the results in the two tables, the best fitness obtained from the 

two-stage optimization method is larger than that obtained from the combined 

optimization method on average, which is consistent with the results from the first case.  

Overall, the two-stage optimization method is demonstrated to be effective on 

integrally optimizing system hardening and restoration. Post-disruption restoration 

responses are employed considering the impacts of system disruptions given a pre-

disruption hardening, which has better performance on minimizing total cost when 

compared with the combined optimization method. The results demonstrate that it is 

profitable to consider the restoration planning at the system hardening/design stage. 

7 Conclusions 

This dissertation presents a framework to jointly optimize pre-disruption system 

hardening and post-disruption restoration strategies to enhance system resilience against 

cascading failures with minimized total cost. Costs include investment associated with 

system hardening and restoration actions, and penalty cost of system performance loss 

resulting from system failures are taken into account. Network systems are the research 

subjects since large-scale network systems at any stage of the life-cycle are of great 

interest nowadays. The existence of network load dynamics and system dependency can 

endanger system stability by increasing the risk for failure spread. Therefore, it is 

necessary and important to analyze failure propagation mechanism in network systems 

and to enhance system resilience considering economic viability. 

Since there are multiple dependencies among components and complex load 

dynamics in real-world network systems, new mixed cascading failure models, taking 

into account the joint impacts of system dependency, local and global load redistributions, 
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are proposed to describe failure propagation in systems. Based on the properties of a 

certain type of network systems, for example, electricity system, system load is divided 

into passing by load and local customer load, which is helpful to depict the impact of 

system dependence on overload failure propagation. A new resilience metric is proposed 

to evaluate resilience loss due to system disruptions. This metric provides opportunities 

to combine system performance with resilience evaluation and makes the resilience of 

different systems comparable and understandable. According to the proposed cascading 

failure models, the optimal selection of restoration strategies with distinct restoration 

preferences are performed for resilience enhancement. The impacts of system 

dependency on the effects of system restoration actions are also investigated. Then, the 

grid-outage resilience and economic benefits from installing solar array and battery size 

to customers, as hardening measures from customer perspective, are analyzed via a 

simulation-based optimization approach. This research is the first comprehensive attempt 

to investigate the manner in which cascading failures in bulk power system influence the 

entire electrical power system, including local customers connected by power distribution 

systems. New modeling approaches are presented to optimally and simultaneously 

perform system hardening and restoration under system disruptions with uncertainty. The 

integrated optimization of system hardening and restoration is to achieve an optimal 

balance between investment cost and economic loss while satisfying the resilience 

requirements.  

In summary, the main contributions of this research include: 1) Combining the joint 

impacts of load dynamics and system dependency in modeling cascading failures in flow 

network systems; 2) Linking failure propagation with system hardening planning and 
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restoration implementation via hierarchical modeling of network systems; 3) Developing 

new optimization methods to search the optimal solutions for total cost minimization 

incorporating resilience requirements considering the uncertainty of system disruptions. 

The relationship between decision variables regarding system hardening and restoration 

measures is taken into account to make solutions robust; 4) Extending the impacts of 

cascading failures in bulk power system to local customers through power distribution 

systems to conduct integrated analysis of electricity system resilience; 5) Collectively and 

simultaneously optimizing system hardening and system restoration for the purpose of 

resilience enhancement, and minimizing investment costs and system damage cost caused 

by cascading failures together. 

Ultimately, the proposed joint optimization framework for system hardening and 

restoration strategies in terms of resilience enhancement can be utilized to provide 

suggestions for future effective and economical system hardening and restoration 

regarding different kinds of real-life network systems against cascading failures. 

There are great potentials of research extensions based on the current work. The 

possible extensions are introduced as follows: 

Realistic characteristics of different parts of electric power systems can be taken into 

account in the future works. For example, system dependence clusters can be established 

according to real datasets regarding system failure propagation, which also can be used to 

modify the cascading failure model. Different popular DERs can be attached to local 

distribution systems as hardening investment to provide grid-outage resilience. In 

addition to the trade-off between investment and outage loss, the environmental benefits 

from utilizing renewable energy for power resilience and the incurred production 
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variability can be incorporated into the optimization problem. Furthermore, the influence 

of different types of system disturbances, such as extreme events and malicious attacks 

with uncertainty, on network systems can be investigated using the proposed framework 

based on real system datasets. How to use the data obtained from the real-world system 

cascading-restoration process, which reflects the interaction between failure propagation 

and action response, to improve future system hardening planning and restoration 

planning can be another further step. Using deep learning-based techniques for 

forecasting the effectiveness of system hardening and restoration regarding specific 

system disruptions based on previous failure datasets is another attractive direction.  
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