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         Structural variations (SV) can lead to DNA rearrangements and frequently 

cause diseases such as neurological disorders. SVs account for more total 

nucleotide changes and occur more frequently than single nucleotide 

polymorphisms (SNPs)  (Stankiewicz and Lupski, 2010). As we continue to gain 

knowledge, SV has surpassed SNPs in its effects on human evolution, population 

diversity, and genetic diseases (Stankiewicz and Lupski, 2010). Compared to 

SNP, SV is more challenging to study due to its complex configuration, large 

size, and repetitive arrangement. Meanwhile, sequencing technologies including 

Illumina and Oxford Nanopore sequencing platform are being actively 

developed to generate sequencing data of human whole genomes, which can 

then be analyzed to study genetic variations. This series of studies aims to 

employ contemporary sequencing technologies and computational workflows to 

unravel the functional impact of SVs. 

        Good tools are prerequisite to the successful execution of a job. My study 

starts from developing a pipeline construction tool called PipelineDog that can 
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be used throughout the work. PipelineDog is a web-based integrated 

development environment (IDE) that represents a novel way to arrange and 

define workflows while promoting code scalability and reusability. I then apply 

established tools and workflows to analyze a 192-invidual cohort, surveying the 

large structural genetic etiology of autism spectrum disorder (ASD) and 

attention-deficit/hyperactivity disorder (ADHD) co-occurrence. Lastly, the 

newly commercialized Nanopore sequencing technique was tested and 

evaluated on both existing and simulated data. The Nanopore sequencing is 

anticipated to improve the SV identification, as it generates longer reads and will 

enrich the SV determining evidence. I improved the overall SV identification 

accuracy by employing a random forest machine learning model to classify the 

combined dataset from different workflows. This analysis shed light on how to 

determine which SV identification workflow to use based on specific use cases 

for future projects. 
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1. Introduction 

1.1. Genomic variants 

Deoxynucleic acid (DNA) is the fundamental genetic material that stores biology 

information unique to an individual. It is observed that in any two humans, 

99.9% of the DNA sequences are identical. It is the 0.1% of the genomic variation 

that underlies why individuals are heritably different from each other, including 

susceptibility to diseases. A 1000 Genomes Project study in 2015 characterized 

over 88 million variants, including 84.7 million single nucleotide polymorphisms 

(SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural 

variants in 2,504 human genomes from 26 populations (Auton, et al., 2015). 

In early days, only structural or quantity variation in chromosome, such as 

aneuploidies, rearrangements, heteromorphisms and fragile sites, could be 

observed using a microscope, hence the name microscopic structural variants. 

The emergence of genome-scanning array technologies and comparative DNA-

sequence analyses revealed submicroscopic CNVs and other structural variations 

that also contribute to genomic variation, influence gene dosage and have 

functional impact (Feuk, et al., 2006). With the development of molecular biology 

and sequencing technology, more abundant small-scale variants were 

discovered, which include SNPs, repetitive elements such as micro- and 

minisatellites, and small indels. Among them, SNPs are thought to be the most 

abundant in numbers and well-studied (Kruglyak and Nickerson, 2001). 

        Together, these genomics variations define a unique individual, including 

their phenotypic characteristics and predisposition to diseases. Genomics 

variation also underpins resilience and persistence of our population in that it 
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create the gene pool which serves as a reservoir of genetics materials for human 

evolution and maintain the genetic diversity of human species (Furlan, et al., 

2012). 

1.2. Functional impact of genomic variants 

It is important to study genomic variants because they, together with 

environmental factors, underlie various human genetic disorders. Human 

genetic disorders include single gene disorders, chromosomal imbalances, 

epigenetics, cancer, and complex disorders (Jackson, et al., 2018).  

Many conditions and diseases depend on the variant at a single locus with 

inheritance pattern according to Mendel’s law of segregation, independent 

assortment, and dominance. Therefore, these diseases are often called 

‘Mendelian’ despite the few exceptions that some inherited disorders don’t 

follow Mendel’s law.  

        Because three codons determine an amino acid in the protein sequence, 

deletion of three or a multiple of three nucleotides from a coding sequence leads 

to the deletion of one or more codons. These deletions lead to one or more amino 

acids deletion within the protein sequence but keep the remaining amino acid 

sequence intact and allows the protein to still be functional. However, if a 

number of nucleotides which are not divisible by three are deleted from a coding 

region, all codons following the nucleotides will be altered, this causes a 

‘frameshift’ mutation which will likely create an malfunctional protein. 

Diseases more common in human populations are often complex multifactorial 

disorders like autism spectrum disorder (ASD), attention deficit/hyperactivity 

disorder (ADHD), schizophrenia, diabetes, and heart disease, where the disorder 

is caused by complex interactions of multiple genetic and environmental factors. 
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The impact of an individual variant in one gene may be very small, but when 

present together with multiple variants in other genes, in the context of a 

particular environment, may lead to an increased risk of disease. Complex 

diseases are hard to study because many genes are involved, environmental 

factors add complication, both common and rare variants are contributing, and 

not all individuals with the genotype will have the disease. In recent years, 

research focusing on challenging topics such as genetic contributions to complex 

diseases has drawn increasing attention. This is why I put my focus on studying 

complex disease like ASD and ADHD in chapter 3. 

1.3. Methods for genomic variants discovery 

Methods of detecting genomic variants have evolved over the years. SNP arrays 

are the early high-throughput approach which can detect >1M different human 

SNPs each run and are still popular today. As the technology matures, call rates 

(the fraction of SNPs on the array that can be reliable called) and reproducibility 

of SNP calls can be as good as 99.5%. In addition, the same arrays can also be 

used to detect copy number variants. The most commonly used methods to 

detect SNPs are allele discrimination by hybridization as used by Affymetrix. 

However, the downsides of microarrays are their design requires a priori 

knowledge of the genome or genomic features, they struggle in cross-

hybridization between similar sequences, they rely on amplified genetic 

materials which generates bias, and they suffer from high signal-to-noise ratio 

(Bumgarner, 2013). 

        The first-generation sequencing, also known as Sanger Sequencing, was 

originally developed by Frederick Sanger and colleagues in 1975. It had 

advantages of being less complex and easy to scale up compared to other 
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competing methods therefore ultimately prevailed (Sanger and Coulson, 1975). 

In the Sanger sequencing method practiced today, DNAs are fragmentized into 

different sizes and labeled with fluorescent dye corresponding to the ending 

base. Then electrophoresis is used to sort the fragments based on their length. In 

combination of all the last base signals, it is able to determine the original 

sequence. The method results in reads ~800-1000 base pairs in length but has the 

limitation of low throughput and high cost. 

        To address the problems posed by Sanger Sequencing, the second-

generation sequencing achieves a higher throughput by sequencing a large 

number of DNA molecules in parallel. The earliest of the next-generation 

sequencing (NGS) technology includes pyrosequencing 454 by Roche, which 

allows the DNA fragments to affixed to micro-beads, which are pyro-sequenced 

in parallel. However, the technology suffers from an inaccuracy in 

homopolymers. Another sequencing technology, SOLiD, has a similar library 

preparation to pyrosequencing 454, and determines the clonal sequence 

represented on each bead by sequential rounds of ligation to a collection of 

dinucleotide-encoded adapters. The SOLiD platform achieves a higher sequence 

accuracy because it interrogates each base twice in sequential rounds of ligation 

to dinucleotide-encoded adaptors (Hurd and Nelson, 2009). 

        However, the Illumina sequencing platform has been the platform of choice 

in NGS due to its cost-effective massive parallel, high-throughput capabilities. In 

Illumina platform, DNA clusters are generated through bridge amplification on a 

glass surface rather than agarose beads to increase density. The DNA strands go 

through “wash-and-scan” operation (Metzker, 2010), flooding in reagents, 

incorporating nucleotides into the DNA strands, stopping the incorporation 
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reaction, washing out the excess reagent, scanning to identify the incorporated 

bases and finally treating the newly incorporated bases to prepare the DNA 

templates for the next “wash-and-scan” cycle. The cycle is repeated until the 

reaction is not viable. This reversible terminator chemistry can sequence up to 

100 million clusters in parallel and overcomes the homopolymer difficulties. 

However, because yields of the addition of each base is increasingly lower, a 

population of DNA molecules might lag behind in synthesis each cycle. This 

determined that Illumina sequencing can only generate short reads, making it 

most suitable for well-annotated genomes and discovering small variants. 

        Since NGS platforms require fragmentation and have limitations in read 

length, people have attempt ways to sequence the entire DNA molecule directly 

in the “third generation sequencing” approaches, one of which is the Oxford 

nanopore sequencing. The concept of nanopore sequencing is that if bases could 

induce different ionic current bursts during DNA traversing through a tiny 

channel, the ionic current can be then be captured and analyzed to infer 

sequencing of the molecule. In 1993, Deamer, Branton, and Kasiannowicz 

employed α-hemolysin (α-HL), a toxic pore-forming protein secreted by 

Staphylococcus aureus to attack a lipid bilayer, to detect DNA translocation 

through α-HL nanopore (Song, et al., 1996). The same α-HL nanopore is used in 

Oxford nanopore sequencing platform. The pores are inserted into a lipid bilayer 

which has separates small chambers connected to a cathode and an anode of a 

path clamp amplifier. The 1.4 nm diameter of the α-HL nanopore allows only a 

single strand DNA or RNA to traverse through. Different bases along the 

negatively charged DNA or RNA strand will cause electric current fluctuations 

and the signal is captured and converted to sequencing information using 
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computer algorithms (Wang, et al., 2014). Despite the high error rate at the 

current stage, the major advantage of the Nanopore sequencing is the ability to 

obtain ultra-long reads, the inexpensive starter bundle, and the small size 

sequencer that can be taken to places did not have sequencer access before. 

Currently, long-read sequencing approaches are mainly used to investigate 

genetic disorders with previously known or strongly suspected disease loci 

(Mantere, et al., 2019). If we could adapt previous short-read optimized 

algorithms or develop new algorithms for the long-read sequencing technologies, 

we can soon enable true whole genome sequencing routinely and allow the de 

novo assembly of individual whole genomes used as a generic test for genetic 

disorders (Mantere, et al., 2019). 

1.4. Approach 

To understand the impact of genomic variations in human, in this dissertation I 

focused on three areas: 

        In chapter 2, I developed a pipeline building tool for fast and extensible 

bioinformatics workflow development. Analysis pipelines are an essential part of 

bioinformatics research. In my research, for example, I frequently create ad hoc 

pipelines for prototyping and exploratory analysis purposes. However, most 

existing pipeline management systems or work-flow engines are too complex for 

rapid prototyping or learning the pipeline concept. A lightweight, user-friendly, 

and flexible solution is thus desirable. In this chapter, I developed a new pipeline 

construction and maintenance tool, PipelineDog, which is a web-based 

integrated development environment with a modern web graphical user 

interface. It offers cross-platform compatibility, project management capabilities, 

code formatting and error checking functions, and an online repository. It uses 
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an easy-to-read/write script system that encourages code reuse. With the online 

repository, it also encourages sharing of pipelines, which enhances analysis 

reproducibility and accountability. For most users, PipelineDog requires no 

software installation. Overall, this web application provides a way to rapidly 

create and easily manage pipelines. 

        I’m interested in autism spectrum disorder (ASD) and attention-

deficit/hyperactivity disorder (ADHD) because they are two major 

neurodevelopmental disorders that frequently co-occur. However, the genetic 

mechanism of the co-occurrence remains unclear. As an effort to understand the 

genetic etiology of ASD, the New Jersey Language and Autism Genetics Study 

(NJLAGS) collected more than 150 families with family members affected by 

ASD where we found a large overlap among individuals and families affected by 

both ASD and ADHD. This provided a suitable dataset for my study. In chapter 

3, I made use of the NJLAGS dataset and analyzed whole genome sequencing 

data on 272 samples from 73 families with either ASD or ADHD and identified 

candidate genes using linkage analysis and association analysis for SNPs and 

indels and burden analysis for SVs. I then further scaled down the candidate 

gene set using various functional annotations and reported the potential causal 

genes for ASD and ADHD discovering the common genetic risk factors 

underlying ASD and co-occurring ADHD. 

        Even though we learn abundant knowledge from SNPs, it is also important 

to study structural variations (SVs) as they account for about 1% of the 

differences between human genomes and play a significant role in phenotypic 

variation and disease susceptibility. Widely adopted next generation sequencing 

technologies have short read-length which limits their ability to identify SVs and 
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the emerging nanopore sequencing technology applies real-time single-molecule 

sequencing and can generate long sequence reads. Despite nanopore 

sequencing’s potential to facilitate better SV identification, the available tools for 

aligning long-read data and detecting SVs have not been thoroughly evaluated.         

In chapter 4, I used four human nanopore datasets, including both empirical data 

and simulated reads, to evaluate four alignment tools and three SV detection 

tools. I then established a recommended workflow for analysis nanopore 

sequencing data for SV discovery, as well as proposing a random forest machine 

learning approach to combine and improve the datasets generated by different 

workflows. The nanopore technology keeps improving and the nanopore 

sequencing community is likely to grow accordingly. In turn, better benchmark 

call sets will be available to more accurately assess performance of available tools 

and facilitate further tool development.
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2. PipelineDog: a simple and flexible graphic pipeline 

construction and maintenance tool 

2.1. Introduction 

Analysis pipelines (also called workflows) are routinely used in bioinformatics 

studies. A pipeline can contain a few related steps to be run as a serial process, or 

dozens of steps and need to be run as concurrent processes. Although highly 

curated, optimized, and quasi-standardized workflows exist for specific goals 

(e.g., (Van der Auwera, et al., 2013), (Wang, et al., 2011)), researchers frequently 

create ad hoc pipelines for prototyping and proof-of-concept purposes outside of 

the production environment. Considering the diversity of biomedical studies, 

and the overwhelmingly large number of available analysis tools, it has become a 

challenge to efficiently create and manage these ad hoc pipelines. 

        Dedicated workflow engines have been developed to address these issues 

(Reviewed in (Leipzig, 2016)). Popular workflow engines, such as Galaxy 

(Goecks, et al., 2010), Taverna (Oinn, et al., 2004), and Pegasus (Deelman, et al., 

2015), offer graphical user interface (GUI) for creating pipelines, and execution 

environments for running pipelines. However, installing, running, and 

maintaining such large systems require substantial resources and expertise and 

they are more suitable for large research groups to implement well-tested 

workflows. At the same time, several relatively lightweight workflow 

management tools have also been developed, for example, Ruffus (Goodstadt, 

2010), Snakemake (Koster and Rahmann, 2012), and BuddySuite (Bond, et al., 

2017). These lightweight systems are less feature-rich, but they significantly 

reduced the time between pipeline conception and implementation. However, 
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these lightweight tools are all command-line tools, requiring working knowledge 

of programming languages and the installation and maintenance of the running 

environment. For users without extensive programming experience, a flexible 

lightweight tool with minimum installation and maintenance requirement is 

desired. 

        As a result, we developed PipelineDog, a lightweight tool in a modern web 

GUI. PipelineDog is specifically designed for users with little programming 

experience but has the need to perform computational analyses or learn the 

principles of workflow/pipeline design. For example, clinicians with little 

programming experience but want to explore the sequencing data analyses, or 

students learning the principles of workflow design. For these users, the web 

GUI provides sufficient functionality for constructing and debugging pipelines, 

and no additional software installation is needed. Only a minimal amount of 

reading is needed to use an easy-to-read/write PipelineDog Script and LEASH 

Expression system that we developed. On the other hand, for experienced users, 

PipelineDog can serve as a quick workflow experimental and prototyping tool. 

To encourage code reuse and enhance analysis reproducibility, we also provide 

an online repository for steps and pipelines.  

2.2. System Design and implementation 

The overall design goal of PipelineDog system is to increase efficiency for rapid 

prototyping. To achieve this goal, we aim to: 1st, improve usability by offering a 

modern web-based GUI and an integrated development environment (IDE); 2nd, 

encourage code reuse by providing a modular and human friendly scripting 

language (PipelineDog Script and LEASH Expression); and 3rd, enhance 
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community efforts and code/pipeline sharing by providing a public pipeline 

repository. 

        PipelineDog views a pipeline as a series of operations on a list of files 

(Figure 2.1A). Each analysis step can have a list of input files, and a list of output 

files. Downstream steps can use any or all of the upstream steps’ output lists. 

Users use a PipelineDog Script to specify the pipe-line’s individual steps. If 

needed, LEASH Expression (LEASH stands for Line Entry Automated Shuffling) 

can be used to dynamically select input files, alter file output directory or file 

names, and define specific patterns to iterate through files. Analysis steps in 

PipelineDog Script can then be chained or nested to create an entire workflow 

(Figure 2.1A).  
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Figure 2.1. Workflow and user interface of PipelineDog. 
A) Workflow of the PipelineDog web app. The List File, Step definition script, and generated Bash 
code are shown for a simple example to unzip files while keeping the original compressed version. 
B) The main interface of the PipelineDog web app.  On the left side are tabs allowing a user to 
manage List Files and Steps. The main Code Editor panel on the right side contains format 
validation, parsing, and import/export functionalities of a typical IDE. The Editor section has three 
views: Editor, Command, and Output views, allowing a user to interactively edit a step, view the 
parsed commands, and view the output file paths, respectively. The Export menu on the top right 
corner allows a user to export a BASH script for the complete pipeline. Additional functionalities 
include saving a PipelineDog project as a local file, and searching for example steps or pipeline 
scripts in our online community-driven repository. 
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        The PipelineDog Script and LEASH Expression system are designed for 

rapid prototyping needs. It requires less coding than the commonly used 

Common Workflow Language (CWL) or Workflow Description Language 

(WDL) (see Figure 2.2 for an example). PipelineDog Script allows simple 

implementation of both serial operations and more com-plex workflow patterns 

(e.g., forks and scatter-gather). PipelineDog Script and LEASH Expression are 

based on YAML and are designed for maximal convenience to read/write for 

users without extensive programming experience. The detailed technical 

specification for PipelineDog Script and LEASH Expression can be found in the 

supple-mental file and online (https://github.com/ysunlab/PipelineDog). A 

simple example pipeline is illustrated in Figure 2.1A with a more detail example 

in the “Application” section.  

        Unlike almost all previous systems, PipelineDog uses the Bash shell as the 

execution engine, which is available on most Unix-like systems, Mac OS, and is 

easily installed on Windows systems. By leveraging the ubiquitous Bash shell, 

for most users using PipelineDog requires no installation of new software. 
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        PipelineDog is written in JavaScript and the entire PipelineDog system is 

packaged as a single web application (http://web.pipeline.dog). This web app 

itself is an IDE and provides a modern GUI with cross-system compatibility, 

project management features, code formatting, error checking, and an online 

repository (Figure 2.1B). For more advanced users, a CLI version is also 

 
Figure 2.2. Comparison of three workflow languages defining the same command. 
The BASH command is shown at the top of the figure and the three implementations (PipelineDog, 
Workflow Description Language, and Common Workflow Language) are shown at the bottom. 
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available. Additional implementation details are described in the specification 

section. 

2.3. Discussion 

The PipelineDog system provides a convenient way to create and man-age ad 

hoc pipelines, with the capability of producing production quality pipelines. 

PipelineDog Scripts are designed for users without extensive programming 

experience. By using the popular and ubiquitous Bash shell as the execution 

engine, most users can use PipelineDog with no software installation need. 

Additionally, we provide a repository for sharing and reusing PipelineDog 

scripts. With this design philosophy, we aim to encourage code reuse and the 

sharing of pipelines, which further enhances analysis reproducibility and 

accountability.  

2.4. Specification 

2.4.1. Project  

A PipelineDog project consists of three types of definitions: global variables, list 

files, and step definitions. Global variables can only be defined once for the entire 

project, while there can be multiple list files and steps. Global variables definition 

stores the variable that can be accessed by all of the steps. It's recommended to 

put environment specific variables of each step in global variables (e.g., the Step-

ID, name and in). The list file is the pipeline input which usually consists of a list 

of file names that are different for each pipeline run. Other parameters of the run 

can also be specified in the list file. The step definitions are each steps of the 

pipeline defined by the PipelineDog script step specifications. In a PipelineDog 

project, the first step reads the list files as the input, then the outputs from one 

step can be used by the next step in addition to the list files, thus forming a 
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pipeline. For detailed specification, please visit the PipelineDog Github page 

(https://github.com/ysunlab/PipelineDog). 

2.4.2. Step  

A pipeline typically contains multiple steps. A PipelineDog step definition file 

(as well as the entire Project definition file) is an YAML file that defines a single 

object with PipelineDog-specific keys. The key of the entire object is the Step-ID 

key. This key uniquely identifies each step and defined as two numbers 

separated by a dash (-). The first number is the order that steps to be executed. If 

the first number is the same for two steps, these two steps will be executed in 

parallel. In that case, the second number is used to distinguish these steps. 

Within the object, several additional key-value pairs are available:  

        1. name: a string to describe the nature/function of this analysis step. 

        2. in: a string or an array to provide the name of a list file, or the name of the 

output from a previous step.  

        3. run: a string to provide a template for PipelineDog to construct one or 

more BASH commands. The template can include LEASH targets (starts with 

“~”) to be replaced by the following LEASH expression keys.  

        4. LEASH expressions: a series of objects to provide specific instructions to 

PipelineDog on how to modify and replace the LEASH targets inside the "run" 

template with user provided parameters. They also start with “~” to match the 

LEASH targets.  

        5. out: a string or an array to specify the list of new files that will be 

generated after this step has been successfully executed (so that later steps can 

get access to this list of new Line Entries)  
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        6. comment: an optional string that provide additional information about 

this step for the users, typically when it is too long to put inside the name field. 

This will appear as commented code in the exported BASH script.  

Besides Step-ID, two key-value pairs are required in Step Definition: name and 

run. A LEASH target and its corresponding LEASH expression are the key 

mechanism that allows PipelineDog to automatically format a command line 

argument list.  

2.4.3. LEASH expression  

LEASH stands for Line Entry Automated SHuffling, indicating that the line 

entries will be reformatted and rearranged automatically according to a set of 

LEASH expressions. LEASH expression is the core driver of PipelineDog, 

because it processes the commands based on the user-specified parameters for a 

specific pipeline and replace the LEASH targets marked in the run key with the 

dynamic parts defined by the expression. LEASH expression is defined after the     

run key, also using a YAML object with keys namely:  

1. file: select one or more list files that will be included in the pipeline, or an 

output from a previous step.  

2. line: select one or more line entries from the selected list file(s), and also 

specify how these entries should be arranged or repeated.  

3. mod: modify each line entry with the optional prefix and/or suffix 

string(s), and also select which basic parts of an entry to retain and modify.  

4. mods: use either mods or mod. Mods (stands for mod-simplified) uses a 

format similar to what you would want to see in the actual constructed 

command. It fulfills most but not all of the functions of mod, but with a much 

easier-to-remember syntax.  
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5. sep: define the separator character of the line entries if they are in the same 

command.  

Together, the LEASH expression provides an automated way to reformat and 

rearrange line entries.  

2.4.4. Implementation Details  

Both GUI version and command line interface (CLI) version of PipelineDog are 

written in JavaScript, with Browserify (http://browserify.org) employed to unify 

the package system between these two versions. It utilizes the React framework 

(https://facebook.github.io/react) with JSX syntax for the front-end user 

interface and ES2015 (http://www.ecma-international.org/ecma-262/6.0) 

JavaScript syntax for the backend logic and algorithms. Material UI component 

set (http://www.material-ui.com) for React is used as the foundation of the user 

interface design. The general UI design also follows the material design 

(https://material.google.com) principles defined by Google. The web user 

interface is hosted on Github (https://github.com) as a static web page 

application. The CLI version of the app is hosted on npm 

(https://www.npmjs.com) as a downloadable Node.js package. The "save code 

to local" functionality, which receives the code data and generates a file for user 

to download, is hosted on Heroku (https://www.heroku.com) as a Node.js 

application. The online code repository backend is implemented using the 

Firebase (https://firebase.google.com) platform, which provides 4 a real-time 

database and a simple administrative system. YAML format is parsed using the 

library js-yaml (https://github.com/nodeca/js-yaml). 
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3. Analysis of Common Genetic Risk Factors in ASD and 

ADHD Co-occurring Families  

3.1. Introduction 

Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder 

(ADHD) are two neurodevelopmental disorders of high prevalence and severity. 

ASD is characterized by deficits in social interaction and social communication, 

and by restricted, repetitive and stereotyped patterns of behavior, interests, and 

activities (Polderman, et al., 2014). ADHD is characterized by inattention and 

hyperactive/impulsive symptoms (Polderman, et al., 2014). The two disorders 

have shown a high frequency where 20-50% of children with ADHD meet the 

criteria for ASD and 30-80% of ASD children meet the criteria for ADHD 

(Rommelse, et al., 2010). Both conditions can cause a severe negative impact on 

the patients’ life quality, and only worsen when co-occurring. Thus, a deep 

understanding of the genetic etiology of familial co-occurrence of ASD and 

ADHD is important to enhance treatment planning. 

Extensive research has been conducted on both disorders and demonstrates 

overlapping genetic factors between the two conditions (Doherty and Owen, 

2014; Ghirardi, et al., 2018; Johnson, et al., 2015; Rommelse, et al., 2010; Ronald 

and Hoekstra, 2011). For example, ADHD candidate causal genes DRD3 and 

MAOA are cautiously positively associated with ASD (Rommelse, et al., 2010). In 

genome-wide association studies (GWAS), 16 single nucleotide variants (SNVs) 

related to ADHD were found to be possibly involved in ASD and 25 SNVs 

related to ASD are possibly involved in ADHD (Rommelse, et al., 2010). In copy 

number variation (CNV) studies, CNVs segregated with ADHD were also found 
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to be enriched for ASD candidate genes. Correspondingly, ASD patients’ family 

members also carry the ADHD diagnosed CNVs (Elia, et al., 2010; Martin, et al., 

2014). While the studies have suggested shared genetic risk factors as one 

possible reason for the co-occurrence of the two disorders, they either used 

microarray or whole exome sequencing. In addition those studies are based on 

case-control study and did not leverage the power of family studies. Therefore, 

the evidence of shared genetic risk factors between ASD and ADHD from these 

studies are mostly weak and inconclusive. 

To further explore the etiology of ASD/ADHD concomitance, we aimed to 

use whole-genome sequencing (WGS) analysis to identify SNVs and structural 

variants (SVs) responsible for the ASD/ADHD phenotypes segregated in the 

New Jersey Language & Autism Genetics Study (NJLAGS) (Bartlett, et al., 2014). 

NJLAGS is a project studying the genetic influences of autism development and 

has conducted WGS on 272 samples from 73 families, each with at least one ASD 

proband. All family members have been characterized by extensive behavioral 

assessments of language and social functioning, restrictive and repetitive 

behaviors, and other co-occurring behaviors. Despite the original study focus on 

ASD, these families exhibit elevated rates of ADHD, both in ASD probands and 

non-ASD family members. Importantly, more than half of the ASD probands 

have also been diagnosed with ADHD. The high rate of co-occurrence of ASD 

and ADHD in the NJLAGS families provides a unique opportunity to identify 

genetic factors underlying the co-occurring ASD and ADHD.  

3.2. Methods 

3.2.1. Sample collection and phenotype assessment 
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The sample in this study includes 79 families from a previous NJLAGS study 

(Bartlett, et al., 2014) (Wave 1) plus an additional 36 families collected after the 

2014 publication (Wave 2). The original aim of the NJLAGS study was to find 

genetic variation of potential relevance to ASD and language impairment as well 

as disorders related to autism and language. Families were required to have at 

least one person with autism and one additional person with a language-learning 

impairment. During Wave 1, autism probands were required to have a strict 

diagnosis of Autistic Disorder based on the Autism Diagnostic Interview (ADI-

R), Autism Diagnostic Observation Schedule (ADOS), and the Diagnostics and 

Statistical Manual-IV (DSM-IV). A second proband had to meet criteria for 

Specific Language Impairment, a disorder where language development is 

delayed or deviant and cannot be explained by any other neurodevelopmental 

diagnosis. For Wave 2, NJLAGS sought to understand if the original strict 

autistic disorder diagnostic criteria were necessary, and therefore, the autism 

proband requirements were intentionally relaxed to become more in line with 

the less restrictive, newer DSM-5 criteria for Autism Spectrum Disorder (DSM-5, 

2012). All subjects gave informed consent or assent conforming to the guidelines 

for treatment of human subjects from the Intuitional Review Board at Rutgers, 

The State University of New Jersey (IRB number: 13-112Mc).  

        For the present study, we focused on co-occurrence of ASD and ADHD. The 

ADHD affection status of ASD probands was determined by responses to 

questions specific to ADHD on three different NJLAGS questionnaires: 1) 

Medical History Questionnaire, 2) the Family History Questionnaire, and 3) the 

Language Correlates Questionnaire. Affection status of all other family members 
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was determined from the Language Correlates Questionnaire and the Family 

History Questionnaire. 

3.2.2. Genotyping 

Wave 1 Affymetrix Axiom array genotypes have been described previously 

(Bartlett et al. 2014). For Wave 2, SNP data was generated with the Illumina 

Infinium PsychArray-24 v1 array (Illumina, San Diego, CA), which includes 

593,260 SNPs. In this study we focused on SNP with population MAF (minor 

allele frequency) >1%. Quality control on SNP genotypes was conducted by 

array batch and by array type, as described previously (Bartlett et al. 2014). The 

quality control criteria include individual/SNP genotype completion, 

relationship checking, Mendelian errors checking, and ancestry inference. The 

linkage analysis only included samples that clustered with the CEU samples 

from the HapMap reference data, as determined by EIGENSTRAT using the 

recommend parameters in the documentation (Patterson, et al., 2006).  

        Initially, a subset of 10,899 SNPs in common across the Wave 1 and 2 arrays 

was chosen for linkage analysis, which minimize marker-to-marker linkage 

disequilibrium while retaining a high MAF (>30%) to provide suitable genomic 

coverage of recombination events in the pedigrees. Overlap in some genomic 

regions was too low to retain acceptable information content as measured by 

MERLIN (Abecasis, et al., 2002). In those regions, array-specific SNPs were 

included. This procedure did not pose an issue with missing data within families 

since every family was genotyped using only a single array type. 

3.2.3. Statistical Analysis 

Linkage analyses were conducted with KELVIN 2.3.3 (kelvin.mathmed.org). 

KELVIN implements the posterior probability of linkage (PPL) metric to estimate 
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the probability that a genetic location is linked with a tested trait (Vieland, et al., 

2011). Primary linkage analysis of the phenotypes was conducted on each wave 

separately, and the linkage evidence was “sequentially updated” across the 

waves using Bayes rule to provide a single metric for linkage evidence. A 

secondary linkage analysis was conducted using all families jointly in a single 

"pooled" analysis of each trait. By comparing the sequentially updated result to 

the pooled result, we could qualitatively infer the role of heterogeneity in the 

dataset. Since stratifying on an irrelevant trait will on average produce the same 

result as a pooled analysis (Govil and Vieland, 2008), if we observe appreciably 

higher sequentially updated PPL over pooled results, we may infer that 

heterogeneity demarcated by wave is present in the data. 

        Based on previous simulations of the null distribution in the NJLAGS 

sample when correcting for three phenotypes (Bartlett, et al., 2014), a PPL of 0.32 

or greater is consistent with a genome-wide error rate of p<0.001, a PPL of 0.26 

corresponds to p<0.01, and a PPL of 0.11 corresponds to p<0.05. These threshold 

values are similar to previous studies of the false positive rate of the PPL after of 

correction for testing multiple phenotypes (Bartlett, et al., 2002; Logue, et al., 

2003). 

3.2.4. DNA sequencing  

DNA extraction was performed by RUCDR either from blood DNA (WB) or 

Lymphoblastoid cell lines (LCL). The sequencing was done in four batches by 

three vendors (Table 3.1). All samples were sequenced using Illumina paired-end 

reads with a spec of 30x read depth. 

Batch Sequenced SNV/Indel SV 
Knome 25 13 16 
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Hudson Alpha 20 19 20 

Hudson Alpha 150 139 147 

Genewiz 102 101 97 

Total 297 272 280 
 

Table 3.1. Number of samples from each vendor. 
 

Some of these samples were excluded for different analyses because of 

quality issues. A few were dropped because the subjects withdrew from the 

study. For samples that were sequenced in more than one batch, the best quality 

run was used for the analysis.  

3.2.5. Small variant (SNV/indel) and structural variant calling 

Alignment of paired-end fastq files was performed using the BWA-MEM 

algorithm (v0.7.12) to the Human Genome Reference Consortium Build 37 (hg19) 

using default parameters. The output was converted to BAM format using 

SAMtools view (v0.1.19). BAM files from read alignment were then processed 

using the GATK v3.5.0 variant calling pipelines followed the best practice 

recommendation for alignment processing and variant calling (DePristo, et al., 

2011; Wang and Xing, 2013). Starting from sorted and indexed individual BAM 

files, a series of GATK alignment processing procedures were conducted, 

including PCR duplicate removal and base quality score recalibration. Variants 

were called per individual using HaplotypeCaller before joint called by 

GenotypeGVCF. All samples from different sequencing batches were joint called 

along with the 1000 Genomes project European ancestry samples (CEU, GBR, 

FIN) from the Utah Genome Project as controls to reduce the batch-effect for 

downstream analysis. After variant call, we employed variant quality score 

recalibration using VariantRecalibrator and ApplyRecalibration as outlined in 
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the GATK protocol using gold standard variant data from the HapMap and the 

1000 Genomes projects.    

        The realigned reads were split into individual chromosomes to facilitate 

parallel computing on a slurm HPC platform. MetaSV (Mohiyuddin, et al., 2015), 

along with its components (Breakseq2 (Abyzov, et al., 2015), breakdancer (Chen, 

et al., 2009), CNVnator (Abyzov, et al., 2011), and Pindel (Ye, et al., 2009)) were 

run on the samples for SV discovery and local realignment by spades and AGE 

were carried out to further improve breakpoint resolution. MetaSV then 

combined all evidence produced and merged them into a single call set. The 

output of each chromosome from the same individual was then merged back to 

one file using VCFtools (Danecek, et al., 2011). Basic statistics for the SV calls 

were calculated by SURVIVOR (Sedlazeck, et al., 2017) for quality control.  

3.2.6. Pedigree trimming 

Pedigree information was organized in the PED file format. Only families 

affected by ADHD or ASD were included in this analysis. For running pVAAST, 

the pedigrees were then processed and trimmed using custom scripts to include 

only individuals from one pair of ancestral parents per pedigree for running the 

dominant mode, or a two-generation subset of the pedigree for running the 

recessive mode. The individuals retained were selected to maximize the number 

of sequenced and affected samples. 

3.2.7. Variant annotation and selection 

SNVs and indels were first annotated by VAT in the VAAST package (2.0.2) and 

then condensed into cdr files to represent one family per file by VST in the 

VAAST package. The variants were filtered to only include those that have an 

MAF <5% in the ExAC dataset excluding psychiatric cohorts 
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(http://exac.broadinstitute.org/). For the control samples, 635 GTEx whole-

genome sequenced samples were obtained and condensed into a single group. 

The SV calls were annotated by AnnotSV (Geoffroy, et al., 2018) which gives a 

severity score for each SV. A custom script was written to discard all the SVs that 

had an MAF >5% in gnomAD, the 1000 Genomes Project, or preliminary results 

from the Center for Common Disease Genomics (CCDG) study (Abel, et al., 

2018). 

3.2.8. Gene prioritization 

For SNV and indels, the gene prioritization tool pVAAST (v0.02) was used to 

find candidate genes based on the aggregative score for each variant within the 

coding region (Hu, et al., 2013; Hu, et al., 2014). A pVAAST score was calculated 

for each gene from its variants’ linkage pattern, association strength, allele 

frequency, and functional prediction. Six pVAAST analyses were performed in 

total for different traits, regions, and inheritance modes (Table 3.2), including 

two analyses for ADHD linage regions and four whole-genome analyses. The 

whole-genome analyses were performed at 10^5 permutations per gene, and the 

linkage region analyses (chr12: 38200001- 71500000 and chr17: 3300001- 10700000) 

were performed at 10^6 permutations per candidate gene.  

        For SVs, a custom script was written to convert results from an SV-based 

report into a gene-based report. In both case and control individuals, the 

annotated severity scores of all SVs overlapping with genes were aggregated for 

each gene. The affected genes were ranked based on the ratio of aggregated 

scores of the SVs overlapping the genes in case samples versus control samples. 

Trait Region Inheritance Mode 
ADHD Linkage region Dominant 
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ADHD Linkage region Recessive 

ADHD Whole genome Dominant 

ADHD Whole genome Recessive 

ASD or ADHD Whole genome Dominant 

ASD or ADHD Whole genome Recessive 
 
Table 3.2. Differences in pVAAST runs that generated. 
 

3.2.9. Gene annotation, pathway and enrichment analysis 

A custom gene-based annotation program was written to collect information 

from online databases, annotate, and filter the candidate gene sets. The online 

databases and resources used are listed in Table 3.3. 

Database Information Link Reference 
SFARI Consensus genes https://www.sfari.org/resource/sfari-

gene/ 

(Abrahams, 

et al., 2013) 

ADHDgene Consensus genes http://adhd.psych.ac.cn/ (Zhang, et 

al., 2012) 

iPSYCH Consensus genes https://ipsych.dk/en/ (Schork, et 

al., 2019) 

Autism 
Sequencing 
Consortium 
& iPSYCH 

Consensus genes https://doi.org/10.1016/j.cell.2019.12.036 (Satterstrom, 

et al., 2020) 

DISEASE Disease 

association by 

literature text-

mining 

https://diseases.jensenlab.org/Search (Pletscher-

Frankild, et 

al., 2015) 

gnomAD tolerance to LoF 
(pLI score) 

https://gnomad.broadinstitute.org/ (Karczewski, 
et al., 2020) 

IMPC Known phenotype 

changes in mouse 

gene knockouts 

https://www.mousephenotype.org/ (Koscielny, et 

al., 2014) 

GTEx Differential gene 

expression human 

tissues 

https://gtexportal.org/home/ (GTEx-

Consortium, 

2017) 
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brainSpan Differential gene 

expression in 

developing brain 

https://developingmouse.brain-map.org/ (Miller, et al., 

2017) 

GIANTS Tissue-specific 

protein interaction 

https://hb.flatironinstitute.org/ (Greene, et 

al., 2015) 

Panther Gene enrichment 
analysis 

http://pantherdb.org/ (Thomas, et 
al., 2003) 

KEGG Pathway analysis https://www.kegg.jp/kegg/mapper.html (Kanehisa, et 

al., 2020) 

STRING Pathway analysis https://string-db.org/ (Szklarczyk, 

et al., 2020) 
 
Table 3.3. Online databases integrated in the annotation, pathway and enrichment analysis. 

 
        The final merged and interset candidate gene sets were then uploaded to 

web-based tools including Panther (Thomas, et al., 2003), KEGG (Kanehisa, et al., 

2020), and STRING (Szklarczyk, et al., 2020) for gene overrepresentation and 

pathway analyses. 

3.3. Results 

3.3.1. ASD and ADHD have high co-occurrence rate in NJLAGS families 

In our samples collection, 111 families were recruited requiring at least one ASD 

proband within the family. The study was conducted with microarray analysis 

and WGS analysis in parallel (Figure 3.1). The WGS analysis prioritized genes 

base on SNVs/indels and SVs called from sequencing data, and took advantage 

of the discovered linkage region from the microarray analysis to scale-down the 

linkage-region specific candidate genes sets. The candidate gene sets were then 

subjected to enrichment and pathway analyses. Among the 73 families involved 

in WGS, 47 (64.3%) families have individuals who are also affected by ADHD. 

Out of the 98 individuals affected by ASD, 41 (41.8%) are also affected by ADHD 
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(Table 3.4). Males are more likely to be affected by both ASD and ADHD 

compared to females (T-test P=0.03) (Table 3.4). Of the 493 total individuals 

within the 73 families, 125 are affected by either ASD or ADHD (Table 3.4).  

 All Male Female Families 
ASD 98 77 21 73 

ADHD 68 46 22 47 

ASD and ADHD 41 30 11 36 

ASD or ADHD 125 93 32 73 

All samples 493 281 212 73 
 
Table 3.4. Summary of families involved in WGS and their phenotypes. 
 

 
3.3.2. Linkage analysis highlight peaks for ADHD 

A total of 524 persons from 111 families were genotyped for linkage analysis. The 

fully constructed the pedigrees contains 707 persons, due to the need of adding 

missing persons, such as grandparents, to link sibships of cousins. Families have 

 

 

Figure 3.1. Study overall workflow. 
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an average of 4.2 people genotyped and an average of 5.7 people (including 

ungenotyped people).   

        Multipoint linkage analysis of the data was performed with results 

summarized in Figures 3.2-3.4 with peaks summarized in Table 3.5. The ADHD 

phenotype was linked to 17p, meeting the conventional standard for declaring 

linkage (p<0.001) as determined by a simulation study to estimate the empirical 

null distribution (Figure 3.2). As the pooled PPL was larger than the sequentially 

updated PPL, we may infer that the locus is largely homogenous, in the sense 

that these results did not offer evidence that data from either of the two waves 

are inconsistent with linkage. As such, the locus did not depend on the strictness 

of the ASD criteria used in ascertainment. The locus on 12q met the criteria for 

suggestive linkage to ADHD (Figure 3.2). Similar to the locus on 17p, the pooled 

PPL for 12q was larger than the sequentially updated PPL, indicating that the 

linkage with ADHD did not differ across the two waves of ASD criteria used for 

recruitment in our study. Several additional loci met the criteria nominal linkage. 

The ADHD phenotype is nominally linked to 3p (pooled PPL=0.11, updated 

PPL=0.23) with evidence for heterogeneity across ASD criteria and 19q (pooled 

PPL=0.20, updated PPL=0.14) with no evidence for heterogeneity across ASD 

criteria. The phenotype “ADHD or ASD” had two nominal linkage peaks, both 

suggesting heterogeneity, on 19p (pooled PPL=0.11, updated PPL=0.18) and 20q 

(pooled PPL=0.02, updated PPL=0.19) (Figure 3.3). The “ADHD and ASD” 

phenotype did not show evidence for linkage, likely due to the small sample size 

of the phenotype (Figure 3.4). 

Trait Chromosome cM Cytoband PPL Pooled PPL Updated 
ADHD 3 95-97 3p13 0.11 0.23 
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ADHD 12 59-86 12q12-15 0.27 0.15 

ADHD 17 12-32 17p13.1-2 0.38 0.17 

ADHD 19 54-62 19q12-13.1 0.20 0.14 

ADHD or ASD 19 5-17 19p13.3 0.11 0.18 

ADHD or ASD 20 74-104 20q13.13-13.33 0.02 0.19 
 
Table 3.5. Summary of regions of interest. 
 
 

 

 

 
 
Figure 3.2. Linkage peaks for ADHD in across the genome. 
(A) pooled samples (B) sequential update. 
 

A) 

B) 
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Figure 3.3. Linkage peaks for ASD or ADHD in across the genome. 
(A) pooled samples (B) sequential update. 
 
 

 

 
 
Figure 3.4. Linkage peaks for ASD and ADHD in across the genome. 
(A) pooled samples (B) sequential update. 
 
 

A) 

B) 

A) 

B) 
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3.3.3. SNP and SV discovery 

We selected 272 individuals from the recruited families to undergo whole 

genome sequencing to ~30x coverage. The sequencing reads that passed quality 

filter were then mapped to the human genome reference hg19 and genomic 

variants are called jointly using GATK for SNP and indel. SV calling has been 

historically difficult (Ho, et al., 2019), therefore we employed an ensemble 

algorithm, MetaSV, to call SV per-sample.  

        The number of variants called in small variants and SVs were consistent 

sample-wise. For small variants, around 4 million SNVs were called for most of 

the samples, and the indels ranged from 700,000 to 1.1 million. For SVs, an 

average of 1,103,764 SVs are discovered for each individual, ranging from 

400,000 to 1,950,000 across the samples. The majority of the SVs were within 50-

1000 bp range (Figure 3.5) and the largest categories were insertions, deletions 

and inversions (Table 3.8).  

Sample # Reads Yield 
(Mbases) 

Source 

04C32333 328,664,498 99257.00 LCL 

04C32335 446,837,505 134946.00 LCL 

04C34428 315,196,704 95192.00 LCL 

04C35408 356,957,465 107803.00 LCL 

04C37033 373,706,310 112861.00 LCL 

04C38287 355,184,708 107263.00 LCL 

05C40411 297,112,370 89731.00 LCL 

05C40413 341,072,614 103006.00 LCL 

05C43286 290,261,577 87657.00 LCL 

05C43287 324,033,739 97857.00 LCL 

05C44020 358,181,538 108167.00 LCL 

05C45100 323,833,491 97800.00 LCL 

05C45345 337,065,159 101795.00 LCL 



 

 
 

34 

05C46007 393,919,714 118961.00 LCL 

05C46009 323,188,608 97603.00 LCL 

05C46337 374,070,641 112966.00 LCL 

05C46426 317,105,568 95763.00 LCL 

05C47471 400,689,785 121011.00 LCL 

05C47975 316,762,005 95663.00 LCL 

05C47977 449,953,232 135883.00 LCL 

05C50238 339,997,951 102678.00 LCL 

05C50316 422,678,222 127654.00 LCL 

06C52243 376,703,496 113767.00 LCL 

06C58552 348,772,656 105329.00 LCL 

06C58874 351,078,366 106027.00 LCL 

06C61307 335,693,680 101376.00 LCL 

07C64741 424,597,242 128226.00 LCL 

07C65307 316,804,294 95674.00 LCL 

07C65371 376,474,743 113693.00 LCL 

07C66696 396,828,216 119842.00 LCL 

07C67896 374,602,996 113128.00 LCL 

07C67897 313,764,671 94756.00 LCL 

07C69064 315,723,832 95345.00 LCL 

07C69065 332,692,849 100474.00 LCL 

07C69182 316,371,330 95546.00 LCL 

07C70334 339,863,346 102637.00 LCL 

08C71374 360,805,840 108960.00 LCL 

08C71765 502,915,302 151879.00 LCL 

08C73255 345,239,441 104264.00 LCL 

08C75152 532,460,411 160806.00 LCL 

08C75153 377,001,593 113853.00 LCL 

08C75494 323,735,410 97769.00 LCL 

08C76448 385,947,691 116556.00 LCL 

08C76449 384,295,223 116058.00 LCL 

09C95711 354,926,092 107188.00 WB 

10C117871 321,561,392 97114.00 WB 

10C117872 521,755,604 157563.00 WB 

10C117873 344,230,601 103957.00 WB 

10C117874 341,077,777 103006.00 LCL 
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10C117899 356,111,591 107546.00 WB 

2743-SL-0021 337,633,333 101290.00 LCL 

2743-SL-0022 344,200,000 103260.00 LCL 

2743-SL-0023 345,733,333 103720.00 LCL 

2743-SL-0024 334,766,667 100430.00 LCL 

2743-SL-0026 331,233,333 99370.00 LCL 

2743-SL-0027 344,100,000 103230.00 LCL 

2743-SL-0028 331,800,000 99540.00 LCL 

2743-SL-0029 334,766,667 100430.00 LCL 

2743-SL-0030 336,366,667 100910.00 LCL 

2743-SL-0031 333,133,333 99940.00 LCL 

2743-SL-0032 333,566,667 100070.00 LCL 

2743-SL-0033 352,933,333 105880.00 LCL 

2743-SL-0034 353,066,667 105920.00 LCL 

2743-SL-0035 354,133,333 106240.00 LCL 

2743-SL-0036 382,866,667 114860.00 LCL 

2743-SL-0037 337,466,667 101240.00 LCL 

2743-SL-0038 314,800,000 94440.00 LCL 

2743-SL-0039 339,033,333 101710.00 LCL 

2743-SL-0040 334,166,667 100250.00 LCL 

LP6005170-DNA_A04 698,500,000 139700.00 WB 

LP6005170-DNA_B01 631,000,000 126200.00 WB 

LP6005170-DNA_B03 673,000,000 134600.00 WB 

LP6005170-DNA_C01 589,000,000 117800.00 WB 

LP6005170-DNA_C03 658,000,000 131600.00 WB 

LP6005170-DNA_D01 665,000,000 133000.00 WB 

LP6005170-DNA_D02 761,500,000 152300.00 WB 

LP6005170-DNA_D03 736,000,000 147200.00 WB 

LP6005170-DNA_F02 786,000,000 157200.00 WB 

LP6005170-DNA_G01 678,500,000 135700.00 WB 

LP6005170-DNA_G02 575,500,000 115100.00 WB 

LP6005170-DNA_G03 714,500,000 142900.00 WB 

LP6005170-DNA_H03 763,500,000 152700.00 WB 

MH0151131 368,167,362 111188.00 WB 

MH0152513 302,233,936 91274.00 WB 

MH0152515 368,718,640 111352.00 LCL 



 

 
 

36 

MH0152516 322,782,456 97481.00 LCL 

MH0152518 282,544,44 85326.00 LCL 

MH0160130 325,919,921 98430.00 LCL 

MH0160135 360,204,895 108784.00 LCL 

MH0160147 356,700,711 107722.00 WB 

MH0160342 455,592,486 137589.00 LCL 

MH0161789 328,519,983 99215.00 WB 

MH0161791 357,817,154 108062.00 LCL 

MH0161794 319,319,390 96440.00 LCL 

MH0161798 333,749,002 100791.00 WB 

MH0165172 376,946,231 113841.00 WB 

MH0165173 283,233,594 85537.00 LCL 

MH0165177 423,243,939 127821.00 LCL 

MH0166945 357,653,711 108014.00 WB 

MH0168145 372,506,472 112500.00 WB 

MH0168147 321,254,387 97019.00 WB 

MH0168149 452,492,299 136654.00 WB 

MH0168151 394,533,316 119149.00 WB 

MH0170044 342,434,914 103413.00 WB 

MH0170045 395,575,630 119466.00 WB 

MH0170047 284,341,243 85871.00 WB 

MH0170049 351,954,750 106293.00 WB 

MH0181201 384,572,569 116140.00 WB 

MH0181202 363,512,308 109780.00 WB 

MH0181203 514,652,831 155425.00 WB 

MH0181214 331,254,878 100041.00 WB 

MH0181699 353,759,815 106831.00 WB 

MH0181700 372,710,572 112561.00 WB 

MH0181701 354,053,405 106924.00 WB 

MH0181702 368,805,960 111380.00 WB 

MH0181703 324,356,475 97957.00 WB 

MH0181704 378,531,552 114311.00 WB 

MH0181705 409,229,861 123586.00 WB 

MH0181706 279,393,55 84374.00 WB 

MH0186884 365,783,208 110466.00 WB 

MH0186896 373,811,036 112891.00 WB 
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MH0186904 346,790,153 104731.00 WB 

MH0186906 356,894,636 107781.00 WB 

MH0186908 333,011,717 100566.00 WB 

MH0188328 418,949,626 126523.00 WB 

MH0196857 363,725,927 109846.00 WB 

MH0197641 454,412,999 137231.00 WB 

MH0197642 363,067,952 109646.00 WB 

MH0197643 331,414,673 100087.00 LCL 

MH0197645 360,820,477 108969.00 LCL 

MH0197646 352,090,074 106331.00 WB 

MH0197647 334,708,730 101082.00 WB 

MH0197648 338,809,566 102320.00 WB 

SL127696 931,101,286 279330.38 WB 

SL127697 938,948,176 281684.45 WB 

SL127698 1,004,738,046 301421.41 WB 

SL127699 961,542,892 288462.86 LCL 

SL127700 971,036,636 291310.99 LCL 

SL127701 N/A N/A LCL 

SL127703 837,494,428 251248.32 WB 

SL127704 909,652,332 272895.70 WB 

SL127705 946,242,780 283872.83 WB 

SL127706 950,235,436 285070.63 LCL 

SL127707 872,547,776 261764.33 LCL 

SL127708 946,009,476 283802.84 LCL 

SL127709 890,052,436 267015.73 WB 

SL127710 917,169,078 275150.72 LCL 

SL127711 909,540,138 272862.04 WB 

SL127712 950,414,932 285124.48 WB 

SL127713 923,038,402 276911.52 LCL 

SL127714 949,431,850 284829.55 LCL 

SL127715 909,505,558 272851.66 LCL 

SL127716 929,503,370 278851.01 LCL 

SL127717 911,168,678 273350.60 WB 

SL127718 907,091,774 272127.53 LCL 

SL127719 926,856,194 278056.85 LCL 

SL127720 892,910,764 267873.22 LCL 
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SL127721 945,177,282 283553.18 LCL 

SL127722 913,474,670 274042.40 LCL 

SL127723 764,364,208 229309.26 WB 

SL127724 789,895,372 236968.61 LCL 

SL127725 912,223,848 273667.15 WB 

SL127726 887,682,762 266304.82 LCL 

SL127727 889,293,154 266787.94 LCL 

SL127728 1,082,201,226 324660.36 LCL 

SL127729 931,522,432 279456.73 LCL 

SL127730 843,208,808 252962.64 LCL 

SL127731 970,589,090 291176.72 LCL 

SL127732 931,285,818 279385.74 LCL 

SL127733 949,706,594 284911.97 LCL 

SL127734 930,389,832 279116.95 LCL 

SL127735 878,048,870 263414.66 LCL 

SL127736 N/A N/A LCL 

SL127737 N/A N/A WB 

SL127738 N/A N/A LCL 

SL127739 N/A N/A WB 

SL127740 N/A N/A LCL 

SL127741 N/A N/A LCL 

SL127742 N/A N/A LCL 

SL127743 N/A N/A LCL 

SL127744 910,690,302 273207.09 WB 

SL127745 898,596,104 269578.83 WB 

SL127746 888,964,398 266689.31 LCL 

SL127747 909,152,394 272745.71 LCL 

SL127748 924,679,232 277403.77 LCL 

SL127749 903,399,968 271019.99 LCL 

SL128036 923,797,126 277139.13 LCL 

SL128038 N/A N/A LCL 

SL128039 953,413,070 286023.92 WB 

SL128040 942,069,524 282620.85 LCL 

SL128041 948,562,266 284568.68 LCL 

SL128042 945,878,062 283763.41 LCL 

SL128043 936,969,380 281090.81 LCL 
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SL128044 887,455,604 266236.68 LCL 

SL128045 907,020,864 272106.25 LCL 

SL128046 917,336,710 275201.01 LCL 

SL128047 895,291,620 268587.48 LCL 

SL128048 887,574,868 266272.46 LCL 

SL128049 921,928,650 276578.59 LCL 

SL128051 921,818,548 276545.56 LCL 

SL128054 906,921,822 272076.54 LCL 

SL128055 903,651,286 271095.38 LCL 

SL128056 907,201,336 272160.40 LCL 

SL128057 922,786,450 276835.93 LCL 

SL128058 899,786,148 269935.84 LCL 

SL128059 905,001,352 271500.40 LCL 

SL128060 914,678,850 274403.65 LCL 

SL128061 934,512,058 280353.61 LCL 

SL128062 920,129,618 276038.88 LCL 

SL128063 919,965,014 275989.50 WB 

SL128065 922,118,692 276635.60 LCL 

SL128066 922,081,254 276624.37 LCL 

SL128067 909,678,974 272903.69 LCL 

SL128068 895,407,288 268622.18 LCL 

SL128069 912,547,088 273764.12 LCL 

SL128070 904,588,182 271376.45 LCL 

SL128071 793,877,762 238163.32 LCL 

SL128072 882,292,778 264687.83 LCL 

SL128073 929,051,706 278715.51 LCL 

SL128074 936,200,276 280860.08 LCL 

SL128075 739,771,128 221931.33 WB 

SL128076 931,373,298 279411.98 LCL 

SL128077 911,743,406 273523.02 LCL 

SL128078 913,101,256 273930.37 LCL 

SL128079 888,097,114 266429.13 LCL 

SL128080 779,471,954 233841.58 LCL 

SL128081 651,156,586 195346.97 LCL 

SL128082 931,139,148 279341.74 LCL 

SL128083 856,215,060 256864.51 LCL 
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SL128084 906,140,794 271842.23 LCL 

SL128085 894,279,458 268283.83 LCL 

SL128086 898,018,560 269405.56 LCL 

SL128087 809,099,442 242729.83 WB 

SL128089 945,573,700 283672.11 LCL 

SL128090 947,480,050 284244.01 LCL 

SL128091 902,498,276 270749.48 LCL 

SL128092 948,038,380 284411.51 LCL 

SL128093 942,790,568 282837.17 LCL 

SL128095 931,483,494 279445.04 LCL 

SL128096 945,074,882 283522.46 LCL 

SL128097 903,049,170 270914.75 LCL 

SL128098 835,220,760 250566.22 LCL 

SL128099 858,708,572 257612.57 LCL 

SL128100 772,837,876 231851.36 LCL 

SL128101 879,154,874 263746.46 LCL 

SL128102 914,381,866 274314.56 LCL 

SL128103 937,965,982 281389.79 LCL 

SL128104 916,630,458 274989.13 LCL 

SL128107 858,830,604 257649.18 WB 

SL128108 972,216,730 291665.01 LCL 

SL128109 952,430,006 285729.00 LCL 

SL128110 976,013,430 292804.02 LCL 

SL128111 983,507,804 295052.34 LCL 

SL128112 943,874,894 283162.46 LCL 

SL128113 N/A N/A LCL 

SL128114 N/A N/A LCL 

SL128115 975,525,764 292657.72 LCL 

SL128116 817,510,130 245253.03 LCL 

SL128117 921,564,384 276469.31 LCL 

SL128118 922,902,170 276870.65 LCL 

SL128119 954,377,186 286313.15 WB 

SL128120 935,200,224 280560.06 LCL 

SL128121 891,957,594 267587.27 LCL 

SL128122 928,833,192 278649.95 LCL 

SL128124 N/A N/A LCL 
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SL128125 N/A N/A LCL 

SL128126 N/A N/A LCL 

SL128127 N/A N/A LCL 

SL128128 950,430,242 285129.073 LCL 

SL128129 991,130,180 297339.054 LCL 

SL128130 988,269,882 296480.965 WB 

SL128131 976,100,982 292830.295 LCL 
 
Table 3.6. Sequencing report for each sample. 
 
 

Sample SNV 
Count 

Indel 
Count 

Other 
Count 

04C32333 4054928 890268 53176 

04C32335 4107110 934570 57210 

04C34428 3987367 866460 51133 

04C35408 4041561 895996 53838 

04C37033 4093388 919889 54970 

04C38287 4038243 898708 53091 

05C40411 4060040 901796 55547 

05C40413 3989129 895022 53811 

05C43286 4048717 877268 52472 

05C43287 4018590 879923 51242 

05C44020 4066768 886541 53341 

05C45100 4081513 887723 53445 

05C45345 4052362 890762 52666 

05C46007 4058680 905995 54694 

05C46009 4027111 884519 52533 

05C46337 4060592 896727 54817 

05C46426 4045509 880031 51255 

05C47471 4250145 903566 53749 

05C47975 4242628 915713 52952 

05C47977 3966461 955099 57529 

05C50238 4016053 873948 52523 

05C50316 4170299 901381 54825 

06C52243 4081633 918746 55158 

06C58552 4042626 902327 53456 
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06C58874 4005434 886110 52714 

06C61307 4129355 873509 52031 

07C64741 4066562 930575 56774 

07C65307 4013187 879154 51201 

07C65371 4018657 899524 54265 

07C66696 4100972 895589 53195 

07C67896 4070716 905978 54278 

07C67897 4043433 882300 52216 

07C69064 4040566 878945 51732 

07C69065 4065896 877239 50802 

07C69182 4140972 876608 50680 

07C70334 4072680 896976 52845 

08C71374 4109790 903204 54379 

08C71765 4093070 949985 58823 

08C73255 4096021 896524 52750 

08C75152 4063296 949751 58769 

08C75153 4142515 904066 54524 

08C75494 4031252 898315 52181 

08C76448 4021549 894801 53548 

08C76449 4030520 895963 54053 

09C95711 3977658 891656 54447 

10C117871 3980624 880607 51073 

10C117872 4082153 963958 58752 

10C117873 4070008 895017 53466 

10C117874 4054848 882667 52323 

10C117899 4035222 899225 52852 

2743-SL-0021 4125585 742699 47196 

2743-SL-0022 4162215 763956 49810 

2743-SL-0023 4208489 744148 48048 

2743-SL-0024 4118828 738789 47594 

2743-SL-0026 4164432 739160 48815 

2743-SL-0027 4134490 739959 48030 

2743-SL-0028 4156355 734208 47213 

2743-SL-0029 4180991 786168 50578 

2743-SL-0030 4163782 748881 48718 

2743-SL-0031 4158619 738618 47635 
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2743-SL-0032 4177400 747311 48247 

2743-SL-0033 4145608 759753 50334 

2743-SL-0034 4173532 753620 48555 

2743-SL-0035 4352587 755293 49063 

2743-SL-0036 4150038 749612 48625 

2743-SL-0037 4184604 748154 48866 

2743-SL-0038 4118849 747024 49041 

2743-SL-0039 4140904 732761 47127 

2743-SL-0040 4094646 742193 48033 

LP6005170-DNA_A04 4169478 731361 48541 

LP6005170-DNA_B01 4137256 701289 46778 

LP6005170-DNA_B03 4135729 713635 46983 

LP6005170-DNA_C01 4187582 811343 49920 

LP6005170-DNA_C03 4124678 745579 48729 

LP6005170-DNA_D01 4153478 697956 46442 

LP6005170-DNA_D02 4114500 729266 48958 

LP6005170-DNA_D03 3786254 760397 49902 

LP6005170-DNA_F02 4126507 798971 53255 

LP6005170-DNA_G01 4114176 911492 55462 

LP6005170-DNA_G02 4140030 738068 46897 

LP6005170-DNA_G03 4199118 718314 48323 

LP6005170-DNA_H03 4109264 816020 55225 

MH0151131 4106897 901343 54425 

MH0152513 4139379 904429 53802 

MH0152515 4142707 918514 54896 

MH0152516 4136444 910955 53111 

MH0152518 4247495 914764 54927 

MH0160130 4111428 893054 52871 

MH0160135 4106793 893880 53555 

MH0160147 4145909 894554 54514 

MH0160342 4160256 936849 57342 

MH0161789 4300817 872422 52496 

MH0161791 4101113 893180 53431 

MH0161794 4107197 863535 50658 

MH0161798 4134154 864961 51033 

MH0165172 4123693 896477 53624 
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MH0165173 4163623 886933 53357 

MH0165177 4090208 923642 55844 

MH0166945 4121492 886299 52995 

MH0168145 4094339 886493 51239 

MH0168147 4160405 859925 49298 

MH0168149 4155450 903926 52877 

MH0168151 4415214 910383 54924 

MH0170044 4113521 933848 51554 

MH0170045 4228066 1017588 57364 

MH0170047 4162736 914220 50556 

MH0170049 4125358 902151 53395 

MH0181201 4254271 889656 52324 

MH0181202 4109519 890344 51989 

MH0181203 4112943 934848 56587 

MH0181214 4175253 876121 50604 

MH0181699 4180012 882062 52276 

MH0181700 4145491 884611 50275 

MH0181701 4113273 881445 51512 

MH0181702 4131210 898910 53197 

MH0181703 4126704 873092 51291 

MH0181704 4051474 886700 51862 

MH0181705 4142900 900191 52622 

MH0181706 4174273 880277 51684 

MH0186884 4153184 896389 52994 

MH0186896 4120779 883783 52605 

MH0186904 4111921 883233 51746 

MH0186906 4170333 887031 52376 

MH0186908 4132595 874767 51697 

MH0188328 4109172 908290 54145 

MH0196857 4053468 867430 50203 

MH0197641 4052711 956338 55525 

MH0197642 4130594 922090 55302 

MH0197643 4008009 915925 54830 

MH0197645 4187023 928835 55512 

MH0197646 4035752 922685 56459 

MH0197647 4163585 903779 54505 
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MH0197648 4045330 908816 54697 

SL127696 4016324 1106476 60035 

SL127697 4060717 1115926 60167 

SL127698 4127130 1129446 61314 

SL127699 4090799 1116864 60233 

SL127700 4081225 1121471 60870 

SL127701 4008247 1092978 60188 

SL127703 4044301 1079642 59841 

SL127704 4100766 1123370 61498 

SL127705 4079368 1120542 61045 

SL127706 4116794 1120973 61229 

SL127707 4152466 1109406 61471 

SL127708 4129328 1124980 61642 

SL127709 4228099 1093556 60356 

SL127710 4114873 1109479 60573 

SL127711 4172233 1140752 62356 

SL127712 4387263 1115682 60643 

SL127713 4319179 1125974 60684 

SL127714 4112978 1117431 60911 

SL127715 4050328 1127113 62366 

SL127716 4095273 1111177 60874 

SL127717 4142492 1076463 60429 

SL127718 4262062 1106248 61397 

SL127719 4142377 1093964 60799 

SL127720 4149302 1101387 60038 

SL127721 3820043 1123907 60699 

SL127722 4141131 1102111 60260 

SL127723 4229083 1093572 60403 

SL127724 4230588 1063401 59656 

SL127725 4181892 978920 52260 

SL127726 4136415 1093485 59399 

SL127727 4368007 1087342 60033 

SL127728 4156492 1077499 60057 

SL127729 4129504 1133261 61887 

SL127730 4112064 1101595 59698 

SL127731 4175182 1112539 61126 
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SL127732 4104082 1117117 61081 

SL127733 4115006 1111948 61838 

SL127734 4123327 1116449 61558 

SL127735 4073743 1080982 60094 

SL127736 4196935 1140913 61649 

SL127737 4170542 1111765 60125 

SL127738 4011137 1086011 59717 

SL127739 4101511 1104891 60707 

SL127740 4272188 1109382 61014 

SL127741 4060702 1123828 61536 

SL127742 4145224 1082937 59653 

SL127743 4203434 1077830 60262 

SL127744 4277476 1077961 59366 

SL127745 4176506 1077458 60059 

SL127746 4163623 1068927 59099 

SL127747 4090208 1072995 59086 

SL127748 4121492 1076993 59191 

SL127749 4094339 1081047 59801 

SL128036 4160405 1114557 60789 

SL128038 4155450 1114540 61101 

SL128039 4415214 1159906 62630 

SL128040 4113521 1094357 60606 

SL128041 4228066 1109366 60403 

SL128042 4162736 1097524 60731 

SL128043 4125358 1093376 60694 

SL128044 4254271 1113282 61309 

SL128045 4109519 1092197 60726 

SL128046 4162096 1099831 60799 

SL128047 4112943 1090878 60153 

SL128048 4175253 1106436 60647 

SL128049 4180012 1053462 61885 

SL128051 4145491 1093198 60361 

SL128054 4113273 1042625 57334 

SL128055 4131210 1073156 59295 

SL128056 4126704 1083196 60144 

SL128057 4051474 1041092 58641 
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SL128058 4142900 1079179 60350 

SL128059 4174273 1089099 59809 

SL128060 4153184 1072892 59039 

SL128061 4120779 1065794 59328 

SL128062 4111921 1019438 57317 

SL128063 4290292 1089531 60311 

SL128065 4170333 1055752 57592 

SL128066 4132595 1052553 58622 

SL128067 4109172 1040262 57942 

SL128068 4053468 954470 52731 

SL128069 4052711 950517 53423 

SL128070 4130594 966705 53887 

SL128071 4008009 919636 50291 

SL128072 4187023 981174 54497 

SL128073 4035752 955552 53595 

SL128074 4163585 978832 53565 

SL128075 4045330 972688 54035 

SL128076 4016324 930630 49915 

SL128077 3973358 894949 47614 

SL128078 4060717 943127 51788 

SL128079 4127130 992093 53351 

SL128080 4090799 994091 53933 

SL128081 4081225 959383 51567 

SL128082 4008247 959957 52282 

SL128083 4044301 950615 52074 

SL128084 4100766 1065703 59085 

SL128085 4079368 1064009 59396 

SL128086 4116794 1046595 59494 

SL128087 4152466 1087522 60336 

SL128089 4129328 1068966 59486 

SL128090 4228099 1104113 60441 

SL128091 4114873 1075555 59036 

SL128092 4172233 1029202 56646 

SL128093 4387263 1070212 59267 

SL128095 4319179 1079879 59550 

SL128096 4112978 1027551 57453 
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SL128097 4050328 1007775 56642 

SL128098 4095273 1045759 57654 

SL128099 4278840 1041288 57468 

SL128100 4142492 1124862 61436 

SL128101 4262062 1145641 62063 

SL128102 4142377 1126129 60826 

SL128103 4149302 1124647 62466 

SL128104 3820043 996501 53281 

SL128107 4141131 1103025 61541 

SL128108 4229083 1156191 62491 

SL128109 4230588 1133788 61984 

SL128110 4181892 1131858 61187 

SL128111 4136415 1121239 61307 

SL128112 4368007 1163165 62326 

SL128113 4156492 1116918 61623 

SL128114 4129504 1069096 58634 

SL128115 4112064 1114051 60700 

SL128116 4175182 1096075 61238 

SL128117 4104082 1101910 60405 

SL128118 4115006 1098001 60318 

SL128119 4123327 1094298 60861 

SL128120 4073743 1088383 59422 

SL128121 4196935 1125944 61408 

SL128122 4170542 1142557 61742 

SL128124 4011137 966533 53525 

SL128125 4101511 1078262 59318 

SL128126 4272188 1112506 60072 

SL128127 4060702 949756 52559 

SL128128 4145224 1124065 60788 

SL128129 4203434 1133413 61422 

SL128130 4277476 1140558 62653 

SL128131 4176506 1122667 62191 
 
Table 3.7. Summary of variants called from the NJLAGS WGS data. 
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Sample DEL INS DUP INV ITX Total 
04C32333 308555 617785 15917 280833 153586 1376676 

04C32335 345889 821653 17435 299049 179143 1663169 

04C34428 325345 647911 17748 327581 85473 1404058 

04C35408 330154 643617 16038 238991 155347 1384147 

04C37033 341598 738047 16423 242348 175353 1513769 

04C38287 335467 722986 17670 297756 131389 1505268 

05C40411 311286 633918 14780 223295 176615 1359894 

05C40413 300165 646233 17008 278306 118062 1359774 

05C43286 293989 627395 15036 271998 149482 1357900 

05C43287 293114 617084 14846 229597 137254 1291895 

05C44020 320609 699256 17641 307397 89051 1433954 

05C45100 300636 617715 14202 212059 153391 1298003 

05C45345 294560 660471 15756 263532 140593 1374912 

05C46007 343301 759241 16252 277727 152774 1549295 

05C46009 289819 659089 16454 253580 153297 1372239 

05C46337 343519 725035 18302 337192 122348 1546396 

05C46426 286091 670885 19593 380630 56986 1414185 

05C47471 349106 774198 18578 327324 119276 1588482 

05C47975 297732 629206 16123 274233 162771 1380065 

05C47977 377234 866056 17968 306048 168069 1735375 

05C50238 327728 666620 15924 282470 151228 1443970 

05C50316 365285 835468 18643 323690 126039 1669125 

06C52243 344483 762260 16717 250062 181671 1555193 

06C55728 332323 684320 17246 296558 104710 1435157 

06C58552 307070 650494 15859 257066 160006 1390495 

06C58874 346981 703337 16258 219057 156398 1442031 

06C61307 302989 647770 14922 265607 101634 1332922 

07C64741 323970 768800 16588 280155 157203 1546716 

07C65307 321972 647444 17769 324694 100438 1412317 

07C65371 175792 318603 7076 121084 68094 690649 

07C66696 346204 765710 19311 305435 135704 1572364 

07C67896 317382 724968 17346 291026 145250 1495972 

07C67897 322707 637746 17009 292699 106965 1377126 

07C69064 291249 617688 15941 298236 129215 1352329 

07C69065 292224 683788 18276 325192 117063 1436543 
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07C69182 302457 642095 15157 326270 77107 1363086 

07C70334 306187 687496 14386 276985 144983 1430037 

08C71374 321925 654469 14763 204591 132484 1328232 

08C71765 341023 843259 16242 297523 165479 1663526 

08C73255 290493 659276 16480 270895 93837 1330981 

08C75152 375017 917272 18757 269890 104422 1685358 

08C75153 335237 738574 16551 271362 121821 1483545 

08C75494 302482 641254 14656 277440 93730 1329562 

08C76448 325537 715994 16559 284300 122649 1465039 

08C76449 326108 761138 17083 290732 118098 1513159 

09C95711 331763 621911 14439 205616 109720 1283449 

2743-SL-0021 314614 185868 21298 101669 4879 628328 

2743-SL-0022 316580 208171 23184 107127 5625 660687 

2743-SL-0023 287786 183864 25799 94750 5095 597294 

2743-SL-0024 312764 216248 38065 121296 5247 693620 

2743-SL-0025 311111 185720 25182 100814 4468 627295 

2743-SL-0026 299355 188321 20475 123781 4516 636448 

2743-SL-0027 281556 173692 21000 107415 4800 588463 

2743-SL-0028 297275 172636 18792 88421 5216 582340 

2743-SL-0029 322736 242513 29446 109497 5819 710011 

2743-SL-0030 268199 183932 22703 100409 5076 580319 

2743-SL-0031 297943 184674 21853 93741 5239 603450 

2743-SL-0032 323080 197574 30484 92004 5038 648180 

2743-SL-0033 312021 216001 21105 99594 5476 654197 

2743-SL-0034 315585 198476 23607 112941 4946 655555 

2743-SL-0035 315282 199380 26263 103562 5039 649526 

2743-SL-0036 267265 189159 23482 96424 5094 581424 

2743-SL-0037 287304 185268 25216 92056 5406 595250 

2743-SL-0038 284185 178648 21347 105309 5077 594566 

2743-SL-0039 286110 179424 20530 108139 5312 599515 

2743-SL-0040 291028 179930 26126 97502 5303 599889 

LP6005170-DNA_A02 166472 84759 48513 113171 4337 417252 

LP6005170-DNA_A03 231964 100241 27117 149702 6916 515940 

LP6005170-DNA_A04 287258 152489 27570 156638 7096 631051 

LP6005170-DNA_B01 334899 188015 62334 189930 11368 786546 

LP6005170-DNA_B02 264430 132033 26867 124295 8906 556531 
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LP6005170-DNA_B03 255062 121559 28140 147733 7427 559921 

LP6005170-DNA_C01 297321 158659 47851 138685 9002 651518 

LP6005170-DNA_C02 198141 133494 52346 117669 15223 516873 

LP6005170-DNA_C03 240662 93861 23496 128430 5004 491453 

LP6005170-DNA_D01 314857 187846 50283 166437 10743 730166 

LP6005170-DNA_D02 277982 179144 42834 133100 12116 645176 

LP6005170-DNA_E01 230659 104328 33940 148968 4176 522071 

LP6005170-DNA_G02 211302 123730 46287 151493 8777 541589 

LP6005170-DNA_H03 317342 189005 39117 196628 8439 750531 

LP6005417-DNA_A01 377685 377667 100542 207820 126039 1189753 

LP6005417-DNA_B01 284923 184077 49128 143265 19782 681175 

MH0151131 326842 684558 17171 254865 164994 1448430 

MH0152513 322536 661398 16448 296500 121062 1417944 

MH0152515 321623 693250 15325 243272 123180 1396650 

MH0152516 301194 591276 14529 234674 138599 1280272 

MH0152518 305488 604474 14836 240933 134421 1300152 

MH0160130 278116 638026 17562 325811 108458 1367973 

MH0160135 339395 677788 16612 245703 114941 1394439 

MH0160147 315859 639884 13928 246456 129548 1345675 

MH0160342 385454 785202 14998 267383 116462 1569499 

MH0161789 329342 636177 15963 278547 108690 1368719 

MH0161791 316312 712522 19326 352055 80268 1480483 

MH0161794 313507 639048 17855 277394 123374 1371178 

MH0161798 326116 656661 16434 281713 80355 1361279 

MH0165172 324812 720603 17979 297929 166602 1527925 

MH0165173 320470 669085 16363 309389 152122 1467429 

MH0165177 354800 835542 20210 293793 145473 1649818 

MH0166945 336686 717900 18554 290392 130906 1494438 

MH0168145 182119 346787 8348 116448 86021 739723 

MH0168147 298703 707103 19696 412226 68353 1506081 

MH0168149 361903 917545 20381 400857 72926 1773612 

MH0168151 340710 763770 16175 273505 179694 1573854 

MH0170044 313594 691934 16771 275323 148182 1445804 

MH0170045 352711 790247 20781 311554 108109 1583402 

MH0170047 295572 622048 16035 283276 160095 1377026 

MH0170049 319785 666290 16253 261831 160166 1424325 
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MH0181201 333713 748236 16992 261516 178987 1539444 

MH0181202 309908 709680 16688 285027 180586 1501889 

MH0181203 375296 950257 19082 296625 155759 1797019 

MH0181214 282653 638178 16062 243989 145924 1326806 

MH0181699 319909 701245 16948 288357 138953 1465412 

MH0181700 328850 771379 19845 375711 113949 1609734 

MH0181701 317894 677262 15372 277637 164004 1452169 

MH0181702 355099 744403 17828 257865 134333 1509528 

MH0181703 314448 635317 14698 271900 140457 1376820 

MH0181704 301096 758960 20083 320547 129959 1530645 

MH0181705 383913 870258 18148 301596 135425 1709340 

MH0181706 298035 646683 15652 274747 151515 1386632 

MH0186884 328181 703746 17022 350834 135438 1535221 

MH0186896 329450 759178 20169 314128 130327 1553252 

MH0186904 305682 681859 15350 289467 193136 1485494 

MH0186906 332209 719320 18374 324231 129647 1523781 

MH0186908 302069 685921 17599 294406 126888 1426883 

MH0188328 359375 834407 19551 330073 117688 1661094 

MH0196857 304490 715683 17246 308762 153413 1499594 

MH0197641 382112 915460 21992 348593 127743 1795900 

MH0197642 317814 756306 18513 314533 133608 1540774 

MH0197643 293910 640555 15190 249658 125130 1324443 

MH0197645 329914 748128 20243 302044 129528 1529857 

MH0197646 313225 613346 14939 215072 141562 1298144 

MH0197647 318475 759162 21834 323625 88542 1511638 

MH0197648 305226 682440 19612 325322 102404 1435004 

SL127696 319499 321053 13562 110315 18412 782841 

SL127697 299809 316797 13669 95483 15819 741577 

SL127698 299539 302869 13158 87805 17215 720586 

SL127699 324730 316724 16166 97957 19623 775200 

SL127700 311894 312843 13041 136401 19558 793737 

SL127701 388808 589751 15906 125792 17954 1138211 

SL127702 355018 577500 15377 94448 14261 1056604 

SL127703 378524 777321 15456 143683 11080 1326064 

SL127704 306649 267845 13573 97674 23475 709216 

SL127705 331233 317635 14264 97358 22853 783343 
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SL127706 321481 312885 15248 109525 30514 789653 

SL127707 362685 352807 18138 111242 27873 872745 

SL127708 333852 382719 16418 139272 28211 900472 

SL127709 291844 298957 12853 104661 24747 733062 

SL127710 307638 328105 15569 116444 21956 789712 

SL127711 280422 301158 12220 117696 18651 730147 

SL127712 273275 261427 14626 95531 14825 659684 

SL127713 303945 309360 14896 95191 15704 739096 

SL127714 329041 300275 15597 117301 20499 782713 

SL127715 334102 302777 15345 98349 22105 772678 

SL127716 299610 350060 17951 90252 17155 775028 

SL127717 341540 340737 14130 94255 20531 811193 

SL127718 276668 362706 15263 109730 16945 781312 

SL127719 275193 320825 14489 95417 24399 730323 

SL127720 294174 363811 15061 118362 15784 807192 

SL127721 327643 376663 15803 111732 15354 847195 

SL127722 327652 372182 13905 117594 18953 850286 

SL127723 305801 288991 14100 96986 17333 723211 

SL127724 317545 366991 12913 116116 17380 830945 

SL127725 295011 396216 13429 129041 14531 848228 

SL127726 303389 383102 14087 109627 15015 825220 

SL127727 292306 355963 13216 124305 20946 806736 

SL127728 275633 254548 16368 103820 14599 664968 

SL127729 330613 266845 16037 93134 25502 732131 

SL127730 422547 291823 18614 126187 32793 891964 

SL127731 334735 296984 17546 125929 30312 805506 

SL127732 313027 261045 16952 108512 18001 717537 

SL127733 269413 276504 12946 97381 18582 674826 

SL127734 256438 280124 15355 102583 18012 672512 

SL127735 247479 253396 13016 81450 24403 619744 

SL127736 360956 438504 18138 116812 21848 956258 

SL127737 327724 477654 15433 128781 14064 963656 

SL127738 328590 462438 14248 118852 21224 945352 

SL127739 353376 450388 15390 114406 15493 949053 

SL127740 314847 571882 15731 130089 13416 1045965 

SL127741 357511 485683 14794 130478 12238 1000704 
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SL127742 331423 567482 15504 106597 13194 1034200 

SL127743 321185 650262 15907 131023 11045 1129422 

SL127744 347820 468145 14888 133535 14269 978657 

SL127745 331502 449183 13003 112950 13006 919644 

SL127746 332522 507350 13299 132061 13627 998859 

SL127747 357635 512235 13171 126794 15181 1025016 

SL127748 359290 479833 16129 112449 17950 985651 

SL127749 332302 523024 16352 117839 15653 1005170 

SL128036 295509 367117 13621 87005 22321 785573 

SL128037 366640 574184 16240 118213 24488 1099765 

SL128038 301573 414468 14467 108894 15348 854750 

SL128039 310588 552911 15200 108587 12497 999783 

SL128040 339245 656820 16177 112398 16073 1140713 

SL128041 341082 756785 14321 114566 14519 1241273 

SL128042 365663 931549 18189 129346 17643 1462390 

SL128043 334698 716502 16893 98625 26521 1193239 

SL128044 314832 356955 14342 117922 14405 818456 

SL128045 315066 363845 15476 99203 17402 810992 

SL128046 316183 373736 14989 109724 18472 833104 

SL128047 323454 412353 13012 125055 15308 889182 

SL128048 292128 366585 16160 110108 13613 798594 

SL128049 310003 403676 14119 117344 15857 860999 

SL128050 296926 369824 12407 94296 13830 787283 

SL128051 323526 383163 12990 120414 13096 853189 

SL128052 291522 283734 12166 84655 14971 687048 

SL128053 307490 299510 14942 101780 15321 739043 

SL128054 288873 299397 13930 110722 13257 726179 

SL128055 277129 280972 13753 90768 16691 679313 

SL128056 311145 311131 13819 123026 15585 774706 

SL128057 290008 290590 11757 113245 16903 722503 

SL128058 320062 325291 12791 115150 18240 791534 

SL128059 284886 304273 13269 101269 17328 721025 

SL128060 348847 441146 14221 115886 18661 938761 

SL128061 337034 387405 12945 110360 16080 863824 

SL128062 338077 403435 13985 97123 18593 871213 

SL128066 360304 478477 13296 110669 22591 985337 
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SL128067 298731 380608 12995 92604 16206 801144 

SL128068 755658 446527 15452 116426 22686 1356749 

SL128069 687816 491600 17923 132762 22058 1352159 

SL128070 602718 514381 15112 151866 24062 1308139 

SL128071 500847 513752 13091 118665 17400 1163755 

SL128072 522486 601535 16964 138770 16430 1296185 

SL128073 631096 765717 16655 148433 20305 1582206 

SL128074 657009 854856 20232 144916 21326 1698339 

SL128075 472442 630675 16740 138915 22482 1281254 

SL128076 689232 403226 14379 134175 23970 1264982 

SL128077 673890 327960 12245 126093 11494 1151682 

SL128078 1115148 497742 14902 138140 22130 1788062 

SL128079 965901 613031 15199 139724 22356 1756211 

SL128080 886243 587308 17431 148674 21905 1661561 

SL128081 586988 561585 15202 189142 17825 1370742 

SL128082 583676 538785 15116 145612 19477 1302666 

SL128083 775225 468724 16265 140547 18423 1419184 

SL128084 322591 402666 13647 125500 19117 883521 

SL128085 381716 490232 15747 121604 21260 1030559 

SL128086 380485 540497 14117 135826 20553 1091478 

SL128087 328594 457291 13227 110869 15924 925905 

SL128088 352845 488843 14927 126386 16305 999306 

SL128089 350122 445019 14609 134870 20197 964817 

SL128090 308172 447980 15236 99733 21291 892412 

SL128091 347401 450522 14784 124679 20015 957401 

SL128092 380678 597542 15729 152849 18124 1164922 

SL128093 388654 675187 18438 143907 22354 1248540 

SL128094 432967 812219 17324 124621 24466 1411597 

SL128095 375635 780324 17090 129377 19944 1322370 

SL128096 362596 671441 13297 115270 16418 1179022 

SL128097 380091 802530 13601 121272 16227 1333721 

SL128098 351105 547819 13270 125411 20272 1057877 

SL128099 376376 528460 16917 143577 28946 1094276 

SL128100 299227 286284 16396 95546 21107 718560 

SL128101 352286 329810 18430 136236 24340 861102 

SL128102 300380 326821 15121 100525 20723 763570 
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SL128103 304315 356105 16378 97064 17224 791086 

SL128104 313613 307885 14630 106636 20147 762911 

SL128105 333850 349016 15193 129015 20112 847186 

SL128106 308832 324333 13511 111671 15229 773576 

SL128107 304781 321008 14975 97437 15619 753820 

SL128108 414487 700498 15606 104362 40055 1275008 

SL128109 332117 392754 14770 91230 20405 851276 

SL128110 333880 370809 13196 106520 18632 843037 

SL128111 359045 400363 18056 97519 22718 897701 

SL128112 322617 368511 16274 119762 19682 846846 

SL128113 277078 368717 13998 103267 14963 778023 

SL128114 370373 543617 13360 119095 12456 1058901 

SL128115 332108 404811 13904 118695 17694 887212 

SL128116 375815 510995 15995 119492 14508 1036805 

SL128117 399967 641587 17033 138038 15564 1212189 

SL128118 363888 646047 17216 127958 19254 1174363 

SL128119 445312 684677 15792 139337 23897 1309015 

SL128120 536792 1113158 20958 149005 37393 1857306 

SL128121 514419 999057 17802 139102 37361 1707741 

SL128122 521685 1239824 19511 132003 37692 1950715 

SL128123 443368 1131994 19413 143988 40151 1778914 

SL128124 348791 521724 15488 122844 14722 1023569 

SL128125 309110 546596 14099 112004 29233 1011042 

SL128126 346305 554201 16261 136735 23535 1077037 

SL128127 352007 547833 13838 117182 24430 1055290 

SL128128 330305 390979 16684 105326 17857 861151 

SL128129 354799 427012 17557 107064 22284 928716 

SL128130 330170 399517 16532 108032 16058 870309 

SL128131 305958 440516 15974 116452 12573 891473 

 
Table 3.8. Summary of SVs called from the NJLAGS WGS data. 
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Figure 3.5. SV size and type distribution. 
A) all data. B) zoomed scale of SVs of 1000-10000bp and 10000+bp in length. 

A) 

B) 



 

 
 

58 

 
3.3.4. Candidate genes associated with ADHD in linkage regions 

For small variant analysis, variants annotated to have an MAF >5% in general 

population were excluded. To identify the risk genes for ASD and ADHD, we 

utilize linkage study based on the pedigree structure, and association study 

based on case/control group. The two analyses are integrated in a single 

probabilistic model named pVAAST (Hu, et al., 2014), which prioritize genes for 

given phenotypes. We first performed pVAAST analysis on the chromosome 12 

and 17 significant linkage regions. After Bonferroni correction of the p-values, we 

discovered 43 genes that fall in the significance criteria (p-value<0.05) for the 

dominance mode and 6 genes for the recessive mode. Among them, 27 genes are 

located on chromosome 12, and 22 are located on chromosome 17 (Table 3.9). 

Among the 49-candidate gene set, 3 of the genes were already collected in one or 

more disease gene databases (KDM6B, PTPRB, PER1). 

        The highest-ranking gene is Lysine Demethylase 6B (KDM6B) in the 

chromosome 17 linkage region. In NJLAGS dataset, KDM6B has two mutations 

segregating in 2 different families. One of the mutations (17-7751888-C-G) is a 

missense mutation (p.Thr761Ser)  and predicted to be possibly damaging by 

PolyPhen2. The other mutation (17-7749972-G-T) is also a missense mutation 

(p.Val209Leu). KDM6B was found to express in brain based on the GTEx project 

and intolerance to mutations (pLI = 1). The KDM6B protein demethylates 

trimethylated lysine-27 on histone H3, and pathogenic alterations in histone 

lysine methylation and demethylation genes have been associated with multiple 

neuro-developmental disorders in previous studies (Stolerman, et al., 2019). 

KDM6B is also annotated in neuro-developmental disorder databases such as 
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SFARI and iPSYCH, and is identified as one of the 102 risk genes in a large-scale 

exome ASD study (35,584 total samples with 11,986 samples affected by ASD) 

(Satterstrom, et al., 2020). 

Another candidate gene from the chromosome 17 linkage region, Neuralized 

E3 Ubiquitin Protein Ligase 4 (NEURL4), has a missense mutation (17-7224433-C-

T, p.Gly1120Arg) segregating in one of the families. NEURL4 is also expressed in 

brain and intolerant to mutations (pLI ~= 1). The NEURL4 protein is a scaffold 

protein, which maintains normal centriolar homeostasis and preventing 

formation of ectopic microtubular organizing centers (Li, et al., 2012). Although 

no publications directly links NEURL4 with neurodevelopmental disorders, 

evidences have shown that microtubule related genes are related to neuronal 

migration and dendritic functioning (Chang, et al., 2018). Knockout of NEURL4 

in mice is also found to cause neurological phenotypes such as decreased 

prepulse inhibition (Dickinson, et al., 2016).  

In chromosome 12, we found the circadian rhythm controller gene Timeless 

Circadian Regulator (TIMELESS) with a missense mutation (12-56827209-C-A, 

p.Ala129Ser) segregating in 2 families and predicted deleterious from SIFT (Ng 

and Henikoff, 2003), highlighting its potential association with ADHD. Sleep 

disorders are common in both ASD and ADHD patients (Ming and Walters, 

2009). In a previous study, a screening of 28 ASD patients (14 with sleeping 

disorders) with 23 controls has found mutations in circadian-relevant genes 

including TIMELESS are more frequent in patients with ASD than in controls 

(Yang, et al., 2016). 

We also found gene Keratin 75 (KRT75) had a SIFT-predicted deleterious 

missense mutation (12-52818419-C-T, p.Gly513Asp) segregating in one of the 
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families under the recessive model in chromosome 12. KRT75 is a gene associated 

with cytostructural function, and was found to have variant in all affected 

individuals with bipolar disorder of an Amish family study and the gene was 

affected by one of 10 potentially pathogenic alleles that was tested in a larger 

Amish cohort (Strauss, et al., 2014). KRT75 is also predicted by HumanBase 

disease machine learning algorithm based on tissue specific gene networks to be 

the most associated with autism spectrum disorder (confidence score 0.47) 

(Greene, et al., 2015).  

In addition to SNVs and indels, we also identified SVs using the WGS data. 

Within the linkage regions, an average of 9,747 SVs were identified per sample, 

with a minimum of 2,469 and a maximum of 20,539. Gene prioritization showed 

13 genes are affected more severely in case versus control among the families 

(Table. 3.10). The genes most enriched with pathogenic SVs in affected samples 

versus non-affected samples includes genes in the Akt signaling pathway (CDK2, 

NR4A1) suggested by KEGG pathway analysis. 

Rank Gene Mode Chr PValue Score LOD 
Score 

LOD 
PValue 

1 KDM6B Dominant chr17 8.95E-04 103.44 0.31 2.00E-01 

2 MYH13 Dominant chr17 8.95E-04 94.93 0.23 2.00E-01 

3 USP6 Dominant chr17 8.95E-04 94.1 0.19 3.00E-01 

4 MYBBP1A Dominant chr17 8.95E-04 92.41 0.78 1.00E-01 

5 MLL2 Dominant chr12 8.95E-04 88.5 1.3 3.00E-02 

6 KRT74 Dominant chr12 8.95E-04 82.06 0.24 2.00E-01 

7 MYO1A Dominant chr12 8.95E-04 72.93 1.7 4.00E-04 

8 COL2A1 Dominant chr12 8.95E-04 70.84 0.26 2.00E-01 

9 PTPRB Dominant chr12 8.95E-04 69.98 0.2 2.00E-01 

10 FAM186A Dominant chr12 8.95E-04 68.8 0.13 4.00E-01 

11 ITGA7 Dominant chr12 8.95E-04 65.31 0.26 2.00E-01 

12 STAT2 Dominant chr12 8.95E-04 58.34 0.02 2.00E-01 
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13 NEURL4 Dominant chr17 8.95E-04 55.97 0.26 2.00E-01 

14 TIMELESS Dominant chr12 8.95E-04 54.99 1 1.00E-02 

15 CCDC65 Dominant chr12 8.95E-04 54.04 0.53 6.00E-02 

16 PFAS Dominant chr17 8.95E-04 52.31 0.23 1.00E-01 

17 NLRP1 Dominant chr17 8.95E-04 46.14 0.9 2.00E-02 

18 EIF4B Dominant chr12 8.95E-04 40.3 0.29 5.00E-02 

19 NELL2 Dominant chr12 8.95E-04 32.33 0.11 1.00E-01 

20 WNT10B Dominant chr12 8.95E-04 26.5 0.01 1.00E-01 

21 ALG10B Dominant chr12 1.79E-03 35.78 0.12 1.00E-01 

22 PELP1 Dominant chr17 2.69E-03 49.3 0.37 1.00E-01 

23 CHRNE Dominant chr17 2.69E-03 30.17 0.15 1.00E-01 

24 GRASP Dominant chr12 2.69E-03 30.02 0.13 1.00E-01 

25 ARHGEF15 Dominant chr17 4.48E-03 30.98 0.98 4.00E-03 

26 TROAP Dominant chr12 4.48E-03 28.79 0.17 1.00E-01 

27 TRPV3 Dominant chr17 7.16E-03 39.49 0.31 1.00E-01 

28 P2RX5 Dominant chr17 7.16E-03 35.82 0.56 6.00E-02 

29 DNAJC22 Dominant chr12 7.16E-03 28.07 0.13 8.00E-02 

30 AMAC1L3 Dominant chr17 8.95E-03 16.37 0.83 2.00E-03 

31 ACADVL Dominant chr17 1.79E-02 24.81 0.51 6.00E-02 

32 ZZEF1 Dominant chr17 1.79E-02 39.71 0.56 2.00E-01 

33 KRT76 Dominant chr12 1.79E-02 38.8 0.3 1.00E-01 

34 TEKT1 Dominant chr17 1.79E-02 29.6 0.08 1.00E-01 

35 ANKRD33 Dominant chr12 1.79E-02 24.89 0.21 9.00E-02 

36 PER1 Dominant chr17 1.79E-02 32.14 0.69 7.00E-02 

37 LYZ Dominant chr12 1.79E-02 12.03 2.13 2.00E-06 

38 USP43 Dominant chr17 2.69E-02 35.14 0.23 2.00E-01 

39 KRT72 Dominant chr12 3.58E-02 28.9 0.3 9.00E-02 

40 C17orf74 Dominant chr17 3.58E-02 24.67 0.23 9.00E-02 

41 OR6C70 Dominant chr12 3.58E-02 23.51 0.25 5.00E-02 

42 KRT3 Dominant chr12 4.48E-02 26.84 0.56 6.00E-02 

43 OR3A3 Dominant chr17 4.48E-02 19.58 0.04 1.00E-01 

1 PELP1 Recessive chr17 8.95E-04 66.7 0.79 3.00E-03 

2 OR6C4 Recessive chr12 8.95E-04 64.9 1.23 3.00E-04 

3 C12orf54 Recessive chr12 8.95E-04 47.19 0.6 5.00E-03 

4 SHPK Recessive chr17 1.79E-03 26.61 1.83 6.00E-06 

5 ESPL1 Recessive chr12 2.69E-03 45.65 0.62 8.00E-03 
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6 KRT75 Recessive chr12 1.79E-02 30.74 0.6 5.00E-03 
 
Table 3.9. pVAAST linkage region candidate genes. 
 
 

Gene Chr Description pLI 
SNORD118 chr17 small nucleolar RNA, C/D box 118 NA 

STK38L chr12 serine/threonine kinase 38 like 0.97 

GRASP chr12 general receptor for phosphoinositides 1 associated 

scaffold protein 

0.93 

SPRYD3 chr12 SPRY domain containing 3 0.95 

DNAJC14 chr12 DnaJ heat shock protein family (Hsp40) member 

C14 

1.00 

PA2G4 chr12 proliferation-associated 2G4 1.00 

ATF7IP chr12 activating transcription factor 7 interacting protein 1.00 

AEBP2 chr12 AE binding protein 2 0.95 

CDK2 chr12 cyclin dependent kinase 2 0.96 

XPOT chr12 exportin for tRNA 1.00 

SLC38A2 chr12 solute carrier family 38 member 2 0.97 

NR4A1 chr12 nuclear receptor subfamily 4 group A member 1 0.96 

SENP1 chr12 SUMO specific peptidase 1 1.00 
 
Table 3.10. SV candidate genes within linkage regions. 
 

3.3.5. Novel genes are found to be associated with ADHD and ASD or 

ADHD in the whole genome 

We then performed pVAAST analysis for the whole genome. In determining 

number of permutations, we traded precision in calculating p-values for greater 

time efficiency. Therefore, we did not perform Bonferroni correction for p-values 

of genes in the whole genome scale, instead, we took the first 100 genes of each 

candidate gene set predicted by pVAAST (first 10 shown in Table 3.11, Table 

3.12).  
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Ataxin 2 (ATXN2) appears in top rankings of both recessive models in “ASD 

or ADHD” and “ADHD only” phenotype. It bears 2 small inframe insertions of 

3bp and 12bp segregating in 3 NJLAGS families. Intolerant to mutation (pLI ~= 

1), ATXN2 encodes the protein Ataxin-2 which is involved in epidermal growth 

factor receptor trafficking. ATXN2 is also a candidate gene in ADHDgene 

database, and previously identified disease association of ATXN2 includes 

neurodegenerative disorders such as spinocerebellar ataxia type 2 (SCA2) 

(Paciorkowski, et al., 2011), Parkinson’s disease (Shan, et al., 2001), amyotrophic 

lateral sclerosis (ALS) (Ross, et al., 2011). Interestingly, ATXN1, another gene that 

is known to cause ataxia when disrupted, and is also related to brain 

development (Lu, et al., 2017), is ranked 12th in the dominant model gene set of 

ASD or ADHD phenotype. In addition to causing ataxia, SACS, another ataxia 

gene, forms neurofilaments comprising the structural framework that establishes 

the size and shape of the axons (Parfitt, et al., 2009), which echoes the cellular 

function of NEURL4 and KRT75. 

The Potassium Calcium-Activated Channel Subfamily N Member 3 (KCNN3) 

gene is a strong candidate gene suggested by the “ASD or ADHD” phenotype as 

it occupies the top ranking on both dominant and recessive models. It segregates 

in 2 families with 2 small deletions of 3bp, is intolerant to mutations (pLI = 0.86), 

and is expressed heavily in brain. KCNN3 belongs to the KCNN family of 

potassium channels and encodes an calcium-activated channel thought to 

regulate neuronal excitability by contributing to the slow component of synaptic 

afterhyperpolarization (AHP) (O'Leary, et al., 2016). Previous studies have linked 

KCNN3 to schizophrenia (Grube, et al., 2011) and bipolar disorder (Ujike, et al., 

2001), but not to ASD or ADHD. 
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In SV analysis (Table 3.13), The Prostaglandin-Endoperoxide Synthase 2 

(PTGS2) ranked high for both phenotypes, and it is found to be associated with 

ASD in a Korean population cohort (Yoo, et al., 2008). Elongator 

Acetyltransferase Complex Subunit 4 (ELP4), a subunit of a histone 

acetyltransferase complex that associates with RNA polymerase II transcriptional 

elongation, occupies the top ranking in “ASD or ADHD” phenotype, and a 

previous case-control study of ASD also identified a significant excess of CNVs 

in ELP4 in case versus control (P=2.7 E-03) (Addis, et al., 2015). 

Rank Gene Model Chr Score PValue LOD 
Score 

LOD PValue 

1 C9orf150 Dominant chr9 249.2 1.00E-05 0.7 4.00E-02 

2 FADS6 Dominant chr17 246.39 1.00E-05 0.11 1.00E-01 

3 EP400 Dominant chr12 242.66 1.00E-05 0.9 1.00E-01 

4 CTSA Dominant chr20 222.98 1.00E-05 0.01 3.00E-01 

5 MUC5B Dominant chr11 209.92 1.00E-05 0.02 1.00E+00 

6 FAM75C1 Dominant chr9 199.8 1.00E-05 0.79 2.00E-01 

7 POTEG Dominant chr14 197.52 1.00E-05 0.48 2.00E-01 

8 PDE4DIP Dominant chr1 189.61 1.00E-05 1.25 2.00E-01 

9 NBPF10 Dominant chr1 187.41 1.00E-05 0.85 4.00E-01 

10 PRKCSH Dominant chr19 184.77 1.00E-05 0.11 3.00E-01 

1 ATXN2 Recessive chr12 467.52 1.00E-05 0.62 4.00E-02 

2 MMP17 Recessive chr12 331.4 1.00E-05 0.73 4.00E-02 

3 CCDC144NL Recessive chr17 242.24 1.00E-05 1.18 6.00E-03 

4 CTBP2 Recessive chr10 211.85 1.00E-05 1.9 2.00E-03 

5 CNOT1 Recessive chr16 148.71 1.00E-05 0.73 7.00E-03 

6 FLT3 Recessive chr13 133.12 1.00E-05 0.12 8.00E-02 

7 OR11H12 Recessive chr14 127.41 1.00E-05 1.23 8.00E-04 

8 FAM38A Recessive chr16 114.69 1.00E-05 1.29 8.00E-04 

9 ACACB Recessive chr12 111.85 1.00E-05 1.73 2.00E-04 

10 ATP12A Recessive chr13 108.34 1.00E-05 0.6 2.00E-02 
 
Table 3.11. Top 10 candidate genes for ADHD under dominant and recessive model in whole 
genome region. 
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Rank Gene Model Chr Score PValue LOD 

Score 
LOD PValue 

1 KCNN3 Dominant chr1 326.77 1.00E-05 0.54 2.00E-01 

2 C9orf150 Dominant chr9 322.95 1.00E-05 0.12 3.00E-01 

3 EP400 Dominant chr12 310.49 1.00E-05 3.1 7.00E-03 

4 MAP3K4 Dominant chr6 303.38 1.00E-05 0.3 3.00E-01 

5 ANKRD36 Dominant chr2 285.05 1.00E-05 0.26 9.00E-01 

6 PODXL Dominant chr7 282.74 1.00E-05 0.24 3.00E-01 

7 MUC5B Dominant chr11 275.46 1.00E-05 0.58 1.00E+00 

8 FAM75C1 Dominant chr9 271.63 1.00E-05 0.79 4.00E-01 

9 MEOX2 Dominant chr7 267.63 1.00E-05 0.14 3.00E-01 

10 CACNA1A Dominant chr19 267.44 1.00E-05 0.46 6.00E-01 

1 KCNN3 Recessive chr1 685.52 1.00E-05 0.85 8.00E-03 

2 CEP170 Recessive chr1 582.6 1.00E-05 1.12 1.00E-02 

3 ATXN2 Recessive chr12 564.77 1.00E-05 0.62 1.00E-02 

4 CNOT1 Recessive chr16 189.12 1.00E-05 0.73 3.00E-02 

5 LOC649330 Recessive chr1 153.35 1.00E-05 0.54 2.00E-01 

6 CACNA1H Recessive chr16 148.86 1.00E-05 1.19 1.00E-02 

7 AKAP13 Recessive chr15 133.47 1.00E-05 2.07 3.00E-04 

8 HYDIN Recessive chr16 131.03 1.00E-05 1.14 6.00E-03 

9 MC1R Recessive chr16 130.99 1.00E-05 0.07 6.00E-02 

10 SACS Recessive chr13 121.4 1.00E-05 0.87 1.00E-02 
 
Table 3.12. Top 10 candidate genes for ASD or ADHD under dominant and recessive model in 
whole genome region. 
 
 

Gene Phenotype Chr Description pLI 
PRPF38A ADHD chr1 pre-mRNA processing factor 38A 1.00 

ELP1 ADHD chr9 elongator complex protein 1 NA 

CFTR-AS1 ADHD chr7 CFTR antisense RNA 1 NA 

SYVN1 ADHD chr11 synoviolin 1 1.00 

STK38L ADHD chr12 serine/threonine kinase 38 like 0.97 

KANSL3 ADHD chr2 KAT8 regulatory NSL complex subunit 3 0.99 

SIGMAR1 ADHD chr9 sigma non-opioid intracellular receptor 1 0.13 

PTGS2 ADHD chr1 prostaglandin-endoperoxide synthase 2 1.00 
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LRRFIP2 ADHD chr3 LRR binding FLII interacting protein 2 0.00 

LOC102724058 ADHD chr2 uncharacterized LOC102724058 NA 

ELP4 ASD or ADHD chr11 elongator acetyltransferase complex 

subunit 4 

0.01 

PRPF38A ASD or ADHD chr1 pre-mRNA processing factor 38A 1.00 

KANSL3 ASD or ADHD chr2 KAT8 regulatory NSL complex subunit 3 0.99 

ELP1 ASD or ADHD chr9 elongator complex protein 1 NA 

CFTR-AS1 ASD or ADHD chr7 CFTR antisense RNA 1 NA 

SYVN1 ASD or ADHD chr11 synoviolin 1 1.00 

STK38L ASD or ADHD chr12 serine/threonine kinase 38 like 0.97 

SIGMAR1 ASD or ADHD chr9 sigma non-opioid intracellular receptor 1 0.13 

PTGS2 ASD or ADHD chr1 prostaglandin-endoperoxide synthase 2 1.00 

LRRFIP2 ASD or ADHD chr3 LRR binding FLII interacting protein 2 0.00 
 
Table 3.13. Top 10 candidate genes for ADHD only and ASD or ADHD from SV data analysis in 
whole genome region. 

 
3.3.6. Candidate genes participate in pathways related to neurological 

disorders 

To integrate evidences from various sources and create a single candidate gene 

set, a consensus filtering among the significant linkage-region genes and the first 

100 whole-gnome genes from the pVAAST candidate gene sets, and 2 SV gene 

set, one for “ADHD only” and one for “ASD or ADHD”, was performed to create 

a high confidence set. Twenty-nine genes are present in at least four gene sets 

and we consider these 29 genes as the high-confidence set (Table 3.14). Another 

670-gene set was created by merging all candidate gene sets to create a large gene 

set for overrepresentation analysis. 

Gene Chr Description pLI 
TRPV3 chr17 transient receptor potential cation channel subfamily V 

member 3 

0.00 

USP6 chr17 ubiquitin specific peptidase 6 0.00 

STARD9 chr15 StAR related lipid transfer domain containing 9 NA 
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SHPK chr17 sedoheptulokinase 0.00 

SACS chr13 sacsin molecular chaperone 0.00 

PELP1 chr17 proline, glutamate and leucine rich protein 1 1.00 

PDIA2 chr16 protein disulfide isomerase family A member 2 0.00 

PDE4DIP chr1 phosphodiesterase 4D interacting protein NA 

OR6C4 chr12 olfactory receptor family 6 subfamily C member 4 0.00 

OR11H1 chr22 olfactory receptor family 11 subfamily H member 1 0.77 

NLRC5 chr16 NLR family CARD domain containing 5 0.00 

MYH13 chr17 myosin heavy chain 13 0.00 

MYBBP1A chr17 MYB binding protein 1a 0.00 

KMT2D chr12 lysine methyltransferase 2D 1.00 

METAP1 chr4 methionyl aminopeptidase 1 0.04 

C1D chr2 C1D nuclear receptor corepressor 0.36 

KRT74 chr12 keratin 74 0.00 

KDM6B chr17 lysine demethylase 6B 1.00 

HYDIN chr16 HYDIN axonemal central pair apparatus protein NA 

GRASP chr12 general receptor for phosphoinositides 1 associated 

scaffold protein 

0.93 

FAM86B2 chr8 family with sequence similarity 86 member B2 0.67 

PIEZO1 chr16 piezo type mechanosensitive ion channel component 1 0.54 

FAM186A chr12 family with sequence similarity 186 member A NA 

ESPL1 chr12 extra spindle pole bodies like 1, separase 1.00 

TSPOAP1 chr17 TSPO associated protein 1 NA 

ARID1B chr6 AT-rich interaction domain 1B 1.00 

AKAP13 chr15 A-kinase anchoring protein 13 0.85 

ACADVL chr17 acyl-CoA dehydrogenase very long chain 0.00 

ABCC3 chr17 ATP binding cassette subfamily C member 3 0.00 
 
Table 3.14. Final candidate gene set integrating 8 previous gene sets via consensus filtering. 

 
The high-confidence 29-gene set together with the combined 670-gene set was 

analyzed using online resources, including gene association databases, GWAS 

catalogs, literature search databases, tolerance to loss of function mutation 

scores, mouse knock-out experiments, expression databases, and pathway and 

enrichment analysis. A total of 85 genes from the 670 gene set (12.69%) was 
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described by previous research or existing neurodevelopmental disorder gene 

databases. Four genes from the 29 gene set are described previously (13.79%), 

with 3 of them (KDM6B, ARID1B, METAP1) overlapping with the Autism 

Sequencing Consortium and iPSYCH study's 102 risk genes (Satterstrom, et al., 

2020). 

Gene overrepresentation test were performed for the 670 combined gene set. 

In PANTHER overrepresentation test, we observed gene enrichment in 

pathways such as cell projection organization (1.96E-02), intracellular signal 

transduction (1.32E-02), microtubule-based process (4.73E-03). In KEGG pathway 

mapping analysis, Williams-Beuren syndrome (5) is the most represented 

disease, followed by Spinocerebellar ataxia (4) and deafness (4). Most 

represented pathways include metabolic pathways (43), MAPK signaling 

pathway (22), pathways in cancer (21), Alzheimer disease (17) and PI3K-Akt 

signaling pathway (17). Huntington disease (13), Alzheimer disease (9), calcium 

signaling (7) and microtubule-based transport (6) are the most perturbed 

neurological diseases related molecular networks.  

The 29-consensus gene set analyzed in STRING functional association 

network (Figure 3.6) reveals linkage between the histone lysine-specific 

demethylase KDM6B, histone-lysine N-methyltransferase KMT2D, and 

chromatin remodeler gene ARID1B. The endocytic receptor LRP1, tentatively 

participating in kinase-dependent intracellular signaling, neuronal calcium 

signaling as well as neurotransmission, interacts with the intracellular estrogen-

binding protein PDIA2. In addition to STRING analysis, ion channel proteins 

such as TRPV3 and PIEZO1 are co-mentioned in publication abstracts. 
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3.4. Discussion 

In this study, we have identified a novel linkage peak (17p13.1-2) for ADHD 

phenotype using the microarray genotyping data from 524 samples in 111 

families. Using whole genome sequencing data from selected 272 samples, we 

discovered 49 significant genes within the linkage region and explored their gene 

functions. Expanding the analysis region to the whole genome revealed more 

risk factors for both “ADHD only” and “ASD or ADHD” phenotype. We 

observed multiple neurological disorder related pathways overrepresented by 

the merged 670-gene set and multiple disrupted gene networks by the high-

confidence 29-gene set. Among the genes we found evidence in the NJLAGS 

dataset, 85 were also identified in previous studies, demonstrating the power of 

 
Figure 3.6. The 29-consensus gene interaction network generated in STRING 
database revealed connections between candidate genes. 
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combing linkage analysis with genotyping microarray and rare variant and SV 

analysis using whole genome sequencing to uncover risk genes associated with 

disease phenotypes. 

        By studying ADHD affected patients in families with ASD probands, we 

established genetic risk factors underlying ASD and ADHD cooccurrence. Three 

of the genes (KDM6B, PTPRB, PER1) that are significant in ADHD patients 

discovered within the ADHD linkage region are already described in previous 

ASD focused studies (Abrahams, et al., 2013; Schork, et al., 2019; Zhang, et al., 

2012). Pathways we discovered that are important in ADHD etiology are also 

vital in ASD etiology. By providing an extensive candidate gene set, we are not 

only reaffirming the linkage between ASD and ADHD, but also suggesting novel 

potential risk pathways for further investigation. By expanding the search region 

to whole genome and expanding the phenotype to include ASD samples, we 

identified a spectrum of gene and pathways, previously known or novel, that are 

involved in ASD or ADHD etiology. 

        We noted several important pathways recurring in multiple gene sets in our 

functional analysis, namely microtubule related pathways, the MAPK pathway, 

the Akt pathway, ion channel related pathways, histone methylation, acetylation 

and chromatin remodeling pathways, and the circadian pathway. These 

pathways revealed interesting aspects of mechanisms in ASD and ADHD 

etiology as an architecture of interconnected network of hundreds of genes and 

pathways (Iakoucheva, et al., 2019), and underlined the complexity of genetic 

causalities in neurodevelopmental disorders. A recent article argued that several 

neurodevelopmental disorders share common genetic risk factors and there 

might not be "Autism-specific" genes (Myers, et al., 2020). Our results provide 
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support for this view. We raise awareness of important but underappreciated 

pathways such as the circadian pathway involved in both ASD and ADHD, and 

has phenotypic effects in cognition, mood, and reward-related behaviors. 

Researches documented that the prevalence of insomnia range from 50% to 80% 

in ASD patients, compared to 9–50% in age-matched typically developing 

children (Charrier, et al., 2017). However, the underlying mechanism of 

association and genes involved remain to be ascertained. 

        The limitation of sequencing capacity has led to the sequencing of only a 

selected number of ADHD affected individuals, as the NJLAGS dataset was 

collected primarily around ASD and language-impaired probands. Most 

recently, updated information regarding the ADHD status of NJLAGS family 

members was completed via follow-up questionnaires. Family members, 

primarily children, who were too young to receive an ADHD diagnosis during 

study recruitment, now have confirmed ADHD diagnoses. They will be included 

as affected for ADHD in any new genetic analyses. Moving forward, we 

anticipate extensive sequencing efforts to continue for the NJLAGS project 

resulting in sequencing of all NJLAGS families. As more ADHD affected 

individuals are sequenced, the more complete pedigree information and stronger 

statistical power will allow us to further discover potential common risk factors 

underlying the ASD and ADHD etiology.  
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4. Evaluating nanopore sequencing data processing pipelines 

for structure variation identification 

4.1. Introduction 

Structural variation (SV) is a major type of genomic variation. SV is usually fined 

as genomic alterations that are larger than 50 base pairs (bps) in size, such as 

insertions, deletions, duplications, inversions, and translocations. In humans, SVs 

account for the majority of the differences among individual genomes at the 

nucleotide level (Chaisson, et al., 2019; Korbel, et al., 2007; Sudmant, et al., 2015). 

SVs have a profound impact on the genome architecture and are associated with 

a variety of diseases, including neurological diseases and cancer (Carvalho and 

Lupski, 2016; Yang, et al., 2013). Therefore, studying SVs and their functional 

implications are critical to understand the genomic architecture and the 

underlying genetic factors for many diseases. 

DNA sequencing became one of the primary methods for SV identification in 

recent years (Chaisson, et al., 2019; Korbel, et al., 2007; Sudmant, et al., 2015). 

Since 2005, a cost-effective, high-throughput generation of sequencing 

technology, termed next-generation sequencing (NGS), has been widely used in 

genomic research (Goodwin, et al., 2016; Kircher and Kelso, 2010). However, for 

SV identification NGS has limitations due to its short read-length (usually less 

than 200 bps), and most evidence supporting an SV event are indirect (e.g., read-

depth, mis-match read pairs) (Treangen and Salzberg, 2011). 

The arrival of a third generation of sequencing technology, characterized by 

real-time, single DNA/RNA molecule sequencing, allows for much longer read 

lengths, potentially addressing some of the limitations of NGS. These long reads 
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are believed to be advantageous towards the study of repetitive regions and SVs 

(Chaisson, et al., 2019). One sequencing technology that has generated a lot of 

interest is the nanopore sequencing technology commercialized by Oxford 

Nanopore Technologies (ONT) (Bayley, 2015; Jain, et al., 2016). Unlike many 

other sequencing methods, nanopore sequencing does not require the detection 

of fluorophore which typically indicates a product of chemical or enzymatic 

reaction. Instead, single-stranded DNA/RNA molecules are directly sequenced 

by measuring a current disruption as the molecule passes through a nanopore 

(Bayley, 2015). Long reads obtained from the nanopore sequencing offer 

possibilities to detect SVs in a single continuous read instead of being inferred 

through indirect evidences from short reads. In the last several years, new 

computational tools have been developed specifically for long-read data and 

several studies have identified SVs using the nanopore data (Cretu Stancu, et al., 

2017; Jain, et al., 2018; Miao, et al., 2018; Wouter, et al., 2018). However, since the 

ONT sequencers were only recently launched, the tools available for aligning 

long-read data and detecting SVs have not yet been thoroughly evaluated. 

In this study, we evaluated several aligners and SV callers on the nanopore 

data using three human nanopore datasets, including both empirical sequencing 

data and simulated reads. By comparing SV calls from seven aligner-SV caller 

combinations to high quality SV call sets, we evaluated the performance of long-

read aligners, SV callers, and their overall combined performance. 

4.2. Results 

4.2.1. Selection of benchmarking dataset  

For benchmarking, it is preferable to use several different datasets. In this study, 

we used three datasets: nanopore sequencing of the human sample NA12878 
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(referred to as NA12878 in the following text); simulated nanopore reads based 

of the human genome assembly CHM1(referred to as CHM1 in the following 

text); and simulated SV events and nanopore reads based on the chromosome 20 

of the human reference genome GRCh38 (referred to as Chr20 in the following 

text). 

        The sample NA12878 was sequenced at ~30x coverage depth by the 

nanopore whole genome sequencing consortium (Jain, et al., 2018). For the SV 

true set we used the SV call set generated by the Genome in a Bottle Consortium 

(Zook, et al., 2019). This call set was based on the whole genome sequencing data 

at ~44x coverage using the Pacific Biosciences (PacBio) platform. SV calls were 

generated using three SV detection methods, including a local assembly pipeline 

(Chaisson, et al., 2015) (Table 4.1).  

Pipelines 
PBHoney, raw reads, blasr1.3.1 

Custom pipeline, raw reads, blasr1.3.1 

PBHoney, error-corrected reads, blasr1.3.1 

Custom pipeline, error-corrected reads, blasr1.3.1 

Local Assembly 

Custom pipeline, error-corrected reads, blasr1.3.2 

Custom pipeline, raw reads, blasr1.3.2 
 
Table 4.1. SV calls of the NA12878 true set are integrated from seven call sets. 
 
        The CHM1 genome was assembled from a human haploid hydatidiform 

mole using reference-guided assembly (Steinberg, et al., 2014). Based on the 

CHM1 assembly, we simulated the nanopore sequencing reads to ~50x coverage 

(see Methods). Mapping the simulated nanopore reads resembles mapping 

empirical sequencing reads from an individual with a CHM1 genome. As a 
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corresponding true SV call set for this sample, we used a SV call set generated 

using the PacBio platform (Chaisson, et al., 2015). 

        The SV true sets for NA12878, CHM13, and CHM1 samples are dependent 

on their respective analysis pipelines and were filtered to select SVs with high 

accuracy. Therefore, it is likely that these true sets are incomplete which could 

affect the false positive rate estimates for SV calling pipelines. To address this 

issue, we simulated the chromosome 20 of the human reference genome GRCh38 

with pre-defined SVs and generated nanopore sequencing reads at ~50x 

coverage for pipeline evaluation.  

        To assess overall properties of the true sets, we collected several statistics of 

the true sets (Table 4.2). All true sets have more insertions than deletions. CHM1 

and CHM13 true sets have more than 2-fold higher number of calls compared to 

the NA12878 set.  SV size distribution analysis showed that most SVs are less 

than 500 bps in length (Figure 4.1), and only a small number of SVs were larger 

than 10,000 bps (Table 4.3). For all sets, a peak could be observed at ~300 bps, an 

expected size for Alu transposable elements (Figure 4.1). 

 NA12878 
deletion 

NA12878 
insertion 

CHM13 
deletion 

CHM13 
insertion 

CHM1 
deletion 

CHM1 
insertion 

Chr20 
deletion 

Chr20 
insertion 

SV 

count 

4352 5783 10,671 20,497 10,784 15,158 96 181 

Median 

size (bp) 

312 300 304 318 69 103 318 296 

Longest 

size (bp) 

97,696 41,311 26,862 32,727 18,511 71,339 10,937 41,310 

Shortest 
size (bp) 

34 32 50 51 31 32 50 40 

 
Table 4.2. Summary statistics of the SV true sets. 
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No. of 
SVs Recall Precision 

F1 
Score 

0-
99bp 

100-
499bp 

500-
999bp 

1-
5kb 

5-
10kb >=10kb 

 
Figure 4.1. True set indel size distribution. 
The size distribution of insertions and deletions in the four SV true sets are shown. The indels were 
filtered to remove the top 10% largest calls to improve the visibility. Counts of larger SVs are listed 
in Table 4.1. 
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NA12878-
Deletion 

          
minimap2-

nanosv 68661 72.13% 8.34% 14.96% 62144 5482 361 485 134 55 

minimap2-

sniffles 37666 71.55% 17.32% 27.89% 31979 4763 316 427 139 42 

ngmlr-

nanosv 66128 70.11% 8.08% 14.49% 58596 6387 398 534 158 55 

ngmlr-

sniffles 34573 66.25% 17.34% 27.49% 28439 5158 342 451 137 46 

graphmap-

nanosv 38683 48.28% 13.25% 20.79% 34408 3664 229 336 46 0 

graphmap-
sniffles 20444 47.45% 26.15% 33.72% 15966 3735 315 393 35 0 

last-picky 33814 53.13% 13.00% 20.89% 24889 7599 854 342 108 22 

truth 4352 
   

771 2489 311 557 172 52 

CHM13-
Deletion 

          
minimap2-

nanosv 12155 50.25% 37.47% 42.93% 7572 3589 383 450 99 62 

minimap2-
sniffles 11147 46.81% 44.19% 45.46% 6874 3271 376 456 109 61 

ngmlr-

nanosv 11060 49.95% 39.33% 44.01% 6586 3394 396 518 109 57 

ngmlr-

sniffles 9424 44.97% 46.52% 45.73% 5627 2765 340 501 121 70 

graphmap-

nanosv 8627 36.00% 44.38% 39.76% 5015 2697 293 474 105 43 

graphmap-

sniffles 8155 32.16% 47.74% 38.43% 4172 2895 359 556 121 52 

last-picky 6119 26.48% 42.93% 32.76% 3192 2194 252 374 90 17 

truth 10671 
   

4490 4736 486 750 166 43 



 

 
 

78 

CHM1-
Deletion 

          
minimap2-

nanosv 18641 40.96% 25.12% 31.14% 11249 5438 1099 726 96 33 

minimap2-

sniffles 14741 34.83% 30.88% 32.74% 9280 4494 549 341 55 22 

ngmlr-

nanosv 14600 39.20% 29.77% 33.84% 8357 4977 679 489 68 30 

ngmlr-

sniffles 12005 34.62% 35.02% 34.82% 7103 3934 499 382 60 27 

graphmap-

nanosv 12998 28.83% 30.18% 29.49% 7985 4243 473 285 12 0 

graphmap-
sniffles 8954 22.77% 34.71% 27.50% 4806 3533 351 256 8 0 

last-picky 13089 24.10% 21.06% 22.48% 8576 3752 395 302 47 17 

truth 10784 
   

6581 3457 317 329 89 11 

Chr20-
Deletion 

          
minimap2-

nanosv 279 97.92% 33.69% 50.13% 42 156 42 31 7 1 

minimap2-
sniffles 275 96.88% 33.82% 50.13% 46 153 39 30 5 2 

ngmlr-

nanosv 238 96.88% 39.08% 55.69% 43 151 23 16 4 1 

ngmlr-

sniffles 272 95.83% 33.95% 50.14% 44 151 39 31 4 3 

graphmap-

nanosv 270 94.79% 33.70% 49.73% 35 159 41 32 3 0 

graphmap-

sniffles 313 92.71% 28.62% 43.73% 57 181 42 31 2 0 

last-picky 790 92.71% 11.37% 20.25% 540 170 42 30 5 3 

truth 96 
   

14 49 13 15 4 1 
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NA12878-
Insertion 

          
minimap2-

nanosv 39260 65.12% 25.71% 36.86% 22024 14709 1208 1117 155 47 

minimap2-

sniffles 7428 47.29% 51.62% 49.36% 3403 3474 341 192 13 5 

ngmlr-

nanosv 21971 58.95% 39.06% 46.99% 10389 8974 1436 1047 114 11 

ngmlr-

sniffles 5860 39.96% 56.03% 46.65% 2025 2957 589 235 37 17 

graphmap-

nanosv 22046 54.00% 44.29% 48.66% 11682 8452 1050 847 15 0 

graphmap-
sniffles 3426 32.11% 72.73% 44.55% 885 1918 324 299 0 0 

last-picky 4574 29.64% 50.77% 37.43% 703 2547 852 460 9 3 

truth 5783 
   

1089 3461 622 570 28 13 

CHM13-
Insertion 

          
minimap2-

nanosv 25885 64.71% 63.80% 64.25% 12722 11320 1008 759 70 6 

minimap2-
sniffles 10989 55.92% 64.52% 59.91% 5526 4689 492 264 16 2 

ngmlr-

nanosv 20617 49.00% 60.58% 54.18% 9665 9552 937 421 40 2 

ngmlr-

sniffles 9915 41.79% 61.69% 49.82% 4496 4449 648 316 2 4 

graphmap-

nanosv 22068 57.13% 69.09% 62.54% 11746 9147 738 437 0 0 

graphmap-

sniffles 7167 41.93% 71.39% 52.83% 3364 3266 313 224 0 0 

last-picky 7952 20.88% 55.66% 30.36% 3977 3464 370 139 1 1 

truth 20497 
   

7280 9903 1637 1437 195 45 
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CHM1-
Insertion 

          
minimap2-

nanosv 194 12.88% 22.65% 16.42% 34 108 32 18 2 0 

minimap2-

sniffles 175 11.12% 25.43% 15.47% 28 106 27 14 0 0 

ngmlr-

nanosv 171 11.55% 23.46% 15.48% 37 117 15 2 0 0 

ngmlr-

sniffles 133 10.13% 25.95% 14.58% 29 101 2 0 0 1 

graphmap-

nanosv 303 9.85% 23.83% 13.94% 81 168 40 14 0 0 

graphmap-
sniffles 179 7.26% 26.97% 11.45% 44 98 25 12 0 0 

last-picky 158 6.64% 22.70% 10.27% 30 104 23 0 0 1 

truth 181 
   

29 106 29 15 1 1 

Chr20-
Insertion 

          
minimap2-

nanosv 40536 90.61% 94.94% 92.73% 20918 15644 2044 1623 196 111 

minimap2-
sniffles 14421 88.95% 99.38% 93.88% 7298 5145 946 869 121 42 

ngmlr-

nanosv 28426 76.24% 99.35% 86.28% 14272 10358 1916 1585 216 79 

ngmlr-

sniffles 11960 66.85% 99.18% 79.87% 5244 4344 1194 1033 103 42 

graphmap-

nanosv 35734 90.06% 99.64% 94.61% 18142 13193 1997 2062 302 38 

graphmap-

sniffles 10006 88.95% 98.80% 93.61% 4639 3713 686 811 130 27 

last-picky 6974 76.80% 97.20% 85.80% 1976 3134 1082 743 30 9 

truth 14779 
   

5061 6848 1354 1292 178 46 

 
Table 4.3. SV call set evaluation. 
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4.2.2. Aligner and SV caller selection 

Multiple aligners and SV callers were downloaded and tested on the three 

nanopore datasets (Table 4.4, Table 4.5). After testing, we excluded several tools 

from downstream analysis for a variety of reasons (see Table 4.5 for details). As a 

result, we examined four aligners (Minimap2, NGMLR, GraphMap, LAST) and 

three SV callers (Sniffles, NanoSV, Picky). We selected these tools based on their 

usability, compatibility, maintenance status, and popularity.  

Name Type Versio
n 

Releas
e year 

Thread
s 

Languag
e 

Description Citation 

GraphMa
p 

Aligne

r 

0.5.2 2016 16 C++ Aligns 
nanopore 
long reads 
with circular 
genome 
handling 

(Sović, et al., 
2016) 

LAST Aligne

r 

941 2011 16 C++ Modified 
BLAST, 
outputs MAF 
format 

(Kiełbasa, et 
al., 2011) 

minimap2 Aligne

r 

2.1 2017 16 C Aligns error-
prone long 
reads, faster 
and more 
accurate than 
BWA 

(Li, 2018) 

NGMLR Aligne

r 

0.2.6 2017 16 C++ Works with 
nanopore 
long reads to 
generate 
high-quality 
SV calls 

(Sedlazeck, 
et al., 2018) 

NanoSV SV 

caller 

1.2.0 2017 16 Python Identifies and 
clusters split 
reads based 
on genomic 
positions and 
orientations 
to identify 
breakpoint 

(Cretu 
Stancu, et 
al., 2017) 



 

 
 

82 

junctions of 
SVs 

Picky SV 

caller 

0.2.a 2017 16 Perl “Pick”-and-
stitch 
segments 
from LAST 
alignments 
into 
representativ
e alignments 
with a greedy 
algorithm 

(Gong, et al., 
2018) 

Sniffles SV 

caller 

1.0.8 2017 16 C++ Detects all 
types of SVs 
using split-
read 
alignments, 
high-
mismatch 
regions, and 
depth of 
coverage 

(Sedlazeck, 
et al., 2018) 

 
Table 4.4. Evaluated aligners and SV callers. 
 

Name Type Version Release 
Year 

Language Description Citation 

Meta-aligner Aligner N/A 2017 C++ Run failed (Nashta-
ali, et al., 
2017) 

MashMap Aligner 2 2017 C++ Only aligns 
long reads 

(Jain, et 
al., 2017) 

BLASR Aligner 5.3.2 2012 C++ Output not 
compatible 
with other 
tools 

(Chaisson 
and 
Tesler, 
2012) 

SMRT-SV SV Caller N/A 2017 Python Requires 
BLASR 

(Huddlest
on, et al., 
2017) 

HySA SV Caller N/A 2017 Perl Not 
packaged 
into a tool 

(Fan, et 
al., 2017) 

PBHoney SV Caller 15.8.24 2014 Python Not 
maintained 

(English, 
et al., 
2014) 

 
Table 4.5. Aligners and SV callers excluded from the analysis. 
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4.2.3. Aligner resource consumption and performance 

First, we compared the computational resource consumptions of the four 

aligners: minimap2, NGMLR, GraphMap, and LAST (Figure 4.2A). Overall, each 

aligner performed similarly across datasets. Among the four aligners, minimap2 

was the fastest by a large margin compared to other aligners, while GraphMap 

was the slowest. GraphMap also consumed the most memory. The file system 

operations were similar among all aligners (Figure 4.2A, FS Operations). Next, 

we compared the quality of the aligned reads, such as the total mapped bases, 

mismatch rate, and genome coverage (Table 4.6). LAST’s output was not 

included in this analysis because its output was directly piped to the Picky for SV 

detection. Mapping coverage for NA12878 was ~24x for all aligners, compared to 

the raw sequencing coverage depth of ~30x. CHM13 had a higher coverage than 

NA12878, at ~42x. CHM13 also had a lower mismatch rate than NA12878, 

regardless of the aligner used. This difference might reflect the longer read-

length and the newer base-calling program used in the CHM13 dataset. The two 

simulated datasets, CHM1 and Chr20, has ~40x and ~50x coverage, respectively 

(Table 4.6). 
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Aligner Dataset Bases 

mapped 
(Gb) 

Mismatch 
rate 

Coverage 

minimap2 NA12878 77.5 1.97E−01 24.4 

NGMLR NA12878 73.6 1.92E−01 23.4 

GraphMap NA12878 80.2 2.17E−01 25.1 

minimap2 CHM13 144.7 1.12E−01 43.7 

NGMLR CHM13 137.3 1.05E−01 42.0 

GraphMap CHM13 139.6 1.24E−01 42.7 

 
 
Figure 4.2. Resource consumption. 
A) Aligner. B) SV caller. The computing time (Wall Time), maximum memory usage (Max 
Memory), and file system operations (FS Operations) are shown. LAST’s Wall Time included 
Picky’s representative read selection step because Picky requires a specific output format from 
LAST in place of the default output. SV callers are noted with respect to the aligner used to 
map the reads. The CHM13 dataset was analyzed under multiple cluster configurations and 
therefore was not included in the computational resource evaluation. 
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minimap2 CHM1 128.6 1.35E−01 39.6 

NGMLR CHM1 127.6 1.35E−01 39.5 

GraphMap CHM1 130.4 1.52E−01 39.7 

minimap2 Chr20 3.3 1.35E−01 48.5 

NGMLR Chr20 3.2 1.34E−01 47.4 

GraphMap Chr20 3.3 1.54E−01 49.1 

 
Table 4.6. Alignment statistics. 

 
4.2.4. SV calling pipeline resource consumption and call set evaluation 

We then compared computational resource consumptions for the three SV 

callers: NanoSV, Sniffles, and Picky (Figure 4.2B). SV caller results were collected 

based on minimap2 alignments for NanoSV and Sniffles, and LAST alignment 

for Picky. Time and memory usage results highlighted that NanoSV consumed 

substantially more resources than the other two SV callers. The main time-

consuming step of the NanoSV calling was calculating the depth of coverage at 

the potential SV breakpoints. Picky performed fewer file system operations 

partially because the “select representative reads” step was performed in 

combination with LAST before the SV calling step. 

        Because the percentage of mapped reads were similar among all aligners, we 

chose minimap2, NGMLR, and GraphMap as aligners to test in combination with 

Sniffles and NanoSV. The LAST alignment output format was not fully 

compatible with Sniffles and NanoSV, so we only evaluated LAST with Picky. 

LAST was chosen to run with Picky also because of its claimed synergy with 

Picky and it was incorporated in the default Picky workflow (Gong, et al., 2018). 

In total we tested seven SV calling pipelines: Minimap2-NanoSV, NGMLR-
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NanoSV, GraphMap-NanoSV, Minimap2-Sniffles, NGMLR-Sniffles, GraphMap-

Sniffles, and LAST-Picky. 

        Each SV caller called different types of SVs with different abundance as 

shown in Table 4.7. Deletion was the most abundant category, followed by 

insertions and duplications. The remaining categories, including inversions, 

translocations, etc, all contain small number of calls. Because only a small 

number of duplications were called and the true sets only contains insertions and 

deletions, the SV calls were grouped into two main categories: deletions and 

insertions. As such, duplications were merged with insertions. Other types of 

SVs (e.g., inversions, translocations) from the call sets were not included in the 

evaluation. 

SV 
Type 

minimap2-
sniffles 

minimap2-
nanosv 

ngmlr-
sniffles 

ngmlr-
nanosv 

graphmap-
sniffles 

graphmap-
nanosv 

last-
picky 

DEL 38,36

4 

82,989 34,877 82,175 21,166 52,019 41,525 

DUP 111 491 634 523 0 0 2,535 

INS 7,645 39,698 5,377 22,096 3,629 22,289 2,102 

Others 280 0 280 0 29 0 19 

DEL: deletion; DUP: duplication; INS: insertion; Others: inversion, translocation, etc. 
 
Table 4.7. Counts of different types of NA12878 SVs called by the seven pipelines. 
 
        The size distribution of the call sets showed more small SVs than large SVs, 

a pattern similar to the true sets (Figure 4.3, Table. 4.3). NanoSV called more 

insertions and deletions than Sniffle and Picky. In the simulated Chr20 dataset, 

Picky called more small deletions than any other pipeline. This is likely due to 

Picky’s goal to maximize sensitivity and the high coverage in the Chr20 set 

resulted in a high false-positive rate. 
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        To evaluate the quality of the SV calls, we calculated the precision, recall, 

and F1 score for each call set (Table 4.3). The precision-recall graph showed that 

the four datasets occupy distinct areas (Figure 4.4). The calls from the Chr20 

 
 
Figure 4.3. Insertion and deletion call set size distribution. 
The number of insertions and deletions in six size categories is shown for the true sets and 
calls from seven SV calling pipelines for the four datasets. 
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dataset clustered on the right side of the plot, indicating that all call sets have 

high recall rates, although the precision was much higher for insertions than 

deletions. LAST-Picky deletion call set had the most false positive calls (precision 

rate 11%), while NGMLR-Sniffles insertion calls had the lowest recall (73%). The 

NA12878 call sets, especially insertions (Figure 4.4, cyan color), are in the central 

area of the graph and have the widest spread among different pipelines. The 

observed spread suggests that different pipelines had different precision versus 

recall advantages. As such, NanoSV call sets demonstrated highest recall rates 

(Figure 4.4, cyan colored circle, square and cross), with Minimap2-NanoSV being 

the highest (Figure 4.4, cyan colored circle). Sniffles and Picky, on the other hand, 

had better precision rates, with the highest being GraphMap-Sniffles (Figure 4.4, 

cyan colored diamond). The CHM13 dataset clustered in the center area (Figure 

4.4, orange and yellow colors), suggesting different pipelines performed more 

consistent in this dataset. For CHM13 Minimap2-NanoSV had the highest recall 

rate and GraphMap-Sniffles had the highest precision. Finally, the CHM1 

insertion call sets occupied the bottom-left area, which made it the worst call set 

given the true set, especially for the recall rates. CHM1 deletions were called 

with a small recall advantage over insertions (Figure 4.4, red and magenta colors, 

respectively). 
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        We next determined the rates of true positive, false negative and false 

positive calls in each call set stratified by indel size (Figure 4.5). All pipelines 

performed the best for insertions in the Chr20 dataset, achieving a high true 

positive rate (Figure 4.5B). For deletions, all Chr20 call sets contained many false 

positive calls, especially the LAST-Picky call set. Individual call datasets also 

showed different performance in different size distributions. In the NA12878 

dataset, most pipelines identified many false positive calls for SVs smaller than 

200 bps, especially for deletions (Figure 4.5). One possible reason for the high 

false positive rates of the small SVs could be that nanopore sequencing reads 

have a high error rate at homopolymer and low complexity regions. To test the 

effect of these repetitive regions, we subsequently excluded SVs overlapping 

simple repeats and low complexity regions in the reference genome. The 

NA12878 filtered call sets indeed showed improvements for precisions, 

especially for deletions. However, filtering calls in the repetitive region also 

 
 
Figure 4.4. Precision-recall graph of SV calling pipelines.  
Pipelines are represented by shapes, and datasets are represented by colors as specified in the 
legend. 
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reduced the recall rates of the call sets (Figure 4.6). For the CHM13 call sets, all 

pipelines generally had more false negative calls when calling small SVs. CHM1 

dataset displays similar pattern to the CHM13 dataset, but showing slightly 

lower true positive rate, especially for insertions.  



 

 
 

91 

 

 

A) 
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B) 
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        To evaluate the overall performance of each pipeline and select the best 

pipeline, we calculated F1 score for insertions and deletions called by each 

pipeline in each dataset. F1 scores were comparable among all pipelines for a 

given dataset and SV type (i.e., insertion or deletion), but varied greatly among 

datasets and between insertion and deletion (Figure. 4.7, Table 4.3). The best 

pipeline varied depending on the dataset and the type of SVs. Out of the eight 

dataset-SV type combinations, NanoSVs and Sniffles each had the highest F1 

score in four combinations. In contrast, LAST-Picky had the lowest F1 scores in 

six combinations. 

Figure 4.5. Quality of each SV call set by size. 
A) deletions; B) insertions. In each size bin, the calls are divided into True positives (blue), 
False negatives (orange), and False positives (green), based on the comparison with the true 
set. Only SVs smaller than <1,000 bps are shown to improve visibility. 

 
 
Figure 4.6. Precision-recall graph of NA12878 SV calls before and after filtering repetitive 
genomic regions. 
SV call sets were filtered to exclude SVs overlapping “Simple repeat” or “Low complexity” 
regions in the human genome version hg38 based on RepeatMasker 
(http://www.repeatmasker.org/genomes/hg38/RepeatMasker-rm405-
db20140131/hg38.fa.out.gz). Pipelines are represented with shapes and datasets are 
represented with colors. 
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Figure 4.7. F1 scores for SV calling pipelines. 
F1 scores for the seven pipelines are shown for insertion and deletion calls of each dataset. 
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        To evaluate the impact of the sequencing depth on indel calls, we created 

subsets of each dataset by randomly selecting reads to achieve 50x, 40x, 30x, 20x 

or 10x sequencing coverages and calculated the F1 score of the Minimap2-Sniffles 

pipeline at different coverages (Figure. 4.8). In all datasets, F1 scores stayed 

relatively constant until 20x coverage and dropped dramatically at 10x coverage. 

One possible reason for the F1 score drop-off below 20x coverage could be that 

all SV callers apply a minimum number of supporting reads cut off (e.g., we used 

10 for Sniffles and Picky) and other quality requirements. Therefore, the coverage 

close to or lower than the cut off would dramatically affect the performance of 

the callers. 

 

 
 
Figure 4.8. Impact of the sequencing coverage on the F1 score. 
For each dataset, subsampling was performed on the original dataset to generate lower 
coverage datasets. Solid line, deletions; dashed line, insertions. The data is based on the 
Minimap2-Sniffles pipeline. 
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4.2.5. Consensus call set analysis and machine learning prediction 

Next, we compared the SV calls among different pipelines. Overall, call sets from 

different pipelines each had many unique calls. As shown in the Venn diagrams 

of deletion calls in the NA12878 dataset, a large number of calls did not overlap 

between pipelines (Figure. 4.9). Even for pipelines using the same aligner or the 

same SV caller, the discrepancies remained large (Figure. 4.9). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.9. Overlapping SV calls between different pipelines. 
A) same mapper different callers; B) different mappers same caller; C) different mappers 
different callers. 

A) 

B) 

C) 
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        The large proportion of unique calls in each pipeline suggested there is a 

potential to improve SV calling quality by integrating calls from multiple 

pipelines. To evaluate the effect of integrating multiple call sets, we merged all 

call sets for each dataset, while tracking the number of call sets for each merged 

SV call. For deletions, requiring evidence from multiple pipelines improved the 

F1 scores of the call sets (Figure. 4.10A). The F1 scores for deletions in all four 

datasets reached a peak when requiring overlaps of six or seven pipelines. For 

insertions, applying the consensus pipeline filter also increased the F1 scores, 

and calls shared among two or three pipelines resulted in the best F1 scores 

(Figure. 4.10A).  
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        Overall, selecting calls supported by multiple pipelines showed 

improvement of F1 scores but the improvement patterns were not consistent. 

Thus, we applied a more sophisticated call set integration approach by training a 

machining learning model based on the random forest algorithm. We selected 

seven SV features provided in the output of the SV callers, such as SV length, 

 
 
Figure 4.10. SV call set integration. 
A) Consensus approach. Solid line, deletions; dashed line, insertions. F1 scores for 
insertions and deletions identified by a specified number of pipelines are 
shown. B) Precision-recall graph of call sets from SV calling pipelines and integration 
approaches. Blue, deletions; red, insertions. Results from individual pipelines and the 
machine learning approach are represented by shapes as specified in the legend. Results 
from the consensus approach are represented by numbers. For example, “2” represents the 
consensus call set from two callers. 
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number of supporting reads, mapping quality, and confidence interval of the 

breakpoint (Table 4.8). Using the CHM13 dataset as a test set, we achieved F1 

scores of 0.79 for deletions and 0.81 for insertions, a substantial improvement 

over the best simple integration method (0.47 for deletion and 0.67 for insertion). 

Unlike the simple integration method, the machine learning approach was able 

to improve recall rate without sacrificing the precision (Fig. 4.10B). Among the 

seven features, the most important contributing feature was SV length, which 

accounted for ~50% of the evidence, followed by the depth P-value, read 

support, and mapping quality (Table 4.8). Similar to CHM13, the machine 

learning approach also produced improvement for most other data sets (Table 

4.9). Because the depth P-value is only provided by NanoSV, while the read 

support was provided by Sniffles and Picky (Table 4.8), the machine learning 

approach allowed us to consider additional information provided by different 

callers to produce a high-confidence call set.  

Feature Description SV caller Contribution 

Sniffles NanoSV Picky Deletion 
(%) 

Insertion 
(%) 

SVLEN Length of the SV Yes Yes Yes 52 55 

DEPTHPVAL P value of the 
significance test 
of the depth of 
coverage at 
possible 
breakpoint 
junctions 

No Yes No 20 15 

RE Read support Yes No Yes 7 14 

MAPQ Median mapping 
quality of read 
pairs 

Yes Yes No 10 8 

CIEND Confidence 
interval around 
the END position 

No Yes Yes 3 3 
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CIPOS Confidence 
interval around 
the POS position 

No Yes Yes 2 2 

PRECISE Precise structural 
variant 

Yes Yes Yes 5 1 

 
Table 4.8. SV features and their contributions in the random forest classifier for CHM13. 
“Yes/No” under SV callers indicates whether a feature is provided by an SV caller. 
 
 

Dataset 

Acc
urac
y 

Rec
all 

Prec
isio
n 

F1  
scor
e 

Feature contribution 

SVLEN MAPQ CIPOS CIEND 
PRECI
SE RE 

DEPTH
PVAL 

CHM13-
Deletion 0.78 0.83 0.75 0.79 52.13% 10.08% 1.80% 2.91% 5.37% 7.31% 20.40% 

CHM13-
Insertion 0.74 0.92 0.73 0.82 55.40% 8.47% 2.42% 3.03% 1.32% 14.41% 14.95% 

NA12878-
Deletion 0.94 0.59 0.69 0.64 62.78% 1.89% 13.54% 6.98% 1.73% 1.84% 11.24% 

NA12878-
Insertion 0.69 0.48 0.64 0.55 41.90% 3.78% 20.23% 25.35% 3.26% 5.48% 0.00% 

CHM1-
Deletion 0.76 0.19 0.74 0.31 19.58% 4.78% 15.80% 6.78% 5.19% 12.65% 35.22% 

CHM1-
Insertion 0.75 0 N/A N/A 39.96% 20.36% 6.12% 15.76% 3.51% 10.78% 3.51% 

Chr20-
Deletion 0.77 0.36 0.66 0.47 13.86% 4.07% 9.84% 9.09% 1.15% 13.40% 48.58% 

Chr20-
Insertion 0.98 1.00 0.98 0.99 11.79% 60.37% 3.75% 19.57% 0.00% 4.52% 0.00% 

N/A: undefined metrics due to no predicted true samples. 

 
Table 4.9. Statistics of random forest classifier on all datasets. 

 
4.3. Discussion 

Improvements in our ability to detect and evaluate SVs in the genome is crucial 

to improve our understanding of the functional impact of SVs. While next-

generation sequencing technologies have revolutionized genomics, their short 
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read-length has hindered the ability to reliably detect SVs. Recently, ONT 

released its nanopore-based sequencers that are capable of generating long reads, 

potentially improving our ability to detect SVs. Using public high-coverage 

nanopore sequencing data and simulated data, we evaluated multiple aligners 

and SV callers to assess SV identification performance using nanopore long-read 

sequencing data. 

        We benchmarked four aligners: an older and established aligner LAST and 

three more recently developed long-read aligners (minimap2, NGMLR, and 

GraphMap). Alignment time and memory usage varied widely between the four 

aligners while differences with respect to the mapped reads were moderate. 

Minimap2 was the fastest aligner tested with the most mapped bases. Therefore, 

we recommend minimap2 as a default aligner for general use. Unlike the newer 

aligners, which output the alignments in SAM (Sequence Alignment Map) 

format, LAST uses MAF (multiple alignment format) format. Although we tested 

converting the MAF format to SAM format, the resulted alignments are not fully 

compatible with SV callers expecting a SAM format input (data not shown). 

Therefore, we only evaluated the LAST-Picky pipeline. 

        The SV call sets differed dramatically among the pipelines, for both 

deletions and insertions. Unless the user is limited by specific requirements for 

SV calling, we recommend using minimap2 paired with Sniffles for the initial 

assessment of the data. This combination of tools showed the fastest processing 

time and a balanced overall performance in detecting both deletions and 

insertions. Our results is similar to a recent study on a different human sample 

(Wouter, et al., 2018). On the other hand, for a specific project, the choice of the 

pipeline could depend on the need of the user for either high recall rate or high 
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precision. Sniffles call sets showed the highest precision for most of the datasets 

tested, while NanoSV call sets generally had a higher recall rate, largely 

attributed to the higher number of SVs identified by NanoSV. Therefore, Sniffles 

should be used when high precision is the priority, while NanoSV should be 

considered if high sensitivity is desired and additional false positive calls can be 

tolerated.  

        All four datasets we used in this study have their own advantages and 

limitations for SV caller evaluation. For the Chr20 simulation dataset, we 

incorporated SVs based on the SV distribution from a real call set and used 

empirical error profile from an ONT sequencing run to simulate reads that 

resemble a true human sample. The advantage of such simulated dataset is that 

we know the true SVs that can be used to evaluate different pipelines. 

Nevertheless, the simulated reads are based solely on the chromosome 20 and 

are unlikely to capture the true heterogeneity of the entire human genome. This 

could in part explain the better performance of the Chr20 call sets compared to 

call sets from the other three datasets. For the NA12878, the CHM13, and the 

CHM1 genome, we evaluated our SV calls against high-coverage datasets (40-

60X coverage) generated using the PacBio sequencing technology (Chaisson, et 

al., 2015; Zook, et al., 2019). These three datasets are among the a few available 

long-read datasets that attempt to produce high confidence SV calls by 

employing several different SV calling pipelines and the de novo assembly 

approach. Although SV calls in the three PacBio datasets are likely to have a high 

accuracy, these datasets are limited in several ways. For example, some of the 

benchmark datasets only include deletions and insertions, whereas SV callers we 

employed also generated other types of SV calls. In addition, these datasets are 
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based on the PacBio sequencing platform, which has its own limitations in terms 

of both sequencing technology and analysis tools. For example, one of the SV 

callers used to generate the benchmark, PBHoney (English, et al., 2014), is an 

older SV caller and it is not actively maintained at the moment. Indeed, the vast 

majority of NA12878 deletions that are called by all seven pipelines were absent 

from the SV true set. One such deletion region is chr1:117,029,131-117,029,278, for 

which minimap2 alignment shows multiple nanopore sequencing reads with 

evidence of a deletion, while the PacBio BLASR alignment showed only low-

quality alignments in the region (i.e. with large number of mismatches) (Figure 

4.11). Therefore, some of these SVs are likely to be real in the nanopore data but 

false negative in the benchmark set. As long-read sequencing technology 

matures, more comprehensive true SV call sets will become available and 

improve the evaluation. More importantly, experimental validation of some SV 

calls is necessary to empirically assess the accuracy of the calls. 



 

 
 

104 

 
        With the different datasets, we also assessed the impact of genome coverage 

on the SV identification among the SV callers. We sought to determine the 

minimum depth of coverage required to obtain a reasonable SV calling quality, 

given the limitation of budget and computational resources in research projects. 

For all three datasets, 20x coverage appeared to be the minimum coverage 

required to maintain the performance of the tools as judged by the F1 score. 

Given both the sequencing technology and the computational tools are under 

active development, we expect the coverage requirement will also be reduced in 

the future.  

        The SV calling results from the pipelines tested here showed that there is a 

room for improvement for the tools in terms of both recall and precision. In the 

meantime, one potential way to improve performance of the currently available 

 
Table 4.10. Nanopore and PacBio sequencing alignments comparison at an SV region. 
IGV plot of an NA12878 SV region (chr1:117,029,131 - 117,029,278, red box) that was identified 
by all seven pipelines but absent in the true set. Top: SV call diagram of the seven pipelines; 
middle: nanopore sequence minimap2 alignments; bottom: PacBio sequence alignment. 
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SV callers is to use an integrative approach and combine calls from multiple 

pipelines. We evaluated the integration principle using two approaches: one 

simple consensus approach, and one machine learning approach using the 

random forest algorithm that uses seven features from the SV caller outputs. Our 

results showed that both approaches can improve the F1 scores of the call sets. 

However, when combining the quality features provided by multiple call sets, 

the machine learning approach provided a much better overall performance 

compared to the simple consensus approach (Fig. 4.10B). This result suggests that 

when a true set is available for training, a machine-learning approach can be a 

good way to produce high-quality call set from multiple callers. In general, these 

results demonstrated the value of an integrative approach and further supported 

the need for the systematic evaluation and development of integrative 

approaches. Several SV integration tools with more sophisticated integration 

algorithm, such as MetaSV (Mohiyuddin, et al., 2015), svclassify (Parikh, et al., 

2016), and Parliament (English, et al., 2015), have been developed for integrating 

SV calling results from multiple sequencing technologies and SV callers, 

including single molecule sequencing technologies. Similar algorithm can be 

applied to single-molecular sequencing SV callers and generate high-quality 

consensus SV call set. 

4.4. Conclusion 

Nanopore sequencing is a rapidly developing technology in terms of both 

sequencing technology and data analysis. For SV analysis, several new aligners 

and SV callers have been developed to leverage the long-read sequencing data. 

In addition, assembly-based approaches can also be used for SV identification. 

We have established a workflow for evaluating mappers and SV callers. We 
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found that SV callers’ performance diverges between SV types. Therefore, our 

recommendations are tailored to the specific applications. For an initial analysis, 

we recommend minimap2 and Sniffles due to their high speed and relatively 

balanced performance calling both insertions and deletions. For more detailed 

analysis, we recommend running multiple tools and integrating their results for 

the best performance. When a high-quality true set can be defined, a machine 

learning approach, such as the one we proposed here, can be used to further 

improve the call set. Most analysis tools for nanopore sequencing are recently 

developed, and both accuracy and sensitivity can be improved. We expect 

resources from ONT and the nanopore sequencing community to accumulate as 

the technology improves and its user base grows. With more data being 

generated, better benchmark call sets will be available to more accurately assess 

the tool performance and facilitate future tool development. 

4.5. Methods 

4.5.1. Data set generation 

The nanopore sequencing data of NA12878 in FASTQ format was obtained from 

the release 3 of the nanopore whole genome sequencing consortium repository 

(https://github.com/nanopore-wgs-

consortium/NA12878/blob/master/nanopore-human-genome/rel_3_4.md) 

(Jain, et al., 2018). The data was sequenced on the Oxford Nanopore MinION 

using 1D ligation kit. The SV call set for NA12878 was downloaded from 

(ftp://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai/NA

12878.sorted.vcf.gz) (Zook, et al., 2019). This call set was based on the whole 

genome sequencing data of NA12878 at about 44x coverage using the PacBio 
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platform. The SV call set were generated using three SV detection methods, 

including a local assembly pipeline (Chaisson, et al., 2015). Only SV calls with a 

“PASS” flag in the “FILTER” field was included in the analysis. This dataset was 

lifted over from human reference genome GRCh37 to GRCh38 using liftOver 

(https://genome.ucsc.edu/cgi-bin/hgLiftOver). 

        The CHM13 genome nanopore sequencing reads was downloaded from the 

release 2 of the nanopore whole genome sequencing consortium 

(https://s3.amazonaws.com/nanopore-human-

wgs/chm13/nanopore/rel2/rel2.fastq.gz). The SV calls was obtained from 

dbVar 

(ftp://ftp.ncbi.nlm.nih.gov/pub/dbVar/data/Homo_sapiens/by_study/vcf/ns

td137.GRCh38.variant_call.vcf.gz).  

        The CHM1 genome assembly was downloaded from NCBI 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/306/695/GCA_000306695.

2_CHM1_1.1/GCA_000306695.2_CHM1_1.1_genomic.fna.gz). The nanopore 

sequence reads were simulated from the CHM1 assembly using NanoSim (ver 

2.1.0) (Yang, et al., 2017). To generate a training dataset for nanopore sequencing 

read profile, DNA sample of the individual HuRef (Levy, et al., 2007) was 

purchased from Coriell (NS12911, Camden, NJ, USA). The HuRef sample was 

sequenced in our lab to about 1x coverage with an ONT MinION sequencer 

(Additional File 1: Supplemental Text: HuRef Sequencing). The sequencing reads 

were then used to generate the read profile by NanoSim read_analysis.py 

command (Yang, et al., 2017). Using the read profile and the CHM1 genome as 

the input, NanoSim simulator.py command simulated in-silico reads to about 50x 

target coverage (50,000,000 sequences) from the CHM1 genome. A high-quality 
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SV dataset for CHM1 was generated using the PacBio technology by the local-

assembly approach (Chaisson, et al., 2015). This data was downloaded from 

(http://eichlerlab.gs.washington.edu/publications/chm1-structural-

variation/data/GRCh37/insertions.bed, 

http://eichlerlab.gs.washington.edu/publications/chm1-structural-

variation/data/GRCh37/deletions.bed). The dataset was lifted over from 

GRCh37 to GRCh38 using liftOver. 

        The R package RSVSim (ver. 1.24.0) (Bartenhagen and Dugas, 2013) was 

used to simulate deletions and insertions in the chromosome 20 of the human 

reference genome GRCh38. The number and size of each simulated SV were set 

to be identical to the NA12878 true set above (181 insertions and 96 deletions on 

the chromosome 20). NanoSim was used to simulate reads to about 50x target 

coverage (1,200,000 reads) based on the same read profile trained by the HuRef 

reads. 

4.5.2. Read mapping and SV identification 

The aligners and SV callers (Table 4.4) were downloaded and compiled on a 

High-Performance Computing (HPC) cluster based on the Ubuntu 14.04 system. 

Each node has 2 AMD Opteron 6272 2.1GHz 16-core processors and 256Gb RAM.  

The reads were mapped by the candidate aligners and SVs were called by the SV 

callers using outputs from each of the aligner when possible. The computational 

resource consumptions were recorded using GNU command “/usr/bin/time -

v”. The depth of coverage of an alignment file was calculated by SAMtools depth 

command (ver. 1.6) (Li, et al., 2009). The percentage of mapped reads, number of 

mapped bases, and mismatch rate of an alignment file were calculated by 

SAMtools’ stats command (ver. 1.6). 
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        Evaluation of insertions and deletion call sets for each of the three datasets 

was performed using BEDTools (ver. 2.27.1) (Quinlan and Hall, 2010). Deletions 

were compared with the true sets using BEDTools intersect command requiring 

at least 50% overlap between the two regions. Insertions were compared using 

BEDTools window command allowing 100 bps overlap upstream/downstream of 

the insertion positions. Precision rate, recall rate, and F1 score were calculated for 

each SV call set against their respective true set. Plots are generated using the 

matplotlib and seaborn library in Python3. 

4.5.3. Call set filtering 

For both true sets and call sets, several filtering and processing steps were 

performed to generate comparable datasets. First, SV calls from unincorporated 

contigs and the mitochondrial genome were filtered out to generate call sets for 

SVs on autosomes (chromosome 1-22), chromosome X, and chromosome Y. Next, 

insertions, duplications, and deletions were selected from all call sets. Insertion 

and duplication calls were combined as one category (referred as “insertions) for 

comparison. SVs were then filtered for size between 30 bps and 100,000 bps. The 

resulted SV calls were sorted using BEDTools sort command, and merged using 

BEDTools merge command. 

4.5.4. Coverage analysis 

Random subsampling of the FASTA files in each analysis was performed using 

the seqtk toolset (https://github.com/lh3/seqtk) based on the minimum 

number of reads needed to reach an expected coverage depth ranging from 10x 

to each dataset’s original coverage, increasing by 10x each time. Subsampled 

reads at each coverage depth were mapped by minimap2, and the SVs were 
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called by Sniffles. The call sets were evaluated with the respective true set, and 

F1 score was calculated for each coverage depth in each comparison category. 

4.5.5. Consensus call set 

To generate a consensus call set for each dataset, call sets from all pipelines for 

each dataset were concatenated to a single file. BEDTools merge function 

(Quinlan and Hall, 2010) was then used to merge the concatenated calls into a 

consensus call set. The number of pipelines identified each consensus SV was 

stored. The consensus SVs were then filtered based on the number of pipelines 

that identified them, ranging from 2 to 7, and compared to their respective true 

sets.  

4.5.6. Random forest classifier 

SV calls from all seven pipelines for each pipeline were combined and labeled 

“True” or “False” based on whether they overlapped with the corresponding 

true set. The combined call set was randomly split into a training set (20% of the 

calls) and a testing set (80% of the calls) using the python package scikit-learn 

(v0.21.3, parameter “train_size=0.2”). The labeled SVs were learned and 

predicted by XGBoost (v0.90) random forest classifier (Chen and Guestrin, 2016) 

using the features selected from the “INFO” tag in the VCF files (Table 4.8). 

Precision and recall rate of the predictions were calculated by scikit-learn 

metrics. 
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5. Conclusion 

In this era of transformation and innovation in computational genomics, we are 

rethinking how to organize workflows, applying statistics algorithms to solve 

complex problems, while introducing new sequencing technologies. Through my 

works on both method development and DNA sequencing analysis, I invented 

novel tools and workflows for genomic variants discovery and explored the role 

of genomic variants in neurodevelopmental disorders. My research was built 

upon the works from many others, and I hope I, in turn, made a meaningful 

contribution to this fast-evolving field of computational genomics.
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