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Dissertation Director: John Kolassa

Asymptotic approaches are widely used in statistics. Generally, I recognize

two applications of asymptotics.

First, asymptotics can solve some problems which cannot be solved ex-

actly in mathematics. For example, density and mass functions and distribu-

tion functions of some statistics often cannot be found exactly. Asymptotic

approaches will be used for finding the asymptotic density and mass func-

tions and distribution functions under such circumstances. The error between

asymptotic methods and truth is controlled within tolerance, like O(1/n) or

something else. Chapter 1 presents this kind of problem. The two-stage Mann-

Whitney statistic has known mass and distribution functions. But these exact

representations are given only recursively, and the recursion is complicated.

It means that we cannot express them mathematically. With the help of an

asymptotic method, the Edgeworth expansion, we can express the distribution

functions. Moments and cumulants are necessary for the Edgeworth expansion

and I focus on the calculation of them in Chapter 1.

The second use of asymptotics is to compare two different methods or

functions and find how they are close. When various methods are proposed to
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approximate something, one may just determine whether they are asymptot-

ically correct. If asymptotically, the methods are correct, the error between

them should be determined. Furthermore, how close they are to the truth must

be determined. Chapter 2 is a typical example of this kind of problem. The

traditional approach is called the studentized bootstrap and the new one is the

tilted bootstrap. We compare the two approaches in multi-dimension and con-

clude the difference between their p-values is o(1) based on some assumptions.

Chapters 3 and 4 discuss a significance test to perform a variable selection

for regression. The test is called the covariance test. The test is based on

the exponential distribution, but the statistic does not follow it exactly but

asymptotically. We investigate the properties of the test statistic and propose

another covariance test based on the gamma distribution. This topic is a

combination of the two problems mentioned above. We compare all available

methods and provide an alternative better approach.

Chapter 5 presents a method for calculating the order of error numerically.

It is derived from Chapters 3 and 4. We have to find the order of error numer-

ically when it is too hard to find it analytically. Many examples are illustrated

to demonstrate effectiveness.
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Chapter 1

Moments and Cumulants of the

Two-Stage Mann-Whitney

Statistic

In the chapter, an asymptotic technique is used for the calculation of critical

values and powers for nonparametric tests in group-sequential clinical trials.

A multiple-stage design is often preferable in early phase clinical trials to

investigate the activity of a new treatment [7]. Such a design is able to protect

patients better as compared to the traditional one-stage design, by allowing

a trial to be stopped earlier when the new treatment is indeed ineffective.

For this reason, early stopping for futility is allowed in these trials. Among

multiple-stage designs, a two-stage design is widely used in phase II clinical

trials [5]. The expected whose sample size is smaller relative to that in the

following phase III trial to confirm the effectiveness of the new treatment. [1]

Mann and Whitney [2] presented the two-sample one-stage rank-sum test
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which is widely used in many areas of application, including randomized Phase

II trials, and its statistical properties are well studied. Castagliola [3] proposed

a faster algorithm for computation of the exact distribution of the Mann-

Whitney statistic Um,n under the null hypothesis. Spurrier and Hewett [4]

proposed a two-stage test based on sample sizes m1, n1 in the first stage and

another m2, n2 added at the second stage. Although an exact recurrence re-

lation is discussed, the authors had not been able to find an effective method

for computing the joint probability distribution of the first and second stage

statistics. Kolassa [10] provided an efficient approach to compute the joint dis-

tribution and critical values for them. But the mixed moments and cumulants

of the first and second stage statistics are still necessary.

In this Chapter, the mixed moments of cumulants of the first and second

statistics are found through extensive calculations. I introduce the topic in

Section 1.1, calculate the mixed moments in Section 1.2, and find the cumulants

in Section 1.3.

1.1 Introduction to The Mann-Whitney Statis-

tic and Two-Stage Test

The Mann-Whitney U test is often used to test a difference in the responses of

two groups. Suppose that X1, .....XM represent measurements from the con-

trol group, Y1, ......YN represent measurements from the treatment group. The

Mann-Whitney statistic is defined as
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U =
N∑
j=1

M∑
i=1

Iij, for Iij = I(Xi < Yj) =


1, Xi < Yj

0, Xi ≥ Yj

. (1.1)

We select c as the critical value, defined so that if U is larger than c, the

two populations are claimed different. The value c depends on the significance

level. This is one-stage test proposed by Mann and Whitney [2].

Due to ethcal concerns and resource management, common designs allow

for early stoppage in the presence of early and convincing proof. Spurrier and

Hewett [4] provide a two-stage test based on the Mann-Whitney statistic. The

two-stage test has two critical values. Denote them as c1 and c2. First, gather

m observations from the control group and n observations from the treatment

group. Define

U1 =
n∑
j=1

m∑
i=1

Iij, (1.2)

for Iij defined as in (1.1). Calculate U1, and if it is larger than or equal to

c1, stop the trial early to declare the treatment group superior to the control

group. If U1 is less than the first critical value c1, gather M −m observations

from the control group and N − n observations from the treatment group,

where m ≤M,n ≤ N . Define

U2 =
N∑
j=1

M∑
i=1

Iij. (1.3)

Then calculate U2. If it is larger than or equal to c2, we claim the treated is

superior to the controls.

The most difficult task in performing this test is to find two critical values.

The critical values of Mann-Whitney statistic in one dimension, and hence the
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critical values of one-stage test, can be easily calculated. We focus on the crit-

ical values for two-stage test. Due to the complexity of the mass function for

two-dimensional Mann-Whitney statistics, the computation required to get ex-

act critical values is intensive. Therefore, the asymptotic critical values within

tolerable error will be substituted. The Cornish-Fisher expansion provides the

method to obtain critical values [2]. In order to use the Cornish-Fisher ex-

pansion, the cumulants are necessary. So next, we will find the moments for

two-stage test statistics U1 and U2 in Section 1.2 and get the cumulants in

Section 1.3. The univariate moments are currently known, and my focus are

mixed moments.

1.2 Moments of Two-Stage Statistic

First, assume X1 · · ·XM and Y1 · · ·YM are jointly independent and identically

distributed. Under the null hypthesis, all of the observations belong to the

same population. In the first subsection, we give some hyphenated transition.

In the second, third, fourth and fifth subsections, we find the first, second,

third and fourth moments repectively under both the general case and the null

hypothesis.

1.2.1 Probability Definition

Moment calculations will require the expectations of products of indicators as

in (1.1).
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Under the null hypothesis:

E(Iij) =
1

2
E(IijIkj) =

1

3
E(IijIil) =

1

3
E(IijIkl) =

1

4

E(IijIilIit) =
1

4
E(IijIkjIsj) =

1

4
E(IijIkjIkl) =

5

24

E(IijIkjIsjIst) =
3

20
E(IijIkjIitIst) =

2

15
E(IijIkjIsjIpj) =

1

5

E(IijIkjIiqIit) =
3

20
E(IijIkjIilIkt) =

1

6
E(IijIkjIiqIkl) =

2

15

E(IijIilIkj) =
5

24
E(IijIilIiqIst) =

1

8
E(IijIkjIpjIst) =

1

8

E(IijIilIpqIpt) =
1

9
E(IijIkjIpqIsq) =

1

9
E(IijIilIpqIsq) =

1

9

E(IijIkjIilIst) =
1

9
E(IijIkjIpqIst) =

1

12
E(IijIklIstIsq) =

1

12

E(IijIklIstIpq) =
1

16
E(IijIilIitIiq) =

1

5
E(IijIkjIiqIst) =

5

48
.

(1.4)

Here we intend i, k, s, p in the same expression are pairwise unequal, as are

j, l, q, t. For example, in IijIklIpqIst, i 6= k, i 6= p, i 6= s, k 6= p, k 6= s, p 6= s and

j 6= l, j 6= t, j 6= q, l 6= q, l 6= t, q 6= t. In the general case, outside of the null

hypothesis, define the probabilities πi below:

π0 = E(Iij) π1 = E(IijIkj) π2 = E(IijIkjIsj) π3 = E(IijIkjIsjIst)

π4 = E(IijIkjIkl) π5 = E(IijIkjIitIst) π6 = E(IijIkjIsjIpj)

π7 = E(IijIkjIiqIit) π8 = E(IijIkjIilIkl) π9 = E(IijIil)

π10 = E(IijIkjIilIkt) π12 = E(IijIilIit) π13 = E(IijIilIitIiq).

(1.5)

Here, IijIilIkj = 1 implies that all of Xi < Yj, Xi < Yl, Xk < Yj hold.

The equation IijIilIkj = 0 implies at least one of them does not hold.
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1.2.2 First Moments

In general, by (1.2), (1.3) and (1.5),

E(U1) =
n∑
j=1

m∑
i=1

E(Iij) = mnπ0, (1.6)

E(U2) = MNπ0. (1.7)

Under the null hypothesis, by (1.2), (1.3) and (1.4),

E(U1) =
n∑
j=1

m∑
i=1

E(Iij) =
mn

2
, (1.8)

E(U2) =
MN

2
. (1.9)

1.2.3 Second Moments

U2
1 = (

m∑
i=1

n∑
j=1

Iij)
2

=
m∑
i=1

n∑
j=1

I2
ij +

m∑
i=1

n∑
j=1

m∑
k=1,k 6=i

IijIkj +
n∑
j=1

m∑
i=1

n∑
l=1,l 6=j

IijIil+

+
n∑
j=1

m∑
i=1

n∑
l=1,l 6=j

m∑
k=1,k 6=i

IijIkl.

(1.10)

Substituting the probability values in (1.10) by (1.5)

E(U2
1 ) = mnπ0 +m(m− 1)nπ1 +mn(n− 1)π9 +m(m− 1)n(n− 1)π2

0.

(1.11)

By the same reasoning,

E(U2
2 ) = MNπ0 +M(M − 1)Nπ1 +MN(N − 1)π9+

M(M − 1)N(N − 1)π2
0.

(1.12)
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While calculating mixed moments, conditional expectations are usually uti-

lized. Here

E(U1U2) = E(E(U1U2|U2))

= E(U2E(U1|U2))

= E(U2
mn

MN
U2)

=
mn

MN
E(U2

2 ).

(1.13)

Thus, by (1.12) and (1.13)

E(U1U2) = mnπ0 +mn(M − 1)π1 +mn(N − 1)π9 +mn(M − 1)(N − 1)π2
0.

(1.14)

Under the null hypothesis, by (1.4) and (1.14):

E(U2
1 ) =

1

2
mn+

1

3
m(m− 1)n+

1

3
mn(n− 1) +

1

4
m(m− 1)n(n− 1)

=
m2n2

4
+
m2n

12
+
mn2

12
+
mn

12
,

(1.15)

By the same reasoning, under the null hypothesis,

E(U2
2 ) =

M2N2

4
+
M2N

12
+
MN2

12
+
MN

12
. (1.16)

The results (1.6)-(1.16) are the properties of the one-stage Mann-Whitney

statistic [2]. The following are mixed moments as well as two-stage moments.

Again under the null hypothesis,

E(U1U2) = E(E(U1U2|U2))

= E(U2E(U1|U2))

= E(U2
mn

MN
U2)

=
mn

MN
E(U2

2 ).

(1.17)

Substituting (1.16) in (1.17),

E(U1U2) =
mnMN

4
+
mnM

12
+
mnN

12
+
mn

12
. (1.18)
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1.2.4 Third Moments

We extend calculations for lower orders to find it.

E(U3
1 ) =

n∑
j=1

m∑
i=1

Iij + 3
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

IijIijIkj + 3
m∑
i=1

n∑
j=1

n∑
l=1,l 6=j

IijIijIil

+ 3
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

IijIijIkl + 6
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

IijIilIkj

+
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

m∑
s=1,s 6=i,s 6=k

IijIkjIsj +
n∑
j=1

m∑
i=1

n∑
l=1,l 6=j

n∑
t=1,t6=j,t6=l

IijIilIit

+ 3
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

m∑
s=1,s 6=i,s 6=k

IijIklIsj

+ 3
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

n∑
t=1,t 6=j,t6=l

IijIklIit

+
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

∑
s=1,s 6=i,s 6=k

n∑
t=1,t6=j,t6=l

IijIklIst.

(1.19)

Substituting (1.5) in (1.19),

E(U3
1 ) = mnπ0 + 3m(m− 1)nπ1 + 3mn(n− 1)π9 + 3m(m− 1)n(n− 1)π2

0

+ 6m(m− 1)n(n− 1)π4 +m(m− 1)(m− 2)nπ2

+mn(n− 1)(n− 2)π12 + 3m(m− 1)(m− 2)n(n− 1)π0π1

+ 3m(m− 1)n(n− 1)(n− 2)π0π9

+m(m− 1)(m− 2)n(n− 1)(n− 2)π3
0.

(1.20)
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Simplifying,

E(U3
1 ) = mnπ0 + 3m(m− 1)nπ1 + 3mn(n− 1)π9 + 3m(m− 1)n(n− 1)π2

0

+ 6m(m− 1)n(n− 1)π4 +m(m− 1)(m− 2)nπ2

+mn(n− 1)(n− 2)π12 + 3m(m− 1)(m− 2)n(n− 1)π0π1

+ 3m(m− 1)n(n− 1)(n− 2)π0π9

+m(m− 1)(m− 2)n(n− 1)(n− 2)π3
0.

(1.21)

By the same reasoning,

E(U3
2 ) = MNπ0 + 3M(M − 1)Nπ1 + 3MN(N − 1)π9

+ 3M(M − 1)N(N − 1)π2
0 + 6M(M − 1)N(N − 1)π4

+M(M − 1)(M − 2)Nπ2 +MN(N − 1)(N − 2)π12

+ 3M(M − 1)(M − 2)N(N − 1)π0π1

+ 3M(M − 1)N(N − 1)(N − 2)π0π9

+M(M − 1)(M − 2)N(N − 1)(N − 2)π3
0.

(1.22)

The above (1.19)-(1.22) are moments of the one-stage Mann-Whitney statistic

[2]. Consider the mixed moments for the two-stage statistic.

The conditional expectations are used to get E(U1U
2
2 ) and E(U2

1U2).

E(U1U
2
2 ) = E[U2

2E(U1|U2)] = E(U2
2

mn

MN
U2) =

mn

MN
E(U3

2 ). (1.23)
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Substituting (1.22) in (1.23),

E(U1U
2
2 ) = mnπ0 + 3mn(M − 1)π1

+ 3mn(N − 1)π9 + 3mn(M − 1)(N − 1)π2
0

+ 6mn(M − 1)(N − 1)π4

+mn(M − 1)(M − 2)π2 +mn(N − 1)(N − 2)π12

+ 3mn(M − 1)(M − 2)(N − 1)π0π1

+ 3mn(M − 1)(N − 1)(N − 2)π0π9

+mn(M − 1)(M − 2)(N − 1)(N − 2)π3
0.

(1.24)
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The E(U2
1U2) is a little difficult to find. It is simplified in (1.25) and conquered

part by part.

E(U2
1U2) =E(

m∑
i=1

n∑
j=1

m∑
k=1

n∑
l=1

IijIklU2)

=E(
m∑
i=1

n∑
j=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

IijIklU2 +
m∑
i=1

n∑
j=1

m∑
k=1,k 6=i

IijIkjU2

+
m∑
i=1

n∑
j=1

n∑
l=1,l 6=j

IijIilU2 +
m∑
i=1

n∑
j=1

IijU2)

=E(
m(m− 1)n(n− 1)

M(M − 1)N(N − 1)

M∑
i=1

N∑
j=1

M∑
k=1,k 6=i

N∑
l=1,l 6=j

IijIklU2)

+ E(
m(m− 1)n

M(M − 1)N

M∑
i=1

N∑
j=1

M∑
k=1,k 6=i

IijIkjU2)

+ E(
mn(n− 1)

MN(N − 1)

M∑
i=1

N∑
j=1

N∑
l=1,l 6=j

IijIilU2) + E(
mn

MN

M∑
i=1

N∑
j=1

IijU2)

=E(
m(m− 1)n(n− 1)

M(M − 1)N(N − 1)

M∑
i=1

N∑
j=1

M∑
k=1

N∑
l=1

IijIklU2)

+E((
m(m− 1)n

M(M − 1)N
− m(m− 1)n(n− 1)

M(M − 1)N(N − 1)
)
M∑
i=1

N∑
j=1

M∑
k=1,k 6=i

IijIkjU2)

+E((
mn(n− 1)

MN(N − 1)
− m(m− 1)n(n− 1)

M(M − 1)N(N − 1)
)
M∑
i=1

N∑
j=1

N∑
l=1,l 6=j

IijIilU2)

+ E((
mn

MN
− m(m− 1)n(n− 1)

M(M − 1)N(N − 1)
)
M∑
i=1

N∑
j=1

IijU2)

=
m(m− 1)n(n− 1)

M(M − 1)N(N − 1)
E(U3

2 )

+ (
mn

MN
− m(m− 1)n(n− 1)

M(M − 1)N(N − 1)
)E(U2

2 )

+(
m(m− 1)n

M(M − 1)N
− m(m− 1)n(n− 1)

M(M − 1)N(N − 1)
)E(

M∑
i=1

N∑
j=1

M∑
k=1,k 6=i

IijIkjU2)

+(
mn(n− 1)

MN(N − 1)
− m(m− 1)n(n− 1)

M(M − 1)N(N − 1)
)E(

M∑
i=1

N∑
j=1

N∑
l=1,l 6=j

IijIilU2).

(1.25)
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We can find

E(
M∑
i=1

N∑
j=1

M∑
k=1,k 6=i

IijIkjU2) =E(
M∑
i=1

N∑
j=1

M∑
k=1,k 6=i

N∑
l=1,l 6=j

IijIkjIil

+
M∑
i=1

N∑
j=1

M∑
k=1,k 6=i

IijIkjIkl

+
M∑
i=1

N∑
j=1

M∑
k=1,k 6=i

M∑
s=1,s 6=i,s 6=k

N∑
l=1,l 6=j

IijIkjIsl

+
M∑
i=1

N∑
j=1

M∑
k=1,k 6=i

M∑
s=1,s 6=i,s 6=k

IijIkjIsj

+
M∑
i=1

N∑
j=1

M∑
k=1,k 6=i

(IijIkjIij + IijIkjIkj))

=π0π1M(M − 1)(M − 2)N(N − 1)

+ 2π4M(M − 1)N(N − 1)

+ π2M(M − 1)(M − 2)N

+ 2π1M(M − 1)N.

By the same reasoning,

E(
M∑
i=1

N∑
j=1

N∑
l=1,l 6=j

IijIilU2) =π0π9M(M − 1)N(N − 1)(N − 2)

+2π4M(M − 1)N(N − 1)

+π12MN(N − 1)(N − 2) + 2π9MN(N − 1).

(1.26)

It is easy to find (1.25) by above expressions as well as (1.21) and (1.11).

Under the null hypothesis, we can just use the values in (1.4) to substitute the

π0 . . . π13 in (1.21), (1.22), (1.24) and (1.25) .
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Another Method for Third Moments

We will show another method to get the third moments.

The distribution of U1 is symmetric about 0 under the null hypothesis. Hence

E[U1 − E(U1)]3 = 0, and so

E(U3
1 ) = [E(U1)]3 − 3E(U1)[E(U1)]2 + 3E(U2

1 )E(U1). (1.27)

Substituting (1.8) and (1.15), then simplifying (1.27), (1.28) is obtained.

E(U3
1 ) =

m3n3

8
+
m3n2

8
+
m2n3

8
+
m2n2

8
, (1.28)

The same way for U2 to find (1.29) and the same conditional expectations to

(1.30).

E(U3
2 ) =

M3N3

8
+
M3N2

8
+
M2N3

8
+
M2N2

8
, (1.29)

E(U1U
2
2 ) =

mnM2N2

8
+
mnM2N

8
+
mnMN2

8
+
mnMN

8
. (1.30)

There is a property under the null hypothesis,

E(U2|U1) =
M +N + 1

m+ n+ 1
U1 +

1

2

[(M −m)n(n+ 1) + (N − n)m(m+ 1)

m+ n+ 1

+ (M −m)(N − n)
]
.
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And thus,

E(U2
1U2) = E[U2

1E(U2|U1)]

= E
[
U2

1 (
M +N + 1

m+ n+ 1
U1 +

1

2
[
(M −m)n(n+ 1) + (N − n)m(m+ 1)

m+ n+ 1

+ (M −m)(N − n)])
]

=
M +N + 1

m+ n+ 1
E(U3

1 ) +
1

2

[(M −m)n(n+ 1) + (N − n)m(m+ 1)

m+ n+ 1

+ (M −m)(N − n)
]
E(U2

1 )

=
M +N + 1

m+ n+ 1

m2n2

8
(mn+m+ n+ 1)

+
mn

24

(M −m)n(n+ 1) + (N − n)m(m+ 1)

m+ n+ 1
(3mn+m+ n+ 1)

+
1

12
(M −m)(N − n))(3m2n2 +mn +mn2 +mn).

The result is the same as (1.25) under the null hypothesis.
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1.2.5 Fourth Moments

We extend calculations for lower order moments to find it,

U4
1 = (

n∑
j=1

m∑
i=1

IijIijIijIij)
4

=
n∑
j=1

m∑
i=1

IijIijIijIij + 3
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

IijIijIkjIkj + 3
n∑
j=1

m∑
i=1

n∑
l=1,l 6=j

IijIijIilIil

+ 4
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

IijIijIijIkj + 4
n∑
j=1

m∑
i=1

n∑
l=1,l 6=j

IijIijIijIil

+ 6
n∑
j=1

m∑
i=1

n∑
l=1,l 6=j

n∑
t=1,t6=j,t6=l

IijIijIilIit + 6
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

m∑
s=1,s 6=i,s 6=k

IijIijIkjIsj

+ 12
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

IijIijIkjIkl + 12
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

IijIijIkjIil

+ 12
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

IijIijIklIil + 6
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

IijIilIkjIkl

+ 4
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

IijIijIijIkl + 3
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

IijIijIklIkl

+ 6
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

n∑
t=1,t6=j,t6=l

IijIijIklIkt

+ 6
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

m∑
s=1,s 6=i,s 6=k

IijIijIklIsl

+ 12
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

n∑
t=1,t6=j,t6=l

IijIilIitIkj

+ 12
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

m∑
s=1,s 6=i,s 6=k

IijIsjIilIkj

+ 12
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

n∑
t=1,t6=j,t6=l

IijIijIilIkt

+ 12
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

m∑
s=1,s 6=i,s 6=k

IijIkjIilIsl

+ 12
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

n∑
t=1,t6=j,t6=l

IijIkjIilIkt
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+ 12
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

m∑
s=1,s 6=i,s 6=k

IijIijIkjIsl

+
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

m∑
s=1,s 6=i,s 6=k

m∑
p=1,p 6=i,p 6=k,p6=s

IijIkjIsjIpj

+
m∑
i=1

n∑
j=1

n∑
l=1,l 6=j

n∑
t=1,t 6=j,t6=l

n∑
q=1,q 6=j,q 6=l,q 6=t

IijIiqIitIil

+ 4
m∑
i=1

m∑
k=1,k 6=i

n∑
j=1

n∑
l=1,l 6=j

n∑
t=1,t6=j,t6=l

n∑
q=1,q 6=j,q 6=l,q 6=t

IijIiqIitIkl

+ 4
n∑
j=1

n∑
l=1,l 6=j

m∑
i=1

m∑
k=1,k 6=i

m∑
s=1,s 6=i,s 6=k

m∑
p=1,p 6=i,p 6=k,p6=s

IijIkjIsjIpl

+ 3
m∑
i=1

m∑
k=1,k 6=i

n∑
j=1

n∑
l=1,l 6=j

n∑
t=1,t6=j,t6=l

n∑
q=1,q 6=j,q 6=l,q 6=t

IijIilIktIkq

+ 3
n∑
j=1

n∑
l=1,l 6=j

m∑
i=1

m∑
k=1,k 6=i

m∑
s=1,s 6=i,s 6=k

m∑
p=1,p 6=i,p 6=k,p6=s

IijIkjIslIpl

+ 6
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

m∑
s=1,s 6=i,s 6=k

n∑
t=1,t6=j,t6=l

IijIilIktIst

+ 6
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

n∑
t=1,t6=j,t6=l

m∑
s=1,s 6=i,s 6=k

IijIijIklIst

+ 24
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

n∑
t=1,t6=j,t6=l

m∑
s=1,s 6=i,s 6=k

IijIkjIilIst

+ 6
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

n∑
t=1,t6=j,t6=l

m∑
s=1,s 6=i,s 6=k

m∑
p=1,p 6=i,p 6=k,p6=s

IijIkjIplIst

+ 6
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

n∑
t=1,t 6=j,t6=l

m∑
s=1,s 6=i,s 6=k

m∑
p=1,p 6=i,p 6=k,p6=s

IijIilIkqIst

+
n∑
j=1

m∑
i=1

m∑
k=1,k 6=i

n∑
l=1,l 6=j

n∑
t=1,t6=j,t6=l

m∑
s=1,s 6=i,s 6=k

m∑
p=1,p 6=i,p 6=k,p6=s

n∑
q=1,q 6=j,q 6=l,q 6=t

IijIklIpqIst,

(1.31)
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Substituting the values in (1.5),

E(U4
1 ) = π0mn+ 3× π1m(m− 1)n+ 3× π9mn(n− 1)

+ 4× π1m(m− 1)n+ 4× π9mn(n− 1)

+ 6× π12mn(n− 1)(n− 2) + 6× π2m(m− 1)(m− 2)n

+ 12× π4m(m− 1)n(n− 1) + 12× π4m(m− 1)n(n− 1)

+ 12× π4m(m− 1)n(n− 1) + 6× π8m(m− 1)n(n− 1)

+ 4× π2
0m(m− 1)n(n− 1) + 3× π2

0m(m− 1)n(n− 1)

+ 6× π0π9m(m− 1)n(n− 1)(n− 2)

+ 6× π0π1m(m− 1)(m− 2)n(n− 1)

+ 12× π7m(m− 1)n(n− 1)(n− 2)

+ 12× π3m(m− 1)(m− 2)n(n− 1)

+ 12× π0π9m(m− 1)n(n− 1)(n− 2)

+ 12× π0π1m(m− 1)(m− 2)n(n− 1)

+ 12× π5m(m− 1)(m− 2)n(n− 1)

+ 12× π10m(m− 1)n(n− 1)(n− 2)

+ π6mn(m− 1)(m− 2)(m− 3) + π13mn(n− 1)(n− 2)(n− 3)

+ 4× π0π12m(m− 1)n(n− 1)(n− 2)(n− 3)

+ 4× π0π2m(m− 1)(m− 2)(m− 3)n(n− 1)

+ 3× π2
9m(m− 1)(m− 2)(m− 3)n(n− 1)

+ 3× π2
1m(m− 1)n(n− 1)(n− 2)(n− 3)

+ 6× π1π9m(m− 1)(m− 2)n(n− 1)(n− 2)

+ 6× π3
0m(m− 1)(m− 2)n(n− 1)(n− 2)

+ 24× π0π4m(m− 1)(m− 2)n(n− 1)(n− 2)

(1.32)



18

+ 6× π2
0π1m(m− 1)(m− 2)n(n− 1)(n− 2)(n− 3)

+ 6× π9π
2
0m(m− 1)(m− 2)(m− 3)n(n− 1)(n− 2)

+ π4
0m(m− 1)(m− 2)(m− 3)n(n− 1)(n− 2)(n− 3).

Simplifying,

E(U4
1 ) = π0mn+ 7× π1m(m− 1)n+ 7× π9mn(n− 1)

+ 6× π12mn(n− 1)(n− 2) + 6× π2m(m− 1)(m− 2)n

+ 36× π4m(m− 1)n(n− 1) + 6× π8m(m− 1)n(n− 1)

+ 7× π2
0m(m− 1)n(n− 1)

+ 6× π0π9m(m− 1)n(n− 1)(n− 2)

+ 6× π0π1m(m− 1)(m− 2)n(n− 1)

+ 12× π7m(m− 1)n(n− 1)(n− 2)

+ 12× π3m(m− 1)(m− 2)n(n− 1)

+ 12× π0π9m(m− 1)n(n− 1)(n− 2)

+ 12× π0π1m(m− 1)(m− 2)n(n− 1)

+ 12× π5m(m− 1)(m− 2)n(n− 1)

+ 12× π10m(m− 1)n(n− 1)(n− 2)

+ π6mn(m− 1)(m− 2)(m− 3) + π13mn(n− 1)(n− 2)(n− 3)

+ 4× π0π12m(m− 1)n(n− 1)(n− 2)(n− 3)

+ 4× π0π2m(m− 1)(m− 2)(m− 3)n(n− 1)

+ 3× π2
9m(m− 1)(m− 2)(m− 3)n(n− 1)

+ 3× π2
1m(m− 1)n(n− 1)(n− 2)(n− 3)

+ 6× π1π9m(m− 1)(m− 2)n(n− 1)(n− 2)

(1.33)
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+ 6× π3
0m(m− 1)(m− 2)n(n− 1)(n− 2)

+ 24× π0π4m(m− 1)(m− 2)n(n− 1)(n− 2)

+ 6× π2
0π1m(m− 1)(m− 2)n(n− 1)(n− 2)(n− 3)

+ 6× π9π
2
0m(m− 1)(m− 2)(m− 3)n(n− 1)(n− 2)

+ π4
0m(m− 1)(m− 2)(m− 3)n(n− 1)(n− 2)(n− 3).

As with U1

E(U4
2 ) = π0MN + 7× π1M(M − 1)N + 7× π9MN(N − 1)

+ 6× π12MN(N − 1)(N − 2)

+ 6× π2M(M − 1)(M − 2)N + 36× π4M(M − 1)N(N − 1)

+ 6× π8M(M − 1)N(N − 1) + 7× π2
0M(M − 1)N(N − 1)

+ 6× π0π9M(M − 1)N(N − 1)(N − 2)

+ 6× π0π1M(M − 1)(M − 2)N(N − 1)

+ 12× π7M(M − 1)N(N − 1)(N − 2)

+ 12× π3M(M − 1)(M − 2)N(N − 1)

+ 12× π0π9M(M − 1)N(N − 1)(N − 2)

+ 12× π0π1M(M − 1)(M − 2)N(N − 1)

+ 12× π5M(M − 1)(M − 2)N(N − 1)

+ 12× π10M(M − 1)N(N − 1)(N − 2)

+ π6MN(M − 1)(M − 2)(M − 3) + π13MN(N − 1)(N − 2)(N − 3)

+ 4× π0π12M(M − 1)N(N − 1)(N − 2)(N − 3)

+ 4× π0π2M(M − 1)(M − 2)(M − 3)N(N − 1)

(1.34)



20

+ 3× π2
9M(M − 1)(M − 2)(M − 3)N(N − 1)

+ 3× π2
1M(M − 1)N(N − 1)(N − 2)(N − 3)

+ 6× π1π9M(M − 1)(M − 2)N(N − 1)(N − 2)

+ 6× π3
0M(M − 1)(M − 2)N(N − 1)(N − 2)

+ 24× π0π4M(M − 1)(M − 2)N(N − 1)(N − 2)

+ 6× π2
0π1M(M − 1)(M − 2)N(N − 1)(N − 2)(N − 3)

+ 6× π9π
2
0M(M − 1)(M − 2)(M − 3)N(N − 1)(N − 2)

+ π4
0M(M − 1)(M − 2)(M − 3)N(N − 1)(N − 2)(N − 3).
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The conditional expectations are used to find mixed moments.

E(U1U
3
2 ) = E(U3

2E(U1|U2)) = E(
mn

MN
U4

2 ) =
mn

MN
E(U4

2 ),

E(U1U
3
2 ) = π0mn+ 7× π1mn(M − 1) + 7× π9mn(N − 1)

+ 6× π12mn(N − 1)(N − 2) + 6× π2mn(M − 1)(M − 2)

+ 36× π4mn(M − 1)(N − 1) + 6× π8mn(M − 1)(N − 1)

+ 7× π2
0mn(M − 1)(N − 1) + 6× π0π9mn(M − 1)(N − 1)(N − 2)

+ 6× π0π1mn(M − 1)(M − 2)(N − 1) + 12× π7mn(M − 1)(N − 1)(N − 2)

+ 12× π3mn(M − 1)(M − 2)(N − 1)

+ 12× π0π9mn(M − 1)(N − 1)(N − 2)

+ 12× π0π1mn(M − 1)(M − 2)(N − 1)

+ 12× π5mn(M − 1)(M − 2)(N − 1) + 12× π10mn(M − 1)(N − 1)(N − 2)

+ π6mn(M − 1)(M − 2)(M − 3) + π13mn(N − 1)(N − 2)(N − 3)

+ 4× π0π12mn(M − 1)(N − 1)(N − 2)(N − 3)

+ 4× π0π2mn(M − 1)(M − 2)(M − 3)(N − 1)

+ 3× π2
9mn(M − 1)(M − 2)(M − 3)(N − 1)

+ 3× π2
1mn(M − 1)(N − 1)(N − 2)(N − 3)

+ 6× π1π9mn(M − 1)(M − 2)(N − 1)(N − 2)

+ 6× π3
0mn(M − 1)(M − 2)(N − 1)(N − 2)

+ 24× π0π4mn(M − 1)(M − 2)(N − 1)(N − 2)

+ 6× π2
0π1mn(M − 1)(M − 2)(N − 1)(N − 2)(N − 3)

+ 6× π9π
2
0mn(M − 1)(M − 2)(M − 3)(N − 1)(N − 2)

+ π4
0mn(M − 1)(M − 2)(M − 3)(N − 1)(N − 2)(N − 3).

(1.35)
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1.3 Cumulants of Two-Stage Mann-Whitney

Statistic

In this section, we will recount the relation between the cumulants and mo-

ments. So we can use the moments to calculate the cumulants which we use to

substitute in Cornish Fisher expansion to get the critical values. As the first

step, we express derivatives of the cumulant-generating function in terms of

derivatives of the moment generating function. The approach for the moment-

cumulant conversion is well defined in [16], and I apply it on the two-stage

Mann-Whitney statistic.

I will calculate the first to fourth moments in the first to fourth sections and

provide the expression of cumulants in the fifth section. The moment generat-

ing function and cumulant-generating function of (U1, U2) are

M(t1, t2) = E(eU1t1+U2t2) and K(t1, t2) = logE(et1U1+t2U2).

For an abbreviated notation, we denote

M = E(eU1t1+U2t2) and S = et1U1+t2U2 .

1.3.1 First derivatives

∂K(t1,t2)
∂t1

= ∂logM
∂t1

= M−1 ∂M
∂t1

= M−1E(U1S),

∂K(t1,t2)
∂t2

= ∂logM
∂t2

= M−1 ∂M
∂t2

= M−1E(U2S).
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1.3.2 Second derivatives

∂2K(t1,t2)

∂t21
= M−1 ∂E(U1S)

∂t1
+E(U1S)∂M

−1

∂t1
= M−1E(U2

1S)−M−2E(U1S)E(U1S),

∂2K(t1,t2)

∂t22
= M−1 ∂E(U2S)

∂t2
+E(U2S)∂M

−1

∂t2
= M−1E(U2

2S)−M−2E(U2S)E(U2S),

∂2K(t1,t2)
∂t1t2

= M−1 ∂E(U1S)
∂t2

+E(U1S)∂M
−1

∂t2
= M−1E(U1U2S)−M−2E(U1S)E(U2S).

1.3.3 Third derivatives

∂3K(t1, t2)

∂t31
= M−1∂E(U2

1S)

∂t1
+ E(U2

1S)
∂M−1

∂t1
−M−2∂E(U1S)E(U1S)

∂t1

− E(U1S)E(U1S)
∂M−2

∂t1

= M−1E(U3
1S)−M−2E(U2

1S)E(U1S)− 2M−2E(U1S)E(U2
1S)

+ 2M−3(E(U1S))3,

∂3K(t1, t2)

∂t32
= M−1∂E(U2

2S)

∂t2
+ E(U2

2S)
∂M−1

∂t2
−M−2∂E(U2S)E(U2S)

∂t2

− E(U2S)E(U2S)
∂M−2

∂t2

= M−1E(U3
2S)−M−2E(U2

2S)E(U2S)− 2M−2E(U2S)E(U2
2S)

+ 2M−3(E(U2S))3,

∂3K(t1, t2)

∂t21∂t2
= M−1∂E(U2

1S)

∂t2
+ E(U2

1S)
∂M−1

∂t2
−M−2∂E(U1S)E(U1S)

∂t2

− E(U1S)E(U1S)
∂M−2

∂t2

= M−1E(U2
1U2S)−M−2E(U2

1S)E(U2S)

− 2M−2E(U1U2S)E(U1S)

+ 2M−3(E(U1S))2E(U2S),
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∂3K(t1, t2)

∂t22∂t1
= M−1∂E(U2

2S)

∂t1
+ E(U2

2S)
∂M−1

∂t1
−M−2∂E(U2S)E(U2S)

∂t1

− E(U2S)E(U2S)
∂M−2

∂t1

= M−1E(U2
2U1S)−M−2E(U2

2S)E(U1S)

− 2M−2E(U1U2S)E(U2S)

+ 2M−3(E(U2S))2E(U1S).

1.3.4 Fourth derivatives

∂4K(t1, t2)

∂t41
=M−1∂E(U3

1S)

∂t1
+ E(U3

1S)
∂M−1

∂t1
−M−2∂E(U2

1S)E(U1S)

∂t1

− E(U2
1S)E(U1S)

∂M−2

∂t1
− 2M−2∂E(U1S)E(U2

1S)

∂t1

− 2E(U1S)E(U2
1S)

∂M−2

∂t1
+ 2M−3∂(E(U1S))3

∂t1

+ 2(E(U1S))3∂M
−3

∂t1

= M−1E(U4
1S)−M−2E(U1S)E(U3

1S)

−M−2[E(U3
1S)E(U1S) + (E(U2

1S))2]

+ 2M−3(E(U1S))2E(U2
1S)

− 2M−2[(E(U2
1S)2) + E(U1S)E(U3

1S)]

+ 4M−3(E(U1S))2E(U2
1S) + 2M−3[3(E(U1S))2E(U2

1S)]

− 6M−4(E(U1S))4,
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∂4K(t1, t2)

∂t31∂t2
=M−1∂E(U3

1S)

∂t2
+ E(U3

1S)
∂M−1

∂t2
−M−2∂E(U2

1S)E(U1S)

∂t2

− E(U2
1S)E(U1S)

∂M−2

∂t2
− 2M−2∂E(U1S)E(U2

1S)

∂t2

− 2E(U1S)E(U2
1S)

∂M−2

∂t2
+ 2M−3∂(E(U1S))3

∂t2

+ 2(E(U1S))3∂M
−3

∂t2

= M−1E(U3
1U2S)−M−2E(U2S)E(U3

1S)

−M−2[E(U2
1U2S)E(U1S) + E(U1U2S)E(U2

1S)]

+ 2M−3E(U2S)E(U1S)E(U2
1S)− 2M−2[E(U1U2S)E(U2

1S)

+ E(U2
1U2S)E(U1S)] + 4M−3E(U1S)E(U2S)E(U2

1S)

+ 6M−3(E(U1S))2E(U1U2S)− 6M−4(E(U1S))3E(U2S),

∂4K(t1, t2)

∂t21t
2
2

=M−1∂E(U1U
2
2S)

∂t1
+ E(U1U

2
2S)

∂M−1

∂t1
−M−2∂E(U2

2S)E(U1S)

∂t1

− E(U2
2S)E(U1S)

∂M−2

∂t1
− 2M−2∂E(U1U2S)E(U2S)

∂t1

− 2E(U1U2S)E(U2S)
∂M−2

∂t1
+ 2M−3∂E(U1S)(E(U2S))2

∂t1

+ 2E(U1S)(E(U2S))2∂M
−3

∂t1

= M−1E(U2
1U

2
2S)−M−2E(U1U

2
2S)E(U1S)

−M−2[E(U1U
2
2S)E(U1S) + E(U2

1S)E(U2
2S)]

+ 2M−3E(U1S)E(U1S)E(U2
2S)− 2M−2[E(U2

1U2S)E(U2S)

+ E(U1U2S)E(U1U2S)]

+ 4M−3E(U1S)E(U2S)E(U1U2S) + 2M−3[E(U2
1S)(E(U2S))2

+ 2E(U2S)E(U1U2S)E(U1S)]− 6M−4(E(U1S))2(E(U2S))2,
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∂4K(t1, t2)

∂t32∂t1
= M−1∂E(U3

2S)

∂t1
+ E(U3

2S)
∂M−1

∂t1
−M−2∂E(U2

2S)E(U2S)

∂t1

− E(U2
2S)E(U2S)

∂M−2

∂t1
− 2M−2∂E(U2S)E(U2

2S)

∂t1

− 2E(U2S)E(U2
2S)

∂M−2

∂t1
+ 2M−3∂(E(U2S))3

∂t1

+ 2(E(U2S))3∂M
−3

∂t1

= M−1E(U3
2U1S)−M−2E(U1S)E(U3

2S)−M−2[E(U2
2U1S)E(U2S)

+ E(U2U1S)E(U2
2S)] + 2M−3E(U1S)E(U2S)E(U2

2S)

− 2M−2[E(U1U2S)E(U2
2S) + E(U2

2U1S)E(U2S)]

+ 4M−3E(U2S)E(U1S)E(U2
2S) + 6M−3(E(U2S))2E(U2U1S)

− 6M−4(E(U2S))3E(U1S),

∂4K(t1, t2)

∂t42
= M−1∂E(U3

2S)

∂t2
+ E(U3

2S)
∂M−1

∂t2
−M−2∂E(U2

2S)E(U2S)

∂t2

− E(U2
2S)E(U2S)

∂M−2

∂t2
− 2M−2∂E(U2S)E(U2

2S)

∂t2

− 2E(U2S)E(U2
2S)

∂M−2

∂t2
+ 2M−3∂(E(U2S))3

∂t2
+ 2(E(U2S))3∂M

−3

∂t2

= M−1E(U4
2S)−M−2E(U2S)E(U3

2S)−M−2[E(U3
2S)E(U2S)

+ (E(U2
2S))2] + 2M−3(E(U2S))2E(U2

2S)− 2M−2[(E(U2
2S)2)

+ E(U2S)E(U3
2S)] + 4M−3(E(U2S))2E(U2

2S)

+ 2M−3[3(E(U2S))2E(U2
2S)]− 6M−4(E(U2S))4.

1.3.5 Cumulants

Let k1, k2, k3 and k4 represent the first, second, third ,fourth cumulant respec-

tively. Then the first cumulant is given by

∂K(t1, t2)

∂t1
|t1=0,t2=0 = E(U1),
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∂K(t1, t2)

∂t2
|t1=0,t2=0 = E(U2),

Hence, the first cumulant is done.

The second cumulant is given by

∂2K(t1, t2)

∂t21
|t1=0,t2=0 = E(U2

1 )− (E(U1))2,

∂2K(t1, t2)

∂t1∂t2
|t1=0,t2=0 = E(U1U2)− E(U1)E(U2),

∂2K(t1, t2)

∂t22
|t1=0,t2=0 = E(U2

2 )− (E(U2))2,

k2 = E(U2
1 )− (E(U1))2 + E(U1U2)− E(U1)E(U2) + E(U2

2 )− (E(U2))2.

The second cumulant is done.

∂3K(t1, t2)

∂t31
|t1=0,t2=0 = E(U3

1 )− 3E(U2
1 )E(U1) + 2(E(U1))3,

∂3K(t1, t2)

∂t32
|t1=0,t2=0 = E(U3

2 )− 3E(U2
2 )E(U2) + 2(E(U2))3,

∂3K(t1, t2)

∂t21∂t2
|t1=0,t2=0 = E(U1U

2
2 )− E(U2

2 )E(U1)− 2E(U1U2)E(U2)

+2(E(U2))2E(U1),

∂3K(t1, t2)

∂t1∂t22
|t1=0,t2=0 = E(U2

1U2)− E(U2
1 )E(U2)− 2E(U1U2)E(U1)

+2(E(U1))2E(U2).

k3 = E(U3
1 ) + E(U3

2 ) + E(U1U
2
2 ) + E(U2

1U2)− 3E(U2
1 )E(U1)− 3E(U2

2 )E(U2)

− E(U1)E(U2
2 )− E(U2

1 )E(U2)− 2E(U1)E(U1U2)− 2E(U2)E(U1U2)

+ 2E(U1)(E(U2))2 + 2(E(U1))2E(U2) + 2(E(U1))3 + 2(E(U2))3.
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The third cumulant is done.

∂4K(t1, t2)

∂t41
|t1=0,t2=0 = E(U4

1 )− E(U1)E(U3
1 )− E(U3

1 )E(U1)− (E(U2
1 ))2

+ 2(E(U1))2E(U2
1 )− 2[(E(U2

1 ))2 + E(U1)E(U3
1 )]

+ 4(E(U1))2E(U2
1 ) + 6(E(U1))2E(U2

1 )− 6(E(U1))4,

∂4K(t1, t2)

∂t42
|t1=0,t2=0 = E(U4

2 )− E(U2)E(U3
2 )− E(U3

2 )E(U2)− (E(U2
2 ))2

+ 2(E(U2))2E(U2
2 )− 2[(E(U2

2 ))2 + E(U2)E(U3
2 )]

+ 4(E(U2))2E(U2
2 ) + 6(E(U2))2E(U2

2 )− 6(E(U2))4,

∂4K(t1, t2)

∂t31∂t2
|t1=0,t2=0 = E(U3

1U2)− E(U3
1 )E(U2)− E(U1)E(U2

1U2)

− E(U2
1 )E(U1U2) + 2E(U1)E(U2)E(U2

1 )

− 2E(U2
1 )E(U1U2)− 2E(U1)E(U2

1U2)

+ 4E(U1)E(U2)E(U2
1 ) + 6(E(U1))2E(U1U2)

− 6(E(U1))3E(U2),

∂4K(t1, t2)

∂t1∂t32
|t1=0,t2=0 = E(U1U

3
2 )− E(U1)E(U3

2 )− E(U2)E(U2
2U1)

− E(U2
2 )E(U1U2) + 2E(U1)E(U2)E(U2

2 )

− 2E(U2
2 )E(U1U2)− 2E(U2)E(U1U

2
2 )

+ 4E(U1)E(U2)E(U2
2 ) + 6(E(U2))2E(U1U2)

− 6(E(U2))3E(U1),
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∂4K(t1, t2)

∂t21∂t
2
2

|t1=0,t2=0 = E(U2
1U

2
2 )− 2E(U1)E(U1U

2
2 )− E(U2

1 )E(U2
2 )

+ 2(E(U1))2E(U2
2 )− 2E(U2)E(U2

1U2)

− 2E((U1U2))2 + 4E(U1)E(U2)E(U1U2)

+ 2E(U2
1 )(E(U2))2 + 4E(U1)E(U2)E(U1U2)

− 6(E(U1))2(E(U2))2,

The fourth cumulant is done.

1.4 Conclusion

These calculations were used in [10], in conjunction with the bivariate two-

dimensional Cornish-Fisher approximation to produce Table 1 of approximate

and exact test levels and powers.



Chapter 2

Relative Accuracy of

Multivariate Bootstrap

Procedures

The last chapter utilized asymptotic technique to solve a problem which can-

not be handled by exact calculation. Chapter 2 describes and solves a differ-

ent asymptotic problem: finding the relative accuracy of two values from two

methods. In other words, find how close they are.

Concretely, I demonstrate that the p-values of the multivariate studentized

bootstrap and tilted bootstrap are very close and show that the relative ac-

curacy is O( 1
n
) for x̄ = O(n−1/3) under the null hypothesis H0 : µ = 0. I

also prove the two bootstrap approximations have the approximately equal

covariance matrices.

Section 2.1 introduces the saddlepoint test. Section 2.2 focuses on two kinds

of bootstrap methods, studentized and tilted. Section 2.3 finds the relative

30
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accuracy of them and Section 2.4 provides the simulation for the conclusion.

2.1 Introduction to Saddlepoint Test

This section gives a brief introduction to the saddlepoint test [11].

Let X1, ...Xn be identically and independently distributed with the distri-

bution F on the sample space Rd. Let E(X1) = µ and Var(X1) = Σ. Consider

a test of the null hypothesis H0 : µ = 0 in Rd versus the alternative hypothesis

that µ 6= 0. Let x1, ..., xn be the observed values of X1, ..., Xn. The empirical

mean and covariance matrix are

x̄ =
n∑
i=1

xi/n, (2.1)

and

Σ̂ =
n∑
i=1

(xi − x̄)(xi − x̄)T/(n− 1). (2.2)

Assume that the density and cumulant-generating function of X1, ...Xn ex-

ist, so that the saddlepoint approximation [6] for the density of X̄ is

fX̄(x) = (2π/n)d/2e−nh(x)|K ′′(τ̂)|−1/2(1 +O(n−1)).

Let K ′(τ) and K ′′(τ) denote the first and second derivative of the known

cumulant-generating function K(τ) with respect to τ , and K(τ) is finite for

|τ | < c for some c > 0. The saddlepoint τ̂ is the solution of

K ′(τ) = x̄. (2.3)

We define h(x) as

h(x) = τ̂Tx−K(τ̂). (2.4)
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Section 4 in [9] defines the p-value based on the statistic h(X̄), to be

p = P (h(X̄) > h(x̄)), (2.5)

and he derives the approximation

p = Q̄d(2nh(x̄))(1 +O((1 + 2nh(x̄))/n)), (2.6)

in equation (4.2) of his paper, where Qd(x) is the Chi-square distribution func-

tion and Q̄d(z) = P (χ2
d > z). Given the distribution F and the sample, one

might find the cumulant function, and solve τ̂ , h(x̄) and u. Next, we consider

the case with unknown distribution F .

2.2 The Studentized and Tilted Bootstrap

When the distribution F is unknown, the probability and cumulant-generating

functions cannot be determined, but the bootstrap can be used to approximate

the p-value of form (2.5).

The bootstrap is a random resampling method with replacement. Suppose

we have samples x1, x2...xn. When bootstrapping, these samples are treated

as the population.

In studentized bootstrap, every sample has the same probability. In order

to make a sampling distribution compatible with the null hypothesis H0, we

introduce the tilted bootstrap, where every observation has a weighted proba-

bility. The probability of selecting observation i is

qi =
eβ

T xi∑n
j=1 e

βT xj
, (2.7)
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where β is determined by ∑n
i=1 xie

βT xi∑n
i=1 e

βT xi
= µ = 0. (2.8)

Recall that µ = 0 under the null hypothesis. The bootstrap distribution, then,

is the distributions of n observations X∗1 , . . . , X
∗
n selected with replacement,

where each observation is independent and identically distributed, and has

probability qi of begin xi. Given the samples x1...xn, the conditional studen-

tized mean is EX∗s = x̄. The expectation of the tilted bootstrap is

E(X∗t ) =
n∑
i=1

qixi =
n∑
i=1

eβ
T xi∑n

j=1 e
βT xj

xi = µ, (2.9)

which gives an expectation for the weighted distribution consisted with the

null hypothesis H0. That justifies the introduction of the tilted bootstrap. Let

Σs be the covariance matrix of Studentized bootstrap and Σt be that of tilted

bootstrap. By the definition of population variance, the studentized bootstrap

covariance matrix is

Σs =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)T . (2.10)

The tilted bootstrap covariance matrix is defined as

Σt =
n∑
j=1

qj(xj − x̄)(xj − x̄)T . (2.11)

where qj is defined in(2.7).

A lot of comparisons between the one-dimensional studentized and tilted boot-

straps are performed in [8], but no inference between them in multi-dimensions.

Lemma 2.1 The covariance matrix of studentized bootstrap Σs is asymptoti-

cally equal to that of tilted bootstrap Σt as

Σt = Σs +OP (||x̄||). (2.12)
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Proof :

The covariance matrix of studentized bootstrap denoted as is

Σs =E(
1

n

n∑
j=1

(X∗i − X̄∗)(X∗i − X̄∗)T |x1...xn)

=
1

n

n∑
j=1

(xi − x̄)(xi − x̄)T

=
n− 1

n
Σ̂

The tilted bootstrap covariance matrix is

Σt =Var(X∗t |x1...xn)

=
n∑
j=1

qj(xj − x̄)(xj − x̄)T ,
(2.13)

where qj is defined as

qj =
ex

T
j β∑n

i=1 e
xTi β

.

Using a Taylor series,

qj =
1

n
(1 + βT (xj − x̄)) +O(β2). (2.14)

By (2.14) substitution in (2.13), we obtain

Σt =
1

n

n∑
j=1

(xj − x̄)(xj − x̄)T +
1

n

n∑
j=1

βT (xj − x̄)(xj − x̄)(xj − x̄)T

=Σs +
1

n

n∑
j=1

βT (xj − x̄)(xj − x̄)(xj − x̄)T .

(2.15)

Consider an element of the second term. Let
[ ]

kl
represent the component

k, l.

1

n

[ n∑
j=1

βT (xj − x̄)(xj − x̄)(xj − x̄)T
]
kl

=
1

n

[ n∑
i=1

βi

n∑
j=1

(xji − x̄i)(xjk − x̄k)(xjl − x̄l)
]

=
n∑
i=1

βikikl

=OP (||β||).

(2.16)
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The kikl is the component i, k, l of the third cumulant, and it is bounded.

µ = K ′(β) = K ′(0) +K ′′(0)β + βTK ′′′(0)β +OP (||β||3),

0 = x̄+ Σβ + βTK ′′′(0)β +OP (||β||3), (2.17)

simplifying (2.17),

β = −Σ−1x̄.+OP (||β||2).

The covariance matrix Σ is bounded. So we get

OP (||β||) = OP (||x̄||). (2.18)

Thus combining (2.15), (2.16) and (2.18), we prove

Σt = Σs +OP (||x̄||). (2.19)

Q.E.D.

These results will be used later.

Let τt to denote the solutions with respect to τ in (2.20),

K ′t(τ) = x̄, (2.20)

where Kt(τ) = log(
∑n

i=1 qie
τT xi) is the tilted bootstrap cumulant-generating

function. The prime denotes the first derivative.

We use τt and K ′t(τ) to substitute τ̂ and K ′(τ) in (2.2), to obtain

ht(x̄) = 2(τTt x̄−Kt(τt)). (2.21)

Robinson [9] proved that

p∗s = Q̄d(nhs(x̄))(1 +O((1 + 2nhs(x̄))/n)), (2.22)
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and that the tilted bootstrap p-value is

p∗t = Q̄d(nht(x̄))(1 +O((1 + 2nht(x̄))/n)). (2.23)

Both hs(x̄) and ht(x̄) are infinitely differentiable functions in a neighborhood

of origin so they are analytic functions. We can write

ht(x̄) = Ct0 + Ct1x̄+ x̄TCt2x̄+O(||x̄||3), (2.24)

where the Ct0 is a scalar, the Ct1 is a vector, the Ct2 is a matrix, and the

|| · || is Euclidean norm. Using the value when x̄ = 0, we obatin Ct0 = 0. Let

vt = 2(τTt x̄−Kt(τt)), the first derivative with respect to x̄ is

v′t = 2τt.

The first coefficient is

Ct1 = v′t(0) = 2τt(0) = 0.

The second derivative is

v′′t = 2τ ′t , v′′t (0) = 2τ ′t(0).

By the equation

K ′t(τt) = x̄, K ′′t (τt)τ
′
t = I,

Then obtain,

τ ′t = K ′′t (τt)
−1, τ ′t(0) = K ′′t (0)−1.

Thus Ct2 = 1
2!

2v′′t (0) = Σ̂−1.
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we established that Ct0 = 0, Ct1 = 0 and Ct2 = Σ̂−1. By substitution in

(2.24), we find

ht(x̄) = x̄T Σ̂−1x̄+O(||x̄||3). (2.25)

By the same reasoning, obtain

hs(x̄) = x̄TΣ−1
s x̄+O(||x̄||3) =

n

n− 1
x̄T Σ̂−1x̄+O(||x̄||3).

The above results are vital to find the relative accuracy.

2.3 Relative Accuracy of the Studentized and

Tilted Bootstrap

The lemma similar to Mill’s ratio [15] for chi-squared distribution is proven as

follow.

Lemma 2.2: The pdf. of Chisqaure distribution with d degree of freedom

is

f(x) =
1

2d/2Γ(d/2)
xd/2−1e−x/2. (2.26)

The cdf is denoted as F (x). We define

Rx =
1− F (x)

f(x)
. (2.27)

The limiting value is

lim
x→∞

Rx = 2. (2.28)

Proof: Simplifying (2.27),

Rx = x1−d/2ex/2
∫ ∞
x

td/2−1e−t/2dt. (2.29)
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The derivative can be easily shown to be,

dRx

dx
= Rx(

1

2
+

1

x
− d

2x
)− 1. (2.30)

The second derivative is

d2Rx

dx2
=
dRx

dx
(
1

2
+

1

x
− d

2x
) +Rx(−

1

x2
+

d

2x2
); (2.31)

simplifying,

d2Rx

dx2
= R(

1

4
+

d2

4x2
+

1

x
− d

2x
− d

2x2
)− (

1

2
+

1

x
− d

2x
). (2.32)

The third derivative is

d3Rx

dx3
=
d2Rx

dx2
(
1

2
+

1

x
− d

2x
) + 2

dRx

dx
(− 1

x2
+

d

2x2
) +Rx(

2

x3
− d

x3
). (2.33)

By (2.27), it is easy to know

Rx > 0, (2.34)

and

lim
x→∞

dRx

dx
= 0. (2.35)

The d is the degrees of freedom. Consider d > 2. The idea is to prove

(2.30) is less than 0 and (2.31) is greater than 0.

(i) If ∃x1 such that

dRx

dx

∣∣∣
x=x1

> 0, (2.36)

because (1
2

+ 1
x
− d

2x
) is increasing with respect to x, both Rx and dRx

dx
will

increase with x. Thus, the Rx and dRx

dx
are divergent.The conclusion contracts

(2.35). So ∀x > 0,

dRx

dx
< 0. (2.37)
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By (2.30) and (2.37), we get

Rx <
2x

x+ 2− d
= 2 +

2d− 4

x+ 2− d
. (2.38)

(ii) If ∃x2 such that

d2Rx

dx2

∣∣∣
x=x2

< 0,

by (2.33), we obtain

d3Rx

dx3

∣∣
x=x2

< 0.

Thus both d2Rx

dx2
and d3Rx

dx3
are negative in [x2,+∞]. The d2Rx

dx2
will be divergent.

The conclusion contracts (2.35). It follows that (2.32) is positive. By (2.32),

Rx >
x+ 2− d

2x
· 4x2

x2 + d2 + 4x− 2xd− 2d
.

Simplifying

Rx > 2 +
2d− 4 + 4d−2d2

x

x+ 4− 2d+ d2−2d
x

. (2.39)

According to (2.38) and (2.39), it is easy to see

lim
x→∞

Rx = 2.

Q.E.D.

Lemma 2.2 is used for the following calculation.

The relative accuracy is define to be

p∗t
p∗s

=
Q̄d(nht(x̄))(1 +O((1 + nht(x̄))/n))

Q̄d(nhs(x̄))(1 +O((1 + nhs(x̄))/n))
. (2.40)

where Q̄d(x) = P (χ2
d > x). Based on the assumption

1 +O((1 + nht(x̄))/n)

1 +O((1 + nhs(x̄))/n)
= 1 +O(

1

n
),
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and by simple arithmetic, we obtain

p∗t
p∗s

=
Q̄d(nht(x̄))

Q̄d(nhs(x̄))
(1 +O(

1

n
)),

p∗t
p∗s

=
Q̄d(nht(x̄)) + Q̄d(nhs(x̄))− Q̄d(nhs(x̄))

Q̄d(nhs(x̄))
(1 +O(

1

n
)),

p∗t
p∗s

= 1 +OP (
Q̄d(nht(x̄))− Q̄d(nhs(x̄))

Q̄d(nhs(x̄))
).

By the mean value theorem,

p∗t
p∗s

= 1 +OP (
n(ht(x̄)− hs(x̄))

Q̄d(nhs(x̄))
qd(ξ)),

where qd(x) is the density function of chi-squared distribution with d.f. d. The

ξ ∈ (min(nht(x̄), nhs(x̄)),max(nht(x̄), nhs(x̄))).

By Lemma 2.1 lim
x→∞

qd(x)

Q̄d(x)
= 1

2
, and we obtain

p∗t
p∗s

= 1 +Op(n(ht(x̄)− hs(x̄))). (2.41)

Recall the formulas,

hs(x̄) =
n

n− 1
x̄T Σ̂−1x̄

ht(x̄) = x̄TΣ−1
t x̄+O(||x̄||3) = x̄T Σ̂−1x̄+Op(||x̄||3).

Then (2.41) is

p∗t
p∗s

= 1 +OP (n||x̄||3) +OP (||x̄||2). (2.42)

Consequently, for ||x̄|| = o(n−1/3), (2.42) shows that although the studentized

and tilted bootstraps use different resampling methods, the p-values will be

approximately equal when sample size is large.
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Figure 2.1: Comparison between two Approximated p-values
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Figure 2.2: Comparison between Approximated and Simulated Tilted p-values
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Figure 2.3: Comparison between Approximated and Simulated Studentized

p-values

2.4 Simulation and Conclusion

We compare four p-values in the section. Two of them are theoretically asymp-

totic p-values for Studentized and tilted bootstrap, as discussed before, defined

as

p̃s = 1−Q(nhs(x̄)),

p̃t = 1−Q(nht(x̄)).
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Figure 2.4: Comparison between Approximated and Simulated Tilted p-values

The other ones are simulated results by

p∗s =P (h∗s(x̄
∗) ≥ hs(x̄)),

p∗t =P (h∗t (x̄
∗) ≥ ht(x̄)).

For each dataset, we simulated 500 times for the Studentized and tilted respec-

tively and get 500 h∗s(x̄
∗) and h∗t (x̄

∗) to compare with hs(x̄) and ht(x̄) to get

the simulated values p∗s and p∗t . Furthermore, 100 datasets are used to do the

comparison.

The comparison between theoretically approximated Studentized bootstrap

p̃s and tilted p̃t are showed in Figure 1. To further investigate the error, we

show the difference between them in Figure 2 and the difference is close to 0.
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The comparison and error justify our conclusion. We also compare p̃s and p∗s in

Figure 3, p̃t and p∗t in Figure 4. All of them are close. The phenomenon shows

Studentized and tilted bootstrap methods have very similar performance.



Chapter 3

The Covariance Test

Chapter 3 and 4 focus on the selective inference of a significance test, covariance

test. Chapter 3 introduces the background and reviews of the covariance test,

as well as my simulation investigation. Chapter 4 provides my new results for

the covtest.

3.1 Review of Lasso Regression

Consider the usual linear regression model [13], for an outcome vector y ∈ Rn

and matrix of predictor variables X ∈ Rn×p:

y = Xβ + ε, ε ∼ N(0, σ2I); (3.1)

here β ∈ Rp are unknown coefficients to be estimated. The lasso estimator [14]

is

β̂ = argmin
β∈Rp

1

2
||y −Xβ||22 + λ||β||1, (3.2)

where λ is a tuning parameter. The solution β̂ is a continuous and piecewise

linear function of λ. When λ = ∞, all of variables in β̂(∞) are inactive. A

46
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Figure 3.1: Lasso Path

variable is called inactive if its coefficient is zero. When λ = 0, lasso regression

linear regression and all variables are active. When λ decreases from ∞ to 0,

each λk marks the entry of a variable. For example, when λ = λ1, the first

variable enters the active set. The coefficient of the active variable is nonzero

and the coefficients of the rest variables are zeroes. We use A to denote the

active set before k. The XA is the matrix with active predictors. For instance,

when k = 0, λk+1 = λ1 is the entry of the first variable and A is an empty set

as well as XA. When k = 4, λk+1 = λ5 marks the entry of the fifth variable.

The active set A includes 4 variables and the matrix XA has 4 columns. Figure

3.1 illustrates the Lasso path containing 25 variables. From right to left, with

the λ decreases, more variables become active.

There has been a considerable amount of recent work dedicated to the lasso

problem. I give a short summary of what I cite: [12], [20], [19], [18] [17] and

[13].
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3.2 Problems in Model Selection and Signifi-

cance Testing

When I choose different λ, different models are selected. The first problem is

how to choose the active variables. Once the model is determined, the second

problem is inference after selection.

3.2.1 Model Selection

The Akaike information criterion and Bayesian information criterion are often

utilized to do the variable selection. This section reviews these before present-

ing a testing-based approach.

Consider a statistical model for some data. Let k be the number of esti-

mated parameters in the model. Let L̂ be the maximum value of the likelihood

function for the model. Then the AIC value of the model is

AIC = 2k − 2ln(L̂). (3.3)

A set of candidate models are constructed, and then the corresponding AIC

values are determined. The smaller the AIC value is, the better the model

is. Although the method is widely used in model selection, it is still heuristic.

Simlarly, the Bayesian information criterion (BIC) is a criterion for model

selection among a finite set of models. It is based, on the likelihood function

and it is closely related to the Akaike information criterion (AIC). The BIC is

defined as

BIC = kln(n)− 2ln(L̂), (3.4)
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where L̂ and k are defined as those in AIC. The n is the number of observations.

Both of the methods are empirical methods based on the rule of thumb. In

comparison, the covariance test is tied to a statistical test with a known level.

3.2.2 Model Selection via Significance Testing

The traditional method to do significance testing is to find the residual sum

of square and then do Chi-square test with the known σ2 or t-test with the

unknown σ2.

For example, the set A contains j−1 variables. We try adding the variable

j. The sum of squares statistic is

Rj = RSSA −RSSA∪j. (3.5)

If σ2 is known, Rj/σ
2 ∼ χ2

1, otherwise,
√
Rj/s ∼ tn−1. When Rj is great

enough, I claim the variable is significant. The approach does not adjust for

model selection.

The lasso procedure takes a different approach. The Rj is the jth largest

sum of square rather than a random one so the χ2
1 or tn−1 does not hold.

For example, when A = ∅, the predictor j provides the largest RSS differ-

ence. Then Rj/σ
2 ∼ χ2

1 does not follow χ2
1 or tn−1 distribution.

3.3 Covariance Test

Lockhart [12] introduced the covtest statistic (abbreviated as covtest). Make

the following assumptions: (1) The linear model is correct; (2) The variance

is constant; (3) The errors are normally distributed; (4) The true parameter
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vector is sparse; (5) The design matrix has weak collinearity.

The covariance test statistic is constructed based on the lasso fitted path

and defined by:

Tk = (〈y,Xβ̂(λk+1)〉 − 〈y,XAβ̃A(λk+1)〉)/σ2. (3.6)

The β̂(λk+1) is the lasso solution at λk+1 while the β̃A(λk+1) is the solution at

λk+1 with only the active predictors Xa, defined as the following:

β̃A(λk+1) = argmin
βA∈R

1

2
||y −XAβA||22 + λk+1||βA||1. (3.7)

Then covariance statistic in (3.6) is a function of the difference between Xβ̂

and XAβ̃A, the fitted value by adding the jth variable into the active set and

not. The (3.6) may be written as

Tk = (〈y,Xβ̂(λk+1)−XAβ̃A(λk+1〉/σ2. (3.8)

This statistic is expected to be distributed approximately exponentially

with mean 1 under the null hypothesis that the current lasso model contains

all truly active variables [12].

Example: Let the coefficients βi 6= 0, for i = 1, 2, 3, 4 and βj = 0 for i =

5, 6...k. Then the statistic

T4 = (〈y,Xβ̂(λ5)〉 − 〈y,XAβ̃A(λ5)〉)/σ2 ∼ Exp(1). (3.9)

The statistic is complicated and seems amazing to simply follow a basic expo-

nential distribution. In fact, the statistic does not exactly follow Exp(1), but

asymptotically follows it.

Figure 3.2 shows the CDFs of covtest statistic and exponential distribution

with mean 1. They seem very close but there is still a gap between them.

Figure 3.3 indicates the difference between the two CDFs.
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Figure 3.2: CDFs of Covtest Statisttic vs Exp(1)

The phenomenon leads to a series of questions. Why does the discrep-

ancy appear, how accurate the test is? The following sections and chapter

will provide a detailed analysis aimed at the properties of the covariance test.

Specifically, the next sections start from the simplest case and reveal the inher-

ent cause of covtest from the aspect of statistical theory. The next section talks

about the moments and cumulants of the statistic and then find the asymp-

totic CDF. Furthermore, extend the test from the normal theory linear model

to the general linear model with non-Gaussian error terms.

3.4 Distributional Features of the Covtest Statis-

tics

In this section, I investigate the covtest statistic and find the relation between

it and exponential distribution.

To get the solution of general lasso regression in (3.2), differentiate it and
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Figure 3.3: Difference between CDFs of Covtest Statisttic vs Exp(1)

obtain

−XT (y −Xβ) + λsgn(β) = 0, (3.10)

where sgn is the sign function. Simplifying,

β̂(λ) = (XTX)−1XTy − λ(XTX)−1sgn(β). (3.11)

By definition, the variables outside the active set A have zero coefficients, i.e.

βj = 0 if j /∈ A. Hence

Xβ̂(λk) = XAβ̂A(λk) = XAβ̃A(λk), (3.12)

and similarly for A ∪ {j},

Xβ̂(λk+1) = XA∪jβ̂A∪j(λk+1). (3.13)

When the active set is A or A ∪ {j} at the knot λk+1,

XAβ̃A(λk+1) = XAβ̂A(λk+1)

= XA(XT
AXA)−1XT

Ay − λk+1XA(XT
AXA)−1sgn(β̂A),

(3.14)
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and

Xβ̂(λk+1) = XA∪jβ̂A∪j(λk+1)

= XA∪j(X
T
A∪jXA∪j)

−1XT
A∪jy − λk+1(XT

A∪jXA∪j)
−1sgn(βA∪j).

(3.15)

We substitute (3.14) and (3.15) into (3.8) to obtain,

Tk = yT
[
XA∪j(X

T
A∪jXA∪j)

−1XT
A∪j −XA(XT

AXA)−1XT
A

]
y/σ2

−λk+1y
T
[
XA∪j(X

T
A∪jXA∪j)

−1sgn(βA∪j)−XA(XT
AXA)−1sgn(β̂A)

]
/σ2.

(3.16)

At the knot λk, the j coefficient is zero, so obtain

XAβ̂A(λk) = XA∪jβ̂A∪j(λk). (3.17)

By substitution,

XA(XT
AXA)−1XT

Ay − λkXA(XT
AXA)−1sgn(β̂A) =

XA∪j(X
T
A∪jXA∪j)

−1XT
A∪jy − λkXA∪j(X

T
A∪jXA∪j)

−1sgn(βA∪j). (3.18)

Simplifying,

yT
[
XA∪j(X

T
A∪jXA∪j)

−1XT
A∪j −XA(XT

AXA)−1XT
A

]
=

λk
[
XA∪j(X

T
A∪jXA∪j)

−1sgn(βA∪j)−XA(XT
AXA)−1sgn(β̂A)

]
. (3.19)

Using the identity of XA∪j(X
T
A∪jXA∪j)

−1XT
A∪j −XA(XT

AXA)−1XT
A , it is an or-

thogonal projection. Raking Euclidean norms of both sides in (3.19),

yT
[
XA∪j(X

T
A∪jXA∪j)

−1XT
A∪j −XA(XT

AXA)−1XT
A

]
y =

λ2
k||XA∪j(X

T
A∪jXA∪j)

−1sgn(β̂A∪j)−XA(XT
AXA)−1sgn(β̂A)||22. (3.20)

Replacing (3.19) and (3.20) in (3.16), get

Tk = C(A, j, sgn(β̂A), sgn(β̂A∪j))(λ
2
k − λkλk+1)/σ2, (3.21)
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where

C(A, j, sgn(β̂A), sgn(β̂A∪j)) =

||XA∪j(X
T
A∪jXA∪j)

−1sgn(β̂A∪j)−XA(XT
AXA)−1sgn(β̂A)||22. (3.22)

We use a specific example to uncover the distributional characteristics of

covtest. Consider the simplest case in which the design matrix X is orthogonal,

σ2 = 1 and no variable is in the active set. It means y = ε ∼ N(0, 1). Under

the orthogonal condition, able to prove

C(A, j, sgn(β̂A), sgn(β̂A∪j)) = 1.

By the orthogonal property XTX = I, obtain

||y −Xβ||22 = ||X||22 · ||y −Xβ||22 = ||XTy − β||22 + C, (3.23)

for a constant C. Every column Xj corresponds to a coefficient βj. To minimize

(3.23), we have the close form solution for βj

β̂j(λ) =



x− λ, if x > λ

0, if − λ ≤ x ≤ λ

x+ λ, if x < λ

The values of XT
j y, j = 1...p are the knots where the corresponding λ become

nonzero. Consider X orthogonal matrix and y ∼ N(0, 1), so XT
j y ∼ N(0, 1).

We get a sequence of variables Uj = XT
j y ∼ N(0, 1), j = 1, ...p, and the λ are

λ1 = |U(1)|,

λ2 = |U(2)|,

...

λp = |U(p)|.
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where U(1), ...U(p) are order statistics such that U(1) ≥ U(2) ≥ ... ≥ U(p).

Letting Vj = |Uj|, j = 1, ...p, it is straightforward that Vj ∼ χ1 (χ1 is square

root of χ2
1 distribution). We summarize the properties of the covtest statistic

as the following statement: given the i.i.d variables V1...Vp ∼ χ1, in which the

largest and second statistics are denoted as V(1) and V(2), then

T1 = V1(V1 − V2)
d−→ Exp(1), as p→∞. (3.24)

The distribution of T1 is closer to Exp(1) if p becomes greater. Thus, the error

of covtest depends on the value of p.

3.5 Simulation Investigation of the Influence

of p

The last section proposes that the values of p affect the error of covtest. We

investigate the pattern via simulation based on a variety of p values. We restate

that the p is the column number of design matrix X for lasso regression, and

the sample size of V1...Vp when I sample χ1 variables.

First, let the value p = 100. We get samples v1, v2...v100 from χ1 distribution

and calculate the value t = v(1)(v(1) − v(2)), where v(1) and v(2) are the largest

two samples.We do the process 5000 times and obtain 5000 t values.

We summarize the 5000 t values as an empirical distribution function Ft

and plot it in Figure 3.4. The blakc line is the distribution function of Ft

and the blue line is exponential distribution with mean 1. They are very

close and I cannot find obvious difference in the graph. We plot the difference

Ft(x)−Fexp(x) versus x in Figure 3.5. We find Ft(x) > Fexp(x) in the interval
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Figure 3.4: Distribution functions of Ft and Exp(1)

[
0, 2
]

and Ft(x) < Fexp(x) when x > 2. Eventually, the difference between

them converge to 0 when x is large enough.

We repeat the above process when p = 20, and get Figures 3.6 and 3.7. The

empirical distribution function does not fit as well as before. The difference in

Figure 3.5 is apparently smaller than that in Figure 3.7. The result coincides

(3.24), greater p, better fit.
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Figure 3.5: Difference between Ft and Exp(1)

Figure 3.6: Distribution functions of Ft and Exp(1)
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Figure 3.7: Difference between Ft and Exp(1)



Chapter 4

Inference of Covtest Statistic

In this chapter, new results on using the covtest for inference are provided.

The moments and cumulants are found and discussed in the first section. The

second section introduces the Edgeworth series approximation to covtest and

its defects. In the third section, the gamma distribution is discussed as a better

approximation than the exponential one for the covtest. The fourth section

investigates the covtest without normality assumption.

4.1 Moments of Covtest Statistic

In this section, find the moments of covtest statistic.

E(T1) =E
[
V(1)(V(1) − V(2))

]
. (4.1)

Consider the density function

φ(x) =
exp(−x2

2
)

√
2π

.

The distribution and density funcitons of V(1) are

FV(1)(x) = (2Φ(x)− 1)n,

59
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and

fV(1)(x) = 2nφ(x)(2Φ(x)− 1)n−1.

The joint distribution function and density function of V(1) and V(2) are

FV(1),V(2)(x, y) = n(2Φ(x)− 1)(2Φ(y)− 1)n−1, (4.2)

and

fV(1),V(2)(x, y) = 4(n− 1)nφ(x)φ(y)(2Φ(y)− 1)n−2. (4.3)

4.1.1 First moment of T1

With the density function, the first moment of T1 is

E(T1) =

∫ ∞
0

∫ ∞
y

x(x− y)4(n− 1)nφ(x)φ(y)(2Φ(y)− 1)p−2dxdy

=

∫ ∞
0

4p(p− 1)φ(y)(1− Φ(y))(2Φ(y)− 1)p−2dy

=1.

(4.4)

In this case, the exact moments exactly equal the asymptotic limit.

4.1.2 Second moments

Furthermore, calculate the second moment by evaluating the integral

E(T 2
1 ) = E[U2

1 (U1 − U2)2]

= (p− 1)

∫ ∞
0

4n
(
φ(y)(y2 + 3)(1− Φ(y))− yφ(y)2

)
(2Φ(y)− 1)p−2dy,

(4.5)

and find

E(T 2
1 ) = 2 +Op(exp(−

√
log(p))).



61

Figure 4.1: Log Difference between Second Moment E(T 2) and 2 v.s. Squared

Root of k for Normal Covtest

The simulation procedures are as follow:

Let k = 10, 11, 12, ..., 70, p = ak, for some positive constant a.

We choose a = 1.1 to avoid exceeding the maximum positive value in comput-

ing.

Denote the logarithm of the error as d(p) = E(T 2
1 (p))− 2, where the expected

values of covtest statistic and exponential statistic are E(T 2
1 (p)) and 2. Figure

5.1 shows the strong linear relation by
√
k in the horizontal axis and log(d) in

the vertical axis. Thus

log(d) = Op(−
√
k)

d = Op(exp(−
√
k))

d = Op(exp(−
√

log(p))).

The linear relation is determined from a graph of numerically obtained values

rather than the error bound calculated analytically.

Higher moments can be found by the same calculation approach.
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Figure 4.2: Log Difference between Third Moment E(T 3) and Exp Dist. v.s.

Squared Root of k for Normal Covtest

4.1.3 Higher Moments

The above method is used to find the third moment. Let k = 10, 11, 12, ..., 70,

p = 1.1k, and denote the logarithm of error as d3(p) = E(T 3
1 (p)) − 6. Figure

5.2 shows a strong linear relation and infer

d3 = Op(exp(−
√

log(p))).

More similar results could be found by the approach.

4.2 Edgeworth Expansions for Covtest

4.2.1 Intrduction to Edgeworth Series

The Edgeworth series are series that approximate a probability distribution in

terms of its cumulants[11]. The following formal construction is due to [11]

and [18]. Let X and Y be two random variables, such that Y has density fY

and X has density fX . Suppose further that X and Y can be constructed

on a common probability space such that Z = X − Y is independent of Y .
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Conditionally on Z = z, X has density fY (x − z), and expanding fY as a

power series about x, fY (x− z) =
∑∞

j=0 f
(j)
Y (−z)j/j!. Hence the unconditional

density of X is

fX(x) =
∞∑
j=0

f
(i)
Y (x)(−1)jµ∗j/j!,

where µ∗j are the moments of Z, again assuming that such a construction is

possible. Writing

hj(x) = (−1)jf
(j)
Y (x)/fY (x),

Observe that

f(x) = fY (x)
∞∑
j=0

hj(x)µ∗j/j!. (4.6)

The ”moments” µ∗j are the moments of whatever distribution is necessary to

add to Y to get X. The cumulant of order j associated with these moments is

the cumulant of order j associated with X minus the corresponding cumulant

for Y . The functions hi are ratios of the derivatives of the baseline density

to the density itself. In the case a normal baseline, these are polynomials.

After substituting in the expressions for pseudo-moments in terms of pseudo-

cumulants, and collecting terms according to their power in n, the Edgeworth

density and cumulative distribution functions are

f(x) =φ(x)
[
1 + kn3h2(x)/6 + (kn4h3(x)/24 + 10kn2

3 h5(x)/720)

+(kn5h4(x)/120 + 35kn3k
n
4h6(x)/5040 + 280kn3 3h8(x/362880) + · · ·

]
.

and

F (x) =Φ(x)− φ(x)
[
kn3h2(x)/6 + (kn4h3(x)/24 + 10kn2

3 h5(x)/720)

+(kn5h4(x)/120 + 35kn3k
n
4h6(x)/5040 + 280kn3 3h8(x/362880) + · · ·

]
.
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The Hermite polynomials and the issue are discussed in the next section.

4.2.2 Defect from the Edgeworth approximation

The Edgeworth approximation is usually better than a baseline approximation.

For example, the Edgeworth approximation with the normal baseline function

is generally better than the normal approximation. But the gamma distribu-

tion is not a good baseline function, so the Edgeworth approximation with the

gamma is not feasible.

The following explains why it is not a good baseline function.

The Hermite polynomials under the gamma baseline function are investigated.

Denote the PDF of the gamma distribution as

f(x) =
βαxα−1

Γ(α)
e−βx. (4.7)

where α and β are the shape and rate. The first derivative is

df(x)

dx
= (α− 1)

βαxα−2

Γ(α)
e−βx − ββ

αxα−1

Γ(α)
e−βx =

(
α− 1

x
− β

)
f(x). (4.8)

The second derivative is

d2f(x)

dx2
= (

α− 1

x
− β)

df(x)

dx
− α− 1

x2
f(x) =(

α2 − 3α + 2

x2
− 2(α− 1)β

x
+ β2

)
f(x).

(4.9)

The first two Hermite polynomials are

h1(x) = −1
df(x)

dx
/f(x) = −α− 1

x
− β,

h2(x) =
α2 − 3α + 2

x2
− 2(α− 1)β

x
+ β2.

When x → 0, both of the Hermite polynomials are → ∞. That’s why the

gamma baseline function is not a good baseline function and the Edgeworth

gamma approximation does not work.
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Table 4.1: E(T 2) with an increasing p the number

p 50 100 200 500 1000

E(T 2) 2.2374 2.2049 2.1802 2.1554 2.1407

4.3 An improved distribution approximation

for the covtest

4.3.1 Motivations

The second moment of Exp(1) is 2. In Section 4.1, the second moment is

always greater than 2. Table 4.1 shows the values of E(T 2) when p increases.

The value decrease with an increasing p. But it decreases more slowly with a

greater p. The value changes 0.0325 when p changes from 50 to 100, but alters

only 0.0147 when p increases from 500 to 1000. The speed of convergence

O(1/log(p)) is too slow.

The errors in the second moment are not trivial, and cannot be reduced

significantly by increasing sample size p. This error is indicative of a failure of

the exponential distribution to model the Covtest statistic distribution.

4.3.2 A Solution from the Gamma Distribution

To fix the mismatch between moments of the true and target distributions,

approximate the target distribution by a family and a variety of mean and

variance calculations. We pick the gamma distribution with the first moment

1 and the second moment E(T 2), equal to that of the covtest statistic. The

gamma distribution has two parameters, allowing adjustment of both the first
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and second moments, so to exactly match the first two moments of the target

distribution. The gamma distribution has the shape

α =
E(T1)2

E(T 2
1 )− E(T1)2

,

and rate

β =
E(T1)

E(T 2
1 )− E(T1)2

,

which include the mean E(T1) and the second moment E(T 2
1 ). We approximate

fT1(t, p) by

g(t) =
tα−1βα

Γ(α)
e−βt. (4.10)

The E(T1) is exactly 1 under the normal error term. Substituting,

α =
1

E(T 2
1 )− 1

,

β =
1

E(T 2
1 )− 1

.

The Exp(1) is exactly Γ(1, 1), a special case of the gamma distribution.

But the exponential distribution has only one parameter while the gamma

distribution has two. So an opportune member of the gamma family is likely

to fit better than the exponential.

Figure 4.3 compares the distribution functions among the simulation cov-

test statistic, the Exp(1), and the adjusted gamma distribution. The blue

curve, representing the gamma distribution, is closer to the black curve, the

simulated Covtest statistic distribution, than the blue Exp(1). Figure 4.4

compares the gamma approximation error and exponential approximation er-

ror. Figure 4.5 compares the relative gamma approximation error and relative

exponential approximation error.
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Figure 4.3: Comparison Among Simulation, Exponential Approximation and

Gamma Approximation for Normal Covtest

The Kolmogorov-Smirnov test is used to decide the goodness of fit between

the approximate and true distributions. The null hypothesis of K-S test is

that the samples are drawn from the same distribution. The results are shown

in Table 4.2. We choose the number of variables p = 100, 500and1000. The

gamma K-S statistic is always smaller than the exponential K-S statistic, and

the gamma p-value is always much larger than that of the exponential distribu-

tion. The results show the Gamma curve fits much better than the exponential

curve. Please note that the variable p is the number of variables and p-value

is for the tests. With the increasing number of variables p, the test p-value in-

creases. It indicates the Gamma curve fits better when the number of variables

increases.

The gamma distribution has the first and second moments matching the

covtest statistic. But the higher moments are not matched.
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Figure 4.4: Comparison of Differences between Simulation and Exponential

Approximation vesus Simulation and Gamma Approximation for Normal Cov-

test

Figure 4.5: Comparison of Relative Errors between Simulation and Exponen-

tial Approximation vesus Simulation and Gamma Approximation for Normal

Covtest
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Table 4.2: K-S Testing for Covtest fitted by Exp. Approximation and fitted

by Gamma Approximation

# of Variables p Exp D Exp p-value Gamma D Gamma p-value

100 0.073852 0.1301 0.035928 0.9029

500 0.073852 0.1301 0.027944 0.9897

1000 0.073852 0.1301 0.025948 0.9959

4.4 Covtest Statistic With Laplace Error Term

The Covtest is expected to test the significance of a single variable in regres-

sion. Existing results for this distribution require that ε must follow the normal

distribution. We extend the method to a general situation, without the nor-

mality assumption. We first consider the error terms following the Laplace

distribution.

Suppose the Laplace distribution with mean 0 and variance 1. Let Vj =∣∣Uj∣∣, so V1, ..., Vp ∼ Exp(
√

2). As before, denote the largest and second largest

statistics by V(1) and V(2). Then

T1 = V(1)(V(1) − V(2)) ∼ Exp(1), as p→∞. (4.11)

The exponential distribution approximation has the rate 1/E(T ), meaning the

expected value E(T ). The gamma distribution has the shape

α =
E(T )2

E(T 2)− E(T )2
,

and rate

β =
E(T )

E(T 2)− E(T )2
,
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which corresponds to the mean E(T ) and the second moment E(T 2).

Reconsider V1, ...Vp. The largest V(1) and the second largest value V(2) have

the joint distribution

fV(1),V(2)(x, y) = (n− 1)n
√

2exp(−
√

2x)
√

2exp(−
√

2y)(1− exp(−
√

2y))p−2.

(4.12)

The first moment of T1 is

E(T1) =E
[
V(1)(V(1) − V(2))

]
=

∫ ∞
0

∫ ∞
y

x(x− y)p(p− 1)2exp(−
√

2(x+ y))

· (1− exp(−
√

2y))p−2dxdy

=

∫ ∞
0

p(p− 1)exp(−2
√

2y)(
√

2 + y)(1− exe(−
√

2y))p−2dy.

(4.13)

Continue simplifying (4.13) by substituting u = 1−exp(−
√

2y) and G(u) =

g(y(u)) = 1 + y/
√

2 to obtain

E(T1) = p(p− 1)

∫ 1

0

up−1(1− u)G(u)du. (4.14)

It is too difficult to integrate the expression in (4.14) directly. We expand G(u)

in

û =
p

p+ 2
.

and integrate the expressions termwise. The expansion of (4.14) is

E(T1) = p(p− 1)
[
G(û)

∫ 1

0

up−1(1− u)du+G′(û)

∫ 1

0

up−1(1− u)(u− û)du

+G′′(u)

∫ 1

0

up−1(1− u)(u− û)2du+ · · ·
]
.

(4.15)

Integrating by term, the first term in (4.15) is∫ 1

0

up−1(1− u)du =
Γ(p)Γ(2)

Γ(p+ 2)
=

1

p(p+ 1)
,
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the second term in (4.15) is

∫ 1

0

up−1(1− u)(u− û)du =

∫ 1

0

up(1− u)du− û
∫ 1

0

up−1(1− u)du

=
Γ(p+ 1)Γ(2)

Γ(p+ 3)
− p

p+ 2

Γ(p)Γ(2)

Γ(p+ 2)
= 0,

and the third term (4.15) is

∫ 1

0

up−1(1− u)(u− û)2du =

∫ 1

0

up+1(1− u)− 2ûup(1− u) + û2up−1(1− u)du

=
1

(p+ 3)(p+ 2)
− 2

p

p+ 2

1

(p+ 2)(p+ 1)

+ (
p

p+ 2
)2 1

p(p+ 1)

=
2

(p+ 3)(p+ 2)2(p+ 1)
.

Simplifying (4.15) and obtaining

E(T1) =p(p− 1)
[ G(û)

p(p+ 1)
+ 0 +

G′′(û)

(p+ 2)2(p+ 1)(p− 1)
+ o(1/p4)

]
=
p− 1

p+ 1
G(û) +O(1/p2)

= G(û)− 2

p+ 1
G(û) +O(1/p2)

= 1− 1

2
log2 +

1

2
log(p+ 2) +Op(1/p).

Mathematica says that E(T1) can be given in terms of the harmonic num-

bers, which are approximate log(p).

The result is confirmed by numerical integration. Calculate (4.13) numer-

ically, and plot the relation between log(p) and E(T1) in Figure 4.6. When p

increases exponentially, E(T ) will increase linearly. It confirms

E(T1) = Op(log(p)). (4.16)
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Figure 4.6: Numerical Calculation for Equation (4.16)

The second moment is

E(T 2
1 ) =E

[
V 2

(1)(V(1) − V(2))
2
]

=

∫ ∞
0

∫ ∞
y

x2(x− y)2p(p− 1)2exp(−
√

2(x+ y))

· (1− exp(−
√

2y))p−2dxdy.

(4.17)

It is too difficult to simplify and calculate (4.17) analytically. Numerical calcu-

lation is adopted to calculate the value E(T 2
1 ) alone. The E(T 2

1 ) is calculated

numerically by (4.17) under different number of variables p. We find: When

log(p) increases exponentially, E(T 2
1 ) does not increase linearly, as shown in

Figure 4.7 where the horizontal axis is log(p) and the vertical axis is E(T 2
1 ).

But
√
E(T 2

1 ) will increase linearly when log(p) increase exponentially as shown

in Figure 4.8. The graphic facts imply

E(T 2
1 ) = Op(log2(p)). (4.18)

Please note that the above results are obtained numerical integration and

approximately linearity.

Our purpose is to apply covtest to Laplace distribution. First, the above

values E(T1) and E(T 2
1 ) from the integrals can produce a Gamma distribution.
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Figure 4.7: Simulation for Equation (4.18)

Figure 4.8: Simulation for Equation (4.18)
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Figure 4.9: Comparison between Gamma Approximation, Exponential Ap-

proximation and Empirical Distribution under Laplace Error Terms

Second, I can also get the empirical distribution: sampling p random values

from Exp(
√

2), finding the two largest values, calculating the value T1 numeri-

cally by (4.13), and repeating the above procedures. The empirical distribution

of T1 is obtained from the samples. The sampling and integration are based

on p = 1024.

Figure 4.9 shows the comparison of the distribution functions among the

empirical distribution(black line), the adjusted exponential distribution(blue

line) with mean E(T1) and the adjusted gamma approximation(red line) with

mean E(T1) and second moment E(T 2
1 ). It shows that the adjusted gamma

approximation fits well, and better than the adjusted exponential approxima-

tion.
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4.5 Other Exponential Family Distributions

Consider the following density function

f(x) = kexp(−x
p

p
),

where k is a constant and p is a positive number, x ∈ [0,∞). The Covtest may

apply to all distributions like this. The following is an example for p = 3. The

density function is

f(x) =
32/3

Γ(1/3)
exp(−x3/3). (4.19)

We obtain n samples from the distribution and find t by T = U1(U1 − U2)

where U1, U2 are the greastest and second greatest samples. The distribution

of T is asymptotically close to Exp(1/mean(T)) and the adjusted Gamma

approximation(defined in 4.3.2). The following simulation figures demonstrate

the conclusion. Figure 4.10 shows the CDF of (4.19), the adjusted exponential

distribution and adjusted gamma distribution. They are very close. Figure

4.11 shows the difference between the adjusted exponential CDF and empirical

distribution (black line), as well as the difference between the adjusted gamma

CDF and empirical one(red line). The red line is closer to the X-axis than the

black. It indicated that the gamma approximation fits better.

The general density function may be written as

f(x) = exp(xp/p)/(p
1
p Gamma(1 +

1

p
)). (4.20)

We infer that any PDF function in the form of (4.20) will be applied to the

covtest. Concretely, If the response variable in regression has an error term

such that PDF follows (4.20), the covtest is a valid significance test for the

regression.
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Figure 4.10: Comparison between Gamma Approximation, Exponential Ap-

proximation and Empirical Distribution under PDF (4.19)

Figure 4.11: Absolute CDF Differences Between Gamma Approximation and

Empirical Distribution, versus Exponential Approximation and Empirical Dis-

tribution under PDF (4.19)
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4.6 Discussion

The covariance test is a significance test based on the normal error assumption

and has an approximately exponential distribution. I improve both the error

assumption and the approximate distribution. The normal error is extended

to the error in the exponential distribution family. The gamma distribution

is proposed as a better approximation than the exponential. Thanks to this

progress, the covtest can be widely used in the significance testing of different

kinds of linear regressions.



Chapter 5

Numerical Approach for Finding

Error of Order

It is often not easy to find the order of error when approximating complex

functions or statistics. The expansion or factorization of complicated functions

is difficult, so the analysis is difficult. This numerical approach is utilized

several times to find the order of error in the above chapters. I summarize the

approach in this chapter.

5.1 Introduction by an Example

In the section, a simple example to find the order of error, which is very easy

to understand, is provided.

Consider the function

f(n) =
1

1− 1/n
. (5.1)

78
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Let

g(n) = 1 +
1

n
. (5.2)

This chapter explores graphical heuristic techniques that indicate the order of

error, when the g(x) is used to approximate f(x).

Let nk = 2k, k = 1, 2, 3, · · · , 20, and then the error term is expressed as

d(nk) = f(nk)− g(nk), k = 1, 2, · · · , 20.

We choose to approximate the logarithmic error,

log2d(nk) = log2

(
f(nk)− g(nk)

)
, k = 1, 2, · · · , 20.

Figure 5.1 contains a plot of k versus log2d(nk). The graph shows the obvious

linearity. Noting that the slope is -2, we infer that the order of error is O(1/n2).

We justify this assessment using the following argument, under the assump-

tion

d(n) = O(
1

na
),

where a is unknown. So we have

d(n) =
C

na
+ o(

1

na
).

where C is a constant. Then we find

log2(d(nk)) =log(C)− alog2(n)

=log(C)− ak.
(5.3)

The linear equation (5.3) of k corresponds to Figure 5.1, so −a corresponds to

the slope -2, resulting in

a = 2.
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Figure 5.1: log(error) versus k

When we execute the method, n is supposed to be an exponent expressed as

something to the kth power like 2k. We choose 2 in the example so we find

log2(d) in the last step. The natural exponent can be chosen instead, then

the ordinate of the plot is the natural logarithm. Because of the limit of 64-

bit floating-point numbers in most computers and programming languages, we

recommend a smaller base like 2, 1.5 or
√

2.

5.2 Asymptotic Same Order

Section 5.1 presents an ideal instance to illustrate this method. But it is often

interfered in practical application. The following two functions are O(1/n),

but they are not the exact expression 1
n
.

f(n) =
1

n− 4
,

g(n) =
1

n
+

1

n2
.

(5.4)
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We summarize the pattern as

O(
1

na
) =

C

na + Ω(na)
+ o(

1

na
), (5.5)

which is easy to prove.

5.3 The Method Applied to Covtest Moments

The problem of covtest moments is used as an example to illustrate the ap-

proach.

5.3.1 The Second Moment

The second moment of the covtest statistic is

E(T 2
1 ) = E(U2

1 (U1 − U2)2), (5.6)

and it is a function of sample size n.

The error term is defined as

d(n) = E(T 2
1 )− 2. (5.7)

The method described in Section 5.2 is utilized. We denote

nk = 2k, k = 1, 2, 3, · · · , 20. (5.8)

The logarithmic errors are plotted in Figure 5.2. It is apparently not a linear

function.

Similar results may be obtained using

nk = 2
k
2 = (

√
2)k, for k = 1, 2, 3, · · · , 20, (5.9)
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and employing the same techniques, plotting k versus log√2(d(nk)) in Figure

5.3. It seems no significant linearity in the graph. Perhaps we need to revisit

the assumption that the error is of this form of O( 1
na ) and consider a is not a

positive integer.

When a = 1/2, the plot of
√
k versus the logarithmic errors, it shows

linearity to some extent in Figure 5.4. The black line represents the relationship

between sample size and error, and the blue line connects the head and tail

of the black line by a straight line to show the linearity. In order to confirm

the linearity, we change k = 1, 2, ..., 30 to k = 1, 2, ..., 200, and adjust the

logarithmic base to 1.1 to avoid 64-bit numeral limit in the computer. Then

we get Figure 5.5. They overlap in the tail and the linearity is indicated. Then

we have

log(d(1.1k)) = −a
√
k + c,

d = O(exp(
√

log(n))).

5.3.2 The Third Moment

The third moment of the covtest statistic is

E(T 3
1 ) = E(U3

1 (U1 − U2)3) (5.10)

The error is defined as

d3 = E(T 3
1 )− 6, (5.11)

where 6 is the third moment of Exp(1). We do the same process and plot k1/2

versus log1.1(d3(nk)) in Figure 5.6. The result shows
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Figure 5.2: k versus log(error)

Figure 5.3: k versus log(error)
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Figure 5.4:
√
k versus log(error)

Figure 5.5:
√
k versus log(error)
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Figure 5.6:
√
k versus log(error)

d3 = O(exp(
√

log(n))).

5.4 A Useful Investigation on O( 1
Φ(1− 1

n)
)

We obtain the result O(1/Φ(1 − 1/n)) = O(1/
√

log n) by simulation rather

than theoretical deduction by the above approach.

Let n = 2m for m = 11, 12...70, calculate

X =
√
m, (5.12)

Y = Φ−1(1− 1

2m
). (5.13)

and then plot X versus Y in Figure 5.7. The linearity is apparent. Thus we

find

Φ−1(1− 1

2m
) = c1

√
m+ c2, (5.14)

where c1 and c2 are constants. We substitute m with n and get

Φ−1(1− 1

n
) = c1

√
log n+ c2, (5.15)
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Figure 5.7:
√
k vs Φ−1(1− 1

2m
)

which means

O(
1

Φ−1(1− 1
n
)
) = O(

1√
log n

). (5.16)

5.5 Discussion

The approach, using the numeric method to find the error of order, is a heuris-

tic and exploratory method. Many papers discuss numerical methods by the

Euler method or ODE. But they cannot solve the problem with exponential or

logarithmic order of accuracy.

My approach focuses on the issue of accuracy with the exponential or log-

arithmic order. Although it is exploratory and lacks a set of systematic proce-

dures, it provides a creative approach to solve the hard issue, finding the order

of accuracy.
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