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ABSTRACT OF THE DISSERTATION 

 Traffic Loading Impact on Asphalt Pavement Performance: Vehicle-Tire-Pavement 

Interaction Modeling and Machine Learning Approach 

by JINGNAN ZHAO 

Dissertation Director: 

Dr. Hao Wang 

 

Pavement responses are affected by the magnitude and frequency of dynamic loads 

generated by vehicles, which are significantly dependent on axle configuration, pavement 

roughness conditions, and vehicle speed. Random amplitudes of dynamic loads are 

generated by rough road surface due to development of pavement distresses after initial 

construction. Therefore, vehicle-tire-pavement interaction model is needed for analyzing 

dynamic pavement responses and pavement damage to moving loads and taking pavement 

roughness into consideration.  

The first objective of the research is to analyze dynamic responses of flexible 

pavement structure using an integrated vehicle-tire-pavement interaction approach. A full-

truck model was adopted to estimate the dynamic tire forces considering pavement surface 

conditions, vehicle speeds, truck configuration, and axle type and loads. A modified 

method was proposed to derive frequency response functions under harmonic loads using 

the equivalent modulus of asphalt layer at the specific temperature and loading frequency. 

After that, the convolution integral method was used to simulate pavement responses under 

non-stationary loads with random amplitudes. The impulse response method was used to 

calculate pavement responses induced by dynamic loads considering vehicle-tire-pavement 
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interaction. A methodology was proposed to incorporate the impact of dynamic loads on 

fatigue cracking development in the framework of M-E pavement design and analysis. In 

addition, dynamic responses of flexible pavements induced by wide-base tires considering 

pavement roughness condition were analyzed through the ratio of critical pavement 

responses between wide-base tire and dual-tire assembly, respectively, for the potential of 

fatigue cracking, near-surface cracking, and subgrade rutting. 

 Long-term monitoring of in-service pavements is used to develop pavement 

performance models in pavement management system. The weigh-in-motion (WIM) data 

help to comprehensively understand vehicular loadings on pavement performance. 

Previous studies mainly used traditional statistical methods to quantify pavement damage 

due to vehicular loading. Because of the complexity of problem, the relationship between 

pavement performance and influential variables may not be apparent in traditional 

regression models.  

The second objective is to use machine learning approaches, including support 

vector regression and random survival forest models, to quantify the impact of traffic 

loading on pavement performance based on field data. Multi-variable nonlinear regression 

method and support vector regression method were applied and compared in terms of 

prediction accuracy and error. Random survival forest method was used to investigate the 

influence of traffic loading on pavement survival life. The variable importance technology 

was used to select the appropriate variables in the model and reduce prediction error. The 

proposed pavement performance models were further used to analyze pavement 

deterioration caused by overweight trucks with different truck traffic and axle load 

distributions.  
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CHAPTER 1 INTRODUCTION 

1.1 Background 

Pavement responses are affected by the magnitude and frequency of dynamic loads 

generated by vehicles, which are significantly dependent on axle configuration, pavement 

surface conditions, and vehicle speed. Random amplitudes of dynamic loads are generated 

by rough road surface due to development of pavement distresses after initial construction. 

In addition, tire-pavement contact stresses in the contact patch are not the same as tire 

inflation pressure and varies depending tire loads and vehicle operation condition. 

Pavement deterioration is induced by mechanistic responses in pavement structure under 

vehicle loads. It is expected that dynamic loads on rough road surface would accelerate 

pavement deterioration and degrade surface smoothness. Therefore, vehicle-tire-pavement 

interaction model is needed for analyzing dynamic pavement responses and deterioration 

subjected to moving loads and taking pavement roughness into consideration. 

Mechanical-empirical (M-E) method is implemented to design pavement structures, 

which was developed under National Cooperative Research Program Projects 1-37A (ARA 

Inc., 2004). In Mechanical-Empirical Pavement Design Guide (MEPDG), principles of 

engineering mechanics are applied to calculate pavement response under traffic loading. 

The empirical transfer functions are then used to predict long-term pavement performance 

through local calibrations. 

The new generation of wide-base tires 445/50R22.5 and 455/55R22.5 came to the 

market in the early 2000s and show sustainable benefits in trucking operations and 

environment impacts due to less rolling resistance at tire-pavement interface. The wide-

base tires enhance fuel efficiency and hauling capacity, reduce tire costs and repair, and 
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improve ride comfortability and vehicle stability (Al-Qadi and Elseifi, 2007). Besides, 

wide-base tires show better safety potential due to less hydroplaning potential at rainy 

conditions (Ding and Wang, 2020). Despite the advantages of new wide-base tires 

mentioned above, it was critical to estimate the influence on critical pavement response 

and long-term performance after switching from conventional dual tires to new wide-base 

tires. 

On the other hand, Long-term monitoring of in-service pavements is used to 

develop pavement performance models in pavement management system. Previous studies 

mainly used traditional statistical regression methods to quantify pavement damage due to 

vehicular loading. Because of the complexity of problem, the relationship between 

pavement performance and influential variables may not be apparent in traditional 

regression models.  

Machine learning has the ability of automatically learning and improving from data 

mining without being explicitly programmed, which make it applicable for the field 

measurement datasets with high-dimensionality and high-complexity. Application of 

machine learning approach for pavement performance prediction has become popular in 

recent years. Machine leaning method can provide more accurate prediction models of 

pavement performance when complex traffic variables are taken into consideration. The 

developed models can be applied to predict future pavement condition and assist in 

optimally allocating maintenance and rehabilitation costs in pavement management system. 
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1.2 Problem Statement 

In previous studies, dynamic pavement responses subjected to moving loads were 

investigated using the concentrated or distributed moving loads with harmonic shapes, or 

time-dependent moving loads, which neglected the random nature of moving loads due to 

pavement surface roughness (Al-Qadi et al., 2008b; Beskou and Theodorakopoulos, 2011; 

Wang and Al-Qadi, 2011). It has been documented that tire-pavement contact stresses are 

three-dimensional (3-D) and their magnitudes and distributions vary depending on loads 

and tire inflation pressure (Al-Qadi and Wang, 2011; Wang et al., 2012; Hu et al., 2015). 

Previous works have proposed to use advanced finite element models to capture pavement 

responses under moving loads considering realistic tire-pavement contact stresses, 

viscoelastic property of asphalt layer, and nonlinear modulus of unbound materials in M-

E pavement analysis (Wang and Li, 2015; Wang et al., 2015a; Chen et al., 2016). However, 

the pavement response induced by dynamic loads with stochastic magnitude on rough 

pavement surface were not considered in the pavement analysis, which might result in 

underestimation of pavement damage. Therefore, impact of dynamic loads due to pavement 

roughness condition need to be analyzed to accurately predict pavement performance in 

the framework of M-E pavement design and analysis. 

The impulse response method was originally introduced by Newland (1985) to 

investigate the responses of a linear system subjected a time-dependent input combined 

with the Fourier transform. It was used in conjunction with convolutional integral method 

to calculate flexible pavement responses flexible pavement response under dynamic loads 

with stochastic amplitudes (Hardy and Cebon, 1992; 1993). These previous works used 

simplified model in the steady response analysis, such as uniform loading the circular or 
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rectangular area and quarter-car model. It is not clear how these simplifications affect the 

calculated dynamic pavement responses. Few researches have used field measurements to 

validate the prediction of dynamic pavement responses subjected to random dynamic loads 

under moving truck. In addition, the effect of pavement surface roughness on critical 

responses of asphalt pavement such as the tensile or shear strain in the asphalt layer and 

the compressive strain on top of subgrade has not been thoroughly investigated.  

The wide-base 455/55R22.5 would cause greater potential of bottom-up fatigue 

cracking and subgrade rutting than the dual-tire assembly on most tested sections, but less 

potential of near-surface cracking in the accelerated pavement testing. The asphalt 

pavement was simulated under moving load with constant force and non-uniform contact 

stress, and the results indicated that the near-surface pavement response were more 

impacted by the localized distribution of contact stress (Xue and Weaver, 2011; Al-Qadi 

and Wang, 2012). However, few researches have considered vehicle-tire-pavement 

interaction for analyzing flexible pavement responses under wide-base tires. Due to the 

different tire stiffness and load transmissibility values, it is expected that the impact of 

wide-base tire on pavement response would be affected by dynamic loads excited by 

uneven pavement surface profiles. 

Previous studies have employed machine learning approaches to predict the 

pavement performance considering a variety of influential factors and concluded that the 

machine learning models significantly outperformed linear and nonlinear regression 

models (Ziari et al., 2016; Gong et al., 2018; Marcelino et al., 2019). Two or more 

algorithms could be combined for better prediction performance to investigate the 

influence of independent variables on pavement performance (Fathi et al., 2019; 
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Karballaeezadeh et al., 2019). Furthermore, machine learning approaches could be 

extended and applied for survival analysis (Breiman, 2001). Unlike traditional survival 

analysis, an assumption of distribution of the lifetimes or a linear-exponential form for the 

treatment effects was not needed in advanced survival analysis models (Ishwaran and 

Kogalur, 2007). 

It is well accepted that vehicular loading has significant influence on development 

of load-related asphalt pavement distresses, such as alligator cracking, longitudinal 

cracking at wheel-path, and rutting. Weigh-in-motion (WIM) devices are used to capture 

and store gross vehicle weight, axle loads, and truck configurations information when 

trucks are passing over the stations. The WIM data helps to comprehensively understand 

real vehicular loadings on pavement sections, but it is a challenge to incorporate traffic 

data into pavement performance models. Therefore, it is needed to use machine learning 

approaches to investigate the impact of traffic loads on pavement performance when 

complicated axle load spectra are considered in the models.  

To preserve infrastructure, federal and state transportation agencies regulate the 

limit of truck loads on highways (Federal Highway Administration, 2015; US Department 

of Transportation, 2018). The impact of overweight traffic on pavement damage and 

service life reduction need be considered to preserve infrastructure condition. Prediction 

model of pavement performance developed using machine learning method is expected to 

provide an advanced approach to investigate the impacts of overweight on pavement 

damage. 
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1.3 Objective and Methodology 

This study aims to quantify traffic loading impact on flexible pavement performance 

using vehicle-tire-pavement interaction modeling and machine learning approaches. The 

first objective is to analyze dynamic responses of flexible pavement and develop an 

approach to consider roughness-induced dynamic loads in M-E analysis. The following 

research tasks were conducted: 

1) A full-truck model was adopted to estimate the dynamic tire forces considering 

pavement surface conditions. The influence of pavement roughness conditions, 

vehicle speeds, truck configurations, and axle type and loads on dynamic tire forces 

were considered. 

2) A modified method was proposed to derive frequency response functions under 

harmonic loads using the equivalent modulus of asphalt layer at the specific 

temperature and loading frequency. After that, the convolution integral method was 

used to simulate pavement responses under non-stationary loads with random 

amplitudes. The field instrumentation measurements in Long-Term Pavement 

Performance (LTPP) database were utilized to validate the impulse response 

method.  

3) The relative ratio of fatigue life was defined to estimate fatigue damage induced by 

dynamic axle loads on different pavement roughness conditions. A methodology 

was proposed to incorporate the impact of dynamic loads on fatigue cracking 

development in the framework of M-E pavement design and analysis. 

4) Dynamic responses of flexible pavements induced by wide-base tires considering 

pavement roughness condition were analyzed using the integrated vehicle-tire-
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pavement interaction approach. The impact of wide-base tire was evaluated through 

the ratio of critical pavement responses between wide-base tire and dual-tire 

assembly, respectively, for the potential of fatigue cracking, near-surface cracking, 

and subgrade rutting. 

Figure 1.1 shows the flowchart of pavement performance analysis considering 

vehicle-tire-pavement interaction. The dynamic tire forces under moving vehicles were 

estimated using a full-vehicle model. The effects of pavement roughness, vehicle speeds, 

axles load, and tire types on dynamic tire forces were investigated. The impulse response 

method was used to calculate pavement responses under dynamic loads. The dynamic 

pavement responses subject to various axle loads on three pavement surface profiles at 

different vehicle speeds were estimated. The effect of wide-base tire on pavement 

responses was analyzed by comparing pavement responses under wide-base tire and dual-

tire assembly. The relative ratio of fatigue life was defined to estimate fatigue damage 

induced by dynamic axle loads on different pavement roughness conditions. Finally, a 

methodology was proposed to incorporate the impact of dynamic loads on fatigue cracking 

development in the framework of M-E pavement design and analysis. 
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Figure 1.1 Flowchart of pavement performance analysis considering vehicle-tire-

pavement interaction 

The second objective is to use machine learning approaches, including support 

vector regression (SVR) and random survival forest models, to investigate the impact of 

traffic loads on pavement performances. The following research tasks were conducted: 

1) Traditional regression model and machine learning method were employed to 

quantify the impact of traffic loading on pavement performance based on field data 

collected from pavement management system of NJDOT. Multi-variable nonlinear 

regression method and SVR method were applied and compared in terms of 

prediction accuracy and error.  

Estimate Relative Ratio of Fatigue 

Life 

Estimate Dynamic Tire Forces 

Calculate Pavement Response 

Under Dynamic Load 

Truck Configuration Pavement Surface Profile 

Impulse Response Method 

Full-Vehicle Modeling 

Compute Accumulated Incremental 

Damage 

Evaluate Impact on Fatigue 

Cracking Development 

M-E Pavement 

Analysis 



9 

 

 

 

2) The proposed SVR models of pavement performance were further used to analyze 

pavement deterioration caused by overweight trucks with different truck traffic and 

axle load distributions. 

3) Random survival forest method was used to establish the prediction models of load-

related pavement distresses under the influence of traffic loading, pavement 

structure, and climate condition extracted from LTPP database. The variable 

importance technology was used to select the appropriate variables in the model 

and reduce prediction error.  

4) The derived random survival forest models were applied to estimate survival 

probability of asphalt pavement life and evaluate the impact of overweight traffic 

on the reduction of pavement life. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Estimation of Dynamic Loads Under Moving Vehicle 

Experimental programs and truck modeling are the two basic approaches that have 

been used to estimate dynamic loads. DLC, defined as the ratio of the standard deviation 

of dynamic loads to the static load (Cebon, 1999), is commonly adopted to assess the 

variation level of dynamic loads. Kulakowski and Kenis (1995) characterized the dynamic 

wheel loads induced by a two-axle truck instrumented with strain gauges, accelerometers, 

and linear variable differential transformer to investigate the correlations among DLCs and 

test variables. It was found that the DLCs generated by wide-base tire was 10-12% lower 

than that generated by dual tire, and air suspension induced lower dynamic loads if the 

induced DLC was below 0.15. 

Mikhail and Mamlouk (1997) calculated the structural response of flexible 

pavements under different dynamic loads and pavement roughness conditions. The Florida 

Comprehensive Pavement Analysis System conducted by the Texas Transportation 

Institute for the Florida Department of Transportation, which included a tire-force 

prediction model that predicted the dynamic tire loads for different types of vehicles 

traveling on a straight asphalt road at constant speeds, was adopted. The FE models were 

used to analyze the vehicle-pavement interaction. The walking-beam suspension caused 

more dynamic-load variation than the other two suspension types. Higher speeds produced 

more dynamic-force variability, and an increase in pavement roughness produced more 

dynamic-load variability. The stiffness of the pavement section affected the response of 

pavement, with weak pavement sections producing higher displacements and strains in the 
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pavement structure. For example, the pavement displacement increased by approximately 

10 times at 20 km/h as compared to 130 km/h. 

Liu et al. (1998) employed actual road profiles and a half-axle load model to 

estimate the dynamic forces and rate of dynamic forces exerted on a pavement surface 

using a spectral density method and a finite difference method, respectively. A very good 

correlation existed between the physical variables and ride quality index or serviceability 

index, indicating that the deterioration of pavement structures was closely related to the 

rate of dynamic forces. 

Sun (2001) presented a theoretical model for determining IRI and present 

serviceability index in term of the power spectral density (PSD) of pavement roughness. 

The frequency response functions of quarter-car model and CHOLE-type profilometer 

were obtained by means of stochastic process theory. Correlation of IRI and PSD became 

possible based on their PSD-based expression. Sun (2003) simulated the IRI for evaluating 

the pavement surface roughness using the PSD of pavement surface fluctuation. Quarter-

car models were adopted to simulate the vehicle response. Surface roughness in time 

domain was generated based on 36 known PSDs of roughness. The statistical analysis of 

the system output showed that IRI was linearly correlated with the standard deviation of 

relative vertical velocity between the axle and sprung mass. A linear regression equation 

was obtained based on which further analysis was conducted to represent IRI in terms of 

PSD of pavement roughness.  

Steyn et al. (2013) investigated the dynamic attribution of pavement unevenness. 

Based on ISO 8608 grading, the inverse Fourier transform was applied to generate the 300-

meter pavement surface profile with the distance sampling interval of 0.1 m. The surface 
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profiles were used in TruckSim to calculate the dynamic loads. Car, bus, and truck were 

simulated at the speeds of 20, 40, 60, 80, 100, and 120 km/h. The root mean square value 

of total weighted acceleration was computed to evaluate the drivers’ riding comfort and 

goods’ integrity. It was found that, compared to speed, surface roughness was more critical. 

The magnitudes of acceleration and DLCs varied depending on different spring types of 

vehicles, and generally the pavement deterioration meant the increase of human riding 

discomfort, acceleration, and dynamic overload. 

Almeida and Picado-Santos (2015) presented a methodological framework of the 

traffic factor (TF) estimation taking vehicle-pavement interaction into account. A five-axle 

single-trailer truck and a two-axle single-unit truck driving at the speeds of 40, 80, 60, and 

100 km/h were assumed to simulate the dynamic loads. Empty, fully loaded, overloaded 

by 10% 20% and 30%, and underloaded by 10% 20% and 30% trucks were utilized. The 

120-mm and 280-mm thick flexible pavements with the specific international roughness 

index (IRI) (0, 1, 2, 3, 4, and 5 m/km) were considered. A 3-D boundary element method 

was applied to calculate the structure responses at the critical locations, while the 

mechanistic-empirical pavement design guideline was used to compute the pavement 

responses. TF was found in linear relation with IRI and in exponential relationship with 

GVW. The results indicated that increasing the IRI by 1m/km would lead to up to 27% 

increase of TFs. 

Navarrina et al. (2015) derived a comprehensive model for fatigue analysis of 

flexible pavements taking the impacts of dynamic axle loads into consideration. The 

development of the accumulated pavement fatigue damage in terms of the time passed 

since the construction was quantified by the accumulated fatigue damage indicator, and the 
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dynamic counterpart of the accumulated fatigue damage indicator function was derived. 

To quantify the IRI and effective dynamic load amplification factor, a quarter-vehicle 

model was proposed to develop the Laplace transforms of road profiles. Based on the IRI 

and prediction functions of the amplification factor of effective dynamic loads, the fully 

operational function, which predicted the time evolution of the road profile, was derived. 

It was indicated that the dynamic axle loads caused a dramatic decrease in the predicted 

pavement life. 

Bilodeau et al. (2017) used a new multibody dynamic truck model to calculate the 

vertical force on pavement with various surface profiles, after which the DLCs estimated 

for 5400 subsections in Quebec were related to the corresponding IRI. The pavement 

response was evaluated by WinJulea to compute the allowable number of load repetitions 

prior to fatigue failure and structural rutting failure. The static life consumption rates and 

relative life consumption were calculated for static loading scenarios, and the dynamic load 

ratio and relative life consumption were computed for dynamic loading scenarios. The 

linear curve of relative life consumption for static loading and the nonlinear curve of 

relative consumption for dynamic loading were plotted and compared. It was found that 

the pavement life determined by fatigue failure was reduced by the average of 29.2% and 

the life based on rutting failure decreased by the average of 20% if dynamic loading was 

considered in the analysis.  

Ueckermann and Oeser (2015) developed approaches for a 3-D assessment of 

pavement evenness data, including pavement evenness in longitudinal and transverse 

directions, based on 3-D vehicle models using MATLAB. According to the criteria of 

effective evenness index, a passenger car was created to assess driving comfort, and the 
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transfer functions of dynamic wheel loads for front wheels and driver’s vertical 

acceleration were presented. A truck-semitrailer was used to assess the pavement and cargo 

loading, and the transfer functions of dynamic wheel loads for pure vertical excitation and 

the vertical acceleration on the cargo area of the semitrailer above the central axle were 

obtained. The 3-D models were verified using the measured data and results of the ADAMS 

model. The wheel tracks, acceleration of cargo load, dynamic wheel loads, and acceleration 

the driver perceived in the 3-D models were compared with those in the one-

dimensional/two-dimensional models in existence. It was found that the planar model was 

subjected to a much lower vibrational impact, and the acceleration and forces in the 3-D 

models were well in line with the values in the existing one-dimensional/two-dimensional 

models, which could be used for values of limit in terms of target. 

Goenaga et al. (2019) evaluated the effects of pavement roughness and vehicle 

speed on the dynamic loads generated at the interface of tire and pavement along with their 

effects on the performance of pavement structures. A quarter-truck model was used to 

simulate the dynamic axle loads generated at interface due to roughness. A correlation 

model between IRI and dynamic load index was developed. The traffic correction factor 

was proposed to account for the effects of dynamic load induced by roughness and vehicle 

speed. The proposed traffic correction factor could be used to modify the estimation of 

traffic damage on the road sections with high roughness levels, therefore improving the 

future prediction of pavement performance. 
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2.2 Calculation of Pavement Response Under Dynamic Loads 

2.2.1 Pavement Response Under Point or Line Loads 

2.2.1.1 Beam or Plate Laid on Foundation 

Lombaert et al. (2000) developed a numerical modelling of free field traffic-

induced vibrations during the passage of a vehicle on an uneven road. A transfer function 

between source and receiver for the dynamic interaction between road and soil was used 

to calculate the free field response. The calculation was based on a dynamic substructure 

approach, by using an analytical beam model for road and a boundary element method for 

soil. The methodology was validated utilizing the analytical results and finally presented 

by a numerical example of which the free field vibrations during the passage of a vehicle 

on the traffic plateau were estimated. 

Lombaert et al. (2004) presented the procedure of a stochastic solution for the 

calculation of non-stationary free field responses induced by a moving load with a random 

amplitude. A non-stationary autocorrelation function and a time-dependent spectral density 

were used to characterize the free field response at a fixed point. The non-stationary 

solution was obtained from the solution in the case of a moving load with a deterministic 

amplitude. The solution for non-stationary free field response induced by a moving load 

with a random amplitude was derived in terms of a double forward Fourier transform of 

the non-stationary auto correlation function. 

Sun (2005) investigated the dynamic displacement of a plate under moving 

harmonic point and line loads. The solution was represented by the convolution of the 

dynamic Green’s function of plate. An approximate relationship between the critical load 

velocity and critical frequency was established analytically. It was indicated that the 



16 

 

 

 

maximum displacement response occurred at the center of the moving load and traveled at 

the same speed with the load. Sun (2006) used the triple Fourier transform to derive the 

formulation of a plate with infinite dimensions (without boundary conditions) on an elastic 

foundation under a moving concentrated and line load of constant speed and amplitude. A 

closed-form solution of displacement field was obtained for moving loads with subsonic, 

transonic, and supersonic speeds. 

Yao et al. (2009) characterized the geometric roughness of the pavement through 

considering the pavement roughness as a sine function and simplifying the quarter-vehicle 

to the vibration system with two degree of freedom. The expressions of dynamic loads of 

the system were obtained and utilized to investigate the steady-state responses of the 

infinite rough pavement on a Kelvin-type foundation to calculate the dynamic responses of 

rough pavement structure under traffic loads. The theoretical solutions of vertical 

displacement responses of the pavement structure were formulated based on the double 

Fourier transform, and the solutions could be transformed to the corresponding classical 

solution of static problem. By adopting the fast Fourier transform (FFT), the numerical 

results were obtained to investigate the influence of velocity of moving load and parameters 

of rough pavement and foundation on the dynamic displacement responses. 

Lv et al. (2010) proposed a dynamic model of asphalt pavement under a moving 

concentrated load. The viscoelastic characteristics of asphalt and base layers were 

considered, the pavement was regarded as an infinite beam on a viscoelastic base. By 

applying the Green’s functions, Fourier transforms, and Laplace transforms, the analytical 

solution in transient was derived. Since the viscosity of the asphalt pavement was 

considered in the model, the analytical solution could be employed to analyze more of 
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factors that impacted the dynamic response, for example road material properties, 

temperature, and vehicle speed. 

Lu and Yao (2013) developed a new model for calculating the pavement vibration 

due to the dynamic vehicle-road interaction. This model included vehicles, an uneven 

pavement surface layer, a base layer, and a subgrade, and utilized the moving axle loads 

and geometric unevenness as the inputs. Using the Fourier transform, the dynamic 

equilibrium equations of the coupling system were then solved in the frequency-

wavenumber domain. The responses in time domain were evaluated by applying the 

inverse fast Fourier transform. The influence of pavement properties, moving vehicle speed, 

wavelength and magnitude of pavement unevenness on the dynamic displacement response 

were investigated systematically. 

2.2.1.2 Multi-Layer System 

De Barros and Luco (1994) introduced a procedure to obtain the steady-state 

displacements and stresses within a multi-layered viscoelastic half-space generated by a 

buried or surface point load moving with a constant speed parallel to the surface of the 

half-space. The approach was based on an integral representation of the complete response 

in terms of wavenumbers. The results in the time domain were obtained by the Fourier 

synthesis of the frequency response which in turn was obtained by numerical integration 

over one horizontal wavenumber. The numerical results of displacement and stress fields 

on the surface and within the half-space were presented for surface and buried loads 

moving with various subsonic and supersonic speeds. 

Liu (2001) established a multi-layer, four-dimensional spatial and temporal, 

physical model for the dynamic responses of a road structure in an analytic framework by 
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integrating vehicle dynamics, road profiles characteristics, frictional characteristics of 

vehicle-road contacts, and pavement viscoelastic properties. The surface roughness effect 

on the dynamic response of road structures was investigated. 

Zhao et al. (2015) investigated a frequency domain approach to calculate the 

transient response by applying the discrete Fourier transform. The analytical and calculated 

responses were compared for the standard Maxwell model with three parameters and the 

solutions in time and frequency domains for asphalt concrete were compared to verify the 

accuracy and effectiveness of the frequency domain approach. The impact of aliasing of 

the frequency domain approach could effectively decrease by adopting a small sampling 

interval for the time domain excitation function. 

2.2.2 Pavement Response Under Area Loads 

2.2.2.1 Beam or Plate Laid on Foundation 

Hardy and Cebon (1992; 1993) used the impulse response method, which was 

originally introduced by Newland (1985), to investigate the responses of a linear system 

subjected a time-dependent input combined with the Fourier transform to assess the 

flexible pavement responses subjected to moving loads estimated by quarter-car vehicle 

model. Hardy and Cebon (1994) used a validated dynamic road-response model and 

simplified the dynamic calculation procedure (quasi-dynamic computation) to investigate 

the dynamic responses of flexible pavements to the fluctuating and moving wheel loads. 

Hardy (1995) extended the convolution integral method to consider time-dependent loads 

on an infinite system. 

Kim and Roesset (1998) applied the triple Fourier transform in time, space (in 

transverse direction), and moving space (in longitudinal direction) to consider the moving 
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loads with random amplitudes, and used the double Fourier transform in space and moving 

space for steady-state responses to moving harmonic loads. The pavement model consisted 

of an infinite plate placed on an elastic foundation. 

Cai et al. (2009) presented an investigation of the steady-state response of 

pavement systems subjected to a moving traffic load. The traffic loads were simulated by 

four rectangular load pressures, and the rigid and flexible pavement systems were regarded 

as an infinite plate resting on a poroelastic half-space soil medium. The frequency-

wavenumber domain solution of the pavement system was obtained by the compatibility 

condition between the plate and poroelastic half-space. By applying the inverse fast Fourier 

transform, the time-domain solution was obtained. 

Sun (2013) introduced a unified theory for dynamics of vehicle–pavement 

interaction under moving and stochastic loads, including three major aspects of the subject: 

pavement surface, tire–pavement contact forces, and response of continuum media under 

moving and stochastic vehicular loads. Under the subject of pavement surface, the 

spectrum of thermal joints was analyzed using the Fourier analysis of a periodic function. 

The one-dimensional and two-dimensional random field models of the pavement surface 

were discussed given three different assumptions. At a constant speed of travel, random 

field of pavement surface served as a stationary stochastic process exciting vehicle 

vibration, which, in turn, generated contact force at the interface of tire and pavement. The 

contact forces were analyzed in the time and frequency domains using random vibration 

theory. Under the subject of response of continuum media under moving and stochastic 

vehicular loads, both time-domain and frequency-domain analyses were presented for the 

analytic treatment of moving load problem. 
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Lu et al. (2014) developed a 3-D model for the steady-state response of a 

pavement-subgrade-soft ground system subjected to moving traffic loads. A semi-

analytical model of wave propagation which was subjected to four rectangular moving 

loads was introduced based on a calculation method of the dynamic stiffness matrix of the 

ground. The pavement and subgrade were regarded as two elastic layers resting on a 

poroelastic half-space soil medium. The frequency-wavenumber domain solution of the 

road system was obtained by the compatibility condition at the interface of structural layers. 

The numerical results showed that the influence of load speed and excitation frequency on 

the dynamic response of the road system was significant. 

2.2.2.2 Multi-Layer System 

Chatti and Yun (1996) proposed a complex response method of transient analysis 

to consider circular area moving arbitrary loads on an elastic and damped multi-layered 

system, incorporating the influences of wave propagation and frequency-dependent 

material properties of asphalt concrete. The moving loads were simulated as a series of 

pulses with their periods equaled to the time taken for a wheel to pass a fixed point in 

pavement. 

 Khavassefat et al. (2014) introduced a computational framework to calculate 

flexible pavement responses induced by moving vehicles. FE models were used to establish 

the frequency response function of the pavement, and the dynamic loads were calculated 

via a quarter-car model. The convolution method was applied to predict the horizontal 

stresses in the frequency-wavenumber domain. The effect of pavement detonation on the 

pavement response was investigated based on the field measurements of road surface 

profiles in Sweden. 
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2.3 Evaluation of Pavement Damage Under Dynamic Loads 

2.3.1 Effect of Dynamic Loads on Pavement Damage 

Chatti and Lee (2002) studied the relationship between distress index and ride 

quality index (RQI) using three independent data sets selected from the pavement network 

in Michigan. It was indicated that the composite and flexible pavements had lower critical 

RQI-values than the rigid pavements, after which the correlation between dynamic truck 

response and RQI was analyzed. According to the dynamic load generated by TruckSim 

program, the second axle of a typical 5-axle tractor-semi-trailer was used to represent the 

aggregate loads from all trucks. The DLC and 95th percentile dynamic load vs. RQI curves 

were plotted for various roughness levels (RQI=30, 40, 50, 60, 70, and higher than 80). 

The relative dynamic load-induced damage in the pavements was estimated by a 4th power 

law, and the roughness threshold values were determined through computing the 

theoretical percent reduction in pavement life. The lower bound values were found to be 

61, 50, and 47 for rigid, composite, and flexible pavements, respectively. The upper bound 

values were found to be 77, 70, and 66 for rigid, composite, and flexible pavements, 

respectively. 

Kanai et al. (2010) analyzed the impacts of dynamic loads under heavy vehicles 

caused by pavement roughness on asphalt pavement damage. The pavement surface profile 

was obtained through the displacement of the oscillator expressed by Langevin equation, 

and Profile Viewing and Analysis (ProVAL) was used to compute IRI based on the surface 

profile. Eight surface profiles ranging from 0.5 to 4.0 m/km at an internal of 0.5 m/km were 

generated. Multiple regression analysis was applied to present IRI in terms of temperature 

and cohesive resistance. According to the surface profile, TruckSim, a vehicle running 
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imitation software, was used to estimate the dynamic wheel loads of a 20-ton dump vehicle 

at the speeds of 40, 60, 80, and 100 km/h. The compressive strain at the top of the subgrade 

and the strain at the bottom of the asphalt layer under circular uniformly distributed loads 

of dual-tire assembly were calculated by a analysis program for multi-layer elasticity. The 

allowable number of repetitions of wheel passage reached to the critical points when the 

cracking ratio equaled to 20% and when the rut depth due to permanent deformation 

equaled to 15 mm. It was found that, at some points, the low allowable number of 

repetitions of wheel passage either of asphalt layer or subgrade decreased extremely, and 

as IRI increased the asphalt layer or subgrade pavement damage increased with a higher 

rate at higher speed. 

Park (2010) assessed the pavement damage index of the 12.5 mm+PG58-22 and 

12.5mm+PG64-22 asphalt mixtures. Vehicle speed, suspension type, and pavement surface 

profiles were considered as factors that affected the dynamic load generated by moving 

vehicles. For the 3-axle vehicle with 10 tries and the GVW of 204.6 kN, the flat leaf 

suspension was used at the front axle, and the walking beam and air spring suspensions 

were applied at the rear tandem axle to simulate the dynamic loads in TruckSim. The IRI 

of 0, 0.9, 1.2, 1.7, 2.3, and 3.0 m/km and vehicle speeds of 40, 60, 100, 120, and 160 km/h 

were applied to predict the dynamic loads. It was found that rougher pavement surface and 

higher speed increased dynamic load significantly. The pavement damage index model, 

which could be used to predict pavement life based on the target and as-built profile, was 

developed by relating to the coefficient of the variance of dynamic loads. Creep compliance 

tests were conducted to estimate fracture parameter of the asphalt mixtures. It was indicated 
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that higher dynamic load variability, lower temperature, and walking beam suspension 

would cause more pavement fatigue life reduction. 

Navarrina et al. (2015) used quarter-car model and introduced dynamic load 

amplification factor to obtain vertical dynamic loads. The pavement structure was 

considered as a linear elastic system, and stresses and strains were proportional to external 

loads. The accumulative pavement damage was computed under the time evolution of IRI. 

It indicated that the service life of asphalt pavement was reduced by 40% after considering 

dynamic loads.  

Bilodeau et al. (2017) developed a linear relationship between DLC and IRI to 

estimate dynamic loads. Multi-layer elastic theory was used to calculate mechanistic 

pavement responses. The relative life consumption was computed using the allowable load 

repetitions prior to failure distress for static and dynamic loading cases. It was found that 

the pavement life reduced by 29% due to fatigue cracking and by 20% due to rutting when 

dynamic loads were considered.  

Rys (2019) derived the dynamic axle load spectrum from the static axle load 

spectrum obtained from Weigh-in-Motion (WIM) data. Given the dynamic axle load 

spectrum, pavement performance was estimated for different pavement structures. The 

analysis results indicated that thinner pavement structures were more impacted by dynamic 

loads.  

Goenaga et al. (2019) defined traffic correction factor to consider the relative 

damage induced by rough pavement surface and fitted the traffic correction as a function 

of speed and IRI. It was found that the remaining life reduced by up to 40% if dynamic 

loads were taken into consideration. Therefore, it is important to consider dynamic loads 



24 

 

 

 

in performance analysis and life prediction of asphalt pavement. In the previous researches, 

quarter-car model was used to estimate dynamic tire forces on rough pavement surface 

condition. The complicated interaction between vehicle and pavement was not considered, 

and the impacts of axle type and tire configuration were ignored. 

2.3.2 Effect of Wide-Base Tire on Pavement Response and Damage  

To assess the impacts of the new generation of wide-base tires, FE models have 

been applied to calculate the pavement responses in flexible pavements. FE models are 

efficient at simulating characterization of viscoelastic materials, behavior of nonlinear 

granular material, 3-D contact stresses, moving loads, and layer interaction. Al-Qadi and 

Wang (2012) investigated the influence of wide-base tires on full-depth and thin asphalt 

pavements based on accelerated pavement testing and advanced FE modeling. Dual, the 

first-generation 425, and the new-generation 455 wide-base tires were considered. The 

analysis revealed that the wide-base 425 induced the greatest pavement damage. The wide-

base 455 caused greater bottom-up fatigue cracking and increased potential for subgrade 

rutting than the dual-tire assembly on most tested sections. The effect of wide-base tires on 

fatigue cracking and subgrade rutting potential became less obvious on a stronger 

pavement structure. The FE modeling results indicated that the wide-base 455 tires caused 

less or similar rutting potential in thin asphalt pavement and less near-surface cracking 

potential in thick asphalt pavement. 

Greene et al. (2010) reported that the 445/50R22.5 wide-base tire was found to 

produce more rutting on a dense-graded pavement surface and was shown to produce more 

bottom-up cracking than the dual-tire assembly in a controlled accelerated pavement 

testing program.  Wang et al. (2014) calculated damage ratios between wide-base tire and 
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dual-tire assembly using the pavement response and performance data from previous 

studies. It was suggested that wide-base tire increased the pavement damage on thin asphalt 

pavements but the influence on Interstate highways was limited. 

Hernandez et al. (2016) used the validated FE modeling of the new generation of 

wide-base tires and a conventional dual-tire assembly to evaluate the effects of wide-base 

tires on pavement responses. The pavement responses under wide-base tire were higher 

than those under conventional dual-tire assembly, and the difference decreased as the 

pavement thickness increased. The average percent differences of longitudinal tensile 

strains at the bottom of the asphalt concrete layer were 23.2% and 14.7% for thin and thick 

pavements, respectively. The difference could be used as input into transfer functions to 

indicate potential damage and estimate pavement life when wide-base tires were utilized. 

2.4 Machine Learning Approach for Pavement Performance Prediction 

2.4.1 Support Vector Machine 

Schlotjes et al. (2015) used SVM method to predict the probability of structural 

failure of pavements using the datasets extracted from New Zealand LTPP study of state 

highways. Rutting, fatigue cracking, and shear failure were examined and identified the 

possible cases. It was indicated shear failure was more impacted by the combination of 

traffic, pavement composition, and strength.  

Ziari et al. (2016) analyzed the capability of support vector machine method for 

predicting the pavement condition by comparing five kernel types of SVM algorithm. The 

IRI was considered as the pavement performance index, and nine variables were selected 

in the proposed model. The average traffic, truck traffic, and standard equivalent single-

axle loads were included in the input. 
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Karballaeezadeh et al. (2019) developed a prediction model of remaining pavement 

service life using SVR optimized by particle filter. The temperature of asphalt surface and 

pavement thickness were considered in the proposed model. The model was validated by 

the results of heavy failing weight deflectometer and ground penetrating radar tests. It 

indicated that the prediction accuracy of proposed model was higher than those of support 

vector machine, ANN, and multi-layered perceptron models. 

Wang et al. (2020b) developed a hybrid grey relation analysis and SVR technique 

to predict rut depth of asphalt pavements. Grey relation analysis was applied to select the 

main influential factors, and SVR was employed to conduct prediction of pavement 

performance. The predictive models overcame the drawbacks of the traditional models, 

such as limited explanatary variables, short prediction periods, and overfitting. It was 

concluded that the prediction model established by the proposed approach had better 

operability and higher accuracy which was promising to be used in long-term performance 

prediction.  

Zeiada et al. (2020) used five machine learning techniques, including regression 

tree, ensembles, SVM, Gaussian process regression, and artificial neural network (ANN), 

to model the pavement performance in warm regions using seven parameters including 

relative humidity, average wind velocity, initial roughness, pavement structural capacity, 

traffic volume, average albedo, and average emissivity. 

2.4.2 Random Forest 

 Gong et al. (2018) predicted the IRI of flexible pavements based on the distress 

measurements, climate, traffic, maintenance, and structural data using random forest 

regression. The performance of random forest regression model was compared to that of 
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the linear regression model, and the results indicated that the random forest regression 

model significantly outperformed.  

 Gong et al. (2019a) developed random forest models and determined relative 

importance of explanatory variables to investigate impacts of asphalt mixture properties on 

pavement performance using LTPP data. Totally 17 variables related to the physical 

properties of the HMA and pavement were considered as input of the model, and alligator 

cracking, longitudinal cracking at wheel-path, transverse cracking, rutting, and IRI were 

set as the performance indicators. 

 Marcelino et al. (2019) proposed a systematic approach to the development of 

machine learning models for the prediction of pavement performance in pavement 

management system. Various machine learning methods were supported, and the 

generalization performance was emphasized. A case study was illustrated to predict IRI for 

5 and 10-years using random forest method based on structural, traffic, and climatic data.  

  Fathi et al. (2019) developed a hybrid machine learning method by combining 

random forest and ANN to predict the alligator cracking index based on measured quality 

control parameters. The model was applied to investigate the influence of independent 

variables on alligator cracking index. 

 Jia et al. (2019) employed random forest method to correlate the national 

performance measures to state performance indices and found the IRI generally increased 

with the increase of standard deviation of rut depth. The accuracy of the classification 

model with pavement smoothness and distress indices has higher accuracy than that with 

pavement quality index.  
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2.4.3 Gradient Boost Model 

Inkoom et al. (2019) predicted the highway pavement condition based on the 

previous pavement condition ratings and selected time variant and invariant covariates 

using different machine learning methods, including multivariable linear regression, 

partition, bootstrap forest, gradient boosted trees, K-nearest neighbors, and naïve Bayes 

techniques. It was indicated that these machine learning methodologies were promising in 

predicting the crack of pavement with the coefficient of determination of 0.6-0.9. 

Gong et al. (2019b) enhanced the fatigue cracking predictive performance of 

transfer functions in MEPDG. The transfer functions of alligator cracking and longitudinal 

cracking were considered. The calculated damage indices by MEPDG, pavement thickness, 

material related parameters, climate condition, and truck traffic were set as inputs in the 

models. For both cracking, the predictive performance of proposed gradient boost models 

as found significantly outperformed that of the national transfer functions.  

Barua et al. (2020) utilized gradient boost models to investigate the impact of 

variables on deterioration trend of runway and taxiway pavement at airport. Pavement age, 

material, maintenance and rehabilitation, climate factor, and air traffic loading were 

considered as input variables. The developed models were shown to outperform other 

methods, including linear regression, nonlinear regression, random forest, and ANN, for 

better explanation of both taxiway and runway data. 

Zhang et al. (2020) used gradient tree boosting model to predict asphalt overlay 

performance and identity influential factors based on the field measurement from LTPP 

database. Alligator cracking, longitudinal cracking, transverse cracking, rutting, and IRI 

were selected to indicate asphalt overlay performance. It was suggested that transverse 
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cracking and pre-overlay rutting were important to the development of overlay 

performance. 

Piryonesi and El-Diraby (2020) explored the performance of various classification 

algorithms for the analysis of pavement deterioration using LTPP data by examining the 

capability of handling limited and low-quality data sets and confirming whether better 

configurations would help overcome limitations. The algorithms included naïve Bayes 

classifier, naïve Bayes coupled with kernels, decision trees, logistic regression, random 

forest, gradient boosted trees, and k-nearest neighbors (k-NN). Suggestions were made to 

improve the performance of predictive models, and the effect of data segmentation was 

investigated. It indicated that the data segmentation based on climate region improved the 

accuracy significantly.  
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CHAPTER 3 DYNAMIC LOADS OF VEHICLE DUE TO 

ROUGH PAVEMENT SURFACE 

3.1 Estimation of Dynamic Tire Force 

3.1.1 Truck Modeling 

Dynamic interaction between heavy trucks and pavement surface roughness have 

been investigated using field experiment or vehicle models (Jarvis and Sweatman, 1982; 

Sweatman et al., 1997). In this study, pavement profile data was input in the high-fidelity 

vehicle models available in TruckSim to calculate dynamic loads generated by the vehicle. 

TruckSim software is capable of vehicle dynamics modeling to calculate vertical, 

transverse, and longitudinal tire forces (Mechnical Simulation, 2018). Different pavement 

surface conditions, tire configurations, vehicle suspensions can be considered in the 

simulation. The vehicle model in TruckSim is composed of car body, aerodynamics, 

steering system, pneumatics braking system, power transmission system, wheel and 

suspension system (Sayers and Mousseau, 1990; Gilispie, 1992; Sayers, 2011). TruckSim 

has been successfully used by several previous researchers to estimate dynamic tire forces 

(Chatti and Lee, 2002; Steyn et al., 2013). 

 In order to capture the vehicle-pavement interaction, a comprehensive 14-DOF full 

vehicle model is efficient to study the dynamic behaviors of vehicles in vertical, 

longitudinal, and lateral directions (Shim and Ghike, 2007). Figure 3.1 presents a 

comprehensive 14-DOF full vehicle model which was efficient to study the dynamic 

behaviors of vehicles in vertical, longitudinal, and lateral directions. The model is consisted 

of one sprung mass and four unsprung masses. The vehicle body has translational motions 
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in x, y, and z directions, and angular motions about three axes. Roll, pitch, and yaw motions 

are the rotation about x, y, and z axes, respectively. The wheels have translational motion 

in vertical direction and wheel spin about lateral direction (Yang et al., 2013). In this study, 

a multi-body dynamic tool, TruckSim that was developed by Mechanical Simulation 

Company, was used in this study to simulate vehicle dynamics (Sayers, 2011). 

 

Figure 3.1 14-DOF full vehicle model (Setiawan et al., 2009) 

Table 3.1 shows the axle configuration and major parameters of Class-5 single-unit 

truck used in the analysis. The spacing between Axle 1 and 2 was 5000 mm as shown in 

Figure 3.2. The sprung weight and applied load were 44 kN and 70 kN, respectively, which 

were carried by two single axles. For each individual axle, the suspension type was leaf 

suspension, the tire load rating was 29.4 kN, and the wheel center spacing was 2030 mm. 

For the steering axle (Axle 1), single tire was used at each side. The effective rolling radius 

and the unloaded radius of tires were 510 mm and 520 mm, respectively. The tire width 

was 265 mm with the spring rate of 980 N/mm. For the drive axle (Axle 2), dual-tire 

assembly was equipped and the spacing of two tires was 122 mm. The effective rolling 

radius and unloaded radius of tires were 514 mm and 527 mm, respectively. The tire width 
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was 280 mm with the spring rate of 1290 N/mm. Tire inflation pressure of 724 kPa (105 

psi) was used for all tires. These tire parameters were estimated based on tire manufacture 

data and literature values (Tielking, 1992). Different speeds and pavement surface profiles 

were used in the simulation to calculate dynamic tire forces of the single-unit Class-5 truck. 

Table 3.1 Truck configuration and parameters in TruckSim software 

Truck Configurations Value 

FHWA Vehicle Classification Class-5 (single-unit truck) 

Single Axle 1 

(Steering) 

Tire Type Single 

Effective Rolling Radius 510 mm 

Unloaded Radius 520 mm 

Tire Width 265 mm 

Spring Rate 980 N/mm 

Single Axle 2 

(Drive) 

Tire Type Dual 

Effective Rolling Radius 514 mm 

Unloaded Radius 527 mm 

Tire Width 280 mm 

Spring Rate 1290 N/mm 

 

 

Figure 3.2 Illustration of Class-5 Truck (Texas DOT, 2013) 

Axle 1 

(Steering) 

Axle 2 

(Drive) 

5000 mm 



33 

 

 

 

3.1.2 Pavement Profile Data 

The pavement profile data was extracted from LTPP database (Elkins et al., 2016). 

The ProVAL software was used to estimate the IRI value for each selected pavement 

segment (The Transtec Group, 2016). The moving average window of profile 

measurements was 0.30 m (0.98 ft), and the pavement surface elevation data was stored at 

0.150 m (0.49 ft) intervals. The total length of each pavement segment was 152.4 m 

composed of 1017 points. In the study, three pavement profiles data (profile 1, 2, and 3 

summarized in Table 3.2) collected in 1996, 1999, and 2003 at the same pavement section 

located in Nevada (NV) (LTPP Section ID: 320201) were selected. Figure 3.3 presents the 

comparison of pavement surface profile 1, 2, and 3 at the left and right wheel paths, 

respectively. It can be seen that the elevations of profile 3 changed more frequently and 

significantly than those of profile 1. As shown in surface profile 1, the pavement surface 

profiles at the left and right wheel paths were similar. However, the surface profile at right 

wheel path deteriorates more than that at left wheel path after seven years, as shown in 

profile 3. 

Table 3.2 IRI of pavement section (320201) in Nevada measured at different years 

Profile # Year Left IRI 

(m/km) 

Right IRI 

(m/km) 

Overall IRI 

(m/km) 

1 1996 0.89 1.13 1.01 

2 1999 1.57 2.52 2.05 

3 2003 1.63 4.55 3.09 

 

In pavement management system, the IRI values of 1.50 mm/km (95 inch/mile) and 

2.68 mm/km (170 inch/mile) were usually used as the thresholds of pavement condition 

ranging from good, fair/mediocre, to deficient/poor rating (Wang et al., 2015b). The overall 



34 

 

 

 

IRI values of profile 1, 2, and 3 used in this study were found to be 1.01 mm/km (64 in/mile), 

2.05 mm/km (130 in/mile), and 3.09 mm/km (196 in/mile), which could represent good, 

fair, and poor pavement surface conditions, respectively.  
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(c) 

Figure 3.3 Surface profiles used in the analysis: (a) profile 1; (b) profile 2; and (c) profile 

3 at the selected LTPP section 

3.1.3 Dynamic Tire Force 

The full-vehicle model in TruckSim software was used to simulate vertical tire 

forces generated by moving truck. Figure 3.4 shows the variation of vertical tire force with 

time (distance) under the left front tire (Fz_L1), left-rear tire (Fz_L2), right-front tire 

(Fz_R1), and right-rear tire (Fz_R2) of Class-5 truck, respectively, when the two-axle 

single unit truck (Class 5) travels at 80 km/h on pavement surface profile 1, 2, and 3, 

respectively. The vertical tire forces generated by rear tires were found much greater than 

those generated by front tires due to the effect of payload. The vertical forces under left 

and right sides of tires were found similar on profile 1; while some differences were 

observed on surface profile 3. This trend was closely associated with the surface profiles 

as shown in Figure 3.3. 
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(c) 

Figure 3.4 Vertical tire forces under front and rear tires at 80 km/h on (a) profile 1 (IRI= 

1.03 mm/km); (b) profile 2 (IRI= 2.05 mm/km); and (c) profile 3 (IRI= 3.09 mm/km) 

Figure 3.5 shows the comparison of dynamic loads at the speeds of 32 km/h (20 

mph), 80 km/h (50 mph), and 112 km/h (80 mph) under the right rear axle. Due to the fixed 

length of pavement section, the time histories of dynamic loads at various speeds were 

different. The up-and-down variations of dynamic loads were found dramatically increased 

as vehicle speed increased from 32 km/h to 112 km/h. This is reasonable because the axle 

vibration will increase with speed at the same excitation of surface irregularities.  
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Figure 3.5 Comparison of dynamic loads at different speeds (IRI=3.09m/km) 

3.2 Effect of Axle Load on Dynamic Loads 

3.2.1 Vehicle Dynamics Simulation 

The dominant vehicle class in truck traffic varies depending on the functional 

classification of road. Previous studies on traffic clustering have found that most of single 

axles were from vehicle Class-5 (two-axle, single unit) and Class-9 (five-axle, single trailer) 

vehicle, and most tandem axles were from  Class-9 vehicle, while most tridem axles were 

from Class-7 vehicle (four or more axles, single unit) (Wang et al., 2015c; Jasim et al., 

2019). Thus, Class-5, Class-7, and Class-9 vehicles were considered as the typical truck 

configurations in this study.  

The truck configuration of Class-5 two-axle single-unit truck was illustrated in 

Figure 3.2, and the loads at axle 1 and 2 were 41 kN and 34 kN, respectively. The axle load 

configuration of Class-7 four-axle single-unit truck and Class-9 five-axle single-unit truck 

were illustrated in Figure 3.6 (a) and (b), respectively. The tire parameters summarized in 

Table 3.1 were used for three typical truck configurations in TruckSim simulation.  
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(a)  

 

 

(b) 

Figure 3.6 Illustration of axle configurations for (a) Class-7 and (b) Class-9 trucks (after 

Texas DOT (2013) 

3.2.2 Dynamic Loads Due to Pavement Roughness 

The dynamic loads induced by different trucks on different pavement roughness 

conditions were estimated using the corresponding vehicle models in TruckSim. Due to the 

higher levels of surface roughness, the dynamic loads under the tires at right side were 

found greater than those under the tire at left side and thus used in the analysis. For tandem 

4500 mm 1270 mm 1270 mm 

Axle 1 Axle 2 Axle 3 Axle 4 

5000 mm 1270 mm 6854 mm 1288 mm 

Axle 1  Axle 2 Axle 3 Axle 4 Axle 5 

34kN 41kN 

52kN 64kN 64kN 49kN 49kN 

113kN 88kN 85kN 81kN 
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and tridem axles, the load under each axle was found similar, and the axle having the 

greatest load was selected to calculate pavement responses. Therefore, the second axle of 

the front tandem axle in Class-9 truck (Fz_R3) and the first axle of the tridem axle in Class-

7 truck (Fz_R2) were selected. Figure 3.7 shows the calculated dynamic loads in time 

domain under the selected axle loads on different pavement surface profiles. As expected, 

the variation of dynamic loads increased with the change of IRI from 1.01 m/km to 3.09 

m/km. On the other hand, it was found that the median values of dynamic loads along the 

pavement section were very close to the static axle loads. 
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(c) 

Figure 3.7 Dynamic tire forces: (a) Class-5 truck (Fz_R2); (b) Class-7 truck (Fz_R2); and 

(c) Class-9 truck (Fz_R3) at 48 km/h 

Figure 3.8 shows the calculated DLCs on three pavement roughness conditions. It 

was found that DLCs increased as pavement roughness increased but decreased as the 

applied axle load increased. The finding was consistent with the reported in previous study 

(Muka, 2017). It was expected that the variation of dynamic loads would impact the 

pavement responses significantly on rough pavements.  
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(c) 

Figure 3.8 DLCs on different pavement surface conditions: (a) Class-5 truck (Fz_R2); (b) 

Class-7 truck (Fz_R2); and (c) Class-9 truck (Fz_R3) at 48 km/h 

3.3 Effect of Wide-Base Tire on Dynamic Loads 

3.3.1 Truck Modeling with Wide-Base Tire 

Previous research studies have revealed that wide-base tire would produce less 

dynamic component of pavement load than dual-tire assembly because of the less load 

transmissibility of wide-base tire (Tielking, 1994). The wide-base 425/65R22.5 tire 

generated 10 to 12 % lower dynamic load coefficient (DLC) as compared to 11R22.5 dual-

tire assembly (Kulakowski and Kenis, 1995; Streit et al., 1998). Trangsrud et al. (2004) 

investigated the dynamics of a tractor semi-trailer traveling on a random road profile using 

dual-tire assembly and wide-base tire. Their initial results indicated that the longitudinal 

and vertical acceleration of axle was reduced in certain frequency ranges for the truck with 

wide-base tires.  

A Class-5 two-axle single-unit truck and a Class-9 five-axle single-unit truck were 

used to calculate and compare the dynamic tire forces generated by dual tire assembly and 

wide-base tire, as shown in Figure 3.2 and Figure 3.6(b), respectively. For the Class-5 truck, 
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the sprung mass and payload were 44 kN and 70 kN, respectively. For the Class-9 truck, 

the sprung mass and payload were 120 kN and 162 kN, respectively. All the suspension 

type is leaf. For Class-5 truck, the static loads of Axle 1 ad Axle 2 were 46 kN and 80 kN. 

For Class-9 truck, the static loads of Axle 1-5 were 52 kN, 75 kN, 75 kN, 57 kN, and 57 

kN, respectively. 

Table 3.3 shows the parameters of conventional tires and wide-base tire 

(445/50R22.5) used in the analysis. The spring rates of tires were calculated based on static 

load deflection measurements and utilized in the previous work on vehicle dynamics 

simulation (Law et al., 2002).  For the steering axle (Axle 1), the single tire was equipped. 

The effective rolling radius and unloaded radius were 510 mm and 520 mm, respectively. 

The tire width was 275 mm, and the spring rate was 932 N/mm. For the drive axles (Axle 

2, 3, 4, and 5), dual tire assembly or wide-base tires were equipped. For the conventional 

tire at drive axle, the effective rolling radius and unloaded radius of tires were 514 mm and 

527 mm, respectively. The tire width was 275 mm, and the spring rate was 829 N/mm.  For 

the wide-base tire at drive axle, the effective rolling radius and unloaded radius of tires 

were 493 mm and 514 mm, respectively. The tire width was 445 mm, and the spring rate 

was 1197 N/mm.  
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Table 3.3 Tire configuration and parameters applied in the vehicle simulation 

Tire Configuration and Parameters Value 

Single Tire (steering 

axle) 

Effective Rolling Radius 510 mm 

Unloaded Radius 520 mm 

Tire Width 275 mm 

Spring Rate 932 N/mm 

Dual Tire Assembly 

(per tire) (drive axle) 

Effective Rolling Radius 514 mm 

Unloaded Radius 527 mm 

Tire Width 275 mm 

Spring Rate 829 N/mm 

Wide-Base Tire  

(drive axle) 

Effective Rolling Radius 493 mm 

Unloaded Radius 514 mm 

Tire Width 445 mm 

Spring Rate 1197 N/mm 

3.3.2 Dynamic Tire Force Comparison  

Figure 3.9 shows the dynamic tire forces generated on different pavement 

roughness conditions under dual-tire assembly and wide-base tire at 48 km/h. The tire force 

of rear axle on right side (Fz_R2) was shown for Class-5 truck, and the tire force of front 

tandem axle on right side (Fz_R3) was illustrated for the Class-9 truck. Since the maximum 

dynamic tire forces generated by the truck corresponded with the irregularities in pavement 

profiles, the maximum dynamic tire forces generated by different tire configurations were 

expected to be induced at similar locations. This indicates the spatially repeatability of 

dynamic loads.  
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(a)                                                                 (b) 

 

(c)                                                                 (d)         

Figure 3.9 Dynamic loads on different pavement surface conditions at 48 km/h: (a) dual-

tire assembly (Class-5 truck); (b) wide-base tire (Class-5 truck); (c) dual-tire assembly 

(Class-9 truck) (d) wide-base tire (Class-9 truck) 

Figure 3.10 shows the power spectral density functions of dynamic tire forces on 

different pavement roughness conditions for Class-9 truck at 48 km/h. The main peak was 

observed at approximately 2.5 Hz which was determined by the body-bounce mode of 

vibration (Cebon, 1999). The amplitude differences of dynamic tire forces became less 

significant on rougher pavement condition, especially at the low frequency range of 0-5 

Hz. Although the maximum dynamic tire forces increased as pavement surface roughness 
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levels increased in time domain, the increase trend in frequency domain was affected by 

truck configuration, pavement roughness, and speed.  

 

(a)                                                                    (b) 

 

(c) 

Figure 3.10 Power spectral density of dynamic tire forces for dual-tire assembly and 

wide-base tire on different pavement roughness conditions at 48 km/h (Class-9 truck): (a) 

IRI = 1.01 m/km; (b) IRI = 2.05 m/km; (c) IRI = 3.09 km/h 

The dynamic tire forces of dual-tire assembly and wide-base tires were estimated 

using the full-vehicle model for Class-5 and Class-9 trucks. Figure 3.11 presents the 

calculated DLCs of dual-tire assembly and wide-base tire at different speeds on three 

pavement roughness conditions. It was found that the DLCs increased as the pavement 

roughness condition or vehicle speed increased. For Class-5 truck, the DLCs of dynamic 
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loads ranged from 0.022 to 0.133 under dual-tire assembly and ranged from 0.024 to 0.125 

under wide-base tire. For Class-9 truck, the ranges of DLCs were 0.018-0.153 and 0.015-

0.146 for dual-tire assembly and wide-base tire. The DLCs of wide-base tire were found 

smaller than those of dual-tire assembly and their differences became more significant on 

rougher pavement roughness.  

 

(a)                                                                 (b) 

 

(c)                                                          (d) 

Figure 3.11 Calculated DLCs of dynamic tire forces: (a) dual-tire assembly (Class-5 

truck) (b) wide-base tire (Class-5 truck); (c) dual-tire assembly (Class-9 truck); (d) wide-

base tire (Class-9 truck) 

3.4 Summary 

In this chapter, a full-vehicle model was applied to simulate vehicle dynamics and 

estimate dynamic tire forces at different vehicle speeds on three pavement surface 

y = 0.0002x + 0.0242

y = 1E-04x + 0.054

y = 0.0006x + 0.0659

0.00

0.04

0.08

0.12

0.16

20 40 60 80 100 120

D
L

C

Speed (km/h)

1.01 m/km 2.05 m/km 3.09 m/km

y = 0.0003x + 0.0196

y = 0.0001x + 0.0465

y = 0.0006x + 0.0539

0.00

0.04

0.08

0.12

0.16

20 40 60 80 100 120

D
L

C
Speed (km/h)

1.01 m/km 2.05 m/km 3.09 m/km

y = 0.0003x + 0.0194

y = 0.0005x + 0.0302

y = 0.0011x + 0.0345

0.00

0.04

0.08

0.12

0.16

20 40 60 80 100 120

D
L

C

Speed (km/h)

1.01 m/km 2.05 m/km 3.09 m/km

y = 0.0004x + 0.0075

y = 0.0005x + 0.0185

y = 0.001x + 0.0318

0.00

0.04

0.08

0.12

0.16

20 40 60 80 100 120

D
L

C

Speed (km/h)

1.01 m/km 2.05 m/km 3.09 m/km



48 

 

 

 

conditions. The variation of dynamic loads caused by rough pavement surface conditions 

was characterized by DLCs. The dynamic loads under the single, tandem, and tridem axles 

of typical truck configurations were estimated. The impact of axle loads on dynamic loads 

on three pavement surface conditions was investigated for each truck configuration. The 

dynamic loads generated by wide-base tire and dual-tire assembly were estimated and 

compared.     
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CHAPTER 4 ANALYSIS OF PAVEMENT RESPONSE UNDER 

DYNAMIC LOADS WITH STOCHASTIC AMPLITUDE 

4.1 Principle of Impulse Response Method 

4.1.1 Theoretical Background 

The process of calculating pavement responses using the impulse response method 

(Newland (1985) is illustrated in Table 4.1. 

 

Figure 4.1 Flowchart of the impulse response method 

In mathematics, convolution is the mathematical operation of two functions (f and 

g); it produces the third function, that is typical viewed as a modified version of the amount 

that one of the original functions is translated. If f(t) and g(t) are piecewise continuous 

functions, then the convolution integral of f(t) and g(t) is expressed in Eq. 4-1. 
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(convolutional 

integral) 

Divided by load 

input in wavenumber 

domain 

Equivalent elastic 

modulus of asphalt 

mixture 



50 

 

 

 

( )( ) ( ) ( )
0

*
t

f g t f t g t d = −                                         (4-1) 

The dynamic response of pavement structure, which consisted of multiple elastic 

or viscoelastic layers, subjected to a force input varying with time can be obtained by the 

convolution integral, as shown in Eq. 4-2 (Newland, 1985). 

( ) ( ) ( )
0

t

y t F h t d  = −                                             (4-2) 

Where, y(t) is the pavement response at time t; F() is the input of vehicle loads at time ; 

and h(t) is the pavement response to a unit impulse load. 

The convolution integral can be transformed from time domain to frequency 

domain to convert the convolution integral to the format of simple multiplication, as shown 

in Eq. 4-3. 

( ) ( ) ( ) hFf
~~~

=                                              (4-3) 

Where, ( )f  is response function in the frequency domain; ( )F  is input function in 

the frequency domain; and ( )h  is the frequency response function (FRF). 

For the case where the pavement structure geometry is invariant in the direction y 

of the moving load, the dynamic responses can be derived using Eq. 4-4: 

( ) ( )0 0 0 0 0 0( , , , ) , , , , , ,
t

y x y z t F x y z t h x y z t d 
−

= −                            (4-4) 

The similar double forward Fourier transform can be used to efficiently compute 

dynamic responses by transforming from the time-spatial domain (x, y, z, t) to the 

frequency-wavenumber domain (x, ky, z, ), as shown in Eq. 4-5.  

( ) ( ) 2

0 0 0 0 0 0( , , , ) , , , , , , yik yit

y y y yy x k z F x k z k v h x k z e e dtdy   


−

−
= −           (4-5) 
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This formula can be further elaborated, yielding the following solution in the 

frequency-wavenumber domain using Eq. 4-6. 

( ) ( ) ( )0 0 0 0 0 0, , , , , , , , ,y y yy x k z h x k z F x k z  =                             (4-6) 

To obtain the dynamic responses of the linear system to time-varying loads in time-

spatial domain, the double inverse Fourier transform can be applied, as shown in Eqs. (4-

7) and (4-8): 

( ) ( )0 0 0 0, , , , , , yik y

y yy x y z f x k z e dk 
 −

−
=                                      (4-7) 

( ) ( ) 2

0 0 0 0, , , , , , i ty x y z t f x y z e d  


−
=                                        (4-8) 

When the response analysis is performed in frequency domain, the pavement 

response, ( ), , ,py x y z  , to the input of vehicle load, ( ),,,
~~

zyxF , is in spatial-frequency 

domain. The frequency response function or transfer function, including strain, stress, and 

displacement, is obtained by dividing the response by the input of vehicle loading in the 

frequency-wavenumber domain using Eq. 4-9. In order to derive frequency response 

function in term of matrices, harmonic loading is applied on pavement surface. 

( )
( )

( )
0 0

0 0

0 0

, , ,
, , ,

, , ,

p y

y

y

y x k z
h x k z

F x k z





=                                         (4-9) 

According to the function above, the calculation should be accomplished in 

frequency domain, and the harmonic loading need to be transformed to frequency domain 

using the Fourier transform. The Fourier transform of harmonic loading can be easily 

obtained using MATLAB. Usually, FFT is used to obtain the curve of the Fourier transform 

of harmonic loading, and hamming window is applied to eliminate spectral leakage of the 

data. 
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4.1.2 Non-uniform Tire Contact Stresses 

The non-uniform distribution of vertical contact stresses under dynamic loads were 

calculated based on the tire force (calculated from TruckSim) and tire pressure (724 kPa 

here). The tire contact stress distribution patterns were described using the peak stress at 

each tire rib and the non-uniform distribution along the contact length, which were obtained 

from comprehensive analysis of tire-pavement interaction in previous work (Al-Qadi and 

Wang, 2011; Wang et al., 2012a). The peak tire contacts stresses in vertical direction at 

each tire rib were calculated using Eq. (4-10) -(4-12), based on the applied load on tire and 

tire pressure. An elliptic function was used to describe the variation of vertical contact 

stresses in the longitudinal direction of contact patch. 

Center rib:      qpeak= 317+1.23p+1.35P                                  (4-10) 

Intermediate rib:       qpeak= 100+1.20p+1.27P                                (4-11) 

Edge rib:       qpeak= 12+0.48p+14.84P                                (4-12) 

Where, qpeak is peak contact stress at each tire rib, in kPa; p is tire pressure, in kPa; and 

P is total load on tire, in kN. 

Figure 4.2 shows the vertical tire contact stresses along longitudinal contact length 

(32 kN on dual-tire assembly). It is noted that the peak vertical contact stresses at tire center 

area (center and intermediate ribs) are much greater than tire pressure, while the one at 

edge rib is much smaller. This certainly proves the non-uniform distribution pattern of tire 

contact stresses.  
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Figure 4.2 Vertical tire contact stresses under each tire rib 

4.1.3 Validation of Frequency Response Function 

Hardy and Cebon (1989) measured a set of transverse strain responses on an 

instrumented road and used the Fourier transform to convert these measured impulse 

responses to harmonic response functions. The measurement was conducted using an 

instrumented 4-axle articulated vehicle on the Transport Research Laboratory (TRL) test 

track in the United Kingdom. The instrumented pavement was consisted of a 50-mm 

wearing course of hot-rolled asphalt, a 150-mm base layer of dense bituminous macadam, 

a 300-mm subbase layer of crushed granite, and a 100-cm clay layer on a subgrade. The 

detailed material properties for the layered pavement structure of the instrumented section 

are summarized in Table 4.1. The damping parameters were used along elastic modulus to 

consider viscous damping in the pavement. 
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Table 4.1 Material parameters of the instrumented pavement section at TRL test track 

(Hardy and Cebon, 1992) 

Material 
Elastic modulus 

(MPa) 

Damping 

parameter 

(sec/rad) 

Poisson’s 

ratio 

Density 

(kg/m3) 

Hot Rolled Asphalt 3000 5x10-3 0.35 1000 

Dense Bituminous Macadam 3000 5x10-3 0.35 1000 

Crushed Rock 140 5x10-3 0.40 1500 

Clay 140 1x10-4 0.45 1000 

Hoggin 140 1x10-4 0.45 1000 

 

Instead of the layered half-space simulation used by Hardy and Cebon (1992), an 

advanced 3-D FE model was developed to calculate the frequency response functions of 

asphalt pavement in this study. The FE model was developed using Abaqus 6.10, 

commercial FE software. To be consistent with the model developed by Hardy and Cebon 

(1992), the pavement layers were considered as elastic material with damping parameter 

which was loss factor of material. The loss factor has positive correlation with damping 

ratio (Nashif et al., 1985; Graesser and Wong, 1992), which can be used to estimate 

Rayleigh damping coefficients in FE model (Chopra, 2001). 

In order to simulate tire loads more realistically, the non-uniform tire contact stress 

distribution in the contact area was considered. The tire contact stress patterns were 

described using the peak stress at each tire rib and the non-uniform distribution along the 

contact length (Al-Qadi and Wang, 2011; Wang et al., 2012) . In the FE model, the element 

thicknesses for asphalt layers and base layers were selected at 27.5 mm and 42.3 mm, 

respectively. The widths of the elements in the loading area were in the range of 10-16 mm, 
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depending on the tire rib size. The lengths of the elements in loading area were 40 mm in 

the vehicle moving direction. These element sizes have been used in the implicit dynamic 

analysis of pavement response (Wang and Al-Qadi, 2013), which satisfied the requirement 

of maximum element size determined from the minimum wavelength of elastic waves 

propagation in the pavement (Lysmer and Kuhlemeyer, 1969). The location of infinite 

boundaries was determined via sensitivity analysis so that the changes of strains in the 

asphalt layer were less than five percent with the domain sizes increased. The finite 

dimension size was 4.8×3.2×4.3 m (length × width × depth) with an in-plane loading area 

of 0.5×2.6 m (length × width), which was selected to balance computation accuracy and 

time. Figure 4.3 (a) shows the 3D FE model developed for steady-state dynamic analysis. 

Figure 4.3 (b) presents the non-uniform distribution of loads applied on the 3-D FE model 

in steady-state dynamic analysis 

 

(a) 
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(b) 

Figure 4.3 (a) 3D FE model for steady-state dynamic analysis; (b) Non-uniform 

distribution of loads applied on the 3-D FE model in steady-state dynamic analysis 

In the steady-state analysis, the natural frequencies and corresponding mode shapes 

of the pavement system were first derived in the step of natural frequency extraction. 

Afterwards, a direct-solution steady-state dynamic (SSD) analysis step was defined in FE 

model to calculate steady-state dynamic linearized response of a system to harmonic 

excitations. In steady-state dynamic analysis, the response of pavement structure subjected 

to dynamic loading is assumed to be a linear combination of the lowest eigenmodes, which 

is similar to the procedure of modal dynamics, except that the load is harmonic in nature 

and the steady state response is of interest. The steady-state amplitudes and phases of 

pavement responses for all the elements and nodal variables in the pavement system due 

to harmonic excitations at the given frequencies were obtained in SSD analysis. 

The predicted frequency response functions of transverse strains at the bottom of 

asphalt layer using the proposed method were compared to the measured and simulated 
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results reported by Hardy and Cebon (1992), as shown in Figure 4.4. Since the measured 

and predicted frequency response functions at the frequency of 0-50 Hz were presented in 

Hardy and Cebon (1992), the same range of frequency was selected in this study. The 

comparisons were conducted at the bottom of asphalt layer directly under the load and at 

1.8 m away from the load, respectively. The results showed that the transverse strains at 

the bottom of asphalt layer under the loading area matched the simulated and measured 

results presented in the previous work. For the transverse strains generated at a distance of 

1.8m away from the loading area, the results from the SSD analysis were similar to the 

simulated results by Hardy and Cebon (1992), although some discrepancies were observed 

with field measurements as the loading frequency increased. Therefore, the comparisons 

indicate that the developed 3-D FE model can be used to estimate frequency response 

functions of asphalt pavement. 

 

Figure 4.4 Frequency response functions of transverse strains obtained using the 

proposed FE model and compared to measured and simulated results in Hardy and Cebon 

(1992) 
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4.2 Pavement Test Section from LTPP 

4.2.1 Field Truck Testing 

The LTPP Specific Pavement Studies (SPS) are intensive studies of specific 

variables on pavement performance including traffic loading, structure design, 

maintenance treatment, and rehabilitation strategy. The pavement sections in Ohio SPS-1 

and SPS-2 were instrumented to investigate dynamic interaction between pavements and 

truck axle loads, validate dynamic loading models, and establish mechanistic pavement 

performance prediction models (Agurla and Lin, 2015). The dynamic load response (DLR) 

data was collected during 1996-1997 from forty pavement test sections located along the 

3.5 mile of US-23 in Delaware County north of Columbus, Ohio. All the data were 

extracted from LTPP InfoPAVE database. 

A Class-6 truck consisted of a single steering axle and a tandem axle was utilized 

in the DLR tests. The tire pressure was 724 kPa, and the tire type was 10R22. The rear 

tandem axle loading was approximately 146.1 kN (32.8 kips) which was smaller than the 

maximum weight limit for a short tandem axle as regulated by Ohio Department of 

Transportation. The test pavement section was equipped with strain gauges (Dynatest®) in 

transverse and longitudinal directions, linear variable differential transformers, and 

pressure cell sensors. Strain responses under test truck were recorded with multiple peaks. 

The first peak value reflected the tensile strain induced by the front axle, and the successive 

two peak values were corresponding to the tensile strains under the rear tandem axle. It is 

noted that the quality of measured transverse strain under the AC layer was found not good 

and thus not used in this study (Ohio Department of Transportation, 2020).  
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Table 4.2 and Table 4.3 summarize the average and standard deviation values of 

longitudinal tensile strains measured under front and rear axles of tandem axle at LTPP 

Ohio SPS-1 section (390108) at 47 km/h and 62 km/h, respectively. Five and six running 

tests were conducted at 47 km/h and 62 km/h within two hours at 3 pm on August 2, 1996. 

These strains were measured by three strain gauges (DYN 11, 13, 15) at the bottom of 

asphalt layer that were located at the interval of 4 ft along the pavement section. The 

sensors were buried at the right wheel path, which was 30 inches from the right pavement 

edge. The average tensile strains under the first axle of the rear tandem axle at 47 km/h 

were found in the range of 102-148 micro; while the average tensile strains under the 

second axle of the rear tandem axle were found between 103-153 micro between different 

runs and locations. The average tensile strains under the first axle of the rear tandem axle 

at 62 km/h were found in the range of 121-136 micro; while the average tensile strains 

under the second axle of the rear tandem axle were found between 100-164 micro between 

different runs and locations. The overall average of the rear tandem axle at 47 km/h and 62 

km/h were close, and the slight difference may be caused by the increase of dynamic tire 

force at 62 km/h. The considerable variations of tensile strains between different strain 

gauges could be caused by two reasons. The first was that the induced dynamic loads varied 

due to surface profile at different locations; the second was that the strain gauge could not 

be directly under wheel path. On the other hand, the slight variation of strains between 

different runs were observed for each strain gauge. This may be caused by the wheel 

wandering effect and different surface profiles in the wheel path of test truck. 
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Table 4.2 Measured tensile strains under front and rear axles of tandem axle at LTPP 

Ohio SPS-1 section (390108) at 47 km/h (unit: micro) 

Statistical  

variable 

DYN11 strain DYN13 strain DYN15 strain Overall 

Front Rear Front Rear Front Rear Front Rear 

Average 102 118 137 103 148 153 129 125 

Standard 

deviation 
7.5 4.0 4.8 11.4 10.5 10.5 22 23 

 

Table 4.3 Measured tensile strains under front and rear axles of tandem axle at LTPP 

Ohio SPS-1 section (390108) at 62 km/h (unit: micro) 

Statistical  

variable 

DYN11 strain DYN13 strain DYN15 strain Overall 

Front Rear Front Rear Front Rear Front Rear 

Average 136 100 129 123 121 164 129 129 

Standard 

deviation 
5.8 5.1 8.4 8.1 10.4 4.6 10 28 

 

4.2.2 Pavement Structure and Material Properties 

The selected LTPP pavement section (390108) was consisted of an asphalt mixture 

layer of 165.1 mm, an asphalt-treated base layer of 101.6 mm, and an unbounded aggregate 

base layer of 203.2 mm laid on the subgrade. The asphalt mixture layer could be divided 

into 43-mm wearing course and 122.1-mm binder course. Asphalt concrete was considered 

as linear viscoelastic material. The relaxation moduli were converted based on the creep 

compliance data in lab test from LTPP database using the approximate method, in which 

both the relaxation modulus E(t) and creep compliance D(t) were formulated as a power-

law based analytical form, as shown in Eq. 4-13 to 4-15 (Park and Kim, 1999).  

𝐸(𝑡) = 𝐸1𝑡−𝑛                                                (4-13) 

𝐷(𝑡) = 𝐷1𝑡𝑛                                                  (4-14) 
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𝐸(𝑡)𝐷(𝑡) =
𝑠𝑖𝑛𝑛𝜋

𝑛𝜋
                                              (4-15) 

Where E1, D1, and n are positive constants.  

Based on the assumption of constant Poisson’s ratio, shear and bulk moduli of 

asphalt concrete were calculated and fitted into Prony series of the generalized Maxwell 

solid model, as expressed by Eq. 4-16 and 4-17 (Ferry, 1980). The temperature dependency 

of relaxation modulus was characterized using time-temperature superposition principle. 

Williams-Landell-Ferry (WLF) function was applied to compute the time-temperature shift 

factor, as expressed by Eq. 4-18 (Dassault Systèmes, 2014). Table 4.4 shows the Prony 

series parameters for asphalt mixture at the reference temperature of 5°C, which can be 

converted to the analysis temperature of 21°C. 

𝐺(𝑡) = 𝐺0 [1 − ∑ 𝐺𝑖(1 − 𝑒
−𝑡

𝜏𝑖
⁄ )𝑁

𝑖=1 ]                                          (4-16) 

𝐾(𝑡) = 𝐾0 [1 − ∑ 𝐾𝑖(1 − 𝑒
−𝑡

𝜏𝑖
⁄ )𝑁

𝑖=1 ]                                          (4-17) 

Where, G is shear modulus; K is bulk modulus; t is reduced relaxation time; G0 and K0 are 

instantaneous shear and volumetric elastic moduli; Gi, Ki, and τi are Prony series 

parameters; N is the number of terms in the equation; and e is base of natural logarithm. 

𝑙𝑜𝑔(𝑎𝑇) = −
𝐶1(𝑇−𝑇0)

𝐶2+(𝑇−𝑇0)
                                                   (4-18) 

Where, T0 is reference temperature; T is actual temperature corresponding to the shift 

factor; and C1, C2 are regression parameters. 
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Table 4.4 Prony series parameters for the asphalt mixtures at AC layer at reference 

temperature of 5°C 

Prony 

Series 

Parameters 

i 
Wearing Course Binder Course 

Ei i Ei i 

1 0.644 0.02 0.474 0.013 

2 0.104 1.05 0.211 0.164 

3 0.104 1.06 0.158 2.090 

4 0.100 19.47 0.114 37.695 

5 0.043 545.72 0.038 495.339 

WLF 

function 

parameters 

C1 51.2 51.2 

C2 389.7 389.7 

 

Figure 4.5 shows the creep compliance of the asphalt mixture measured at the 

temperatures of -10°C, 5°C, and 25°C from LTPP database. Figure 4.6 illustrates the 

measured converted relaxation modulus and the fitted relaxation modulus using Prony’s 

series of the asphalt mixtures at the reference temperature of 5°C. 

 

(a)                                                     (b) 

Figure 4.5 Creep compliance of the asphalt mixture at (a) wearing course; and (b) 

binder course 
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(a)                                                                   (b) 

Figure 4.6 The converted relaxation modulus of the asphalt mixture at (a) wearing course; 

and (b) binder course (temperature = 5°C) 

The base layer of the selected section was asphalt-treated (open-graded, hot-laid, 

central plant mix AC). The Young’s modulus of asphalt-treated base for flexible pavement 

sections in LTPP was 1882 MPa (Zhang, 2014). The resilient modulus of aggregate base 

layer (untreated) and subgrade were 178.5 MPa and 84.5 MPa, respectively, as recorded in 

the LTPP database. 

4.3 Analysis of Dynamic Pavement Responses 

4.3.1 Road Surface Profile and Dynamic Load 

The pavement surface profiles on LTPP Ohio SPS-1 section (390108) were used 

for model validation. These pavement surface profiles were corresponded to the pavement 

section where pavement responses under dynamic loading were measured. The moving 

average of the profile measurements was 0.30 m, and the pavement surface elevation data 

was stored at 0.15-m intervals (Elkins et al., 2016). The total length of selected test section 

was 152.4 m and thus it was composed of 1,017 points. Figure 4.7 presents the pavement 

surface profiles measured on August 14, 1996. The IRI of the left and right wheel path 
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were 52 m/km (0.83 in./mile) and 60 m/km (0.95 in./mile), respectively. The overall IRI 

was 56 m/km, which indicated the test section was in good condition based on the 

recommended IRI thresholds for categorizing different pavement conditions (U.S. 

Department of Transportation, 2016).  

 

Figure 4.7 Pavement surface profiles on LTPP Ohio SPS-1 section (390108) 

TruckSim was used to compute dynamic tire loads generated by the moving truck. 

TruckSim is commercial software that can be used to simulate full truck behavior and 
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the applied load on the tandem axle of test truck. The suspension type was leaf suspension 

and dual tires (11R22.5) was applied for the tandem axle (Tielking, 1992). The truck speed 

was 47 km/h (30 mph) which equaled to the measured vehicle speed in the field test. The 

sampling interval of tire force was taken at the interval of 0.01 second. 

Figure 4.8 (a) shows the time-varying vertical forces under the left side of the front 

axle of tandem axle (Fz_L2), the left side of the rear axle of tandem axle (Fz_L3), the right 

side of the front axle of tandem axle (Fz_R2), and the right side of the rear axle of tandem 

axle (Fz_R3) as the test truck moving over the pavement section at 47 km/h (30 mph). The 

vertical tire forces under the first axle of tandem axle were observed slightly greater than 

those under the second axle, which was closely associated with the truck configuration and 

total truck weight. Vibration signals in time domain can be related to signals in frequency 

domain using PSD theorem, which is a function describing the power distribution of a 

signal over a frequency range, also called energy density (National Semiconductor, 1980). 

Figure 4.8 (b) illustrates the spectral analysis of dynamic loads transformed from time 

domain to frequency domain (PSD). The energy density induced by the front axle of 

tandem axle was greater than that of the rear axle, which was consistent with the trend in 

time domain.  
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(a)   

 

(b) 

Figure 4.8 Dynamic loads under tandem axle in (a) time domain; and (b) frequency 

domain (PSD) 
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4.3.2 Determination of Equivalent Elastic Modulus of Asphalt Layer 

In the impulse response method, steady state response analysis requires elastic 

material properties. Considering the viscoelastic nature of asphalt concrete, the equivalent 

elastic modulus of asphalt concrete was determined based on the equivalent loading 

frequency that is defined as the reverse of loading time at the mid-depth of asphalt layer.  

The loading time was calculated from the pulse time of compressive stress under moving 

load (Al-Qadi et al., 2008a). Figure 4.9 (a) presents the calculated vertical stress at the 

bottom of AC layer, and Figure 4.9 (b) shows the loading time calculation based on the 

results of the approaching-leaving model at the temperature of 21°C. The calculated 

loading time was 0.158 s, and the loading frequency was 6.37 Hz for the speed of 48 km/h. 

The equivalent modulus of asphalt mixture at wearing and binder courses were found to be 

1828 MPa and 2143 MPa, respectively.  

 

(a)                                                       (b) 

Figure 4.9 (a) Calculated vertical stress at the bottom of AC layer; (b) loading time 

calculation based on the results of the approaching-leaving model 
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4.3.3 Results of Calculated Pavement Responses  

The same FE mesh and model dimension used in the validate case were used in the 

analysis. A direct-solution SSD analysis step was defined in FE model to calculate the 

steady-state dynamic responses of pavement subject to harmonic excitation. The steady-

state dynamic response for linear viscoelastic material can be simulated and computed 

directly.  

The tensile strains at the bottom of asphalt layer were analyzed in this study, which 

were responsible for fatigue cracking commonly observed in the field. Pavement responses 

under harmonic loading were predicted by the 3-D FE model defined above. Figure 4.10 

plots the calculated frequency response functions of transverse strains (E11) and 

longitudinal strains (E22) at the bottom of asphalt layer at the selected loading frequency 

range of 0-50 Hz, respectively. It should be noted that the transverse strains (E11) increased 

in the frequency range of 0-28 Hz and then decreased with the increase of frequency from 

28 Hz to 50 Hz. The longitudinal strains (E22) were relatively stable at the selected 

frequency range. The comparison between the transverse strains in Figure 4.4 and Figure 

4.10 indicates that pavement structures and material properties impacted on the trends of 

frequency response functions. 
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Figure 4.10 Frequency response functions of transverse strains (E11) and longitudinal 

strains (E22) at the bottom of asphalt layer due to harmonic excitations 

The predicted tensile strains at the bottom of asphalt layer in longitudinal direction 

were then transformed from spatial domain to wavenumber domain by the Fast Fourier 

Transform. The frequency response functions in wavenumber domain were obtained 

through dividing pavement responses in the longitudinal direction by the non-uniform 

loads applied on pavement surface. The frequency response functions of longitudinal 

tensile trains in wavenumber domain under three selected frequencies are shown in Figure 

4.11. It was found that several peaks were observed in the frequency response function in 

wavenumber (spatial frequency) domain. The specific pattern of frequency response 

function is dependent on load, pavement structure, material properties, and the selected 

pavement response. The pavement responses under dynamic loads were then derived by 

calculating the convolutional integral of response frequency function and the dynamic 

loads induced by surface roughness in wavenumber domain.  

Three natural frequencies of pavement system, 3.06, 9.18 and 15.3 Hz, were 

selected for comparison based on steady state pavement response analysis. Previous 
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researches have used the similar range of frequency for dynamic pavement response 

analysis and found that pavement responses could increase or decrease with the increase 

of loading frequency (Hardy and Cebon, 1992; 1994; Khavassefat et al., 2014).  

 

Figure 4.11 Frequency response functions of longitudinal strains (E22) at the bottom of 

asphalt layer in the wavenumber domain 

Figure 4.12 shows the calculated longitudinal strains in the spatial domain (after 

the inverse Fourier transform from wavenumber domain) under the right side of the front 

axle of tandem axle (Fz_R2) in the test truck. It was found that the calculated longitudinal 

tensile strains were about 85-120 microstrain at the selected loading frequencies (3.06 Hz, 

9.18 Hz, and 15.31 Hz). As compared to the measured strains shown in Table 4.2, the 

calculated longitudinal strains were found in agreement in general. The discrepancies could 

be caused by the exact test truck configuration parameters and pavement temperature were 

not known although they were estimated with reasonable assumptions.  

On the other hand, the longitudinal tensile strains were found similar at the three 

selected frequencies, although a slight increasing trend was observed. This was consistent 
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with the finding reported by Hardy and Cebon (1994). The frequency response function at 

the frequency of 3.06 Hz was selected to further analyze dynamic pavement responses 

considering different levels of pavement roughness and vehicle speeds. The similar trends 

would be expected if other frequencies were selected, although the specific pavement 

responses may be different. It is noted that the loading frequency of dynamic loads is 

different from the loading frequency resulted from the duration of moving load in the 

traditional viscoelastic analysis of pavement responses. 

 

Figure 4.12 Longitudinal strains at the bottom of asphalt layer at the selected loading 

frequencies in spatial domain (after the inverse Fourier transform) 

4.4 Analysis of Asphalt Pavement Fatigue Cracking under Dynamic 

Loads 

4.4.1 Pavement Response Calculation under Dynamic Loads 

The tensile strain at the bottom of asphalt surface layer was selected for analysis 

since it is responsible for the load-induced fatigue cracking. Figure 4.13 presents the 
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calculated longitudinal tensile strains at different locations of pavement section under the 

single axle of Class-5 truck and the axle having the greatest load in tandem axle of Class-

9 truck and tridem axle of Class-7 truck, respectively. As expected, the heavier axle loads 

caused the greater tensile strains. Because of the larger axle weight, the tensile strains under 

single and tridem axles were apparent. On the other hand, the tensile strain induced by axle 

load varied along the distance due to dynamic loads. The greater tensile strains were 

induced at the location where the pavement surface was rougher.  
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(c)  

Figure 4.13 Horizontal strains at the bottom of asphalt concrete layer: (a) single axle, (b) 

tandem axle, and (c) tridem axle in Class-5, Class-7, and Class-9 trucks 

Table 4.5 summarizes the range of calculated tensile strains under the selected axle 

of single, tandem, and tridem axle loads at three pavement roughness conditions. Due to 

the variation of tensile strains along the distance, the statistical parameters were given, 

including maximum, minimum, median, 25th percentile, and 75th percentile. As compared 

to the median values, the maximum tensile strains due to dynamic loads were about 10-82% 

greater for single axle, 5-27% greater for tandem axle, and 3-19% greater for tridem axle, 

respectively. The median value of strains caused by dynamic loads was believed to be 

similar to the strain caused by static loads since the median value of dynamic load 

magnitudes was very close to the static load magnitude. The more significant increase of 

strain responses was resulted on the rougher pavement condition. Therefore, it is expected 

that the fatigue cracking potential will increase significantly when dynamic loads on rough 

pavement surface are considered. 
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Table 4.5 Tensile strains caused by different axle types and loads (micro) 

Axle Single (Class 5) Tandem (Class 9) Tridem (Class 7) 

IRI (m/km) 1.01 2.05 3.09 1.01 2.05 3.09 1.01 2.05 3.09 

Maximum 61 72 101 109 120 130 146 157 168 

75th percentile 57 58 60 104 105 106 143 144 145 

Median 55 103 142 

25th percentile 54 52 51 102 101 100 140 140 138 

Minimum 48 44 30 96 80 75 121 123 96 

 

4.4.2 Effects of Temperature and Vehicle Speed 

Due to the viscoelastic properties of asphalt concrete, it is expected that pavement 

responses will be impacted by pavement temperature and vehicle speed. To quantify the 

effect of temperature and vehicle speed, the tensile strains at the bottom of asphalt surface 

layer were calculated at two pavement temperatures (5°C and 21°C) and two vehicle speeds 

(48 km/h and 80 km/h). The tensile strains caused by axle loads of Class-9 truck on three 

pavement surface conditions (IRI = 1.01, 2.05, and 3.09 m/km) were calculated and 

analyzed.  

Table 4.6 summarizes the range of calculated tensile strains under the selected axle 

loads at different vehicle speeds and temperatures on three pavement roughness conditions. 

It was found that the tensile strains decreased as pavement temperature decreased due to 

the viscoelastic properties of asphalt concrete. The median value of tensile strains was 

found decrease as vehicle speed increased, but the maximum tensile strains caused by 

dynamic loads increased as vehicle speed increased. This finding corresponds to the greater 

dynamic loads at higher vehicle speeds when pavement roughness was taken into 

consideration. 
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Table 4.6 Tensile strains caused by dynamic axle loads at different vehicle speeds and 

temperatures (micro) 

Speed 

(km/h) 

Temperature 

(°C) 

Axle Loads (kN) 107 125 160 

IRI (m/km) 1.01 2.05 3.09 1.01 2.05 3.09 1.01 2.05 3.09 

48 

21 

Maximum 93 102 114 109 120 130 135 150 151 

75th percentile 88 89 89 104 105 106 131 132 132 

Median 87 103 129 

25th percentile 86 86 84 102 101 100 128 126 125 

Minimum 79 64 59 96 80 75 121 110 100 

5 

Maximum 37 44 55 44 52 61 55 64 69 

75th percentile 36 36 37 43 43 44 54 54 54 

Median 36 42 53 

25th percentile 35 35 34 42 41 41 52 51 51 

Minimum 34 30 15 40 37 21 50 48 32 

80 

21 

Maximum 83 103 121 96 113 139 122 132 161 

75th percentile 78 80 80 91 93 94 114 115 118 

Median 76 90 112 

25th percentile 73 71 70 88 86 83 110 109 104 

Minimum 67 58 48 81 70 56 103 91 74 

5 

Maximum 36 49 63 42 53 72 53 61 82 

75th percentile 34 35 35 39 40 41 49 50 51 

Median 33 39 48 

25th percentile 32 31 30 38 37 36 47 47 45 

Minimum 29 22 11 35 27 13 44 36 20 

 

To evaluate variation of tensile strains caused by dynamic loads on rough pavement 

surface condition, amplification ratio of tensile strains was defined as ratio of maximum 

tensile strains to medium values generated by dynamic loads along pavement profile. Table 

4.7 summarizes the calculated amplification ratio of tensile strains due to dynamic loads at 

different vehicle speeds and temperatures on three pavement surface conditions. It 

indicated that amplification ratios increased as pavement temperature decreased while 

increased as vehicle speed increased. Besides, the influence of pavement temperature 

became more significant on rougher pavement surface conditions (IRI = 2.05 and 3.09 
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m/km). The amplification ratio was found decrease as axle load increased which was 

consistent with the findings related to the impact of axle loads on DLCs.  

Table 4.7 Calculated amplification ratio of tensile strains at different vehicle speeds and 

temperatures 

Speed 

(km/h) 

Temperature 

(°C) 

Axle Loads (kN) 

107 125 160 

1.01 

m/km 

2.05 

m/km 

3.09 

m/km 

1.01 

m/km 

2.05 

m/km 

3.09 

m/km 

1.01 

m/km 

2.05 

m/km 

3.09 

m/km 

48 
21 1.06 1.17 1.31 1.05 1.16 1.26 1.04 1.16 1.17 

5 1.05 1.24 1.55 1.05 1.22 1.45 1.05 1.21 1.31 

80 
21 1.10 1.37 1.61 1.07 1.26 1.55 1.09 1.18 1.44 

5 1.11 1.49 1.94 1.09 1.37 1.86 1.10 1.26 1.70 

 

4.4.3 Fatigue Life Analysis Considering Dynamic Loads 

The fatigue life of asphalt pavement with smooth surface condition under traffic 

loading can be estimated following the approach in MEDPG. The fatigue life of asphalt 

concrete is determined by the maximum tensile strains at the bottom of asphalt layer 

induced by axle loads. The number of allowable axle load applications for fatigue cracking 

was estimated based on the Eq. 4-19, as suggested by MEPDG (ARA Inc., 2019). 

𝑁 = 0.00432 × 𝑘1
′ × 𝐶 × (

1

𝜀𝑡
)

3.9492

(
1

𝐸
)

1.281

                                  (4-19) 

Where, 

N = the number of allowed load applications for fatigue cracking; 

t = tensile strain at the bottom of asphalt layer; 

E = resilient modulus of asphalt pavement, psi; 

k1
’ = the parameter related to asphalt concrete thickness; and 

C = the parameter related to asphalt mixture volumetric properties. 
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Since the current framework of MEPDG does not consider dynamic loads caused 

by rough pavement surface in prediction of flexible pavement life, an approach was 

proposed here to consider the impact of dynamic loads on fatigue life analysis. The concept 

of relative ratio of fatigue life was calculated using the maximum tensile strain under 

dynamic loads and the strain under static loads, as shown in Eq. 4-20. It is worth 

mentioning that small change of tensile strain may cause greater change of fatigue life due 

to the power law coefficient of 3.9492 in fatigue model. 

𝑟 =
𝑁𝑑

𝑁𝑠
= (

𝜀𝑡,𝑠

𝜀𝑡,𝑑
)

3.9492

                                        (4-20) 

Where, 

r = relative ratio of fatigue life; 

Nd, Ns = the number of allowed loading applications for dynamic loads and static loads, 

respectively; and 

휀𝑡,𝑑, 휀𝑡,𝑠 = tensile strain at the bottom of asphalt layer induced by dynamic loads and static 

loads, respectively. 

The relative ratio of fatigue life due to dynamic loads on three pavement roughness 

conditions (IRI = 1.01, 2.05 or 3.09 m/km) were calculated for different axle types and 

load magnitudes, as illustrated in Figure 4.14. As expected, the effect of dynamic load 

causes the greater reduction of fatigue life as the pavement is rougher. It was also found 

that the influence of dynamic loads on pavement deterioration became more significant 

under lighter axle loads which was consistent with the findings related to the impact of axle 

loads on DLCs. 
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(a) (b)  

 

(c) 

Figure 4.14 Relative ratio of fatigue life due to dynamic loads of single, tandem, and 

tridem axles on rough pavement with IRI of (a) 1.01 m/km; (b) 2.05 m/km; and (c) 3.09 

m/km 

In order to quantify the effect of dynamic loads on fatigue life in an efficient way, 

a nonlinear regression model was used to fit the relative ratio of fatigue life as the function 

of axle type, load, and IRI, as shown in Eq. 4-21. The R-square of fitted model was 0.91 

which was acceptable. The fitting model can be used to calculate the relative ratio of fatigue 

life for a wide range of axle load magnitudes and IRI values. 

𝑟 = 0.207 ∗ 𝑙𝑛(𝐿) − 0.195 ∗ 𝐼𝑅𝐼 + 𝑆𝐹                                        (4-21) 
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IRI = International Roughness Index, m/km;  

L = axle load, kN; and  

SF = the shift factor for each axle type (0.537 for single; 0.442 for tandem axle; and 0.387 

for tridem axle). 

4.4.4 Consideration of Dynamic Loads in M-E Pavement Design and Analysis 

In the M-E pavement design and analysis, fatigue cracking prediction is based on 

the cumulative damage concept given by Miner’s rule. The accumulated incremental 

damage was used to consider traffic loading applied at different time periods over the 

service life of pavement, as expressed by Eq. 4-22. It is noted that the axle factor of 1, 2, 

and 3 are used for single, tandem, and tridem axle to consider the multiple axle effect during 

one pass of each axle configuration, since the tensile strain is calculated using the single 

axle of Class-5 and the axle having the greatest load in tandem axle of Class-9 and tridem 

axle of Class-7 trucks.  

𝐷 = ∑ ∑ ∑ (
𝑎𝑖×𝑛𝑖,𝑗,𝑘

𝑁𝑖,𝑗,𝑘
)3

𝑖=1 =
𝐿𝑚𝑎𝑥
𝑗=𝐿𝑚𝑖𝑛

𝑇
𝑘=1 ∑ ∑ ∑ (

𝑎𝑖×𝑝𝑖,𝑗,𝑘×𝑛

𝑁𝑖,𝑗,𝑘
)3

𝑖=1
𝐿𝑚𝑎𝑥
𝑗=𝐿𝑚𝑖𝑛

𝑇
𝑘=1          (4-22) 

Where, 

D = fatigue damage factor; 

T = total number of periods; 

i = axle type (1 for single axle, 2 for tandem axle, and 3 for tridem axle); 

j = axle load, kN; 

k = time period; 

Lmin, Lmax = the minimum and maximum axle loads in spectra, kN; 

ai = axle factor (1 for single axle, 2 for tandem axle, 3 for tridem axle); 

ni,j,k = the number of i axles at load j for period k; and 
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pi,j,k = the percentage of i axles at load j in total traffic in period k;  

n = the number of total axles; and 

Ni,j,k = the number of allowable loading repetitions of i axle at load j in period k. 

The fatigue damage ratios between dynamic loads on rough pavement (IRI =1.01, 

2.05 or 3.09 m/km) and static load can be calculated using axle load spectra at the specific 

time period, as shown by Eq. 4-23. The fatigue damage ratios are determined to be 

dependent on the percentage of single, tandem, tridem axles at each load interval, the 

tensile strain at static loads, and the relative ratio of fatigue life due to dynamic loads. 

𝑅𝐿 =
𝐷𝑑

𝐷𝑠
=

∑ ∑ ∑ (
𝑎𝑖×𝑝𝑖,𝑗,𝑘

𝑟𝑖,𝑗,𝑘𝑁𝑖,𝑗,𝑘
)3

𝑖=1
𝐿𝑚𝑎𝑥
𝑗=𝐿𝑚𝑖𝑛

𝑇
𝑘=1

∑ ∑ ∑ (
𝑎𝑖×𝑝𝑖,𝑗,𝑘

𝑁𝑖,𝑗,𝑘
)3

𝑖=1
𝐿𝑚𝑎𝑥
𝑗=𝐿𝑚𝑖𝑛

𝑇
𝑘=1

=

∑ ∑ ∑ (
𝑎𝑖×𝑝𝑖,𝑗,𝑘

𝑟𝑖,𝑗,𝑘(𝜀𝑖,𝑗,𝑘)
−3.9492)3

𝑖=1
𝐿𝑚𝑎𝑥
𝑗=𝐿𝑚𝑖𝑛

𝑇
𝑘=1

∑ ∑ ∑ (
𝑎𝑖×𝑝𝑖,𝑗,𝑘

𝜀𝑖,𝑗,𝑘
−3.9492)3

𝑖=1
𝐿𝑚𝑎𝑥
𝑗=𝐿𝑚𝑖𝑛

𝑇
𝑘=1

      (4-23) 

Where, 

RL = fatigue damage ratio due to dynamic loads (the relative ratio of accumulative fatigue 

damage between dynamic loads and static loads); 

Ds = fatigue damage caused by static loads; 

Dd = fatigue damage caused by dynamic loads; 

ai = axle factor (1 for single axle, 2 for tandem axle, 3 for tridem axle); 

pi,j,k = the percentage of i axles at load j in total traffic in period k; 

ri,j,k = relative ratio of fatigue life of i axle at load j for the corresponding IRI value in period 

k; and 

휀𝑖,𝑗,𝑘= tensile strain at the bottom of asphalt layer induced by i axle at load j in period k. 

To illustrate the effect of dynamic loads on fatigue damage factor, an example of 

analysis was conducted using the strain responses obtained from the above analysis. The 

axle load spectra at the selected test section was extracted from LTPP database and used 
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as an example in the analysis. Figure 4.15 shows the percentages of different axle 

configurations at different load intervals. In this case, single, tandem, and tridem axle were 

approximately 50%, 49%, and 1% of the total traffic in terms of the number of total axles. 

 

Figure 4.15 Example of axle load distribution used in the analysis 

Figure 4.16 shows the calculated fatigue damage ratio (RL) due to dynamic loads in 

different roughness conditions using Eq.4-23. It clearly shows that fatigue damage is 

significantly impacted by roughness levels. The relationship between fatigue damage ratio 

and IRI can be well fitted with an exponential relationship. 

 

Figure 4.16 Fatigue damage ratios calculated at different IRI values 
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In M-E pavement design and analysis, the axle load spectra and pavement material 

properties vary at different time periods, which cause tensile strains and fatigue damage 

ratios due to dynamic loads changing accordingly. Therefore, a systematic approach is 

needed to consider dynamic loads in the M-E pavement analysis procedure. Figure 4.17 

presents the proposed methodology to consider dynamic load impact in the existing M-E 

pavement analysis framework. The relative ratio of fatigue life is used to derive the fatigue 

life under dynamic loading condition, which is further used to calculate the accumulated 

damage. The initial IRI after construction is used as the input to calculate the relative ratio 

of fatigue life in the first year. After that, the IRI increase is predicted as the function of 

pavement distresses based on the existing empirical function in M-E analysis that can be 

used to determine the relative ratio of fatigue life over the service life of pavement. Finally, 

the fatigue cracking development over time can be calculated using the transfer functions 

based on the updated damage accumulation. 
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Figure 4.17 Consideration of dynamic loads in M-E pavement analysis 

4.5 Impact Analysis of Wide-Base Tire on Pavement Responses 

4.5.1 Tire-Pavement Contact Stresses 

To simulate tire loads more realistically, the non-uniform distribution of tire-

pavement contact stress in the tire-pavement contact area under dual-tire assembly and 

wide-base tire were considered in the FE model. The peak stress at each tire rib and the 

non-uniform distribution along the contact length were used to describe the tire contact 

stress patterns (Wang and Al-Qadi, 2010; Al-Qadi and Wang, 2011). Figure 4.18 shows 

the contact area and peak contact stresses at each rib for dual-tire assembly and wide-base 

tire. These detailed value indicates the relative ratio of maximum contact stress applied on 
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each rib, which was determined according to the measured and simulated contact stresses 

under different tire configurations (Al-Qadi and Wang, 2011).  

 

                                     

                  

(a)                                                                    (b) 

Figure 4.18 Non-uniform distribution of contact stress (tire inflation pressure: 690 kPa): 

(a) dual-tire assembly; (b) wide-base tire 

4.5.2 Calculation of Pavement Responses 

The dynamic tire forces of two truck configurations (Class-5 and Class-9), three 

pavement roughness conditions (IRI=1.01, 2.05, and 3.09 m/km), and two vehicle speeds 

(48 and 96 km/h) were considered to analyze the impact of wide-base tire on pavement 

responses using the proposed method. The steady-state dynamic responses of pavement 

under harmonic excitations at the specific frequencies were estimated using the FE model. 

Based on analysis of moving loads at different speeds model, the estimated loading time 

and frequency were estimated to drive the equivalent elastic modulus of asphalt layers. The 

pavement temperature considered in the analysis was 21.1°C,  

Fatigue cracking and rutting are common pavement distresses occurred at in-

service asphalt pavement structure. Fatigue cracking is determined by tensile strain at the 
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bottom of AC layer, and subgrade rutting is more affected by compressive strain on the top 

of subgrade. Besides, top-down cracking might be observed for thick asphalt pavement, 

which is induced by near-surface shear strain (Wang and Al-Qadi, 2009; Al-Qadi and 

Wang, 2012). Therefore, tensile strain at the bottom of AC layer, compressive strain on the 

top of subgrade, and near-surface shear strain were considered as critical pavement 

responses in the analysis. Figure 4.19 shows the comparison of frequency response 

function at critical locations subjected to unit load of dual-tire assembly and wide-base tire, 

respectively. The truck configuration was Class-9 truck traveling at 48km/h. Compared to 

the pavement response generated by dual-tire assembly, the increases of pavement 

response subjected to wide-base tire were approximately 32% and 13% for the tensile strain 

at the bottom of asphalt layer and compressive strain on the top of subgrade. The increase 

was consistent under different frequency. There was only 2% difference between the near-

surface shear strains (shear) under the dual-tire assembly and wide-base tires.  
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(c)  

Figure 4.19 Comparison of pavement responses at critical locations under unit load of 

dual-tire assembly and wide-base tire (Class-9 truck; 48 km/h): (a) tensile strain; (b) 

compressive strain; (c) near-surface shear strain  

By calculating the convolutional integral of dynamic tire forces and frequency 

response functions, the pavement responses at critical locations induced by dual-tire 

assembly and wide-base tire were estimated. Figure 4.20 shows the comparison of 

pavement responses along the 152-m pavement section induced by dual-tire assembly and 

wide-base tire. It indicated that the tensile strain at the bottom of asphalt layer was much 

larger under wide-base tire, while the compressive strain on the top of subgrade and near-

surface shear strain under dual-tire assembly and wide-base tire were similar. Since the 

maximum dynamic loads were spatially repeatable, the maximum pavement responses 

induced by two tire types on the same pavement section were found at the specific locations 

on different pavement roughness conditions.  
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(c) 

Figure 4.20 Pavement responses at critical locations along road profile between the dual-

tire assembly and wide-base tire (Class-9 truck at 48 km/h): (a) tensile strain; (b) 

compressive strain; (c) near-surface shear strain  

4.5.3 Pavement Response Ratios between Different Tire Configurations 

To quantify the impact of wide-base tire, the ratio of pavement response between 

two tire types was defined by dividing the pavement responses under wide-base tire by 

those generated under dual-tire assembly.  

Table 4.8 and Table 4.9 summarize the ratio of maximum pavement responses, 

including tensile strain at the bottom of asphalt layer, compressive strain on the top of 

subgrade, and near-surface shear, on different pavement roughness conditions. As 

compared to the response ratio under harmonic excitations of unit load as shown in  Figure 

4.19 (1.32 for tensile strains and 1.13 for compressive strains), the response differences 

between two tire configurations became smaller. It indicated that the dynamic tire forces 

under wide-base tire had positive impact on the tensile strains at the bottom of asphalt layer 
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and compressive strains on the top of subgrade. However, the influence of dynamic tire 

forces on near-surface shear strains found was not significant.  

Table 4.8 Response ratio of maximum pavement response (Class-5 truck) 

 Speed 

(km/h) 

IRI 

(m/km) 

Pavement response ratio 

Tensile strain at 

bottom of asphalt 

layer 

Compressive 

strain on the top 

of subgrade 

Near-surface 

shear strain 

48 

1.01 1.23 1.06 1.00 

2.05 1.24 1.07 1.02 

3.09 1.24 1.08 0.99 

96 

1.01 1.23 1.05 1.01 

2.05 1.24 1.06 1.00 

3.09 1.25 1.05 1.03 

 

Table 4.9 Response ratio of maximum pavement responses (Class-9 truck) 

 Speed 

(km/h) 

IRI 

(m/km) 

Pavement response ratio 

Tensile strain at 

bottom of asphalt 

layer 

Compressive 

strain on the top 

of subgrade 

Near-surface 

shear strain 

48 

1.01 1.23 1.06 1.02 

2.05 1.18 1.06 0.95 

3.09 1.26 1.06 1.04 

96 

1.01 1.27 1.08 1.05 

2.05 1.23 1.07 0.99 

3.09 1.30 1.07 0.95 

 

Table 4.10 summarizes the range and average value of response ratio at critical 

location along pavement section. It was found that the variation of response ratio increased 

as pavement roughness levels increase, which was consistent with the trends of dynamic 
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tire forces. In general, wide-base tire caused greater tensile strain but similar compressive 

strain and near-surface shear strain as compared to dual tire assembly. This trend is 

consistent with previous research findings from theoretical analysis and field testing (Al-

Qadi and Wang, 2012). However, the pavement response ratios caused by two tire 

configurations show certain variations as truck configuration, speed, or pavement surface 

roughness changes. The increase of pavement surface roughness may increase or decrease 

the pavement response ratio, depending on the specific road surface profile and the resulted 

dynamic tire forces. This emphasizes the importance of considering dynamic tire forces in 

the accurate calculation of pavement responses considering vehicle-tire-pavement 

interaction.  

Table 4.10 The range of pavement response ratio along pavement section 

Truck 
 Speed 

(km/h) 

IRI 

(m/km) 

Pavement response ratio 

Tensile strain 

at bottom of 

asphalt layer 

Compressive 

strain on top of 

subgrade 

Near-surface 

shear strain 

Class-5 

48 

1.01 1.18-1.33  1.01-1.16 0.96-1.11 

2.05 1.12-1.4  0.96-1.23 0.9-1.19  

3.09 1.09-1.42  0.94-1.24 0.88-1.21  

96 

1.01 1.17-1.35  1-1.16  0.96-1.12  

2.05 1.17-1.36 1-1.17 0.96-1.16 

3.09 1.11-1.39 0.95-1.2 0.85-1.39  

Class-9 

48 

1.01 1.15-1.37 0.99-1.19 0.93-1.14  

2.05 1.1-1.43 0.94-1.26 0.88-1.22  

3.09 1.11-1.41 0.96-1.24 0.89-1.36  

96 

1.01 1.17-1.34 1-1.15 0.96-1.12  

2.05 1.11-1.42 0.94-1.23 0.89-1.2 

3.09 1.07-1.58 0.91-1.38 0.86-1.37 
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4.6 Summary 

In this chapter, the impulse response method was used to calculate flexible pavement 

responses subjected to moving dynamic loads. The frequency response function was 

validated using field measurements and calculations reported in the literature. The 

predicted tensile strains under dynamic loads were found in agreement with field 

measurements at the selected test section in LTPP. The impulse response method was used 

to estimate pavement response caused by dynamic loads due to rough pavement surface 

condition considering vehicle-tire-pavement interaction. The relative ratio of fatigue life 

was defined to estimate fatigue damage induced by dynamic axle loads on different 

pavement roughness conditions. A methodology was proposed to incorporate the impact 

of dynamic loads on fatigue cracking development in the framework of M-E pavement 

design and analysis. The dynamic pavement responses under wide-base tire and dual tire 

assembly were estimated considering vehicle-tire-pavement interaction. The impulse 

response method was used to calculate the flexible pavement responses under random 

moving loads. 
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CHAPTER 5 COMPARISON ANALYSIS OF TRAFFIC 

LOADING IMPACT USING NONLINEAR REGRESSION AND 

SUPPORT VECTOR REGRESSION MODELS 

5.1 Data Collection and Processing 

5.1.1 Truck Traffic Data from WIM 

Weigh-in-motion devices can continuously capture and record GVW, axle load, 

and axle spacing with supplementary data including date, time, speed, lane of travel, and 

vehicle type. Axle load spectra and GVW from WIM database are critical inputs for 

mechanistic-based pavement design and pavement performance analysis. NJDOT have 95 

WIM sites in the highway network. The axle load spectra recorded at 87 WIM sites for 

both directions were extracted from Vehicle Travel Information System (VTRIS) operated 

by Federal Highway Administration (FHWA) (Federal Highway Administration, 2017). 

The numbers of daily ESALs for flexible and rigid/composite pavement structures 

were calculated from WIM data based on load equivalency factors derived from AASHO 

road test (Huang, 1993). Considering that WIM data was not recorded for every segment 

successively from 2000 to 2014, the daily ESALs were averaged for every five years. 

Figure 5.1 shows the frequency distribution of average annual daily ESALs for Interstate 

highways, US highways, and state highways, respectively. Interstate highways are part of 

the network of controlled-access highways for long-distance travel and freight transport. 

US highways are mainly consisted of major roads having the designation and numbering 

coordinated among the states over US. State highways are designed according to various 

standards or capacity and operated by state governments. 
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(a)                                                            (b) 

 

(c) 

Figure 5.1 Frequency distribution of average annual daily ESALs on (a) state highways, 

(b) Interstate highways and (c) US highways in NJ 

The number of single, tandem, tridem axle loads and axle load spectra were 

provided in the Vehicle Travel Information System. Figure 5.2 shows single, tandem, and 

tridem axle load spectra of all trucks on Interstate highway Route 80 in the year of 2000. 

It indicated that single axles had the most axle loads around 5 kips, and the axle loads of 

tandem axles concentrated at 5 kips and 11 kips. Most of tridem axles have loads between 

18 and 20 kips. In previous works, Gaussian distribution was applied to fit the observed 

single and tridem axle load spectra, and the tridem axle load was usually not considered 

(Haider and Harichandran, 2009; Haider et al., 2009). In this study, the axle load spectra 
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were fitted using Gaussian distribution, and the amplitude, centroid, and peak width of 

Gaussian distribution were used to characterize the pattern of traffic loads. The Gaussian 

distribution fits peaks of axle load spectra and is given by Eq.5-1 (MATLAB, 2010). 

𝑦 = ∑ 𝑎𝑖𝑒
[−(

𝑥−𝑏𝑖
𝑐𝑖

)
2

]
𝑛
𝑖=1                                                         (5-1) 

Where, 

𝑎𝑖 = the amplitude;  

bi = the centroid or location; 

ci = the parameter related to the peak width; and 

n = the number of peaks to fit (n =1 for single and tridem axles; n = 2 for tandem axle). 
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(c) 

Figure 5.2 Gaussian distribution of axle load spectra of (a) single, (b) tandem, and (c) 

tridem axle on I-80 in 2000 

5.1.2 Pavement Structure and Field Performance 

The pavement structure and field performance data for the two-mile pavement 

segments nearby the WIM sites were collected from pavement management system of 

NJDOT. In general, 50% of highways in NJ are composite pavements, 40% are flexible 

pavements, and the remaining 10% are rigid pavements. Figure 5.3 shows the frequency 

distribution of thicknesses of flexible and composite/rigid pavements. For the majority of 

flexible pavements, the thickness of state highways, US highways, and Interstate highways 

are in the ranges of 2-4 inches, 4-6 inches, and 8-12 inches, respectively. For most of the 

composite and rigid pavements, the thickness of surface layer of state highways, US 

highways, and Interstate highways are in the ranges of 6-8 inches, 10-12 inches, and 12-14 

inches, respectively. 
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(a)                                                                (b) 

Figure 5.3 Frequency distribution of (a) surface layer thickness of flexible pavement and 

(b) surface layer thickness of composite/rigid Pavement 

Pavement performance data in terms of Surface Distress Index (SDI) over years 

were used to estimate pavement service life after major rehabilitation treatments. The SDI 

has a scale of 0-5 and incorporates both non-load related distresses outside wheel paths 

(NDI) and load related distress index (LDI) in wheel path (Wang and Wang, 2019). Figure 

5.4 shows an example of pavement deterioration showing SDI over years. It can be 

observed from that the SDI declines slowly during the first several years. Afterward, SDI 

starts to drop rapidly and finally decreases gradually to a small value. NJDOT defines the 

pavement condition as poor when SDI < 2.4 or IRI > 2.7m/km and as good when SDI > 

3.5 and IRI < 1.5m/km. In real practice, the terminal IRI values are much smaller than 

2.7m/km when pavement life is reached based on the SDI threshold (Wang et al., 2020a). 

Therefore, the pavement service life in the study is determined as the time period before 

the SDI drops to 2.4. 
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Figure 5.4 Example of deterioration trend of pavement performance (I-80B) 

5.1.3 Climate Condition 

The office of New Jersey State Climatologist provides average monthly air 

temperature data. The 21 counties in New Jersey were grouped into three districts: 

Northern New Jersey (11 counties), Southern New Jersey (10 counties), and Costal New 

Jersey. The freezing index (FI) is defined by the negative of the sum of all average daily 

temperatures below 32 °F within the given period, as shown Eq. 5-2 (Ong et al., 2010). 

The FI was found being 9.3 degree-days in Southern New Jersey, and 175.7 degree-days 

in Northern New Jersey. As the consequence of using average monthly air temperature 

instead of daily air temperature, the estimated FI is correspondingly smaller. 

( ) 







−−= iMinMax nTTFI 32

2

1
                                           (5-2) 

Where, 

FI = accumulative FI, degrees Fahrenheit (°F) degree-days; 

Tmax = the maximum monthly temperature in month i, °F; 

Tmin = the minimum monthly temperature in month i, °F; and 

ni = days in month i when average monthly temperature is below freezing (32°F)  
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5.2 Traditional Nonlinear Regression Model 

Traditional nonlinear regression models were first used to investigate traffic loading 

impact on pavement performance. The average daily ESALs and axle load spectra were 

considered as traffic variables in the nonlinear regression model to analyze and predict 

pavement performance. Totally 5,481 data points were used to derive the regression models. 

The number of data points for flexible pavement structure on state highways, Interstate 

highways, and US highways were 1,310, 1,368, and 653, respectively. The number of data 

points for composite and rigid pavement structure on state highways, Interstate highways, 

and US highways were 402, 960, and 788, respectively. The pavement performance models 

developed by relating SDI to pavement age, average daily ESALs, and freezing index, as 

shown in Eq. 5-3. 

( )lFILogclTLogbaSDIt −−= )()(exp                                   (5-3) 

Where, 

SDIt = surface distress index in the tth year; 

l = pavement age; 

T = average annual daily ESALs; 

FI = freezing index; and 

a, b, and c = model coefficients. 

Table 5.1 summarizes the coefficients and R square values of the regression models 

of flexible and composite/rigid pavements for state highways, Interstate highways, and US 

highways, respectively. The R square value varies from 0.51 to 0.70 depending on the 

pavement structure and route type.  
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Table 5.1 Coefficients and R-square values of regression model based on average daily 

ESALs 

Pavement Type Highway Type a b c R-square 

Flexible 

Pavement 

State Highway 1.717 0.022 0.038 0.51 

Interstate Highway 1.703 0.004 0.057 0.70 

US Highway 1.742 0.049 0.013 0.56 

Composite/Rigid 

Pavement 

State Highway 1.753 0.047 0.054 0.57 

Interstate Highway 1.754 0.021 0.031 0.53 

US Highway 1.838 0.079 0.001 0.62 

 

In order to improve the accuracy of prediction, another pavement performance 

model was developed by correlating SDI to pavement age, freezing index, the number of 

axles, and the fitted Gaussian distribution of axle load spectrum for each axle type, 

expressed by Eq.5-4. 

𝑆𝐷𝐼𝑡 = 𝑒𝑥𝑝(𝑎 − ((𝑏𝐴1 + 𝑐𝑀1 + 𝑑𝑆𝐷1) ∙ 𝑙𝑜𝑔(𝑁1) ∙ 𝑘 + (𝑒𝐴2 + 𝑓𝑀2 + 𝑔𝑆𝐷2 + 𝑒2𝐴3 +

𝑓2𝑀3 +  𝑔2𝑆𝐷3) ∙ log (𝑁2) ∙ 𝑚) ∙ 𝑙 ∙ 𝑛 − 𝑝 ∙ 𝑙𝑜𝑔(𝐹𝐼) ∙ 𝑙)                      

(5-4) 

Where, 

N1, N2, N3 = the number of single, tandem, and tridem axles;  

111 ,, SDMA  = amplitude, location, and peak width of single axle load spectrum as shown 

in Figure 5.2 (a); 

333222 ,,,,, SDMASDMA   = amplitude, location, and peak width of tandem axle load 

spectrum for the first peak and second peak as shown in Figure 5.2 (b); 

444 ,, SDMA  = amplitude, location, and peak width of tridem axle load spectrum as shown 
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in Figure 5.2 (c); and 

a, b, c, d, e, f, g, e2, f2, g2, h, i, j, k, m, n, and p = model coefficients. 

Table 5.3 presents the coefficients of pavement performance models for state 

highways, Interstate highways, and US highways, respectively. The mean absolute error 

(MAE), root mean square error (RMSE), and coefficient of determination (R-square) were 

considered as the error metrics to evaluate the accuracy of fitting model, as shown in Table 

5.3. The R-square values varied from 0.51 to 0.71 depending on pavement structure and 

highway type. The comparison between the R-square values of two nonlinear regression 

models (Eq. 5-3 and 5-4) indicated that the accuracy of pavement performance prediction 

was improved by considering the number of axles and the fitted Gaussian distribution of 

axle load spectra in the model. However, the R-square values are still not very high.  

Figure 5.5 illustrates the actual observed and predicted SDI using the nonlinear 

regression models expressed by Eq.5-4, respectively, for different pavement structures and 

highway types. The results indicate that more accurate predictive models are needed to 

investigate the impact of traffic loading on the deterioration trend of pavement performance. 
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(c)                                                             (d) 

 

(e)                                                            (f) 

Figure 5.5 Actual observed and fitted SDI based on multiple nonlinear regression models 

for flexible pavement structure on (a) state highways; (b) Interstate highways; (c) US 

highways; and composite/rigid pavement structure on (d) state highways; (e) Interstate 

highways; (f) US highways 
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Table 5.2 Coefficients of regression models based on axle load spectra 

Pavement Type 
Highway 

Type 
a b c d e f g e2 f2 

Flexible 

Pavement 

State  1.716 0.042 0.162 0.001 0.212 0.003 1.456 0.012 0.000 

Interstate  1.708 0.005 0.000 0.001 0.138 0.003 0.001 0.015 0.123 

US  1.736 0.000 0.862 0.001 0.036 0.003 0.000 0.038 0.000 

Composite/Rigid 

Pavement 

State  1.804 0.057 0.000 0.001 0.000 0.004 0.000 0.877 0.000 

Interstate  1.767 0.000 0.063 0.001 0.000 0.004 0.021 0.144 0.348 

US  1.844 0.000 1.212 0.000 0.094 0.000 0.000 0.000 0.116 

Structure Route g2 h i j k m n p  

Flexible 

Pavement 

State  0.000 0.000 0.000 0.000 0.000 0.003 0.041 0.042  

Interstate  0.183 0.000 0.018 0.364 0.000 0.000 0.004 0.054  

US  0.113 0.000 0.000 0.000 0.014 0.000 0.005 0.006  

Composite/Rigid 

Pavement 

State  1.692 0.000 0.000 0.024 0.023 0.003 0.000 0.000  

Interstate  0.000 0.000 0.000 0.000 0.000 0.005 0.003 0.014  

US  0.000 0.056 0.000 0.000 0.007 0.006 0.030 0.008  

       

Table 5.3 Error metric of regression model based on axle load spectra 

Structure Route RMSE MAE R-square 

Flexible 

State 0.82 0.62 0.51 

Interstate 0.57 0.43 0.71 

US 0.75 0.56 0.62 

Composite/Rigid 

State 0.73 0.55 0.69 

Interstate 0.74 0.58 0.55 

US 0.74 0.55 0.67 

 

5.3 Machine Learning Method 

5.3.1 Principle of Support Vector Regression 

Support vector method (SVM) is an efficient approach to derive pavement 

performance model especially when the dataset is small and the correlation is nonlinear 

(Schlotjes et al., 2015; Ziari et al., 2016). SVM produces nonlinear boundaries by 
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constructing a linear boundary in a large, transformed version of the feature space. The 

basic principle behind the linear SVM is to find an optimal separating hyperplane creating 

the biggest margin between the training data. The closest training points to the hyperplane 

are called support vectors. SVM can also be used as regression method rather than 

classification method, this application is also called as SVR (Hastie et al., 2009). SVR uses 

the same principles as SVM but provides the flexibility to find the appropriate hyperplane 

in higher dimensions to regress the data and customize controlled errors in an acceptable 

range. 

For the training data consisted of N pairs (x1, y1), (x2, y2), …, (xN, yN), with 
p

ix R

and  1,1iy  − . Define a hyperplane by Eq. 5-5. 

 0: ( ) 0Tx f x x  = + =                                            (5-5) 

Where,   is a unit vector =1 .  

A classification rule induced by f(x) is defined by Eq. 5-6. 

0( ) si TG x gn x   = +                                             (5-6) 

Where, f(x) gives the signed distance from a point x to the hyperplane 0( ) 0Tf x x  = + = . 

The classes are separated, so a function 0( ) Tf x x  = +  with ( ) 0i iy f x i  .   Thus, it is 

available to find the hyperplane that maximizes the margin between training data for 

different classes. The optimization problem is defined by Eq. 5-7. 

0, , 1
max M

   =

                                                           (5-7) 

 Subject to 0( ) , 1,...,T

i iy x M i N +  =                                (5-8) 
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captures this concept. The band is M units away from the hyperplane on either side, and 

then 2M units wide, which is called the margin. Therefore, optimization problem can be 

more conveniently phrased as shown in Eq. 5-9 and 5-10. 

0,
min
 


                                                                   (5-9) 

Subject to 0( ) 1, 1,...,T

i iy x i N +  =                                      (5-10) 

Noted that 

1
M


=

. Eq. 5-10 is the common approach of expressing the support vector 

criterion for separable data. When SVM is used for regression to estimate , the 

minimization of Eq. 5-11 is considered with Eq. 5-12. 

𝐻(𝛽, 𝛽0) = ∑ 𝑉(𝑦𝑖 − 𝑓(𝑥𝑖)) +
𝜆

2
‖𝛽‖2𝑁

𝑖=1                                 (5-11) 

Where, 𝜖 - insensitive error function is: 

𝑉𝜖(𝑟) = {
0               𝑖𝑓 |𝑟| < 𝜖

|𝑟| − 𝜖       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                         (5-12) 

5.3.2 Results and Discussion 

Similar with the nonlinear regression model, the SVR model was developed by 

relating SDI to pavement age, FI, and truck traffic. The average daily ESALs and fitted 

Gaussian distribution of axle load spectra were considered as traffic variables, respectively. 

The data points were categorized into two groups: 80% for model training and 20% for 

model validation. Parameter values in the SVR models were optimized using grid search 

(Python Software Foundation). Kernels were used in SVR to solve nonlinear regression 

problems through decreasing the complexity of calculations by providing an chance to 

linearly deal with nonlinear functions in high-dimensional spaces (Hastie et al., 2009). 

Different kernels, including linear, radial basis function, sigmoid, and universal Pearson 
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VII function, were considered in the model optimization (Üstün et al., 2006). Radial basis 

function kernel was found work best in the dataset through trial analysis. The radial basis 

function is expressed by Eq. 5-13. 

𝐾(𝑥, 𝑦) = 𝑒𝑥𝑝 (−
‖𝑥−𝑦‖2

𝐶
)                                                    (5-13)  

Where, C is constant. 

Table 5.4 summarizes the cross-validation results of SVR when different traffic 

variables were considered in the model. By applying SVR method, the coefficients of 

determination (R-square values) were found significantly increased as compared to the 

traditional nonlinear regression models. The mean absolute error (MAE) decreased to 0.17-

0.38 and the coefficient of determination (R-square) increased to 0.71-0.93. The predictive 

models for flexible pavements on Interstate highway and composite/rigid pavements on 

US highway presented better accuracy than the other highway types. On the other hand, 

the fitting accuracy was further improved by involving the number of axles and fitted 

Gaussian distribution of axle load spectra in the SVR model, except for the flexible 

pavement on US highway. Thus, it was recommended to use the number of axles and the 

fitted Gaussian distribution of axle load spectra to develop SVR model and predict 

pavement performance. However, the SVR model based on average daily ESALs provided 

a simplified way with acceptable accuracy to investigate the influence of traffic loading on 

pavement deterioration.  
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Table 5.4 Cross-validation results of SVR with different variables 

Model 

Variables 

Pavement Type Highway 

Type 

RMSE MAE R-square 

Age, FI, 

ESALs 

Flexible State 0.46 0.25 0.85 

Interstate 0.41 0.22 0.84 

US 0.54 0.34 0.79 

Composite/Rigid State 0.58 0.32 0.80 

Interstate 0.58 0.30 0.72 

US 0.45 0.24 0.88 

Age, FI, 

Number of 

Axles, Fitted 

Axle Load 

Spectra 

Flexible State 0.40 0.22 0.89 

Interstate 0.37 0.19 0.88 

US 0.60 0.38 0.74 

Composite/Rigid State 0.47 0.26 0.87 

Interstate 0.58 0.30 0.71 

US 0.32 0.17 0.93 

  

Figure 5.6 presents the comparison of actual observed and predicted SDI values by 

using the SVR models based on the fitted Gaussian distribution of axle load spectra and 

the number of axles. As compared to Figure 5.5, the SVR method shows significant 

improvement on the accuracy of performance prediction. 

  
(a)                                                              (b) 
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(c)                                                  (d) 

  

(e)                                                              (f) 

Figure 5.6 Actual observed and fitted SDI based on SVR models for flexible pavement 

structure on (a) state highways; (b) Interstate highways; (c) US highways; and 

composite/rigid pavement structure on (d) state highways; (e) Interstate highways; (f) US 

highways 
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5.4 Impact of Overweight Truck on Pavement Deterioration 

It is well accepted that overweight trucks would accelerate pavement deterioration 

based on mechanistic-empirical (M-E) pavement analysis (Wang et al., 2015c). Wang and 

Zhao (2016) estimated load equivalency factors of axle load on for fatigue cracking and 

rutting and quantified the reduction of pavement life caused by overweight traffic on thin 

and thick asphalt pavements. Rys et al. (2016) investigated asphalt pavement fatigue life 

caused by mixed traffic based on the axle load distribution and percentage of overweight 

vehicles. The analysis results indicated that the increase of percentage of overweight 

vehicles from zero to 20% would cause up to 50% reduction of fatigue life of asphalt 

pavement. Batioja-Alvarez et al. (2018) predicted rutting and fatigue cracking damage due 

to overweight vehicle considering the impact of vehicle loading, pavement temperature, 

and vehicle-miles traveled on pavement performance using mechanistic-empirical 

approach. It was found that the distribution of load equivalency factor could be 

incorporated in pavement design to consider the influence of overweight vehicles. Titi et 

al. (2018) evaluated the impacts of overweight truck traffic on performance of four flexible 

pavements in Wisconsin and found that the proportion of pavement damage due to 

overweight trucks increased most of pavement distresses by 0.5% to 4%.  

Past studies mainly used field data to quantify pavement damage due to vehicular 

loading using regression models. Li and Sinha (2000) developed load and non-load factor 

functions using the relative change in IRI considering cumulative traffic loading, regional 

and climatic features, subgrade materials, design and construction standards, and pavement 

ages from Indiana pavement management system. Ong et al. (2010) correlated pavement 

distresses, such as IRI, rut, and pavement condition rating, with average annual daily truck 
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traffic and environmental factors on different highways. Gungor et al. (2019) established 

the relationship between the change of condition rating survey with pavement age, daily 

traffic, and environmental factors to predict pavement deterioration under various loading 

conditions. Wu et al. (2019) investigated the influence of overweight traffic on pavement 

service life considering climatic effects, truck origin and destination, permitted routes, and 

frequency of the routes. 

The developed SVR models were utilized to investigate the impact of overweight 

truck traffic on pavement damage. Currently, NJDOT legislates 80,000 lbs. as the legal 

GVW. The legal weight on single axle at Interstate highways and non-Interstate highways 

are 20,000 lbs. and 22,400 lbs., respectively. The legal weight on tandem axle is 34,000 lbs 

(Federal Highway Administration, 2015). In order to evaluate the overweight traffic effect 

on pavement performance, the WIM data was processed and grouped into two traffic 

groups. The first group included all the trucks within the legal weight limit (non-

overweight traffic); while the second group included both the trucks within the legal weight 

limit and the overweight trucks (total traffic). The considered legal weight limits on single, 

tandem, and tridem axles were 22,400 lb., 34,000 lb., and 42,000 lb., respectively. Table 

5.5 shows the highway type, route number, pavement structure, freezing index (FI), and 

the number of single, tandem, and tridem axle loads for the total and non-overweight traffic 

at the selected six sites. One site was selected for each highway type. 
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Table 5.5 Total and non-overweight (N-O) traffic at the selected routes 

Pavement 

Type  

Highway 

Type 

Route 

# 

Traffic FI 

(degree-

day) 

Asphalt 

concrete 

(in.) 

Cement 

concrete 

(in.) 

No. of 

single 

axle 

No. of 

tandem 

axle 

No. of 

tridem 

axle 

Flexible State NJ-138 Total -9.3 2 0 412 118 7 

NJ-138 N-O -9.3 2 0 410 109 1 

Interstate I-195 Total -9.3 12 0 3509 3602 201 

I-195 N-O -9.3 12 0 3505 3562 76 

US US-30 Total -9.3 5 0 336 114 10 

US-30 N-O -9.3 5 0 334 104 1 

Composite/ 

Rigid 

State NJ-33 Total -9.3 2.5 5.5 664 299 19 

NJ-33 N-O -9.3 2.5 5.5 659 277 3 

Interstate I-80 Total -175.7 3 8 4197 4448 55 

I-80 N-O -175.7 3 8 4051 3990 30 

US US-202 Total -175.7 3.5 7 356 225 25 

US-202 N-O -175.7 3.5 7 355 211 3 

Figure 5.7 shows the axle load spectra at the selected routes, respectively, for single, 

tandem, and tridem axles. It indicated that most of tridem axles were overweight axles, but 

it was less than 5% of the total traffic. The majority of overweight axle loads were on 

tridem and tandem axles, which were expected to have significant influences on pavement 

deterioration. 

 

(a)                                                     (b) 
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(c)                                                    (d) 

 

(e)                                                    (f) 

Figure 5.7 Axle load spectra at the selected sites: (a) NJ-138; (b) I-195; (c) US-30; (d) 

NJ-33; (e) I-80; (f) US-202 (solid line—: non-overweight; dotte dline---: overweight) 

Figure 5.8 illustrates the deterioration trend of flexible and composite pavement 

under the total and non-overweight truck traffic using the derived SVR models based on 

the number of axles and the fitted Gaussian distribution of axle load spectra. The 

deterioration of pavement condition increased with the change of axle load spectra and the 

increasing number of axles, especially on tridem axle, due to the overweight truck traffic. 

Since the maintenance or rehabilitation was applied at the pavement sections before the 

SDI dropped to 2.4, it was difficult to track the pavement sections with the SDI below 2.5. 

In order to derive the entire curve of SDI deterioration, a sigmoidal model, which has been 
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proven to provide high accuracy to fit the performance curve, was applied to fit the 

predicted SDI values, as expressed by Eq. 5-14 (Hajek et al., 1985; Jackson et al., 1996). 

With the determined model parameters, the pavement life before the SDI decreasing to 2.4 

was calculated for total and non-overweight traffic scenarios at each route. 

𝑆𝐷𝐼 = 𝑆𝐷𝐼0 − exp (𝑎 − 𝑏 ∗ 𝑐
ln (

1

𝐴𝑔𝑒
)
)                                   (5-14) 

Where,  

SDI = surface distress index; 

SDI0 = surface distress index at year zero;  

Age = the year since the construction of rehabilitation; and  

a, b, c = model coefficients. 

 

(a)                                                      (b) 

 

(c)                                                       (d) 
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(e)                                                       (f) 

Figure 5.8 Pavement performance under total and nonverweight truck traffic for flexible 

pavements (a) state highway; (b) Interstate highway; (c) US highway; and composite 

pavements (d) state higway; (e) Interstate highway; (f) US highway 

 To quantify the impact of overweight traffic on pavement damage, the reduction 

ratio of pavement life was calcualted using Eq. 5-15. Table 5.6 summarizes the overweight 

percentage on single, tandem, and tridem axles and reduction ratio of pavement life for the 

selected routes. It indicated that less overweight tridem axles would induce smaller 

pavement life reduction ratio, like I-195 and I-80. The increase of tandem and tridem axle 

percentage tended to increase pavement life reduction ratio, for example NJ-138, US-30, 

and US-202. Since the SVR models were developed for each highway type, the pavement 

life reduction due to traffic loading varied were acurately captured for different pavement 

strcutures and highway types.  

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡 𝑙𝑖𝑓𝑒 =
𝐿𝑇−𝐿𝑁

𝐿𝑁
                                (5-15) 

Where, 

LT = pavement life caused by total traffic; and 

LN = pavement life caused by the non-overweight traffic. 
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Table 5.6 Percentage of overweight axles and pavement life ratio for selected routes 

Pavement 

Type 

Route Single Tandem Tridem Pavement Life 

Reduction (%) 

Flexible 

NJ-138 0% 8% 86% 29% 

I-195 0% 1% 62% 14% 

US-30 1% 9% 90% 21% 

Rigid 

NJ-33 1% 7% 84% 9% 

I-80 3% 10% 45% 11% 

US-202 0% 6% 88% 23% 

 

5.5 Summary 

In this chapter, traditional nonlinear regression and SVR methods were used to derive 

pavement performance models under the impact of traffic loading. The model accuracy 

was further improved by considering the number of axles and fitted Gaussian distribution 

of axle load spectra in the performance model. The derived SVR models were used to 

investigate the impact of overweight truck traffic on the deterioration trend of pavement. 

The proposed pavement performance model can be further used in determining pavement 

damage caused by overweight trucks for pavement rehabilitation strategy and permit fee 

analysis. 
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CHAPTER 6 IMPACT ANALYSIS OF TRAFFIC LOADING ON 

ASPHALT PAVEMENT LIFE USING RANDOM SURVIVAL 

FOREST MODEL 

6.1 Data Collection and Analysis 

6.1.1 Data Collection from LTPP Database 

LTPP program was established to collect pavement performance data as one of the 

major research areas of the Strategic Highway Research Program (SHRP). It provides 

technical knowledge of pavements currently available and seeks for models that can better 

explain pavement performance. The LTPP program include the general pavement study 

(GPS) and the specific pavement study (SPS) with different focuses. The InfoPave is a web 

interface of LTPP database that is used to deliver data sets of features generated by users.  

Totally 128 pavement sections in SPS-5 study located at 12 states were used in this 

study. The SPS-5 study is conducted to develop improved methodologies and strategies for 

the rehabilitation of flexible pavements. Each LTPP test section was approximately 3.5-m 

wide per lane and 152.4-m long (Harold L. Von Quintus et al., 2006).  The selected 

pavement sections were located at four climate regions: dry freeze (Colorado, Montana), 

dry no freeze (Arizona, California, and New Mexico), wet freeze (Maine), and wet no 

freeze (Florida, Maryland, Mississippi, New Jersey, Oklahoma, Texas) (Elkins et al., 2016). 

The climate region of pavement section was considered as environmental factor in the 

analysis. 

The load-related pavement distress data, including alligator cracking, longitudinal 

cracking at wheel-path, and rut depth of the analyzed pavement sections were identified 
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and extracted from LTPP database. The pavement age of AC overlay at the time of distress 

survey was determined by comparing the survey time and construction time of the 

rehabilitation. It is noted that fatigue cracking and longitudinal cracking were measured at 

different severity levels (high, medium, and low). Therefore, the overall cracking need be 

estimated using weight factors. The weight factors for low, medium, and high severity 

cracking were determined to be 0.2, 0.3, and 0.5, respectively, which were approximated 

based on the deduct value curves in calculating pavement condition index (PCI) (ASTM, 

2018). The IRI after construction of AC overlay was considered as the variable regarding 

construction quality in the analysis (Smith and Ram, 2016).  

Multiple data buckets for desired variables were downloaded from LTPP InfoPave 

and then organized to create a relational database. Table 6.1 summarizes the LTPP database 

variables and the extracted data elements in this study, including pavement age, traffic 

(number of axles and axle load distribution), pavement layer thickness, climate region, 

overlay treatment (milling and overlay thickness), construction quality, and pavement 

distresses (alligator cracking, longitudinal cracking at wheel-path, and rutting).  
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Table 6.1 LTPP InfoPave database tables and extracted data elements 

Variables Symbol Range Unit Relevant Tables in InfoPave 

Pavement Age 
 

0.02~24.9 year EXPERIMENT_SECTION 

Number of single axles Single 65~4541 N/A YY_AX 

Number of tandem axles Tandem 1~4701 N/A YY_AX 

Number of tridem axles Tridem 0~100 N/A YY_AX 

Range of single axle loads Single 0-39 kips YY_AX 

Range of tandem axle loads Tandem 0-78 kips YY_AX 

Range of tridem axle loads Tridem 0-117 kips YY_AX 

Thickness of AC layer AC 2.8~16 inch TST_L05B 

Thickness of bound base layer TB 0~15 inch TST_L05B 

Thickness of unbound base layer GB 0~20.7 inch TST_L05B 

Thickness of bound subbase layer SS 0~66 inch TST_L05B 

Thickness of unbound base layer GS 0~234 inch TST_L05B 

Climate region Climate 1~4 Categorical EXPERIMENT_SECTION  

Improvement type IMP_TYPE N/A Categorical CONSTRUCTION_EVENTS_EXP 

Overlay thickness IMP_h 0.7~7.8 inch CONSTRUCTION_EVENTS_EXP 

Mill thickness Mill 0.45~4.0 inch AC_MILLING_EXP 

IRI after AC overlay IRI 0.44~1.8 mm/m MON_HSS_PROFILE_SECTION 

Alligator cracking   0~808 (L)  

0~424 (M)  

0~817 (H) 

m^2 MON_DIS_AC_REV 

Longitudinal cracking   0~271 (L) 

0~153 (M) 

0~48 (H) 

m MON_DIS_AC_REV 

Rut Depth   1~25 mm MON_T_PROF_INDEX_SECTION 

 

6.1.2 Analysis of Axle Load Spectra 

LTPP collected traffic data by axle configurations and weights through weigh-in-

motion (WIM) stations (FHWA, 2001). The multi-year traffic data for the selected 

pavement sections were used in the analysis. The same traffic data was used for successive 

years for the pavement sections where traffic data was not available for certain years.  

Given the apparent bell-shaped plot, the axle load spectra were fitted using Gaussian 

distribution, as shown in Eq. 6-1 (Devore, 1995). The amplitude, mean, and standard 
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deviation of the Gaussian distribution were utilized to characterize the pattern of traffic 

load, which provides a simplified but efficient way to take detailed axle load distribution 

into consideration (Timm et al., 2005; Haider and Harichandran, 2007). Figure 6.1 shows 

an example of fitted Gaussian distribution of single and tandem axle load spectra. The plots 

show the fitting model captures the distinctive patterns of axle load spectra. 

𝑦 = ∑ 𝑎𝑖𝑒
[−(

𝑥−𝑏𝑖
√2𝑐𝑖

)
2

]
𝑛
𝑖=1                                                         (6-1) 

Where, ai is the amplitude; bi is the mean; ci is the standard deviation; and n is the number 

of peaks to fit (n =1 for single and tridem axles; n = 2 for tandem axle).  

 

(a)                                                       (b) 

Figure 6.1Example of fitted Gaussian distribution of axle load spectra: (a) single axle; 

and (b) tandem axle (SHRP_ID: 040501, 1998) 

Table 6.2 presents the summary of variables related to the total number of axles and 

fitted Gaussian distributions of axle load spectra used in this study. It is noted that the 

tridem axle load spectra were not included in the analysis due to inconsistent trend of axle 

load distribution. Since the number of tridem axle was small, this exclusion is believed to 

not affect analysis results. 
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Table 6.2 Summary of Gaussian distribution model parameters for axle load spectra 

Variable Symbol Range of Values 

Amplitude of single axle load spectrum a 7.94~37.98 

Mean of single axle load spectra b 4.08~11.48 

Standard deviation of single axle load spectrum c 0.68~5.38 

Amplitude of tandem axle load spectrum (peak 1) a1 2.44~15.9 

Mean of tandem axle load spectra (peak 1) b1 8.09~25.23 

Standard deviation of tandem axle load spectrum (peak 1) c1 1.94~9.64 

Amplitude of tandem axle load spectrum (peak 2) a2 3.22~20.15 

Mean of tandem axle load spectra (peak 2) b2 16.76~36.91 

Standard deviation of tandem axle load spectrum (peak 2) c2 1.74~12.55 

 

6.2 Random Survival Forest Model 

6.2.1 Algorithm of Random Survival Forest 

Survival analysis has been used to analyze pavement service life until distress using 

parametric (Loizos and Karlaftis, 2005; Dong and Huang, 2015) or semi-parametric cox 

models (Nakat and Madanat, 2008; Yu et al., 2008) based on condition surveys of in-

service pavements. Due to the capability of handling non-linear relationship and enhanced 

accuracy, machine learning technologies can be employed for survival analysis. Random 

forest is a modified bagging by building an amount of de-correlated trees and averaging 

them (Breiman, 2001). By extending random forest method, random survival forest is 

introduced and used for analysis of right-censored survival data (Ishwaran et al., 2008). 

The specific details of random survival forest algorithm are as follows: 

1) Draw bootstrap samples from the training dataset. Each bootstrap sample excludes 

approximately one third of the data, called out-of-bag (OOB) data. 
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2) Grow a survival tree for every bootstrap sample. Randomly select p candidate 

variables at every node of the survival tree. The candidate variable which 

maximizes survival difference between daughter nodes is used to split the node. 

3) Grow the survival tree to full size under the constraint that a terminal node is 

supposed to have no less than d0>0 unique deaths. 

4) Calculate a cumulative hazard function (CHF) for every survival tree and average 

to derive the ensemble CHF. 

5) Calculate prediction error for the ensemble CHF using out-of-bag data. 

6.2.2 Ensemble of Cumulative Hazard Function  

The key aspect of random survival forest algorithm is to grow a survival tree and 

construct the ensemble CHF. Survival trees are consisted of binary trees grown through 

recursively splitting nodes. A survival tree is grown from the root node, and the root node 

is split into two daughter nodes according to a predetermined survival criterion. Then, 

every daughter node is split, and this process is repeated in a recursive order for every 

subsequent node. The node splitting is optimized by searching over all possible split values 

and variables and selecting the optimal that maximizes survival differences. Finally, a 

saturation point is reached when no new daughters can be generated due to the constraint 

that every node need to contain a minimum of d0>0 unique deaths. The most extreme nodes 

in a saturated survival tree are named terminal nodes denoted by T. 

Let (𝑇1,ℎ, 𝛿1,ℎ),…,( 𝑇𝑛(ℎ),ℎ, 𝛿𝑛(ℎ),ℎ) be the survival times and censoring information 

for cases in a terminal node ℎ ∈ 𝑇. A case i is set to be right-censored at time 𝑇𝑖,ℎ if , 𝛿𝑖,ℎ =

0; otherwise, if 𝛿𝑖,ℎ = 1, the case is considered to have died or experienced an event at 𝑇𝑖,ℎ. 

Let 𝑡1,ℎ < 𝑡2,ℎ < ⋯ < 𝑡𝑁(ℎ),ℎ be the N(h) distinct event times. Define 𝑑𝑙,ℎ and 𝑌𝑖,ℎ to be 
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the number of events and cases at risk at time 𝑡𝑙,ℎ. The CHF estimate for terminal node h 

is the Nelson-Aalen estimator, and all individuals in h have the same CHF, as shown in Eq. 

6-2. 

�̂�ℎ(𝑡) = ∑
𝑑𝑙,ℎ

𝑌𝑙,ℎ
𝑡𝑙,ℎ≤𝑡                                                             (6-2) 

Each individual i has a d-dimensional covariate xi. Let 𝐻(𝑡|𝑥𝑖) be the CHF for i. In order 

to decide the CHF, drop 𝑥𝑖 down the survival tree. Due to the binary characteristic of a tree, 

𝑥𝑖 will fall into a unique terminal node ℎ ∈ 𝑇. The CHF for i is the Nelson-Aalen estimator 

for the terminal node of 𝑥𝑖. Eq. 6-3 is applied to define the CHF for all cases and estimate 

CHF for the tree. 

𝐻(𝑡|𝑥𝑖) = �̂�ℎ(𝑡), if 𝑥𝑖 ∈ ℎ.                                                         (6-3) 

The CHF is obtained from a single tree, and the CHF are averaged over B survival 

trees to derive an ensemble CHF. As known, every survival tree in the forest is grown by 

an independent bootstrap sample. Define 𝐼𝑖,𝑏 = 1 if i is an OOB case for b; otherwise, set 

𝐼𝑖,𝑏 = 0. Let 𝐻𝑏
∗(𝑡|𝑥) be the CHF for a tree grown using the bth bootstrap sample. The 

ensemble CHF of OOB data for i is an average over bootstrap samples, as shown in Eq. 6-

4. 

𝐻𝑒
∗∗(𝑡|𝑥𝑖) =

∑ 𝐼𝑖,𝑏𝐻𝑏
∗(𝑡|𝑥𝑖)𝐵

𝑏=1

∑ 𝐼𝑖,𝑏
𝐵
𝑏=1

                                                   (6-4) 

Drop OOB data down a tree grown from bootstrap data and keep track of the 

terminal node and CHF of case i. The OOB ensemble CHF is estimated by Eq.6-3. On the 

contrary, the bootstrap ensemble CHF for i is computed using all survival trees, as shown 

in Eq. 6-5. 

𝐻𝑒
∗(𝑡|𝑥𝑖) =

1

𝐵
∑ 𝐻𝑏

∗(𝑡|𝑥𝑖)𝐵
𝑏=1                                                    (6-5) 
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6.2.3 Prediction Error and Cross-Validation  

Several measures are available for assessing the probabilistic risk predictions in 

survival analysis. Brier and logarithmic scoring rules and concordance index which equals 

the area under the ROC curve for binary responses are commonly selected metrics (Harrell 

et al., 2005; Gneiting and Raftery, 2007). In this study, the prediction error defined as the 

time-dependent expected Brier score is discussed and assess the developed model 

(Mogensen et al., 2012), as shown in Eq. 6-6. 

𝐵𝑆(𝑡, �̂�) = 𝐸(𝑌𝑖(𝑡) − �̂�(𝑡|𝑋𝑖))
2
                                             (6-6) 

The expectation is in terms of the data of a case i which is not within the training 

dataset. 𝑌𝑖(𝑡) = 𝐼 (𝑇𝑖 ≥ 𝑡)  is the observed status of case i and �̂�(𝑡|𝑋𝑖) is the predicted 

survival probability at time t for case i with predictor variables 𝑥𝑖. In survival analysis, the 

Kaplan-Meier estimate of survival is calculated with all training samples.  

Several approaches are applied to deal with overfitting issue when only one data 

set is used to establish the prediction models. The bootstrap cross-validation method splits 

the data DN into bootstrap samples Db and corresponding test samples DN\Db (b = 1…, B). 

Bootstrap samples can either be generated with or without replacement from the original 

data. Then, models �̂�𝑏 are trained using the bootstrap training data Db, corresponding test 

samples are predicted, and residuals are calculated. Eventually, the bootstrap cross-

validation estimate of prediction error is computed by averaging over the test dataset, as 

shown in Eq. 6-7. 

𝐵𝑜𝑜𝑡𝐶𝑣𝐸𝑟𝑟(𝑡, �̂�) =
1

𝐵
∑

1

𝑀𝑏
∑ �̂�𝑖(𝑡){�̃�𝑖(𝑡) − �̂�𝑏(𝑡|𝑋𝑖)}

2

𝑖∈
𝐷𝑁
𝐷𝑏

𝐵
𝑏=1                    (6-7) 

Where, �̂�𝑖  is the inverse probability of censoring weights. Mb is the size of bootstrap 

samples for resampling without replacement.  
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6.3 Random Survival Forest Model Results 

Random survival forest approach was applied to investigate asphalt pavement life 

using the failure threshold of each pavement distress. After combining the pavement 

distress data and all explanatory variables summarized in Table 6.1 and Table 6.2, the total 

number of data observations for alligator cracking, longitudinal cracking at wheel-path, 

and rut depth were 1214, 1214, and 1139, respectively. Based on the current practice of 

mechanistic-empirical pavement design, the thresholds of alligator cracking, longitudinal 

cracking at wheel-path, and rut depth were defined be 20% of lane area, 189 m/km (1000 

ft/mile), and 12.7 mm (0.5 inch), respectively.  

Variable importance measures the change (increase or decrease) of prediction error 

for the forest ensemble when a variable is randomly “noised-up” (Breiman, 2001). A 

variable with larger variable importance indicates prediction error is significantly impacted 

when the variable is “noised-up”. Positive variable importance shows variables is 

potentially predictive variables, and zero or negative variable importance means variables 

make no contribution to prediction accuracy. Random node assignment is capable of 

effectively calculating variable importance. In random node assignment, drop cases down 

a tree and randomly assign to a daughter node when the parent node is split at the target 

variable.  

Figure 6.2 illustrates the variable importance for different pavement distresses. The 

explanation of each symbol could be found in Table 6.1 and Table 6.2. The results indicated 

that fatigue cracking was sensitive to climate, the number of tandem axle loads, the number 

of single axle loads, the thickness of AC overlay, and the thickness of milling. Longitudinal 

cracking was found more affected by the amplitude of tandem axle load spectrum (first 
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peak), the number of tandem axles, the standard deviation of tandem axle load spectra (first 

peak), the number of single axle loads, and the amplitude of tandem axle load spectrum 

(second peak). On the other hand, the top-five important features for rut depth were the 

standard deviation of tandem axle load spectrum (second peak), the thickness of AC layer, 

the amplitude of tandem axle load spectra (second peak), the number of single axle loads, 

and the thickness of treated base layer. These findings indicated that the explanatory 

variables regarding axle load spectra would impact pavement distress. Therefore, the 

derived predictive models were promising to indicate the influence of traffic loading on 

deterioration trend of each distress.  

 

(a) 

0 0.005 0.01 0.015 0.02 0.025

Climate

Tandem

Single

AC

Mill

IRI

a

b1

c

a1

IMP_TYPE

a2

TB

c2

GS

b2

IMP_h

c1

b

GB

Tridem

SS

Variable Importance



125 

 

 

 

 

(b) 

 

(c) 

Figure 6.2  Variable Importance for (a) alligator cracking; (b) longitudinal cracking at 

wheel-path; and (c) rut depth 

The time-dependent Brier score was used to assess the performance of ensembled 
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(prediction error) of fitted survival forests. Totally 100 bootstrap samples were considered. 

Figure 6.3 shows the prediction error curve of random survival forest models (RSF) and 

the conventional non-parametric survival analysis Kaplan-Meier (K-M) models over 20 

years for alligator cracking, longitudinal cracking at wheel-path, and rut depth. For alligator 

cracking and rutting, random survival forest models outperformed than the conventional 

survival analysis significantly. As for longitudinal cracking, the prediction error of RSF 

and K-M models were similar but relatively smaller than other distresses. 

 

 

(a)                                                         (b) 

 

(c) 

Figure 6.3 Prediction error of survival models: (a) alligator cracking; (b) longitudinal 

cracking at wheel-path; and (c) rut depth 
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6.4 Impact of Overweight Traffic on Pavement Life 

6.4.1 Effect of Overweight Traffic on Survival Probability 

The derived predictive models can be used to analyze the influence of overweight 

traffic loading on survival probability of AC pavement at the specific pavement section. 

The selected pavement section (SHRP_ID: 040502) was consisted of 6.5-inch AC layer 

and 14.7-inch untreated base layer located at dry, no-freeze climate region. The 

maintenance of milling existing pavement (1.05 inch) and overlaying with AC (2.7 inch) 

was applied. To evaluate the overweight effect on pavement distress, the WIM data was 

processed and divided into two traffic categories. The first category only included the 

trucks within the legal weight limit (non-overweight traffic), and the second category 

included both the trucks within the legal weight limit and the overweight trucks (total 

traffic). The legal weight limits on single, tandem, and tridem axles were set as 22,400 lbs., 

34,000 lbs., and 42,000 lbs. to distinguish the overweight axles from the total traffic 

(Federal Highway Administration, 2015). The overweight axles were found approximately 

1%, 15%, and 13% of total single, tandem, and tridem axles, respectively. Figure 6.4 shows 

the axle load spectra of non-overweight and total traffic at the selected section, respectively. 

The tandem and tridem axle load spectra were significantly influenced by the overweight 

traffic, especially for amplitude and standard deviation of distribution. 
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(a)                                                           (b) 

Figure 6.4  Axle load spectra: (a) non-overweight traffic; (b) total traffic 

The deterioration trend of pavement distress under total traffic and non-overweight 

traffic scenarios were predicted for the selected pavement section. Figure 6.5 presents the 

survival curves of pavement for alligator cracking, longitudinal cracking at wheel-path, 

and rut depth, respectively. Survival curves illustrates the probability of pavement life after 

construction until the pavement distress reached the failure threshold. The decreasing trend 

of survival curve is expected since pavement sections are likely to fail as service life 

increases. As expected, overweight truck traffic accelerated pavement deterioration and 

increased failure risk of pavement. It was found that the pavement life at 50% survival 

probability were reduced by 1-2 years due to overweight traffic. The reduction of pavement 

life varied depending on the failure mechanism. 
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(a)                                                     (b) 

 

(c)  

Figure 6.5 Example of survival curve for total and non-overweight traffic: (a) alligator 

cracking; (b) longitudinal cracking at wheel-path; (c) rut depth at the selected pavement 

section 

6.4.2 Effect of Overweight Traffic on Pavement Life Reduction 
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as the threshold to estimate the median survival life of pavement section for each load-

related pavement distress. Figure 6.6 (a)-(c) illustrate the percentage distributions of 

pavement service life before failure under total and non-overweight traffic, respectively. It 
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service life. The reduction ratio of pavement life due to overweight traffic was calculated 

for each pavement section, as shown in Eq. 5-15.  

Figure 6.6 (d) shows the life reduction ratio due to overweight traffic in box plots. 

It should be noted that the negative values are considered as the outliers impacted by the 

accuracy of predictive models. For most pavement sections, the reduction ratios were found 

in the range of 16-43% for alligator cracking, 3% to 42% for longitudinal cracking at 

wheel-path, and 0% to 33% for rut depth. The median values of life reduction ratio were 

found to be 32%, 24%, and 12% for alligator cracking, longitudinal cracking, and rut depth, 

respectively. This indicates that alligator cracking is more impacted by overweight traffic 

loading as compared to longitudinal cracking and rutting.  
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(c)                                                                     (d) 

Figure 6.6 Distribution of survival life: (a) alligator cracking; (b) longitudinal cracking; 

(c) rut depth; and (d) Boxplots of survival life differences under total traffic and non-

overweight traffic 

 The findings above proved the effectiveness of random survival forest method in 

analyzing impact of overweight traffic on pavement failure risk for different failure 

mechanisms when axle load spectra were taken into consideration. Different from 

regression-based approaches, the pavement service life affected by different traffic 

scenarios can be obtained with the survival curve directly. Thus, random survival forest 

method provides an easier and faster manner to investigate the impact of overweight traffic 

on failure risk of asphalt pavement.    

6.5 Summary 

In this chapter, random survival forest method was utilized to investigate the impact 

of overweight traffic on asphalt pavement life using traffic data and field measurements at 

LTPP database. The traffic data collected from WIM stations in LTPP database were 

characterized through the number of axles and axle load spectra. Random survival forest 
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complex interaction of traffic loading, pavement structure, and climate. The proposed 

random survival forest models were adopted to investigate the impact of overweight traffic 

on survival curves of pavement life for the specific pavement section. The survival curves 

were utilized to show the influence of overweight traffic on survival probability of 

pavement over time for three different failure mechanism. 
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 

7.1 Findings 

This study aims to quantify traffic loading impact on flexible pavement performance 

using vehicle-tire-pavement interaction modeling and machine learning approaches. The 

following analysis findings could be summarized: 

Dynamic Loads of Vehicle Due to Rough Pavement Surface 

1) Pavement surface roughness and vehicle speed significantly affect the variation of 

dynamic loads. DLCs increased as pavement roughness levels increased but 

decreased as applied axle load increased.   

2) The DLCs of wide-base tire was found smaller than those induced by dual-tire 

assembly. The differences vary depending on truck configuration, pavement 

roughness, and speed, and became more significant on rougher pavement roughness. 

Analysis of Pavement Response Under Dynamic Loads with Stochastic Amplitude 

1) Pavement surface roughness significantly affects the pavement responses at 

different locations of pavement section. Pavement can fail at the locations where 

the greater tensile strains are induced due to pavement roughness. As pavement 

roughness increased, both the maximum strains and the range of strain variations 

increased. 

2) The effect of vehicle speed on pavement responses was complex due to the change 

of magnitude and frequency of dynamic loads at different speeds. High speed may 

accelerate pavement deterioration on rough pavement surface. The influence of 

load frequency on pavement responses under dynamic loads was found not 

significant. This is different from the finding of traditional viscoelastic analysis of 
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pavement responses that uses the loading frequency resulted from the duration of 

moving load.  

3) The calculated maximum tensile strain under dynamic loads were found much 

greater than those under static loads, depending on pavement surface roughness and 

axle type and load. The relative ratios of fatigue life due to dynamic loads were 

calculated and fitted as a function of axle type, load magnitude, and IRI, which can 

be directly used in the current framework of M-E pavement analysis for prediction 

of fatigue cracking over years. The accumulative fatigue damage ratio between 

dynamic and static loads was found significantly influenced by IRI values. 

4) In general, wide-base tire caused greater tensile strain but similar compressive 

strain and near-surface shear strain as compared to dual tire assembly. However, 

the pavement response ratios caused by two tire configurations show certain 

variations as the truck configuration, speed, or pavement surface roughness changes. 

This suggests that the prediction of long-term pavement performance under the 

impact of wide-base tire need consider the evolution of pavement surface condition 

and different failure mechanisms. 

Comparison Analysis of Traffic Loading Impact Using Nonlinear Regression And Support 

Vector Regression Models 

1) Compared to nonlinear regression model, the accuracy of pavement performance 

prediction was significantly increased by utilizing the SVR method. The model 

accuracy was further improved by considering the number of axles and fitted 

Gaussian distribution of axle load spectra in the performance model.  
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2) The derived SVR models were used to investigate the impact of overweight truck 

traffic on the deterioration trend of pavement. The analysis indicated that less 

overweight tridem axles would induce smaller pavement life reduction ratio 

between non-overweight and total traffic scenarios. The increase of tandem and 

tridem axle percentage tended to increase pavement life reduction ratio. The 

proposed pavement performance model can be further used in determining 

pavement damage caused by overweight trucks for pavement rehabilitation strategy 

and permit fee analysis. 

Impact Analysis of Traffic Loading on Asphalt Pavement Life Using Random Survival 

Forest Model 

1) Random survival forest was proved to be an efficient risk modeling approach to 

predict pavement life under complex interaction of traffic loading, pavement 

structure, and climate. The variable importance method was used for selection of 

explanatory variables in the predictive models. The random survival forest models 

were developed for three different failure mechanisms (alligator cracking, 

longitudinal cracking, and rutting).  

2) The findings indicated that the explanatory variables regarding axle load spectra of 

traffic loading explain pavement performance degradation significantly. The 

random survival forest models showed much greater accuracy for prediction of 

alligator cracking and rutting, as compared to the conventional survival analysis. 

3) The proposed random survival forest models were adopted to investigate the impact 

of overweight traffic on survival curves of pavement life for the specific pavement 

section. The survival curves were utilized to show the influence of overweight 
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traffic on survival probability of pavement over time for three different failure 

mechanism. The reduction ratio of pavement life due to overweight traffic 

estimated based on alligator cracking was found greater than longitudinal cracking 

and rutting for all the pavement sections. It indicated that alligator cracking was 

more impacted by overweight traffic loading as compared to longitudinal cracking 

and rutting.  

 

7.2 Conclusions 

This study concludes that it is important to consider vehicle-tire-pavement 

interaction to analyze dynamic pavement responses and fatigue cracking damage in asphalt 

pavement analysis and design. The magnitude and frequency of dynamic loads generated 

by axle loads due to rough pavement surface conditions were found impacted by vehicle 

speeds, truck configurations, pavement profiles, and axle types and loads. The pavement 

responses and fatigue cracking damage at specific locations along pavement profile were 

significantly increased by dynamic loads due to pavement roughness. Therefore, dynamic 

loads should be considered in M-E pavement analysis and design for more accurate 

pavement performance prediction. 

 Machine learning approach significantly outperforms traditional statistical 

regression methods in analyzing pavement performance when complicated explanatory 

variables are taken into consideration. It is a powerful tool to develop empirical models for 

pavement performance prediction based on field measurements for pavement management 

system. Machine learning approach also makes it feasible to consider a variety of 

explanatory variables in transfer functions in M-E pavement analysis and design according 
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to realistic pavement performance. The derived models can be utilized to investigate the 

impact of specific variable such as traffic loading on pavement performance based on 

different failure mechanisms. It can be further applied to optimally allocating maintenance 

and rehabilitation costs. 

 

7.3 Limitations of Study 

The following limitations of the study should be noted: 

1) Limited truck configurations, vehicle speeds, pavement profiles, and axle loads were 

considered to calculate the dynamic tires forces due to rough pavement surface 

conditions.  

2) Due to the lack of field measurements, limited pavement responses from LTPP 

database were used to validate the proposed impulse response method to estimate 

the pavement responses induced by dynamic loads of moving vehicles. 

3) The estimated pavement performance using the proposed methodology to consider 

dynamic loads in M-E analysis and design was not verified using field measurements. 

4) The hyperparameters in machine learning models were optimized for model 

selection, but a comprehensive grid-search for hyperparameter tuning is needed to 

derive more accurate prediction models of pavement performance. 

5) Limited variables related to environmental condition and material properties were 

taken into account in the random survival forest models of pavement performance. 
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7.4 Recommendations for Future Work 

The following recommendations are suggested for future study: 

1) Future researches should be conducted to further validate the accuracy of impulse 

response method with field measurements other than LTPP data. The 

combinational effects of load frequency and speed need be studied using dynamic 

loads induced by a wide range of pavement surface roughness. 

2) The study provides an analysis methodology to consider dynamic loads caused by 

pavement roughness for pavement response calculation and fatigue damage 

accumulation in M-E pavement analysis. Future study should be conducted to 

implement the proposed methodology and verify the prediction of pavement 

performance with field measurements. The propose methodology can be modified 

for analyzing other failure mechanisms such as rutting in M-E pavement analysis. 

3) The findings indicated the proposed random survival forests models are promising 

to analyze the impact of traffic loading on failure risk of pavement with high 

accuracy. The proposed models can be further improved by considering more 

variables related to more detailed climate condition and material properties and 

used for more accurate pavement performance prediction for pavement 

management system in the future study.   

4) Machine learning approaches can be further used for decision-making to improve 

pavement performance, for example optimization of maintenance and rehabilitation 

strategies and determination of overweight permit fee policy based on axle loads.   
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