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The study of this thesis is mainly motivated by the computational problems that arised

from paper [7] where authors designed a new dynamic system model called Dynamic

Signatures Generated by Regulatory Networks (DSGRN) to simulate gene regulatory

networks. An essential property of DSGRN model is that the phase transition graph

is invariant over a family of subvariety which is defined by a set of simple polynomials

over parameter space. One of the work in DSGRN is to study the family of subvariety

over parameter space and two basic problem arises: realizability and topology. As to

reailizability, we are concerned with constructing the whole family of subvariety. For

topology, we want to compute the homology group of a set of subvariety for a given

phenotype. This thesis has two main contributions. First, we develop a new algorithm

that greatly extends the computational ability of DSGRN to wider class of regulatory

network. Second, we design a computational framework for the homology computation

of subvariety over the parameter space.
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Chapter 1

Introduction

This introduction provides a brief description of how the topics of this thesis arises in

the context of mathematical modeling of problems from systems biology and the outline

of the thesis.

Biologists often describe regulatory networks in terms of annotated directed graphs,

such as that shown in Figure 1.1 where the labeling of the edges, n → m or n a m

indicates whether node n activates or represses node m. Our goal is to describe the

type of dynamics that can be expressed by the regulatory network.

We first have a look of two examples of regulatory network, see Figure 1.2, and how

to use them to analyze the gene dynamics qualitatively. The two networks in Figure

1.2 are the self-oscillatory and the toggle switch network.

The toggle switch model was introduced in [30] to study the bistability in e-coli,

and the self-oscillatory is a subnetwork in the p53 regulatory network [2]. They are

both directed graphs, but there is an important difference between regulatory network

and directed graph. For a regulatory network there are two different types of edges,

activation → and repression a which assume biological meaning.

For example, as to 1→ 2 , it means a large amount of protein produced by gene 1

will activate the expression of gene 2. On the other hand 2 a 1 means a large amount of

protein produced by gene 2 will repress the expression of gene 1. As to the toggle switch

we have 1 a 2 and 2 a 1, which means a large amount of protein produced by each of

the two genes will repress the expression of other gene. Even a simple naive analysis of

these two regulatory networks suggests that they exhibit very different dynamics.

For the self-oscillatory network, a large amount of protein produced by gene 1 will

activate the expression of gene 2. When the amount of the protein produced by gene
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Figure 1.1: Example of a regulatory network.

(a) (b)

Figure 1.2: (a) Self-oscillatory regulatory network (b) Toggle switch network

Figure 1.3: Model for edge n→ m where `m,n indicates low level of growth rate of xm
induced by xn and `m,n + δm,n indicates high level of growth rate of xm induced by xn.
θm,n provides information about the value of xn that lies between low and high values
inducing low and high expression levels.
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Figure 1.4: Model for edge n a m where `m,n indicates low level of growth rate of xm
induced by xn and `m,n + δm,n indicates high level of growth rate of xm induced by xn.
θm,n provides information about the value of xn that lies between low and high values
inducing low and high expression levels.

2 increases to some level, it starts repressing the expression of gene 1. Consequently,

when the amount of protein produced by gene 1 is reduced to lower level, the expression

of gene 2 will also be slowed down which will finally cause the amount of protein

produced by gene 1 back to high level. From above qualitative analysis, the self-

oscillatory regulatory network encodes cyclic dynamics. For toggle switch, if the initial

amount of protein produced by gene 1 is large, it will repress the expression of gene

2. Then when the amount of protein produced by gene 2 is low, it does not have

repression effect over the expression of gene 1, in the end we will end at a state such

that the amount of protein produced by gene 1 is large and protein produced by gene

2 is small. In another word, toggle switch will encode fixed point dynamics.

The above discussion has shown the power of a regulatory network to analyze the

dynamics of gene interactions qualitatively. In order to move further researchers need

to develop quantitative model over regulatory network.

A natural choice is to use ordinary differential equations, i.e. we associate a dynam-

ical system to the regulatory network

ẋ = F (x, λ)

where λ represents some biological parameters, such as decay rates, expression levels,

or thresholds. However, the biggest trouble is we do not know what F is. Also the

dimension of parameter λ can be high for more complicated models like p53 network
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model Figure 1.1 . At this point it is too complicated to understand the dynamics by

looking at the picture.

Achieving the goal to describe the dynamics for a regulatory network requires that

we impose a mathematical interpretation on the regulatory network that is compatible

with its use as a biological model. With this in mind, we assign to node n a state

variable, xn > 0, that corresponds with the quantity of a protein, mRNA, or a signaling

molecule. Precise nonlinear expressions for the interactions of the variables are not

assumed to be known, but we do assume that the sign of the rate of change of xm is

determined by

− γmxm + Λm(x) (1.1)

where γm indicates the decay rate and Λm is a parameter dependent function that

characterizes the rate of growth of xm. Note that Λm is a function of xn if and only if

there exists an edge from n to m in the regulatory network.

Since the biological model provides minimal information about the effect of xn on

xm we want to choose a mathematical expression with a minimal set of assumptions.

The rates of growth of xm due to xn are labeled as 0 < `m,n < `m,n + δm,n.

Figure 1.3 corresponds to an edge n→ m and θm,n indicates that the rate of increase

`m,n must occur at some lesser value of xn and the rate of increase `m,n + δm,n must

occur at some greater value of xn. An arrow of the form n a m leads to the opposite

relation 1.4.

This introduces three positive parameters, `m,n, δm,n, and θm,n, for each edge in the

regulatory network. Note that this is the minimal number of parameters that allows

one to quantify the assumption that xn activates xm (or equivalently that xn represses

xm). We encode this information with the following functions

λ+
m,n(xn) =


`m,n if xn < θm,n

`m,n + δm,n if xn > θm,n

and λ−m,n(xn) =


`m,n + δm,n if xn < θm,n

`m,n if xn > θm,n.

We do not assume that the values of `m,n, δm,n, or θm,n are known. This is intentional
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as many of these parameters do not have an easy biological interpretation and/or cor-

respond to physical constants which are difficult or impossible to accurately measure.

Thus, the goal is not to determine the dynamics at any choice of parameters, but to

determine the range and robustness of the qualitative dynamics exhibited by a network.

A regulatory network such as that of Figure 1.1 does not indicate how multiple

inputs to a particular node should be processed. An approach that is used is to assume

a simple algebraic relationship involving sums and products of the λ±. As an example,

a reasonable choice for x1 of Figure 1.1 is

Λ1(x2, x3, x4) =
(
λ+(x2) + λ+(x3)

)
λ−(x4). (1.2)

Observe that each λ± takes only two values and therefore, generically Equation (1.2)

takes 8 distinct values which are

p0 = (`1 + `2)`3 p4 = (`1 + `2 + δ1)`3

p1 = (`1 + `2)(`3 + δ3) p5 = (`1 + `2 + δ1)(`3 + δ3)

p2 = (`1 + `2 + δ2)`3 p6 = (`1 + `2 + δ1 + δ2)`3

p3 = (`1 + `2 + δ2)(`3 + δ3) p7 = (`1 + `2 + δ1 + δ2)(`3 + δ3).

As is suggested in the caption of Figures 1.3, 1.4 we do not interpret the values of λ±,

or Λ as literal expressions of the nonlinear interactions, but rather, that the associated

parameter values are landmarks of whatever of the “true” nonlinear function is. This

has several consequences.

1. We cannot expect Equation (1.1) to provide precise information about the growth

rate of xm. Therefore we restrict our attention to asking whether the level of xm

is increasing or decreasing. However, we wish to answer this question over all the

possible parameter values γ, θ, ` and δ.

2. The only values of xm at which the dynamics of xn change are of the form θm,∗.

The associated hyperplanes xj = θk,j decompose phase space [0,∞)N , where N

is the number of nodes in the network, into N -dimensional rectangular regions
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called domains.

3. We can determine all possible signs of (1.1) associated with (1.2) by studying all

possible total orders that can be realized by {p0, . . . , p7}. To be more precise,

define P = {p0, . . . , p7}.

For a given σ ∈ S8 which is symmetric group of order 8, define its realizable set

Ξσ :=
{
ξ ∈ R6

+ : pσ(k)(ξ) < pσ(k+1)(ξ) for all 0 ≤ k ≤ 6
}
. (1.3)

and also define a subset of S8 such that

T (P, (0,∞)6) := {σ ∈ S8 : Ξσ is nonempty} .

Then if we can determine T
(
{p0, . . . , p7} , (0,∞)6

)
for (1.2) we can determine

all possible signs of (1.1) associated with (1.2) by cataloguing the relative values

of γ1θj,1, j = 4, 5 with respect to {p0, . . . , p7}. For example, if we can find a

ξ such that p0(ξ) < p1(ξ) < · · · < p7(ξ), j = 0, . . . , 6, then we can make the

−γ1θj,1 + pi(ξ) < 0,−γ1θj,1 + pi+1(ξ) > 0 by choosing appropriate values of

γ1, θj,1. For more details, we refer to chapter 2.

We have developed software, Dynamic Signatures Generated by Regulatory Net-

works (DSGRN), that given the information of the form provided by consequence 3 is

capable of efficiently building a database of the global dynamics of a regulatory network

over all of parameter space [7]. In [7] we are restricted to considering networks with

nodes that have at most three in edges and at most three out edges. In the thesis, we

can extend the networks with nodes that have no more than 4 input edges and 5 output

edges and with some restriction we can allow 5-6 inputs edges.

1.1 Outline of thesis

In chapter 2, we introduce the algebraic constraints linear extension problem (AC-LEP)

which is coming from the study of sign for equations (1.1). In order to solve AC-

LEP we first focus on its linear case which we call linear constraints linear extension
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problem (LC-LEP) and develop an efficient algorithm to solve LC-LEP. Then we use

a linearization method to transform AC-LEP to LC-LEP and solve the AC-LEP by

using the LC-LEP algorithm under some restrictions. At the end, we combine the

linearization method with cylindrical algebraic decomposition [4] and sampling method

to solve the general AC-LEP. The result in this chapter allowed us to greatly expand the

capabilities of DSGRN [7]. In particular, it can now handle the algebraic combinations

of 4 to 6 input edges as is indicated in Section 2.4.

In chapter 3, we introduce the parameter space homology computation problem

in DSGRN model. We first define the sets which are of interest for their homology.

Those sets do not have good topological structure, i.e. CW complex structure, so

we find a series of CW complex to approximate those sets in homology sense. We

first show the approximation is good enough, i.e. the singular homology of those sets

are isomorphic to the cellular homoloy of the approximating CW complex if some

simple numerical conditions are satisfied. Then we provide the an efficient computation

framework to construct those CW complex and compute their homology. At last, we

show the applications to regulatory networks.

1.2 An example

We use a simple example to illustrate all the points introduced previously. Consider

the toggle switch dynamics, Figure 1.2 (b), then the sign of the rate of change of x1

and x2 are determined by the sign of

−γ1x1 + Λ1(x2) (1.4)

−γ2x2 + Λ2(x1) (1.5)

and a reasonable choice for Λ1(x1) and Λ2(x2) is

Λ1(x2) = λ−1,2(x2),Λ2(x1) = λ−2,1(x1)

From the previous discussion, in order to study the sign of rate of change around
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Figure 1.5: Factor graph for node 1 parameter space in toggle switch. The left
node represents parameter region {γ1θ2,1 < l1,2}, the middle node represents param-
eter region {l1,2 < γ1θ2,1 < l1,2 + δ1,2}, the right node represents parameter region
{l1,2 + δ1,2 < γ1θ2,1}. The edges in between means in order to change from one pa-
rameter region to another one, we only need to change one inequality.

the switching thresholds θ1,2, θ2,1, we only need to study the all the total order that can

be realized by P1 = {p0 = l1,2, p1 = l1,2 + δ1,2}, P2 = {p0 = l2,1, p1 = l2,1 + δ2,1} for

node 1,2 respectively. As P1 and P2 are similar, we only need to study one of them.

We choose to compute set

T (P1, (0,∞)2)

It is easy to see T (P1, (0,∞)2) = {(0, 1)} as l1,2 < l1,2 + δ1,2 when δ1,2 > 0. Even

though T (P, (0,∞)2) is easy to compute in our case, in general or for more com-

plicated Λ, this problem is difficult and it is the main topic of chapter 2. Once we

have determined T (P1, (0,∞)2) = {(0, 1)}, we can determine all possible signs of

(1.4) associated with P1 by cataloguing the relative values of γ1θ2,1 with respect to

{p0, p1}. The parameter regions corresponding to different signs of (1.4) are {{γ1θ2,1 <

l1,2}, {l1,2 < γ1θ2,1 < l1,2 + δ1,2}, {l1,2 + δ1,2 < γ1θ2,1}}. Symmetrically for node 2 we

have {{γ2θ1,2 < l2,1}, {l2,1 < γ2θ1,2 < l2,1 + δ2,1}, {l2,1 + δ2,1 < γ2θ1,2}}. Thus, the three

parameter regions for each node can be visualized like Figure 1.5 which we call factor

graph.

This implies for each factor graph PG(i), i = 1, 2, the associated parameter space

(γ, θ, `, δ) ∈ (0,∞)4 is subdivided into the regions where the explicit constraints are as

follows:

PG(1) = {{γ1θ2,1 < l1,2} , {l1,2 < γ1θ2,1 < l1,2 + δ1,2} , {l1,2 + δ1,2 < γ1θ2,1}}

PG(2) = {{γ2θ1,2 < l2,1}, {l2,1 < γ2θ1,2 < l2,1 + δ2,1}, {l2,1 + δ2,1 < γ2θ1,2}}.

The parameter graph for the toggle switch is the product of the factor graphs, i.e.
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Figure 1.6: Parameter graph for toggle switch parameter space. The upper row for
each node shows the relative position of fixed point with respect to thresholds θ1,2, θ2,1

and the second row shows the defining inequalities of the parameter regions.
.

PG = PG(1)×PG(2), and the subdivision of the full parameter space (0,∞)8 is given

by product of the subdivisions associate with each factor graph. Figure 1.6 indicates

PG along with the associated constraints.

By calling DSGRN we can get the graph Figure 1.6 which shows the correspondence

between parameter regions and regulatory network dynamics. Observe that a subset of

nodes S of the parameter graph corresponds to a subset of parameter space (0,∞)8. In

applications the choice of S is determined by dynamics. For example, as indicated in

Figure 1.6 in the toggle switch the dynamics associated with the central node is that of

bistability while the dynamics of the eight surrounding nodes is that of monostability.

Two natural questions are:

1. What is the topology of parameter space that exhibits bistability?

2. What is the topology of parameter space that exhibits monostability?

We claim that regions associated to single nodes in the parameter graph are contractible

and that the homology for the second region is the same as that of a circle.

To proceed further some notation is helpful. Given a node s of a parameter graph

PG, let Υ̃({s}) denote the associated subset of the parameter space (0,∞)D and a node

for parameter graph PG(i). Given a node si of a factor graph PG(i), let Υ̃i(si) denote

the associated subset of the parameter space (0,∞)Di . A naive statement of the goal of
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this section is as follows. Let S be a subset of nodes of a parameter graph PG, compute

the homology of

Υ̃(S) =

(⋃
s∈S

cl(Υ̃({s}))

)
∩ (0,∞)D.

where s denote the parameter node and

There is a fundamental problems with Υ̃(S) as defined above. To compute Hom(Υ̃(S))

we require that Υ̃(S) be a finite cell-complex that can be realized as a CW complex

This is clearly not the case as Υ̃(S) is neither compact nor bounded. This problem is

not easily rectified since Υ̃(S) is meant to represent biologically relevant parameters.

In particular, since the edges of the regulatory network are meant to indicate activation

or repression it is essential that δ > 0 and θ > 0. To resolve this problem for each node

s in a factor graph we define CW complexes X̃ε({s}) which are a good approximation

to Υ̃({s}).

To construct the CW complex, observing the factor graph PG(i), we first find the

parameter space has a natural direct product structure such that {γ1, θ2,1, l1,2, δ1,2} ×

{γ2, θ1,2, l2,1, δ2,1} while the change rate of x1 only depends on the parameters of the first

component and x2 only depends on the second. Then we can construct CW complex on

each component and take their product as the CW complex over the whole parameter

space. In toggle switch network, the two nodes are at symmetric position, so we only

need to construct the CW complex for one of them and the other is the same.

We focus the parameter space for node 1, i.e. {γ1, θ2,1, l1,2, δ1,2}. We claim the

bounded set Z = {γ1 = 1, θ2,1 + l1,2 + δ1,2 = 1, θ2,1 > 0, l1,2 > 0, δ1,2 > 0} has the

property such that Υ̃1(S1) is homotopic equivalent to Υ̃1(S1)∩Z for any S1 in PG(1).

Then we consider closed and bounded set X̃1,ε(S1) = Υ̃1(S1)∩Z ∩ [ε,∞)4 for ε = 0.001.

From definition, X̃1,ε(S1) has natural cell complex structure and is approximating set

Υ̃1(S1) in homology sense. For details and general result we refer reader to chapter

3. A geometric realization of this cell complex X̃1,ε(S1) is given in Figure 1.7 and the
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Figure 1.7: CW complex for node 1 parameter space in toggle switch. The
regions 1, 2, 3 is the approximation to the parameter regions {γ1θ2,1 < l1,2},
{l1,2 < γ1θ2,1 < l1,2 + δ1,2}, {l1,2 + δ1,2 < γ1θ2,1} respectively

.

cell-complex represented by their vertices is given by

X 2 =
{
ξ2

1 = {0, 4, 5}, ξ2
2 = {0, 1, 3, 4}, ξ2

3 = {1, 2, 3}
}

X 1 = {ξ1
1 = {0, 5}, ξ1

2 = {4, 5}, ξ1
3 = {0, 4}, ξ1

4 = {0, 1}, ξ1
5 = {1, 3}, ξ1

6 = {3, 4},

ξ1
7 = {1, 2}, ξ1

8 = {2, 3}}

X 0 =
{
ξ0

1 = {0}, ξ0
2 = {1}, ξ0

3 = {2}, ξ0
4 = {3}, ξ0

5 = {4}, ξ0
6 = {5}

}
where the incidence number κ is given by κ(ξij , ξ

k
l ) = 1 if i = k + 1 and ξkl ⊂ ξij else 0.

Note the number field we used in homology computation is always Z2.

Once we have constructed the CW complex for the whole parameter space denote

as X̃ε(S), we can apply standard tools, like SageMath, to compute the homology group

for some given regions.

In the case of the toggle switch, the DSGRN database, Figure 1.6, indicates that

the only parameter node at which the dynamics indicates bistability is 5 and its corre-

sponding homology group Hom(X̃ε(S)) is isomorphic to the homology group of a point.

For all nodes complementary to 5 the DSGRN database reports monostability. Let S
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denote this set of nodes, we determine that

Homk(X̃ε(S)) ∼=


Z2 if k = 0, 1

0 otherwise.

In chapter 3, we show the singluar homology Hom(Υ̃(S)) is isomorphic to cellular

homology Hom(X̃ε(S) for any S in parameter graph.
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Chapter 2

Computing linear extensions for Boolean lattices with

algebraic constraints

In this chapter we consider the classical problem of computing linear extensions of a

given poset which is well known to be a difficult problem. However, in our setting

the elements of the poset are multi-variate polynomials, and only a small “admissible”

subset of these linear extensions, determined implicitly by the evaluation map, are

of interest. This seemingly novel problem arises in the study of global dynamics of

gene regulatory networks in which case the poset is a Boolean lattice. We provide

an algorithm for solving this problem using linear programming for arbitrary partial

orders of linear polynomials. This algorithm exploits this additional algebraic structure

inherited from the polynomials to efficiently compute the admissible linear extensions.

The biologically relevant problem involves multi-linear polynomials and we provide a

construction for embedding it into an instance of the linear problem.

2.1 Introduction

Consider a set of real polynomials P, defined on a domain Ξ ⊂ Rd, equipped with a par-

tial order ≺. We are interested in identifying linear extensions (total orders compatible

with ≺) that are satisfied by P under evaluation at a point in Ξ.

To be more precise consider a semi-algebraic set Ξ ⊂ Rd, called the evaluation

domain, and a collection of polynomials P := {p0, . . . , pK} ⊂ R[x1, . . . , xd]. Let ≺

denote a partial order on P such that if p ≺ q, then

p(ξ) < q(ξ) for all ξ ∈ Ξ. (2.1)
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Let SK+1 denote the set of permutations on K + 1 symbols. We identify linear

extensions of P with a subset of SK+1 as follows. Given σ ∈ SK+1, let ≺σ denote the

linear order

pσ(0) ≺σ pσ(1) ≺σ · · · ≺σ pσ(K).

We define the realizable set associated to σ by

Ξσ :=
{
ξ ∈ Ξ : pσ(k)(ξ) < pσ(k+1)(ξ) for all 0 ≤ k ≤ K − 1

}
. (2.2)

Observe that if Ξσ 6= ∅, then ≺σ is a linear extension of ≺. The algebraically constrained

linear extension problem (AC-LEP) defined by (P,≺,Ξ) is to determine

T (P,≺,Ξ) := {σ ∈ SK+1 : Ξσ is nonempty} .

Notice that in the formulation of the AC-LEP we have identified the partial order ≺σ

with the associated element in SK+1. We will use this identification throughout the

remainder of the chapter. We say that each σ ∈ T (P,≺,Ξ) is an admissible linear

extension.

As is discussed in Chapter 1 our motivation for study the AC-LEP comes from mod-

eling the dynamics of regulatory networks in biology and in particular characterizing

relevant subsets of parameter space. For the moment we attempt to put this problem

into a broader mathematical context as the problem itself, as well as our solutions for

some special cases, have elements of both classical real algebraic geometry and order

theory.

Quantifier elimination and real algebraic geometry

Observe that if Ξ = Rd, P is an arbitrary collection of polynomials, then σ ∈ SK+1 is

admissible if and only if there exists ξ ∈ Rd such that pσ(k)(ξ) − pσ(k+1)(ξ) < 0 for all

0 ≤ k ≤ K. These inequalities define a semi-algebraic set and therefore, taking ≺ to

be the trivial partial order (i.e. P is a single anti-chain), this instance of AC-LEP is

equivalent to the classical problem of decidability for real semi-algebraic sets.
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The previous example illustrates a major challenge in solving the AC-LEP. The

first general algorithm for solving the quantifier elimination/decidability problem for

polynomials in Rd with feasible running time was the cylindrical algebraic decomposi-

tion (CAD) given by Collins [13] in 1975. The CAD algorithm works by subdividing Ξ

into subsets on which the polynomials are sign invariant. Given such a decomposition,

decidability is reduced to simply evaluating each polynomial at a sample point located

in each subset and checking if it satisfies the necessary inequalities. Unfortunately, the

computational complexity of the algorithm grows like

O
(

(2D)2d−1 (K + 1)2d−122d−1−1
)

where D = max {deg p : p ∈ P} .

This worst case running time is known to be sharp even for classes of “nice” polynomials

e.g. linear [12], and moreover, the worst case is also typical [5]. As a result, the question

of whether or not σ ∈ T (P,≺,Ξ), even for a single σ ∈ SK+1, is often intractable for

problems of practical interest.

In addition, this algorithm does not provide partial information. It either runs

to completion, in which case it is guaranteed to provide an answer, or it provides no

information. Furthermore, we note that if additional algebraic constraints are added

e.g. we assume Ξ0 ⊂ Ξ ⊂ Rd is a strict semi-algebraic subset, then the CAD algorithm

can handle this by simply appending the polynomial constraints which define Ξ0 to the

set of polynomials. However, this dramatically increases the complexity of the CAD

algorithm, despite the fact that the number of admissible linear extensions can only

decrease.

Some improved algorithms have been proposed which aim to reduce the complexity

of specific aspects of the problem or for special classes of polynomials (e.g. [22, 10, 11]).

These improvements often provide dramatic algorithmic speedups for checking whether

σ ∈ T (P,≺,Ξ) for a single linear extension. However, these algorithms have the same

worse case running time as the general CAD algorithm and understanding which classes

of polynomials benefit is still a very active area of research. Therefore, these improved

algorithms alone are not sufficient to handle instances of AC-LEP since we are interested
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in determining which of the (K + 1)! possible semi-algebraic sets are nonempty. An

efficient algorithm which does not produce a decomposition of Ξ into sign invariant

subsets would still need to be called (K+1)! times. However, we will make use of these

improved algorithms as a post-processing step which we discuss further in Section 2.3.

Computing linear extensions of Boolean lattices

Let us momentarily ignore the algebraic structure in the AC-LEP by forgetting that

P is a collection of polynomials. Hence, we focus only on the poset structure (P,≺),

and consider the problem of computing all linear extensions. The related problem

of counting all linear extensions of a partial order is a well studied problem in order

theory. Its importance is due in large part to its connection with the complexity of

sorting elements in a list. If one considers a list of (K + 1) distinct values which have

been partially sorted by making pairwise comparisons on a subset of its elements, then

these comparisons induce a partial order. Therefore, the linearly ordered values of

the fully sorted list are given by one of the possible linear extensions for the partial

order. As a result, the complexity of completely sorting a list is intimately connected

to counting linear extensions for posets.

Observe that computing the set of all linear extensions of (P,≺) is not easier than

counting them which is known to be #P -complete [8]. In particular, a polynomial time

algorithm for computing all possible linear extensions for arbitrary posets would imply

that P = NP by Toda’s theorem [31]. Moreover, we are interested not only in counting

linear extensions, but explicitly computing them. Therefore, we are also concerned with

how fast the number of admissible linear extensions grows.

For reasons we discuss in Section 2.3, we are specifically interested in the case that

(P,≺) is a Boolean lattice. Specifically, for fixed n ∈ N, define Sn := {1, . . . , n} and

let 2Sn denote its power set. The standard n-dimensional Boolean lattice is the poset,

(2Sn ,≺B), where ≺B is the partial order defined by inclusion. We say a poset, (P,≺),

is an n-dimensional Boolean lattice if (P,≺) is order isomorphic to the standard n-

dimensional Boolean lattice and we write ≺B in place of ≺.

Estimating the number of linear extensions for Boolean lattices was first considered
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in [25] which established a nontrivial upper bound. Later, Brightwell and Tetali [9]

proved the following result that essentially settles the question for all practical consid-

erations. If Q(n) denotes the number of linear extensions of an n-dimensional Boolean

lattice, then

logQ(n)

2n
= log

(
n

bn/2c

)
− 3

2
log e+O

(
lnn

n

)
. (2.3)

The estimate in Equation (2.3) illustrates a major challenge in solving the instances

of AC-LEP of interest in this chapter. Consider an instance of AC-LEP given by

(P,≺B,Ξ) where (P,≺B) is an n-dimensional Boolean lattice and Ξ is any evaluation

domain.

Suppose we had a black box for efficiently computing all linear extensions of a

Boolean lattice denoted by L ⊂ SK+1. Furthermore, assume we also had a “CAD”-like

algorithm which could efficiently check if Ξσ 6= ∅. Then, one would need to call this

algorithm only #L-many times as opposed to (K + 1)! as we argued above. However,

the growth estimate in Equation (2.3) implies that the number of calls to this algorithm

would still grow exponentially.

This work

In this work we present efficient algorithms for solving two specific instances of the

AC-LEP. The first is the linearly constrained linear extension problem (LC-LEP), in

which P is a set of linear polynomials, Ξ is a polytope, and ≺ is an arbitrary partial

order. We present an efficient algorithm for solving the LC-LEP in Section 2.2. The

second instance of the AC-LEP, which we call the parameter space decomposition (PSD)

problem and describe now (see Definition 2.3.4 for a precise definition), is motivated

by an application from systems biology described in Chapter 1

Definition 2.1.1. For n ∈ N, an interaction function of order n is a polynomial in n

variables, z = (z1, . . . , zn), of the form

f(z) =

q∏
j=1

fj(z) (2.4)
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where each factor has the form

fj(z) =
∑
i∈Ij

zi

and the indexing sets {Ij : 1 ≤ j ≤ q} form a partition for {1, . . . , n}. We define the

interaction type of f to be n := (n1, . . . , nq) where nj denotes the number of elements

in Ij.

Remark 2.1.1. We leave it to the reader to check that the order of the indexing sets Ij

does not matter for any of the analysis in this chapter. Therefore, for convenience in

reporting results (see Section 2.4) we will always assume that

n1 ≥ n2 ≥ · · · ≥ nq.

To define an instance of the PSD problem, fix an interaction function f of or-

der n and let P be the collection of polynomials in the 2n positive real variables,

{`i, δi : 1 ≤ i ≤ n}, obtained by evaluating f(z) with each zi ∈ {`i, `i + δi}. Taking

all possible combinations of zi for 1 ≤ i ≤ n produces the polynomials for the PSD

problem,

P = {p0, . . . , p2n−1} ⊂ R[`1, . . . , `n, δ1, . . . , δn]. (2.5)

In Section 2.3, we will define an indexing map between the 2n elements of P and the

standard n-dimensional Boolean lattice. Let ≺B denote the Boolean lattice partial

order with respect to this index map, and set Ξ = (0,∞)2n. The PSD problem is the

instance of the AC-LEP defined by (P,≺B,Ξ). In Section 2.3, we prove that (P,≺B,Ξ)

satisfies Equation (2.1). However, we present some examples before continuing.

Example 2.1.2. The simplest nonlinear PSD problem arises from the interaction func-

tion

f(z) = (z1 + z2)z3
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which has interaction type, n = (2, 1). The PSD polynomials for this interaction func-

tion are given by

p0 = (`1 + `2)`3 p4 = (`1 + `2 + δ1)`3

p1 = (`1 + `2)(`3 + δ3) p5 = (`1 + `2 + δ1)(`3 + δ3)

p2 = (`1 + `2 + δ2)`3 p6 = (`1 + `2 + δ1 + δ2)`3

p3 = (`1 + `2 + δ2)(`3 + δ3) p7 = (`1 + `2 + δ1 + δ2)(`3 + δ3).

The PSD evaluation domain is Ξ = (0,∞)6 and the partial order, ≺B, is imposed on P

by identifying pi with the vertex of a unit cube whose coordinates are (i)2 ∈ F3
2 where (i)2

is the binary expansion of i. The solution to this PSD problem is the set of admissible

linear extensions of (P,≺B), such that σ ∈ T
(
P,≺B, (0,∞)6

)
if and only if Ξσ 6= ∅.

We note that there are 8! = 40, 320 linear orders on P. However, only 48 of these

are linear extensions of ≺B, and of these, only the following 20 linear extensions are

admissible.

(0, 1, 2, 3, 4, 5, 6, 7)

(0, 1, 2, 3, 4, 6, 5, 7)

(0, 1, 2, 4, 3, 5, 6, 7)

(0, 1, 2, 4, 3, 6, 5, 7)

(0, 4, 2, 6, 1, 5, 3, 7)

(0, 1, 2, 4, 6, 3, 5, 7)

(0, 1, 4, 2, 5, 3, 6, 7)

(0, 1, 4, 2, 5, 6, 3, 7)

(0, 1, 4, 2, 6, 5, 3, 7)

(0, 4, 1, 5, 2, 6, 3, 7)

(0, 1, 4, 5, 2, 3, 6, 7)

(0, 1, 4, 5, 2, 6, 3, 7)

(0, 2, 1, 3, 4, 6, 5, 7)

(0, 2, 1, 4, 3, 6, 5, 7)

(0, 4, 2, 1, 6, 5, 3, 7)

(0, 2, 1, 4, 6, 3, 5, 7)

(0, 2, 4, 1, 6, 3, 5, 7)

(0, 2, 4, 6, 1, 3, 5, 7)

(0, 4, 1, 2, 5, 6, 3, 7)

(0, 4, 1, 2, 6, 5, 3, 7)

The 28 “missing” linear extensions are those which do not satisfy certain algebraic

constraints which are imposed by the polynomial structure. For example, observe that

for fixed ξ ∈ (0,∞)6, if p3(ξ) < p6(ξ), then p1(ξ) < p4(ξ) must also hold.

Unlike the partial order which constrains all possible linear extensions, this order

relation is conditional. Indeed, there exist choices of ξ such that p3(ξ) > p6(ξ) in which

case there is no requirement imposed on the order of p1(ξ), p4(ξ), and in fact, there

are admissible linear extensions which satisfy both choices, e.g. the first two orders in

column four. As another example, observe that p5(ξ) < p6(ξ), if and only if p1(ξ) <
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p2(ξ).

This algebraic constraint is bi-conditional, however, it also can not be represented

in the partial order since both choices occur in at least one admissible order.

To emphasize the role of the interaction function in determining the algebraic con-

straints, we consider a similar PSD problem that is also an instance of LC-LEP.

Example 2.1.3. Consider the interaction type, n = (3) with corresponding interaction

function

f = z1 + z2 + z3.

As in Example 2.1.2, we obtain 8 PSD polynomials given explicitly by

p0 = `1 + `2 + `3 p4 = `1 + `2 + `3 + δ1

p1 = `1 + `2 + `3 + δ3 p5 = `1 + `2 + `3 + δ1 + δ3

p2 = `1 + `2 + `3 + δ2 p6 = `1 + `2 + `3 + δ1 + δ2

p3 = `1 + `2 + `3 + δ2 + δ3 p7 = `1 + `2 + `3 + δ1 + δ2 + δ3

The evaluation domain and partial order are identical to the PSD problem in Example

2.1.2. Nevertheless, only the following 12 linear extensions are admissible

(0, 1, 2, 3, 4, 5, 6, 7)

(0, 1, 2, 4, 3, 5, 6, 7)

(0, 1, 4, 2, 5, 3, 6, 7)

(0, 1, 4, 5, 2, 3, 6, 7)

(0, 2, 1, 3, 4, 6, 5, 7)

(0, 2, 1, 4, 3, 6, 5, 7)

(0, 2, 4, 1, 6, 3, 5, 7)

(0, 2, 4, 6, 1, 3, 5, 7)

(0, 4, 1, 2, 5, 6, 3, 7)

(0, 4, 1, 5, 2, 6, 3, 7)

(0, 4, 2, 1, 6, 5, 3, 7)

(0, 4, 2, 6, 1, 5, 3, 7)

Similarly, the missing 36 linear extensions in this example fail to satisfy some al-

gebraic constraints. In both cases, the set of admissible linear extensions is a fraction

of the set of all linear extensions of the Boolean lattice. In other words, the algebraic

structure implies that the admissible linear extensions are a sparse subset of all linear

extensions. The algorithm in this chapter exploits the algebraic and order theoretic as-

pects of the PSD problem to overcome the computational complexity limitations which

plague both problems in general. Furthermore, we prove that this algorithm finds all
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possible linear extensions. For both examples we obtained the (12 and 20 respectively)

admissible solutions without first computing the linear extensions of (P,≺B) and then

checking which are admissible.

Related work

As is indicated above our original motivation for this chapter arises from problems in

systems biology for which explicit complete solutions to the PSD problem are required.

As such the majority of this introduction has focused on the question of efficacy of com-

putation. However, there is another direction in which the work of this chapter overlaps

with other efforts. In particular, observe that the case where the interaction function

is linear, i.e. has interaction type n = (1, . . . , 1), solving the AC-LEP is equivalent to

identifying all the cells of a hyperplane arrangement. This latter problem has been the

subject of considerable study (see [27] for an introduction) and in particular, Maclagan

[21] provides the number of solutions for the linear PSD problem for n = 1, . . . , 7. Our

computations (see Table 2.1) lead to the same numbers, as expected.

After accounting for symmetry in the number of linear PSD solutions for interaction

types (1, 1, 1, 1), (1, 1, 1, 1, 1), and (1, 1, 1, 1, 1, 1), reported in column two of Table 2.1,

we obtain

336

4!
= 14 := a4,

61920

5!
= 516 := a5,

89414640

6!
= 124187 := a6

which align with sequence A009997 in the OEIS [23]. From [17], we know this sequence

represents the number of comparative probability orderings on all subsets of n ele-

ments that can arise by assigning a probability distribution to the individual elements.

The equivalence of comparative probability orderings and solutions to the linear PSD

problem follows directly from the definition of comparative probability.
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Organization of chapter

The remainder of this chapter is organized as follows. In Section 2.1 we briefly describe

how the PSD problem arises naturally in the study of global dynamics for gene regula-

tory networks. In Section 2.2, we present an efficient algorithm for solving instances of

the LC-LEP. In Section 2.3, we show that the LC-LEP is related to the PSD problem

in the following way. If
(
P,≺B, (0,∞)2n

)
is an instance of the PSD problem, then we

construct an associated instance of LC-LEP, denoted by (P ′,≺B,Ξ′), which satisfies

the inclusion

T
(
P,≺B, (0,∞)2n

)
⊆ T

(
P ′,≺B,Ξ′

)
. (2.6)

We refer to this instance of LC-LEP as the linearized PSD problem associated to(
P,≺B, (0,∞)2n

)
. We exploit this construction and the algorithm for solving the LC-

LEP presented in Section 2.2, to provide a means of efficiently computing a collection of

candidates that contains the solution to the PSD problem. We prove that in some cases

the inclusion in Equation (2.6) is actually an equality. More generally, this inclusion is

strict, but the candidate set is a sparse subset of the collection of all linear extensions of

(P,≺B). In this case we describe algorithms for removing the non-admissible solutions.

Finally, in Section 2.4 we present the results for all PSD solutions with order up

to four. Additionally, we have some results for PSDs or order five and size. For the

remaining cases and PSDs of higher order the computations become too large.

2.2 Solving the LC-LEP

In this Section, we provide an efficient algorithm to solve the LC-LEP defined in Section

2.1. Note that if q ∈ R[x1, . . . , xd] is a linear polynomial, then evaluation of q defines

a linear functional on Rd. Thus, there exists a unique vector uq ∈ Rd, that we call the

representation vector for q, satisfying

q(ξ) = uq · ξ for all ξ ∈ Rd.
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Equivalently, uq is the vector of coefficients of q. Since the evaluation domain for the

LC-LEP is a polytope, there exists a collection of linear polynomials QΞ, such that

Ξ =
{
ξ ∈ Rd : ξ · uq > 0 for all q ∈ QΞ

}
. (2.7)

We assume that (2.7) is satisfied for the remainder of this section.

To foreshadow our approach recall that by definition σ ∈ T (P,≺,Ξ) if and only if

Ξσ 6= ∅. Our approach to determining the latter is to recast it in the language of linear

algebra on cones in Rd. From this perspective, the problem is equivalent to rigorously

solving a linear programming problem and the efficacy of our algorithm is based on

the fact that this can be done efficiently. With this goal in mind, we begin with a few

remarks concerning cones and ordered vector spaces.

2.2.1 Cones

Definition 2.2.1. A subset C ⊂ Rd is a cone if v ∈ C and θ ∈ [0,∞) implies that

θv ∈ C. The cone C is pointed if it is closed, convex, and satisfies

C ∩ −C = C ∩ {−v : v ∈ C} = 0. (2.8)

Observe that (2.8) implies that a pointed cone does not contain any lines. A vector

v ∈ Rd is a conic combination of {v1, . . . , vk} ⊂ Rd if v = θ1v2 + · · · + θkvk where

θ1, . . . , θk ≥ 0. Suppose V = {v1, . . . , vk} ⊂ Rd. The conic hull of V is given by

cone(V ) :=

{
k∑
i=1

θivi : 0 ≤ θi, i = 1, . . . , k

}
.

The following result is left to the reader to check.

Proposition 2.2.2. Given V = {v1, . . . , vk} ⊂ Rd, cone(V ) is the smallest closed

convex cone that contains V .

We make use of the following propositions.



24

Proposition 2.2.3. Suppose V = {v0, . . . , vm} ⊂ Rd is a collection of nonzero vectors

such that cone(V ) is a pointed cone. Then, there exists some v′ ∈ Rd such that v′ ·vi > 0

for all 0 ≤ i ≤ m.

Proof. Observe that −vm /∈ cone({v0, . . . , vm−1}) ⊂ cone(V ) since cone(V ) is pointed.

Hence {−vm} and cone({v0, . . . , vm−1}) are disjoint, convex, closed subsets of Rd.

Therefore, by the hyperplane separation theorem [6], there exists v′ ∈ Rd such that

v′ · −vm < 0 and v′ · v > 0 for any v ∈ cone({v0, . . . , vm−1}).

Proposition 2.2.4. Suppose V = {v0, . . . , vm} ⊂ Rd is a collection of nonzero vectors

such that cone(V ) is a pointed cone. If −v /∈ cone(V ), then cone(V ∪ {v}) is pointed.

Proof. Suppose that cone(V ∪ {v}) is not pointed. Then, there exists w 6= 0 such that

w,−w ∈ cone(V ∪ {v}) or equivalently

w =
m∑
i=0

αivi + αv and − w =
m∑
i=0

βivi + βv

where αi, βi, α, β are all nonnegative. Note that if α = β = 0, then ±w ∈ cone(V ),

which contradicts the assumption that V is pointed. The sum of the two equations

above is

−(α+ β)v =

m∑
i=0

(αi + βi)vi.

This implies that −v ∈ cone(V ), contradicting the assumption that cone(V ) is pointed.

The previous propositions illustrate the importance of solving the cone inclusion

problem: given a vector v ∈ Rd, and finite set of vectors V ⊂ Rd, determine whether or

not v ∈ cone(V ). Algorithm 1, stated below, solves this problem. Observe that checking

if v ∈ cone(V ) is equivalent to solving the following linear programming feasibility
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problem.

Does there exist α

such that Vα = v (2.9)

and α ≥ 0?

where V is the column matrix of V .

Linear programming is a powerful tool that is widely used in convex optimization,

and as a result, there are many available solvers/algorithms for solving the linear pro-

gramming feasibility problem [32]. The results can be made rigorous by performing

computations using interval arithmetic [28] or rational linear programming [3] in the

case that V is rational. Observe that the PSD problem defined in Section 2.1 satisfies

this constraint. As is made clear in Section 2.4, we use different solvers depending on

the machine employed to do the computations. In any case, we take for granted the

existence of a rigorous solver for the feasibility problem in Equation 2.9 as a “black

box” which we call LPSolver which is employed in the following algorithm.

Algorithm 1: Cone inclusion

Input: v, V = {v1, . . . , vm}, LPSolver

Output: True,False

Result: Return True if v ∈ cone(V ) otherwise False

1 Function InCone(v, V, LPSolver):

2 Return LPSolver(v, V )

3 End Function

The next algorithm uses Proposition 2.2.4 (see line 4) and Algorithm 1 to determine
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if a set of vectors defines a pointed cone.

Algorithm 2: Cone pointedness

Input: V = {v1, . . . , vm}

Output: True,False

Result: Return True if cone(V ) is pointed otherwise False

1 Function CheckCone(V ):

2 V ′ = {v1}

3 for i = 2 ... m do

4 if InCone(−vi, V ′) then

5 Return False

6 else

7 V ′ = V ′ ∪ {vi}

8 end

9 end

10 Return True

11 End Function

We now show that the LC-LEP can be reformulated as a problem of identifying

whether some specific subsets of vectors generate pointed cones.

Definition 2.2.5. Given an instance of the LC-LEP, (P,≺,Ξ), we define the base

cone as cone(V0) := cone(VΞ ∪ V≺) where VΞ and V≺ are defined as follows. Set

VΞ := {uq : q ∈ QΞ}

where QΞ are the representation vectors as defined in Equation (2.7). Applying Algo-

rithm 2 to VΞ (and the fact that we assume Ξ 6= ∅) shows that cone(VΞ) is pointed.

Define

V≺ := {u : u is the representing vector of p− q where q ≺ p and p, q ∈ P} .

Observe that if (P,≺) satisfies Equation (2.1), then the representation vector for p− q

is an element of V≺ by definition. Therefore, by Proposition 2.2.3, V≺ is pointed.
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The motivation behind our definition of V0 is that it characterizes the algebraic

constraints in the LC-LEP in terms of linear algebra that can be efficiently checked.

The next proposition shows that the same idea works for linear extensions.

Given σ ∈ SK+1, we define

Vσ := V0 ∪
{

upσ(i+1)
− upσ(i) : pσ(i) ∈ P, i = 0, . . . ,K − 1

}
. (2.10)

Proposition 2.2.6. For any σ ∈ SK+1, Ξσ 6= ∅ if and only if cone(Vσ) is a pointed

cone.

Proof. First we assume Ξσ 6= ∅ and that ξ ∈ Ξσ. On one hand, if cone(Vσ) is not

pointed, then there are nonzero vectors −v, v ∈ cone(Vσ). However, the definition of

Ξσ implies that −v · ξ > 0 and v · ξ > 0, which is a contradiction.

On the other hand, if cone(Vσ) is pointed, then by Proposition 2.2.3 there exists a

ξ0 ∈ Rd such that ξ0 · v > 0, for all v ∈ Vσ. Thus, the definition of Vσ implies that

ξ0 ∈ Ξσ and hence Ξσ 6= ∅.

We emphasize that the importance of Proposition 2.2.6 is the implied equivalence

T (P,≺,Ξ) = {σ : Ξσ 6= ∅} = {σ : cone(Vσ) is pointed} .
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2.2.2 An algorithm for identifying T (P ,≺,Ξ)

In this section we present an algorithm for solving an arbitrary instance of the LC-LEP.

Algorithm 3: LC-LEP solver

Input: σpart = [ ],P, V = V0, Ret = {}

Output: T (P,≺,Ξ)

Result: Ret: collection of all linearly realizable total order under restriction of

V

1 Function OrderingGenerator(σpart,P, V, Ret):

2 if σpart == [ ] and CheckCone(V ) is not True then

3 Return

4 end

5 l + 1 = length of σpart

6 if l == K then

7 add σpart to Ret

8 Return

9 end

10 for i = 0 .. K do

11 if i 6∈ σpart then

12 u′ = upi − upσpart(l)

13 if not InCone(−u′, V ) then

14 OrderingGenerator(σpart + [i],P, V ∪ {v′}, Ret)

15 end

16 end

17 end

18 End Function

In the Algorithm 3, for convenience, we take upσpart(−1)
= 0. To prove the correctness

of the algorithm it is useful to denote the return of Algorithm 3 given input (P,≺,Ξ)

as Talg(P,≺,Ξ).
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Definition 2.2.7. For fixed (P,≺,Ξ), σ ∈ SK+1 and for k = 1, · · · ,K, define

Vσ,k = {upσ(i) − upσ(i−1)
}i=1,...,k ∪ V0,

where V0 is the base cone for (P,≺,Ξ) as in Definition 2.2.5, and upσ(j) , j = 0, . . . ,K

is the representation vector of pj ∈ P. For convenience, we define Vσ,0 = V0 and we

observe that Vσ,K = Vσ from Equation (2.10).

Theorem 2.2.1. Algorithm 3 solves the LC-LEP.

Proof. Given (P,≺,Ξ), we need to show that T (P,≺,Ξ) = Talg(P,≺,Ξ). We may

assume that cone(V0) is pointed since if not, then both Talg(P,≺,Ξ) and T (P,≺,Ξ)

are empty.

We first show that Talg(P,≺,Ξ) ⊂ T (P,≺,Ξ), i.e. for any σ ∈ Talg(P,≺,Ξ) we show

that the set Ξσ 6= ∅. As indicated above we assume cone(V0) = cone(Vσ,0) is pointed.

For Algorithm 3, lines 2-4 returns the empty set if cone(V0) is not pointed. Otherwise,

it passes to lines 5-9 which checks if σpart is a total order over {0, . . . ,K}. If so, it is

added to the return variable, Ret. If σpart is not a total order, then lines 10-17 extend

it to a total order by recursively constructing Vσ,i from Vσ,i−1 for 1 ≤ i ≤ K.

Therefore, it suffices to show that Vσ,k are all pointed for k = 1, . . . ,K.

Fix k ∈ {1, . . . ,K}. In lines 11-12, we find a candidate i ∈ {0, . . . ,K} which is not

in the image of σpart, and define Vσ,k+1 = Vσ,k∪{u′} where u′ = upi−upσ(k) . In line 13,

we verify that −u′ /∈ V = Vσ,k−1 and it follows from Proposition 2.2.4, that cone(Vσ,k)

is pointed. For each σ appended to Ret, we have cone(Vσ,k) is pointed for k = 0, . . . ,K.

In particular, cone(Vσ,K) = cone(Vσ) is pointed, and from Proposition 2.2.6, we have

Ξσ 6= ∅.

We now prove that T (P,≺,Ξ) ⊂ Talg(P,≺,Ξ). Assume that σ ∈ T (P,≺,Ξ). By

definition this means that Ξσ 6= ∅ and from Proposition 2.2.6, Vσ is pointed. For each

k = 1, . . . ,K, we have Vσ,k ⊂ Vσ, and thus Vσ,k is pointed. As Vσ,k is pointed, we know

−(upσ(k) − upσ(k−1)
) /∈ Vσ,k−1 for k = 1, . . . ,K. Therefore, line 13 in Algorithm 3 will

not fail to extend σ at each step in the recursion and after K recursive extensions, σ



30

will be appended to Ret and thus, σ ∈ Talg(P,≺,Ξ).

2.3 Solving the general PSD problem

In this section we present a solution for the PSD problem described in Section 2.1.

The solution is based on the observation that the PSD problem has a natural Boolean

lattice structure. Thus, for the linear PSD problem, the LC-LEP solver described in

Section 2.2 provides a solution. For nonlinear PSD problems, we construct a map

that “embeds” it into an instance of LC-LEP (of higher dimension) in the sense that

the inclusion in Equation (2.6) holds. We prove a sufficient condition for which this

inclusion is equality and describe a method for disqualifying spurious solutions when it

is strict.

2.3.1 The PSD as an instance of AC-LEP

Throughout this section
(
P,≺B, (0,∞)2n

)
denotes a PSD problem for a fixed interaction

function f of order type n ∈ Nq as defined in Equation (2.5) where ≺B is the Boolean

lattice partial order. Our first goal is to show that
(
P,≺B, (0,∞)2n

)
satisfies Equation

(2.1), and in particular, that every σ ∈ T
(
P,≺B, (0,∞)2n

)
is a linear extension of a

Boolean lattice. We start by defining appropriate indices for the elements of P.

Definition 2.3.1. Suppose n ∈ Nq is the interaction type for f ∈ R [z1, . . . , zn]. As

in Definition 2.1.1 let {I1, . . . , Iq} denote the indexing sets for each summand of f .

Setting I :=
⋃q
j=1 Ij we denote a typical element of I by Ij(k) which we define as the

kth largest element of Ij. Let E := {α : {1, . . . , n} → {0, 1}} be the set of all Boolean

functions defined on I. The Boolean indexing map, denoted by B : E →
{

0, . . . , 2n−1
}

,

is defined by the formula

B(α) :=

q∑
j=1

nj−1∑
k=0

α(Ij(k))2κj,k κj,k = k +

j−1∑
j′=1

nj′ .

We will also consider, α ∈ E, as a vector of Boolean functions defined as follows.

Let Ej denote the set of Boolean functions defined on Ij . Then, elements of E can be
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represented as vectors of the form

α = (α1, . . . , αq) where αj := α
∣∣∣
Ij
∈ Ej for 1 ≤ j ≤ q.

Note that under this identification, E has the equivalent representation as E = E1 ×

· · · × Eq.

Definition 2.3.2. Suppose n ∈ Nq is the interaction type for an interaction function,

f ∈ R [z1, . . . , zn] as in Definition 2.1.1, and E denotes the corresponding Boolean

indices. For α ∈ E, define pα ∈ P ⊂ R [`1, . . . , `n, δ1, . . . , δn], by the formula

pα :=

q∏
j=1

∑
k∈Ij

`k + α(k)δk

 . (2.11)

When convenient, we use a linear indexing scheme for elements of P which we

define via the Boolean indexing map by identifying pi := pα where α = B−1(i). To

avoid confusion, we exclusively use Greek subscripts when referring to elements of P

by their Boolean indices, and Latin subscripts when referring to elements of P by their

linear indices. We leave it to the reader to check that the linearly indexed polynomials

in Examples 2.1.2 and 2.1.3 are in agreement with that of Definition 2.3.2 via this

identification.

Definition 2.3.3. Let α, β ∈ E be a pair of Boolean indices corresponding to n ∈ Nq.

An ordered pair (α, β) satisfies the one bit condition if α(Ij(k)) ≤ β(Ij(k)), for all

1 ≤ j ≤ q and 0 ≤ k ≤ nj − 1, with equality for all but exactly one (j, k) pair.

Remark 2.3.1. Observe that if (α, β) satisfy the one bit condition and (j0, k0) is the

unique pair for which α and β take different values, then α(Ij0(k)) = 0 and β(Ij0(k)) =

1.

Remark 2.3.2. The one bit condition induces a poset structure on E by setting α ≺ β

for each (α, β) satisfying the one bit condition, and extending the relation transitively.

Definition 2.3.4. Suppose n ∈ Nq is the interaction type for an interaction function,

f ∈ R [z1, . . . , zn] as in Definition 2.1.1, and E denotes the corresponding Boolean
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indices. Let P be the set of polynomials indexed as in Definition 2.3.2. The PSD

problem is defined by the triple, (P,≺, (0,∞)2n) where ≺ is given by Remark 2.3.2.

The next proposition proves that (P,≺, (0,∞)2n) satisfies Equation (2.1), and fur-

thermore that (P,≺) is a Boolean partial order which justifies expressing the PSD

problem as
(
P,≺B, (0,∞)2n

)
.

Proposition 2.3.5. Consider a PSD problem (P,≺, (0,∞)2n). Then,

1. (P,≺) is a Boolean lattice.

2. For any α, β ∈ E, if α ≺ β, then

pα(ξ) < pβ(ξ) for all ξ ∈ (0,∞)2n.

Proof. To prove the first claim, let Sn = {1, . . . , n} and let (2Sn ,≺B) denote the stan-

dard Boolean lattice. Define a map, ϕ : E → 2Sn , by the formula

ϕ(α) = {j ∈ Sn : α(j) = 1} ,

and we note that ϕ is a bijection since E is defined to be the collection of all Boolean

maps defined on Sn. Furthermore, for any α, β ∈ E, we have by Definition 2.3.3 that

α ≺ β if and only if

{j ∈ Sn : α(j) = 1} ⊂ {j ∈ Sn : β(j) = 1}

implying that ϕ is an order isomorphism.

To establish the second claim, we must show that if α ≺ β, then pα(ξ) < pβ(ξ) holds

for all ξ ∈ (0,∞)2n. Note that by transitivity, it suffices to prove this holds for (α, β)

satisfying the one bit condition. In this case we have

β(Ij(k))− α(Ij(k)) =


1 if j = j0 and k = k0

0 otherwise.
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for some j0 ∈ {1, . . . , q}, k0 ∈ {0, . . . , nj0−1}. If ξ = (`1, . . . , `n, δ1, . . . , δn) ∈ Ξ, then

from Equation (2.11) we have

pβ(ξ) =

∑
k∈Ij0

`k + α(Ij(k))δk

+ δk0

 ∏
j 6=j0

∑
k∈Ij

`k + α(Ij(k))δk

= pα(ξ) + δk0
∏
j 6=j0

∑
k∈Ij

`k + α(Ij(k))δk

> pα(ξ)

as required.

With Proposition 2.3.5 in mind, we return to writing ≺B in place of ≺ for the PSD

problem where ≺B is the partial order of a Boolean lattice inherited by P from the one

bit condition.

2.3.2 The linear PSD problem

We consider two cases of the PSD problem: the interaction type n ∈ Nq for the function

f ∈ R [z1, . . . , zn] has the form n = (1, 1, . . . , 1) or n = (n). In the first case, f is linear

(see Example 2.1.3) and the PSD problem is an instance of LC-LEP. In the second case,

log f is linear so after a simple change of variables, we obtain an instance of LC-LEP

with equivalent solutions since log is monotone, hence order preserving l. We focus on

the first case, leaving it to the reader to check that the second case is same modulo

the evaluation domain (R2n versus (0,∞)2n). Following the algorithm described in

Section 2.2, we encode the partial order defined by ≺B as a set of linear constraints

defined by a base cone which we must show is pointed. We begin by denoting the set

of representation vectors for P as

V :=
{

upα ∈ {0, 1}
2n : upα is the representation vector of pα, α ∈ E

}
.

We define the set,

V≺B :=
{
upβ − upα : upα ,upβ ∈ V, (α, β) satisfies the one bit condition

}
. (2.12)
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which encodes the ≺B partial order into the representation vectors. These vectors will

be the generators of the base cone for the algorithm in Section 2.2. Thus, we must show

that cone(V≺B ) generates a pointed cone.

Lemma 2.3.6. Let C0 := cone(V≺B ) denote the cone generated by V≺B , then C0 is

pointed.

Proof. By Proposition 2.2.2, C0 is closed and convex so it suffices to prove that if v ∈ C0

and −v ∈ C0, then v = 0. Fix ξ ∈ (0,∞)2n and suppose (α, β) satisfies the one bit

condition. By the formula in Equation (2.11) it follows that

pβ − pα = δi

for some i ∈ {1, . . . , n}. Since δi = ξn+i > 0 for all ξ ∈ Ξ, it follows that

pβ(ξ)− pα(ξ) > 0,

for every (α, β) satisfying the one bit condition. Passing to the representation vectors,

it follows that for every v ∈ V≺B , we have v · ξ > 0. Taking the conic hull, we have that

if v ∈ C0 \{0}, then v · ξ > 0. It follows that if v,−v ∈ C0 simultaneously, then v · ξ ≥ 0

and −v · ξ ≥ 0 implying v = 0.

2.3.3 The general PSD problem

Given a general PSD problem
(
P,≺B, (0,∞)2n

)
we present the construction of a LC-

LEP denoted by (P ′,≺B,Rm) with the property that T
(
P,≺B, (0,∞)2n

)
⊆ T (P ′,≺B

,Rm). The importance of this is that (P ′,≺B,Rm) can be solved using Algorithm 3

and hence we obtain a rigorous upper bound on T
(
P,≺B, (0,∞)2n

)
.

Definition 2.3.7. Given an interaction type n ∈ Nq, let E = E1 × · · · ×Eq denote the

corresponding Boolean indices. Set m :=
∑q

j=1 2nj and define the linearized evaluation

domain to be

R2n1 × · · · × R2nq ∼= Rm. (2.13)
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Define a polynomial ring in m indeterminates with Boolean indexing by

R := R
[{
xj,αj : αj ∈ Ej , 1 ≤ j ≤ q

}]
, (2.14)

and define a collection of linear polynomials by

P ′ :=
{
p′α : α ∈ E

}
⊂ R where p′α :=

q∑
j=1

xj,αj .

The linearized PSD problem determined by n is to compute T (P ′,≺B,Rm).

Theorem 2.3.3. Fix an interaction type, n ∈ Nq and let T
(
P,≺B, (0,∞)2n

)
and

T (P ′,≺′B,Rm) denote the corresponding PSD and linearized PSD problems, respec-

tively. The following are true.

1. Let α, β ∈ E and ξ ∈ (0,∞)2n. If pα(ξ) < pβ(ξ) and

ξ′j,αj = log

∑
k∈Ij

ξk + αj(k)ξn+k

 ∈ Rm,

then p′α(ξ′) < p′β(ξ′).

2. T
(
P,≺B, (0,∞)2n

)
⊆ T (P ′,≺′B,Rm).

Proof. To prove the first claim, we define a map, T : (0,∞)2n → Rm, by ξ 7→ ξ′ := T (ξ)

where the coordinates of ξ′ are given by the formula

ξ′j,αj = log

∑
k∈Ij

ξk + αj(k)ξn+k

. (2.15)

Observe that T is defined to satisfy the functional equation

log ◦pα(ξ) = p′α ◦ T (ξ) for all α ∈ E, ξ ∈ (0,∞)2n. (2.16)

Therefore, if α, β ∈ E and ξ ∈ (0,∞)2n satisfies pα(ξ) < pβ(ξ), then log (pα(ξ)) <

log (pβ(ξ)) and it follows from Equation (2.16) that p′α(ξ′) < p′β(ξ′) where ξ′ = T (ξ) as

required.
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To prove the second claim, consider P and P ′ equipped with the linear indices as in

Definition 2.3.2, and suppose σ ∈ T
(
P,≺B, (0,∞)2n

)
. Then, by definition there exists

ξ ∈ (0,∞)2n satisfying

pσ(0)(ξ) < pσ(1)(ξ) < · · · < pσ(2n−1)(ξ).

Let ξ′ = T (ξ) and apply the first result to successive pairs in the ordering which implies

that for all 0 ≤ k ≤ 2n − 2, we have

p′σ(k)(ξ
′) = log

(
pσ(k)(ξ)

)
< log

(
pσ(k+1)(ξ)

)
= p′σ(k+1)(ξ

′).

Thus, we ξ′ ∈ Rm satisfies

p′σ(0)(ξ
′) < p′σ(1)(ξ

′) < · · · < p′σ(2n−1)(ξ
′),

and it follows that σ ∈ T (P ′,≺B,Ξ′) which completes the proof.

Example 2.3.4. Recall the PSD in Example 2.1.2 with interaction function f(z) =

(z1 + z2)z3 corresponding to interaction type n = (2, 1). The polynomials for the lin-

earized PSD problem are

p′0 = x1,0 + x2,0 p′4 = x1,1 + x2,0

p′1 = x1,0 + x2,1 p′5 = x1,1 + x2,1

p′2 = x1,2 + x2,0 p′6 = x1,3 + x2,0

p′3 = x1,2 + x2,1 p′7 = x1,3 + x2,1

where we have used linear indexing to match the polynomials in Example 2.1.2.

2.3.4 Solving the PSD problem for interaction type n = (2, 1, . . . , 1).

In this section we prove the following theorem.

Theorem 2.3.5. Let f be an interaction function with interaction type, n = (2, 1, . . . , 1).
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Let T
(
P,≺B, (0,∞)2n

)
denote the corresponding PSD problem and (P ′,≺′B,Rm) the

associated linearized PSD problem. Then T
(
P,≺B, (0,∞)2n

)
= T (P ′,≺B,Ξ′) where

Ξ′ = Rm ∩ {−ξ′1,0 + ξ′1,1 + ξ′1,2 − ξ′1,3 > 0}.

The proof of the theorem is based on the following lemma

Lemma 2.3.8. Fix parameters, x0, x1, x2, x3 ∈ R, and define the function, g : R → R

by the formula

g(t) = exp(tx0)− exp(tx1)− exp(tx2) + exp(tx3).

If x0 < x1 ≤ x2 < x3, then g has a positive root if and only if g′(0) < 0.

Proof. Suppose first that t0 is a root of g. Expanding exp(t0x1) and exp(t0x2) to first

order about x0 and x3, respectively, and applying the mean value theorem yields the

formula

g(t0) = −t0 exp(t0c1)(x1 − x0)− t0 exp(t0c2)(x2 − x3) = 0 (2.17)

for some c1 ∈ (x0, x1) and c2 ∈ (x2, x3). We define k = c2 − c1 and multiply Equation

(2.17) by t0e
−kt0 to obtain

ekt0(x3 − x2)− (x1 − x0) = 0.

Noting that c1 < x2 < c2, it follows that k > 0. Therefore if t0 > 0, then x3 − x2 <

x1 − x0 or equivalently, g′(0) = x0 − x1 − x2 + x3 < 0.

Conversely, if g′(0) < 0 then g has at least one positive root since clearly g(0) = 0

and lim
t→∞

g(t) =∞.

Proof of Theorem 2.3.5. Suppose σ ∈ T
(
P,≺B, (0,∞)2n

)
and ξ ∈ (0,∞)2n

σ , then by
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Theorem 2.3.3 we have ξ′ = T (ξ) ∈ Rmσ . Note that by definition the first four coordi-

nates of ξ′ are given by the formulas

ξ′1,0 = log(ξ1 + ξ2)

ξ′1,1 = log(ξ1 + ξ2 + ξn+2)

ξ′1,2 = log(ξ1 + ξ2 + ξn+1)

ξ′1,3 = log(ξ1 + ξ2 + ξn+1 + ξn+2).

Since ξi > 0 for i ∈ {1, 2, n+ 1, n+ 2}, it follows that

−ξ′1,0 + ξ′1,1 + ξ′1,2 − ξ′1,3 > 0,

so we have σ ∈ T (P ′,≺B,Ξ′).

Conversely, suppose σ ∈ T (P ′,≺B,Ξ′) and ξ′ ∈ Ξ′σ. From the Boolean lattice ≺B

we have ξ′1,0 < ξ′1,1 ≤ ξ′1,2 < ξ′1,3 or ξ′1,0 < ξ′1,2 ≤ ξ′1,1 < ξ′1,3. Moreover, ξ′ also satisfies,

−ξ′1,0 + ξ′1,1 + ξ′1,2 − ξ′1,3 > 0. Hence, Lemma 2.3.8 implies that there exists t′ > 0 such

that ξ̂′ := t′ξ′ satisfies

exp(ξ̂′1,0)− exp(ξ̂′1,1)− exp(ξ̂′1,2) + exp(ξ̂′1,3) = 0.

Next, we define ξ̂ ∈ (0,∞)2n by

ξ̂j =



exp(ξ̂′j,0) 2 < j ≤ n

exp(ξ̂′j,1)− exp(ξ̂′j,0) n+ 2 < j < 2n

1
2 exp(ξ̂′1,0) j = 1, 2

exp(ξ̂′1,2)− exp(ξ̂′1,0) j = n+ 1

exp(ξ̂′1,1)− exp(ξ̂′1,0) j = n+ 2

One easily verifies that ξ̂j > 0 for all 1 ≤ j ≤ 2n, and that T (ξ̂) = ξ̂′. From Theorem

2.3.3, we have ξ̂ ∈ (0,∞)2n
σ = {ξ ∈ (0,∞)2n : pσ(0)(ξ) < pσ(1)(ξ) < · · · < pσ(2n−1)(ξ)}
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which implies that σ ∈ T
(
P,≺B, (0,∞)2n

)
.

2.3.5 Solving the general PSD problem

In the general case, we have T
(
P,≺B, (0,∞)2n

)
( T (P ′,≺B,Ξ′), and thus, comput-

ing T (P ′,≺B,Rm) provides only a set of candidates for T
(
P,≺B, (0,∞)2n

)
. This

candidate set contains spurious linear extensions so we consider the problem of remov-

ing linear extensions which are non-admissible. We have two strategies for doing this

efficiently.

The first is to restrict the evaluation domain to a strict subset, Ξ′ ( Rm, such that

we still have the inclusion

T
(
P,≺B, (0,∞)2n

)
⊆ T (P ′,≺B,Ξ′). (2.18)

Restricting to a smaller evaluation domain amounts to imposing more of the algebraic

constraints a-priori which results in improved efficiency. In order for the candidate set

on the right hand side to be efficiently computable using the algorithm in Section 2.2,

it must be an instance of LC-LEP i.e. Ξ′ should be a polytope. For example, for the

PSD with interaction type n = (2, 1, . . . , 1), analyzed in Section 2.3.4, we computed on

the restricted domain

Ξ′ = Rm ∩
{
ξ′ ∈ Rm : −ξ′1,0 + ξ′1,1 + ξ′1,2 − ξ′1,3 > 0

}
.

In terms of the algorithm in Section 2.2, this domain restriction amounts to taking our

base cone in Algorithm 3 to be cone(V0) where

V0 = V≺B ∪ {u}

and u is the representation vector for the linear functional defined by the formula

x 7→ −x1,0 + x1,1 + x1,2 − x1,3.
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The requirement that this linear functional must be strictly positive is a special case of

the following Lemma whose proof is a trivial computation.

Lemma 2.3.9. Suppose α, α′, β, β′ are Boolean indices such that for any ξ ∈ (0,∞)2n,

the following equations are satisfied.

pα(ξ) < pβ(ξ) < pβ′(ξ) < pα′(ξ)

pα(ξ) + pα′(ξ) = pβ(ξ) + pβ′(ξ).

Then,

log(pα(ξ)) + log(pα′(ξ))− log(pβ(ξ))− log(pβ′(ξ)) > 0.

Lemma 2.3.9 provides a means to restrict the evaluation domain for the general

linearized PSD problem as follows. Fix j ∈ {1, . . . , q} and suppose {α, α′, β, β′} ⊂ E

differ only in the jth coordinate with α ≺B β ≺B β′ ≺B α′, and also assume that

B(α) + B(α′) = B(β) + B(β)′ where B is the Boolean indexing map. Then, it follows

that for any ξ ∈ Ξ, the values,
{
pα(ξ), pα′(ξ), pβ(ξ), pβ′(ξ)

}
, satisfy both equations in

Lemma 2.3.9. Therefore, if u({α, α′, β, β′}) is the representation vector for the linear

functional defined by

x 7→ xj,B(β) + xj,B(β′) − xj,B(α) − xj,B(α′),

then v({α, α′, β, β′}) lies in Vσ for any σ ∈ T (P,≺B, (0,∞)2n. Equivalently, we may

impose the required linear constraint, xj,B(β) + xj,B(β′) − xj,B(α) − xj,B(α′) > 0 on the

evaluation domain of the linearized problem. Hence, for each 1 ≤ j ≤ q, we define

Vj :=
{
u(
{
α, α′, β, β′

}
) : B(α) +B(α′) = B(β) +B(β)′, α ≺B β ≺B β′ ≺B α′

}
and for an arbitrary PSD problem, we may take our base cone to be

V0 = V≺B ∪ VΞ where VΞ =

q⋃
j=1

Vj .



41

Applying Algorithm 3 with the base cone generated by V0 is equivalent to solving the

instance of LC-LEP defined by (P ′,≺B,Ξ′) where Ξ′ is the restriction of Rm to the

subset for which the linear functionals defined by each v ∈ Vj are strictly positive for

each 1 ≤ j ≤ q.

In addition to restricting the computation to the polytopes discussed above, we

can reuse solutions of smaller PSD problems in some larger computations. As an

example, suppose P ′ = {p′0, . . . , p′7} is the set of interaction polynomials for the PSD

with interaction type n′ = (2, 1) and P := {p0, . . . , p15} the polynomials for the PSD

problem with interaction type n = (2, 1, 1). Observe that each admissible linear order

on P ′ induces an imposed linear order on the even indexed polynomials, Peven :=

{p0, p2, . . . , p14} ⊂ P. A similar linear order is induced on the odd indexed polynomials,

Podd := {p1, p3, . . . , p15} ⊂ P. Hence, a necessary condition to have an admissible linear

extension for P is that the order of Peven and Podd must both be consistent with one

of the PSD solutions in T
(
P ′,≺B, (0,∞)6

)
. This implies the inclusion

T
(
P,≺B, (0,∞)8

)
⊆

⋃
σ′∈T (P ′,≺B ,(0,∞)6)

T (P,≺B ∪ ≺σ′ , (0,∞)8) (2.19)

where ≺B ∪ ≺σ′ represents the refinement of the Boolean lattice partial order, and the

partial order induced by σ′ on the even/odd subsets.

To exploit this in general, we say that the PSD problem of type n′ is a sub-problem

for the PSD problem of type n whenever the polynomials for n must obey an implied

partial order determined by the solutions of n′. Notice that the preceding discussion

as well as Equation (2.19) applies also to an arbitrary polytope. Therefore, if there

are a total of k admissible linear extensions for all sub-problems of the PSD problem

of type n which we have previously computed, then we bootstrap those results when

computing T
(
P,≺B, (0,∞)2n

)
via the inclusion

T
(
P,≺B, (0,∞)2n

)
⊆

k⋃
i=1

T (P,≺B ∪ ≺σ′i ,Ξ
′) ⊆ T (P,≺B,Ξ′)

where ≺B ∪ ≺σ′i represents the refinement of the Boolean lattice partial order, and
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the partial order induced by σ′i on the corresponding subsets obtained from any sub-

problem. This technique has been used in the computation for all the cases of order

≥ 4. Observe that the computation of T (P,≺B ∪ ≺σ′i ,Ξ
′) can be done distributively

for i = 1, . . . , k on different computational nodes, which, as is indicated in Section 2.4,

we employed for the PSD problems of orders 5 and 6.

In the special case of Section 2.3.4, we proved that inclusion in Equation (2.18) is

actually equality when Ξ′ is constructed as we have described. However, in the typical

case, these additional algebraic constraints are not sufficient to remove all spurious

linear extensions except in the case n = (2, 1, . . . , 1). It remains an open problem to

determine a smaller set Ξ′ such that T
(
P,≺B, (0,∞)2n

)
= T (P ′,≺B,Ξ′) for other

interaction types. However, in the remainder of this section we consider the problem of

extracting T
(
P,≺B, (0,∞)2n

)
from T (P ′,≺B,Ξ′) when they are not equal.

Observe that we may obtain large subsets of T
(
P,≺B, (0,∞)2n

)
simply by sam-

pling. The particular strategy that we adopted is as follows. We uniformly sampled

between 108 and 109 points

ξ = (l1, . . . , ln, δ1, . . . , δn) ∈ Z2n
+ ∩B2n

∞ (r),

where B2n
∞ (r) = {‖ξ‖∞ ≤ r}. We chose r = 1000. Mathematically the particular choice

of r is not important since the PSD polynomials are homogeneous, though in practice

it does have an effect on sampling precision and speed. For each such ξ we evaluated

{pα(ξ) : p ∈ P}. If σ ∈ S2n denotes the linear order of these values, then ξ serves as a

“witness” for the claim that Ξσ 6= ∅. This produces

S
(
P,≺B, (0,∞)2n

)
:=
{
σ ∈ T

(
P,≺B, (0,∞)2n

)
: σ is witnessed by at least one sample

}
.

Obviously,

S
(
P,≺B, (0,∞)2n

)
⊆ T

(
P,≺B, (0,∞)2n

)
⊆ T (P,≺B,Ξ′).

In general, sampling is relatively efficient and in cases where T
(
P,≺B, (0,∞)2n

)
is not
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too large (see Table 2.1 for details), we recover the entire solution.

Once we constructed the set S
(
P,≺B, (0,∞)2n

)
, T (P,≺B,Ξ′) from sampling and

algorithms in section 2.2 respectively, we can apply CAD algorithm to check the set

{ξ ∈ Ξ : pσ(0)(ξ) < pσ(1)(ξ) < · · · < pσ(2n−1)(ξ)}

is empty or not for each σ ∈ T (P,≺B,Ξ′)\S
(
P,≺B, (0,∞)2n

)
and then T

(
P,≺B, (0,∞)2n

)
is recovered. The CAD algorithm implementation we are using is CylindricalAlge-

braicDecomposition in Mathematica 11 [20].

2.4 Results for some PSD problems

In this section we provide (see Table 2.1) the results of our computations for interaction

functions of orders 4, 5, and 6. A slightly different approach was taken to compute

orders 5 and 6, from that used for 4. This had to do with the machines being used, but

highlights the flexibility of our method.

For interaction functions of order 4, we applied Algorithm 1 using a rational linear

programming algorithm. In particular, we used the implementation MixedIntegerLin-

earProgram from SageMath 8 [29]. This implies that the output of Algorithm 3 is

correct. Observe that interaction type (1, 1, 1, 1) is linear and type (4) is log linear, and

therefore Algorithm 3 produces T
(
P,≺B, (0,∞)2n

)
. The fact that our output agrees

with that of [21] suggests that our code is functioning as desired. To compute the inter-

action type (2, 1, 1) we apply Algorithm 3 to obtain T (P ′,≺B,Ξ′). By Theorem 2.3.5

this determines T
(
P,≺B, (0,∞)2n

)
.

To solve the PSD problem from interaction types (2, 2) and (3, 1) requires that we

make use of the strategy discussed in Section 2.3.5. Again, we use Algorithm 3 to

obtain T (P ′,≺B,Ξ′). By Theorem 2.3.3, T
(
P,≺B, (0,∞)2n

)
⊂ T (P ′,≺B,Ξ′). As

indicated in Column 7 of Table 2.1, we chose 108 samples from (0,∞)8 and identified

5344 and 3084 linear orders, respectively. We ran CylindricalAlgebraicDecomposition

in Mathematica 11 [20] on each element of T (P ′,≺B,Ξ′) \ S
(
P,≺B, (0,∞)2n

)
. As can

be seen by comparing Columns 6 and 3, none of these elements were admissible.
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n #T
(
P,≺B, (0,∞)2n

)
#T (P ′,≺B,Ξ′) #T (P ′,≺B,Ξ′) #S(P ′,≺B, (0,∞)2n)

(1,1,1,1) 336 - - -

(4) 336 - - -

(2,1,1) 1,344 1,344 2,352 -

(2,2) 5,344 7,920 26,640 5,344

(3,1) 3,084 5,112 68,641 3,084

(1,1,1,1,1) 61,920 - - 61,920

(5) 61,920 - - 61,920

(2,1,1,1) 790,200 790,200 * 790,200

(2,2,1) - 11,035,808 * 6,570,952

(3,2) - * * 71,959,088†

(4,1) - * * 11,213,616†

(1,1,1,1,1,1) 89,414,640 - - 89,414,640

(6) 89,414,640 - - 89,414,640

Table 2.1: Computational results for several PSD problems. Column 1 indicates the
interaction type. Column 2 provides the number of elements in the AC-LEP of interest.
Column 3 provides the number of elements in an associated LC-LEP. This is not relevant
where the AC-LEP problem of interest is a LC-LEP problem and is indicated by -.
The * indicates that the computation was too large to complete. Column 4 provides
the number of elements in the linearized PSD problem without additional constraints.
Again the irrelevance for linear problems is indicated by - and * indicates that the
computation is large to be performed. The last column indicates the number of cells
identified via sampling. We used 108 samples for all n = 4 cases and 109 samples for
the n = 5, 6 cases. The symbol † indicates that our sampling was not sufficient.

We now turn to the computations of interaction functions of order 5 and 6. As these

problems are too big to be done on a laptop we turned to a server for which SageMath

was not installed. Thus, we made use of a numerical linear programing algorithm,

linprog from Python 3.5 package scipy [33] with the default numerical error 10−13, in

Algorithm 1. The interaction type (1, 1, 1, 1, 1) and (1, 1, 1, 1, 1, 1) are linear and type (5)

and (6) are log linear, and therefore via Algorithm 3 we obtain Talg
(
P,≺B, (0,∞)2n

)
.

We use the sampling technique (see Columns 7 and 8 of Table 2.1) to verify each of the

elements of Talg
(
P,≺B, (0,∞)2n

)
, thereby obtaining T

(
P,≺B, (0,∞)2n

)
.

The computation for each order 4 case was done on a Mac Pro laptop (2.7 Hz Intel

i5 and memory 8GB) with computation time under 4 hours. The computation of the

remaining cases were done using a computing server with CentOs, intel 17.1, memory

32 GB, and less than 30 nodes. The computation time for both (1, 1, 1, 1, 1) and (5)

was less than 4 hours, while the computation time for (2, 1, 1, 1) was on the order of 7
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days. The codes which produced all of the computations in Table 2.1 are available on

GitHub.

https://github.com/lunzhang1990/parameterRepo
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Chapter 3

Computing homology of regions of parameter space

3.1 Introduction

There are a wide variety of reasons why systems biology is a challenging subject, but

from a purely mathematical perspective a key factor is that it is a problem in nonlinear

dynamics involving many unknown parameters with at best a heuristic understanding

of the nonlinearities. The focus of this Chapter is on identifying the topology of pa-

rameter space. In particular, given a particular local or global dynamical structure

(in the language of biology one should think of phenotype) our goal is to develop a

computational framework through which we can compute the homology of the subset

of parameter space at which that dynamical structure occurs.

To put this into context consider the toggle switch shown in Figure 1.2. This a

symbolic representation of a gene regulatory network where the protein produced by

one gene represses the production of the protein of the other gene. As is discussed in

greater detail below there are at least eight natural parameters for this system. As a

function of these parameters the global dynamics of the toggle switch takes two forms:

monostability and bistability. The machinery we develop allows us to conclude that

bistability occurs over a contractible set of parameters, while the set of parameters that

leads to monostability has the homology of a circle. Given the dimensions of parameter

space this is a nontrivial statement.

Because of its simplicity, the toggle switch was one of the first examples of a synthetic

regulatory network [30]. In general networks of interest either in systems or synthetic

biology are more complicated and have much higher dimensional parameter spaces (see

Figure 1.1). Thus, there are essentially two problems that need to be solved: identifying

cell complexes with which to compute the homology of subsets of parameter space, and
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computing homology of large high dimensional complexes. In this paper we focus on

the first problem leaving analysis of networks of the type Figure 1.1 for future work.

Obviously, how particular parameters influence dynamics depends on the choice of

model. Our results are based on a combinatorial order theoretic model for nonlinear

dynamics as instantiated through the software package Dynamic Signatures Generated

by Regulatory Networks (DSGRN) introduced in [15]. For examples of applications of

this software to problems of biological interest we refer the reader to [15, 14, 18, 34].

Describing how DSGRN identifies a decomposition of parameter space from a regulatory

networks is somewhat involved and thus postponed until Section 3.2.

For the moment, with admitted lack of motivation, we focus on the essential math-

ematical ideas. We fix two positive integers n and nO. The parameters of interest are

γ ∈ R+ = (0,∞), θ = (θ1, . . . , θnO) ∈ RnO+ , ` = (`1, . . . , `n) ∈ Rn+, and δ = (δ1, . . . , δn) ∈

Rn+. Expressed collectively the parameters are written as (γ, θ, `, δ) ∈ R1+nO+2n
+ . The

decomposition of this parameter space is given in terms of semi-algebraic sets described

via the following construction.

Definition 3.1.1. An interaction function of order n is a polynomial in n variables,

z = (z1, . . . , zn), of the form

f(z) =

q∏
j=1

∑
i∈Ij

zi

 (3.1)

where the indexing sets {Ij : 1 ≤ j ≤ q} form a partition for {1, . . . , n}. The interaction

type of f is denoted by n := (n1, . . . , nq) where nj indicates the number of elements in

Ij . Since the order of the indexing sets Ij does not matter, for convenience we always

assume that

n1 ≥ n2 ≥ · · · ≥ nq.

The interaction type of f is used to define 2n polynomials on the parameters ` and

δ as follows. For a fixed interaction function of type n define P(n) to be the collection

of polynomials obtained by evaluating f(z) with each zk ∈ {`k, `k + δk}. In particular,
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taking all possible combinations of zk for 1 ≤ k ≤ n produces

P(n) = {p0, . . . , p2n−1} ⊂ R[`1, . . . , `n, δ1, . . . , δn]. (3.2)

The set of polynomials that are used to define the regions in R1+nO+2n
+ are

Q(n;nO) := {q := γθj − p : p ∈ P(n), j = 1, . . . , nO} (3.3)

with the additional assumption that θi 6= θj . Observe that if q ∈ Q(n;nO), then

q ∈ R[γ, θ, `, δ]. As explained in Section 3.2 the pair (n;nO) is referred to as a node

type.

To index the regions of interests we set B(n;nO) =
∏
q∈Q {0, 1}. Given b ∈ B(n;nO)

we denote its q-th coordinate by b(q). For any element b ∈ B(n;nO), define a region of

parameter space by

PN(b) =
{

(γ, θ, `, δ) : (−1)b(q)q(γ, θ, `, δ) < 0, q ∈ Q
}
. (3.4)

A remark of practical importance is that for typical b ∈ B(n;nO), PN(b) = ∅.

Define

B∗(n;nO) := {b ∈ B : PN(b) 6= ∅} .

Identifying B∗(n;nO) is computationally extremely challenging, however for the node

types presented in Table 3.1 it has been determined (see [26]).

Given b ∈ B∗(n;nO) define

Υ̃(n;nO)(b) := cl(PN(b)) ∩ R1+n0+2n
+ . (3.5)

For the problems of biological interest we need to add another level of complexity.

Networks contain multiple nodes. So assume that we are given a collection of node
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types (ni;nO,i), i = 1, . . . , n. Define

B∗nw =
N∏
i=1

B∗(ni;nO,i). (3.6)

Given b = (b1, . . . , bN ) ∈ B∗nw define

Υ̃nw({b}) =
N∏
i=1

Υ̃(ni;nO,i)(bi)

and more generally, for any B′ ⊂ B∗ set

Υ̃nw(B′) =
⋃
b∈B′

Υ̃nw({b})

Our long term goal is to be able to compute H∗(Υ̃nw(B′)). We are far from this goal.

However, this paper provides the primitives to compute homology using Z2 coefficients

for networks where the (ni;nO,i) are taken from the following three types:

((n);nO), ((1, . . . , 1);nO), or ((2, 1, . . . , 1);nO). (3.7)

While obviously we would like to be able do more, we remark that this is sufficient to

consider a wide variety of biologically realistic networks including that of Figure 1.1.

To explain why it is difficult to compute H∗(Υ̃nw(B′)), we note that the number of

elements of B∗(n;nO) grows rapidly as a function of n. This implies that computations

are best done using a computer, which in turn suggests that we want to represent

Υ̃(n;nO)(b) via a finite cellular complex. However, for any b ∈ B∗(n;nO), Υ̃(n;nO)(b) is

an unbounded subset of R1+n0+2n
+ that is neither closed nor open.

The major contribution of this paper is the development of database and pipeline in

section 3.9 that takes as input a type (n;nO) of the form given in (3.7) and produces as

output the DSGRN (n;nO) cell complex X(n;nO) and its homology group over Z2. The

reason the cell complex X(n;nO) is of central importance is as follows. Given a network

with nodes (ni;nO,i), i = 1, . . . , N of types given by (3.7), b ∈ B∗nw, and B′ ⊂ B∗nw we
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type X (0) X (1) X (2) X (3) X (4) X (5) X (6) X (7) X (8)

((1);1) 6 8 3 - - - - - -

((1,1);1) 18 48 54 29 6 - - - -

((2);1) 18 48 54 29 6 - - - -

((1,1,1);1) 57 243 484 551 366 132 20 - -

((2,1);1) 66 272 524 581 378 134 20 - -

((3);1) 57 243 484 551 366 132 20 - -

((1,1,1,1);1) 306 1902 5700 10380 12224 9370 4520 1247 150

((2,1,1);1) 433 2593 7406 12842 14451 10634 4948 1323 155

((4);1) 306 1902 5700 10380 12224 9370 4520 1247 150

Table 3.1: Results from explicit DSGRN cell complex computations. Column 1 indicates
the node type. The remaining columns indicate how many cells of each dimension are
in X (n;nO). A dash means that there are no cells of that dimension. The explicit cell
complexes can be accessed at [1].

can define finite cell complexes (see Section 3.7)

Xnw({b}) :=
N∏
i=1

X(ni;nO,i)(bi) and Xnw(B′) =
⋃
b∈B′
Xnw({b}) (3.8)

with the property that

H∗(Xnw(B′);Z2) ∼= H∗(Υ̃nw(B′),Z2). (3.9)

Another contribution of this paper is a collection of completed computations of a few

X (n;nO). Table 3.1 give a condensed list of results in the simplest setting; the complete

complexes can be accessed here [1]. We include this table to provide the reader some

guidance as to how rapidly the size of the cell complexes grow as a function of the

interaction types.

In our haste to state the mathematical focus of this paper we have purposely mini-

mized motivation for the problem and only briefly hinted at the difficulties. We attempt

to remedy this in Section 3.2 where we briefly discuss the mathematical model behind

the DSGRN computations and then use the toggle switch as a concrete example of

how the complex X ((1); 1) is derived. We then show how this complex can be used to

compute homology groups of interest in two simple canonical examples from synthetic
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biology: the toggle switch and the repressilator. This is meant to provide some intu-

ition for the formal proofs presented in later sections, however the reader who is only

interested in the mathematical aspects of this work should feel free to skip this section.

The definition of PN(b) is given by (3.4), and hence Υ̃(B′) is well defined. In con-

trast no hint as to the form of X (n;nO) has been given in this introduction. The reason

is that it is derived through a sequence of spaces that involve technical constructions.

This is the content of Sections 3.3 to 3.7.

We conclude the paper in Section 3.8 with an application to an example that arises

from the use of DSGRN to propose designs of a gene regulatory network that exhibits

switch-like behavior over a large range of parameter values.

3.2 The Toggle Switch

As is indicated in the introduction this section provides motivation for the homology

computations. We begin with a minimal introduction to the biological meaning of

parameters and how parameter space is decomposed by DSGRN. We then turn to

the toggle switch, Figure 1.2(b), to provide an explicit explanation of the associated

DSGRN cell complex X ((1); 1).

The DSGRN software requires two inputs. The first is a regulatory network, i.e.

an annotated directed graph as indicated in Figure 1.2(b). Conceptually, we assign

to each node j in the regulatory network a non-negative quantity xj , e.g. amount of

protein associated with gene j. The output of DSGRN provides information about the

dynamics of xj as a function of parameters that are introduced below.

The disappearance of xj is due to decay, which is assumed to occur at a constant

rate, γj > 0. The rate of production of xj is dependent upon the second input to

DSGRN: for each node j an interaction function Λj(x) defined as follows.

The edges of a regulatory network take one of two annotations: k → j that indicates

that node k up regulates node j, and k a j that indicates that node k down regulates
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node j. This up and down regulation is represented via the functions

λ+
j,k(xk) :=


`j,k if xk < θj,k

`j,k + δj,k if xk > θj,k

(3.10)

and

λ−j,k(xk) :=


`j,k + δj,k if xk < θj,k

`j,k if xk > θj,k,

(3.11)

respectively, where the parameters θj,k, `j,k, and δj,k are assumed to be positive. This

is not an idle assumption: θ is a threshold that affects change, and δ indicates the

quantity of change. If these two parameters are allowed to be zero, then the edges in

the regulatory network suggest influence where none exists.

For simplicity of expression assume that the incoming edges to node j are from

nodes {1, . . . , nI}. To define Λj choose {I1, . . . , Iq}, a partition of {1, . . . , nI}, and set

Λj(x) :=

q∏
i=1

∑
j∈Ii

λ∗j,k(xk)


where ∗ ∈ {±} is determined by the type of edge. Observe that Λj(x) has the form

given by Definition 3.1.1 and thus has a well defined interaction type n. Furthermore,

note that evaluating Λj(x) over all possible combinations of `j,k and `j,k + δj,k produces

2nI polynomials P(n) as in (3.2). If node j has nO out edges then it is of node type

(n;nO).

At this point we have introduced all the parameters and thus the parameter space

is RN+3E
+ where N is the number of nodes and E the number of edges in the regulatory

network. We now turn to a representation of the parameters in the spirit of that

presented in the introduction. A parameter for the full regulatory network takes the

form (γ, θ, `, δ) ∈ RN+3E
+ where γ = (γ1, . . . , γN ), θ = (θ1, . . . , θN ), ` = (`1, . . . , `N ),

and δ = (δ1, . . . , δN ). Furthermore, θj = (θk1,j , . . . , θknO ,j) where there is an out edge

from node j to node ki, i = 1, . . . , nO, (nO = nO(j) is the number of out edges from

node j), and `j = (`j,k1 , . . . , `j,nI ) and δj = (δj,k1 , . . . , δj,nI ) where there is an in edge
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from node ki, i = 1, . . . , nI , (nI = nI(j) is the number of in edges to node j) to node j.

Observe that, as in the introduction, we have assigned 1 + nO + 2nI parameters to

each node xj in the regulatory network, the decay γj , the nO thresholds θi,j associated

with the nO out-edges, and the 2nI production rates `j,k and δj,k associated with the

nI in edges. Furthermore, if we let Pj = {(γj , θj , `j , θj)}, then the full parameter space

for the regulatory network is

P =
N∏
j=1

Pj = RN+3E
+ . (3.12)

DSGRN models dynamics on a crude level, monitoring only the increase and de-

crease of xj . To be more precise, observe that on the regions defined by the comple-

ments of the hyperplanes {xj = θk,j}, Λj is constant and takes on a value determined

by the parameters λj,k and λj,k + δj,k. Exploiting this observation DSGRN decomposes

parameter space for the full regulatory network into regions where

0 6= −γ1θk,1 + Λ1(x)

...

0 6= −γNθk,N + ΛN (x)

(3.13)

and we are considering all θk,j for each j = 1, . . . , N . An observation of fundamental

importance for this paper is that this decomposition of parameter space takes the form

of a product. In particular, if for each j = 1, . . . , N we determine the regions of

parameter space restricted to γj , θj , `j , and δj determined by the inequalities

0 6= −γjθk,j + Λj(x), (3.14)

then a region of (3.13) can be written as a product over j of regions determined by

(3.14). Observe that we have recovered Q(n;nO) as in (3.3), and thus if node j is of

type (n;nO), then the regions defined by (3.14) are exactly those indexed by B∗(n;nO).

The simplest example that provides a concrete perspective to these general remarks

is the toggle switch shown in Figure 1.2(b). Each node is of type ((1); 1) and the
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equations corresponding to (3.13) are

0 6= −γ1θ2,1 +


`1,2 + δ1,2 if x2 < θ1,2

`1,2 if x2 > θ1,2

(3.15)

0 6= −γ2θ1,2 +


`2,1 + δ2,1 if x1 < θ2,1

`2,1 if x1 > θ2,1.

(3.16)

As discussed above, since the parameters in (3.15) and (3.16) are independent, the

decomposition of parameter space takes the form of a product of the regions deter-

mined by (3.15) and the regions determined by (3.16). With this in mind we focus our

discussion on (3.15).

The first step is to recognize that

P((1); 1) = {`1,2, `1,2 + δ1,2} and Q((1); 1) = {γ1θ2,1 − p : p ∈ P(1; 1)} .

Thus, B((1); 1) = {0, 1}2 and B∗((1); 1) = {0, 1}2 \ {(0, 1)}, where the latter is equiva-

lent to the observation that the nonempty regions of parameter space satisfying (3.15)

are defined by the inequalities

γ1θ2,1 < l1,2 < l1,2 +δ1,2, l1,2 < γ1θ2,1 < l1,2 +δ1,2, and l1,2 < l1,2 +δ1,2 < γ1θ2,1. (3.17)

As in (3.5), given b ∈ B∗((1); 1) define

Υ̃((1);1)(b) := cl(PN(b)) ∩ (0,∞)4.

As follows from the discussion in the introduction our objective is to compute

H∗(Υ̃nw(B′);Z2) for B′ ⊂ B∗nw = B∗((1); 1) × B∗((1); 1). However, as is left to the

reader to check, Υ̃((1);1)(b) is neither closed (as a subset of R4) nor bounded, and hence

is not a finite CW complex. Thus to accomplish our objective we construct an appro-

priate finite cellular representation for Υ̃nw(B′).

As a first step we identify a bounded region that is a strong deformation retract of
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Figure 3.1: Derivation of the DSGRN cellular complex X((1);1),ε. The large black simplex
is obtained from the constraint θ2,1 +`1,2 +δ1,2 = 1. The three regions defined by (3.17)
are indexed by (0, 0), (1, 0), (1, 1) ∈ B∗((1); 1). The red lines are defined by θ2,1 = ε,
`1,2 = ε, and δ1,2 = ε. The vertices of X((1);1),ε are labeled 0, . . . , 5.

Υ̃((1);1)(B
∗((1); (1)). Define

Z := {(1, θ2,1, `1,2, δ1,2) : θ2,1 + `1,2 + δ1,2 = 1, θ2,1 > 0, `1,2 > 0, δ1,2 > 0} . (3.18)

Let B′ ⊂ B∗((1); 1) and define

Υ((1);1)(B
′) := Υ̃((1);1)(B

′) ∩ Z.

It follows from Proposition 3.3.1 that there is a strong deformation retraction of (0,∞)4

onto Z, and furthermore, under this strong deformation retraction Υ((1);1)(B
′) is a

strong deformation retract of Υ̃((1);1)(B
′) for any B′ ⊂ B∗((1); 1). The images of

Υ((1);1)(bi) for B∗((1); 1) = {b1, b2, b3} are shown in Figure 3.1. While Υ((1);1)(B
′)

is bounded it is not closed, and therefore we still need to identify an appropriate finite

CW complex.

As is discussed above the assumptions that the parameters θ, `, and δ are positive

is driven by biological considerations. Observe, from Figure 3.1 that Υ((1);1)(b1) ∩

Υ((1);1)(b3) = ∅. This fundamental topological property would change if we made use
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of the obvious simplicial complex obtained by considering the cells cl(Υ̃((1);1)(bi)), for

i = 1, 2, 3. Therefore we take the opposite approach and add the restriction

θ2,1 ≥ ε, `1,2 ≥ ε, and δ1,2 ≥ ε.

This produces X((1);1),ε, the geometric simplicial complex shown in Figure 3.1. More

precisely, letting X (k)
((1);1),ε denote the k-dimensional cells, the associated combinatorial

cellular complex is

X 2
((1);1),ε =

{
ξ2

1 = {0, 4, 5}, ξ2
2 = {0, 1, 3, 4}, ξ2

3 = {1, 2, 3}
}

X 1
((1);1),ε = {ξ1

1 = {0, 5}, ξ1
2 = {4, 5}, ξ1

3 = {0, 4}, ξ1
4 = {0, 1}, ξ1

5 = {1, 3}, ξ6 = {3, 4},

ξ1
7 = {1, 2}, ξ1

8 = {2, 3}}

X 0
((1);1),ε =

{
ξ0

1 = {0}, ξ0
2 = {1}, ξ0

3 = {2}, ξ0
4 = {3}, ξ0

5 = {4}, ξ0
6 = {5}

}
where the incidence number κ is given by

κ(ξij , ξ
k
l ) =


1 if i = k + 1 and ξkl ⊂ ξij

0 otherwise

since we restrict our attention in this paper to the number field Z2. In a slight abuse of

notation, we use ξij to denote either a geometric simplex or its associated combinatorial

cell.

As can be seen from Figure 3.1 there is considerable freedom in the choice of ε.

However, if ε is chosen too large, then the homology computed using the complex

X((1);1),ε will differ from the homology associated with Υ. Observe that the inequations

used to define cell ξ2
1 = {0, 4, 5} associated with b = (0, 0) ∈ B∗ are as follows

θ2,1 + `1,2 + δ1,2 − 1 = 0

−θ2,1 + `1,2 + δ1,2 ≤ 0

ε− θ2,1 ≤ 0, ε− `1,2 ≤ 0, ε− δ1,2 ≤ 0

−ε < 0.

(3.19)
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More generally, we can write this as an inequation system

{A0x = 0, B0(b)x ≤ 0, C0 < 0}

where x = (θ2,1, `1,2, δ1,2, ε), A0 is a 1 × 4 matrix that encodes the restriction to Z1,

B0(b) is a 4×4 matrix that explicitly depends on b, and C0 encodes the restriction that

ε > 0. Because b ∈ B∗ we know that the inequation system has a solution for ε = 0.

However, we need an explicit positive value of ε that we can work with.

Using Fourier-Motzkin elimination (see Section 3.6) we can solve for ε(b) > 0, the

maximal values such all these inequations are satisfied. We leave it to the reader to

check that

1

4
= ε((1); 1) := min

b∈B∗1
ε(b). (3.20)

Fourier-Motzkin elimination is an iterative method, and in particular, at each step

one of the variables is eliminated. Since the entries of A0 and B0(b) are {0,±1}, the

absolute values of the coefficients are bounded by 2n. For this particular example, since

after three steps we have reduced the inequation system to the single variable ε, we can

conclude that ε(b) ≥ 1
8 , which is consistent with (3.20).

In Section 3.6 we prove that if ε0, ε1 ∈ (0, ε((1); 1)), then X((1);1),ε0 and X((1);1),ε1

are isomorphic cell complexes. We refer to any choice of X (ε), 0 < ε < ε((1); 1), as

the DSGRN ((1); 1) cell-complex. Since the cellular structure is determined we simplify

the notation and write X ((1); 1). Since X ((1); 1) is a finite complex we can use it to

compute homology.

We now consider the raison d’être for this paper, identifying the homology of param-

eter regions that lead to a particular phenotype. For this we need to consider the full

parameter space associated with the regulatory network. Making use of the notation

of (3.8), given B′ ⊂ B∗nw we can compute

H∗(Xnw(B′);Z2) ∼= H∗(Υ̃nw(B′);Z2).

Though an explanation of the details is beyond the scope of this paper (see [15])



58

for each b ∈ B∗nw, DSGRN computes a Morse graph that provides a combinatorial

description of the global dynamics that is valid for all parameters associate with b. In the

case of the toggle switch B∗nw = B∗((1); 1)×B∗((1); 1) consists of nine elements. As is

shown in [18, Figure 2(d)] for one of the elements b̄ the associated Morse graph indicates

the occurrence of bistability and for the remaining eight elements, B′ = B∗ \
{
b̄
}

, the

associated Morse graph indicates monostability.

Applying standard homology software [29] we obtain

Hk(X (b̄);Z2) ∼=


Z2 if k = 0

0 otherwise

(3.21)

and

Hk(X (B′);Z2) ∼=


Z2 if k = 0, 1

0 otherwise.

(3.22)

Admittedly in the case of the toggle switch the result of the first computation is not

surprising. Since the node type is linear, the region associated with b̄ is a convex

(unbounded) polygon, and thus is contractible.

As a final comment it is worth noting that application of the specific construc-

tion presented of this section is not restricted to the toggle switch. The other fun-

damental example of synthetic biology is the repressilator [16] which is represented

using the regulatory network in Figure 3.2. Observe that each node is of type ((1); 1)

and therefore the full parameter space R12
+ is decomposed into 27 elements indexed

by B∗nw =
∏3
j=1B

∗((1)j ; 1j). As is indicated in [15, Figure 5] there is a single ele-

ment b̂ ∈ B∗nw at which stable oscillations can occur and for the remaining regions

B̂ = B∗nw \
{
b̂
}

we have monostability without oscillations observable on the scale of

this DSGRN model. Direct computations show that

Hk(X (b̂);Z2) ∼=


Z2 if k = 0

0 otherwise

(3.23)
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and

Hk(X (B̂);Z2) ∼=


Z2 if k = 0, 2

0 otherwise.

(3.24)

Figure 3.2: Regulatory network for the repressilator.

3.3 Identifying Υ̃ and Υ

Throughout this section we assume we are given a node with n in edges and nO out

edges. In this section we repeat, at least in spirit, the first part of the discussion of

Section 3.2 where we derived a linear space Z (see (3.18)) that contains the desired CW

complex. In fact, for the case of nodes with linear interaction type, i.e. ((n);nO), the

argument is essentially identical. In the case of nodes with a purely product interaction,

i.e. ((1, . . . , 1);nO), we apply the logarithm to obtain a linear interaction type. Thus,

the arguments for ((n);nO) and ((1, . . . , 1);nO) go hand in hand. Not surprisingly

dealing with a node of type (2, 1, . . . , 1;nO) is more challenging and needs to be dealt

with separately.

3.3.1 Node of type ((1, . . . , 1);nO)

The following result and Theorem 3.7.1 are used to show that with respect to the study

of the associated homology we can treat a node of type (n;nO) = ((1, . . . , 1);nO) as a

node of type ((n);nO). We recall from [26] that B∗((1, . . . , 1);nO) = B∗((n);nO).

Theorem 3.3.1. Let B′ ⊂ B∗((n);nO) = B∗((1, . . . , 1);nO). Denote Υ̃1(B′) = Υ̃((n);nO)(B
′)

and Υ̃2(B′) = Υ̃((1,...,1);nO)(B
′) Then Υ̃1(B′) and Υ̃2(B′) are homotopic equivalent.
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Proof. We show Υ̃1(B′) and Υ̃2(B′) are homotopic equivalent for any given B′ ⊂ B

through a series of strong deformation retractions. Recall that for both cases

(γ, θ, `, δ) ∈ Υ̃1(B∗((n);nO)) = Υ̃2(B∗((1, . . . , 1);nO)) = R1+nO+2n
+ .

Define F : R1+nO+2n
+ × [0, 1]→ R1+nO+2n

+ by

F (γ, θ, `, δ, t) =

(
γ

(1− t) + tγ
, ((1− t) + tγ)θ, `, δ

)
. (3.25)

We use F to define two collections of strong deformation retractions. Set

S1(B′) = F (Υ̃1(B′), 1) and S2(B′) = F (Υ̃2(B′), 1)

It is left to the reader to check that for each B′ ⊂ B∗((n);nO) = B∗((1, . . . , 1);nO),

F |
Υ̃1(B′) and F |

Υ̃2(B′) is a strong deformation retraction. Observe that S1(B∗) ⊂ {1}×

RnO+2n
+ and S2(B∗) ⊂ {1} × RnO+2n

+ .

Define G1 : R1+nO+2n
+ × [0, 1]→ R1+nO+2n

+ by

G1(γ, θ, `, δ, t) = (γ, λ(θ, `, δ, t)nθ, λ(θ, `, δ, t)`, λ(θ, `, δ, t)δ) (3.26)

where

λ(θ, `, δ, t) = (1− t) + tmax
k,j

{
e

`k
,
e

δk
,

(
e

θj

) 1
n

}
.

Set S2(B′) = G1(S1(B′), 1). Observe

S2(B′) = S1(B′) ∩ {(γ, θ, `, δ) ∈ R1+nO+2n
+ : min

k,j
{`k, δk, θj} = e}.

Then, G1|S1(B′) provides a strong deformation retract of S1(B′) onto S2(B′).

Define G2 : R1+nO+2n
+ × [0, 1]→ R1+nO+2n

+ by

G2(γ, θ, `, δ, t) = (γ, nλ(θ, `, δ, t) + θ, λ(θ, `, δ, t) + `, λ(θ, `, δ, t) + δ) (3.27)
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where

λ(θ, `, δ, t) = tmax
k,j

{
1− `k, 1− δk,

1− θj
n

}
.

Set S4(B′) = G2(S3(B′), 1). Observe

S4(B′) = S3(B′) ∩ {(γ, θ, `, δ) ∈ R1+nO+2n
+ : min

k,j
{`k, δk, θj} = 1}

Then, G2 provides a strong deformation retract of S3(B′) onto S4(B′).

Finally, define the map log : R1+nO+2n
+ → R1+nO+2n

+

log(γ, θ, `, δ) = (log(γ), log(θ), log(`), log(`+ δ)− log(`)) (3.28)

where log(θ) = (log(θ1), . . . , log(θnO)), log(l) = (log(l1), . . . , log(ln)) and log(l + δ) −

log(l) = (log(l1 + δ1) − log(l1), . . . , log(ln + δn) − log(ln)). We claim log |S2(B′) is from

S2(B′) to S4(B′) for any given B′. The details are left to the reader. From this we have

Υ̃1(B′) and Υ̃2(B′) are homotopy equivalent.

3.3.2 Node of type ((n);nO)

Define

Z((n);nO) =

(γ, θ, `, δ) : γ = 1,

nO∑
j=1

θj +
n∑
k=1

(2`k + δk) = 1

 (3.29)

and for B′ ⊂ B∗((n);nO) define

Υ((n);nO)(B
′) := Υ̃((n);nO)(B

′) ∩ Z((n);nO). (3.30)

Proposition 3.3.1. Let B′ ⊂ B∗((n);nO). Then Υ((n);nO)(B
′) is a strong deformation

retraction of Υ̃((n);nO)(B
′).

Proof. Define F : R1+nO+2n
+ × [0, 1]→ R1+nO+2n

+ by

F (γ, θ, `, δ, t) =

(
γ

(1− t) + tγ
,
(1− t) + tγ

λ(θ, `, δ, t)
θ,

1

λ(θ, `, δ, t)
`,

1

λ(θ, `, δ, t)
δ

)
(3.31)
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where

λ(θ, `, δ, t) = (1− t) + t

 nO∑
j=1

θj +
n∑
k=1

(2`k + δk)

 .

We leave it to the reader to check that for Z((n);nO) given by (3.29)

F (·, t)|Z((n);nO)
= idZ((n);nO)

,

F (R1+nO+2n
+ , 0) = idR1+nO+2n

+
,

F (R1+nO+2n
+ , 1) ⊂ Z((n);nO),

and

q(F (γ, θ, `, δ, t)) =
q(γ, θ, `, δ)

(1− t) + t(
∑nO

j=1 θj +
∑n

k=1 (2`k + δk))

for any q ∈ Q((n(;nO). Observe that the latter equality guarantees that F restricts to

a strong deformation retract of Υ̃((n);nO)(B
′) to Υ((n);nO)(B

′).

3.3.3 Node of type ((2, 1, . . . , 1);nO)

. Define

h(θ, `, δ) =

nO∏
j=1

θj ·

(
2∑
i=1

`i

)
·

(
2∑
i=1

`i + δ1

)
·

(
2∑
i=1

`i + δ2

)
·

(
2∑
i=1

`i + δ1 + δ2

)
n∏
k=3

`k·
n∏
k=3

(`k + δk) .

Define

Z((2,1,...,1);nO) = {(γ, θ, `, δ) : γ = 1, `1 = `2, h(θ, `, δ) = 1} (3.32)

and for B′ ⊂ B∗((2, 1, . . . , 1);nO) define

Υ((2,1,...,1);nO) := Υ̃((2,1,...,1);nO) ∩ Z((2,1,...,1);nO).

Proposition 3.3.2. Let B′ ⊂ B∗((2, 1, . . . , 1);nO). Then Υ((2,1,...,1);nO)(B
′) is a strong

deformation retraction of Υ̃((2,1,...,1);nO)(B
′).
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Proof. Define F : R1+nO+2n
+ × [0, 1]→ R1+nO+2n

+ by

F (γ, θ, `, δ, t) =

(
γ

(1− t) + tγ
,

(1− t) + tγ

λ(θ, `, δ, t)n−1
θ,

1

λ(θ, `, δ, t)
`,

1

λ(θ, `, δ, t)
δ

)

where

λ(θ, `, δ, t) = ((1− t) + t · h(θ, `, δ))
1

nO(n−1)+2n .

Observe

F (R1+nO+2n
+ , 1) ⊂

{
(γ, θ, `, δ) ∈ R1+nO+2n

+ : γ = 1, h(θ, `, δ) = 1
}

Define G : R1+nO+2n
+ × [0, 1]→ R1+nO+2n

+ by

G(γ, θ, `, δ, s) =

(
γ, θ, (1− s)`1 + s

`1 + `2
2

, (1− s)`2 + s
`1 + `2

2
, `3, . . . , `n, δ

)

Observe

G(F (R1+nO+2n
+ , 1), 1) = F (R1+nO+2n

+ , 1)∩
{

(γ, θ, `, δ) ∈ R1+nO+2n
+ : `1 = `2

}
⊂ Z((2,1,...,1);nO)

We leave it to the reader to check that for Z((2,1,...,1);nO) given by (3.32)

G(F (·, t), s)|Z((2,1,...,1);nO)
= idZ((2,1,...,1);nO)

(·),

and

q(F (γ, θ, `, δ, t)) =
q(γ, θ, `, δ)

((1− t) + t · h(θ, `, δ))
n−1

nO(n−1)+2n

.

Observe that the latter equality guarantees that

H(·, t) =


G(F (·, 2t), 0), t ∈ [0, 1

2 ]

G(F (·, 1), 2t− 1) t ∈ [1
2 , 1]

(3.33)

restricts to a strong deformation retract of Υ̃((2,1,...,1);nO)(B
′) to Υ((2,1,...,1);nO)(B

′) for

any given B′.
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3.4 Identifying X̃

Our goal is to identify the cellular complexes X that can be used to perform the desired

homological computations and the strategy is summed up in Section 3.2. While this

is straightforward for nodes of type X ((n);nO), we need to perform another step for

nodes of type X ((2, 1, . . . , 1);nO). The issue is that while Υ((n);nO)(B
′) ⊂ Z((n);nO)

for any B′ ⊂ B∗((n);nO), an affine space, this is not the case for Υ((2,1,...,1);nO)(B
′) ⊂

Z((2,1,...,1);nO), B
′ ⊂ B∗((2, 1, . . . , 1);nO). Thus, in this section we make use of the

notion of linearization introduced in [26] to produce an intermediate structure X̃ from

which X ((2, 1, . . . , 1);nO) is derived.

Starting with P((2, 1, . . . , 1)) and Q((2, 1, . . . , 1);nO), as defined in the introduction,

we will construct linearized polynomials P ′((2, 1, . . . , 1)) and Q′((2, 1, . . . , 1);nO), that

define linearized parameter regions. We need following notations.

Definition 3.4.1. Suppose n ∈ Nq is the interaction type for f ∈ R [z1, . . . , zn]. As in

Definition 3.1.1 let {I1, . . . , Iq} denote the indexing sets for each summand of f . Setting

I :=
⋃q
j=1 Ij we denote a typical element of I by Ij(k) which we define as the kth largest

element of Ij . Let

E := {α : {1, . . . , n} → {0, 1}}

be the set of all Boolean functions defined on I. The Boolean indexing map, denoted

by B : E →
{

0, . . . , 2n−1
}

, is defined by the formula

B(α) :=

q∑
j=1

nj−1∑
k=0

α(Ij(k))2κj,k κj,k = k +

j−1∑
j′=1

nj′ .

We will also consider, α ∈ E, as a vector of Boolean functions defined as follows.

Let Ej denote the set of Boolean functions defined on Ij . Then, elements of E can be

represented as vectors of the form

α = (α1, . . . , αq) where αj := α
∣∣∣
Ij
∈ Ej for 1 ≤ j ≤ q.

Note that under this identification, E has the equivalent representation as E = E1 ×
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· · · × Eq.

We denote the polynomial ring in 2n indeterminates with Boolean indexing by

R := R [{xr,αr : αj ∈ Er, 1 ≤ r ≤ n− 1}] . (3.34)

For convenience, we sometimes use the binary integer represented by αj to represent it

in the subscribe. For example, sometimes we denote x1,2 = x1,(1,0) and x1,3 = x1,(1,1).

Define a collection of linear polynomials by

P ′((2, 1, . . . , 1)) :=
{
p′α : α ∈ E

}
⊂ R where p′α :=

n−1∑
r=1

xr,αr

and set

Q′((2, 1, . . . , 1);nO) :=
{
q′α := γ′ + θ′j − p′α : p′α ∈ P ′((2, 1, . . . , 1)), j = 1, . . . , nO

}
.

For b ∈ B((2, 1, . . . , 1);nO) we define the linearized parameter region as

PN ′(b) =
{

(γ′, θ′, ξ′) : (−1)b(q)q(γ′, θ′, ξ′) < 0, q ∈ Q′((2, 1, . . . , 1);n0)
}

The following theorem explains the relationship between PN(b) and PN ′(b)

Theorem 3.4.1. Consider a node of type ((2, 1, . . . , 1);nO).

1. Let α ∈ E, j ∈ {1, . . . , nO}, and (γ, θ, ξ) ∈ R1+nO+2n
+ . Set

γ′ = log γ, θ′j = log θj , and ξ′j,αj = log

∑
k∈Ij

ξk + αj(k)ξn+k

.
Let qα ∈ Q((2, 1, . . . , 1);nO). If qα(γ, θ, ξ) 6= 0, then q′α(γ′, θ′, ξ′) 6= 0 and

sign(q′α(γ′, θ′, ξ′)) = sign(qα(γ, θ, ξ)).

2. Let b ∈ B((2, 1, . . . , 1);nO). If PNi(b) 6= ∅, then PN ′(b) 6= ∅.
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Proof. To prove (1), without loss of generality suppose qα = γθj − pα(ξ) < 0, then

γθj < pα(ξ)

γ′ + θ′j = log(γθj) < log(pα(ξ)) = p′α(ξ′)

and hence qα′ < 0. The same argument applies to q′α > 0.

For (2), it is easy to see if ξ ∈ PNi(bi), then log ξ ∈ PN ′i(bi).

Now we can define X̃(n;nO) for each node type.

3.4.1 Node of type ((1, . . . , 1);nO)

From Theorems 3.3.1 and 3.7.1, we can reduce to the equivalent case of node type

((n);nO) that we define in the following.

3.4.2 Node of type ((n);nO)

For node type (n;nO) = ((n);nO), we define X̃((n);nO)(B
′) = Υ((n);nO)(B

′) for any

B′ ⊂ B∗((n);nO). This is because Υ((n);nO)(B
′) is already polyhedra defined by linear

polynomials.

3.4.3 Node of type ((2, 1, . . . , 1);nO)

Define

Z ′ = {(γ′, θ′, x) : γ′ = 0,

nO∑
j=1

θ′j +
n−1∑
j=1

∑
αj∈Ej

xj,αj = 0,

−x1,0 + x1,1 + x1,2 − x1,3 > 0}

and

D = {(γ′, θ′, x) : x1,0 < x1,1, x1,2 < x1,3;xj,0 < xj,1, j = 2, . . . , n− 1}

which we call boolean restriction for type (n;nO) = ((2, 1, . . . , 1);nO) according to

paper [26].
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Define the set X̃((2,1,...,1);nO)(B
′) for node of type ((2, 1, . . . , 1);nO) as following

X̃((2,1,...,1);nO)(B
′) :=

( ⋃
b∈B′

cl(PN ′(b))

)
∩ Z ′ ∩D′

To move forward, we need the following technical lemma

Lemma 3.4.2. Fix parameters, x0, x1, x2, x3 ∈ R, and define the function, g : R → R

by the formula

g(t) = exp(tx0)− exp(tx1)− exp(tx2) + exp(tx3).

If x0 < x1 ≤ x2 < x3, then g has a unique positive root if and only if g′(0) < 0. Denote

the unique solution as a(x1, x2, x3, x4), a function of (x1, x2, x3, x4), then a is a smooth

function.

Proof. It is easy to see t = 0 is a solution for f(t) and the differentiation at 0 is

f ′(0) = x0− x1− x2 + x3. If there is a t0 > 0 such that et0x0 − et0x1 − et0x2 + et0x3 = 0,

then by calculus we have ey1(t0x0 − t0x1) + ey2(t0x3 − t0x2) = 0 for some y1, y2 such

that t0x0 < y1 < t0x1 ≤ t0x2 < y2 < t0x3. So we must have x0 − x1 − x2 + x3 < 0 as

expy1 < expy2 . That is to say if f ′(0) ≥ 0, f(t) does not have positive solution.

Moreover, for fixed values x0, x1, x2, x3 ∈ R, x0 < x1 ≤ x2 < x3 and x0 − x1 −

x2 + x3 < 0, we want to prove the there is exact one positive solution. The positive

solvability is easy to prove, as f(+∞) = +∞, f(0) = 0 and f ′(0) < 0 indicate there are

solutions in (0,+∞).

The only thing left is uniqueness of positive solution. f ′(t0) = x0e
t0x0 − x1e

t0x1 −

x2e
t0x2 + x3e

t0x3 , we want to show f ′(t0) is strictly positive at any positive solution t0.

At t0 > 0, t0f
′(t0) has the same sign as f ′(t0). We denote pi = et0xi for i = 0, 1, 2, 3, then

t0f
′(t0) = p0 ln p0 − p1 ln(p1)− p2 ln p2 + p3 ln p3. Take s = et0x0 + et0x3 = et0x1 + et0x2

and denote qi = pi
s . Then we have t0f ′(t0)

s = q0 ln q0 − q1 ln(q1) − q2 ln q2 + q3 ln q3,

0 < q0 < q1 52< q3 < 1 and q0 + q3 = q1 + q2 = 1. By entropy inequality we have

t0f ′(t0)
s > 0. As s > 0, we have t0f

′(t0) > 0 and f ′(t0) > 0.

As f ′(t0) > 0, we conclude that the positive solution set does not have a limit point
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in R. Thus, we can assume there are two adjacent positive solutions u, v s.t 0 < u < v

and f(t) 6= 0 on (u, v). As f(u) = 0 and f ′(u) > 0, we have f(t) > 0 on (u, v). And

similarly f(v) = 0 and f ′(v) > 0 indicate f(t) < 0 on (u, v) which is a contradiction.

So there is at most one positive solution for f(t).

By the implicit function theorem and the fact that f ′(t0) > 0, the function t0 =

a(x1, x2, x3, x4) is as smooth as f is smooth.

Then we have the following important theorem for node type ((2, 1, . . . , 1);nO)

Theorem 3.4.2. For node type (n;nO) = ((2, 1, . . . , 1);nO), Υ((2,1,...,1);nO)(B
′) and

X̃((2,1,...,1);nO)(B
′) are homotopic equivalent for any given B′ ⊂ B∗((2, 1, . . . , 1);nO).

Proof. Recall we have (γ, θ, `, δ) ∈ Υ((2,1,...,1);nO) ⊂ R1+nO+2n
+ and (γ′, θ′, x) ∈ X̃(n;nO) ⊂

R1+nO+2n.

Define f̃ : R1+nO+2n
+ → R1+nO+2n by

f̃(γ, θ, `, δ) = (log γ, log θ, x) (3.35)

where x = (xj,αj ) such that xj,αj = log
(∑

k∈Ij lk + αj(k)δk

)
.

Define g̃ : R1+nO+2n → R1+nO+2n
+ by

g̃(γ′, θ′, x) = (exp γ′, exp θ′, `, δ) (3.36)

where ` = (`1, . . . , `n), δ = (δ1, . . . , δn) such that l1 = l2 = expx1,0

2 , δ1 = expx1,1 − expx1,0 , δ2 =

expx1,2 − expx1,0 , lk = expxk−1,0 δk = expxk−1,1 − expxk−1,0 , k = 3, . . . , n

Define F̃ : R1+nO+2n
+ × [0, 1]→ R1+nO+2n

+ by

F̃ (γ, θ, `, δ, t) = (γ, θ, `, δ) (3.37)

i.e. identity map over R1+nO+2n
+ .

In order to move forward, define a(x0, x1, x2, x3) to the unique positive value t for

tuples (x0, x1, x2, x3), x0 < x1, x2 < x3 such that exp(tx0) − exp(tx1) − exp(tx2) +

exp(tx3) = 0 given in Lemma 3.4.2.
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Define G̃ : R1+nO+2n × [0, 1]→ R1+nO+2n by

G̃(γ′, θ, x, t) = (γ′, ((1− t) + ta(x1,0, x1,1, x1,2, x1,3)) · θ′, y) (3.38)

where y = (yαj ,j) such that (y1,0(t), y1,1(t), y1,2(t), y1,3(t)) = ((1−t)+ta(x1,0, x1,1, x1,2, x1,3))·

(x1,0, x1,1, x1,2, x1,3), yk,αk = xk,αk , k = 2, . . . , n− 1.

We leave it to reaader to check that, for any given B′ ⊂ B∗((2, 1, . . . , 1);nO),

f̃(Υ((2,1,...,1);nO)(B
′)) ⊂ X̃((2,1,...,1);nO)(B

′),

g̃(X̃((2,1,...,1);nO)(B
′)) ⊂ Υ((2,1,...,1);nO)(B

′),

F̃ (·, 0)|Υ((2,1,...,1);nO)(B
′) = idΥ((2,1,...,1);nO)(B

′),

F̃ (·, 1)|Υ((2,1,...,1);nO)(B
′) = g̃ ◦ f |Υ((2,1,...,1);nO)(B

′),

G̃(·, 0)|X̃((2,1,...,1);nO)(B
′) = idX̃((2,1,...,1);nO)(B

′),

G̃(·, 1)|X̃((2,1,...,1);nO)(B
′) = f̃ ◦ g̃|X̃((2,1,...,1);nO)(B

′).

In another word, we show for any B′ ⊂ B((2, 1, . . . , 1);nO), Υ((2,1,...,1);nO)(B
′) and

X̃((2,1,...,1);nO)(B
′) are homotopic equivalent.

3.5 Identifying X̃(n;nO),ε,d

Given node type (n;nO) and B′ ⊂ B∗(n;nO), in the previous section we have de-

fined polyhedra X̃(n;nO)(B
′) which are homotopic equivalent to the set Υ̃(n;nO)(B

′) we

are interested in. Even though X̃(n;nO)(B
′) are polyhera sets, they are unbounded

and neither closed nor open. In this section we will approximate X̃(n;nO)(B
′) by a

sequence of polyhedra complexes X̃(n;nO),ε,d(B
′) that are closed, bounded and have

computable incidence number. As will be made clear X̃(n;nO),ε,d(B
′) ⊂ X (B′) and

limε→0,d→∞ X̃(n;nO),ε,d(B
′) = X̃ (B′). We warn the reader that for node types ((n);nO)

and ((1, . . . , 1);nO), the definition of X̃(n;nO),ε,d(B
′) is independent of d, however we

include it because it simplifies the statements of general results.
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3.5.1 Node of type ((1, . . . , 1);nO)

From Theorem 3.3.1, we only need to consider its equivalent case when (n;nO) =

((n);nO).

3.5.2 Node of type ((n);nO)

Define

D((n);nO)(ε, d) = {li ≥ ε, δi ≥ ε, θj ≥ ε}.

For any given B ⊂ B∗((n);nO), define

X̃((n);nO),ε,d(B
′) = X̃((n);nO)(B

′) ∩D((n);nO)(ε, d)

It is not difficult to see X̃((n);nO),ε,d(B
′) is a (bounded, closed, finite) polyhedra complex

defined by linear polynomials.

3.5.3 Node of type ((2, 1, . . . , 1);nO)

Define

D((2,1,...,1);nO)(ε, d) = {x1,j − x1,0 ≥ ε, x1,3 − x1,j ≥ ε, j = 1, 2;xj,0 ≥ −d, j = 1, . . .

n− 1;xj,1 − xj,0 ≥ ε, j = 2, . . . n− 1; θ′j ≥ −d, j = 1, . . . nO}

and for any given B ⊂ B∗((2, 1, . . . , 1), define

X̃((2,1,...,1);nO),ε,d(B
′) = X̃((2,1,...,1);nO)(B

′) ∩D((2,1,...,1)(ε, d)

for some d, ε > 0. It is not difficult to see X̃((2,1,...,1),ε,d(B
′) is a (bounded, closed, finite)

polyhedra complex defined by linear polynomials.

Proposition 3.5.1. For any given node type (n;nO) and B′ ⊂ B∗(n;nO), ε, d >

0, then X̃(n;nO),ε,d(B′) ⊂ X̃(n;nO)(B
′). Furthermore, if ε1 > ε2 and d2 > d1, then

X̃(n;nO),ε1,d1(B′) ⊂ IntX̃(n;nO)(B
′) X̃(n;nO),ε2,d2(B′).



71

Proof. From definition D(n;nO)(ε1, d1) ⊂ IntD(n;nO)(ε2, d2). Then again from the defi-

nition of X̃(n;nO),ε,d , we have

X̃(n;nO),ε1,d1(B′) ⊂ X̃(n;nO)(B
′) ∩ IntD(n;nO)(ε2, d2)

= IntX̃(n;nO)(B
′) X̃(n;nO)(B

′) ∩D(n;nO)(ε2, d2)

= IntX̃(n;nO)(B
′) X̃(n;nO),ε2,d2(B′).

The following theorem is fundamental for the approximation theorems in the fol-

lowing section.

Proposition 3.5.2. Given node type (n;nO) and any B′ ⊂ B∗(n;nO), for any compact

set K ⊂ X̃(n;nO)(B
′), there are vectors ε > 0, d > 0 such that K ⊂ IntX̃(n;nO)(B

′) X̃(n;nO),ε,d(B′).

Proof. For definition of X̃(n;nO),ε,d(B′) and X̃(n;nO)(B
′), we konw

X̃(n;nO) = ∪ε>0,d>0X̃(n;nO),ε,d

. From the second statement in Proposition 3.5.1, we know

X̃(n;nO)(B
′) = ∪ε>0,d>0 IntX̃(n;nO)(B

′) X̃(n;nO),ε,d(B′)

with the relative topology over X̃(n;nO)(B
′). Then by finite covering property and Propo-

sition 3.5.1 again, we know there are ε > 0, d > 0 such thatK ⊂ IntX̃(n;nO)(B
′) X̃(n;nO),ε,d(B′).

3.6 Approximation Theory

We will show there is a natural isomorphism between cell/polyhedra complex X̃(n;nO),ε1,d1

and X̃(n;nO),ε2,d2 when ε1, ε2 are small enough and d1, d2 are big enough. Furthermore, by

using this isomorphism, we show when ε, d are chosen appropriately, X̃(n;nO),ε,d(B′) and

X̃(n;nO)(B
′) are homotopic equivalent induced by the set inclusion map from X̃(n;nO),ε,d(B′)
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to X̃(n;nO)(B
′). At first, we will introduce some linear algebra results

3.6.1 Application of Fourier–Motzkin elimination

Fourier–Motzkin elimination, abbreviated as FME, is an algorithm for eliminating vari-

ables from a system of linear inequalities. We refer the reader to [19] for more details.

First, we have following lemma from FME algorithm

Lemma 3.6.1. Fix matrix A ∈ Rd1×m, B ∈ Rd2×m and v ∈ Rd1 , u ∈ Rd2. Let

x = (x1, . . . , xm) and y = (x2, . . . , xm). Consider the inequations systems P1 = {A ·x =

v,B · x > u} and P2 = {A · x = v,B · x = u} over variables x. If after applying

Fourier elimination algorithm to eliminate x1 we have the inequations P̃1 = {Di · y <

0 or Di · y = 0 | i ∈ I1} and P̃2 = {Di · y = 0 | i ∈ I2} for indexing sets I1 and I2 and

vectors Di ∈ Rm−1. Then if Di · y < 0 or Di · y = 0 ∈ P̃1 for some i ∈ I1, we must have

Di · y = 0 or −Di · y = 0 ∈ P̃2.

Proof. The proof of Lemma 3.6.1 follows directly from the Fourier–Motzkin elimination

algorithm, but a formal presentation is tedious and technical. Instead we provide the

following example. Suppose we have inequalities 0 < −
∑m

i=2 aixi + x1 ∈ P1, 0 <∑m
i=2 bixi − x1 ∈ P1, then we must have equations 0 = −

∑m
i=2 aixi + x1 ∈ P2, 0 =∑m

i=2 bixi−x1 ∈ P2. By using the FME algorithm we have inequality
∑m

i=2(bi−ai)xi >

0 ∈ P̃1 and equation
∑m

i=2(bi − ai)xi = 0 ∈ P̃1 or
∑m

i=2(ai − bi)xi = 0 ∈ P̃1.

From Lemma 3.6.1 above we have the following propositions

Proposition 3.6.2. Consider polyhedra of the form

C(ε) = {x ∈ Rm|A · x = v0 + εv1, B · x > v2 + εv3}.

where A ∈ Rd1×m, B ∈ Rd2×m, v0, v1 ∈ Rd1 , v2, v3 ∈ Rd2, x = (x1, . . . , xm) ∈ Rm and

ε ∈ R. Then, there exists an ε′ > 0 with the following properties.

1. If C(ε0) 6= ∅ for some ε0 ∈ (0, ε′), then C(ε) 6= ∅ for any ε ∈ (0, ε′).



73

2. This ε′ is only dependent on the combined matrix

A v0 v1

B v2 v3

 and is indepen-

dent of the row partition with respect to inequality or equality.

Proof. Consider inequation systems P1 = {A · x = v0 + εv1, B · x > v2 + εv3} and

P2 = {A · x = v0 + εv1, B · x = v2 + εv3} over variables x′ = (x, ε). After applying

Fourier elimination to (x1, . . . , xm), we end at reduced inequation systems over variable

ε as P̃1 = {aiε−bi < 0 or aiε−bi = 0}i∈I1 and P̃2 = {aiε−bi = 0}i∈I2 such that I1 ⊂ I2

by Lemma 3.6.1. Take ε′ = min
ai 6=0,

bi
ai
>0,i∈I2

bi
ai

and if {i ∈ I2|ai 6= 0, biai > 0} = ∅, take

ε′ = ∞. If there is a 0 < ε0 < ε′ such that C(ε0) 6= ∅, P̃1 can only contain inequality

either bi
ai
< ε, if bi

ai
< 0 or ε < bi

ai
, if bi

ai
> 0 for some i ∈ I1. If bi

ai
> 0 we must have

ε0 < ε′ ≤ bi
ai

from the definition of ε′. So for any ε′′ ∈ (0, ε′), we have C(ε′′) 6= ∅. From

the definition of P2, it is easy to see P2 is the collection of the row equations of the

matrix equation A v0 v1

B v2 v3

 ·

x

−1

−ε

 = 0

over variables (x, ε). It is a direct result of application of FME algorithm to the equation

system P2 such that P̃2 is only dependent on the coefficient matrix

A v0 v1

B v2 v3

. In

another word, the ε′ derived from P̃2 is only dependent on the coefficient matrix or the

combined matrix.

The following is a similar proposition with parameters d, ε

Proposition 3.6.3. Consider a polyhedron

C(ε, d) = {x ∈ Rm|A · x = v0 + εv1 + du0, B · x > v2 + εv3 + du1}.

where A ∈ Rd1×m, B ∈ Rd2×m, v0, v1, u0 ∈ Rd1 , v2, v3, u1 ∈ Rd2, x = (x1, . . . , xm) ∈ Rm

and ε, d ∈ R. Then, there exists an ε′, d′ > 0 with the following properties.

1. If C(ε0, d0) 6= ∅ for some ε0 ∈ (0, ε′), d0 ∈ (d′,∞), then C(ε, d) 6= ∅ for any
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ε ∈ (0, ε′), d ∈ (d′,∞).

2. This ε′, d′ is only dependent on the combined matrix

A v0 v1 u0

B v2 v3 u1

 and is

independent of the row partition with respect to inequality or equality.

Proof. The details are left to the reader as the argument is the same as the proof of

Proposition 3.6.2, we only show how to compute ε′, d′. Consider inequation system

P = {A ·x = v0 + εv1 +diu0, B ·x = v2 + εv3 +diu1} over variable (x, d, ε). Suppose the

system after eliminating variables x and (x, d) are inequations systems P1 = {cidi =

aiεi + bi}i∈I1 and P2 = {aiε = bi}i∈I2 respectively. Then ε′ = min
ai 6=0,

bi
ai
>0,i∈I2

bi
ai

and

d′ = maxci 6=0,i∈I1, |
ai
ci
|ε′ + | bici |. If {i ∈ I2|ai 6= 0, biai > 0} = ∅, take ε′ = ∞ and if

{i ∈ I1|ci 6= 0} = ∅ take d′ = 0.

GivenB′ ⊂ B∗(n;nO) we define chain complex of X̃(n;nO),ε,d(B′) as C•(X̃(n;nO),ε,d(B′))

and any cε,d ∈ C•(X̃(n;nO),ε,d(B′)) can be identified as a nonempty polyhedron, or ex-

plicitly identify cε,d = {x ∈ Rm|A ·x = v0 +εv1 +du0, B ·x > v2 +εv3 +du1}. It is direct

that cε,d 6= ∅ and the combined matrix

A v0 v1 u0

B v2 v3 u1

 is only dependent on node

type (n;nO) from the definition of X̃(n;nO),ε,d . The dimension and adjacency of cells in

the chain complex C•(X̃(n;nO),ε,d(B′)) are completely determined by the defining equa-

tions of their corresponding polyhedron. Observe the emptiness of the polyhedron cε,d

can vary with different ε, d. For some ε, d, cε,d = ∅, for others cε,d 6= ∅. However, Propo-

sitions 3.6.2 and 3.6.3 show that for each node type (n;nO) there is ε(n;nO), d(n;nO) such

that if 0 < ε1, ε2 < ε(n;nO) and 0 < d(n;nO) < d1, d2, given any cε1,d1 ∈ C•(X̃(n;nO),ε1,d1),

we have cε2,d2 6= ∅ and cε2,d2 ∈ C•(X̃(n;nO),ε2,d2). This observation can induce a chain

isomorphism and a homeomorphism in the following sections.

3.6.2 Maps

From definition X̃(n;nO),ε,d , We have the following theorem over the cell complex

Theorem 3.6.1. Given node type (n;nO) and B′ ⊂ B∗(n;nO), there is ε(n;nO) >

0, d(n;nO) > 0 such that for any 0 < ε1, ε2 < ε(n;nO), d1, d2 > d(n;nO), there is a well
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defined homomorphism

f : C•(X̃(n;nO),ε1,d1(B′))→ C•(X̃(n;nO),ε2,d2(B′))

s.t. f(
∑
i

aic
i
ε1,d1) =

∑
i

aic
i
ε2,d2 .

Moreover, f is an chain isomorphism over coefficients field Z2, i.e. ai ∈ Z2.

Proof. From the definition of the cell complex in X̃(n;nO),ε,d , we know

cε,d = {x ∈ Rm|A · x = v0 + εv1 + du0, B · x > v2 + εv3 + du1}

where A ∈ Rd1×m, B ∈ Rd2×m, v0, v1, u0 ∈ Rd1 , v2, v3, u1 ∈ Rd2 , x = (x1, . . . , xm) ∈ Rm

and ε, d ∈ R, and the matrix

A v0 v1 u0

B v2 v3 u1

 is only dependent on the Q(n;nO),

Z(n;nO)(ε, d) , D(n;nO)(ε, d) and ε(n;nO), d(n;nO), i.e. only dependent on node type

(n;nO). Then by using proposition 3.6.3, there are 0 < ε(n;nO), d(n;nO) only depen-

dent on node type such that if 0 < ε1, ε2 < ε(n;nO), d(n;nO) < d1, d2 then

cε1,d1 ∈ C•(X̃(n;nO),ε1,d1(B′)) if and only if cε2,d2 ∈ C•(X̃(n;nO),ε2,d2(B′)),

or equivalently cε1,d1 6= ∅ if and only if cε2,d2 6= ∅. We also have

dim cε1,d1 = dim cε2,d2 = dim kerA.

Moreover, suppose c′ε1,d1 = {x ∈ Rm|A′ · x = v′0 + εv′1 + d′u0, B
′ · x > v′2 + εv′3 + d′u1} ∈

C•(X̃(n;nO),ε1,d1(B′)) then c′ε1,d1 ≺ cε1,d1 if and only if the inclusion of equation system

holds, i.e. {A · x = v0 + εv1 + du0} ⊂ {A′ · x = v′0 + εv′1 + du′0} over variables of x, ε, d.

In another word, c′ε1,d1 ≺ cε1,d1 if and only if c′ε2,d2 ≺ cε2,d2 . So we have f defined by

f : C•(X̃(n;nO),ε1,d1(B′))→ C•(X̃(n;nO),ε2,d2(B′))

s.t. f(
∑
i

aic
i
ε1,d1) =

∑
i

aic
i
ε2,d2 .
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is a chain isomorphism. In the following, we will only discuss homology group under

coefficient field Z2.

It is worth noting that even though the above variant of FME can compute ε(n;nO), d(n;nO),

the complexity of the algorithm is doubly exponential i.e. m2n , where m,n are the row

and column number of the combined matrix. We do not know if it is possible to im-

prove on these complexity bounds. The following theorem leads to strict candidates

for ε(n;nO), d(n;nO) which depends on m, n, but the value for ε(n;nO) rapidly becomes

unreasonably small.

Theorem 3.6.2. Consider the combined matrix, denote as D, given in proposition

3.6.3, suppose the first k columns of D has ||D(:, : k)||L∞ ≤ a and the rest columns

has ||D(:, k :)||L∞ ≤ b and Di,j ∈ Z. After eliminating the k variables corresponding to

the first k columns of D and the remaining inequaitons system is expressed by a matrix

denoted Dk and Dk
i,j ∈ Z , then we have ||Dk||L∞ ≤ 22k−1a2kb.

Proof. Suppose we have v1 · (x2, . . . , xm) − a1x1 < 0, v2 · (x2, . . . , xm) − a2x1 > 0

in the inequation system defining C(ε, d) for some v1, v2 ∈ Zm−1 and the coefficients

a1, a2 ∈ Z+. From Fourier elimination, the induced inequation over x−1 is given by

a2v1(x2, . . . , xm)−a1v2(x2, . . . , xm) < 0. It is direct to see the coefficients of a2p1(x−1)−

a1p2(x−1) are bounded by 2a2 and are integers which shows ||D1(:, : k − 1)||L∞ ≤ 2a2

and ||D1(:, k − 1 :)||L∞ ≤ 2a2b. Apply this formula k times, we get the bound for

Dk.

Remark 3.6.3. In this paper or all the computation in section 3.8, we use FME algorithm

to compute the ε(n;nO) and d(n;nO) directly. However, the strict bound given by Theorem

3.6.2, will be useful in the future application when deal with more complicated nodes

in network [24].

From Proposition 3.6.3 and Theorem 3.6.2, given node i with an interaction type of

ni inputs, mi outputs, we can choose any ε(n;nO) ≤ 1

22
2ni+mi

, d(n;nO) ≥ mi where mi is

the number of out edges and as we always have the coefficient of D to be −1, 0, 1 for

variables l, δ or xj,αj and bounded by m for ε, d.
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Before moving on, we need one more theorem demonstrating homotopic equivalence.

Theorem 3.6.4. Given node type (n;nO), B′ ⊂ B∗(n;nO) and the ε(n;nO), d(n;nO)

chosen in Theorem 3.6.1. Suppose 0 < ε2 < ε1 < ε(n;nO), d2 > d1 > d(n;nO), then there

is a homeomorphism

f̌ : X̃(n;nO),ε1,d1(B′)→ X̃(n;nO),ε2,d2(B′)

such the set inclusion map

ic : X̃(n;nO),ε1,d1(B′)→ X̃(n;nO),ε2,d2(B′)

are homotopic equivalent.

Proof. The f̌ is constructive. Suppose the set of 0-cells in C•(X̃(n;nO),ε1,d1)(B′)) is

given by {c1
ε1,d1

, . . . , cnε1,d1}. From the definition of cells C•(X̃(n;nO),ε1,d1(B′)), we know

the coordinates of ckε1,d1 can be identified as linear functions cε,d evaluated at ε1, d1.

From theorem 3.6.1, {c1
ε2,d2

, . . . , cnε2,d2} is the set of 0-cells of X̃(n;nO),ε2,d2(B′). Further-

more by the linearity of coordinates for those 0-cells, we have tckε1,d1 + (1 − t)ckε2,d2 =

cktε1+(1−t)ε2,td1+(1−t)d2 , t ∈ [0, 1]. For convenience we denote

εt = tε1 + (1− t)ε2, dt = d1 + (1− t)d2.

Now we assume that X̃(n;nO),ε1,d1(B′) and X̃(n;nO),ε2,d2(B′) are both simiplicial com-

plex. We can construct a homotopic map

F̌ : X̃(n;nO),ε1,d1(B′)× [0, 1]→ X̃(n;nO),ε2,d2(B′(B′))

by using the fact each point in X̃(n;nO),ε,d is an unique convex combination of the vertex

of the face that the point resides. More precisely, define

F̌ (t, x) =
∑

αk((1− t)ckε1,d1 + tckε2,d2

=
∑

αkc
k
εt,dt

(3.39)
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for any x =
∑

k∈K αkc
k
ε1,d1

∈ X̃(n;nO),ε1,d1(B′) where x in in the relative interior of

the simplex spanned by {ckε1,d1}k∈K . Observe this map is well defined and continuous.

Moreover

F̌ (x, 0) = ic,

i.e. the set inclusion map from X̃(n;nO),ε1,d1(B′) to X̃(n;nO),ε2,d2(B′). Define

f̌ = F̌ (x, 1) (3.40)

which is a homoemorphism , actually a homeomorphic simplicial isomorphism, from

construction above and

F̌ (x, t) ⊂ X̃(n;nO),εt,dt(B
′) ⊂ X̃(n;nO),ε2,d2(B′).

If the complex is not simplicial, then we consider its barycentric subdivision over each

cells which are convex polytope and denote the resulting barycentric subdivision as

sub X̃(n;nO),ε1,d1(B′) and sub X̃(n;nO),ε2,d2(B′) . As the barycentric subdivision is only

dependent on adjacency and dimension of cells, from Theorem 3.6.1, we know the

0-cells, denote as p0
ε1,d1

, . . . , pmε1,d1 , in sub X̃(n;nO),ε1,d1(B′) are linear combination of

c1
ε1,d1

, . . . , cnε1,d1 and again piε1,d1 can be identified as a linear function piε,d evaluated at

ε1, d1. By barycentric subdivision and Theorem 3.6.1, we know p0
ε2,d2

, . . . , pmε2,d2 is the

set of 0-cells for sub X̃(n;nO),ε2,d2(B′) and {p0
ε1,d1
}k∈K spans a cell in sub X̃(n;nO),ε1,d1(B′)

if and only if {pkε2,d2}k∈K spans a cell in sub X̃(n;nO),ε2,d2(B′). Then we can prove the

same result for simplicial complex sub X̃(n;nO),ε1,d1(B′) and sub X̃(n;nO),ε2,d2(B′).

3.7 Results for the network

In this section we will prove theorems for the network parameter space based the facts

of factor parameter space for each node that we built in all previous sections. In order

to move forward, we suppose the network have N nodes and each of them is of node

type (n;nO)i.
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For B′ ⊂ B∗nw define

Υnw(B′) = Υ̃nw(B′) ∩
N∏
i=1

Z(ni;nO,i)

X̃nw({b′}) =

N∏
i=1

X̃(ni;nO,i)({b
′
i}) s.t. b′ = (b′i)

N
i=1 ∈ B∗nw

X̃nw(B′) =
⋃
b′∈B′

X̃nw({b′})

X̃nw,ε,d(B′) = X̃nw(B′) ∩
N∏
i=1

D(ni;nO,i),εi,di

such that ε = (ε1, . . . , εN ) > 0, d = (d1, . . . , dN ) > 0

(3.41)

In order to move on we need three useful Lemmas

Lemma 3.7.1. Consider topological spaces
∏N
i=1Xi,j ⊂

∏N
i=1 Si and

∏N
i=1X

′
i,j ⊂∏N

i=1 S
′
i where j = 1, . . . ,K. Assume that there are maps fi : Si → S′i, gi : S′i → Si,

Fi : Si × [0, 1]→ Si, and Gi : S′i × [0, 1]→ S′i that satisfy the following properties:

Img fi|Xi,j ⊂ X ′i,j

Img gi|X′i,j ⊂ Xi,j

ImgFi(·, ·)|Xi,j×[0,1] ⊂ Xi,j

Fi(·, 0)|Xi,j = idXi,j

F (·, 1)|Xi,j = gi|X′i,j ◦ fi|Xi,j

ImgGi(·, ·)|X′i,j×[0,1] ⊂ X ′i,j

Gi(·, 0)|X′i,j = idX′i,j

Gi(·, 1)|X′i,j = fi|Xi,j ◦ gi|X′i,j

for any i ∈ {1, . . . , N} and j ∈ {1, . . . ,K}. Then,

K⋃
j=1

N∏
i=1

Xi,j and
K⋃
j=1

N∏
i=1

X ′i,j

are homotopy equivalent.
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Proof. For convenience we denote Xj =
∏N
i=1Xi,j , X

′
j =

∏N
i=1X

′
i,j , X =

⋃K
j=1Xj , and

X ′ =
⋃K
j=1X

′
j . Define f =

∏N
i=1 fi, g =

∏N
i=1 gi, F (·, t) =

∏N
i=1 Fi(·, t), and G(·, t) =∏N

i=1Gi(·, t). We will show that for the maps f |X and g|X′ , g|X′ ◦ f |X is homotopic to

idX and f |X◦g|X′ is homotopic to idY . From the hypothesis we know that Img fX ⊂ X ′,

and Img gX′ ⊂ X, so f |X , g|X′ , and g|X′ ◦ f |X are well defined. Similarly, we have

ImgF |I×X = ∪j ImgF |Xj×[0,1] ⊂ ∪jXj = X and F |X×[0,1] is a homotopy between idX

and g|X′ ◦ f |X . Symmetrically, ImgG|X′×[0,1] = ∪j ImgG|X′j×[0,1] ⊂ ∪jX ′j = X ′ and

G|X′×[0,1] is a homotopy between idX′ and f |X ◦ g|X′ . These show that X and X ′ are

homotopic equivalent.

Lemma 3.7.2. Consider topological spaces
∏N
i=1Xi,j, j = 1, . . . ,K,

∏N
i=1 Zi,

∏N
i=1Xi,j ⊂∏N

i=1 Si and
∏N
i=1 Zi ⊂

∏N
i=1 Si. Assume there are maps Fi : Si×[0, 1]→ Si that satisfy

the following properties:

ImgFi|Xi,j×[0,1] ⊂ Xi,j

Fi(·, 0)|Xi,j = idXi,j

ImgFi(·, 1)|Xi,j ⊂ Xi,j ∩ Zi

Fi(·, t)|Xi,j∩Zi = idXi,j∩Zi

for any i ∈ {1, . . . , N} and j ∈ {1, . . . ,K}. Then (∪j
∏N
i=1Xi,j) ∩

∏N
i=1 Zi is a strong

deformation retraction of ∪j
∏N
i=1Xi,j.

Proof. We prove it directly from the definition. Define F (·, t) =
∏N
i=1 Fi(·, t) and denote

X = ∪j
∏N
i=1Xi,j , Z =

∏N
i=1 Zi. Then from the definition we have ImgF |I×X ⊂ X,

F (·, 0)|X = idX , ImgF (·, 1)|X ⊂ X ∩Z and F (·, t)|X∩Z = idX∩Z . So X ∩Z is a strong

deformation retraction of X.

Lemma 3.7.3. Consider topological spaces
∏N
i=1Xi,j,

∏N
i=1X

′
i,j, j = 1, . . . ,K,

∏N
i=1 Si,∏N

i=1 S
′
i and

∏N
i=1Xi,j ⊂

∏N
i=1 Si,

∏N
i=1X

′
i,j ⊂

∏N
i=1 S

′
i. Assume there are maps
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fi : Si → S′i, gi : Si → S′i, Fi : Si × [0, 1] → S′i that satisfy the following proper-

ties:

Img fi|Xi,j ⊂ X ′i,j

Img gi|Xi,j ⊂ X ′i,j

ImgFi(·, ·)|Xi,j×[0,1] ⊂ X ′i,j

Fi(·, 0)|Xi,j = fXi,j

F (·, 1)|Xi,j = gi|Xi,j

for any i ∈ {1, . . . , N}, j ∈ {1, . . . ,K}. In another word, Fi|Xi,j is the homotopy

between fi|Xi,j , gi|Xi,j . Define

f =

N∏
i=1

fi

g =

N∏
i=1

gi

F (·, t) =
N∏
i=1

Fi(·, t).

Then F |X×[0,1] is a homotopy between f |X , g|X where X = ∪Kj=1

∏N
i=1Xi,j.

Proof. Direct from definition, details are left to readers.

3.7.1 Equivalence

In this section we show the node type (n;nO) = ((1, . . . , 1);nO) can be replaced by

node type (n;nO) = ((n);nO) in the study of homology by the the following Theorem.

Theorem 3.7.1. Given two networks nw1, nw2 with node type ((ni;nO,i))
N
i=1 and ((ni;nO,i)

′)Ni=1

such that

(ni;nO,i) = (ni;nO,i)
′, if (ni;nO,i) 6= ((1, . . . , 1);nO)

(ni;nO,i)
′ = ((n);nO), if (ni;nO,i) = ((1, . . . , 1);nO)
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It easy to see B∗nw1
= B∗nw2

. For any B′ ⊂ B∗nw1
= B∗nw2

, Υ̃nw1(B′) and Υ̃nw2(B′) are

homtopic equivalent.

Proof. The proof is a simple application of Lemma 3.7.1. For convenience, denote

B′ = {b′k}Kk=1 and b′k = (b′i,k)
N
i=1. Define

Xi,j = Υ̃(ni;nO,i)({bi,j});X
′
i,j = Υ̃(ni;nO,i)′({bi,j})

Si = S′i = (0,∞)1+2ni+nO,i

fi =


id

(0,∞)
1+2ni+nO,i , (ni;nO,i) 6= ((1, . . . , 1);nO,i)

f̄ , (ni;nO,i) = ((1, . . . , 1);nO,i)

gi =


id

(0,∞)
1+2ni+nO,i , (ni;nO,i) 6= ((1, . . . , 1);nO,i)

ḡ, (ni;nO,i) = ((1, . . . , 1);nO,i)

Fi(·, t) =


id

(0,∞)
1+2ni+nO,i , (ni;nO,i) 6= ((1, . . . , 1);nO,i)

F̄ (·, t), (ni;nO,i) = ((1, . . . , 1);nO,i)

Gi(·, t) =


id

(0,∞)
1+2ni+nO,i , (ni;nO,i) 6= ((1, . . . , 1);nO,i)

Ḡ(·, t), (ni;nO,i) = ((1, . . . , 1);nO,i)

where ni is the number of inputs of node i or the sum of vector ni and the f̄ , ḡ, F̄ , Ḡ
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are defined as

f̄ : (0,∞)1+2ni+nO,i → (0,∞)1+2ni+nO,i

s.t. f̄ = log ◦G1(F (·, 1), 1)

ḡ : (0,∞)1+2ni+nO,i → (0,∞)1+2ni+nO,i

s.t. ḡ = exp ◦G2(F (·, 1), 1)

F̄ : (0,∞)1+2ni+nO,i × [0, 1]→ (0,∞)1+2ni+nO,i

F̄ (·, t) =


G1(F (·, 2t), 0), t ∈ [0, 1

2 ]

G1(F (·, 1), 2t− 1) t ∈ [1
2 , 1]

Ḡ : (0,∞)1+2ni+nO,i × [0, 1]→ (0,∞)1+2ni+nO,i

Ḡ(·, t) =


G2(F (·, 2t), 0), t ∈ [0, 1

2 ]

G2(F (·, 1), 2t− 1) t ∈ [1
2 , 1]

(3.42)

where F,G1, G2, log are defined in Theorem 3.3.1 by (3.25, 3.26, 3.27, 3.28). By us-

ing Theorem 3.3.1 and Lemma 3.7.1, we have Υ̃nw1(B′) and Υ̃nw2(B′) are homtopic

equivalent.

From Theorem 3.7.1, we can assume the network only has node type (n;nO) =

((n);nO) and ((2, 1, . . . , 1);nO) in the following discussion.

3.7.2 Retraction set

In this section we show, given a network nw and B′ ⊂ B∗nw, Υnw(B′) is a strong

deformation retraction of Υ̃(B′). The proof is based on Lemma 3.7.2

Theorem 3.7.2. Given network nw and B′ ⊂ B∗nw, Υnw(B′) is a strong deformation

retraction of Υ̃nw(B′). Hence homotopic equivalent.

Proof. The proof is a simple application of Lemma 3.7.2. For convenience, denote
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B′ = {b′k}Kk=1 and b′k = (b′i,k)
N
i=1. Define

Xi,j = Υ̃(ni;nO,i)({bi,j});Zi,j = Υ(ni;nO,i)′({bi,j})

Si = (0,∞)1+2ni+nO,i

Fi(·, t) =


(3.31), (ni;nO,i) = ((n);nO)

(3.33), (ni;nO,i) = ((2, 1, . . . , 1);nO)

where ni is the number of inputs of node i or the sum of vector ni. By using Propositions

3.3.1, 3.3.2 and Lemma 3.7.2, we have Υnw(B′) is a strong deformation retraction of

Υ̃nw(B′), hence homotopic equivalent.

3.7.3 Linearized space

In this section we show, given a network nw and B′ ⊂ B∗nw, Υnw(B′) and X̃nw(B′) are

homotopic equivalent. The proof is based on Lemma 3.7.2.

Theorem 3.7.3. Given network nw and B′ ⊂ B∗nw, Υnw(B′) and X̃nw(B′) are homo-

topic equivalent.

Proof. The proof is a simple application of Lemma 3.7.1. For convenience, denote
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B′ = {b′k}Kk=1 and b′k = (b′i,k)
N
i=1. Define

Xi,j = Υ(ni;nO,i)({b
′
i,j});X ′i,j = X̃(ni;nO,i)({b

′
i,j})

Si = (0,∞)1+2ni+nO,i

S′i =


(0,∞)1+2ni+nO,i , (ni;nO,i) 6= ((1, . . . , 1);nO,i)

(−∞,∞)1+2ni+nO,i , (ni;nO,i) = ((2, 1, . . . , 1);nO,i)

fi =


id

(0,∞)
1+2ni+nO,i , (ni;nO,i) 6= ((2, 1, . . . , 1);nO,i)

f̃ , (ni;nO,i) = ((2, 1, . . . , 1);nO,i)

gi =


id

(0,∞)
1+2ni+nO,i , (ni;nO,i) 6= ((2, 1, . . . , 1);nO,i)

g̃, (ni;nO,i) = ((2, 1, . . . , 1);nO,i)

Fi(·, t) =


id

(0,∞)
1+2ni+nO,i , (ni;nO,i) 6= ((2, 1, . . . , 1);nO,i)

F̃ (·, t), (ni;nO,i) = ((2, 1, . . . , 1);nO,i)

Gi(·, t) =


id

(0,∞)
1+2ni+nO,i , (ni;nO,i) 6= ((2, 1, . . . , 1);nO,i)

G̃(·, t), (ni;nO,i) = ((2, 1, . . . , 1);nO,i)

where ni is the number of inputs of node i or the sum of vector ni and the f̃ , g̃, F̃ , G̃

are defined in Theorem 3.4.2 by (3.35, 3.36, 3.37, 3.38). By Theorem 3.4.2 and Lemma

3.7.1, we have Υnw(B′) and X̃nw(B′) are homotopic equivalent.

3.7.4 Bounded space

In this section we proof X̃nw,ε1,δ1(B′) and X̃nw,ε2,δ2(B′) are homotopic equivalent under

set inclusion map with appropriately chosen ε1, d1, ε2, d2, where ε1 = (ε1,1, . . . , ε1,N ),

d1 = (d1,1, . . . , d1,N ) and ε2 = (ε2,1, . . . , ε2,N ), d2 = (d2,1, . . . , d2,N ). For network nw

with N nodes, define

εnw = (ε(ni;nO,i))
N
i=1

dnw = (d(ni;nO,i))
N
i=1.

(3.43)
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Theorem 3.7.4. Given network nw, B′ ⊂ B∗nw and εnw > ε1 > ε2 > 0 and d2 > d1 >

dnw > 0. Then there exits a homeomorphism

f : X̃nw,ε1,δ1(B′)→ X̃nw,ε2,δ2(B′)

suhc that f is homotopic to the set inclusion map

ic : X̃nw,ε1,δ1(B′)→ X̃nw,ε2,δ2(B′)

Proof. The proof is a simple application of Lemma 3.7.3. For convenience, denote

B′ = {b′k}Kk=1 and b′k = (b′i,k)
N
i=1. Define

Xi,j = X̃(ni;nO,i),ε1,i,d1,i({bi,j});X
′
i,j = X̃(ni;nO,i),ε2,i,d2,i({bi,j});

Si =


(0,∞)1+2ni+nO,i , (ni;nO,i) 6= ((2, 1, . . . , 1);nO,i)

(−∞,∞)1+2ni+nO,i , (ni;nO,i) = ((2, 1, . . . , 1);nO,i)

fi = f̌

Fi(·, t) = F̌

where ni is the number of inputs of node i or the sum of vector ni and the f̌ , F̌ are

defined in Theorem 3.6.4 by (3.39, 3.40). Define f =
∏N
i=1. By Theorem 3.6.4 and

Lemma 3.7.3, we have f is a homeorphism, f and ic are homotopic equivalent.

3.7.5 Homology group identification

Theorem 3.7.5. For a given network nw, B′ ⊂ B∗nw, 0 < ε1 < εnw and 0 < dnw < d1,

take icε1,d1 : X̃nw,ε1,d1(B′)→ X̃nw(B′) be the set inclusion map. Then the induced map

icε1,d1,∗ : Hom•(X̃nw,ε1,d1(B′)) → Hom•(X̃nw(B′)) is an isomorphism over the singular

homology groups.

Proof. First we show it is a surjection. Suppose a cycle c ∈ Zk(X̃nw(B′)), then from

Proposition 3.5.1 , we know there are ε2, d2 > 0 such that ε2 < ε1 and d2 > d1 and
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c ∈ Zk(X̃nw,ε2,d2(B′)). From Theorem 3.7.4 and define the set inclusion map

icε′1,d′1,ε′2,d′2 : X̃nw,ε′1,d′1,(B
′))→ X̃nw,ε′2,d′2(B′)(B′)),

we have the induced homomorphism between chain groups

icε′1,d′1,ε′2,d′2,∗ : Homk(X̃nw,ε1,d1(B′)))→ Homk(X̃nw,ε2,d2(B′)))

is an isomorphism. It easy to see

icε2,d2,∗ ◦ icε1,d1,ε2,d2,∗ = icε1,d1,∗.

So we have c′ = ic−1
ε1,d1,ε2,d2

(c) ∈ Homk(X̃nw,ε1,d1(B′)) such that icε1,d1,∗(c
′) = c ∈

Homk(X̃nw(B′)).

Next we show it is an injection. Suppose icε1,d1,∗(c) = 0 for some c ∈ Zk(X̃nw,ε1,d1(B′)),

then there is b ∈ Ck+1(X̃nw(B′)) such that ∂b = c. From Proposition 3.5.1, we know

there are ε2, d2 > 0 such that 0 < ε2 < ε1 and d2 > d1 > 0 and b ∈ Ck+1(X̃nw,ε2,d2(B′))

or equivalently we have c = 0 ∈ Homk(X̃ (B′, ε′2, d
′
2)). However iε′1,d′1,ε′2,d′2,∗(c) = c = 0 ∈

Homk(X̃nw,ε2,d2(B′)) is an isomorphism, so we have c = 0 ∈ Homk(X̃nw,ε1,d1(B′)).

3.8 Applications

From Theorem 3.7.5, for each node of type (n;nO) in a network, we can choose

0 < ε′(n;nO) < ε(n;nO), d(n;nO) < d′(n;nO) such that X̃(n;nO),ε′,d′(B
′), B′ ⊂ B∗(n;nO),

is constant under isomorphism as a chain complex. For simplification, we can de-

note X̃(n;nO),ε′,d′, as X(n;nO) if we have already computed the complex with some fixed

ε′(n;nO), d
′
(n;nO) under above restrictions. Then we can construct the chain complex

X̃nw,ε′,d′ from X̃(n;nO) as in (3.41) and also for simplification we deonte it as X̃nw. In

all examples of this section, we get In all the examples of this section, we have used

FME to compute εnw and found the choice ε′ = 1
1000 ≤ ε(ni,nO,i), d

′ = 10 ≥ d(ni,nO,i) is

appropriate for each node type in all those networks. In another word we can choose

ε′ = ( 1
1000)Ni=1, d′ = (10)Ni=1 in all the following examples in constructing the chain
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complex Xε′,d′,nw, or equivalently Xnw.

3.8.1 Toggle switch

In the case of the toggle switch the DSGRN database indicates that the only parameter

node at which the Morse graph indicates bistability is node 5. As all the defining

inequalities of node 5 is linear when γi = 1, the set of parameter values at which

DSGRN reports bistability is a contractible subset of (0,∞)8.

For all nodes complementary to node 5 the DSGRN database reports monostability.

Then B′ denote this set of these nodes. Using SageMath 8.5 ChainComplex function,

we determine that

Homk(Xnw(B′)) ∼=


Z2 if k = 0, 1

0 otherwise.

.

3.8.2 Repressilator

In the case of the repressilator the DSGRN database indicates that the only parameter

node at which the Morse graph indicates oscillation is node 13. As all the defining

inequalities of node 13 is linear when γi = 1, the set of parameter values at which

DSGRN reports no oscillation is a contractible subset of (0,∞)12.

For all nodes complementary to node 13 the DSGRN database reports oscillation.

Then B′ denote this set of these nodes. Using SageMath 8.5 ChainComplex function,

we determine that

Homk(Xnw(B′)) ∼=


Z2 if k = 0, 2

0 otherwise.

3.8.3 Hysteresis of three nodes

In DSGRN, for a three nodes network, with nodes x0, x1, x2, we can study the topology

of the parameter regions, associated to the dynamics of x1, x2, which enables hysteresis

path in the dynamics of x0. Suppose the total number of parameter regions in x1, x2
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Figure 3.3: Regulatory network for top ranked hysteresis.

X (0) X (1) X (2) X (3) X (4) X (5) X (6) X (7)

120 490 889 919 579 220 46 4

Table 3.2: Cell information of X̃ (B′, ε, d) over the x1, x2 parameter regions for network
in Figure 3.3

parameter spaces is N and the number of selected parameter regions in x1, x2 param-

eter space, which can generate hysteresis in x0, is N1, we will call N1
N as the hysteresis

robustness index. In all three nodes networks, we select one of the highest ranked net-

work, Figure 3.3, with respect to the hysteresis index. Then we study those parameter

regions of x1, x2 that can generate hysteresis in x0 dynamics for the network. The

corresponding hysteresis generating parameter regions over x1, x2 is given by DSGRN

and we compute the homology group of the region as

Homk(Xnw(B′)) ∼=


Z2 if k = 0

0 otherwise.

The cell information of Xnw(B′) is given in Table 3.2.

All the code is given in DSGRN parameter region homology repository or url:

https://github.com/lunzhang1990/parameterHomology

3.9 Methods

We created a database and a pipeline to compute homology. First we compute the

database of the face lattice for X̃(n;nO),ε′,d′(B
∗(n;nO)) of some selected node types

https://github.com/lunzhang1990/parameterHomology
https://github.com/lunzhang1990/parameterHomology
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(n;nO) with fixed ε′, d′ such that 0 < ε′ < ε′(n;nO), 0 < d(n;nO) < d′ . This database

includes all the information, like chain groups and incidence number, of the cellular

complex X̃(n;nO),ε′,d′(B
∗(n;nO)) over Z2. As from Theorem 3.6.4, we know the these

the computation results are independent of the ε′, d′, i.e. the cellular complexes are

isormophic with each other, we denote the database as X̃(n;nO) for simplification. We

created a pipeline to compute homology. The pipeline takes DSGRN representing string

of a network nw and some B′ ⊂ B∗nw as input, uses the database to build up the face

lattice or cellular complex over Z2 of X̃nw(B), computes the homology of X̃nw(B). All

the codes are developed under Python 3.x and SageMath 8.5 and are given in DSGRN

parameter region homology repository or url: https://github.com/lunzhang1990/

parameterHomology.

https://github.com/lunzhang1990/parameterHomology
https://github.com/lunzhang1990/parameterHomology
https://github.com/lunzhang1990/parameterHomology
https://github.com/lunzhang1990/parameterHomology
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