
ORDER-REVEALING ENCRYPTION: NEW
CONSTRUCTIONS AND BARRIERS

by

CONG ZHANG

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

David Cash and Rebecca Wright

And approved by

New Brunswick, New Jersey

October, 2020

ABSTRACT OF THE DISSERTATION

Order-Revealing Encryption: New Constructions and

Barriers

By Cong Zhang

Dissertation Director:

David Cash and Rebecca Wright

An order-revealing encryption (ORE) is a symmetric encryption scheme that gives

a public procedure by which two ciphertexts can be compared to reveal the order of

their underlying plaintexts. ORE is a very popular primitive for outsourcing databases

and has seen deployments in products and usage in applied research, as it allows for

efficiently performing range queries over encrypted data. However, a series of works,

starting with Naveed et al. (CCS 2015), have shown that when the adversary has a

good estimate of the distribution of the data, ORE provides little protection.

In this dissertation, we present our works on order-revealing encryption, which in-

clude novel security notions, new constructions, and barriers. First we consider the

best-possible security notion for ORE (ideal ORE), which means that, given the ci-

phertexts, only the order is revealed — anything else, such as the distance between

plaintexts, is hidden. Despite the fact that this notion provides the best security for

ORE, the only known constructions of ideal ORE are based on cryptographic multilin-

ear maps and are currently too impractical for real-world applications. In this work,

ii

we give evidence that building ideal ORE from weaker tools is hard. Essentially, we

show black-box separations between ideal ORE and most symmetric-key primitives,

as well as public key encryption and anything else implied by generic group model in

a black-box way. This result tells us that any construction of ORE must either (1)

achieve weaker notions of security, (2) be based on more complicated cryptographic

tools, or (3) require non-black-box techniques thus it suggests that any ORE achieving

ideal security will likely be at least somewhat inefficient.

Then we propose a new meaningful security notion— parameter-hiding. In our

definition, we consider the case that the database entries are drawn identically and

independently from the distribution of known shape, but for which the mean and vari-

ance are not (and thus the attacks of Naveed et al. do not apply). We say an ORE

is parameter-hiding, if for any probabilistic and polynomial-time adversary, given any

sequence (polynomial-size) of ciphertexts, the mean and variance of the message dis-

tribution are hidden. Based on this notion, we build the corresponding construction of

ORE that satisfying it from bi-linear maps.

Next, we study a particular case of ORE, which is called order-preserving encryption.

OPE schemes are the subset of ORE schemes for which the ciphertexts themselves are

numerical values which can be compared naturally. For OPE, we study its ciphertext

length under the security notion proposed by Chenette et al. for OPE (FSE 2016); their

notion says that the comparison of two ciphertexts should only leak the index of the

most significant bit on which they differ (MSDB-secure). In their work, they propose

two constructions, both ORE and OPE; the ORE scheme has very short ciphertexts

that only expand the plaintext by a factor ≈ 1.58, while the ciphertext-size of the OPE

scheme expand the plaintext by a security-parameter factor. We give evidence that

this gap between ORE and OPE is inherent, by proving that any OPE meeting the

information-theoretic version of their security definition (for instance, in the random

oracle model) must have the ciphertext length close to that of their constructions.

iii

Acknowledgements

First and foremost, I would like to express my endless gratitude and appreciation to

my academic advisors Prof. David Cash and Prof. Rebecca Wright. David gave his

extraordinary guidance, support, and encouragement throughout the first three years

of my PhD study. In particular, he guided me into the research on ORE, where we

have two joint works together and helped me how to present our work properly. When

he left Rutgers, Rebecca became my advisor. She supported me for the rest three years

and helped me to be a good researcher.

Second, I would like to express my deepest gratitude to Prof. Mark Zhandry, who

lifted my career to a better stage. He enlightened me with beautiful theoretical re-

searches and guide me how to identify and resolve problems myself. We already have

four papers together and it is still counting on.

I am also extremely grateful to my collaborators, Prof. Adam O’Neill and Prof.

Feng-Hao Liu and my committee members, Prof. Eric Allender, Prof. Shiqing Ma,

and Prof. Qiang Tang. This dissertation greatly benefits from their careful reading,

insightful comments, and high standards. Also, I have learned invaluable lessons from

interacting with them.

Finally, I would like to thank my family and friends for their incredible support in

my career. Without their support, I cannot reach this point. I hope I have graduated

to be a better husband, a better father, a better son and a better friend.

iv

Table of Contents

Abstract . ii

Acknowledgements . iv

List of Tables . vii

List of Figures . viii

1. Introduction . 1

1.1. Overview of our work . 3

1.2. Related work on other tools . 12

1.3. Organization . 12

2. Preliminaries . 14

2.1. Notation and basic results . 14

2.2. Definition, Correctness and Efficiency for ORE 17

2.3. Security for ORE . 20

3. Impossibility of Ideal Order-Revealing Encryption in Idealized Models 24

3.1. Technique overview . 24

3.2. Impossibility of information-theoretic ORE 33

3.3. Impossibility of statistically secure ORE In idealized models 39

3.4. Impossibility for ORE in Random Oracle Model 42

3.5. Impossibility for ORE in Generic Group Model 50

4. Parameter-Hiding Order Revealing Encryption 60

4.1. Technical Overview . 60

4.2. Definition for Parameter-Hiding . 70

v

4.3. Parameter Hiding ORE . 73

4.4. ORE with smoothed CLWW Leakage 88

4.5. PPH from Bilinear Maps . 95

4.6. Further reducing leakage . 98

4.7. More efficient comparisons . 102

4.8. Left/Right ORE Construction . 104

4.9. Impossibility of Parameter-Hiding OPE 108

5. A Ciphertext-Size Lower Bound for Order-Preserving Encryption with

Limited Leakage . 113

5.1. Technique overview . 113

5.2. Ciphertext lower-bound for OPE with CLWW leakage 117

5.3. Extensions . 123

6. Conclusion . 127

Bibliography . 129

vi

List of Tables

2.1. Games REALoreΠ(𝒜) (left) and SIMore
Π,ℒ(𝒜,𝒮) (right). 21

2.2. t-time Static Indistinguishable Game . 22

4.1. Games DHΠ,𝑞(𝒜, 𝜆). 71

4.2. Games para-hidΠ,𝑞(𝒜, 𝜆). 72

4.3. Game INDpph
Γ,𝑃 (𝒜). 90

4.4. Game INDpph−aug
Γ,𝑃 (𝒜). 101

4.5. Game INDLRPPH
Γ,𝑃 (𝒜). 106

vii

List of Figures

2.1. Computational Correctness . 19

2.2. IND-MSDB-secure . 23

4.1. CLWW Leakage. 61

4.2. Smoothed CLWW Leakage. 63

5.1. Two indistinguishable pairs of r.v.s by the security definition. 116

viii

1

Chapter 1

Introduction

An emerging area of cryptography concerns the design and analysis of “leaky” proto-

cols (see e.g. Mohassel and Franklin [2006], Popa et al. [2011], Cash et al. [2013] and

additional references below), which are protocols that deliberately give up some level

of security in order to achieve better efficiency or additional functionality. One impor-

tant tool in this area is order-revealing encryption Boldyreva et al. [2011], Boneh et al.

[2015]1. Order-revealing encryption (ORE) is a special type of symmetric encryption

which leaks the order of the underlying plaintexts through a public procedure Comp,

and a paticular case of ORE is called order preserving encryption(OPE), where Comp

is just numerical comparison. Specifically, in OPE, plaintexts and ciphertexts are both

integers and encryption is monotonic: if 𝑚0 < 𝑚1, then Enc(𝑘,𝑚0) ≤ Enc(𝑘,𝑚1). In

contrast, ciphertexts of ORE are no longer necessarily to be integers and the compar-

ison for ciphertexts is replaced by a more general algorithm Comp. The correctness

requirement is, roughly, that

Comp(pk,Enc(𝑘,𝑚0),Enc(𝑘,𝑚1)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
“ < ” if 𝑚0 < 𝑚1,

“ = ” if 𝑚0 = 𝑚1,

“ > ” if 𝑚0 < 𝑚1.

Why ORE/OPE is interesting? We immediately note that ORE/OPE allows for

a client to store a database on an untrusted server in encrypted form, while still per-

mitting the server to efficiently perform various operations such as range queries on

the encrypted data without the secret decryption key. Due to this property, ORE

1In Boldyreva et al. [2011], it was called efficiently-orderable encryption.

2

has been implemented and used in real-world encrypted database systems, including

CryptDB Popa et al. [2011]. Since then, various security notions of ORE have been

proposed. The strongest, called “ideal” ORE Boneh et al. [2015], insists that everything

about the plaintexts is hidden, except for their order. For example, it should be impos-

sible to distinguish between encryptions of 1, 2, 3 and 1, 4, 9. Such ideal ORE can be

constructed from multilinear maps, showing that in principle ideal ORE is achievable.

Unfortunately, a series of works starting with Naveed et al. [2015] have shown that,

even hypothetical ideal ORE is insecure for various use cases Hore et al. [2012], Islam

et al. [2012], Arasu et al. [2013b], Dautrich Jr and Ravishankar [2013], Liu et al. [2014],

Islam et al. [2014], Cash et al. [2015], Naveed et al. [2015], Durak et al. [2016], Grubbs

et al. [2017]. This is even if the scheme itself reveals nothing but the order of the

plaintexts. The problem is that just the order of plaintexts alone can already reveal a

significant amount of information about the data. For example, if the data is chosen

uniformly from the entire domain, then even ideal ORE will leak the most significant

bits. Moreover, the most significant bits are often the most important ones, which makes

ORE in trouble. The deep reason of those attacks on ORE is that the security notions,

while precise and provable, do not immediately provide any “semantically meaningful”

guarantees for the privacy of the underlying data. Indeed, the above attacks show that

when the adversary has a good estimate of the prior distribution the data is drawn

from, essentially no security is possible.

Despite these attacks, we still believe ORE is an interesting object to study for

several reasons:

• ORE can still provide meaningful notions of security in some settings. For one

example, suppose that each data point is sampled i.i.d. from some underlying

secret distribution 𝐷 with large min-entropy (so all samples are distinct), and

suppose the adversary has no side information about the data. Then ideal ORE

provably hides the distribution 𝐷, since all the adversary will see is a random

ordering.

• ORE represents one of the simplest functionalities for functional encryption that

3

we do not know how to construct from traditional tools. As such, ORE represents

a potential stepping stone toward more advanced functionalities

• Finally, the comparison structure of ORE is shared with several other concepts in

cryptography. For example, most collusion-resistant traitor tracing systems are

built on top of private linear broadcast encryption Boneh et al. [2006], which is a

form of encryption where there are 𝑁 secret keys sk1, . . . , sk𝑁 , and messages are

encrypted to numbers 𝑗. Any sk𝑖 for 𝑖 ≥ 𝑗 can decrypt, but any sk𝑖 for 𝑖 < 𝑗

cannot. For another example, positional witness encryption Gentry et al. [2014]

also has a similar comparison structure, and is currently the best way to prove

security of witness encryption under “instance-independent” assumptions.

Hence, in this dissertation, we present three of our results on ORE/OPE, which

include new security notions, new constructions, and black box separations.

1.1 Overview of our work

This dissertation is threefold. Firstly, we prove that building ideal ORE from weaker

tools is hard, where we show black box separations between ideal ORE and random

oracle model, as well as generic group model. Secondly, we propose a new security

notion, called parameter-hiding and build the corresponding scheme from bi-linear map.

Thirdly, we show the ciphertext-length expansion of any MSDB-secure OPE (comparing

to MSDB-secure ORE) is inherent, which indicates the construction in Chenette et al.

[2016] (below we denote it as CLWW for ease) is optimal. In the following, we illustrate

our results one by one concretely.

1.1.1 Black box separations between ideal ORE and weaker tools

Motivation. In Boldyreva et al. [2009], Boldyreva et al. give an efficient OPE con-

struction using pseudorandom functions; while clearly, such a scheme will reveal the

order of the underlying plaintexts, one may hope that nothing else is revealed, for ex-

ample, the distance between plaintexts should not be learnable from the ciphertexts

without the serect key. However, Boldyreva et al. also show that some additional

4

leakage is necessary in OPE: any such scheme with polynomially-large ciphertexts will

reveal some information beyond just the order of the plaintexts; in essence, their proof

shows that the approximate distance of two plainltexts will be revealed. In order to

circumvernt Boldyreva et al.’s impossibility result, Boneh et al. Boneh et al. [2015] give

an ideal ORE construction from multilinear maps Boneh and Silverberg [2003], Garg

et al. [2013], Coron et al. [2013], and argue that their scheme reveals no information

beyond the ordering of the plaintexts. Alternate constructions achieving ideal leakage

have since been proposed using multi-input functional encryption Boneh et al. [2015]

or even single input functional encryption Brakerski and Segev [2015]. Unfortunately,

as all known instantiations of functional encryption rely on multilinear maps anyway,

all known constructions of ideal ORE require multilinear maps as well. However, cur-

rent multilinear map candidates are quite inefficient and moreover have been subject

to numerous attacks (e.g. Cheon et al. [2015], Miles et al. [2016], Coron et al. [2016]),

meaning the resulting constructions of ideal ORE are far from practical use. Therefore,

a natrual question is:

Is it possible to build ideal ORE from efficient tools so that it can be practical?

Our result. In Zhandry and Zhang [2018], we make a first attempt toward answering

the above question by showing that natural constructions of ideal ORE from several

simple tools are impossible. Specifically, we give black box impossibility results for

building ideal ORE from symmetric key cryptography or public key encryption.

Theorem 1.1.1 (Informal) There is no fully black box construction of an ideal ORE

scheme for a super-polynomial plaintext space from random oracles, or any object that

can be constructed from random oracles in a black box way, including one-way functions,

collision resistant hashing, PRGs, PRFs, and block ciphers.

Theorem 1.1.2 (Informal) There is no fully black box construction of an ideal ORE

scheme for a super-polynomial plaintext space from generic groups, or any object that

can be constructed from cryptographic groups in a black box way, including public key

5

encryption and non-interactive key agreement.2

Thus, any black-box construction of order-revealing encryption will require tools

with more involved structure, such as bilinear maps, multilinear maps, or lattice as-

sumptions. Such tools tend to be less efficient than those needed to build symmet-

ric cryptography or public key encryption. While we do not rule out non-black-box

constructions, such constructions tend to be very inefficient. We, therefore, take our

separations as evidence that some inefficiency is required to achieve order revealing

encryption with ideal leakage.

1.1.2 Parameter-hiding ORE

Motivation. By our result above, we know that, ideal ORE has to suffer some inef-

ficiency. In order to develop an efficient scheme, one can relaxe the security require-

ments, allowing for some additional leakage. OPE is, of course, such a example and very

efficient constructions of OPE are known Boldyreva et al. [2009]. However, OPE nec-

essarily leaks much more information about the plaintexts than ideal ORE; essentially

the difference between ciphertexts can be used to approximate the difference between

the plaintexts. More recently, there have been efforts to achieve more precise security

without sacrificing too much efficiency: CLWW Chenette et al. [2016] recently gives an

ORE construction which leaks only the position of the most significant differing bits of

the plaintexts (we call such a leakage profile MSDB-secure).

Unfortunately, recent works Naveed et al. [2015], Durak et al. [2016], Grubbs et al.

[2017,?] have shown that, even ideal ORE can be insecure. Indeed, the attacks tell

us that when the adversary has a good estimate of the prior distribution the data is

draw from, essentially no security is guaranteed. However, we contend that there are

2The is some overlap in the implications of Theorems 1.1.1 and 1.1.2, as generic groups can also be
used to build much of symmetric key cryptography. However, we still separate our black-box separations
into these two theorems for a couple reasons. First, Theorem 1.1.1 is simpler, and serves to highlight the
ideas that will be needed for Theorem 1.1.2. Second, the random oracle model is a very natural way to
model hash functions, and may capture many security properties desired of hash functions in addition to
one-wayness and collision resistance (such as universal computational extractors). Our random oracle
proof shows that any property that follows from a random oracle is insufficient for constructing ORE
in a black-box way. In addition, to the best of our knowledge the random oracle and generic group
models are incomparable, so providing both proofs gives the most complete separations.

6

scenarios (see below) where the adversary lacks this knowledge. A core problem in

such scenarios is that the privacy of one message is inherently dependent on what other

ciphertexts the adversary sees. Analyzing these correlations under arbitrary sources of

data, even for ideal ORE, can be quite difficult. Only very mild results are known, for

example the fact that either CLWW leakage or ideal leakage provably hides the least

significant bits of uniformly chosen data (those bits are probably of less importance).

Thus, from the construction perspective, it’s natural to ask:

Is it possible to devise a semantically meaningful notion of security for the under-

lying data in the case that the adversary does not have a strong estimate of the prior

distribution, and develop a construction attaining this notion not based on multilinear

maps?

We stress that we are not trying to devise a scheme that is secure in the use cases

of the attacks above, as many of the attacks above would apply to any ORE scheme;

we are instead aiming to identify settings where the attacks do not apply, and then

provide a scheme satisfying a given notion of security in this setting.

Our result. In Cash et al. [2018], we give one possible answer to the question above

by introducing a novel security notion called parameter-hiding, and constructing the

corresponding scheme only based on bi-linear map. In our notion, rather than focusing

on the individual data records, we instead consider about the privacy of the distribution

they came from, and we show how to protect some information about the underlying

data distribution.

To motivate our notion, we first give an intuitive exmaple: a large university wants

to outsource its database of student GPAs. For simplicity, we will assume each student’s

academic ability is independent of other students, and that this is reflected in the GPA.

Thus, we will assume that each GPA is sampled independently and identically according

to some underlying distribution. The university clearly wants to keep each individual’s

GPA hidden. It also may want aggregate statistics such as mean and variance to be

hidden, perhaps to avoid getting a reputation for handing out very high or very low

grades.

7

Distribution-Hiding. This example motivates a notion of distribution-hiding ORE,

where all data is sampled independently and identically from some underlying distri-

bution 𝐷, and we wish to hide as much as possible about 𝐷. We would ideally like to

handle arbitrary distributions 𝐷, but in many cases will accept handling certain spe-

cial classes of distributions. Notice that if the distribution itself is completely hidden,

then so too is every individual record, since any information about a record is also

information about 𝐷.

We begin with the following trivial observation: if 𝐷 has high min-entropy (namely,

super-logarithmic), then the ideal ORE leakage is just a random ordering with no

equality, since there are no collisions with overwhelming probability. In particular,

this leakage is independent of the distribution 𝐷; as such, ideal ORE leakage hides

everything about the underlying distribution, except for the super-logarithmic lower

bound on min-entropy. Thus, we can use the multilinear map-based scheme of Boneh

et al. [2015] to achieve distribution-hiding ORE for any distribution with high min-

entropy.

We note the min-entropy requirement is critical, since for smaller min-entropies,

the leakage allows for determining the frequency of the most common elements, hence

learning non-trivial information about 𝐷3.

Unfortunately, the only way we know to build distribution-hiding ORE is using ideal

ORE, as such, we do not know of a construction not based on multilinear maps. Note

that, building an ideal ORE always has to sacrifice efficiency. Thus in hopes of building

such a scheme, we will relax the security notion, by allowing some information about

the distribution to leak.

Parameter-Hiding. We recall that in many settings, data follows a known type of

distribution. For example, the central limit theorem implies that many quantities such

3This min-entropy requirement may be somewhat problematic in some settings. GPAs for example,
probably have fewer than 10 bits of entropy. However, adding small random noise to the data before
encrypting (much smaller than the precision of the data) will force the data to have high min-entropy
without changing the order of data, with the exception that identical data will appear different when
comparing. In many cases (such as answering range queries) it is totally acceptable to fail to identify
identical data.

8

as various physical, biological, and financial quantities are (approximately) normally

distributed. It is also common practice to assign grades on an approximately normal

distribution, so GPAs might reasonably be conjectured to be normal. For a different

example, insurance claims are often modeled according to the Gamma distribution.

Therefore, since the general shape of the distribution is typically known, a reasonable

relaxation of distribution-hiding is what we will call parameter-hiding. Here, we will

assume the distribution has a known, public “shape” (e.g. normal, uniform, Laplace

etc.) but it may be shifted or scaled. We will allow the overall shape to be revealed; our

goal instead is to completely hide the shifting and scaling information. More precisely,

we consider a distribution 𝐷 over [0, 1] which will describe the general shape of the

family of distributions in question. For example, if the shape in consideration is the

set of uniform distributions over an interval, we may take 𝐷 to be uniform distribution

over [0, 1]; if the shape is the normal distribution, we will take 𝐷 be be the normal

distribution with mean 1/2, and standard deviation small enough so that the vast

majority of the mass is in [0, 1]. Let 𝐷𝛼,𝛽 be the distribution defined as: first sample

𝑥← 𝐷, and then output ⌊𝛼𝑥+𝛽⌋. We will call 𝛼 the scaling term and 𝛽 the shift. The

adversary receives a polynomial number of encryptions of plaintext sampled iid from

𝐷𝛼,𝛽 for some 𝛼, 𝛽. We will call an ORE scheme parameter hiding if the scale and shift

are hidden from any computationally bounded adversary given any polynomial bounded

ciphertexts. Our main theorem is that it is possible to construct such parameter-hiding

ORE from bilinear maps:

Theorem 1.1.3 (Informal) Assuming bi-linear map, it is possible to construct parameter-

hiding ORE for any “smooth” distribution 𝐷, provided the scaling term is “large enough.”

We note the restrictions to large scaling are inherent: any small scaling will lead

to a distribution with low min-entropy. As discussed above, even with ideal ORE, it

is possible to estimate the min-entropy of low min-entropy distributions, and hence it

would be possible to recover the scaling term if the scaling term is small. Some restric-

tions on the shape of 𝐷 are also necessary, as certain shapes can yield low min-entropy

even for large scaling(when we transfer the data distribution to the discrete version).

9

“Smoothness” (which we will define as having a bounded derivative) guarantees high

min-entropy at large scales, and is also important technically for our analysis.

Discussion. The original ORE scheme in Boldyreva et al. [2009] leaks “whatever a

random order-preserving function leaks.” Unfortunately, this notion does not say any-

thing about what such leakage actually looks like, and due to the analysis in Boldyreva

et al. [2011], we know that such an ORE scheme leaks, at least, the most significant

half of the bits. The situation has been improved in recent works on ORE Chenette

et al. [2016], Lewi and Wu [2016], Cash et al. [2016], Joye and Passelègue [2016], where

more precise “leakage profiles” are proposed. However, such leakage profiles are still of

limited use, since they do not obviously say anything about the actual security of the

underlying data.

We instead study ORE with a well-defined security notion for the underlying data.

A key contribution of our result is that: we build a bridge to show how to connect

leakage profile and our notion. Concretely, we show how to build a parameter-hiding

ORE from the scheme in Cash et al. [2016], Joye and Passelègue [2016]. Nonetheless,

we do not claim that parameter-hiding is sufficiently safe to use in general higher-level

protocols; it only claims security in the setting where all sensitive information are the

scale and shift of the underlying plaintext distribution. For instance, if the shape of

the distribution is highly sensitive, or there are correlations to other data available to

the attacker, then our notion would be insufficient.

However, our construction provably has better leakage than existing efficient schemes,

and it at least shows some meaningful security for specific situations. Moreover we con-

jecture that the scheme can be shown to be useful in many other settings by extending

our techniques.

1.1.3 Ciphertext-size lower bound for MSDB-secure OPE

Motivation. Order-preserving encryption is a particular case of ORE, with the re-

striction that the ciphertexts are numerical. Comparing to ORE, OPE indeed has its

own advantage. Note that a typical application of ORE is in databases, where one

party encrypts numeric columns of a database table. Later, to issue a range query on

10

the column, that party encrypts the endpoints of the range and requests all ciphertexts

between them, an operation that can be processed by anyone who holds the encrypted

column. In these settings, OPE is preferable because it can more easily be added to

a database application, as the server can be oblivious to the fact that encryption is

used at all. With more general ORE schemes, one needs to implement the specialized

comparison operation in the database, which can be inconvenient (e.g. in a slow SQL

implementation) or impossible, for instance when adding encryption to legacy systems.

In fact, OPE has seen deployments in products4 and usage in applied research Lu et al.

[2010], Wang et al. [2010], Popa et al. [2011].

However, OPE does not perform as good as ORE in the realm of security. To our

best of knowledge, OPE can not achieve ideal-secure Boldyreva et al. [2009], equality-

pattern MSDB-secure Cash et al. [2016] and parameter-hiding Cash et al. [2018]. Hence,

here we focus on the MSDB-secure OPE Chenette et al. [2016], which is the best-known

security notion that OPE can achieve. In Chenette et al. [2016], CLWW propose both

MSDB-secure ORE and OPE, where the ciphertext size of the ORE scheme is only

1.58𝑚, comparing to 𝜆𝑚 for the OPE scheme. Hence, a natural question arises:

Could we build an MSDB-secure OPE associated with shorter ciphertext-size?

Our Result. In Cash and Zhang [2018], we make a first attempt toward answering

the above question by showing a (almost-tight) lower bound of the ciphertext size for

MSDB-secure OPE against unbounded adversary. Specifically, we prove that any OPE

scheme meeting the information-theoretic MSDB-secure notion must have ciphertexts

of length

𝜆𝑚−𝑚 log𝑚+𝑚 log 𝑒,

where again 𝑚 is the message length, logarithms are base 2, and 𝑒 is the base of the

natural logarithm. This bound tells that CLWW has almost optimal ciphertext size,

as it has leading term 𝜆𝑚 instead of (𝜆− log𝑚)𝑚.

4https://www.skyhighnetworks.com, https://www.ciphercloud.com/, SAP’s
SEEED https://www.sics.se/sites/default/files/pub/andreasschaad.pdf,
https://www.bluecoat.com/ and Cipherbase Arasu et al. [2013a].

https://www.skyhighnetworks.com
https://www.ciphercloud.com/
https://www.sics.se/sites/default/files/pub/andreasschaad.pdf
https://www.bluecoat.com/

11

Theorem 1.1.4 (Informal) Any MSDB-secure OPE scheme associated with message

space {0, 1}𝑚 must have ciphertext of length (𝜆− log𝑚)𝑚.

A following-up work. In Cash and Zhang [2018], we only consider an information

theoretic version of MSDB-secure notion, which requires the same security but against

unbounded adversaries. Surprisingly, a following-up work by Segev and Shahaf Segev

and Shahaf [2018] extend our result to computational security level, without losing any

advantage for the attacks. Concretely, they illustrate a (almost-tight) lower bound for

MSDB-secure OPE against non-uniform adversary, while the lower bound against the

uniform adversary is still an open problem.

1.1.4 Discussion and Perspective.

In light of our impossibility results and the known attacks, a natural question is: what’s

the future of ORE? In this part, we give one positive thought on this question.

Easy to note that, the essential power of the most known attacks is the sorting, for

instance, the binomial attack. And due to the functionality, the attack seem inevitable

when only using ORE. Hence, to prevent those attacks, ORE itself is insufficient and

new technique is required. In this part, we illustrate one potential solution.

The new technique we here propose is adding fake points during the encryption

procedure, specifically, let 𝑚 be the message and OEnc as the ORE encryption, our

new encryption scheme would be:

Enc(𝑚) = 𝜋(OEnc(𝑚),OEnc(𝑚1), . . . ,OEnc(𝑚𝑞)),

where 𝜋 is a random permutation, and 𝑚1, . . . ,𝑚𝑞 are the fake points that are sampled

from some distribution. Of course, each ORE ciphertext would be associated with

message authentication code to indicate the underlying message is real or fake.

Why does it help? The basic intuition is that, if the adversary can not tell which

one is the real encryption, then it cannot do the sorting anymore. Moreover, our new

encryption is based on ORE, and it’s trivial that our scheme still supports whatever

queries that ORE supports, with additional cost of ciphertext length and bandwidth.

12

This potential solution seems quite promising, but yet the security behind it is quite

unknown. Say, what kind of distribution should the fake points draw from? Hence,

we treat the analysis of our new scheme as an open problem and one of the possible

research directions for ORE.

1.2 Related work on other tools

In this part, we briefly go over the other tools on leaky protocols. Specifically, those

tools done on “leaky cryptography” includes work on multiparty computation Mohassel

and Franklin [2006], searchable symmetric and structured encryption Song et al. [2000],

Goh et al. [2003], Chang and Mitzenmacher [2005], Curtmola et al. [2006], Chase and

Kamara [2010], Cash et al. [2013], Kamara and Moataz [2016], and property-preserving

encryption Bellare et al. [2007], Boldyreva et al. [2009], Pandey and Rouselakis [2012].

In the database community, the problem of querying an encrypted database was intro-

duced by Hacigümüş, Iyer, Li and Mehrotra Hacigümüş et al. [2002], leading to a variety

of proposals there but mostly lacking formal security analysis. Proposals of specific out-

sourced database systems based on property-preserving encryption like ORE include

CryptDB Popa et al. [2011], Cipherbase Arasu et al. [2013a], and TrustedDB Bajaj and

Sion [2014].

1.3 Organization

This dissertation will present our results on ORE, following the same order listed above.

• Chapter 2 covers the notations and the formal definition of security/efficiency/-

correctness for ORE.

• Chapter 3 resolves the first question by showing a black-box separation between

ideal ORE and random oracle model, as well as generic group model.

• Chapter 4 resolves the second question, by first proposing a meaningful security

notion called parameter-hiding and constructing the corresponding ORE scheme

from bi-linear map.

13

• Chapter 5 resolves the last question by giving a lower bound which indicates that

the scheme in Chenette et al. [2016] is almost optimal.

• Chapter 6 completes the dissertation with conclusion.

14

Chapter 2

Preliminaries

2.1 Notation and basic results

All algorithms are assumed to be polynomial-time in the security parameter (though

we will sometimes refer to efficient algorithms explicitly). We will denote the security

parameter by 𝜆. For a random variable 𝑌 , we write 𝑦
$← 𝑌 to denote that 𝑦 is sampled

according to 𝑌 ’s distribution, moreover, let 𝐷 be 𝑌 ’s distribution, we abuse notation

𝑦
$← 𝐷 to mean that 𝑦 is sampled according to 𝐷. For an algorithm 𝐴, by 𝑦

$← 𝐴(𝑥)

we mean that 𝐴 is executed on input 𝑥 and the output is assigned to 𝑦, furthermore, if

𝐴 is randomized, then we write 𝑦
$← 𝒜(𝑥) to denote running 𝒜 on input 𝑥 with a fresh

random tape and letting 𝑦 be the random variable induced by its output. We denote by

Pr[𝐴(𝑥) = 𝑦 : 𝑥
$← 𝑋] the probability that 𝐴 outputs 𝑦 on input 𝑥 when 𝑥 is sampled

according to 𝑋. We say that an adversary 𝒜 has advantage 𝜖 in distinguishing 𝑋 from

𝑌 if Pr[𝐴(𝑥) = 1 : 𝑥
$← 𝑋] and Pr[𝐴(𝑦) = 1 : 𝑦

$← 𝑌] differ by at least 𝜖. If 𝐴’s running

time is polynomial in 𝜆, then 𝐴 is called probabilistic polynomial-time(PPT).

When more convenient, we use the following probability-theoretic notation instead.

We write 𝑃𝑋(𝑥) to denote the probability that 𝑋 places on 𝑥, i.e. 𝑃𝑋(𝑥) = Pr[𝑋 = 𝑥],

and we say 𝑃𝑋(𝑥) is the probability density function (PDF) of 𝑋’s distribution. The

statistical distance between 𝑋 and 𝑌 is given by Δ = 1
2

∑︀
𝑥 |𝑃𝑋(𝑥)−𝑃𝑌 (𝑥)|. If Δ(𝑋,𝑌)

is at most 𝜖 then we say 𝑋,𝑌 are 𝜖-close. It is well-known that if 𝑋,𝑌 are 𝜖-close

then any (even computationally unbounded) adversary 𝐴 has advantage at most 𝜖 in

distinguishing 𝑋 from 𝑌 .

The min-entropy of a random variable 𝑋 is 𝐻∞(𝑋) = − log(max𝑥 𝑃𝑋(𝑥)). We say

a function 𝜇(𝑛) is negligible if 𝜇 ∈ 𝑜(𝑛−𝜔(1)), and is non-negligible otherwise. We let

negl(𝑛) denote an arbitrary negligible function. If we say some 𝑝(𝑛) is poly, we mean

15

that there is some polynomial 𝑞 such that for all sufficiently large 𝑛, 𝑝(𝑛) ≤ 𝑞(𝑛). We

say a function 𝜌(𝑛) is noticeable if the inverse 1/𝜌(𝑛) is poly. For 𝑀,𝑁 ∈ N, we let

[𝑀] = {1, . . . ,𝑀}, [𝑀]′ = {0, . . . ,𝑀 − 1} and [𝑀,𝑁] = {𝑀, . . . , 𝑁}. We write 𝑚⃗ as

a vector of plaintexts and |𝑚⃗| as the vector’s length, namely 𝑚⃗ = (𝑚1, . . . ,𝑚𝑠) and

|𝑚⃗| = 𝑠. For a vector 𝑚⃗, by 𝑎𝑚⃗ we mean (𝑎𝑚1, . . . , 𝑎𝑚𝑠) and we write 𝑚⃗+ 𝑏 to denote

(𝑚1 + 𝑏, . . . ,𝑚𝑠 + 𝑏). Let 𝑥 be a real number, we write ⌊𝑥⌋ as the largest integer s.t.

⌊𝑥⌋ ≤ 𝑥, and ⌈𝑥⌉ as the smallest integer s.t. ⌈𝑥⌉ ≥ 𝑥. By ⌊𝑥⌉, we mean rounding 𝑥 to

the nearest integer, namely −1/2 ≤ ⌊𝑥⌉ − 𝑥 < 1/2. If 𝑃 is a predicate, we write 1(𝑃)

for the function that takes the inputs to 𝑃 and returns 1 if 𝑃 holds and 0 otherwise.

Next we give a well-known data processing lemma (c.f. Cover and Thomas [2006]),

which we will use in our proof.

Lemma 2.1.1 Let 𝑋 and 𝑌 be r.v.s, and 𝑓 be any function that includes the support

of 𝑋 and 𝑌 in its domain. Then Δ(𝑓(𝑋), 𝑓(𝑌)) ≤ Δ(𝑋,𝑌).

Definition 2.1.2 (Pseudorandom Function.) A function 𝐹 : {0, 1}𝜆×𝐷 → {0, 1}𝜆

is said to be a pseudorandom function with domain 𝐷 if for all efficient 𝒜 we have that

𝐴𝑑𝑣𝒜(𝜆) = |Pr[𝒜𝐹 (𝐾,·)(1𝜆) = 1]− Pr[𝒜𝑔(·)(1𝜆) = 1]|

is a negligible function of 𝜆, where 𝐾 is uniform over {0, 1}𝜆 and 𝑔 is uniform over all

functions from 𝐷 to {0, 1}𝜆.

Definition 2.1.3 (Bi-linear Map.) Let G, Ĝ, G𝑇 be three groups of order p for some

large prime p, and 𝑔 be generator of G and 𝑔 be a generator of Ĝ. We say a map

𝑒 : G× Ĝ→ G𝑇 is a bilinear map, if 𝑒 satisfies the following properties:

1. Bilinear: We say a map 𝑒 is bilinear if for all 𝑎, 𝑏 ∈ Z𝑝, we have 𝑒(𝑔𝑎, 𝑔𝑏) =

𝑒(𝑔, 𝑔)𝑎𝑏.

2. Non-degenerate: The map does not send all pairs in G × Ĝ to the identity in

G𝑇 . Note that since G, Ĝ and G𝑇 are groups of prime order, which implies that

if 𝑔(resp. 𝑔) is the generator of G(resp. Ĝ), then 𝑒(𝑔, 𝑔) is the generator of G𝑇 .

16

3. Computable: For any 𝑎, 𝑏 ∈ Z𝑝, there exists an efficient algorithm to compute

𝑒(𝑔𝑎, 𝑔𝑏).

We say a bilinear map is symmetric if G = Ĝ, else it is asymmetric.

Definition 2.1.4 (SXDH assumption.) Let G, Ĝ,G𝑇 be prime-order 𝑝 groups, 𝑔 be

generator of G and 𝑔 be a generator of Ĝ, and 𝑒 : G × Ĝ → G𝑇 be a bilinear pairing.

We say the symmetric external Diffie-Hellman assumption holds with respect to these

groups and pairing if for all efficient 𝒜,

|Pr[𝒜(𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑎𝑏) = 1]− Pr[𝒜(𝑔, 𝑔𝑎, 𝑔𝑏, 𝑅) = 1]|

and

|Pr[𝒜(𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑎𝑏) = 1]− Pr[𝒜(𝑔, 𝑔𝑎, 𝑔𝑏, 𝑅̂) = 1]|

are negligible functions of 𝜆, where 𝑎, 𝑏, 𝑐 are uniform over Z𝑝 and 𝑅 (resp. 𝑅̂) is

uniform over G (resp. Ĝ).

Definition 2.1.5 (Idealized Model.) An idealized model is a deterministic function

ℳ. ℳ takes two inputs: a string 𝑘 which is the seed for the model, and a query

𝑞. Unless otherwise stated, we allow all players — the honest parties, the protocol

algorithms, and the adversary — to queryℳ. In a query toℳ:

• Any player sends 𝑞 toℳ;

• The player receivesℳ(𝑘, 𝑞) in return.

We will denote an ORE scheme Π in an idealized modelℳ as Πℳ = (Genℳ,Encℳ,Compℳ).

This notation means that key generation, encryption, and comparison have access to

ℳ and the outputs also depend onℳ’s response. Our definitions of security and cor-

rectness for ORE easily extend to the idealized model, where the probabilities are over

the random seed 𝑘 that generatesℳ.

Definition 2.1.6 (Random Oracle Model.) Random oracle model Bellare and Ro-

gaway [1993] is an idealized model (a theoretical black box) which responds to any unique

17

query with a truly random string, and if the query is repeated, the response would be

consistent. More concretely, a random oracle model has a publicly accessible hash func-

tion 𝐻 : {0, 1}* → {0, 1}𝑛 such that : 1) for any 𝑥, every bit of 𝐻(𝑥) is truly random;

2) for any 𝑥 ̸= 𝑦, 𝐻(𝑥) and 𝐻(𝑦) are independent.

For ease of exposition, here we consider of a simple variant of the generic group

model, which is equivalent to the usual generic group model Shoup [1997]:

Definition 2.1.7 (Variant Generic Group Model.) Let (𝐺,⊙) be any group of size

𝑁 and let 𝑆 be any set of size at least 𝑁 . The generic group oracle 𝒢 : 𝐺 ↦→ 𝑆. At

first an injective random function 𝜎 : 𝐺 ↦→ 𝑆 is chosen, and two type of queries are

answered as:

• Type 1: Labeling queries. Given 𝑔 ∈ 𝐺, oracle returns handle ℎ = 𝜎(𝑔);

• Type 2: Zero-test queries. Given a handle vector ℎ⃗ = (ℎ1, . . . ℎ𝑛) ∈ 𝑆, and

a vector 𝑣⃗ = (𝑣0, . . . , 𝑣𝑛) of integers, oracle returns a single bit: 0 if there exists

𝑔1, . . . , 𝑔𝑛 ∈ 𝐺 such that ℎ𝑖 = 𝜎(𝑔𝑖) and 𝑣0 +⊙𝑗𝑣𝑗𝑔𝑗 = 0; 1 otherwise.

2.2 Definition, Correctness and Efficiency for ORE

The following definition of syntax for order revealing encryption makes explicit that the

comparison procedure may use helper information (e.g. a description of a particular

group) by incorporating a public key, denote pk.

Definition 2.2.1 (ORE.) An ORE scheme Π with message space [𝑁] is a tuple of

algorithms (Gen,Enc,Comp) with the following syntax.

• The key generation algorithm Gen is randomized, takes inputs (1𝜆, 𝑁), and always

emits two outputs (pk, sk). We refer to the first output pk as the public key and

the second output sk as the secret key.

• The encryption algorithm Enc takes inputs (sk,𝑚) where 𝑚 ∈ [𝑁], and always

emits a single output 𝑐, that we refer to as a ciphertext.

18

• The comparison algorithm Comp takes inputs (pk, 𝑐1, 𝑐2), and emits “<”, “=” or

“>”, which indicates the order of the underlying plaintexts.

If Comp is simple integer comparison (i.e., if Comp(pk, 𝑐1, 𝑐2) is a canonical algo-

rithm that treats its the ciphertexts and binary representations of integers and tests

which is greater) then the scheme is said to be an order-preserving encryption (OPE)

scheme.

Next, we give the definitions of correctness for order-revealing encryption. Intu-

itively, an ORE scheme is correct if the comparison algorithm can output the order of

the underlying plaintexts. For any two message pair (𝑚0,𝑚1), let Order(𝑚0,𝑚1) be

the order of (𝑚0,𝑚1), where:

Order(𝑚0,𝑚1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
“ < ” 𝑚0 < 𝑚1,

“ = ” 𝑚0 = 𝑚1,

“ > ” 𝑚0 > 𝑚1.

In this dissertation, we will consider five notions of correctness. Concretely:

Definition 2.2.2 (Perfect Correctness.) Let Π = (Gen,Enc,Comp) be an ORE scheme

with respect to the message space [𝑁]. We say Π has perfect correctness, if for any mes-

sage pair (𝑚0,𝑚1) ∈ [𝑁], we have

Pr[Comp(pk, 𝐶0, 𝐶1) = Order(𝑚0,𝑚1) : (pk, sk)← Gen(1𝜆), 𝐶𝑏 = Enc(sk,𝑚𝑏)] = 1

where the probability is taken over the choice of (pk, sk)← Gen(1𝜆).

Definition 2.2.3 (Almost Perfect Correctness.) Let Π = (Gen,Enc,Comp) be an

ORE scheme with respect to the message space [𝑁]. We say Π has almost perfect

correctness, if there is a negligible function 𝜇 = negl(𝜆) such that

Pr[∃(𝑚0,𝑚1),Comp(pk, 𝐶𝑚0 , 𝐶𝑚1) ̸= Order(𝑚0,𝑚1) : (pk, sk)← Gen(1𝜆)] ≤ 𝜇,

where the probability is taken over the choice of (pk, sk)← Gen(1𝜆).

19

CCor(𝒜):
(pk, sk)← Gen(1𝜆); (𝑚0,𝑚1)← 𝒜Enc(sk,·)(1𝜆);
Return 1 if Comp(pk,Enc(sk,m0,Enc(sk,m1) ̸= Order(𝑚0,𝑚1), and 0 otherwise.

Figure 2.1: Computational Correctness

Definition 2.2.4 (Statistical Correctness.) Let Π = (Gen,Enc,Comp) be an ORE

scheme with respect to the message space [𝑁]. We say Π has statistical correctness, if

for any message pair (𝑚0,𝑚1), there is a negligible function 𝜇 = negl(𝜆) such that

Pr[Comp(pk, 𝐶0, 𝐶1) = Order(𝑚0,𝑚1) : (pk, sk)← Gen(1𝜆)] ≥ 1− 𝜇,

where the probability is taken over the choice of (pk, sk)← Gen(𝜆).

Definition 2.2.5 (Computational Correctness.) Let Π = (Gen,Enc,Comp) be an

ORE scheme with respect to the message space [𝑁]. For any PPT adversary 𝒜 we

define the game CCor in figure 2.1. The advantage of 𝒜 for the game CCor is defined

to be:

𝐴𝑑𝑣CCor𝒜 (1𝜆) = Pr[CCor(𝒜) = 1].

We say that Π has computational correctness if for any PPT adversary, 𝐴𝑑𝑣CCor𝒜 (1𝜆) is

negligible.

Definition 2.2.6 (Partial Correctness.) Let Π = (Gen,Enc,Comp) be an ORE scheme

with respect to the message space [𝑁]. We say Π has statistical correctness, if for any

message pair (𝑚0,𝑚1), there is a noticeable function 𝜌(𝜆) such that

Pr[Comp(pk, 𝐶0, 𝐶1) = Order(𝑚0,𝑚1) : (pk, sk)← Gen(1𝜆)] ≥ 1

2
+ 𝜌,

where the probability is taken over the choice of (pk, sk)← Gen(1𝜆).

Easy to note that, the definitions of correctness is illustrated in the decreasing

order, for instance, statistical correctness is stronger than computational one and also

computational correctness is stronger than partial one. Next, we present the definition

20

of efficiency for order-revealing encryption. Typically in the literature, ORE is defined

as having computationally efficient algorithms and in this work, we also consider the

ORE scheme in idealized model, where algorithms have access to an oracle.

Definition 2.2.7 (Efficiency.) Let Π = (Gen,Enc,Comp) be an ORE scheme with re-

spect to the message space [𝑁]. We say Π is computationally efficient if the three algo-

rithms run in time polynomial in (log𝑁,𝜆). If Π is a scheme in an idealized modelℳ,

we additionally require that the algorithms only make a polynomial number of queries

toℳ.

Here, we will generally not impose any such restrictions, and allow for computa-

tionally inefficient algorithms. We only impose two efficiency constraints. First, if the

scheme is in the idealized model, we still require the number of queries to be polynomial.

Definition 2.2.8 (Query Efficiency.) Let Πℳ = (Genℳ,Encℳ,Compℳ) be an ORE

scheme in an idealized model ℳ. We say Π is query efficient if the three algorithms

only make a number of queries that is polynomial in (log𝑁,𝜆).

The second efficiency requirement (for both idealized model schemes and standard

model schemes) is that the ciphertexts produced by the scheme are polynomial sized.

Definition 2.2.9 (Succinct Ciphertext.) Let Π (resp. Πℳ) be an ORE with respect

to the message space [𝑁](resp. in idealized model). We say Π (resp. Πℳ) has succinct

ciphertext if the ciphertext length is polynomial in (log𝑁,𝜆).

We call a scheme for which there is no idealized model but which still has succinct

ciphertexts an information-theoretic scheme.

2.3 Security for ORE

In this part, we first give a simulation-based security definition, due to Chenette et.

al. Chenette et al. [2016]. Here, a leakage profile is any randomized algorithm

The definition refers to games given in Figure 2.1, which we review now. In the real

game, key generation is run and the adversary is given the comparison key and oracle

21

Game REALore
Π (𝒜):

(sk, ck)
$← 𝒦(1𝜆,𝑀); 𝑏

$← 𝒜Enc(ck)
Return 𝑏
Enc(𝑚):
Return E(sk,𝑚)

Game SIMore
Π,ℒ(𝒜,𝒮):

stℓ
$← ⊥; (ck, st𝑠)

$← 𝑆(1𝜆); 𝑏
$← 𝒜Enc(ck)

Return 𝑏
Enc(𝑚):

(𝐿, stℓ)
$← ℒ(stℓ,𝑚); (𝑐, st𝑠)

$← 𝒮(𝐿, st𝑠)
Return 𝑐

Table 2.1: Games REALoreΠ(𝒜) (left) and SIMore
Π,ℒ(𝒜,𝒮) (right).

access to the encryption algorithm with the corresponding secret key. The adversary

eventually outputs a bit that the game uses as its own output. In the ideal simulation

game, the adversary is interacting with the same oracle, but the comparison key is gen-

erated by a stateful simulator, and the oracle responses are generated by the simulator

which receives leakage from the stateful leakage algorithm ℒ.

Definition 2.3.1 (ℒ-simulation-security for ORE) For an ORE scheme Π, an ad-

versary 𝒜, a simulator 𝒮, and leakage profile ℒ, we define the games REALore
Π (𝒜) and

SIMore
Π,ℒ(𝒜) in Figure 2.1. The advantage of 𝒜 with respect to 𝒮 is defined as

AdvoreΠ,ℒ,𝒜,𝒮(𝜆) =
⃒⃒
Pr[REALore

Π (𝒜) = 1]− Pr[SIMore
Π,ℒ(𝒜,𝒮) = 1]

⃒⃒
.

We say that Π is ℒ-simulation-secure if for every efficient adversary 𝒜 there exists an

efficient simulator 𝒮 such that AdvoreΠ,ℒ,𝒜,𝒮(𝜆) is a negligible function.

We also define non-adaptive variants of the games where 𝒜 gets a single query

to an oracle that accepts a vector of messages of unbounded size. In the real game

REALore-na
Π (𝒜), the oracle returns the encryptions applied independently to each mes-

sage. In the ideal game SIMore-na
Π (𝒜), the leakage function gets the entire vector of

messages as input and produces an output 𝐿 that is then given to 𝒮 which produces a

vector of ciphertexts, which are returned by the oracle.

We define the non-adaptive advantage of 𝒜 with respect to 𝒮 analogously, and

denote it Advore-naΠ,ℒ,𝒜,𝒮(𝜆). Non-adaptive ℒ-simulation security is defined analogously.

22

t-SIND(𝒜):
(pk, sk)← Gen(𝑁, 1𝜆); 𝑚1 < . . . < 𝑚𝑡,𝑚

′
1 < . . . < 𝑚′

𝑡 ← 𝒜(pk, 𝑁, 1𝜆);

𝐶⃗0 = (pk,Enc(sk,𝑚1), . . . ,Enc(sk,𝑚𝑡)); 𝐶⃗1 = (pk,Enc(sk,𝑚′
1), . . . ,Enc(sk,𝑚

′
𝑡));

𝑏′ ← 𝒜(𝐶⃗𝑏); Return (𝑏
?
= 𝑏′)

Table 2.2: t-time Static Indistinguishable Game

Ideal-secure ORE. Ideal ORE is the case where the leakage profile ℒ is simply the

list of results of comparisons between the plaintexts. Formally, the leakage profile is:

ℒideal(𝑚1, . . . ,𝑚𝑞) = {(𝑖, 𝑗,1(𝑚𝑖 < 𝑚𝑗)) : 1 ≤ 𝑖 < 𝑗 ≤ 𝑞}.

We note that such a ℒ is always revealed by the comparison algorithm, so ideal ORE

is the best one can hope for.

MSDE-secure ORE. As an example of a non-ideal leakage profile, consider the leak-

age profile ℒclww in Chenette et al. [2016]. For 𝑚0,𝑚1 ∈ {0, 1}𝑛, we define the most

significant differing bit of 𝑚0 and 𝑚1, denoted msdb(𝑚0,𝑚1), as the index of first bit

where 𝑚0,𝑚1 differ, or 𝑛+ 1 if 𝑚0 = 𝑚1.

The CLWW leakage profile ℒclww takes in input a vector of plaintext 𝑚⃗ = (𝑚1, . . . ,𝑚𝑞)

and produce the following:

ℒclww(𝑚1, . . . ,𝑚𝑞) := (∀1 ≤ 𝑖, 𝑗 ≤ 𝑛,1(𝑚𝑖 < 𝑚𝑗),msdb(𝑚𝑖,𝑚𝑗))

Next, to strengthen our impossibility results, we also introduce two indistinguishability-

based notions, namely 𝑡-time secure game and Ind-clww game. Note that, for ideal

security, only the order is revealed, roughly, given two sequences of message 𝑚⃗, 𝑚⃗′

such that ∀𝑖, 𝑗 ∈ |𝑚⃗|,Order(𝑚𝑖,𝑚𝑗) = Order(𝑚′𝑖,𝑚
′
𝑗), the distribution of Enc(𝑚⃗) and

Enc(𝑚⃗′) are indistinguishable. Now, for the first notion, we add a restriction that

|𝑚⃗| = |𝑚⃗′| = 𝑡, define game in figure 2.2, and for the second one, comparing to CLWW

security in Chenette et al. [2016], we only deal with a non-adaptive adversary and define

it in figure 2.2.

Definition 2.3.2 (𝑡-time secure.) Let Π = (Gen,Enc,Comp) be an ORE scheme with

23

Ind-clww(𝒜):
(pk, sk)← Gen(𝑁, 1𝜆); (𝑚⃗0, 𝑚⃗1)← 𝒜(pk, 𝑁, 1𝜆) 𝑠.𝑡. ℒclww(𝑚⃗0) = ℒclww(𝑚⃗1);

𝐶⃗0 = (pk,Enc(sk, 𝑚⃗0); 𝐶⃗1 = (pk,Enc(sk, 𝑚⃗1);

𝑏′ ← 𝒜(𝐶⃗𝑏); Return (𝑏
?
= 𝑏′)

Figure 2.2: IND-MSDB-secure

respect to the message space [𝑁]. For any PPT (resp. unbounded) adversary 𝒜 we

define the game t-SIND(𝒜) in figure 2.2. The advantage of 𝒜 for the t-time static

indistinguishable game is defined to be:

Advt-SIND𝒜 (1𝜆) = 2Pr[t-SIND(𝒜)]− 1.

We say that Π is t-time computationally (resp. statistically) secure if for any PPT (resp.

unbounded) adversary 𝒜, Advt-SIND𝒜 (1𝜆) is negligible. And we say Π is fully (computa-

tionally/statistically) secure if Π is t-time (computationally/statistically) secure for any

polynomial 𝑡 = 𝑝𝑜𝑙𝑦(log𝑁,𝜆).

If Π is an ORE scheme in the idealized model ℳ, we extend the security notions

above by allowing 𝒜 to make a polynomial number of queries toℳ, and all probabilities

are taken over the seed forℳ.

Definition 2.3.3 (IND-MSDB-secure.) Let Π = (Gen,Enc,Comp) be an ORE scheme

with respect to the message space [𝑁]. For any PPT (resp. unbounded) adversary 𝒜

we define the game ind− clww(𝒜) in figure 2.2. The advantage of 𝒜 is defined to be:

𝐴𝑑𝑣Π,𝒜(1
𝜆) = 2Pr[Ind-clww(𝒜) = 1]− 1.

We say that Π is IND-MSDB-computationally secure if for all efficient 𝒜, 𝐴𝑑𝑣Π,𝒜 is

a negligible. We say that Π is IND-MSDB-statistically-secure if the same condition

holds for all (unbounded, wlog deterministic) adversaries 𝒜; more specifically, we say

Π is 2𝜆-ind-clww-statistically-secure if for all unbounded adversaries, the advantage is

at least 2𝜆.

24

Chapter 3

Impossibility of Ideal Order-Revealing Encryption in

Idealized Models

In this section, we present our impossibility result for ideal ORE in the idealized

model Zhandry and Zhang [2018]. First, we give a technique overview, then we show

impossibility for information-theoretic ideal ORE, after that, we extend our result to

random oracle model and generic group model.

3.1 Technique overview

First, we start with the idealized model ℳ capturing the primitive that we want to

separate ORE from: in this dissertation, we take ℳ to be a random oracle or the

generic group model Shoup [1997].

We now imagine a very relaxed notion of order-revealing encryption using the model

(relaxing the notion of ORE we consider only makes our separations stronger):

• There is no explicit decryption procedure1

• The scheme is only partially correct, in that Comp may result in an incorrect

answer, but is noticeably biased towards the correct answer.2

• The scheme (Gen,Enc,Comp) may make queries to the modelℳ

• The algorithms are allowed to run arbitrary computations; the only restrictions

are that (1) the number of queries to ℳ is polynomially bounded, and (2) that

1Though note that this is actually without loss of generality, since decryption can be derived from
encryption and comparison by using a binary search

2This is also essentially without loss of generality, as correctness can be boosted by running multiple
instances of the scheme in parallel

25

the length of ciphertexts is polynomially bounded. Running times and key sizes

can be unbounded.

• For simplicity in the following discussion, we will also assume the algorithms are

deterministic, although our analysis readily applies to randomized schemes as

well.

• The adversary can only make polynomially-many queries toℳ and can only see

a polynomial number of ciphertexts, but we do not consider its computational

power.

We next give a general recipe for proving that such a relaxed order-revealing en-

cryption scheme does not exist. To prove impossibility, we proceed in three steps:

1. Compile any scheme satisfying the above requirements into one where Comp does

not make any queries toℳ.

2. Compile the resulting scheme into one where the entire scheme completely ignores

ℳ. We call such ORE scheme information-theoretic ORE. This step may lose

some level of correctness, so even starting from a perfectly correct scheme, the

information-theoretic scheme will no longer be perfectly correct.

3. Finally, show that (even partially correct) information-theoretic ORE does not

exist.

We now expand on the three steps above in reverse order:

Impossibility of information-theoretic ORE.

In information-theoretic ORE, the public/secret key are allowed to be arbitrarily (e.g.

exponentially) large, the running times of Gen,Enc, Comp are allowed to be arbitrary,

while security must hold for arbitrary adversaries. There is no mention of a modelℳ;

the only constraints are that ciphertexts must be polynomially bounded, and that the

adversary sees only a polynomial number of ciphertexts.

First, since the scheme is deterministic, we can assume that Comp(𝑢, 𝑣) only outputs

“ = ” if 𝑢 and 𝑣 are actually the same. Indeed, if Comp(𝑢, 𝑣) = “ = ” for 𝑢 ̸= 𝑣, it

26

means that 𝑢, 𝑣 could not simultaneously be valid encryptions of two messages under

the same secret key (since then Comp would report “ = ” when the plaintexts are in

fact not equal). Therefore, for 𝑢 ̸= 𝑣, if Comp(𝑢, 𝑣) = “ = ”, we can simply change

the answer arbitrarily without affecting correctness. Hence, we will choose arbitrarily

Comp(𝑢, 𝑣) = “ < ” or Comp(𝑢, 𝑣) = “ > ”. By a similar argument, we can also assume

that Comp(𝑢, 𝑣) = “ < ” if and only if Comp(𝑣, 𝑢) = “ > ”.

Now, for such a scheme, we can construct an (exponentially large) graph 𝒢 associated

with the public key where nodes are all possible ciphertexts. There is a directed edge

from node 𝑢 to node 𝑣 if Comp(𝑢, 𝑣) = “ < ”. Notice that any two distinct nodes have

exactly one edge between them. 𝒢 is therefore what is known as a tournament graph.

Let 𝑠 be the number of nodes in 𝒢, equivalently the number of ciphertexts. Let [1, 𝑡]

be plaintext space, which is assumed to be superpolynomial3. We show that log 𝑠 —

the bit length of ciphertexts — must be superpolynomial, a contradiction.

This graph must have a significant amount of structure. In our setting, every key 𝑘

corresponds to a set 𝑆 of 𝑡 nodes in 𝒢, the encryptions of each of the plaintext elements.

Assuming the scheme is perfectly correct, these nodes form a complete DAG, with the

encryption of 1 at the beginning and the encryption of 𝑡 at the end. Therefore, 𝒢 must

contain many complete DAGs on 𝑡 nodes.

Moreover, security imparts additional structure on 𝒢. Security says, roughly, that

the encryptions of any two polynomial-length sequences of ordered messages must be

indistinguishable. If we insist on perfect security, we have the following. For a given key

𝑘, consider the set 𝑇 of encryptions of 1, . . . , 𝑝 for some polynomial 𝑝. Then by security,

there must be some key 𝑘′ such that 𝑇 are the encryptions under 𝑘′ of 2, . . . , 𝑝 + 1.

Therefore, the encryption of 1 under 𝑘′ will have an edge to each of the nodes in 𝑇 .

Notice that this property must hold for any set 𝑇 that can be represented as the

encryptions of 1, . . . , 𝑝 for some key 𝑘.

The situation above is reminiscent of a problem studied by Erdös Erdős and Sós.

He asked the question: suppose every set of 𝑝 nodes is dominated by another node;

3In reality, we would want the number of plaintexts to be exponential, but our impossibility rules
out even superpolynomial message spaces.

27

that is, for every set 𝑇 of 𝑝 nodes, there is a node 𝑢 such that 𝑢 has an edge to each

node in 𝑇 . He showed that the number of nodes in any tournament graph satisfying

this property must be exponential in 𝑝. The proof is by induction: for any graph 𝒢

satisfying the property for 𝑝, there is a graph on half as many nodes that satisfies the

property for 𝑝 − 1. Continuing until the base case 𝑝 = 1, we see that there must be a

graph 𝒢′ that is exponentially smaller than 𝒢, meaning 𝒢 must be exponentially-large.

We prove an analog of Erdös’s proof in our setting. Namely, we show that for any

polynomial 𝑝, the number of nodes 𝑠 in 𝒢 must be exponential in 𝑝. Since 𝑠 is expo-

nential in any polynomial, then log 𝑠 must larger than any polynomial, a contradiction.

Our proof is inspired by Erdös’s proof, except complicated in several ways:

• Our structure, while superficially similar, has several key differences. For example,

there will be set 𝑇 that do not correspond to encryptions of 1, . . . , 𝑝 under one key.

For example, 𝑇 may be formed by encrypting 1, . . . , 𝑝/2 under 𝑘1 and 1, . . . , 𝑝/2

under 𝑘2.

• We do not insist on perfect security, but instead on statistical security. This

means, for example, that the dominating property may not hold for all sets 𝑇

that are encryptions of 1, . . . , 𝑝.

Nonetheless, we show an inductive argument that resolves these difficulties, and proves

that 𝑠 must be exponential in 𝑝 for any polynomial 𝑝. Hence, log 𝑠 must be larger than

any polynomial, as desired.

The above discussion assumed that the scheme was perfectly correct. However, look-

ing ahead, we would like to prove the impossibility for even partially correct schemes,

where the output of Comp may be incorrect, but is biased toward the right answer. We

show how to compile such a partially correct scheme into one that is perfectly correct.

Then invoking the impossibility above, we see that even a partially correct scheme is

impossible. The compilation is simple: first we run multiple instances of the scheme in

parallel to boost correctness arbitrarily high, but still not necessarily perfect. However,

we argue that we can boost correctness high enough so that, with high probability over

the key, Comp will produce the right answer for all ciphertexts. Then we just change

28

the scheme so that the key is chosen randomly from the set of “good” keys. This only

negligibly affects security (since the key is “good” with high probability anyway). Veri-

fying that a key is “good” will of course take exponential time since one must very that

it outputs the right answer for any possible pair of messages; however, this is fine since

we do not place any computational restrictions.

Comparison to Boldyreva et al. Boldyreva et al. [2009]. Order preserving en-

cryption is the special case of ORE where the entire ciphertext graph is actually one

large DAG. Boldyreva et al.’s impossibility can be interpreted as a special case of our

proof above where the graph is restricted to DAG. Our proof is much stronger, as it

applies to much less structured graphs — any structure we use is solely a function of

the correctness and security requirements, and no additional structure is assumed.

Compiling schemes where Comp does not make queries to ℳ.

We show that if Comp does not make queries to ℳ, then it can be compiled into an

information-theoretic scheme, and then we can apply the above impossibility to rule

out the original scheme. Our compilation process works even if the starting scheme

was only partially correct; since the impossibility above works with partially-correct

schemes, we can still rule out partially correct schemes where Comp makes no oracle

queries.

The process is simple. Since Comp does not make any queries to ℳ, the model is

not needed outside of encryption. This means, in particular, that it makes sense to

restrict the adversary from queryingℳ. Doing so only enhances security.

Next, we can simply have the secret key holder construct the oracleℳ for himself,

and include it as part of the secret key. The description of the oracle might be expo-

nential in size, but this is acceptable since we do not place any bounds on the key size

or running time of the honest users. The result is a scheme which makes no reference

to an idealized model.

29

Removing oracle queries from Comp.

The final step is to remove oracle queries from Comp. This is the only part that is

specific to the model ℳ being considered. This step can be seen as an ORE analog

of several recent results showing black box impossibilities for constructing obfuscation

from simple objects. We note however, as expanded on below, that there are some

crucial differences from obfuscation that make our proofs significantly different.

The Random Oracle Model. This first modelℳ we consider is the random oracle

model. Here,ℳ just implements a random function 𝒪. At a very high level, our compi-

lation is conceptually similar Canetti et al.’s Canetti et al. [2015] analogous compilation

for program obfuscation. They show how to compile out a random oracle from the eval-

uation of an obfuscation scheme. Roughly, the idea is that evaluation of the obfuscated

program will be “sensitive” only to the query points that were queried during the ob-

fuscation; all other points will be independent of the obfuscated code, and hence can be

answered randomly. Therefore, the obfuscator can just give the (polynomially-many)

sensitive query answers out as part of the obfuscated code, and now the evaluator can

answer any oracle query without actually making a call to the oracle.

In more detail, the sensitive queries can be split into two classes: “heavy” queries

that are somewhat likely to be queried when evaluating the program on a random

input, and “light” queries that are unlikely to be queried. Canetti et al. first run the

obfuscated code on a handful of random “test” points, and collect the random oracle

queries and responses. By setting the number of test queries to be sufficiently large,

they guarantee that all heavy queries will make it into the list of query/response pairs.

Then they just output this list as part of the obfuscated code. Since an adversary could

always run the code on random inputs and make the oracle queries, this cannot impact

the security of the obfuscator. However now the evaluator, on a random input, will

usually not need to make any oracle queries. Indeed, on a random input, the evaluator

will likely only need to query on heavy inputs (or non-sensitive inputs, which can be

answered randomly), which it already has included as a part of the obfuscated code.

The straightforward attempt at translating this approach to our setting is to first

30

encrypt a handful of random test plaintexts, run the comparison procedure between

each pair of test ciphertexts, and collect all of the oracle queries made. Then hand out

the list of query/response pairs as part of the public key.

Unfortuantely, this strategy does not work, for at least three reasons:

• First, the test ciphertexts will allow one to learn the approximate difference be-

tween points, violating ORE security. In particular, using the ORE comparison

procedure, one can compute the fraction of test ciphertexts lying between any

two given ciphertexts. This fraction, scaled up by the size of the plaintext space,

will approximately equal the difference between the plaintexts.

• Second, the notion of “sensitive” and “heavy” queries are specific to each individ-

ual plaintext, and not a global property of the encryption scheme. For example,

it could be that to encrypt a message 𝑚, the oracle is queried on 𝑚. 𝑚 will be a

sensitive and heavy query point only for the message 𝑚. Therefore, as we increase

the number of test ciphertexts, we also increase the number of sensitive and heavy

queries, making it more difficult to ensure that we eventually capture all heavy

queries for each ciphertext in question.

• Third, correctness will only hold plaintext drawn from the same distribution as

the test points — namely random plaintexts — whereas our steps above require

correctness to hold for any plaintexts

To overcome the first limitation, we will simply set our test ciphertexts to be the

smallest and largest several elements of the plaintext space. Now for any two ciphertexts

not at the extremes of the domain, there will be no test ciphertexts between; we can

therefore restrict the domain of actual ciphertexts to a smaller interval so as to not

collide with the test ciphertexts. This change unfortunately makes the third limitation

even worse: the test elements now are the extreme elements in the plaintext space, but

we need correctness to hold for all possible points in between.

To remedy the second limitation, we further modify the compiled scheme so that in

addition to comparing all pairs of test ciphertexts, any new ciphertext is also compared

31

to all of the test ciphertexts. If we set the number of test ciphertexts to be much larger

than the number of heavy queries for a ciphertext, then hopefully these comparisons

will generate all heavy queries. Indeed, each comparison will generate heavy queries

for one of the two ciphertexts being compared. Note, however, that at this point in

the discussion, it could be the case that the comparisons only generate heavy queries

for the test ciphertexts, which would be useless for establishing the correctness of the

scheme.

To overcome this issue, as well as the third limitation above, we will invoke ORE

security to switch back and forth between points in the middle of the plaintext space and

the extreme points at the ends of the plaintext space. Using security (as opposed to an

information-theoretic argument) means that the proof has to be phrased as a reduction,

which requires a delicate analysis. For example, an adversary cannot necessarily test

whether a query is sensitive or heavy, so our reduction cannot know if it learned all of

the important queries for a particular ciphertext. We give the full details in Section 3.4.

The Generic Group Model. Next, we consider the generic group model. Here,

there is a cyclic group G. We will consider the group represented additively. Each

group element is associated with a handle (that is, a bit string), and only the model

ℳ has access to the mapping. Everyone can query ℳ on a group element 𝑔 to get a

handle ℎ, and can also queryℳ on two handles ℎ1, ℎ2, receiving the handle for the sum

of corresponding group elements. However, it is not possible to queryℳ on a handle

ℎ and recover the original group element 𝑔.

An equivalent formulation is the following. Instead of being able to query on two

handles ℎ1, ℎ2 to get the handle for the sum, only the following is possible: query on a

vector h = (ℎ1, . . . , ℎ𝑖) of handles corresponding to group elements g = (𝑔1, . . . , 𝑔𝑖), and

a vector v = (𝑣1, . . . , 𝑣𝑖) of integers. The response will be a single bit: 0 if
∑︀

𝑗 𝑣𝑗𝑔𝑗 = 0,

and 1 otherwise. We call these queries zero test queries.

Our high-level proof strategy will be conceptually similar to Pass and Shelat Pass

32

and Shelat [2016], which show how to remove generic groups from obfuscation construc-

tions4. However, our setting faces similar complications as to the random oracle setting

above, requiring a much more delicate proof.

During encryption of a message 𝑚, Enc will query the generic group on several new

group elements 𝑔
(𝑚)
1 , . . . , 𝑔

(𝑚)
𝑡 , obtaining handles. Now, when comparing two cipher-

texts, Comp will make several zero test queries on various handles coming from 𝑚0,𝑚1.

Whenever Comp gets a 0 in response, it learns a linear constraint on the unknown 𝑔

elements. Suppose the probability of getting a 0 in comparison is 𝜇. We will assume

that 𝜇 is noticeably large, since otherwise the zero test queries would be useless, as one

could simulate them reasonably accurately just by always answering 1.

If the adversary sees 𝑞 ciphertexts, the total number of constraints she can find

will be 𝑂(𝜇𝑞2). And yet, the total number of unknown variables is only 𝑞𝑡. For large

enough 𝑞, this is much smaller than the number of constraints. The constraints are

then necessarily linearly dependent. This means that, analogous to the random oracle

case above, the adversary will be able to answer zero test queries for herself based

on the results of previous queries. We show using a similar strategy to the random

oracle setting how to compile the ORE scheme in a way that preserves security and

correctness, while removing the generic group oracle queries from Comp. Of course,

formalizing this intuition is non-trivial, and we give the details in Section 3.5.

Difficulties for extending to bilinear and multilinear maps. Pass and She-

lat’s Pass and Shelat [2016] proof naturally extends to bilinear maps and more generally

constant-degree multilinear maps. A natural question is whether or not our techniques

can be extended to these settings as well. Roughly, a bilinear map allows for zero-test

queries that are degree 2 polynomials, and a multilinear map allows for even higher

degree.

Pass and Shelat’s proof, as well as ours, inherently relies on linear algebra, so does

4We note that Mahmoody et al. Mahmoody et al. [2016] extend the Pass and Shelat results result to
any (even non-commutative) finite ring; we leave extending our impossibility to the non-commutative
setting as an interesting open problem

33

not immediately extend to non-linear settings. Indeed, their proofs and ours can-

not possibly work for general multilinear maps, as there do exist black box construc-

tions of obfuscation Brakerski and Rothblum [2014] and ORE Boneh et al. [2015] from

polynomial-degree multilinear maps.

Nonetheless, Pass and Shelat show how to extend their result to constant degree

multilinear maps. Essentially, the idea is to linearize the constant-degree polynomials

by describing them as linear combinations of monomials. Then using similar arguments

as in the generic group case, they show how to remove oracle queries from obfuscation.

Unfortunately, such linearization will not work in our setting, even in the bilinear

map case. Once we linearize, the total number of variables grows 𝑂((𝑞𝑡)2), while the

number of constraints is still only 𝑂(𝜇𝑞2). Since both grow with 𝑞2, the number of

variables always remains large than the number of constraints, so there is no linear

dependence amongst the constraints. Without this linear dependence the proof falls

apart. Another perspective for why the linearization does not work: in the bilinear

group model, Enc(𝑚) will query the generic group on new group elements 𝑔
(𝑚)
1 , . . . , 𝑔

(𝑚)
𝑡 ,

while the comparison on Enc(𝑚0),Enc(𝑚1) learns a degree-2 constraint on the variables,

containing monomials such as 𝑔
(𝑚0)
1 · 𝑔(𝑚1)

1 . However, note that this monomial only

appears in constraints obtained when compairing encryptions of 𝑚0 and 𝑚1; any other

pair of messages will give different monomials. Hence, the constraints for different pairs

of ciphertexts are linearly independent, making it difficult (if not impossible) to argue

that the results of certain comparisons will help us answer other comparisons. We leave

it as an interesting open question whether our impossibility can be extended to, say, the

bilinear map setting, and if not, giving a black-box construction of ORE from bilinear

maps.

3.2 Impossibility of information-theoretic ORE

In this section, we show that for information-theoretic ORE, full statistical security

is impossible if the message space is super-polynomial. Note that this is qualitatively

34

tight, as Lewi and Wu [2016] 5shows how to construct information-theoretic ORE where

the ciphertext size is polynomial in the size of the message space.

Note that our impossibility applies to schemes where the public/secret key are al-

lowed to be arbitrarily (e.g., exponentially) large, the running time of Enc, 𝒞 are allowed

to be arbitrary. However, the following restrictions must hold: 1) the size of ciphertexts

must be polynomially bounded, 2) the security must hold for arbitrary adversaries (even

for unbound adversary), 3) the adversary sees only a polynomial number of ciphertexts.

Now, we prove our theorem.

Theorem 3.2.1 In standard model, there does not exist fully statistically secure ORE

Π such that

• Π is partially correct;

• Π’s message space is super-polynomial;

• Π has succinct ciphertexts.

Roughly speaking, our proof strategy is: (1) prove the result in the simpler setting

where we insist on perfect correctness, and then (2) show how to convert any partially

correct information-theoretic ORE into a perfectly correct one.

3.2.1 Impossibility for perfect correct ORE

In this part, we consider the ORE scheme in the perfectly correct setting.

Theorem 3.2.2 In standard model, there does not exist statistically secure ORE Π

such that

• Π is perfectly correct;

• Π’s message space is super-polynomial;

• Π has succinct ciphertexts.

5here we treat the PRFs and PRPs in Lewi andWu [2016] as real random functions and permutations,
which achieving statistical security, rather than only computational security

35

Firstly, we give a brief description of our proof strategy. Let Π be an ORE scheme

on message space [𝑡 + 1], where 𝑡 = poly(𝜆), such that Π is perfectly correct and

statistically secure. We immediately observe that Π is 𝑡-time secure, next we show, for

any such an ORE, there exists an exponential lower bound on the size of the ciphertext

space (roughly 𝑂(2𝑡/2)), which means the size of ciphertext is at least poly(𝑡). Based

on that, it’s trivial to note that, for any ORE with super-polynomial message space,

the ciphertext size is at least poly(𝑡)(for arbitrary 𝑡 = poly(𝜆)). Then we set 𝑡 to be

sufficiently large to contradict the theorem statement.

The core technique we use is inspired by Erdös Erdős and Sós. Roughly, for any Π

with plaintext space [𝑡+1], we interpret its ciphertext space as a graph 𝐺𝑡+1, which has

a similar structure to the graphs studied in Erdős and Sós.Then we sample a sequence of

sub-graphs such that 𝐺𝑡+1 ⊇ 𝐺𝑡−1 ⊇ . . . 𝐺1
6 in a specific way(based on our ORE). After

that, we prove for any adjacent pair, we have E[log |𝐺𝑖|] ≥ E[log |𝐺𝑖−2|] + log(1.6),∀𝑖 ∈

{𝑡+ 1, 𝑡− 1, . . . , 3}, which means E[log |𝐺𝑡+1|] ≥ ⌊ 𝑡−12 ⌋ log 1.6. More precisely:

Lemma 3.2.3 In standard model, let Π be an perfectly correct 𝑡-time secure ORE on

message space [𝑡+ 1], then Π requires ciphertexts of size at least ⌊ 𝑡−12 ⌋ log 1.6

Proof: This proof applies a similar spirit to a proof technique used by Erdös Erdős

and Sós.

Let Π𝑡+1 = (Gen,Enc,Comp) be a perfect correct t-time secure ORE, with respect to

message space [𝑡+1] and ciphertext space 𝒞. We construct a new ORE Π*𝑡+1 as follows.

The public key for Π𝑡+1 defines a graph 𝐺𝑡+1, where the nodes of 𝐺𝑡+1 represent the

ciphertexts in 𝒞. We set the edges for 𝐺𝑡+1 as:

• If Comp(𝐶0, 𝐶1) = “ < ”, then there is a directed edge from 𝐶0 to 𝐶1,

• Otherwise, we arbitrarily assign a single directed edge between the two nodes.

By perfect correctness of Π𝑡+1, we note that there is at most one directed edge between

any two nodes, and if 𝐶0 and 𝐶1 are not simultaneously valid ciphertexts under the

6here we assume 𝑡 is even

36

same secret key (we can view this as 𝐶0 = Enc(sk0, 𝑖), 𝐶1 = Enc(sk1, 𝑗), and in such an

case they are the ciphertexts encrypted under distinct secret keys), we set an arbitrary

edge for these two nodes. Hence 𝐺𝑡+1 is a “tournament” graph. Now we define Π*𝑡+1 =

(Gen*𝑡+1,Enc
*
𝑡+1,Comp*𝑡+1):

• Gen*() Runs (𝑝𝑘, 𝑠𝑘) ← Gen(), computes 𝐺𝑡+1 as above, and outputs pk* =

(pk, 𝐺𝑡+1), sk
* = sk;

• Enc*(sk*,𝑚) It runs 𝐶 = Enc(sk*,𝑚), and outputs 𝐶* = 𝐶;

• Comp*(pk*, 𝐶*0 , 𝐶
*
1) If 𝐶*0 = 𝐶*1 , outputs “=”, else outputs “ < ” if there is

directed edge from 𝐶*0 to 𝐶*1 in 𝐺𝑡+1 , and “ > ” otherwise.

The only difference between Π𝑡+1 and Π*𝑡+1 is adding 𝐺𝑡+1 to the public key, which only

affects the efficiency of Gen and Comp, while perfect correctness and 𝑡-time security are

preserved.

Then, we sample the sub-graphs 𝐺𝑡−1 ⊇ . . . ⊇ 𝐺1(assume 𝑡 is even). For any 𝑗 ∈

{2, 4, . . . , 𝑡}, graph 𝐺𝑡+1−𝑗 is sampled as:

• Run (pk*, sk*) ← Gen*𝑡+1, compute 𝐶𝑖
𝐿 = Enc(sk*, 𝑖), 𝐶𝑖

𝑅 = Enc(sk*, 𝑡 + 1 − 𝑖) for

𝑖 ∈ [𝑗/2];

• Set 𝐺𝑡+1−𝑗 be the sub-graph of 𝐺𝑡+1 consisting of all nodes 𝑣 dominated by

{𝐶1
𝐿, . . . , 𝐶

𝑗/2
𝐿 } (that is, there is an edge from 𝐶𝑖

𝐿 to 𝑣 for all 𝑖) and dominate

{𝐶1
𝑅, . . . , 𝐶

𝑗/2
𝑅 } (that is, there is an edge from 𝑣 to 𝐶𝑖

𝑅 for all 𝑖).

Clearly, |𝐺1| ≥ 1, therefore it’s sufficient to prove that for 𝑗 ∈ {2, 4 . . . , 𝑡},

E(log |𝐺𝑡+3−𝑗 |) ≥ E(log |𝐺𝑡+1−𝑗 |) + log 1.6.

First, recall that Π* is 𝑡-time secure, implying the distribution of the encryptions for

37

𝑀⃗0 and 𝑀⃗1 are statistically close, over the probability (pk*, sk*)← Gen*𝑡+1, where,

𝑀⃗0 = (1, 2, . . . , 𝑗/2, 𝑗/2 + 1, 𝑡+ 1− 𝑗/2, . . . , 𝑡+ 1),

𝑀⃗1 = (1, 2, . . . , 𝑗/2, 𝑡− 𝑗/2, 𝑡+ 1− 𝑗/2, . . . , 𝑡+ 1).

Then, let 𝑓𝐿, 𝑓𝑅 be the expected fraction of of nodes in 𝐺𝑡+3−𝑗 that are dominated by

Enc(𝑗/2 + 1),Enc(𝑡− 𝑗/2), respectively. Due to security, we have

(pk*,Enc(𝑀⃗0))
stat
≈ (pk*,Enc(𝑀⃗1))⇒ |𝑓𝐿 − 𝑓𝑅| ≤ negl ≤ 1/4.

Besides, 𝐺𝑡+3−𝑗 is also tournament, which indicates the expected fraction of nodes in

𝐺𝑡+3−𝑗 that dominate Enc(𝑡− 𝑗/2) is

1− 𝑓𝑅 ≤ 1− 𝑓𝐿 + 1/4.

Moreover, 𝐺𝑡+1−𝑗 is the intersection of the nodes in 𝐺𝑡+3−𝑗 which dominate Enc(𝑡−𝑗/2)

and which are dominated by Enc(𝑗/2 + 1), the ratio |𝐺𝑡+1−𝑗 |/|𝐺𝑡+3−𝑗 | is at most the

minimum of:

• The fraction of nodes in 𝐺𝑡+3−𝑗 which dominate Enc(𝑡− 𝑗/2),

• The fraction of nodes in 𝐺𝑡+3−𝑗 dominated by Enc(𝑗/2 + 1).

Now, we can upper bound E[log |𝐺𝑡+1−𝑗 |] as:

E[log |𝐺𝑡+1−𝑗 |] = E[log |𝐺𝑡+3−𝑗 |] + E[log
|𝐺𝑡+1−𝑗 |
|𝐺𝑡+3−𝑗 |

]

≤ E[log |𝐺𝑡+3−𝑗 |] + logE[
|𝐺𝑡+1−𝑗 |
|𝐺𝑡+3−𝑗 |

] Jensen’s inequality

≤ E[log |𝐺𝑡+3−𝑗 |] + logmin(𝑓𝐿, 1− 𝑓𝐿 + 1/4)

≤ E[log |𝐺𝑡+3−𝑗 |] + log
1 + 1/4

2
= E[log |𝐺𝑡+3−𝑗 |]− log 1.6.

For the last line, we used the fact that for any 𝑓𝐿, min(𝑓𝐿, 𝑐 − 𝑓𝐿) ≤ 𝑐
2 . Putting

38

everything together, we have

E[log |𝐺𝑡+1|] ≥ E[log |𝐺1|] + ⌊
𝑡− 1

2
⌋ log 1.6.

In addition, applying exactly the same technique, the theorem also holds when 𝑡 is

odd. Now, we complete the entire proof for Theorem 3.2.2. Suppose Π is an ORE

such that: 1) Π is perfect correct and statistically secure; 2) Π’s message space is

[𝑁], where 𝑁 is super-polynomial; 3) Π has succinct ciphertexts, which is bounded by

𝑟 = poly(𝜆, log𝑁). Then, let 𝑡 = 4𝑟 (𝑡 is still polynomial here), we know that Π is

𝑡-time secure. According to Lemma 3.2.3, 𝑟 ≥ ⌊ 𝑡−12 ⌋ · log 1.6 > 𝑟, a contradiction.

3.2.2 Boosting to perfect correctness

To strengthen our result, we also consider ORE scheme that is only partially correct,

and in this part, we show how to boost any partially correct scheme to a perfectly

correct one.

Theorem 3.2.4 If there exists partially correct and statistically secure ORE in the

standard model that has succinct ciphertexts and super-polynomial message space, then

statistically secure ORE in standard model with succinct ciphertexts and perfect cor-

rectness on the same message space exists.

Proof: Let Π = (Gen,Enc,Comp) be an ORE in the standard model such that

1. Π is 1
2 + 𝜌 correct, where 𝜌 is noticeable;

2. Π’s message space is [𝑁], where 𝑁 is super-polynomial;

3. Π* has succinct ciphertexts, which is bounded by 𝑟 = poly(𝜆, log𝑁).

Then we construct a new ORE Π′ = (Gen′,Enc′,Comp′) that is statistically correct.

More precisely, let 𝑠 = 2
𝜌2

log𝑁2𝜆, we define Π′ as

• Gen′(𝜌, log𝑁,𝜆) runs (pk𝑖, sk𝑖)
𝑠
𝑖=1 ← Gen(), and outputs pk′ = (pk𝑖)

𝑠
𝑖=1; sk

′ =

(sk𝑖)
𝑠
𝑖=1;

39

• Enc′(sk′,𝑚) runs 𝐶𝑖 = Enc(sk𝑖,𝑚), 𝑖 ∈ [𝑠] Outputs 𝐶⃗ = (𝐶1, . . . , 𝐶𝑠);

• Comp′(pk′, 𝐶⃗0, 𝐶1) let 𝐶⃗0 = (𝐶0
1 , . . . , 𝐶

0
𝑠), 𝐶⃗1 = (𝐶1

1 , . . . , 𝐶
1
𝑠), outputs the majority

of (Comp(𝑝𝑘𝑖, 𝐶
0
𝑖 , 𝐶

1
𝑖))

𝑠
𝑖=1.

We immediately observe that Π′ also has succinct ciphertexts, and by hybrid argument,

it’s easy to have that Π′ is statistically secure. Now, applying Chernoff Bound, we have

Pr[Π′ is correct] ≥ 1− 𝑒
− 1

1+2𝜌
𝑠𝜌2 ≥ 1− 1

𝑁2
𝑒−𝜆.

We note Π′ is statistically correct such that: within overwhelming probability over the

choice of (pk′, sk′), the comparison is correct for all message pairs. Then we construct

the perfectly correct ORE Π* = (Gen*,Enc*,Comp*), same as Π′ except we modify

Gen*: it draws (pk*, sk*) , conditioned on correctness holding for all message pairs. As

Π′
stat
≈ Π*, this only negligibly changes the distribution of keys, Π* is also statistically

secure. Notice that Gen* is no longer efficient even if Gen was. Fortunately, our notion

in standard model allows us to have inefficient Gen. Thus, statistically secure ORE in

standard model with succinct ciphertexts and perfect correctness on the same message

space exists.

Combing Theorem 3.2.2 and 3.2.4, we establish Theorem 3.2.1.

3.3 Impossibility of statistically secure ORE In idealized models

In this section, we begin our investigation of ORE in idealized models, where the algo-

rithms of ORE have access to the modelℳ (ℳ is deterministic and computable). We

give a unified strategy to help answer prove statements of the form:

For some particular idealized model ℳ, there does not exist randomized, partially cor-

rect and statistically secure ORE that has succinct ciphertexts with super-poly message

space

Roughly speaking, our strategy is consist of four steps:

40

• Convert a randomized, partially correct and statistically secure ORE in an ideal-

ized model into a deterministic, partially correct and statistically secure ORE in

the same model,

• Compile the scheme to remove the oracle queries from the comparison procedures;

• Remove the model from ORE completely,

• Invoke Theorem 3.2.1 to finish the impossibility.

In this section, we show that step 1 and 3 is achievable for any deterministic and

computable modelℳ, and we note that when achieving step 3, it indicates the existence

of partially correct and statistically secure ORE in standard model, which conflicts our

result in Theorem 3.2.1. Hence the only step that depends on the exact model in

question is step 2, removing the oracle query access from the comparison while still

preserving the partial correctness and statistical security. In later sections, we will

show how to do this for the random oracle model and generic group model.

Theorem 3.3.1 If there exists a randomized partially correct and statistically secure

ORE in idealized modelℳ that has succinct ciphertexts and super-polynomial message

space, then deterministic, partially correct and statistically secure ORE in the same

modelℳ with succinct ciphertexts on the same message space exists.

Proof: ORE typically allows for randomized encryption. We may even allow for ran-

domized comparison. However, we will show how to convert such a scheme into a

deterministic one.

To handle a randomized comparison, we simply add a sequence of random coins to the

secret key and every individual ciphertext. These random coins will be used for any

run of 𝒞. While in the original scheme, each run of 𝒞 uses independent randomness,

here we use the same randomness every time. However, since the experiment defining

correctness only considers a single run of 𝒞, the correctness probability is not affected

by this change.

41

To handle a randomized encryption, we just generate the random coins 𝑟𝑚 for every

message 𝑚, and include 𝑟𝑚 in the secret key. When encrypting a message 𝑚, encrypt

using the random coins 𝑟𝑚. Notice that this blows up the secret key size. However, note

that for this work we do not care about the size of the secret key; it can be exponential

in size, and still our impossibility will hold. We note that another approach is to have

𝑟𝑚 be the output of a PRF evaluated on 𝑚; suitable PRFs can be built from most

interesting models, including the random oracle and generic group models we consider.

This prevents the secret key length from exploding. However, this is unnecessary for

our purposes.

Suppose Π = (Genℳ,Encℳ,Compℳ) be a randomized ORE where encryption and

comparison procedures are both randomized, then we construct Π* as:

• Gen* runs (pk, sk)← Gen, samples 𝑁 +1 randomness (𝑟, 𝑟1, . . . , 𝑟𝑁), and outputs

pk* = pk, sk* = (sk, 𝑟, 𝑟1, . . . , 𝑟𝑁);

• Enc*(sk*,𝑚) runs 𝐶 = Encℳ(sk,𝑚, 𝑟𝑚) and outputs 𝐶* = (𝐶||𝑟);

• Comp*(pk*, 𝐶*0 , 𝐶
*
1) outputs Compℳ(pk, 𝐶0, 𝐶1, 𝑟).

We note that Π* is a deterministic ORE now, both in encryption and comparison.

Moreover, ignoring 𝑟 for ciphertexts, as long as we do not encrypt the same message

twice, the distribution of the ciphertext in Π* is exactly the same as Π’s. We note that

the correctness is well preserved. In fact, according to the partial correctness definition,

the randomness used in Comp is uniform just as in the original scheme.

For statistical security, we see that the adversary only additionally learns a random

string (𝑟, used for 𝒞) after it submits the message sequence, and the random string is

independent of the message sequence, hence the adversary does not gain more informa-

tion than in Π. Thus, statistical security is also preserved.

From now on, we treat ORE scheme as deterministic encryption and the message

space is super-polynomial, unless otherwise specified.

42

Theorem 3.3.2 If there exists partially correct and statistically secure ORE in ideal-

ized model that makes no query toℳ in comparison procedure and has succinct cipher-

text, then partially correct and statistically secure ORE in standard model exists that

has succinct ciphertexts.

Proof: This proof is very straightforward. Since there is no access to ℳ during the

comparison procedure, there is no need for the idealized model to be public. Instead, we

setℳ as part of the secret key and only the encrypter has access to it. Not giving the

adversary access toℳ only helps security. Of course, in such a setting, the secret key

is now exponentially large, and encryption is no longer efficient. However, our notion

of ORE in standard model allows such large key and inefficiencies of encryption, which

completes the proof.

The only remaining part is step 2, which is model-specific and non-trivial. We need

to removeℳ from comparison procedures, while the input of Comp only includes the

public key and ciphertext, and we cannot just absorb the model to the public key as

we did in Theorem 3.3.2. Otherwise, the adversary would have the complete access to

the oracle, indicating that it gains more information than it has in 𝑡-time statistical

security game, and might break the game. Hence, we need to find ways to simulate the

model while still preserving the statistical security. In the next two sections, we present

our methods on two specific models: random oracle model and generic group model.

3.4 Impossibility for ORE in Random Oracle Model

In this section, we finish the separation result in the case thatℳ is a random oracle,

which we denote by 𝒪. Using the results of Sections 3.2 and 3.3, it remains to show

that the random oracle model can be removed from the comparison procedure of an

ORE scheme. Our proof is inspired by Canetti et al. [2015], which shows how to

remove random oracles from obfuscation schemes. However, for reason’s outlined in the

introduction, the technical details of our proof will be substantially different.

We first observe the following. Consider running Comp𝒪(𝐶0, 𝐶1) where 𝐶0, 𝐶1 en-

crypt 𝑚0,𝑚1 respectively. Consider an oracle query 𝑥 made by Comp. If 𝑥 was not a

43

query made during encryption (Enc𝒪(𝑚0),Enc
𝒪(𝑚1)), then we claim Comp must out-

put the right answer, even if it is given the incorrect query response. Indeed, for any

possible response 𝑦′, there is an oracle 𝒪′ that is consistent with 𝒪 on the points queried

during encryption of 𝑚0,𝑚1, but where 𝒪′(𝑥) = 𝑦′. Therefore, any potentially incor-

rect query answer can be “explained” by an oracle 𝒪′, and correctness of the scheme

says that Comp must still output the right value in this case.

For a particular run of Comp on encryptions of 𝑚0,𝑚1, we therefore call the oracle

queries made during encryption “sensitive” queries. Comp only needs access to 𝒪 on

sensitive queries; for all others, it can answer randomly. The difficulty, then, is (1)

allowing Comp to figure out the sensitive queries, and (2) giving it the right oracle

answers in this case.

For simplicity, consider two extremes. On the one end, suppose none of Comp’s

queries are ever sensitive. In this case, Comp can just ignore its oracle entirely, sim-

ulating the responses with random answers. In this case, we are already done. In

the other extreme, suppose all of Comp’s queries are always sensitive. In this case, if

the adversary sees ℓ ciphertexts, she expects to make at least Ω(ℓ2) oracle queries on

sensitive queries. However, there are only 𝑞ℓ possible query values, where 𝑞 is the num-

ber of queries made during each encryption. Therefore, heuristically, we may expect

to eventually pick of all of the sensitive queries made during encryption by setting ℓ

large enough (namely, bigger than 𝑞). Even so, security must hold. Therefore, we can

construct a modified scheme where Enc simply outputs all the queries it makes and the

corresponding answers along with the ciphertext. Then all the sensitive queries Comp

needs are provided as input, and it does not need to make any oracle queries.

To formalize the above sketch, we must show how to handle cases between the two

extremes, where some of Comp’s queries are sensitive, and others are not, and we cannot

necessarily tell which is the case. Moreover, we need to deal with the fact that we may

not actually get all of the sensitive queries if there are sufficiently many collisions. In

this case, handing out all of the queries made during encryption could actually hurt

security (for example, if a query is made on the message itself). Nonetheless, we now

prove the following theorem:

44

Theorem 3.4.1 If there exists partially correct and statistically secure ORE in ran-

dom oracle model that has succinct ciphertexts, then there exists partially correct and

statistically secure ORE with succinct ciphertexts such that the comparison procedures

makes no queries to the random oracle.

Proof: Let Π0 = (Gen0,Enc
𝒪
0 ,Comp𝒪0) be a statistically secure ORE in the random

oracle model with plaintext space [𝑁]. Here, we assume Gen0 makes no queries to 𝒪.

This is actually without loss of generality: since 𝒪 is a deterministic oracle, we can

always treat sk as the random coins inputted to Gen0, and run Gen0 every time we

encrypt a message.

For convenience, we denote Pr[Π0] as the lower bound on the correctness probability:

Pr[Π0] = min
𝑚0,𝑚1

Pr[Comp𝒪0 (pk, 𝐶0, 𝐶1) = Order(𝑚0,𝑚1) : (pk, sk)← Gen0(1
𝜆)],

where 𝐶𝑏 = Enc𝒪(sk,𝑚𝑏). We assume that Comp0(pk0, 𝐶0, 𝐶1) does not query the same

point twice; since 𝒪 is deterministic, Comp0 can always store a table of query/response

pairs already seen, and use this table to answer subsequent queries on the same point.

Here we specify some parameters:

1. Pr[Π0] ≥ 1
2 + 2𝜌, where 𝜌 is noticeable; 𝑞, 𝑢 = poly(𝜆) by query efficiency; 𝑠 :=

110𝑢4·𝑞2
𝜌3

; 𝑠𝑖 :=
110𝑢3·𝑞2·𝑖

𝜌3
, 𝑖 ∈ [𝑢],

2. Enc𝒪0 makes 𝑞 queries to the oracle 𝒪. Let 𝑄sk,𝑚 be the set of query-answer

pairs made when encrypting 𝑚 under key sk. Notice that the set 𝑄sk,𝑚 is fully

determined by sk and 𝑚 since Enc and 𝒪 are deterministic,

3. Comp𝒪0 makes 𝑢 queries to the oracle 𝒪. Let 𝑆pk,𝑚0,𝑚1 be the set of query-answer

pairs made when comparing the encryptions of (𝑚0,𝑚1) under key pk. Again,

𝑆pk,𝑚0,𝑚1 is fully determined by pk, sk,𝑚0,𝑚1,

4. 𝐷 := [𝑠] ∪ [𝑁 − 𝑠+ 1, 𝑁];𝐷𝑖 := [𝑠𝑖] ∪ [𝑁 − 𝑠𝑖 + 1, 𝑁], 𝑖 ∈ [𝑢],

5. 𝑇𝑖 = [𝑖] ∪ [𝑁 − 𝑖+ 1, 𝑁], 𝑖 ∈ [𝑁].

45

Next we construct a new ORE Π* = (Gen,Enc𝒪,Comp) with plaintext space [𝑠+1, 𝑁−𝑠]

as:

• Gen() runs (pk0, sk0) ← Gen0(), computes 𝐶𝑖 = Enc𝒪0 (sk0, 𝑖), 𝑖 ∈ 𝐷 and outputs

pk = pk0, sk = (sk0, {𝐶𝑖}𝑖∈𝐷);

• Enc𝒪(sk,𝑚) runs 𝐶 ← Enc𝒪0 (sk0,𝑚). Then it runs Comp𝒪0 (pk0, 𝐶𝑖, 𝐶) for all

𝑖 ∈ 𝐷, recording all query-answer pairs 𝑆pk,𝑚 = ∪𝑖∈𝐷𝑆pk,𝑚,𝑖. Then it outputs

𝐶* = (𝐶, 𝑆pk,𝑚);

• Comp(pk, 𝐶*0 , 𝐶
*
1) : let 𝐶*0 = (𝐶0, 𝑆0), 𝐶

*
1 = (𝐶1, 𝑆1). Run Comp𝒪0 (pk0, 𝐶0, 𝐶1),

except that when querying the oracle with input 𝑥, do the following:

1. If there is a pair (𝑥, 𝑦) in 𝑆0 ∪ 𝑆1, Comp responds to the query with 𝑦;

2. Otherwise, returns a random string.

We note that in the comparison procedure of Π*, we remove the oracle access, so it

remains to show that Π* is statistically secure and partially correct.

Lemma 3.4.2 If Π0 is 𝑡+ 2𝑠 statically secure, then Π* is 𝑡-time statically secure.

The entire view of the the adversary 𝒜 in the 𝑡-time experiment for Π* can be simulated

by a 𝑡 + 2𝑠-time adversary ℬ for Π0: the lists of messages are those produced by 𝒜,

plus all the messages in 𝐷. Then, the lists 𝑆 associated with ciphertext 𝐶 can be

constructed by comparing 𝐶 to each of the 𝐶𝑖 for 𝑖 ∈ 𝐷.

It’s obvious that Lemma 3.4.2 holds for any 𝑡 = poly(log𝑁,𝜆), which means Π* is

statistically secure. And what’s more interesting is that Π*’s partial correctness. In

the following, we prove that Π* also preserves partial correctness, though there is some

loss in the concrete correctness parameter.

Lemma 3.4.3 Pr[Π*] ≥ 1
2 + 𝜌.

We establish our proof by hybrid argument, and define 𝑢 alternative ORE schemes

Π𝑗 = (Gen𝑗 ,Enc
𝒪
𝑗 ,Comp𝒪𝑗), 𝑗 ∈ [𝑢] on message space [𝑠𝑗 + 1, 𝑁 − 𝑠𝑗]:

46

• Gen𝑗() runs (pk0, sk0) ← Gen0(), computes 𝐶𝑖 = Enc𝒪0 (sk0, 𝑖) for 𝑖 ∈ 𝐷𝑗 and

outputs pk𝑗 = pk0, sk𝑗 = (sk0, {𝐶𝑖}𝑖∈𝐷𝑗);

• Enc𝒪𝑗 (sk𝑗 ,𝑚) runs 𝐶 ← Enc𝒪0 (sk0,𝑚) and Comp𝒪0 (pk0, 𝐶𝑖, 𝐶) for 𝑖 ∈ 𝐷𝑗 , records

all query-answer pairs 𝑆pk,𝑚 = ∪𝑖∈𝐷𝑗𝑆𝑝𝑘,𝑚,𝑖 and outputs 𝐶* = (𝐶, 𝑆pk,𝑚);

• Comp𝒪𝑗 (pk𝑗 , 𝐶
*
0 , 𝐶

*
1) : let 𝐶

*
0 = (𝐶0, 𝑆0), 𝐶

*
1 = (𝐶1, 𝑆1). It runs Comp𝒪0 (pk𝑗 ,

𝐶0, 𝐶1), except that when querying 𝒪 with input 𝑥, it does the following:

1. If 𝑥 is one of the first 𝑢− 𝑗 queries, make a query to 𝒪 as usual,

2. If 𝑥 is one of the final 𝑗 queries and there is a pair (𝑥, 𝑦) ∈ 𝑆0 ∪ 𝑆1, then

respond with 𝑦,

3. Otherwise, returns a random string.

We observe that Π𝑢 = Π*, hence it suffices to prove the following lemma,

Lemma 3.4.4

Pr[Π𝑗] ≥ Pr[Π𝑗−1]−
𝜌

𝑢
,∀𝑗 ∈ [𝑢]

We here only prove the case 𝑗 = 1, the rest can be handled analogously. Specifically,

we show Pr[Π1] ≥ 1
2 + 2𝜌− 𝜌

𝑢 .

According to the definition, we see that Comp1 works the same as Comp0, except for

the final query 𝑥 to 𝒪 in which we use the list of oracle outputs provided with the

ciphertext to answer the oracle query. We prove that the response made by Π1 for 𝑥

does not significantly harm the ability of Comp1 to output the correct answer. To do

so, we introduce yet another sequence of 𝑠1 ORE schemes Π1,𝑗 , 𝑗 ∈ [𝑠1] on message

space [𝑗 + 1, 𝑁 − 𝑗]. The only difference between Π1,𝑗 and Π1 is the number of test

ciphertexts that are generated.

• Gen1,𝑗() runs (pk0, sk0) ← Gen0(), computes 𝐶𝑖 = Enc𝒪0 (sk0, 𝑖) for 𝑖 ∈ 𝑇𝑗 and

outputs pk1,𝑗 = pk0, sk = (sk0, {𝐶𝑖}𝑖∈𝑇𝑗);

• Enc𝒪1,𝑗(sk1,𝑗 ,𝑚) runs 𝐶 ← Enc𝒪0 (sk0,𝑚) and Comp𝒪0 (pk0, 𝐶𝑖, 𝐶) for 𝑖 ∈ 𝑇𝑗 , records

all query-answer pairs 𝑆
(𝑗)
pk,𝑚 = ∪𝑖𝑆pk,𝑚,𝑖 and outputs 𝐶* = (𝐶, 𝑆

(𝑗)
pk,𝑚);

47

• Comp𝒪1,𝑗(pk1,𝑗 , 𝐶
*
0 , 𝐶

*
1) : let 𝐶

*
0 = (𝐶0, 𝑆0), 𝐶

*
1 = (𝐶1, 𝑆1). It runs Comp𝒪0 (pk1,𝑗 ,

𝐶0, 𝐶1), except that when querying 𝒪 with input 𝑥, it does the following:

1. If 𝑥 is one of the first 𝑢− 1 queries, make a query to 𝒪 as usual,

2. If 𝑥 is the final query and there is a pair (𝑥, 𝑦) ∈ 𝑆0 ∪ 𝑆1, then respond with

𝑦,

3. Otherwise, returns a random string.

We note that Π1 = Π1,𝑠1 . We now claim that increasing 𝑗 must improve the correctness

of the scheme:

Claim 3.4.5 If Pr[Π1,𝑗] <
1
2 + 2𝜌− 𝜌

𝑢 , then Pr[Π1,𝑗+1] ≥ Pr[Π1,𝑗] +
𝜌3

110𝑢3·𝑞2

Notice that this means as 𝑗 increases, Pr[Π1,𝑗] must increase by increments of at least

1
𝑠1

= 𝜌3

110𝑢3·𝑞2 until Pr[Π1,𝑗] ≥ 1
2 + 2𝜌 − 𝜌

𝑢 . Therefore, by setting 𝑗 = 𝑠1, we get that

Pr[Π1] = Pr[Π1,𝑗] ≥ 1
2 + 2𝜌− 𝜌

𝑢 as desired. It remains to prove the claim.

Assuming Pr[Π1,𝑗] <
1
2 + 2𝜌 − 𝜌

𝑢 , there are two messages 𝑚*0,𝑚
*
1 minimizing the cor-

rectness probability; that is, the comparison procedure on encryptions of 𝑚*0,𝑚
*
1 out-

puts the correct answer with probability less than 1
2 + 2𝜌 − 𝜌

𝑢 . Since comparison suc-

ceeding is a detectable event, we can invoke the security of ORE to conclude that,

for any 𝑚0,𝑚1, comparison must output the correct answer with probability at most

1
2 + 2𝜌− 𝜌

𝑢 + negl < 1
2 + 2𝜌− 2𝜌

3𝑢 .

Fix two messages 𝑚0,𝑚1 ∈ [𝑠1 + 1, 𝑁 − 𝑠1]. We denote 𝑆(𝑗) := 𝑆
(𝑗)
pk,𝑚0

∪ 𝑆
(𝑗)
pk,𝑚1

;𝑄 :=

𝑄sk,𝑚0 ∪ 𝑄sk,𝑚1 . Let 𝑥 be the final query made when comparing the encryptions of

𝑚0,𝑚1.

Define the event Bad𝑗 where the following happens:

• 𝑥 ∈ 𝑄 ∖ 𝑆(𝑗), so that 𝑥 was queried during the encryption of 𝑚0 or 𝑚1, but not

during any of the comparisons to the test ciphertexts.

• Comp𝒪0 outputs the correct answer on encryptions of 𝑚0,𝑚1.

48

• Comp𝒪1,𝑗 outputs the incorrect answer on encryptions of 𝑚0,𝑚1.

We consider four cases:

• 𝑥 ∈ 𝑆(𝑗) In this case, Π1 answers the same as Π1,𝑗 since it has access to 𝒪(𝑥)

• 𝑥 /∈ 𝑄 Then the ciphertexts components 𝐶0, 𝐶1 under Π0 are independent of

𝒪(𝑥), meaning that during the correctness experiment, 𝒪(𝑥) in Π0 is a random

string. Hence Π1 answers the query with the correct distribution.

• 𝑥 ∈ 𝑄 ∖ 𝑆(𝑗), but Bad𝑗 does not occur. Here, we must have that Comp0 either

produced the incorrect answer, or Comp1,𝑗 produced the correct answer.

• Bad𝑗 occurs In this case, 𝐶0, 𝐶1 will depend on 𝒪(𝑥), while Π1,𝑗 cannot find

it in 𝑆(𝑗). Hence, Π1,𝑗 will answer randomly, but Comp may expect an answer

correlated with 𝐶0, 𝐶1. Moreover, we know that by answering randomly, Comp1,𝑗

goes from outputting the correct answer to the incorrect answer.

We note in the first three cases above, the expected correctness probability does not

decrease relative to Π1,𝑗 . Indeed, in the first and third cases, Π1,𝑗 is at least as correct

as Π0, and in the second case, Π1,𝑗 in expectation has the same correctness as Π0. Only

in the final case might answering randomly decrease the probability of correctness.

Therefore, since comparison in Π1,𝑗 outputs the correct answer with probability less

than 1
2 + 2𝜌− 2𝜌

3𝑢 , we must have Pr[Bad𝑗] >
2𝜌
3𝑢 .

We consider two sub-events of Bad𝑗 , denoted Bad
(𝑏)
𝑗 , corresponding to 𝑥 ∈ 𝑄sk,𝑚𝑏

/𝑆.

Notice that Pr[Bad𝑗] ≤ Pr[Bad
(0)
𝑗] + Pr[Bad

(1)
𝑗]. By our assumption above, we have

max{Pr[Bad(0)𝑗],Pr[Bad
(1)
𝑗]} > 𝜌

3𝑢 . We will assume that Pr[Bad
(0)
𝑗] > 𝜌

3𝑢 , the other case

handled analogously

Next we split the message space into two parts: [𝑗 + 1, 𝑁2] and [𝑁2 + 1, 𝑁 − 𝑗], and

sample 𝑤 ← [𝑗 + 1, 𝑁2] and 𝑧1, . . . , 𝑧ℓ ← [𝑁2 + 1, 𝑁 − 𝑗], where ℓ = 6𝑢·𝑞
𝜌 . Let 𝑡𝑖 be the

indicator as:

𝑡𝑖 =

⎧⎪⎪⎨⎪⎪⎩
1 if Bad

(0)
𝑗 occurs for message pair (𝑤, 𝑧𝑖),

0 Otherwise.

49

and 𝑇 be the event that
∑︀ℓ

𝑖=1 𝑡𝑖 > 𝑞, we must have that:

Pr[𝑇] · ℓ+ 𝑞 · (1− Pr[𝑇]) ≥ E(
ℓ∑︁

𝑖=1

𝑡𝑖) > 2𝑞 ⇒ Pr[𝑇] >
𝜌

6𝑢
,

as Pr[𝑡𝑖 = 1] > 𝜌
3𝑢 , which refers E

[︁∑︀ℓ
𝑖=1 𝑡𝑖

]︁
> ℓ · 𝜌

3𝑢 > 2𝑞.

For three messages 𝑚0,𝑚1,𝑚2, 𝑚0 < 𝑚1 < 𝑚2, we define the event Collision as the

following: the final queries 𝑥1, 𝑥2 when comparing encryptions of 𝑚0 to 𝑚1 and re-

spectively 𝑚0 to 𝑚2 satisfy: (1) Bad
(0)
𝑗 occurs simultaneously for both (𝑚0,𝑚1) and

(𝑚0,𝑚2), and (2) 𝑥1 = 𝑥2.

We observe that if 𝑇 occurs, there are at least 𝑞+1 index such that 𝑡𝑖 = 1. Moreover, in

Enc𝒪1,𝑗(𝑤), there are at most 𝑞 distinct queries. This means there is some 𝑧𝑖1 < 𝑧𝑖2 such

that Bad
(0)
𝑗 occurs for both (𝑤, 𝑧𝑖1) and (𝑤, 𝑧𝑖2) and moreover the final query in both

comparisons is identical. This in particular means that Collision happens for (𝑤, 𝑧𝑖1 , 𝑧𝑖2).

Now we bound the probability of Collision for a random message 𝑤 in [𝑗 + 1, 𝑁2] and

random distinct 𝑧*1 , 𝑧
*
2 in [𝑁2 + 1, 𝑁 − 𝑗]. One way to sample random 𝑤, 𝑧*1 , 𝑧

*
2 is to

sample 𝑤 at random in [𝑗 + 1, 𝑁2], and sample ℓ random distinct 𝑧𝑖 in [𝑁2 + 1, 𝑁 − 𝑗].

Then we choose two random indices 𝑖1, 𝑖2, and set 𝑧*𝑏 = 𝑧𝑖𝑏 . The above analysis shows

that with probability at least 𝜌/6𝑢, there some Collision among the 𝑧𝑖. Since 𝑧*𝑏 are

chosen as a random pair from this set, there is a collision in 𝑧*1 , 𝑧
*
2 with probability at

least

Pr[Collision for random (𝑤, 𝑧*1 , 𝑧
*
2)]} ≥

1(︀
ℓ
2

)︀ · Pr[𝑇] > 𝜌3

108𝑢3 · 𝑞2
.

Now, we would like to use security of ORE to show that Collision happens for arbitrary

fixed triples 𝑚0,𝑚1,𝑚2. Unfortunately, Collision is not necessarily detectable by an

adversary, since an adversary does not know 𝑄. Instead, we define a slightly different

event Collision′. Collision′ is the same as Collision except that it removes the requirement

that the common query 𝑥 is in 𝑄 for either 𝑤, 𝑧*1 or 𝑤, 𝑧*2 . Since Collision implies

Colision′, we must have that Collision′ happens with probability at least 𝜌3

108𝑢3·𝑞2 for a

random 𝑤, 𝑧*1 , 𝑧
*
2 .

50

Now, Collision′ is an event that can be detected by an adversary, thus by statistical

security, we have that for arbitrary (𝑚0,𝑚1,𝑚2) ∈ [𝑗 + 1, 𝑁 − 𝑗],

Pr[Collision′ for (𝑚0,𝑚1,𝑚2)] ≥
𝜌3

108𝑢3 · 𝑞2
− negl >

𝜌3

110𝑢3 · 𝑞2
.

Specifically, let 𝑚2 = 𝑁 − 𝑗, we see that for any (𝑚0,𝑚1) ∈ [𝑗 + 2, 𝑁 − 𝑗 − 1], if we

move to Π1,𝑗+1, 𝑚2 is included in the test queries for the scheme. Notice that Collision′

means that in Π1,𝑗 , comparing 𝑚0,𝑚1 would have been incorrect (since the final query

is answered randomly), but in Π1,𝑗+1 comparing 𝑚0,𝑚1 would be correct due to the

additional queries provided from comparing 𝑚0,𝑚2 (since comparing 𝑚0,𝑚2 would add

the missing query 𝑥 to the list of queries included in the encryption of 𝑚0). Thus:

Pr[Π1,𝑗+1] ≥ Pr[Π1,𝑗] +
𝜌3

110𝑢3 · 𝑞2
⇒ Pr[Π1] ≥ Pr [Π0]−

𝜌

𝑢
.

Now we have shown that Pr[Π1] ≥ Pr [Π0]− 𝜌
𝑢 . This handles the case of Π1. However,

note that at this point, what use to be the second-to-last query is now the last query

(since the last query is no longer made). Therefore, we can apply the exact same

techniques as above to handle the general case of Π𝑗 , giving

Pr[Π𝑗+1] ≥ Pr [Π𝑗]−
𝜌

𝑢
.

Combing together, we get

Pr[Π*] ≥ 1

2
+ 𝜌.

which completes the entire proof.

3.5 Impossibility for ORE in Generic Group Model

In this section, we finish the separation result in generic group model, which we de-

note by 𝒢. It remains to show that the generic group oracle model can be removed

from the comparison procedure of any ORE scheme. Our strategy is inspired by Pass

51

and Shelat [2016], which shows how to remove constant graded encoding from ob-

fuscation schemes.Without loss of generality, we can assume that the ORE scheme

Π = (Gen,Enc𝒢 ,Comp𝒢) satisfies the following:

• Gen makes no queries to 𝒢.

• Enc has the access of both labeling and zero-test query, while Comp only makes

zero-test queries. This is because Comp gains no advantage by making labeling

queries; it can always keep track of any group element it would have made a

labeling query on, and adjust the 𝑣0 term in a zero-test query to compensate.

• Let ℎ⃗𝑚 be the vector of handles returned by the labeling queries during the

encryption of 𝑚. We will assume the comparison procedure, when comparing

encryptions of 𝑚0,𝑚1, only makes zero-test queries using handles derived during

the encryption. In other words, it will always have the form (⃗ℎ𝑚0 , ℎ⃗𝑚1 , 𝑣⃗). We

can assume this as Comp′𝑠 view only depends on those labels; if it queried the

zero-test on other labels, then it would somehow be guessing labels it never saw

before, which is statistically unlikely.

• For any 𝑚, |⃗ℎ𝑚| = |⃗𝑔𝑚| = 𝑞, where 𝑞 = poly(𝜆) is a fixed integer.

Then we present a brief description of our strategy. Similar to our random oracle

proof, given an ORE scheme Π = (Gen,Enc𝒢 ,Comp𝒢) on message space [𝑁] with partial

correctness 1
2 + 2𝜌, we construct an new ORE Π* = (Gen*,Enc*,Comp*) on message

space [𝑠 + 1, 𝑁 − 𝑑](𝑠, 𝑑 = poly(log𝑁,𝜆)) with correctness 1
2 + 𝜌, where we remove 𝒢

from Comp*. In the key generation procedure, Π* additionally outputs the encryption

of 𝑖 where 𝑖 ∈ [𝑠] ∪ [𝑁 − 𝑑+ 1, 𝑁].

After that, the encryption procedure runs Enc(𝑘,𝑚),Comp(Enc(𝑘,𝑚),Enc(𝑘, 𝑖)) and

Comp(Enc(𝑘, 𝑖),Enc(𝑘, 𝑗)), 𝑖, 𝑗 ∈ [𝑠]∪[𝑁−𝑑+1, 𝑁]. It collects all of the zero test queries

and responses produced during the comparisons. It deletes all queries that outputted

1. It is left with a set of linear constraints on the 𝑔⃗1, . . . , 𝑔⃗𝑠, 𝑔⃗𝑚, 𝑔⃗𝑁−𝑑+1, . . . , 𝑔⃗𝑁 terms.

It therefore produces a set 𝑆𝑚 of linearly independent constrains over these variables.

It finally outputs (Enc(𝑚), 𝑆𝑚).

52

Meanwhile, Comp*(𝐶𝑚0 , 𝐶𝑚1), runs Comp on the two Π-ciphertexts contained in

𝐶𝑚0 , 𝐶𝑚1 . Whenever Comp1,𝑗 tries to make a zero-test query, Comp*1,𝑗 intercepts, and

answers using the sets 𝑆𝑚0 , 𝑆𝑚1 as follows. It determines if the zero test query is linearly

dependent on the constraints in 𝑆𝑚0 ∪ 𝑆𝑚1 . If so, it knows that the answer to the zero

test query is 0. Otherwise, it guesses that the zero test query answer is non-zero.

We claim that this modified comparison procedure answers all zero test queries right

except with small probability. Roughly, the idea is that Comp only needs to learn the

constraint space when restricted to 𝑔⃗𝑚0 , 𝑔⃗𝑚1 , and does so using the constraints it obtains

through the test ciphertexts. Notice that the number of constraints we obtain grows

quadratically with the number of test ciphertexts computed, while the dimension of the

space of constraints only grows linearly. Therefore, by using enough test elements, we

“should” exhaust all linear constraints and recover the entire constraints space. Indeed,

we show that with sufficiently large 𝑠, 𝑑, 𝑆𝑚0 ∪𝑆𝑚1 has either recovered the full basis of

the space (which allows one to correctly answer all remaining zero-test queries), or it’s

very unlikely that a new constraint appears, which in turn means that Comp* simulates

the oracle itself properly except with a small probability. We now prove the following

theorem:

Theorem 3.5.1 If there exists partially correct and statistically secure ORE in generic

group model that has succinct ciphertexts, then partially correct and statistically secure

ORE with succinct ciphertexts that makes no query to generic group oracle in compar-

ison procedures exists.

Proof: In our proof, for simplicity we will assume all queries to the zero testing oracle

are homogeneous (there is no constant term 𝑣0); it is straightforward to extend our

proof the full inhomogeneous setting. Let Π0 = (Gen0,Enc
𝒢
0 ,Comp𝒢0) be a statistical

secure ORE in generic group model (we view sk is simply the randomness fed into Gen,

thus we do not have oracle access for Gen). For convenience, we denote Pr[Π0] as the

lower bound on the correctness probability:

Pr[Π0] = min
𝑚0,𝑚1

Pr[Comp𝒢0 (pk, 𝐶0, 𝐶1) = Comp(𝑚0,𝑚1) : (pk, sk)← Gen0(1
𝜆)].

53

Similar to the random oracle case, we specify some parameters:

1. Pr[Π0] ≥ 1
2 + 2𝜌, where 𝜌 is noticeable,

2. 𝑞, 𝑢 = poly(𝜆) by query efficiency, ℓ1 =
20𝑞·𝑢2

𝜌2
, ℓ2 =

42𝑞·ℓ21·𝑢2

𝜌2
,

3. Enc𝒢0 (𝑚) makes 𝑞 labeling queries to oracle when encrypting 𝑚 under sk,

4. Comp𝒢0 makes 𝑢 queries to the oracle, and let 𝑆pk,𝑚0,𝑚1 be the set of the constraints

in value 𝑔⃗𝑚0 , 𝑔⃗𝑚1(with form of 𝑝 = (𝑣⃗, ℎ⃗𝑚0 , ℎ⃗𝑚1)) that it stores,

5. 𝑠 = 𝑢ℓ2 · 2ℓ2 · 42𝑢
2·ℓ1
𝜌2

, 𝑠𝑖 = 𝑖ℓ2 · 2ℓ2 · 42𝑢
2·ℓ1
𝜌2

, 𝑠* = 𝑠1
ℓ2
,

6. 𝑑 = ℓ1𝑠
ℓ2
, 𝑑𝑖 =

ℓ1𝑠𝑖
ℓ2

, 𝑖 ∈ [𝑢],

7. 𝐷 = [𝑠] ∪ [𝑁 − 𝑑+ 1, 𝑁];𝐷𝑖 = [𝑠𝑖] ∪ [𝑁 − 𝑑𝑖 + 1, 𝑁],

8. 𝑇𝑖 = [𝑖ℓ2] ∪ [𝑁 − 𝑖ℓ1 + 1, 𝑁].

Next we construct a new ORE Π* = (Gen,Enc𝒢 ,Comp) with plaintext space [𝑠+1, 𝑁−𝑑]

as:

• Gen(1𝜆) runs (pk0, sk0) ← Gen0(1
𝜆), computes 𝐶𝑖 = Enc𝒢0 (sk0, 𝑖), 𝑖 ∈ 𝐷. And

outputs pk = pk0, sk = (sk0, {𝐶𝑖})

• Enc𝒢(sk,𝑚) runs 𝐶 ← Enc𝒢0 (sk0,𝑚) and Comp𝒢0 (pk0, 𝐶𝑖, 𝐶) and Comp𝒢0 (pk0, 𝐶𝑖, 𝐶𝑗)

where𝑖, 𝑗 ∈ 𝐷, stores the set of constraints on (𝑔⃗𝑚, 𝑔⃗𝑖)𝑖∈𝐷 as 𝑆sk,𝑚 and outputs

𝐶* = (𝐶, 𝑆sk,𝑚);

• Comp(pk, 𝐶*0 , 𝐶
*
1) : let 𝐶*0 = (𝐶0, 𝑆0), 𝐶

*
1 = (𝐶1, 𝑆1), runs Comp𝒢0 (pk0, 𝐶0, 𝐶1),

except that when querying a linear zero test 𝑝 on unknown value (𝑔⃗𝑚0 , 𝑔⃗𝑚1) , it

responds as follows:

1. 𝑝 is a linear combination of constraints in 𝑆0 ∪ 𝑆1, then returns “0”;

2. Otherwise, returns “1”.

54

We note that in the comparison procedure of Π*, we remove the oracle access, hence it

remains to show that Π* is statistically secure and partially correct. It’s trivial that Π*

is statistically secure, due to the almost identical argument as in random oracle case,

and in the following we prove Π* is partially correct.

Lemma 3.5.2 Pr[Π*] ≥ 1
2 + 𝜌.

We establish our proof by hybrid argument, and we define 𝑢 ORE schemes Π𝑗 =

(Gen𝑗 ,Enc
𝒢
𝑗 ,Comp𝒢𝑗), 𝑗 ∈ [𝑢] with message space [𝑠𝑗+1, 𝑁−𝑑𝑗]. There are two difference

between Π* and Π𝑗 : 1) numbers of tested ciphertexts that are generated; 2) Π𝑗 only

uses the constraint set to answer the last 𝑗 queries (for the first 𝑢−𝑗 queries, Π𝑗 answers

as usual by accessing 𝒢).

• Gen𝑗(1
𝜆) runs (pk0, sk0) ← Gen0(1

𝜆), computes 𝐶𝑖 = Enc𝒢0 (sk0, 𝑖), 𝑖 ∈ 𝐷𝑗 and

outputs pk = pk0, sk = (sk0, {𝐶𝑖}𝑖∈𝐷𝑗);

• Enc𝒢𝑗 (sk,𝑚) runs 𝐶 ← Enc𝒢0 (sk0,𝑚) and Comp𝒢0 (pk0, 𝐶𝑖, 𝐶),Comp𝒢0 (pk0, 𝐶𝑖, 𝐶𝑘)

where 𝑖, 𝑘 ∈ 𝐷𝑗 , stores the set of constraints on (𝑔⃗𝑚, 𝑔⃗𝑖)𝑖∈𝐷𝑗 as 𝑆sk,𝑚 and outputs

𝐶* = (𝐶, 𝑆sk,𝑚);

• Comp𝑗(pk, 𝐶
*
0 , 𝐶

*
1) : let 𝐶*0 = (𝐶0, 𝑆0), 𝐶

*
1 = (𝐶1, 𝑆1), runs Comp𝒢0 (pk0, 𝐶0, 𝐶1),

except that when querying the oracle on zero test 𝑝, it does the following:

1. If 𝑝 is one of the first 𝑢− 𝑖 zero test queries, make a query to 𝒢 as usual,

2. If 𝑝 is one of the last 𝑖 zero test queries and 𝑝 is a linear combination of the

constraints stored in 𝑆0 ∪ 𝑆1, then it returns “0”,

3. Otherwise, returns “1”.

Similar to the proof in ROM, we here prove Pr[Π1] ≥ 1
2 + 2𝜌 − 𝜌

𝑢 . According to the

definition, we see that Comp1 works as the same as Comp0, except for the final query

in which we test whether 𝑝 is a linear combination of the constraints provided with the

ciphertext to answer the oracle query. We prove that the response made by Π1 for 𝑝 does

not significantly harm the ability of Comp1 to output the correct answer. To do so, we

55

introduce yet another sequence of 𝑠* ORE schemes Π1,𝑗 = (Gen1,𝑗 ,Enc
𝒢
1,𝑗 ,Comp𝒢1,𝑗), 𝑗 ∈

[𝑠*] on message space [𝑗ℓ2+1, 𝑁 − 𝑗ℓ1]. The only difference between Π1,𝑗 and Π1 is the

number of test ciphertexts that are generated.

• Gen1,𝑗(1
𝜆) runs (pk0, sk0) ← Gen0(1

𝜆), computes 𝐶𝑖 = Enc𝒢0 (sk0, 𝑖), 𝑖 ∈ 𝑇𝑗 , and

outputs pk = pk0, sk = (sk0, {𝐶𝑖}𝑖∈𝑇𝑗);

• Enc𝒢1,𝑗(sk,𝑚) runs 𝐶 ← Enc𝒢0 (sk0,𝑚) and Comp𝒢0 (pk0, 𝐶𝑖, 𝐶),Comp𝒢0 (pk0, 𝐶𝑖, 𝐶𝑘)

where 𝑖, 𝑘 ∈ 𝑇𝑗 , stores the set of constraints on (𝑔⃗𝑚, 𝑔⃗𝑖)𝑖∈𝑇𝑗 as 𝑆
(𝑗)
sk,𝑚 and outputs

𝐶* = (𝐶, 𝑆sk,𝑚);

• Comp𝒢1,𝑗(pk, 𝐶
*
0 , 𝐶

*
1) : let 𝐶*0 = (𝐶0, 𝑆0), 𝐶

*
1 = (𝐶1, 𝑆1), runs Comp𝒢0 (pk0, 𝐶0, 𝐶1),

except that when querying the oracle on with the zero test 𝑝, it does the following:

1. If 𝑝 is one of the first 𝑢− 1 zero test queries, make a query to 𝒢 as usual.

2. If 𝑝 is the last test query and is linearly dependent of the constraints stored

in 𝑆0 ∪ 𝑆1, then it returns “0”.

3. Otherwise returns “1”.

Therefore, it remains to prove the following claim.

Claim 3.5.3 If Pr[Π1,𝑗] <
1
2 + 2𝜌− 𝜌

𝑢 , then Pr[Π1,𝑗+1] ≥ Pr[Π1,𝑗] +
1
𝑠* .

Assuming Pr[Π1,𝑗] < 1
2 + 2𝜌 − 𝜌

𝑢 , there is a message pair (𝑚*0,𝑚
*
1) minimizing the

correctness probability; that is the comparison procedure on encryptions of (𝑚*0,𝑚
*
1)

outputs the correct answer with probability less than 1
2 +2𝜌− 𝜌

𝑢 . Due to the statistical

security, we have that for any (𝑚0,𝑚1), comparison must output the correct answer

with probability at most 1
2 + 2𝜌− 𝜌

𝑢 + negl < 1
2 + 2𝜌− 𝜌

2𝑢 .

Fix two message 𝑚0,𝑚1 ∈ [𝑗ℓ2+1, 𝑁−𝑗ℓ1]. We let 𝑆(𝑗) = 𝑆
(𝑗)
sk,𝑚0

∪𝑆(𝑗)
sk,𝑚1

(the constraint

set in Enc1,𝑗(𝑚𝑏)). Let 𝑝 be the final zero test made when comparing the encryptions

of 𝑚0,𝑚1. Define the event Bad(𝑗) where the following happen:

• 𝑝 is a constraint satisfied by 𝑔⃗𝑚0 , 𝑔⃗𝑚1 , but 𝑝 is linearly independent of the con-

straints stored 𝑆(𝑗),

56

• Comp𝒢0 outputs the correct answer on encryption of 𝑚0,𝑚1,

• Comp𝒢1,𝑗 outputs the incorrect answer on encryption of 𝑚0,𝑚1.

We consider four cases:

• 𝑝 is linearly dependent of the constraints of 𝑆(𝑗). In this case, Π1,𝑗 answers the

same as Π0 since it knows 𝑝 is a valid constraint,

• 𝑝 is not satisfied by 𝑔⃗𝑚0 , 𝑔⃗𝑚1 . In this case, 𝑝 must be linearly independent of 𝑆(𝑗),

hence Π0,Π1,𝑗 answer the same,

• 𝑝 is a constraint satisfied by 𝑔⃗𝑚0 , 𝑔⃗𝑚1 , and independent of 𝑆(𝑗), but Bad(𝑗) does

not occur. Here we must have Comp0 either outputs the incorrect answer, or

Comp1,𝑗 outputs the correct answer,

• Bad(𝑗) occurs. We know that by answering “1”, Comp1,𝑗 goes from outputting the

correct answer to the incorrect one.

Similar to the random oracle setting, only the last case decreases the probability of

correctness, therefore, Pr[Bad(𝑗)] > 𝜌
2𝑢 .

Next we split the message space into two parts [𝑗 · ℓ2+1, 𝑁2] and [𝑁2 +1, 𝑁 − 𝑗 · ℓ1], and

sample 𝑤 ← [𝑗 · ℓ2 + 1, 𝑁2], 𝑧1 < . . . < 𝑧ℓ1 ← [𝑁2 + 1, 𝑁 − 𝑗 · ℓ1]. Let Bad(𝑗)𝑖 be the event

that “Bad(𝑗)” occurs for (𝑤, 𝑧𝑖), 𝑖 ∈ [ℓ1]. Then we claim that Pr[Bad
(𝑗)
1 ∩Bad

(𝑗)
𝑖] > 𝜌2

10𝑢2 ,

and prove it by contradiction. In fact, we note that unlike the case in ROM, the bad

event here is detectable for unbounded adversary, then invoking the security we must

have that for any 𝑗, 𝑘 ∈ [𝑡] where 𝑡 = 4𝑢
𝜌 < ℓ1,

Pr[Bad𝑗 ∩ Bad𝑘] ≤ Pr[Bad1 ∩ Bad𝑖] + negl

57

If assuming that Pr[Bad1 ∩ Bad𝑖] ≤ 𝜌2

10𝑢2 , then Pr[Bad𝑗 ∩ Bad𝑘] <
𝜌2

9𝑢2 , which means

Pr[Bad1 ∪ . . . ∪ Bad𝑡] ≥
𝑡∑︁

𝑖=1

Pr[Bad𝑖]−
∑︁

𝑖<𝑗∈[𝑡]

Pr[Bad𝑖 ∩ Bad𝑗]

≥ 𝜌 · 𝑡
2𝑢
− 𝑡2

2

𝜌2

9𝑢2
> 2− 8/9 > 1

a contradiction.

Now we define 𝑡𝑖 to be the indicator,

𝑡𝑖 =

⎧⎪⎪⎨⎪⎪⎩
1 if Bad1 ∩ Bad𝑖 = 1

0 Otherwise

and it’s apparent that

Pr[𝑡𝑖 = 1] ≥ 𝜌2

10𝑢2
⇒ E(

ℓ1∑︁
𝑖=2

𝑡𝑖) > (ℓ1 − 1) · 𝜌2

10𝑢2
> 2𝑞 − 𝜌2

10𝑢2
.

Let 𝑇 be the event that
∑︀ℓ1

𝑖=2 𝑡𝑖 > 𝑞, then

Pr[𝑇] · ℓ1 + 𝑞 · (1− Pr[𝑇]) ≥ E(
ℓ∑︁

𝑖=1

𝑡𝑖)⇒ Pr[𝑇] >
𝜌2

20𝑢2
.

We immediately observe that when 𝑇 occurs, there must be a constraint 𝑝* on (

𝑔⃗𝑧1 , . . . , 𝑔⃗𝑧ℓ1) such that

𝑝* = 𝑎1𝑝1 + . . .+ 𝑎ℓ1𝑝ℓ1 ,

where 𝑝𝑖 is the last query in Comp(Enc(𝑤),Enc(𝑧𝑖))(if 𝑝𝑖 is not a constraint, we set

𝑎𝑖 = 0). Parallelly, we define a hybrid event 𝑇 *, and we say 𝑇 * happens if 𝑇 happens

and 𝑎1 ̸= 0. Invoking the security, it’s trivial that

Pr[𝑇 *] ≥ 1

ℓ1
· Pr[𝑇]− negl ≥ 𝜌2

21𝑢2 · ℓ1
,

58

and in such a case, we can write 𝑝1 as:

𝑝1 =
1

𝑎1
(𝑎2𝑝2 + . . .+ 𝑎ℓ1𝑝ℓ1 − 𝑝*)

where 𝑝* is a constraint on (𝑔⃗𝑧1 , . . . , 𝑔⃗𝑧ℓ1). We observe that, if 𝑝* is known, then we

can just move 𝑧2, . . . , 𝑧ℓ1 to the right end, and applying exactly the same technique as

in ROM, we complete the proof. Hence it’s rest to show how to extract 𝑝*.

We note that 𝑝* is a constraint on (𝑔⃗𝑧1 , . . . , 𝑔⃗𝑧ℓ1), and the cardinality of the entire space

is 𝑞ℓ1, hence one trivial way to extract 𝑝* is to recover the whole basis. To do so, we

sample 𝑤⃗ = (𝑤1 < . . . < 𝑤ℓ2) ∈ [𝑗 · ℓ2 + 1, 𝑁2] and use every element in 𝑤⃗ to recover

it. Now we define a new indicator 𝑒𝑖 such that 𝑒𝑖 = 1 if 𝑇 * occurs for (𝑤𝑖, 𝑧⃗), 𝑖 ∈ [ℓ2].

Based on 𝑒𝑖, we introduce a new event 𝐺 and say 𝐺 occurs if
∑︀ℓ2

𝑖=1 𝑒𝑖 > 𝑞ℓ1,

Pr[𝐺] · ℓ2 + 𝑞ℓ1 · (1− Pr[𝐺]) ≥ E(
ℓ2∑︁
𝑖=1

𝑔𝑖) > 2𝑞ℓ1 ⇒ Pr[𝐺] ≥ 𝜌2

42𝑢2ℓ1
.

It’s obvious that when 𝐺 occurs, either the whole basis is recovered or there exists 𝑤𝑖

such that the corresponding 𝑝* can be extracted by (𝑤1, . . . , 𝑤𝑖−1, 𝑧1, . . . , 𝑧ℓ1), and in

either case we are done. Here we define a new event, called Collision, to characterize it;

for any message sequence (𝑤1 < . . . < 𝑤𝑘 < 𝑧1 < . . . < 𝑧ℓ1), we say Collision happens if,

• the last query 𝑝 in Comp(Enc(𝑤𝑘),Enc(𝑧1)) is a constraint in value (𝑔⃗𝑤𝑘
, 𝑔⃗𝑧1), and

Bad(𝑗) occurs for (𝑤𝑘, 𝑧1),

• 𝑝 is a linear combination of the constraints collected in Comp(Enc(𝑤𝑖, 𝑧𝑗)), 𝑖 ∈

[𝑘], 𝑗 ∈ [ℓ1], (𝑖, 𝑗) ̸= (𝑘, 1)7.

By definition, it’s trivial that adding more samples would not decrease the probability

of Collision, namely, if Collision happens for (𝑤1 < . . . < 𝑤𝑘 < 𝑧1 < . . . < 𝑧ℓ1), then it

also happens for (𝑥1 < . . . < 𝑥𝑘′ , 𝑤1 < . . . < 𝑤𝑘 < 𝑧1 < . . . < 𝑧ℓ1) as long as 𝑥𝑘′ < 𝑤𝑘.

Note that when 𝐺 occurs, there must exist a sub-sequence (𝑤𝑖1 < . . . < 𝑤𝑖𝑘 , 𝑧⃗) such

7(𝑖, 𝑗) ̸= (𝑘, 1) means 𝑖 ̸= 𝑘 ∩ 𝑗 ̸= 1

59

that Collision happens, which means for (𝑤1 < 𝑤2 . . . < 𝑤𝑖𝑘 , 𝑧⃗) Collision also happens,

so we have

max
𝑖∈[ℓ2]

Pr[Collision for (𝑤1 < . . . < 𝑤𝑖 < 𝑧1 < . . . < 𝑧ℓ1)] ≥
1

ℓ2
· Pr[𝐺].

Then, due to security, we claim that for arbitrary (𝑤1 < . . . < 𝑤ℓ2 < 𝑧1 < . . . < 𝑧ℓ1) ∈

[𝑗 · ℓ2 + 1, 𝑁 − 𝑗 · ℓ1]

Pr[Collision] ≥ 1

ℓ2
· Pr[𝐺]− negl ≥ 1

2ℓ2
· Pr[𝐺] =

1

𝑠*
.

Specifically, let 𝑤𝑖 = 𝑗ℓ2 + 𝑖, 𝑖 ∈ [ℓ2 − 1],𝑧𝑖 = 𝑁 − 𝑗ℓ1 − 𝑖, 𝑖 ∈ [ℓ1 − 1], we see that for

any (𝑤ℓ2 , 𝑧1), if we move to Π1,𝑗+1, (𝑤1, . . . , 𝑤ℓ2−1, 𝑧2, . . . , 𝑧ℓ1) are included in the test

queries for the scheme, hence,

Pr[Π1,𝑗+1] ≥ Pr[Π1,𝑗] +
1

𝑠*
⇒ Pr[Π1] ≥ Pr[Π0]−

𝜌

𝑢
.

Now we have shown that Pr[Π1] ≥ Pr [Π0]− 𝜌
𝑢 . This handles the case of Π1. However,

note that at this point, what use to be the second-to-last query is now the last query

(since the last query is no longer made). Therefore, we can apply the exact same

techniques as above to handle the general case of Π𝑗 , give Pr[Π𝑗+1] ≥ Pr [Π𝑗] − 𝜌
𝑢

Combing together, we get

Pr[Π*] ≥ 1

2
+ 𝜌,

which establishes the entire proof.

60

Chapter 4

Parameter-Hiding Order Revealing Encryption

According to last chapter, we note that somewhat inefficiency is inevitable for ideal

ORE. To ”possibly” make the scheme practical, one direction is to, somehow, relax

the security notion. In this chapter, we present our construction — parameter-hiding

ORE. First, we give the formal definition of our new security notion, parameter-hiding,

then we build a scheme, only based on bilinear map, that achieves our notion. In our

construction, we propose a new primitive, called property-preserving hash(PPH), and

show how to build a parameter-hiding ORE from it, then we illustrate how to build a

PPH from bilinear map, under some computational assumptions.

4.1 Technical Overview

As a starting point, we consider the CLWW leakage Chenette et al. [2016], which reveals

the position of the most significant differing bit between any two plaintexts. This is

quite a lot of information: for example, it can be used to get rough bounds on the

difference between two plaintexts. Thus, CLWW cannot be parameter hiding, since

the scaling term is not hidden. However, CLWW will be a useful starting point, as it

will allow us to construct shift-hiding ORE, where we only care about hiding the shift

term. To help illustrate our approach, we will therefore first describe an equivalent

formulation of CLWW leakage, which we will then explain how to extend to get full

parameter-hiding ORE.

4.1.1 An alternative view of CLWW leakage

Consider the plaintext space {0, 1, 2, . . . , 2ℓ − 1}. We will think of the plaintexts as

leaves in a full binary tree of depth ℓ. In this tree, the position of the most significant

61

differing bit between two plaintexts corresponds to the depth of their nearest ancestor.

The leakage of CLWW can therefore can be seen as revealing the tree consisting of all

given plaintexts, their ancestors in the tree up to the lowest common ancestor, and

the order of the leaves, with all other information removed. See Figure 4.1 for an

illustration.

⇒

⇒

Figure 4.1: CLWW Leakage.

Now, suppose all plaintext elements are in the range [0, 2𝑖) for some 𝑖. This means

they all belong in the same subtree at height 𝑖; in particular, the CLWW leakage will

only have depth at most 𝑖. Now, suppose we add a multiple of 2𝑖 to every plaintext.

This will simply shift all the plaintexts to being in a different subtree, but otherwise

keep the same structure. Therefore, the CLWW leakage will remain the same.

Therefore, while CLWW is not shift hiding, it is shift periodic. In particular, if

imagine a distribution 𝐷 whose support is on [0, 2𝑖), and consider shifting 𝐷 by 𝛽.

Consider an adversary 𝐴, which is given the CLWW leakage from 𝑞 plaintexts sampled

from the shifted 𝐷, and outputs a bit. If we plot the probability 𝑝(𝛽) that 𝐴 outputs

1 as a function of 𝛽, we will see that the function is periodic with period 2𝑖.

Shift-Hiding ORE/OPE. With this periodicity, it is simple to construct a scheme

that is shift hiding. To get a shift-hiding scheme for message space [0, 2ℓ), we instantiate

CLWW with message space [0, 2ℓ+1). We also include as part of the secret key a random

shift 𝛾 chosen uniformly in [0, 2ℓ). We then encrypt a message 𝑚 as Enc(𝑚+𝛾). Adding

62

a random shift can be seen as convolving the signal 𝑝(𝛽) with the rectangular function

𝑞(𝛽) =

⎧⎪⎪⎨⎪⎪⎩
2−ℓ if 𝛽 ∈ [0, 2ℓ)

0 otherwise

Since the rectangular function’s support matches the period of 𝑝, the result is that

the convolved signal 𝑝 is constant. In other words, the adversary always has the same

output distribution, regardless of the shift 𝛽. Thus, we achieve shift hiding.

When the comparison algorithm of an ORE scheme is simple integer comparison,

we say the scheme is an order-preserving encryption (OPE) scheme. OPE is prefer-

able because it can be used without any modification to a database server. We recall

that CLWW can be made into an OPE scheme — where ciphertexts are integers and

comparision is integer comparison — while maintaining the CLWW leakage profile.

Our conversion to shift-hiding preserves the OPE property, so we similarly achieve a

shift-hiding OPE scheme.

Scale-Hiding ORE/OPE. We note that we can also turn any shift-hiding ORE into

a scale-hiding ORE. Simply take the logarithm of the input before encrypting; now

multiplying by a constant corresponds to shifting by a constant. Of course, taking

the logarithm will result in non-integers; this can easily be fixed by rounding to the

appropriate level of precision (enough precision to guarantee no collisions over the

domain) and scaling up to make the plaintexts integral. Similarly, we can also obtain

scale-hiding OPE if we start with an OPE scheme.

Impossibility of parameter-hiding OPE. One may hope to achieve both shift-

hiding and scale-hiding by some combination of the two above schemes. For example,

since order preserving encryption schemes can be composed, one can imagine composing

a shift-hiding scheme with a scale-hiding scheme. Interestingly, this does not give a

parameter-hiding scheme. The reason is that shifts/scalings of the plaintext do not

correspond to shifts/scalings of the ciphertexts. Therefore, while the outer OPE may

provide, say, shift-hiding for its inputs, this will not translate to shift-hiding of the inner

63

OPE’s inputs.

Nonetheless, one may hope that tweaks to the above may give a scheme that is

simultaneously scale and shift hiding. Perhaps surprisingly, we show that this is actually

impossible. Namely, we show that OPE cannot possibly be parameter-hiding. We prove

this in section 4.9. We first provide a simple proof of the impossibility of ideal security

for OPE, re-proving Boldyreva et al. [2009], Chenette et al. [2016] but in a much simpler

way. Our proof is flexible to the exact choice of plaintexts, and we then show how to

extend it to parameter-hiding OPE, even when the adversary sees just two ciphertexts.

This impossibility shows that strategies leveraging CLWW leakage are unlikely to

yield parameter-hiding ORE schemes. Interestingly, all ORE schemes we are aware of

that can be constructed from symmetric crypto can also be made into OPE schemes.

Thus, this suggests we need stronger tools than those used by previous efficient schemes.

4.1.2 Parameter Hiding via Smoothed CLWW Leakage

Motivated by the above, we must seek a different leakage profile if we are to have any

hope of achieving parameter-hiding ORE. We therefore first describe a “dream” leakage

that will allow us to perform similar tricks as in the shift hiding case in order to achieve

both scale and shift hiding simultaneously. Our dream leakage will be a “smoothed”

CLWW leakage, where all nodes of degree exactly 2 are replaced with an edge between

the two neighbors. In other words, the dream leakage is the smallest graph that is

“homeomorphic” to the CLWW leakage. See Figure 4.2 for an illustration.

⇒

⇒

Figure 4.2: Smoothed CLWW Leakage.

64

Our key observation is that this smoothed CLWW leakage now exhibits additional

periodicity. Namely, if we multiply every plaintext by 2, every edge in the bottom layer

of the CLWW leakage will get subdivided into a path of length 2, but smoothing out

the leakage will result in the same exact graph. This means that smoothed CLWW

leakage is periodic in the log domain.

In particular, if imagine a distribution 𝐷 whose support is on [0, 2𝑖), and consider

multiplying by 𝛼. Consider an adversary 𝐴, which is given the smoothed CLWW

leakage from 𝑞 plaintexts sampled from a scaled 𝐷, and outputs a bit. If we plot the

probability 𝑝(log2 𝛼) that 𝐴 outputs 1 as a function of 𝛼, we will see that the function

is periodic with period 1.

Therefore, we can perform a similar trick as above. Namely, we convolve 𝑝 with

the uniform distribution over the period of 𝑝 in the log domain. We accomplish this

by including a random scalar 𝛼 as part of the secret key, and multiplying by 𝛼 before

encrypting. However, this time several things are different:

• Since we are working in the log domain, the logarithm of the random scalar 𝛼 has

to be uniform. In other words, 𝛼 is log-uniform

• Since we are working over integers instead of real numbers, many issues arise.

– First, 𝛼 needs to be an integer to guarantee that the scaled plaintexts are

still integers. This means we cannot choose 𝛼 at log-uniformly over a single

log period, since then 𝛼 only has support on {1, 2}. Instead, we need to

choose 𝛼 log-uniformly over a sufficiently large multiple of the period that 𝛼

approximates the continuous log-uniform distribution sufficiently well.

– Second, unlike the shift case, sampling at random from 𝐷 and then scaling is

not the same as sampling from a scaled version of 𝐷, since the rounding step

does not commute with scaling. For example, for concreteness consider the

normal distribution. If we sample from a normal distribution (and round)

and then scale, the resulting plaintexts will all be multiples of 𝛼. However,

if we sample directly from a scaled normal distribution (and then round),

65

the support of the distribution will include integers which are not multiples

of 𝛼.

To remedy this issue, we observe that if the plaintexts are sampled from a

wide enough distribution, their differing bits will not be amongst the lowest

significant bits. Hence, the leakage will actually be independent of the lower

order bits. For example, this means that while the rounding does not com-

mute with the scaling, the leakage actually does not depend on the order in

which the two operations are carried out.

– The above arguments can be made to work for, say, the normal distribution.

However, we would like to have a proof that works for any distribution. Un-

fortunately, for distributions that oscillate rapidly, we may run into trouble

with the above arguments, since rounding such distributions can cause odd

behaviors at all scales. This problem is actually unavoidable, as quickly

oscillating distributions may have actually have low min-entropy even at

large scales. Therefore, we must restrict to “smooth” functions that have a

bounded derivative.

Using a careful analysis, we are able to show for smooth distributions that we

achieve the desired scale hiding.

• Finally, we want to have a scheme that is both scale and shift hiding. This is

slightly non-trivial, since once we introduce, say, a random shift, we have modified

the leakage of the scheme, and cannot directly appeal to the arguments above to

obtain scale hiding as well. Instead, we distill a set of specific requirements on

the leakage that will work for both shift hiding and scale hiding. We show that

our shift hiding scheme above satisfies the requirements needed in order for us to

introduce a random scale and additionally prove scale hiding.

4.1.3 Achieving Smoothed CLWW Leakage.

Next we turn to actually constructing ORE with smoothed CLWW leakage. Of course,

ideal ORE has better than (smoothed) CLWW leakage, so we can construct such ORE

66

based on multilinear maps. However, we want a construction that uses standard tools.

We therefore provide a new construction of ORE using pairings that achieves smoothed

CLWW leakage. We believe this construction is of interest on its own, as it is achieves

the to-date smallest leakage of any non-multilinear map based scheme.

CLWW ORE and how to reduce its leakage. Our construction builds on the

ideas of CLWW, so we first briefly recall the ORE scheme of CLWW. In their (basic)

scheme, the encryption key is just a PRF key 𝐾. To encrypt a plaintext 𝑥 ∈ {0, 1}𝑛,

for each prefix 𝑝𝑖 = 𝑥[1, . . . , 𝑖], the scheme computes

𝑦𝑖 = PRF𝐾(𝑝𝑖) + 𝑥𝑖+1,

where 𝑥𝑖+1 is the (𝑖 + 1)-st bit of 𝑥, and the output of PRF ∈ {0, 1}𝜆 is treated as

an integer (we will take 𝜆 to be the security parameter). The ORE ciphertext is

then (𝑦1 . . . , 𝑦𝑛). To compare two ciphertexts (𝑦1 . . . , 𝑦𝑛) and (𝑦′1 . . . , 𝑦
′
𝑛), one finds the

smallest index 𝑖 such that 𝑦𝑖 ̸= 𝑦′𝑖, and outputs 1 if 𝑦′𝑖 − 𝑦𝑖 = 1. This naturally reveals

the index of the bit where the plaintexts differ.

Our approach to reducing the leakage is to attempt to hide the index 𝑖 where the

plaintexts differ. As a naive attempt at this, first consider what happens if we modify

the scheme to simply randomly permute the outputs (𝑦1 . . . , 𝑦𝑛) (with a fresh permu-

tation chosen for each encryption). We can still compare ciphertexts by appropriately

modifying the comparison algorithm: now given 𝑐 = (𝑦1 . . . , 𝑦𝑛) and 𝑐′ = (𝑦′1 . . . , 𝑦
′
𝑛)

(permuted as above), it will look for indices 𝑖, 𝑗 such that either 𝑦′𝑖 − 𝑦𝑗 = 1, in which

case it outputs 1, or 𝑦𝑗 − 𝑦′𝑖 = 1, in which case it outputs 0. (If we choose the output

length of the PRF to be long enough then this check will be correct with overwhelming

probability.)

This modification, however, does not actually reduce leakage: an adversary can still

determine the most significant differing bit by counting how many elements 𝑐 and 𝑐′

have in common.

We can however recover this approach by preventing an adversary from detecting

67

how many elements 𝑐 and 𝑐′ have in common. To do so, we employ a new notion of

property-preserving hashing (PPH) we introduce. Intuitively, a PPH is a randomized

hashing scheme that is designed to publicly reveal a particular predicate 𝑃 on pairs of

inputs.

PPH can be seen as the hashing (meaning, no decryption) analogue of the notion

of property-preserving encryption, a generalization of order-revealing encryption to ar-

bitrary properties due to Pandey and Rouselakis Pandey and Rouselakis [2012]. (This

can also be seen as a symmetric-key version of the notion of “relational hash” due to

Mandal and Roy Mandal and Roy [2015].)

Specifically, we construct and employ a PPH for the property

𝑃1(𝑥, 𝑥
′) =

⎧⎪⎪⎨⎪⎪⎩
1 if 𝑥 = 𝑥′ + 1,

0 otherwise.

(Here 𝑥, 𝑥′ are not plaintexts of the ORE scheme, think of them as other inputs de-

termined below.) Security requires that this is all that is leaked; in particular, input

equality is not leaked by the hash values (which requires a randomized hashing algo-

rithm).

Now, the idea is to modify the scheme to include a key 𝐾𝐻 for such a PPH ℋ, and

the encryption algorithm to not only randomly permute the 𝑦𝑖’s but hash them as well,

i.e., output (ℎ1, . . . , ℎ𝑛) where ℎ𝑖 = ℋ𝐾𝐻
(𝑦𝑖) for the permuted 𝑦𝑖’s.

1 The comparison

algorithm can again be modified appropriately, namely to not to check if 𝑦′𝑖 − 𝑦𝑗 = 1

but rather if their ℎ′𝑖 and ℎ′𝑗 hash values satisfy 𝑃1 via the PPH (and similarly for the

check 𝑦𝑗 − 𝑦′𝑖 = 1).

For any two messages, the resulting ORE scheme is actually ideal: it only reveals

the order of the underlying plaintexts, but nothing else. However, for three messages

𝑚,𝑚′,𝑚′′ we see that some additional information is leaked. Namely, if we find that

𝑦′𝑖 − 𝑦𝑗 = 1 𝑦′′𝑘 − 𝑦𝑗 = 1, then we know that 𝑦′𝑗 = 𝑦′′𝑘 . We choose the range of the PRF

1A minor issue here is that we now lose decryptability for the resulting ORE scheme; however,
this can easily be added back in a generic way by also encrypting the plaintext separately under a
semantically secure scheme.

68

large enough so that this can only happen if 𝑦′𝑗 and 𝑦′𝑘 are both PRF𝐾(𝑝ℓ)+𝑥ℓ+1 for the

same prefix 𝑝ℓ and same bit 𝑥ℓ+1, and 𝑦′𝑗 corresponds to the most significant bit where

𝑚′ differs from 𝑚, 𝑦′′𝑘 corresponds to the most significant bit where 𝑚′′ differs from 𝑚,

and moreover these positions are the same. Therefore, the adversary learns whether

these most-significant differing bits are the same. It is straightforward to show that

this leakage is exactly equivalent to the smoothed CLWW leakage we need. Proving

this ORE scheme secure wrt. this leakage based on an achievable notion of security for

the PPH turns out to be technically challenging. Nevertheless, we manage to prove it

“non-adaptively secure,” meaning the adversary is required to non-adaptively choose

the dataset, which is realistic for a passive adversary in the outsourced database setting.

Property-preserving hash from bilinear maps. Next we turn to constructing a

property-preserving hash (PPH) for the property 𝑃1(𝑥, 𝑥
′) = 𝑥 = 𝑥′ + 1. For this, we

adapt techniques from perfectly one-way hash functions Canetti [1997], Mandal and

Roy [2015] to the symmetric-key setting and use asymmetric bilinear groups. Roughly,

in our construction the key for the hash function is a key𝐾 for a pseudorandom function

PRF and, letting 𝑒 : 𝐺1×𝐺2 → 𝐺𝑇 be an asymmetric bilinear map on prime order cyclic

groups 𝐺1, 𝐺2 with generators 𝑔1, 𝑔2, the hash of 𝑥 is

ℋ𝐾(𝑥) = (𝑔𝑟11 , 𝑔
𝑟1PRF𝐾(𝑥)
1 , 𝑔𝑟22 , 𝑔

𝑟2PRF𝐾(𝑥+1)
2),

for fresh random 𝑟1, 𝑟2 ∈ Z𝑝. (Thus, the PRF is also pushed to our PPH construction

and can be dropped from from the higher-level ORE scheme when our hash function

is plugged-in.) The bilinear map allows testing whether 𝑃1(𝑥, 𝑥
′) from ℋ𝐾(𝑥),ℋ𝐾(𝑥′),

and intuitively our use of asymmetric bilinear groups prevents testing other relations

such as equality (formally we use the XSDH assumption). We prove the construction

secure under an indistinguishability-based notion in which the adversary has to distin-

guish between the hash of a random challenge 𝑥* and a random hash value, and can

query for hash values of inputs 𝑥 of its choice as long as 𝑃1(𝑥, 𝑥
*) and 𝑃1(𝑥

*, 𝑥) are

69

both 0. Despite being restricted,2, this notion suffices in our ORE scheme above.

When our PPH is plugged-in to our ORE scheme, ciphertexts consist of 4𝑛 group

elements, and order comparison requires 𝑛(𝑛 − 1) pairing computations on average.

We also note that CLWW gave an improved version of their scheme where ciphertexts

are size 𝑂(𝑛) rather than 𝑂(𝑛𝜆) for security parameter 𝜆, however, we have reason to

believe this may be difficult for schemes with our improved leakage profile, see below.

Piecing everything together, we obtain a parameter-hiding ORE from bilinear maps.

We note that, as parameter-hiding OPE is impossible, we achieve the first construction

of ORE without multilinear maps secure with a security notion that is impossible for

OPE.

Generalizing our ORE scheme. In our work, we also show several extensions to

our smoothed CLWW ORE scheme. In one direction, we show an improved leakage by

considering blocks of bits at a time(encrypting message block by block, rather than bit

by bit). And interestingly, we show that if the block size is only 2, then we improve

security and efficiency simultaneously, while for larger block, the leakage continues to

reduce but efficiency compared to the basic scheme (in terms of both ciphertext size

and pairings required for comparison) decreases.

On the other hand, we also show how to improve efficiency while sacrificing some

security. Interestingly, we are able to show a more efficient version of the scheme than

above(only need 𝑂(𝑛) pairings for each comparison), that is still sufficient for achieving

parameter-hiding ORE using our conversion.

In addition, we also show how our ORE scheme easily gives a left/right ORE as

defined by Lewi and Wu [2016] that also improves on their leakage. In left/right ORE,

ciphertexts can be generated in either the left mode or right mode, and the compar-

ison algorithm only compares a left and a right ciphertext. Security requires that no

information is leaked amongst left and right ciphertexts in isolation.

2More generally, following Pandey and Rouselakis [2012] one could allow the adversary to choose
two challenge inputs and make queries that do not allow it to trivially distinguish them, but we are
unable to prove our construction secure under this stronger notion.

70

4.1.4 Discussion and Perspective

The original OPE scheme of Boldyreva et al. [2009] leaks “whatever a random order-

preserving function leaks.” Unfortunately, this notion does not say anything about

what such leakage actually looks like. The situation has been improved in recent works

on ORE/OPE such as CLWW, LW Lewi and Wu [2016] and JP Joye and Passelègue

[2016], which define a precise “leakage profile” for their schemes. However, such leakage

profiles are still of limited use, since they do not obviously say anything about the actual

privacy of the underlying data. The same situation also

We instead study ORE with a well-defined privacy notion for the underlying plain-

texts. A key part of our results is showing how to translate sufficiently strong leakage

profiles into such privacy notions. Nonetheless, we do not claim that our new ORE

scheme is safe to use in general higher-level protocols. We only claim security as long

all that is sensitive is the scale and shift of the underlying plaintext distributions. If, for

example, if the shape of the distribution is highly sensitive, or if there are correlations

to other data available to the attacker, our notion is insufficient.

However, our construction provably has better leakage than existing efficient schemes,

and it at least shows some meaningful security for specific situations. Moreover we sus-

pect that the scheme can be shown to be useful in many other settings by extending

our techniques.

4.2 Definition for Parameter-Hiding

In this section, we present the formal definition of the notion for parameter-hiding.

As we showed in the introduction, parameter-hiding is motivated by a stronger notion

called distribution-hiding, we would first illustrate what is distribution-hiding, then

turn to parameter-hiding.

In the notions, we are considering the privacy of the underlying distribution of data

records, rather than the individual data records, and we assume that all database entries

are independently and identically distributed according to some distribution D3.

3By D, here we mean a sampling algorithm, such that the outputs of this algorithm obey the

71

Game DHΠ,𝑞(𝒜, 𝜆):

(sk, ck)
$← Gen(1𝜆,𝑀); 𝐷0, 𝐷1 ← 𝒜(1𝜆, ck) s.t. 𝐻∞(𝐷𝑏) ≥ 𝜔(log 𝜆)

𝑏
$← {0, 1}, 𝑚⃗ $← 𝐷𝑏 𝑠.𝑡. |𝑚| = 𝑞; max𝐷𝑏 ≤𝑀 ; 𝑐⃗ = Enc(sk, 𝑚⃗)

𝑏′ = 𝒜(ck, 𝑐⃗); Return (𝑏
?
= 𝑏′)

Table 4.1: Games DHΠ,𝑞(𝒜, 𝜆).

Here we define distribution-hiding in Figure 4.1. Intuitively, in the interactive game,

after receiving the public parameter and comparison key, adversary 𝒜 picks two dis-

tributions 𝐷0, 𝐷1 and sends to challenger 𝒞, 𝒞 then flips a coin 𝑏, samples a sequence

of entries from 𝐷𝑏, and sends back the encrypted entries. Eventually 𝒜 outputs a bit,

and we say adversary wins if it guesses 𝑏 correctly. We note that if either of 𝐷𝑏 has low

min-entropy, it is possible for an adversary to estimate the min-entropy by looking for

collisions in its ciphertexts. Therefore, we must restrict 𝐷𝑏 to have high min-entropy.

Definition 4.2.1 (Distribution-Hiding for ORE) For an ORE scheme Π, an ad-

versary 𝒜, function 𝑞 = 𝑞(𝜆) we define the games DHΠ,𝑞(𝒜, 𝜆) in Figure 4.1. The

advantage of 𝒜 is defined as AdvDH
Π,𝑞(𝒜, 𝜆) = |Pr[DHΠ,𝑞(𝒜, 𝜆)− 1

2]|. We say that Π is

distribution-hiding if for every efficient adversary 𝒜, and any polynomial 𝑞 = poly(𝜆),

AdvDH
Π,𝑞(𝒜, 𝜆) is a negligible function.

We immediately observe that ideal ORE achieves distribution-hiding, while for other

known leakier ORE schemes, it’s seems unfeasible to achieve this privacy guarantee.

However, in many settings, the general shape of the distribution is often known (that

is, if the distribution is normal, uniform, Laplace, etc), and it is reasonable to allow

the overall shape to be reveal but hide its mean and/or variance completely, subject to

certain restrictions. Before formalize these notion, we firstly introduce some notations.

For a continuous random variable 𝑋, where 𝐷 is 𝑋’s distribution, we abuse notation

𝑝𝐷(𝑥) = 𝑝𝑋(𝑥). Now we introduce three alternative distributions: 𝐷𝛿
scale, 𝐷

ℓ
shift, 𝐷

𝛿,ℓ
aff

with parameter 𝛿, ℓ, where the corresponding probability density function is defined as:

𝑝𝐷scale
=

𝑝𝐷(
𝑥
𝛿)

𝛿
; 𝑝𝐷shift

(𝑥) = 𝑝𝐷(𝑥− ℓ); 𝑝𝐷aff
=

𝑝𝐷(
𝑥−ℓ
𝛿)

𝛿
.

distribution D, for ease we denote max𝐷 as the maximum item in 𝐷’s support.

72

Game (𝛾,𝐷)-para-hidΠ,𝑞(𝒜, 𝜆):

(sk, ck)
$← Gen(1𝜆,𝑀); 𝛿0, ℓ0, 𝛿1, ℓ1 ← 𝒜(ck, 𝐷)

If 𝛿0 < 𝛾 or 𝛿1 < 𝛾, output a random bit and abort,

else, 𝑏
$← {0, 1}, 𝑚⃗ $← ⌊𝐷𝛿𝑏,ℓ𝑏

aff ⌉, 𝑠.𝑡.|𝑚| = 𝑞; max ⌊𝐷𝛿𝑏,ℓ𝑏
aff ⌉ ≤𝑀 ; 𝑐⃗ = Enc(sk, 𝑚⃗)

𝑏′ = 𝒜(ck, 𝑐⃗) Return (𝑏
?
= 𝑏′)

Table 4.2: Games para-hidΠ,𝑞(𝒜, 𝜆).

In other words, 𝐷𝛿
scale scales the shape of 𝐷 by a factor of 𝛿; 𝐷shift shifts 𝐷 by ℓ and

𝐷aff does both.

Rounded distribution. As our plaintexts are integers, we need map real number to

its rounded integer, namely 𝑥→ ⌊𝑥⌉. More precisely, let 𝐷 be a distribution over real

numbers between 𝛼 and 𝛽; we induce a rounded distribution 𝑅𝛼,𝛽
𝐷 on [⌈𝛼⌉, ⌊𝛽⌋]which

samples from 𝐷 and then rounds. Its probability density function is:

𝑝
𝑅𝛼,𝛽

𝐷
(𝑘) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫︀ ⌈𝛼⌉+1/2
𝛼 𝑝𝐷(𝑥)𝑑𝑥∫︀ 𝛽

𝛼 𝑝𝐷(𝑥)𝑑𝑥
𝑘 = 𝛼,∫︀ 𝑘+1/2

𝑘−1/2
𝑝𝐷(𝑥)𝑑𝑥∫︀ 𝛽

𝛼 𝑝𝐷(𝑥)𝑑𝑥
𝑘 ∈ [⌈𝛼+ 1⌉, ⌊𝛽 − 1⌋],∫︀ 𝛽

⌊𝛽⌋−1/2
𝑝𝐷(𝑥)𝑑𝑥∫︀ 𝛽

𝛼 𝑝𝐷(𝑥)𝑑𝑥
𝑘 = 𝛽,

0 Otherwise.

In the case of 𝐷𝛿
scale, 𝐷

ℓ
shift, or 𝐷

𝛿,ℓ
aff , we will use the notation ⌊𝐷𝛿

scale⌉, ⌊𝐷ℓ
shift⌉, and

⌊𝐷𝛿,ℓ
aff⌉ to denote the respective rounded distributions.

Now, we present the notion “(𝛾,𝐷)-parameter-hiding” ORE, referring to the game

defined in Figure 4.2. Here, 𝐷 is a distribution over [0, 1], which represents the descrip-

tion of the known shape of the distribution of plaintexts. 𝛾 is a lower-bound on the

scaling that is allowed. Then key generation is run and adversary is given the public

parameter, (𝛾,𝐷), and the comparison key. Then, the adversary 𝒜 sends two pairs

of parameters (𝛿0, ℓ0), (𝛿1, ℓ1) to challenger 𝒞. Next, 𝒞 flips a coin 𝑏, checks whether

the parameter is proper(1(𝛿0 ≥ 𝛾 ∩ 𝛿1 ≥ 𝛾)), then samples a sequence of data entries

from the rounded distribution ⌊𝐷𝛿𝑏,ℓ𝑏
aff ⌉ and sends back encrypted data. Eventually 𝒜

outputs a bit, and we say adversary wins if it guesses 𝑏 correctly.

73

Definition 4.2.2 ((𝛾,𝐷)-parameter hiding for ORE) For an ORE scheme Π, an

adversary 𝒜, a distribution 𝐷, and function 𝑞 = 𝑞(𝜆), we define the interactive game

(𝛾,𝐷)-para-hidΠ,𝑞(𝒜, 𝜆) in Figure 4.2. The advantage of 𝒜 is defined as

Advpara-hid
Π,𝑞,𝛾,𝐷(𝒜, 𝜆) = |Pr[(𝛾,𝐷)-para-hidΠ,𝑞(𝒜, 𝜆)−

1

2
]|

We say that Π is (𝛾,𝐷)-parameter hiding if for every efficient adversary 𝒜 and poly-

nomial 𝑞 Advpara-hid
Π,𝑞,𝛾,𝐷(𝒜, 𝜆) is a negligible function.

Similarly, we define (𝛾,𝐷)-scale hiding and (𝛾,𝐷)-shift hiding with little change as

above. More precisely, in the game of (𝛾,𝐷)-scale hiding, we add the restriction ℓ0 =

ℓ1 = 0 and in the game of (𝛾,𝐷)-shift hiding, we add the restriction 𝛿0 = 𝛿1. Due to

the space limit, we skip the formal definitions here.

We note that these three notions are distribution dependent, and we would like they

work for any distribution. Unfortunately, quickly oscillating distributions do not fit into

our case, as they may have actually low min-entropy for their discretized distributions

on integers, even at large scales. Hence, we place additional restrictions. We place the

following restriction, which is sufficient, but potentially stronger than necessary:

(𝜂, 𝜇)-smooth distribution. We let 𝐷 be a distribution where its support mainly on

[0, 1] (Pr[𝑥 /∈ [0, 1] : 𝑥 ← 𝐷] ≤ negl(𝜆)), we denote 𝑝′𝐷(𝑥) as its derivative, and we say

that 𝐷 is (𝜂, 𝜇)-smooth if 1) ∀𝑥 ∈ [0, 1], 𝑝𝐷(𝑥) ≤ 𝜂; 2) |𝑝′𝐷(𝑥)| ≤ 𝜂 for all 𝑥 ∈ [0, 1]

except for 𝜇 points.

Definition 4.2.3 ((𝛾, 𝜂, 𝜇)-parameter hiding for ORE) For an ORE scheme Π, we

say Π is (𝛾, 𝜂, 𝜇)-parameter hiding if for every efficient adversary 𝒜, polynomial 𝑞, and

any (𝜂, 𝜇)-smooth distribution 𝐷, Advpara-hid
Π,𝑞,𝛾,𝐷(𝒜, 𝜆) is a negligible function.

4.3 Parameter Hiding ORE

In this section, we will assume we are given an ORE Π = (Gen,Enc,Comp) with a

“smoothed” version of CLWW leakage, defined below. Later, in Section 4.4, we will

show how to instantiate such a scheme from bilinear maps.

74

We show how to convert a scheme with smoothed CLWW leakage into a parameter-

hiding ORE scheme by simply composing with a linear function: namely, for any plain-

text𝑚, the ciphertext has form Enc(𝛼𝑚+𝛽), where 𝛼, 𝛽 are the same across all messages

and are sampled as part of the secret key. Intuitively, 𝛼 helps to hide the scale para-

meter and 𝛽 hides the shift. We need to be careful about the distributions of 𝛼 and 𝛽;

𝛼 needs to be drawn from a “discrete log uniform” distribution of appropriate domain,

and 𝛽 needs to be chosen from a uniform distribution of appropriate domain.

The discrete log uniform distribution 𝐷 on [𝐴,𝐵] (logU(𝐴,𝐵)) has probability den-

sity function:

𝑝𝐷(𝑘) =

⎧⎪⎪⎨⎪⎪⎩
1/𝑘∑︀𝐵
𝑖=𝐴 1/𝑖

𝑖 ∈ [𝐴,𝐵]

0 Otherwise

We say a leakage function ℒ is smoothed CLWW if:

1. For any two plaintext sequences 𝑚⃗0, 𝑚⃗1, if ℒclww(𝑚⃗0) = ℒclww(𝑚⃗1), then ℒ(𝑚⃗0) =

ℒ(𝑚⃗1) (in other words, it leaks no more information that CLWW);

2. For any plaintext sequence 𝑚⃗, ℒ(𝑚⃗) = ℒ(2𝑚⃗)

4.3.1 Description of our scheme

In this part, we give the formal description of parameter-hiding ORE. To simplify our

exposition, we first specify some parameters:

• 𝑀 = 2poly(𝜆), 𝛾 = 2𝜔(log 𝜆), 𝜂, 𝜇 ≤ 𝑂(1), 𝑞 = poly(𝜆);

• 𝜏 = 𝛾, 𝜉 = 𝛾2, 𝑈 = 4𝜉𝑀, 𝑇 = 𝛾2 × 𝑈,𝐾 = 2× 𝑇.

Let Π = (Gen,Enc,Comp) be an ORE scheme on message space [𝐾] with smoothed

CLWW leakage ℒ. We define our new ORE Πaff = (Genaff ,Encaff ,Compaff) on message

space [𝑀] as follows:

• Genaff(1
𝜆,𝑀,Π): On input the security parameter 𝜆, message space [𝑀] and

Π, the algorithm picks a super-polynomial 𝛾 = 2𝜔(log 𝜆) as a global parameter,

and computes parameters above. Then it runs (ck, sk) ← Gen(1𝜆,𝐾), draws

75

𝛼
$← logU(𝜉, 2𝜉 − 1) and 𝛽 from discrete uniform on [𝑇]′ and outputs skaff =

(sk, 𝛼, 𝛽), ckaff = ck.

• Encaff(skaff ,𝑚). On input the secret key skaff and a message 𝑚 ∈ [𝑀], it outputs

CTaff = Enc(𝛼𝑚+ 𝛽).

By our choice of message space [𝐾] for Π, the input to Enc is guaranteed to be in

the message space.

• Compaff(ckaff ,CT
0
aff ,CT

1
aff): On inputs the comparison key ckaff , two ciphertexts

CT0
aff ,CT

1
aff , it outputs Comp(ckaff ,CT

0
aff ,CT

1
aff).

Here we also give the description of composted schemes that only achieve “scale-

hiding” or “shift-hiding”. Formally, we define Πscale = (Genscale,Encscale,Compscale) and

Πshift = (Genshift,Encshift,Compshift), respectively:

• Genscale(1
𝜆,𝑀,Π): On input the security parameter 𝜆, the message space [𝑀] and

Π, the algorithm picks a super-polynomial 𝛾 = 2𝜔(log 𝜆) as a global parameter,

and computes parameters above. Then it runs (ck, sk) ← Gen(1𝜆,𝐾), draws

𝛼
$← logU(𝜉, 2𝜉 − 1) and outputs skscale = (sk, 𝛼), ckscale = ck.

• Encscale(skscale,𝑚). On input the secret key skscale and a message 𝑚 ∈ [𝑀], it

outputs

CTscale = Enc(𝛼𝑚).

• Compscale(ckscale,CT
0
scale,CT

1
scale): On inputs the comparison key ckscale, two ci-

phertexts CT0
scale,CT

1
scale, it outputs Comp(ckscale,CT

0
scale,CT

1
scale).

• Genshift(1
𝜆,𝑀,Π): On input the security parameter 𝜆, the message space [𝑀] and

Π, the algorithm picks a super-polynomial 𝛾 = 2𝜔(log 𝜆) as a global parameter,

and computes parameters above. Then it runs (ck, sk)← Gen(1𝜆), draws 𝛽 from

discrete uniform on [𝑇]′ and outputs skshift = (sk, 𝛼), ckshift = ck.

76

• Encshift(skshift,𝑚). On input the secret key skshift and a message 𝑚 ∈ [𝑀], it

outputs

CTshift = Enc(𝑚+ 𝑏).

• Compshift(ckshift,CT
0
shift,CT

1
shift): On inputs the comparison key ckshift, two cipher-

texts CT0
shift,CT

1
shift, it outputs Comp(ckshift,CT

0
shift,CT

1
shift).

The correctness easily follows and what is more interesting is the privacy that those

scheme can guarantee.

4.3.2 Security

In the part, we prove Πaff is parameter hiding, formally:

Theorem 4.3.1 (Parameter-Hiding) Assuming Π has ℒ-simulation-security where

ℒ is smoothed CLWW, then for any 𝛾 = 2𝜔(log 𝜆), Πaff is (𝛾, 𝜂, 𝜇)-parameter hiding.

Proof: According to the security notions, it is straightforward that if an ORE scheme is

(𝛾, 𝜂, 𝜇)-parameter hiding, then it is also (𝛾, 𝜂, 𝜇)-scale hiding and (𝛾, 𝜂, 𝜇)-shift hiding.

Next we claim the converse proposition holds.

Claim. If an ORE scheme Π achieves (𝛾, 𝜂, 𝜇)-scale hiding and (𝛾, 𝜂, 𝜇)-shift hiding

simultaneously, then Π is (𝛾, 𝜂, 𝜇)-parameter hiding.

We sketch the proof by hybrid argument. For any 𝛾 = 2𝜔(log 𝜆) and (𝜂, 𝜇)-smooth

distribution 𝐷, firstly, by shift-hiding, there is no efficient adversary that distinguish

(𝛿0, ℓ0) from (𝛿0, 0) with non-negligible probability. Then due to scale-hiding, no efficient

adversary can differ (𝛿0, 0) from (𝛿1, 0) with non-negligible probability. Thirdly, same

as the first argument, any efficient adversary can distinguish (𝛿1, 0) from (𝛿1, ℓ1) with

only negligible advantage. Combining together, Π achieves (𝛾, 𝜂, 𝜇)-parameter hiding.

Thus, it suffices to show Πaff is both (𝛾, 𝜂, 𝜇)-scale hiding and (𝛾, 𝜂, 𝜇)-shift hiding.

Before showing these two properties, we first prove a lemma about (𝜂, 𝜇)-smooth dis-

tributions.

77

Lemma 4.3.2 If 𝐷 is (𝜂, 𝜇)-smooth, we have the following properties: for any 𝛿 ≥

𝛾, ℓ > 0,

• Property 1. Δ(⌊𝐷𝛿,ℓ
aff⌉, ⌊𝐷

𝛿,⌊ℓ⌉
aff ⌉) ≤ negl(𝜆),

• Property 2. for any 𝑠 > 0, Δ(⌊𝐷𝛿,ℓ
aff⌉, ⌊𝐷

𝛿(1+𝑠),ℓ
aff ⌉) ≤ 𝑂(𝑠) + negl(𝜆),

• Property 3. for any integer 𝑧, 𝑏 > 0, Δ(ℒclww(𝑧𝑚⃗ + 𝑏),ℒclww(𝑚⃗′) + 𝑏) ≤ negl(𝜆),

where 𝑚⃗
$← ⌊𝐷𝛿,0

scale⌉, 𝑚⃗
′ $← ⌊𝐷𝑧𝛿,0

scale⌉.

Intuitively, property 1 means that when shifting a smooth distribution small amount,

the rounded distribution will negligibly change; similarly property 2 indicates that when

scaling a smooth distribution by two close factors, the rounded distribution will change

negligibly; property 3 considers scaling and then rounding or rounding and then scaling,

and shows that the leakage will be almost identical in both cases (this follows from the

fact that the lower-order bits of the plaintext would not affect the leakage profile). Next

we prove these three properties one by one.

Property 1. Recalling the definitions, we note that the support of ⌊𝐷𝛿,ℓ
aff⌉, ⌊𝐷

𝛿,⌊ℓ⌉
aff ⌉ is

[⌈ℓ⌉, ⌊𝛿 + ℓ⌋], [⌊ℓ⌉, ⌊𝛿⌋+ ⌊ℓ⌉], respectively, so:

Δ(⌊𝐷𝛿,ℓ
aff⌉, ⌊𝐷

𝛿,⌊ℓ⌉
aff ⌉) =

1

2

⌊𝛿+ℓ⌋+1∑︁
𝑘=⌊ℓ⌉

|𝑝⌊𝐷𝛿,ℓ
aff ⌉

(𝑘)− 𝑝⌊𝐷𝛿,⌊ℓ⌉
aff ⌉(𝑘)|.

Moreover, by the definition of 𝐷𝛿,ℓ
aff , we have the implication

𝑝
𝐷𝛿,ℓ

aff
(𝑥) =

𝑝𝐷(
𝑥−ℓ
𝛿)

𝛿
⇒
∫︁ 𝛿+ℓ

ℓ
𝑝
𝐷𝛿,ℓ

aff
(𝑥)𝑑𝑥 =

∫︁ 1

0
𝑝𝐷(𝑥)𝑑𝑥.

Besides, 𝐷 is (𝜂, 𝜇)-smooth, which means
∫︀ 1
0 𝑝𝐷(𝑥)𝑑𝑥 ≥ 1-negl = 𝑂(1)(for ease, we

denote the integration as 𝐶). Therefore, for any 𝑘, 𝛿 > 𝛾, and ∀ℓ,

𝑝⌊𝐷𝛿,ℓ
aff ⌉

(𝑘) ≤

∫︀ 𝑘+1/2
𝑘−1 𝑝

𝐷𝛿,ℓ
aff
(𝑥)𝑑𝑥

𝐶
≤ 1.5𝜂

𝛿𝐶
= 𝑂(

1

𝛿
).

Now, we make use of the smooth derivative property. We observe that for any 𝑘 ∈

78

[⌈ℓ⌉ + 1, ⌊𝛿 + ℓ⌋ − 1], if ∀𝑥 ∈ [𝑘 − 1/2, 𝑘 + 1/2] satisfying |𝑝′
⌊𝐷𝛿,ℓ

aff ⌉
(𝑥)|, |𝑝′

⌊𝐷𝛿,⌊ℓ⌉
aff ⌉

(𝑥)| ≤ 𝜂,

then,

|𝑝⌊𝐷𝛿,ℓ
aff ⌉

(𝑘)− 𝑝⌊𝐷𝛿,⌊ℓ⌉
aff ⌉(𝑘)| =

1

𝐶

∫︁ 𝑘+1/2

𝑘−1/2
|𝑝

𝐷𝛿,ℓ
aff
(𝑥)− 𝑝

𝐷
𝛿,⌊ℓ⌉
aff

(𝑥)|𝑑𝑥

=
1

𝐶

∫︁ 𝑘+1/2

𝑘−1/2
|
𝑝𝐷(

𝑥−ℓ
𝛿)

𝛿
−

𝑝𝐷(
𝑥−⌊ℓ⌉

𝛿)

𝛿
|𝑑𝑥

≤ 1

𝐶𝛿

∫︁ 𝑘+1/2

𝑘−1/2
2max(𝑝′𝐷(𝑥))(

𝑥− ℓ

𝛿
− 𝑥− ⌊ℓ⌉

𝛿
)

≤ 1

𝐶𝛿
· 𝜂
𝛿
= 𝑂(

1

𝛿2
).

In addition, 𝐷 is (𝜂, 𝜇)-smooth, there are at most 𝜇 bad points such that the derivative

is not bounded by 𝜂, thus:

Δ(⌊𝐷𝛿,ℓ
aff⌉, ⌊𝐷

𝛿,⌊ℓ⌉
aff ⌉) ≤

1

2

⌊𝛿+ℓ⌋−1∑︁
𝑘=⌈ℓ⌉+1

|𝑝⌊𝐷𝛿,ℓ
aff ⌉

(𝑘)− 𝑝⌊𝐷𝛿,⌊ℓ⌉
aff ⌉(𝑘)|+ 4

1.5𝜂

𝛿𝐶

≤ 𝛿 · 1

𝐶𝛿
· 𝜂
𝛿
+ 4𝜇

1.5𝜂

𝛿𝐶
+ 4

1.5𝜂

𝛿𝐶

= (
7𝜂 + 6𝜂𝜇

𝐶
· 1
𝛿
) = 𝑂(

1

𝛿
) ≤ negl.

Property 2. Similarly, the support of ⌊𝐷𝛿,ℓ
aff⌉ and ⌊𝐷

𝛿(1+𝑠),ℓ
aff ⌉ is [⌈ℓ⌉, ⌊𝛿+ℓ⌋], [⌈ℓ⌉, ⌊𝛿(1+

𝑠) + ℓ⌋], respectively, so:

Δ(⌊𝐷𝛿,ℓ
aff⌉, ⌊𝐷

𝛿(1+𝑠),ℓ
aff ⌉) = 1

2

⌊𝛿(1+𝑠)+ℓ⌋∑︁
𝑘=⌈ℓ⌉

|𝑝⌊𝐷𝛿,ℓ
aff ⌉

(𝑘)− 𝑝⌊𝐷𝛿(1+𝑠),ℓ
aff ⌉(𝑘)|.

Same as the proof in property 1, we have that for any 𝑘, 𝑝⌊𝐷𝛿,ℓ
aff ⌉

(𝑘), 𝑝⌊𝐷𝛿(1+𝑠),ℓ
aff ⌉(𝑘) ≤

𝑂(1𝛿). Moreover, for any 𝑘 ∈ [⌈ℓ⌉+ 1, ⌊𝛿 + ℓ⌋ − 1], if ∀𝑥 ∈ [𝑘 − 1/2, 𝑘 + 1/2] satisfying

79

|𝑝′
⌊𝐷𝛿,ℓ

aff ⌉
(𝑥)|, |𝑝′

⌊𝐷𝛿(1+𝑠),ℓ
aff ⌉

(𝑥)| ≤ 𝜂, then,

|𝑝⌊𝐷𝛿,ℓ
aff ⌉

(𝑘)− 𝑝⌊𝐷𝛿(1+𝑠),ℓ
aff ⌉(𝑘)| =

1

𝐶

∫︁ 𝑘+1/2

𝑘−1/2
|𝑝

𝐷𝛿,ℓ
aff
(𝑥)− 𝑝

𝐷
𝛿(1+𝑠),ℓ
aff

(𝑥)|𝑑𝑥

=
1

𝐶

∫︁ 𝑘+1/2

𝑘−1/2
|
𝑝𝐷(

𝑥−ℓ
𝛿)

𝛿
−

𝑝𝐷(
𝑥−ℓ

𝛿(1+𝑠))

𝛿(1 + 𝑠)
|𝑑𝑥

=
1

𝐶𝛿(1 + 𝑠)

∫︁ 𝑘+1/2

𝑘−1/2
𝑝𝐷(

𝑥− ℓ

𝛿
)(1 + 𝑠)− 𝑝𝐷(

𝑥− ℓ

𝛿(1 + 𝑠)
)𝑑𝑥

=
1

𝐶𝛿(1 + 𝑠)

∫︁ 𝑘+1/2

𝑘−1/2
𝑝𝐷(

𝑥− ℓ

𝛿
)− 𝑝𝐷(

𝑥− ℓ

𝛿(1 + 𝑠)
)𝑑𝑥+

𝑠

𝐶𝛿(1 + 𝑠)

∫︁ 𝑘+1/2

𝑘−1/2
𝑝𝐷(

𝑥− ℓ

𝛿
)𝑑𝑥

≤ 1

𝐶𝛿(1 + 𝑠)

∫︁ 𝑘+1/2

𝑘−1/2
2max(𝑝′𝐷(𝑥))

𝑥− ℓ

𝛿
(1− 1

1 + 𝑠
)𝑑𝑥+

𝑠𝜂

𝐶𝛿(1 + 𝑠)

≤ 1

𝐶𝛿(1 + 𝑠)

2𝜂𝑠

1 + 𝑠
+

𝑠𝜂

𝐶𝛿(1 + 𝑠)
≤ 3𝜂𝑠

𝐶𝛿(1 + 𝑠)
.

Besides, 𝐷 is (𝜂, 𝜇)-smooth, there are at most 𝜇 bad points s.t. the derivative is not

bounded by 𝜂, thus we have Δ(⌊𝐷𝛿,ℓ
aff⌉, ⌊𝐷

𝛿(1+𝑠),ℓ
aff ⌉):

≤ 1

2

⌊𝛿+ℓ⌋−1∑︁
𝑘=⌈ℓ⌉+1

|𝑝⌊𝐷𝛿,ℓ
aff ⌉

(𝑘)− 𝑝⌊𝐷𝛿(1+𝑠),ℓ
aff ⌉(𝑘)|+

⌊𝛿(1+𝑠)+ℓ⌋∑︁
𝑘=⌈𝛿+ℓ⌉

𝑝⌊𝐷𝛿(1+𝑠),ℓ
aff ⌉(𝑘) +𝑂(

1

𝛿
)

≤ 𝛿
3𝜂𝑠

𝐶𝛿(1 + 𝑠)
+ 4𝜇𝑂(

1

𝛿
) + ⌈𝛿𝑠⌉𝑂(

1

𝛿
) +𝑂(

1

𝛿
)

= 𝑠
3𝜂

𝐶(1 + 𝑠)
+ (4𝜇+ 1)𝑂(

1

𝛿
) +𝑂(𝑠)

= 𝑂(𝑠) +𝑂(
1

𝛿
) ≤ 𝑂(𝑠) + negl.

Property 3. The statement of property 3 considers scaling and then rounding or

rounding and then scaling, and shows that the leakage will be almost identical in both

case, and we prove it in two steps. Roughly, in the first step we show that adding any

small noise to the plaintext sequence would not change the leakage profile whp; in step

2, we construct a new distribution ⌊𝐷𝑧,𝛿,0
noise⌉ based on a noise distribution, such that

⌊𝐷𝑧,𝛿,0
noise⌉, ⌊𝐷z𝛿,0⌉) ≤ negl and ⌊𝐷𝑧,𝛿,0

noise⌉ samples the noised plaintexts in step 1.

Step 1. For any integer 𝑧, 𝑏 > 0, for any noise vector 𝑒⃗ such that the maximum of 𝑒⃗ is

80

less than 𝑧, then we claim

Δ(ℒclww(𝑧𝑚⃗+ 𝑏),ℒclww(𝑧𝑚⃗+ 𝑒⃗+ 𝑏)) ≤ negl, 𝑚⃗
$← ⌊𝐷𝛿,0

scale⌉.

By definition, we know that ℒclww(𝑚⃗) gives the position of the most significant differ bit

for all plaintext pairs, namely msdb(𝑚𝑖,𝑚𝑗). Let 𝜈 = 𝛾1/4(𝜈 is also a super-polynomial

in 𝜆), we have

Pr[∃𝑚𝑖,𝑚𝑗 , 𝑠.𝑡.|𝑚𝑖 −𝑚𝑗 | ≤ 𝜈2] ≤ 1

𝜈
≤ negl.

which referring to whp the most significant different bit of any pair would not lay in

the last 2 log 𝜈 bits (msdb(𝑚𝑖,𝑚𝑗) ≤ 𝐾 − 2 log 𝜈). Therefore, for any fixed 𝑧, 𝑏 > 0,

msdb(𝑧𝑚𝑖 + 𝑏, 𝑧𝑚𝑗 + 𝑏) ≤ 𝐾 − ⌊log 𝑧⌋ − 2 log 𝜈 whp, and it seems sufficient to prove

that for any fixed 𝑧, 𝑏, for all plaintexts adding a small noise would not change the first

𝐾 − ⌊log 𝑧⌋ − 2 log 𝜈 bits, because ℒclww only leaks the position of the most significant

differ bit.

We say a plaintext𝑚 is “bad” if there is a noise 0 < 𝑒 ≤ 𝑧 s.t. the first𝐾−⌊log 𝑧⌋−2 log 𝜈

bits of 𝑧𝑚+ 𝑏 and 𝑧𝑚+ 𝑏+𝑒 are distinct, and we show that with high probability, none

of the plaintext in 𝑚⃗ is bad.

For ease, we write 𝑆 ⊂ ⌊𝐷𝛿,0
scale⌉ to denote the set of bad plaintext in the support of

⌊𝐷𝛿,0
scale⌉ and we define the event Bad as when sampling a plaintext vector 𝑚⃗

$← ⌊𝐷𝛿,0
scale⌉,

there exists 𝑚* ∈ 𝑚⃗ such that 𝑚 ∈ 𝑆. As plaintext is drawn i.i.d., we have

Pr[Bad] = Pr[𝑚⃗ ∩ 𝑆 ̸= ∅ : 𝑚⃗ $← ⌊𝐷𝛿,0
scale⌉] ≤ 𝑞Pr[𝑚 ∈ 𝑆 : 𝑚

$← ⌊𝐷𝛿,0
scale⌉].

One key observation is that the bad message appears periodically, namely if 𝑚 is bad,

then 𝑚 + 1, . . . ,𝑚 + 𝜈2/2 are not bad(if 𝑚 is bad, the first 2 log 𝜈 − 1 bits of the last

2 log 𝜈 + ⌊log 𝑧⌋ bits of 𝑧𝑚+ 𝑏 must be 1 . . . 1⏟ ⏞
2 log 𝜈−1

, otherwise adding an small noise would

not affect the prefix, and we immediately observe that for 𝑚+ 𝑖, 𝑖 ∈ [1, 𝜈2/2], the first

2 log 𝜈 − 1 bits of the last 2 log 𝜈 + ⌊log 𝑧⌋ bits of 𝑧𝑚𝑖 + 𝑏 are not all 1). Based on this

observation, we define a sequence of disjoint set 𝑆𝑖 ∈ ⌊𝐷𝛿,0
scale⌉, and we say 𝑚 ∈ 𝑆𝑖 if

81

𝑚− 𝑖 ∈ 𝑆, then we claim

Pr[𝑚 ∈ 𝑆𝑖] ≥ Pr[𝑚 ∈ 𝑆]−𝑂(
𝑖

𝛾
)−𝑂(

1

𝛾
),∀𝑖 ∈ [1, 𝜈2/2].

Firstly, we note that any 𝑘 ∈ [1, ⌊𝛿⌋ − 1],

|𝑝⌊𝐷𝛿,0
scale⌉

(𝑘 + 1)− 𝑝⌊𝐷𝛿,0
scale⌉

(𝑘)| = |𝑝⌊𝐷𝛿,0
scale⌉

(𝑘 + 1)− 𝑝⌊𝐷𝛿,1
scale⌉

(𝑘 + 1)|.

Applying property 1, for any 𝑘 ∈ [⌈ℓ⌉ + 1, ⌊𝛿 + ℓ⌋ − 1], if ∀𝑥 ∈ [𝑘 − 1/2, 𝑘 + 1/2] such

that |𝑝′
⌊𝐷𝛿,ℓ

aff ⌉
(𝑥)|, |𝑝′

⌊𝐷𝛿,⌊ℓ⌉
aff ⌉

(𝑥)| ≤ 𝜂, then

|𝑝⌊𝐷𝛿,0
scale⌉

(𝑘)− 𝑝⌊𝐷𝛿,1
scale⌉

(𝑘)| ≤ 𝑂(
1

𝛾2
)⇒ |𝑝⌊𝐷𝛿,0

scale⌉
(𝑘)− 𝑝⌊𝐷𝛿,𝑖

scale⌉
(𝑘)| ≤ 𝑂(

𝑖

𝛾2
),

which means |𝑝⌊𝐷𝛿,0
scale⌉

(𝑘+𝑖)−𝑝⌊𝐷𝛿,0
scale⌉

(𝑘)| ≤ 𝑂(𝑖
𝛾2). By the periodicity of the appearance

for bad plaintext and there are at most 𝜇 points s.t. the derivative is not bounded by

𝜂, we have

Pr[𝑆𝑖] ≥ Pr[𝑆]− 𝛿𝑂(
𝑖

𝛾
)−𝑂(

4𝜇

𝛾
)−𝑂(

1

𝛾
) = Pr[𝑆]−𝑂(

𝑖

𝛾
).

Then we prove Pr[Bad] ≤ negl. If not, say Pr[Bad] = 𝑡 is noticeable, then Pr[𝑆] > 𝑡/𝑞,

which indicates that Pr[𝑆𝑖] ≥ 𝑡/𝑞−𝑂(𝑖
𝛾). Moreover, by definition 𝜈1.5 > 3𝑞/𝑡, we have:

1 ≥ Pr[𝑚 ∈ 𝑆] + Pr[𝑚 ∈ 𝑆1] + . . .+ Pr[𝑚 ∈ 𝑆𝜈1.5]

≥ 𝑡/𝑞 + 𝑡/𝑞 −𝑂(
1

𝛾
) + . . .+ 𝑡/𝑞 −𝑂(

𝜈1.5

𝛾
)

≥ 𝜈1.5 · 𝑡/𝑞 −
𝜈1.5∑︁
𝑖=1

𝑖

𝛾
> 3− 𝜈3

𝛾
= 3−𝑂(

1

𝜈
) > 2.

Step 2. In Step 1, we see that the leakage profile is resilient to adding any small

noise(|𝑒| < 𝑧), and in the following we prove that there exists a distribution 𝐸noise

such that we can induce a new distribution ⌊𝐷𝑧,𝛿,0
noise⌉ from ⌊𝐷𝛿,0

scale⌉ and 𝐸noise. More

specifically, let 𝑀,𝑀 ′, 𝐸 be random variables drawn from ⌊𝐷𝛿,0
scale⌉, ⌊𝐷

𝑧𝛿,0
scale⌉ and 𝐸noise

82

respectively, and we define a new variable as 𝑀𝐸 = 𝑧𝑀 + 𝐸. Then we complete our

proof by showing Δ(𝑀𝐸 ,𝑀
′) ≤ negl. As 𝐸noise can be any distribution as long as its

variable is small, we define 𝑀𝐸 as following:

Pr[𝑀𝐸 = 𝑧𝑘 + 𝑖] = 𝑝⌊𝐷𝛿,0
scale⌉

(𝑘)×
𝑝⌊𝐷𝑧𝛿,0

scale⌉
(𝑧𝑘 + 𝑖)

𝑝⌊𝐷𝑧𝛿,0
scale⌉

(𝑧𝑘) + . . .+ 𝑝⌊𝐷𝑧𝛿,0
scale⌉

(𝑧𝑘 + 𝑧 − 1)
.

On the other side, we have that

Pr[𝑀 ′ = 𝑧𝑘 + 𝑖] = 𝑝⌊𝐷𝑧𝛿,0
scale⌉

(𝑧𝑘 + 𝑖)

= 𝑝⌊𝐷𝛿,0
scale⌉

(𝑧𝑘) + . . .+ 𝑝⌊𝐷𝛿,0
scale⌉

(𝑧𝑘 + 𝑧 − 1)×
𝑝⌊𝐷𝑧𝛿,0

scale⌉
(𝑧𝑘 + 𝑖)

𝑝⌊𝐷𝑧𝛿,0
scale⌉

(𝑧𝑘) + . . .+ 𝑝⌊𝐷𝑧𝛿,0
scale⌉

(𝑧𝑘 + 𝑧 − 1)
.

Therefore, we can calculate the the statistical distance:

Δ(⌊𝐷𝑧,𝛿,0
noise⌉, ⌊𝐷

𝑧𝛿,0
scale⌉) = Δ(𝑀𝐸 ,𝑀

′) =

⌊𝛿⌋∑︁
𝑘=0

|𝑝⌊𝐷𝛿,0
scale⌉

(𝑘)−(𝑝⌊𝐷𝑧𝛿,0
scale⌉

(𝑧𝑘)+. . .+𝑝⌊𝐷𝑧𝛿,0
scale⌉

(𝑧𝑘+𝑧−1))|.

By definition, easy to note that

𝑝⌊𝐷𝛿,0
scale⌉

(𝑘) =
1

𝐶

∫︁ 𝑘+1−1/2

𝑘−1/2

𝑝𝐷(
𝑥
𝛿)

𝛿
𝑑𝑥,

𝑧𝑘+𝑧−1∑︁
𝑖=𝑧𝑘

𝑝⌊𝐷𝑧𝛿,0
scale⌉

(𝑖) =
1

𝐶

∫︁ 𝑧(𝑘+1)−1/2

𝑧𝑘−1/2

𝑝𝐷(
𝑥
𝑧𝛿)

𝑧𝛿
𝑑𝑥 =

1

𝐶

∫︁ 𝑘+1− 1
2𝑧

𝑘− 1
2𝑧

𝑝𝐷(
𝑥
𝛿)

𝛿
𝑑𝑥.

Therefore, for any 𝑘 ∈ [0, ⌊𝛿⌋], if ∀𝑥 ∈ [𝑘 − 1
2 , 𝑘 + 1 − 1

2𝑧] such that |𝑝′
⌊𝐷𝛿,0

scale⌉
(𝑥)| ≤ 𝜂,

then,

| 1
𝐶

∫︁ 𝑘+1−1/2

𝑘−1/2

𝑝𝐷(
𝑥
𝛿)

𝛿
𝑑𝑥− 1

𝐶

∫︁ 𝑘+1− 1
2𝑧

𝑘− 1
2𝑧

𝑝𝐷(
𝑥
𝛿)

𝛿
𝑑𝑥|

=
1

𝐶
|
𝑝𝐷(

𝑥
𝛿)

𝛿
𝑑𝑥−

∫︁ 𝑘+1−1/2

𝑘−1/2

𝑝𝐷(
𝑥+ 1

2
− 1

2𝑧
𝛿)

𝛿
𝑑𝑥|

≤ 1

𝐶

∫︁ 𝑘+1/2

𝑘−1/2
|
𝑝𝐷(

𝑥
𝛿)

𝛿
−

𝑝𝐷(
𝑥+ 1

2
− 1

2𝑧
𝛿)

𝛿
|𝑑𝑥

≤ 1

𝐶𝛿

∫︁ 𝑘+1/2

𝑘−1/2
max |𝑝′|1

𝛿
𝑑𝑥 ≤ 𝜂

𝐶𝛿2
.

83

In addition, 𝐷 is (𝜂, 𝜇)-smooth, there are at most 𝜇 points such that the derivative is

not bounded by 𝜂, thus:

Δ(⌊𝐷𝑧,𝛿,0
noise⌉, ⌊𝐷

𝑧𝛿,0
scale⌉) ≤ 𝛿

𝜂

𝐶𝛿2
+ 4𝜇𝑂(

1

𝛿
) ≤ 𝑂(

1

𝛿
) ≤ negl

In the following we prove that Πaff is both (𝛾, 𝜂, 𝜇)-scale hiding and (𝛾, 𝜂, 𝜇)-shift hiding.

Lemma 4.3.3 Assuming Π has ℒ-simulation-security where ℒ is smoothed CLWW,

then for any 𝛾 = 2𝜔(log 𝜆), Πaff is (𝛾, 𝜂, 𝜇)-shift hiding.

As Π is ℒ-simulation-secure, it suffices to consider an adversary 𝒜 that only gets the

leakage function ℒ(𝑚⃗). It outputs a single bit. Hence it suffices to show that, for any

fixed 𝛼 ∈ [𝜉, 2𝜉), Δ(ℒ(𝛼𝑚⃗0 + 𝛽),ℒ(𝛼𝑚⃗1 + 𝛽)) ≤ negl(𝜆), where 𝑚⃗0
$← ⌊𝐷𝛿,ℓ0

aff ⌉; 𝑚⃗1
$←

⌊𝐷𝛿,ℓ1
aff ⌉;𝛽

$← [𝑇]′. Moreover, we observe that for any 𝛼, the maximum element in 𝑎𝑚⃗𝑏

is less than 𝑇/2. Thus, if we view the message space as a binary tree, each element

lies in the left-most subtree depth 2. Adding 𝑇 just moves the messages to a different

subtree; according to CLWW leakage this indicates ℒ(𝑚⃗) = ℒ(𝑚⃗+ 𝑇).

Let 𝑀0,𝑀1 be the random variables drawn from ⌊𝐷𝛿,⌊ℓ0⌉
aff ⌉, ⌊𝐷𝛿,⌊ℓ1⌉

aff ⌉. We have that

𝑀0 = 𝑀1 − (⌊ℓ1⌉ − ⌊ℓ0⌉) as random variables (we assume ℓ1 > ℓ0 wlog).

Now we define a bijective map 𝑓 : [𝑇]′ → [𝑇]′ as 𝑓(𝑥) = 𝛼(⌊ℓ1⌉ − ⌊ℓ0⌉) + 𝑥 mod 𝑇 . Let

𝐵
$← [0, 𝑇). Since the leakage is invariant to shifts by 𝑇 , we have that ℒ(𝛼𝑚⃗′0 + 𝐵) =

ℒ(𝛼𝑚⃗′1 + 𝑓(𝐵)), where 𝑚⃗0
′ $← ⌊𝐷𝛿,⌊ℓ0⌉

aff ⌉; 𝑚⃗1
′ $← ⌊𝐷𝛿,⌊ℓ1⌉

aff ⌉. As 𝛽 is sampled uniformly,

thus, ℒ(𝛼𝑚⃗0
′ + 𝛽) = ℒ(𝛼𝑚⃗1

′ + 𝛽).

Now, applying Property 1 in lemma 4.3.2, we have Δ(⌊𝐷𝛿,ℓ𝑏
aff ⌉, ⌊𝐷

𝛿,⌊ℓ𝑏⌉
aff ⌉) ≤ negl(𝜆).

Combing together, we get

Δ(ℒ(𝛼𝑚⃗0 + 𝛽),ℒ(𝛼𝑚⃗1 + 𝛽)) ≤ negl(𝜆).

Next we show that Πaff is also (𝛾, 𝜂, 𝜇)-scale hiding. However, The proof of the scale

hiding part is much more involved than the one in Lemma 4.3.3, more specifically, for

84

CLWW smoothed leakage profile, we only have ℒ(𝑚⃗) = ℒ(2𝑚⃗) and it’s very unlikely

ℒ(𝑚⃗ + 𝛽) = ℒ(2𝑚⃗ + 𝛽) for any fixed 𝛽. Thus we do not have the periodicity of

multiplying 2 directly and a more tricky technique is needed.

A core observation is that we can decompose Πaff to (Πshift)scale, namely for any

Π = (Gen,Enc,Comp) (with smoothed CLWW leakage), Encaff(𝑚) = Enc(𝛼𝑚 + 𝛽),

in contrast, for (Πshift)scale = (Genss,Encss,Encss) we have

Encss(𝑚) = Encshift(𝛼𝑚) = Enc(𝛼𝑚+ 𝛽) = Encaff(𝑚).

Hence, it seems sufficient to prove the following two statements: “assuming Π is ℒ-

simulation-secure where ℒ is smoothed CLWW, then Πscale is (𝛾, 𝜂, 𝜇)-scale hiding”

and “Πshift is ℒ-simulation-secure and ℒ is smoothed CLWW ”.

Unfortunately, this attempt does not work neither. By definition, the leakage profile

of Πshift is ℒ(𝑚⃗ + 𝛽) (we will denote the leakage as ℒshift below for short), and for

any plaintext sequences 𝑚⃗0, 𝑚⃗1 such that ℒclww(𝑚⃗0) = ℒclww(𝑚⃗1), it’s unlikely that

ℒshift(𝑚⃗0 + 𝛽) = ℒshift(𝑚⃗1 + 𝛽) (even over the probability of 𝛽), because the smoothed

CLWW leakage profile might be very sensitive by adding a large noise. Hence the

leakage profile of Πshift is not likely to be smoothed CLWW and we need to analyze

ℒshift carefully. Formally:

Lemma 4.3.4 Assuming Π is ℒ-simulation-secure where ℒ is CLWW-smoothed, then

for any 𝛾 = 2𝜔(log 𝜆), Πaff is (𝛾, 𝜂, 𝜇)-scale hiding.

Firstly we show ℒshift satisfies the following two properties:

1. for any integer 𝑧 > 0, Δ(ℒshift(𝑧𝑚⃗),ℒshift(𝑚⃗′)) ≤ negl(𝜆) where 𝑚⃗
$← ⌊𝐷𝛿,0

scale⌉, 𝑚⃗
′ $←

⌊𝐷𝑧𝛿,0
scale⌉;

2. Δ(ℒshift(𝑚⃗),ℒshift(2𝑚⃗)) ≤ negl(𝜆)

The first property is followed directly by the Property 3 in Lemma 4.3.2, since ℒshift(𝑚⃗) =

85

ℒ(𝑚⃗+𝛽) and ℒ is smoothed CLWW. Now we show the second property. It is straight-

forward to show that for a given 𝛽, ℒshift(𝑚⃗) is likely not equal to ℒshift(2𝑚⃗). However,

𝛽 is part of secret key, and it’s sufficient to show that, over the probability of 𝛽, the

distributions of ℒshift(𝑚⃗) and ℒshift(2𝑚⃗) are close.

In fact, for any plaintext pair (𝑚𝑖,𝑚𝑗) ∈ 𝑚⃗ (assuming all the plaintexts are distinct), we

write 𝑧𝑖,𝑗 to denote the position of the most significant differing bit of (2𝑚𝑖+𝛽, 2𝑚𝑗+𝛽),

and since 2𝑚𝑖, 2𝑚𝑗 are both have the last bit 0, we know that 𝑧𝑖,𝑗 is not the last bit.

Since ℒ is smoothed CLWW, we have the implication

ℒclww(2𝑚⃗+ 𝛽) = ℒclww(2𝑚⃗+ 2⌊𝛽
2
⌋)⇒ ℒ(2𝑚⃗+ 𝛽) = ℒ(2𝑚⃗+ 2⌊𝛽

2
⌋) = ℒ(𝑚⃗+ ⌊𝛽

2
⌋).

We note that ⌊𝛽2 ⌋ is a random variable distributed on [𝑇/2]′ uniformly, and we need

extend it to [𝑇]′. Here we define a bijective map 𝑓 : [𝑇]′ → [𝑇]′ as 𝑓(𝛽) = ⌊𝛽2 ⌋ +

(𝛽 mod 2) · (𝑇/2), and want to show that with overwhelming probability ℒ(𝑚⃗+ ⌊𝛽2 ⌋) =

ℒ(𝑚⃗+ 𝑓(𝛽)).

In the case that 𝛽 mod 2 = 0, this holds trivially, as 𝑓(𝛽) = ⌊𝛽2 ⌋. Else, suppose

𝛽 mod 2 = 1. According to the definition of CLWW leakage, we have that ℒclww(𝑚⃗ +

⌊𝛽2 ⌋) ̸= ℒclww(𝑚⃗+ ⌊𝛽2 ⌋+ (𝑇/2)) only if there exists an 𝑚𝑖 such that 𝑚𝑖 + ⌊𝛽2 ⌋ ≥ (𝑇/2)

(if not, then ∀𝑖, 𝑗,msdb(𝑚𝑖,𝑚𝑗) ≥ 3, which means adding (𝑇/2) would preserve the

leakage profile). Moreover, |𝑚𝑖| ≤ 𝑇
2𝛾2 , which means Pr

𝛽
$←[𝑇]′

[𝑚𝑖 + ⌊𝛽2 ⌋ ≥ (𝑇/2)] ≤ 1
𝛾2 .

Thus, we have

Δ(ℒ(𝑚⃗+ 𝛽),ℒ(2𝑚⃗+ 𝛽)) = Δ(ℒshift(𝑚⃗),ℒshift(2𝑚⃗)) ≤ 𝑞
1

𝛾2
≤ negl(𝜆).

Hence, it suffices to prove that Πscale is scale hiding if the leakage profile of Π satisfies

the two properties above. We call such a leakage profile scale-smoothed.

Lemma 4.3.5 Assuming Π is ℒ-simulation-secure where ℒ is scale-smoothed, then for

any 𝛾 = 2𝜔(log 𝜆), Πscale is (𝛾, 𝜂, 𝜇)-scale hiding.

86

Similarly to Lemma 4.3.3, we consider adversary 𝒜 that takes the leakage profile as

input, and we define

𝑃 (⌊𝐷𝛿,0
scale⌉) := Pr[𝒜(ℒ(𝛼𝑚⃗)) : 𝑚⃗

$← ⌊𝐷𝛿,0
scale⌉, 𝛼

$← logU(𝜉, 2𝜉 − 1)],

𝑄(⌊𝐷𝛿,0
scale⌉) := Pr[𝒜(ℒ(𝑚⃗)) : 𝑚⃗

$← ⌊𝐷𝛿,0
scale⌉].

We note that it is sufficient to show that Πscale is scale hiding that for any valid 𝛿0, 𝛿1

(meaning 𝛾 ≤ 𝛿0, 𝛿1 ≤ 𝑀), we have |𝑃 (⌊𝐷𝛿0,0
scale⌉) − 𝑃 (⌊𝐷𝛿1,0

scale⌉)| ≤ negl(𝜆)). Since ℒ

is scale-smoothed, we have that for any 𝛼 ∈ [𝜉, 2𝜉 − 1], Δ(ℒ(𝛼𝑚⃗),ℒ(𝑚⃗′)) ≤ negl(𝜆),

where 𝑚⃗
$← ⌊𝐷𝛿,0

scale⌉, 𝑚⃗
′ $← ⌊𝐷𝛼𝛿,0

scale⌉. Hence we can represent 𝑃 (⌊𝐷𝛿,0
scale⌉) as:

𝑃 (⌊𝐷𝛿,0
scale⌉) =

2𝜉−1∑︁
𝑘=𝜉

Pr[𝛼 = 𝑘]𝒜(ℒ(𝑘𝑚⃗))

negl
≈

2𝜉−1∑︁
𝑘=𝜉

Pr[𝛼 = 𝑘]𝒜(ℒ(𝑚⃗′))

=

2𝜉−1∑︁
𝑘=𝜉

Pr[𝛼 = 𝑘]𝑄(⌊𝐷𝑘𝛿,0
scale⌉).

(here we abuse the notation 𝑚⃗′ to denote the plaintext sequence drawn from ⌊𝐷𝑘𝛿,0
scale⌉).

In the next step, we make use of the periodicity of scaling 2, intuitively, we show that

for any integer 𝑧0, 𝑧1, if there is an integer 𝑠 such that 𝑧1 ≈ 2𝑠𝑧0, then 𝑄(⌊𝐷𝑧0,0
scale⌉) ≈

𝑄(⌊𝐷𝑧1,0
scale⌉). To make it concrete, we first introduce 𝜏 disjoint buckets 𝐵0, . . . , 𝐵𝜏−1

such that:

𝐵𝑖 = {(𝜏+𝑖) , (2(𝜏+𝑖), 2(𝜏+𝑖)+1) , . . . , (2𝑑(𝜏+𝑖), 2𝑑(𝜏+𝑖)+1, . . . , 2𝑑(𝜏+𝑖)+2𝑑−1) . . .}.

and claim that for any distinct integer 𝛿0, 𝛿1, if they fall into the same bucket, then

𝑄(⌊𝐷𝛿0,0
scale⌉)

negl
≈ 𝑄(⌊𝐷𝛿1,0

scale⌉).

Claim. ∀𝛾 ≤ 𝛿0, 𝛿1 ≤ 𝑇 , if there is 𝑖 ∈ [𝜏]′ such that 𝛿0, 𝛿1 ∈ 𝐵𝑖, then |𝑄(⌊𝐷𝛿0,0
scale⌉) −

𝑄(⌊𝐷𝛿1,0
scale⌉)| ≤ negl(𝜆).

We assume 𝛿0, 𝛿1 ∈ 𝐵0 wlog, more precisely, we denote 𝛿0 = 2𝑑0𝜏+𝑡0; 𝛿1 = 2𝑑1𝜏+𝑡1; 𝑑0 <

87

𝑑1 and 0 ≤ 𝑡𝑏 < 2𝑑𝑏 . Apparently, 𝛿𝑏 ≤ (1+ 1
𝜏)2

𝑑𝑏𝜏 , so applying the Property 2 in Lemma

4.3.2, we know that

Δ(⌊𝐷𝛿𝑏,0
scale⌉, ⌊𝐷

2𝑑𝑏𝜏,0
scale ⌉) ≤ 𝑂(

1

𝜏
) + negl(𝜆) ≤ 𝑂(

1

𝜏
)

⇒|𝑄(⌊𝐷𝛿𝑏,0
scale⌉)−𝑄(⌊𝐷2𝑑𝑏𝜏,0

scale ⌉)| ≤ negl(𝜆).

Moreover, let 𝑚⃗0, 𝑚⃗1 be the plaintext sequence drawn from ⌊𝐷2𝑑0𝜏,0
scale ⌉, ⌊𝐷

2𝑑1𝜏,0
scale ⌉ respec-

tively, due to the second property of ℒ, we have

|𝑄(⌊𝐷2𝑑0𝜏,0
scale ⌉ −𝑄(⌊𝐷2𝑑1𝜏,0

scale ⌉)| ≤ Δ(ℒ(𝑚⃗0),ℒ(2𝑑1−𝑑0𝑚⃗0)) + negl(𝜆) ≤ negl(𝜆).

Combing together, |𝑄(⌊𝐷𝛿0,0
scale⌉) − 𝑄(⌊𝐷𝛿1,0

scale⌉)| ≤ negl. Therefore, we can extract a

representative for each bucket and for ease, we write 𝑄(𝐵𝑖) as the value such that for

any 𝛿 ∈ 𝐵𝑖, |𝑄(⌊𝐷𝛿,0
scale⌉)−𝑄(𝐵𝑖)| ≤ negl.

By this bucket technique, we can re-organize the representation of 𝑃 (⌊𝐷𝛿𝑏,0
scale⌉) bucket

by bucket, namely, let 𝑝𝑖,𝛿𝑏 := Pr[𝛼𝛿𝑏 ∈ 𝐵𝑖 : 𝛼
$← logU(𝜉, 2𝜉 − 1)], we have:

𝑃 (⌊𝐷𝛿𝑏,0
scale⌉)

negl
≈

2𝜉−1∑︁
𝑘=𝜉

Pr[𝛼 = 𝑘]𝑄(⌊𝐷𝑘𝛿,0
scale⌉) =

𝜏−1∑︁
𝑖=0

∑︁
𝛼𝛿𝑏∈𝐵𝑖

𝑄(⌊𝐷𝛼𝛿𝑏,0
scale ⌉)

negl
≈

𝜏−1∑︁
𝑖=0

𝑝𝑖,𝛿𝑏𝑄(𝐵𝑖).

By definition, 𝒜 is a predicate algorithm, which means ∀𝑖 ∈ [𝜏]′, 𝑄(𝐵𝑖) ≤ 1, then

|𝑃 (⌊𝐷𝛿0,0
scale⌉)−𝑃 (⌊𝐷𝛿1,0

scale⌉)| ≤ |
𝜏−1∑︁
𝑖=0

𝑝𝑖,𝛿0𝑄(𝐵𝑖)−
𝜏−1∑︁
𝑖=0

𝑝𝑖,𝛿1𝑄(𝐵𝑖)|+negl ≤
𝜏−1∑︁
𝑖=0

|𝑝𝑖,𝛿0−𝑝𝑖,𝛿1 |+negl.

Therefore, it remains to prove
∑︀𝜏−1

𝑖=0 |𝑝𝑖,𝛿0 − 𝑝𝑖,𝛿1 | ≤ negl.

In fact, the range of 𝛼 is [𝜉, 2𝜉), then for any fixed 𝛿, there exists 𝑑𝛿 such that 𝛼𝛿 ∈

[2𝑑𝛿𝜏, 2𝑑𝛿+2𝜏) : 𝛼
$← logU(𝜉, 2𝜉 − 1). Here we split this interval into 2 parts: 𝐶0 :=

[2𝑑𝛿𝜏, 2𝑑𝛿+1𝜏);𝐶1 := [2𝑑𝛿+1𝜏, 2𝑑𝛿+2𝜏), and define 3 disjoint subsets 𝑆𝛿
𝐶0
, 𝑆𝛿

𝐶1
, 𝑆𝛿

𝐶0,𝐶1
⊂

[𝜏]′. We say 𝑖 ∈ 𝑆𝛿
𝐶0
, if for all 𝛼 ∈ [𝜉, 2𝜉) such that 𝛼𝛿 ∈ 𝐵𝑖, we have 𝛼𝛿 ∈ 𝐶0; similarly

𝑖 ∈ 𝑆𝛿
𝐶1
, if ∀𝛼 such that 𝛼𝛿 ∈ 𝐵𝑖, we have 𝛼𝛿 ∈ 𝐶1; for the last one, we define it as

there exist 𝛼0, 𝛼0 ∈ [𝜉, 2𝜉) satisfying 𝛼0𝛿, 𝛼1𝛿 ∈ 𝐵𝑖 and 𝛼0𝛿 ∈ 𝐶0, 𝛼1𝛿 ∈ 𝐶1.

88

Now we calculate 𝑝𝑖,𝛿(for ease, we denote 𝑊 =
∑︀2𝜉−1

𝑗=𝜉 1/𝑗, and it is straightforward

that 𝑊 ≈ ln 2 = 𝑂(1)), if 𝑖 ∈ 𝑆𝛿
𝐶0
, then:

𝑝𝑖,𝛿 = Pr[𝛼𝛿 ∈ 𝐵𝑖 : 𝛼
$← logU(𝜉, 2𝜉 − 1)]

=

⌈ 2
𝑑𝛿 𝜏+2𝑑𝛿 (𝑖+1)

𝛿
⌉∑︁

𝑗=⌊ 2
𝑑𝛿 𝜏+2𝑑𝛿 𝑖

𝛿
⌋

1

𝑊

1

𝑗
+𝑂(

𝛿

2𝑑𝛿𝜏
)

=
1

𝑊
(ln⌈2

𝑑𝛿𝜏 + 2𝑑𝛿(𝑖+ 1)

𝛿
⌉ − ln⌊2

𝑑𝛿𝜏 + 2𝑑𝛿 𝑖

𝛿
⌋) +𝑂(

𝛿

2𝑑𝛿𝜏
)

=
1

𝑊
(ln

2𝑑𝛿𝜏 + 2𝑑𝛿(𝑖+ 1)

𝛿
− ln

2𝑑𝛿𝜏 + 2𝑑𝛿 𝑖

𝛿
) +𝑂(

𝛿

2𝑑𝛿𝜏
)

=
1

𝑊
(ln

𝜏 + 𝑖+ 1

𝜏 + 𝑖
) +𝑂(

𝛿

2𝑑𝛿𝜏
) =

1

𝑊
(ln

𝜏 + 𝑖+ 1

𝜏 + 𝑖
) +𝑂(

1

𝜉
).

Being of little change, we have that for 𝑖 ∈ 𝑆𝛿
𝐶1
,

𝑝𝑖,𝛿 =

⌈ 2
𝑑𝛿+1𝜏+2𝑑𝛿+1(𝑖+1)

𝛿
⌉∑︁

𝑗=⌊ 2
𝑑𝛿+1𝜏+2𝑑𝛿+1𝑖

𝛿
⌋

1

𝑊

1

𝑗
=

1

𝑊
(ln

𝜏 + 𝑖+ 1

𝜏 + 𝑖
) +𝑂(

1

𝜉
).

and similarly, for 𝑖 ∈ 𝑆𝛿
𝐶0,𝐶1

,

𝑝𝑖,𝛿 =

⌈ 2
𝑑𝛿 𝜏+2𝑑𝛿 (𝑖+1)

𝛿
⌉∑︁

𝜉

1

𝑊

1

𝑗
+

2𝜉−1∑︁
⌊ 2

𝑑𝛿+1𝜏+2𝑑𝛿+1(𝑖+1)
𝛿

⌋

1

𝑊

1

𝑗
=

1

𝑊
(ln

𝜏 + 𝑖+ 1

𝜏 + 𝑖
) +𝑂(

1

𝜉
).

Now we replace 𝛿 with 𝛿0, 𝛿1 and we have that, for any 𝑖 ∈ [𝜏]′,

|𝑝𝑖,𝛿0 − 𝑝𝑖,𝛿1 | ≤ 𝑂(
1

𝜉
)⇒

𝜏−1∑︁
𝑖=0

|𝑝𝑖,𝛿0 − 𝑝𝑖,𝛿1 | ≤ 𝜏𝑂(
1

𝜉
) ≤ negl.

which completes the entire proof.

4.4 ORE with smoothed CLWW Leakage

We start by defining the security we target via a smoothed CLWW leakage function.

Then we recall a primitive for our construction called a property-preserving hash (PPH)

89

function, and state and analyze our ORE construction using a PPH. In a later section we

instantiate the PPH to complete the construction. Next, we give variant constructions

with trade-offs between efficiency and leakage.

Now We define the non-adaptive version of the leakage profile for our construction.

The leakage profile takes in input a vector of messages 𝑚⃗ = (𝑚1, . . . ,𝑚𝑞) and produces

the following:

ℒ𝑓 (𝑚1, . . . ,𝑚𝑞) := (∀1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑞,1(𝑚𝑖 < 𝑚𝑗),1(msdb(𝑚𝑖,𝑚𝑗) = msdb(𝑚𝑖,𝑚𝑘)).)

By definition, it’s easy to note that ℒ𝑓 leaks strictly less than CLWW. Except for

the order of underlying plaintexts, it only leaks whether the position of msdb(𝑚𝑖,𝑚𝑗)

and msdb(𝑚𝑖,𝑚𝑗) are the same, therefore the leakage profile preserve consistent if we

left-shift all the plaintexts by one bit, which referring to ℒ𝑓 (𝑚⃗) = ℒ𝑓 (2𝑚⃗). Thus, ℒ𝑓

is smoothed CLWW.

4.4.1 Property Preserving Hash

Our construction will depend on a tool – property preserving hash (PPH), which is essen-

tially a property-preserving encryption scheme Pandey and Rouselakis [2012] without

the decryption algorithm. In this section we recall the syntax and security of a PPH.

Definition 4.4.1 A property-preserving hash (PPH) scheme is a tuple of algorithms

Γ = (𝒦ℎ,ℋ, 𝒯) with the following syntax:

• The key generation algorithm 𝒦ℎ is randomized, takes as input 1𝜆 and emits

two outputs (hk, tk) that we refer to as the hash key hk and test key tk. These

implicitly define a domain 𝐷 and range 𝑅 for the hash.

• The evaluation algorithm ℋ is randomized, takes as input the hash key hk, an

input 𝑥 ∈ 𝐷, and emits a single output ℎ ∈ 𝑅 that we refer to as the hash of 𝑥.

• The test algorithm 𝒯 is deterministic, takes as input the test key tk and two hashes

ℎ1, ℎ2, and emits a bit.

90

Game INDpph
Γ,𝑃 (𝒜):

(hk, tk)
$← 𝒦ℎ(1

𝜆); 𝑥* $← 𝒜(tk)
ℎ0

$← ℋ(hk, 𝑥*); ℎ1
$← 𝑅; 𝑏

$← {0, 1}; 𝑏′
$← 𝒜Hash(tk, 𝑥*, ℎ𝑏)

Return (𝑏
?
= 𝑏′)

Hash(𝑥):

If 𝑃 (𝑥*, 𝑥) = 1 or 𝑃 (𝑥, 𝑥*) = 1, then ℎ← ⊥, Else ℎ
$← ℋ(hk, 𝑥)

Return ℎ

Table 4.3: Game INDpph
Γ,𝑃 (𝒜).

Correctness of PPH schemes. Let 𝑃 be a predicate on pairs of inputs. We

define correctness of a PPH Γ with respect to 𝑃 via the game CORpph
Γ,𝑃 (𝒜), which

is as follows: It starts by running (hk, tk)
$← 𝒦ℎ(1

𝜆) and gives tk to 𝒜. Then 𝒜

outputs 𝑥, 𝑦. The game computes ℎ
$← ℋ(hk, 𝑥), ℎ′ $← ℋ(hk, 𝑦) and outputs 1 if

𝒯 (tk, ℎ, ℎ′) ̸= 𝑃 (𝑥, 𝑦). We say that Γ is computationally correct with respect to 𝑃 if

for all efficient 𝒜, Pr[CORpph
Γ,𝑃 (𝒜) = 1] is a negligible function of 𝜆.

Security of PPH schemes. We recall a simplified version of the security definition for

PPH that is a weaker version of PPE security defined by Pandey and Rouselakis Pandey

and Rouselakis [2012]. The definition is a sort of semantic security for random messages

under chosen-plaintext attacks, except that the adversary is restricted from making

certain queries.

Definition 4.4.2 Let 𝑃 be some predicate and Γ = (𝒦ℎ,ℋ, 𝒯) be a PPH scheme with

respect to 𝑃 . For an adversary 𝒜 we define the game INDpph
Γ,𝑃 (𝒜) in Figure 4.3. The

restricted-chosen-input advantage of𝒜 is defined to be AdvpphΓ,𝑃,𝒜(𝜆) = 2Pr[INDpph
Γ,𝑃 (𝒜) =

1]−1. We say that Γ is restricted-chosen-input secure if for all efficient adversaries 𝒜,

AdvpphΓ,𝑃,𝒜(𝜆) is negligible.

4.4.2 ORE from PPH

Construction. Let 𝐹 : 𝐾 × ([𝑛]× {0, 1}𝑛)→ {0, 1}𝜆 be a secure PRF. Let 𝑃 (𝑥, 𝑦) =

1(𝑥 = 𝑦 + 1) be the predicate that outputs 1 if and only if 𝑥 = 𝑦 + 1, and let Γ =

(𝒦ℎ,ℋ, 𝒯) be a PPH scheme with respect to 𝑃 . In our construction, we interpret the

output of 𝐹 as a 𝜆-bit integer, which is also the input domain of the PPH Γ. We define

91

our ORE scheme Π = (𝒦,E, 𝒞) as follows:

• 𝒦(1𝜆,𝑀): On input the security parameter and message space [𝑀], the algorithm

chooses a key 𝑘 uniformly at random for 𝐹 , and runs the key generation algorithm

of the property preserving hash function Γ.𝒦ℎ to obtain the hash and test keys

(hk, tk). It sets ck← tk, sk← (𝑘, hk) and outputs (ck, sk).

• E(sk,𝑚): On input the secret key sk and a message 𝑚, the algorithm writes the

binary representation as 𝑚 as (𝑏1, . . . , 𝑏𝑛), and then for 𝑖 = 1, . . . , 𝑛, it computes:

𝑢𝑖 = 𝐹 (𝑘, (𝑖, 𝑏1𝑏2 · · · 𝑏𝑖−1||0𝑛−𝑖+1)) + 𝑏𝑖 mod 2𝜆, 𝑡𝑖 = Γ.ℋ(hk, 𝑢𝑖).

We note that 𝑢𝑖 is computed by treating the PRF output as a member of {0, . . . , 2𝜆−

1}. Then it chooses a random permutation 𝜋 : [𝑛]→ [𝑛], and sets 𝑣𝑖 = 𝑡𝜋(𝑖). The

algorithm outputs CT = (𝑣1, . . . , 𝑣𝑛).

• 𝒞(ck,CT1,CT2): on input the public parameter, two ciphertexts CT1,CT2 where

CT1 = (𝑣1, . . . , 𝑣𝑛),CT2 = (𝑣′1, . . . , 𝑣
′
𝑛), the algorithm runs Γ.𝒯 (tk, 𝑣𝑖, 𝑣′𝑗) and

Γ.𝒯 (tk, 𝑣′𝑖, 𝑣𝑗) for every 𝑖, 𝑗 ∈ [𝑛]. If there exists a pair (𝑖*, 𝑗*) such that Γ.𝒯 (tk, 𝑣𝑖* , 𝑣′𝑗*) =

1, then the algorithm outputs 1, meaning 𝑚1 > 𝑚2; else if there exists a pair

(𝑖*, 𝑗*) such that Γ.𝒯 (tk, 𝑣′𝑖* , 𝑣𝑗*) = 1, then the algorithm outputs 0, meaning

𝑚1 < 𝑚2; otherwise it outputs ⊥, meaning 𝑚1 = 𝑚2.

Correctness. For two messages 𝑚1,𝑚2, let (𝑏1, . . . 𝑏𝑛) and (𝑏′1, . . . , 𝑏
′
𝑛) be their binary

representations. Assuming𝑚1 > 𝑚2, there must exists a unique index 𝑖* ∈ [𝑛] such that

𝑢𝑖 = 𝑢′𝑖 + 1. Therefore correctness of Π is followed by correctness of PPH. We can use

the same argument for the case 𝑚1 = 𝑚2 and 𝑚1 < 𝑚2. What is more interesting is its

simulation based security, as it is the foundation for parameter hiding ORE, formally:

Theorem 4.4.3 Assuming 𝐹 is a secure PRF and Γ is restricted-chosen-input secure,

Π is ℒf-non-adaptively-simulation secure.

Proof: We use a hybrid argument, and define a sequence of hybrid games as follows:

92

• H−1: Real game REALore
Π (𝒜);

• H0: Same as H−1, except replacing PRF 𝐹𝑘(·) by a truely random function 𝐹 * in

the encryption oracle;

• H𝑖·𝑞+𝑗 Depend on a predicate Switch(𝑖,𝑗) which is define below. If Switch(𝑖,𝑗) = 0,

then H𝑖·𝑞+𝑗 = H𝑖·𝑞+𝑗−1, else in procedure of E(𝑚𝑗), 𝑢
𝑗
𝑖 is replaced by a random

string.

From the high level, we establish the proof by showing show that any adjacent hybrids

are indistinguishable, and then we construct an efficient simulator 𝑆 such that the

output of Hqn and SIMore
Π,ℒf (𝒜,𝒮) are statistically identical. For the predicate, we say

Switch𝑖,𝑗 = 1 if ∀𝑘 ∈ [𝑞],msdb(𝑚𝑗 ,𝑚𝑘) ̸= 𝑖, and 0 otherwise. We note that when

Switch𝑖,𝑗 = 0, there exists 𝑢𝑘𝑖 such that 𝑢𝑗𝑖 = 𝑢𝑘𝑖 ± 1, the relation which can be detected

by the test algorithm of PPH(for the 𝑖-th bit of 𝑚𝑗 , we call such a bit a leaky bit),

which means we cannot replace it with random string, otherwise adversary can trivially

distinguish it. In the following we firstly prove any adjacent objects are computational

indistinguishable.

Lemma 4.4.4 Assuming Γ is restricted-chosen-input secure, then for any 𝑘 ∈ [𝑞𝑛]

H𝑘−1
comp
≈ H𝑘.

Due to the security of PRF, it’s trivial that H−1
comp
≈ H0, and for any 𝑘 > 0(for ease,

𝑘 = 𝑖* · 𝑞 + 𝑗* where 𝑖* ∈ [𝑛− 1], 𝑗* ∈ [𝑞]), it suffices to show H𝑘−1
comp
≈ H𝑘 under the

condition Switch𝑖*,𝑗* = 1(Switch𝑖*,𝑗* = 0 implies H𝑘−1 = H𝑘). We prove that if there

exists adversary 𝒜 that distinguish Hk from Hk−1 with noticeable advantage 𝜖, then we

can construct a simulator ℬ wins the restricted-chosen-input game with 𝜖-negl. Here is

the description of ℬ. Firstly it runs INDpph
Γ , and sends tk as the comparison key ck to 𝒜.

After receiving a sequence of plaintext 𝑚1, . . . ,𝑚𝑞, it picks a random function 𝐹 *(using

the lazy sampling technique for instance), sets𝑋* = 𝐹 *(𝑖*, 𝑏𝑗
*

1 𝑏𝑗
*

2 · · · 𝑏
𝑗*

𝑖*−1||0𝑛−𝑖
*+1)+𝑏𝑗

*

𝑖*

where 𝑏𝑗𝑖 is the 𝑖-th bit of 𝑚𝑗 . Then it sends 𝑋* to its challenger in restricted-chosen-

input game and gets back 𝑇 as the challenge term. To simulate the encryption oracle,

ℬ works as follows:

93

1. (𝑖′, 𝑗′) > (𝑖*, 𝑗*)(here using a natural order for tuples, (𝑖, 𝑗) > (𝑖′, 𝑗′) iff 𝑖𝑞 + 𝑗 >

𝑖′𝑞 + 𝑗′), ℬ computes:

𝑢𝑗
′

𝑖′ = 𝐹 *(𝑖*, 𝑏𝑗
′

1 𝑏
𝑗′

2 · · · 𝑏
𝑗′

𝑖′−1||0
𝑛−𝑖′+1) + 𝑏𝑗

′

𝑖′ ; 𝑡
𝑗′

𝑖′ = Γ.ℋ(hk, 𝑢𝑗
′

𝑖′).

2. (𝑖′, 𝑗′) < (𝑖*, 𝑗*) ∩ Switch𝑖′,𝑗′ = 0, then same as above, else 𝑢𝑗
′

𝑖′
$← {0, 1}𝜆, 𝑡𝑗

′

𝑖′ =

Γ.ℋ(hk, 𝑢𝑗
′

𝑖′).

3. sets 𝑡𝑗
*

𝑖* = 𝑇 , and ∀𝑗 ∈ [𝑞], picks a random permutation 𝜋𝑗 and outputs the

ciphertexts CT𝑗 = (𝑡𝑗𝜋𝑗(1)
, . . . , 𝑡𝑗𝜋𝑗(𝑛)

).

Finally, ℬ outputs whatever 𝒜 outputs4.

Since 𝐹 * is a random function, Pr[𝑢𝑗
′

𝑖′ = 𝑋* ± 1] is negligible for all (𝑖′, 𝑗′) ̸= (𝑖*, 𝑗*),

which means ℬ fails to simulate the encryption oracle with only negligible probability.

Besides, when 𝑇 = Γ.ℋ(hk, 𝑋*), ℬ properly simulates H𝑘−1, and if 𝑇 is random, then

ℬ simulates H𝑘(due to the PRF security, the distribution of Γ.ℋ(hk, 𝑟) : 𝑟 $← {0, 1}𝜆 is

computationally close to a random variable that uniformly sampled from the range of

Γ). Hence, if Adv(𝒜) is noticeable, then ℬ’s advantage is also noticeable.

In the following, we describe an efficient simulator 𝑆 such that the output of H𝑞𝑛 and

SIMore
Π,ℒf (𝒜,𝒮) are statistically identical. Roughly speaking, we note that Switch𝑖,𝑗 = 1

means that 𝑖-th bit of 𝑚𝑗 is not a leaky bit, indicating that its value would not affect the

leakage profile whp. Hence, it suffices to only simulate the leaky bit of each individual

message, which can be extracted by ℒ𝑓 , and sets the rest just as random string. Due

to the final random permutations, H𝑞𝑛 and SIMore
Π,ℒf (𝒜,𝒮) are statistically identical.

Formally:

Description of the simulator. For fixed a message setℳ = {𝑚1, . . . ,𝑚𝑞} (without

loss of generality, we assume 𝑚1 > . . . > 𝑚𝑞), the simulator 𝒮 is given the leakage

information ℒ𝑓 (𝑚1, . . . ,𝑚𝑞). 𝒮 firstly keeps a 𝑞 × 𝑛 matrix ℬ and runs a recursive

algorithm FillMatrix(1, 1, 𝑞) to fill in the entries, as follows:

4We note that ℬ does not have hk, what it does is to call the hash oracle

94

• If 𝑗 = 𝑘, then ∀𝑖′ ∈ [𝑖, 𝑛], ℬ[𝑗][𝑖′] = 𝑟 where 𝑟
$← {0, 1}𝜆;

• Else, it proceeds as follows:

– searches the smallest 𝑗* ∈ [𝑗, 𝑘] s.t. 𝑃 (𝑚𝑗 ,𝑚𝑗*) = 𝑃 (𝑚𝑗 ,𝑚𝑘);

– sets ℬ[𝑗′][𝑖] = 𝑟′,∀𝑗′ ∈ [𝑗, 𝑗* − 1];ℬ[𝑗′][𝑖] = 𝑟′ − 1, ∀𝑗′ ∈ [𝑗*, 𝑘], where 𝑟′
$←

{0, 1}𝜆;

– runs FillMatrix(𝑖+ 1, 𝑗, 𝑗′ − 1) and FillMatrix(𝑖+ 1, 𝑗′, 𝑘) recursively.

More concretely, our recursive algorithm is to fill in the entries by

FillMatrix(𝑖, 𝑗, 𝑘), ∀𝑖 ∈ [𝑛], 𝑗 ≤ 𝑘 ∈ [𝑞].

Then 𝒮 runs Γ.𝒦ℎ(1
𝜆) and gets the keys tk, hk, and sets 𝑡𝑖,𝑗 = Γ.ℋ(hk,ℬ[𝑗][𝑖]),

∀𝑖 ∈ [𝑛], 𝑗 ∈ [𝑞]. Finally, 𝒮 samples random permutations 𝜋𝑗 , outputs CT𝑗 as CT𝑗 =

(𝑡𝑗𝜋𝑗(1)
, . . . , 𝑡𝑗𝜋𝑗(𝑛)

) We note that the FillMatrix algorithm terminates after at most 𝑞𝑛

steps as each cell will not be written twice, hence 𝒮 is an efficient simulator.

Finally we claim that 𝒮 properly simulates the relevant games. We first observe that

the simulator identifies how many leaked bits (prefixes) there are for the messages

𝑚1, . . . ,𝑚𝑞. Recall that if messages 𝑚1, . . . ,𝑚𝑞 share the same prefix up to the ℓ−1-th

bit, and if there exists (the first) 𝑖* such that msdb(𝑚1,𝑚𝑖*) = msdb(𝑚1,𝑚𝑞), then

we can conclude that {𝑚1, . . . ,𝑚𝑖*−1} has 1 on their ℓ-th bit, and and {𝑚𝑖* , . . . ,𝑚𝑞}

has 0 on their ℓ-th bit. This way the ℓ-th bit of these messages are leaked. The

simulator recursively identifies other leaked bits for these two sets. At the end, for

each message, how many prefixes whose next bits are leaked will be identified. As this

information will also be identified in the hybrid H𝑞𝑛. So a random permutation (for

H𝑞𝑛 and the simulation) will hide these leaked prefixes, except the total number. Thus,

our simulation is identical to H𝑞𝑛, and we establish the entire proof.

95

4.5 PPH from Bilinear Maps

We construct a PPH scheme for the predicate 𝑃 required in our ORE construction.

That is, 𝑃 (𝑥, 𝑦) = 1 if and only if 𝑥 = 𝑦 + 1.

We let 𝐹 : {0, 1}𝜆 × {0, 1}𝜆 → Z𝑝 be a PRF, where 𝑝 is a prime to be determined

at key generation.

Construction. We now define our PPH Γ = (𝒦ℎ,ℋ, 𝒯).

• 𝒦ℎ(1
𝜆) This algorithm takes the security parameter as input. It samples descrip-

tions of prime-order 𝑝 groups G, Ĝ,G𝑇 , generators 𝑔 ∈ G, 𝑔 ∈ Ĝ, a bilinear map

𝑒 : G× Ĝ→ G𝑇 . It then chooses 𝑘
$← {0, 1}𝜆. It sets the hash key hk← (𝑘, 𝑔, 𝑔),

the test key tk← (G, Ĝ,G𝑇 , 𝑒), a description of the bilinear map and groups, and

outputs (hk, tk).

• ℋ(hk, 𝑥) This algorithm takes as input the hash key hk, an input 𝑥, picks two

random non-zero 𝑟1, 𝑟2 ∈ Z𝑝 and outputs

ℋ(hk, 𝑥) = (𝑔𝑟1 , 𝑔𝑟1·𝐹 (𝑘,𝑥), 𝑔𝑟2 , 𝑔𝑟2·𝐹 (𝑘,𝑥+1)).

• 𝒯 (tk, ℎ1, ℎ2) To test two hash values (𝐴1, 𝐴2, 𝐵1, 𝐵2) and (𝐶1, 𝐶2, 𝐷1, 𝐷2), 𝒯

outputs 1 if

𝑒(𝐴1, 𝐷2) = 𝑒(𝐴2, 𝐷1),

and otherwise it outputs 0.

Hence the domain 𝐷 is {0, 1}𝜆 and the range 𝑅 is (G2, Ĝ2).

Correctness. Correctness reduces to testing if 𝐹 (𝑘, 𝑦+1) = 𝐹 (𝑘, 𝑥). If 𝑥 = 𝑦+1 then

this always holds. If not, then it is easily shown that finding 𝑥, 𝑦 with this property

(and without knowing the key) with non-negligible probability leads to an adversary

that contradicts the assumption that 𝐹 is a PRF.

Security. We prove that PPH is restricted-chosen-input secure, assuming that 𝐹 is

a PRF and the SXDH assumption holds. We can now state and prove our security

theorem.

96

Theorem 4.5.1 Our PPH Γ is restricted-chosen-input secure, assuming 𝐹 is a PRF

and the SXDH assumption hold with respect to the appropriate groups and pairing.

Proof: We use a hybrid argument. Let (𝐴1, 𝐴2, 𝐵1, 𝐵2) ∈ G2×Ĝ2 denote the challenge

hash value given to the adversary during the real game H0 = INDpph
Γ,𝑃 (𝒜). Additionally,

let 𝑅 be a random element of G, 𝑅̂ be a random element of Ĝ, both independent of the

rest of the random variables under consideration. Then we define the following hybrid

experiments:

• H1: At the start of the game, a uniformly random function 𝐹 *
𝑅← Funs[{0, 1}𝜆,

{0, 1}𝜆] is sampled instead of the PRF key 𝐾, the rest remain unchanged.

• H2: The challenge hash value is (𝐴1, 𝑅,𝐵1, 𝐵2), where 𝑅
$← G.

• H3: The challenge hash value is (𝐴1, 𝑅,𝐵1, 𝑅̂), where 𝑅
$← Ĝ.

In H3, the adversary is given a random element from the range ℛ. Therefore,

AdvpphΓ,𝑃,𝒜(𝜆) = |𝑃𝑟[H0 = 1]− 𝑃𝑟[H3 = 1]|.

To prove H0 is indistinguishable from H3, we show that each step of the hybrid is

indistinguishable from the next. First, it is apparent that H0 and H1 are computational

indistinguishable by the PRF security, then:

Lemma 4.5.2 H1 ≈ H2 under the SXDH assumption.

Let 𝒜 be an adversary playing the PPH security game, and let

𝜖 = |𝑃𝑟[H1 = 1]− 𝑃𝑟[H2 = 1]|.

Then we can build adversary ℬ that solves SXDH with advantage 𝜖. ℬ is given as input

(𝑔, 𝑔,𝐵,𝐶) and the challenge term 𝑇 . ℬ works as follows:

• ℬ sets tk = (G, Ĝ,G𝑇 , 𝑒) and sends it to 𝒜. After receiving 𝑥*
$← 𝒜(tk) it simu-

lates a random function 𝐹 * via lazy sampling, and it will implicitly set 𝐹 *(𝑥*) = 𝑏,

97

the discrete logarithm of 𝐵. It prepares the challenge as by selecting 𝑟*
$← Z𝑝

and computing

𝐴1 = 𝑔𝑐, 𝐴2 = 𝑇,𝐵1 = 𝑔𝑟
*
, 𝐵2 = 𝑔𝑟

*𝐹 *(𝑥*+1),

and runs 𝒜 on input tk, 𝑥*, (𝐴1, 𝐴2, 𝐵1, 𝐵2).

• To answer hash query for 𝑥 ̸= 𝑥* from 𝒜, ℬ calculates 𝐹 *(𝑥) and 𝐹 *(𝑥+1) (note

that 𝑥, 𝑥+ 1 ̸= 𝑥*). Then ℬ picks 𝑟1, 𝑟2 randomly and computes:

ℋ(𝑥) = 𝑔𝑟1 , 𝑔𝑟1·𝐹
*(𝑥), 𝑔𝑟2 , 𝑔𝑟2·𝐹

*(𝑥+1);

If 𝒜 queries 𝑥 = 𝑥*, ℬ calculates 𝐹 *(𝑥* + 1), picks 𝑟′1, 𝑟
′
2

$← Z𝑝, and computes

ℋ(𝑥*) = 𝑔𝑟
′
1 , 𝐵𝑟′1 , 𝑔𝑟

′
2 , 𝑔𝑟

′
2·𝐹 *(𝑥*+1);

• Finally ℬ outputs whatever 𝒜 outputs.

We note that in 𝒜’s view, without querying 𝒜(𝑥* − 1), ℬ simulates the game properly.

If 𝑇 = 𝑔𝑏𝑐, then ℬ simulates H1, and if 𝑇 s random then it simulates H2. Hence if 𝒜 has

an advantage 𝜖 in distinguishing H1 and H2, then ℬ has the same advantage to break

SXDH assumption.

We also have the following lemma:

Lemma 4.5.3 H2 ≈ H3 under the SXDH assumption.

The proof is exactly the same as the prior hybrid step, except in the group Ĝ part of

the hash instead of G. We omit the details.

Collecting the steps completes the proof of Theorem 4.5.1.

98

4.6 Further reducing leakage

We now give a generalized construction that results in strictly less leakage, and for some

parameter settings, a more efficient comparison algorithm and shorter ciphertexts. At

a high level, we modify our main constructions to work with blocks of 𝑑 bits rather

than bit-by-bit, and design a generalized type of PPH for our construction. We note

that curiously when 𝑑 = 2, the efficiency also improves.

4.6.1 Generalized ORE

Fix a security parameter 𝜆 ∈ N, let 𝐹 : 𝒦× ([𝑛]× {0, 1}𝑛)→ {0, 1}𝜆 be a secure PRF.

Let 𝑃𝑑(𝑥1, 𝑥2) = 𝑥1 ∈ {𝑥2 + 1, . . . , 𝑥2 + 2𝑑 − 1} let Γ = (𝒦ℎ,ℋ, 𝒯) be a generalized

𝑃𝑃𝐻 scheme with respect to predicate 𝑃𝑑 (a construction from SXDH is given in the

follow section).

We define our ORE scheme Π = (𝒦,E, 𝒞) as follows:

• 𝒦(1𝜆): on input the security parameter 𝜆, the algorithm picks a uniform key

k ∈ 𝒦 for the PRF 𝐹 and runs the Setup algorithm of the generalized 𝑃𝑃𝐻 Γ.𝒦ℎ

to obtain the hash and test keys (hk, tk). It sets the comparison key ck = tk and

secret key sk = (𝑘, hk).

• E(sk,𝑚): on input a secret key sk and a message 𝑚 ∈ {0, 1}𝑛, encryption parses

𝑚 as 𝑚 = 𝑏1|| . . . ||𝑏𝑛/𝑑 (later we denote ℓ = 𝑛/𝑑), where 𝑏𝑖 ∈ {0, 1}𝑑 Then it

computes

𝑢𝑖 = 𝐹 (𝑘, (𝑖, 𝑏1𝑏2 · · · 𝑏(𝑖−1)𝑑||0𝑛−(𝑖−1)𝑑)) + 𝑏𝑖, 𝑡𝑖 = Γ.ℋ(hk, 𝑢𝑖).

(Here we abuse the notation 𝑏𝑖 as an integer value according to its binary represen-

tation.) Then it chooses a random permutation 𝜋 : [ℓ] → [ℓ], and sets 𝑣𝑖 = 𝑡𝜋(𝑖).

The algorithm outputs CT = (𝑣1, . . . , 𝑣ℓ).

99

• 𝒞(ck,CT1,CT2): on input the public parameter, two ciphertexts CT1,CT2 where

CT1 = (𝑣1, . . . , 𝑣ℓ);CT2 = (𝑣′1, . . . , 𝑣
′
ℓ),

the algorithm runs the test algorithm Γ.𝒯 (tk, 𝑣𝑖, 𝑣′𝑗) and Γ.𝒯 (tk, 𝑣′𝑖, 𝑣𝑗) for every

𝑖, 𝑗 ∈ [ℓ]. If there exists a pair (𝑖*, 𝑗*) such that Γ.𝒯 (tk, 𝑣𝑖* , 𝑣′𝑗*) = 1, then the

algorithm outputs 1, meaning 𝑚1 > 𝑚2; else if there exists a pair (𝑖*, 𝑗*) such that

Γ.𝒯 (tk, 𝑣′𝑖* , 𝑣𝑗*) = 1, then the algorithm outputs 0, meaning 𝑚1 < 𝑚2; otherwise

it outputs it outputs ⊥, meaning 𝑚1 = 𝑚2.

Correctness of the generalized ORE. For two messages 𝑚1,𝑚2, let (𝑏1, . . . 𝑏ℓ)

and (𝑏′1, . . . , 𝑏
′
ℓ) be their 𝑑-bit block representations. We know that if 𝑚1 > 𝑚2, then

there must exists a unique index 𝑖* ∈ [ℓ] such that the prefixes of their 𝑑-bit block

representations up to 𝑖*, say 𝑢 = (𝑏1, . . . , 𝑏𝑖*), 𝑢
′ = (𝑏′1, . . . , 𝑏

′
𝑖*), satisfy the following

relation: 𝑢 = 𝑢′ + 𝑖, 𝑖 = 1, . . . , 2𝑑. By the correctness of the generalized PPH, we know

that, with overwhelming probability:

Γ.𝒯 (Γ.ℋ(hk, 𝑢),Γ.ℋ(hk, 𝑢′)) = 1.

We can use the same argument for the case 𝑚1 < 𝑚2.

For the case 𝑚1 = 𝑚2, we know that all prefixes of the two messages are identi-

cal. For this case, the Test of Γ outputs ⊥ (for all possible pairs) with overwhelming

probability. This proves the correctness of our ORE scheme.

Leakage profile. Next, we present the leakage profile. For two messages 𝑚1,𝑚2, let

(𝑏1, . . . 𝑏ℓ) and (𝑏′1, . . . , 𝑏
′
ℓ) as their 𝑑-bit block representations, and denote bymsddb(𝑚1,𝑚2)

their most significant different 𝑑-bit-block. More precisely,

msddb(𝑚1,𝑚2) = min{𝑖 : 𝑏𝑖 ̸= 𝑏′𝑖} ∪ {𝑛/𝑑+ 1}.

The leakage profile takes in input a vector of messages 𝑚⃗ = (𝑚1, . . . ,𝑚𝑛) and produces

100

the following:

ℒ*𝑓 (𝑚1, . . . ,𝑚𝑡) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1(𝑚𝑖 < 𝑚𝑗),

1(msddb(𝑚𝑖,𝑚𝑗) = msddb(𝑚𝑖,𝑚𝑘))

for 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑞

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

Theorem 4.6.1 The generalized ORE scheme Π is ℒ*f -non-adaptively-simulation se-

cure, assuming 𝐹 is a secure PRF and Γ is augmented-restricted-chosen-input secure.

The proof this theorem is of little change to that of Theorem 4.4.3, and we skip it here.

4.6.2 Generalized PPH

In this section, we present a PPH for a family of predicts 𝑃𝑑, 𝑑 ≥ 1 that generalizes the

predicate 𝑃 above as follows. We let 𝑃𝑑(𝑥, 𝑦) = 1 if 𝑥 ∈ {𝑦 + 1, . . . , 𝑦 + 2𝑑 − 1} and 0

otherwise.

Construction. As before, we use a PRF 𝐹 : {0, 1}𝜆 × {0, 1}𝜆 → {0, 1}𝜆, and we will

sometimes view the output of 𝐹 as the binary representation of a 𝜆-bit integer. We

now describe our PPH Γ𝑑 = (𝒦𝑑
ℎ,ℋ𝑑, 𝒯 𝑑) for the generalized predicate 𝑃𝑑, where 𝑑 ≥ 1

is a parameter to adjusted.

• 𝒦𝑑
ℎ(1

𝜆). This algorithm is identical to 𝒦ℎ given in Γ.

• ℋ𝑑(hk, 𝑥) This algorithm takes as input the hash key hk, an input 𝑥. For 𝑖 =

0, . . . , 2𝑑 − 1 it picks random 𝑟𝑖 ← Z𝑝, then it samples a random permutation 𝜋

on [2𝑑] , and then it computes

(𝐴,𝐵) = (𝑔𝑟0 , 𝑔𝑟0·𝐹 (𝐾,𝑥)) ∈ G×G.

Then, for 𝑖 = 1, . . . , 𝑇 it computes

(𝑋𝑖, 𝑌𝑖) = (𝑔𝑟𝑖 , 𝑔𝑟𝑖·𝐹 (𝐾,𝑥+𝜋(𝑖))) ∈ Ĝ× Ĝ.

It outputs (𝐴0, 𝐵0, 𝑋1, 𝑌1, . . . , 𝑋2𝑑−1, 𝑌2𝑑−1).

101

Game INDpph−aug
Γ,𝑃 (𝒜):

(hk, tk)
$← 𝒦ℎ(1

𝜆); 𝑥*, 𝑦*
$← 𝐷

(𝑥1, 𝑦1), . . . , (𝑥𝑠, 𝑦𝑠)
$← {(𝑥, 𝑦) : ∀𝑖, 𝑗 ∈ [𝑠], 𝑃 (𝑥*, 𝑥𝑖) = 𝑃 (𝑦*, 𝑦𝑖) = 1; 𝑃 (𝑥𝑖, 𝑥𝑗) =

𝑃 (𝑦𝑖, 𝑦𝑗)}
ℎ⃗0 = (ℋ(hk, 𝑥*),ℋ(hk, 𝑥1), . . . ,ℋ(hk, 𝑥𝑠)); ℎ⃗1 = (ℋ(hk, 𝑦*),ℋ(hk, 𝑦1), . . . ,ℋ(hk, 𝑦𝑠))
𝑏′

$← 𝒜Hash(tk, 𝑥*, 𝑦*, 𝑥1, . . . , 𝑥𝑠, 𝑦1, . . . , 𝑦𝑠, ℎ⃗𝑏)

Return (𝑏
?
= 𝑏′)

Hash(𝑥):

If ∃𝑧 ∈ {𝑥, 𝑦, 𝑥1, . . . , 𝑥𝑠, 𝑦1, . . . , 𝑦𝑠}, 𝑃 (𝑧, 𝑥) = 1 or 𝑃 (𝑥, 𝑧) = 1

Then ℎ← ⊥,Else ℎ
$← ℋ(hk, 𝑥)

Return ℎ

Table 4.4: Game INDpph−aug
Γ,𝑃 (𝒜).

• 𝒯 𝑑(tk, ℎ1, ℎ2). The test algorithm parses each ℎ𝑗 as

(𝐴𝑗 , 𝐵𝑗 , 𝑋𝑗
1 , 𝑌

𝑗
1 , . . . , 𝑋

𝑗
2𝑑−1, 𝑌

𝑗
2𝑑−1)

Then it tests if there exists an 𝑖 ∈ {1, . . . , 2𝑑 − 1} such that

𝑒(𝐴1, 𝑌 2
𝑖) = 𝑒(𝐵1, 𝑋2

𝑖).

If it finds such an 𝑖 it outputs 1, and otherwise it outputs 0.

And the domain 𝐷 is {0, 1}𝜆 and the range 𝑅 is G2 × Ĝ2𝑑+1−2.

Correctness. It is easy to show that Γ𝑑 is computationally correct for the predicate

𝑃𝑑, via the same methods as with Γ, assuming that 𝐹 is a PRF.

Security. Our ORE construction will require a slightly stronger version of PPH security

illustrated in Figure 4.4. We call this version of PPH security augmented-restricted-

chosen-input security, and define the advantage of an adversary 𝒜 against PPH scheme

Γ via

Advpph−augΓ,𝑃,𝒜 (𝜆) = 2Pr[INDpph−aug
Γ,𝑃 = 1]− 1.

We say that Γ is augmented-restricted-chosen-input secure if for all efficient adversaries

𝒜, Advpph−augΓ,𝑃,𝒜 (𝜆) is negligible.

102

Theorem 4.6.2 For each 𝑑 ≥ 1, our PPH Γ𝑑 is augmented-restricted-chosen-input

secure, assuming 𝐹 is a PRF and the SXDH assumption hold with respect to the ap-

propriate groups and pairing.

The proof of this theorem is very similar to that of Theorem 4.5.1, despite the aug-

mented security definition. It follows via standard game transitions using the SXDH

assumptions.

4.6.3 Efficiency for small 𝑑

For generalized ORE, when 𝑑 is small, 𝑑 = 2, 3 for instance, the efficiency (ciphertext

size and pairing operations in each single comparison) is better than basic ORE. We

measure the ciphertext size by number of group elements, and calculate the average

number of pairing operations needed in a comparison. When 𝑑 = 2, the construction is

strictly better than basic construction, and 𝑑 = 3 has some trade-off in ciphertext size

and pairing operation with basic ORE.

4.7 More efficient comparisons

Our construction from section 4.4 need to evaluate the PPH test algorithm 𝑂(𝑛2)

times to compare to numbers. In this part, we present a variant ORE achieving better

efficiency but with a weaker leakage profile, which only requires 𝑂(𝑛) pairings in each

individual comparison. And what’s more interesting is that this weaker leakage profile

is also smoothed CLWW, which means we can construct a parameter hiding ORE

with much better efficiency. High level speaking, instead of sampling a fresh random

permutation in each encryption procedure, we choose a fixed permutation 𝜋 for all

ciphertexts (and stores 𝜋 in the key). With this modification, we only need 𝑂(𝑛) PPH

test evaluations for each comparison.

Construction. Let 𝐹 be a secure PRF with the same syntax as above, let 𝑃 (𝑥, 𝑦) =

1(𝑥 = 𝑦 + 1) be the relation predicate that outputs 1 if and only if 𝑥 = 𝑦 + 1, and let

Γ = (𝒦ℎ,ℋ, 𝒯) be a PPH scheme with respect to 𝑃 , as before. We define our ORE

scheme Π = (𝒦,E, 𝒞) as follows:

103

• 𝒦(1𝜆): On input the security parameter, the algorithm chooses a key 𝑘 uniformly

at random for 𝐹 , runs Γ.𝒦ℎ to obtain the hash and test keys (hk, tk), and samples

a random permutation 𝜋 : [𝑛]→ [𝑛]. It sets ck← tk, sk← (𝑘, hk, 𝜋) and outputs

(ck, sk).

• E(sk,𝑚): On input the secret key SK and a message 𝑚, the algorithm computes

the binary representation of 𝑚 = (𝑏1, . . . , 𝑏𝑛), and then calculates:

𝑢𝑖 = 𝐹 (𝑘, (𝑖, 𝑏1𝑏2 · · · 𝑏𝑖−1||0𝑛−𝑖+1)) + 𝑏𝑖, 𝑡𝑖 = Γ.ℋ(hk, 𝑢𝑖).

Then it sets 𝑣𝑖 = 𝑡𝜋(𝑖) and outputs CT = (𝑣1, . . . , 𝑣𝑛).

• 𝒞(ck,CT1,CT2): on input the public parameter, two ciphertexts CT1,CT2 where

CT1 = (𝑣1, . . . , 𝑣𝑛),CT2 = (𝑣′1, . . . , 𝑣
′
𝑛), the algorithm runs Γ.𝒯 (tk, 𝑣𝑖, 𝑣′𝑖) for every

𝑖 ∈ [𝑛]. If there exists 𝑖* such that Γ.𝒯 (tk, 𝑣𝑖* , 𝑣′𝑖*) = 1, then the algorithm outputs

1, meaning 𝑚1 > 𝑚2; else if there exists a pair 𝑖* such that Γ.𝒯 (tk, 𝑣′𝑖* , 𝑣𝑖*) = 1,

then the algorithm outputs 0, meaning 𝑚1 < 𝑚2; otherwise it outputs it outputs

⊥, meaning 𝑚1 = 𝑚2.

Now, we give the description of the leakage profile, which takes 𝑚⃗ = {𝑚1, . . . ,𝑚𝑞} as

input and produces:

ℒ′𝑓 (𝑚1, . . . ,𝑚𝑞) := (∀1 ≤ 𝑖, 𝑗, 𝑘, 𝑙 ≤ 𝑞,1(𝑚𝑖 < 𝑚𝑗),1(msdb(𝑚𝑖,𝑚𝑗) = msdb(𝑚𝑘,𝑚𝑙)))

Compared to ℒ𝑓 , ℒ′𝑓 gives extra information that 1(msdb(𝑚𝑖,𝑚𝑗) = msdb(𝑚𝑘,𝑚𝑙))

even when 𝑖 ̸= 𝑘. However, ℒ′𝑓 is still strictly stronger than CLWW, and for any 𝑚⃗, it’s

obvious that ℒ′𝑓 (𝑚⃗) = ℒ′𝑓 (2𝑚⃗), which gives evidence that ℒ′𝑓 is also smoothed CLWW.

And for its simulation based security, applying exactly the same argument as the proof

of Theorem 4.4.3, we can establish the following theorem.

Theorem 4.7.1 The ORE scheme Π is ℒ′𝑓 -non-adaptive-simulation secure, assuming

𝐹 is a secure 𝑃𝑅𝐹 and Γ is restricted-chosen-input secure.

104

4.8 Left/Right ORE Construction

In Lewi and Wu [2016], Lewi and Wu introduced a Left/Right framework for ORE. In

the usual sense, an ORE encryption algorithm takes a message and outputs a ciphertext,

and the comparison algorithm then takes two ciphertexts and outputsthe comparison

relation on the two underlying messages. In the left/right framework, the encryption

algorithm consists of two functions: a “left” encryption function and a “right” encryp-

tion function. Each of these encryption functions takes a message and the secret key,

and outputs either a “left” or “right” ciphertext, respectively. Next, instead of taking

two ciphertexts, the comparison algorithm takes a left ciphertext and a right ciphertext,

and outputs the comparison relation between the two underlying messages. It’s obvious

that any ORE scheme in the left/right framework can be converted to an ORE scheme

in the usual sense, and in the following, we show that our ORE can be converted to

the left/right framework. Firstly, we convert our PPH to the left/right framework and

based on it we construct the left/right ORE.

4.8.1 Left-Right PPH

In this section, we present a variant PPH scheme for predicate 𝑃 (𝑃 (𝑥, 𝑦) = 1 if

and only if 𝑥 = 𝑦 + 1), called Left/Right PPH (LRPPH). Our construction uses an

asymmetric bilinear map and a PRF 𝐹 , as before. Below, we let 𝐹 be a PRF and

𝑒 : G × Ĝ → G𝑇 be a bilinear pairing over groups (G, Ĝ) of prime order 𝑝, with

generators 𝑔 ∈ G and 𝑔 ∈ Ĝ respectively. Let 𝐹 : {0, 1}𝜆 × ({0, 1}𝜆) → {0, 1}𝜆 and in

the following we will sometimes view the output of 𝐹 as the binary representation of a

𝜆-bit integer.

Construction. We now define our LRPPH Γ = (𝒦ℎ,ℋ𝐿,ℋ𝑅, 𝒯).

• 𝒦ℎ(1
𝜆) This algorithm takes the security parameter as input, generates a bilinear

groups map 𝑒 : G × Ĝ → G𝑇 with the generators 𝑔, 𝑔, and chooses 𝑘
$← {0, 1}𝜆.

Then it sets the hash key hk ← (𝑘, 𝑔, 𝑔), the test key tk ← (G, Ĝ,G𝑇 , 𝑒), a

description of the bilinear map and groups, and outputs (hk, tk).

105

• ℋ𝐿(hk, 𝑥) This algorithm takes as input the hash key hk, an input 𝑥, picks a

random non-zero 𝑟 ∈ Z𝑝 and outputs

ℋ𝐿(hk, 𝑥) = (𝑔𝑟, 𝑔𝑟·𝐹 (𝑘,𝑥)).

• ℋ𝑅(hk, 𝑥) This algorithm takes as input the hash key hk, an input 𝑥, picks a

random non-zero 𝑟 ∈ Z𝑝 and outputs

ℋ𝑅(hk, 𝑥) = (𝑔𝑟, 𝑔𝑟·𝐹 (𝑘,𝑥+1)).

• 𝒯 (tk, ℎ1, ℎ2) To test two hash values ℎ1 = (𝐴1, 𝐴2) and ℎ2 = (𝐵1, 𝐵2) where ℎ1

is a left hash value while ℎ2 is a right hash value, 𝒯 outputs 1 if

𝑒(𝐴1, 𝐵2) = 𝑒(𝐴2, 𝐵1),

and otherwise it outputs 0.

Hence the domain 𝐷 is {0, 1}𝜆 and the range 𝑅 is (G2, Ĝ2).

Correctness. The condition tested is equivalent to 𝐹 (𝑘, 𝑦 + 1) = 𝐹 (𝑘, 𝑥) If 𝑥 = 𝑦 + 1

then this is obviously true. If not, then it is easily shown that finding 𝑥, 𝑦 with this

property with non-negligible probability leads to an adversary that contradicts the

assumption that 𝐹 is a PRF.

Security of LRPPH. We give two variant versions of security notion.

Definition 4.8.1 Let 𝑃 be some predicate and Γ = (𝒦ℎ,ℋ𝐿,ℋ𝑅, 𝒯) be a LRPPH

scheme with respect to 𝑃 . For an adversary 𝒜 we define the game INDLRPPH
Γ,𝑃 (𝒜) in

Figure 4.5. The left-right restricted-chosen-input advantage of 𝒜 is defined to be

AdvLRPPHΓ,𝑃,𝒜 (𝜆) = (2Pr[INDL-PPH
Γ,𝑃 (𝒜) = 1]− 1) + (2Pr[INDR-PPH

Γ,𝑃 (𝒜) = 1]− 1).

We say that Γ is left-right restricted-chosen-input secure if for all efficient adversaries

𝒜, AdvLRPPHΓ,𝑃,𝒜 (𝜆) is negligible.

106

Game INDL-PPH
Γ,𝑃 (𝒜):

(hk, tk)
$← 𝒦ℎ(1

𝜆); 𝑥* $← 𝐷

ℎ0
$← ℋ𝐿(hk, 𝑥

*); ℎ1
$← G2

𝑏
$← {0, 1}

𝑏′
$← 𝒜Hash𝐿,Hash𝑅(tk, 𝑥*, ℎ𝑏)

Return (𝑏
?
= 𝑏′)

Hash𝐿(𝑥):

Return ℋ𝐿(𝑥)

Hash𝑅(𝑥):

If 𝑃 (𝑥*, 𝑥) = 1, then ℎ← ⊥
Else ℎ

$← ℋ𝑅(hk, 𝑥)
Return ℎ

Game INDR-PPH
Γ,𝑃 (𝒜):

(hk, tk)
$← 𝒦ℎ(1

𝜆); 𝑥* $← 𝐷

ℎ0
$← ℋ𝑅(hk, 𝑥

*); ℎ1
$← Ĝ2

𝑏
$← {0, 1}

𝑏′
$← 𝒜Hash𝐿,Hash𝑅(tk, 𝑥*, ℎ𝑏)

Return (𝑏
?
= 𝑏′)

Hash𝑅(𝑥):

Return ℋ𝑅(𝑥)

Hash𝐿(𝑥):

If 𝑃 (𝑥, 𝑥*) = 1, then ℎ← ⊥
Else ℎ

$← ℋ𝐿(hk, 𝑥)
Return ℎ

Table 4.5: Game INDLRPPH
Γ,𝑃 (𝒜).

Theorem 4.8.2 Our PPH Γ is left-right restricted-chosen-input secure, assuming 𝐹

is a PRF and the SXDH assumption hold with respect to the appropriate groups and

pairing.

The proof of this theorem is very similar to that of Theorem 4.5.1, despite the left-

right security definition. It follows via standard game transitions using the SXDH

assumptions.

4.8.2 Left-Right ORE

In this section, we show how to convert our ORE to the left/right framework. Formally:

Construction. Let 𝐹 : 𝐾 × ([𝑛]× {0, 1}𝑛)→ {0, 1}𝜆 be a secure PRF. Let 𝑃 (𝑥, 𝑦) =

1(𝑥 = 𝑦 + 1) be the relation predicate that outputs 1 if and only if 𝑥 = 𝑦 + 1, and

let Γ = (𝒦ℎ,ℋ𝐿,ℋ𝑅, 𝒯) be a LRPPH scheme with respect to 𝑃 . In our construction,

we interpret the output of 𝐹 as a 𝜆-bit integer, which is also the input domain of the

LRPPH Γ. We define our LR-ORE scheme Π = (𝒦,E𝐿,E𝑅, 𝒞) as follows:

• 𝒦(1𝜆): On input the security parameter, the algorithm chooses a key 𝑘 uniformly

at random for 𝐹 , and runs the Setup algorithm of the property preserving hash

107

function Γ.𝒦ℎ to obtain the hash and test keys (hk, tk). It sets ck ← tk, sk ←

(𝑘, hk) and outputs (ck, sk).

• E𝐿(sk,𝑚): On input the secret key sk and a message 𝑚, the algorithm computes

the binary representation of 𝑚 = (𝑏1, . . . , 𝑏𝑛), and then calculates:

𝑢𝑖 = 𝐹 (𝑘, (𝑖, 𝑏1𝑏2 · · · 𝑏𝑖−1||0𝑛−𝑖+1)) + 𝑏𝑖, 𝑡𝑖 = Γ.ℋ𝐿(hk, 𝑢𝑖).

Then it chooses a random permutation 𝜋 : [𝑛] → [𝑛], and sets 𝑣𝑖 = 𝑡𝜋(𝑖). The

algorithm outputs CT𝐿 = (𝑣1, . . . , 𝑣𝑛).

• E𝑅(sk,𝑚): On input the secret key sk and a message 𝑚, the algorithm computes

the binary representation of 𝑚 = (𝑏1, . . . , 𝑏𝑛), and then calculates:

𝑢𝑖 = 𝐹 (𝑘, (𝑖, 𝑏1𝑏2 · · · 𝑏𝑖−1||0𝑛−𝑖+1)) + 𝑏𝑖, 𝑡𝑖 = Γ.ℋ𝑅(hk, 𝑢𝑖).

Then it chooses a random permutation 𝜋 : [𝑛] → [𝑛], and sets 𝑣𝑖 = 𝑡𝜋(𝑖). The

algorithm outputs CT𝑅 = (𝑣1, . . . , 𝑣𝑛).

• 𝒞(ck,CT1,CT2): on input the public parameter, one left ciphertexts CT1 and one

right ciphertext CT2 where

CT1 = (𝑣1, . . . , 𝑣𝑛);CT2 = (𝑣′1, . . . , 𝑣
′
𝑛),

the algorithm runs Γ.𝒯 (tk, 𝑣𝑖, 𝑣𝑗) for every 𝑖, 𝑗 ∈ [𝑛]. If there exists a pair

(𝑖*, 𝑗*)𝑖𝑛[𝑛]2 such that Γ.𝒯 (tk, 𝑣𝑖* , 𝑣′𝑗*) = 1, then the algorithm outputs 1, mean-

ing 𝑚1 > 𝑚2; else output 0, meaning 𝑚1 ≤ 𝑚2.

Correctness of our scheme is implied by our basic ORE.

Next, we present the corresponding leakage profile, which takes in put two vectors

108

of message 𝑚⃗ = {𝑚1, . . . ,𝑚𝑞1}; 𝑚⃗* = {𝑚*1, . . .𝑚*𝑞2} and produce the following:

ℒ̄𝑓 (𝑚⃗, 𝑚⃗*) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1(𝑚𝑖 > 𝑚*𝑗),

1(msdb(𝑚𝑖,𝑚
*
𝑘) = msdb(𝑚𝑖,𝑚

*
𝑙))

1(msdb(𝑚𝑖,𝑚
*
𝑘) = msdb(𝑚𝑗 ,𝑚

*
𝑘))

for 𝑖, 𝑗 ∈ [𝑞1], 𝑘, 𝑙 ∈ [𝑞2]

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

If 𝑚⃗ = 𝑚⃗*, it’s obvious that ℒ̄𝑓 = ℒ𝑓 . Using a similar argument as the proof of

Theorem 4.4.3, we are able to establish the following theorem:

Theorem 4.8.3 The ORE scheme Π is ℒ̄𝑓 -non-adaptive-simulation secure, assuming

𝐹 is a secure 𝑃𝑅𝐹 and Γ is left-right restricted-chosen-input secure.

4.9 Impossibility of Parameter-Hiding OPE

Here, we show that any order preserving encryption (OPE) scheme cannot achieve para-

meter hiding. The intuition is that in OPE, one can take the difference of ciphertexts,

and use this as a proxy for the difference between plaintexts. Because we need the

indistinguishability of both very small differences and very large differences, we cannot

hope to fully hide the scale.

Warm-up. First, we show that OPE cannot have ideal security for even two messages,

improving on Boldyreva et al. [2009] which required three messages, and re-proving Ch-

enette et al. [2016]. Our proof is also much simpler, which will allow us to later extend

it to the parameter-hiding setting.

Theorem 4.9.1 For any OPE scheme with message space [0,𝑀 − 1] and ciphertext

space [0, 𝐶 − 1], there is an two-message attack with advantage at least Ω(log𝑀log𝐶) that

runs in time poly(log𝑀, log𝐶).

Since log𝐶 is the bit-length of ciphertexts, this means that the bit-length must be

super-polynomial in order to get a non-negligible advantage.

109

Proof: Our attack is as follows. First, choose two random adjacent messages (𝑖, 𝑖+ 1)

for 𝑖 ∈ [0,𝑀 − 2]. Then submit the following two pairs (𝑖, 𝑖 + 1), (0,𝑀 − 1). In

response, we receive 𝑐0, 𝑐1, which are either then encryptions of 𝑖, 𝑖+ 1, or encryptions

of 0,𝑀 − 1. For now, we will consider a non-uniform attacker, which is given some

advice 𝐿 ∈ [0, 𝐶 − 1]. The attacker simply computes 𝑐1 − 𝑐0, and outputs 1 if and only

if the result is greater than 𝐿.

We now analyze the scheme. Let 𝑊 be the random variable for 𝑐1−𝑐0 in the case where

(𝑖, 𝑖+ 1) are encrypted for a random 𝑖. Let 𝑅𝑖 be the random variable that represents

𝑐1 − 𝑐0 in the case where 𝑖, 𝑖 + 1 are encrypted for a given 𝑖. Let 𝑉 be the random

variable representing 𝑐1 − 𝑐0 when 1,𝑀 are encrypted.

We immediately observe that 𝑉 =
∑︀𝑀−1

𝑖=1 𝑅𝑖. We also observe that

E[log𝑊] =
1

𝑀 − 1

𝑀−1∑︁
𝑖=1

E[log𝑅𝑖] = E[
1

𝑀 − 1

∑︁
𝑖

log𝑅𝑖]

≤ E[log

(︃
1

𝑀 − 1

∑︁
𝑖

𝑅𝑖

)︃
] = E[log 𝑉]− log(𝑀 − 1).

We now use the following lemma:

Lemma 4.9.2 Let 𝑋,𝑌 be two random variables in [0, 1] such that E[𝑌]− E[𝑋] ≥ 𝛿.

Then there is a threshold 𝛼 such that Pr[𝑌 ≥ 𝛼]− Pr[𝑋 ≥ 𝛼] ≥ 𝛿

Let 𝑃𝑋(𝑡), 𝑃𝑌 (𝑡) be the PDFs for 𝑋,𝑌 , and let 𝐶𝑋(𝑡), 𝐶𝑌 (𝑡) be the CDFs. We know

that

𝛿 ≤ E[𝑌]−E[𝑋] =

∫︁ 1

0
𝑡(𝑃𝑌 (𝑡)− 𝑃𝑋(𝑡))𝑑𝑡.

Using integration by parts, we see that

∫︁
𝑡(𝑃𝑌 (𝑡)− 𝑃𝑋(𝑡))𝑑𝑡 = 𝑡(𝐶𝑌 (𝑡)− 𝐶𝑋(𝑡))−

∫︁
(𝐶𝑌 (𝑡)− 𝐶𝑋(𝑡))𝑑𝑡.

110

Since 𝐶𝑋(1) = 𝐶𝑌 (1) = 1, we have that

𝛿 ≤
∫︁ 1

0
(𝐶𝑋(𝑡)− 𝐶𝑌 (𝑡))𝑑𝑡.

By the mean value theorem, there is some value 𝛼 such that 𝐶𝑋(𝛼) − 𝐶𝑌 (𝛼) ≥ 𝛿. As

𝐶𝑋(𝑡) = 1− Pr[𝑋 ≥ 𝑡], 𝐶𝑋(𝑡) = 1− Pr[𝑋 ≥ 𝑡], the lemma follows.

We now apply this lemma to the variables log𝑊/ log𝐶 and log 𝑉/ log𝐶, which satisfy

the conditions for the lemma with 𝛿 = log(𝑀 −1)/ log𝐶. We therefore set 𝐿 = 2𝛼, and

the attack succeeds with the desired probability.

We can easily turn this into a uniform attacker by estimating 𝐿. We simply estimate

𝐶𝑋 , 𝐶𝑌 offline by choosing several random keys and encrypting either a random 𝑖, 𝑖+1

or 1,𝑀 , and measuring the difference of the two ciphertexts. We can obtain estimates to

within≪ 𝛿, and then we can choose the 𝛼 that maximizes the difference 𝐶𝑋(𝛼)−𝐶𝑌 (𝛼),

which will be a reasonably good threshold. This completes the proof.

The Full Impossibility. We now show how to extend the impossibility above to work

for parameter-hiding ORE.

Theorem 4.9.3 Fix an OPE scheme with message space [0,𝑀 − 1] and ciphertext

space [0, 𝐶−1]. Consider a distribution 𝐷 over [0, 1], and let 𝛾 be the minimum scaling

allowed for 𝐷. Let 𝐷1 = ⌊𝐷𝑀,0
scale⌉. Suppose 𝐷1 has the property that, with overwhelming

probability over independent samples 𝑥, 𝑦 from 𝐷1, we have that |𝑥− 𝑦| ≥ 3𝛾.

Then there is a two-message attack for the (𝛾,𝐷)-parameter hiding OPE with ad-

vantage at least Ω(log 2
log𝐶) that runs in time poly(log𝑀, log𝐶), where 𝛾 is the minimum

scaling allowed by the scheme.

We note that the conditions on 𝐷 are met for smooth 𝐷, provided 𝑀 is exponentially

larger than 𝛾.

Proof: The theorem is a simple extension of the attack above. Let 𝐷0 = ⌊𝐷𝛾,0
scale⌉ and

𝐷1 = ⌊𝐷𝑀,0
scale⌉.

111

Consider the following adversary: choose random 𝑥, 𝑦 according to 𝐷1. If 𝑥 ≥ 𝑦, flip

𝑥 and 𝑦. Then choose a random ℓ ∈ [𝑥, 𝑦 − 𝛾] (which will be non-empty whp by our

condition on 𝐷1). Let the left challenge parameters be (𝛾, ℓ), and the right be (𝑀, 0).

Obtain the two ciphertexts, take the difference, and then compare to 𝐿.

Our goal, as before, is to show that an 𝐿 exists that distinguishes these two distributions.

Let 𝑊 be the random variable for 𝑐1− 𝑐0 in the case where the distribution is (𝛾, ℓ) for

a random ℓ as sampled above. Let 𝑊𝑥,𝑦 be the corresponding difference conditioned on

sampling 𝑥, 𝑦. Let 𝑊ℓ be the difference conditioned on a given ℓ. Let 𝑉 be the random

variable representing 𝑐1 − 𝑐0 when the parameters are (𝑀, 0). Let 𝑅𝑖 be the random

variable that represents 𝑐1 − 𝑐0 when encrypting 𝑖, 𝑖+ 1.

In either case, two values 𝑥, 𝑦 are chosen according for 𝐷1, and then permuted to ensure

𝑥 ≤ 𝑦. For the analysis, we will actually slightly change the distributions on 𝑥, 𝑦 to

be conditioned on 𝑦 − 𝑥 ≥ 3𝛾. By our conditions on 𝐷1, this negligibly affects the

distribution. Let 𝑃
(1)
𝑥,𝑦 be the PDF for this distribution on pairs.

In the right case, 𝑥 and 𝑦 are encrypted; in the left case, a random ℓ is chosen in [𝑥, 𝑦−𝛿],

then random 𝑥′, 𝑦′ are chosen according to 𝐷0 (swapped if necessary so that 𝑥′ ≤ 𝑦′),

and 𝑥′ + ℓ, 𝑦′ + ℓ are encrypted. Given that parameter-hiding requires the min-entropy

to be high, we note that 𝑥′ ̸= 𝑦′ with overwhelming probability. Therefore, we will

let 𝑃
(0)
𝑥′,𝑦′ be the PDF for the distribution over (𝑥′, 𝑦′) conditioned on 𝑥′ < 𝑦′, which is

negligibly close to the correct distribution. Under our slightly perturbed distributions,

we can therefore write:

E[log 𝑉] =
∑︁
𝑥,𝑦

𝑃 (1)
𝑥,𝑦E[log

𝑦∑︁
𝑖=𝑥

𝑅𝑖],

E[log𝑊] =
∑︁
𝑥,𝑦

𝑃 (1)
𝑥,𝑦

𝑦−𝛾∑︁
ℓ=𝑥

∑︁
𝑥′,𝑦′

𝑃
(0)
𝑥′,𝑦′E[log

𝑦′+ℓ∑︁
𝑖=𝑥′+ℓ

𝑅𝑖].

We use the concavity of log to bring the average over ℓ inside the log and get

E[log𝑊] =
∑︁
𝑥,𝑦

𝑃 (1)
𝑥,𝑦

∑︁
𝑥′,𝑦′

𝑃
(0)
𝑥′,𝑦′E[

1

𝑦 − 𝑥− 𝛾

𝑦−𝛾∑︁
ℓ=𝑥

log

𝑦′+ℓ∑︁
𝑖=𝑥′+ℓ

𝑅𝑖].

112

For formula 1
𝑦−𝑥−𝛾

∑︀𝑦−𝛾
ℓ=𝑥

∑︀𝑦′+ℓ
𝑖=𝑥′+ℓ𝑅𝑖, we observe that 𝑅𝑖 only has weight for 𝑖 ∈ [𝑥, 𝑦],

and for any fixed “𝑖, 𝑥′, 𝑦′”, there are at most 𝑦′−𝑥′ copies appear in the formula,which

means

1

𝑦 − 𝑥− 𝛾

𝑦−𝛾∑︁
ℓ=𝑥

𝑦′+ℓ∑︁
𝑖=𝑥′+ℓ

𝑅𝑖 ≤
𝑦′ − 𝑥′

𝑦 − 𝑥− 𝛾

𝑦∑︁
𝑖=𝑥

𝑅𝑖.

Therefore, we can bound

E[log𝑊] ≤
∑︁
𝑥,𝑦

𝑃 (1)
𝑥,𝑦

∑︁
𝑥′,𝑦′

𝑃
(0)
𝑥′,𝑦′E[log

(︃
𝑦′ − 𝑥′

𝑦 − 𝑥− 𝛾

𝑦∑︁
𝑖=𝑥

𝑅𝑖

)︃
]

= E[log 𝑉]− (E[log(𝑦 − 𝑥− 𝛾)]−E[log(𝑦′ − 𝑥′)]).

Moreover, the condition that 𝑦−𝑥 is almost always greater than 3𝛾 means that E[log(𝑦−

𝑥 − 𝛾)] ≥ log 2𝛾. Similarly, we always have that 𝑦′ − 𝑥′ ≤ 𝛾, so E[log(𝑦′ − 𝑥′)] ≤ 𝛾.

Thus,

E[log𝑊] ≤ 𝐸[log 𝑉]− log 2.

The rest of the proof is essentially identical to the proof of Theorem 4.9.1: under our

perturbed distribution, log𝑊/ log𝐶 and log 𝑉/ log𝐶 are two variables on [0, 1] whose

expectations differ by at least log 2/ log𝐶. Therefore, we can choose a threshold 𝐿 to

distinguish these two. Since the true distributions of 𝑊,𝑉 are statistically close to the

perturbed versions, 𝐿 distinguishes these as well.

113

Chapter 5

A Ciphertext-Size Lower Bound for Order-Preserving

Encryption with Limited Leakage

In this chapter, we give our lower-bound of the ciphertext size for MSDB-secure OPE.

5.1 Technique overview

We first recall the constructions of MSDB-secure ORE and OPE, then we give the

high-level intuition of our technique.

5.1.1 MSDE-secure ORE/OPE

We recall a version that is slightly different from theirs in that it is perfectly correct.

The scheme Πclww-ore = (𝒦ore, ℰore, 𝒞ore) uses a PRF

𝐹 : {0, 1}𝜆 × ([𝑚]× {0, 1}𝑚)→ ({0, 1}𝜆 ∖ {1𝜆}).

Thus the input domain of 𝐹 is [𝑚] × {0, 1}𝑚, and it outputs a 𝜆-bit string that is

assumed to never be 1𝜆 (of course we can modify any PRF so that this is true without

affecting asymptotic security).

• Key generation 𝒦ore(1𝜆) outputs a random PRF key 𝐾
$← {0, 1}𝜆.

• Encryption ℰore𝐾 (𝑥), on input a message 𝑥 ∈ {0, 1}𝑚, the algorithm computes for

each 𝑖 = 1, . . . ,𝑚 the value

𝑢𝑖 = 𝐹 (𝐾, 𝑖 ‖𝑥[1, . . . , 𝑖− 1] ‖ 0𝑚−𝑖+1) + 𝑥[𝑖], (5.1)

114

where the addition is done by interpreting the bitstrings as members of {0, . . . , 2𝜆−

1}. Encryption outputs (𝑢1, . . . , 𝑢𝑚).

• The comparison algorithm 𝒞ore((𝑢1, . . . , 𝑢𝑚), (𝑢′1, . . . , 𝑢
′
𝑚)) takes as input two ci-

phertexts. It finds the smallest 𝑖 such that 𝑢𝑖 ̸= 𝑢′𝑖, and it outputs 1 if 1(𝑢𝑖 < 𝑢′𝑖).

Correctness follows by observing that the 𝑢𝑖 will be equal until the 𝑢𝑖, 𝑢
′
𝑖 corresponding

to the first differing bit in the plaintexts. At that position, 𝑢𝑖 and 𝑢′𝑖 will differ by

1 (additively) and the smaller plaintext has the smaller value. CLWW proved that

Πclww-ore (and the variants below) are ℒclww-secure, assuming that 𝐹 is a PRF. It is

straightforward to derive from their proof that Πclww-ore is also statistically-secure with

the same leakage profile in the random-oracle model.

Conversion to OPE. CLWW showed how to convert this construction to an OPE

scheme Πclww-ope by simply concatenating the members of a ciphertext to form a bit-

string in {0, 1}𝜆𝑚 that is interpreted as a number for comparison. This scheme is

perfectly correct because of our assumption that 𝐹 never outputs the all-ones string,

and thus the addition in (5.1) will never wrap modulo 2𝜆.

Compressing ORE ciphertexts. CLWW showed that one can modify Πclww-ore to

a new ORE scheme which has shorter ciphertext. More precisely, the new scheme use

a PRF 𝐹 ′ with range only {0, 1, 2} instead of 𝐹 , where

𝐹 ′ : {0, 1}𝜆 × ([𝑚]× {0, 1}𝑚)→ {0, 1, 2}.

Now encryption uses 𝐹 ′, and for 𝑖 = 1, . . . ,𝑚 computes

𝑢𝑖 = 𝐹 ′(𝐾, 𝑖 ‖𝑥[1, . . . , 𝑖− 1] ‖ 0𝑚−𝑖+1) + 𝑥[𝑖] mod 3. (5.2)

It outputs the vector (𝑢1, . . . , 𝑢𝑛) ∈ {0, 1, 2}𝑚.

Comparison now takes as input (𝑢1, . . . , 𝑢𝑚) (𝑢′1, . . . , 𝑢
′
𝑚). As before, it finds the

first 𝑖 such that 𝑢𝑖 ̸= 𝑢′𝑖. But now it outputs 1 if 𝑢′𝑖 = 𝑢𝑖 + 1 mod 3, and otherwise it

outputs 0.

115

A ciphertext for an 𝑚-bit input is now a vector in {0, 1, 2}𝑚, which can be repre-

sented using 𝑙𝑜𝑔2(3)𝑚+𝑂(1) ≈ 1.58𝑚 bits.

5.1.2 High-level intuition

Now we consider what the 𝜖-ℒclww-statistical security implies about our random vari-

ables 𝑋0, . . . , 𝑋2𝑚−1. For every possible pair of vectors of messages m0,m1 that does

not automatically lose the game because of the leakage requirement, we get a condition

about the statistical distance of the distributions of two tuples of random variables. For

instance, if the adversary requests singleton vectors m0 = 𝑖 or m1 = 𝑗 ∈ {0, 1}𝑚 then

the leakage ℒclww(𝑖) = ℒclww(𝑗) = ∅, so we must have that

Δ(𝑋𝑖, 𝑋𝑗) ≤ 𝜀

for every 𝑖, 𝑗. More generally, for any two vectors i = (𝑖1, . . . , 𝑖𝑞) and j = (𝑗1, . . . , 𝑗𝑞) in

({0, 1}𝑚)𝑞 with ℒclww(i) = ℒclww(j), we must have

Δ((𝑋𝑖1 , . . . , 𝑋𝑖𝑞), (𝑋𝑗1 , . . . , 𝑋𝑗𝑞)) ≤ 𝜖.

Thus we need to understand which i, j satisfy ℒclww(i) = ℒclww(j). Fortunately, our

proof will only require inputs of a particular structure. We observe that the following

qualify for 𝑡 = 0, . . . ,𝑚− 1:

i = (0, 2𝑡+1 − 1) and j = (2𝑡 − 1, 2𝑡).

In binary, i is (0𝑚, 0𝑚−𝑡−11𝑡+1) and j is (0𝑚−𝑡1𝑡, 0𝑚−𝑡−110𝑡). In both cases, the most

significant differing bit is in the 𝑡+1-st least significant position (and the messages are

in the same order), so the leakage in the same.

But why should this choice be useful? It represents the most extreme cases of two

“distant” plaintexts and two “close” plaintexts that must appear indistinguishable. At

a very high level, the scheme must “waste” a lot of its ciphertext space in order to make

pairs like this appear indistinguishable. This is because the i side must have ciphertexts

116

X0 X2t�1 X2t X2t+1�1

Figure 5.1: Two indistinguishable pairs of r.v.s by the security definition.

that are far apart (by roughly 2𝑡+1) simply because correctness forces many ciphertexts

to be between 𝑋0 and 𝑋2𝑡+1−1, namely 𝑋1, 𝑋2, . . . , 𝑋2𝑡+1−2. In order to appear indis-

tinguishable, 𝑋2𝑡−1 and 𝑋2𝑡 must also be far apart, with no other ciphertexts between

them (again by correctness). Moreover, as 𝑡 grows we get a nested sequence of pairs,

where the space wasted by the previous pair force the next to waste even more.

Our proof will argue that this wasted space grows to the quoted bound. We consider

the nested sequence of these tuples above, and then proceed by induction to show that

a large ciphertext-space is needed for security. The key step in our induction is that,

since the tuples (𝑋0, 𝑋2𝑡+1−1) and (𝑋2𝑡−1, 𝑋2𝑡) must have statistical distance at most

𝜖, then their gaps

𝐺1 = 𝑋2𝑡+1−1 −𝑋0 and 𝐺2 = 𝑋2𝑡 −𝑋2𝑡−1

must also satisfy Δ(𝐺1, 𝐺2) ≤ 𝜀 by the data processing inequality. But the gap mea-

sured by 𝐺2 is a subset of the gap measured by 𝐺1, so 𝐺2 < 𝐺1. In fact, as we show via

induction on 𝑡, 𝐺2 must often be much less than 𝐺1 (since 𝐺1 contains the gap from

𝑋2𝑡−1 and 𝑋0, which is the previous step of the induction). Using this fact, we apply

the following lemma that will be proven in next section.

Lemma 5.1.1 For any two variables 𝑋 ≥ 𝑌 ∈ [𝑁 − 1]′, and distinct positive integers

𝑑1, . . . , 𝑑𝑘 such that Pr[𝑋 = 𝑌 + 𝑑𝑖] = 𝑝𝑖, we have

Δ(𝑋,𝑌) ≥
∑︀𝑘

𝑖=1 𝑝𝑖 · 𝑑𝑖
𝑁 − 1

.

Intuitively, this lemma says that if one of the random variables is often much bigger

than the other, then they must have large statistical distance.

117

Contrast with big jump. The big jump attack of Boldyreva et al. [2011] gave a

ciphertext-size lower bound for any ideal OPE. With ideal ORE, every pair of two

random variables 𝑋𝑖1 < 𝑋𝑖2 and 𝑋𝑗1 < 𝑋𝑗2 must be indistinguishable, which gives

the attack more flexibility and results in an exponential bound (without resorting to

recursion). Instead our bound works with a particular nested set of 𝑚 pairs, with each

step using a pair to increase the bound by roughly 𝜆 bits.

5.2 Ciphertext lower-bound for OPE with CLWW leakage

We can now state our theorem formally.

Theorem 5.2.1 (Lower Bound for Ciphertext size) Suppose Π = (𝒦,E, 𝒞) is an

order-preserving encryption scheme with associated message space {0, 1}𝑚 and cipher-

text space {0, 1}𝑛, and that Π is 2−𝜆-ℒclww-statistically-secure. Then we have

𝑛 ≥ 𝜆𝑚−𝑚 log𝑚+𝑚 log 𝑒

In any practical OPE scenario we are aware of, we have log𝑚− log 𝑒 < 𝜆 and thus our

bound is nontrivial. For example, considering the message space is 40 bytes, log𝑚 −

log 𝑒 = log 320/𝑒 < 7, while in real world encryption, the secure parameter is always

set to be 80 or larger.

Before our proof for the theorem, we here introduce an additional technique lemma.

Lemma 5.2.2 Let 𝑋 > 𝑌 ∈ [𝑁 − 1]′ be random variables such that Δ(𝑋,𝑌) ≤ 𝛿. Let

𝑖 ≥ 1 and assume that for all 𝑞 ∈ [0, 1], Pr[𝑋 > 𝑌 + (1−𝑞)𝑖
𝛿𝑖·𝑖!] ≥ 𝑞. Then for all 𝑞 ∈ [0, 1]

we have

Pr[𝑋 >
(1− 𝑞)𝑖+1

𝛿𝑖+1(𝑖+ 1)!
] ≥ 𝑞.

5.2.1 Proof for Theorem 5.2.1

In this part, we present the proof for our lower bound theorem, by making use of

Lemma 5.1.1 and Lemma 5.2.2.

118

Proof: Let Π = (𝒦,E) be an OPE scheme with associated message space {0, 1}𝑚 and

ciphertext space {0, 1}𝑛, and assume Π is 2−𝜆-ℒclww-statistically-secure.

Below, for 𝑖 ∈ [2𝑚 − 1]′, we let 𝑋𝑖 = E𝐾(𝑖) where 𝐾
$← 𝒦(1𝜆) as in the proof sketch.

That is, the𝑋𝑖 are dependent random variables that represent the encryption of message

𝑖 under a random key. Note that 𝑋0 < 𝑋1 < · · · < 𝑋2𝑚−1.

We will prove the theorem using following claim. Here, we let 𝜀 = 2−𝜆.

Lemma 5.2.3 For 𝑖 ∈ [2𝑚 − 1]′, let 𝑋𝑖 be defined as above. Then for 1 ≤ 𝑗 ≤ 𝑚 and

𝑞 ∈ [0, 1],

Pr[𝑋2𝑗−1 −𝑋0 ≥
(1− 𝑞)𝑗−1

𝜀𝑗−1 · (𝑗 − 1)!
] ≥ 𝑞

The proof is by induction on 𝑗.

Case 𝑗 = 1. This case reduces to Pr[𝑋1−𝑋0 ≥ 1] = 1, which is true by the correctness

of the scheme.

Case 𝑗 =⇒ 𝑗 + 1. We need to show that for any 𝑞 ∈ [0, 1]

Pr[𝑋2𝑗+1−1 −𝑋0 ≥
(1− 𝑞)𝑗

𝜀𝑗 · (𝑗)!
] ≥ 𝑞.

By the correctness of the scheme, we have that

𝑋2𝑗+1−1 −𝑋0 ≥ (𝑋2𝑗 −𝑋2𝑗−1) + (𝑋2𝑗−1 −𝑋0) + 1. (5.3)

Now define “gap” random variables 𝐺1 = 𝑋2𝑗+1−1 −𝑋0 and 𝐺2 = (𝑋2𝑗 −𝑋2𝑗−1). By

induction we know that for any 𝑞 ∈ [0, 1]

Pr[𝑋2𝑗−1 −𝑋0 ≥
(1− 𝑞)𝑗−1

𝜀𝑗−1 · (𝑗 − 1)!
] ≥ 𝑞.

Plugging this, and the definitions of 𝐺1, 𝐺2 into (5.3), we have

Pr[𝐺1 > 𝐺2 +
(1− 𝑞)𝑗−1

𝜀𝑗−1 · (𝑗 − 1)!
] ≥ 𝑞.

119

Moreover, we know by the 𝜀-ℒclww-statistical security of Π and Lemma 2.1.1 that

Δ(𝐺1, 𝐺2) ≤ 𝜀.

We now want to apply Lemma 5.2.2 to 𝐺1 and 𝐺2, to show that 𝐺1 must be large and

then conclude the induction. In the lemma, we set 𝐺1 = 𝑋,𝐺2 = 𝑌, 𝑖 = 𝑗, and 𝛿 = 𝜀.

The lemma gives

Pr[𝐺1 >
(1− 𝑞)𝑗

𝜀𝑗 · (𝑗)!
] ≥ 𝑞,

obtaining the induction step.

We can now complete the proof of Theorem 5.2.1. The above lemma with 𝑗 = 𝑚 tells

us that for any 𝑞 ∈ [0, 1]

Pr[𝑋2𝑚−1 > 𝑋0 +
(1− 𝑞)𝑚−1

𝜀𝑚−1 · (𝑚− 1)!
] ≥ 𝑞,

and thus for any 𝑗 ≤ 𝐷 = 1/𝜀𝑚−1(𝑚− 1)!,

Pr[𝑋2𝑚−1 > 𝑋0 + 𝑗] ≥ 1− ((𝑚− 1)! · 𝑗)1/𝑚−1𝜀

and
𝑗∑︁

ℓ=1

Pr[𝑋2𝑚−1 = 𝑋0 + ℓ] ≤ ((𝑚− 1)! · 𝑗)1/𝑚−1𝜀.

Besides, we claim 𝐷 ≤ 𝑁 − 1, if not, then there exists 𝑞 > 0 such that

𝑁 − 1 =
(1− 𝑞)𝑚−1

𝜀𝑚−1 · (𝑚− 1)!

referring to

Pr[𝑋2𝑚−1 > 𝑋0 +𝑁 − 1] ≥ 𝑞 > 0,

which contradicts 𝑋𝑖 ∈ [𝑁 − 1]′.

Now we denote 𝑝ℓ = Pr[𝑋2𝑚−1 = 𝑋0 + ℓ], and according to Lemma 5.1.1, we get that

𝜀 ≥ Δ(𝑋2𝑚−1, 𝑋0) ≥
∑︀𝑁−1

ℓ=1 𝑝ℓ · ℓ
𝑁 − 1

(5.4)

120

and

𝑁−1∑︁
ℓ=1

𝑝ℓ · ℓ = (𝑝1 + · · ·+ 𝑝𝑁−1) + (𝑝2 + · · ·+ 𝑝𝑁−1) + · · ·+ 𝑝𝑁−1

≥ 1 + (1− 𝑝1) + (1− 𝑝1 − 𝑝2) + · · ·+ (1− 𝑝1 − · · · − 𝑝𝐷−1)

≥ 1 +
𝐷−1∑︁
ℓ=1

(1− ((𝑚− 1)!ℓ)
1

𝑚−1 · 𝜀)

= 𝐷 − (𝑚− 1)!
1

𝑚−1 · 𝜀
𝐷−1∑︁
ℓ=1

ℓ
1

𝑚−1

≥ 𝐷 − (𝑚− 1)!
1

𝑚−1 · 𝜀 ·
∫︁ 𝐷

0
𝑥

1
𝑚−1𝑑𝑥

=
1

𝜀𝑚−1(𝑚− 1)!
· 1
𝑚

=
1

𝜀𝑚−1𝑚!
.

Returning to (5.4), we have 𝑁 − 1 ≥ 1/𝜀𝑚𝑚!. By setting 𝜀 = 2−𝜆, we get

𝑛 ≥ 𝜆𝑚− log(𝑚!) ≥ 𝜆𝑚− log((𝑚/𝑒)𝑚) = 𝜆𝑚−𝑚 log𝑚+𝑚 log 𝑒,

which we complete the entire proof assuming Lemma 5.1.1 and 5.2.2.

5.2.2 Proof for Lemma 5.1.1

In this part, we give the proof for Lemma 5.1.1.

Proof: We will show that one of the distinguishers 𝒟𝑖, 𝑖 ∈ [𝑁 − 1], has the needed

advantage, where 𝒟𝑖 is defined as follows: Given input 𝑇 ∈ [𝑁 − 1]′, 𝒟𝑖 outputs 1 if

and only if 𝑇 ≥ 𝑖.

The advantage of 𝒟𝑖 is 𝛿𝑖 = Pr[𝑋 ≥ 𝑖]− Pr[𝑌 ≥ 𝑖]. We have that

𝑁−1∑︁
𝑖=1

𝛿𝑖 =

𝑁−1∑︁
𝑖=1

Pr[𝑋 ≥ 𝑖]−
𝑁−1∑︁
𝑖=1

Pr[𝑌 ≥ 𝑖]

=

𝑁−1∑︁
𝑖=0

Pr[𝑋 ≥ 𝑖]−
𝑁−1∑︁
𝑖=0

Pr[𝑌 ≥ 𝑖] = 𝐸(𝑋 − 𝑌) ≥
𝑘∑︁

𝑖=1

𝑝𝑖𝑑𝑖.

Thus some 𝛿𝑖 must be at least this sum divided by 𝑁 − 1.

121

5.2.3 Proof for Lemma 5.2.2

In this part, we give the proof for Lemma 5.2.2.

Proof: Suppose for contradiction that there exists 𝑞* ∈ [0, 1] such that

𝑞 := Pr[𝑋 > 𝑡] < 𝑞*,

where 𝑡 = (1− 𝑞*)𝑖+1/𝛿𝑖+1(𝑖+ 1)!.

We will show that Δ(𝑋,𝑌) > 𝛿, violating the assumption in the lemma. We will prove

this by showing the following “truncated” r.v.s 𝑊,𝑍 satisfy Δ(𝑋,𝑌) ≥ Δ(𝑊,𝑍) > 𝛿,

where 𝑊,𝑍 are defined via the joint distribution

Pr[𝑊 = 𝑎, 𝑍 = 𝑏] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Pr[𝑋 = 𝑎, 𝑌 = 𝑏] if (𝑎, 𝑏) ∈ [𝑡]2 ∖ (0, 0),

𝑞 if (𝑎, 𝑏) = (0, 0)

0 otherwise

.

According to the definition of (𝑊,𝑍), we show Δ(𝑋,𝑌) ≥ Δ(𝑊,𝑍). For simplifying,

we denote

𝑝𝑖,𝑗 = Pr[𝑋 = 𝑖, 𝑌 = 𝑗]; 𝑝𝑗 =
𝑡∑︁

𝑘=0

𝑝𝑘,𝑗 ; 𝑝*𝑗 =
𝑁−1∑︁
𝑘=𝑡+1

𝑝𝑘,𝑗 ; ∀𝑖, 𝑗 ∈ [𝑡]

and it’s obvious to note that for 𝑗 ∈ [𝑡]: 1) Pr[𝑋 = 𝑗] = Pr[𝑊 = 𝑗]; 2) Pr[𝑍 = 𝑗] = 𝑝𝑗 ;

122

3) Pr[𝑌 = 𝑗] = 𝑝𝑗 + 𝑝*𝑗 ; 4)
∑︀𝑡

𝑘=0 𝑝
*
𝑗 =

∑︀𝑁−1
𝑘=𝑡+1(Pr[𝑋 = 𝑘]− Pr[𝑌 = 𝑘]). Hence:

2Δ(𝑋,𝑌) =
𝑁−1∑︁
𝑗=0

|Pr[𝑋 = 𝑗]− Pr[𝑌 = 𝑗]|

=

𝑡∑︁
𝑗=0

|Pr[𝑋 = 𝑗]− Pr[𝑌 = 𝑗]|+
𝑁−1∑︁
𝑗=𝑡+1

|Pr[𝑋 = 𝑗]− Pr[𝑌 = 𝑗]|

≥
𝑡∑︁

𝑗=0

|Pr[𝑋 = 𝑗]− Pr[𝑌 = 𝑗]|+
𝑁−1∑︁
𝑗=𝑡+1

(Pr[𝑋 = 𝑗]− Pr[𝑌 = 𝑗])

=

𝑡∑︁
𝑗=0

|Pr[𝑋 = 𝑗]− Pr[𝑌 = 𝑗]|+
𝑡∑︁

𝑗=0

𝑝*𝑗

=
𝑡∑︁

𝑗=0

|Pr[𝑊 = 𝑗]− Pr[𝑍 = 𝑗]− 𝑝*𝑗 |+
𝑡∑︁

𝑗=0

𝑝*𝑗

≥
𝑡∑︁

𝑗=0

|Pr[𝑊 = 𝑗]− Pr[𝑍 = 𝑗]| = 2Δ(𝑊,𝑍).

In the following, it suffices to show that Δ(𝑊,𝑍) > 𝛿. We denote 𝑑𝑗 = Pr[𝑊 = 𝑍 + 𝑗].

Applying Lemma 5.1.1,

Δ(𝑊,𝑍) ≥
∑︀𝑡

ℓ=1 𝑑ℓ · ℓ
𝑡

.

We now show that
∑︀𝑡

ℓ=1 𝑑ℓ · ℓ > 𝛿𝑡, completing the proof. Below we use the following

technical claim, which we establish below:

Claim 5.2.4 In the notation of the proof, we have the following:

1.
∑︀𝑡

ℓ=1 𝑑ℓ = 1− 𝑞,

2. For each 𝑗,
∑︀𝑗

ℓ=1 𝑑ℓ ≤ (𝑖! · 𝑗)1/𝑖𝛿,

3. 𝑡 ≥ 𝑡, where 𝑡 = (1− 𝑞)𝑖/𝛿𝑖𝑖!.

123

Using the claim, we have

𝑡∑︁
ℓ=1

𝑑ℓ · ℓ ≥
𝑡∑︁

ℓ=1

𝑑ℓ · ℓ = (𝑑1 + . . .+ 𝑑𝑡) + (𝑑2 + . . .+ 𝑑𝑡) + . . .+ (𝑑𝑡)

≥ (1− 𝑞) + ((1− 𝑞)− 𝑑1) + ((1− 𝑞)− 𝑑1 − 𝑑2) + . . .+ ((1− 𝑞)− 𝑑1 − . . .− 𝑑𝑡−1)

≥ (1− 𝑞)𝑡−
𝑡−1∑︁
ℓ=1

(ℓ𝑖!)1/𝑖𝛿

≥ (1− 𝑞)𝑡− (𝑖!)1/𝑖𝛿

∫︁ 𝑡

0
𝑥1/𝑖𝑑𝑥

= (1− 𝑞)𝑖+1𝑡− (𝑖!)1/𝑖𝛿 · 𝑖

𝑖+ 1
𝑡
𝑖+1
𝑖 =

(1− 𝑞)𝑖+1

𝛿𝑖(𝑖+ 1)!
> 𝛿𝑡.

We now prove the claim. The first part follows easily from the definition of 𝑊,𝑍. For

the second part, we have

𝑗∑︁
ℓ=1

𝑑ℓ ≤
𝑗∑︁

ℓ=1

Pr[𝑋 = 𝑌 + ℓ] = 1− Pr[𝑋 > 𝑌 + 𝑗] ≤ (𝑖!𝑗)1/𝑖𝛿,

where the last inequality follows since Pr[𝑋 > 𝑌 + (1 − 𝑞)𝑖/𝛿𝑖𝑖!] ≥ 𝑞 holds for all

𝑞 ∈ [0, 1], and particular 𝑞 = 1− (𝑖!𝑗)1/𝑖𝛿.

For the third part of the claim, suppose for contradiction that 𝑡 < 𝑡. Then

Pr[𝑋 > 𝑡] ≥ Pr[𝑋 > 𝑌 + 𝑡] ≥ 1− (𝑖!𝑡)1/𝑖𝛿 > 1− (𝑖!𝑡)1/𝑖𝛿 = 𝑞.

(The second inequality is another application of the condition in the lemma, similar to

the proof of the second part.) But this contradicts the definition 𝑞 = Pr[𝑋 > 𝑡] and

proves the third part of the claim.

5.3 Extensions

Our lower bound applies to the specific definition, say CLWW leakage, and it is possible

to circumvent the bound by targeting a different, but hopefully satisfactory, notion of

124

security. In this section we identify an abstract property, which we term inner-distance-

indistinguishablity, for which a similar lower bound applies. Thus, to avoid the bound

for OPE with another definition, one must avoid this property, and the authors are not

aware of an approach for doing so.

We also show how to apply our proof technique to give an essentially-tight lower

bound on the ciphertext length of the “base-𝑑” OPE variants suggested by Chenette et

al., which achieve a weakened version of security with shorter ciphertexts.

Inner-distance-indistinguishablity. The following property seems mostly useful as

a tool for understanding and generalizing the lower bound, and not as a stand-alone

target for OPE security in practice.

Definition 5.3.1 Let Π = (𝒦,E, 𝒞) be an OPE scheme with associated message space

𝑀 , 𝑑 ≥ 1 be an integer, and 𝜀 > 0. We say that Π is (statistically) 𝜀-inner-distance-

indistinguishable for width 𝑑 (denoted 𝜀-IDI𝑑) if for all 𝑖 < 𝑗 ∈𝑀 such that 𝑗 − 𝑖 > 𝑑,

there exist 𝑘, ℓ ∈𝑀 such that

1. 𝑖 ≤ 𝑘 < ℓ ≤ 𝑗

2. ℓ− 𝑘 ≤ 𝑑

3. Δ(𝐷1, 𝐷2) ≤ 𝜀, where 𝐷1 = E𝐾(𝑗) − E𝐾(𝑖) and 𝐷2 = E𝐾(𝑘) − E𝐾(ℓ) and 𝐾 is

random key.

Intuitively, 𝜀-IDI𝑑 says that the distance between every encrypted pair of messages

must be indistinguishable from the gap between two encrypted messages which both lie

between them, and moreover the latter gap is required to be small, namely 𝑑 or less.

The CLWW notion implies 𝜀-IDI1 security. That is, for every pair 𝑖 < 𝑗, E𝐾(𝑗) −

E𝐾(𝑖) is distinguishable from E𝐾(𝑘 + 1) − E𝐾(𝑘) for some 𝑘 between 𝑖 and 𝑗 (when

𝑑 = 1, we must have ℓ = 𝑘 + 1 in the definition).

To see this, fix some 𝑖, 𝑗, with 𝑗 > 𝑖 + 1, and consider their binary expansions.

We may write 𝑖 in the form 𝑝 ‖ 0 ‖𝑥 and 𝑗 in the form 𝑝 ‖ 1 ‖ 𝑦, where 𝑝 is the longest

125

common prefix and 𝑖 and 𝑗, and 𝑥, 𝑦 ∈ {0, 1}𝐿 for some 𝐿 ≥ 1. Then consider

𝑘 = 𝑝 ‖ 0 ‖ 1𝐿 and ℓ = 𝑝 ‖ 1 ‖ 0𝐿.

We have that ℓ = 𝑘 + 1 (treating ℓ, 𝑘 as numbers), and that either 𝑘 ̸= 𝑖 or ℓ ̸= 𝑗.

Moreover the CLWW security notion ensures that the condition of IDI1 security holds

for this choice of 𝑘, ℓ.

The following theorem generalizes Theorem 5.2.1.

Theorem 5.3.2 Suppose Π = (𝒦,E, 𝒞) is an order-preserving encryption scheme with

security parameter 𝜆 and associated message space {0, 1}𝑚 and ciphertext space {0, 1}𝑛,

and Π is 2−𝜆-IDI𝑑 secure for some 𝑑 ≥ 1. Let 𝑚′ = 𝑚− ⌈log 𝑑⌉. Then we have

𝑛 ≥ 𝜆𝑚′ −𝑚′ log𝑚′ +𝑚′ log 𝑒.

Proof: Let Π = (𝒦,E, 𝒞) be an OPE scheme with the syntax and conditions in the

theorem. Below, for 𝑖 ∈ {0, 1}𝑚, we write 𝑋𝑖 = E𝐾(𝑖), and let 𝑚′ be as defined in the

theorem.

We will show how to carry out the same strategy used in the proof of Theorem 5.2.1. We

will prove a version of Lemma 5.2.3 for a different nested sequence of pairs of messages

(𝑖𝐿𝑗 , 𝑖
𝑅
𝑗)

𝑚′
𝑗=1 that we define inductively from 𝑚′ down to 1 now.

• Base: 𝑖𝐿𝑚′ = 0, 𝑖𝑅𝑚′ = 2𝑚 − 1.

• Step: Given (𝑖𝐿𝑗 , 𝑖
𝑅
𝑗), let 𝑘 < ℓ be the pair between 𝑖𝐿𝑗 and 𝑖𝑅𝑗 guaranteed by IDI𝑑

security. We distinguish two cases:

1. If 𝑘 − 𝑖𝐿𝑗 > 𝑖𝑅𝑗 − ℓ then set (𝑖𝐿𝑗−1, 𝑖
𝑅
𝑗−1) to be (𝑖𝐿𝑗 , 𝑘).

2. Otherwise, set (𝑖𝐿𝑗−1, 𝑖
𝑅
𝑗−1) to (ℓ, 𝑖𝑅𝑗).

Intuitively, we use the IDI𝑑 security property to find a nested sequence by moving to the

“larger” gap at each step, and this continues for at least 𝑚′ steps. Using this sequence,

126

the rest of the proof of Lemma 5.2.3 can be carried out. Finally, the rest of the proof

of Theorem 5.2.1 can be applied exactly as before.

Other variants. We can also extend our proof of Theorem 5.2.1 to the “𝑑-ary” variants

of CLWW. That construction saved a modest amount of space over the main CLWW

construction via additional leakage, which is described via the following leakage profile

ℒ𝑑clww:

ℒ𝑑clww(𝑥1, . . . , 𝑥𝑞) := {(𝑖, 𝑗, ind
(𝑑)
diff(𝑥𝑖, 𝑥𝑗),1(𝑥𝑖 < 𝑥𝑗)) : 1 ≤ 𝑖 < 𝑗 ≤ 𝑞},

where ind
(𝑑)
diff(𝑎, 𝑏) writes its inputs in base 𝑑 as 𝑎 = (𝑎[1], . . . , 𝑎[𝑚]) and 𝑏 = (𝑏[1], . . . , 𝑏[𝑚]),

and outputs (𝑘, |𝑏[𝑘] − 𝑎[𝑘]|), where 𝑘 is the smallest index such that 𝑏[𝑘] ̸= 𝑎[𝑘]. If

there is not such index (i.e. 𝑎 = 𝑏) then it outputs (𝑚+ 1, 0).

Intuitively, this leakage outputs the index of the first base-𝑑 digit where each pair of

messages differ, and additionally outputs the absolute difference in that digit. (When

𝑑 = 2 the additional output is trivial, since it is always 1.)

We will show how to carry out the same strategy used in the proof of Theorem 5.2.1.

Here we denote 𝑚* = 𝑚/ log 𝑑 − 1, and we will prove a version of Lemma 5.2.3 for a

different nested sequence of pairs of messages (𝑖𝐿𝑗 , 𝑖
𝑅
𝑗)

𝑚*
𝑗=1 that we define as follows:

𝑖𝐿𝑗 = 0, 𝑖𝑅𝑗 = 0𝑚
*−𝑗 ||1||(𝑑− 1)𝑗 .

And we define the pair 𝑖̂𝐿𝑗 , 𝑖̂
𝑅
𝑗 as:

𝑖̂𝐿𝑗 = 0𝑚
*−𝑗 ||0||(𝑑− 1)𝑗 , 𝑖̂𝑅𝑗 = 0𝑚

*−𝑗 ||1||0𝑗 .

According to the leakage profile, we have (E𝐾(𝑖𝐿𝑗),E𝐾(𝑖𝑅𝑗)) and (E𝐾 (̂𝑖𝐿𝑗),E𝐾 (̂𝑖𝑅𝑗)) are

statistical indistinguishable. Using the sequence (𝑖𝐿𝑗 , 𝑖
𝑅
𝑗)

𝑚*
𝑗=1, the rest of the proof of

Lemma 5.2.3 can be carried out. Finally, the rest of the proof of Theorem 5.2.1 can be

applied exactly as before. Hence we have the lower bound:

𝑛 ≥ 𝜆(𝑚/ log 𝑑)− (𝑚/ log 𝑑) log(𝑚/ log 𝑑).

127

Chapter 6

Conclusion

Order revealing encryption has shown to be an important primitive in leaky cryptog-

raphy and encrypted database protocols, despite many known attacks indicate that,

under the condition that the adversary has a good estimate of the message distribu-

tion, ORE provides little privacy. This dissertation explores several directions on ORE

and presents three of our current results, which includes new security notions, new

constructions and black box separations.

First, we study ORE with ideal leakage, where only the order of the underlying

plaintexts are leaked and nothing else. We show a black box separation between ideal

ORE and weaker models, such as random oracle model and generic group model, which

means we can not build an ideal ORE from any symmetric key primitives, as well as

any public key primitives that are implied by generic group model. Thus, despite of

providing the strongest security, ideal ORE has to suffer from somewhat inefficiency,

and in fact, those inefficiency is unacceptable in the current state.

Next, we attempt to develop more efficient schemes, by relaxing the security require-

ment, say allowing somewhat additional leakage. Based on this idea, we propose a new

security notion called parameter-hiding, where in such a notion we consider about the

privacy of the distribution they came from, and we show how to protect the statistical

information, such as mean and variance, about the underlying data distribution. Then

we build the corresponding scheme only based on bi-linear map.

After that, we turn our attention to OPE. We know that OPE can not achieve

ideal-secure, EP-MSDB-secure and parameter-hiding, and for MSDB-secure OPE, the

current construction has ciphertext length—𝜆𝑚. We then show a lower bound on

ciphertext size which indicates that the current construction is almost optimal.

128

Reviewing our results, we know that, ideal ORE is unpractical in the real world and

OPE with CLWW leakage has to suffer a long ciphertext. On the side, our new privacy

notion, indeed gives some hope on ORE, but our notion only works under the condition

that the adversary does not have a good estimate of the underlying message distribution.

Thus, the big-open question is what’s the future of ORE? In our perspective, a potential

solution against those attacks is to develop a protocol that use ORE as a primitive,

rather than using it directly. We actually illustrate our intuitive idea in Sec 1.1.4, while

lacking of security analysis, and we seriously treat it as a future research direction for

ORE.

129

Bibliography

A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann, R. Rama-
murthy, and R. Venkatesan. Orthogonal security with cipherbase. In
6th Biennial Conference on Innovative Data Systems Research (CIDR’13),
January 2013a. URL https://www.microsoft.com/en-us/research/
publication/orthogonal-security-with-cipherbase/.

A. Arasu, K. Eguro, R. Kaushik, and R. Ramamurthy. Querying encrypted data (tu-
torial). In ICDE, 2013b.

S. Bajaj and R. Sion. Trusteddb: A trusted hardware-based database with privacy and
data confidentiality. TKDE, 26(3):752–765, 2014.

M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols. In Proceedings of the 1st ACM conference on Computer and
communications security, pages 62–73. ACM, 1993.

M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable
encryption. In Annual International Cryptology Conference, pages 535–552. Springer,
2007.

A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-preserving symmetric en-
cryption. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 224–241. Springer, 2009.

A. Boldyreva, N. Chenette, and A. O’Neill. Order-preserving encryption revisited: Im-
proved security analysis and alternative solutions. In Annual Cryptology Conference,
pages 578–595. Springer, 2011.

D. Boneh and A. Silverberg. Applications of multilinear forms to cryptography. Con-
temporary Mathematics, 324(1):71–90, 2003.

D. Boneh, A. Sahai, and B. Waters. Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In S. Vaudenay, editor, Advances in Cryptology - EURO-
CRYPT 2006, pages 573–592, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.
ISBN 978-3-540-34547-3.

D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, and J. Zimmerman. Seman-
tically secure order-revealing encryption: Multi-input functional encryption without
obfuscation. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 563–594. Springer, 2015.

Z. Brakerski and G. N. Rothblum. Virtual Black-Box Obfuscation for All Circuits via
Generic Graded Encoding, pages 1–25. Springer Berlin Heidelberg, Berlin, Heidelberg,
2014. ISBN 978-3-642-54242-8. doi: 10.1007/978-3-642-54242-8 1. URL https:
//doi.org/10.1007/978-3-642-54242-8_1.

https://www.microsoft.com/en-us/research/publication/orthogonal-security-with-cipherbase/
https://www.microsoft.com/en-us/research/publication/orthogonal-security-with-cipherbase/
https://doi.org/10.1007/978-3-642-54242-8_1
https://doi.org/10.1007/978-3-642-54242-8_1

130

Z. Brakerski and G. Segev. Function-private functional encryption in the private-key
setting. In Theory of Cryptography Conference, pages 306–324. Springer, 2015.

R. Canetti. Towards realizing random oracles: Hash functions that hide all partial in-
formation. In Annual International Cryptology Conference, pages 455–469. Springer,
1997.

R. Canetti, Y. T. Kalai, and O. Paneth. On obfuscation with random oracles. In Theory
of Cryptography Conference, pages 456–467. Springer, 2015.

D. Cash and C. Zhang. A ciphertext-size lower bound for order-preserving encryption
with limited leakage. In Theory of Cryptography Conference, pages 159–176. Springer,
2018.

D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M. Steiner. Highly-scalable
searchable symmetric encryption with support for boolean queries. In Advances in
Cryptology–CRYPTO 2013, pages 353–373. Springer, 2013.

D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse attacks against search-
able encryption. In CCS, 2015.

D. Cash, F.-H. Liu, A. O’Neill, and C. Zhang. Reducing the leakage in practical order-
revealing encryption. Cryptology ePrint Archive, Report 2016/661, 2016. https:
//eprint.iacr.org/2016/661.

D. Cash, F.-H. Liu, A. O’Neill, M. Zhandry, and C. Zhang. Parameter-hiding order
revealing encryption. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 181–210. Springer, 2018.

Y.-C. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote
encrypted data. In ACNS, 2005.

M. Chase and S. Kamara. Structured encryption and controlled disclosure. In Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, pages 577–594. Springer, 2010.

N. Chenette, K. Lewi, S. A. Weis, and D. J. Wu. Practical order-revealing encryption
with limited leakage. In International Conference on Fast Software Encryption, pages
474–493. Springer, 2016.

J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé. Cryptanalysis of the multilinear
map over the integers. In E. Oswald and M. Fischlin, editors, Advances in Cryp-
tology – EUROCRYPT 2015, pages 3–12, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg. ISBN 978-3-662-46800-5.

J.-S. Coron, T. Lepoint, and M. Tibouchi. Practical multilinear maps over the integers.
In Advances in Cryptology–CRYPTO 2013, pages 476–493. Springer, 2013.

J.-S. Coron, M. S. Lee, T. Lepoint, and M. Tibouchi. Cryptanalysis of ggh15 multilinear
maps. In M. Robshaw and J. Katz, editors, Advances in Cryptology – CRYPTO
2016, pages 607–628, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg. ISBN
978-3-662-53008-5.

https://eprint.iacr.org/2016/661
https://eprint.iacr.org/2016/661

131

T. M. Cover and J. A. Thomas. Elements of Information Theory (Wiley Series
in Telecommunications and Signal Processing). Wiley-Interscience, 2006. ISBN
0471241954.

R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption:
improved definitions and efficient constructions. In CCS, 2006.

J. L. Dautrich Jr and C. V. Ravishankar. Compromising privacy in precise query
protocols. In EDBT, 2013.

F. B. Durak, T. M. DuBuisson, and D. Cash. What else is revealed by order-revealing
encryption? In ACM CCS, 2016. To appear.

P. Erdős and V. Sós. On a problem of graph theory.

S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices. In
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 1–17. Springer, 2013.

C. Gentry, A. Lewko, and B. Waters. Witness encryption from instance independent
assumptions. In J. A. Garay and R. Gennaro, editors, Advances in Cryptology –
CRYPTO 2014, pages 426–443, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.
ISBN 978-3-662-44371-2.

E.-J. Goh et al. Secure indexes. IACR Cryptology ePrint Archive, 2003:216, 2003.

P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart. Leakage-abuse
attacks against order-revealing encryption. In Security and Privacy (SP), 2017 IEEE
Symposium on, pages 655–672. IEEE, 2017.

H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. Executing sql over encrypted data
in the database-service-provider model. In Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’02, pages 216–227, New
York, NY, USA, 2002. ACM.

B. Hore, S. Mehrotra, M. Canim, and M. Kantarcioglu. Secure multidimensional range
queries over outsourced data. VLDBJ, 21(3):333–358, 2012.

M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on searchable
encryption: Ramification, attack and mitigation. In NDSS, 2012.

M. S. Islam, M. Kuzu, and M. Kantarcioglu. Inference attack against encrypted range
queries on outsourced databases. In CODASPY, 2014.

M. Joye and A. Passelègue. Function-revealing encryption. 2016.

S. Kamara and T. Moataz. Sql on structurally-encrypted databases. Cryptology ePrint
Archive, Report 2016/453, 2016. http://eprint.iacr.org/.

K. Lewi and D. J. Wu. Order-revealing encryption: New constructions, applications,
and lower bounds. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, pages 1167–1178, New York, NY, USA,
2016. ACM. ISBN 978-1-4503-4139-4. doi: 10.1145/2976749.2978376. URL http:
//doi.acm.org/10.1145/2976749.2978376.

http://eprint.iacr.org/
http://doi.acm.org/10.1145/2976749.2978376
http://doi.acm.org/10.1145/2976749.2978376

132

C. Liu, L. Zhu, M. Wang, and Y.-a. Tan. Search pattern leakage in searchable encryp-
tion: Attacks and new construction. Information Sciences, 265:176–188, 2014.

W. Lu, A. L. Varna, and M. Wu. Security analysis for privacy preserving search of
multimedia. In 2010 IEEE International Conference on Image Processing, pages
2093–2096, Sept 2010.

M. Mahmoody, A. Mohammed, and S. Nematihaji. On the impossibility of virtual
black-box obfuscation in idealized models. In Theory of Cryptography Conference,
pages 18–48. Springer, 2016.

A. Mandal and A. Roy. Relational hash: Probabilistic hash for verifying relations,
secure against forgery and more. In Annual Cryptology Conference, pages 518–537.
Springer, 2015.

E. Miles, A. Sahai, and M. Zhandry. Annihilation attacks for multilinear maps:
Cryptanalysis of indistinguishability obfuscation over ggh13. In Proceedings, Part
II, of the 36th Annual International Cryptology Conference on Advances in Cryp-
tology — CRYPTO 2016 - Volume 9815, pages 629–658, Berlin, Heidelberg, 2016.
Springer-Verlag. ISBN 978-3-662-53007-8. doi: 10.1007/978-3-662-53008-5 22. URL
https://doi.org/10.1007/978-3-662-53008-5_22.

P. Mohassel and M. Franklin. Efficiency tradeoffs for malicious two-party computation.
In International Workshop on Public Key Cryptography, pages 458–473. Springer,
2006.

M. Naveed, S. Kamara, and C. V. Wright. Inference attacks on property-preserving
encrypted databases. In Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, pages 644–655. ACM, 2015.

O. Pandey and Y. Rouselakis. Property preserving symmetric encryption. In Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques,
pages 375–391. Springer, 2012.

R. Pass and A. Shelat. Impossibility of vbb obfuscation with ideal constant-degree
graded encodings. In Theory of Cryptography Conference, pages 3–17. Springer,
2016.

R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan. Cryptdb: protecting
confidentiality with encrypted query processing. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles 2011, SOSP 2011, Cascais, Portugal,
October 23-26, 2011, pages 85–100, 2011.

G. Segev and I. Shahaf. Ciphertext expansion in limited-leakage order-preserving en-
cryption: A tight computational lower bound. To appear in Preceeding of the 16th
Theory of Cryptography Conference, 2018. https://eprint.iacr.org/2018/
521.

V. Shoup. Lower bounds for discrete logarithms and related problems. In International
Conference on the Theory and Applications of Cryptographic Techniques, pages 256–
266. Springer, 1997.

https://doi.org/10.1007/978-3-662-53008-5_22
https://eprint.iacr.org/2018/521
https://eprint.iacr.org/2018/521

133

D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted
data. In SP, 2000.

C. Wang, N. Cao, J. Li, K. Ren, and W. Lou. Secure ranked keyword search over
encrypted cloud data. In Distributed Computing Systems (ICDCS), 2010 IEEE 30th
International Conference on, pages 253–262, June 2010.

M. Zhandry and C. Zhang. Impossibility of order-revealing encryption in idealized
models. In Theory of Cryptography Conference, pages 129–158. Springer, 2018.

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Overview of our work
	Related work on other tools
	Organization

	Preliminaries
	Notation and basic results
	Definition, Correctness and Efficiency for ORE
	Security for ORE

	Impossibility of Ideal Order-Revealing Encryption in Idealized Models
	Technique overview
	Impossibility of information-theoretic ORE
	Impossibility of statistically secure ORE In idealized models
	Impossibility for ORE in Random Oracle Model
	Impossibility for ORE in Generic Group Model

	Parameter-Hiding Order Revealing Encryption
	Technical Overview
	Definition for Parameter-Hiding
	Parameter Hiding ORE
	ORE with smoothed CLWW Leakage
	PPH from Bilinear Maps
	Further reducing leakage
	More efficient comparisons
	Left/Right ORE Construction
	Impossibility of Parameter-Hiding OPE

	A Ciphertext-Size Lower Bound for Order-Preserving Encryption with Limited Leakage
	Technique overview
	Ciphertext lower-bound for OPE with CLWW leakage
	Extensions

	Conclusion
	Bibliography

