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ABSTRACT OF THE DISSERTATION

Semi-Analytic Forecasts for Galaxy Formation and Cosmic

Reionization in the Ultrahigh-Redshift Universe

By LONG YAN AARON YUNG

Dissertation Director:

Dr. Rachel Somerville

Concerning the early evolution history of our universe and distant galaxies that are expected to

be uncovered with future telescopes, we present a collection of comprehensive, physically-backed

forecasts for galaxy populations across cosmic time and their interaction with the cosmic environ-

ment. Our predictions cover galaxies spanning a remarkably wide range of mass and redshift, for

which we provide a large variety of physical and observable properties, and from which we derive

the production rate of energetic photons and the subsequent reionization history. These pre-eminent

results are achieved with a custom-built modelling pipeline based on the versatile Santa Cruz semi-

analytic model for galaxy formation and the new model components introduced in this work. This

efficient modelling pipeline established an effective link between the ‘ground-level’ galaxy formation

physics and the ‘top-level’ cosmological-scale observables, which also enables controlled experiments

that help pinpoint the set of physical processes that have leading effects on cosmological events and

quantifying their impacts. This work demonstrates the enormous potential of using semi-analytic

models to inform the planning of optimal survey strategies, support scientific rationale for observing

programs, and facilitate physical interpretation for observed objects. In anticipation of the soon-

to-be-launched James Webb Space Telescope, a portion of our predictions are tailored to explore its

capability on detecting faint, distant galaxies and on constraining key galaxy formation physics.
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Chapter 1

Introduction

1.1 Cosmogonic Preliminaries

Despite being trapped on our own planet, our venture into the distant Universe is made possible

by capturing photons coming from far-away objects. These photons traverse through both space

and time, and are encoded with messages about the sources where they were originated and the

conditions of the Universe along their paths. Perhaps the most interesting consequence that follows

from the finite speed of light is that the farther a photon has travelled, the further back in time the

message dates. This is sometimes referred to as the ‘look-back effect’. For this reason, censusing the

Universe at various distances allows us to piece together the evolution history of the objects within,

and by extension, the Universe itself.

Another intriguing feature is the orderly colour shift observed for distant objects due to the

Doppler effect, which occurs when a light source is in relative motion to the observer, in this case,

ourselves. This effect shifts light to redder colours for objects travelling away from us (hence ‘red-

shifted ’, denoted with symbol z), which the severity of the shift has been used to determine an

object’s recessional velocity along our line of sight. In 1929, Edward Hubble was the first to realize

the correlation between redshift and distance for far-away objects, and their recessional velocities

can be related to their distances by the Hubble constant (Hubble 1929). This discovery is now

referred to as the Hubble’s law, which has since been repeatedly tested and shown robust with

advancing instrumentation and observation techniques (e.g. Riess et al. 2016; Planck Collaboration

2014). Because of such tight and strong correlation, redshift also doubles as the main diagnostics

for the distances of observed objects.

Consider both the fact that all distant objects are redshifted (moving away from us) and the

degree of shift is tightly correlated to their distances (farther objects travel faster), instead of arriving

at the conclusion that we are sitting at the centre of the Universe, it is quite undeniable that the

Universe we live in has been undergoing a centreless, accelerating expansion in every direction.

Reversing the expansion in time, we can see that the past Universe was more compact and therefore

hotter and denser. And winding the clock back even further, we will arrive at the point in time
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where the entire Universe converges; it is referred to as the ‘Big Bang’, the point where space and

time begin to exist. This epic point in time also left behind a few traces that help us validate and

further understand how such startling prologue to the Universe unfolded.

The very first batch of baryons emerged under some extreme conditions, known as Big Bang

nucleosynthesis (BBN). This process took place seconds to minutes after the Big Bang and is re-

sponsible for producing the most abundant elements in the Universe as observed today, including

hydrogen, helium, and a trace amount of lithium (Alpher & Herman 1948; Peebles 1966; Wagoner

et al. 1967). The specific proportion of the primordial baryonic composition depends on the condition

of the Universe during the process, specifically the temperature and density. In some parts of the

Universe where very few physical interactions occurred, the chemical composition remains pristine

until today, which becomes a way to glimpse at the conditions of the primordial Universe. Further-

more, the broadly uniform chemical compositions and helium floor measured in nearby stars and

galaxies across the Universe also point to the fact that their compositions are set by a cosmological

scale event.

The hot Universe in the past also left behind thermal radiation that is still detectable today in

the form of microwaves, known as the cosmic microwaves background (CMB). This signal coming

from the edge of the visible Universe was first predicted by Alpher & Herman in 1948 and its first

detection was made by Penzias & Wilson in 1965. This seemingly bizarre signal is found to be

smooth and uniform, which indicates that it is not associated with specific celestial objects but

rather coming from the Universe itself. This is also a strong evidence showing that the Universe is

homogenous (same everywhere) and isotropic (same in every direction) on the largest scales. Over

the years, multiple space missions were deployed dedicated to obtaining detailed, full-sky CMB maps

(Smoot et al. 1992; Spergel et al. 2007; Planck Collaboration 2014). These maps are also embedded

with crucial information that helps characterize our Universe, such as the overall matter density and

the Hubble constant. The measured expansion rate of the Universe, the largely uniform CMB, and

the primordial compositions of baryonic matter are direct evidence pointing to a hot beginning of

the Universe, and together they form the three pillars of modern cosmology.

A cosmological model is an aggregate set of mathematical equations that prescribes the intrinsic

characteristics of the Universe. The ΛCDM model, also referred to as the standard model of cos-

mology, is exemplary at reproducing many of the observed characteristics of our Universe (Frieman

et al. 2008). Such a theoretical framework depicts a Universe mainly composed of a cosmological

constant (Λ) and cold dark matter (CDM), where the former drives the universal expansion and

the latter dominates the Universe’s matter budget (Zwicky 1937; Perlmutter et al. 1999; Bertone

et al. 2005). The standard model also implies that large-scale structures across the Universe were
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formed in accordance with the hierarchical structure formation paradigm. That is, low-mass seeds

first emerge from small-scale gravitational instability, and then grow by accreting mass from the

cosmic environment and merging with objects nearby. These physical implications serve as the basis

for galaxy formation models.

1.2 Galaxy Formation and Evolution

Though on large scales matter seems to be distributed across the Universe uniformly, looking closely

at the sites that harbour structure formation, we find that matter tends to cluster in islands known as

dark matter halos. Inside the gravitational well of these halos, baryonic matter further concentrates

to form finer systems of stars, gas, and dust, assembling what we called galaxies. The abundance

of galaxies and their physical properties are both important probes for the underlying physical

processes and the conditions of the cosmic environment. Galaxies that are actively forming stars

can be extremely luminous and therefore be detected from great distances. However, extracting

information from observations is not at all straight forward given the wide variety of intricate physical

processes that take part in these complex systems. For the same reason, building a galaxy formation

model is highly non-trivial and remains one of the most active research areas in astrophysics

The formation of galaxies is a manifestation of many physical processes operating together. In the

current picture of structure formation, galaxies form in the centre of the gravitational wells of large

bodies of dark matter that are commonly referred to as dark matter halos. The formation of galaxies

is a manifestation of many physical processes operating together. In the context of galaxy formation,

physical processes broadly refer to the various kinds of interactions of baryonic matter that lead to

energy transfer and phase transition. They can take effect locally (e.g. confined in small regions

such as star clusters) or globally (e.g. across the entire galaxy), or both. Since these processes, for

the most part, are decoupled from dark matter interactions, they are therefore also referred to as

baryonic processes. One of the main goals of modern astrophysics is to identify the set of physical

processes that take part in shaping galaxy formation. Some examples of key processes found in past

studies include accretion and cooling of gas, conversion of cold gas into stars, production of metals

and dust, and the fuelling and growth of supermassive black holes, etc. In addition, there are also

special circumstances, such as galaxy mergers, that may cause starbursts, which are short periods

of time when star formation is stimulated. This creates an ecosystem of processes that are vital to

the production of radiation, including the essential LyC.

In some cases, the output of a process is returned back to the system and subsequently modifies

the conditions that trigger the process. These feedback effects can lead to complicated and sometimes



4

counter-intuitive outcomes. For example SNe are responsible for producing and depositing metals

back to the ISM, which become an important coolant that enables gas to cool more efficiently

and yield a higher rate of star formation. However, the thermal and kinetic energy they release

can also reheat and eject gas from galaxies, and in turns, suppress or even quench star formation.

Other feedback effects will be described and discussed throughout this thesis. These effects can act

simultaneously with other processes and give rise to even more complicated situations, and may be

extended to affect nearby galaxies.

The collective effects of physical processes are reflected in the physical properties of galaxies.

Some of the key properties that are frequently used to characterise the conditions of star forming

regions in galaxies include star formation rate (SFR), stellar mass (M∗), stellar age, metallicity (Z),

and the density of multiphase gas. Surveying and sorting the statistical distributions of properties

in large galaxy populations provide an overview of the galaxy demographics at a given time in the

Universe. And combining the distributions of two or more of these properties can reveal the scaling

relations among them. Some examples of scaling relations are Faber-Jackson (luminosity and the

velocity dispersion), Tully-Fisher (intrinsic luminosity and line width), Kennicutt-Schmidt (SFR

and cold gas density), etc. These relations are historically important especially to the early study

of galaxy formation physics.

The physical properties of astronomical sources are collectively exhibited in their spectral energy

distribution (SED), which is the distribution of energy over wavelength or frequency. SEDs are a

blend of radiation from stellar populations, AGN, and other emission and absorption features, and

are the prime diagnostics for astronomical sources. In addition, the intervening IGM can also leave

imprints on the SED. The most common scenario is that the redshifted spectra can be partially

absorbed by neutral hydrogen. A noteworthy scenario is that the spectra of high-redshift objects

can be dynamically absorbed by neutral hydrogen as it is being redshift, resulting in the Lyman-

break feature in galaxies spectra and the Gunn-Peterson Trough in AGN spectra that can be used to

constraint the onset of reionization. For distant objects, for which it is extremely hard to obtain their

high-resolution spectra, their spectral properties are approximated with the integrated flux within

some frequency bands (e.g. ultraviolet) and their optical colours. These are generally referred

to as photometric surveys, and this technique is able to detect sources in a more time-efficient

manner compared to spectroscopic surveys, at the expense of larger uncertainties on the redshifts of

individual objects.
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1.3 Reionization of Intergalactic Hydrogen

Outside of the overdense regions, the Universe is uniformly filled with diffuse gas; it is commonly

referred to as the intergalactic medium (IGM). While the chemical composition remains pristine since

the epoch of BBN, the temperature of the IGM gradually decreases as the Universe expands, allowing

free electrons to bond with nuclei for the first time and resulting in a neutral IGM. As the temperature

of the expanding Universe continues to drop, large-scale structures are able to form, which produces

ionizing radiation that gradually (re)ionizes the IGM. It is evident that this global phase transition

took place approximately 0.47 to 0.93 billion years after the Big Bang (or equivalently, z ∼ 10 to

6), which is commonly referred to as the Epoch of Reionization (EoR). Although the process has

not been fully understood, its onset and duration, as well as the intermediate stages, are jointly

constrained by various kinds of observations. For instance, the presence of neutral hydrogen in the

early Universe can partially absorb spectra of luminous quasars, imprinting unique spectral features

that can be used to determine an upper limit for the time of the onset of the process. As patches

of the ionized IGM grow in size over time, the gradual depletion of neutral hydrogen permits free

passage for radiation, and therefore the Universe became transparent. On the other hand, the

emerging free electrons along the line of slight can scatter and polarize the CMB. Therefore, the

measured electron optical depth or polarization of the CMB has been used as an indicator for how

long the Universe has been ionized.

The Lyman-continuum (LyC) radiation, which collectively refers to photons with energy & 13eV,

is responsible for the ionization of intergalactic hydrogen. However, both the overall ionizing photon

budget and the characteristics of the sources are still under investigation. Recent theoretical and

observational studies have come to some consensus that high-redshift galaxies are most probably

the dominate sources of LyC during the EoR based on their projected high number density and the

ability to produce LyC photons by the young stellar population therein. Although x-ray binaries

and active galactic nuclei (AGN) are also known to produce ionizing photons during the EoR, their

contribution to the overall ionizing photon budget are unlikely to be dominant due to their projected

low abundance in the early Universe (Madau & Fragos 2017; Dayal et al. 2020; Trebitsch et al. 2020).

1.4 Interplay between the Big and the Small

The many physical processes that took part in galaxy formation, as described in the previous section,

operate over a vast range of scales. This include spatial scales stretching from sub-parsec activities,

such as individual stars forming and interacting within star clusters, to super-megaparsec galaxy

mergers and formation of cosmic web structures. Similarly, the timescales over which these processes
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operate can span from a few days (e.g. SNe reaching peak luminosity) to a fraction of the age of

the Universe (e.g. our Milky Way Galaxy merging with the neighbouring Andromeda Galaxy).

The effects of these physical processes can also propagate upward and downward across spatial and

temporal scales, making the ‘multi-scale’ network of processes even more intricate. Furthermore,

emerging galaxies are also affected by circumstances beyond the boundary of their host dark matter

halos, such as the conditions of the cosmic environment (e.g. baryonic fraction and temperature

of the IGM) and cosmological-scale events (e.g. the phase of the IGM during the EoR). These

effects are especially pronounced at early times, affecting the first galaxies and the first stars. The

conditions from these early stages will propagate through time and reflect in the present day the

properties of galaxies and their associated observables. In turn, radiation and metals produced in

galaxies can also escape from these halos and have extended effects on the cosmic environment and

nearby objects.

Models and theoretical simulations set within the framework of cosmological structure formation

are a powerful tool for understanding how the Universe operates and how galaxies formed. However,

modelling galaxy formation in a cosmological context can be extremely challenging. As predicted

by the hierarchical structure formation paradigm and backed by observations, massive halos are

much more rare than their lower-mass counterparts. In order to simulate a halo population that

meaningfully represents the ones in the real Universe, a simulation needs to be able to simultaneously

include halos over a wide mass range, which requires an extremely large simulated volume to capture

the rare, massive halos and a very high mass resolution to resolve the lower mass ones. Conventional

numerical methods, such as hydrodynamic simulations and adaptive mesh refinement, simulate the

formation of structure by tracking the migration of mass represented by a large number of ‘particles’

and ‘gridcells’. The demand for computational resources by these methods increase extremely rapidly

with simulated volumes and resolution. There are tradeoffs between the breadth of physical processes

that can be included, the accuracy with which these processes can be modelled, and computational

limitations. In addition, tracking the interactions of baryonic matter is even more challenging, where

many of the baryonic processes operate in scales below the spatial resolution of these simulations.

Simulating everything across different physical scales with conventional numerical method with

needed resolution is very much impractical. Inevitably, simulations have to rely on ‘sub-resolution’

or ‘sub-grid’ recipes.
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1.5 The Semi-Analytic Modelling Approach

Semi-analytic models (SAMs) provide an alternative, ‘middle way’ approach for modelling galaxy

formation in comparison with conventional numerical methods. Unlike those methods, SAMs employ

a set of carefully curated recipes to track the evolution of the global properties of galaxies. This

includes standard components such as radiative cooling of gas, formation of stars, chemical evolution,

feedback due to massive stars and supernovae, etc. It is worth noting that some of these recipes

are very similar to the sub-grid recipes adopted in numerical simulations. These recipes are either

derived analytically from first principle or empirically from observations or simulated results. The

use of these recipes allows the SAMs to simultaneously track the effects of a wide variety of baryonic

processes that operate across a vast range of scales and provide predictions for a wide range of

physical properties, all at a relatively low computational cost. Given the great flexibility of the

SAM and the high level of control we have over the model components, it is also a very handy tool

for exploring how different assumptions may impact the outcomes.

The work presented in this dissertation is based on the foundation of the Santa Cruz semi-

analytic models of galaxy formation that was first presented in the dissertation work by Somerville

(1997). Since the debut of the modelling framework, it has undergone a few major modifications

and improvements to better reflect the findings from latest observations and theory studies. Some

examples are the recently implemented recipes for multiphase gas partitioning, based on numerical

simulations, and an H2-based star formation recipe, based on nearby galaxy observations (Popping

et al. 2014; Somerville et al. 2015). It has been shown to be one of the most comprehensive, well-

established galaxy formation models currently available.

The technical details of the modelling framework for galaxy formation used in this work are

described in full in Section 2.2. Additional model components are described in the respective sections

where relevant (Section 3.2, 4.2, and 5.2.1). It is worth noting that both semi-analytic and numerical

simulation approaches required the use of ‘tunable’ parameters that are need to be calibrated using

observations. The calibration of the free parameters is given in Appendix B.

1.5.1 Merger Tree Construction

The SAM relies on prior knowledge of the merger histories of dark matter halos, commonly referred

to as ‘merger trees’, which can either be extracted from numerical simulations or constructed using

a semi-analytic approach. Based on our understanding of gravitation and how dark matter halos

emerge and collapse into bound, virialized structures in a ΛCDM Universe, it is possible to summa-

rize these behaviours in an empirical, statistical sense with a set of mathematical formalism. The
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Extended Press-Schechter formalism lays down the fundamental statistical prescriptions for structure

formation and growth in a hierarchical Universe (Press & Schechter 1974; Bond et al. 1991; Bower

1991; Sheth et al. 2001; Sheth & Tormen 2002), which provides the necessary mathematical frame-

work for the construction of dark matter halo merger trees (Lacey & Cole 1993, 1994; Somerville &

Primack 1999; Cole et al. 2000; Parkinson et al. 2008; Zhang et al. 2008). These algorithms are able

to create a large number of Monte Carlo realizations of merger trees, while requiring a small fraction

of computational resources needed for a typical cosmological-scale hydrodynamic simulations.

The merger tree algorithm used in this work is based on the method presented in Somerville &

Kolatt (1999) with modification documented in Somerville et al. (2008). We note that developing

such an algorithm is highly non-trivial as a model that seems to perform well at low redshifts does not

guarantee good performance at higher redshifts. Among the many methods explored in Somerville &

Kolatt (1999), the N -Branch Tree Method with accretion had been shown to be the most successful,

practical solution. Here we provide a concise summary of the algorithm.

For a given halo with mass M0 at redshift z0, also referred to as the ‘root halo’, the masses of its

‘progenitor halos’, M , at an earlier time z > z0 can be drawn from the mass-weighted probability

distribution (reproduced from Lacey & Cole (1993) in the notation of Somerville & Kolatt (1999))

P (∆S,∆ω)d∆S =
1√
2π

∆ω

(∆S)3/2
exp

[
− (∆ω)2

2∆S

]
d∆S, (1.1)

where S ≡ σ2(M) is the mass variable and ω ≡ δc(t) is the time variable. These quantities are

defined to work naturally with a smoothed Gaussian density field that grows linearly over time.

This conditional probability effectively represents the distribution of progenitor number and mass

dictated by a given cosmological matter density and mass variance. By iterating the process of

drawing progenitors from the distribution, one can construct a probable trajectory for a halo’s past

merger history.

For a predefined resolution mass Mres, if the randomly drawn M > Mres, it is regarded as a

progenitor. Otherwise, it is regarded as accreted mass. This procedure is repeated for the unallocated

mass ∆M = M0 −M until the remainder reaches ∆M < Mres. This method allows two or more

progenitors to be identified depending on the mass of the progenitor (thusN -Branch). Each identified

progenitor will then undergo the same procedure to have their progenitors identified. This process

ends when the remainder mass is below Mres. The time-step for the process is defined by (reproduced

from Somerville & Kolatt (1999))

∆ω .

√
dS

dM
(M0)∆Mc , (1.2)
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which is chosen carefully to avoid the breakdown of the association of halos across two generations,

which occurs when the time-step is too big, or the domination by numerical noise when the step is

too small.

The outcomes of this algorithm are checked against the progenitor mass function, the number-

mass distribution of progenitors, and evolution of halo mass functions across redshifts predicted

by the Press-Schechter theory. It has been shown that these constructed trees are in statistical

agreement with results from N -body simulations. For the efficiency and flexibility of this merger

tree construction approach, we are able to cover an extremely wide range of mass and redshift in our

prediction, with a mass resolution much higher than the ones obtained from numerical simulations.

1.5.2 Model Extension for Cosmic Reionization

Some of the principles and techniques from modelling galaxies can be modified and adopted to ap-

proximate the condition of the multiphase IGM. In this work, we implemented an analytic IGM

model (see Section 5.2.2 for full descriptions) to track the overall reionization history of the inter-

galactic hydrogen based on the ionizing photon budget supplied by the predicted galaxy populations.

By doing so, we create an extended modelling pipeline that effectively bridges the gap between galaxy

formation physics and large-scale reionization history. This allows us to assess whether these pre-

dicted high-redshift galaxy populations are capable of reionizing the Universe in the time frame

required by observations.

However, given that this modelling method handles most galaxy components as bulk quantities,

it faces limitations in predicting morphological and geometrical features. Therefore, we have to make

simple assumptions for the internal structure and the spatial distribution for matter. Similarly, the

pipeline is only able to predict the global fraction of ionizing hydrogen but is not able to track the

geometry of reionization nor represent the progress in regions that deviate much from the mean

matter density (e.g. near a galaxy cluster or in a void).

1.6 Observations of the Early Universe

Direct detections of extremely distant objects serve as the basis for the study of galaxy evolution

and early history of our Universe. Over the past decades, significant efforts have been dedicated

to advancing instrumentation technologies and observing techniques, which made the construction

of the acclaimed space-based Hubble Space Telescope (HST ) possible. Since its deployment, HST

has been constantly pushing the frontier of deep space exploration. In 1995, HST carried out the

monumental Hubble Deep Field (HDF) survey, revealing a distant Universe full of galaxies that had
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never been seen before (Williams et al. 1996). In the following decades of service, HST continues to

deliver remarkable breakthroughs, reaching objects even fainter and farther with the Hubble Ultra

Deep Field (HUDF; Beckwith et al. 2006) and eXtreme Deep Field (XDF; Illingworth et al. 2013). In

addition, HST also plays an important role in large survey programs, such as the Cosmic Assembly

Near-IR Deep Extragalactic Legacy Survey (CANDELS; Grogin et al. 2011; Koekemoer et al. 2011),

which typically covers significantly larger area than HUDF-like programs. In special circumstances,

a survey can reach even fainter objects in fields that are gravitationally lensed by massive foreground

clusters (Lotz et al. 2017), as the gravitational field around these massive clusters can effectively act

as a magnifying lens by bending light from objects behind them.

Overall, HST together with ground-based observatories have found tens of thousands of galaxies,

about 2,000 of which are within the first 10% of the Universe’s history. These observations put

constraints on the number counts of objects and their UV luminosities, which can be used to infer

a number of physical properties, including star formation rate and stellar mass. However, the

detection of distant objects are currently limited to the relatively luminous objects at their time due

to instrument limitations, leaving the bulk majority of low-mass objects unconstrained. These high-

redshift, low-mass galaxies are thought to have played significant roles throughout cosmic history

and could also be analogous to the progenitors of our own Milky Way Galaxy. Nevertheless, current

theories for galaxy formation predict a wide range of possible scenarios with these undetected galaxy

populations. Uncovering these galaxy populations, as well as constraining the physical processes that

operate at these epochs, will rely on future generations of instruments.

1.7 Future Explorations with the James Webb Space Telescope

The soon-to-be-launched James Webb Space Telescope (JWST ), successor to the HST, is a large,

cryogenic, infrared space-based observatory (Gardner et al. 2006). It will be situated 1.5 million

kilometres away from the Earth in the second Lagrangian (L2) point, which is a position that

remains nearly stable relative to the Earth-Sun system while orbiting around the Sun. By keeping it

in the shadow cast by the Earth, the multilayer sunshield and cryocooler are able keep the extremely

sensitive on-board instruments to their functional temperatures (a few to a few tens of K). JWST is

also equipped with a primary mirror 6.5 meters in diameter, the largest of all space telescopes, that

gives it unprecedented light-gathering power. These design and technological advancements together

achieve sensitivity that is ∼ 100 times that of HST, empowering JWST to detect extremely distant

and faint galaxies.

One of the main scientific objectives of JWST is to constrain the nature of the sources that
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reionized the Universe. JWST will be able to efficiently census faint sources with the photomet-

ric instrument Near Infrared Camera (NIRCam). The Mid-Infrared Instrument (MIRI) and Near

Infrared Spectrograph (NIRSpec) will be able to conduct follow-up spectroscopic diagnosis for de-

tected candidates. Together these instruments enable both photometric and spectroscopic surveys

for galaxies over a wider mass and luminosity range, which also allows for the first time direct de-

tections for faint objects in the early Universe. JWST is expected to deliver high quality data that

will lead to breakthroughs in our understanding of the very early Universe.

In this work, we use the published JWST instrument specifications as an example to relate

predictions made with theoretical models to what can practically be done with observations. We

also use these results to assess the capabilities and make forecasts for this long-anticipated flagship

telescope, especially for deep-space photometric surveys. The predictions and tools provided in this

work can be used to back the scientific rationale of proposed observing programs, help optimize the

observing strategies for upcoming surveys, and facilitate physical interpretation for future obser-

vations. The predictions from the physical model are independent of any instruments and can be

easily adapted to represent other telescopes or observing programs in the future.

1.8 The Contents of this Thesis

In this dissertation, we present a wide variety of predictions for the high-redshift galaxy populations

and related cosmological observables that are expected to be detected by JWST or other future

instruments. In Chapter 2, we present distribution functions for the rest-frame UV luminosity and

observed-frame IR magnitudes in the full set of JWST NIRCam broadband filters. In Chapter 3,

we further investigate the physical properties and the scaling relations for galaxies predicted by the

same models. In Chapter 4, we implement and examine a new and crucial model component that

makes predictions for the intrinsic production rate of ionizing photons by star-forming galaxies based

on the physical properties of the predicted stellar populations. In Chapter 5, we combine our galaxy

formation model with an analytic reionization model and a parametrized treatment of the escape

fraction to create a physically motivated, source-driven pipeline to efficiently explore the effects of the

predicted galaxy populations on cosmic reionization. In Chapter 6, we provide a concise summary of

our results. All results presented in this work, including tabulated data and full object catalogues,

are made available at https://www.simonsfoundation.org/semi-analytic-forecasts-for-jwst/.
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Chapter 2

UV Luminosity Functions of High-Redshift Galaxies

In anticipation of the upcoming deployment of the James Webb Space Telescope (JWST ), we present

high-redshift predictions by the well-established Santa Cruz semi-analytic model. We update the

models by re-calibrating them after adopting cosmological parameters consistent with recent con-

straints from Planck. We provide predictions for rest-frame UV luminosity functions for galaxy

populations over a wide range of MUV from ∼ −6 to ∼ −24 between z = 4–10. In addition, we

present the corresponding predictions for observed-frame galaxy number counts in different redshift

bins in the full set of NIRCam filters. We provide predictions of the quantitative effect on these

observables of varying the physical recipes implemented in the models, such as the molecular gas

depletion time (star formation efficiency) scalings or the scalings of outflow rates driven by stars and

supernovae with galaxy circular velocity. Based on these results, we discuss what may be learned

about the physical processes that shape galaxy formation from JWST observations of galaxy number

densities at different intrinsic luminosities.

This chapter is reproduced from published work Semi-analytic forecasts for JWST – I. UV

luminosity functions at z = 4–10 (Yung et al. 2019. MNRAS, 483, 2983).

2.1 Introduction

The soon-to-be-launched James Webb Space Telescope (JWST ) will possess the unprecedented in-

frared sensitivity and spatial resolution required for detecting faint, distant galaxies that are ex-

tremely difficult or impossible to detect with any current facilities. These observations will provide

significant insights into the statistical properties of the galaxy population near cosmic dawn. This is

of great interest for determining whether the physical processes that shape galaxy formation are very

different in the early universe from locally, as well as for constraining which objects are responsible

for reionizing the Universe.

Hubble Space Telescope (HST ) has detected nearly 2000 galaxy candidates at high redshifts

(z ∼ 4–10) from both blank and gravitationally lensed fields (Koekemoer et al. 2013; Lotz et al.

2017). Additionally, brighter objects have also been discovered with ground-based facilities, such as
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the United Kingdom Infra-Red Telescope (UKIRT) and the Visible and Infrared Survey Telescope

for Astronomy (VISTA) (McLure et al. 2009; Bowler et al. 2015). These observations have provided

constraints on the space density of relatively bright galaxy populations up to z ∼ 10 (e.g. McLure

et al. 2009, 2013; Castellano et al. 2010; van der Burg et al. 2010; Oesch et al. 2013, 2014, 2018;

Schenker et al. 2013; Tilvi et al. 2013; Bowler et al. 2014, 2015; Bouwens et al. 2014a, 2015b, 2016b,

2017; Schmidt et al. 2014; Atek et al. 2015; McLeod et al. 2015, 2016; Finkelstein et al. 2015a; Liver-

more et al. 2017; Ishigaki et al. 2018). However, the constraints on the faintest populations currently

rely solely on fields that are lensed by massive foreground galaxy clusters, and the corrections for

magnification are quite uncertain (e.g. Kawamata et al. 2016; Bouwens et al. 2017; Priewe et al.

2017). JWST will probe much deeper down the luminosity function in unlensed fields, as well as

providing more secure redshift measurements for high-z candidates that are currently selected by

the Lyman-break technique. Many members of the community are currently engaged in planning

the optimal strategies to take advantage of the limited lifetime of JWST to achieve these break-

throughs in our understanding of the very early Universe. Theoretical predictions may be able to aid

in designing the observing strategy and trade-offs in imaging area, depth, and wavelength coverage.

Perhaps more importantly, it is critical to assess the uncertainties on current theoretical predictions

and the plausible range in galaxy properties at these extreme redshifts.

With the cosmological parameters that govern early structure formation fairly well constrained by

experiments such as the Wilkinson Microwave Anisotropy Probe (WMAP; Spergel et al. 2003, 2007;

Komatsu et al. 2009, 2011; Hinshaw et al. 2013) and Planck satellite (Planck Collaboration 2014,

2016a), combined with other constraints from Baryon Acoustic Oscillations, Supernovae, and weak

lensing (March et al. 2011; Aubourg et al. 2015; Hildebrandt et al. 2017), the major uncertainties in

forecasting the abundance of galaxies in the early Universe arise from our lack of a rigorous theory

for how dense, cold molecular clouds form, how stars form within these clouds, and how thermal

energy, momentum, and radiation from stars and supernovae affect the subsequent efficiency of star

formation (‘stellar feedback’; see McKee & Ostriker (2007), Somerville & Davé (2015, hereafter

SD15), and Naab & Ostriker (2017, hereafter NO17)). Although feedback from radiation and jets

produced by accretion onto supermassive black holes is likely to be critical for regulating galaxy

formation in the lower redshift Universe (SD15 and references therein), at very early times z & 6

most galaxies probably have not had time to form massive black holes in their nuclei, so it is likely

(although not certain), that this form of feedback is sub-dominant at these epochs.

Some theorists have suggested that star formation remains very efficient out to very high redshifts

(e.g. Behroozi & Silk 2015), while others have suggested that the low metallicity environments will

make it difficult to form molecular hydrogen and lead to inefficient star formation (e.g. Krumholz
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& Dekel 2012). The efficiency of star formation in low-mass halos at early times is also critical to

determining which objects reionized the Universe, and how reionization proceeded in space and time.

Numerous studies have shown that the already detected galaxy population is likely insufficient to

reionize the Universe by z ∼ 6–10 as required by observations (Finkelstein et al. 2015a; Robertson

et al. 2015), and it is generally assumed that the shortfall in the ionizing photon budget is made up

by faint galaxies that form in low-mass halos (Bouwens et al. 2012; Kuhlen & Faucher-Giguère 2012;

Atek et al. 2015; Gnedin 2016; Anderson et al. 2017). Many published theoretical predictions for

reionization assume a fixed efficiency for converting baryons into stars in halos (Vogelsberger et al.

2013; Hopkins et al. 2014; Mutch et al. 2016). However, it is known that in the very nearby Universe,

star formation is extremely inefficient in low-mass halos, leading to questions about whether the local

and high redshift observations are in tension.

Computational methods have long been used in modelling the formation and evolution of galaxies.

However, given that these processes operate over a vast range of scales, both spatially and temporally,

modelling galaxy formation in a cosmological context remains one of the greatest challenges in

astrophysics today (SD15). One possible approach to predicting galaxy properties at high redshift

is to constrain the relationship between galaxy and dark matter halo properties at lower redshift,

and then assume that these relationships hold out to higher redshift (e.g. Behroozi & Silk 2015;

Mason et al. 2015; Furlanetto et al. 2017). Another is to implement physical recipes for the key

processes that are thought to shape galaxy formation (e.g. gas accretion and cooling, star formation

and stellar feedback, chemical enrichment, black hole formation and feedback) within a cosmological

framework (see SD15, NO17 for a recent review). These physical recipes may be implemented within

numerical simulations, which attempt to explicitly follow the equations of gravity, hydrodynamics,

and thermodynamics for particles or grid cells (Springel et al. 2001; Bryan & Norman 1997, 1999).

However, current cosmological simulations are unable to directly resolve the multiphase structure

of the interstellar medium, the formation and evolution of individual stars and supermassive black

hole (SMBH), or their interaction with their surroundings. Thus, ‘sub-grid’ recipes must be used

to represent these processes on scales below those that can be explicitly resolved in the simulations.

In most current numerical simulations, these sub-grid recipes are generally phenomenological and

contain free parameters that must be calibrated to match global galaxy observations (see discussion

in SD15). Due to the high computational expense, rather limited dynamic range can be achieved

with these techniques, and the ability to explore different sub-grid recipes and parameter values is

also limited.

An alternative is semi-analytic simulations, which apply simplified recipes for these same physical
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processes within dark-matter halo ‘merger trees’ either extracted from dissipationless N -body sim-

ulations or created using semi-analytic Monte Carlo techniques. Despite the absence of a spatially

defined ‘grid’ in semi-analytic models (SAMs), the essence of using phenomenological or physically

driven recipes to model galaxies is very similar to the motivation of sub-grid recipes in conventional

numerical simulations. One way to view SAMs is as, essentially, a book-keeping scheme that tracks

the movement of mass between different reservoirs, as gas accretes from the diffuse intergalactic

medium (IGM) into galactic halos, flows from halos into the interstellar medium (ISM) of galaxies,

is converted from ISM into stars, and potentially is ejected from the ISM back into the hot diffuse

galactic halo or back out into the IGM. In addition to gas and stars, heavy elements can also be

tracked as they are produced by stars and circulate through the cosmic baryon cycle. Like the nu-

merical simulations, the physical recipes in SAMs are phenomenological, and contain free parameters

that must be calibrated to global galaxy observations.

This method has been widely used to explore a very broad range of galaxy properties (White &

Frenk 1991; Kauffmann et al. 1993; Cole et al. 1994; Somerville & Primack 1999; Croton et al. 2006;

Mutch et al. 2016) and it has shown that the predictions for the statistical properties of galaxies

obtained using these methods are in very good agreement with those from numerical simulations

(SD15). Due to the much greater computational efficiency and flexibility of these methods, however,

they provide several advantages over the numerical approach, namely by allowing researchers to

explore a broader range of parameter space and different physical recipes. Moreover, SAMs are also

able to span a larger dynamical range in dark matter halo mass, from the smallest halos that are

believed to be able to form stars to the most massive and rare objects.

Recently, many other groups have made theoretical predictions for high-z JWST observations

using numerical (e.g. Barrow et al. 2017), phenomenological(e.g. Williams et al. 2018), and semi-

analytic (e.g. Cowley et al. 2018) methods. These works collectively probe a broad range of aspects,

including the physical and photometric properties of high-z galaxies (Cowley et al. 2018), population

synthesis and synthetic spectra (Barrow et al. 2017; Volonteri et al. 2017), and the impact of broad-

band filter choice on estimating photometric redshifts and on recovering their physical properties

from observations (Bisigello et al. 2016, 2017). Despite the great interest in using JWST to uncover

the physical nature and the assembly histories of high-z galaxies, however, only a handful of studies

have systematically varied the underlying physics or model parameters in a controlled way within

the same modelling framework. We find that these kinds of predictions will be quite informative for

the interpretation of JWST observations.

In this chapter, we use the well-established Santa Cruz SAM, which has been shown to success-

fully reproduce key galaxy observations at lower redshifts (z . 6), to make predictions for galaxy
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populations at intermediate to high redshifts (z = 4–10). Importantly, we make use of the Santa Cruz

SAM version that tracks multiple phases of gas in the ISM (atomic, molecular, and ionized) using a

suite of recipes based on empirical considerations or predictions from detailed numerical simulations

containing treatments of molecular chemistry and radiative transfer (Popping et al. 2014, hereafter

PST14; Somerville et al. 2015, hereafter SPT15). Our fiducial model is based on the empirically

grounded assumptions that stars form in environments that are dominated by molecular gas, and

that the formation of molecular gas depends on the gas surface density, metallicity, and the local

UV radiation field. However, we also explore how sensitive our predictions at ultra-high redshift

are to our recipes for star formation and stellar feedback. In this chapter, we focus on first-order,

directly observable quantities, namely one-point distribution functions for rest-frame UV luminosity

and observed-frame magnitudes in JWST NIRCam filters. In the rest of this thesis, we will explore

physical properties of galaxies such as stellar masses, molecular gas content, metallicities, and dark

matter halo masses, and will also make direct predictions for the implications for reionization.

The key components of this chapter are summarized as follows: the basic elements of the Santa

Cruz SAM used in this work are summarized in Section 2.2. We then present the rest-frame UV

LFs in Section 2.3 and counts in observed JWST filters in Section 2.4. We discuss our results in

Section 2.5, and summarize and conclude in Section 2.6.

2.2 The Semi-Analytic Framework

The SAM used in this study is the same one outlined in Somerville et al. (2015, hereafter SPT15).

Hence, we will not describe the model in full here and we refer the reader to the following works for

full detail for the modelling framework developed by the Santa Cruz group: Somerville & Primack

(1999); Somerville, Primack, & Faber (2001); Somerville et al. (2008, 2012); PST14 and SPT15.

Throughout this work, we adopt cosmological parameters that are consistent with the ones reported

by Planck Collaboration in 2015: Ωm = 0.308, ΩΛ = 0.692, H0 = 67.8 km s−1Mpc−1, σ8 = 0.831,

and ns = 0.9665.

Dark matter halo merger histories, more commonly known as ‘merger trees’, are the backbone

of the semi-analytic modelling framework. These merger trees can either be extracted from dissi-

pationless N -body simulations or constructed using semi-analytic methods based on the Extended

Press-Schechter (EPS) formalism (Press & Schechter 1974; Lacey & Cole 1993). In this work, in

order to maximize the dynamic range and computational efficiency, we adopt the EPS-based method

of Somerville & Kolatt (1999) with updates as described in Somerville et al. (2008, hereafter S08).

We have also run our models using halo merger trees from the Bolshoi Planck N -body simulations,
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and find very similar results over the dynamical range spanned by that simulation. However, in

addition to having inadequate mass resolution to resolve the low-mass halos that host the faint

galaxy population that will be detectable by JWST, Bolshoi Planck has only 29 snapshots stored

above z = 6, which is inadequate to construct accurate merger histories for z > 6 galaxies. In

addition, robust identification of halos at high redshift becomes tricky. Friends-of-friends methods,

such as used in e.g. the BlueTides simulation (Feng et al. 2015) and the DRAGONS simulation

suite (Poole et al. 2016), have been shown to artificially link together distinct halos at high redshift

(Klypin et al. 2011). Although we are in the process of generating a new suite of simulations, halo

catalogs, and merger trees that are carefully designed to model faint galaxies in the high-redshift

Universe (Yung et al. in prep), we are confident that the EPS-based approach has sufficient accuracy

for the somewhat qualitative exploration that we present here.

At each output redshift, we set up a grid of one hundred root halos with masses spanning the

range in virial velocity Vvir ≈ 20− 500 km s−1, which covers halos ranging from close to the atomic

cooling limit to the rarest objects expected to be detected in high-redshift surveys. We then weight

each of these root halos by the expected abundance of dark matter halos of the given mass at the

respective redshift, using the fitting functions provided in Rodŕıguez-Puebla et al. (2016) based on

results from the MultiDark suite (Klypin et al. 2016) of N -body simulations. Although this involves

extrapolating the fitting functions to lower halo masses and higher redshifts than those that are

directly probed by the MultiDark Suite, we have validated these results using an unpublished suite

of very high resolution, small box simulations kindly made available to us by Eli Visbal (Visbal et al.

2018). The assembly history is then traced down to a minimum progenitor mass of Mres, which we

refer to as the mass resolution of our simulations; here we set Mres = 1010M� or 1/100th of the

root halo mass, whichever is smaller. For each root halo in the grid, one hundred Monte Carlo

realizations of the merger histories are generated.

After constructing these semi-analytic merger trees, our SAM implements a suite of fairly stan-

dard recipes such as cosmological accretion and cooling, star formation and stellar-driven winds,

chemical evolution, black hole feedback, and mergers. We again refer readers to S08 and SPT15 for

full details.

2.2.1 Gas Partitioning and Star Formation

In the most recent iteration of the Santa Cruz SAM (PST14, SPT15), discs are subdivided into

annuli and the cold gas in each annulus is partitioned into an atomic (HI), ionized (HII), and

molecular (H2) component. In PST14 and SPT15, several different recipes for gas partitioning are

investigated, including an empirical recipe in which the molecular fraction is determined by the disc
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mid-plane pressure, and several variants of recipes in which the molecular fraction is determined

by the gas surface density, metallicity, and the intensity of the local UV radiation field. Somewhat

surprisingly, these studies found that most results were not very sensitive to which gas partitioning

recipe was used. However, they did find that the recipe based on the prescription of Krumholz

et al. (2009), in which the dependence on the UV background was not taken into account, failed

to reproduce sufficient numbers of low-mass galaxies and was disfavored. Overall, the metallicity

and UV-background dependent recipe based on simulations by Gnedin & Kravtsov (2011, hereafter

GK) was found to perform the best, and was adopted as the ‘fiducial’ model. As we are concerned

that some assumptions contained in the empirical pressure-based model may no longer hold at high

redshift, we do not explore it here.

The usual picture is that the first stars form out of ‘primordial’ molecular hydrogen, form Pop

III stars, and pollute early halos with metals (Frebel et al. 2009; Wise et al. 2012). In the current

work we do not model the formation of metal-free Population III stars explicitly. Instead (as in

previous works), we set a metallicity floor of Zpre-enrich to represent pre-enrichment from Pop III

stars. We adopt Zpre-enrich = 10−3Z� (Bromm et al. 1999). In SPT15, we show that our results do

not depend sensitively on the choice of this value.

Many earlier generations of SAMs adopt what we refer to as the ‘classic’ Kennicutt-Schmidt

(KS) relation to model the rate at which cold gas is converted into stars. In this approach, the star

formation rate (SFR) is assumed to scale as a power of the total (cold; HI+H2) gas density (Schmidt

1959, 1963; Kennicutt 1989, 1998), where in some implementations (as in S08), only gas above a fixed

surface density is assumed to participate in star formation. This may approximate to first order the

transition from predominantly molecular to predominantly atomic gas that the above multiphase

modelling attempts to capture, but there is observational evidence that this critical surface density

depends on gas metallicity (Wilson 1995; Arimoto et al. 1996; Bolatto et al. 2008, 2011; Genzel et al.

2010; Leroy et al. 2011).

A more recent generation of SAMs adopts a H2-based star formation recipe (Lagos et al. 2011; Fu

et al. 2012, 2013; Somerville et al. 2015; Xie et al. 2017). Observations of nearby spirals have shown

that the SFR surface density is nearly linearly proportional to the molecular hydrogen surface density

(Wong & Blitz 2002; Bigiel et al. 2008, 2011; Leroy et al. 2011). However, these observations only

probe H2 surface densities up to about 50-80 M�pc−2. Mounting evidence from both observation

and theory suggests that the slope of the SF relation may steepen to ∼ 2 at higher surface densities

(Sharon et al. 2013; Rawle et al. 2014; Hodge et al. 2015; Tacconi et al. 2018). We have explored both

a ‘single slope’ SF relation (which we refer to as Big1), in which the molecular gas depletion time is

effectively invariant with both galaxy properties and redshift, and a ‘two slope’ relation (referred to
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as Big2), in which the molecular gas depletion time decreases (and star formation efficiency increases)

with increasing H2 surface density. The surface density of SFR is given by the expression:

ΣSFR =
ASF

τ∗,0

(
ΣH2

10M�pc−2

)(
1 +

ΣH2

ΣH2,crit

)NSF

, (2.1)

where the critical H2 surface density ΣH2,crit = 70 M�pc−2, ASF is the SF relation normalisation,

and τ∗,0 is a tunable normalisation parameter. We adopt a value of ASF from observational determi-

nations of the relevant Kennicutt-Schmidt relation (as given in Table 2.1), and allow τ∗,0 to vary by

about a factor of 50% up or down, reflecting the observational uncertainty in the true normalisation

of the Kennicutt-Schmidt relation (although here we find that τ∗,0 = 1 produces good results). In

SPT15, we found that although at z ∼ 0, the predictions for galaxy properties were not very sensitive

to which SF relation was adopted, an increasingly large discrepancy was seen at higher redshifts,

up to the highest redshifts z ∼ 6 explored in that paper. Accordingly, in this work we explore the

implications of adopting these different SF recipes at even higher redshifts. The model variants are

summarized in Table 2.1.

Table 2.1 Summary of the gas partitioning (GP) and star formation (SF) model variants explored
in this work, where NSF is the SF relation slope. GKBig2 is our fiducial model.

Model GP recipe SF law NSF ASF

KS None KS 1.4 1.1× 10−4

GKBig1 GK Big1 1.0 4.0× 10−3

GKBig2 (Fid.) GK Big2 2.0 4.0× 10−3

2.2.2 Photoionization Feedback

Gas accretion and, ultimately, star formation activity in a galaxy can be reduced in the presence of a

strong photoionizing background (Efstathiou 1992; Thoul & Weinberg 1996; Quinn et al. 1996); this

effect is sometimes known as photoionization ‘squelching’ (Somerville 2002). Studies have shown that

this effect is especially effective in low-mass halos, and it is thought to be significant in suppressing

the collapse of gas into small mass halos and preventing the overproduction of dwarf galaxies in the

local universe (Bullock et al. 2000; Benson et al. 2002b,a; Somerville 2002).

As in our previously published models, we adopt the approach proposed by Gnedin (2000) to

model photoionization squelching, in which the fraction of baryons that can collapse into halos of a

given mass Mhalo at redshift z in the presence of a photoionizing background is computed using the
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following function:

fb(Mhalo, z) = 〈fb〉

{
1 + (2α/3 − 1)

[
Mhalo

Mchar(z)

]−α}−3/α

, (2.2)

where 〈fb〉 is the cosmic mean baryon fraction, and Mchar(z) is the mass at which halos retain half

of the universal baryon fraction. In the present work, we adopt the redshift dependent characteristic

mass obtained by Okamoto et al. (2008) from hydrodynamic simulations including a uniform meta-

galactic background (based on tabulated results kindly provided to us by T. Okamoto), and adopt

α = 2 as favored by those authors. We switch squelching on at a fixed redshift zsquelch = 8, which is

consistent with the redshift at which instantaneous reionization occurred as reported by the Planck

Collaboration (2016b).

The characteristic mass Mchar that we adopt ranges from a value of 1.4 × 107 M� just after

reionization to a value of ∼ 9.3× 109 M� (corresponding to a virial velocity of ∼ 25 km/s) at z = 0.

Note that these currently favored values of the characteristic mass (Hoeft et al. 2006; Okamoto et al.

2008) are significantly smaller than the values obtained by Gnedin (2000), and used in previous

versions of the Santa Cruz SAM.

Our treatment of squelching is rather crude and of course is not self-consistent. Some previous

semi-analytic studies have attempted to model photoionization squelching in a more self-consistent

manner, based on the predicted UV emissivity of the galaxy population that emerges in the SAM

(Benson et al. 2002b,a), and some numerical simulations have also included photoionization squelch-

ing self-consistently (Finlator et al. 2012; Gnedin & Kaurov 2014). However, these studies have

found that the self-consistent modelling of squelching compared with the simpler approach adopted

here does not have a significant effect on predictions for observable galaxy properties or reionization

(Mutch et al. 2016). Indeed, as we show in Fig. 2.3, the Okamoto et al. filtering mass is so low that

squelching has an almost undetectable effect on any observable galaxy properties at the redshifts

that we investigate here. This is in agreement with the result found by Kim et al. (2013).

2.2.3 Black Hole Growth and Feedback

Top-level halos are seeded with black holes with an initial mass of 104M�. Black hole accretion and

growth may occur in two modes. Mergers and disc instabilities trigger relatively rapid, radiatively

efficient accretion (see S08 and Hirschmann et al. (2012) for details). In addition, a less rapid,

radiatively inefficient mode of fueling is associated with Bondi accretion from the hot halo (again,

see S08 for details). Two modes of AGN feedback are also implemented, associated with each

accretion mode. The radiatively efficient mode drives winds that eject material from the cold gas



21

reservoir and drive it out of the halo. The radiatively inefficient mode is associated with relativistic

jets that are assumed to heat the hot halo gas, reducing or even quenching cooling. The two models

of AGN feedback have associated parameters, εwind (see Eqn. 17 of S08) and κAGN (equivalent to

κradio in Eqn. 20 of S08). The parameter εwind = 0.5 is set based on results from hydrodynamic

simulations of binary galaxy mergers (see S08). The value of the parameter controlling the ‘jet

mode’ feedback (κAGN) is adjusted to fit constraints on the relationship between stellar mass and

halo mass from abundance matching, and the stellar mass function derived from observations (see

Appendix B).

In practice, we find that the implementation of AGN feedback currently included in our model

has no noticeable impact on the predictions presented in this chapter – our results remain un-

changed when we switch off both modes of AGN feedback. However, AGN feedback does impact

the calibration of the model shown in the Appendix, and so we describe it here for completeness.

2.2.4 Stellar Feedback

Star formation and the baryon fraction in galaxies is thought to be regulated by large-scale outflows

driven by massive stars and supernova explosions. The details of how these winds are driven and

what determines their efficiency are poorly understood, and cosmological simulations are in general

unable to drive these outflows directly without adopting various ‘tricks’ (see SD15 for a discussion).

A frequently adopted assumption, loosely motivated by the expectations of momentum-conserving

or energy-conserving winds (see SD15) is that the mass outflow rate scales with a power of the galaxy

potential well depth, represented by the internal velocity dispersion or rotation velocity, times the

star formation rate:

ṁout = εSN

(
V0

Vc

)αrh

ṁ∗, (2.3)

where ṁ∗ is the star formation rate, Vc is the circular velocity of the galaxy, normalised by the

arbitrary constant V0 = 200 km s−1, and εSN and αrh are tunable free parameters.

Variants of this recipe are almost universal in semi-analytic models, and several numerical cosmo-

logical hydrodynamic simulations effectively adopt it by administering ‘kicks’ to particles according

to these or similar scaling relations (Oppenheimer & Davé 2006; Vogelsberger et al. 2014; Davé

et al. 2016). Intriguingly, several simulations in which winds are driven by attempting to implement

stellar feedback ‘directly’ also find that the wind mass loading factors η ≡ ṁout/ṁ∗ follow this type

of scaling. Christensen et al. (2016) find that their zoom-in simulations with the GASOLINE code

and a ‘blastwave’ approach to driving winds yield αrh ∼ 2, and Muratov et al. (2015) find that at
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high redshift η depends strongly on Vc in the FIRE simulations, where αrh & 2 for low-Vc halos and

αrh ∼ 1 at higher Vc.

2.2.5 Stellar Populations and Dust Attenuation

For each galaxy, we store a two-dimensional grid recording the mass of stars formed with a given age

and metallicity. Unattenuated synthetic spectral energy distributions (SED) are created for each

galaxy by convolving this grid with simple stellar population models (SSP). Here we use the SSP

models of Bruzual & Charlot (2003) with the Padova1994 (Bertelli et al. 1994) isochrones and a

Chabrier (2003b) initial mass function (IMF).

We include dust attenuation using a simple approach similar to the one presented in Somerville

et al. (2012, hereafter S12). We assume that the face-on extinction optical depth in the V -band is

given by

τV,0 = τdust,0 Zcoldmcold/(rgas)
2, (2.4)

where the optical depth normalisation of dust, τdust,0, is a free parameter, Zcold is the metallicity of

the cold gas, mcold is the mass of the cold gas in the disc, and rgas is the radius of the cold gas disc.

We then calculate the attenuation in the V -band for a given inclination using a ‘slab’ model, which

assumes that the radiation sources (stars) are embedded in a slab of dust:

AV = −2.5 log10

[
1− exp[−τV,0/ cos(i)]

τV,0/ cos(i)

]
. (2.5)

Here, i is the inclination, which is chosen randomly for each galaxy. We then translated this to the

attenuation in the UV-band (1600Å), AUV, assuming a fixed attenuation curve (Calzetti et al. 2000).

We experimented with using the two-component Charlot & Fall (2000)-type model (as implemented

in S12), in which an age-dependent attenuation curve is effectively adopted by assuming that young

stars are enshrouded in higher optical-depth ‘birth clouds’. However, we found that this type of

model predicted very large amounts of extinction in high redshift galaxies, which was incompatible

with observations.

Several previous works have found that simple models for dust attenuation, in which the dust

extinction optical depth scales with gas metallicity and column density with a fixed normalisation,

overpredict the amount of attenuation in high redshift galaxies (S12; Wilkins et al. 2013; Reddy

et al. 2015, 2018; Whitaker et al. 2017). One possible interpretation is that the dust-to-metal ratio

is not constant, and depends on galaxy properties that effectively cause it to change with cosmic

time. Indeed, recent observations have shown that the dust-to-metal ratio differs significantly across
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different galaxy mass scales (Rémy-Ruyer et al. 2014), and models that attempt to self-consistently

track the production and destruction of dust by various channels find that the dust-to-metal ratio

may change over cosmic time (Popping et al. 2017b). We plan to develop more detailed and physical

models of dust attenuation in high redshift galaxies in future work (Popping et al. in prep), but

for the present work we adopt a very simple and ad hoc approach in which we allow the dust

normalisation parameter τdust,0 to be a function of redshift (S12, see also: Inoue 2003; Guo & White

2009; Lo Faro et al. 2009; Santini et al. 2014; Wiseman et al. 2017). We tune τdust,0 by hand and find

the values summarized in Table 2.2 provide a good match to available observational constraints on

the bright-end of the UV LFs at z = 4–10. This is then implemented in our model with a functional

form τdust,0 = exp(az + b) with parameter values a = −0.31 and b = −2.726. A comparison of

the values adopted in this work and in S12 can be found in Fig. 2.1. Note that the cosmological

parameters and SAM ingredients and parameters adopted in S12 are a little bit different than the

ones adopted in this work, which is why the values do not match up perfectly in the redshift range

of overlap.
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Figure 2.1 Comparison of the τdust,0 values adopted in this work and in S12. The blue markers show
the values tuned by hand to match observations, and the solid line is the fitting function adopted
in our model (see text).

We obtained the latest version of the published NIRCam filter response functions1 with optical

telescope element (OTE). For each galaxy, we calculate its apparent magnitude by convolving the

synthesized SED with the NIRCam filters. We also include absorption due to the intervening IGM.

The effective optical depth of the IGM along the line-of-sight, to a source at some redshift, at

wavelength λ is calculated using the expression given in Madau et al. (1996).

1https://jwst-docs.stsci.edu/display/JTI/NIRCam+Filters
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Table 2.2 Values for τdust,0 tuned by hand to match observations and fitted with the exponential
function provided in the text.

τdust,0 (10−3)

z Tuned Fitted

4 18.00 18.99
5 14.00 13.93
6 13.00 10.22
7 8.00 7.50
8 4.00 5.50
9 4.00 4.04
10 1.00 2.96

2.2.6 Chemical Evolution

The production of metals is modelled using a simple approach that is commonly adopted in semi-

analytic models (see e.g. Somerville & Primack 1999; Cole et al. 2000; De Lucia et al. 2004). In a

given time-step where a parcel of new stars dm∗ is created, a mass of metals dMZ = y dm∗ is also

formed, where y is the ‘effective’ chemical yield, or mean mass of metals produced per mass of stars.

Here we assume that the chemical yield is constant. In principle, y could be obtained from stellar

evolution models, but these model yields are uncertain by a factor of ∼ 2, and the single-element

instantaneous recycling approach to chemical evolution that we are using here is somewhat crude,

so we instead treat the chemical yield as a free parameter while restricting it to an expected range.

Once created, metals are assumed to be mixed instantaneously with the cold gas in the disc. We

track the mean metallicity of the cold gas Zcold, and new star parcels created out of this gas are

assumed to have the same stellar metallicity Z∗ as the mean metallicity of the cold gas in that

time-step. Supernova feedback ejects metals from the disc, along with cold gas. These metals are

either mixed with the hot gas in the halo, or ejected from the halo into the ‘diffuse’ Intergalactic

Medium (IGM), in the same proportion as the reheated cold gas(see S08). The ejected metals in

the ‘diffuse gas’ reservoir are also reaccreted into the halo in the same manner as the gas.

Throughout this chapter, the yield y and all metallicities are given in solar units, which we

take to be Z� = 0.02. Although this formally represents the total metallicity, we note that as we

track only the enrichment associated with Type II supernovae, our metallicity estimates probably

correspond more closely with α-type elements. Note that because enriched gas may be ejected from

the halo, and primordial gas is constantly being accreted by the halo, this approach is not equivalent

to a standard ‘closed box’ model of chemical evolution.
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2.2.7 Calibrating the free parameters

We calibrate our models to a standard set of z ∼ 0 observables, and then leave all free parameters

(except the dust normalisation, as noted above) fixed. Relative to the WMAP5 cosmology used

in S08 and SPT15, the Planck cosmology adopted here results in significantly different predictions

for the abundance of dark matter halos as a function of cosmic time (see Rodŕıguez-Puebla et al.

2016), and as a result the free parameters of the SAM need to be re-calibrated. We show the

calibration quantities, along with some other diagnostic quantities that are not used in calibration,

in Appendix B. The details of the calibration procedure are also presented in the Appendix. The

model parameters used throughout this work are summarized in Table 2.3.

Table 2.3 A table for the model parameters that changed after re-calibration for the Planck
cosmology. We also show the values used in SPT15, where cosmological parameters from WMAP5
were adopted, to illustrate by how much these parameters have changed. For a complete list of
model parameters, see Table 1 in SPT15.

Parameter Description This work SPT15

εSN SN feedback efficiency 1.7 1.5
αrh SN feedback slope 2.8 2.2
τ∗,0 SF timescale normalisation 1.0 1.0
y Chemical yield (in solar units) 2.0 1.6
κAGN Radio mode AGN feedback 3.0× 10−3 3.8× 10−3

2.3 Rest-Frame UV Luminosity Functions

Perhaps the most basic statistical characterization of the galaxy population is the one-point distribu-

tion function of an observable quantity, such as luminosity (commonly referred to as the ‘luminosity

function’ (LF)). The change of the LF in different redshift bins constrains the evolution of the

galaxy population over cosmic time. In this section, we present the UV LFs predicted by our SAM

at z = 4− 10. With the large dynamic range of dark matter halo masses probed by our models, our

predictions cover a wide UV luminosity range between MUV ∼ −6 to −24. All binned luminosity

functions presented in this work are available for download online2. Throughout this work we use a

tophat filter of width of 400Å centred at 1600Å to calculate the rest-frame UV luminosity.

In Fig. 2.2, we show the distribution functions for the intrinsic rest-frame UV luminosities,

without accounting for the effect of dust attenuation. Our results show that the choice of star

formation recipe can significantly alter the number density of bright galaxies. Recall that in the

GK-Big1 model, the star formation efficiency (molecular gas depletion timescale) is effectively fixed

2https://www.simonsfoundation.org/semi-analytic-forecasts-for-jwst/
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at a constant value. Keeping in mind that the H2 depletion timescale in nearby spirals is 1–2 Gyr

(Bigiel et al. 2008; Leroy et al. 2008), it is perhaps unsurprising that this becomes the limiting factor

in forming stars at times when the age of the Universe is significantly less than this. In the GK-Big2

model, the ‘steepening’ of NSF → 2 effectively leads to a higher star formation efficiency and shorter

tdep,mol in higher density gas. As galaxies are much more compact and gas rich at high redshift,

this effectively leads to higher SF efficiencies at high redshift. The super-linear dependence of the

‘classic’ Kennicutt-Schmidt SF relation (KS) goes in the same direction, but to a lesser extent, as

it assumes a slightly shallower slope NSF = 1.5. Interestingly, as already suggested in SPT15, we

find that the formation of molecular gas is not a significant limiting factor for star formation even at

these very high redshifts, in contrast to the suggestions of Krumholz & Dekel (2012). On the other

hand, the faint end of the LF is insensitive to the choice of SF model (within the limited range of

models that we have tested here). We will discuss the reasons for this in Section 2.5.

We show our results alongside with a compilation of UV LF constraints on the bright end

presented in Finkelstein (2016), which consist of both ground- and space-based observations from

McLure et al. (2009); Castellano et al. (2010); van der Burg et al. (2010); McLure et al. (2013); Oesch

et al. (2013, 2014); Schenker et al. (2013); Tilvi et al. (2013); Bowler et al. (2014, 2015); Bouwens

et al. (2015b, 2016b); Finkelstein et al. (2015a); Schmidt et al. (2014); McLeod et al. (2015, 2016).

Note that the observational UVLFs are potentially impacted by attenuation by dust in these high-z

galaxies, but dust attenuation is not included in the intrinsic model UV LF predictions shown in

Fig. 2.2. We notice that the resultant LFs from the GK-Big1 model seem to fit observations fairly

well while others overpredict the population of galaxies at z . 6 in the absence of dust. At higher

redshifts z & 9 the results from the KS and GK-Big2 models seem to in better agreement with

observations.

In Fig. 2.3, we illustrate the effects of dust attenuation and photoionization squelching by compar-

ing the outputs from our fiducial models with these effects switched on and off. The free parameter

τdust,0 in our dust recipe is calibrated to match available constraints from HST observations by

Bouwens et al. (2014a) and Finkelstein et al. (2015a). These observations along with constraints on

the faint end from the Frontier Field by Livermore et al. (2017) are presented here for comparison.

The dust model predicts that the effect of dust attenuation should be much stronger in bright,

massive galaxies given their higher fraction of cold gas and the higher metallicity therein, whilst

the effect on faint galaxies is minuscule. We fitted the UV LFs predicted by our fiducial model,

with attenuation by dust, with the Schechter function using the least-squares method, where the
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Figure 2.2 Predicted intrinsic UV LFs (without correction for dust attenuation) and their evolution
with redshift. The blue solid line shows the results of the GKBig2 (fiducial) model, the purple
dashed line shows the GKBig1 model, and the cyan dot-dashed line shows the KS model. We also
include a compilation of observational constraints from Finkelstein (2016, squares) to guide the eye.
The last panel summarizes the evolution predicted by the fiducial model.
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Schechter function is given by

φ(M) = 0.4 ln(10)φ∗10−0.4(M−M∗)(α+1)e−10−0.4(M−M∗)

(2.6)

(Schechter 1976). The best-fit Schechter parameters are presented in Table 2.4.

Table 2.4 The best-fit Schechter parameters for the UV LFs inclusive of dust attenuation from our
fiducial model between z = 4− 10.

z φ∗ [10−3 Mpc−3] M∗ [AB Mag] α
4 3.151 -20.717 -1.525
5 2.075 -20.774 -1.602
6 1.352 -20.702 -1.672
7 0.818 -20.609 -1.715
8 0.306 -20.660 -1.825
9 0.133 -20.584 -1.879
10 0.053 -20.373 -1.967

In both cases, where dust attenuation is or is not included, our results show that the demographics

of luminous galaxies seem to have evolved more rapidly than their faint counterparts. For instance,

the ‘knee’ feature in the LFs is rather modest at high redshifts but this feature quickly develops and

becomes distinct at z ∼ 7. Moreover, we show that the position of the knee evolves as a function of

redshift due to the rapidly evolving dust content. The extinction in the UV-band due to the presence

of dust is estimated based on the physical properties of individual galaxies. The UV extinction as

a function of MUV is illustrated in Fig. 2.4. The two-dimensional histograms are colour-coded

according to the conditional number density (Mpc−3) of galaxies in each bin, which is normalised

to the sum of the number density in its corresponding (vertical) rest-frame UV magnitude bin. The

50th, 16th, and 84th percentiles are marked in each panel to illustrate the statistical distribution.

We have verified that the scatter in AUV is dominated by the scatter in physical properties that are

used to calculate τV,0 (see Eqn. 2.4), whilst the randomly assigned inclination i is sub-dominant.

Our results show that even with our simple approach to modelling dust, the scatter can be quite

large.

Fig. 2.5 shows the βUV-MUV relation, where the rest-frame UV luminosity presented here includes

dust attenuation, and the photometric rest-frame UV spectral slope βUV is calculated using the

following expression

βUV =
log(fλ,FUV/fλ,NUV)

log(λFUV/λNUV)

= −0.4
(mFUV −mNUV)

log(λFUV/λNUV)
− 2

(2.7)
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Figure 2.3 Redshift evolution of the dust-attenuated UV LFs between z = 4 − 10 predicted by our
fiducial model (blue solid line). The blue dashed line shows the intrinsic UV LFs and the purple
dot-dashed line shows the UV LFs without the effect of photoionization squelching, both from the
fiducial model. We also include a compilation of observational constraints from Finkelstein (2016,
squares) (same as Fig. 2.2) to guide the eye. Addition observational constraints from Livermore
et al. (2017, circles) and Oesch et al. (2018, diamonds) are shown in z = 6, 7, 8, and 10. The last
panel summarizes the evolution of the dust-attenuated UV LFs predicted by the fiducial model.
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conditional number density of galaxies in each bin, which is normalised to the sum of the number
density (Mpc−3) in its corresponding (vertical) rest-frame UV magnitude bin.
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from Onodera et al. (2016), where λFUV and λNUV are the central wavelengths of the far- and

near-UV bands from the Galaxy Evolution Explorer (GALEX ) survey, where we adopted λFUV '

1530 Å and λNUV ' 2300 Å for our calculations. Our results are compared to the range of βUV

spanned by typical local starburst galaxies and the median values of βUV from a compilation of

observations, including GOODS-S DEEP, GOODS-S WIDE, HUDF09, and WFC3 Early Release

Science (Koekemoer et al. 2011; Grogin et al. 2011; Bouwens et al. 2010; Oesch et al. 2010; Windhorst

et al. 2011). We also compare our results to measurements reported by Dunlop et al. (2013) at z = 7–

9, Bouwens et al. (2014b) at z = 4–8, Rogers et al. (2014) at z = 5, and Wilkins et al. (2016a) at

z = 10. The predicted βUV-MUV relation is surprisingly good agreement with the observations.

In Fig. 2.6, we zoom into the bright end of the UV LFs and explore the sensitivity of the bright

end behaviour to the SF timescale τ∗,0, where larger τ∗,0 means less efficient star formation, and vice

versa. This parameter also effectively multiplies the gas consumption timescale, and therefore larger

τ∗,0 would result in higher gas fractions (again, see White et al. 2015). Here we increase or decrease

τ∗,0 from our fiducial value by a factor of 2 and find that this results in galaxy populations with

MUV & −18 mildly deviating from our fiducial model, with the strength of the deviation seeming

to scale with luminosity. Joint constraints on the gas and dust content and SFR in high redshift

galaxies from ALMA and JWST will be extremely valuable for breaking the degeneracy between

dust and star formation efficiency. With regard to the bright end, we also note that although AGN

feedback is responsible for shaping the bright end of the galaxy luminosity function in our models

at z . 2, we have checked that switching the AGN feedback on and off has no noticeable effect on

any of the results presented here.

2.3.1 The faint galaxy populations

Fig. 2.7 shows a zoomed-in figure that focuses on the faint end of the UV LFs. Note that the effect of

dust is predicted to be negligible in this regime due to the generally low metallicity in these galaxies.

The turnover in the LF near MUV ∼ −9 is not due to resolution, but corresponds to the sharp

cutoff in the atomic cooling function at 104 K (which corresponds to Vvir ' 17 km s−1). The slope

of the UV LFs remains fairly steep down to this limit. In addition to the estimates of the observed

LF from the lensed Frontier Fields, we show constraints on the LF at z = 4 − 7 from multiple

studies. Weisz et al. (2014) estimate the evolution of the faint end of UV LFs by measuring the

star formation histories of 37 Local Group galaxies out to z ∼ 5 using ‘fossil evidence’ from resolved

stellar populations. Interestingly, their estimates are a factor of ∼ 10 higher than our predictions.

The ‘fossil’ method provides a very interesting complementary approach for estimating the faint end

of the high redshift luminosity function, but currently it involves some rather uncertain corrections
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Figure 2.5 Conditional distributions of the rest-frame UV spectral slope βUV versus rest-frame UV
magnitude (with dust attenuation) in our fiducial model between z = 4–10. The green solid and
dashed lines show the 50th, 16th, and 84th percentiles. The two-dimensional histograms are colour-
coded to show the conditional number density of galaxies in each bin, which is normalised to the
sum of the number density (Mpc−3) in its corresponding (vertical) rest-frame UV magnitude bin.
Data points are βUV measurements reported by Finkelstein et al. (2012b, cyan circle), Dunlop et al.
(2013, open pink square), Bouwens et al. (2014b, red triangle), Rogers et al. (2014, yellow square),
and Wilkins et al. (2016a, pink square). The hatched gray band marks where typical local starburst
galaxies lie (Finkelstein et al. 2012b, see text for details).
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Figure 2.6 Redshift evolution of the bright end of the UV LFs between z = 4− 10 predicted by our
fiducial model with dust attenuation included (blue solid line). Black square markers represent a
compilation of observational estimates from space- and ground-based surveys presented in Finkelstein
(2016). Black diamond markers show the additional constraints at z = 10 from Oesch et al. (2018).
Red lines represent the cases where we increase or decrease τ∗,0 by a factor of 2; dashed and dot-
dashed lines are τ∗,0 = 0.5 and τ∗,0 = 2.0, respectively. The last panel summarizes the evolution of
the bright end of the dust-attenuated UV LFs predicted by the fiducial model.
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(D. Weisz, private communication). The largest uncertainties likely arise from two factors. The first

is the volumetric correction, which attempts to correct for the fact that star formation histories were

not available for all known Local Group galaxies, and for Local Group galaxies that are not currently

detected. The second issue is that deep resolved colour magnitude diagrams (that reach the oldest

main sequence turnoff) were not at the time available for many Local Group galaxies. This can

lead to a bias that yields increased SF estimates at early times (D. Weisz, private communication).

Establishing better links between high-redshift observations and those derived from Local Universe

galaxies with resolved stellar population studies is an exciting ongoing area of research, which JWST

will also help to advance.

At z ∼ 6–8, we show additional studies based on the Frontier Fields. Here we show both

the published data from Livermore et al. (2017) and the unpublished, Eddington bias-corrected

number densities for comparison (R. Livermore, private communication). Bouwens et al. (2017)

provide constraints on z ∼ 6 galaxies by reanalyzing the Frontier Field observations with a more

comprehensive treatment for the magnification and systematic uncertainties. Atek et al. (2015)

estimated constraints for LFs using a combined analysis of three lensed fields with their associated

parallel fields.

In addition to the fiducial model parameters, we explored the sensitivity of the faint-end slope

to the efficiency of stellar driven winds by comparing four additional cases of SN feedback slope

αrh = 2.0, 2.4, 3.2, and 3.6, where larger values of αrh imply a steeper dependence of the mass

loading factor η on galaxy circular velocity, so more gas is ejected from low-mass galaxies. Although

these values of αrh are not consistent with observations at z ∼ 0, we present these results as an

attempt to quantify the effects of strong stellar feedback on the low-mass galaxy populations and

to illustrate how our predictions would change if the effective scalings vary with cosmic time. The

results show that the faint end is indeed sensitive to the velocity scaling of the mass loading factor.

Higher αrh leads to stronger suppression of star formation in low-mass halos, and hence to a flattening

of the luminosity function. The adopted value of αrh also shifts the luminosity where the LF ‘turns

over’ from ∼ −8 (for the ‘strongest’) feedback to ∼ −11 (for the weakest), because αrh also affects

the slope of the relationship between luminosity (or stellar mass) and halo mass (so the luminosity

of galaxies forming in halos with mass corresponding to the atomic cooling limit is shifted up or

down). Note that varying the parameter εSN simply shifts the normalisation of the whole luminosity

function below the knee up or down, as shown in White et al. (2015).

Fig. 2.8 shows the evolution of the cumulative number density of galaxies above some rest-

frame luminosity threshold MUV,lim. First we focus on the evolution of the bright end of the UV

LFs, and present the results calculated with MUV,lim = −19. We show the bracketing cases from
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Figure 2.7 Redshift evolution of the faint end of the UV LFs between z = 4 − 10 predicted by our
fiducial model with dust attenuation included (blue solid lines). Markers represent the observational
estimates from Livermore et al. (2017) as originally published (grey circles) and with Eddington
correction (red circles), as well as an independent analysis by Bouwens et al. (2017, purple squares)
for z ∼ 6. We also include estimates from Weisz et al. (2014, black triangle) and Atek et al. (2015,
green triangle) for z ∼ 7 (see text for details). We show four additional scenarios where we vary the
parameter controlling the mass-loading of stellar driven winds, αrh = 2.8± 0.4 and ±0.8. Blue dot-
dashed lines show the cases where we let αrh = 2.4 (above) and 3.2 (below), and light blue dashed
lines show the cases where we let αrh = 2.0 (above) and 3.6 (below). The last panel summarizes the
evolution of the faint end of the dust-attenuated UV LFs predicted by the fiducial model.
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our fiducial and GK-Big1 models, which provide the most and least optimistic scenario regarding

forming luminous galaxies at high redshift. We compare our results to a compilation of studies from

observations, empirical extrapolations, and numerical hydrodynamic simulations (Mason et al. 2015;

Atek et al. 2015; Bouwens et al. 2015b; Ishigaki et al. 2018; Wilkins et al. 2017). This comparison

shows that results from other studies are more or less bracketed by our two star formation scenarios.

Additionally, we probe the faint end of the LFs by showing the cumulative number density

for galaxies with MUV < −15.0. Aside from our fiducial model, we include two bracketing cases

where we let αrh = 2.0 and 3.6, which correspond to weaker and stronger stellar feedback efficiency,

respectively. This kind of test will place constraints on the efficiency of stellar winds and whether

there are additional dependencies in the wind mass loading scalings beyond the simple assumptions

adopted here. The comparison shows that the prediction from our fiducial model is similar to other

studies. However, some studies predict fewer galaxies than we predicted at lower redshifts due to

a shallower faint-end slope of the UV LFs, which in our model framework would require stronger

stellar feedback.

In Fig. 2.9, we show the cosmic star formation rate (CSFR) for our fiducial and GK-Big1 models,

with star formation rate integrated down to MUV = −17± 1.0. Our result is compared to Behroozi

et al. (2013), Finkelstein et al. (2015a), Bouwens et al. (2015b), Bouwens et al. (2016b), McLeod

et al. (2016), and Ishigaki et al. (2018). The CSFR predicted by the KS model is very similar to the

ones from our fiducial model, as the UV LF results hinted, and we therefore omitted the KS model

from this figure.

Overall, it is intriguing that our models, which were previously calibrated and tested only at

much lower redshifts, agree so well with the existing observations all the way out to z ∼ 10. Our

models predict that the number density of galaxies evolves quite rapidly between z = 4 − 10, and

that the bright end evolves more rapidly than the faint end. Our models predict that the slope of

the UV LFs will remain fairly steep below the current detection limit until MUV ∼ −9. This slope

is not sensitive to the choice of star formation model but is very sensitive to the scaling of the mass

loading factor of stellar-driven winds with galaxy circular velocity, as is the luminosity where the

LF turns over at the faint end. The bright end is sensitive to the star formation efficiency or gas

depletion timescale and its dependence on gas surface density. However, the effects of dust and the

SF efficiency on the bright end of the LF are degenerate, so independent probes of these quantities

are needed.
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Figure 2.8 The cumulative number density for objects brighter than the specified rest-frame UV
luminosities, MUV,lim < −19. The upper panel focuses on the evolution on the bright end. The blue
and purple lines show the fiducial and GK-Big1 models, or our most and least optimistic scenarios,
respectively. The dashed cyan line shows the result from the KS model. The lower panel focuses
on faint objects with MUV,lim < −15. The blue solid line shows the fiducial model. The dot-dashed
and dashed lines show the cases where we let αrh = 2.4 and 2.0 (above), and αrh = 3.2 and 3.6
(below), respectively. In both panels, the results are compared to a compilation of UV LFs from
an SPH simulation, observations, and empirical extrapolations (Mason et al. 2015; Atek et al. 2015;
Bouwens et al. 2015b; Wilkins et al. 2017; Ishigaki et al. 2018).
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Figure 2.9 Cosmic star formation rate density evolution with redshift integrated down to MUV,lim =
−17.0 ± 1.0. The blue and purple lines show results from our fiducial and GKBig1 models, re-
spectively. Our results are compared to observations from other studies by Behroozi et al. (2013,
black circles), Finkelstein et al. (2015a, orange open triangles), Bouwens et al. (2015b, blue inverted
triangles), McLeod et al. (2016, cyan open squares), Oesch et al. (2018, red diamonds), Ishigaki
et al. (2018, green pentagons). The cut-off magnitude for these observations is MUV = −17, unless
specified otherwise.
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2.3.2 Comparison with other models

In addition to comparing our results with observational constraints, we also compare our predic-

tions with a collection of theoretical studies, including empirical models, semi-analytic models, and

cosmological hydrodynamic simulations. Note that studies that are fully or partially numerical are

subject to the inevitable tension between simulated volume and spatial and time resolution. For

example, simulations with high resolution are only feasible to run over small volumes and rare, mas-

sive objects are not well sampled. On the other hand, simulations with coarser resolution and larger

volumes do well at capturing formation of large-scale structure. However, reliable predictions for

small objects that fall near or below the resolution limit are not possible. For this reason, the galaxy

mass and luminosity range covered varies among these studies. And note that among all models

compared here, our model has the widest dynamic range and is capable of carrying the simulation

to z = 0 for comparison with local observations.

Overall, our results agree extremely well with other studies in regimes where observational con-

straints are available. On the other hand, our predictions for faint galaxy populations, for which

observational constraints are very limited due to the lack of direct detections, are in close proxim-

ity with a number of other studies, so long as the simulations have adequate resolution to resolve

these objects. The faint-end slopes predicted by our fiducial model tend toward the shallower end,

especially at higher redshifts, among the range collectively predicted by these models.

Both empirical models included in this comparison employ some empirical relations between halo

mass and star formation efficiency that are calibrated using halo abundance matching at redshifts

where observational constraints are available. These relations are then extrapolated to make predic-

tions at higher redshifts. The Mason et al. model, which is based on models introduced by Trenti

et al. (2010, 2015); Tacchella et al. (2013), uses a redshift independent star formation efficiency

that depends on the halo mass and assembly time, calibrated at z ∼ 5. The Sun & Furlanetto

study explores the outcome of various star formation efficiency models, including one that assumes

a power-law extrapolation below a cutoff halo mass limit Mh = 2× 1010 M� and a best-fit redshift

independent model. Note that their models are calibrated to bright galaxies at z = 6–8, and results

at z = 9 and 10 are predictions that are yet to be published.

On the other hand, the details for the numerical hydrodynamic simulations included in this com-

parison are summarized in the following. BlueTides is a large-volume cosmological hydrodynamic

simulation that focuses on the high-redshift (z & 8) universe, with a box that is 400 Mpc h−1 on a

side, resolving galaxies with M∗ & 108 M� toward the end of their simulation (Wilkins et al. 2017).

Vulcan is a high-resolution (dark matter particle ∼ 105 M�), relatively small volume (25 comoving
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Mpc on a side) simulation that aims to quantify the contribution of faint galaxies to cosmic reion-

ization (Anderson et al. 2017). The Cosmic Dawn (CoDa) simulation is a large-scale hydrodynamic

simulation coupled with radiative transfer modelling, resolving galaxies down to ∼ 108 M� in box

that is ∼ 100 Mpc on a side (Ocvirk et al. 2016). Cosmic Reionization On Computers (CROC) is a

cosmological simulation based on the adaptive refinement tree (ART) method (Gnedin 2014; Gnedin

& Kaurov 2014). The CROC results compared here are from their fiducial simulation box with 20

Mpc h−1 on a side and 5123 initial grid cells, with spacial resolution of 100 pc (see Gnedin 2016).

The DRAGONS project (Poole et al. 2016) consists of a SAM meraxes that is built on top of the

Tiamat suite of n-body simulations. We also include results from a high-resolution hydrodynamic

simulation with embedded self-consistent radiative transfer that is similar to the one described in

Finlator et al. (2012, 2015, 2016, 2017). The three runs included here have box sizes of 6.0, 7.5,

and 10.0 Mpc h−1 on a side, with 2× 2563, 2× 3203, and 2× 5123 particles; the UV background is

discretized into 32, 40, and 64 voxels.

In Fig. 2.10, we compare the bright end of our UV LFs to the predictions of Mason et al., Sun

& Furlanetto, DRAGONS, CROC, CoDa, Vulcan, and BlueTides. In Fig. 2.11, we compare

our predictions for the faint-end behaviour of the UV LFs to Mason et al., Sun & Furlanetto,

DRAGONS, CROC, and Finlator et al.. The Mason et al. model assumed a MUV = −12 cutoff

for the atomic cooling limit in their work and the Sun & Furlanetto model considered a limiting

magnitude of MUV = −13 in their CSFR calculation. For this comparison, we plot the results from

these analytic studies extrapolated down to fainter magnitudes to illustrate the faint-end slopes

predicted by these models and how they stack up with other numerical results. On the other

hand, numerical simulations provide predictions with physical processes traced self-consistently as

far down as resolution permits, although they are still limited by the assumptions inherent in their

sub-resolution recipes for star formation and stellar feedback. Moreover, we note that the very faint

populations predicted by these numerical studies might be somewhat resolution dependent, rather

than physical. For instance, some subtle differences can be spotted between the UV LFs based on the

coarser Tiamat (at z = 6–10) and the finer Tiny Tiamat (at z = 6, 8, and 10) N -body simulations

from the DRAGONS simulation suite in our comparison (Liu et al. 2016). Similar behaviour can

be seen among the three different runs in the Finlator et al. simulations. However, heating from a

photoionizing background is tracked self-consistently with on-the-fly radiative transfer in this model.

The Renaissance Simulations (O’Shea et al. 2015), SPHYNX (Cabezón et al. 2017), and FIRE (Ma

et al. 2018b) are theoretical studies that address similar issues but are not included in our comparison

here.
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Figure 2.10 Redshift evolution of the bright end of the UV LFs between z = 4–10 predicted by our
fiducial model with dust attenuation (blue solid lines). Our results are compared to several other
theoretical studies, including empirical studies from Mason et al. (2015, green) at z = 4–10 and Sun &
Furlanetto (2016, red) at z = 5–10 from their fiducial model (dashed) and redshift-independent model
(dot-dashed), cosmological hydrodynamic simulations BlueTides (Wilkins et al. 2017, brown) at
z = 8–10 and Vulcan (Anderson et al. 2017, purple) at z = 4–10, and the DRAGONS SAM
simulation suite (Liu et al. 2016, orange) at z = 5–10. See text for details.
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Figure 2.11 Redshift evolution of the faint end of the UV LFs between z = 4–10 predicted by our
fiducial model with dust attenuation (blue solid line). Our results are compared to several other
studies, including empirical models from Sun & Furlanetto (2016, red) at z = 5–10 fiducial model
(dashed) and z-independent model (dot-dashed), DRAGONS based on their Tiamat (dashed) and
Tiny Tiamat (dot-dashed) simulations at z = 5–10 (Liu et al. 2016, orange). We also include results
from a hydrodynamic simulation with embedded self-consistent radiative transfer that is similar
to the one presented in Finlator et al. (2012, green) at z = 6–10 in three different box sizes and
resolutions (dashed, dot-dashed, and dotted in increasing resolution). See text for more details.
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2.4 Predicted Apparent Magnitude Functions with NIRCam Filters

In this section, we provide the distribution functions of apparent magnitude (AMF) for high-redshift

galaxy populations, where the latest published JWST NIRCam filter response functions are used to

compute the apparent magnitude for the galaxies predicted by our model. We also provide estimates

of the number of detected objects for several example survey configurations.

In Fig. 2.12, we showcase the evolution of the AMFs over redshift as seen in the eight NIRCam

broadband filters: F070W, F090W, F115W, F150W, F200W, F277W, F356W, and F444W. The

central wavelength and the detection limit of these filters are summarized in Table 2.5. Detection

limits are 10-σ point source limiting AB magnitudes from the JWST Exposure Time Calculator3

for an exposure time of 104 second, measured in 0.04’ diameter apertures for the short-wavelength

camera, and 0.08’ diameter apertures for the long-wavelength camera, assuming a low background

level. An approximate detection limit mlim ∼ 29 is marked in the figure with a black dashed line.

Objects to the left of the line are too faint to be detected at this depth. We also marked where

one object is expected per NIRCam field of view (2 × 2.2 × 2.2 arcmin2) with a horizontal dashed

line in each panel. Objects with counts below this line are too rare to be found on average in a

single pointing of NIRCam. The seven panels together demonstrate how the high-redshift galaxy

populations quickly drop out from the filters with shorter wavelengths due to absorption by the

intervening IGM. Our results show that the F200W filter, our choice of nominal filter, is best suited

for detecting objects across all redshifts of interest, and might even be able to pick up bright objects

beyond z ∼ 10 with an extended exposure time. The Schechter function fitting parameters for the

F200W filter are presented in Table 2.7. Redundant detections from multiple filters also improve

the accuracy of estimates of dust attenuation, which is essential to properly uncover the underlying

intrinsic UV luminosity. Galaxies at high redshifts rapidly drop out of the shorter wavelength filters

F070W, F090W, and F115W for z < 10, and F150W at z ∼ 12, whilst F200W, F277W, F356W,

and F444W remain advantageous for possible detections up to z ∼ 15 given sufficient exposure time.

Although MIRI is designed to detect longer wavelength radiation, it will not be able to detect such

high redshift galaxies due to its low sensitivity.

In Fig. 2.13, we further investigate the population of galaxies that are expected to be found

by JWST in different surveys. We show the same AMFs from the F200W filter and provide the

detection limits from a number of simulated surveys. The detection limits of past HST surveys and

upcoming JWST surveys are summarized in Table 2.6. First, we show the detection limit of the

HST CANDELS-Wide survey for reference. Then, from bright to faint, we show the detection limits

3https://jwst.etc.stsci.edu/, v1.2.2
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estimated for a JWST investment comparable to CANDELS-W and HUDF, and the very optimistic

case where we gain a factor of 10× magnification from gravitational lensing from a massive galaxy

cluster. We indicated where ∼ 10 objects are expected to be found in survey areas similar to that

of the HUDF field (2.4×2.4arcmin2) and CANDELS-W (∼ 100 arcmin2), which are both estimated

assuming dz = 1 slices centred at the given redshift. We also show the cases where we deviate from

the fiducial value and let αrh = 2.8±0.4 and ±0.8, where stronger feedback gives shallower faint-end

slopes and vice versa. This comparison shows that JWST will be able to reliably constraint the

faint-end slope up to z ∼ 8, or even z ∼ 10 in lensed fields. This will provide important constraints

on stellar feedback physics.

In fig.2.14, we show the number of objects per Mpc3 above some detection limits, mlim, expected

to be found using the NIRCam F200W filter. We consider two cases where we let mlim,wide =

29 and mlim,deep = 31.5, representing the expected detection limit for JWST wide-field surveys

(e.g. CANDELS-Wide) and deep-field surveys (e.g. HUDF). In the upper panel, we illustrate the

difference among the three SF models considered in this work, and in the lower panel we show the

cases where we let αrh = 2.0 and αrh = 3.6. Here, a more direct comparison with observations can be

made, without the need for applying K-corrections to the observations to get from observed to rest-

frame magnitudes. One can see that, similarly, observations of the bright population will constrain

the star formation efficiency, while observations of the faint end will constrain stellar driven winds.

Table 2.5 Pivot wavelengths and bandwidths of NIRCam filters. Detection limits assuming a 104

seconds exposure. aJWST User Documentation4

NIRCam λa Bandwidtha Detection Limit
Filters [µm] [µm] [AB Mag]
F070W 0.704 0.132 28.16
F090W 0.902 0.194 28.56
F115W 1.154 0.225 28.85
F150W 1.501 0.318 29.04
F200W 1.989 0.457 29.07
F277W 2.762 0.683 28.93
F356W 3.568 0.781 28.93
F444W 4.408 1.029 28.33

2.5 Discussion

The formation and evolution of galaxies are governed by a complex network of intertwined physi-

cal processes that operate over many physical scales. Although many details remain to be worked

out, the community seems to have reached a broad consensus regarding the main physical processes

4https://jwst-docs.stsci.edu/display/JTI/NIRCam+Filters
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Figure 2.12 Redshift evolution of the AMFs as seen in every NIRCam filter between z = 4 − 10.
See Table 2.5 for the specifications for the filters compared here. The vertical black dashed lines
represents the detection limit of NIRCam assuming a 104 second exposure. The horizontal dashed
line shows where one object is expected per NIRCam field of view (2× 2.2× 2.2 arcmin2). The last
panel summarizes the evolution of the AMF for our nominal F200W filter.
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Figure 2.13 Redshift evolution of the AMFs in the F200W filter. The vertical dashed lines represent
the detection limits for example JWST surveys similar to legacy HST counterparts; see Table 2.6
for details. The green and yellow horizontal dashed lines show where ten objects are expected in a
∼ 100 arcmin2 survey and in the HUDF field (2.4 × 2.4 arcmin2), respectively. Blue dashed lines
show the cases where we let αrh = 2.4 (above) and 3.2 (below), and light blue dot-dashed lines show
the cases where we let αrh = 2.0 (above) and 3.6 (below). The last panel summarizes the evolution
of the AMF for the F200W filter.
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Figure 2.14 The number density of objects brighter than some specified apparent magnitudes in the
NIRCam F200W filter, mlim, where the bold (narrow) line shows mlim,wide = 29.0 (31.5) that is
chosen to be close to the detection limit of a JWST investment similar to CANDELS-W (HUDF).
The blue solid and dashed lines in both panels are identical and they serve as a visual guide for
the predictions from our fiducial model. In the upper panel, the purple dot-dashed line shows the
GK-Big1 model and the cyan dashed line shows the KS model. In the lower panel, the cyan dashed
line shows the results for αrh = 2.0 and the purple dot-dashed line shows the results for αrh = 3.6.
Light gray bands are added to visually group the lines that share the same mlim.
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Table 2.6 Detection limits for selected HST blank field surveys and for comparable anticipated
JWST legacy surveys. JWST prediction limits are estimated assuming the use of the F200W filter.
At the end we show a bracketing extreme case where JWST conducts a HUDF-like survey on a
cluster field with 10x magnification.

Survey Name Detection Limita

[AB Mag]
HST CANDELS - Wide 26.8

CANDELS - Deep 27.8
HUDF 29.5
Frontier Field (unlensed) 29.0
Frontier Field (10x mag.) 31.5

JWST CANDELS-Wide-like 28.6
HUDF-like 31.5
HUDF-like (10x mag.) 34.0

Table 2.7 The best-fit Schechter parameters for the AMFs for the NIRCam F200W filter between
z = 4− 10 predicted by our fiducial model.

z φ∗ [10−3 Mpc−3] M∗ [AB Mag] α
4 2.423 24.748 -1.526
5 1.709 25.576 -1.589
6 0.989 25.955 -1.676
7 0.569 26.281 -1.733
8 0.222 26.427 -1.830
9 0.113 26.767 -1.881
10 0.052 27.163 -1.950

that shape galaxy properties at z & 6; these include cosmological accretion, strong stellar-driven

winds that are more efficient at low masses, and (more controversially), black hole feedback that

preferentially suppresses star formation at high masses. However, these processes can sometimes

have degenerate effects on galaxy properties. Although differentiating the effects of these processes

is extremely challenging, being able to do so is crucial for interpreting galaxy observations at all

redshifts. Observational constraints at z & 6 are currently quite limited, leaving significant uncer-

tainties in the current theories of galaxy formation and their predictions at very high redshifts. One

of the main highlights of this work is that we explored how variations in several uncertain physical

processes in theoretical models will impact the global physical properties of galaxies and what may

be seen by future observations. We also discuss how these processes may be disentangled with the

significant insights JWST observations have to offer.

High-z star-forming galaxies are most luminous in the observed frame infrared, making them

observable with NIRCam and MIRI onboard JWST, and it has been shown that the choice of

broadband filters can have an impact on the photometric redshift estimation and the follow-up

interpretation (Bisigello et al. 2016, 2017). In Fig. 2.12, we demonstrated how objects drop out from
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shorter wavelength filters starting at z ∼ 5, making the F200W filter the nominal choice for blind

surveys for these deep-field objects across z = 4–10 with investments comparable to CANDELS-

Wide and HUDF. For galaxies beyond z ∼ 10, observations in the longer wavelength filters, namely

F356W and F444W, will be required with exposure times & 105 seconds.

With its unprecedented sensitivity, JWST will be able to probe large populations of galaxies

in deep space and provide constraints for the faint-end slope of the UV LFs at z . 8 and for

the evolution of the bright-end up to z ∼ 10. These observations will put the empirical relations

derived from low-redshift observations to the test in extreme conditions. Moreover, the redundancy

in multiple NIRCam broadband filters at lower redshifts will enable multi-wavelength measurements,

which is crucial to recovering the physical properties of high-z galaxies and breaking degeneracies

in the underlying physical processes.

In this work, we utilized a computationally efficient SAM to make quantitative estimates of

observable properties for galaxy populations expected to be detectable with JWST. The physically

motivated empirical recipes adopted in the model are well-tested at lower redshifts (z . 6, see

SPT15). We present model predictions at redshifts where these models have never been tested

before, and where observational constraints are relatively limited. By exploiting the efficiency of

our model, we also provide forecasts for various model variations, including exploring multiple SF

recipes and parametrizations of outflow rates for stellar-driven winds.

Physical processes that shape the formation of galaxies are degenerate, and yet each of them

evolves slightly differently over time and can simultaneously affect multiple physical properties.

Traditionally, there has been tension for galaxy formation models to simultaneously match the

observed gas fraction, stellar metallicity, and stellar fraction. In order to calibrate our model, we

carefully balance the model parameters for multiple physical processes to match observations at

z ∼ 0. Fig. B.1 summarizes how the outputs of our calibrated model compare with observational

constraints. See appendix for details of the calibration process and tests.

Massive star forming galaxies in the lower redshift Universe are obscured by dust in the line

of sight, which makes it extremely difficult to determine the true underlying stellar content. In

our model, the attenuation effect due to dust in the galactic disc is estimated based on galaxy

physical properties, incorporated with a dust-to-metal ratio guided by observations. In agreement

with previous studies, we find that the optical depth of dust, or effectively the dust-to-metal ratio,

is required to evolve with redshift. However, we also note that our very simple dust recipe does not

accurately represent the complex geometries of dust relative to stars that may be common in high

redshift galaxies (Koprowski et al. 2016; Chen et al. 2015).

We find that star formation remains fairly efficient in low-mass halos, in conflict with the
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Krumholz & Dekel (2012) model, which argues that star formation is heavily suppressed at z > 2

in dark matter halos with masses < 1011 M� due to the low metallicity of gas in these halos.

However, recent lensed and very deep fields observations provide strong support for LF remaining

fairly steep down to low halo. masses. We are aware of the fact that the underlying assumptions

of these metallicity-based multiphase-gas partitioning recipes tend to break down in extremely low-

metallicity environments (e.g. Zcold < 0.05Z� (Krumholz et al. 2009; Gnedin & Kravtsov 2011),

which might cause our model to over-predict the stellar content in our least massive halos and at

higher redshifts.

Cosmic reionization in our models is treated with a rather ad-hoc prescription, in which the

whole universe is reionized uniformly and instantaneously. Our models currently do not attempt to

model the formation of metal-free Population III stars explicitly. Instead, we set a metallicity floor

of Zpre-enrich to represent pre-enrichment in the initial hot gas in halos and the gas accreted onto

halos due to cosmological infall.

2.5.1 Physical processes that shape the bright end of UV LFs

The strong evolution in the bright end of the UV LFs indicates a rapid growth of massive galaxies

in the early universe. However, the physical processes that drive or regulate this evolution are still

unclear. Due to the limited direct observations at z & 6, it is extremely difficult to disentangle the

effects of multiple processes.

Each observed property of galaxies is resulting from a unique combination of underlying physical

processes. Although the underlying fundamental physics should remain the same at all times, since

the physical processes that drive the evolution of these objects depend on a number of effectively

redshift dependent conditions, the global properties of galaxies may also be effectively redshift de-

pendent. The evolution of these resulting global physical properties change subtly depending on the

strength of the impact of each of the physical processes. Therefore, being able to disentangle the

impact of these driving physical processes, as well as the evolution of the resultant observable prop-

erties, is most important for understanding galaxy formation and for making accurate predictions

for the galaxies that are yet to be directly observed.

In this work, we have shown that the choice of star formation recipe and the gas depletion time

both have a very strong impact on the abundance of bright galaxies. We have also provided model

outputs where we systematically vary some of the physical recipes and associated parameters. For

instance, changing the gas depletion timescale by a factor of two in either direction seems to mainly

impact galaxies of MUV . −19. Under this variation, the bright end of the UV LFs deviates mildly

from the fiducial results but still remains mostly within the uncertainties in the observations. On
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the other hand, altering the SF recipes would significantly change the predicted number density for

luminous galaxy populations, where the distinction occurs at MUV . −14 at z = 10, and this limit

gradually evolves to MUV . −20 at z = 4. The abundance of faint galaxies is largely insensitive to

either of these processes due to self-regulation of SF in low-mass halos, which will be discussed in

detail in the next subsection.

To focus on the impact of these processes on the underlying stellar populations, in Fig. 2.2

we compare the intrinsic UV LFs in the absence of dust. The free parameters in the empirical SF

recipes that are calibrated to z ∼ 0 observations and the SF relation do not evolve over time, with the

fiducial GK-Big2 and GK-Big1 representing the more and less optimistic SF scenarios, respectively.

Both our fiducial model and the classic KS model are able to match high-z observations quite well

without further parameter retuning. Given that the general consensus is that high-z galaxies are

much less dusty than their low-z counterparts, these empirical SF recipes might hold to a certain

extent even in extreme environments. Interestingly, GK-Big1 is able to match observations quite

well at low redshifts (z . 6) when dust attenuation is omitted, but it underpredicts the number of

bright galaxies at higher redshifts. This implies that if the dust attenuation at these redshifts is

significantly lower than what we have assumed, a mildly evolving ΣSFR–ΣH2 relation may be able

to produce sufficient numbers of bright galaxies at high redshifts.

It is well known that at z ∼ 2–4, the most rapidly star-forming galaxies are heavily obscured

by dust. The dust content of galaxies at higher redshift is uncertain. Since dust is built up over

generations of star formation, the general expectation is that high redshift galaxies should be less

dusty than lower redshift ones (Popping et al. 2017b). Moreover, there is mounting evidence that

the dust geometry may be different in high redshift galaxies, giving rise to differences in attenuation

for a given dust mass (Popping et al. 2017a; Narayanan et al. 2018). Most theoretical models that

include the effects of dust assume a relationship between dust optical depth and the metallicity

and gas surface density, similar to the one we have adopted here. Our simple empirical model for

dust is calibrated guided by available observations at z = 4–10, which requires a redshift dependent

dust-to-metal ratio in order to be able to simultaneously match constraints at all redshifts within

the framework of our simple model. Our results show that dust attenuation seems to be less effective

at MUV & −19, however, with a much stronger redshift evolution comparing to bracketing cases for

gas depletion times we showed. Future multi-wavelength observations with multiple NIRCam filters

may help constrain the dust content (e.g. using the UV continuum slope β as in Finkelstein et al.

2012b, see also Popping et al. 2017a).

Using similar SAMs and a similar dust model, S12 found that their models with a Calzetti

attenuation curve underproduced UV-luminous galaxies at high redshift (z ∼ 3–5). Our updated
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models perform better in this regard, as a result of the updated Planck cosmology and associated

recalibration. As shown in Fig. 2.1, the amount of dust required to match observations between

= 4–6 has been reduced by roughly a factor of two. However, the UV LFs remain quite sensitive

to τdust,0 and, as pointed out in previous works, using a fixed dust parameter that is normalised

to observations at low redshifts would systematically underproduce UV-luminous galaxies at high

redshift. In future works we plan to explore models with a more self-consistent treatment of dust

formation and destruction and more complex treatment of dust geometry, and the implications for

Far-IR and mm and sub-mm observations (Popping et al. in prep).

Although we find that black hole feedback plays a negligible role in shaping galaxy properties

at these redshifts, this may be due to the specific manner in which black hole seeding, growth, and

feedback are implemented in these models. AGN feedback is implemented in our models via two

different modes: ‘jet mode’ (also called ‘radio mode’) and ‘radiative mode’ (also called ‘quasar mode’

or ‘bright mode’). ‘Radio mode’ feedback (Croton et al. 2006, S08) is implemented as a heating term

which (in the Santa Cruz SAMs) scales as a power-law function of the black hole mass, based on

observations of radio jets in nearby galaxy groups and clusters (see S08). The jets are assumed to be

able to couple efficiently with the hot gas only when the cooling time is longer than the dynamical

time, which tends to be the case in massive halos at late times. As a result, jet mode feedback

becomes effective only in massive halos at redshifts below about z ∼ 1.

The Santa Cruz SAMs also include ‘radiative mode’ feedback, in which cold gas can be removed

from galaxies via radiation pressure driven winds associated with radiatively efficient accretion onto

a black hole. Although this mode can act at high redshift, it tends to have little effect on galaxy

properties, because it is assumed that the winds can only act ‘ejectively’ on the cold interstellar gas,

and new gas tends to cool rapidly and replenish the cold gas reservoir, especially at high redshift.

However, the treatment of radiative mode feedback in the existing models is based on an older suite

of hydrodynamic simulations of binary mergers between idealized galaxies with no initial hot gas

halo. More recent cosmological zoom-in simulations including thermal and kinetic feedback from

radiatively efficient black hole accretion find that there is also a strong preventative feedback effect,

as these winds can significantly reduce the density of gas near the centres of halos and thereby

suppress cooling for much longer timescales (Choi et al. 2015, 2017a; Brennan et al. 2018). In

this picture, we might expect quenching via radiative mode feedback to be more effective at higher

redshifts.
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2.5.2 Physical processes that shape low-luminosity galaxies

In this work, we updated the Santa Cruz SAM treatment of photoionization squelching by implement-

ing the fitting function presented in Okamoto et al. (2008) to model heating from an photoionizing

background. Our results in Fig. 2.3 show that the effect is negligible at all redshifts. Some studies

suggest that photoionization squelching plays a significant role in shaping the faint end of the galaxy

LF, suppressing the faint end of the UV LFs in the range MUV ∼ −12–−10 (Shapiro et al. 2004;

Iliev et al. 2005; Ocvirk et al. 2016). Some others have shown that dense clumps are extremely

hard to penetrate and become ionized due to a high recombination rate. Simulations have shown

that cooling in gas clumps should be fairly efficient when densities are comparable to the virial

density of a halo (Noh & McQuinn 2014). Susa & Umemura (2004a,b) used radiative hydrodynamic

simulations with radiative transfer to show that a photoionizing background is devastating only for

low-mass systems of Vc . 20 km s−1, which are halos close to the atomic cooling limit. Similar

results are also presented by Okamoto et al. (2008), where only extremely low density gas clumps

are completely evaporated and the overall effect of a photoionizing background on galaxy formation

is much weaker than previously thought.

In our models, stellar-driven winds play a dominant role in shaping the slope of the faint-end of

the UVLF as well as the location of the turnover. This type of simple empirical model for stellar-wind

feedback has been widely adopted in both SAMs and some cosmological numerical hydrodynamic

simulations. The recipe has been shown to be quite successful in reproducing observations at lower

redshifts for galaxies across a wide range of masses. As discussed in SPT15, SF in low-mass halos is

self-regulated by stellar feedback. For instance, when SF becomes more efficient, more gas is ejected

by energetic stellar winds, and hence reducing the supply of cold gas and yielding less efficient SF,

and vice versa. This effect has also been examined and demonstrated in a number of studies (Schaye

et al. 2010; Haas et al. 2013; White et al. 2015). Here we show that this remains the case in low-mass

halos up to very high redshift, even in models with metallicity dependent, H2-based star formation.

The free parameters in our physically motivated stellar feedback recipe have only been tuned to

match observed SMF and stellar-to-halo mass ratio at z ∼ 0. In addition to the calibrated fiducial

values, we also show example cases where we systematically vary the SN feedback slope αrh slightly

by ±0.4 and ±0.8 while keeping the rest of the model unchanged. Our results clearly demonstrate

that this parameter indeed plays a dominant role even at extreme redshifts. However, we also show

that the more massive galaxies are insensitive to variations in this parameter, because stellar-driven

winds cannot efficiently escape the deep potential wells of the halos that host these objects.

Our model is one of the very few simulations that is capable of resolving objects as tiny as Vc ∼ 20
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km s−1in a cosmological context, close to the atomic cooling limit. We find that the turnover in the

UVLF due to the atomic cooling limit occurs at around MUV ∼ −8 at z ∼ 4, moving slightly

brighter to about MUV ∼ −9 at z ∼ 10. We find that the magnitude where the turnover occurs

shifts brighter or fainter by up to ∼ 1 magnitude under variations in the stellar feedback parameter

αrh. This is because αrh changes the slope of the median relationship between halo mass and stellar

mass or SFR, shifting the rest-UV magnitude corresponding to a halo circular velocity of Vc ∼ 20

km s−1.

2.5.3 Probing ultra high-redshift galaxies beyond JWST

The galaxy populations predicted by our model span a wide range of luminosities and redshifts.

Even though JWST will be able to detect many objects during the epoch of reionization, our

models predict that there will still be a significant population of objects too faint to be detected

even by JWST. Although these galaxies are unlikely to play a significant role in cosmic reionization,

they are thought to have hosted Pop III stars and polluted the ISM with the first heavy elements.

Therefore, constraints on these objects are a very important missing piece in the current formation

theory for stars and galaxies. Probing these objects directly requires instruments with sensitivity

many times higher than what JWST has achieved. However, the bulk effects of these objects can

be studied via metal absorption (e.g. Finlator et al. 2013) or intensity mapping (Visbal & Loeb

2010; Visbal et al. 2011). Many ongoing and planned intensity mapping pathfinders (e.g. CHIME,

HERA, HIRAX, Tianlai, BINGO, LOFAR, MeerKat, CONCERTO, STARFIRE) are paving the

way to future high-z large-scale multiline intensity mapping surveys.

On the other hand, planned wide-field surveys, such as those that will be carried out with Euclid

and the Wide-Field Infrared Survey Telescope (WFIRST), will probe unprecedented areas, providing

constraints on the massive, bright galaxy populations (Racca et al. 2016; Spergel et al. 2015).

We plan to exploit our model framework to forecast and provide an interpretive framework

for these and other observations in future projects. We plan to further explore the progression of

cosmic reionization arising from our predicted galaxy populations, and compare that to the latest

observational constraints from the Lyα forest and the Thomson scattering optical depth for the

cosmic microwave background (Yung et al. 2020a).
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2.6 Summary and Conclusions

In this work, we presented predictions for galaxy populations that are expected to be detected in

upcoming JWST observations, and showed how they can potentially constrain the physical pro-

cesses that govern the formation and evolution of these objects. Our galaxies are modelled using

the well-established Santa Cruz semi-analytic model with the recently updated multiphase gas par-

titioning and H2-based SF recipes. We also used semi-analytic dark matter halo merger trees that

are constructed based on the EPS formalism to achieve the very wide dynamic range and compu-

tational efficiency required for forecasting observable properties of galaxy populations over a wide

range of masses and redshifts. Moreover, we adopted the updated Planck cosmology and the model

parameters were recalibrated to match the latest observational constraints near z ∼ 0.

By exploiting the high efficiency of our model, we were also able to systematically vary the SF

recipes, as well as the sub-grid physical parameters for gas depletion timescale and stellar feedback

relation slope, in a controlled manner. We use these results to explore the physical processes that

have degenerate effects on galaxies, which create tension in matching galaxy properties and other

cosmological observables. We also discuss whether these processes can be disentangled and what we

expect to learn from the upcoming deep-field observations.

Predictions for rest-frame UV luminosity functions at z = 4–10 are presented and are compared

to existing observations and other models. We include the effects of dust attenuation using an

empirical dust recipe with a redshift dependent dust-to-metal ratio. Although the free parameters

in our model are only calibrated to match observations at z ∼ 0, our results matches surprisingly

well with UV LF constraints at z > 4. In addition, our results agree extremely well with previous

theoretical studies, particularly for more luminous galaxies. We predicted that the faint end of the

UV luminosity functions will remain steep below the current detection limit until MUV ∼ −9. We

showed that the gas depletion time and the choice of star formation recipe have strong influences

on star formation in luminous galaxies. Conversely, the effect of feedback from AGN is found to

be negligible, although this may be due to shortcomings in our modelling of black hole seeding,

accretion, and/or feedback. However, starlight from the most intrinsically UV-luminous galaxies is

also heavily obscured by dust, making it extremely difficult to disentangle these degenerate effects

from multiple physical processes. On the other hand, star formation in low-mass halos seems to be

most strongly affected by stellar feedback, with photoionization feedback having a negligible effect

on the populations that we studied.

We estimated the apparent magnitudes of our predicted galaxy population utilizing the pub-

lished JWST NIRCam broadband filters and presented them in the form of one-point distribution
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functions, which may be compared directly with observations. We also estimated the effects of dust

attenuation and illustrated the sensitivity to stellar feedback efficiency. We show that, with a simple

dust model, the effect of dust is only significant for rapidly star forming, metal rich galaxies and is

more important at lower redshifts.

We summarize our main conclusions below.

1. A relatively simple and computationally efficient semi-analytic model, which has been cal-

ibrated only to z ∼ 0 observations, produces predictions that agree remarkably well with

observed UV luminosity functions from z ∼ 4–10.

2. Star formation physics and gas depletion time are dominant in determining the abundance

of bright, massive galaxy populations, and these physical processes are degenerate with the

attenuation due to dust. Therefore, it is critical to obtain independent probes on the dust

content of high redshift galaxies in order to be able to disentangle the underlying physics.

3. The faint-end slope of UV LFs is mainly sensitive to the scaling of the mass-loading factor for

stellar driven winds with halo or galaxy properties. We find that the effect of photoionization

squelching on galaxies that will be detectable with JWST is negligible. JWST observations

will be able to place important constraints on stellar feedback. However, JWST will not be

able to probe down to the atomic cooling limit.

4. In our models, the absolute magnitude at which the ‘turnover’ in the UV LF occurs due to the

atomic cooling limit is also sensitive to the adopted recipe for stellar feedback. This is because

stellar feedback changes the halo mass that hosts galaxies of a given UV luminosity.
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Chapter 3

Physical Properties and Scaling Relations

The long anticipated James Webb Space Telescope (JWST ) will be able to directly detect large

samples of galaxies at very high redshift. Using the well-established, computationally efficient Santa

Cruz semi-analytic model, with recently implemented multiphase gas partitioning and H2-based star

formation recipes, we make predictions for a wide variety of galaxy properties for galaxy populations

at z = 4–10. In this work, we provide forecasts for the physical properties of high-redshift galaxies

and links to their photometric properties. With physical parameters calibrated only to z ∼ 0

observations, our model predictions are in good agreement with current observational constraints on

stellar mass and star formation rate distribution functions up to z ∼ 8. We also provide predictions

representing wide, deep, and lensed JWST survey configurations. We study the redshift evolution

of key galaxy properties and the scaling relations among them. Taking advantage of our models’

high computational efficiency, we study the impact of systematically varying the model parameters.

This chapter is reproduced from published work Semi-analytic forecasts for JWST – II. Physical

properties and scaling relations for galaxies at z = 4–10 (Yung et al. 2019. MNRAS, 490, 2855).

3.1 Introduction

The highly anticipated James Webb Space Telescope (JWST ) will be equipped with extremely

sensitive instruments that will be uniquely capable of detecting extremely distant faint galaxies.

As postulated by the hierarchical structure formation paradigm within the ΛCDM (cosmological

constant and cold dark matter) cosmological framework (White & Rees 1978; Blumenthal et al. 1984),

low-mass objects are expected to be fairly abundant throughout the Universe, even at high redshifts.

However, their properties and abundances remain largely unconstrained since direct detections for

these objects with current instruments are not possible.

In contemporary deep-field astronomical surveys, galaxy candidates at z & 2 have been routinely

identified using the ‘Lyman-break’ photometric selection technique (Steidel & Hamilton 1992, 1993;

Steidel et al. 1996). This selection is carried out by using a set of strategically designed filters to

identify the occurrence of the redshifted Lyman-limit discontinuity, caused by an intrinsic spectral
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break combined with absorption by intergalactic neutral hydrogen along the line of sight. Over the

past decade, space-based surveys, such as the Hubble Ultra Deep Field (HUDF; Beckwith et al.

2006, see also Bouwens et al. 2011; Ellis et al. 2013; Oesch et al. 2013) and the Cosmic Assembly

Near-infrared Deep Extragalactic Legacy Survey (CANDELS; Grogin et al. 2011; Koekemoer et al.

2011), and ground-based surveys, such as the United Kingdom Infrared Telescope Deep Sky Survey

(UKIDSS; Warren et al. 2007) and UltraVISTA (McCracken et al. 2012), have found nearly 2000

galaxy candidates at z = 6 − 10 using this technique, with faint objects reaching absolute UV

magnitude ∼ −17 at z ∼ 6. Observations can reach an even fainter detection limit in fields that are

gravitationally lensed by massive foreground clusters (Castellano et al. 2016; Laporte et al. 2016;

Kawamata et al. 2016; Bouwens et al. 2017; Livermore et al. 2017; Lotz et al. 2017; Atek et al.

2018; Ishigaki et al. 2018). However, the uncertainties from magnification and foreground cluster

modelling associated with these detections are relatively large (Bouwens et al. 2017).

The Near-Infrared Camera (NIRCam), one of JWST ’s onboard photometric instruments, pos-

sesses unprecedented infrared (IR) sensitivity, which is expected to enable the detection of distant

galaxies far below the detection limits of past or current facilities. JWST ’s spectrometers, the

Near-Infrared Spectrometer (NIRSpec) and Mid-Infrared Instrument (MIRI), will be able to pro-

vide follow-up spectroscopic studies for more luminous high-redshift galaxy candidates. A sizable

amount of JWST observing time has already been allocated, dedicated to the search for high-

redshift galaxies. At the beginning of its mission lifespan, JWST is expected to carry out a number

of Guaranteed Time Observation (GTO) and Early Release Science (ERS) projects that are aimed at

studying galaxies and the intergalactic medium at high redshift, such as the JWST Advanced Deep

Extragalactic Survey (JADES; Williams et al. 2018), the Cosmic Evolution Early Release Science

survey (CEERS; Finkelstein et al. 2017), Grism Lens-Amplified Survey from Space (GLASS; Treu

et al. 2015), and Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star

Formation (TEMPLATES; Rigby et al. 2017). Aside from these, there are also ongoing projects that

are making use of other facilities to prepare for JWST, such as the Magellan Evolution of Galaxies

Spectroscopic and Ultraviolet Reference Atlas project (MEGaSaURA; Rigby et al. 2018).

A fair amount of effort has been dedicated to developing models to connect the observed, pho-

tometric properties to the underlying, inferred physical properties of these galaxies, as well as the

physical processes that drive their formation. Physical properties that have been estimated directly

based on observations include star formation rate (SFR), stellar mass, stellar age, metallicity, and

radial size. Since the baryonic fraction and temperature of the Universe affect the properties of the

first galaxies and the first stars, the physical properties of these emerging galaxy populations in the

early universe are imprinted with the conditions of the cosmic environment at the time they were
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formed. Therefore, these galaxies also serve as indirect probes of the underlying cosmology, espe-

cially the overall matter density and the baryonic fraction. Moreover, there are collective properties

that can be measured, such as the cosmic star formation rate density and global stellar mass density

(e.g. Madau & Dickinson 2014).

Furthermore, combining more than one observed or inferred property can reveal a scaling relation

between the two. These scaling relations among galaxy properties have been studied extensively for

decades and yield fundamental insights about the physics of galaxy formation. Scaling relations

may cover a large variety of properties in addition to the ones mentioned above. Some well-known

examples are the Faber-Jackson relation (Faber & Jackson 1976), the Tully-Fisher relation (Tully &

Fisher 1977), the Kennicutt-Schmidt relation (Kennicutt 1989), the mass-metallicity (MZR) relation

(McClure & van den Bergh 1968; Lequeux et al. 1979; Tremonti et al. 2004; Gallazzi et al. 2005;

Zahid et al. 2013), and the stellar mass-SFR relation, sometimes called the star formation main

sequence (e.g. Brinchmann & Ellis 2000; Brinchmann et al. 2004; Noeske et al. 2007; Wuyts et al.

2011). We may also consider scaling relations between quantities predicted by theory that cannot

be directly measured from observations, such as the stellar mass vs. halo mass relation or galaxy

size vs. halo size relation (Moster et al. 2010, 2013, Behroozi, Wechsler, & Conroy 2013, Somerville

et al. 2018). These relations are collectively affected by many physical processes, both local (ISM

scale) and global (galaxy scale), which provide extremely important insights regarding the formation

and assembly histories of these objects. On the other hand, the intrinsic scatters in these relations

also hint at whether there are important higher order parameters (i.e. whether the scaling relation

actually sits in a higher dimensional space, such as fundamental plane relations). Next-generation

observing facilities will constrain the evolution of these scaling relations over cosmic time.

One of the main science goals of JWST is to constrain the nature of the sources that reionized

the Universe. Recent studies have shown that high-redshift low-mass galaxies could have been

the major source of the ionizing photons that reionized the Universe (Kuhlen & Faucher-Giguère

2012; Anderson et al. 2017; Finkelstein et al. 2019). However, there has historically been tension

between the efficient SF in low-mass halos needed to reionize the Universe early enough to satisfy

observational constraints, and the inefficient SF observed in low-mass galaxies today (Madau et al.

2008; Finkelstein et al. 2015a; Robertson et al. 2015).

Models and theoretical simulations set within the framework of cosmological structure formation

are a powerful tool for creating forecasts for future observations. Inevitably, there are trade-offs

between the breadth of physical processes that can be included, the accuracy with which these

processes can be modelled, and computational limitations. A variety of different methods have been

developed and employed to make predictions for galaxy populations that lie outside of the scope
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of current observations. These include (sub)-halo abundance matching models, (semi-)empirical

models, semi-analytic models, and numerical methods. There are advantages and disadvantages to

each method, and on the whole they represent a complementary toolkit in this challenging landscape.

There has been a long standing history of using numerical methods to carry out a priori galaxy

formation simulations, in which one attempts as much as possible to simulate the main physical

processes explicitly. However, in practice, since these physical processes that influence galaxy for-

mation operate over an extremely broad range of spatial and temporal scales, one must be selective

about the physical prescriptions and resolution. Inevitably, in large-scale simulations, some ‘sub-

grid’ recipes are needed to represent processes occurring at scales well below the physical resolution

(see Somerville & Davé 2015 for a detailed discussion). In addition, modelling galaxy formation in a

cosmological context is very challenging, given the tension between simulated volume and mass and

spatial resolution. Moreover, due to computational limitations, numerical simulations focussed on

the high-redshift Universe are often halted at some intermediate (z & 6) redshift (e.g. O’Shea et al.

2015; Wilkins et al. 2017; Jaacks, Finkelstein, & Bromm 2019) and thus cannot be validated with

low-redshift observational constraints. Zoom-in simulations are designed to allow high-resolution

simulations to be conducted within a proper cosmological context, and are carried out by simulating

a large cosmological volume at a coarse resolution and selecting and ‘resimulating’ a desired smaller

region with higher resolution and additional prescriptions for baryonic physics (e.g. Hopkins et al.

2014, 2018; O’Shea et al. 2015). However, these techniques do not by themselves yield predictions

for statistical properties of populations, as the resimulated halos are in general not representative of

the underlying full cosmological distribution.

At the other end of the spectrum, purely empirical models extrapolate observed galaxy popu-

lations to higher redshifts and/or lower luminosities with no theoretical underpinning and no cos-

mological framework (e.g. Kuhlen & Faucher-Giguère 2012; Williams et al. 2018). Halo abundance

matching models (and variants sometimes called semi-empirical models) attempt to derive relation-

ships between dark matter halo properties and galaxy observables using lower redshift observations,

then use the predicted evolution of halo properties from a cosmological model to make predictions for

galaxy properties (Trenti et al. 2010, Trenti, Perna, & Jimenez 2015; Tacchella et al. 2013; Behroozi

& Silk 2015; Behroozi et al. 2019; Mason, Trenti, & Treu 2015; Moster, Naab, & White 2018; Tac-

chella et al. 2018; Wechsler & Tinker 2018). Naturally, this requires assumptions about how the

galaxy-halo relationship evolves in this unexplored territory, but these approaches are highly flexible

and computationally efficient.

The semi-analytic modelling approach provides an attractive ‘middle way’ for modelling large

populations of galaxies and exploring a large dynamical range in halo mass and environment, and
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has been used for decades to make predictions for the properties of high-redshift galaxies (e.g.

Somerville, Primack, & Faber 2001; Somerville et al. 2015; Henriques et al. 2015; Lacey et al. 2016;

Poole et al. 2016; Rodrigues, Vernon, & Bower 2017). This approach is built within the framework

of cosmological structure formation, and adopts parametrized phenomenological recipes for physical

processes such as cosmological accretion and cooling, star formation and black hole growth, and

feedback from massive stars, supernovae, and AGNs. The parameters in these recipes are typically

calibrated to reproduce key observational relationships for nearby galaxies. An advantage over the

semi-empirical approach is that the parameters represent physical quantities that can frequently be

constrained via observations, and compared with similar quantities in fully numerical hydrodynam-

ical simulations. At the same time, the approach is still highly computationally efficient, allowing

exploration of parameter space and different physical recipes.

In this thesis chapter, we make predictions for galaxy populations at z = 4–10 with forecasts

tailored specifically for upcoming JWST observations, and we investigate how uncertainties in the

physical processes may affect the global properties of these galaxies. The key components of this

chapter are summarized as follows: the semi-analytic framework used in this work is summarized

briefly in Section 3.2. We present the physical properties and scaling relations for these galaxy

populations in Section 3.3–3.5. We then discuss our findings in Section 4.4, and summary and

conclusions follow in Section 3.7.

3.2 The Semi-Analytic Framework

The Santa Cruz semi-analytic model used in this work is slightly modified from the one outlined

in Somerville, Popping, & Trager (2015, hereafter SPT15). We have implemented the Okamoto,

Gao, & Theuns (2008) photoionization feedback recipe and updated the cosmological parameters to

be consistent with the ones reported by the Planck Collaboration in 2015. The model components

that are essential to this work have been concisely summarized in Chapter 2 and we refer the reader

to the following works for full details of the modelling framework: Somerville & Primack (1999);

Somerville, Primack, & Faber (2001); Somerville et al. (2008, 2012); Popping, Somerville, & Trager

(2014, hereafter PST14) and SPT15. The cosmological parameters adopted in this work are the

following: Ωm = 0.308, ΩΛ = 0.692, H0 = 67.8 km s−1Mpc−1, σ8 = 0.831, and ns = 0.9665.

Dark matter halo merger histories, also commonly referred to as merger trees, are the backbone

of our semi-analytic models for galaxy formation. In order to efficiently sample halos over a wide

mass range, including halos from close to the atomic cooling limit to the rarest, massive objects

expected to be found in high-redshift surveys, we adopted a merger tree algorithm based on the



62

Extended Press-Schechter (EPS) formalism (Press & Schechter 1974; Lacey & Cole 1993). These

semi-analytic merger histories have been shown to be qualitatively similar to the ones extracted from

N -body simulations (Somerville & Kolatt 1999; Somerville et al. 2008; Zhang et al. 2008; Jiang &

van den Bosch 2014). At each output redshift, we set up a grid of root halos spanning the range in

virial velocity Vvir ≈ 20–500 km s−1, and assign their expected volume-averaged abundances based

on the halo mass function from the Bolshoi-Planck simulation from the MultiDark suite (Klypin

et al. 2016) with fitting functions provided in Rodŕıguez-Puebla et al. (2016). For each root halo in

the grid, one hundred Monte Carlo realizations of the merger histories are generated, each traced

down to progenitors of a minimum resolution mass of either Mres ∼ 1010M� or 1/100th of the root

halo mass, whichever is smaller.

As implemented in the latest iteration of the model (PST14; SPT15), the disc component of

each galaxy is divided into annuli and the cold gas content in each annulus is partitioned into an

atomic (HI), ionized (HII), and molecular (H2) component. Among the models implemented and

tested in PST14 and SPT15, the metallicity-based, UV-background-dependent recipe, which is based

on simulations by Gnedin & Kravtsov (2011, hereafter GK), yields the best results and hence was

adopted as the fiducial model for multiphase gas partitioning. With the estimated surface density of

molecular hydrogen (ΣH2
), observationally motivated, empirical H2-based SF relations are used to

model the surface density of SFR (ΣSFR) by Bigiel et al. (2008, hereafter Big; see also Wong & Blitz

2002, Bigiel et al. 2011, Leroy et al. 2011). Recently, evidence from both theory and observation

suggests that the SF relation slope may steepen to ∼ 2 at higher gas surface densities (Sharon et al.

2013; Rawle et al. 2014; Hodge et al. 2015; Tacconi et al. 2018). Hence, we have adopted a ‘two slope’

relation where star formation efficiency increases with increasing H2 density (labelled as Big2), and

a ‘single slope’ relation where star formation efficiency remains linearly related to H2 surface density

(labelled as Big1; see Fig. 1 and Eqn. 6 in SPT15). In addition, we included results from using

the widely adopted ‘classic’ cold gas-based Kennicutt-Schmidt (KS) SF recipe in our comparison

(Schmidt 1959, 1963; Kennicutt 1989, 1998).

Our model uses a set of physically motivated, phenomenological and empirical recipes to track

the evolution of a wide range of global physical properties of galaxies. These standard recipes include

cosmological accretion and cooling, stellar-driven winds, chemical evolution, black hole growth and

feedback, and galaxy mergers. A partial list of physical properties tracked in our model include stellar

mass, SFR, masses of multiple species of gas (ionized, atomic, molecular), and stellar and gas phase

metallicity. The star formation and chemical evolution histories are combined with stellar population

models and a simple prescription for dust attenuation to compute predictions of observable properties

(rest- and observed-frame luminosity in any desired filter). Throughout this work, we use the SSP
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models of Bruzual & Charlot (2003) with the Padova1994 (Bertelli et al. 1994) isochrones and assume

a universal Chabrier stellar initial mass function (IMF; Chabrier 2003a).

These models have been extensively tested at lower redshifts (z . 6) in previous works. For

instance, SPT15 and PST14 present results from z ∼ 0–6 and showed that the model predicted

physical properties generally agree with observations; these properties includes SFR, specific SFR,

atomic and molecular gas density, stellar and cold gas metallicity, stellar mass function, stellar-to-

halo mass ratio. Free parameters in our models are calibrated to a subset of z ∼ 0 observations,

including stellar-to-halo mass ratio, stellar mass function, stellar mass-metallicity relation, cold gas

fraction versus stellar mass relation for disc-dominated galaxies, and the black hole mass vs. bulge

mass relation. (see Appendix in Chapter 2 for details). Without retuning these parameters to match

observational constraints at higher redshifts, Chapter 2 has shown that the predicted UV luminosity

functions and the cosmic star formation rate (CSFR) agree well with observational constraints up

to z ∼ 8.

In Chapter 2, we found that the key model parameters that have strong effects on the pre-

dicted rest-frame UV luminosity are the SF time-scale (τ∗,0), which effectively characterizes the

gas depletion time as ΣSFR ∝ τ−1
∗,0 , and stellar feedback relation slope (αrh), which characterizes

the dependence of the mass loading factor of cold gas ejected by stellar feedback on halo circular

velocity:

ηout = ṁout/ṁ∗ = εSN (V0/Vc)
αrh (3.1)

where ṁout is the rate at which cold gas is ejected from the ISM by stellar feedback, ṁ∗ is the star

formation rate, Vc is the circular velocity of the galaxy, normalised by an arbitrary constant V0 =

200 km s−1, and εSN and αrh are tunable free parameters referred to as the SN feedback efficiency

and SN feedback slope. In this chapter, we similarly explore the sensitivity of physical parameters

such as stellar mass or SFR to varying these model parameters. See Chapter 2 and SPT15 for

descriptions of model components that are not varied in this work, such as photoionization feedback,

AGN feedback, disc sizes, stellar population synthesis, dust attenuation, chemical evolution, and the

calibration process.

3.3 Physical Properties of High-Redshift Galaxies

One-point distribution functions of observable quantities or inferred physical properties are perhaps

the most basic way to summarize the statistical characteristics of large populations of galaxies.

These quantities have been probed independently with various tracers and observational constraints

are fairly abundant. Furthermore, two-dimensional distributions for these quantities reveal how one
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quantity scales with another. Moreover, additional clues for characterizing the physical processes

and for disentangling the degeneracies among processes can be obtained via the redshift evolution

of these distribution functions and scaling relations.

One of the main goals of this work is to connect observable quantities to the underlying physical

properties for very high redshift galaxies. In this section, we show distribution functions for selected

physical properties and scaling relations among these properties for galaxies in halos with masses

ranging from MH ∼ 108–1013 M� at z = 4–10. We also quantify the impact of uncertainties in

our physical recipes on the resultant galaxy properties. All binned distribution functions presented

in this work are available for download online at https://www.simonsfoundation.org/semi-analytic-

forecasts-for-jwst/.

This section first presents a series of predicted distribution functions for key physical properties

such as stellar mass (M∗) and star formation rate (SFR) tailored to specific types of JWST surveys

(Section 3.3.1). We then present results of various star formation models and of systematically

varying the parameters characterizing several key physical processes, and examine their impact on

the predicted galaxy populations (Section 3.3.2). We also present a comprehensive comparison to

predictions from other models in the literature (Section 3.3.3), and show predictions for cold gas

mass (Mcold) and molecular gas mass (MH2
) (Section 3.3.4). Stellar masses and SFR are often

inferred from galaxy broad-band photometry or nebular emission lines, while the cold gas content

may be estimated from CO or dust continuum emission. There are significant uncertainties and

inherent assumptions in estimating these physical properties from observables, and therefore it is

interesting to confront these relationships with the forward modelling predictions from theoretical

models.

3.3.1 Distribution functions in mock JWST surveys

Given the rather good agreement between our fiducial models and existing observations (shown in

Chapter 2), we can use our models to forecast the physical parameters of the populations that we

expect JWST to be able to study. In Chapter 2, we explored the detection of high-redshift galaxies

with the JWST NIRCam broad-band filters and found that the F200W filter yields the highest

number of detections across z = 4–10. Using the observed-frame luminosity calculated for this filter,

we can easily estimate which galaxies will be detectable for a survey of a given sensitivity and area.

In the results presented here, we do not include noise or other instrumental effects. We plan on

including these in a future work.

As illustrated in Chapter 2, the unprecedented sensitivity of JWST will be able to probe objects

that are several magnitudes fainter than the current detection limit of HST deep surveys. These
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objects correspond to objects with stellar masses and SFRs several orders of magnitude lower than

the current limits. In this section, we perform selections on the galaxy populations predicted by

our fiducial model using the observed-frame IR luminosity calculated for the NIRCam F200W filter

mF200W. See Fig. 13 in Chapter 2, for predicted distribution functions for observed-frame IR mag-

nitude calculated for the F200W filter and cut-offs for the detection limits and survey area. Our

calculations have taken the absorption by the intervening IGM into account. We consider three

distinct observing scenarios, including representative wide, deep, and lensed surveys. The assumed

depths and areas for these hypothetical surveys are summarized in Table 3.1, where the survey areas

are chosen to be similar to their legacy HST counterparts and the depths are estimated assuming

the use of the F200W filter. We assumed an average 10x magnification for a lensed survey on a

cluster field, and since the survey volume is inversely proportional to the magnification, we simply

assume the survey area is a 10th of what we assumed for a deep survey. For each assumed survey

area, adopting redshift slices with a width dz = 1, we also work out the critical stellar mass above

which we would expect to detect less than one galaxy in the probed volume. In reality, of course, the

upper limit on the stellar mass that will be robustly probed by JWST will be strongly affected by

field-to-field variance caused by galaxy clustering and the underlying large-scale structure, and this

will depend weakly on the precise field geometry. We plan to make detailed predictions for cosmic

variance in JWST fields in future works, but do not address this here.

Table 3.1 Summary of assumed detection limits for the NIRCam F200W filter and survey areas for
representative JWST surveys.

Survey Type Detection Limit Survey Area
Wide-field 28.6 ∼ 100 arcmin2

Deep-field 31.5 2× 2.22 arcmin2

Lensed-field 34.0 1
10 (2× 2.22) arcmin2

Fig. 3.1 shows the fraction of galaxies expected to be detected in wide, deep, and lensed JWST

surveys as a function of stellar mass, using a sliding boxcar filter of width ∆M∗ = 0.2 in stellar mass.

Stellar masses corresponding to 50 and 90% completeness for each redshift and survey configuration

can be read off from these plots. Note that the reason that the completeness does not reach a perfect

value of unity even for rather massive galaxies is that some of these massive galaxies are predicted

to be significantly attenuated by dust in our models, resulting in a large scatter in mF200W and M∗

(see Fig. 3.16–3.20).

Fig. 3.2 shows the ‘observable’ SMFs for the three survey configurations at z = 4–10. We

also include the full range of predictions and observational constraints from Duncan et al. (2014)

and Song et al. (2016) to guide the eye. We show the stellar mass where the SMF becomes 50%



66

7 8 9 10 110.0

0.2

0.4

0.6

0.8

1.0

Wide

z = 4
z = 5
z = 6
z = 7
z = 8
z = 9
z = 10

5 6 7 8 9 10 11

Deep

5 6 7 8 9 10 11

Lensed

log M *  [M⊙ ]

D
et
ec
te
d 
Fr
ac
tio

n

Figure 3.1 Fraction of galaxies detectable in wide, deep, and lensed JWST surveys from z = 4–10.
The dotted and dot-dashed lines show detection fractions of 90% and 50%.

incomplete with vertical lines, and the number density where the expected number of objects in the

survey drops below ten objects by horizontal lines. Thus, for a given survey area and depth, one

can determine where the stellar mass function will be robustly probed by JWST by considering the

part of the function that lies above the horizontal line and to the right of the vertical line of a given

colour. Similarly, Fig. 3.3 shows the ’observable’ SFRFs. We include the full range of observational

constraints from Katsianis et al. (2017b), Katsianis et al. (2017a), and Smit et al. (2012) to guide

the eye.

Although the populations that will be detected in wide-field NIRCam surveys seem to be fairly

comparable to those of existing HST deep surveys (e.g. the CANDELS Deep survey has a H-band

detection limit of mAB ∼ 27.8 (Grogin et al. 2011), see also Table 2.6 in Chapter 2), current stellar

mass and photometric redshift estimates rely heavily on observations from the Spitzer Space Tele-

scope. JWST is expected to obtain much more precise photometry in the redder bands, which will

also improve the photometric redshift measurements, as well as physical parameter estimates. More-

over, spectroscopic detections at z ∼ 4–6 from NIRSpec and MIRI will provide additional constraints

for these populations. It is also quite encouraging to see that lensed surveys will bring significant

improvements to detecting low-stellar-mass galaxies, similar to the ultra-faint dwarf galaxies found

in the local group. Our predictions also show crudely where we can expect JWST ’s very limited

field of view to cause the errorbars on the abundances of massive galaxies to become very large due

to poor sampling and field-to-field variance.

In the bottom right panel of Fig. 3.2 and 3.3, we illustrate the redshift evolution of the popu-

lations expected to be detectable in a deep-field survey. It is noteworthy that the expected stellar

mass and SFR corresponding to a given completeness limit evolves rather little from z ∼ 4–10, be-

cause our models predict that high-redshift galaxies are intrinsically brighter than their low-redshift
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counterparts of similar masses due to their overall younger stellar populations and higher SFR. In

addition to that, massive galaxies at high redshifts have higher dust-extincted luminosities due to

the lower dust content. This will be briefly discussed in §5 and further investigated in great detail

in Chapter 4.

3.3.2 Evolution of stellar mass and star formation rate distributions for galaxy popu-

lations

Fig. 3.4 shows the redshift evolution of stellar mass functions (SMFs) between z = 4–10 predicted

by the three different SF models; GK-Big2 (fiducial), GK-Big1, and KS. As shown in SPT15, all

of these models produce results that qualitatively agree with observations at z = 0. However, due

to their differences in gas depletion time (defined as the molecular gas mass divided by the star

formation rate), the predictions from these models can vary quite a lot at high redshift. As shown

in Fig. 14 of SPT15, the gas depletion time is shorter in massive galaxies at high redshift in the

GK-Big2 model because of the steeper slope of the relationship between ΣH2 and ΣSFR in dense gas

(see Fig. 1 and Eqn. 6 of SPT15).

The low-mass end of the SMFs is quite insensitive to changing the star formation recipe, while

the abundance of massive galaxies at high redshift becomes very sensitive to the scaling of the H2

consumption time. The reason for this is that star formation is regulated by stellar feedback in lower

mass galaxies and at lower redshifts, while in massive galaxies at high redshift, the time to convert

H2 into stars becomes the rate limiting factor in star formation. Similar behaviour was seen in the

response of the rest-UV LF to changes in the star formation recipe in Chapter 2. See SPT15 and

SD15 for a more detailed discussion.

Our predictions are compared to observational constraints from Duncan et al. (2014) and Song

et al. (2016). It is quite encouraging that even though our model is only calibrated to z ∼ 0

observations, predictions from our fiducial model at these high redshifts still show overall very

good agreement with these observational estimates. However, at z ∼ 4, the low-mass-end slope

is significantly steeper than that reported by Song et al. and seems to favor the Duncan et al.

observational estimates. Note that the difference between our fiducial (GK-Big2) and GK-Big1

models is the ΣSFR-ΣH2 relation adopted in the SF recipe, which in the former case steepens in H2

dense regime. The steepening feature is crucial for reproducing the current observational constraints.

The Duncan et al. (2014) and Song et al. (2016) observational estimates of the stellar mass

function show significant discrepancies with one another, particularly at the high-mass end at z ∼ 7

and the low-mass end at z ∼ 4. The Duncan et al. study is based on the CANDELS GOODS South

field, and Song et al. is based on observations from the CANDELS GOODS fields, the HUDF,
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Figure 3.2 Predicted stellar mass functions (SMFs) and their evolution with redshift, based on our
fiducial model. Results are shown for all galaxies, and for samples selected to represent wide, deep,
and lensed JWST surveys. Observational constraints from Duncan et al. (2014) and Song et al.
(2016) are shown to guide the eye. The vertical lines mark where the survey completeness reaches
50%, and the horizontal lines mark where we expect one galaxy in the probed volume. The vertical
and horizontal lines are colour coded according to the survey area and depth as shown in the legend.
See Table 3.1 for assumed survey specifications.
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Figure 3.3 Predicted star formation rate functions (SFRFs) and their evolution with redshift. Results
are shown for all galaxies, and for samples selected to represent wide, deep, and lensed JWST surveys.
Observational constraints are shown to guide the eye, as in Figure 3.5. See Table 3.1 for assumed
survey specifications.
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and other parallel fields. The main differences between their results originate from the assumed

normalization and slope of the M∗–MUV relation, which causes Duncan et al. to consistently find

higher stellar masses for galaxies than Song et al. in faint UV bins. These two studies also treat

faint objects slightly differently. Duncan et al. fitted their M∗–MUV relation to a wide stellar mass

range down to log(M∗/M�) ∼ 8, where stellar masses for galaxies with log(M∗/M�) < 9 are biased

toward higher masses, and Song et al. used a hybrid approach where high-mass galaxies are fitted

individually and lower-mass galaxies are stacked. Moreover, the Song et al. error bars only include

random uncertainties, while the Duncan et al. ones include Poison errors and photometric redshift

uncertainties.

Similarly, Fig. 3.5 shows distribution functions for star formation rate (SFRFs) and their evo-

lution across the same redshift range. Our results are compared to observational constraints by

Katsianis et al. (2017b) at z = 4, Smit et al. (2012) at z = 4–7, and Katsianis et al. (2017a) at

z = 5–8. These constraints on SFR are determined based on a conversion between UV luminosity

and SFR (e.g. Kennicutt 1998; Smit et al. 2012). The Katsianis et al. (2017b) study is based on

rest-frame UV luminosity functions from Parsa et al. (2016) and van der Burg et al. (2010), both

of which are based on a compilation of ground- and space-based deep-field observations. The Kat-

sianis et al. (2017a) results are calculated based on UV LFs presented in Bouwens et al. (2015b).

The observational constraints shown have accounted for dust attenuation. Once again, the results

from our fiducial model show good agreement with these observational constraints, and are clearly

favoured over the model with a constant H2 depletion time. Note that observational estimates of

SFR derived from UV luminosity probe a time-scale of approximately 100 Myr (Kennicutt & Evans

2012). The SFR predictions from the SAM have been averaged over 100 Myr for an appropriate

comparison.

As shown in Fig. E.1 in Appendix C, the abundance of halos rises continuously towards lower

halo mass. Our simulation routinely samples a wide range of halo masses down to the atomic cooling

limit and halo assembly histories are traced down to 100th of the root mass. The ‘flattening’ or

‘turnover’ seen at the low-mass / low-SFR end of the distribution functions in our models is a

physical prediction resulting from inefficient cooling, rather than from insufficient resolution as in

most numerical simulations. However, we note that our model does not include H2 cooling or metal

cooling below 104 K. We find that the critical stellar mass where the turnover occurs evolves mildly

over redshift, from log(M∗/M�) ∼ 4 at z ∼ 10 to log(M∗/M�) ∼ 5 at z ∼ 4, while the critical SFR

remains nearly constant at log(SFR/(M� yr−1)) ∼ −4 over this period. A cautionary note is that

these turnovers are not representing the same galaxies. Instead, each redshift is an independent

snapshot that portrays the demographics of the current galaxy population. It is also interesting to
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Figure 3.4 Predicted stellar mass functions (SMFs) and their evolution with redshift. The blue solid
line shows the results of the GK-Big2 (fiducial) model, the purple dashed line shows the GK-Big1
model, and the cyan dot-dashed line shows the KS model. Our results are compared to observational
constraints from Duncan et al. (2014), Song et al. (2016), and Stefanon et al. (2017). We see that
the GK-Big2 (fiducial) and KS model are consistent with observations, while the GK-Big1 model
does not produce enough massive galaxies. We also show the case where photoionization squelching
is turned off for our fiducial model with the blue dotted line. The differences are very subtle and
are only visible for the very lowest mass galaxies at z = 4 and 5. See text for full explanation.
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Figure 3.5 Predicted star formation rate functions (SFRFs) and their evolution with redshift. The
blue solid line shows the results of the GK-Big2 (fiducial) model, the purple dashed line shows the
GK-Big1 model, and the cyan dot-dashed line shows the KS model. Our results are compared to the
Katsianis et al. (2017b) study, which is based on observations from Parsa et al. (2016) and van der
Burg et al. (2010), and the Katsianis et al. (2017a) compilation, which is calculated based on UV
LFs from Bouwens et al. (2015b), and Smit et al. (2012). Once again, the GK-Big2 (fiducial) and KS
model are consistent with observations, and the GK-Big1 model does not produce enough rapidly
star-forming galaxies. We also show the case where photoionization squelching is turned off for our
fiducial model with the blue dotted line. The differences are very subtle and are only visible for the
very lowest mass galaxies at z = 4 and 5. See text for full explanation.
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note that the SFR function is closer to a pure power law at high redshift (z & 6), and begins to

develop an exponential cut-off at high SFR at z ∼ 5.

For both SMF and SFRF predictions, we have experimented with turning off the feedback from

photoionization squelching in our fiducial model, shown as a dotted line in Fig. 3.4 and 3.5. These

results show that, at least with the simple implementation adopted in our model, the effect of

squelching is negligible across galaxies of all masses, even at z = 4. This is because the characteristic

mass from the Okamoto et al. (2008) simulations is getting very close to the atomic cooling limit.

Thus only the very low mass halos are affected by squelching. Additionally, we have tested the

effect of switching off AGN feedback in our models, and find that it has no discernible effect on the

predictions in this redshift range (see the discussion in Chapter 2).

In a similar spirit as the experiments done in Chapter 2, we systematically varied the stellar

feedback slope αrh and the SF time-scale τ∗,0 within a sensible range in an attempt to quantify the

effects of these uncertainties in the key model parameters. Here, we show low-mass and massive

galaxy populations separately in Fig. 3.6 and Fig. 3.7, respectively.

We showed in Chapter 2 that the low rest-frame UV luminosity galaxy populations are very

sensitive to the efficiency of stellar driven winds. Here, we show a similar effect for stellar mass,

where we explore four values of αrh = 2.0, 2.4, 3.2, and 3.6, where larger values of αrh imply a steeper

dependence of mass loading factor on galaxy circular velocity, resulting in more gas being ejected from

galaxies in low mass halos (see §2.3 in Chapter 2 for details). Note that these alternative values will

not necessarily reproduce observations at z ∼ 0; we are adopting these values as an attempt to explore

alternative scenarios where the strength of feedback may have been stronger or weaker at early

times. In our model, feedback from stellar winds is modelled using a physically motivated, redshift-

independent recipe. This feedback mechanism could be sensitive to many intertwined physical

properties of galaxies, which could lead indirectly to an effective evolution with cosmic time. The

feedback efficiency is poorly constrained especially in low-mass galaxies and at high redshifts due

to the challenges of obtaining direct observational constraints. Henceforth, without precluding

the possibility of having an effectively evolving αrh, we have experimented with adopting different

constant values of αrh = 2.8±0.4 and ±0.8. On the other hand, τ∗,0 effectively acts as a normalizing

factor for the SF relation, which converts the surface density of molecular hydrogen ΣH2
to the

surface density of SFR ΣSFR (see §2.1 in Chapter 2 for details). Larger τ∗,0 represents a longer SF

time-scale or, effectively, a longer gas depletion time-scale, yielding a lower star formation rate per

unit surface H2 density, and vice versa. To explore the effect of uncertainties in the observationally-

motivated, empirical SF recipe, we experiment with increasing and decreasing τ∗,0 by a factor of two

from its fiducial value of unity (which corresponds to the observed normalization).
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In Fig. 3.6, we see that the low-mass-end slope αrh becomes steeper when αrh is decreased to 2.4

and 2.0, due to the less efficient mass ejection by stellar feedback. The slope flattens when αrh is

increased to 3.2 and 3.6. In the least massive populations, we see a shift in the ‘turnover’ mass when

we vary the feedback efficiency. This is because the turnover in our models always occurs roughly at

a fixed halo circular velocity (temperature) corresponding to the atomic cooling limit, but changing

the feedback prescription changes the relationship between halo mass or velocity and galaxy stellar

mass. We also find that the low-mass populations are insensitive to the adopted value of τ∗,0 (see

SPT15 for a detailed discussion of the physical reasons for this).

Similarly, in Fig. 3.7, we explore the impact of adopting a range of values for αrh and τ∗,0 on

the massive galaxy populations. In this regime, the results are more degenerate, showing significant

dependence on both parameters, although SF time-scale has a stronger effect on more massive

galaxies and the SN feedback has a greater effect on low-mass objects. We note that tuning τ*,0 alone

to alter the bright end prediction will result in a change in predicted gas fraction. Thus observational

constraints on gas content in galaxies at high redshift can help to break these degeneracies.

As noted before, the current observational constraints on stellar masses of faint objects at high

redshift are highly uncertain, as reflected in the discrepancies in current estimates in the litera-

ture. Our models can easily accommodate the range of scenarios presented by current observations

with variations in parameters that are well within the observational and theoretical uncertainties.

Our results illustrate how future measurements with JWST and wide-field surveys with LSST and

WFIRST will be complementary in constraining different physical processes in galaxy formation at

extreme redshifts.

3.3.3 Comparison with other models

In this subsection, we compare the SMFs and SFRFs predicted by our fiducial model to a rep-

resentative collection of theoretical predictions, including empirical models, semi-analytic models,

and cosmological hydrodynamic simulations from the literature. First, we very briefly summarize

the specifications of these models and simulations. We note that these models adopt different cos-

mological parameters, very different approaches for modelling the baryonic physics, and different

approaches for calibration. We compare the results at face value without attempting to correct for

any of these differences. Furthermore, providing the full details about these models or attempting

to understand the sources of differences in their predictions is beyond the scope of this work. We

refer the reader to the included references for each of these simulations for full details.

A number of numerical simulations are included in our comparison; BlueTides is a large-volume

cosmological hydrodynamic simulation that focuses on the high-redshift universe, with a box that
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Figure 3.6 The low-mass end of the predicted stellar mass functions (SMFs) and their evolution
with redshift. The blue solid line shows the results from our fiducial model. Red lines represent
the cases where we alter the SF time-scale τ∗,0, where dashed and dot-dashed lines are τ∗,0 = 0.5
and τ∗,0 = 2.0, respectively. The light-blue lines show cases where the mass-loading factor of stellar
driven winds αrh is altered, where αrh = 2.8±0.4 (dot-dashed) and ±0.8 (dashed). Blue dot-dashed
lines show the cases where we let αrh = 2.4 (above) and 3.2 (below), and light blue dashed lines show
the cases where we let αrh = 2.0 (above) and 3.6 (below). Red lines represent the cases where we
increase or decrease τ∗,0 by a factor of 2 from its fiducial value of unity; dashed and dot-dashed lines
are τ∗,0 = 0.5 and τ∗,0 = 2.0, respectively. The vertical dashed lines represent survey completeness
of 50% for example JWST surveys similar to legacyHSTcounterparts; see Table 3.1 for details.
The last panel summarizes the evolution of the low-mass end of the SMFs predicted by the fiducial
model. We see that both the slope of the low-mass SMF and the location of the turnover are strongly
affected by the model for stellar driven winds, but are not significantly affected by variations in the
SF time-scale.
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Figure 3.7 The massive end of the predicted stellar mass functions (SMFs) and their evolution with
redshift. See caption of Fig. 3.6 for legend details. The gray circle and open square symbols show
observational constraints from Duncan et al. (2014) and Song et al. (2016), respectively. The last
panel summarizes the evolution of the massive end of the SMFs predicted by the fiducial model.
Varying the SF time-scale has the greatest impact on very massive galaxies at high redshift, while
varying the stellar wind model has a smaller effect in this regime.



77

is 400 Mpc h−1 on a side, resolving galaxies with M∗ & 108M� towards the end of their simulation,

which stops at z ∼ 8. They presented predictions for both SMFs and SFRFs (Wilkins et al.

2017). The Illustris simulation has a box 106.5 Mpc on a side with dark matter particle of mass

6.3 × 106M� (Genel et al. 2014). The Evolution and Assembly of Galaxies and ther Environment

(Eagle) simulations is a suite of cosmological hydrodynamical simulations of simulated volumes

ranging from 25 to 100 cMpc at various mass resolution (Schaye et al. 2015). In our comparison, we

used the stellar mass functions from their Ref-L100N1504 and Recal-L025N0752 runs, which have

box sizes of 100 cMpc and 25 cMpc on a side and dark matter particle mass of 1.21× 106 M� and

9.70× 106 M�, respectively (Furlong et al. 2015). The Feedback in Realistic Environments (FIRE)

simulations are a suite of ‘zoom-in’ simulations extracted from cosmological volume simulations, for

which regions are ‘resimulated’ at higher resolution with detailed physical processes incorporated

(Hopkins et al. 2014). We use SMFs from the FIRE-2 simulations (Hopkins et al. 2018; Ma et al.

2018b), which are obtained by weighting the results from the zoom-ins with cosmological halo mass

functions. Due to space limitations, other simulations, such as the Renaissance Simulations (O’Shea

et al. 2015), the FirstLight project (Ceverino, Glover, & Klessen 2017; Ceverino, Klessen, & Glover

2018, 2019), and SPHYNX (Cabezón, Garćıa-Senz, & Figueira 2017), as well as semi-analytic model

results from Dayal et al. (2014), are omitted from our comparison.

We also compare with predictions from the Dark-ages Reionization and Galaxy formation Ob-

servables from Numerical Simulations (DRAGONS) project, which consists of a SAM meraxes

(Mutch et al. 2016) that is built on top of the Tiamat suite of N -body simulations of dark matter

particle of mass ∼ 2.64 × 106 h−1 Mpc (Poole et al. 2016). We show the SMFs presented in Qin

et al. (2017).

We include comparisons with several sub-halo abundance matching (SHAM), empirical, and

semi-empirical models. The UniverseMachine (Behroozi et al. 2019) obtained dark matter halo

populations and properties from the Bolshoi-Planck dark matter simulations (Klypin et al. 2016;

Rodŕıguez-Puebla et al. 2016), which simulate a volume of 250 Mpc h−1 on a side containing 20483

dark matter particles of 1.5 × 108M�. Within these dark matter halos, galaxy populations are

constructed to fit the SFR–vMpeak relation, quenching–vMpeak relation, quenching/assembly history

correlation in the local universe (z ∼ 0), and dust content at high redshifts (z ∼ 4–10) from a wide

range of observational constraints. In this work we use the UniverseMachine Early Data Release

(EDR) catalogues1. The Tacchella et al. (2018) model uses dark halo merger trees extracted from

the Copernicus complexio Low Resolution (colour) simulations (Hellwing et al. 2016; Sawala et al.

2016), which contain 16203 dark matter particles of 6.196 × 106 M�h
−1 in a periodic volume of

1http://behroozi.users.hpc.arizona.edu/UniverseMachine/EDR/umachine-edr.tar.gz
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70.4 Mpc h−1 on a side. The only observational constraint this model is calibrated to is the UV

LF observed at z = 4, where the star-formation efficiency is treated as a free parameter. Their

results are then checked against the measured cosmic star formation rate, MUV–M∗ relation, stellar

mass function, etc. The JADES Extragalactic Ultra-deep Artificial Realization (JAGUAR; Williams

et al. 2018) model provides mock catalogues specifically for upcoming JWST observations. JAGUAR

makes no assumptions about the underlying halo populations. Instead, it directly maps observable

properties, such as MUV, to a number of physical properties using simple relations from observations,

such as the MUV–M∗ relation, βUV–MUV relation, and spectroscopic properties using SED fitting to

3D-HST catalogues (Skelton et al. 2014; Momcheva et al. 2016). The semi-empirical model Emerge

(Moster et al. 2018) is very similar to the UniverseMachine models but is not included in our

comparison, again for reasons of space limitations.

In Fig. 3.8, we compare our predicted SMFs to the predictions of Illustris, Eagle, DRAGONS,

BlueTides, UniverseMachine, Tacchella et al., and Williams et al.. We note that some of

these simulated SMFs are based on the Salpeter (1955) IMF and the Kroupa (2001) IMF, and

are converted to Chabrier IMF by adding -0.21 and -0.03 dex, respectively (Madau & Dickinson

2014). In general, most of these predictions are within 0.5 dex from our predictions within the mass

range where objects are well resolved (in the low-mass end) and well sampled (in the massive end)

in the given simulation. We also note that the excellent agreement for M∗ & 9 at z ∼ 4–7 may

be to some extent by construction, since all simulations are matching the available observational

constraints either actively (by calibration) or passively (used as crosschecks). Our models agree quite

well overall with the predictions from numerical hydrodynamic simulations, including BlueTides,

Illustris, and FIRE, over a broad stellar mass and redshift range. It is intriguing that these models,

which produce converging predictions on the massive end, are producing rather different predictions

for the low-mass populations. For instance, the most optimistic model, DRAGONS, and the least

optimistic model, Williams et al. predict the abundance of M∗ = 107M� galaxies differs by > 1 dex

at z = 7, and the difference becomes even larger at low redshifts. The comparison also shows that

there is a shortfall of massive objects in the JAGUAR predictions. Note that in this redshift range,

the Williams et al. model does not explicitly match their SMFs to observations, but rather forward

modelled them to match UV LFs adopting simple assumptions for the M∗–MUV and βUV–MUV

relations based on local observations.

The SMFs at high redshift predicted by the UniverseMachine tend to have a higher nor-

malization than previous results due to improved treatment of star formation history priors, which

require more stellar mass especially at z ∼ 8 (P. Behroozi, private communication). On the other

hand, the lower mass limit in halo mass in the UniverseMachine is ∼ 1010.5–1010.7M� below
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which merger trees are not sufficiently resolved to result in accurate galaxy properties. We note

that both the Tacchella et al. model and the UniverseMachine are not explicitly calibrated to

match observed SMF constraints at z > 4. Due to the specific set of assumptions and choices made

in their models, though both of these models are able to reproduce observations in the low-redshift

universe, their predictions in the poorly constrained high-redshift differ significantly. Investigating

and understanding these differences in detail is beyond the scope of this work, and we refer the

reader to the relevant papers for full details.

Similarly, in Fig. 3.9, we compare our predicted SFRFs to Illustris, BlueTides, UniverseMa-

chine, and Tacchella et al.. We note that some of the SFRs predicted by these simulations are

based on the Salpeter (1955) IMF and the Kroupa (2001) IMF, and are converted to Chabrier IMF

by adding -0.20 and -0.03 dex, respectively, for this comparison (Madau & Dickinson 2014). At

first glance, predictions by Illustris and Tacchella et al. seem to agree with predictions from our

fiducial model quite well for the abundance of galaxies with SFR ∼ 0.1 M� yr−1 across redshifts.

However, they diverge for SFR & 1 M� yr−1. The SFR predicted by UniverseMachine at z . 7

are consistently lower than other predictions by ∼ 0.5 dex and are higher at z & 9 for similar reasons

to those noted above.

In summary, it is encouraging that physically motivated, a priori models make similar predic-

tions for these fundamental quantities at redshifts where they were not calibrated to observations,

in spite of containing very different modelling approaches to baryonic processes. The differences

between these models and empirical and semi-empirical models may yield interesting insights into

the relationship between galaxy observable properties and halo properties. We pursue this further

in a later section of this chapter.

3.3.4 Cold gas content of high-redshift galaxies

We learned that both cold gas and molecular gas are important tracers for star formation activity

from observing nearby galaxies (e.g. Kennicutt 1998; Bigiel et al. 2008). Empirical relations based

on these observations are then extensively incorporated in galaxy formation models, including both

conventional numerical simulations and semi-analytic models. Therefore, in addition to M∗ and

SFR, the distributions of cold gas mass (Mcold) and molecular gas mass (MH2) and their evolution

can also provide important constraints for disambiguating stellar feedback processes. Historically,

it has been somewhat challenging for models to simultaneously match the observed gas fraction,

stellar fraction, and stellar metallicity (see SD15 for a detailed discussion).

The gas depletion time-scale is the time-scale for converting all the mass in the cold gas reservoir

into stars. The three SF recipes adopted in our SAM can be effectively understood as different
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Figure 3.8 Redshift evolution of the SMF between z = 4–10 predicted by our fiducial model, com-
pared to a compilation of other theoretical studies, including empirical models UniverseMachine
(Behroozi et al. 2019), Tacchella et al. (2018), and JAGUAR (Williams et al. 2018); numerical sim-
ulations from Illustris (Genel et al. 2014), Eagle (Furlong et al. 2015), and BlueTides (Wilkins
et al. 2017), and semi-analytic models from DRAGONS (Qin et al. 2017). See text for details.
Overall, the agreement between different methods is fairly good.
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Figure 3.9 Redshift evolution of the SFRF between z = 4−10 predicted by our fiducial model, com-
pared to a compilation of other theoretical studies, including empirical models UniverseMachine
(Behroozi et al. 2019) and Tacchella et al. (2018), numerical simulations from Illustris (Genel et al.
2014), Eagle (Furlong et al. 2015), BlueTides (Wilkins et al. 2017). See text for details.
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redshift evolution scenarios for gas depletion time. For instance, the GK-Big1 model corresponds to

a constant H2 depletion time and the GK-Big2 model predicts a gas depletion time that changes with

time as the galactic discs gradually become less dense over time. The evolution of these quantities

predicted by our models at z ∼ 0–6 have been studied in depth in SPT15 and PST14, which found

that these models produce results that are in qualitative agreement with observed evolution in

galaxies at z . 6. In this work, we extend the investigation to z = 10. Though constraints on the

gas content of galaxies at such extreme redshifts are not currently available, future observational

programs and observational facilities may be able to obtain them. Moreover, examining the changes

in the predictions for gas content provides complementary insights into our model results.

In this subsection, we show and compare the one-point distribution functions of cold gas and

molecular gas masses among our three star formation models. Throughout this work, cold gas mass

is defined as Mcold = 1.4(MHI + MHII + MH2
), where the factor of 1.4 is the correction for the

mass of He. In Fig. 3.10, we compare the cold gas mass functions (CGMF) for galaxies across the

three SF models. Note that these models are calibrated to match the SMF, gas fraction, and other

observables at z ∼ 0. Overall, there are relatively more low-Mcold galaxies in the H2-based SF

models (GK-Big1 and Fiducial) compared to the Mcold-based KS model due to the more efficient

scaling between cold gas to SF in low-mass halos (see Fig. 1 in SPT15). Given that the low-M∗ and

low-SFR galaxy populations are nearly identical as shown in Fig. 3.4 and 3.5, we can infer that gas

depletion has been much slower in low-mass galaxies in H2-based models. The difference narrows

towards low redshift. This is largely due to the adopted metallicity dependent formation efficiency

of H2 in the GK-based models — H2 formation is less efficient in low-mass galaxies at high redshifts,

because of the lower metallicities in both cases.

In Fig. 3.11, we show the H2 mass function (H2MF) and take a closer look at the difference

between the Fiducial and the GK-Big1 models. Note that predictions for molecular gas content are

only available in models with multiphase gas partitioning (the ones labelled GK). Recall that these

two models are very similar, except that the SF relation slope in the fiducial model steepens to ∼ 2

at higher surface density, as suggested by some observational evidence, while it remains constant in

the GK-Big1 model. Thus, the differences in H2 mass between these models allow us to indirectly

probe the dependence of star formation on H2 density. We see that the fiducial model has fewer

galaxies with high H2 content at all redshifts studied, but the difference appears relatively subtle.

We further investigate the differences in these models by looking into the cold gas fraction, which

is defined as fgas ≡ Mcold/M∗, shown in Fig. 3.12. For each model, we show the scaling relation

between fgas and M∗ for all three of our SF models, where the solid lines mark the median and the

dashed lines mark the 16th and 84th percentile. As mentioned before, the H2-based models have
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significantly higher gas fractions especially in low-M∗ galaxies, because of the low H2 content of

these galaxies and resulting low SF efficiency. Similarly, we also show the molecular gas fraction,

defined as fH2
≡MH2

/M∗, shown in Fig. 3.13. This figure perhaps most clearly illustrates how the

fiducial and GK-Big1 models differ.

As discussed previously, and shown in SPT15, high M∗ galaxies have longer H2 depletion times

(lower efficiencies for converting molecular gas into stars) in the GK-Big1 model than in the fiducial

model at high redshift, and the time-scale for converting H2 into stars is the rate limiting factor for

forming stars in these galaxies. Therefore, we see much larger reservoirs of ‘leftover’ molecular gas

in the GK-Big1 model, also explaining why it fails to produce as many galaxies with large stellar

masses at high redshift.

To briefly summarize this entire section, we find that SMFs and SFRFs predicted by our fiducial

model agree well with available observations, within the large observational uncertainties. In both

cases, the choice of star formation recipe mainly affects the most massive and rapidly star-forming

galaxies. Varying the efficiency of stellar feedback shifts the location of the low-mass turnover

and changes the slope of the low-mass end of the SMF. Varying the star formation time-scale

(normalization of the SF recipe, or gas depletion time) mainly impacts the massive end of the SMF

at very high redshifts, where star formation has not yet become self-regulated. The cold gas and H2

content of high redshift galaxies is quite sensitive to the details of the star formation recipe, and can

help break degeneracies between star formation efficiency and stellar driven wind parameters. For

example, the cold gas fraction can discriminate between a model with high star formation efficiency

and strong ejective feedback, vs. a model with low star formation efficiency and weaker feedback.

3.4 Scaling Relations for High-Redshift Galaxy Populations

In this section, we investigate the scaling relations among galaxy properties for the high-redshift

populations predicted by our fiducial model that are expected to be detected by JWST.

In Fig. 3.14 to 3.20, we present the distributions between every permutation among a few selected

photometric and physical properties at z = 6, 8, and 10, respectively, for galaxies that are detectable

given the very optimistic detection limit for lensed surveys (mF200W . 34.0). These plots are pre-

pared using the corner.py module provided by Foreman-Mackey (2016). Plots for other redshifts

are omitted to avoid clutter and are made available online. The properties included here are halo

mass (MH), scale radius of the stellar disc (R∗), cold gas metallicity (Zcold), SFR, M∗, dust atten-

uated rest-frame UV luminosity (MUV), and observed-frame IR magnitude in the NIRCam F200W

filter mF200W. The diagonal panels show one-dimensional histograms for the property labelled on
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Figure 3.10 Predicted distribution functions for cold gas Mcold at z = 4, 6, 8, and 10. The blue solid
line shows the results of the GK-Big2 (fiducial) model, the purple dashed line shows the GK-Big1
model, and the cyan dot-dashed line shows the KS model. While these models all made very similar
predictions for the low-mass end of the SMF, they make rather different predictions for the cold gas
mass function at low gas masses.
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Figure 3.11 Predicted distribution functions for molecular hydrogen MH2 at z = 4, 6, 8, and 10.
The blue solid line shows the results of the GK-Big2 (fiducial) model and the purple dashed line
shows the GK-Big1 model. These models yielded very different predictions for the SMF, but predict
similar MH2 mass functions.
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at z = 4, 6, 8, and 10. The solid line marks the median and the dashed lines mark the 16th and 84th
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the corresponding x-axis, with the 16th, 50th, and 84th percentiles of the distribution marked by the

vertical lines. Each of the off-diagonal panels shows the distribution between two properties using a

two-dimensional hybrid histogram-scatter plot, where the 2D histograms are weighted by the halo

abundances. Objects with abundances that fall below the 16th percentile are plotted as individual

points. We also mark the detection limits assumed for JWST wide surveys (mF200W ∼ 28.6) and

deep surveys (mF200W ∼ 31.5) in these plots. Note that the turnovers in the histogram for halo mass

and other quantities are not from the resolution limit of our model, but rather due to the intrinsic

scatter in galaxy and halo properties at the detection limit.

These diagrams can be used in several ways. One way is for observers to be able to quickly

estimate the range of expected physical properties for galaxies with a given observed-frame magni-

tude. To use the plots in this way, one can look across the columns at a given value of mF200W.

Alternatively, simulators or modellers can use them to estimate the expected physical and observable

properties of galaxies hosted by halos of a given mass. To use the plot in this way, one can look up

the rows at a given value of MH. In addition to the normalization and slope of the scaling relations

between various quantities, the expected scatter in different quantities is also very important. We

notice that some relations (such as stellar mass vs. SFR) are very tight, while others (such as all

relations with disc size), show almost no correlation. Some relations are linear and monotonic, while

others have a break (such as halo mass vs. stellar mass, SFR, and rest-UV luminosity). These

scaling relations can also be used to guide and aid in the comparison with semi-empirical models.

We see fairly tight correlations between mF200W and MUV, SFR, and M∗. We track the median

of these relations and their redshift evolution, and find that they remain linear and evolve steadily

between z = 4–10. Fitting functions for selected scaling relations are presented in Table D.1 in

Appendix D. Note that the correlations are disrupted in the bright, massive populations due to the

effect of dust attenuation, which is not accounted for in the fitting. The median values of MUV,

SFR, and M∗ specifically corresponding to the wide- and deep-field detection limits across redshifts

are then presented in Table 3.2. These corresponding values are also marked in Fig. 3.16, 3.18, and

3.20 with lines of matching colour and style.

As illustrated in the last panel of Fig. 3.2 and 3.3, it is interesting to note that the limiting

M∗ and SFR for a given observed-frame detection limit seems to be evolving only slightly across

z = 4–10. Intuitively, one would expect a more rapid evolution towards higher M∗ and SFR

at higher redshift, because of the dimming due to the larger luminosity distances. However, our

results demonstrate otherwise. As shown in Table 3.2, for galaxies with a certain observed-frame

IR magnitude, high-redshift galaxies seem to have higher rest-frame UV luminosities, lower stellar

masses, and lower SFRs compared to their low-redshift counterparts. Equivalently, we can say that
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galaxies at high redshift are intrinsically brighter than their low-redshift counterparts of similar

rest-frame UV luminosities, stellar masses, or SFRs (see also Fig. 3.24). This effect is apparently

nearly sufficient to cancel out the dimming effect.

Table 3.2 MUV, M∗, and SFR for galaxies at the detection limit of a representative JWST wide
survey (mF200W,lim = 28.6) and deep survey (mF200W,lim = 31.5).

MUV logM∗ [M�] log SFR [M� yr−1]

z Wide | Deep Wide | Deep Wide | Deep

4 -17.03 | -14.40 7.92 | 6.75 -0.73 | -1.82
5 -17.76 | -15.10 7.99 | 6.83 -0.42 | -1.53
6 -17.97 | -15.32 7.92 | 6.76 -0.32 | -1.43
7 -18.11 | -15.47 7.84 | 6.68 -0.27 | -1.38
8 -18.23 | -15.56 7.78 | 6.61 -0.21 | -1.35
9 -18.34 | -15.65 7.69 | 6.53 -0.22 | -1.36
10 -18.32 | -15.68 7.57 | 6.44 -0.27 | -1.39

3.5 Redshift Evolution of Scaling Relations

In this section, we focus on the redshift evolution of scaling relations and other physical properties

across z = 4–10. In Fig. 3.21, we show the stellar-to-halo mass relation (SHMR) predicted by our

fiducial model and compare it to predictions from other models, including semi-empirical model

predictions from Tacchella et al. and UniverseMachine. The Tacchella et al. model assumed

a Salpeter IMF, and as above we have applied a correction to the stellar masses throughout this

section to make them more appropriately comparable to a Chabrier IMF, used in our work. For

our predictions, we show the median and the intrinsic scatter of the distributions (16th and 84th

percentiles). For the Tacchella et al. and UniverseMachine model outputs, the statistical errors

are shown. In the last panel we show the median of the relations predicted at z = 4, 7, and 10 to

highlight the evolution.

Note that Tacchella et al. assumed a WMAP-7 cosmology, while UniverseMachine assumes

Planck 2015 cosmology that is consistent with the one adopted in this work. As shown in Fig. E.1 in

Appendix C, changing from the WMAP-7 to Planck15 cosmology increases the abundance of halos

across all masses, and thus effectively shifts the halo occupation function. Thus halos of the same

mass must contain galaxies of lower stellar mass in the Planck15 than in WMAP-7 cosmology. It is

intriguing that the results from these models are very consistent at z = 8 and 9, but then diverge

substantially at lower redshift. We speculate that this is due to both the differences in assumed

cosmology and in the observational constraints used by these models. As shown in the lower panel

of Fig. E.1, as we move from the legacy WMAP cosmology to the more recent Planck cosmology,
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Figure 3.14 We show relations between halo mass MH, stellar disc scale radius R∗, cold gas phase
metallicity Zcold, SFR, stellar mass M∗, rest-frame MUV (with dust attenuation), and mF200W at
z = 4 for galaxies above the detection limit of JWST lensed surveys (mF200W . 34.0) predicted by
the fiducial model. All masses are in solar units and R∗ is in units of physical kpc. The diagonal
panels show histograms for the quantities marked on the corresponding x-axis, where the vertical
dashed lines mark the 16th, 50th, and 84th percentiles. The off-diagonal panels show the distribution
between two properties using a two-dimensional hybrid histogram-scatter plot, which is colour-coded
for the relative object abundances among the bins. The contours mark the 16th, 50th, and 84th
percentiles, while objects falling below the 16th percentile are plotted as individual points. The
detection limits for JWST wide- and deep-field observations are marked with a cyan dot-dashed
line and a purple dashed line, respectively. The values for M∗, SFR, and MUV corresponding to
these detection limits are marked with matching styles (see Table 3.2). The axes of all quantities
are oriented such that brighter, more massive, larger objects are to the top or right of the plots, and
faint, low-mass, compact objects are to the bottom or left of the plots.
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Figure 3.15 Same as Fig. 3.14 but for galaxies at z = 5.
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Figure 3.16 Same as Fig. 3.14 but for galaxies at z = 6.
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Figure 3.17 Same as Fig. 3.14 but for galaxies at z = 7.
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Figure 3.18 Same as Fig. 3.14 but for galaxies at z = 8.
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Figure 3.19 Same as Fig. 3.14 but for galaxies at z = 9.
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Figure 3.20 Same as Fig. 3.14 but for galaxies at z = 10.
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the fractional difference in number density of halos in the mass range of interest is smallest at

z = 10, and later increases rapidly towards lower redshifts. This effectively changes the underlying

halo populations assumed for the predicted SHMRs and ultimately shifts the relation horizontally.

Moreover, a change in cosmology leads to different accretion rates for dark matter halos, which both

of these models depend on. On the other hand, as shown in Fig. 3.8, the predicted SMFs from

these models seem to be in good agreement at z & 8 but the predictions become quite different at

z = 4, with the Tacchella et al. model predicting ∼ 0.5 dex more galaxies than UniverseMachine.

This discrepancy is a result of the differences in observational constraints at low redshift used for

calibration and the assumptions made in these models (see explanation in Section 3.3.3).

In addition to the empirical models, we compare our results to the FIRE-2 simulations (Ma et al.

2018b) and to the clustering analysis by Harikane et al. (2016). Ma et al. reported both M∗ and

Mh for 15 galaxies at the end of the simulations (z = 5) and their progenitor halos at z = 10. The

Harikane et al. analysis is based on 10,381 Lyman break galaxies (LBGs) at z ∼ 4–7 identified in

various legacy surveys. We also show the evolution of the SHMR at z = 4, 7, and 10, and compared

that to abundance matching result at z = 0 from Rodŕıguez-Puebla et al. (2017). Our predictions

for the SMHM relation are remarkably similar to the FIRE results. They are consistent with the

Harikane et al. results at z ∼ 6 and z ∼ 7, but diverge by an increasing amount at z ∼ 5 and

z ∼ 4. It is interesting that the clustering-based Harikane et al. results are more consistent with

UniverseMachine.

In Fig. 3.22, we compare the evolution of the SHMR for a specific range of observed galaxies with

MUV = −21 ± 0.25 as presented in Finkelstein et al. (2015b). The halo masses for these observed

galaxies are estimated using abundance matching with halo populations assuming the WMAP-7

cosmology. Similarly, galaxies predicted by our model and the UniverseMachine that satisfy

the same criteria are selected for comparison. It is quite intriguing that abundance matching and

empirical models indicate an increasing trend out to higher redshift, while our physically motivated

model predicts the opposite. This highlights an interesting open question that will be addressed by

future JWST observations.

Similarly, in Fig. 3.23, we show the evolution of the ratio between the stellar disc radius and the

virial radius of the host halo (stellar-to-halo radius ratio, SRHR) for the bright (MUV = −21.0±0.5)

and the faint (MUV = −15.0 ± 0.5) populations predicted by our models. These predictions are

compared to observations between z ∼ 4–8 from Shibuya et al. (2015). Instead of showing individual

measurements, we show the approximate median and uncertainties R∗/RH ≈ 0.019+0.21
−0.09. The radius

shown for our model is the 3D half-stellar mass radius, which is expected to be slightly larger than the

projected, rest-UV effective radius measured by observations. The rather simple relation adopted
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in our model is in good agreement with the observations out to z ∼ 8. This highlights another

interesting science question that will be elucidated by JWST observations.

In Fig. 3.24 we show a side by side comparison of the M∗ −MUV and M∗−sSFR relation at

z = 4, 6, 8, and 10, compared with the relations obtained from or assumed in Tacchella et al. and

UniverseMachine (Behroozi et al. 2019). Using the linear fit we found for the M∗−SFR relation,

we also label the x-axis with the value of SFR corresponding to the given M∗. We find that sSFR

evolves quite rapidly as a function of redshift. These models agree quite well at z = 4 but then

diverge at high redshifts. The pronounced differences at high stellar masses arise from our different

treatments of dust attenuation. We can see also the different ranges in halo mass spanned by the

Tacchella et al. model and UniverseMachine models, which are due to their use of numerical

N -body simulations, which suffer from limited mass resolution and volume. Our predictions span

the largest dynamical range, because of our use of analytic halo mass functions calibrated to multiple

simulations with varying resolution and volume.

3.6 Discussion

In this section, we discuss some caveats and uncertainties in our modelling, discuss our results in

the context of other results in the literature, and present an outlook for future observations beyond

JWST.

3.6.1 Interplay between galaxy formation and cosmology

The details of when galaxies form and how quickly they evolve are somewhat sensitive to the adopted

cosmology and primordial power spectrum. The estimated values of the cosmological parameters

have evolved significantly throughout the past few years. For instance, the matter density parameter

Ωm measured by the Planck Collaboration (2014, 2016a) decreased significantly from previous mea-

surement by WMAP (Komatsu et al. 2009, 2011; Hinshaw et al. 2013). This has non-trivial effects

on the dark matter halo demographics (see Fig. E.1 in Appendix C). In this work, we have updated

the cosmological parameters adopted in our model to the more up-to-date values reported by the

Planck Collaboration in 2016, as compared to the WMAP-5 values used in previous work with these

models. As Ωm increases, the abundance of dark matter halos found in cosmological N -body sim-

ulations increases across all mass scales. In order to continue to match the same observed galaxy

abundances, the relationship between galaxy luminosity or stellar mass and halo mass has to shift,

such that the stellar mass occupying a halo of a given mass must decrease. In physically based

models of galaxy formation such as our SAMs, this is accomplished by changing the efficiency of
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Figure 3.21 Stellar-to-halo mass ratio (SHMR) predicted by our fiducial model (dark blue). The
solid line shows the median, and the dashed lines show the 16th and 84th percentiles. Our results
are compared to semi-emperical models from Behroozi et al. (2019) and Tacchella et al. (2018). The
error bars represent the statistical errors in these models. The red cross symbols show predictions
from the FIRE-2 simulations (Ma et al. 2018b) and observational constraints from the clustering
analysis by Harikane et al. (2016). The last panel show an overlay of the SHMR median predicted at
z = 4, 7, and 10 from our model. We also show abundance matching results from Rodŕıguez-Puebla
et al. (2017) at z = 0, which is used in the calibration of our model.
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Figure 3.22 SHMR as a function of redshift predicted by our fiducial model for galaxies with MUV =
−21 ± 0.25 compared to observational estimates from Finkelstein et al. (2015b) and the empirical
model UniverseMachine (Behroozi et al. 2019). The blue solid line shows the median from our
model, and the dashed lines mark the 16th and 84th percentiles. The error bars for Finkelstein
et al. and UniverseMachine represent observational uncertainties and statistical errors. Our
models predict that the SHMR decreases slightly with increasing redshift for these galaxies, while
the observational estimates and the UniverseMachine predict an increase of this quantity back in
time.
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Figure 3.23 The redshift evolution of the stellar-to-halo size ratio predicted by our model, where
the results for bright (MUV = −21 ± 0.5, purple) and faint (MUV = −15 ± 0.5, blue) galaxies are
presented separately. The error bars represent the intrinsic scatter of the properties, where the upper
and lower limits mark the 84th and 16th percentile, respectively. The gray band approximates the
abundance matching results presented by (Shibuya et al. 2015) (z ∼ 4–8). The radius shown for our
model is the 3D half-stellar mass radius, which is expected to be slightly larger than the projected,
rest-UV effective radius measured by observations. It is intriguing that the relationship predicted
by our model is in good agreement with the observational constraints out to z ∼ 8.
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Figure 3.24 The redshift evolution of MUV (top row: unattenuated; middle row: with dust atten-
uation) and sSFR predicted by our fiducial model (dark blue), where the 16th, 50th, and 84th
percentiles are shown. Predictions from UniverseMachine (Behroozi et al. 2019) and Tacchella
et al. (2018) are also shown in cyan and purple, respectively. The error bars represent the sta-
tistical errors on these models. This figure illustrates that there are significant differences in the
assumed and predicted scaling relations both between different semi-empirical models and between
semi-analytic and semi-empirical models.
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stellar feedback and/or the star formation efficiency. We provide details on the changes in parameter

values that were required in our models in order to recalibrate to the Planck cosmology in Chapter

2. It would seem to provide indirect support for the ΛCDM cosmology and hierarchical structure

formation paradigm that implementing baryonic processes in a physically motivated manner is able

to qualitatively reproduce the observed assembly of stellar mass from z ∼ 8 to the present day.

3.6.2 Halo mass functions and merger histories

Understanding how gravitationally bound dark matter halos form and evolve over cosmic time

provides the scaffolding for any cosmologically grounded model of galaxy formation. However,

predictions for the global galaxy population from the reionization epoch to the present day require a

very large dynamic range (at least seven orders of magnitude in halo mass). Pure dark matter plus

gravity N -body simulations are commonly used to extract DM halo properties, abundances, and

merger trees. However, there is currently no publicly available, self-consistent and comprehensive

suite of N -body simulations that is consistent with state-of-the-art constraints on the cosmological

parameters and that fully spans the required dynamic range in halo mass, resolution, and volume.

Furthermore, most existing N -body simulations store only a few outputs at very early times, so

that the resulting merger histories are far too coarse at high redshift. Additionally, halo finders and

merger tree building algorithms have generally not been tested at these redshifts. As a result, we have

made use of fitting functions calibrated to available simulation results (see Chapter 2, Appendix C),

combined with merger trees created using a method based on the Extended Press Schechter (EPS)

formalism. Although this approach is highly flexible and computationally efficient, allowing us to

provide predictions of galaxy properties over the largest range of mass and redshift of any study

yet published of which we are aware, the constructed ensembles of merger trees are not in perfect

agreement with the results from N -body. We have tested our models by running them within merger

trees extracted directly from N -body simulations, and find good agreement. The EPS method has

the additional drawback that it does not predict spatial information or capture any dependences of

halo properties and formation history on larger scale environment (which are known to exist in full

N -body simulations).

3.6.3 Uncertainties in modelling of baryonic processes

In Chapter 2 of this thesis, we showed that a semi-analytic model of galaxy formation that was

calibrated only with observations at z = 0 makes predictions for rest-UV luminosity functions at

z ∼ 4–10 that are in remarkably good agreement with available observational estimates. In this

chapter, we have similarly shown that the same model also reproduces observational estimates
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of the stellar mass function and star formation rate function at these epochs (within the rather

large observational uncertainties). A significant uncertainty in our modelling of galaxy luminosities,

particularly in the rest-UV, is our treatment of attenuation by dust, which is very simple and

somewhat ad hoc. In Chapter 2, we showed that the dust attenuations adopted in our model

are consistent with observational measurements of the UV slope in high-redshift galaxies, which

we found encouraging. However, these measurements have very large error bars, and in addition

UV slope constrains only reddening and the relationship between attenuation and reddening is not

unique or well constrained, especially at these redshifts. The finding that our models also produce

stellar mass and SFR distributions that are consistent with those estimated from observations is an

additional consistency check, indicating that the stellar populations in high-redshift galaxies in our

models are apparently similar to those inferred from fitting the multi-wavelength SEDs of real high

redshift galaxies. We emphasize that the median relation, as well as the scatter in, the relationship

between stellar mass and rest-UV stellar mass-to-light ratio at z & 4 is still highly uncertain, and

there are significant differences in the relations adopted in the literature. This is an important

component in many semi-empirical models. JWST will greatly improve the constraints on this

critical relationship. Furthermore, semi-analytic models are beginning to model the creation and

destruction of dust in galaxies self-consistently (Popping, Somerville, & Galametz 2017b), which will

allow for more physically robust dust modelling in future works.

One of the most striking aspects of our results, though we are not the first to demonstrate this,

is that a relatively simple model qualitatively reproduces many of the fundamental properties of

galaxies (such as stellar mass functions) from z = 0 to z ∼ 10, without any explicit tuning to

high-redshift observations or introduction of ad hoc redshift dependence in the recipes. Given the

very different conditions at z ∼ 6–10 compared to the present-day Universe, it would not have been

at all surprising if our current simple phenomenological parametrizations of physical processes had

broken down badly. It is also interesting to note that certain models have already been strongly

ruled out by this comparison — our work, as shown in Fig. 3.4 and 3.5 (see also §3 in Chapter 2),

convincingly demonstrates that in order to produce sufficient numbers of massive/luminous, high-

redshift galaxies, it is necessary to adopt a star formation relation in which SFR density scales

super-linearly with molecular gas surface density in dense gas. Because high-redshift galaxies tend

to be more compact and have more gas at high surface density, this leads to an effective decrease

in the gas depletion time (increase in star formation efficiency) at high redshift. This appears to

be in qualitative agreement with existing observations of cold gas at high redshift (Obreschkow &

Rawlings 2009a; Dutton et al. 2010; Dutton & van den Bosch 2012; Saintonge et al. 2013; Decarli

et al. 2016; Schinnerer et al. 2016; Krogager et al. 2018; Tacconi et al. 2018), but future observations
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will provide improved constraints.

Although the fundamental physics operating in our Universe should remain unchanged across

space and time, changes in the prevalent physical conditions could lead to effective evolution in

redshift or cosmic time for the processes that shape galaxies. For example, processes that involve

interaction with the cosmic environment, such as dark matter halo mergers, photoionization squelch-

ing, or cosmological accretion, depend on the background density or temperature, which is redshift

dependent. Local processes, such as AGN and stellar feedback, are generally parametrized as a func-

tion of a galaxy properties that evolve across redshift and thus gain de facto dependency on redshift.

Since each of these processes operates under different conditions and depends on a different set of

properties, in principle one might be able to break certain degeneracies by studying a wide range of

galaxy types over different snapshots in cosmic time. However, the baryonic processes in SAMs are

parametrized in an extremely simple and phenomenological manner, and it is unclear whether these

parametrizations will properly capture these multivariate correlations. Further close comparisons

of SAM predictions with those from numerical hydrodynamic simulations are important to validate

this approach.

There are also physical processes that may be important at extreme redshifts that are not included

in our models. For example, our models do not directly model Pop III stars, nor metal enrichment

by these objects, but instead assume that all top-level halos are polluted up to a metallicity floor

Zpre-enrich = 10−3Z�. Our models do not include self-consistent modelling of photo-ionization

feedback (‘squelching’) by a meta-galactic ionizing background, but instead assume that reionization

occurs everywhere in the Universe at a fixed redshift of z ∼ 8. As discussed in Chapter 2, in some

past works, squelching was thought to have a significant impact on galaxy formation in halos up

to masses of ∼ 1010 M� (e.g. Efstathiou 1992; Bullock, Kravtsov, & Weinberg 2000; Gnedin 2000;

Somerville 2002). However, in more recent studies, the halo mass where squelching has a significant

impact has dropped to much lower masses. In this work, we adopted the characteristic mass fitting

function from Okamoto et al. (2008) and found that squelching has a negligible effect on observable

galaxies in the mass and redshift range that we studied. This is in agreement with results from the

Cosmic Reionization On Computers (CROC, Gnedin & Kaurov 2014) simulations, but not with the

Cosmic Dawn simulation (CoDa, Ocvirk et al. 2016), which found that the photoionizing background

has a strong effect on halos with a mass at z ∼ 3 of MH . 1010M�. The interplay between photo-

ionization feedback and other feedback processes such as stellar feedback is extremely complex and

must be further investigated using simulations with self-consistent radiative transfer (e.g. Finlator

et al. 2011, 2018).

Another set of processes that is highly uncertain in our models is the seeding and growth of, and
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feedback from, supermassive black holes. In our current models, we do not include the radiation

from AGN in the galaxy SED that we compute, nor do we believe our current treatment of AGN

feedback at high redshift to be realistic. This could have an important effect on galaxy properties

and reionization, and will be the topic of future work.

3.6.4 Our results in the context of other model predictions

We have performed a fairly comprehensive comparison of our predictions for galaxy stellar mass

functions and SFR functions at z ∼ 4–10 with available predictions from the literature based on

the three major existing techniques: semi-analytic models, numerical hydrodynamic simulations,

and semi-empirical and empirical models. Somewhat surprisingly, we find that predictions from

semi-analytic models and numerical hydrodynamic simulations from several different groups are in

generally very good agreement for these basic quantities. This is surprising because these calculations

have been done using different codes, different sub-grid treatments of physical processes, and at

different resolutions. We see a general consistency among models based on a priori modelling of

physical processes within a ΛCDM cosmological framework. Semi-empirical and purely empirical

models show larger dispersions, unsurprisingly, in the regions where observational constraints are

currently unavailable. This see alsoms to be encouraging news for efforts to use physically based

models for forecasting and planning for future observations.

One of the fundamental questions in galaxy formation and cosmology is how galaxy properties

are related to the underlying dark-matter dominated mass distribution. A simplified form of this

relationship is often presented in terms of the relationship between galaxy stellar mass and the

mass of its host dark matter halo (stellar-mass-halo-mass relation). Our models directly predict this

relationship, as well as the dispersion in it, and we find the interesting result that our models predict

almost no evolution in the median M∗/MH from z ∼ 10 to z ∼ 4 for low-mass halos (MH . 1011M�),

while they predict almost an order of magnitude increase over this interval in the most massive halos

of these epochs (MH ∼ 1012M�).

We compared our predictions forM∗/MH with the results of semi-empirical models from Tacchella

et al. and UniverseMachine at high redshifts. We find significant differences both between these

two published semi-empirical models and our model predictions. Some of these differences may be

due to differences in the assumed underlying cosmology and the observations used to derive the semi-

empirical models. Perhaps most strikingly, both Tacchella et al. and UniverseMachine predict

that M∗/MH continues to monotonically increase with increasing halo mass at z & 6, while our

models predict that M∗/MH turns over at high halo masses. These massive halos are exceedingly

rare, and no numerical simulations that we are aware of have investigated this.
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Our results are in tension with existing observational estimates of the evolution of M∗/MH over

the interval z ∼ 4–7 from Finkelstein et al. (2015b) for a stacked sample of luminous galaxies (MUV ∼

−21), however, we again emphasize the currently very large uncertainties on these observational

estimates. JWST is unlikely to place strong constraints on the abundances of these extremely

luminous high redshift galaxies, due to its small field of view and limited lifetime, but future wide

deep surveys with instruments such as WFIRST can be anticipated to do so. JWST will however be

able to obtain improved estimates of the redshift and stellar populations in luminous high redshift

galaxy candidates that have already been discovered through HST and Spitzer.

If it is really true that M∗/MH remains essentially constant from z ∼ 4–10 in the halos that

will dominate the populations observed by JWST (as our models predict), this has an interesting

implication. It implies that the build-up in galaxy number density over this period is driven by

the evolution in the dark matter halo mass function. Therefore, if we can somehow observation-

ally constrain this M∗/MH relationship, JWST observations of high redshift galaxies could provide

interesting constraints on cosmology. Another interesting point is that, as can be clearly seen in

Fig. 3.2 (or see also Fig. 13 in Chapter 2), the expected turnover in the stellar mass or luminosity

function from baryonic processes is well below the anticipated sensitivity of JWST even for lensed

fields. Therefore, if a turnover or cutoff at faint magnitudes is seen, it could be a sign of a cutoff in

the small scale power spectrum, such as that expected in certain exotic varieties of dark matter.

3.6.5 Outlook for future observations with JWST and beyond

One of the main focuses of this work is to establish the connections between the predicted rest-frame

UV luminosities and observed-frame IR magnitudes for high-redshift galaxies (presented in Chapter

2) to their intrinsic physical properties. From the wide range of physical properties predicted by

our SAM, we have selected a few that are of the greatest interest, including stellar mass M∗, SFR,

cold gas phase metallicity Zcold, and stellar radial size R∗. A comprehensive view of the correlations

among these properties along with mF200W, MUV, and halo mass MH have been shown in Fig. 3.16,

3.18, and 3.20. These corner plots can be used as lookup tables to facilitate both the planning of

observations and simulations. For instance, simulators can use the first column to quickly estimate

the range of galaxy properties expected for some given halo mass, and conversely, observers can use

the bottom row to estimated the physical properties of an observed population given an object’s

observed-frame IR magnitude.

We applied selection criteria for representative ‘wide’, ‘deep’ and ‘lensed’ JWST surveys to our

model predictions, in order to predict the range of stellar masses and SFR that will be probed. By

combining these ‘sensitivity’ functions with the experiments that we carried out in Section 3.3.2,
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in which we varied the parameters controlling various physical processes in the models, we can see

what kind of survey design characteristics will be necessary to probe different physical processes that

are currently highly uncertain in galaxy formation models. For example, we can clearly see that the

planned wide and deep surveys with JWST will help to constrain stellar feedback processes at high

redshift. Constraining the efficiency of star formation at redshifts greater than six will likely require

larger area surveys than will be feasible with JWST.

Apart from the planned JWST GTO and ERS programs mentioned above, there will be plenty of

other observational opportunities to probe the very early Universe with upcoming facilities, including

the space-based Euclid (Racca et al. 2016) and Wide-Field Infrared Survey Telescope (WFIRST,

Spergel et al. 2015), as well as the ground-based Large Synoptic Survey Telescope (LSST Science

Collaboration 2017). Future deep Atacama Large Millimeter Array (ALMA) surveys will be able to

put constraints on the cold gas mass in z ∼ 3–7 galaxies via CO and dust continuum observations,

as well as to probe the ISM conditions through fine-structure lines.

Beyond individual source detection, intensity mapping is a new technique being developed to

indirectly constrain the high-redshift galaxy population (Visbal & Loeb 2010; Visbal, Trac, & Loeb

2011; Kovetz et al. 2017) over large areas of the sky. Numerous on-going intensity mapping exper-

iments for HI, CO, CII, and Lyα are planned or underway, including BINGO (Battye et al. 2013),

CHIME (Bandura et al. 2014), EXCLAIM (Padmanabhan 2019), HERA (DeBoer et al. 2017), HI-

RAX (Newburgh et al. 2016), Tianlai (Chen 2012), LOFAR (Patil et al. 2017), MeerKat (Pourtsidou

2018; Santos et al. 2017), CONCERTO (Serra, Doré, & Lagache 2016), PAPER (Parsons et al. 2010).

The development of efficient and robust modelling techniques to interpret results from all of these

upcoming experiments will be critical to realize their full scientific potential.

3.7 Summary and Conclusions

In this work, we presented predictions from semi-analytic models for physical properties of galaxies

at z = 4–10, an epoch that will be probed by upcoming observations with JWST. With EPS-based

merger trees, we can efficiently sample halos over a wide mass range, ranging from the ones near

the atomic cooling limit to the most massive ones at a given redshift, unlike numerical simulations

which are much more limited in the dynamic range that can be simulated. We showed distribution

functions for statistical properties such as stellar mass and SFR functions, and investigated how

varying the parameters in recipes for the physical processes that shape these galaxy populations

affect these results. In addition, we provide predictions of the scaling relations between physical

properties that are directly predicted by our simulations, as well as between intrinsic and observable
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properties. We provide predictions for the properties of the galaxy populations that will be probed

by representative wide, deep, and lensed JWST surveys.

We have shown the one-point distribution functions for stellar mass, star formation rate, cold

gas mass, and molecular gas mass between z = 4–10 predicted by our semi-analytic model. We have

also studied and quantified the impact of uncertainties in our parametrizations of key processes such

as star formation efficiency and the mass loading of stellar driven winds. The free parameters in

our model are calibrated once to a subset of observational constraints at z ∼ 0 and are not retuned

to match observations at higher redshifts. Thus, it is encouraging that the predictions produced by

our fiducial model are in good agreement with observational constraints for SMFs and SFRFs up

to z ∼ 8, although the uncertainties on the observational estimates of these quantities are currently

quite large. This suggests that the approach used to model physical processes in galaxy formation

models, which has been quite successful at lower redshift, is not failing badly even at these very early

epochs. We also compare the predictions for SMF and SFRFs from our semi-analytic approach with

those from numerical hydrodynamic simulations and semi-empirical models. We find reasonable

agreement, particularly with the numerical simulations, reinforcing the robustness of these model

predictions.

The scaling relations of a range of galaxy properties and their evolution are also studied and

compared to other work in the literature. For example, we present the relationships between halo

mass, stellar mass, galaxy radius, cold gas phase metallicity, SFR, and rest-frame and observed

luminosity (with and without dust attenuation). We present all of these relationships at z = 6,

z = 8, and z = 10, and provide extensive tables and fitting formulae describing the results. We

hope that these predictions will be helpful both for interpreting future observations as well as for

planning high-resolution zoom-in simulations.

By forward modelling the predicted star formation and chemical enrichment histories into the

observed-frame IR magnitude for JWST NIRCam filters, we are able to select galaxies according

to criteria intended to mimic representative wide, deep, and lensed JWST surveys. We show the

predicted distributions of physical properties for objects that would be detected in these surveys.

We found that wide- and deep-field surveys will be able to probe galaxies down to M∗ ∼ 108M� and

∼ 107M� at z = 4, respectively. Our model also predicts that high-redshift galaxies are intrinsically

brighter than their lower redshift counterparts of similar mass. Thus, the M∗ corresponding to the

detection limit evolves rather mildly as a function of redshift (see Table 3.2).

Taking advantage of our model’s efficiency, we are able to quantify some of the effects of the

uncertainties in the empirical physical recipes on the resultant galaxy population by systematically

varying several key model parameters. We find that the gas depletion time and star formation



108

relation have degenerate effects on the massive galaxy populations, while stellar feedback strongly

influences star formation in low-mass halos. On the other hand, the current implementation of

photoionization feedback from a metagalactic UV background, as well as AGN feedback, do not

have a strong impact on our model predictions at these epochs.

We summarize our main conclusions below.

1. The predictions from our fiducial model, which was calibrated only at z = 0, are consistent

with observed SMFs and SFRFs between z ∼ 4–8. This suggests that our implementation of

the physical processes that shape galaxy populations may still be reasonably accurate at these

very early times.

2. High-redshift SMFs from JWST will help constrain our physical understanding of the build-

up of galaxies. At high masses, the mass-function shape is significantly affected by the star-

formation efficiency or time-scale. At the low-mass end it is most influenced by the modelling

of stellar-driven outflows.

3. We find that high-redshift galaxies are intrinsically brighter than their lower-redshift counter-

parts of similar stellar masses due to their higher SFR and younger stellar populations. In

addition to that, massive galaxies at high redshifts have higher dust-extincted luminosities due

to lower dust content. This results in a fixed observed-frame mF200W selecting populations

with similar stellar mass limits across the redshift range z = 4–10.

4. We find that changing the slope of the scaling of the mass loading factor of stellar-driven

outflows with galaxy circular velocity, αrh, changes both the slope of the low-mass end of the

SMF and the mass where the SMF and LF cut off due to inefficient cooling. Changing αrh

from a value of 2.0 to 3.6 results in a change in the number density of the lowest mass galaxies

(M∗ . 108 M�) of 0.5–1 dex. We find that changing the star formation efficiency by a factor of

two has a negligible impact on the low mass end of the SMF, but changes the number density

of massive galaxies by ∼ 0.1–∼ 0.25 dex.

5. There is remarkably good agreement between the predicted SMF from theoretical simulations

based on different techniques and codes, in particular between our semi-analytic models and

numerical hydrodynamical simulations. Larger discrepancies (up to nearly 1 dex for the lowest

mass galaxies, and also for very massive galaxies) are seen between models when semi-empirical

models are included in the comparison. Future observations with JWST will be able to help

discriminate between these models.
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6. Anticipated wide-field (deep-field) JWST NIRCam surveys will be able to probe galaxies with

rest-frame MUV ∼ −17.28 (-14.72) at z ∼ 4 and -18.73 (-16.06) at z ∼ 10, which corresponds

to logM∗/M�∼ 7.96 (6.78) at z ∼ 4 and 7.51 (6.35) at z ∼ 10 and log SFR/(M� yr−1) ∼ −0.4

(-1.54) at z ∼ 4 and -0.10 (-1.24) at z ∼ 10.

7. None of models considered in this chapter predict low-mass truncations or turnovers in the

SMF at fluxes bright enough to be observed by JWST, even in lensed fields.
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Chapter 4

Intrinsic Production Efficiency of Lyman-Continuum

Radiation

The James Webb Space Telescope (JWST ) is expected to enable transformational progress in study-

ing galaxy populations in the very early Universe, during the Epoch of Reionization (EoR). A critical

parameter for understanding the sources that reionized the Universe is the Lyman-continuum pro-

duction efficiency, ξion, defined as the rate of production of ionizing photons divided by the intrinsic

UV luminosity. In this work, we combine self-consistent star formation and chemical enrichment

histories predicted by semi-analytic models of galaxy formation with stellar population synthesis

(SPS) models to predict the expected dependence of ξion on galaxy properties and cosmic epoch

from z = 4–10. We then explore the sensitivity of the production rate of ionizing photons, Ṅion, to

the choice of SPS model and the treatment of stellar feedback in our galaxy formation model. We

compare our results to those of other simulations, constraints from empirical models, and observa-

tions. We find that adopting SPS models that include binary stars predict about a factor of two more

ionizing radiation than models that only assume single stellar populations. We find that UV-faint,

low-mass galaxies have values of ξion about 0.25 dex higher than those of more massive galaxies, but

find weak evolution with cosmic time, about 0.2 dex from z ∼ 12–4 at fixed rest-UV luminosity. We

provide predictions of Ṅion as a function of Mh and a number of other galaxy properties.

This chapter is reproduced from published work Semi-analytic forecasts for JWST – III. Intrinsic

production efficiency of Lyman-continuum radiation (Yung et al. 2020. MNRAS, 494, 1002).

4.1 Introduction

The ionization of hydrogen in the intergalactic medium (IGM) is a critical landmark in cosmic

history. The onset and duration of this transition is constrained by various kinds of observations,

including the polarization of the cosmic microwave background (CMB), the spectra of high-redshift

(z & 6) quasars, and the abundance of Lyα emitters (e.g. Fan et al. 2006a; Robertson et al. 2013).

Despite the uncertainties in these observational constraints, the astronomical community has reached

a broad consensus that the process of hydrogen reionization took place roughly between z ≈ 6–10,
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which is commonly referred to as the Epoch of Reionization (EoR) (Loeb & Barkana 2001). However,

there has been ongoing tension between the total ionizing photon budget accounted for by all known

sources and the time frame of cosmic reionization set by current observations.

Although it is clear that the population of directly observed high-redshift galaxies observed to

date alone are insufficient to ionize the IGM (e.g. Bouwens et al. 2015a; Finkelstein et al. 2015a;

Robertson et al. 2015), many recent analytic studies have shown that a reasonable extrapolation of

the observed galaxy populations during the EoR down to fainter rest-frame UV luminosities (e.g.

MUV ∼ −13 may be able to account for most reionization constraints (Finkelstein et al. 2012a,

2015a, 2019; Kuhlen & Faucher-Giguère 2012; Bouwens et al. 2015a; Robertson et al. 2015; Naidu

et al. 2020). This is further supported by cosmological hydrodynamic simulations, many of which are

able to satisfy the constraints (e.g. Geil et al. 2016; Ocvirk et al. 2016, 2020; Anderson et al. 2017).

However, there are still quite a few remaining uncertainties in the estimation of the production rate

of ionizing photons.

The total number of ionizing photons available to reionize the IGM depends on the abundance

of star-forming galaxies during the EoR, their intrinsic production efficiency of Lyman-continuum

(LyC) radiation, and the fraction of radiation that escapes to the IGM. Each of these three moving

parts comes with its own substantial set of uncertainties in both modelling and observing, and

are extremely challenging to model self-consistently since they involve physical processes that span

across many orders of magnitude in physical scales.

The intrinsic production rate of ionizing photons, Ṅion, is simply the number of ionizing photons

being produced per second by a galaxy, which can be formally obtained by directly integrating over

the galaxy SED

Ṅion =

∫ ∞
ν912

Lν(hν)−1 dν. (4.1)

This quantity is often normalized to the intrinsic rest-frame far ultraviolet (FUV) luminosity and

expressed as the ionizing photon production efficiency

ξion = Ṅion / LFUV, (4.2)

where note that LFUV is the intrinsic UV luminosity, not including the effects of attenuation by

dust, and is therefore in general not directly observable. The expected integrated value of Ṅion or

ξion for a galaxy therefore depends on its spectral energy distribution (SED), which depends on the

initial mass function (IMF) and joint distribution of ages and metallicities of the stellar populations

contained in it, as well as on the physics of stellar evolution and stellar atmospheres.
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Decades of effort have been invested into modelling the SED arising from ‘simple’ (single age

and metallicity) stellar populations (SPS models). Examples include starburst99 (Leitherer et al.

1999), Pégase (Fioc & Rocca-Volmerange 1997, 1999, 2019), Bruzual & Charlot (2003, hereafter

BC03, see also Bruzual 1983; Bruzual & Charlot 1993; Charlot & Bruzual 1991), Maraston (2005),

Flexible Stellar Population Synthesis (FSPS; Conroy et al. 2009, 2010; Conroy & Gunn 2010),

Binary Population and Spectral Synthesis (bpass; Stanway et al. 2016; Eldridge et al. 2017; Stanway

& Eldridge 2018). These models combine stellar isochrones with stellar atmosphere models or

templates, weight them with an assumed stellar initial mass function, and provide stellar continuum

SEDs for a grid of stellar ages and metallicities. Although the predictions of SPS models are

fairly robust and well converged at optical wavelengths, the modelling of the massive stars that

produce ionizing radiation suffers from much larger uncertainties, including the proper treatment of

convection, rotation, and the evolution of binary stars. Moreover, it is unknown whether the stellar

IMF during the EoR resembles the one in nearby galaxies, or whether the IMF has a significant

dependence on the environment in which stars are born, which might lead to an indirect dependence

on redshift or global galaxy properties.

In the past, coarse estimates of ξion have been obtained indirectly using the observed UV-

continuum slope, βUV, which is used as a proxy for predominant massive, UV-bright stars (Robertson

et al. 2013; Bouwens et al. 2015a, 2016a; Duncan & Conselice 2015) or using the measured stellar

age and metallicities (e.g. Madau et al. 1999; Schaerer 2003). Recently, measurements of nebular

emission lines from spectroscopy have enabled more direct constraints on ξion; both of which are

used in conjunction with stellar population synthesis models. Recent studies have attempted to use

measurement of nebular emission lines and UV-continuum fluxes to more directly infer the total

number of LyC photons produced and put constraints on ξion. Bouwens et al. (2016c) and Lam

et al. (2019) provided estimates with Hα at z ∼ 4–5, and Stark et al. (2015) used CIV as a tracer

for a galaxy at z ∼ 7. The highly anticipated Near Infrared Spectrograph (NIRSpec) onboard the

James Webb Space Telescope (JWST ), as well as future Extremely Large Telescope (ELT) observa-

tions are expected to obtain high-resolution spectra for more robust determination of many physical

properties including ξion. Moreover, low-redshift galaxies (z . 2) are sometimes viewed as analogues

of their high-redshift counterparts, which may provide complementary insights into the otherwise

hard-to-measure quantities (Nakajima et al. 2016, 2018; Schaerer et al. 2016; Matthee et al. 2017;

Shivaei et al. 2018).

Many previous analytic calculations of reionization have assumed a constant value for ξion (e.g.

Madau et al. 1999; Robertson et al. 2015) or adopted a simple parametrization as a function of

redshift (e.g. Finkelstein et al. 2012a). Kuhlen & Faucher-Giguère (2012) attempted to explore the
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uncertainties in ξion due to lack of knowledge about the stellar populations and SED in their models

by parametrizing it and exploring a bracketing range of values. Finkelstein et al. (2019, hereafter

F19) parametrize ξion as a function of MUV and redshift and allow these parameters to be fit as

part of a multi-parameter Bayesian Monte Carlo Maximum Likelihood fitting procedure. Many

(semi-)numerical simulations that aim to capture the evolution of large-scale structure, but do not

contain detailed modelling of galaxy formation, assume simple scaling relations that allow ξion or

Ṅion to scale with stellar mass or halo mass (Mesinger & Furlanetto 2007; Choudhury et al. 2009;

Choudhury 2009; Santos et al. 2010; Hassan et al. 2016, 2017).

Ṅion and ξion for composite stellar populations depend on the joint distribution of ages and

metallicities in each galaxy, and the values will be highly sensitive to the burstiness of the star

formation history. These quantities may in principle evolve with redshift or be correlated with

global galaxy properties such as mass or luminosity. It is thus important to use a self-consistent,

physically grounded approach that hopefully contains the relevant internal correlations between

physical properties. Cosmological models that follow the formation of stars and chemical evolution

in galaxies can, in principle, straightforwardly obtain more physically motivated estimates of ξion by

simply convolving their predicted star formation and chemical evolution histories with SPS models

like those described above. Wilkins et al. (2016b, hereafter W16) did exactly this using the large

volume BlueTides simulations, and presented predictions for how ξion evolves with redshift and

its dependence on stellar mass. Similar work has also been done with the FIRE (Ma et al. 2016b),

Vulcan (Anderson et al. 2017), and FirstLight zoom-in simulations (Ceverino et al. 2019).

In this chapter, we focus on understanding the production efficiency of ionizing photons in EoR

galaxies, which is a quantity that will be able to constrained with future JWST photometric and

spectroscopic surveys. Based on the results from the well-established physical models that have

been rigorously tested in previous works, we explore the scaling relations between the intrinsic

production efficiency of ionizing photons and a wide range of SF-related physical properties, as well

as other observable properties. These results are also compared to predictions from other simulations

and values inferred by existing observations. Our computationally efficient semi-analytic approach

allows us to span a larger dynamic range in galaxy mass and in cosmic time than previous studies

based on numerical hydrodynamical simulations. Note that only a fraction of the ionizing photons

produced within the galaxy actually escape and make their way out into the intergalactic medium.

Estimating this ‘escape fraction’ is extremely difficult, and we do not attempt to address this issue

in this chapter.

The roadmap for this chapter is as follows: the semi-analytic framework used in this work is

summarized briefly in Section 4.2, where we also describe our procedure for calculating Ṅion. We
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present our results in Section 4.3, where we compare predictions across several different SPS models

(Section 4.3.1), present the scaling relations and redshift evolution for these galaxy populations

(Section 4.3.3), and provide specific forecasts for future JWST observations in (Section 4.3.3). We

then discuss our findings in Section 4.4, and a summary and conclusions follow in Section 4.5.

4.2 The Semi-Analytic Framework

The Santa Cruz semi-analytic model (SAM) for galaxy formation used in this study is very similar

to the one outlined in Somerville, Popping, & Trager (2015, hereafter SPT15). The only changes are

that we have implemented the updated Okamoto, Gao, & Theuns (2008) photoionization feedback

recipe and updated the cosmological parameters to be consistent with the ones reported by the

Planck Collaboration in 2015: Ωm = 0.308, ΩΛ = 0.692, H0 = 67.8 km s−1Mpc−1, σ8 = 0.831, and

ns = 0.9665. We recalibrated the model to z ∼ 0 observations as described in Chapter 2, where all

model components that are essential for this work, along with values of the free parameters, are also

documented. We refer the reader to the following works for full details of the modelling framework:

Somerville & Primack (1999); Somerville, Primack, & Faber (2001); Somerville et al. (2008, hereafter

S08); Somerville et al. (2012, hereafter S12); Popping, Somerville, & Trager (2014, hereafter PST14)

and SPT15. Throughout this work, we adopt the cosmological parameters specified above.

The semi-analytic approach to modelling galaxy formation relies on the merger histories of dark

matter halos, more commonly known as ‘merger trees’, which can either be extracted from cosmo-

logical N -body simulations or constructed semi-analytically based on the Extended Press-Schechter

(EPS) formalism (Press & Schechter 1974; Lacey & Cole 1993). The EPS-based method, which has

been shown to be in good qualitative agreement with N -body simulations (Somerville & Kolatt 1999;

Somerville et al. 2008; Zhang et al. 2008; Jiang & van den Bosch 2014), is able to efficiently resolve

merger histories with very high mass resolution at very low computational cost. We are able to use

this method to sample halos over an extremely wide dynamic range, from the ones near the atomic

cooling limit to the most massive halos that have collapsed at a given redshift. At each output

redshift, we set-up a grid of root halos spanning the range in virial velocity Vvir ≈ 20–500 km s−1.

And for each root halo in the grid, one hundred Monte Carlo realizations of the merger histories are

generated, each traced down to progenitors of a minimum resolution mass of either Mres ∼ 1010M�

or 1/100th of the root halo mass, whichever is smaller. The expected volume-averaged abundances of

these halos are assigned based on the halo mass function (HMF) from the Bolshoi-Planck simulation

from the MultiDark suite (Klypin et al. 2016) with fitting functions provided in Rodŕıguez-Puebla

et al. (2016), which has been examined up to z ≈ 10.
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In the latest version of the model (PST14; SPT15), recipes for multiphase gas-partitioning and

H2-based star formation have been implemented and tested. In the former, the disc component

of each galaxy is divided into annuli and the cold gas content in each annulus is partitioned into

an atomic (HI), ionized (HII), and molecular (H2) component. In the latter, the surface density

of SFR (ΣSFR) is estimated based on the surface density of molecular hydrogen (ΣH2
) using ob-

servationally motivated, empirical H2-based SF relations. SPT15 investigated several different gas

partitioning and SF recipes, and favoured the metallicity-based, UV-background-dependent gas par-

titioning recipe, which is based on simulations by Gnedin & Kravtsov (2011, hereafter GK). In the

star formation recipe, ΣSFR is expressed as a broken power law function of ΣH2
. SPT15 investigated

a power law with a single slope, and one in which the slope becomes steeper above a critical H2

surface density (‘two-slope’). They found that both recipes produce similar results at z ∼ 0, but

at high redshift (z ∼ 4–6), the ‘two-slope’ recipe was favoured, in agreement with direct evidence

from recent observations (e.g. Sharon et al. 2013; Rawle et al. 2014; Hodge et al. 2015; Tacconi et al.

2018). In Chapter 2 and Chapter 3, we investigated both star formation laws up to z ∼ 10, and con-

cluded even more strongly that the ‘two-slope’ relation is much more consistent with observations of

luminous high-redshift galaxies. In this chapter and the remainder of the thesis, we therefore adopt

the ‘two-slope’ star formation relation, which we have referred to as the ‘fiducial’ GK-Big2 model

throughout this thesis.

Our model consists of a collection of physically motivated, phenomenological and empirical

recipes, including cosmological accretion and cooling, stellar-driven winds, chemical evolution, black

hole growth and feedback, galaxy mergers, etc. These recipes are then used to track the evolution

of a wide range of global physical properties of galaxies, such as stellar mass, star formation rate,

masses of multiple species of gas (ionized, atomic, molecular), and stellar and gas phase metallicity,

etc. For each galaxy, SEDs are created by convolving the predicted stellar age and metallicity with

SPS models of Bruzual & Charlot (2003, hereafter BC03) with the Padova1994 (Bertelli et al. 1994)

isochrones assuming a universal Chabrier stellar IMF (Chabrier 2003a). Throughout this work, all

magnitudes are expressed in the AB system (Oke & Gunn 1983) and all uses of log are base 10

unless otherwise specified.

4.2.1 Calculating Ṅion

As a useful reference, in Fig. 4.1 we first show the dependence of Ṅion, LUV, and ξion as a function

of age for simple stellar populations, assuming an instantaneous starburst, of different metallicities

(Z = 0.0001, 0.004, 0.008, and 0.020), in two popular sets of SPS models, BC03 and bpass. We show

the bpass models that account only for single star evolution, as is also the case in the BC03 models,
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Figure 4.1 The evolution tracks of the production rate of ionizing photons per solar mass of stars
formed (Ṅion,1M� ; top row), the far-UV luminosity LFUV (also normalized to 1M�; middle row),
and the production efficiency of ionizing photons (ξion; bottom row) as a function of the age of a
stellar population, assuming an instantaneous starburst, predicted by the BC03 (purple dashed)
and bpass single (cyan dotted) and binary (blue solid) SPS models. Each column shows a different
metallicity as labelled. We also show the redshifts corresponding to the age equal to the age of the
Universe, which can be taken as the upper limit on the stellar population age at that redshift. The
vertical grey dashed lines show the age range that is most relevant to this work, where the upper
(lower) bound is marked by the median of the mass-weighted stellar age for z = 4 (z = 10) galaxy
populations predicted by our model.
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and those that account for binary star evolution. These quantities are directly obtained from the

data tables released by the BC031 and bpass groups2 (Stanway et al. 2016; Eldridge et al. 2017;

Stanway & Eldridge 2018). Both SPS models adopted in this work assume a Chabrier IMF with an

upper mass cut-off mU = 100M�. In the top panel of Fig. 4.1, we show the evolution of ionizing

photon production rate normalized to that for a single solar mass of stars, Ṅion,1M� . As discussed

by Stanway et al. (2016), this quantity is strongly affected by both binary evolution and metallicity.

However, in the middle panel of Fig. 4.1 we see that differences in rest-frame far-ultraviolet (FUV)

luminosity, LFUV, predicted by different models are rather small for young stellar populations. As a

result, in the bottom panel, which shows ξion, we can see that the value of this quantity can differ by

as much as several orders of magnitude at intermediate ages for models that include binary evolution

relative to those that do not.

In this work, we convolve these SPS predictions for Ṅion with the predicted 2D histogram of

stellar ages and metallicities present in each galaxy at a given output redshift. These histograms are

built up as follows. At each time-step during each galaxy’s evolution, a ‘star parcel’ dm∗ is created

with a mass determined by the H2 density in the disc and the H2-based SF recipe. Each star parcel

inherits the metallicity of the cold gas in the ISM at the time it forms. Metals are deposited in the

cold gas by new stars with an assumed yield, and may be removed from the ISM by stellar driven

winds (see SPT15 for details). When galaxies merge, their stellar populations are combined. At an

output redshift, we evaluate Ṅion for each galaxy by summing up Ṅion for each star parcel from the

data tables provided by a chosen SPS model based on its stellar age and metallicity at the time.

In the previous chapters in this thesis, we adopted the BC03 SPS models to compute the galaxy

SEDs, and the model UV luminosity functions (UV LFs) have been extensively tested against existing

observations. In order to avoid repeating these comparisons, we retain the estimates of LFUV based

on the BC03 models in all of our results, and only compute Ṅion with the SPS model variants. Thus

the values of ξion for the bpass models are not strictly self-consistent. However, we saw in Fig. 4.1

that the predictions for LFUV from these two SPS models are very similar for the ages that are most

relevant for our study (z & 6), so this should not cause a significant discrepancy. Furthermore, ξion

is only used for illustrative purposes. For actually computing the reionization history, we use Ṅion

directly.

1http://www.bruzual.org/ gbruzual/bc03/
2https://bpass.auckland.ac.nz/, v2.2.1
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4.3 Results

Our results are organized in three parts. 1) We compare results across different SPS models. 2) We

present scaling relations and redshift evolution for ionizing photon production rates and efficiencies,

and show how ξion relates to observable properties. 3) We show how variations in the SN feedback

model impact our predictions for galaxies during the EoR.

4.3.1 Comparison across SPS models

In this subsection, we compare ξion computed with several SPS models, while other model compo-

nents in our SAM remain in their fiducial configurations. As illustrated in Fig. 4.1, the predicted

production rate of ionizing photons depends on the age and metallicity of the stellar populations,

and these relations vary across different SPS models. Note that these SPS models are applied to the

same galaxy populations. In other words, the galaxies used for all three SPS models have identical

star formation histories and physical properties.

In Fig. 4.2, we show the distributions of ξion against M∗ for BC03 and bpass models for single and

binary stellar population at selected redshifts. The 2D histograms illustrate the conditional number

density per Mpc3 of galaxies in each bin and are normalized to the sum of the number density in

the corresponding (vertical) stellar mass bin. The 16th, 50th, and 84th percentiles are marked in

each panel to illustrate the statistical distribution. The median of predictions of all models for each

given redshift are overlaid for easy comparison.

In general, we see that massive galaxies have lower ξion than low-mass galaxies regardless of the

choice of SPS models and redshift. Also the scatter of the relation is larger for low-mass galaxies.

Although all models demonstrate some level of dependence on M∗, we find that BC03 yields the

weakest dependence for M∗ < 108 M�, but both bpass models predict more evolution for galaxies

in the same mass range. The differences between predictions from the most and the least optimistic

SPS model can be up to ∼ 0.2 dex for galaxies with M∗ ∼ 107M�, and the difference shrinks for

more massive galaxies.

At fixed M∗, the predicted value of ξion evolves mildly as a function of redshift, with an average

downward shift of ∼ 0.1 dex from z = 10 to z = 4. High-redshift galaxies seem to be more efficient at

producing ionizing photons than their low-redshift counterparts of similar mass due to the younger

stellar age and lower metallicity. We also notice the slope of the ξion-M∗ relation becomes more

shallow with decreasing redshift, likely due to the corresponding change in the slope of the M∗-Z∗

relation.
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Figure 4.2 Conditional distributions of ξion versus stellar mass predicted at z = 4, 6, 8, and 10 using
SPS models from BC03 (purple) and bpass (cyan and blue for single and binary). Each column
shows a different redshift as labelled. The grey-scale 2D histograms show the conditional number
density of galaxies in each bin, normalized to the sum of the number density per Mpc3 in each
corresponding (vertical) stellar mass bin.The blue solid and dashed lines show the 50th, 16th and
84th percentiles, respectively, for the distribution in each panel. The medians of these distributions
are repeated in the bottom row for comparison, using the same colour coding as in the other panels.
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4.3.2 Comparison with numerical hydrodynamic simulations

We compare our results with predictions of ξion computed from galaxies in the BlueTides simu-

lations with various SPS models presented in W16. BlueTides is a cosmological hydrodynamical

simulation with 400 Mpc h−1 on a side and 2×70403 particles, which is able to resolve galaxies with

M∗ & 108 providing a wide variety of predictions for physical and observable properties for high-

redshift galaxies up to z ∼ 8 (Feng et al. 2016; Wilkins et al. 2017). We also note that BlueTides

adopted a set of cosmological parameters that are consistent with constraints from WMAP9. In

Fig. 4.3, we compare the ξion relations at z = 8 predicted by our SAM and BlueTides with BC03

and bpass single and binary star models (v2.0, Stanway et al. 2016), which does not include nebular

emission. The W16 calculations assumed a Salpeter (1955) IMF. We convert the quoted stellar

masses to a Chabrier IMF by adding -0.21 dex for direct comparison (Madau & Dickinson 2014).

The values of ξion are nearly unaffected by this change in IMF. We note that the predictions for

ξion from W16 and our models are very consistent for the BC03 models, while the SAM predictions

are about 0.1 dex lower for the bpass single and about 0.25 dex lower for the bpass binary models

(though the qualitative trends are the same).

In order to better understand these differences, we further compare a number of key physical

properties for our model galaxies to the predictions by BlueTides reported in Wilkins et al. (2017)

in Fig. 4.4, including intrinsic (dust-free) UV mass-to-light ratio, stellar metallicity, mass-weighted

stellar age, and specific star formation rate (sSFR). Note that this work assumed a Chabrier IMF,

which is consistent with our work and does not require any adjustment. We also compare to the

mass-metallicity relation predicted by the FIRE (Feedback in Realistic Environment) simulations

(Hopkins et al. 2014; Ma et al. 2016a), which are high-resolution cosmological hydrodynamic zoom-

in simulations. We show predictions at z = 6 in our comparison, which is the highest redshift

provided in the FIRE publications. The FIRE simulations assumed a Kroupa (2001) IMF and we

convert their stellar masses to a Chabrier IMF by adding -0.03 dex Madau & Dickinson (2014). It

is interesting that although BlueTides and FIRE have very different resolution as well as different

subgrid recipes for star formation and stellar feedback, the predicted mass-metallicity relations are

very similar, and much lower than the one predicted by our SAM. We discuss possible reasons for

this discrepancy in Section 4.4, however, we do not currently have a complete understanding of this

issue, and it is beyond the scope of this thesis to determine.

The differences in the stellar population properties between the SAM and BlueTides galaxies

do not seem sufficient to explain the difference in the predicted value of ξion, nor it is obvious how

this would explain why the differences are more pronounced for the bpass models. However, W16
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Figure 4.3 A comparison of ξion predicted with BC03 and bpass (both single and binary) SPS models
between this work and W16. The data points mark the median and the error bars span the 16th
to 84th percentile range. The red arrow shows the estimated difference in ξion changing from bpass
v2.0 to v2.1 models, accounting for the metallicities difference between the SAM and BlueTides
galaxies, see text for details.

used the bpass v2.0 version of the models, while we use the latest v2.2.1 version. Eldridge et al.

(2017) provide a detailed discussion of the implications of changes from the v2.0 to v2.1 models

for the production efficiency of ionizing photons (see their section 6.6.1). They find that the use of

improved stellar atmosphere models for low-metallicity O stars leads to a less dramatic increase in

ξion from the single star to binary star case than was seen in the v2.0 models, as well as a weaker

dependence of ξion on metallicity. We make use of their figure 35 to estimate the effect of changing

from the v2.0 to v2.1 models, assuming the typical metallicity of the SAM and BlueTides galaxies.

This correction is shown by the red arrow in our Fig. 4.3, showing that this largely accounts for the

discrepancy.

4.3.3 Scaling relations for the production rate and efficiency of ionizing radiation

In this subsection, we present scaling relations for ξion and Ṅion with respect to selected observable

and physical properties predicted by our fiducial model configurations with the bpass binary SPS

models. We also study the section: these relations and compare to recent observations.

We show the distribution of ξion against SFR (averaged over 100 Myr), specific SFR (sSFR),

intrinsic rest-frame MUV (without attenuation by dust), and cold gas metallicity (Zcold) predicted

at z = 4, 6, 8, and 10 in Fig. 4.5. Throughout this work, we refer to the UV luminosity without

a correction for attenuation effect by dust as the intrinsic MUV, which is to distinguish it from

the dust-attenuated MUV. Similar to plots in previous sections, the 2D histograms indicate the

conditional number density per Mpc3 of galaxies in each bin and is normalized to the sum of the
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Figure 4.4 Comparison between the median of the intrinsic rest-UV mass-to-light ratio
(log((M∗/M�)/(Lν,FUV/erg s−1Hz−1)); upper left), stellar metallicity (upper right), mass-weighted
stellar age (lower left), and specific SFR (lower right) for galaxies predicted by our SAM (blue) and
BlueTides (Wilkins et al. 2017, purple). The black crosses show the stellar metallicity predicted
by the FIRE simulations at z = 6 (Ma et al. 2016a). The dashed blue lines mark the 16th and 84th
percentiles of the SAM predicted distributions.
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number density in its corresponding (vertical) stellar mass bin. The 16th, 50th, and 84th percentiles

are marked in each panel. The median of predictions made with all models for each given redshift

are overlaid to illustrate the redshift evolution.

We find mild trends of decreasing ξion with increasing SFR, increasing ξion with increasing sSFR,

decreasing ξion with increasing UV luminosity, and decreasing ξion with increasing gas-phase metal-

licity. The inverse trends of ξion with SFR and UV luminosity may appear counterintuitive, until

we recall that both of these quantities are strongly correlated with stellar mass, and hence with

metallicity, so the inverse correlation between metallicity and ξion is likely driving this result. As

seen in Fig. 4.4, there is only a weak trend between stellar mass and mean stellar age in our models.

At fixed SFR, UV luminosity, and cold gas metallicity, ξion decreases with cosmic time from z ∼ 10

to 4, due to the increasing fraction of relatively old stars. Only for fixed sSFR is ξion nearly constant

with redshift, indicating that this quantity is correlated with the fraction of young stars.

Fig. 4.6 shows the distribution of ξion, predicted for halo populations between z = 4–10. We see

that for halos of the same mass, the production efficiency of ionizing photons can change by up to

∼ 0.2 dex between z = 10 and 4. Similarly, Fig. 4.7 shows the distribution of the specific ionizing

photon production rate, Ṅion/Mh, predicted for the same set of halos, where the production rate

of ionizing photons can be up to ∼ 1.5 orders of magnitude higher at z = 10 relative to z = 4 for

halos of the same mass. This relation evolves much more rapidly than the stellar-to-halo mass ratio

(SHMR) presented in Chapter 3. This is due to our finding (presented in Chapter 3) that galaxies

at high redshift are intrinsically brighter in the UV than their low-redshift counterparts of similar

stellar mass due to the higher SFR, younger stellar population, and lower metallicities.

On the other hand, ξion does not evolve as much across redshift since both Ṅion and LFUV evolve

in the same direction. In Fig. 4.8, we illustrate the evolution of ξion as a function of redshift. We

show predictions from our fiducial model with both bpass and BC03 SPS models at the bracketing

UV magnitudes of MUV = −22 and −17 and compare these to a compilation of observational

estimates. Both our predictions and the observations are colour-coded for rest-frame MUV. These

measurements are derived from Hα flux and UV-continuum luminosity (Bouwens et al. 2016c; Smit

et al. 2016; Rasappu et al. 2016; Lam et al. 2019), Hα flux and UV-based SFR (Shim et al. 2011;

Mármol-Queraltó et al. 2016), CIV measurement (Stark et al. 2015), and SED fitting (Stark et al.

2017). We indicate the range of log ξion = 24.0 to 25.7 derived from ∼14,000 compact star-forming

galaxies found in the Sloan Digital Sky Survey (SDSS; DR12) between 0 < z < 1 for comparison

(Izotov et al. 2017). We also include the luminosity-weighted ξion from W16 at = 8–10. We compare

our predictions to the results from the FirstLight simulations, which is a set of high-resolution zoom-

in simulations based on cosmological boxes of 10, 20, and 40 Mpc h−1 on a side, resolving galaxies
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Figure 4.5 Conditional distributions of ξion versus SFR (averaged over 100 Myr), specific SFR (sSFR),
intrinsic UV luminosity, and cold gas metallicity at z = 4, 6, 8, and 10 with our fiducial model
configurations with the bpass binary SPS models. The green solid and dashed lines mark the 50th,
16th, and 84th percentiles. The greyscale 2D histograms show the conditional number density of
galaxies in each bin, normalized to the sum of the number density per Mpc3 in the corresponding
(vertical) bin. The median of these distributions are repeated in the last row for comparison to
illustrate the redshift evolution.
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Figure 4.6 Predicted ξion as a function of halo mass between z = 4–10 predicted with the bpass
binary model. The green solid and dashed lines mark the 50th, 16th, and 84th percentiles. The 2D
histograms are colour-coded to show the conditional number density per Mpc3 of galaxies in each
bin, normalized to the sum of the number density in the corresponding (vertical) halo mass bin.
The last panel show an overlay of the SHMR median predicted at z = 4, 7, and 10 from our model.
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Figure 4.7 Specific ionizing photon production rate, Ṅion/Mh, as a function of halo mass between
z = 4–10 predicted with the bpass binary model. The green solid and dashed lines mark the 50th,
16th, and 84th percentiles. The greyscale 2D histograms show the conditional number density per
Mpc3 of galaxies in each bin, normalized to the sum of the number density in the corresponding
(vertical) halo mass bin. The last panel shows the median Ṅion/Mh relations predicted at z = 4, 7,
and 10 from our model.



127

in halos with circular velocities spanning the range between 50–250 km s−1 at z & 5 (Ceverino et al.

2017, 2019). The computation for ξion is based on synthetic SEDs from bpass (v2.1, Eldridge et al.

2017) including nebular emission (Xiao, Stanway, & Eldridge 2018) and a Kroupa-like IMF. Note

that whilst the simulations have been run with both WMAP and Planck cosmologies, the results

referenced here are only available with the WMAP-5 cosmology. For reference, we also label the

range of typical values ξion ≈ 25.20–25.30 that are assumed in many analytic studies (e.g. Bouwens

et al. 2012; Finkelstein et al. 2012a; Kuhlen & Faucher-Giguère 2012; Duncan & Conselice 2015;

Robertson et al. 2015). Our models predict very mild evolution in ξion as a function of redshift and

a very consistent ∼ 0.1–0.15 dex difference between the bright (MUV = −22) and faint (MUV = −17)

galaxies. The red arrow shows an estimate (from figure 35 of Eldridge et al. (2017)) of the increase

in ξion if the upper mass limit of the IMF were changed from 100 M� to 300 M�, illustrating

how sensitive ξion is to the upper end of the stellar IMF. In addition, lower redshift measurements

reporting ξion & 25.5 at z ∼ 3 appear to be in tension with standard model assumptions (Nakajima

et al. 2016, 2018). We also note that estimates of ξion from detected rest-UV emission lines at higher

redshifts (e.g. z > 5) tend to be obtained for sources with detectable nebular lines. As there is a

general correlation between the equivalent width (EW) in these lines and ξion, the published ξion

values based on rest-UV lines are likely biased towards the upper end of the true range of values,

rather than reflecting the mean or median of the overall population at these epochs.

F19 obtained indirect constraints on the plausible range of ξion using an empirical model. They

parametrization ξion as a function of redshift and rest-frame MUV, and obtained the posterior on

these parameters (along with other model parameters) using Markov Chain Monte Carlo (MCMC).

They found that it was possible to satisfy constraints on the reionization history of the Universe with

a relatively low average escape fraction (of about 5 percent) if ξion is higher in lower luminosity and

higher redshift galaxies. The median posterior parameters found in their analysis are d log ξion/dz =

0.13 and d log ξion/dz = 0.08, and a reference magnitude of MUV,ref = 20. Although our models

predict these qualitative trends, our predicted trends are not nearly as strong as the ones suggested

by the F19 models. We will investigate resolutions to this tension in more detail in Chapter 5 of

this thesis.

Next we attempt to make predictions for correlations between physical and observable galaxy

properties and ξion in order to suggest strategies for future observations. In Fig. 4.9, we show

observed-frame magnitude in the NIRCam F200W filter, mF200W, vs. the UV-continuum slope, βUV,

in the xy-plane and colour code each cell by ξion. The detection limits for JWST wide- and deep-field

observations are also marked for quick reference, which are obtained assuming survey configurations

that are comparable to those of past HST surveys and the published NIRCam sensitivities with
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Figure 4.8 A comparison of the redshift evolution of ξion predicted by our models to a compilation
of observations and empirical constraints. The solid and dashed lines denote our predictions using
BC03 (solid) and the bpass binary SPS (dashed) models and are colour-coded for rest-frame dust-
attenuated MUV. Here we show the two bracketing cases representing bright (MUV = −22) and
faint (MUV ∼= −17) galaxies shown in dark blue and green, respectively. The red arrow shows
an estimate of the increase in ξion if the upper mass limit of the IMF were changed from 100 M�
to 300 M�. We also plot the median parameters obtained by F19 for the same bracketing MUV,
shown with a dotted line with a ‘F ’ marker. The solid and dashed purple lines show the luminosity-
weighted value of ξion for galaxies with M∗ > 108 M� at z = 8–10 predicted by W16 with the SPS
models considered in this work. The solid orange line shows results from the FirstLight simulations,
which assumed a bpass binary SPS model (Ceverino et al. 2019). We include a compilation of
observations from Shim et al. (2011); Stark et al. (2015, 2017); Bouwens et al. (2016c); Smit et al.
(2016); Rasappu et al. (2016); Lam et al. (2019) for comparison; see text for a description. All
observations and model predictions are colour-coded for rest-frame UV magnitude. Typical values
adopted in analytic calculations are highlighted by the grey band. We also show the range derived
from a large sample of SDSS galaxies at 0 < z < 1 (Izotov et al. 2017). The lower bound of this
range extends to ξion = 24 (not shown).
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Figure 4.9 Correlation of βUV and mF200W at z = 4, 5, and 6 in our fiducial models, with the average
value of ξion in each hexbin colour-coded. The vertical lines mark the detection limit of a typical
JWST NIRCam wide and deep surveys at mF200W, lim = 28.6 and 31.5, respectively. The left edges
of these plots coincide with the detection limit for lensed surveys.

the F200W filter (see Chapter 2). We present these predictions for z = 4, 5, and 6, where many

galaxies should be bright enough that spectra will be relatively efficiently obtained with JWST or

other facilities. We show a similar plot for sSFR and stellar metallicity in Fig. 4.10.

4.3.4 The impact of SN feedback

As shown in previous chapters in this thesis, the number density of faint, low-mass galaxies is very

sensitive to the feedback strength, as stronger feedback suppresses star formation by ejecting gas

from the ISM. However, the faint- and low-mass-end slope of UV LFs and SMF at high redshift are

not well constrained by current observations. In Chapter 2 and Chapter 3, we experimented with

alternative SN feedback slopes αrh, which effectively characterize the dependence of mass outflow
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Figure 4.10 Correlation of stellar metallicity and SFR at z = 4, 5, and 6 in our fiducial models, with
the average value of ξion in each hexbin colour-coded.
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rate on circular velocity, and found that a fiducial value of αrh = 2.8 yielded predictions that best

match existing observational constraints. We further found that a range of values from αrh = 2.0

(weaker feedback) to αrh = 3.6 (stronger feedback) yielded predictions that are well within the

current observational uncertainties. In this subsection, we explore how varying this model parameter

impacts the production of ionizing photons.

Fig. 4.11 presents the fractional difference of the median of the predicted Ṅion between our

fiducial model (αrh = 2.8) and model variances with stronger (αrh = 3.6) and weaker (αrh = 2.0) SN

feedback, computed using a sliding boxcar filter of width ∆ log(M∗/M�) = 1.0 in stellar mass. We

find that the range of αrh that yields galaxy populations within the observational uncertainties may

cause ∼ 20% differences in Ṅion, where more ionizing photons are produced when feedback is stronger

and vice versa. This is likely caused by the more bursty star formation in the presence of stronger

feedback. Although stronger feedback may boost the production efficiency of ionizing photons for

low-mass galaxies, we must keep in mind that stronger feedback also suppresses the formation of

low-mass galaxies, leading to lower overall UV luminosity density, so there is a trade-off. We show

in Fig. 4.12 and in Chapter 5 that in our models, stronger feedback leads to an overall decrease in

the total number of ionizing photons. However, different implementations of stellar feedback could

in principle produce different results.

4.4 Discussion

In this work, we compute the production rate Ṅion and production efficiency ξion of ionizing pho-

tons by combining stellar population synthesis models with a physically grounded model of galaxy

formation set in a cosmological framework, the Santa Cruz SAM. Our fiducial model incorporates

multiphase gas partitioning and H2-based star formation recipes (GK-Big2), which have been shown

to reproduce observational constraints over a wide range of redshifts from z = 0–10 (see PST14,

SPT15, Chapter 2, and Chapter 3). Ṅion and ξion for composite stellar populations depends on the

joint distribution of ages and metallicities in each galaxy. These quantities may in principle evolve

with redshift or be correlated with global galaxy properties such as mass or luminosity. It is thus

important to use a self-consistent, physically grounded model that hopefully contains the relevant

internal correlations between physical properties. This is a significant advantage of our approach.

We compare Ṅion and ξion calculated using different SPS models, which depends on the physical

properties of the stellar populations, such as star formation and metal enrichment histories. This

approach of modelling Ṅion also makes physical predictions for the correlations among ξion and Ṅion

with other physical properties, such as M∗, Z∗, SFR, etc., and observable properties, such as βUV
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 Ṅ
⊙o
n

Figure 4.11 The fractional difference of the median of the distribution of ξion versus stellar mass
for different SN feedback slopes predicted at z = 4, 6, 8, and 10 with other model parameters and
ingredients left at their fiducial values. The dashed and dotted blue lines represent the stronger and
weaker feedback scenarios.



133

and observed frame magnitude. We also take advantage of the high efficiency of our model to explore

how these predictions may be impacted by modelling uncertainties regarding SN feedback.

4.4.1 Comparison with observations

Our predictions for ξion are in good agreement with most of the observational measurements at

4 < z < 5, but despite the range of models we investigated in this work, none of our models

reproduce the observed values of ξion at z > 5. Our models tend to predict values of ξion at z ∼ 7

that are lower than the observational estimates by about 0.3 dex. Here we briefly discuss a few

reasons that could give rise to this discrepancy. First, inferring ξion from observations is highly

non-trivial. This estimate relies on obtaining the intrinsic rest-frame MUV using the UV slope βUV

to correct for dust extinction. However, it is not known how reliable the empirical relations between

UV slope and attenuation are at these redshifts, and uncertainties in the underlying shape of the

attenuation curve also lead to uncertainties (Bouwens et al. 2016c).

In addition, due to limitations in current survey instruments, objects with extremely bright

emission lines are preferentially selected for follow-up. These may be biased towards objects at the

extreme tails of the distribution of physical properties, or towards rare starbursting galaxies. The

large sample of lower redshift galaxies (0 < z < 1) studied by Izotov et al. (2017) show a broad

range of values of ξion, and suggest the strong sensitivity in this parameter to recent bursts.

Finally, the estimates of ξion from the stellar population synthesis models are still quite uncertain.

For example, the predicted values of ξion dropped by about 0.1 to 0.2 dex following changes to the

stellar atmosphere models implemented in v2.1 of the bpass models. However, Eldridge et al.

(2017) note that an improved treatment of rotation could increase ξion by a similar amount (see also

Levesque et al. (2012)). Furthermore, ξion is quite sensitive to the high-mass end of the stellar IMF.

For example, Eldridge et al. (2017) show that increasing the upper mass cut-off of the IMF from

100 to 300 M� increases the value of ξion by about 0.15 dex in the v2.1 bpass binary models.

4.4.2 Our results in the context of other theoretical studies

SAMs and hydrodynamic simulations are two different approaches to modelling galaxy formation

(see Somerville & Davé (2015) for a detailed discussion), but they both require the use of phe-

nomenological recipes for processes that cannot be explicitly simulated, such as star formation and

stellar feedback. Both our models and the BlueTides simulations adopted similar multi-phase

gas-partitioning and H2-based star formation recipes, however, a number of other differences in the

models may contribute to the discrepancies in their predictions. These include the choice of IMF, the

quantities given priority in the calibration process, and the set of cosmological parameters adopted.
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BlueTides adopts cosmological parameters that are consistent with measured values reported by

WMAP, which are different from the ones adopted in this work. However, we do not expect this to

lead to major differences in the relevant predicted galaxy properties (see discussion in Appendix C

in Chapter 3). In the model comparison presented in Chapter 2 and Chapter 3, we showed that the

predicted statistical properties (rest-UV LFs, stellar mass functions, SFR functions) of galaxies at

z ∼ 8 – 10 are nearly identical in our models and in BlueTides. However, when we compared our

predicted values of ξion at a given stellar mass at z ∼ 8 with those predicted by W16 for BlueTides,

we find that the values agree well for the BC03 SPS models, while our predicted values are lower by

about 0.1 dex for the single star bpass models and about 0.2 dex lower for the bpass models that

include binary star evolution. We argue, based on the results presented in Eldridge et al. (2017),

that this difference is largely accounted for by changes in the bpass model results from the v2.0

version used by W16 to the v2.2.1 version that we have adopted in this work. This is supported

by the fact that the predicted value of ξion from the FirstLight simulations (which also adopted the

bpass v2.2.1 models) are quite similar to ours.

When we compare the other stellar population properties of galaxies in BlueTides and our

models at the same stellar mass and redshift (z = 8), we find that our galaxies are slightly younger

and have higher specific star formation rates. By far the most significant difference, however, is that

the stellar populations have mass-weighted metallicities that are a factor of six higher in our models

than in BlueTides.

All of the physically grounded models in the literature (including BlueTides, FirstLight, and

our models) predict rather mild redshift evolution in ξion as well as generally lower values than those

implied by observations at z & 5.

4.4.3 Caveats and limitations of the modelling framework

The productivity of ionizing photons of high-redshift galaxies connects the small-scale processes of

stellar evolution, star formation, and stellar feedback with cosmological scale processes such as the

reionization of intergalactic hydrogen. Our results depend critically on stellar population synthesis

models, which have their own limitations and uncertainties (Conroy 2013). The massive, low-

metallicity stars that are the most efficient at producing ionizing photons are particularly sensitive

to modelling uncertainties in physical processes, such as mass loss, mixing, convection, rotation,

and magnetic fields; and significant progress has been made in the past few years on improving

these models. One area that has received some attention within the literature on high-redshift

galaxy populations and the epoch of reionization recently is the impact of binary processes on the

evolution of massive stars and the implications for the production of ionizing photons (Wilkins
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et al. 2016b; Ma et al. 2016a; Ceverino et al. 2019). Binarity can have a significant effect on the

production rate of ionizing photons via a diverse range of physical mechanisms. Mass transfer and

mergers among binaries can increase the number of massive stars present over times longer than the

lifetime of massive single stars. In addition, mass transfer can produce rapidly rotating ‘chemically

homogeneous’ stars, which are more prevalent at low metallicity and are highly efficient at producing

ionizing photons. The rotating massive stellar population can be an significant source of ionizing

photons in the first ∼ 4 Myr for starburst galaxies (Choi et al. 2017b). A third process is that stars

in a binary system can be stripped of their envelope, exposing the hot core of the star. Stripped

stars can boost the production rate of ionizing photons at times 20–500 Myr after the onset of star

formation by as much as 1–2 orders of magnitude Götberg et al. (2019). The bpass models adopted

in this work include modelling of these processes (Eldridge et al. 2011; Eldridge & Stanway 2012;

Stanway et al. 2016; Eldridge et al. 2017), while the role of stripped stars has been highlighted in

Götberg et al. (2019). Other processes that may be important for producing ionizing photons, but

which are not accounted for or not modelled in as much detail in the bpass models, include accreting

white dwarfs and X-ray binaries (Madau & Fragos 2017). Because ξion is so sensitive to the most

massive stars, it is also quite sensitive to details of the high-mass slope and cut-off of the stellar IMF

(e.g. Eldridge et al. 2017). In summary, the raw predictions of ξion even in the latest models seem

to be uncertain at the level of at least a factor of two.

Moving up in scale, the star formation and chemical enrichment histories that form the backbone

of this work are based on the modelling framework developed in a series of papers including SPT15,

Chapter 2, and Chapter 3. These models make a large number of simplifying assumptions about how

baryonic processes in galaxies operate. A fundamental ansatz of our models is that the scaling rela-

tions that describe processes such as gas partitioning, star formation efficiency, and stellar feedback

are valid over all of cosmic time. This may not necessarily be the case. Our adopted scaling relations

may have dependencies that do not properly track the true physical properties, which may evolve

differently. These assumptions are typically tested and calibrated by comparing with observations.

As shown in these previous works, the predicted distribution functions for MUV, M∗, and SFR up to

z ∼ 10 are in very good agreement with observations in regimes where observational constraints are

available. However, the physical properties of high-redshift faint galaxies, as well as the underlying

physical processes that drive them, are poorly constrained.

The results of this work hint that the treatment of stellar feedback and chemical evolution may

be an area that requires careful examination in future work. Although our models produce excellent

agreement with both the BlueTides and FIRE simulations with regard to bulk properties such as

the stellar-to-halo-mass ratio, as noted above, the predicted mass-metallicity relation at z ∼ 6–8 is
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substantially different. As shown in figure 7 of Ma et al. (2016b) and figure 6 of Somerville & Davé

(2015), the predicted mass-metallicity relation shows a large dispersion between different models

and simulations. This is because there are many details of the chemical enrichment process that are

poorly understood or simplified in cosmological galaxy formation models. For example, the version

of the SC-SAM models used here assumes instantaneous recycling, i.e., that metals ejected by SNe

are instantaneously mixed with the whole ISM. Our models assume a fixed chemical yield, y, which

is treated as a fixed parameter that is tuned such that the predicted stellar mass-metallicity relation

matches z ∼ 0 observations. We also assume that the metallicity of outflows is the same as that of

the ISM, while there is evidence in nearby galaxies that stellar driven winds may be substantially

metal-enhanced (metals preferentially ejected Chisholm et al. 2018). Furthermore, we note that the

multiphase-gas partitioning recipes adopted in our models may break down in extremely metal-poor

environments (Sternberg et al. 2014). Neither primordial H2 cooling and Pop III stars nor metal

enrichment by these objects is explicitly included in our models. Instead, top-level progenitor halos

are polluted to a metallicity floor with typical values of Zpre-enrich = 10−3Z�.

4.4.4 Characterizing ionizing sources with JWST and beyond

As shown in Fig. 4.9, predictions from our model show that βUV may not be an very good tracer for

ξion as the correlation between quantities is rather weak. The productivity of ionizing photons can

be indirectly traced with a number of spectral features. Due to current instrumental limitations,

it is tremendously challenging to obtain high-resolution spectra for galaxies at high redshifts. The

NIRSpec onboard JWST possesses the advanced capability for detecting Hα at z . 7, and given

adequate exposure time, the Mid-Infrared Instrument (MIRI) will also be able to pick up signals

from bright objects at z & 7. Furthermore, planned flagship ground-based telescopes, such as the

Extremely Large Telescope (ELT), the Thirty Meter Telescope (TMT), and the Giant Magellan

Telescope (GMT), are also expected to enable these kinds of observations for many more objects

and for fainter, perhaps more ‘typical’ galaxies. These anticipated observations will be able to

constrain or even rule out completely some of the predictions provided in this work.

4.4.5 Implications of our results for cosmic reionization

One of the main goals of this work is to provide a physical explanation for how the intrinsic production

efficiency of ionizing photons scales with physical properties of galaxies and how these relations have

evolved during the EoR. A very common assumption in reionization modelling (e.g. Robertson et al.
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2013) is that the cosmic ionizing emissivity can be written as

ṅion = fescξionρUV (4.3)

i.e., implicitly assuming that fesc and ξion have a fixed value with no scatter, that does not change

over cosmic time. While this may be true in an effective, integrated sense, in this thesis, we have

developed more realistic models in which both of these parameters may be correlated with internal

galaxy properties, such as their UV luminosity, stellar mass, or metallicity. These properties, in

turn, are expected to be correlated with galaxy clustering and large scale environment, which likely

has implications for reionization. We are building towards a model framework that can efficiently

go from dark matter properties and a set of assumptions about the physical processes involved in

galaxy formation, to a cosmic reionization history and ultimately to predicted maps of observable

tracers of the reionization.

A summary of our predictions for the intrinsic cosmic ionizing emissivity is shown in Fig. 4.12.

This figure illustrates the impact of adopting different stellar population models (self-consistently

incorporated within our models) and of varying the strength of stellar feedback. As discussed above,

the rather strong metallicity dependence of ξion implies that the details of the interplay between

chemical evolution and stellar populations can lead to differences of up to factors of a few, which

could be significant for reionization. The total number of ionizing photons produced are degenerately

affected by the abundance of galaxies during the EoR and the intrinsic productivity of ionizing

radiation. As shown in Chapter 2 and Chapter 3, the abundances of low-mass galaxies are very

sensitive to the strength of SN feedback and the number of objects predicted can span about an

order of magnitude for different model assumptions. On the other hand, in §3.4 we also show that

stronger feedback yields slightly (∼ 20%) boosted ionizing photon production efficiencies.

Whether galaxies alone are sufficient to ionize the IGM remains a fundamental open question.

Historically, there has been tension between the total ionizing photon budget accounted for by

galaxies, and constraints on the onset and duration of the EoR. Analytic calculations (e.g. Kuhlen

& Faucher-Giguère 2012; Robertson et al. 2015) have shown that galaxies are likely to have produced

sufficient numbers of ionizing photons to reionize the Universe under the condition that faint objects

remain fairly numerous below the current detection limit and are fairly efficient at producing ionizing

photons. In Chapter 2 and Chapter 3, we showed that in our models, the faint-end slope of the

rest-frame UV LF remains steep down to MUV ∼ −9, under the assumption that SNe feedback

at high redshifts operates with similar efficiency as that required to match z ∼ 0 observations.

The predicted ionizing photon production efficiencies, especially with models that include binary
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Figure 4.12 Cosmic LyC photon production rate evolution with redshift given in units of Mpc−3

s−1, calculated using SPS models from BC03 (purple) and bpass (cyan and blue for single and
binary). For different SN feedback slopes predicted at z = 4 – 10 with other model parameters and
ingredients left at their fiducial values, the dashed and dotted blue lines represent the stronger and
weaker feedback scenarios, respectively. The grey lines show the case where log(ξion) = 25.30±0.30.

evolution, are well within the range log(ξion) ∼ 25.30 ± 0.30 (or higher) adopted in recent models

that are able to plausibly account for observable constraints on the reionization history (Robertson

et al. 2013, 2015; Kuhlen & Faucher-Giguère 2012; Finkelstein et al. 2019). Therefore, we can already

anticipate that our models will also produce good agreement with the observed reionization history,

subject to uncertainties on the escape fraction of ionizing radiation. We present a detailed analysis

of the implications for the cosmic reionization history of our full modelling framework, including the

escape fraction, in Chapter 5.
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4.5 Summary and Conclusions

In this work, we implemented a physically motivated approach to calculating Ṅion in the Santa Cruz

SAM, accounting for stellar age and metallicity distribution of the stellar population in each galaxy.

We present results predicted based on SSP models from BC03 and both single and binary stellar

population by bpass. Taking advantage of the high efficiency of our modelling framework, we make

predictions for galaxies across z = 4–10, forming in a wide range of halo masses, ranging from Vvir ≈

20–500 km s−1. These predictions provide forecasts for future observations with JWST and also put

modelling constraints on the role high-redshift, low-mass galaxies played throughout the EoR. We

also provide predicted scaling relations of Ṅion with M∗, Mh, βUV, and other galaxy properties. We

compared our predictions to other models from the literature and the latest observations in both

the intermediate- and high-redshift universe.

We summarize our main conclusions below.

1. In agreement with previous work, we find that SPS models accounting for binary stellar pop-

ulations can produce a factor of ∼ 2 more ionizing radiations than models that only account

for single star populations for galaxies across all mass ranges.

2. We find that faint, low-mass galaxies can have ionizing efficiencies that are up to a factor of two

higher than those of bright, massive ones. This is due to the strong correlation between stellar

mass (or luminosity) and metallicity that is already in place at early times in our models,

and the strong dependence of ξion on metallicity, particularly in models that include physical

processes related to stellar binaries.

3. Our models predict a rather weak dependence of ξion with redshift (about ∼ 0.23 dex or factor

of ∼ 0.6 decrease from z ∼ 12 to 4).

4. We find that increasing of the strength of SN feedback may allow galaxies to produce ∼ 20%

more ionizing photons, because their star formation is more bursty. However, we also note

that stronger feedback suppresses star formation in low-mass halos and decreases the number

density of low-mass galaxies, which ultimately decreases the total number of ionizing photons.

5. Our predicted median values of ξion are significantly lower than all current observational es-

timates at z > 5. This may be due to sampling bias towards extremely bright and bursty

objects in current high-redshift observations, or to modelling uncertainties in stellar popula-

tion synthesis models.

6. We provide scaling relations for Ṅion as a function of Mh and a number of other galaxy
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properties, which may be useful for cosmological scale reionization simulations where baryonic

physics is not resolved.



141

Chapter 5

Implications for Cosmic Reionization and LyC Escape

Fraction

Galaxies forming in low-mass halos are thought to be primarily responsible for reionizing the Uni-

verse during the first billion years after the Big Bang. Yet, these halos are extremely inefficient

at forming stars in the nearby Universe. In this work, we address this apparent tension, and ask

whether a physically motivated model of galaxy formation that reproduces the observed abundance

of faint galaxies in the nearby Universe is also consistent with available observational constraints on

the reionization history. By interfacing the Santa Cruz semi-analytic model for galaxy formation

with an analytic reionization model, we constructed a computationally efficient pipeline that con-

nects ‘ground-level’ galaxy formation physics to ‘top-level’ cosmological-scale observables. Based on

photometric properties of the galaxy populations predicted up to z = 15, we compute the reioniza-

tion history of intergalactic hydrogen. We quantify the three degenerate quantities that influence

the total ionizing photon budget, including the abundance of galaxies, the intrinsic production rate

of ionizing photons, and the LyC escape fraction. We explore covariances between these quantities

using a Markov chain Monte Carlo method. We find that our locally calibrated model is consistent

with all currently available constraints on the reionization history, under reasonable assumptions

about the LyC escape fraction. We quantify the fraction of ionizing photons produced by galaxies

of different luminosities and find that the galaxies expected to be detected in James Webb Space

Telescope Near-Infrared Camera (NIRCam) wide and deep surveys are responsible for producing

∼ 40–80% of ionizing photons throughout the Epoch of Reionization.

This chapter is reproduced from published work Semi-analytic forecasts for JWST – IV. Impli-

cations for cosmic reionization and LyC escape fraction (Yung et al. 2020. MNRAS, 496, 4574).

5.1 Introduction

During the Epoch of Reionization (EoR), the intergalactic medium (IGM) underwent a global

phase transition, during which the hydrogen progressively became ionized by the radiating Lyman-

continuum (LyC) sources in the early universe (Miralda-Escude, Haehnelt, & Rees 2000). Identifying
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and characterizing these sources remains a fundamental open challenge in modern cosmology. In-

deed, this is one of the main science drivers of the James Webb Space Telescope (JWST ). With the

unprecedented infrared (IR) sensitivity and resolution of its on-board photometric instrument Near-

Infrared Camera (NIRCam), JWST is expected to detect many more faint galaxies during the EoR.

In addition, JWST will be able to provide additional constraints on the nature of the sources that

reionized the Universe, such as revealing early accreting black holes. A number of planned JWST

observations, including both Guaranteed Time Observation (GTO), such as the JWST Advanced

Deep Extra-galactic Survey (JADES; Williams et al. 2018) and Early Release Science (ERS) projects,

such as the Cosmic Evolution Early Release Science survey (CEERS; Finkelstein et al. 2017), are

designed to study and put constraints on the galaxy populations during the EoR, including both

their statistical properties and the production rate of ionizing photons.

5.1.1 The overall budget of ionizing photons

It is clear that galaxies forming in the early universe have influenced large-scale events (Dayal &

Ferrara 2018). The cosmic ionizing photon budget is subject to three major moving parts, including

the number density of galaxies, the intrinsic productivity of ionizing photons, and the LyC escape

fraction. The volume-averaged number density of high-redshift galaxies is only partially constrained

by existing observations, which are limited by the sensitivity of existing facilities, particularly in the

observed frame near-mid IR. To date, nearly 2000 galaxy candidates at z & 6 have been detected in

the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS; Grogin et al. 2011;

Koekemoer et al. 2011), Hubble Ultra Deep Field (HUDF; Beckwith et al. 2006; Bouwens et al. 2011;

Ellis et al. 2013; Oesch et al. 2013), and UltraVISTA (McCracken et al. 2012), with faint objects

of rest-frame UV luminosities reaching MUV ∼ −17 (e.g. Bouwens et al. 2015b; Finkelstein et al.

2015a). Lensed surveys through massive foreground clusters can reach even fainter detection limits

(e.g. Livermore et al. 2017; Lotz et al. 2017; Atek et al. 2018), though this approach comes with

high systematic uncertainties that remain poorly constrained (Kawamata et al. 2016; Bouwens et al.

2017; Priewe et al. 2017). As a result, there are still significant uncertainties on the faint-end slope

of the UV luminosity functions (UV LFs) at z & 6, which give rise to uncertainties of & 0.2 dex on

the integrated UV luminosity density at high redshift (Ishigaki et al. 2018), as well as the magnitude

at which the UV LFs ‘turnover’.

The intrinsic production efficiency of ionizing radiation of high-redshift galaxies is subject to

its own set of uncertainties. In early analytic calculations, this quantity was treated simply as a

constant or as a parametrized function of redshift (Madau et al. 1999; Finkelstein et al. 2012a; Kuhlen

& Faucher-Giguère 2012; Robertson et al. 2015; Mutch et al. 2016). However, it is now recognized
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that this quantity depends strongly on many properties of the stellar populations in these early

galaxies, including age, metallicity, upper mass cutoff of the stellar initial mass function (IMF), and

binarity (Eldridge & Stanway 2009; Eldridge et al. 2017; Topping & Shull 2015; Wilkins et al. 2016b;

Yung et al. 2020b). There are still significant uncertainties in predictions of this quantity even in

state-of-the-art stellar population synthesis (SPS) models (Conroy 2013). In general, we expect high-

redshift galaxies to have younger, lower metallicity stellar populations, resulting in harder spectra

yielding higher LyC production efficiencies. The contribution to the ionizing photon budget from

sources such as X-ray binaries and Active Galactic Nuclei (AGN) also remains uncertain (e.g. Madau

& Fragos 2017; Manti et al. 2017). Some recent studies have set out to constrain the production

efficiency both locally and at high redshift using observations of UV-continuum slope, βUV, Hα and

CIV emission (Stark et al. 2015; Bouwens et al. 2016c; Schaerer et al. 2016; Shivaei et al. 2018;

Emami et al. 2019; Lam et al. 2019).

The fraction of ionizing radiation escaping to the IGM is the least constrained component among

these three moving parts. Simulations have shown that it is extremely sensitive to many detailed

geometrical and physical features that act across many scales, including the internal distributions

of dense gas, dust clouds, and stars within the interstellar medium (ISM) and the structure of the

circumgalactic medium (CGM) (Paardekooper et al. 2011, 2013, 2015; Benson et al. 2013; Kimm &

Cen 2014; Kimm et al. 2017, 2019; Ma et al. 2015; Xu et al. 2016; Popping et al. 2017a; Trebitsch

et al. 2017, 2018). These studies also found that the escape fraction does not correlate well with any

particular global physical galaxy property and can scatter across an extremely wide range, from less

than a thousandth to a few tens of a percent, even for galaxies of similar physical properties forming

at the same epoch. Many studies have attempted to constrain the escape fraction via observations

and arrived at similar conclusions (e.g. Vanzella et al. 2010, 2015, 2018; Dijkstra et al. 2016; Guaita

et al. 2016; Shapley et al. 2016; Grazian et al. 2017; Fletcher et al. 2019; Nakajima et al. 2020).

Similar to the LyC production rate, many previous studies have treated the escape fraction as a

single value (Finkelstein et al. 2010, 2012a, 2015a; Robertson et al. 2013, 2015; Bouwens et al. 2015b)

or as a parametrized function of redshift or galaxy physical properties (Wyithe et al. 2010; Kuhlen

& Faucher-Giguère 2012; Sharma et al. 2016; Naidu et al. 2020; Finkelstein et al. 2019).

It is clear that detected galaxies alone are far from sufficient to reionize the universe (Madau

et al. 2008; Finkelstein et al. 2015a; Robertson et al. 2015). However, by assuming a LyC production

efficiency and escape fraction that is consistent with that of bright galaxies, analytic calculations

have shown that faint galaxy populations extrapolated from the observed UV LFs to below the

current detection limits are able to provide the amount of ionizing photons needed to fully reionize
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the Universe in the required time-frame (Finkelstein et al. 2012a, 2015a, 2019; Kuhlen & Faucher-

Giguère 2012; Robertson et al. 2015; Bouwens et al. 2015a; Stark 2016).

5.1.2 Constraints on the Epoch of Reionization

The reionization history of the intergalactic hydrogen is constrained by a variety of IGM and CMB

observations (Fan et al. 2006a). During the phase transition, the depletion of neutral hydrogen along

the line of sight can partially absorb high-redshift quasar spectra and leave behind a feature known

as the Gunn-Peterson Trough (Gunn & Peterson 1965; Becker et al. 2001; Fan et al. 2006b). The

presence of intervening HI also decreases the visibility of Lyα emitters, which puts a lower-limit

to the redshift of the onset of the EoR (Stark et al. 2010; Dijkstra et al. 2011; Pentericci et al.

2011, 2014; Schenker et al. 2012, 2014; Treu et al. 2013; Tilvi et al. 2014; Schmidt et al. 2016;

Mason et al. 2018a). This same mechanism also enables the ‘Lyman-break selection’ technique for

identifying high-redshift galaxy candidates (Steidel et al. 1996, 1999). On the other hand, the CMB

is scattered and polarized by free electrons in an ionized IGM. Therefore, the measured Thomson

optical depth of the CMB, τCMB, can be used to constrain the total number of electrons along the

line of sight to the IGM. The neutral IGM fraction towards the end of the EoR is constrained by a

variety of observations (see Robertson et al. 2015 for a concise summary). Combining constraints

on the onset and duration of the reionization process from various observations, the astronomical

community has come to a general consensus that the phase transition of intergalactic hydrogen

occurred approximately between z = 6–10, and this period is often referred to as the Epoch of

Reionization (EoR).

Historically, there has been tension among different observational constraints on the onset and

duration of reionization. Early measurements of τCMB reported by the Cosmic Background Ex-

plorer (COBE; Kamionkowski et al. 1994) and the Wilkinson Microwave Anisotropy Probe (WMAP;

Spergel et al. 2003, 2007; Komatsu et al. 2009, 2011; Hinshaw et al. 2013) seemed to imply a rapid

reionization with a rather early conclusion (e.g. Somerville & Livio 2003; Kuhlen & Faucher-Giguère

2012; Robertson et al. 2013). On the other hand, a collection of Lyα forest constraints indicates

that the number of ionizing photons reaching the IGM gradually flattens or even declines at z ∼ 2–

6 (Bolton & Haehnelt 2007; Faucher-Giguère et al. 2008a, Prochaska, Worseck, & O’Meara 2009,

Songaila & Cowie 2010). It was difficult to reconcile the early reionization apparently implied by

the CMB (requiring a certain budget of ionizing photons) with the rather low emissivity at z ∼ 4–6,

while the galaxy population had presumably grown. One way to reconcile this tension was by in-

voking an ‘exotic’ population of ionizing sources that contributed only at high redshift (such as Pop

III stars or mini-quasars) or an escape fraction that strongly decreased with cosmic time. However,
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recent estimates of τCMB reported by the Planck Collaboration (2014; 2016a; 2018) have become

considerably lower, indicating later reionization. At the same time, more recent work on the cosmic

emissivity from Lyα forest constraints by Becker & Bolton (2013) indicates a higher emissivity to-

wards the end of EoR at z ∼ 4–6, largely alleviating the tension. However, these measurements still

provide important complementary constraints on the reionization history.

Another puzzle that has been discussed is the potential tension between the apparent need for

relatively efficient star formation in low mass halos at high redshift, needed to supply adequate

numbers of the faint, low-mass galaxies that are invoked to make up the shortfall in the ionizing

photon budget, and the much more inefficient star formation in low-mass halos required to reconcile

observed galaxy luminosity functions at low redshift with predicted halo mass functions in Λ Cold

Dark Matter (Lu et al. 2014b; Madau & Dickinson 2014). Observations of faint, low-mass galaxies

in the nearby Universe provide important complementary constraints to deep-field studies on EoR

populations (Weisz et al. 2014; Boylan-Kolchin et al. 2014, 2015, 2016; Graus et al. 2016).

5.1.3 Current simulation efforts

Modelling cosmic reionization is extremely challenging because, as we have outlined, it depends on

accurately simulating structures from sub-pc scales to the largest structures in the Universe (∼ 100

Mpc). Several different complementary approaches have been presented in the literature. High-

resolution cosmological zoom-in simulations, such as Renaissance (Wise et al. 2012; O’Shea et al.

2015), FIRE (Hopkins et al. 2014, 2018; Ma et al. 2018a,b) and FirstLight (Ceverino et al. 2019)

simulate small volumes at relatively high resolution. They are able to study the detailed properties

of galaxies and their ISM, down to scales of tens of pc, but it is not feasible to simulate large

volumes. Larger volume numerical hydrodynamic simulations such as EAGLE (Schaye et al. 2015),

Illustris and IllustrisTNG (Genel et al. 2014; Pillepich et al. 2018), CROC (Gnedin 2014; Gnedin &

Kaurov 2014; Gnedin 2016; Gnedin et al. 2017), CoDa (Ocvirk et al. 2016, 2020), BlueTides (Feng

et al. 2016; Wilkins et al. 2017), Simba (Davé et al. 2019; Wu et al. 2020), and Sphinx (Rosdahl

et al. 2018) are able to simulate larger volumes (∼ 10–100 Mpc), but may not resolve the very low-

mass halos that could be important for reionization, or the detailed properties of the ISM. A third

approach is to simulate large volumes, in some cases with explicit modelling of radiative transfer

in the IGM, but treating sources in a simplified way, e.g. by adopting empirical relations relating

rest-UV luminosity to halo virial mass or stellar mass to estimate the number of ionizing photons

produced (Iliev et al. 2006a,b; Trac & Cen 2007; Trac & Gnedin 2011; Santos et al. 2010; Hassan

et al. 2016, 2017). This approach essentially operates under the same guiding principle that drives

the popular (semi-)empirical modelling approach (Behroozi et al. 2019; Moster et al. 2018; Tacchella
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et al. 2018; Finkelstein et al. 2019). However, this relies strongly on observational constraints, which

must be extrapolated in regimes where these relations are not well calibrated.

The semi-analytic modelling approach is a middle way of bridging the gap between galaxy forma-

tion physics and the large-scale reionization history using physically motivated relationships between

dark matter halo formation histories and galaxy properties. Semi-analytic models have had a long

history of contributing to advancing the understanding of galaxy formation in ways that are com-

plementary to numerical simulations (Cole et al. 1994; Kauffmann et al. 1993; Somerville & Primack

1999; Somerville & Davé 2015). They are grounded in the framework of dark matter halo ‘merger

trees’, and adopt simplified but physically motivated analytic recipes to model the main processes

that shape galaxy formation. The models contain phenomenological parameters that are calibrated

to reproduce a set of key observational relations in the nearby Universe. The models that we adopt

here, the Santa Cruz semi-analytic models (Somerville & Primack 1999; Somerville et al. 2008,

2015), have also been shown to reproduce a broad suite of other observations over a range of cosmic

time and galaxy mass. The semi-analytic approach to studying reionization has also been adopted

by the DRAGONS project (Liu et al. 2016; Mutch et al. 2016; Geil et al. 2016). Because of the

computational efficiency of the semi-analytic approach, we are able to simulate large volumes down

to the lowest mass halos that are expected to be able to cool via atomic cooling. In addition, we are

able to explore variations in our model parameters. We have compared our model predictions with

those from both high-resolution and large-volume cosmological hydrodynamic simulations (Chapter

2 and Chapter 3), and find excellent agreement.

The key components of this chapter are summarized as follows: the semi-analytic modelling

pipeline, including the Santa Cruz galaxy formation model and the analytic reionization model are

summarized briefly in Section 5.2. Predicted reionization histories along with exploration of the

effect of varying different model components are presented in Section 5.3, including some specific

predictions regarding JWST in Section 5.3.4. We discuss our findings in Section 5.4, and a summary

and conclusions follow in Section 5.5.

5.2 The Modelling Framework

In this section, we present the components of a joint semi-analytic modelling pipeline for galaxy

formation and cosmic reionization used to carry out this study. Throughout this work, we adopt

cosmological parameters that are consistent with the ones reported by Planck Collaboration in 2015:

Ωm = 0.308, ΩΛ = 0.692, H0 = 67.8 km s−1Mpc−1, σ8 = 0.831, and ns = 0.9665. We adopt hydrogen

and helium mass fractions X = 0.75 and Y = 0.25.
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5.2.1 Semi-analytic model for galaxy formation

The galaxy populations that source the ionizing photons are predicted using a slightly modified

version of the well-established Santa Cruz SAM outlined in Somerville, Popping, & Trager (2015,

hereafter SPT15). We refer the reader to the following works for full details of the modelling

framework: Somerville & Primack (1999); Somerville, Primack, & Faber (2001); Somerville et al.

(2008); Somerville et al. (2012); Popping, Somerville, & Trager (2014, hereafter PST14) and SPT15.

For details on the model parameters used in this thesis and how they were calibrated, see Appendix

B.

The semi-analytic approach of modelling galaxy formation is based upon the merger histories

of dark matter halos, sometimes referred to as ‘merger trees’. In this work, we adopted merger

trees that are constructed using the Extended Press-Schechter (EPS) formalism (Press & Schechter

1974; Lacey & Cole 1993; Somerville & Kolatt 1999), which have been shown to well-reproduce the

statistical results for a large ensemble of merger trees extracted from N -body simulations (Somerville

& Kolatt 1999; Somerville et al. 2008; Zhang et al. 2008; Jiang & van den Bosch 2014). This approach

is able to achieve a wider dynamic range than any existing cosmological simulations, while requiring

only a small fraction of computation resources. For these reasons, our physical models are able to

account for halos ranging from the very low-mass ones near the atomic cooling limit to the rare,

massive ones across a wide range of redshift. The number density of ‘root’ halos is computed based

on results cosmological dark matter simulations (Klypin et al. 2016; Rodŕıguez-Puebla et al. 2016;

Visbal et al. 2018). For further details, see Chapter 3.

Within these merger trees, SAMs then implement a set of coupled ordinary differential equations

describing the flow of mass and metals between different components (diffuse intergalactic gas, hot

halo gas, cold interstellar gas, the stellar body of the galaxy, etc). These flows are influenced by a

range of physical processes, including cosmological accretion and cooling, star formation, chemical

evolution, stellar-driven winds, and black hole feedback. The equations governing these processes

contain “tunable” parameters that reflect our lack of a complete understanding of the basic physics.

These parameters are calibrated to match a set of observational relationships at z = 0. Note that

in this thesis, as in all previous work with the Santa Cruz SAMs, the models have not been tuned to

match observations at high redshift.

The Santa Cruz model (PST14; SPT15) includes a multiphase gas-partitioning recipe, which

subdivides the cold gas content into an atomic, ionized, and molecular component, and a H2-based

stars formation recipe, which utilizes the predicted surface density of H2 (ΣH2
) as a tracer for the
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surface density of SFR (ΣSFR). In this work, we adopted the metallicity-based, UV-background-

dependent partitioning recipe based on work by Gnedin & Kravtsov (2011, hereafter GK) and the

SF relation based on observations by Bigiel et al. (2008, hereafter Big). We note that recent evidence

from both theory and observation suggests that the SF relation slope may steepen to ∼ 2 at higher

H2 surface densities (Sharon et al. 2013; Rawle et al. 2014; Hodge et al. 2015; Tacconi et al. 2018).

In previous chapters in this thesis, we have shown that this ‘two-slope’ SF relation is crucial for our

model to produce predicted galaxy populations that simultaneously match observational constraints

on stellar mass, star formation rate, and rest-frame UV luminosity at z = 4–10 (Chapter 2 and

Chapter 3). Thus, we refer to it as our fiducial model (GK-Big2).

The Santa Cruz SAM has been tested extensively in the past and shown to be able to reproduce

a wide range of observables. In Chapter 2, the free parameters were re-calibrated to match a subset

of z ∼ 0 observations after adopting the updated cosmological parameters reported by the Planck

Collaboration. We then, in Chapter 2 and Chapter 3, identified the set of physical prescriptions (e.g.

SF recipes) and physical parameters (e.g. SNe feedback slope) that are required to reproduce the

evolution seen in observed galaxy populations up to z ∼ 10. This is encouraging as it suggests the

physical processes that shape the formation of galaxies during reionization may not be so different

from those that determine the properties of low-redshift galaxies. Taking advantage of the model’s

efficiency, we also quantified the impacts on the predicted galaxy populations from the uncertainties

in these model components by conducting controlled experiments where we systematically varied

the model parameters. We found that the key process that has strong effects on the rest-frame UV

luminosities and physical properties for bright, massive galaxies is the SF efficiency or time-scale

(τ*,0, see equation (1) in Chapter 2), which effectively characterizes the gas depletion time. For

faint, low-mass galaxies, the UV LF is most sensitive to the stellar feedback relation slope (αrh, see

equation (3) in Chapter 2), which characterizes the dependence of the mass-loading factor of cold gas

ejected by stellar feedback on halo circular velocity. Currently there are not strong constraints on

the faint-end slope of the UV LFs during EoR, where the predicted number density of faint galaxies

across different models can vary by up to ∼ 1.5 dex.

In the following subsections, we highlight how the main moving parts affecting the total emissivity

of ionizing photons are treated in this work.

Galaxy populations at ultrahigh redshifts

In order to quantify the contribution of ionizing photons from galaxies at ultrahigh redshifts (z & 10),

we extend the predictions from our SAM up to z ∼ 15. To assign a volume-averaged density to

these galaxies, we use the same functional form for the HMF with the fitting parameters tuned to



149

8 10 12 14 16 18 20 22 24 26
Rest-frame UV magnitude

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

 [N
 m

ag
1  

M
pc

3 ]

z = 4
z = 5
z = 6
z = 7
z = 8
z = 9
z = 10

z = 11
z = 12
z = 13
z = 14
z = 15
with dust attenuation
without dust attenuation

z = 11
z = 12
z = 13
z = 14
z = 15
with dust attenuation
without dust attenuation

Figure 5.1 Predicted redshift evolution of the intrinsic (dotted) and dust-attenuated (solid) rest-UV
LFs between z = 11 and 15 (this work; red colour series) and between z = 4 and 10 (Chapter 2;
blue colour series). The turnover at the faint end is not due to resolution, but rather to the atomic
cooling limit. At very high redshifts, the UVLF is not well fit by a Schechter function. At z ∼ 4−8,
the apparent knee in the observed UVLF is largely due to differential dust extinction, which is larger
in more luminous galaxies.

fit the results from the same set of simulations (Bolshoi-Planck and Visbal et al., see Fig. G.1). See

Appendix F for full details and the values of all parameters. In Fig. 5.1, we present both the intrinsic

(dust-free) and the dust-attenuated rest-frame UV luminosity functions predicted for the extended

redshift range z = 11–15. In the same figure, we also compare these galaxies to the evolution

between z = 4–10 previously presented in Chapter 2. Tabulated values for the dust-attenuated UV

LFs are accessible via an online repository (see Appendix A). We emphasize that the turnover at the

faint end of our predicted luminosity functions is not due to resolution but is a result of the atomic

cooling limit, which corresponds to a limiting halo mass that evolves with redshift. We found in

our predictions that the characteristic ‘knee’ in UV LFs vanishes at z & 9, seemingly due to both

insignificant AGN feedback and lacking of dust (see fig.5.1), and the faint-end slopes also gradually

flatten as a function of rest-UV. The Schechter function is no longer a good representation and

therefore, we do not provide Schechter fitting parameters.

We continue to explore the impacts from modelling uncertainties in the context of cosmic reion-

ization. In Fig. 5.2, we show UV LFs predictions for αrh = 2.0, 2.4, 3.2, and 3.6. This is consistent

with the findings in Chapter 2 and Chapter 3, where we showed that the faint-end slope of the UV
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Figure 5.2 Redshift evolution of the dust-attenuated UV LFs between z = 11 and 14 predicted
by our fiducial model (αrh = 2.8, blue solid line). We show four additional scenarios where we
vary the parameter controlling the mass-loading of stellar driven winds, with αrh = 2.0 (weakest,
lightest colour), 2.4, 3.2, and 3.6 (strongest, darkest colour). Larger values of αrh produce stronger
suppression of star formation in low-mass halos, leading to shallower faint end slopes and a lower
luminosity for the turnover.

LFs is inversely correlated with the stellar feedback parameter αrh (i.e., a stronger dependence of

wind-mass loading on halo circular velocity leads to a flatter faint end slope). Furthermore, this

effect also effectively shifts the halo occupation function and the turnover in the faint end of the UV

LFs, which corresponds to the atomic cooling limit. In other words, we predict that the magnitude

where the UF LF is truncated is inversely related with the strength of stellar feedback.

The intrinsic production rate of ionizing radiation

We refer to the ionizing photon production rate, Ṅion, and the production efficiency, ξion, by stellar

populations in galaxies, which does not account for the absorption or attenuation by the ISM and

CGM, as ‘intrinsic’. In Chapter 4, we self-consistently predict Ṅion within the Santa Cruz modelling

framework, based on the predicted star formation and chemical enrichment histories and results from

stellar population synthesis (SPS) models. This model component enables us to distinguish and track
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the contribution from galaxies across different rest-frame UV magnitudes and stellar masses. In this

work, we adopt the published results from the data tables released by the BC031 and the bpass

group2 (Stanway et al. 2016; Eldridge et al. 2017; Stanway & Eldridge 2018). Both models assume

a Chabrier IMF with an upper mass cutoff mU = 100M�. These predictions for z = 4–10 have

been examined in detail in Chapter 4. In that work, we also explored the scaling relations of ξion

and Ṅion with many SF-related physical properties and found that ξion is mildly correlated with M∗

and SFR, and these scaling relations evolve mildly as a function of redshift (where the underlying

driving physical parameter is predominantly stellar metallicity). Although the bpass SPS models

account for mass transfer and mergers in stellar binaries, some processes that could potentially boost

the production rate of ionizing photons, such as accreting white dwarfs and X-ray binaries, are not

included in these models.

Here we extend these predictions to even higher redshift galaxy populations. In Fig. 5.3, we

provide the predictions for the specific ionizing photon production rate, Ṅion/Mh, for halos in a

relevant mass range at z = 11–14. The 2D histograms are shaded according to the conditional

number density (Mpc−1) of galaxies in each bin, which is normalized to the sum of the number

density in its corresponding (vertical) halo mass bin. The median, 16th, and 84th percentiles are

marked in each panel to illustrate the statistical distribution. Comparing to the predictions between

z = 4 to 10 shown in Fig. 4.7 in Chapter 4, which showed Ṅion/Mh increases across the halo

mass range explored, we find that the production rate per halo mass seems to have plateaued has

noticeably larger scatter.

Escape fraction of Lyman-continuum photons

The LyC escape fraction can be very stochastic depending on the many intricate physical processes

occurring in individual galaxies and their internal structure. In this work, we take a simplistic

approach and regard it as a population-averaged quantity, which can either be understood as the

population of galaxies all sharing the same escape fraction or as the escape fraction of the total

number of ionizing photons collectively produced by all galaxies. We treat it as a controlled free

parameter, which may either be a constant value or evolve as a function of redshift. For the remainder

of this work, we refer to the LyC escape fraction as fesc.

Inspired by the functional form presented by Kuhlen & Faucher-Giguère (2012), we adopt the

1http://www.bruzual.org/ gbruzual/bc03/
2https://bpass.auckland.ac.nz/, v2.2.1
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Figure 5.3 Specific ionizing photon production rate, Ṅion/Mh, as a function of halo mass between
z = 11 and 14, predicted by our fiducial model. The green solid and dashed lines mark the 50th,
16th, and 84th percentiles. The greyscale 2D histograms show the conditional number density per
Mpc3 in each bin, normalized to the number density in the corresponding (vertical) halo mass bin.
The figure shows a decline in the specific ionizing photon production rate at fixed halo mass with
increasing redshift, and a flattening dependence on halo mass. This is because these very early halos
have not yet had time to form many stars.
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following expression for the redshift evolution of fesc:

fesc(z) =
fesc,max

1 +
(
fesc,max

fesc,0
− 1
)
e−k0(z−z0)

, (5.1)

assuming fesc decreases from some maximum value at high redshift, fesc,max, at a characteristic

growth rate, k0, until it asymptotically reaches an anchoring valuing fesc,0 at a given redshift z0 = 4.

A goal of this work is to obtain constraints on fesc under this empirical parametrization, as required

by the set of currently available observational constraints.

5.2.2 Analytic model for reionization history

In this section, we present the set of analytic equations that tracks the reionization history of

intergalactic hydrogen under the influence of the predicted galaxy populations. The model used in

this work is similar to the ones presented in Madau et al. (1999, see also Choudhury 2009; Finkelstein

et al. 2012a, 2019; Kuhlen & Faucher-Giguère 2012; Shull et al. 2012; Robertson et al. 2015; Madau

2017; Carucci & Corasaniti 2019; Naidu et al. 2020), modified to fully utilize the predictions from the

Santa Cruz SAM for galaxy formation. With this model, we can efficiently predict volume-averaged

ionizing photon emissivity (ṅion), IGM ionized fraction (QHII), and the Thompson scattering optical

depth (τCMB). In conjunction with the Santa Cruz SAM, the full modelling pipeline effectively

connects the ‘ground-level’ galaxy formation physics to the ‘top-level’ cosmic reionization-related

observables. With this modelling pipeline, we explore and test the impact of individual model

components and how they impact the cosmological scale observables. Note that predictions for

helium reionization are beyond the scope of this work.

Ionized volume fraction

The temporal evolution of the volume-averaged ionizing volume-filling fraction of ionized hydrogen,

QHII, is described by the first-order differential equation

dQHII

dt
=
ṅion

n̄H
− QHII

t̄rec
, (5.2)

derived in Madau et al. (1999). The two terms can be interpreted as a growth term and a sink

term, respectively, where the former is the ratio of the comoving ionizing emissivity, ṅion, and the

volume-averaged comoving number density for intergalactic hydrogen, n̄H; the latter is characterized

by the ionized volume fraction divided by the recombination time-scale of ionized hydrogen, t̄rec.

We adopted n̄H = 1.9× 10−7 cm−3 as reported by Madau & Dickinson (2014).
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Ionizing emissivity

The comoving emissivity of ionizing photons, ṅion, is the total budget supplied to reionize the IGM

by galaxies, which is commonly modelled as the product of cosmic SFR or UV density, the LyC

production efficiency of ionizing photons, and the fraction of photons that escapes to the IGM

ṅion = fesc ξion ρUV. (5.3)

Recalling that in our models, fesc and ξion may have a different value for each galaxy, instead of

combining these for the whole population as above, we calculate the comoving value at each redshift

by summing over all predicted galaxies

ṅion =
∑
i

nh,i Ṅion,i fesc,i, (5.4)

where nh is the number density per Mpc3 for each galaxy i, assigned based on the virial mass of

the host halo (Section 5.2.1), Ṅion is the intrinsic ionizing photon production rate (Section 5.2.1),

and fesc is the LyC escape fraction (Section 5.2.1). This modified approach does not require a

predetermined truncation value of MUV, as the turnover in the galaxy UV LF is a physical feature

of our model. Moreover, Fig. 2.7 of Chapter 2 and Fig. 5.2 have shown that the magnitude where

the UV LF turns over is directly correlated with the faint-end slope, which are both affected by the

SN feedback slope αrh. Therefore, instead of exploring a range of LF faint-end slope as is frequently

done in other studies, we explore a range of αrh.

Intergalactic HII recombination time-scale

The recombination time-scale for intergalactic hydrogen is given by

t̄rec =
[
CHII αB(T ) (1 + ηY/4X) n̄H (1 + z)3

]−1
, (5.5)

where CHII is a redshift-dependent HII clumping factor and η = 1 for singly ionized helium at

z > 4. We adopted numerical predictions for the clumping factor from the radiation-hydrodynamical

simulation L25N512 by Pawlik, Schaye, & Vecchia (2015), which CHII evolves from ∼ 1.5 to ∼ 4.8

between z ∼ 14 to ∼ 6. The quantity αB(T ) is the temperature-dependent case B recombination

coefficient for hydrogen given in Hui & Gnedin (1997), where we adopt T = 2 × 104 K for the

temperature of the IGM at the mean density; n̄H is the mean density of hydrogen in the IGM.

Under the limitation of this type of model, we assume homogeneous recombination.
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Thompson scattering optical depth of the CMB

The reionization history, QHII(z), is obtained by solving eqn. 5.2 using Python tools from scipy.integrate.odeint

and astropy.cosmology (Robitaille et al. 2013; Price-Whelan et al. 2018; Virtanen et al. 2020). We

can then calculate the Thomson scattering optical depth of the CMB, τCMB, using

τCMB =

∫ ∞
0

dz
c(1 + z)2

H(z)
QHII(z)σTn̄H(1 + ηY/4X), (5.6)

where H(z) is the Hubble constant and σT is the Thomson cross section.

The main components of our default ‘reference model’, used throughout the remainder of this

work are summarized in Table 5.1. This approach provides quick estimates of the volume-averaged

reionization history and other cosmological-scale observables. However, it does not track the growth

of individual Stromgren spheres. It also does not account for local density variances (e.g. void or

over-dense regions), which may significantly affect the reionization histories on small scales. We will

further discuss the limitations of the model in Section 5.4.

Table 5.1 Summary of components for reference model.

Model / Constraints References Configurations
Star formation Bigiel et al. 2008 two-slope (1→ 2)
Gas partitioning Gnedin & Kravtsov 2011 metallicity-based
Stellar feedback Somerville et al. 2008 αrh = 2.4, εSN = 1.7
LyC productivity Stanway & Eldridge 2018 binary, v2.2.1
HII recombination Hui & Gnedin 1997 Case B
HII clumping factor Pawlik et al. 2015 L25N512 simulation
Emissivity constraints Becker & Bolton 2013 ṅion at z = 2–5
CMB constraints Planck Collaboration 2016b τCMB = 0.058± 0.012

5.3 IGM Reionization by High-Redshift Galaxies

In this section, we present a collection of predicted reionization histories and investigate how galaxy

formation physics can affect these predictions. We experiment with a range of constant values of fesc

(Section 5.3.1) or treat it as a function of redshift (Section 5.3.2). We also present a comparison with

two other analogous studies (Section 5.3.3). At the end of the section, we probe the contribution of

galaxies from different rest-MUV, as well as forecasting the contribution from galaxies observable by

JWST.
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5.3.1 Constant escape fraction

At first, we take the simplest approach by letting fesc be a non-evolving, universal quantity. We

present predictions for ṅion, QHII, and τCMB using our reference model configurations. Taking

advantage of the efficiency of our modelling pipeline, we then performed a controlled experiment by

varying a set of selected model components to quantity their impact on these predictions.

In Fig. 5.4, we show the evolution of ṅion predicted by the reference model assuming fesc = 0.20.

These results are compared to constraints on the global LyC emissivity at 2 < z < 5 derived from

the high-redshift Lyα forest by BB13. The plotted data are for the fiducial temperature-density

parameter γ = 1.4 and spectral index of the ionizing sources α = 2.0, with shaded area showing the

reported total error. Historically, there has been tension between the Thomson scattering optical

depth of the CMB, τCMB and the ionizing photon emissivity at intermediate redshift, as discussed

in the introduction. To demonstrate how these new constraints have eased the tension, we also show

the compilation of constraints presented in Kuhlen & Faucher-Giguère (2012), which includes Lyα

forest observations from Bolton & Haehnelt (2007); Faucher-Giguère et al. (2008b); Prochaska et al.

(2009); Songaila & Cowie (2010). The BB13 constraints are a factor of ∼ 2 higher than the previous

measurements, and no longer require the total LyC emissivity to decrease so rapidly at z . 6. We

also show the critical comoving ionizing emissivity, ṅcrit
ion , or the minimum ṅion that is required to

keep the Universe ionized

ṅcrit
ion = CHII αA(T ) (1 + ηY/4X) n̄2

H (1 + z)3, (5.7)

obtained by inverting the recombination time-scale given in eqn. 5.5. Here, the temperature-

dependent case A recombination coefficient for hydrogen, αA(T ), given by Hui & Gnedin (1997)

is invoked because direct recombination from free to the ground bound state is more likely to occur

in the optically thin IGM. On the other hand, case B is more suitable at prescribing regions near a

source given that photons release by free-to-ground recombination is likely to reionize a nearby by

hydrogen in these denser regions (see Faucher-Giguère et al. 2009 for in-depth discussion). The rest

of the variables are consistent with the ones adopted in our calculation of the HII recombination

time-scale.

We compare these results with alternative scenarios predicted with a range of fesc and SN feed-

back slopes αrh. As explored in previous chapter of the thesis, we found that SN feedback is the

dominant process that regulates star formation in low-mass halos. Deviating from the fiducial value

αrh = 2.8, we found that the range αrh = 2.0 to 3.6 yield a range of faint-end slopes that are still well

within the current observational uncertainties at z & 6. As shown in Fig. 2.7 of Chapter 2 and in
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Fig. 5.2, low-mass galaxies are more abundant when feedback is weaker (αrh = 2.0) and, conversely,

less abundant when feedback is stronger (αrh = 3.6). Here, we show the range of predicted ṅion for

galaxy populations predicted with these boundary cases and found that these yield results nearly

∼ 1 dex apart. Similarly, we also experiment with a wide range of fesc = 0.05 to 0.80 to quantify

its impact on the overall emissivity. From these results, we can already see that the LyC emissivity

is more sensitive to the escape fraction than the faint-end slope of the UV LFs, for these variables

within a physically meaningful range.

To explore the uncertainties in modelling Ṅion, we added predictions with Ṅion from BC03, which

is the least optimistic model explored in Chapter 4, and a scenario with constant ξion adopting the

expression from Kuhlen & Faucher-Giguère (2012)

Ṅion = 2× 1025s−1

(
LUV

erg s−1Hz−1

)
ζion, (5.8)

where ζion is a free parameter that characterizes the hardness of the spectra. Here we assumed ζion =

1 as in the fiducial model of KF12. The rest-UV magnitude is converted using log10(LUV/(erg s−1Hz−1)) =

0.4(51.63−MUV). This is equivalent to adopting a constant log ξion = 25.30. We find that models

with Ṅion computed self-consistently from the SPS models result in a shallower growth in ṅion over

time comparing to the model with a constant ξion. This is likely due to ageing and metal enrichment

in the stellar populations in these galaxies, which naturally make the production of ionizing photons

less efficient, although the number density of galaxies is growing. However, this effect is insufficient

to reproduce the BB13 constraints as the flattening due to changes in ξion is quite subtle, and overall

ṅion is still largely dominated by the fairly rapid growth of the overall number density of galaxies.

On the other hand, results using Ṅion predicted by different SPS models seems to have evolved quite

similarly over time with the expected factor of ∼ 2 offset due to the inclusion of binary stars in the

bpass models. For further discussion of differences between the bpass binary SPS model and BC03,

we refer the reader to the discussion associated with Fig. 4.12 in Chapter 4.

In the same spirit as the ṅion comparison, in Fig. 5.5 we present the predicted IGM neutral

fraction, QHI ≡ 1 − QHII, from the same set of model variants. These predictions are stacked up

against a compilation of observational constraints compiled from R13 and R15, which consist of

various kinds of observations, including Lyα emitting galaxies (Ota et al. 2008; Ouchi et al. 2010;

Pentericci et al. 2014; Schenker et al. 2014), Lyα emission fraction (McQuinn et al. 2007; Mesinger

& Furlanetto 2008; Dijkstra et al. 2011), Lyα galaxy clustering (Ouchi et al. 2010), Lyα damping

wing (Totani et al. 2006; McQuinn et al. 2008; Chornock et al. 2013), from the near zones of bright

quasars (Bolton & Haehnelt 2007; Bolton et al. 2011; Schroeder et al. 2013), and from dark pixels
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in Lyα forest measurements (Mesinger 2010; McGreer et al. 2011, 2015). We refer the reader to

Robertson et al. (2013) for a detailed description of these constraints. We also added the latest

constraints from Lyα emitting galaxies reported by Mason et al. (2018b, 2019).

Fig. 5.6 shows τCMB as a function of redshift for our reference model, and for the model variants

fesc = [0.05, 0.80] and αrh = [2.0, 3.6]. We show recent measurements reported by the Planck

Collaboration 2014; 2016b; 2018 and WMAP-9 (Hinshaw et al. 2013). The latest observational

constraints together favour both a later conclusion of reionization and a less rapidly evolving ṅion,

which ease both the need for high emissivity at high redshifts and rapid decrease of ṅion toward

z . 5. In Fig. 5.7, we show the integrated τCMB as a function of both fesc and αrh. This shows that

τCMB is very sensitive to the LyC escape fraction for fesc . 0.3, but its dependence on fesc becomes

much flatter above this value. For fesc & 0.3, the predicted optical depth is more sensitive to the

abundance of faint galaxies rather than the LyC fesc. Note that τCMB is an integrated quantity

that compresses the reionization history into a single metric. However, it is degenerately affected

by both the conclusion of the phase transition and its progression. For instance, an extremely slow

reionization progression or a rapid, late reionization can both result in a lower measured τCMB value.

These results show that models with non-evolving fesc and αrh are unable to reproduce a reion-

ization history that simultaneously matches all three sets of constraints, which are consistent with

results from previous studies (e.g. Kuhlen & Faucher-Giguère 2012; Anderson et al. 2017).

5.3.2 Constraining a redshift dependent escape fraction with MCMC

Results from §5.3.1 quantified the sensitivity of model outputs to a range of fixed values of fesc and

αrh. In this section, we allow fesc to evolve as a function of redshift (see eqn.5.1) and employed

a Markov chain Monte Carlo (MCMC) method to find the optimal configuration that is needed

to satisfy the current observational constraints. We employ the python MCMC tool emcee3 by

Foreman-Mackey et al. (2013) to survey the four dimensional parameter space, including fesc,max,

fesc,0, k0, and αrh. In the context of cosmic reionization studied here, we consider the many other

free parameters in the galaxy formation model as being collectively constrained either by calibration

or by the cross-checks with observations between z = 4 to 10 in previous works. In this exercise,

αrh can take any value within the range [2.0, 3.6], where ṅion is pre-calculated for fixed values of

αrh = 2.0, 2.4, 2.8, 3.2, and 3.6, and then interpolated using the scipy.interpolate tool. By

varying αrh within the SAM, we have included a number of associated features under its influences,

including the faint-end slopes and flattening of the UV LFs, and the subtle boost of ionizing photon

3http://dfm.io/emcee, v2.2.1
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Figure 5.4 Ionizing photon emissivity, ṅion, as a function of redshift predicted with the reference
model configurations (blue solid, see Table 5.1). The blue shaded region marks the range of ṅion from
galaxy populations predicted for αrh = 2.0 (weaker feedback, leading to a higher number density
of low-mass galaxies and higher emissivity) and 3.6 (stronger feedback, leading to fewer low-mass
galaxies and lower emissivity). The orange region marks the range predicted with fesc = 0.05 (lower
emissivity due to low escape fraction) and 0.80 (higher emissivity). We also include predictions made
with a constant log(ξion) = 25.30 and with Ṅion from the SPS models of BC03. These results are
compared to observational constraints from BB13 and a compilation from KF12. The light green
band shows the critical ionizing photon emissivity required to keep the Universe ionized (see eqn.
5.5 and associated description in text). This shows how uncertainties in different model components
could have affected the total ionizing budget throughout the EoR.
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Figure 5.5 Neutral volume fraction, QHI ≡ 1−QHII, as a function of redshift calculated for our ref-
erence model (blue solid). The blue shaded region marks the range for galaxy populations predicted
for αrh = 2.0 (weaker feedback; lower bound) and 3.6 (stronger feedback; upper bound). The orange
region marks the range predicted with fesc = 0.05 (upper bound) and 0.80 (lower bound). We also
include predictions made with a constant log(ξion) = 25.30 and with Ṅion from BC03. These results
are compared to a compilation of observational constraints from R13 and R15, and additional con-
straints from Mason et al. (2018b, 2019). The simple reference model, with fixed fesc, is in tension
with these observations, though it is clear that this is primarily due to uncertainties on fesc.
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Figure 5.6 Thomson scattering optical depth of the CMB, τCMB, as a function of redshift predicted
by our reference model (blue solid). The blue shaded region marks the range of integrated τCMB

from galaxy populations predicted for αrh = 2.0 (upper bound) and 3.6 (lower bound). The orange
region marks the range predicted with fesc = 0.05 (lower bound) and 0.80 (upper bound). We also
show reported values from the Planck Collaboration 2014; 2016b; 2018 and from WMAP-9 (Hinshaw
et al. 2013). Our reference model has no difficulty accounting for the more recent estimates of τCMB.
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Figure 5.7 Thomson scattering optical depth of the CMB, τCMB, as a function of assumed fesc and
αrh in our model. Predictions from our reference model are shown by the blue solid line. The
blue dashed lines show the alternative predictions made with αrh = 2.0 (upper bound for earlier
reionization due to higher number density of galaxies), 2.4, 3.2, and 3.6 (lower bound for later
reionization due to lower number density of galaxies). The measured value of τCMB = 0.058± 0.012
as reported by Planck Collaboration (2016b) is shown for comparison. This provides a reference
showing the interplay between uncertainties or variation in the parameters fesc and αrh = 2.0.
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production due to the slight increase in burstiness triggered by SN feedback (see Section 4.3.4 and

associated discussion in Chapter 4).

The MCMC framework is set up with 56 walkers, each of which performs a chain of 120,000

steps with the first 200 regarded as burn-in and discarded. Each of these walkers is initialized with

a Gaussian distribution, with a chosen peak and half-width distribution. The parameters that went

into the set-up can be found in Table 5.2. We assumed a flat prior for all four of our free parameters.

For a randomly drawn prior that falls outside the boundary of the flat prior, a new set of parameters

are drawn.

The set of observational constraints used in the MCMC are the Lyα forest constraints on ṅion

from BB13 and the τCMB from Planck Collaboration (2016b), which are weighted equally in the

likelihood function. Note that the large collection of IGM neutral fraction estimates are shown

for comparison but are not used as constraints in the MCMC. The median and the 68% and 95%

confidence region of our posteriors for the predicted fesc, ṅion, QHI, and τCMB are summarized in

Fig. 5.8, where the posterior distributions are shown in Fig. 5.9.

Our results favour a drop in escape fraction at z . 7, leading to a turnover in the ionizing

emissivity. The parameters k0 and αrh are strongly covariant, and are only weakly constrained by

τCMB. It is encouraging that the range of predicted reionization histories are in broad agreement

with the QHI constraints. This is non-trivial as it depends on other model components that are not

being actively ‘tuned’ here, such as which galaxies are contributing to reionization. We note that

the latest Planck Collaboration 2018 results would favour an even milder evolution of fesc and a

slightly lower fesc,max. Adopting the Planck2018 value of τCMB will only mildly change the results

and conclusions of this work.

Table 5.2 Summary for the MCMC parameters, flat prior constraints, and posterior with 68%
confidence region.

Initiation σ constraints posterior

fesc,0 0.036 0.00005 [0.012, 0.060] 0.0381+0.0148
−0.0159

fesc,max 0.350 0.0005 [0.100, 0.500] 0.2985+0.1357
−0.1328

k0 0.50 0.005 [0.10, 0.90] 0.523+0.255
−0.269

αrh 2.80 0.05 [2.0, 3.6] 2.784+0.525
−0.511

5.3.3 Comparison with other recent models

In this section, we compare the predicted reionization history in our reference model to recent

studies by Finkelstein et al. (2019) and Naidu et al. (2020). In Fig. 5.10, we compare results from
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Figure 5.8 From top to bottom, we show the predicted redshift evolution for fesc, ṅion, QHI, and τCMB

using the BB13 and Planck Collaboration (2016b) τCMB observations as constraints in our MCMC
analysis. The shaded areas denote the 68% (dark grey) and 95% (light grey) confidence regions. We
also show our reference model with a constant fesc = 0.20 for comparison (blue dashed). This figure
shows that a moderate effective evolution of fesc with redshift can comfortably accommodate all of
the observational constraints.
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of evolution of fesc (k0) and its asymptotic value (fesc,max) are not well constrained. The strong
covariance between αrh and fesc is apparent.
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our reference model with a constant fesc = 20% and with the evolving fesc found in Section 5.3.2

to the results from Finkelstein et al. and Model I (constant fesc) from Naidu et al.. Although these

models are fairly similar as they adopted a similar approach to modelling reionization, we note that

these works adopted very different approaches to model galaxy populations and their evolution.

Finkelstein et al. use UV LFs from observations with faint-end slopes extrapolated below the

current detection limit. These UV LFs are truncated at halo masses corresponding to photoionization

squelching and atomic cooling, which are obtained via abundance matching. The many moving parts

in the model, including the LyC escape fraction, halo truncation mass, the evolution of ξion, and

the contribution of AGN, are optimized to fit a set of observational constraints using an MCMC

machinery. Finkelstein et al. were particularly interested in exploring models that could satisfy all

constraints on reionization while adopting a low ionizing escape fraction (. 5% throughout the EoR).

They adopted a halo-mass dependent parametrization of fesc based on hydrodynamic simulations

from Paardekooper et al. (2015), and parametrized ξion in terms of redshift and galaxy luminosity.

On the other hand, Naidu et al. adopted galaxies from the Tacchella et al. (2018) empirical

model (see comparison with our predictions in Chapter 3) and estimated the production efficiency

of ionizing photons using synthetic SEDs generated from the Flexible Stellar Population Synthesis

(FSPS; Conroy et al. 2009, 2010) and MESA Isochrones and Stellar Tracks (MIST; Choi et al. 2017b)

for individual galaxies. They have explored a model with fixed fesc and one that scales as a function

of ΣSFR, and a range of truncation values MUV.

Finkelstein et al. found that in order for models with such universally low escape fractions to

be viable, a rather high and rapidly evolving ξion is required. The range of ξion values are similar

to, or even above, the observed values from Bouwens et al. (2016c). However, Chapter 4, Wilkins

et al. (2016b), and Ceverino et al. (2019) have shown that such high values of ξion and such strong

evolution are not ‘naturally’ predicted in current self-consistent galaxy formation models. As we can

see in Fig. 5.10, the Finkelstein et al. model (in which reionization is heavily dominated by low-mass

galaxies) predicts an early start to reionization and a more gradual evolution for QHI. The Naidu

et al. model (in which massive galaxies play a more important role) predicts later and more rapid

reionization. Curiously, our model lies somewhere in between, although it also predicts a fairly rapid

transition in QHI.

This comparison illustrates that there is still significant uncertainty in which galaxies dominate

the reionization of the Universe and the details of how reionization progressed. Future observations

JWST and other facilities will provide direct constraints on the source populations (as we explore

further in the next section). Furthermore, as galaxies of different masses cluster very differently

in space, these models would also have very different implications for the topology of reionization,
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Figure 5.10 The redshift evolution of the IGM neutral fraction predicted by our reference model
with a constant 20% (blue) escape fraction, and our fiducial model with an evolving (black line and
shaded regions) escape fraction, compared to predictions from the recent models of Finkelstein et al.
(2019) (orange) and Naidu et al. (2020) (green). A compilation of observational constraints is shown
by the symbols (see Fig. 5.5 for a legend). This illustrates the broad range of reionization histories
implied by several of the most recent modelling papers.

which will eventually be probed with 21-cm intensity mapping experiments.

5.3.4 Which galaxies reionized the Universe and will JWST see them?

In this section, we take advantage of the completeness of our predictions both in mass and redshift

to estimate the contributions of ionizing photons from galaxies of different intrinsic luminosities,

and estimate what fraction of the ionizing photon budget will be contributed by galaxies that are

anticipated to be observed in future JWST surveys. We show predictions for our reference model.

As the dependence of fesc on galaxy luminosity is very uncertain, and not yet included in our

modelling, we only provide predictions here for the fraction of ionizing photons produced and do

not try to estimate the fraction that escapes to the IGM. Recent simulation works have shown that

fesc may inversely scale with Mh in a fairly loose way (e.g. Paardekooper et al. 2015), and therefore

the actual contribution from massive/luminous galaxies to the overall ionizing photon budget might

be smaller than what is presented here. However, our models do incorporate a mass and redshift

dependent ξion based on our self-consistent modelling. These calculations do not account for field-

to-field variance nor the survey area, where rare, massive objects may be missing from the small

survey area of deep surveys.
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In fig. 5.11, we show the fraction of ṅion produced by galaxies above the detection limits of

hypothetical JWST wide, deep, and lensed surveys with detection limits of mF200W = 28.6, 31.5, and

34.0, respectively4. See Table 2.6 in Chapter 2 and Table 3.1 in Chapter 3 for detailed configurations

of these hypothetical surveys. For comparison, we also show results for legacy HST surveys, where

we adopted detection limits for the F160W filter mF160W = 26.8, 29.5, and 31.5 for wide, deep,

and lensed surveys, respectively, with configurations similar to the CANDELS and Hubble Frontier

Fields surveys. At z ∼ 7–8, where we predict the Universe to be about 50% reionized by volume,

JWST will be able to detect the sources of 60-70% of the reionizing photons in a deep survey. This

fraction increases to ∼ 90% for an ultra-deep lensed survey, however, interpreting lensed observations

and estimating the survey completeness may be more challenging.

In a similar experiment, we break down the galaxy populations by rest-frame intrinsic UV

magnitude (not accounting for the effect of dust attenuation) into the following groups: −24 <

MUV < −20, −20 < MUV < −16, −16 < MUV < −12, to the faintest −12 < MUV < −8. In fig.

5.12, we compare the fraction of ṅion contributed by galaxies from each of these groups from z = 15

to 4. Galaxies beyond this range combined produce < 1% of ionizing photons across all redshifts,

and are omitted here. Similar to results presented in the previous figure, we assume that fesc does

not depend on galaxy properties, which may significantly effect the predictions shown here. We find

that ultra-faint galaxies (−12 < MUV < −8) dominate at the highest redshifts (z & 13), with a

slightly brighter population −16 < MUV < −12 dominating over the redshift range 10 . z . 13. At

lower redshift z . 10, galaxies in the intermediate luminosity range −20 < MUV < −16 dominate.

Similarly, in Fig. 5.13 we break down the contribution of ionizing photons by the host halo masses

of galaxies. These are based on the predictions from our reference model configurations, and are

quite sensitive to the details of how galaxies populate halos, which as we have shown depends on the

details of the stellar feedback parameters and other physical processes. We find that contributions

from halos outside the range shown here are insignificant. This result is also useful for estimating

the ‘completeness’ of the predicted ionizing emissivity from studies with limited mass resolution.

In Chapter 2 (see Section 2.2.2 and Fig. 2.3), we explored the impact on star formation from a

photoionizing background using a redshift-dependent characteristic mass approach as described by

Okamoto et al. (2008) and found nearly no impact on the galaxy populations at the range of redshift

and halo mass relevant to our study. However, high-resolution hydrodynamic simulations have shown

that the presence of such a background may have affected the low-mass, ‘photosensitive’ halos of

log(Mh) . 9 (Finlator et al. 2013). Accounting for this effect may reduce the contribution from

low-mass halos near the beginning of the EoR relative to our predictions.

4The F200W filter on the NIRCAM instrument
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Figure 5.11 Predictions from our reference model for the fraction of ionizing photons produced by
galaxies that are expected to be detected in various types of surveys, including wide (solid), deep
(dashed), and lensed (dotted) surveys with JWST (blue) and HST (cyan) between z = 4 and
15. Survey areas and detection limits assumed for these calculations are detailed in the text. These
predictions reflect the production rate and do not account for the escape fraction of ionizing photons
possibly varying across galaxies with different luminosities.
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Figure 5.12 Predictions from our reference model for the fraction of ionizing photons produced by
galaxies grouped by rest-frame dust-attenuated MUV between z = 4 and 15. These predictions reflect
the production rate and do not account for the escape fraction of ionizing photons possibly varying
across galaxies with different luminosities. Galaxies outside the range of MUV shown contribute
< 1% of ionizing photons at all times.
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Figure 5.13 Predictions from our reference model for the fraction of ionizing photons produced
by galaxies grouped by host halo mass Mh between z = 4 and 15. These predictions reflect the
production rate and do not account for the escape fraction of ionizing photons possibly varying
across halo mass. The contribution of ionizing photons that originates in halos outside the range
shown is insignificant.
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5.4 Discussion

In this section, we discuss some caveats and uncertainties in our modelling pipeline, and present an

outlook for future observations with JWST and beyond.

5.4.1 Galaxies forming at extreme redshifts and their role in cosmological events

In this thesis, we have explored the interplay between galaxy formation physics and the cosmological-

scale phase transition of hydrogen reionization. In particular, we investigated whether models with

physical recipes and parameters that have been calibrated to match lower redshift observations

(z ∼ 0) are consistent with a broad suite of observations at extremely high redshifts (z & 6).

A significant finding of this work is that these locally calibrated models are consistent (within the

uncertainties) with all currently available observations at z & 6, including direct observations of

galaxies, and indirect probes of the reionization history from observations of the IGM and CMB. This

has two important implications: 1) It seems that the physical processes regulating star formation

and stellar feedback do not operate in a vastly different manner at extremely high redshift. Given

our lack of detailed understanding of how these processes work even in the local Universe, this is

far from a trivial conclusion. 2) Contrary to some previous suggestions in the literature, the current

suite of observations do not require an additional ‘exotic’ population of reionizing sources (other than

galaxies, e.g. mini-quasars, Pop III stars, self-annihilating dark matter, etc.) in the early Universe.

The remaining uncertainties on several components of our modelling mean that we do not rule out

the existence of such sources at some level – but they are not required to satisfy existing constraints.

The overall ionizing photon budget available during the EoR is degenerately affected by physical

processes that operate over a vast range of scales. As illustrated in Fig. 5.4, each of these seemingly

degenerate components can evolve differently and be constrained independently. In Chapter 2 and

Chapter 3, we provided physically motivated predictions for the evolution of the number density

of galaxies at high redshift, which will be further constrained with future galaxy surveys; and in

Chapter 4, we predicted the evolution and distribution of ξion for the same set of galaxies, which

may also be constrained with future observations as discussed in Chapter 4. We have explicitly

broken down the contribution to the ionizing photon budget as a function of redshift from galaxies

with different observed frame and rest-frame luminosity, and different halo mass. This is again

a non-trivial calculation, as the intrinsic production efficiency of ionizing photons depends on a

combination of factors such as stellar population age and metallicity in addition to the number

density of galaxies with different luminosities. These effects are self-consistently included in our

models.
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We took a fully semi-analytic approach to assemble our modelling pipeline, including the con-

struction of merger trees, formation and evolution of galaxies, and the progression of cosmic reioniza-

tion. In practice, this modelling pipeline serves as a low-computational-cost platform for examining

galaxy formation and cosmic reionization constraints from various tracers. As shown in Fig. 5.8,

the set of IGM neutral fraction constraints seem to collectively favour a relatively rapid decline of

neutral hydrogen around z ∼ 6–7. However, such a reionization history would yield a τCMB near the

lower bound of the reported uncertainties of the latest measurements. Although these constraints

are in mild tension, our model is in agreement with all constraints within the 68% confidence re-

gions of the MCMC posterior. Adopting the even lower τCMB measurement reported by the Planck

Collaboration in 2018 would further ease this tension and yield a slightly milder evolution for fesc

and a slightly more gradual reionization history.

Another novel aspect of our work is the rigorous statistical exploration of the degeneracy in

the physical parameter controlling the impact of stellar feedback on low-mass halos (αrh) and the

parametrized effective redshift evolution of fesc. Larger values of αrh result in stronger feedback,

producing fewer low-mass galaxies, and require higher values of fesc to produce the required budget

of ionizing photons, and vice versa. Under the subset of observational constraints included in the

MCMC, it is encouraging that the median of the posterior of αrh is very much in agreement with

the value that is required to reproduce z ∼ 0 observations. Similarly, the required redshift evolution

in fesc is not extreme, and the values at the lower end of our explored redshift range (z ∼ 4) where

there are some observational constraints are reasonable.

Past studies predicted diverging scenarios for the final stage of reionization depending on the

assumptions and observational constraints employed by these models. Such process could be rather

extended when dominated by low-mass galaxies (e.g. Finkelstein et al. 2019), or conversely very

rapid when dominated by massive galaxies (e.g. Mason et al. 2018b and Naidu et al. 2020), for

which the rapid end to reionization is motivated by Lyα emitter constraints. The results presented

in this work depict a relatively early onset of reionization compared to Naidu et al. due to the

early contributions from low-mass galaxies, but lag behind Finkelstein et al. because of the lower

predicted ξion and fesc. However, it is very intriguing to see that our model also predicted a very

rapid end to reionization when Lyα emitters are not explicitly used to constrain our model. Fig. 5.12

shows that the contribution of ionizing photons from more massive galaxies has grown rapidly and

took over from their low-mass counterparts during the EoR, which provides a physical explanation

to the rapid conclusion of reionization that is solely driven by galaxy formation physics rather than

from observed EoR constraints.

However, Finkelstein et al. also showed that by letting all galaxies to have the same escape
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fraction, galaxies with MUV . −16 would have dominated the ionizing photon budget. Given

that the way fesc is parametrized in this work, it is also possible that we have overestimated the

contribution from massive galaxies, which could be a partial reason to the rapid end. Therefore, the

predicted rapid end to reionization can be one part backtracked to the predicted evolution of galaxy

populations and their spectroscopic properties, and one part due to our parametrization of fesc.

5.4.2 Caveats, limitations, and uncertainties of the modelling framework

The limitations and caveats regarding the galaxy formation model and the physical recipe for Ṅion

have been thoroughly discussed in previous works; we refer the reader to Section 3.6.3 in Chapter 3

and Section 4.4.3 in Chapter 4. This discussion will be focused mainly on the topics related to the

reionization pipeline presented in this work.

We note that even though the SAM is fairly successful at reproducing a wide variety of existing

observational constraints, which we examined in detail in Chapter 2 and Chapter 3, both the physical

properties and number density of the predicted galaxy populations at z > 10 are poorly constrained

due to the lack of direct observations. They are subject to uncertainties in model components, such

as feedback effects and SF relations, which are either untested or known to be inaccurate in extreme

(e.g. metal-free) environments. There are also missing physical processes, such as the formation

of Population III stars, that can potentially affect star formation activity in low-mass halos in the

early universe.

Therefore, we regard the predictions for z = 11 to 15, including both the UV LFs and Ṅion/Mh, to

be more uncertain. We plan to explore the physics relevant to these extreme epochs in future works.

In addition, the models will be tested more stringently as high-redshift observational constraints

from JWST and other instruments become available.

Furthermore, the EPS-based merger trees adopted in this dissertation work have been compared

trees extracted from numerical simulations and the results shown to be in good agreement. However,

the EPS algorithm has never been tested over the full halo mass and redshift ranges that are explored

in this work, as there is currently no publicly available relevant suite of dark matter only simulations.

We plan on running and analysing this suite of N-body simulations, and developing and validating

a new and improved fast merger tree algorithm, in Yung et al. (in preparation).

Our analytic reionization model does not account for density fluctuations and clustering of sources

across the Universe, which numerical simulations have shown can lead to an inhomogeneous and

‘patchy’ progression of reionization. Furthermore, our models do not self-consistently account for

photoionization feedback (or ‘squelching’). Other works have shown (Gnedin 2014; Mutch et al.

2016) that photoionization affects only galaxies in extremely low-mass halos, which we found have
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a negligible contribution to reionization. Furthermore, post-reionization IGM temperature fluctua-

tion can also be used to constrain the reionization history and this has been explored analytically

(Furlanetto & Oh 2009) and with fully coupled radiation-hydrodynamic simulations (Wu et al. 2019).

Some sources that could be potential contributors to the total ionizing photon budget are not

accounted for in this work. These include Population III stars, X-ray binaries, and AGN. Previous

work has shown that Pop III stars are unlikely to dominate the reionizing photon budget (e.g. Ricotti

& Ostriker 2004; Greif & Bromm 2006; Ahn et al. 2012; Paardekooper et al. 2013; Robertson et al.

2015), but they could make reionization more patchy, and are presumably important for polluting

early halos with metals, which can then provide the seeds for dust and molecular hydrogen formation.

This process is a critical component in our models, which is currently treated in a simplified way

by adopting a metallicity ‘floor’ in all pristine halos. We further assume that significant cooling

cannot occur in halos below the atomic cooling limit (104 K). While some cooling may occur at

lower temperatures due to molecular hydrogen cooling or metal cooling, these are thought to be

sub-dominant (Yoshida et al. 2004; Maio et al. 2010; Johnson et al. 2013; Wise et al. 2014; Xu et al.

2016; Jaacks et al. 2018). The contribution of early accreting black holes to reionization remains very

uncertain, and we plan to investigate this in upcoming work. In addition to directly contributing

ionizing photons through their hard spectrum, semi-analytic calculations have shown that X-rays

produced by AGN can boost fesc (Benson et al. 2013; Seiler et al. 2018). However, hydrodynamic

simulations have shown that this effect is not significant (Trebitsch et al. 2018). We also note that

the contribution from AGN to the total ionizing photon budget can become fairly significant near the

completion of HI reionization (e.g. Dayal et al. 2020), and our results matching the BB13 emissivity

constraints may imply an over-prediction of the contribution from galaxies.

Another caveat related to the observational constraints is that the estimates of τCMB are highly

covariant with other cosmological parameters, and are derived assuming a simple instantaneous

reionization model. As additional constraints onQHI and the ionizing photon emissivity are obtained,

and we gain a better understanding of the uncertainties on these measurements, these could be

incorporated as additional constraints in a fitting procedure.

5.4.3 Constraining galaxy formation during the EoR with JWST and beyond

With both deep- and lensed-field NIRCam surveys anticipated to reach unprecedented detection lim-

its, the extremely sensitive JWST is expected to directly detect and constrain the number density of

faint galaxies up to z ∼ 10. Furthermore, MIRI and NIRSpec will provide high-resolution spectro-

scopic follow-ups for the spectral features of these galaxies, which will put more robust constraints on

ξion and fesc. These measurements will allow us to further test and refine galaxy formation models



176

and to understand the physics that shapes galaxy properties at ultra-high redshift.

The coming decades promise great opportunities for further exploring the high-redshift Universe.

The line-up of flagship instruments, include space-based Euclid (Racca et al. 2016) and Wide-

Field Infrared Survey Telescope (WFIRST, Spergel et al. 2015), as well as the ground-based Large

Synoptic Survey Telescope (LSST, LSST Science Collaboration 2017). These facilities are capable

of surveying large areas, which is complementary to the small field-of-view of JWST. Furthermore,

next generation facilities European Extremely Large Telescope (ELT, Gilmozzi & Spyromilio 2007),

Thirty Meter Telescope (TMT, Sanders 2013), and Giant Magellan Telescope (GMT, Johns 2008)

have the capability of doing spectroscopic follow-up on the expected large number of photometric

detections. The flexibility of our model allows it to be easily adapted to made predictions for these

instruments, and facilitate physical interpretation for future multi-instrument surveys. In addition,

the Atacama Large Millimeter Array (ALMA) has the capability of detecting dust continuum as

well as fine structure lines such as [CII] and [OII] of z > 6 galaxies. With the extended modelling

framework presented in (Popping et al. 2019) coupled with our SAMs, we will also be able to make

predictions for joint JWST–ALMA multi-tracer surveys.

Intensity mapping is a complementary approach that surveys large areas of the sky at relatively

coarse angular resolution, potentially providing direct constraints on the conditions of the intergalac-

tic hydrogen and indirect, collective constraints on high-redshift galaxy populations (Visbal & Loeb

2010; Visbal et al. 2011; Kovetz et al. 2017). Numerous intensity mapping experiments for HI, CO,

CII, and Lyα are planned or underway, including BINGO (Battye et al. 2013), CHIME (Bandura

et al. 2014), EXCLAIM (Padmanabhan 2019), HERA (DeBoer et al. 2017), HIRAX (Newburgh

et al. 2016), Tianlai (Chen 2012), LOFAR (Patil et al. 2017), MeerKat (Pourtsidou 2018; Santos

et al. 2017), CONCERTO (Serra, Doré, & Lagache 2016), PAPER (Parsons et al. 2010), etc., which

together pave the way to future large-scale multi-tracer intensity mapping surveys. These observa-

tions can also be cross-correlated with galaxy surveys for a comprehensive view of the interaction

between galaxies and the cosmic environment. The modelling framework presented here can also

provide a powerful tool for efficiently producing physically self-consistent, multi-tracer predictions

for intensity mapping experiments (Yang et al. in preparation).

Finally, improving radiative hydrodynamic simulations of early galaxy evolution (e.g. Finlator

et al. 2018; Wu et al. 2019) will complement our approach by providing more physically motivated

priors for our key physical parameters, and suggesting new parametrizations that connect quantities

such as escape fraction to galaxy properties rather than redshift, as we have assumed here. Our

approach provides a framework to bridge these detailed self-consistent models with upcoming deep

and wide surveys to optimally constrain the physics of early galaxy formation.
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5.5 Summary and Conclusions

In this work, we constructed a physically motivated, source-driven semi-analytic modelling pipeline

that links galaxy formation to the subsequent reionization history using an analytic model for reion-

ization. The galaxy formation model has been tested extensively and shown to match extremely well

with observational constraints up to z ∼ 10 in previous works, and we extended these predictions up

to z ∼ 15. We have calculated Ṅion self-consistently, accounting for the stellar age and metallicity

distribution of the stellar population in each galaxies using state-of-the-art SPS models. We pre-

sented predictions for the ionizing emissivity, IGM neutral fraction, and Thomson optical depth to

CMB throughout the Epoch of Reionization, and compared these to a wide range of observational

constraints. In a controlled experiment, we isolated and quantified the effect of each of the major

moving parts in the total ionizing photon budget. We also explored two different scenarios with a

constant and a redshift-dependent fesc, and determined the required conditions for the predicted

galaxy populations to reionize the Universe in the time frame require by IGM and CMB constraints.

We explored the covariance of different model components (including fesc and the efficiency of stellar

feedback) using MCMC.

We summarize our main conclusions below.

1. Using a well-tested physical galaxy formation model, which was calibrated only to z ∼ 0

observations and has been shown to well-reproduce observed distributions from z ∼ 4–10, we

provide predictions for rest-frame UV luminosity functions and ionizing photon production

rate for galaxies up to z = 15.

2. Adopting a non-evolving escape fraction of ∼ 20%, the galaxy population predicted by our

model yields sufficient amounts of ionizing radiation to be consistent with constraints from the

Thomson optical depth τCMB. However, this model is in tension with low-redshift Lyα obser-

vations on the IGM neutral fraction and observational constraints on the ionizing emissivity

at 2 . z . 6.

3. We performed a number of controlled experiments to explore the impacts on the reionization

history of varying the three main model components that influence the total ionizing photon

budget, including the abundance of low-mass galaxies, intrinsic ionizing photon production

rate, and LyC escape fraction. We find that the uncertainty on estimates of the total LyC

emissivity is dominated by uncertainties on fesc, with the strength of stellar feedback being

the second most important factor.

4. We used MCMC to explore the covariance in these two parameters (fesc and αrh, which
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parametrizes the efficiency of stellar feedback in low-mass halos). We parametrized the popula-

tion averaged fesc as a function of redshift, and jointly constrained these parameters along with

αrh using constraints from Lyα forest observations and τCMB measurements. We found that

a ‘population-averaged’ escape fraction that mildly increases from ∼ 4% to ∼ 29% between

z ∼ 4 to 15 satisfies both constraints.

5. We presented predictions for the fraction of ionizing photons produced by galaxies of different

rest-UV luminosity as a function of redshift, and for the fraction of the total ionizing photon

budget sourced by galaxy populations that will be observable in upcoming surveys with JWST.

At z ∼ 7–8, where we predict the Universe to be about 50% reionized by volume, we predict

that JWST will be able to detect the sources of 60–70% of the reionizing photons in a deep

survey, and up to ∼ 90% in an ultra-deep lensed survey.
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Chapter 6

Conclusion

In this dissertation work, we constructed a semi-analytic modelling pipeline to predict and investi-

gate the properties of high-redshift galaxies and their impact on the subsequent cosmic reionization

history. This pipeline is the first of its kind to have taken a fully semi-analytic approach to construct-

ing dark matter halo merger trees, modelling galaxy formation, and tracking the volume-averaged

progression of the reionization of intergalactic hydrogen. This set-up enables self-consistent explo-

rations of the connections between galaxy formation physics and a wide variety of cosmological

observables. Taking advantage of the pipeline’s efficiency, we also conducted controlled experiments

by systematically varying a set of key physical parameters. These results are critical to quantifying

the impact of the sensitivities of our predictions to uncertainties in current physical models and

assessing the capabilities of future instruments on constraining galaxy formation physics. We also

demonstrated in this dissertation that semi-analytic models can be an extremely useful companion

to large survey programs and have applied some of our predictions to provide insights to some of

the main open questions that will be address by future flagship telescopes.

In the first half of this thesis, we extensively examined the galaxy populations predicted for very

high redshifts (z ∼ 4–10), including the statistical distributions and scaling relations for their phys-

ical and photometric properties. While exploring the effects from a variety of star formation-related

models, we pinpointed the set of model components, configurations, and physical parameters that are

required to reproduce the observed distribution of high-redshift galaxies, which includes a H2-based

star formation relation that becomes more efficient in H2-dense gas and a specific combination of SN

feedback strength and molecular gas depletion time. We find that the galaxy formation physics we

learned from observations in the nearby universe are quite sufficient to explain the observed evolution

for galaxies during the EoR. Our simulated galaxy populations also span an extremely wide mass

range, wider than most numerical and semi-analytic simulations currently available, which allows us

to make predictions for low-mass objects that fall below the current detection limits. We explored a

range of possible outcomes amid the current modelling uncertainties and concluded that the faint-

end slope of UV LFs is mainly sensitive to the scaling of the mass-loading factor for stellar driven

winds with halo or galaxy properties. We also found that star formation physics and gas depletion
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time have dominant effects on the formation of massive galaxies, but the observed abundance of

bright galaxies is subject to degenerate effects from dust attenuation. These results can be used to

guide physical interpretation of future observations.

In the second half of this thesis, we implemented and tested new model components to expand

the model’s capabilities for making a variety of EoR-related predictions. With the crucial component

that calculates the production rate of ionizing photons self-consistently based on the star formation

and chemical enrichment histories of the predicted galaxy populations, we are able to estimate the

total ionizing photon budget supplied to reionize the IGM by galaxies, while accounting for vari-

ance among populations of galaxies and distinguishing the contributions from galaxies of different

luminosities or masses. The results from our physically motivated model painted a coherent picture

that high-redshift galaxies predicted with a set of well-tested physics are able to produce sufficient

ionizing photons to reionize the Universe in the time frame required by the latest IGM and CMB ob-

servations. We also find that low-mass galaxies are more efficient at producing ionizing photons than

massive galaxies and high-redshift galaxies are more efficient than their low-redshift counterparts.

We applied some of our results to create forecasts specifically for the highly-anticipated JWST,

which possesses unprecedented IR sensitivity and is expected to directly detect galaxies during the

EoR. Based on the publicly available instrument and broadband filter specifications, we showed that

JWST will be able to put constraints on the number density of faint galaxies down to a rest-frame

MUV ∼ −15.68 or logM∗ ∼ 6.44 at z ∼ 10, assuming some typical deep-field survey configurations.

These future observations will provide constraints that help understand the build-up of galaxies in

the early universe, as well as the strength and evolution of stellar feedback effect and other relevant

physical processes. We also predicted that JWST in deep-field surveys will be able to detect sources

that are accountable for ∼ 60% to ∼ 70% of the total ionizing photon budget, and up to ∼ 90% in

an ultra-deep lensed survey. The pipeline and peripheral tools used to create these predictions can

be easily adapted to serve other instruments, and can be used to support the scientific rationales for

the design of instruments or survey programs, optimize observing strategies, and facilitate physical

interpretation of results. Modelling results and predictions presented in this dissertation have been

made accessible to the astronomical community and are being used by a number of collaborations

on exploring JWST and WFIRST science.

6.1 Future Work and Long-Term Development

The work presented in this dissertation will serve as the basis for future development of Semi-Analytic

Models with Ultrahigh-Redshift Astrophysical Interplay (SAMURAI ), which is envisioned to be
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a modelling enterprise that will bring continuous, long-term advancements to the well-established

Santa Cruz SAM with special focus on physical processes that are known to have significant influences

at very high redshifts (z & 10). This will equip our model with tools to tackle other astrophysical

conundrums and to keep up with the rapidly evolving field. This proposed project has been accepted

by the NASA Postdoctoral Program (NPP) beginning in October, 2020.

Despite the current success of modelling the evolution of observed high-redshift galaxy popu-

lations and providing predictions for low-mass galaxies to be observed by JWST and beyond, we

must acknowledge that many physical processes that have strong influences on these primordial

galaxies are not currently incorporated in the model. As shown in numerical and (semi-)analytic

simulations, the co-evolution of the first stars and the first black holes (BHs) have some leading,

far-reaching effects that propagate through time and have profound influences on the evolution of

other galaxy components. In the current paradigm of structure formation, the first stars formed in

pristine halos and were the primary source of metals, which are then distributed across their host

halos via SN explosions. This very first batch of metals enables hot gas to cool efficiently for the

first time and kick off the cycles of metal production and star formation. The remnants of the first

stars then become one of the main channels seeding the first BHs, along with others that are seeded

by massive gas clouds that directly collapse under self-gravitation. These seeds grow over time into

supermassive BHs and quasars via accretions and mergers and co-evolve with the morphology and

physical features of galaxies (e.g. Somerville et al. 2008).

By modelling the first stars using an approach similar to the one developed by Visbal et al. (2018),

this proposed model will be able to predict where and in which halos these direct collapse BHs can

form, provided that some of the conditions required are already provided by the existing modelling

framework. One of the powerful aspects of the project would be the ability to simultaneously

include BH seeds from first stars, which are relatively low mass but more prevalent, and seeds from

direct collapse, which are more massive but probably rare. It is evident that both of these seeding

channels are required as inferred by current observations. However, incorporating both seeding

channels in cosmological-scale hydrodynamic simulations is highly non-trivial even with the most

powerful machines currently available, as it requires extremely high mass-resolution to properly

resolve the halos that host the seeds of luminous quasars and extremely large simulated volumes to

sample these very rare objects. This proposed model will be the first to fully explore both seeding

mechanisms in a cosmological context and provide predictions for new physical quantities to be

detected in the future. This model advancement will also yield more robust predictions for the

properties of primordial galaxies that can be observed with JWST and WFIRST (Volonteri et al.

2017).
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This timely addition to the modelling pipeline will allow it to address the physical origin of

the large fraction of optically obscured AGNs like the ones discovered recently (e.g. LaMassa et al.

2019), and how would this potentially large population of AGN fit into the current picture of cosmic

reionization explored in Chapter 5. There are also puzzles remaining in the physical origin of the

billion-solar-mass BHs needed to power those massive AGNs found by z ∼ 7, and perhaps the seeding

of BHs may be the key to understanding the development of these AGNs. Other relevant applications

would be predicting properties of ‘fossil’ stars and BH occupation fractions in nearby dwarf galaxies.

Furthermore, this will also enable predictions for black hole accretions and mergers, which will be

detectable in x-ray and gravitational waves by a number of approved flagship instruments, such

as the Advanced Telescope for High ENergy Astrophysics (ATHENA) and the Laser Interferometer

Space Antenna (LISA). These will produce predictions for new physical quantities that can be cross-

correlated with the wide range of existing predictions and form the basis of a unified platform for

the physical interpretations for some highly anticipated multi-messenger surveys.
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Appendix A

Data Release and Repository

The data products and mock galaxy catalogues associated with the work presented in this thesis

are released and made accessible to the astronomical community through a permanent location at

https://www.simonsfoundation.org/semi-analytic-forecasts-for-jwst/, which is hosted and adminis-

tered by the Center for Computational Astrophysics at the Flatiron Institute in New York.

Tabulated distribution functions include:

• Rest-frame UV luminosity functions for various SF models, with and without dust attenuation

• Observed-frame apparent magnitude functions for full set of NIRCam broadband filters

• Stellar mass functions

• Star formation rate functions

• Cold gas and molecular mass functions

• Scaling relations among selected star formation-related observable and physical properties

• cosmic ionizing photon productivity for model variants

• ionizing photon production rate and efficiency as a function of halo mass

• IGM reionization history for model variants

Full object catalogues with a comprehensive list of physical and observable properties predicted at

z = 4–15 with our fiducial model are released via the online portal.
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Appendix B

Re-calibration for Planck Cosmology

In this appendix, we briefly summarize the calibration of our model after updating the cosmological

parameters to values consistent with recent constraints from Planck. The free parameters in our

model are calibrated by hand such that the outputs from our fiducial model match observations

at z ∼ 0. The calibration quantities are the stellar-to-halo mass ratio and stellar mass function,

stellar mass-metallicity relation, cold gas fraction versus stellar mass relation for disk-dominated

galaxies, and the black hole mass vs. bulge mass relation. We adopt observational constraints for

these quantities from Rodŕıguez-Puebla et al. (2017, and references therein), Bernardi et al. (2013),

Gallazzi et al. (2005), Peeples et al. (2014), Calette et al. (2018), and McConnell & Ma (2013). We

show our model outputs compared with these observational constraints in Fig. B.1. In addition, we

show two quantities used as a cross-check but not used directly in the calibration: cold gas phase

mass-metallicity relation (lower-left panel in Fig. B.1) and the H2 mass function (Fig. B.2), along

with observational constraints from Obreschkow & Rawlings (2009b), Keres et al. (2003), Andrews

& Martini (2013), Zahid et al. (2013), and Boselli et al. (2014). For scaling relations, the blue solid

line marks the median and the dashed lines mark the 16th and 84th percentile for central galaxies.

Both central and satellite galaxies are included in the distribution functions (such as the SMF and

H2 mass function). SPT15 has shown that the different SF recipes produce results that converge

at z ∼ 0. The re-calibration for updated cosmology have uniform effects across the models and

therefore should not qualitatively change the results among models. Hence, we refer reader to such

work for the relative differences among SF models at low redshifts.

Traditionally, there has been tension in the predicted physical properties in galaxy formation

models. In one case, matching the stellar fraction closely tends to lead to an excess in gas fraction.

Since the underlying star formation efficiency that has immediate effects on stellar fraction is directly

related to the production of metals, which our multiphase-gas partitioning, star formation, and dust

attenuation recipes are extremely sensitive to, calibrating our model to simultaneously match the

observed gas fraction, stellar metallicity, and stellar fraction is very challenging. The uncertainty of

about a factor of two in the observed normalization of the Kennicutt SF law and the observed gas

fractions provides us with some leeway for calibrating our model. After carrying out multiple tests
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with different configurations, we find that leaving the SF timescale τ∗,0 close to unity yields the best

results, with gas fractions slightly higher than values reported by Calette et al. (2018). If we strictly

enforce the gas fraction to match observations by decreasing τ∗,0, we will also need to compensate

for that by increasing AGN feedback to keep the model from overproducing massive galaxies.

While we configure the SF timescale and AGN feedback to fit the massive end of the stellar-to-

halo mass ratio and stellar mass function, the faint populations seem to be more sensitive to the

SN feedback slope αrh. Structure forms earlier in the Planck cosmology relative to the WMAP-5

cosmology used in our previous work, leading to a higher number density of low-mass dark matter

halos at early times. This requires us to increase αrh to suppress the formation of low-mass galaxies

in order to match both the stellar-to-halo mass ratio and stellar mass function, which comes with a

side effect of further steepening the mass-metallicity relation. As discussed in previous works SPT15,

this tension, along with other discrepancies at intermediate redshifts (White et al. 2015) hint that

our rather simple recipe for stellar feedback needs to be revised. Moreover, since the abundance of

low-mass galaxies is very sensitive to the choice of αrh, deviating from the calibrated value would

certainly would certainly raise tension with observational constraints at z ∼ 0. The impact of

alternative αrh values at z ∼ 0 has been examined in (White et al. 2015), which they found that

making alternate assumptions for ejected mass would lead to a ∼ 0.25 dex changes relative to the

fiducial model. Some of the values, including the ones disfavored by local observations are explored

in this work in effort to quantify its effect on the low-mass galaxy populations. The differences

among the three star formation recipes presented in this work have been explored in SPT15.
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Figure B.1 Outputs at z = 0 from our fiducial model compared to the observational constraints on
top row from left to right : stellar-to-halo mass ratio, stellar mass function, and MBH-Mbulge relation;
bottom row from left to right : cold gas metallicity, stellar metallicity, and gas fraction reported by
various studies. See text for full details.
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Figure B.2 H2 mass function at z = 0 from our fiducial model compared to the observational
constraints presented in Keres et al. (2003) and Obreschkow & Rawlings (2009b).
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Appendix C

Testing the Halo Mass Function

In this work, we use the fitting functions for halo mass functions provided by Rodŕıguez-Puebla

et al. (2016) that is fitted to the Bolshoi-Planck simulations (Klypin et al. 2016). However, the mass

resolution from Bolshoi-Planck simulation is well above Vvir ∼ 20 km s−1which our grid of root halos

reaches. To check the validity of these fitting functions for HMF, we used are compared to very high

resolution, small box simulations that are similar to the ones presented in Visbal et al. (2018). A

comparison between the halo mass functions and the numerical simulations is shown in fig. C.1.
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Figure C.1 A comparison of the HMF fitting functions from Rodŕıguez-Puebla et al. (2016, solid
line) to numerical simulations from Klypin et al. (2016, circle marker) and Visbal et al. (2018, square
marker).Plot elements are color-matched by redshift.
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Appendix D

Fitting Functions for Selected Scaling Relations

The fitting parameters for the medians of selected scaling relations presented in 3.4 are provided in

Table D.1. As noted in the text, the correlations break down in the bright, massive galaxies due

to the effect of dust attenuation, which is not accounted for in the fitting. Bright galaxies with

mm200W < 27 and MUV < −24 are excluded from our fits. Galaxies with log(M∗/M�) < 6 are

also excluded as the scatter increases below this mass (see Fig. 3.16, 3.17 3.18, 3.19, and 3.20. In

general, the residuals on these fits range from a few percent to ∼ 15%.

Table D.1 Fitting parameters for the medians of selected scaling relations. For each pair of X-Y
relation, the fitting parameters for Y = Ax+B are given below.

mF200W-MUV mF200W-M∗ mF200W-SFR MUV-M∗ M∗-SFR
z A B A B A B A B A B
4 0.9048 -42.9055 -0.4033 19.4533 -0.3746 9.9795 -0.4420 0.2893 0.9692 -8.3461
5 0.9161 -43.9573 -0.4000 19.4269 -0.3829 10.5306 -0.4233 0.3931 0.9828 -8.2576
6 0.9139 -44.1058 -0.3991 19.3298 -0.3828 10.6324 -0.4244 0.2154 0.9679 -7.9788
7 0.9088 -44.0984 -0.3988 19.2443 -0.3823 10.6624 -0.4266 0.0423 0.9472 -7.7057
8 0.9200 -44.5426 -0.4058 19.3903 -0.3950 11.0885 -0.4279 -0.1031 0.9532 -7.6551
9 0.9274 -44.8604 -0.3983 19.0822 -0.3919 10.9837 -0.4242 -0.1430 0.9543 -7.6178
10 0.9120 -44.4035 -0.3880 18.6637 -0.3856 10.7586 -0.4208 -0.1673 0.9513 -7.5384
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Appendix E

Impact of Adopting Updated Cosmological Parameters

During the course of recalibrating the model parameters, we found that changing from the WMAP

cosmology to the Planck cosmology alone has some significant effects on our predictions for high-

redshift galaxy populations. For each iteration of our model (e.g. S08; SPT15; Chapter ?? of this

thesis), the parameters are tuned to match a subset of z ∼ 0 observables. Although the specific

observations used for calibration have changed throughout the years as the available observational

constraints improved, the qualitative evolution of galaxy populations remained similar. However,

as we move to z & 4, the difference arising from the adopted cosmology becomes more noticable.

Furthermore, different works have used various approximate fitting functions to estimate the abun-

dance of dark matter halos as a function of mass and redshift. For example, S08 and SPT15 used the

Sheth, Mo, & Tormen (2001) fitting function, while in this work we use the updated fitting function

from Rodŕıguez-Puebla et al. (2016). In Fig. E.1 we show the effects of both fitting function choice

and cosmology on the halo mass function at z ∼ 10–0. These factors can lead to differences in halo

abundance of a factor of two or more.

In this appendix, we focus on results at z = 4 from this work and compare them to results from

S08 and SPT15. The S08 models used the WMAP3 cosmology, and results from these models are

shown in (Porter et al. 2014), the Lu et al. (2014a) SAM comparison and the Song et al. (2016)

and Duncan et al. (2014) comparison to observations. The updated multiphase models presented in

Somerville et al. (2015) incorporate the same gas-partitioning and H2-based SF recipes used here,

but adopted the WMAP7 cosmology (see Table E.1).

We compare the SMFs from S08 and the non-multiphase version of SPT15, and then the SMFs

from the multiphase version of SPT15 and from this work. Our goal is to show the weak residual

effects of the choice of cosmology on the redshift evolution of galaxy properties even after model

recalibration.

The Planck cosmology predicts higher abundances of halos of all masses and at all redshifts than

WMAP, although not by the same factor at all redshifts and masses, as can be seen in Fig. E.1. In

Chapter 2 of this thesis, we describe how we recalibrated the parameters controlling the physical

processes in the SAM to produce nearly identical results for our calibration quantities at z ∼ 0



191

(Appendix C in Chapter 3). As shown in Fig. E.2, the updated model produces a very small excess

of bright galaxies compared to the previously published (SPT15) model. The residual difference

at high redshift due to cosmology is also weakly dependent on the way that physical processes are

modeled in the SAM, as can be seen from the models with different star formation recipes run within

each of the two cosmologies.

Table E.1 Summary of cosmological parameters used in previous models.

WMAP3 WMAP5 Planck 2015
(S08) (SPT15) (This Work)

Ωm 0.2383 0.28 0.308
ΩΛ 0.7617 0.72 0.692
H0 73.2 70.0 67.8
fb 0.1746 0.1658 0.1578
σ8 0.761 0.81 0.831
ns 0.958 0.96 0.9665
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Figure E.1 Halo mass functions from the fitting formulae of Sheth et al. (2001) and Rodŕıguez-Puebla
et al. (2016) for different choices of cosmology: Planck (This Work, solid line), WMAP-7 (SPT15,
dashed line), WMAP-3(S08, dotted line). The bottom panel shows the fractional difference relative
to the RP16 Planck HMFs. The Planck cosmology generally predicts higher abundances of halos
than WMAP cosmologies over a broad range of mass and redshift.



193

8 9 10 11
log M *  [M⊙ ]

10−5

10−4

10−3

10−2

10−1

ϕ M
*
 [d

 −
−1
 M
pc

−3
]

z = 4

Thi* Work (Planck 2015)
SPT15 (WMAP-5)
(GKBig2) MH2-based
(KS) Mcold-based
Duncan et al. 2014
Song et al. 2016
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Appendix F

HMF Fitting Parameters for the Extended Redshift Range

We adopted the HMF parametrization from Tinker et al. (2008) with parameters calibrated to the

Bolshoi-Planck simulation from the MultiDark suite (Rodŕıguez-Puebla et al. 2016; Klypin et al.

2016). The comoving number density of halos of mass between Mvir + dMvir is given by

dnh

dMvir
= f(σ)

ρm
M2

vir

∣∣∣∣ d lnσ−1

d lnMvir

∣∣∣∣ , (F.1)

where ρm is the critical matter density in the Universe, σ is the amplitude of the perturbations, and

f(σ) is called the halo multiplicity function, which takes the form of

f(σ) = A

[(σ
b

)−a]
e−c/a

2

, (F.2)

where A, a, b, and c are free parameters. In this work, as shown in Fig. G.1, we recalibrate these

parameters to match the HMF constraints between z = 11 – 15 from the Bolshoi-Planck simulation

and from Visbal et al. (2018). These parameters are presented in Table F.1.

Table F.1 Fitting parameters for f(σ) parameters that produces the HMF at z = 11 – 15 used
throughout this work as shown in fig. G.1.

z A a b c
11 0.1668 0.9823 1.100 1.0938
12 0.1468 0.9823 1.000 1.0938
13 0.1468 0.9823 0.900 1.0938
14 0.1268 0.9823 0.750 1.0938
15 0.1268 0.5523 0.600 1.1238
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Figure F.1 The coloured lines, from light to dark, show the HMF fitting functions adopted for the
extended redshift range z = 11–15. n-body simulation predictions from Klypin et al. (2016) and
Visbal et al. (2018) are shown in matching colour for each redshift for comparison. The light grey
dot-dashed lines show HMF fitting functions used for z = 4–10 to guide the eye (see Chapter 2 for
detail).
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Appendix G

Logo Associated with the Project

This project logo we designed made its presence in numerous talks, posters, and webpages, which

played a significant role in representing this work and in promoting the content of this work to the

scientific community.

Semi-Analytic
Forecasts forJWST

Figure G.1 The Semi-analytic forecasts for JWST project logo.
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Muratov, A. L., Kereš, D., Faucher-Giguère, C.-A., Hopkins, P. F., Quataert, E., & Murray, N.
2015, MNRAS, 454, 2691

Mutch, S. J., Geil, P. M., Poole, G. B., Angel, P. W., Duffy, A. R., Mesinger, A., & Wyithe, J. S. B.
2016, MNRAS, 462, 250

Naab, T., & Ostriker, J. P. 2017, ARA&A, 55, 59

Naidu, R. P., Tacchella, S., Mason, C. A., Bose, S., Oesch, P. A., & Conroy, C. 2020, ApJ, 892, 109

Nakajima, K., Ellis, R. S., Iwata, I., Inoue, A. K., Kusakabe, H., Ouchi, M., & Robertson, B. E.
2016, ApJ, 831, L9

Nakajima, K., Ellis, R. S., Robertson, B. E., Tang, M., & Stark, D. P. 2020, ApJ, 889, 161

Nakajima, K., Fletcher, T., Ellis, R. S., Robertson, B. E., & Iwata, I. 2018, MNRAS, 477, 2098
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Oppenheimer, B. D., & Davé, R. 2006, MNRAS, 373, 1265

O’Shea, B. W., Wise, J. H., Xu, H., & Norman, M. L. 2015, ApJ, 807, L12

Ota, K., Iye, M., Kashikawa, N., et al. 2008, ApJ, 677, 12

Ouchi, M., Shimasaku, K., Furusawa, H., et al. 2010, ApJ, 723, 869

Paardekooper, J.-P., Khochfar, S., & Dalla Vecchia, C. 2015, MNRAS, 451, 2544

Paardekooper, J.-P., Khochfar, S., & Vecchia, C. D. 2013, MNRAS, 429, 94



208

Paardekooper, J.-P., Pelupessy, F. I., Altay, G., & Kruip, C. 2011, A&A, 530, A87

Padmanabhan, H. 2019, MNRAS, 488, 3014

Parkinson, H., Cole, S., & Helly, J. 2008, MNRAS, 383, 557

Parsa, S., Dunlop, J. S., McLure, R. J., & Mortlock, A. 2016, MNRAS, 456, 3194

Parsons, A. R., Backer, D. C., Foster, G. S., et al. 2010, AJ, 139, 1468

Patil, A. H., Yatawatta, S., Koopmans, L. V. E., et al. 2017, ApJ, 838, 65

Pawlik, A. H., Schaye, J., & Vecchia, C. D. 2015, MNRAS, 451, 1586

Peebles, P. J. 1966, ApJ, 146, 542

Peeples, M. S., Werk, J. K., Tumlinson, J., Oppenheimer, B. D., Prochaska, J. X., Katz, N., &
Weinberg, D. H. 2014, ApJ, 786, 54

Pentericci, L., Fontana, A., Vanzella, E., et al. 2011, ApJ, 743, 132

Pentericci, L., Vanzella, E., Fontana, A., et al. 2014, ApJ, 793, 113

Penzias, A. A., & Wilson, R. W. 1965, ApJ, 142, 419

Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, ApJ, 517, 21

Pillepich, A., Springel, V., Nelson, D., et al. 2018, MNRAS, 473, 4077

Planck Collaboration. 2014, A&A, 571, A16

—. 2016a, A&A, 594, A13

—. 2016b, A&A, 596, A108

—. 2018, arXiv:1807.06209

Poole, G. B., Angel, P. W., Mutch, S. J., Power, C., Duffy, A. R., Geil, P. M., Mesinger, A., &
Wyithe, S. B. 2016, MNRAS, 459, 3025

Popping, G., Narayanan, D., Somerville, R. S., Faisst, A. L., & Krumholz, M. R. 2019, MNRAS,
482, 4906

Popping, G., Puglisi, A., & Norman, C. A. 2017a, MNRAS, 472, 2315

Popping, G., Somerville, R. S., & Galametz, M. 2017b, MNRAS, 471, 3152

Popping, G., Somerville, R. S., & Trager, S. C. 2014, MNRAS, 442, 2398

Porter, L. A., Somerville, R. S., Primack, J. R., & Johansson, P. H. 2014, MNRAS, 444, 942

Pourtsidou, A. 2018, in Proc. MeerKAT Sci. Pathw. to SKA PoS(MeerKAT2016), Vol. 277 (Trieste,
Italy: Sissa Medialab), 037

Press, W. H., & Schechter, P. 1974, ApJ, 187, 425

Price-Whelan, A. M., Sipcz, B. M., Günther, H. M., et al. 2018, AJ, 156, 123

Priewe, J., Williams, L. L. R., Liesenborgs, J., Coe, D., & Rodney, S. A. 2017, MNRAS, 465, 1030

Prochaska, J. X., Worseck, G., & O’Meara, J. M. 2009, ApJ, 705, L113

Qin, Y., Mutch, S. J., Poole, G. B., Liu, C., Angel, P. W., Duffy, A. R., Geil, P. M., Mesinger, A.,
& Wyithe, J. S. B. 2017, MNRAS, 472, 2009



209

Quinn, T., Katz, N., & Efstathiou, G. 1996, MNRAS, 278, L49

Racca, G. D., Laureijs, R., Stagnaro, L., et al. 2016, Proc. SPIE, 99040O
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Rodŕıguez-Puebla, A., Behroozi, P., Primack, J., Klypin, A., Lee, C., & Hellinger, D. 2016, MNRAS,
462, 893
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