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African indigenous vegetables (AIVs) play important role in providing the needed
food security, nutrition and economic opportunities in sub-Saharan Africa. African
nightshades, including Solanum scabrum, S. nigrum, S. americanum and S. villosum, and
others are among the most popular leafy green vegetables. Yet, seed companies and the
vegetable industry have largely ignored and undervalued these indigenous leafy greens in
favor of the more traditional European introduced vegetables. As a consequence, the
nutritional factors of the African nightshades are not well understood and have been studied
little compared to European centric vegetables. In addition, many Solanum species are
known to contain toxic glycoalkaloids, and such concern is also associated with Solanum

African nightshades. This dissertation is devoted to the study of the nutritional and anti-
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nutritive factors in African nightshades to identify the most nutritious edible nightshades,
provide guidance for safe and nutritious consumption, and to provide the needed scientific
knowledge to facilitate the proper promotion of these vegetables in sub-Saharan Africa and
extended regions in developing countries to reduce hunger and improve nutrition. Such
outcomes could also foster the creation of new agricultural and economic opportunities in
these areas.

To accomplish these objectives, we first collected a wide array of genetic materials of
the edible nightshades and then analyzed and chemically profiled them using various liquid
chromatography coupled with mass spectrometry (LC-MS) methods and associated
techniques that were developed over the course of this research. The methods and
techniques developed were efficiently applied for investigation and quality control of the
phytochemistry in the leaves and berries of African nightshades from different genetic
sources and cultivation environments.

Chapters II to V are devoted to the chemistry of African nightshade leaves. In chapter
II, the major phytochemicals were identified in the leaves, including phenolic acids such
as chlorogenic acid; 23 glycosides of quercetin, kaempferol and rhamnetin; eight saponins
of diosgenin, tigogenin and other analogues; and two glycoalkaloids of solasodine. In
Chapter III, a phytochemical quantification method was developed and validated, which
applied optimized acid-assisted hydrolysis to release the aglycones which were then
quantified in tandem mass spectrometry (MS/MS). The impact of genetic sources and
cultivation environment on phytochemical profile was also investigated and discussed. The
results from all samples investigated showed that the leaves were safe for consumption due

to the absence or very low content of glycoalkaloids and other anti-nutritives. Chapter IV
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focuses on the free amino acids in the edible leaves. A hydrophilic interaction (HILIC)-
LC-MS/MS method was developed and validated for determination of free amino acids in
African nightshades as well as other AIVs including Ethiopian mustard, spider plant and
amaranth. Different machine learning methods were employed for AIV classification
prediction based on the profile of free amino acids. An online dashboard was also
constructed for interactive application. Chapter V examines the vitamin-A precursor
compound beta-carotene as well as other micronutrients to gain further insight into the
overall nutritional contribution of edible nightshades.

Chapters VI to VIII shifted the research focus from leaves to berries of the African
nightshades. While Africans normally consume only the leaves in edible nightshades, other
groups such as those in South American value and consume the berries and not the leaves,
despite the recognition of the presence of glycoalkaloids. Chapter VI was dedicated to
phytochemical identification. Here, a total of 54 phytochemicals were identified, including
phenolic acids of chlorogenic acid and neochlorogenic acid; flavonol glycosides of
quercetin and isorhamnetin; anthocyanins of petunidin, malvidin and delphinidin; and
saponins of diosgenin and tigogenin. In particular, a range of glycoalkaloids of solasodine
and its uncommon and potentially novel hydroxylated and methylated derivatives were
discovered, with the structure putatively identified based on the structural scaffold-
fragmentation pattern. Chapter VII focused on quantity determination or estimation of the
identified compounds in differently sourced berries, and discussed the profile change
across different berry maturation stages. While many genetic lines were found to possess
toxic levels of glycoalkaloids, a few genetic lines were found to be lacking in such toxins

and were found instead to be rich in polyphenols. Such lines may be promising as new
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foods in sub-Saharan Africa. As additional effort to enhance berry inspection and quality
control, in Chapter VIII, a specialized novel in-source fragmentation MS/MS method was
developed. This new high-throughput and sensitive method could be readily applied to

rapidly distinguish safe from toxic berries.
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Figure A-16. Proposed fragmentation pathway and associated fragmental ions of
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Figure B-1. Mass spectrum of raspberry ketone as acquired by ion trap MS. Inset was the
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Figure B-2. Overlaid mass spectra of raspberry ketone (RK) and background acquired by
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XX



Figure B-3. Real time optimization chromatograms of raspberry ketone (RK). (A),
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zoomed-in peak of RK in the first SIM injection; (C) zoomed-in data points (red dots)
showing varied signal counts under different fragmentor voltage (numbers). x-axis was
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union (c, d, and e) and analytical column (f and g, in bold). The improvement using
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acquired by product ion scan with 107 m/z as the precursor and collision energy of 28 eV.
Mass accuracy (ppm) was calculated as (m; — m,)/m x 10°, with m; being the measured
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factor A) and drying gas flow rate (DGF, factor B) using central composite design (CCD)
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Figure D-3. Method validation results for (A), accuracy; (B), repeatability; (C), recovery
(RE), matrix effects (ME) and processing efficiency (PE). Data are expressed as the mean
with standard deviation indicated by error bar. The shaded area in plots (A) and (C)
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Figure D-5. Multivariate analysis on method analytical and validation results in mice
brain samples. (A), heatmap of correlation matrix of analytical merits; (B), principle
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deviation (SD) with recovery (RE), matrix effect (ME) and processing efficiency (PE)
(A), and with endogenous or background concentration in the biomatrices (B). In plot
(A), accuracy was averaged across three spike levels of A, B and C (D the lowest level
was not counted due to high susceptibility to background interference), and RE, ME and
PE were respectively averaged across two levels of B and C. In both plots (A) and (B),
linear regression statistics were calculated based on base-10 logarithmically transformed
ALAL . 253

XXil
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compounds with IS correction index smaller than 0.5 are shaded in light orange color.
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the top six most reliable compounds in pure solvent (60% methanol with 0.1% formic
acid) stored in 4°C-maintained UHPLC autosampler and zero order dynamic model
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2000 ng/mL; B, 1000 ng/mL; and C, 150 ng/mL), and peak areas were normalized to the
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correspondingly remaining fraction. The slope coefficient corresponds to the compound
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Figure E-1. Dispersion analysis of prior RK-oriented ESI 2IV7 — 3 fractional factorial
design. Residuals were calculated based on the reported model. Notice the dispersion
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Figure E-2. Scatterplot of fitted vs. actual response of analytes by central composite
design (CCD) quadratic model in electrospray ionization (ESI) optimization. Model
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Compounds are arranged in decreasing order of R2. Notice the increasing dispersibility of
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Figure E-3. Compound degradation profile over 3 hours in pure solvent (60% methanol
with 0.1% formic acid) in 4°C- autosampler and zero-order kinetics model statistics.
Compounds are displayed in decreasing order of degradation rate. Experiments were
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Figure E-4. Two-dimensional density plots of (A) accuracy vs. repeatability, and (B)
recovery vs. matrix effects. All compounds and spike levels validated are displayed. The
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Figure E-5. Distribution of numeric difference of standard deviation (SD) of measured
spiked concentration in biomatrices calculated by random effects analysis of variance
(RND-ANOVA) vs. (higher than) otherwise not used (using the ordinary SD formula
instead). The SD of measured spiked concentration in biomatrices are the major
constituent of accuracy variability in most cases (refer to prior chapter Figure D-4)....278

Figure E-6. Accuracy inference across linear dynamic range (LDR) using random effects
analysis of variance (RND-ANOVA). The inference was made based on three or four
spike levels (level A, 2000 ng/mL; B, 1000 ng/mL; C, 150 ng/mL; and D, 15 ng/mL),
with five replicates per spike level. For compounds noted with blue stars, the level D
spike concentration was not included in calculation, considering the large data volatility
or aberrance due to blank or other interference at this level. The shaded area denotes
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Figure E-7. The peak area error percent of the 2" relative to the 1% injection (spaced by
ca 10 hours) of the same quality control samples (QCS) of plasma and brain in the
validation experiment. The error percent was calculated as (Peak Area 1ng injection — Area 1
injection.) / AT€@ 15 imjeciion X 100%. The barcode-like plot on the left inside each faceted plot
show the data distribution of corresponding spike concentration. X-axis does not hold
practical meaning; it’s intended only for display convenience with point scatterings. A
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than the 1* injections, possibly due to instrumental drifting (mostly less than 10%). Dot
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(2000 ng/mL), B (1000 ng/mL), C (150 ng/mL) and D (15 ng/mL), with concentration
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Figure E-8. Analytes’ concentration in the rotal blank and the exogenous proportion
originating from -glucuronidase enzyme solution (from limpets or Patella vulgata). The
concentration difference between total blank and enzyme-derived amount is the
endogenous quantity from mice tissues. The concentration presented here is the level in
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slope coefficient of zero-order kinetic model noted on the x-axis corresponds to the
percent loss per hour. Depending on liability, compound degradation in the calibration
work solution prepared in pure solvent (60% methanol with 0.1% formic acid) could
cause systematic error to various extent for quantification in biomatrices, leading to
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CHAPTER 1. INTRODUCTION

1 Background

1.1 African indigenous vegetables

African indigenous vegetables (AIVs), also called traditional African vegetables, play
important roles in food security, nutrition, food diversity, rural and economic development
and sustainable land care [1]. Such AIVs, collected from the wild or cultivated to a limited
extent provide vital food and nutrient sources and also important income generating
opportunities for the typical small-scale farmers, especially in economically limited
regions [2]. Many AIVs are not only consumed but also utilized for their preventive and/or
therapeutic medicinal effects. Adapted to the local environment, AIVs often provide more
sustainable production than exotic or introduced crops such as European vegetables [3].
Some of the most important AIVs include nightshades (such as Solanum scabrum and S.
nigrum etc.), amaranth (Amaranthus cruentus), eggplant (Solanum aethiopicum), okra
(Abelmoschus caillei) and jute mallow (Corchorus olitorius). Efforts are being made to
increase the farming and marketing of AIVs in an attempt to alleviate hunger and improve
nutrition, and to increase farmers’ income, improving the local and regional economy [3].

Many of nightshade species are considered agricultural weeds in North America and
Europe, and the ruptured berries with its deep purple color are also treated as a source of
contaminants if inadvertently harvested with other crops [4]. In contrast, many of the
African nightshade species, are among the most popular and preferred leafy AIVs in the
sub-Saharan area, and their leaves, as well as tender stems and young shoots, are prepared

and consumed like spinach and amaranth.



The African nightshades represent a wide group of botanically and genetically related
plants and constitute approximately 30 species, collectively belonging to the Solanum
section, also known as section Morella, which belongs to the larger Solanum genus in the
Solanaceae family [5, 6]. These nightshades are diversely referred to as vegetable
nightshades, edible nightshades, garden nightshades, common nightshades, ‘S. nigrum
complex’, or ‘S. nigrum and related species [5, 7]. Species belonging to the Solanum have
a wide distributed, from sea level to altitudes over 3500 meters, and from temperate to
tropical areas [5]. In Africa, some of the most economically important nightshades include
S. scabrum, S. americanum, S. villosum and S. nigrum.

Solanum scabrum is one of the most important edible nightshades in sub-Saharan
Africa, with the highest leaf, berry and seed yields [1] among African nightshades. It is
synonymous with S. melanocerasum. All, S. guineense (L.) Miller and S. intrusum Soria,
and is sometimes referred to by the common name “garden huckleberry”, which though
having the same common name is distinguished from the horticultural huckleberry
(Vaccinium spp.) [5, 8]. S. scabrum features prominently and dentately winged stems, large
ovate leaves with sinuate margins, stellate white or tinged purple flowers, and broadly
ovoid and enriched purple fruits that remain on plant at maturity [5].

The leaves of S. scabrum are an important source of vegetables consumed and/or
marketed in sub-Saharan area. The berries, despite the prolific production, however, are
generally discarded by Africans, possibly because of a perception of toxicity due to
bitterness and the associated toxic glycoalkaloids in the berries [6, 9]. This is in stark
contrast to practices in regions of South America and Europe, where the berries are

consumed fresh or made into juices, sauces and jams or colorants [10, 11] and the leaves



discarded. This stark consumption differences between different geographical regions and
cultural practices may result from berry variation in toxicity and nutrition due to genetic
and/or environmental differences, because of cultural factors or misconception of berry
edibility, or because historically the South Americans and/or Europeans discovered
postharvest techniques to remove or reduce the alkaloid content during food preparation.
The insufficiency of studies and the lack of clarity as to this plant safety while popularly
consumed could lead to acute or long-term health hazard; or if properly processed or
through plant breeding made to have trace or no alkaloids, then the berries are an untapped

food supply in sub-Saharan area.

1.2 Phytochemistry

In this section, the most common types of phytochemicals found in the plant kingdom
are briefly reviewed, followed by a more specific discussion of the phytochemicals found

in African nightshades.

1.2.1 Polyphenols

Polyphenols are a broad spectra of plant secondary metabolites, bearing an aromatic
ring with one or more hydroxyl groups on it, with the structure ranging from simple
phenolic molecules to highly complicated polymers. This group of natural products that

can be roughly divided into flavonoids, phenolic acids, stilbenes, tannins and lignans.



1.2.1.1 Flavonoids

Flavonoids typically assume a C6-C3-C6 configuration, with two aromatic rings (A
and B) linked by a C-3 bridge. Based on variation of the C ring structure, i.e., existence or
not of the C2-C3 double bond, 4-C carbonyl group and 3-hydroxyl group, as well as other
special features, flavonoids can be categorized into flavone, flavonol, flavanone, flavan-3-

ol, flavanonol, isoflavone, chalcone, and anthocyanidin, as shown in Figure I-1.

Flavone Chalcone Flavonol Flavanone
94 l g ~ g
of
Z OH
OH
OH O O o)
Flavan-3-ol Isoflavone Anthocyanidine Flavanonol

Flavylium salt

Figure I-1. Representative structures of flavonoids in plants (adapted from [13])

1.2.1.2 Phenolic acids

Phenolic acids account for about one-third of dietary polyphenols, and could exist in
free forms or bound to various components via ester, acetal and ether bond [12]. Phenolic
acids can be divided into derivatives of benzoic acids and those of cinnamic acids. Some
of the most common benzoic acid based phenolic acids include gallic acid, hydroxybenzoic

acid, protocatechuic acid, vanillic acid and syringic acid, typicall bearing a C6-C1 skeleton.



Some of the common cinnamic acid-based phenolic acids include caffeic acid, ferulic acid,

coumaric acid and sinapic acid, typically assuming a C6-C3 structure.

1.2.1.3 Tannins

Tannins can be further divided into unhydrolyzable tannins and hydrolysable tannins.
Unhydrolyzable tannins are also common referred to as proanthocyanidins. By formation
of complexes with salivary proteins, these compounds are responsible for the astringency
character of fruits. Proanthocyanidins are oligomers of polymerized flavan-3-ols, formed
most commonly by C4-C8 linkage as well as C4-C6 linkage, both called the type B
structure. If additional ester bond is formed between the C2-O-C7, then the linkage is
referred to as type A. Typical structures are presented in Figure I-2. Proanthocyanidins
exclusively composed of (epi)catechin are referred to as procyanidin (same substitution
pattern in the A ring and B ring as the anthocyanidin cyanidin) [14].

Hydrolysable tannins are derivatives of gallic acids that are bond to one or more
polyols, and the galloyl groups can be further esterified or crosslinked to form more
complex structure. Depending on the crosslink pattern of the gallic acids involved,
hydrolysable tannins may be further classed into gallotannins and ellagitannins. In
gallotannins, gallic acids are usually esterified to a polyol, where glucose being the most
common; one gallic acid may be also esterified with another gallic acid via formation of
the meta- or para- depside bond. Representative structures are shown in Figure I-3A. In
ellagitannins, however, two gallic acids are crosslinked via C-C bond to form
hexahydroxydiphenic acid (HHDP) as the repeating basis, and HHDP continues to form

esters with other polyol units. Upon hydrolysis and HHDP is released from the polyol



groups, HHDP spontaneously lactonize into ellagic acids. Typical structures are shown in

Figure I-3B. [15]
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OH

Figure I-2. Representative structure of proanthocyanidins found in nature. Structures of
the monomeric flavan-3-ols, dimer B1 and B2, trimer C1 and C2, and dimer A2 are shown
(cited from [14]).



OH o OH
OH  Galiic acid o \}—Q*OH
A o °
H
OH OH o
OH OH OH digalloyl ester
OH meta-depside bond
o OH
[0} OH
o o) OH
HO o HO
0. 0 o o OH HO OH
HO (o) o digalloyl ester
OH HO Para-depside bond
HO OH
OH HO OH

pentagalloyl-O-D-glucose

o
=
(o]
I
(o] o
o
o (o]

B HO OH
00 OH
o (LG 0y o
ellagitannin — HO OH HO OH HO o
hexahyzzlln;c:ggi)phenic acid ellagic agi d

Figure I-3. Representative structures of hydrolysable tannins in plants. (A), structure of
gallotannins. (B), basic repeating unit of hexahydroxydiphenic acid (HHDP) in
ellagitannins and generation of ellagic acid upon hydrolysis (adapted from [15]).

1.2.14 Polyphenols identified in African nightshades

Elaborated and systematic work on nightshade polyphenols (especially for the leafy
parts) are scares in literature; if any, many of these work largely applied chemical-assay &
color-changing based screening methods, and the preliminary nature did not allow for
deeper insight into polyphenol constitution [16, 17].

In one pioneering study by Huang et al using HPLC/UV by comparing with the
authentic standards, a wide range of polyphenols were detected in leaves, stems, raw and

green fruit and mature purple fruit of S. nigrum [18]. The polyphenols “identified” in this



work includes phenolic acids of benzoic acid-derived phenolic acids, i.e., gallic acid,
gentisic acid, protocatechuic acid, vanillic acid, syringic acid; cinnamic acid-derived
phenolic acids, i.e., caffeic acid, p- and m-coumaric acid, ferulic acid, and chlorogenic acid;
flavan-3-ols and derivatives, i.e., catechin, epicatechin, epigallocatechin gallate,
gallocatechin gallate; flavonols, i.e., rutin; flavanone, i.e., narigenin and hesperetin;
flavone, i.e., luteolin and apigenin; flavonol, i.e., myricetin, quercetin and kaempferol; and
anthocyanidins of petunidins, delphinidins, pelargonidin, and trace level of peonidin and
malvidin, detected after hydrolysis. Pioneering and valuable as this work is, compound
identification by mere usage of retention time comparison with reference standards as
conducted in this work (especially for leafy and stem part) might remain ambiguous, given
the lack of specificity/selectivity of UV 295 nm used for non-anthocyanidin polyphenols,
presence of high background noise and interference peaks and associated less ideal
chromatographic resolution, and low intensity for some of the peaks of interest. In addition,
reporting the aglycones per se yet without and/or lacking detection of the corresponding
glycosides seems somewhat unsatisfactory, considering that most flavonoids detected exist
in the form of glycosides more than free aglycones.

Compared with the leafy parts of nightshades, berries attracted much more intellectual
interest relative to polyphenol study [10, 19]. In the most recent work using UPLC- Q/TOF-
MS on berries of S. scabrum, anthocyanins of malvidin, petunidin, and delphinidin with
similar glycosylation and acylation (with ferulic and coumaric acid) pattern were identified,
with petunidin-3-(p-coumaroyl-rutinoside)-5-O-glucoside being the single most important
anthocyanin [10], which was likely petanin, the same major anthocyanin in blue/purple

potatoes [20]. Apart from anthocyanins, two other flavonoids species, i.e., quercetin mono-



glycosylated compounds were detected in relatively low amount in the S. scabrum berries.
Esters of quinic acid with caffeic acid (i.e., the (neo)(crypto) chlorogenic acids) or with
coumaric acid were also detected; some of them were further acylated with acetic or

malonic acid [10].

1.2.2 Alkaloids
1.2.2.1 Chemistry of Solanum Alkaloids

Many solanum species are known to contain toxic glycoalkaloids. Many of the
glycoalkaloids are shared in common across multiple species, and could also be unique or
limited to a few species. The glycoalkaloid, with its amphiphilic nature, are composed of
two units, one unit being the hydrophobic 27-carbon skeletal aglycone with the nitrogen
atom in the F ring, the other being the hydrophilic carbohydrate side chain attached on the
3-OH position. The aglycone, also called the alkamine, could be structurally divided into
five categories: solanidanes, with the fused indolizidine structure composed of the E-F
rings; spirosolanes, featuring an oxa-aza spiro structure; and (22,26)-epiminocholestanes,
a-epiminocyclohemiketals, and 3-aminospirostanes, as presented in Figure I-4. The first
two, soladidane and spirosolanes, are the most common skeleton structures in Solanum

[21].
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HO

22 ,26-Epiminocholestane 3-Aminospirostane a-Epiminocyclohemiketal

Figure I-4. Representative skeletons of steroidal alkaloids in Solanum spp. (cited and
adapted from [21]). Typical ring notations are marked in the solanidane and spirosolane
structures.

Some of the common and typical structures of glycoalkaloids are presented in Figure
I-5, including solasodine-based glycosides, such as a-solamargine and a-solasonine, the
major glycoalkaloids in S. melongena or eggplants; solanidine-based glycosides, such as
a-chaconine and a-solanine, the principal glycoalkaloids in S. tuberosum or potatoes; and
tomatidine-based glycosides, such as tomatine as found in S. lycopersicum or tomatoes.
Acid-assisted hydrolysis of these glycoalkaloids renders products of the mono-, di-, and

trisaccharide derivatives and the corresponding aglycones.
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Ragroups

H = aglycone
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B-D-Glc-(1—2) - ydrocommersonine
(commertetraose)
B-D-Xyl-(1—3) - tomatidine — a-tomatine
\B-D-G|C-(1H4)—B-D-Gal __ ) —tomatidenol — dehydrotomatine
-D-Glc-(1—2)" — demissidine — demissine

(lycotetraose) - solanidine — dehydrodemissine

Figure I-5. Typical structures of glycoalkaloids in Solanum spp. (cited from [34]).

For saccharide abbreviations, Glc, glucose; Rha, rhamnose; Xyl, xylose; Gal, galactose.



12

1.2.2.2 Alkaloids identified in nightshades

Solanum nigrum was extensively reported as a source of glycoalkaloids. The total
content of alkaloid was reported in one study to be ~ 1.6 mg/100 g dry mass in leaves and
~1.1 mg/100 g in the seeds, yet the identity of the alkaloids quantified remained unclear
due to limit of methods applied [17, 22]. In another study, solasodine glycosides of varied
carbohydrate side chain (each 2 ~ 180 mg) and a less common 12-OH solasodine
glycosides (~ 38 mg) were extracted from the aerial parts (10 kg dry mass) and identified
[23]. And solasodine glycosides continued to be detected as major glycoalkaloids in S.
nigrum aerial parts by other researchers [24]. Apart from solasodine compounds, other
derivatives were occasionally identified using NMR: 27-dihydroxysolasodine (C and F
ring substitution) was isolated either as a free aglycone or glycosides from the berries [25,
26], and N-methylsolasodine though very rare was also reported [27].

For S. scabrum, solamargine and solasonine arguably the most important alkaloids as
in S. nigrum was extracted and separated from both leaves and fruits, with the fruits being
more enriched with the glycoalkaloids; solanidine and tomatidenol, the two aglycones per
se, were also detected after hydrolysis, suggesting potential existence of corresponding
glycosides [28]. In another study, the existence of alkaloids in the leaves were decided to
be “doubtful” [29]. In one recent report, screening by LC-QTOF-MS revealed a lack of

glycoalkaloids in the methanol leafy extracts of both S. scabrum and S. villosum [30].
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1.2.3 Saponins

Diosgenin and tigogenin, the oxygenous counterparts of solasodine have long been
recognized as two of the major sapogenins in many nightshade species, with diosgenin
being usually the most abundant [6]. Most of earlier work, as also in the case of
glycoalkaloids, typically applied acid-assisted hydrolysis to yield the aglycones for
subsequent structural elucidation and/or quantification (e.g., colorimetric reaction, GC and
GCMS), with limited focus on the carbohydrate chain. More recent years have witnessed
expanding number of studies applying direct isolation and purification of the individual
glycosides for new structural discovery and/or for use as standards for accurate
quantification [31-33]. One of the landmark studies by Wang et al. isolated a total of 17
saponin compounds (Figure I-6) from the unripe berries of S. nigrum, covering most of
the typical aglycone structures commonly found in nightshades, though surprisingly, no

diosgenin nor tigogenin based glycosides were detected [33].
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Figure I-6. Saponin structures isolated from unripe berries of Solanum nigrum (cited from

[33D).



15

1.2.4 Protein

AlVs are a valuable source of vegetable proteins. In one study reported by Kamga et
al. [35], the crude protein content, based on total nitrogen measurement, accounted for
9 %~ 38 % of dry mass in a total of five commonly consumed AIV species investigated,
including amaranth (Amaranthus cruentus), eggplant (S. aethiopicum), jute mallow
(Corchorus olitorius), okra (Abelmoschus callei) and one nightshade species S. scabrum.

The S. scabrum was a most protein enriched AIV, with the protein content accounting
for up to 33~38% of dry mass, and 100 mg dry mass, if complete protein assumed, could
contribute to 49.5% of the daily protein requirement of the pregnant and lactating mothers
[35]. In another study, the crude protein content in nightshade S. nigrum was reported
~24.9 % of dry mass [17].

Despite the ideally high content of leafy protein, however, the protein quality of
nightshade leaves so far remains largely unknown. This, lack of understanding
compromises the full utilization of the protein value due to possibly ill-balanced amino
acid profile and unbalanced diet pattern. This lack of knowledge also limits those in plant
breeding and crop improvement seeking to improve the nutritional value of this
underrecognized leafy green. A deeper insight with this regard would help increase protein
utilization; formulation with crops of complementary protein profile, such as with
amaranth known to contain enriched essential amino acid lysine lacking in many staple
foods [36], could enhance utilization of nightshade protein and overall nutrient value of the

diet.
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2 Rationale and Hypothesis

African indigenous vegetables (AIVs) play important roles in food security, food
diversity, nutrition, and economic development in sub-Saharan Africa [7]. Particularly,
African nightshades, belonging to the Solanum genus, are among the most popular and top
priority leafy AIVs. Scientifically wise promotion of cultivation, consumption and
marketing of the African nightshades to wider regions is of practical significance to combat
against hunger, increase nutrition and enhance income in African rural area.

Solanum species are known to contain toxic glycoalkaloids [21], and the associated
safety concern is also associated with the edible African nightshades, both leaves and
berries, thus potentially compromising their safe consumption and recognition. In fact,
most berries are discarded without consumption, remaining a prolific yet neglected
agricultural resource in sub-Saharan area. It is of practical importance to systematically
study the associated compounds to distinguish safe species and/or genotypes to ensure
consumption safety and to discover new food supply.

Determination of nightshade glycoalkaloids has mostly relied on tedious purification
of individual compounds [23, 26, 37, 38]; powerful though this conventional strategy is, it
does not allow for routine analysis, and did not provide the complete and quantitatively
accurate view of the holistic glycoalkaloid profile. Besides, the content of glycoalkaloids
in nightshade species are complicated by differences among species, genotypes and growth
environment. Apart from glycoalkaloids, other important secondary metabolites in African
nightshades including polyphenols and saponins that are of nutritional and/or toxicological

effects have not been adequately studied.
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Development of modern instrumentation has greatly advanced compound separation
and identification. Particularly, application of liquid chromatography hyphenated with
mass spectrometry (LC-MS) has allowed for efficient compound separation and structural
elucidation based on known scaffold-fragmentation pattern [39], and greatly facilitated
study of bioactive compounds in plants and food systems. In addition, machine learning-
based techniques coupled with the high-throughput analysis tools have allowed for
acquisition of deeper insight into analytical data.

Based on abovementioned rationale, we hypothesized that LC-MS methods can be
developed and/or validated for analysis of African nightshade bioactive
compounds/nutrients and antinutritive factors. The development of such analytical
approaches will facilitate an understanding of nutrition and toxicity of nightshade leaves
and berries; and that the instrumental and associated statistical and computational methods
to be established will provide analytical solution for routine analysis and quality control of

nightshades as vegetables and/or fruits to ensure consumption safety.

3 Specific Aims

3.1 Leaves
3.1.1 Identification of phytochemicals in leaves

1) Development of HPLC-ion trap MS method for separation and identification of
major phytochemicals in the leaves of African nightshades.

2) Development of HPLC-ion trap MS/MS method for profiling of aglycones released
after acid-assisted hydrolysis for additional aglycone structural elucidation and

confirmation.
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3.1.2 Quantification of phytochemicals in leaves

1) Development of a simultaneous hydrolysis method for flavonol glycosides,
glycoalkaloids and saponins in the leaves.

2) Development of a UHPLC-triple quadrupole (QqQ) MS/MS method to conduct
glycosides and aglycones quantification associated with the hydrolysis/recovery-
optimization study.

3) Development and validation of (i) a second UHPLC-QqQ-MS/MS method for
quantification of all major aglycones in the leaves using hydrolysis method developed; (i1)
a third supplementary UHPLC-QqQ-MS/MS method for quantification of aglycones not
hydrolyzed.

4) Contrast and compare the aglycone profile from plants of different species,
accessions/genetic sources and cultivation environments.

5) Evaluation of the nutrition and toxicity associated with the phytochemical profile

studied.

3.1.3 Leafy free amino acids determination

1) Development and validation of a high-sensitivity hydrophilic interaction (HILIC)
UHPLC-MS/MS method of free amino acids and validation with random effects model
and nested design structure.

2) Quantification of free amino acids in different species of African vegetables using

the HILIC-UHPLC-MS/MS method developed.
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2) Application of different machine learning techniques to “learn” to distinguish

different species based on amino acid profile.

3.2 Berries

3.2.1 Identification of phytochemicals in berries

1) Development of HPLC-ion trap MS methods to separate and identify major
phytochemicals in the berries of African nightshades.

2) Development of HPLC-ion trap MS/MS method to separate and identify aglycones
released after acid-assisted hydrolysis for additional aglycone structural elucidation and

confirmation.

3.2.2 Quantification of phytochemicals in berries

1) Quantity assessment of berry phytochemicals by the method developed in prior
section using representative reference standards of each category of compounds.

2) Compare and contrast the phytochemical profile in berries from different genetic
sources and maturation stages.

3) Evaluation of the nutrition and toxicity associated with the phytochemicals

investigated.

3.2.3 Rapid quality control for glycoalkaloids

Development of a fragmentation pathway-based UHPLC-QQQ-MS/MS with in-
source fragmentation method for high-throughput, sensitive detection of glycoalkaloids in

the berries for rapid quality control.
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CHAPTER II. LEAFY PHYTOCHEMICAL

IDENTIFICATION

1 Introduction

The leaves of African Solanum nightshades are among the high-priority leafy greens
consumed in sub-Saharan Africa. The common existence of toxic glycoalkaloids in many
Solanum species, however, is also associated with the African nightshades, but has not
been subjected to thorough investigation. Apart from glycoalkaloids, literature on other
phytochemicals in nightshade leaves remain scarce. The aim of this work is to develop LC-
MS methods to identify the major phytochemicals including glycoalkaloids in the leafy

samples of African nightshades so as to provide further insight into nutrition and toxicity.

2 Materials and Methods
2.1 Chemical reagents

Standard compounds solasodine was purchased from MP Biomedicals (Santa Ana,
CA, USA) and solamargine from MedChem Express (Monmouth Junction, NJ, USA).

Methanol and HPLC grade water and acetonitrile modified with 0.1 % formic acid were

purchased from Fisher Scientific (Fair Lawn, NJ, USA).

2.2 Botanical authentication of the African nightshades

With unusual species and with lesser studied nonmainstream plants, particularly
botanicals, medicinal plants and indigenous plants there can be confused as to the species

identity. To ensure proper taxonomical descriptions are attributed to the chemical and
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biological studies, botanical authentication is a key step in natural products research to
ensure that the intended species being studied and/or reported is indeed that species.
Botanical authentication begins with proper botanical, chemical and/or genetic
taxonomical evaluations of the selected plant to properly and accurately place the plant its
correct species. In this dissertation, each of the African nightshades, which include
members of different Solanum species were intensely taxonomically studied as to their
correct species and classified into their respective species by botanists at the World
Vegetable Center using traditional botanical (plant morphological characteristics) and
genetic analysis to identify the chromosome number or ploidy level in the species. These
analyses and studies were conducted by their expert staff and senior scientists at the
WorldVeg Center, Arusha, Tanzania and they are among the leading international botanists,
curators and plant breeders of African indigenous vegetables including the African
nightshades. The germplasm bank and its accessions as maintained by WorldVeg for

Solanum is available online at: http://seed.worldveg.org/, after which a user can search for

each accession and/or specific Solanum spp. The classification of the African nightshade
accessions including the Solanum species was also reported in the detailed review by Yang
et al. in 2013 (with one exception in that the species name, Solanum sp. as shown on page
150, Figure 4., was only tentatively classified as S. americanum, with the botanist
indicating a possibility that it may be S. nigrum due to the close morphological
characteristics). The identification and classification of the African nightshades were also
elaborated by Edmonds [1], Lin et al. [2] and Guzman et al. [3]. In our studies, herbarium

voucher specimens with the leaves and flowers of the Solanum spp. were collected and
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reside with the New Use Agriculture and Natural Plant Products Program, Rutgers, the

State University of New Jersey.

2.3 Plant collection

Seeds of 15 entries of Solanum spp., i.e., S. nigrum, S. scabrum, S. americanum and
S. villosum (Table II-1) were sown under greenhouse conditions at the Rutgers Research
Greenhouses in New Brunswick, NJ. After four weeks of growth, the seedlings were
transplanted during the first week of June in 2015 into a cultivated field at the Clifford E.
& Melda C. Snyder Research and Extension Farm, New Jersey Agricultural Experiment
Station of Rutgers University in Pittstown, New Jersey (40.6°N, 75.0°W, 116 m elevation).
The leaves of the nightshades were manually harvested with the first harvest occurring
21~28 days post-field transplanting. The aerial parts, leaves and tender stems, were cut ~15
cm above the soil line to allow the plants to regrow for multiple harvesting. The collected
aerial parts were dried at 40 C° for two weeks and then ground into powder. The samples
were stored in shaded zip-lock bags under room temperature. Equipment

A propane-heated walk-in Powell Maxi Miser tobacco dryer (Bennettsville, SC) was
used for sample drying. Agilent 1100 series LC/MSD instrument (Waldbronn, Germany)
was used for phytochemical profiling. The HPLC was equipped with an auto-degasser,
quaternary pump, thermostatted column compartment and a diode-array detector (DAD).
The HPLC-MS interface used an electrospray ionization source (ESI) and the MS featured
an ion trap analyzer. The software used was HP ChemStation, Bruker Daltonics 4.1 and

DataAnalysis 4.1.
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Table II-1. Plant materials of Solanum species and origin of different accessions.

Sample Species Source Source ID

code
Simlaw Seeds
Snl (Kenya) -
S.n?2 Solanum. USDA PI 306400
Sn3 nigrum USDA PI 312110
Sn4 USDA PI 381289
SnS5 USDA PI 381290
Ss1 AVRDC SS 52
Ss2 AVRDC Ex Hai
Ss3 AVRDC SS 49; Olevolosi
Ss4 Solanum. AVRDC SS 04.2
Ss5 scabrum AVRDC BG 16; Nduruma
Ss6 AVRDC BG-29
Ss7 USDA Grif 14198
Ss8 USDA PI 643126
Sal Solanum. USDA PI 268152
americanum
Svi Solanum. USDA Grif 16939
villosum

S.n: Solanum nigrum; S.s: Solanum scabrum; S.a: Solanum americanum; S.v: Solanum
villosum

2.4 Sample preparation
2.4.1 Extract without hydrolysis for phytochemical profiling

For phytochemical profiling without hydrolysis, around 200 mg of the sample was
accurately weighed and extracted with 25 mL 70 % methanol with 0.1 % formic acid. Each
extract was fully vortexed, sonicated in a water bath for 5 min, and then let stand still
overnight under room temperature. The extract was centrifuged at 13,000 rpm/min for 10

min and then the supernatant was ready for injection into HPLC-MS.
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2.4.2 Extract with hydrolysis for aglycone profiling

Around 200 mg of sample was accurately weighed and hydrolyzed by 20 mL 0.5 M
anhydrous methanolic hydrochloric acid in an eight-dram vial with a screw cap, and
incubated in a 70 °C water bath for 120 min. After incubation, the hydrolyte was cooled
down and basified with 3 mL saturated sodium hydroxide methanolic solution to terminate
the hydrolysis reaction, and was then brought to 25 mL by methanol. The final hydrolyte
was centrifuged at 13,000 rpm/min for 10 min and then the supernatant was ready for

injection into HPLC-MS.

2.5 Phytochemical profiling without hydrolysis

The aerial part extract (without hydrolysis, section 2.4.1) was chemically profiled by
HPLC-UV/vis-MS. Column Agilent Polaris 3 Amide C18,250 x 4.6 mm (Santa Clara, CA,
USA) was used for compound separation. HPLC grade water with 0.1 % formic acid was
used for mobile phase A and acetonitrile with 0.1 % formic acid for mobile phase B. The
gradient started from 10 % to 20% B in 0 to 10 min, 20% to 28 % in 10 to 30 min, 28% to
30% in 30 to 40 min, and 30% to 50 % in 40 to 60 min, followed by 5 min column flushing
with 80 % B and another 5 min column equilibration with the starting mobile phase before
the next injection. The flow rate was 1 mL/min and the injection volume was 10 puL. The
column was kept at 25 °C. The DAD detector was set at 210 nm, 254 nm, 280 nm and 370
nm for signals, and scanning range 200~550 nm with 2.0 nm step for spectrum. About a
third of the HPLC eluent was split into the MS detector. In the ESI, the nebulizer needle
voltage was set at 3500 V of positive polarity. High purity nitrogen (99.999 %) was used

as both nebulizing gas at 40 psi and drying gas at 350 °C with a flow rate of 10 L/min.
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High purity helium was used as the collision gas and the collision energy was set at
arbitrary compound stability 80 %. The scanning mode was set at positive and the range at

200-1300 m/z.

2.6 Aglycone profiling with hydrolysis and MS/MS

Aglycones freed and pooled from corresponding glycosides after hydrolysis (section
2.4.2) were profiled for further structural elucidation and identity confirmation. The HPLC-
MS method used was the same as that applied for phytochemical profiling without
hydrolysis, except the following specification. The column used was Phenomenex Prodigy,
Swu, ODS3, 100 A, 150 x 3.2 mm. The gradient was 25 % to 60 % from O to 20min; 60 %
to 80 % from 20 to 25 min; 80 % to 90 % from 25 to 30 min and then isocratically held at
90 % until 45 min. Product ion scan (MS/MS) was performed for additional structural
elucidation/identity confirmation of the free aglycones, either in separate runs or in time-
sectioned manner. Protonated aglycones were selected as the precursor ion and fragments
were scanned from 100 to 500 m/z. The collision energy was pre-optimized by syringe
infusion method using representative aglycone standards for corresponding categories, i.e.,
fragmentation amplitude of 2.5 was selected for aglycones of flavonols by using quercetin
standard, and amplitude of 7.0 for aglycones of glycoalkaloids by using solasodine

standard.
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2.7 Nomenclature

The nomenclature of flavonoid fragmentation pathway described in prior research [4]
was used in this study. The labels ¥ A* and B+ correspond to the fragmental ions

containing A and B ring, respectively, formed by cleavage of the i and j bonds of C ring.

3 Results and Discussion

3.1 Phytochemical identification

Major peaks were identified based on the retention time, UV-Vis spectrum, and MS spectral data, as
well as by comparison with authentic standards. A representative chromatogram was shown in Figure II-1.
The identities, retention time and MS data of all compounds identified in section 2.5 were summarized in
Table II-2. In the four Solanum species, flavonoids and saponins dominate the secondary metabolites
portfolio along with phenolic acid chlorogenic acid, occasionally with trace level of glycoalkaloids. Apparent
variance in chemical profile was observed within species, as well as striking similarities between them, as

semi-quantitatively presented in Table II-3.
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Figure I1I-1. Representative HPLC-UV/vis-MS chromatograms of Solanum spp. (A), total
ion chromatogram (TIC); (B), UV chromatogram at 370 nm, both (A) and (B) acquired
from S. nigrum PI 312110; (C), extracted ion chromatogram (EIC) of glycoalkaloids
acquired from S. villosum Grif 16939.
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Table II-2. Peak assignments used for the analysis of 15 edible nightshade (Solanum spp.)

accessions
Compound R,T Compound ID [M+H]*/ [M+Na]* (m/z) Fragment ion (m/z)

code (min)

1 13.6 Chlorogenic acid *3717, 355 -

2 14.0 Quercetin-G-Rha-G *795 611,465,303

3 16.2 Quercetin-G-Xyl-Xyl *751 597,465,303

4 16.8 Quercetin-G-Rha-Rha *779 611,465,303

5 17.8 Quercetin-G-G *649 465,303

6 18.1 Quercetin-G-Rha-Xyl *765 465,303

7 18.3 Solasodine-G-G-Rha 884 576,414

8 18.7 Quercetin-G-Xyl *619 465,303

9 189 Quercetin-G-Xyl *619 465,303

10 19.1 Kaempferol -G-G *633 449,287

11 20.0 Solasodine-G-Rha-Rha 868 722,576,414
12 20.2 Kaempferol-G-Xyl *603 449,287

13 20.6 Kaempferol-G-Xyl *603 287

14 20.7 Kaempferol-G-G *633 449,287

15 214 Rhamnetin-G-Xyl-Xyl *765 611,479,317

16 219 Quercetin-G-Rha *633 465,303

17 24.0 Quercetin-G *487 303

18 240 Rhamnetin-G-G *663 479,317

19 253 Rhamnetin-G-Xyl *633 479,317

20 255 Kaempferol-G-Xyl *617 449,287

21 25.6 Rhamnetin-G-Xyl *633 479,317

22 26.9 Rhamnetin-G-Xyl *633 479,317

23 274 Kaempferide-G-Xyl *617 301

24 278 Kaempferide-G-Xyl *617 463,301

25 28.6 Rhamnetin-G-Xyl *633 479,317

26 295 Rhamnetin-G-Rha *647 479,317

27 333 Tigogenin-G-G-G-G-G *1249 1087,903, 741, 579, 417
28 344 Tigogenin-G-G-G-Xyl-G 1197 *1057,903, 741,579, 417
29 34.8 Dehydrodiosgenin-G-G-Rha-Rha 1029 883,737,575,413
30 35.7 Diosgenin-G-G-Rha-Rha 1031 885,739,577, 415
31 415 Tigogenin-G-G-Rha-Xyl-Xyl *1173 887,741,579,417
32 42.6 Tigogenin-G-G-Rha-Xyl-Xyl *1173 887,741,579, 417

Dihydromethyldiosgein

33 43.1 -G-Rha-Rha-G *1069 885,739,593,431
34 45.6 Tigogenin-G-G-G 903 741,579,417

*; Sodium adducted ions; RT, retention time; G, glucosyl, galactosyl, mannosyl or other
hexosyl; Rha, rhamnosyl; Xyl, Xylosyl.
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Table II-3. Phytochemical profile analyses of 15 edible nightshades (Solanum spp.)

accessions

Peak S.n San San Sa San S S.s S.s S.s S.s S.s S.s S.s S.a  S.v

No. 1 2 3 4 5 1 2 3 4 5 6 7 8 1 1
1 - T + T T + - + + + T T +
2 - - - - + + - + + T - - ++ ++
3 - - + - - - - - - - - - - - -
4 - - - + T ++ + ++ + + ++ + + -
5 ot ++ + T o + T + + - T T T ++ St
6 - - - - - - T + + + T B - - -
7 - - - - - - - - - - - - - - T
8 - - + - - - - - B - - B - - -
9 - - ++ - - - - - - - - - - - -
10 + + - - + - - - - - - - - T -
11 - - - - T - - - - - - - - - T
12 B - T - - - - - - - - B - - -
13 - - T - - - - - - - - - - T -
14 - - - - - - - T - T - B - - -
15 - - ++ - - - - - - - - - - - -
16 T - + + T + + ++ + + ++ + + - T
17 + T + - + - - - - - - - - T
18 - - + - T - - - - - - - - ++ +
19 - - ++ - - - - - - - - - - -
20 - - - T T - T T T T -
21 - - ++ - - - - - - - - - - - -
22 - - T - - - - - - - - - - - -
23 - - T - - - - - - - - - - - -
24 - - T - - - - - - - - - - - -
25 - - T - - - - - - - - - - - -
26 - - + - - - - - - - - - - - -
27 + + - + + + + + + + + + + + +
28 ot ++ - o o o ++ ++ ++ ++ o+ ot ++ ++ St
29 - - ++ - - - - - - - B - - -
30 - - ++ - - - - - - - - - - -
31 + ++ - + ++ ++ + ++ ++ ++ + + + ++ +
32 B + - + e e + ++ ++ ++ + + + + +
33 - - ++ - - - - - - - - B - - -
34 + ++ - - - - - - - - - - - - +

Plant sample codes refer to Table II-1, and the compound codes refer to Table I1-2. “++”,
strong peaks defined as intensity of UV-vis over 10 mAU or of extracted ion
chromatograph (EIC) by extraction of molecular ions and corresponding fragment ions
over 5 x 105; “T”, trace level, defined as intensity of UV-vis lower than 1 mAU or EIC
intensity lower than 5 x 104; “+”, peak intensity between “++” and “T”; “-”, peaks not
detected.

3.1.1 Identification of polyphenols

Flavonoids were previously reported as an important class of bioactive compounds in

nightshades [5]. In this work, a major phenolic acid chlorogenic acid along with an
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abundance of flavonols were detected and identified in the four AIVs, including
glycosylated derivatives of quercetin, kaempferol, rhamnetin and kaempferide. The

individual peaks were identified based on UV-Vis spectrum and MS data.

3.1.1.1 Identification of phenolic acid

For the major phenolic acid, compound 1 (RT 13.6 min) exhibited adduct molecular
ions at 377 ([M+Na]*) and 355 m/z ((M+H]*) and maximum UV peaks at 245 nm and 328
nm, suggesting a chlorogenic acid, neochlorogenic acid or cryptochlorogenic acid which
differ at the esterification site of the quinoyl [6]. This compound was further confirmed to

be chlorogenic acid by comparison with authentic standards.

3.1.1.2 Identification of flavonols

For identification of flavonols, for example, compound 8 (RT 18.7 min) featured a
sodium adduct molecular ion at 619 m/z ([M+Na]*), which was fragmented into 465 m/z
([M-xylosyl+H]*), followed by aglycone ion at 303 m/z ([M-xylosyl-hexosyl+H]*) which
might be tentatively identified as peak of protonated quercetin, one of the most prevalent
and ubiquitous flavonols in plants. The maximal UV-vis absorption was around 360 nm,
in agreement with that of quercetin glycosides in literature [6]. Thus, compound 8 was
identified as quercetin conjugated with hexosyl and xylosyl.

In order to further confirm the quercetin aglycone identity, hydrolysis was conducted
to release the aglycones and then chromatographically profiled, and peak at ~7.2 min
matching a compound mass of 303 Da corresponded to the prior tentatively identified
quercetin aglycone (Figure II-2). Following this, product ion (PI) scan was conducted

across a time window of 6~8 min, with the associated mass spectrum shown in Figure I1-3.
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Fragmental ions labeled in scarlet color, i.e., 229 m/z, 247 m/z, 257 m/z, 275 m/z and 285
m/z, suggested a flavonol skeleton and C-ring structure. Peaks with green labels, i.e., 137
m/z (°2B*), 153 m/z (*:*A*) and 165 m/z (- A*) arose from the characteristic RDA cleavage
of the C-ring, reflecting the substitution pattern of the A- and B-ring [7]. The PI scan
supported the quercetin identity. And by comparing the retention time against the reference
standard, the aglycone was finally confirmed as quercetin.

The acquired mass spectrum (especially that from the PI scan) of quercetin could be
used as important reference for structural elucidation and identification of less known
compounds. For example, the aglycone from the two major flavonoid peaks 19 and 21 may
be readily identified as methylated quercetin, evidenced by the 14 Da mass shift (317 m/z
vs. 303 m/z) (Table II-2) and longer retention time (~12.5 min, labeled by “R”) of the free
aglycone after hydrolysis (Figure II-2) relative to that of quercetin. However, to identify
the substitution location of this methyl group, it is necessary to further examine and
compare the PI scan mass spectra of this methyl-quercetin with quercetin (Figure I1-4).
Arguably as the most informative characteristics, the co-existence of 137 m/z (°2 B*) of
both compounds suggested same structure of the B ring, while the 14 Da shift of fragmental
ions of methyl-quercetin relative to those of quercetin, i.e., 179 vs. 165 m/z (>-2A*), and 167
vs. 153 m/z (*3A*), suggested methylation on the A ring. Considering that the 5-hydroxyl
of A ring tends to form intra-molecular hydrogen bonding with the 4-carbonyl of the C ring
and substitution on the 5-hydroxyl group is most unlikely, this methyl-quercetin was
therefore identified as 7-methyl quercetin, i.e., rhamnetin. And the identity was further

confirmed by comparing with the reference standard.
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Figure II-3. Representative mass spectra of quercetin as example of flavonol structure

elucidation.
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Figure II-4. Mass spectra comparison of quercetin and rhamnetin.

3.1.2 Identification of glycoalkaloids

In this study, no alkaloids were detected in the plant leafy extract except in two

accessions, S.villosum Grif 16939 and S.nigrum P1 381290, where two glycosides of

solasodine was found. Compound 11 (RT 20.0 min), for example, has a molecular ion peak

at 868 m/z [M+H]*, followed by fragment ion 722 m/z [M-rhamnosyl+H]* and 576 m/z [M-

rhamnosyl-rhamnosyl+H]*, and finally 414 m/z [M-rhamnosyl-rhamnosyl-hexosyl+H]*

corresponding to the mass of aglycone solasodine. Thus, compound 11 was identified as

solasodine-hexosyl-rhamnosyl-rhamnosyl (solamargine), and the structure was further

confirmed as solamargine by comparison with the retention time and mass spectrum of

authentic standard. Compound 7 (RT 18.3 min) was identified in like manner and

speculated to be solasonine (solasodine-hexosyl- hexosyl-rhamnosyl) as among the most
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reported solasodine glycosides in the S. nigrum complex. The elution pattern and mass

spectra of these two compounds are also in agreement with the literatures [8].

3.1.3 Identification of saponins

Saponin identification was primarily based on mass spectrum interpretation and
literature review. Compound 28 (RT 34 .4 min), for example, had a molecular ion peak at
1197 m/z [M+H]*, which occasionally featured adducted ions at 1219 m/z [M+Na]* and
1237 m/z [M+Na+H,0]*. The parent ion underwent a loss of hexosyl moiety to generate
sodium adducted fragment ion 1057 m/z [M-hexosyl+Na]*, whose remaining saccharide
unites were then successively cleaved off to generate the fragment ions at 903 m/z [M-
hexosyl-xylosyl]*, 741 m/z [M-hexosyl-xylosyl -hexosyl+H]*, 579 m/z [M-hexosyl-
xylosyl-hexosyl-hexosyl+H]*, and finally the aglycone ion at 417 m/z [M-hexosyl-xylosyl-
hexosyl-hexosyl-hexosyl+H]*, which corresponded to the mass of tigogenin as extensively
found in Solanum complex [9-11]. Thus, compound 28 was identified as tigogenin
conjugate with four hexosyls and one xylosyl. The other saponins were identified in similar
manner. In addition, the structures of aglycones of diosgenin and tigogenin were further
confirmed by comparison with authentic standards after acid-assisted hydrolysis. As

glycoalkaloids and saponins are perhaps the most characteristic and interesting

phytochemicals in the berries of nightshades, detailed structure elucidation upon these

compounds, especially on the aglycone, will be elaborated in the berry chapters.
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4 Conclusion

A total of 34 phytochemicals were identified in leaves/aerial parts of African
nightshades consisting of four different species, i.e., S. scabrum, S. nigrum, S. americanum
and S. villosum. The phytochemical insight acquired provided the needed foundation for

further quantitative study and associated nutrition and toxicity evaluation.
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CHAPTER III. LEAFY PHYTOCHEMICAL

QUANTIFICATION

1 Introduction

In Chapter 1II, bioactive phytochemicals in edible African nightshades (EANs) were
identified including glycosides of solasodine, flavonoid glycosides of quercetin, rhamnetin
and kaempferol, and saponins of diosgenin and tigogenin, etc. However, the quantitative
determination remained unresolved. Quantification of individual phytochemical is difficult
due to the large number of naturally occurring glycosides, and high cost and limited
availability of required reference standards. A most common alternative is quantification
of the corresponding aglycones released free after acid-assisted hydrolysis [1, 2]. Acid-
hydrolysis methods for glycosides of flavonoids, glycoalkaloids and saponins are many [1,
3, 4], but a validated simultaneous hydrolysis method for all such different type of
compounds identified in EANs, though crucial for rapid quantification, has not been
reported. With such simultaneous hydrolysis method, if developed, quantification of freed
aglycones could then be readily achieved by application of ultra-high performance liquid
chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) due to its high
throughput, selectivity and sensitivity, reliable precision and robustness and large dynamic
range of linearity [5].

The aim of this work was to develop a convenient and rapid method for the
simultaneous hydrolysis of flavonoid glycosides, glycoalkaloids and saponins in the EANs
and to use UHPLC-QqQ-MS/MS methods for quantification of post-hydrolysis aglycones
as well as other compounds in EANs of different genetic sources cultivated in varied

environment including in Kenya, Africa. From a phytochemical perspective, this work



41

aimed to further investigate the EANSs’ nutrition value and anti-nutritive-related
consumption safety issue, and to promote the utilization of these EANs as an important
additional food supply to improve nutrition and, in many cases, to enhance local economy

development by its incorporation as commercial horticultural crops in sub-Sahara Africa.

2 Materials and Methods

2.1 Chemical reagents

Authentic reference standards of chlorogenic acid (1), quercetin (2), kaempferol (3),
rhamnetin (6), isoquercetin (9), dioscin (11) were purchased from Sigma-Aldrich (St. Louis,
MO), isorhamnetin (4) from Carl Roth (Karlsruhe, Germany), solasodine (5) from MP
Biomedicals (Santa Ana, CA), diosgenin (7) from ChromaDex, Inc. (Irvine, CA), tigogenin
(8) from ALB Technology Limited (Mongkok Kowloon, Hong Kong, China), and
solamargine (10) from MedChem Express (Monmouth Junction, NJ). Methanol,
concentrated hydrochloric acid (37%), concentrated sulfuric acid (= 98%) and HPLC grade
water and acetonitrile with 0.1 % formic acid were purchased from Fisher Scientific (Fair

Lawn, NJ).

2.2 Plant materials

Germplasms of a total of thirteen unique EAN accessions were sourced from the U.S.
Department of Agriculture (USDA), the World Vegetable Center (WorldVeg) and private
seed companies, with additional one from an unbranded package marketed close to the
Eldoret, Kenya. These accessions were identified as S. nigrum and S. scabrum, or not

specified. Field trials were performed in Rutgers University (RU) (lat. 40.5°N, long.
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744°W) and Eldoret, Kenya (lat. 0.63°N, long. 35.0°E), producing a total of twenty
differently-sourced EANs (Table III-1).

For the RU trial, germplasms were sown in 72-cell trays on May 3,2016 with growing
mix (Fafard Grow Mix 2; Sun Gro Horticulture, Agawam, MA) under greenhouse
conditions at the RU Research Greenhouses in New Brunswick, NJ. Seedlings were
transplanted on June 7, 2016 to RU Horticulture Research Farm III, New Brunswick, NJ.
They were planted in raised beds in single rows with 0.032 mm black plastic mulch, spaced
45 cm within rows in plots 2.1 m long and 1.2 m wide, spaced 1 m between plots and 2 m
between plot rows. Plants were hand-watered as needed until established in the field, then
irrigated using over-head sprinklers. Soluble 15N-15P-15K fertilizer was applied on June
10, 2016 at a rate of 200 kg-ha!'. Leaves and tender stems were harvested on July 8, 2016
and dried using a walk-in tobacco dryer unit (Bennettsville, SC) with propane-heated,
forced air set to 40°C, and then ground to powder using a shearing-action mill.

For the Kenya field trial, germplasms were sown in 72-cell trays on November 15,
2016 with growing media (Kekkild Propagation Media, Amiran Kenya Ltd. Nairobi, Kenya)
on benches under polyethylene shade. Seedlings were transplanted on January 19,2017 to
a private field and planted in raised beds without mulch, in double rows, under drip
irrigation. Plant spacing was the same as the RU trial. Granular 17N-17P-17K fertilizer
was applied to beds prior to transplanting at a rate of 278 kg-ha'. Leaves and tender stems
were harvested on March 14,2017. Samples were dried using a solar dryer at the cultivation

site and then ground using a shearing-action mill.
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2.3 Instrumentation

Quantitative analysis was conducted using an Agilent 1290 Infinity II ultra-high
performance liquid chromatography (UHPLC) hyphenated with 6470 triple quadrupole
mass spectrometry (QqQ) (Agilent Technologies, Waldbronn, Germany). The UHPLC was
equipped with a built-in auto-degasser, binary pump and column thermostat, with the
diode-array detector (DAD) bypassed from flow path. Compound separation was
performed using Waters Acquity BEH C18 column, 50 x 2.1 mm, 1.7 um (Milford, MA)
protected with Waters Acquity UPLC BEH C18 VanGuard pre-column 5 x 2.1 mm, 1.7
pm (Milford, MA). The LC-MS interface was electrospray ionization (ESI) with jet stream.
Nitrogen was used as nebulizing gas, drying gas, sheath gas and collision gas. The software
was MassHunter Workstation LC/MS Data Acquisition B.08.00, Optimizer B.08.00.,

Qualitative Analysis B.07.00, and Quantitative Analysis B.07.01.

2.4 Hydrolysis condition optimization

Three consecutive single factor experiments were conducted, changing acid
concentration, hydrolysis time and temperature one at a time. A mixed stock solution of
representative flavonoid glycoside, glycoalkaloid and saponin, i.e., isoquercetin (9) (81.3
pg/mL), solamargine (10) (93.3 pg/mL) and dioscin (11) (113.3 pg/mL), respectively, was
prepared for hydrolysis experiment. An aliquot of 0.5 mL stock solution was mixed in a
screw-capped 1 dram vial with 0.5 mL methanolic solution of sulfuric acid at varied
concentrations (to make a final concentration of 0.2 ~ 5 M), vigorously vortexed, and
incubated in a water bath of different temperature (50 ~ 90 °C) for varied time (20 ~ 240

min). After reaction, the solution was chilled in cold water and brought to 25 mL. 70 pL



45

was then aliquoted and mixed with 1 mL methanol, vortexed and centrifuged prior to
LC/MS analysis. Glycosides 9, 10, and 11 and the respective aglycone products, i.e.,
quercetin (2), solasodine (5) and diosgenin (7) were quantified using UHPLC-MS/MS
method (a) (section 2.5). Standard mixture of 2,5,7,9, 10 and 11 with series of 1:2 dilution
was prepared for construction of the calibration curve. The hydrolysis recovery was

calculated as the percentage of aglycones quantified divided by the theoretical amount.

2.5 UHPLC-MS/MS method (a) for hydrolysis optimization

Method (a) was developed for hydrolysis optimization. Water and acetonitrile both
modified with 0.1% formic acid were used as mobile phase A and B, respectively. The
flow rate was 0.4 mL/min, and the gradient was 25 % B at 0 min, 50% B at 2.5 min, 90 %
B at 2.7 min and held until 5 min. The column was equilibrated with 25% B for 2 min
between injections. The injection volume was 3 pL. 3 s needle wash using 70% methanol
was performed between injections. The column was thermostatted at 30°C. For ESI settings,
drying gas was set at 350°C with a flow rate of 13 L/min, the nebulizer was 30 psi, and the
sheath gas was 350 °C at 12 L/min. The capillary voltage was 3500 V and 2500 V for
positive and negative polarity, respectively. The nozzle voltage was 1000 V and 2000 V
for positive and negative polarity, respectively. Dynamic multiple reaction monitoring
(dMRM) was used with 0.5 min scanning window centered around the retention time of
each compound. MRM transitions were optimized in injection-based method as presented
in a most recent study [6]. Product ions of the most abundance were designated as the
quantifier ion, and those of the second and third abundance as the primary and secondary

qualifier ion, respectively.



46

2.6 Plant extract preparation

For each plant sample, three replicates were prepared for quantification of post-
hydrolysis aglycones (2, 3,4, 5, 6,7 and 8). Around 50 mg of plant powder was accurately
weighted and simultaneously extracted and hydrolyzed in a screw-capped 8 dram vial suing
25 mL methanolic solution of sulfuric acid under the optimized hydrolysis condition. After
hydrolysis, the hydrolysate was chilled in cold water, and 30 uL. hydrolysate was mixed
with 1.5 mL methanol, vigorously vortexed and centrifuged at 12,000 rpm for 10min. The
supernatant was then ready for analysis by UHPLC-MS/MS method (b) (section 2.7). Two
additional replicates were separately prepared without hydrolysis for quantification of
compound 1. 50 mg of plant powder were accurately weighted, extracted in 25 mL 50 %
methanol with sonication for 15 min. 30 pL extract was then mixed with 1.5 mL 50 %
methanol, vigorously vortexed and centrifuged at 12,000 rpm for 10min. The supernatant

was then ready for analysis by UHPLC-MS/MS method (c) (section 2.7).

2.7 UHPLC-MS/MS methods (b) and (c) for quantification in AENs

Method (b) was developed for quantification of post-hydrolysis aglycones 2, 3,4, S,
6,7 and 8. The gradient was 30% B at O min, 45% B at 2.5 min, sharply increased to 90%
B at 2.6 min and then held isocratically until 5.2 min. The column was equilibrated with
30% B for 1.5 min between injections. Eluent from O to 0.8 min and from 2.6 to 4.2 min
was split to waste. For quantification of compound 1 without hydrolysis, method (c) was
used. The gradient was 10% at O min, 35% at 1.5 min, and 100% at 1.6 min and held

isocratically until 2.5 min. The column was equilibrated with 10% B for 1.5 min between
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injections. Eluent from O to 0.6 min and after 1.5 min was split to waste. MRM transitions
for both methods were optimized in like manner as in method (a). The dwell time for each
transition was 20 ms. The other LC-MS parameters remained the same as in method (a).
Methods (b) and (c) were validated in terms of sensitivity, linearity, accuracy and
precision. Sensitivity included low limit of detection (LLOD) defined as quantifier ion
signal to noise ratio (S/N) at 3:1, low limit of quantification (LLOQ) with quantifier ion
S/N at 10:1, as well as low limit of primary qualifier ion quantification (LPQ) with primary
qualifier S/N at10:1, and low limit of secondary qualifier ion quantification (LSQ) with the
secondary qualifier S/N at 10:1. LPQ and LSQ defined the concentration level where full
compound identification was achieved based on the designated quantifier/qualifier ratio.
Accuracy was validated by spiking known quantities of standards in pure solvent at LLOQ,
middle point of linearity (MP) and high concentration level of quantification (HLQ) and
calculated as (detected concentration — theoretical concentration) / theoretical
concentration x 100 %. Precision was the standard deviation of repeated injections in the
same sequence for intra-batch precision (n=6) and separated sequences (n=3) for inter-
batch precision, with intra- and inter-batch precision validated at the same three levels as

in accuracy validation.

2.8 Statistics

Comparison of the mean level of phytochemical content between species, i.e., S.
scabrum vs. S. nigrum, and comparison between cultivation sites, i.e., RU research farm
vs. Kenya Eldoret farm, were conducted using Scheffé’s multiple contrast analysis.

Partition of variance for species comparison applied nested analysis of variance (ANOVA)
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and for cultivation sites two-way factorial ANOVA [7]. Data analysis and visualization
was achieved using R Studio with application of Tidyverse, ComplexHeatmap as well as

other packages [8, 9]

3 Results and discussion

3.1 Hydrolysis method development

3.1.1 Limit of hydrolysis methods in literature

Methods for hydrolysis of polyphenols, glycoalkaloids and saponins are many [1, 3,
4], but concurrent hydrolysis of all three groups of compounds are limited in literature to
date. To achieve simultaneous hydrolysis of all three groups could be challenging as one
hydrolysis condition suitable for some compounds may be less effective to others. For
example, hydrolysis of flavonoid glycosides is commonly undertaken using acidified
methanolic aqueous solution, but the high polarity of solvent used is not compatible with
the hydrophobicity of sapogenins, the hydrolysis products of saponins, and therefore
necessitates additional labor to extract sapogenins by nonpolar solvents for downstream
analysis. In addition, limit of water was noted as a critical condition to achieve efficient
hydrolysis of glycoalkaloids [10, 11] (see Figure A-1. Notice the significant decrease in
hydrolysis efficiency due to 3% water in solvent introduced from concentrated
hydrochloric acid (37%) vs. anhydrous condition of the same acid concentration). In order
to accommodate the polarity and hydrolysis nature of all compounds, anhydrous hydrogen
chloride-acidified methanol was applied for simultaneous hydrolysis of flavonoid
glycosides, glycoalkaloids and saponins of EAN berries in a recent study [12]. However,

this method suffered from tediousness of preparation of the anhydrous condition [13],
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limited solvent shelf life (see Figure A-2), high material waste and environmental

contamination during solvent preparation, and was not convenient for routine application.

3.1.2 Hydrolysis method optimization

As alternative to anhydrous methanolic hydrochloride, methanol acidified with
concentrated sulfuric acid (= 98%) instead was applied in this study by exploiting the high
proton molarity and low moisture level in acid source (see Table A-1) and user-friendly
preparation procedure. Isoquercetin, solamargine and dioscin were selected as respective
representatives of glycosides of flavonol, glycoalkaloids and saponins in EANs, and the
concentration was designed such that it would cover the maximum possible concentration
of glycosides in the plant extract to ensure the capacity of the hydrolysis method to be
developed. The hydrolysis results were presented in Figure III-1. Briefly, aglycones of
solamargine and dioscin featured similar bell-shaped recovery curve, possibly due to their
resembling structure. Under mild conditions, cleavage of glycosidic bonds remained as a
rate-limiting step, and increase in acid concentration, hydrolysis time and temperature led
to increase in aglycone recovery. While under excessively intense hydrolysis, both
aglycones underwent severe degradation and rapidly decreased the recovery rate. In
contrast, isoquercetin were almost fully hydrolyzed into the aglycone even under the
mildest hydrolysis condition, possibly due to the fewer saccharide units in side chain, and
experienced slow aglycone degradation upon harsh hydrolysis conditions.

The “parent” glycosides were also quantified after hydrolysis, but they provided
limited indication of hydrolysis efficacy. As isoquercetin was readily hydrolyzed into the

aglycone, and solamargine and dioscin were readily broken into corresponding di- or
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mono-saccharide counterparts [13], the quantity of the “parent” glycosides were rapidly
diminished even in the mildest hydrolysis condition, and did not reflect the true recovery

of aglycones.

120% A 110% B 120%

100% }I—I\_ I 100% {{‘I 100% -
80% 90% {‘I\{ ...... I ------ AI 80% 1

60% 80% 60%
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----- quercetin - - - solasodine —=— diosgenin

Figure II1-1. Recovery of quercetin, solasodine and diosgenin of corresponding glycosides
isoquercetin, solamargine and dioscin, respectively, under different hydrolysis conditions.
(A),70°C water bath, 90 min; (B), 2.0 M sulfuric acid, 70 °C water bath; (C), 2.0 M sulfuric
acid, 60 min.

The final hydrolysis condition was optimized such that methanol was mixed directly
with concentrated sulfuric acid (= 98%) to make a final acid concentration of 2M, ideally
close to anhydrous condition, with hydrolysis time of 60 min and incubation temperature
65°C. The recovery of quercetin from isoquercetin was 94.4%, solasodine from
solamargine 78.1% and diosgenin from dioscin 74.5%. Stability of other aglycones under
this hydrolysis condition was also tested, with kaempferol 91.08 %, rhamnetin 73.91 %,

and tigogenin 93.90%.

3.2 UHPLC-MS/MS methods
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3.2.1 Methods specification

Three different UHPLC-MS/MS methods were developed and tailored to meet
different analysis purpose in this study. Method (a) was for quantification of representative
glycosides and their corresponding aglycones for hydrolysis optimization. Particularly, the
MRMs were updated to JMRM with targeted scanning time windows around the retention
time of each compound so as to ensure a sufficient number of data points acquired across
chromatographic peaks (see Figure A-3. Notice the lack of smoothness in peak curve
acquired in MRM instead of dAMRM).

Method (b) was for quantification of the post-hydrolysis aglycones. The high
hydrophobicity of diosgenin and tigogenin required strong mobile phase composed of up
to 90% of acetonitrile for fast elution. Higher proportion of acetonitrile in the mobile phase,
however, could cause significant ionization suppression, though higher organic constituent
in the mobile phase is generally considered favorable for ionization due to easier solvent
evaporation and ion desorption. Solasodine, despite its similar structure to sapogenins, had
much weaker retainment on the reverse phase column due to easy ionization of the
nitrogenous ring. Considering the wide polarity range of compounds analyzed, to ensure
sufficient number of data points acquired across chromatographic peaks (smoothness) and
also to reduce instrument contamination, four time-sections were set up in this method. The
second section (0.8 ~ 2.6 min) was intended for MRMs of flavonols and solasodine and the
fourth section (4.2 ~ 5.2 min) for MRMs of the hydrophobic sapogenins. Eluent of the first
section (0 ~ 0.8 min) with unretained “junk” peaks was split to waste. Eluent in the third
section (2.6 ~ 4.2 min) during which time 90% acetonitrile was isocratically applied, a

typical “column-washing” step, were also split to waste. In addition, in view of the much
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higher content of total tigogenin in EANs and its higher sensitivity than most other
compounds, the fragmentor voltage for tigogenin was purposely reduced to O V instead of
100 V (an optimized voltage yielding the maximum sensitivity) to reduce response to
tigogenin and thus to increase the dynamic range of detection of method (b).

Method (c) was set up for quantification of chlorogenic acid without hydrolysis. Due
to high polarity of chlorogenic acid, 50% methanol was used as sample solvent instead of
100% methanol in order to avoid compound self-elution in the injection band and thus to

ensure good peak shape [14].

3.2.2 MRM fragmentation pathway

Most MRM transitions optimized in this study featured well defined fragmentation
pathway. For chlorogenic acid, the 191 m/z fragmental ion came from the deprotonated
quinic acid moiety (Figure III-2-D). Interestingly, this was the single product ion detected,
though more than one product ion was readily detectable for isomers neochlorogenic and
cryptochlorogenic acid, as also noted in prior research [15]. For flavonol compounds, the
intense product ions of 151 m/z from quercetin and isorhamnetin and 165 m/z from
rhamnetin, commonly noted as '*A- fragmental ion (containing intact A ring, formed by
rupture of bond No.1 and No. 3 in the C ring), all came from the characteristic RDA
fragmentation (Figure III-2-E) [16-18]. Shared products of 300 m/z of rhamnetin and
isorhamnetin came from the loss of the methyl group. While positive polarity has been
commonly used for flavonols [16, 19], it produced remarkably weaker response than

negative polarity in this study (see Figure A-4).
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For the spirostane-containing compounds, i.e., solasodine, diosgenin, tigogenin, many
product ions were produced by the same fragmentation pathway (Figure III-2-F). The
product ions of 271 m/z and 273 m/z of diosgenin and tigogenin, respectively, were A-B-
C-D ring-containing oxygenous fragments produced through the rupture of the E ring.
Product ions of 253 m/z from solasodine and diosgenin and those of 255 m/z from tigogenin
both were deoxygenated A-B-C-D rings formed by respective dehydration from products
of 271 m/z and 273 m/z. Product ions of 157 m/z from both solasodine and diosgenin were
C-D ring-containing fragments derived from 253 m/z formed by cleavage in the B ring [20,
21]. Such fragmentation pattern was also seen in the corresponding glycosides solamargine
and dioscin. In addition, both glycosides were found to have strong in-source fragmentation
characterized by direct formation of the aglycone ions in the ESI chamber (see Figure A-3).
This fragmentation behavior was readily noticeable when method (b) was ran in MRM
modes before update to dMRM. As this in-source fragmentation was particularly
predominant for dioscin, the aglycone ion was selected as the precursor ion for the

quantifier transition.
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Figure III-2. Representative multiple reaction monitoring (MRM) chromatograms and
fragmentation pathways. Chromatographs were shown using quantifier transition for (A)
standard mixture; (B) nightshade sample 17 and (C) sample 16. Chromatograms by
UHPLC-MS/MS methods (b) and (c) were overlaid. D-F were to illustrate typical
fragmentation pathway the mechanism per se, not an exact repetition of MRMs in Table
III-2. Compound codes refer to Table III-2, and sample codes refer to Table I1I-1.

3.3 Phytochemical profile of AENs

Methods (b) and (c) were applied for quantification of phytochemicals of EANs from
a total of twenty varied sources. Representative chromatograms were exhibited in Figure
ITI-2-B and C. Quantities of phytochemicals were presented in Table III-1 and visualized
as a heat map in Figure III-3 with sources clustered in hierarchy based on profile similarity.
The two species investigated in the RU field trial, i.e., S. scabrum (coded samples 2, 4, 6,
8, 10, 12 and 20) and S. nigrum (samples 13, 14, 16 and 19), were compared for
phytochemical mean content level using Scheffé’s multiple contrast analysis (Figure I11-4-
A1). Though genetically close and sometimes phenotypically ambiguously distinguished
from each other, S. nigrum as a group exhibited statistically significant and, intuitively
most strikingly and consistently, higher content of solasodine (p < 0.001) than S. scabrum,

which were mostly lacking in such alkaloid. S. nigrum also exhibited remarkably more
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enriched diosgenin (p < 0.001) and tendency for lower content of kaempferol (p < 0.05)
than S. scabrum. While noticing the species difference, it is equally important to notice that
within-species variance was tremendous; difference among accessions of the same species
contributed to 66 ~ 98 % of total variance across all phytochemicals investigated (Figure
IT11-4-A2). The accession from USDA PI 312110 of S. nigrum (sample code 16), for
example, displayed aberrantly higher content of diosgenin and much lower level of
tigogenin (Figure III-3-A and Figure II1-4-A1, also notice the uniquely characteristic
rhamnetin) and had great leverage on the statistical significance of the species mean
contrast (see Figure A-5). Therefore, it is of practical importance to refer to not only the
species but also the accession an EAN belongs to for conceptualization of the potential

phytochemical content.

species

SS52 11 W S. scabrum
P S. nigrum
SS04.2.9 ND.
B S849_7
BG 16_5 seed source
§§52_12 . 1] WorldVeg

Baker Creek Heirloom_20 USDA
P1643126_15 Kenyan local market

Simlaw Kenya

BG 16_6 Baker Creek Heirloom
SS49 8
PI1381289_14 cultivation site
$504.2_10 Kenya
BG 29_1 . RU
Ex Hai_3
BG 292 Iog;O [mg/100 g DW]
Ex Hai_4 2
| Kenyan market_17 1
] Simlaw seeds_18 0
Simlaw seeds_19 -1
P1306400_13 compound category
P1312110_16 ¥ phenolic acid
T T T [ flavonol
500 1000 1500  |D_Sample Code M saponin
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Figure III-3. Phytochemical profile in edible African nightshades from different sources.
The clustered heatmap (A) shows compound distribution pattern and level of similarity.
Stacked barplot (B) presents categorized subtotal of compunds in each plan source.
Heatmap sidebar and barplot applies the same color notation for compound category.



57

Apart from difference in species and accessions, the cultivation environment was
found to be another important factor influencing the phytochemical profile, as revealed by
Scheffé’s contrast of the mean of RU field trial (coded samples 2,4, 6,8, 10, 12) vs. Kenya
Eldoret trial (samples 1,3,5,7,9, 11), both sites comprising six pairwise accessions of S.
scabrum (Figure III-4-B1). Plants grown in the RU farm showed consistently higher
content of both diosgenin and tigogenin (p < 0.001) than those in the Kenyan farm, as well
as tendency for higher mean in solasodine (p < 0.001), though S. scabrum as a species was
generally deficient in this alkaloid. Across all phytochemicals investigated, 1.6 ~ 343 %
of total variance could be accounted for by the main effect of environment, and 17.3 ~
73.6 % when interaction of environment with accessions are considered (Figure I11-4-B2).
Thus, diversity of the environment where the EANs are planted could add to additional
complexity to phytochemical content. Despite all the potential sources of variance, all
twenty differently-sourced plants presented traits in common. Quercetin was the most
abundant polyphenol, followed by chlorogenic acid and kaempferol, accounting for over
98% of total polyphenols, though with the exception of USDA PI 312110 (sample 16)
where rhamnetin accounted for 45% of total polyphenols. Isorhamnetin was reported in
fruits of S. scabrum in a recent study [22] and for the first time was also found in this work
in the leaves of EAN from all twenty sources, though isorhamnetin constituted only a minor
percentage of polyphenol portfolio. Both tigogenin and diosgenin were important
sapogenins in all twenty sources making up for 0.4~0.8% of dry mass, with tigogenin being
the most enriched in content (again except sample 16). The predominance of tigogenin

somehow paralleled the pattern reported in an earlier study where out of 32 species in
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Solanum section Solanum, tigogenin in most species was predominant over diosgenin, if

there was any, and only two species had higher content of diosgenin than tigogenin [23].
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Figure III-4. Contrast analysis and partition of variance between species (A1 and A2) and
cultivation environment (B1 and B2). A1 and B1 performed Scheffé’s contrast for multiple
comparison of species mean across different phytochemicals, with statistical significance
noted as *, ** and *** at significant levels at 0.05, 0.01, and 0.001, respectively. A2
performed nested analysis of variance (ANOVA) and B2 factorial ANOVA. Compounds
were abbreviated into initial letters: C, chlorogenic acid; Q, quercetin; K, kaempferol; I,
isorhamnetin; S, solasodine; D, diosgenin; T, tigogenin. For boxplot presentation, the
arithmetic mean was denoted as the diamond, and numbers indicate the corresponding
sample code.

3.4 Nutrition, toxicity and consumption value

Many Solanum species are known to contain toxic glycoalkaloids and concern of such
toxins in EANSs exists to impair their recognition and promotion for food supply. It is of
importance to evaluate the potential toxicity associated with the glycoalkaloids, if any in
the plants, before consumption. Among the twenty differently sourced EANSs, the alkaloid
was found in five sources of them with the content ranging between 0.1 to 21 mg/100g dry

weight (DW), or an equivalent range of corresponding glycosides of 0.02 ~4.2 mg/100 g
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fresh weight (FW), a range agreeing with the content reported in prior study in African
EANs (0.7 ~ 3.8 mg/100g DW) [11]. The content reported in this study was significantly
lower than that of solasodine glycosides (6.25 to 20.5 mg/100 g FW) in eggplant (Solanum
melongena) that are safe to consume [24, 25]. Therefore, the sufficiently low content of
glycoalkaloids in EANs should be within the safety frame for consumption.

Sapogenins as another group of bioactive compounds, though generally to a lesser
extent of concern than glycoalkaloids, could also be associated with potential toxicological
effects. A recent study concluded safe consumption of 267 mg/kg human body weight
(HBW)/day of total steroidal extract comprising saponins of diosgenin and structural
analogues [26], or roughly ~133 mg/kg HBW/day of the corresponding aglycone. And
another study stated safe consumption of 150 mg/kg animal BW/day of dioscin [27],
equivalently a more astringent human dose of 24.2 mg/kg HBW/day [28], , or ~ 11.53
mg/kg HBW/day of the corresponding aglycone. If one of 60 kg were to consume the most
sapogenin-dense fresh EANs (~ 872 mg/100g DW or ~ 87.2 mg/100g FW, sample 8) as
the only vegetable source and with a daily consumption amount up to 2.5 USA cups (~600g
at maximum when vegetables were compressed tight when measured in cup), a
recommended quantity for total dietary vegetables based on 2000 calorie requirement
according to the 2015-2020 Dietary Guidelines for Americans [29], the total intake of
sapogenins would be 8.72 mg/kg HBW/day, well within the most astringent safety
threshold (~11.53 mg sapogenin /kg HBW/day). Therefore, a reasonable consumption

amount of EANs would not be likely to cause sapogenin-related health concern.
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4 Conclusion

A convenient simultaneous hydrolysis and extraction method for flavonol glycosides,
glycoalkaloids and saponins in EANs was developed, applying 2M sulfuric acid in
methanol (close to anhydrous condition) with incubation temperature at 65°C for 60 min.
A UHPLC-MS/MS method was established to determine post-hydrolysis glycoside-
aglycone recovery for hydrolysis method optimization. Two additional UHPLC-MS/MS
methods were developed and validated for quantification of eight major aglycones with or
without hydrolysis. Difference in species, accessions, and cultivation environment all
played important role in affecting the phytochemical profile. Antinutritive alkaloids and
sapogenin in EANs were evaluated safe for regular consumption due to lower content than
safety threshold, despite concern of toxins commonly associated with Solanum species.
This work further supported the earlier endeavor in EANs and would facilitate more
cultivation, marketing and consumption of EANs to increase food supply, improve
household nutrition, and also to provide income generating opportunities for the farmers in

the sub-Saharan area.
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CHAPTER V. LEAFY FREE AMINO ACIDS

1 Introduction

African indigenous vegetables (AIVs) are an important food source in sub-Saharan
African, and provides the needed food security and diversity and income generating
opportunities for local people [1,2]. Many AIVs have been shown to be nutrient dense [3,
4], and the total protein content typically ranges from ca 20 ~ 50% and even up to 70% of
dry mass [5, 6]. Despite literature abundance on total protein of AIVs, the amino acid (AA)
composition has rarely been investigated.

Analytical methods for AA have been subjected to long-history and continuous
innovation and improvement. Of the numerous techniques developed, the first milestone
was the 1950s-invention of ion-exchange chromatography with post-column derivatization
using ninhydrin reagent with detection at 570 nm and 440 nm [7]. This technique was later
developed into fully automated AA analyzers since 1960s [8], and remains a most
frequently applied and classic method to date. This technique, however, suffers most from
its elongated hours-long run time per sample and is being gradually replaced by many other
methods [9, 10]. One alternative technique is pre-column derivatization (PreCD) with
reverse phase (RP) chromatography. The PreCD reagents, such as o-phthalaldehyde (OPA),
fluorenylmethyl  chloroformate =~ (FMOC-Cl), phenyl isothiocyanate (PITC),
dimethylaminonaphthalene-5-sulphonyl  chloride (dansyl-Cl) [11-13], and 6-
aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) [14-16], etc., typically tag the
polar AAs with a hydrophobic chromophore, and provides better retainment and separation

on the RP column and feasible ultraviolet-visible light and/or fluorescence detection. In
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some applications using mass spectrometry (MS) analysis, the labelling reagents including
their isotopic counterparts, such as iITRAQTM (isobaric Tags for Relative and Absolute
Quantitation) [17, 18] and its later enhanced version aTRAQTM, etc. [19-21], react with
amino acids such that the derivatives provide a characteristic fragmentation in MS to
generate the product ion corresponding to the labelling reagent. This technique is a cost-
efficient solution to provide isotopically-labeled internal standards for each AAs while
using a single reagent. All such derivatized methods while providing many merits also
present various difficulties, such as the instability and/or inconsistency of derived products,
laborious sample preparation, analysis artifacts and/or system contamination, etc. [14].

Different from the former two types of technique based on AAs derivatization, a third
technique involves direct analysis of underivatized AAs on the RP column using ion-
pairing reagents, such as various perfluorinated carboxylic acids followed mostly with MS
detection. While this derivatization-free technique proves to be a more convenient and also
powerful tool, the use of ion-paring reagents in the mobile phase, however, could induce
noisy background, system peaks and contamination, ion suppression, and long
equilibration time especially when the buffer is not balanced [9, 10, 14, 22].

One more technique for underivatized AA analysis that is gaining increasing
popularity in recent years is the hydrophilic interaction chromatography (HILIC) with MS
detection. HILIC applies polar stationary phase, such as bare silica or polar bonded phase,
and high percent of organic mobile phase for separation of polar and charged compounds.
The separation mechanism involves analytes’ partition between the bulky organic phase
and the thin aqueous layer immobilized along the surface of the stationary phase, and many

other effects such as ionic interaction and dipole-dipole interaction, etc. [23, 24]. While
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this technique has been extensively used for amino acid analysis [25-31], and presented
remarkable analytical progress than many other techniques, literature method still face
various challenges including undesirable sensitivity, compromised chromatographic
performance, limited linear range and long run-time, etc. A brief review of representative
literature methods mentioned above is presented in Table I'V-1.

To overcome the prior setbacks in literatures, this work developed an improved
HILIC-MS/MS method for AAs analysis with significantly enhanced sensitivity, improved
linear range and higher throughput. Using the developed method, the free AAs in a total of
544 AIVs were determined. Based on acquired free AAs profile, the AIVs categories were
successfully predicted using machine learning methods, and an R-Shiny based online

interactive application (https://boyuan.shinyapps.io/AIV_Classifier/) was constructed for

interactive modelling simulation and classification prediction of unknown samples.

2 Materials and Methods
2.1 Chemical reagents

Concentrated hydrochloric acid (HCI) (ca. 36.5~38%), LC/MS grade formic acid (FA),
LC grade water and acetonitrile were purchased from Fisher Scientific (Fair Lawn, NJ).

LC/MS grade ammonium formate and ammonium acetate, and AA reference standards as

listed in Table I'V-2 were purchased from Sigma-Aldrich (St. Louis, MO).
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2.2 Plant materials

A total of 544 miscellaneous AIVs were analyzed in this work, comprising four
categories, including African nightshades, 139 samples, from two identified species
Solanum scabrum and S. villosum, twelve accessions; amaranth, 143 samples, from four
species Amaranth cruentus, A. hypochondriacus, A. tricolor and A. dubius, with thirteen
accessions; spider plants, 172 samples, from a single species Cleome gynandra, with nine
accessions; and Ethiopian mustard, 90 samples, from a single species Brassica carinata,
with nine accessions. Using the exact same genetic strains, the AIV seeds were distributed
to different sites where each strain was cultivated and harvested, the sites including Rutgers
University Snyder Research and Extension Farm (Pittstown, NJ, USA; lat. 40.6 °N, long.
750 °W, 116 m elevation); the World Vegetable Center, Arusha, Tanzania; Turbo
demonstration farm, Eldoret, Kenya; and Kenya Agricultural & Livestock Research
Organization (KALRO), Kibos Road, Kisumu, Kenya. Samples were cultivated and
harvested in years 2015 ~ 2018 and different seasons if applicable. The field trial procedure
refers to our prior report [32-35]. A detailed information about samples refer to the

supplementary Excel file.

2.3 Instruments

The instrument used was Agilent 1290 Infinity II UHPLC coupled with 6470 triple
quadruple mass spectrometry (Santa Clara, CA). The UHPLC was composed of a binary
pump with built-in online degasser, temperature-controlled autosampler and column
thermostat. The HILIC column used was Waters Acquity BEH Amide, 100 x 2.1 mm, 1.7

pm, with BEH Amide VanGuard pre-column 5 x 2.1 mm, 1.7 um (Milford, MA). The MS
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featured electrospray ionization (ESI) with jet stream. The drying gas, sheath gas and
nebulizing gas was supplied using a Parker Balston NitroFlow60NA nitrogen generator
(Lancaster, NY). The collision gas was high-purity grade nitrogen from Airgas (Radnor,
PA). The instrumental software was Agilent MassHunter Workstation LC/MS Data
Acquisition B.08.00, Optimizer B.08.00, Qualitative Analysis B.07.00, and Quantitative

Analysis B.07.01.

2.4 Sample preparation

For plant extract preparation, ca. 100 mg of dried plant powder were accurately
weighed, extracted with 10 mL 100 mM HCI aqueous solution, vigorously vortexed and
sonicated for 10 min, and stored in -20 °C. The samples were thawed and conditioned to
room temperature upon analysis, diluted by mixing 10 pL extract with 1 mL 10 mM HCl
in 90% acetonitrile, and then centrifuged at 10,000 xg prior to LC/MS analysis.

For AA standard solutions, standards each of ca. 10 mg were mixed together and then
dissolved in 30 mL 0.1 M HCI aqueous solution to make the standard stock solution. The
stock solution was diluted with 10 mM HCl in 90% acetonitrile (note to be the same solvent
used for plant extract dilution) into serial concentrations to construct the calibration curve.
Preparation of other solvents routinely used or tested during method development refers to

the supplementary material section Solvent preparation.

2.5 UHPLC-QqQ-MS/MS method development

For chromatographic separation, water with 0.1% formic acid was used as mobile

phase A and acetonitrile with 0.1% formic acid as mobile phase B. The gradient was 90%
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B at O min, 88% B at 2 min, 70% B at 3 min, 60% B at 4 min and isocratically held until 5
min. Column was equilibrated with starting mobile phase for 1 min between injections.
The flow rate was 0.5 mL/min. The total run time was 6 min. Eluent before 1.5 min and
after 4.8 min was split to waste. The column thermostat was set at 30°C. Autosampler was
maintained at 4°C. Injection volume was 0.3 pL. A 3 sec needle wash using 90%
acetonitrile was applied between injections.

For the MS condition, the drying gas temperature was 300 °C and flow rate was 12
L/min. The sheath gas was at 300°C and 12 L/min. The nebulizer was at 30 psi. The
capillary voltage was 3500 V and nozzle voltage at 1000 V. Positive polarity was used.
The MRM transitions were optimize using MassHunter Optimizer as prior reported [36],

and shown in Table IV-2.

2.6 Method validation

Validation generally followed FDA guidelines and literature with adaption [37-39].
The quality control sample (QCS) was prepared by equal-volume blending of AIV extracts
from different species and categories. Aliquots of 0.8 mL QCS were spiked with standard
stock solutions at volumes of 1000, 500, 200, 100, 50, 20 and 10 pL, noted as levels A, B,
C, D, E, F and G, respectively, with each level in quadruplicate. Aliquots of 10 puL of each
spiked QCS, and 10 pL of the original QCS also in quadruplicate, were diluted by
respective mixing with 1 mL 10 mM HCl in 90% acetonitrile prior to LC/MS analysis. The
analysis accuracy was computed as measured concentration in spiked QCS subtracting the

endogenous content (result referred to as the “net gain”), then divided by the known spike
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amount. The dilution effect due to spiking was carefully counted in calculation, and
standard deviation computation followed the error propagation law.

For determination of the matrix effect, aliquots of 0.8 mL 0.1 M HCl aqueous solution
were spiked with amino acids standard stock solution and then diluted in like manner as
accuracy validation aforementioned. Matrix effect was calculated as the “net gain” divided
by the measured concentration in pure solvent, and standard deviation followed error
propagation law.

For analysis of precision, the same samples prepared in neat solvent for matrix effect
validation was re-used, yet using only one set of the four replicates. Each sample, at levels
from a to f, were injected for four times, and from level to level in completely random
order.

Lower limit of detection (LLOD) and quantification (LLOQ) were concentrations
where signal to noise ratio was 3:1 and 10:1, respectively. For calibration construction,
four sets of calibrators were prepared separately from the same standard stock solution and
all calibrators were applied for calibration construction. The calibrator accuracy at each
concentration level was defined as the back-calculated concentration using constructed
calibration divided by expected level. The calibrator error percent at each concentration
level was defined as the standard deviation of the peak areas of the calibrator quadruplicates
divided by the average peak area. Simple linear regression of error percentages against

calibrator sequence roughly reflected the error induced at each dilution step.
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2.7 AIV category prediction with machine learning

Principle component analysis (PCA) and linear discriminant analysis (LDA) were
applied as exploratory tool to investigate the effect of AIV variety on the profile of AA
profile. Based on that, machine learning techniques were applied for AIV category
classification prediction, using LDA, quadratic discriminant analysis (QDA), elastic net-
regularized logistic regression, random forest (RF), support vector machine (SVM) and
naive Bayes (NB), the latter used as a benchmark of model prediction performance. In
addition, the prediction result of each model was ensembled counting the most voted
category sample-wisely. The testing set was acquired from 70% of the entire dataset via
stratified sampling based on category and cultivation site, and was standardized into z-
scores. The remaining 30% was used as the testing set to evaluate model performance, and
was standardized based on the mean vectors and covariance matrix of the testing set [40,
41]. All statistical computation and visualization was conducted using R [42, 43].

An online interactive ML application was constructed using R Shiny, referring to

https://boyuan.shinyapps.io/AIV_Classifier/. This application functions to achieve 1)

simulation of the model training and testing procedure, 2) classification prediction of a
single AIV sample via slider bar-mediated manual feature input, and 3) classification
prediction of a batch sample via Excel file input. The R script for the online application
and all computational analysis and visualization refers to

https://yuanbofaith.github.io/AfricanVegetables_AminoAcids/index.html.

3 Results and Discussion

3.1 UHPLC-QqQ-MS/MS method development
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3.1.1 Optimization of mobile phase

Method development of most LC-MS applications is typically centered around the
MS part the workhorse of compound detection. while when HILIC is applied, the special
feature of the column often renders development of an optimal chromatographic system a
most critical part, which would greatly impact the downstream MS performance. In this
work, the chromatographic system was carefully optimized. Two columns Waters BEH
HILIC vs. BEH Amide of the same dimension, and two mobile phase buffer salt,
ammonium formate (AMF) vs. ammonium acetate both at 10 mM, were tested using 2 x 2
factorial design, and compared in terms of resulted peak shape, signal response, compound
retention and separation efficiency. The BEH Amide with use of AMF as the mobile phase
buffer was found to generate better results than otherwise combinations, which agreed with
the literature report [26]. The use of AMF at 10 mM in the mobile phase, however, resulted
in significant suppression of MS signal response. Particularly, for some difficult AAs such
as aspartic acid and histidine, which presented remarkable tailing peaks, morphologically
reminiscent of a melted butter smeared across a jagged waffle, the signal could be easily
blended into background and the sensitivity was the most compromised. Such challenge
was also seen and inadequately resolved in recent publications [26, 27]. While much
literature resorted to higher injection concentration to overcome the compromised
sensitivity, such resort could easily induce unnecessary contamination and compromise
instrumental performance in the long term.

Therefore to further improve sensitivity, a range of lower concentrations of AMF in
the mobile phase were tested in this work, attempting for a sweet spot with increased

sensitivity and reserved peak shape (Figure I'V-1 and Figure A-6). Concisely, reduction
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or removal of AMF efficiently increased signal response (3.7 ~ 74 times higher when
without AMF compared with using 5 mM AMF) and decreased column retainment, the
latter manifested by reduction in both retention time and peak width. The increase in peak
area and reduction of peak width jointly led to much more enhanced sensitivity, an effect
particularly beneficial for compounds with tailing peaks and compromised sensitivity. In
addition, the increased sensitivity allows for detection of product ions of low abundance
that are respectively unique to leucine and isoleucine, for the first time allowing the two
isomers to be distinguished using MS regardless of chromatographic coelution. In addition
to increased sensitivity, the peak shape remained uncompromised or even improved upon
reduction or removal of AMF, despite the stereotype on buffer’s general importance upon
peak shape maintenance. As such in our finalized method, only 0.1% FA was added as
mobile phase modifier without use of any mineral buffer. Such practice also greatly
simplifies method setup, avoids unnecessary salt-induced contamination, allows for
compatibility with most LC-MS methods, and avoids issues caused by salt crystallization

in instrumental components in the long term.
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Figure I'V-1. Effect of ammonium formate buffer concentration in the mobile phase upon
chromatographic performance (CP) of amino acids. The CP metrics include (A) signal
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response or peak area, (B) retention time and (C) peak width. A small amount of noise is
added to the points’ abscissae to reduce overlap. Chromatographic peak shape and more
detailed information refer to Figure A-6. The formula for mobile phase preparation refers
to Table A-2. Amino acids’ one-letter abbreviations refer to Table IV-2.

3.1.2 Optimization of sample preparation solvent

The solvent in the prepared sample ready for LC-MS injection was found as another
critical factor for response linearity and sensitivity. Although as a common rule of thumb
for HILIC chromatography, the sample solvent remains the same as the starting mobile
phase (i.e., 90% acetonitrile with 0.1% or 26.5 mM FA in our case) to ensure undistorted
peak shape [44, 45], such solvent surprisingly nonlinearized the signal response of the three
basic AAs, histidine, arginine and lysine. When 10 or 100 mM hydrochloric acid was added
in replace of FA, the linearity was rapidly restored across three orders of magnitude
(Figure I'V-2A and Figure A-7). The sensitivity was also increased compared with using
FA.The sample solvent’s acid composition did not appear to affect the linear range of other
AAs, but also influenced their response sensitivity by various extent. For example, use of
HCI at 100 mM in the sample preparation solvent increased sensitivity of tyrosine and
methionine, but noticeably reduced sensitivity of glutamic acid, threonine, proline and
alanine. Apart from influence on the signal intensity, addition of HCIl in the sample
preparation solvent also decreased the chromatographic retention time compared with
using FA (Figure IV-2B). The mechanism of such phenomena is not well understood, but
clearly the sample solvent’s acid composition changed the existing format of AAs, and
more interestingly such format was able to survive through the entire process of column
elution during which time the mobile phase poses a very different environment from the

sample solvent in the LC vial.
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Figure I'V-2. Effect of sample preparation solvent on amino acids (AAs) response linearity
and retention time. The sample preparation solvents (of the final prepared sample ready for
LC-MS injection) were 90% acetonitrile (ACN) with different acid composition, i.e., 0.1%
or 26.5 mM formic acid (FA), or hydrochloric acid (HCI) at 1, 10 or 100 mM. In addition,
90 % ACN with 0.1% FA was used as the starting mobile phase. Injection of each
calibration set was replicated over two days, during which time the samples were stored in
4 °C autosampler. (A), the response curve of representative AAs. Note that the scales are
logarithmically transformed, i.e., the calibration curves y = ax + b is re-written as log(y) =
log(ax + b) = log(a) + log(x), with y being the signal response, a the slope which reflects
the detection sensitivity, x the concentration and b the y-intercept, a and b regarding the
original scale. Since the b term is small, the linear range would maintain much of its
linearity after log-transformation, with now the new intercept log(a) positively related with
method sensitivity. (B), shift of retention time (RT) when HCI is added in the sample
solvent compared with 0.1% FA. Since the RT is generally reduced using HCI relative to
FA, the shift amount is noted as negative numbers. Certain AAs such as glycine, 4-
hydroxyproline and cysteine, etc., shifted out of the dynamic multiple reaction monitoring
time window upon 100 mM HCI and thus not detected.
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3.1.3 Optimization of the MS/MS

The MS/MS transitions optimized in this work was mostly consistent with the
literature [26-28]. Despite the zwitterionic property, positive polarity was found to give the
highest sensitivity. Transitions resulting from the neutral loss of formic acid by 46 m/z via
rearrangement was the most predominant among the AAs as seen in literature [26]. For
two isomers leucine and isoleucine, their unique product ions 43.2 and 69.2 m/z,
respectively, were used as the quantifier ion despite their lower abundance than other
product ions. This approach allowed for accurate quantification in presence of
chromatographic coelution. For aspartic acid, the lower-abundance product ion 43.2 m/z
was used as quantifier ion, since the other two product ions 88.1 and 74.1 m/z could also
be generated from asparagine due to isotopic interference. Lysine and glutamine featured
identical transitions, but were sufficiently resolved chromatographically.

In addition, an attempt was made on optimization of the ESI condition using fractional
factorial design as prior reported [36], but the signal response was found generally
insensitive to different ESI settings, which on the other side suggested robustness of the

developed method to ESI condition fluctuations.
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3.2 UHPLC-QqQ-MS/MS method validation

The validation results are summarized in Figure IV-3, Table IV-3 and Table A-3,
Table A-4 and Table A-5. The method's average accuracy for all AAs validated at seven
spike levels was centered around 105% and within the range of 75~125%. At lower spike
levels, though the accuracy average did not present much deviation from the 100%
benchmark, the variance significantly increased, especially when the spike levels went
much lower than the content in the original unspiked extract. Since the variance was
composed, according to error propagation law, by the error of measurement of both spiked
and unspiked extract, the contribution of the latter kept increasing at lower spike levels,
and thus boosted the overall accuracy variance (see Figure A-8). The averaged level of
matrix effect was centered ca. the 100% benchmark, mostly bound within 90~110%,
suggesting little interference effect imposed from the extract background. The
corresponding variance was much larger at lower spike levels (F level not shown) due to
the same cause as in case of prior accuracy validation. The precision was generally below
2.5%, though at lower levels the precision error may be up to 15%, reflecting increasing
difficulty in integration consistency for smaller peaks, a factor also contributing to the
increasing variance of accuracy and matrix effect at lower spike levels. Since injection of
samples of different concentrations were made in completely random order, the precision
validated here also incorporated the carryover effects if any.

The AAs analyzed featured high sensitivity, with LLOD down to 0.1 ~ 3.2 pg injected
on column, and LLOQ down to 0.15 ~ 12.6 pg on column. The linearity range typically
spanned over three orders of magnitude, from LLOQ up to high limit of quantification

(HLOQ) at 1056 ~ 1716 pg on column (see Figure A-9), which suggested satisfactory
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linearity. The calibrators accuracy (CA) was also examined at each concentration
level (Figure A-10A), with most of the CAs bound within 80~120%. The band of CA
fanned out when approaching LLOQ due to increasing difficulty of integration consistency
for smaller peaks and the effect of error prorogation of serial dilutions. For the latter, since
each set of the four replicates of calibrators were separately prepared from the same stock
solution, calibrators incrementally accumulated the dilution error and displayed more CA
dispersibility down the serial dilution path. Regression of the calibrator diverging effect,
represented as the calibrators error percent, against dilution steps therefore reflect the
pattern of error accumulation, and the slope suggested ca.0.5% increase of such error

induced at each dilution step (Figure A-10B).
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Table I'V-3. Sensitivity and calibration of amino acids.

No. Amino acids | LLOD (ng/mL) LLOQ (ng/mL) HLOQ (ng/mL) Calibration R2
1 leucine 0.50 1.00 4080 Y =81.4774X + 135.3090  0.9990
2 isoleucine 0.31 0.61 5000 Y =71.1636X + 111.2613  0.9993
3 tryptophan 0.60 1.19 4880 Y =168.0951X - 8.2806  0.9962
4 phenylalanine 0.61 1.21 4960 Y =293.9884X + 260.6369 0.9994
5 valine 0.61 1.22 5000 Y =410.7137X + 920.6263  0.9989
6 methionine 0.56 1.11 4560 Y =55.3991X -26.8628  0.9938
7 tyrosine 0.65 1.31 5360 Y =65.7911X + 47.0506  0.9995
8 proline 2.05 2.05 4200 Y =246.6109X + 2569.574 0.9976
9 alanine 0.25 0.50 4120 Y = 140.2096X + 746.8086  0.9967
10 cysteine 1.10 221 4519 Y =13.0453 - 14.8464 0.9640
11 elycine 8.13 16.25 4160 Y =6.5835X + 17.8001 0.9889
12 glutamic acid 1.40 2.79 5720 Y =21.7154X + 57.0464  0.9839
13 threonine 1.23 2.46 5040 Y =29.4302X + 140.7630  0.9954
14 hydroxyproline 402 8.05 4120 Y =33.6225X +9.4106  0.9996
15 glutamine 248 4.96 5080 Y =259211X +4.1991 0.9988
16 serine 2.25 449 4600 Y =36.0282X + 135.8935  0.9974
17 aspartic acid 10.55 42.19 5400 Y =49136X +30.8616  0.9988
18 asparagine 1.23 2.46 5040 Y =14.1428X +27.9812  0.9993
19 arginine 0.97 1.94 3969 Y =33.1698X +293.494  0.9986
20 histidine 2.13 4.25 4352 Y =39.1237X + 302.7673  0.9994
21 lysine 1.72 344 3521 Y =32.6282X + 198.7964  0.9992

LLOD, lower limit of detection; LLOQ, lower limit of quantification; HLOQ, high limit
of quantification. The detection limits correspond to 0.3 pL injection volume. LLOQ and
HLOQ constitutes the linear calibration range. The calibration regression was computed
using 1/x weight, and based on four sets of calibrator replicates, each set prepared
separately by serial dilution from the same stock solution. The four sets were injected over
a course of three-day continuous analysis in the same sequence of the 544 samples of
African indigenous vegetables.
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Figure IV-4. Representative chromatogram in a spider plant sample. Compound
abbreviations refer to Table I'V-2. Note that for leucine, isoleucine and aspartic acid, the
lower-abundance product ions were used as quantifier ion (see section 3.1.3).

3.3 AI'Vs AA profile

The HILIC UHPLC-QqQ-MS/MS method developed was applied to determine the
free AA profile in a total of 544 different AIV samples in a three-day sequence. A
representative chromatographic profile of an AIV sample is presented in Figure I1V-4
(prior page). An overview of the profile of all AIVs is presented as a heatmap in Figure
IV-5. As for total free amino acids, the four categories of AIVs, African nightshades,

amaranths, spider plants and mustards, all contained high amount up to 7.4 =+ 3.6 (standard

deviation),2.5 = 09,54 = 1.7 and9.3 =+ 2.5 g/100 g dry weight (DW), respectively,

which is significantly more enriched than most other vegetables [46]. The high content of

total AAs in mustard agreed with the literature, where it was reported in young leaves of
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green and red mustards to be 1.13 ~ 1.47 g/100 g fresh weight [47], or equivalently 11.3 ~
14.7 g/100 g DW assuming 90% moisture content; and the total AAs in Tronchuda cabbage
(Brassica oleracea) were reported to be 3.3 ~ 14.4 g / kg fresh weight [48], or equivalently
ca.33 ~14.4 g/100g DW.

A particular interest of this work was to investigate the differentiation of AIVs based
on the portfolio of free AAs. As such, a PCA was conducted as exploratory analysis for
this purpose. Generally, African nightshades, amaranths, spider plants and Ethiopian
mustards, were decently separated with each other. Briefly, the amaranth and mustard were
nicely separated along the horizontal direction of the first principle component (PC1).
Mustards mostly presented positive PC1 scores (Figure IV-6A), and contained higher
content of AAs positively correlated with the PC1, such as valines, phenylalanine and
histidine, as shown in the loading plot (Figure IV-6B). The contributing AAs could also
be conveniently manifested by the eigenvector heatmap (Figure I'V-6C), which presented
the coefficients of the linear combination of AAs content for calculation of the PC scores
(since AAs content was standardized prior to PCA, for each PC the loadings were also a
fixed multiple of the coefficients by the square root of the corresponding eigenvalue).
Samples containing more AAs with large PC1 coefficients tend to occupy the right side of
the PCA plot, and vice versa. Similar analysis also applied to the separation of nightshades
and spider plants in terms of PC2. It’s noteworthy that even though the first two PCs only
explained 58% of total data variance, the separation was not unclear. Further improved

separation was possible when viewed from a higher dimension (see interactive three-

dimensional PCA plot at https://yuanbofaith.github.io/aminoAcids PCA3D/).
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Figure I'V-6. Clustering and separation of African indigenous vegetables (AIVs) based on
free amino acids (AAs) profile using principle component analysis (PCA). (A), the PCA
plot of the first two principle components (PC). (B), the loadings of the first two PCs,
showing the correlation of AAs content with the PCs as well as correlation among AAs per
se. (C), the eigenvector heatmap, showing the linear coefficients used for construction of
the first two PCs. An online interactive three-dimensional PCA plot refers to

https://yuanbofaith.github.io/aminoAcids PCA3D/.

linear discriminant analysis (LDA) was also applied to linearly maximize the

separation (regarding the corresponding mean vectors) among the four AIVs categories.

All four categories were decently separated (Figure IV-7A). Meanwhile, based on the

computed mean vectors, the category of each AIV sample could be conveniently predicted

by assigning the sample to the category to which the sample presented the smallest

Euclidean distance on the discriminant-valued scale. As such, most samples were correctly

predicted with overall 96.1% accuracy (Figure IV-7B and Figure A-11). This delivers a

clear message that using the profile of free AAs, the four categories of AIVs, African

nightshades, Ethiopian mustards, amaranth and spider plants, could be predicted with ideal

accuracy regardless of the wide within-category variance caused by difference in species,

cultivars and cultivation environment.
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Figure IV-7. Clustering and separation of African indigenous vegetables (AIVs) based on
free amino acids (AAs) content using Fisher’s linear discriminant analysis (LDA). (A),
separation of AIVs. (B), prediction of AIVs category based on algorithm and statistics of
(A), with incorrect predictions noted as empty circles. The ellipses mark the boundary
containing ca. 95% samples corresponding to each category. Note that all 544 AIVs
samples are involved in computation, without train-test split.

3.4 AI'Vs category prediction with ML

Based on prior exploratory analysis, the practice of AIV category prediction, i.e.,
African nightshades, Ethiopian mustards, spider plants and amaranths, using free AAs’
profile was more vigorously tested using different ML techniques. The entire AIVs dataset
comprised a total of 544 samples in rows and 21 AAs in columns. The training set
contained 70% of the dataset or 381 randomly selected samples. Since the category and
cultivation site were two most important factors influencing the AAs profile, stratified
sampling was conducted using combinatorial groups of AIV category and cultivation sites.
The models were tested on the remaining 30% of the dataset or 163 samples. The result is
shown in Figure I'V-8. The method of NB, with an overall accuracy of 83%, was used as
a benchmark of model efficiency considering its “naive” assumption of the conditional

independence among all amino acids, which was clearly untrue (see correlation plot of the
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R script documents via the link provided in section 2.7). Other ML methods achieved
improved accuracy up to ca. 95% accuracy. LDA has very quick and simple algorithm, and
achieved 93% accuracy. Since LDA assumes equal variance-covariance matrix (VCM)
among all four categories and computes the pooled VCM, it does not require a large dataset
input to be mathematically feasible. In fact, LDA models trained upon as little as 10% of
the original dataset still rendered reasonable prediction result. Such assumption, however,
was inaccurate in this work and limited its accuracy. Compared with LDA, QDA computes
the VCM separately for each category, more truly reflecting the feature characteristics of
each category, and rendered improved accuracy than LDA. Compared with these two
discriminant analysis methods which focused on separation of the group means, SVM
focuses on boundary optimization and adds more flexibility to nonlinear features. RF with
its classification tree-ensembled technique provided quick training and avoided overfitting.
EN is a balance between ridge and lasso regression (the alpha parameter set to 0.5 in this
work) and provides intuitive model interpretation, though it appeared to be the slowest to
train in this work. SVM, RN and EN as well as QDA provided rather similar prediction
accuracy, close to 96%.

While the four categories of AIVs were successfully classified using ML methods,
prediction on levels of species or even cultivars within each category was not readily
achieved. The diverse cultivation environment posed significant influence on AA profile,
and such large noise made it difficult to find specific pattern unique to each species and/or

cultivar given the limited sample size on such classification levels.
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Figure I'V-8. Prediction of African indigenous vegetables (AIVs) classification based on
free amino acids (AAs) profile using machine learning (ML) techniques. The AIVs include
four categories, i.e., Ethiopian mustards, African nightshades, amaranths and spider plants.
The ML methods include linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA), elastic net-regularized regression (EN), random forest (RF), support
vector machine (SVM) and naive Bayes (NB), as well as a simple ensembled method
counting the most voted category of all prior models. Models are trained and tested using
70/30 split using category-site stratified sampling. (A), confusion matrix. (B), the
prediction metrics, with precision, recall and F1 values for prediction of each category,
with the model’s overall accuracy shown in bold followed by 95% confidence interval.
Both (A) and (B) apply the same abscissa. Note that the precision in the context of machine
learning is different from the one in the context of LC-MS method validation. (C),
prediction heatmap showing sample-wise results of each model compared with the actual
category.
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4 Conclusion

The HILIC UHPLC-MS/MS method developed and validated in this work allowed
for confident analysis of underivatized AAs. Superior to literature of similar work, this
method featured improved sensitivity, robust linear range and higher throughput, as well
as a simpler and cleaner experimental set up. As two most critical aspects of method
development, the removal of mineral buffer from the mobile phase was key for sensitivity
boost without compromising the chromatographic performance. Secondly, addition of
hydrochloric acid to the sample preparation solvent was of vital importance to maintain
calibration linearity of the basic AAs. Using the developed methods, the free AAs in a total
of 544 differently sourced AIVs were successfully determined. The four categories of AIVs
including African nightshades, amaranth, spider plant and Ethiopian mustard were
predicted based on the free AA profile using various ML methods with satisfactory
accuracy. In addition, an R Shiny based online interactive ML platform was established,
allowing for ML models train-test simulation, and rapid prediction of unknown AIV
samples using the analyzed free AAs profile.

The future work involves analysis of more metabolites beyond the analyzed 21 AAs
in the AIVs to provide more statistical power for classification prediction. Additional ML
methods such as K-nearest neighbors and neural network, etc., will be applied for
performance comparison. A more sophisticated ensemble method needs to be developed
to take full advantage of the different strengths of varied ML models for prediction
accuracy improvement. ML model interpretation as an emerging technique will be applied
to render model readability and transparency [49]. Besides, based on the high content of

free AAs in AlVs, it is of keen interest to further analyze the total protein content and
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quality to shed light on the nutrition value. An online platform will be established for
automatic computation of complete protein formula based on AIVs and other common

foodstuff.
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CHAPTER V. OTHER LEAFY MICRONUTRIENTS

1 Introduction

This chapter is devoted to the quantitative determination of vitamin-A precursor [3-
carotene, as well as other nutrients including vitamin E in the leafy aerial parts of African
nightshades. In addition, determination of total polyphenol (TPP) content using Folin-
Ciocalteu’s assay and antioxidant activity using ABTS radical was also performed. The
TPP reflects the total polyphenol level using gallic acid equivalent, and may be viewed as
supplementary analysis of prior quantification of individual polyphenol compounds
discussed in CHAPTER III. In addition, TPP level also reflects the content of other
reducing compounds, such as ascorbic acid, etc. The total antioxidant assay also reflects

the content of polyphenols, ascorbic acid as well as other reducing compounds.

2 Materials and Methods

2.1 Chemical reagents

Standards (3-carotene and vitamin E (a-tocopherol), Folin Ciocalteu’s phenol reagent,
6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox) and 2,2’-azino-bis (3-
ethylbenzothiazoline-6-sulphonic acid (ABTS) from Sigma-Aldrich (St. Louis, MO, USA).
Gallic acid was purchased from Acros Organics (Belgium, WI, USA) and acetone from
BDH Chemicals (Radnor, PA, USA). Methanol, ethyl acetate, zerz-butyl methyl ether were

purchased from Fisher Scientific (Fair Lawn, NJ, USA).

2.2 Equipment
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Waters 2695 HPLC (Milford, MA, USA) was used for P-carotene and vitamin E
measurement, which was equipped with a quaternary pump and a diode array detector. The
separation was achieved by YMC-C30 carotenoid C30 column, 5 gm, 250 x 4.6 mm (YMC
Co., Ltd). The software was Millennium 4.00. Bio-Tek Synergy HT Multi-Mode
Microplate reader (Winooski, VT, USA) was used for spectrophotometric measurement

for total polyphenol assay and antioxidant assay. The software used was Bio-Tek KC4

Version 3 4.

2.3 . Sample preparation

The plant materials were from the same batch as in CHAPTER II. The plant identity
is also presented in Table V-1. For the analysis of B-carotene and vitamin E, about 500 mg
sample was weighted accurately and extracted by 5 mL acetone in a two dram vial, fully
vortexed and sonicated for 30 s. The extract was then centrifuged at 3000 rpm for 5 min
with the supernatant decanted to an 8 dram amber vial. The sample was subsequently
extracted in like manner by another 5 mL acetone and 2 mL fert-butyl methyl ether,
respectively, with the supernatants combined in the 8 dram vial. The supernatant was then
rotovapped to yield the dry extract. The dried residue was then reconstituted into 2 mL 1:1
ethyl acetate: methanol, followed by centrifugation at 3000 rpm for 10 min, and the
supernatant was ready for HPLC analysis. The extract for each entry was prepared in
triplicate.

For TPP assay and antioxidant assay, around 200 mg of the sample was accurately
weighed and extracted with 25 mL 70 % methanol with 0.1 % formic acid. Each extract

was fully vortexed, sonicated in a water bath for 5 min, and then let stand still overnight
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under room temperature [1-3]. The extract was centrifuged at 3000 rpm/min for 10 min.
For TPP assay, the supernatant was directly ready for analysis. For antioxidant activity
assessment, the supernatant was diluted twice by 70 % methanol with 0.1 % formic acid

before the assay.

2.4 p-carotene and vitamin E analysis

The [-carotene and vitamin E content was analyzed using Waters HPLC. Mobile
phase A was micron-filtered 98:2 methanol:1 M ammonium acetate, and mobile phase B
was HPLC grade ethyl acetate, and both were manually degassed by sonication under
vacuum. The gradient started from 0% to 35 % B in O to 8 min, 35% to 40 % in 8 to 28
min, 40% to 50 % in 28 to 32 min, and 50 % to 60 % in 32 to 36 min and held until 40 min.
The injection volume was 10 pl. UV chromatograms for B-carotene and vitamin E were
generated at their maximum peak absorption wavelength of 452 nm and 295 nm,
respectively, and both compounds were identified in comparison with their retention time
and UV-Vis spectrum of the authenticated standards. For the calibration curve, around 20
mg vitamin E and 10 mg P-carotene standards were accurately weighed and dissolved in
25 mL ethyl acetate as stock solutions, respectively [4]. The stock solutions were then
diluted by ethyl acetate into series to generate work solutions of ~4 to ~150 ug/mL for both
compounds. The (-carotene and vitamin E content in samples was reported as pug/g dry

mass (DW).

2.5 . Total polyphenol (TPP)
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The method of TPP assay was based on that proposed by Singleton [5] and Kao et al.
[6]with modification. First, 50 mL Folin Ciocalteu’s reagent was diluted by distilled water
to 500 mL, then 900 pL Folin reagent was mixed with 80 yL sample extract followed by
the addition of 400 uL saturated sodium carbonate solution. The reaction system was fully
vortexed and let stand still for 1 h. Then 200 xL supernatant was transferred to a 96 multiple
well and subject to absorption measurement under 765 nm. As to the calibration curve,
20.0 mg gallic acid was dissolved in 5 mL 70 % methanol as the stock solution, and diluted
to a series of work solutions with concentrations ranging from 15.6 yg/mL to 250 ug/mL.
200 uL 70 % methanol was used as negative control. The assay for each calibrator and
sample was triplicated. Total polyphenol content in samples was expressed as the amount

of gallic acid equivalent (GAE) /g DW.

2.6 Antioxidant activity

The antioxidant activity assay was based on the method proposed by Re et al. [7] and
Nagulsamy [8] with modification. First, 31.7 mg ABTS and 8.6 mg potassium persulfate
were dissolved in 10 mL water and let stand still in darkness under room temperature for
12~16 h to form stable radical, and diluted to an absorption of ~1.3 at 734 nm. Next, 200
ul ABTS was mixed with 20 ul sample extract and let stand still for 15 min under room
temperature, and the absorption was measured at 734 nm. For the calibration curve, 12.5
mg standard Trolox was dissolved in 5 mL pure ethanol as the stock solution, and diluted
to series of work solutions with concentrations ranging from 19.5 pg/mL to 195.3 ug/mL.
The assay for each calibrator and sample was conducted in triplicate. Antioxidant activity

was expressed as the amount of Trolox equivalent (TE) /g DW.
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2.7 Statistics

Data were represented in the form of mean + the standard deviation (STD) of three
replicates of each sample. Data was analyzed using student’s 7-test and one-way analysis
of variance (ANOVA) followed by Tukey’s Honest Significant Difference (HSD) test (p <
0.05). The relationship between TPP content and antioxidant activity was evaluated by
Pearson's correlation. All statistics was performed using SAS University Edition (SAS

Institute Inc., Cary, NC, USA).

3 Resutls and Discussion

3.1 p-carotene and vitamin E analysis

[-Carotene and vitamin E in nightshade extracts were identified and quantified against
standards using UV detection at 454 nm and 295 nm, respectively. Representative
chromatograms are shown in Figure V-1. Quantification results were summarized in Table
V-1. 3-Carotene in all four species was higher than the average level of a wide scope of
household fresh vegetables reported by USDA National Nutrient Database (Figure V-2).
A total of 10 entries were identified to be “a source” of vitamin A based on retinol
equivalent (RE) according to standards published by Codex Alimentarius [9, 10]. The
averaged [-carotene content across the five accessions of S. nigrum was 81.1 + 40.7 pg/g
DW. Except for S. nigrum PI 306400, all the other accessions contained higher level of [3-
carotene than that reported 4.66 + 0.02 mg/100g DW or 46.6 + 0.2 ug/g DW in a nutritive
study of S. nigrum L. var. virginicum of Nigeria [11]. Up to 141.7 £ 11.7 pg/g DW, S.
nigrum P1 312110 possessed the highest content in all accessions of S. nigrum and the other

three species. In S. scabrum, SS 49 was found to contain the most abundant source of f3-
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carotene with up to 96.0 = 2.8 ug/g DW. The mean level in all eight accessions of S.
scabrum was 794 + 15.2 pg/g DW, nearly twice the level reported by Mibei at el. at 46 +
2.5 pg/g DW [12]. The B-carotene level in the single accession of S. americanum was 95.8
+ 3.8 ug/g DW, less than a fifth of the reported 52.1 + 3.6 mg/100g DW in the literature
[13]. In contrast, the 3-carotene level of S. villosum was found to be high at 138.1 + 4.0
pg/g DW and this is the report of B-carotene from this species.

Vitamin E content in all four species, except in a few entries, was among the top 25 %
when compared with the USDA National Nutrient Database (Figure V-2). In the five
accessions of S. nigrum, vitamin E content reached 150.3 £ 59.9 ug/g DW on average. The
accession S. nigrum PI 312110 was found not only to be high in [3-carotene, but also the
richest source of vitamin E among all accessions of the four studied species at 229.7 + 19.9
pug/g DW. In the eight entries of S. scabrum, the average level was 126.2 + 44.3 ug/g DW,
with BG 16 having the highest concentration of vitamin. The content in the one accession
of S. americanum was 1455 £ 5.2 ug/g, and in the single accession of S. villosum was

1143 £50 pg/g.
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Figure V-1. UV/vis chromatogram of a-tocopherol at 295 nm and [3-carotene at 454 nm
from S. nigrum USDA Grif 14198.



103

Table V-1. Identification and nutrients content in 15 accessions of edible nightshades

(Solanum spp.).
s Vitamin E [-carotene ABTS TPP
Sample Code 7 S : S D
ampie -0 onree onree (ng/g DW) (ug/g DW)  (TE mg/g DW) (GAE mg/g DW)
Simlaw Seeds
Snl - 1069 +2.0%f 784 +4.5°4  16.80 +0.642 8.54 +0.33ef
(Kenya)

Sn2 USDA PI 306400 92.0 +2.6¢ 28.1+1.1f 15.49 +0.69" 7.25+0.36"

Sn3 USDA PI 312110 229.7+199* 1417 +11.7* 23.45+0.68% 11.92 +0.49%®
Sn4 USDA PI 381289 1259+ 7.6%  70.6+25%  18.34+0.77¢ 9.58 +0.334
Sns USDA PI 381290 197.1+179® 867 +8.9< 2393 +1.12® 13.07 +0.422
Ss1 AVRDC SS 52 1149 £ 8.6% 874 +3.7%  21.36+0.50% 10.8 £ 0.35%
Ss2 AVRDC Ex Hai 90.4 +3.7¢ 648 +0.34  17.92+045¢ 7.98 +0.26k
Ss3 AVRDC SS 49; Olevolosi  141.3 +1.9% 96.0 +2.8 2246+1.11% 1221 +0.53*
Ss4 AVRDC SS04.2 64.1+2.8 652+20¢ 18.11 +0.62¢ 9.39 +0.284
Ss5 AVRDC BG 16; Nduruma 192.5+285® 97.5+13.0 25.00<0.70 12.47 +0.422
Ss6 AVRDC BG-29 102.1+11.7¢%  551+7.3¢ 19.14 + 0.33¢ 9.13 +0.24%
Ss7 USDA Grif 14198 121.1 +8.6% 877 +4.7  21.26+0.59 10.98 + 0.40%
Ss8 USDA PI 643126 1834 +30.1 872 +14.0¢ 16.22+0.33¢ 7.75 £0.52¢k
Sal USDA PI 268152 145.5 +5.2% 958 +3.8° 24.81 +0.09* 1244 + 043
Swvl USDA Grif 16939 1143 +£50%  ]38.1 +4.06  20.99 +0.99¢¢ 10.26 + 0.40%

The results were reported as mean + standard deviation (n = 3). *h, values with same
superscript letters in the same column are not significantly different (ANOVA with Tukey's
HSD test, p <0.05). *. S.n: Solanum nigrum; S.s: S. scabrum;, S .a: S. americanum; S.v: S.
villosum. ND, not detected. *, Seeds from USDA were maintained by Plant Genetic
Resources Conservation Unit, Griffin, GA. Seeds from AVRDC were maintained by the
regional center of east and southern Africa, Arusha, Tanzania. The plant samples studied
in this chapter was from the same batch as in CHAPTER II. Italicized values of $-carotene
contents were identified to be “a source” of vitamin A based on retinol equivalent (RE),
assuming 90 % moisture content in fresh vegetables [9, 10].
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Figure V-2. Content of beta-carotene and vitamin E in the edible nightshade species
compared with those in the diverse vegetables species reported in USDA website
(https://fdc.nal.usda.gov/). Concentration was expressed in natural logarithm due to the
large dynamic range of production of B-carotene and vitamin E. 90 % moisture content was
assumed in calculation of B-carotene and vitamin E in fresh edible nightshades.

Data Source: USDA National Nutrient Database for Standard Reference 28 Software
v.3.7.1 2017-03-29

Nutrients: Vitamin E (alpha-tocopherol) (mg); Carotene, beta (1 g)
Food Groups: Vegetables and Vegetable Products

Food Subset: All Foods. with “raw” items manually selected by the author for data
comparability.
Ordered by: Food Name

Measured by:100 g
Report Run at: 06-12-2017T17:53

3.2 Total polyphenol content and antioxidant activity
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The TPP level and antioxidant activity values were summarized in Table V-1. The
TPP level in the five accessions of S. nigrum averaged 10.07 = 2.40 mg GAE/g DW, and
in the eight accessions of S. scabrum was 10.09 + 1.80 mg GAE/g DW. Solanum scabrum
PI 643126 and Grif 14198 was reported in another study to contain free phenolic acids at
alevel of 12.83 + 041 mg GAE/g DW and 15.65 +£1.08 mg GAE/g DW, respectively,
which was correspondingly 65% and 42.5% higher than the TPP level found in this study
[14].

Antioxidant activity in the five accessions of S. nigrum was averaged to be 19.6 £3.9
mg TE/g DW, and in the eight accessions of S. scabrum at 20.2 + 2.8 mg TE/g DW. In
comparison, Jimenez-Aguilar using AAPH radical reported the antioxidant activity of S.
scabrum PI 643126 and Grif 14198 to be 34.5 + 1.95 umol TE/g FW and 36.17+ 1.47 umol
TE/g FW,respectively, or 50.15 +2.83 mg/g DW and 51.35 +2.09 mg/g DW in accordance
[14]. Among samples in this study, there was a close correlation between TPP content and
antioxidant capability with R?>=0.95 (n=15), suggesting that either the TPP content or

ABTS antioxidant activity may be used for quality control purpose.
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CHAPTER VI. BERRY PHYTOCHEMICAL

IDENTIFICATION

1 Introduction

While the leaves of African nightshades are popularly consumed as green vegetables,
the blueberry-like berries despite their prolific production, however, are generally
discarded without consumption possibly due to perception of toxicity [1]. Unrecognition
of berries in this area is in contrast to some cultural practices in Europe where berries are
considered edible, consumed either raw or processed as food ingredients [2]. Such
discrepancy may result from variation of berries in toxicity and nutrition level due to
genetic variance or environmental difference, or simply a misconception of berry edibility,
and has not been brought under thorough investigation. This remains a concerning issue as
on one hand, the true consumption safety of berries remains unexamined and unaware
consumption of toxic berries could cause long-term or even acute health hazard, while on
the other hand berries with their large production in sub-Saharan Africa remain an
underutilized agricultural resource and, if indeed edible, an untapped new food supply.

Evaluation of berry toxicity and nutrition potential requires knowledge of the relevant
phytochemical compositions, and such information so far remains incomplete.
Identification of the phytochemicals has nowadays been greatly advanced by application
of liquid chromatography hyphenated with mass spectrometry (LC-MS). Particularly, the
enriched information acquired from mass spectra with known scaffold-fragmentation

pattern allows for structural elucidation of compounds even novel ones in a plant extract
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complex prior to the tedious labor of isolation and purification of each individual
compound [3].

The aim of this study was to comprehensively identify the phytochemicals of S.
scabrum berries using different techniques of LC/UV-vis/MS complemented with acid-
assisted hydrolysis. This work would lay the foundation for quantitative comparison of
berry phytochemical profile and re-evaluation of toxicity and nutrition. It would also
facilitate exploration of new food supply, reduce malnutrition and create value addition for

producers in sub-Saharan Africa.

2 Materials and Methods

2.1 Chemical reagents

Authentic reference standards neochlorogenic acid, chlorogenic acid, quercetin and
dioscin were purchased from Sigma-Aldrich (St. Louis, MO), isorhamnetin from Carl Roth
(Karlsruhe, Germany), solasodine from MP Biomedicals (Santa Ana, CA), solamargine
from MedChem Express (Monmouth Junction, NJ), diosgenin, delphinidin chloride,
petunidin chloride and malvidin chloride from ChromaDex, Inc. (Irvine, CA), and
tigogenin from ALB Technology Limited (Mongkok Kowloon, Hong Kong, China).
Methanol, concentrated hydrochloric acid, trifluoroacetic acid, and HPLC grade water and
acetonitrile modified with 0.1 % formic acid were purchased from Fisher Scientific (Fair

Lawn, NJ).

2.2 Plant Materials
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Seeds of eight entries of S. scabrum from World Vegetable Center (WorldVeg), U.S.
Department of Agriculture (USDA, US Germplasm Repository System, Tifton, Georgia)
and commercial sources were collected (Table S1), and were sown and germinated in 2016
at the New Jersey Agricultural Experiment Station (NJAES) Research Greenhouse of
Rutgers University. After four-weeks, the seedlings were then transplanted to NJAES
Horticultural Research Farm #3. Berries of different maturity were manually collected in
September 2016, identified as immature, green in both skin and flesh with firm texture;
half-mature, with purple skin and light-green flesh; and mature, deep purple throughout the
entire berry, soft and juicy. The final field harvest of berries occurred after a frost in early

November 2016.

2.3 Instrumentation and equipment.

An Agilent 1100 series LC/MSD instrument (Agilent Technologies, Waldbronn,
Germany) was used for the phytochemical characterization. The HPLC was composed of
independent modules including an auto-degasser, quaternary pump, thermostatted column
compartment and a diode-array detector (DAD). Column Polaris 180A Amide-C18, 250 x
4.6 mm, 3 ym (Santa Clara, CA) was used for phytochemical profiling by method (a) and
(b), and column Phenomenex Luna C18 (2), 150 x 4.60, Sum (Torrance, CA) was used for
analysis of aglycones freed from corresponding glycosides after acid hydrolysis by method
(c). The HPLC-MS interface was electrospray ionization source (ESI) and the MS had an
ion trap analyzer. The software was Agilent ChemStation A.08.03, LC/MSD Trap Control

5.1, and DataAnalysis 2.2
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2.4 Sample preparation.

The harvested berries were dehydrated in an air-circulated 40 °C oven to visual
dryness and crispiness and then ground using a shearing-action mill with 2 mm mesh filter
screen on the out-flow. Samples were stored in dual-layer re-sealable bags in a cool place
out of direct light. For phytochemical profiling by HPLC-MS method (a) (section 2.5) and
method (b) (section 2.6), ~ 200 mg samples were extracted by 25 mL 70 % methanol
acidified with 0.1 % formic acid, vortexed and then sonicated for 20 min. Next, the extract
was allowed to stand at room temperature overnight. The extract was then centrifuged at
12,000 rpm/min for 10 min, and the supernatant was separated for analysis. For aglycone
identification by HPLC-MS method (c) (section 2.7), ~200 mg sample was hydrolyzed by
25 mL anhydrous 0.5 mol-L-' HC] methanol and incubated under 70 °C for 90 min. The
hydrolysate was then cooled down to room temperature, centrifuged and the supernatant

was separated for analysis.

2.5 Identification of polyphenols, alkaloids and saponins by method (a).

The HPLC mobile phase consisted of water with 0.1 % formic acid (A) and
acetonitrile with 0.1 % formic acid (B). The flow rate was 1 mL-min’!. The gradient was
10 to 15 % B from O to 5 min; 15 to 30 % B from 5 to 35 min; 30 to 50 % B from 35 to 55
min; and 50 to 60 % B from 55 to 60 min. The column was equilibrated with 10 % B for
10 min between injections and thermostatted under 25 °C. The injection volume was 10 pl.
The DAD was set at 210 nm, 254 nm, and 370 nm, with 400 nm as reference and band
width of 10 nm. The scanning range was from 200 to 550 nm with 2.0 nm scanning step.

A third of HPLC eluent after column was split into MS. With respect to ESI, the nebulizer



111

needle voltage was positive 3500 V. High purity nitrogen was used as nebulizing gas at 40
psi and drying gas at 350 °C with a flow rate of 10 L-min-'. High purity helium was used
as the collision gas. The collision energy was set at low level of 80 % (MS-CID 80%, CID
for collision induced dissociation) to characterize the sequence of glycosylation and
acylation and identification of aglycone, and at moderately high level of 150 % (MS-CID
150 %) to generate additional aglycone fragments for structural elucidation in separate runs.
The scanning mode was set at positive polarity with scanning range from 100-1500 m/z.
Ion counts control (ICC) was set at targeted 40,000 with maximum accumulation time of

300 ms.

2.6 Identification of anthocyanins by method (b)

The experimental conditions remained the same as method (a) except for the
following specification. The mobile phase A was water with 0.4 % trifluoroacetic acid
(TFA), and mobile phase B was acetonitrile with 0.4 % TFA. The gradient was 13 to 17 %
from O to 2 min; 17 to 20 % from 2 to 13 min; 20 to 30 % from 13 to 25 min; and 30 to
50 % from 25 to 45 min. The column thermostat was set at 30 °C. The DAD was set at 520
nm with scanning range from 200 to 600 nm. Only MS-CID 80% was used for compound

fragmentation.

2.7 Identification of aglycones by method (c)

In order to facilitate aglycone identification by comparison with authentic standards
and structural elucidation, and given the limited sensitivity and scanning speed of MS"

(n>3), plant samples were hydrolyzed to break down glycosidic bonds and aglycones thus
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freed were chromatographed by HPLC-MS and MS/MS. The parameters remained the
same as method (a) except the following specification. The gradient was 10 to 24 % B from
0 to 15 min, held isocratically with 24 % B from 15 to 22 min, then 24 to 30 % from 22 to
35 min, 30 to 40 % from 35 to 45 min, followed by rapid increase to 80 % at 50 min, then
80 to 90 % from 50 to 60 min, and isocratically held at 90 % until 70 min.

For aglycones whose structure remained ambiguous by HPLC-MS experiments, the
structure was further analyzed by MS/MS (product ion scan) in time-sectioned manner or
in separate runs. Protonated aglycones were selected as the precursor ion and fragments
were scanned from 100 to 500 m/z. The collision energy was pre-optimized by syringe
infusion method using representative aglycone standards for corresponding categories, i.e.,
fragmentation amplitude of 2.5 was selected for aglycones of flavonols by using quercetin
standard, and amplitude of 7.0 for aglycones of glycoalkaloids by using solasodine

standard.

2.8 Nomenclature.

The nomenclature of fragmentation pathway of flavonoids described in prior research
[4] was used in this study. The labels ¥ A* and ¥ B* correspond to the fragmental ions
containing A and B ring, respectively, formed by cleavage of the 1 and j bonds of C ring.
Fragmentation pathway of alkaloids was named in similar manner, with broken bonds
specified by hyphen-connected carbon numbers or heteroatom-symbols they connect. For
instance, the label 72220 ABCD* indicated fragmental ions containing the A-B-C-D rings,

formed by the cleavage of bond between C17 and C20 (noted as “17-22”), and a second
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bond between C22 and the adjacent oxygen atom in ring E (noted as “22-O0”, “O” for

oxygen atom).
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Figure VI-1. Solanum scabrum and S. nigrum berries glycoalkaloids and other major
phytochemicals identified. The abbreviation of the glycosidic oligosaccharide chain is
noted as OSC, that of the aglycone is noted in the parenthesis following the full spelled
name. For glycoalkaloids, the hydroxymethylated derivatives of solasodine, including
HMS and DHMS, may include corresponding methoxylated counterparts or other likely

isomers including stereoisomers.

3 Results and Discussion

A total of 54 phytochemicals in mature berries from eight different genetic sources as

well as in berries at different maturation stages were identified including phenolic acids,

flavonols, anthocyanins, glycoalkaloids and saponins by analyzing their UV-Vis and MS

data, and part of them were further confirmed by comparison with the corresponding
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standards. An overview of representative molecular structures is shown in Figure VI-1
(prior page). All compound identities with retention time, UV-vis spectrum, major
fragmental ions using methods (a) and (b) are summarized in Table VI-1. Representative
chromatograms and mass spectra acquired by method (a) are shown in Figure VI-2 and
Figure A-12, respectively, and those generated by method (b) are shown in Figure VI-3
and Figure A-13, accordingly.. Chromatographed aglycones freed after acid assisted

hydrolysis by method (c) was shown in Figure VI-4.
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Figure VI-2. Representative chromatograms of alkaloids, flavonoids and saponins in
Solanum scabrum SS 04.2. (A) total ion chromatogram (TIC) and (B) UV-vis
chromatogram at 370 nm acquired by method (a). The identities, retention time and MS of
each peak are listed in Table VI-1. Prefix “a-” in compound codes were not written for
clarity.
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Table VI-1. Identification of major compounds in berries of eight Solanum scabrum

Compound ID

Parent & fragmental
ions (m/z) (CID-80 %)

Other major fragments
(m/z) (CID-150 %)

accessions

Code (min)
a-l 8.1

a2 83

a3 88

a-4 9.1

a-5 93

a6 100
a7 104
a8 128
a9 133
a-10 135
all 142
al2 144
al3 144
a-ld 146
als 156
a-l6 157
a-17 158
a-18 161
a-19 171
a20 177
a2l 189
a22 190
a23 196
a24 202
a25 203
a26 204
a27 211
a28 213
a29 215
a30 223
a3l 229
a-32 232
a33 233
a34 240
a35 255
a36 269
a37 270
a38 279

a-39

DHS-hex-rha-hex
DHS-hex-rha-rha
DHS-hex-hex-rha
DHS-hex-rha-rha
DHMS-hex-rha-hex
N ¢
DHMS-hex-rha-rha
HS-hex-hex-rha
Cco
DHS-hex-rha-mal-rha
DHS-hex-rha-mal-rha
Q-hex-hex-rha
HS-hex-rha-rha
HS-hex-rha-hex
DHMS-hex-rha-mal-rha
HS-hex-rha-rha
HS-hex-rha-hex
DHMS-hex-rha-mal-rha
HS-hex-rha-rha
HS-hex-rha-rha
Q-hex-rha-rha
HMS-hex-hex-rha
Q-hex-hex
HS-hex-rha-mal-rha
HMS-hex-rha-rha
HS-hex-rha-mal-rha
HS-hex-rha-mal-rha
S-hex-rha-hex
HS-hex-rha-rha
I-hex-hex
S-hex-rha-rha
(solamargine) ¢
I-hex-hex
HS-hex-rha-rha-mal
Q-hex-rha
S-hex-rha
I-hex-rha
HMS-hex-rha-mal-rha
I-hex-rha

S-hex-rha-mal-hex

916,754, 608, 446
900, 754, 608, 446
916, 770; 608; 446
900, 754, 608, 446
930, 768, 622, 460
377*,355
914,768, 622, 460
900, 754,592, 430
377*,355
986, 840,754, 608, 446
986, 840, 754, 608, 446
794%*,773, 627, 465, 303
884,738,592,430
900, 738,592, 430
1000, 854,768, 622, 460
884,738,592,430
900, 738,592, 430
1000, 854,768, 622, 460
884,738,592,430
884,738,592,430
779%,757, 611, 465, 303
914,768, 606, 444
649* 465, 303
970, 824,738,592, 430
898.,752,606,444
970, 824,738,592, 430
970, 824,738,592, 430
884,722,576.414
884,738,592,430
663*, 641,479, 317

868, 722,576,414

663*, 641,479, 317
970, 884,738,592, 430
633*, 611,465, 303
722,576,414
647%,478, 317
984,838,752, 606, 444
647%,478, 317
970.808,722,576.414

428,410,287, 269, 251
428,410,287, 269,251
428,410, 287,269, 251
428,410, 287,269, 251
442,424,287,269, 251
181,163
442, 424,287,269, 251
412.8.271.5,253.5
181,163
428,410, 287,269, 251
428,410, 287,269, 251
285,257,153,137
412,394,271,253
412,394,271,253
442,424,287,269, 251
412,394,271,253
412,394,271,253
442,424,287, 269,251
412,394,271,253
412,394,271,253
285,257,153,137
426,271,253
285,257,153,137
412,394,271,253
426,271,253
412,394,271,253
412,394,271,253
396,271,253
412,394,271,253
163, 153

396,271, 253

163,153
412,394,271,253
285,257,153,137

396,271,253
163,153
426,271,253
163,153
396,271,253

328,260 (sh)

328,260 (sh)

355,268

355,268

355,268

355,268

355,268

355,268

355,268

355,268
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1355, 1209, 1063, 901, 739, 577,

a-40 29.1 D-hex-hex-hex-hex-rha-rha 415 397,271,253 -

a-41 298 S-hex-rha-mal-rha 954,808, 722,576,414 396,271,253 -

a-42 327 D-hex-hex-hex-rha-rha 1193, 1047,901, 739,577, 415 397,271,253 -

a-43 332 D-hex-hex-hex-rha-rha 1193, 1047,901, 739,577, 415 397,271,253 -
1249%, 1227, 1087*, 1065, 903,

a-44 347 T-hex-hex-hex-hex-hex 741.579. 417 399,273,255 -
1249%, 1227, 1087*, 1065, 903,

a-45 351 T-hex-hex-hex-hex-hex 741,579,417 399,273,255 -

a-46 369 D-hex-hex-rha-rha 1031, 885,739, 577,415 397,271,253 -

b-1 5.7 P-hex-rha-hex 787, 625,479,317 - 529,280

b-2 6.4 M-hex-rha-hex 801,639,493, 331 - 530

b-3 120 P-(hex)-hex-hex-cou 949,787,479, 317 - 535,310,280

b-4 13.1 Dp-(hex)-rha-hex-cou 919,757,465, 303 - 535,310,280

b-5 13.6 P-(hex)-hex-rha-cou 933,771,479, 317 - 535,310,280

b-6 14.9 P-(hex)-hex-rha-cou 933,771,479, 317 - 535,310,280

b-7 17.0 M-(hex)-hex-rha-cou 947,785,493, 331 - 534, 310,280

b-8 222 P-(hex)-rha-cou 771,479,317 - 544,320

RT, retention time. For compound codes, “a-”, compounds identified by method (a), and
“b-" by method (b). For compound ID: N, neochlorogenic acid; C, chlorogenic acid; Q,
quercetin; I, isorhamnetin; S, solasodine; HS, hydroxysolasodine or isomer; HMS,
hydroxymethylsolasodine or isomer; DHS, dihydroxysolasodine or isomer; DHMS,
dihydroxymethylsolasodine or isomer; D, diosgenin; T, tigogenin; P, petunidin; Dp,
delphinidin; M, malvidin; hex, hexosyl; rha, rhamnosyl; xyl, xylosyl; mal, malonoyl, cou,
coumaroyl. Side chain moieties conjugated on different aglycone locants were in
parenthesis. ®, confirmed by comparison with authentic standard. With respect to m/z and
UV values: bold, protonated parent ions; bold with *, sodium adducted parent ions; *,
sodium adducted fragmental ions; bold italicized, protonated aglycone ions; (sh), UV
shoulder; “-”, undetermined for CID-150 % fragments and lack of significant UV-vis
absorption for A .

3.1 Identification of phenolic acids.

Two major phenolic acids were detected as chlorogenic acid (9) and its isomer
neochlorogenic acid (6), with the former being the predominant phenolic acid. Both
compounds had UV maxima at 249 nm and 328 nm (Figure A-14A), which agreed with
the literature [5]. With MS-CID 80%, both compounds featured strong sodium adducted
parent ions of 377 m/z ((M+Na]*) and moderate protonated ions of 355 m/z ((M+H]*). With
enhanced CID 150 %, the majority of parent ions were broken down into its components

of quinic acid, which was almost invisible in the mass spectrum, and protonated caffeic
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acid as weak peak at 181 m/z, which continued to lose a water molecule to form the base
peak 163 m/z. The identification was confirmed by comparison with retention time and

mass spectra of authentic standards.

5 10 15 20 25 30

Time (min)

Figure VI-3. Anthocyanins in Solanum scabrum of USDA PI 643126 shown by (A) total
ion chromatogram (TIC) and (B) UV-vis chromatogram at 520 nm as acquired by method
(b). The identities, retention time and MS of each peak are listed in Table VI-1. Prefix “b-"
in compound codes were not written for clarity.

3.2 Identification of flavonols.

Glycosides of two major flavonols of quercetin and isorhamnetin were detected.
Compound 34, for example, featured characteristic absorption peak centered around 355
nm and 268 nm (Figure A-14B), which suggested a flavonol structure [6]. In MS-CID
80 %, it had sodium adducted parent ions of 633 m/z ((M+Na]*) and protonated parent ions

of 611 m/z ((M+H]*), which had a loss of rhamnosyl to produce fragments of 465 m/z
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([M+H-rhamnosyl]*) and then an additional loss of hexosyl to form aglycone ions of 303
m/z. This suggested a quercetin-rhamnosyl-hexoside. Using MS-CID 150%, most parent
ions and glycosylated fragments were shattered into aglycone ions as the base peak. A
small fraction of the aglycone ions was further broken into pieces of 257 m/z ((M+H-H,O-
COJ*) and 229 m/z ((IM+H-H,O-2CO]*) by rupture of B ring and C ring, along with
fragments of 153 m/z (* A*) and 137 m/z (°* B*) through characteristic retro Diels-Alder
(RDA) cleavage of C ring, which agreed well with literature [7]. MS/MS of quercetin freed
by acid hydrolysis revealed more structural evidence including fragment 165 m/z (°* A*).
The identity of the freed aglycone in hydrolyzed extract was further confirmed by
comparison with quercetin standard.

Glycosides with the aglycone ion of 317 m/z, which is 14 m/z higher than protonated
quercetin, was identified as glycosides of methylated quercetin (Figure A-12, a-36). The
methyl substitution location, however, was difficult to identify based on MS with either
CID 80% or 150 % because of suppressed aglycone fragmentation, which possibly was a
result of interference from the methyl group [7]. Instead, MS/MS of the aglycone freed
from the pool of corresponding glycosides after hydrolysis was shown to be more
informative. The occurrence of fragment 165 m/z (°2 A*) suggested an A ring structure like
that of quercetin, and fragment 151 m/z (°* B*), which was 14 m/z higher than °? B* piece
of quercetin, suggested a methyl substitution on the B ring. The aglycone identity was
further confirmed to be isorhamnetin by comparison with standard. It is interesting to
notice that the base peak was an even numbered 302 m/z formed by the loss of methyl
radical. Despite the rarity of formation of radicals in ESI, the formation of radical ions

could be rationalized by the extended conjugation in the molecules, and similar phenomena
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could also be observed in other methylated flavonoids [8]. It is of interest to note that
isomer rhamnetin was found in the leaves of S. scabrum with methyl substitution occurring

on the A ring [9].

3.3 Identification of glycoalkaloids.

3.3.1 Identification of “414-series”

Identification of glycosylation pattern of glycoalkaloids was similar to that of flavonol
glycosides previously discussed. Apart from glycosylation, multiple glycoalkaloids
featured side chains with acylation by malonic acid as suggested by the neutral loss of 86
m/z. These acylated glycoalkaloids were eluted at the end of series of glycosides of the
same aglycone. Conjugation of the malonic acid in the oligosaccharide chain in
glycoalkaloids is rather uncommon, and rarity of report on such acylated compounds may
result from the fact that the study of natural products has traditionally been dominated by
column separation for NP purification, and the heat applied during rotavapping caused the

malonyl piece to be cleaved off, [10] which was also observed in this study.

Regarding aglycone identification, the aglycone ion of 414 m/z could be readily
categorized as a nitrogen-containing alkaloid based on its even number molecular mass [3],
and was further identified as protonated solasodine based on the major fragmental ions '”-
20.220 ABCD* of 271 m/z and 720 150ABCD* of 253 m/z in MS!-CID 150% (Figure A-12,
a-41) and MS/MS experiment (Figure VI-5). These two characteristic fragments were
formed by rupture of E ring of the aglycone via pathway shown in Figure VI-6 [11, 12].

In addition, the fragmental ion of low abundance 157 m/z as the fragment derived from '”
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20,160 ABCD* of 253 m/z was also visible in MS/MS spectrum (pathway not shown) [12].
The identity of the aglycone freed after hydrolysis was further confirmed by comparison
with authentic standard as solasodine, and glycosides of solasodine has been frequently
reported as the major glycoalkaloids in many Solanaceae species including S. scabrum [13,
14]. Compound a-31 was confirmed by comparison with standard to be solamargine, one
of the most common glycoalkaloid in Solanaceae family.

Apart from glycosides of solasodine, series of glycoalkaloids with less common or
potentially novel aglycone structures were also detected, and the structures were putatively
identified by comparing the chromatographic behavior and mass shift pattern with that of

solasodine counterparts as discussed below.

3.3.2 Identification of “430-series”

The aglycone ion of 430 m/z showed increased polarity as suggested by shorter
retention time of corresponding glycosides and post-hydrolysis free aglycones (Figure
VI-4) on reversed phase column, and the mass increment by 16 m/z indicated substitution
of an additional hydroxyl group on solasodine. Compared with solasodine ion in MS-CID
150%, the aglycone ions of 430 m/z showed stronger dehydration products of 412 m/z as a
result of this hydroxyl substitution. Fragmental ions of 394 m/z produced by loss of two
hydroxyl groups were also visible but faint. Fragments 271 m/z and 253 m/z shared by
solasodine suggested a spirostane structure with A-B-C-D ring similar to that of solasodine,
and thus occurrence of the hydroxyl group on the E-F ring (Figure VI-5-B, C and D, and
Figure A-12, a-33). The profiled 430 m/z aglycones freed by acidic hydrolysis, however,

were resolved into three major peaks with similar MS/MS spectra but varied ratio of ion
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abundance (Figure VI-4, and Figure VI-5-B, C and D), manifesting the existence of
multiple isomers. This complexity was also revealed by existence of multiple glycosides
of 430 m/z aglycone with the same oligosaccharide pattern, such as compounds a-13, a-16,
a-19 and a-20. Thus, the aglycone ion 430 m/z was tentatively identified as E-F ring
substituted hydroxysolasodine (HS) including different constitutional isomers as well as

stereoisomers.

3.3.3 Identification of “446-series”

The aglycone ion 446 m/z was 16 m/z higher than HS ion with higher polarity as
suggested by elution order of corresponding glycosides and post-hydrolysis free aglycones
(Figure VI-4). In addition, this aglycone featured two-step dehydration products of 428
m/z and 410 m/z of moderate abundance (Figure A-12, a-1). This aglycone was thus
identified as dihydroxysolasodine (DHS). The fragmental ions 287 m/z and 269 m/z was
16 m/z higher than the corresponding ions of !'7-2- 2-0ABCD* and !'72%- 1-0ABCD*
characteristics of S and HS, respectively, suggesting one hydroxylation on the fused A-B-
C-D ring while the other on the spiro E-F ring. Besides, the occurrence of dehydration
fragments of 251 m/z derived from 269 m/z was additional evidence of hydroxylation on

the A-B-C-D ring (Figure VI-5 and Figure A-12, a-1).
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Figure VI-4. Extracted ion chromatogram (EIC) of aglycones freed by acid-assisted
hydrolysis as acquired by method (c). Inset was a summary of aglycone identification.
Compound abbreviations refer to Table VI-1.
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Figure VI-5. MS/MS spectra of post-hydrolysis free aglycones of glycoalkaloids acquired
by method (c). The aglycones investigated were solasodine (A) (9 in Figure VI-4); isomers
of hydroxysolasodine or HS (B, C and D) (5, 6 and 8 in Figure VI-4); and
dihydroxysolasodine or DHS (E) (4 in Figure VI-4).
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3.3.4 Identification of “444 & 460 series”

The aglycone ion of 444 m/z was 14 m/z higher than HS of 430 m/z with reduced
polarity as suggested by elution sequence of corresponding glycosides, and along with
characteristic 271 m/z and 253 m/z fragmental ions, it was tentatively identified as
hydroxymethylsolasodine (HMS) with substitution of a methyl and a hydroxyl group on
the E-F ring (Figure A-12, a-37). We suggest that it is also possible that the assumed
methyl and hydroxyl group on the E-F ring could instead take a combined form as a
methoxyl group. The aglycone ion of 460 m/z was 14 m/z higher than DHS ion of 446 m/z
with decreased polarity, and featured similar two-step dehydration products and same 72
220ABCD* and 720 10ABCD* fragments as DHS (Figure A-12, a-5). This aglycone was
thus identified as dihydroxymethylsolasodine (DHMS), with one hydroxyl group occurring
on the A-B-C-D ring and the other hydroxyl and one methyl group on the E-F ring. As in
the case of HMS, the assumed hydroxyl and methyl group on the E-F ring could instead
take the combined form as a methoxy group.

Fragmental ions composed of nitrogenous F ring could be readily distinguished by the
even mass number and provide supplemental information as to substitution pattern of the
alkaloid aglycones. Compared with solasodine that had weak fragmental ions of 114 m/z,
DHMS had fragmental ions of 144 m/z (Figure A-12, a-5 and a-41). This 30 m/z increment
suggested additional substitution by hydroxyl and methyl groups (or a single methoxyl) on
the E-F ring of DHMS, agreeing with the inferred structure aforementioned. Nitrogenous
fragments, however, were found to be very weak and scarce in general and only provided

limited information.
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Although solasodine (25R-220NV) has been proposed as the skeletal basis of various
derivatives, it is possible that the stereoisomer tomatidineol (25S-223N), another Solanum
alkaloid, exists as the alternative which was unfortunately not readily distinguishable from

solasodine by mass spectrometry [15].

X=NH, 414 m/z
X=0,415m/z

, 3 " *OABCDEF*
; - 17:20.220 ABCD* N o X =NH, 396 m/z
271 m/z X=0,397 m/z

s 7 17:20,16:0 ABCD*
4 6 253mi

Figure VI-6. Characteristic fragmentation pathway of spirostan-derived alkaloid and
saponin. *, saturation in the double bond position C5-C6, which leads to formation of
fragments correspondingly 2 m/z higher. As to fragment nomenclature, for instance, the
label 720220 ABCD* indicated fragmental ions containing the A-B-C-D rings, formed by
the cleavage of bond between C17 and C20 (noted as “17-22"), and a second bond between
C22 and the adjacent oxygen atom in ring E (noted as “22-O”, “O” for oxygen atom).

3.3.5 Structural novelty

This is the first report that substituted solasodine derivatives are identified in S.
scabrum. Such solasodine-substituted glycosides, which are far less common than the
unmodified solasodine glycosides, have been occasionally reported in several other
Solanum species. Hydroxylation has been the mostly reported substitution. Among E-F
ring mono-hydroxylated solasodine, 23-hydroxysolasodine was first isolated as a bare

aglycone from the roots of S. canense and S. fraxinifolium prepared with acid hydrolysis
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[16] and the glycosylated form was later isolated from S. uporo [17]. Glycosides of 27-
hydroxysolasodine (solaparnaine) were reported in unripe berries of S. asperum [18] and
also found in chilled methanol-preserved two-year-old uncrushed berries of S. nigrum [19],
the latter being a close species of S. scabrum. In addition, N-hydroxysolasodine was
isolated from the roots of Solanum robustum [20]. For dihydroxylated solasodine, 12, 27-
dihydroxysolasodine (C and F ring substitution) was isolated either as a bare aglycone or
glycosides also from the berries of S. nigrum [19, 21]. Considering the rather scattered
distribution of hydroxysolasodines across Solanum species, S. scabrum berries is indeed a
rich source of such compounds; given the great compound diversity identified in this
research as well as their moderate natural content, S. scabrum berries could be a new source
for discovery of novel hydroxysolasodine glycosides.

Though methylated solasodine such as N-methylsolasodine was reported in S. nigrum
[20], methylation-based modification on solasodine was indeed uncommon, and
combination of methylation and hydroxylation (or in other aforementioned isomeric forms)
have rarely, if any, been reported. Such rarity could be due to the low abundance in natural
occurrence as noted in this study. Thus, the HMS and DHMS glycosides identified in this
study could be potentially novel compounds. The uncommon and potentially novel
glycoalkaloids detected in this study will be further subjected to purification and structural

confirmation by nuclear magnetic resonance (NMR) in the future.

3.4 Identification of saponins

A group of glycosides of diosgenin and tigogenin were detected in the berries and

these are almost universal in the Solanum species [1]. With distinctive long side chain,
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tigogenin glycosides contained xylosyl moieties, a saccharide unit lacking in glycosides of
other aglycones found in this study. Aglycone fragmentation pattern under MS-CID 150%
was similar to that of corresponding alkaloids due to analogous structure. Diosgenin ion
had fragmental ions "-20:220ABCD* of 271 m/z and '72°-1©ABCD* of 253 m/z as shared by
solasodine, HS and HMS. Tigogenin ion, saturated counterpart of diosgenin in the bond
between C5-C6 featured fragments that were correspondingly 2 m/z higher, i.e., 273 m/z
and 255 m/z (Figure A-12, a-43, a-45). The identity of aglycones, diosgenin and tigogenin

were further confirmed by comparison with authentic standards after acidic hydrolysis.

3.5 Identification of anthocyanins.

For determination of anthocyanins, 0.4% trifluoroacetic acid (TFA) was used in
replacement of 0.1 % formic acid as the mobile phase modifier to generate more acidic
environment. By converting the pH-dependent structure of anthocyanidins to flavylium
ions which had characteristic maxima absorption around 520 nm, this group of compounds
could be readily identified and differentiated from isobaric flavonols by UV-vis signal [22].
We also found that TFA significantly improved peak shape versus formic acid (Figure
A-15). In this study, a series of anthocyanins derived from aglycones of petunidin,
delphinidin and malvidin were detected, which featured parallel pattern of glycosylation
and acylation with coumaric acid, agreeing with the literatures [2, 23]. The compound b-3,
for example, had an aglycone ion of 317 m/z corresponding to petunidin. The neutral loss
of 162 m/z from 933 to 771 m/z and from 479 to 317 m/z indicated a hexose moiety. The
292 m/z difference between peaks 771 and 479 m/z indicated a simultaneous loss of either

two rhamnosyls or a rhamnosyl and a coumaroyl. In comparison with non-acylated simple
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petunidin anthocyanin b-1 and petunidin standard, UV-vis profile of b-3 showed additional
maxima absorption around 310 nm suggesting acylation by a coumaroyl in the side chain
(Figure A-14-C, D and E). Given that acylation generally occurs on the terminal
saccharide, the first hexose that was cleaved off the parent ion (933 to 771 m/z) might be
from a hydroxyl group (e.g. 5-OH) different from the one (e. g., 3-OH) conjugated with
coumaroyl- rhamnosyl-hexose. Thus, for compound b-3 we tentatively identified as
petunidin-3-(p-coumaroyl-rutinoside)-5-O-glucoside, which has been reported as a major

anthocyanin in the berries of Solanum and related species [23-25].

4 Conclusion

Three different and complementary HPLC-UV/Vis-MS or MS/MS methods were
developed for identification of phytochemicals in S. scabrum berries: method (a)
functioned as the major tool for phytochemical screening and identification, and method
(b) was specifically tailed for analysis of anthocyanins, while method (¢) complemented
with acid-assisted hydrolysis allowed for further confirmation and elucidation of the
aglycones in greater detail. Using all three methods, a total of 54 phytochemicals of
polyphenols, glycoalkaloids and saponins in the berries from different genetic sources and
maturity were identified. Particularly, a wide scope of toxic glycoalkaloids were reported
for the first time, including less common or novel hydroxylated and/or methylated
structures which were elucidated based on known scaffold-fragmentation pathway of MS
data. This work, qualitative in nature, provides the foundation for future work that can
provide quantitative determination of berry phytochemical profile and associated toxicity

as well as nutrition value. In addition, the methods used in this work could apply to
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facilitate quality control and contribute to screening or breeding for alkaloid-deficient
genotypes that could serve as new food supply; or for alkaloid rich genotypes for extraction

and further processing for industrial applications.
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CHAPTER VII. BERRY PHYTOCHEMICAL

QUANTIFICATION

1 Introduction

This study focused on quantitation of nightshades berry phytochemicals identified in
the prior CHAPTER V. The berries investigated in this work included multiple genetic
sources and across different maturation stages cultivated under the same environment.
Based on the achieved data, this study serves to provide guidance for nutritional and safety
evaluation and comprehensive applications of an underutilized agricultural resource to

increase food supply, improve nutrition and enhance income in sub-Saharan Africa.

2 Materials and Methods

2.1 Chemical reagents

Authentic reference standards of neochlorogenic acid, chlorogenic acid, quercetin and
dioscin were purchased from Sigma-Aldrich (St. Louis, MO), isorhamnetin from Carl Roth
(Karlsruhe, Germany), solamargine from MedChem Express (Monmouth Junction, NJ),
delphinidin chloride, petunidin chloride and malvidin chloride from ChromaDex, Inc.
(Irvine, CA). Methanol, trifluoroacetic acid (TFA), HPLC-MS grade formic acid, and

HPLC grade water and acetonitrile were purchased from Fisher Scientific (Fair Lawn, NJ).

2.2 Plant Materials.

Seeds of a total of eight entries of S. scabrum were sourced, with six entries provided

from the World Vegetable Center (WorldVeg), i.e., Ex Hai, BG 29, SS 52, BG 16
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(Nduruma), SS 49 (Olevolosi) and SS 04.2, one entry from the U.S. Department of
Agriculture (USDA) PI 643126, and one commercial entry from Baker Creek Heirloom
Seeds, ‘Garden Huckleberry’, (Lot #333BC, Mansfield, MO).

Seeds were sown in 72-cell trays with growing mix (Fafard Grow Mix 2; Sun Gro
Horticulture, Agawam, MA) and germinated at the New Jersey Agricultural Experiment
Station (NJAES) Research Greenhouse of Rutgers University. After four weeks of growth,
the seedlings were transplanted to raised beds covered with 1.25mm black plastic mulch
with drip irrigation applied as needed in New Jersey Agricultural Experiment Station
(NJAES) Horticultural Research Farm #3, New Brunswick, New Jersey. Berries of three
different maturation stages were manually harvested in mid-September 2016, and
categorized as immature berries, firm with green exterior; half-mature berries, purple
exterior with green interior; and mature berries, soft with dark purple color in both the
exterior and interior. Late harvested berries after occurrence of frost were collected in early
November. The harvested berries were dried in an air-circulated 40 °C oven and ground
using a shearing-action mill with 2 mm mesh filter screen on the out-flow. Ground samples

were stored in dual-layer resealable bags in a cool place out of direct light.

2.3 Instrumentation and equipment.

For the phytochemical determination, the instrument used was Agilent 1100 series
LC/MSD ion trap (Agilent Technologies, Waldbronn, Germany) equipped with a degasser,
quaternary pump, column thermostat and diode array detector (DAD). Compound

separation was achieved using column Polaris 180A Amide-C18, 250 x 4.6 mm, 3 ym
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(Santa Clara, CA). The software was Agilent ChemStation A.08.03 and LC/MSD Trap

Control 5.1.

2.4 Sample preparation.

For phytochemical quantification by LC-MS, ~ 0.2 g samples were extracted by 25
mL 70 % methanol acidified with 0.1 % formic acid, vortexed and then sonicated for 20
min. Next, the extract was allowed to stand at room temperature overnight. The extract was
then centrifuged at 16,000 xg for 10 min, and the supernatant was ready for LC-MS

injection.

2.5 Quantification of phenolic acids, flavonols, glycoalkaloids and saponins.

For determination of phenolic acids, flavonol glycosides, glycoalkaloids and saponins
in S. scabrum berries, the mobile phase was water with 0.1 % formic acid (A) and
acetonitrile with 0.1 % formic acid (B) with a flow rate of 1 mL-min!. The gradient was
10 to 15 % B from O to 5 min, 15 to 30 % B from 5 to 35 min, 30 to 50 % B from 35 to 55
min, and 50 to 60 % B from 55 to 60 min, followed with equilibration using 10% B for 10
min before the next injection. The column thermostat was set at 25 °C. The injection
volume was 10 pL. The diode array detector (DAD) was set at 210 nm, 254 nm and 370
nm, with 400 nm as reference wavelength. Approximately a third of HPLC eluent was
diverted into MS. With respect to electrospray ionization (ESI), the nebulizer needle
voltage was 3500 V. Nitrogen was used as nebulizing gas set at 40 psi and as drying gas at
350 °C with a flow rate of 10 L-min’!. Helium was used as the collision gas. The collision

energy was set at 80 % for generation of the characteristic collection of parent ions,
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glycosylated and/or acylated fragmental ions and the aglycone ions. The scanning mode
was set at positive polarity and the scan range was 100~1500 m/z. Ion counts control (ICC)
was set at targeted 40,000 and the maximum accumulation time was 300 ms.
Quantification of phytochemicals was achieved using representative reference
standards of the corresponding category. For compounds containing characteristic
chromophores, quantification was based by UV/Vis detection. Specifically, chlorogenic
acid and neochlorogenic acid were quantified using the corresponding standards at 254 nm,
and glycosides of quercetin and isorhamnetin were estimated at 370 nm by standards of the
corresponding aglycones, i.e., quercetin and isorhamnetin, respectively, with the quantity
corrected by the molecular weight ratio [1, 2]. For compounds lacking chromophores, i.e.,
the glycoalkaloids and saponins, quantification was based on MS detection using
structurally representative standards of solamargine and dioscin, respectively, and the peak
intensity was calculated as the sum of counts of the characteristic parent ions, glycosylated
and/or acylated fragmental ions and the aglycone ions specified in prior research [3] and
then corrected by the corresponding molecular mass ratio. The content was presented in SI

unit of g-kg! dry weight (DW).

2.6 Quantification of anthocyanins.

For quantification of anthocyanins in S. scabrum berries, the experimental conditions
remained the same as in the described method above except for the following specification.
The modifier used for mobile phase A and B was 0.4 % trifluoroacetic acid (TFA) instead.

The gradient was 13 to 17 % from O to 2 min, 17 to 20 % from 2 to 13 min, 20 to 30 %
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from 13 to 25 min, and 30 to 50 % from 25 to 45 min. The column thermostat was set at
40 °C and the DAD was set at 520 nm.

Quantity estimation of anthocyanins was achieved using reference standards of the
corresponding aglycones based on detection at 520 nm. Specifically, glycosides of
delphinidin, petunidin and malvidin were estimated using external standards of delphinidin
chloride, petunidin chloride and malvidin chloride, respectively, corrected by the

molecular weight ratio [1, 2]. The content was presented in SI unit of g-kg' DW.

2.7 Data Analysis.

Data processing was achieved using Agilent DataAnalysis 2.2. Statistical analysis,
visualization and annotation was achieved using Microsoft Excel 2016 and the R software
suite. Specifically, comparison of the phytochemical profile within mature berries from
eight varied genetic sources was conducted using R ComplexHeatmap and other packages
[4, 5], where color assignment and Euclidean distance-based clustering analysis was
applied upon logarithmically transformed data to accommodate the large variation in
compound production. Comparison of phytochemical profile within berries of different
stages of fruit development from two genetic sources were performed using two-way
analysis of variance (ANOVA), and the correlation was analyzed using simple linear
regression after respective standardization to z-score (difference between observed values
and the mean then divided by standard deviation) for each compound category and each

genetic source to facilitate visualization on the same scale.
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3 Results and Discussion

3.1 Phytochemical profile of mature berries

Polyphenols, saponins and alkaloids in berries from different genetics and over
differing stages of fruit maturation varied significantly in content (Table VII-1 and Table
VII-2). This could be seen in particular in mature berries, where the phytochemical profile
was visualized and compared by heat map with accessions clustered based on profile
similarity (Figure VII-1). There was a significant variation within mature berries in the
accumulation of phenolic acids, 0.91 ~ 7.95 g-kg! dry weight (DW); flavonols 0.76~8.98
g-kg'! DW; anthocyanins 1.78 ~46.53 g-kg! DW; glycoalkaloids 0.02 ~ 16.34 g-kg' DW;
and saponins 0.82 ~ 6.06 g-kg! DW.

Polyphenols were generally the most abundant compounds found in highest
concentrations, then saponins in mature berries, while the reservoir of glycoalkaloids
featured the highest compound diversity and most dramatic and widest range of production.

Of the striking dissimilarities of chemical profiles observed across different sources
of mature berries, the discrepancy in glycoalkaloid profile was the most noticeable. Berries
from USDA PI 643126 and commercial Baker Creek Heirloom, for example, had limited
numbers of glycoalkaloids with a total accumulated yield below 0.07 g-kg'! DW. In contrast,
berries of accession SS 04.2 was characterized with a wider number of glycoalkaloids,
which accounted for up to 15.74 g-kg' DW. The two accessions BG 16 (Nduruma) and SS
49 (Olevolosi), newly developed by WorldVeg and released in Tanzania and Mali in
2011[6], also contained moderately high level of glycoalkaloid content close to 3 g-kg!
DW. Apart from glycoalkaloids, the phytochemical profile difference could also be seen

in the polyphenol distribution. The polyphenols in berries from WorldVeg SS 04.2., SS49



136

(Olevolosi) and BG 16 (Nduruma) were considered the most enriched and balanced
between phenolics, flavonols and anthocyanins, while polyphenols in berries USDA PI
643126 and commercial Baker Creek Heirloom were mostly constituted by abundant
anthocyanins, whereas those in WorldVeg Ex Hai and BG 29 were relatively lacking in
both flavonols and anthocyanins. This dramatic profile difference reflected significant
variation and complexity within the single species of S. scabrum, and further mirrored the
complexity already realized in the section Solanum [7, 8]. Of importance to note is that
the WorldVeg breeding and new crop program with this species focuses and selects for
field performance only as a leafy green and not for any use with the berries.

Despite the remarkable variation of chemical portfolios across different sourced
berries, noticeable similarity existed. All accessions contained nearly uniformly high
contents of chlorogenic acid as well as neochlorogenic acid, along with almost
homogenously distributed glycosides of diosgenin and tigogenin, which is in agreement
with prior research [9]. Several phytochemicals with significant occurrence were also
found to be shared in common across all accessions, such as compounds a-34 and a-38
(flavonols), a-4, a-18 and a-31 (glycoalkaloids) and b-6 (anthocyanin), etc. The
phytochemical fingerprint of S. scabrum berries could be used to facilitate source

identification, authenticity examination, quality control and taxonomy.
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Table VII-2. Content of phytochemicals in Solanum nigrum berries of different genetic
resources and maturation stages. The content is in units of mg / 100 g dry weight (DW)

USDA PI 381289 Simlaw (Kenya)

USDA_PI 306400

Class Compound identification .
mature mature raw medium mature
a-6_N 14.05 11.74 17.77 30.10 20.13
PA a-9 C 165.35 64.52 10391 339.19 260.03
subtotal 179.40 76.27 121.68 369.29 280.16
a-12_Q-h2-r 0.00 0.00 0.00 0.00 0.00
a-21_Q-h-r2 173.83 0.00 0.00 0.00 0.00
a-23_Q-h2 0.00 47.66 64.98 131.04 89.81
a-34_Q-h-r 0.00 0.00 0.00 0.00 0.00
FG a-30_I-h2 9.65 8.95 16.81 39.18 34.39
a-32_I-h2 0.00 0.00 14.22 26.11 23.21
a-36_I-h-r 36.66 0.00 0.00 0.00 0.00
a-38_I-h-r 91.16 0.00 0.00 0.00 0.00
subtotal 311.30 56.62 96.02 196.33  147.40
b-1_P-h-r-h 105.58 0.00 0.00 0.00 0.00
b-3_P-(h)-h2-c 104 .40 0.00 0.00 0.00 0.00
b-5_P-(h)-h-r-c 288.92 0.00 0.00 0.00 0.00
b-6_P-(h)-h-r-c 3301.82 0.00 0.00 0.00 14.93
AC b-8_P-(h)-r-c 51.35 0.00 0.00 0.00 0.00
b-2_M-h-r-h 25.88 0.00 0.00 0.00 0.00
b-7_M-(h)-h-r-c 312.35 0.00 0.00 0.00 0.00
b-4_Dp-(h)-h-r-c 152.24 0.00 0.00 0.00 0.00
subtotal 4342 .54 0.00 0.00 0.00 14.93
Total polyphenol 4833.24 132.88 217.70 565.62 442.50
a-28_S-h-r-h 0.00 0.37 21.58 322 0.35
a-31_S-h-r-r 0.37 1.24 8.37 4.09 0.61
a-35_S-h-r 0.00 0.17 0.33 0.00 0.00
a-39_S-h-r-m-h 0.00 0.00 1.58 0.73 0.00
a-41_S-h-r-m-r 0.00 0.40 11.62 2.39 0.00
a-8_HS-h2-r 0.00 1.70 8.38 8.75 0.79
a-13_HS-h-r2 0.00 1.31 945 6.47 0.63
a-14_HS-h-r-h 0.00 0.00 0.00 0.00 0.00
GA a-16_HS-h-r2 0.00 0.00 0.00 0.00 0.00
a-17_HS-h-r-h 0.00 0.00 5.11 141 0.00
a-19_HS-h-r2 0.00 0.32 9.67 2.56 042
a-20_HS-h-r2 0.00 0.00 0.00 0.00 0.00
a-26_HS-h-r-m-r 0.00 0.00 0.63 0.00 0.00
a-27_HS-h-r-m-r 0.00 0.54 401 5.81 0.44
a-24_HS-h-r-m-r 0.00 0.00 043 0.34 0.00
a-29_HS-h-r2 0.00 0.00 2.08 0.00 0.00
a-33_HS-h-r2-m 0.00 0.00 9.74 2.17 0.32




141

a-1_DHS-h-r-h 0.28 23.93 17.60 19.61 13.19
a-2_DHS-h-12 0.00 0.00 0.00 0.00 0.00
a-3_DHS-h2-r 0.00 0.68 0.62 1.91 1.64
a-4_DHS-h-r2 0.78 17.22 1891 0.21 2.64
a-10_DHS-h-r-m-r 0.00 1.10 1.18 2.08 1.52
a-11_DHS-h-r-m-r 0.00 4.60 5.66 20.16 10.70
a-22_HMS-h2-r 0.00 0.00 1.82 4.90 4.39
a-25_HMS-h-r2 0.00 0.76 4.06 9.99 11.61
a-37_HMS-h-r-m-r 0.00 0.39 344 12.19 13.49
a-5_DHMS-h-r-h 0.00 2.66 343 2.07 71.25
a-7_DHMS-h-r2 0.35 8.15 6.27 8.33 72.94
a-15_DHMS-h-r-m-r 0.00 0.42 0.57 2.35 432
a-18_DHMS-h-r-m-r 1.01 1.61 3.39 25.19 5391
subtotal 2.79 67.57 15993 14691 265.16
a-40_D-h4-r2 246.46 26.68 14.11 28.20 25.57
a-42_D-h3-r2 29.18 0.00 15.12 15.83 4.66
a-43_D-h3-r2 13.60 4.14 2.31 8.08 11.50
SA a-46_D-h2-r2 16.43 3.18 3.64 14.47 8.75
a-44_T-h5 48.75 0.00 16.73 8.25 1.83
a-45_T-h5 225.65 14.82 17.18 14895 112.59
subtotal 580.08 48.81 69.08 22378 164.89

Compound abbreviations refer to Table VII-1.
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Figure VII-1. Phytochemical content in mature berries of Solanum scabrum. The stacked
bar plot (A) shows categorized phytochemical subtotal in berries of different genetic
sources. Clustered heatmap (B) presents compound distribution pattern and level of
similarity. The boxplot (C) indicates the distribution of each compound across different
genetic sources. (A), row side bar of (B), and (C) applies the same compound category
color assignment. Compound abbreviations refer to Table VII-1. Note that (B) and (C) are

presented in logarithmic scale.



3.2 Evolving phytochemical profile from immature to mature to post-frost.
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The phytochemical portfolio in berries from WorldVeg Ex Hai and USDA PI 643126

featured dynamic changes over different fruit development stages, i.e., from immature to

mature and finally to post-frost stage as presented in Table VII-1 and Figure VII-2. The

variation in accumulated content relative to magnitude of change over time in polyphenols,

glycoalkaloids and saponins could be considered in part due to genetics and growth stage,

as shown in Figure VII-3. The content and change in phenolic acids, for example, is a

reflection more of a growth trait (explaining ~ 88% of total variation) more than built-in

genetic differences, while dynamics in flavonol glycosides is more dominated by genetic

singularity (accounting for ~ 54% total variation).
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Figure VII-2. Phytochemical profiles of fruits of different development stages. (A) berries
were sourced from WorldVeg Ex Hai, and (B) from USDA PI 643126. The abbreviations

of analytes refer to Table VII-1.



144

Despite differences in absolute content, both accessions exhibited tendency for
positively correlated trajectory in chemical portfolio change at different stages of fruit
development as presented in Figure VII-4. Generally, during the course of fruit
development and by the time of harvest in September, anthocyanins in both sourced berries
showed steady accumulation, accompanied with color transition from green to dark purple
both exterior and interior. The content of other compounds including phenolic acids,
flavonols, glycoalkaloids and saponins all decreased by differing extent. Berries in the last
post-mature harvest collected after frost in early November, however, featured reversed
evolution in the phytochemical landscape: contents of anthocyanins decreased, while
majority of other compounds “bounced back” to higher new level. Such increase in these
second metabolites in the delayed harvest may be a result of protective response to cold
stress, though the decrease in anthocyanins in this study somehow remained an exception
[10, 11].

Among all the compounds, the change of glycoalkaloids was the most significant and
dramatic. Glycosides of solasodine, predominant in raw green berries, diminished rapidly
and drove the total collection of glycoalkaloids to diminution by ten to a hundred multifold
by maturity in September. Though this phenomenon has been well noted [9, 12], it is indeed
only a fraction of the complex evolution of the overall glycoalkaloid profile during entire
growth stage as revealed in this study for the first time. In Ex Hai, as a typical example,
glycosides of hydroxysolasodine (HS) and dihydroxysolasodine (DHS) featured “up-and-
down” bell-curved change in content, while dihydroxymethylsolasodine (DHMS) and
hydroxymethylsolasodine (HMS) including their potential methoxylated isomers, though

HMS being low in concentration, exhibited gradual increment over the course of fruit
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development. A bioconversion may be possible from solasodine to its hydroxylated
counterparts and eventually to the hydroxymethylated or methoxylated forms by the time
of maturity. Delayed harvest in November appeared to contribute to more complexity
during which time glycoalkaloids of all types of aglycones increased by nearly fifteen times
higher than the level at maturity in September. Cold stress is a likely trigger for inducement
of glycoalkaloids as observed in the late harvest. These results are in agreement with the
findings in other Solanum plants; Solanum tuberosum or potatoes were observed to contain
marked increase in solanine after frost [13], a common potato glycoalkaloid of solanidane
derivative (vs. spirosolane derivatives in S. scabrum berries).

Saponins, another major targeted group of bioactive natural products showed similar
declining tendency during ripening but rebounded back to the highest level in delayed
harvest. This tendency was accompanied with continuously increasing ratio of tigogenin

glycosides in total saponin portfolio.
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Figure VII-3. Source of contribution to the variation in phytochemical subtotal in fruits of
different stages of development sourced from WorldVeg Ex Hai and USDA PI 643126.
Sources of variations are attributed to main effects of genetic uniqueness, characteristics
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of each specific maturation stage, and other effects (i.e., the residual term in two-way
ANOVA analysis). Due to single-replication nature, the interaction of the two factors are
merged into residual term.

1.5 1 R2 slope p value 0 .
PA 0.669 0.818 0.182
FG 0.036 0.191 0.809 ( d
1 O {AC 0.966 0.983 0.017 compoun
" .
E GA 0.683 0.827 0.173 I. PA
S SA 0789 0888  0.112 € rG
[7,]
N 05 = AC
'5:'5 y @ GA
x SA
Ll
8o 0.0 1
% maturation stages
o a . B immature
= -05] o @® half - mature
&N A mature
& post - frost
-1.0 1 !

210 -05 00 05 10 15

USDA PI 643126 z-scores
Figure VII-4. Correlation of phytochemical subtotal in fruits from WorldVeg Ex Hai and
USDA PI 643126 during different stages of berry development. The accumulation content
for each phytochemical category and generic source are standardized into z-scores,
respectively. Notice the post-frost outlier for flavonol glycosides (FG) that leveraged flat

the regression line. Points deriving from the same compound category are connected with
faint lines to facilitate visual checking. Compounds abbreviations refer to Table VII-1.

3.3 Nutritional value from berry polyphenols

Dietary polyphenols are an important large group of natural products that provide
multiple therapeutic effects against cancer, neuronal diseases, cardiovascular illnesses,
diabetes, inflammation, and many such others diseases, and are playing an increasingly

more important role in public health [14, 15]. Mature berries of S. scabrum were found to
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be rich sources of such dietary antioxidants with anthocyanins being the most important
constituents. As for total anthocyanins, in particular, except a few entries such as
WorldVeg Ex Hai which contained relatively low content down to 1.78 g-kg! DW and was
in the same magnitude reported by Oszmianski et al. (~2.06 g-kg! DW) [1], most entries
contained times higher content close to or above 10 g-kg! DW. The highest content was
seen in the entry marketed by Baker Creek Heirloom with a staggering level up to 46.53
g-kg'' DW and USDA PI 643126 with 31. 28 g-kg! DW. Such remarkable levels, possibly
due to targeted breeding or commercial selection, was in agreement with the magnitude
reported by Cornelia et al. at 35 g-'kg! DW [16] (assuming 90% moisture), comparable to
or even higher than the level in the anthocyanin-dense blueberries at 6.15~32.06 g-kg! DW
[17, 18] (assuming 90% moisture).

The abundant anthocyanins in mature berries could be of increased value nutritionally
when consumed fresh (presuming low to no glycoalkaloids present) or extracted as food
colorants and antioxidants. The largely acylated anthocyanins, which constituted 92 ~ 97 %
of total anthocyanins as also reported in literature [1, 16, 19], exhibits elevated stability
with heat, pH and light, and thus wider range of industrial application than simple

anthocyanins in many other plant sources [20, 21].

3.4 Glycoalkaloid and saponin associated toxicity

Presence of toxic glycoalkaloids have been a major concern for consumption of many
Solanum species including S. scabrum berries in sub-Saharan area [7, 9], though the berries
are consumed in some other cultures. The differing rang in accumulation of glycoalkaloids

across difference sources of berries may explain the cultural controversy on the edibility
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of S. scabrum berries. With reference to the Food and Agriculture Organization / World
Health Organization of the United Nations (FAO/WHO) standard for potato glycoalkaloids
where the safety content threshold is 0.5 g-'kg' DW [22] (assuming 80 % moisture content
in fresh potato), and the reported safe consumption of household vegetable Solanum
melongena or eggplant where solasodine glycosides occurred in a range of 0.63 ~ 2.05
g'kg! DW [23, 24] (assuming 90 % moisture content in fresh eggplant), the content of
glycoalkaloids in berries WorldVeg SS 04.2 (15.74 g-kg' DW)., for instance, was 8~31
times higher than the reference thresholds and would be a health and safety concern. In
fact, glycoalkaloid levels of this magnitude would already impart remarkable bitterness,
compared with the potato glycoalkaloids perceivable threshold at 1.4 g-kg! FW (0.7 g-'kg
' DW, assuming 80% moisture content. Notice the closeness of perceivable threshold to
abovementioned safety threshold set by FAO/WHO) and burning sensation threshold at
022 g'kg!' FW (1.10 g'kg!' DW) [25]. In contrast, the glycoalkaloids in berries from USDA
PI 643126 with a significantly low content of less than 0.02 g-kg' DW, is not likely to
cause safety concerns nor perceivable bitterness.

Removal of toxic glycoalkaloids, if necessary, may be achieved using solvent partition
by their different solubility in acidic and alkaline environment or the practice of column
chromatography to avoid the use of organic solvents [26, 27]. In village practice,
processing with edible clay, depending on usage purpose and if possible, might be helpful
for removal of glycoalkaloids by taking advantage of clay adsorption functionality, a
practice traceable to geophagy arguably beneficial for enhancement of tolerance of

glycoalkaloid-containing toxic potatoes [28].
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Saponins are another major group of compounds whose toxicity have also been
extensively investigated, and derivatives of triterpenes as found in the S. scabrum berries
are generally considered toxicologically tolerable [29, 30]. Specifically, saponins of
diosgenin and its structural analogues have been assessed to be safe for consumption at
0.267 g'kg! human body weight (BW) -day! in a most recent study by Xinxin et al. [31];
and dioscin, a most common saponin of diosgenin, was evaluated safe at 0.15 g-kg! animal
BW-day! [32] or at an equivalent dose of 0.024 g-kg' human BW-day' [33], which
corresponds to safe daily consumption for a person of 60 kg of around 240 g dehydrated
mature berries or theoretically 2.4 kg fresh fruit of the most saponin-dense type (Baker
Creek Heirloom). Based upon these reports and guidelines we can conclude the low
concentrations of saponins in all the mature berries investigated would not be a safety
concern for consumption on a reasonable daily amount.

Berries from a number of S. scabrum accessions were found to be of value for
consumption, such as the commercial entry from Baker Creek Heirloom and USDA
643126, both of which had lowest and safe level of glycoalkaloids and saponins as well as
the most enriched content of polyphenols. Particularly, in view of the highlighted
consumption safety and nutrient value in the leaves from USDA 643126 [34], this
accession could be a quality candidate to be introduced to and promoted in sub-Saharan
Africa as an African indigenous vegetable, whose both fresh fruits and leaves are safe and

nutrient-dense to consume.
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4 Conclusion

The quantity of a total of 54 phytochemicals including polyphenols, glycoalkaloids
and saponins in S. scabrum berries of different genetic origins and maturation stages were
determined for the first time using a combination of two different HPLC-MS methods with
representative reference standards. During the course of fruit maturation there were
dynamic changes in phytochemical composition. Phytochemicals in mature berries from
different genetic sources, apart from traits shared in common, had remarkable differences,
and the genotype-dependent variance in toxic glycoalkaloids content may in part explain
the berry consumption controversy in different cultural practices or geographical regions.
In addition, mature berries from certain selected genetic sources had ‘“safe” levels of
glycoalkaloids and saponins as well as enriched polyphenols, and could be introduced to
and promoted in sub-Saharan Africa as “new” indigenous crops, in which both leaves and
fruits can be safely consumed and marketed at the village level. This could contribute to

alleviate hunger and increase income in rural communities of sub-Saharan area.
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CHAPTER VIII. ENHANCED METHOD FOR BERRY

QUALITY CONTROL

1 Introduction

This work proposed a new method for glycoalkaloid screening with significantly
enhanced throughput and smoother workflow. Distinct from the prior untargeted profiling
in CHAPTER VII, this work developed a targeted analysis methodology specific to
glycoalkaloids using triple quadruple mass spectrometry featuring pseudo-MS/MS/MS. In
particular, in-source fragmentation (ISF) was innovatively applied as a pseudo-MS or
pseudo-hydrolysis to break down glycoalkaloidal glycosides into corresponding aglycones
prior to MS/MS detection. This approach successfully overcame the difficulty of long cycle
time and slow scan speed of traditional MS/MS when addressing large numbers of
glycosidic compounds, and made the targeted methodology ever feasible in this work. The
new method developed could meet the demand of the most heavy-duty glycoalkaloids

analysis in a fast and easy-to-use workflow with least manual intervention.

2 Materials and Methods

2.1 Chemicals

Standard reference compound solamargine as the only commercially available
standard of SNB glycoalkaloids was purchased from MedChemExpress (NJ, USA),
LC/MS grade reagents including formic acid, acetonitrile and methanol from Fisher
Scientific (Fair Lawn, NJ, USA) and water from Thermo Fisher Scientific (Waltham, MA,

USA).
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2.2 Plant material

Berries of two S. scabrum accessions, Ex Hai and BG 29 from World Vegetable
Center (WorldVeg, Arusha, Tanzania) and two S. nigrum accessions, one from a private
seed company Simlaw Seeds (Nairobi City, Kenya) and the other PI 381289 from U. S.
Department of Agriculture (USDA, Ames, IA, USA), were analyzed in this work. The
samples originated from the same field trail as reported in the prior work [1, 2]. Briefly,
the seeds were sown in 72-cell trays with growing mix (Fafard Grow Mix 2; Sun Gro
Horticulture, Agawam, MA) and germinated at the New Jersey Agricultural Experiment
Station (NJAES) Research Greenhouse of Rutgers University. The seedlings were
transplanted after four weeks of growth to raised beds covered with 1.25mm black plastic
mulch with drip irrigation applied as needed in NJAES Horticultural Research Farm #3,
New Brunswick, New Jersey. The mature berries, with deep purple color in both skin and
flesh, were harvested on September 18, 2016 and kept frozen under -20 °C, and thawed

under room temperature upon analysis.

2.3 Instrument

The instrument used for chemical analysis was Agilent 1290 Infinity II UHPLC
hyphenated with 6470 triple quadrupole mass spectrometry with electrospray ionization
source (ESI) (Santa Clara, CA, USA) [3]. MassHunter Workstation software Data
Acquisition (version B.08.00) and Quantitative Analysis (version B.07.01) were used for

data processing. Chromatographic separation of compounds was achieved using Waters
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Acquity UHPLC BEH C18 column (50 x 2.1 mm, 1.7 um) equipped with Acquity BEH

C18 guard column (5 x 2.1 mm, 1.7 pm) (Milford, MA, USA).

2.4 Sample preparation

Around 6 g of berries were grounded and soaked in 40 mL 70% aqueous methanol
containing 0.1% formic acid, vigorously vortexed for 1 min and sonicated for 15 minutes.
An aliquot of 30 L of the extract was diluted by mixing with 0.9 mL 70% methanol with
0.1% formic acid, centrifuged at 16,000 rpm for 10 minutes, and then the supernatant was

injected for LC-MS analysis.

2.5 LC-MS method development

For LC condition, water with 0.1% formic acid was used as mobile phase A and
acetonitrile with 0.1% formic acid as mobile phase B. The flow rate was 0.4 mL/min. The
gradient started from 15% B and increased to 31% B at Smin, 31% to 35% B from 5 to 5.1
min, 35% to 55% B from 5.1 to 6min, and was isocratically kept at 55% B from 6 to 6.5min,
followed by column equilibration with the starting mobile phase for another 0.5 min. Eluent
from O to 0.5 min was diverted to waste. The column thermostat was set at 30 °C. The
autosampler was maintained at 4 °C, and the injection volume was 1 pL. A 3-second needle
wash was applied using 70% methanol after each sample injection.

For MS conditions, the drying gas was set at 250°C at 13 L/min, sheath gas
temperature was 300°C at 12 L/min. The nebulizer pressure was 30 psi. Positive polarity
was used, with nozzle voltage at 1000 V and capillary voltage at 3500 V. Multiple reaction

monitoring (MRM) was applied as scanning mode, with dwell time 20 ms per transition.
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2.6 Method validation

The method developed was validated in terms of sensitivity, calibration range,
accuracy, matrix effect and precision for compound solamargine, which is the only SNB
glycoalkaloid whose reference standard is commercially available. Briefly, the lower limit
of detection (LLOD) is defined as the injection concentration to give signal-to-noise ratio
(S/N) of 3 and lower limit of quantification (LLOQ) with S/N at 10. For accuracy validation,
aliquots of 1 mL berry extract from accession WorldVeg BG 29 prepared as mentioned
above were used as the quality control sample (QCS), and were spiked with 70, 135 and
270 puL of 9 pg/mL solamargine stock solution, which corresponded to ca 50, 100 and 200 %
of the solamargine concentration in the original QCS, respectively, with each spike level
prepared in three replicates. The samples were diluted by 31 times and then centrifuged
prior to LC/MS analysis. The accuracy was computed as the measured concentration in
spiked QCS subtracting that in original QCS then divided by the expected spiked level. For
matrix validation, aliquots of 1 mL pure solvent of 70% methanol were spiked with
solamargine standard solution in like manner as accuracy validation, and the matrix effect
was computed as the measured concentration in spiked QCS subtracting that in original
QCS then divided by the measured concentration in pure solvents. The standard deviation
of accuracy and matrix effect is computed following the law of error propagation, with
formulas shown in the supplementary material. In addition, the standard deviation of
concentrations in spiked pure solvents measured at each spike level of the same set used in

matrix validation is reported as the intra-batch precision.
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2.7 Statistics

ESI conditions were optimized using central composite design (CCD) [4] (Table A-6).
Data analysis and visualization was achieved using R [5], and the script is shown in

https://yuanbofaith.github.io/Solanum alkaloid in-source-fragmentation MSMS/.

3 Results and Discussion

3.1 LC-MS method development

3.1.1 Precursor ion selection and in-source fragmentation

While intact parent ions in protonated or other adducted forms are commonly selected
as MRM precursors, it does not conveniently apply to SNB glycoalkaloids in this work.
Since glycoalkaloids as glycosidic compounds have very flexible combinatorial structures
composed of different aglycones and oligosaccharide chains, they present a wide range of
possible structures of varied masses. Trying to enumerate all theoretically possible
combinatorial structures and precursors to create a complete MRM transition table would
be daunting, which when constructed would also result in long cycle time and slow scan
speed, and therefore compromise sensitivity and limit the number of collectable data points
across a chromatographic peak, rendering the peak unsmooth and even incomplete [6] (also
see Figure A-17 for association between the number of collectable data points with
chromatographic peak width, MRM dwell time, cycle time and transition number). The
long cycle time could be easily decreased by using shorter dwell time which, however,
could be at the sacrifice of method sensitivity. Updating the MRM method to the dynamic
version (AIMRM) may help increase allotted dwell time for each transition and/or increase

collectable data points across chromatographic peaks [7], but simultaneous determination
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of the retention time for all glycoalkaloids listed in the transition table in this specific work
is very difficult to successfully achieve. Selection of intact glycoalkaloids as the precursor
ions further complicates providing a clear solution.

However, this dilemma was innovatively resolved by use of ISF of glycoalkaloids.
For the “source” of an MS, it typically refers to the electrospray ionization (ESI) chamber,
the transmission capillary and other spaces maintained under intermediate vacuum by the
rough pump prior to the internal high vacuum. While ESI is generally considered as a “soft”
ionization technique, ions with weak bonds can still undergo fragmentation during
ionization and desorption from the aerosol in the ESI chamber, with fragmentation intensity
affected by the mobile phase and the gas and voltage settings of the ESI [8-10]. At the end
of the transmission capillary, fragmentor voltage is applied to propel ion transmission, and
additional fragmentation could happen due to collision between accelerated ions with the
surrounding neutral gas (this is also known as the in-source collision-induced dissociation
(CID), which is distinguished from the CID occurring in the designated collision cell by
clash with auxiliary gas like nitrogen, helium or argon) [11, 12]. As such, fragmentation
intensity could also be affected by fragmentor voltage. While ISF has usually been
considered as an undesirable phenomenon which adds complexity and confusion to MS
analysis [8, 11, 13], it has also been drawn upon for specialized analysis. For example, ISF
was applied for gain of structural information without using MS/MS technique [14]; as
replacement of traditional hydrolysis to break down singly-charged polysaccharides into
measurable pieces within the limit of instrument scanning range [15]; or to distinguish
coeluted isobaric compounds [16]. In this work, ISF was applied as a pseudo-hydrolysis to

break down the glycoalkaloids’ glycosidic bond to release the aglycone ions, which were
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then subjected to MS/MS analysis, collectively constituting a pseudo-MS/MS/MS analysis.
Therefore, ISF trimmed the complexity of the rich diversity of glycosides down to
simplicity of five basic types of aglycones (including isomers), i.e., solasodine (S) at 414
m/z, hydroxysolasodine (HS) 430 m/z, dihydroxysolasodine (DHS) 446 m/z,
hydroxymethylsolasodine (HMS) 444 m/z, and dihydroxymethylsolasodine (DHMS) 460
m/z (see structure in prior Chapter Figure VI-1). The mechanism of ISF-MS/MS or
pseudo-MS? is further illustrated in Figure VIII-1. As such, transitions only related to the
five precursor masses were needed to construct the MRM table, which significantly
reduced the total cycle time and improved scan speed. Meanwhile, unlike the glycoside-
mediated MRMs that are “blind” to glycosides not included in the fixed MRM table, the
aglycone-mediated MRM is barely limited by unconsidered glycosylation pattern, such as
introduction of new saccharides or change in the size of the oligosaccharide chain, making

the analysis targeted to but also universal in glycoalkaloid detection.
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Figure VIII-1. In-source fragmentation (ISF) and tandem mass spectrometry (MS/MS)
analysis procedure of glycoalkaloids. (A), instrument schematic. Note that for instrument
used in this work, the collision cell assumes a curvature configuration (shown in linear
instead for simplicity). (B), glycoalkaloids and associated precursor and fragmental ions
along the procedure of ISF-MS/MS. For fragmental ion nomenclature, the bonds ruptured
are noted as the hyphenated carbon numbers or adjacent heteroatomic symbols, marked as
superscripts of ring notations A to F. The fused ABCD rings and the spiro EF ring are
arbitrarily noted as two sections, respectively, with the ABCD ring likely substituted with
hydroxyl group, and the EF ring likely substituted with hydroxyl and methyl or isomeric
substituents. In (A) and (B), instrument components and molecular ions associated with
ISF are noted in red, and those associated with MS/MS in blue. ISF and MS/MS together
constitutes pseudo-MS?. For abbreviations of instrumental components and parameters,
DG, drying gas; SG, sheath gas, FV, fragmentor voltage; CID, collision-induced
dissociation in the collision cell. Compound abbreviations refer to prior chapter Table VI-1.
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Figure VIII-2. Optimization of instrument parameters. (A) contour plot of signal response
vs. sheath gas temperature and drying gas temperature; (B) the signal response vs.
fragmentor voltage; (C) response vs. collision energy. Solamargine standard was used for
optimization as representative glycoalkaloid in S. nigrum and scabrum berries. Effect of
drying gas temperature and sheath gas temperature was modeled and optimized using
central composite design (CCD) to achieve maximum yield of aglycone solasodine 414
m/z generated by in-source fragmentation, with its abundance measured by corresponding
product ions.

To achieve maximum yield of aglycones via in-source fragmentation, key
instrumental parameters were optimized. A CCD experiment was conducted to optimize
the ESI drying gas temperature and sheath gas temperature using solamargine standard as
the representative glycoalkaloid, with result shown in Figure VIII-2A (see above).
Interestingly, the temperature of the sheath gas more than that of the drying gas was found

to be a more critical factor to “overcook” ions for fragmentation. Suggested by the less
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curly contours, sheath gas and drying gas did not present as much interaction or
complementary effect as expected and observed in a prior study [9]. Based on the CCD
results, the drying gas temperature was set at 250°C and sheath gas temperature was 300°C.
In addition, the fragmentor voltage as aforementioned was also optimized, leading to an

optimal fragmentor voltage at 170 V on average as shown in Figure VIII-2B (see above).

3.1.2 Product ion selection and fragmentation pathway

The characteristic ions of glycoalkaloidal aglycones were selected based on structural
scaffold, substitution pattern and corresponding fragmentation pathway (Table VIII-1 and
Figure A-16) [1, 17, 18]. Since different glycoalkaloidal aglycones share similar structural
skeleton, then the calibration curve constructed from solamargine could be used to estimate
the concentration of other glycoalkaloids detected via MRMs of the same fragmentation
pathway (so termed the “principle of same fragmentation pathway” for convenience of
discussion). This is a convenient way to detect and also estimate the quantity of the
glycoalkaloids in absence of the corresponding authenticated standards.

For association between the product ions with aglycone substitution pattern and
fragmentation pathway, the precursor ion of solasodine 414 m/z, i.e., the aglycone of
solamargine, featured three most abundant and characteristic product ions, **ABCDEF* of
396 m/z by losing the 3-hydroxyl group from the aglycone precursor ion, '7-20-2-0ABCD*
of 271 m/z by the following rupture of the E ring, and 72 1OABCD* of 253 m/z by
subsequent loss of the carbonyl group. Compared with the solasodine precursor, the HS
aglycone has one more hydroxyl group on the E-F ring; DHS has one more hydroxyl group

respectively on the E-F ring and A-B-C-D ring; HMS one additional hydroxyl and methyl
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(or a combined form as methoxyl or other equivalent forms) on the E-F ring; and DHMS
one additional hydroxyl on the A-B-C-D ring, and additional hydroxyl and methyl on the
E-F ring as the case of HMS. As such, the masses of product ions from HS, DHS, HMS
and DHMS along the proceedings of the fragmentation pathway would be higher by the
mass of corresponding substitution relative to those of solasodine.

In order to achieve maximum abundance from each transition, the MRM collision
energy was optimized using solamargine as reference standard, as shown in Figure
VIII-2C. The product of 253 m/z, generated by collision energy (CE) 34 eV, was of the
most abundance and used as the quantifier for calibration construction; 271 m/z with CE
26 eV, and 396 m/z with CE 30 eV were used as the qualifier ion. For all other
glycoalkaloids, the transitions were setup based on aglycone substitution and

fragmentation pathway relative to that of solamargine as discussed above.

3.2 LC-MS method validation

As solamargine was one of the most abundant and characteristic glycoalkaloids in
SNB, and that its authentic standard was also available, the quantification of this compound
was validated, with results shown in Table VIII-1. Validated at three spike levels
corresponding to 50, 100 and 200% of the solamargine content in the original berry extract,
the validated accuracy was 77~79%, matrix effect from the 84~95% and precision 0.8~4%.
The linearity range had three orders of magnitude with low limit of quantification down to
I ng/mL or 1 pg injected on column. Since the standards of other glycoalkaloids are not

available, a quantitative validation of these compounds was not feasible.
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Table VIII-1. Multiple reaction monitoring (MRM) for glycoalkaloids in Solanum
scabrum and S. nigrum berries, and associated validation results of solamargine.

Glveoalkaloid series Precursor ion Fragmentor Product ion Collision
y (m/z) voltage (V) (m/z) energy (eV)
DHMS elveosid 460 170 442 30
460 mg/ ySCO: S‘;S 460 170 287 26
Zserie 460 170 269 34
, 446 170 428 30
]()le gl/ycosfdej 446 170 287 26
FIIZ SENEs 446 170 269 34
, 444 170 426 30
}(Ii\:f iiycsoﬁd:)s 444 170 271 26
zsene 444 170 253 34
, 430 170 412 30
:fogzciﬁzz) 430 170 271 26
. 430 170 253 34
S elveosid 414 170 396 30
al f 3;011:25) 414 170 271 26
. 414 170 253 34
(I;lg/(r)n?) (I;II;/(I)H% Linear range (ng/ml) Calibration curve R?
0.07 1.10 1.10 ~ 1125 Y=19.1561 X + 24.9620 0'9?39
At different spike levels: Accuracy (%) Matrix effect (%) Precision (%)
50% 100% 200% 50% 100% 200% ;0 120 200%
(] (]
_____________________________________ 777+ | 844+ 950+ 914+ |
782445 789+29 0 g i O 06 39 0.8

For compound abbreviations, S, solasodine; HS, hydroxysolasodine or isomers; HMS,
hydroxymethylsolasodine, methoxysolasodine or other possible isomers; DHS,
dihydroxysolasodine and isomers; DHMS, dihydroxymethylsolasodine,
hydroxymethoxysolasodine or other isomers. For the validation table, *, R> was calculated
with 1/x weight. Accuracy, matrix effect and precision were validated at three spike levels
corresponding to ca. 50, 100 and 200% of the solamargine content in the original berry
extract.
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3.3 Glycoalkaloids in SNB

The glycoalkaloids from four different SNB were successfully detected using the
developed method featuring ISF-MS/MS. A typical chromatogram of glycoalkaloids in a
SNB sample is shown in Figure VIII-3. Glycosides from each type of aglycone, as called
the series of DHMS, DHS, HMS, HS and S, were eluted out generally with increasing
retention time due to reduced polarity of the aglycones. Each aglycone-based series were
conveniently detected in three transition windows, one quantifier transition and two
qualifier ones in such targeted manner, and identified simply by associating detected peaks
with corresponding characteristic transitions, free from mass spectra interpretation. In
addition, based on the principle of the same fragmentation pathway aforementioned, the
glycoalkaloidal content in the SNB samples were also determined, shown in Table VIII-2
(note that in CHAPTER VII, quantification was conducted based on dehydrated berries,
while this work on frozen fresh berries). In all four sourced fresh berries, the total aglycone
mass ranged from trace content to 1.8 mg/100g fresh weight (FW), or approximately total
glycosides around 4 mg/100g FW. When compared with the reported safe content of
solamargine and analogous compounds existing in eggplant (Solanum melongena L.)
ranging from 6.25 to 20.5 mg/100 g FW [19, 20], and also referenced with the safety
threshold of potato (Solanum tuberosum L.) glycoalkaloids at 10 mg/100g FW [21], the
content of glycoalkaloids in the analyzed samples was lower and might not pose a
noticeable health hazard at least when consumed with small amount. In addition, the S.
nigrum accession from USDA PI 381289 contained only trace amount of glycoalkaloids
(also refer to prior chapter Table VII-2 for additional discussion in phytochemical profile),

and could be recommended as a genetic line to serve as a safe source of fresh berries.
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It is important to note that this quantitative determination still remains approximate in
nature. This is best demonstrated by the different ratio of product ions’ abundances vs.
those of solamargine which was used to construct the calibration curve. The product ion of
253 m/z from solamargine, for example, displayed the highest abundance, but for the first
compound of the HS series showed far less abundance than other product ions (Figure
VIII-3). In fact, the HS aglycones likely presented more than one possible structure
manifested by the multifold of chromatographically resolved aglycones after hydrolysis
[1], either possibly different in the hydroxyl substitution position or in their stereo
isomerization, and all such difference could make a difference in the abundance ratio of
the final product ions. In addition, the principle of the same fragmentation pathway could
also be challenged by differences of glycoalkaloids’ efficiency in ionization and ISF. As
such, sufficient safety margin should be given when decisions are made about berry

toxicity based on the quantity-estimated glycoalkaloidal profile.
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Figure VIII-3. Representative chromatograms obtained with in-source fragmentation (ISF)
and multiple reaction monitoring (MRM), with ISF-generated aglycones selected as

precursor ions of MRM transitions. The data shown was acquired from Solanum scabrum

berries of BG 29 from World Vegetable Center (Arusha, Tanzania). Compound

abbreviations refer to prior chapter Table VI-1. Transitions from the same step along the

proceedings of fragmentation pathway are noted as the same color. Compound 6 was

identified as free aglycone of solasodine by comparison with authentic standard.
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Table VIII-2. Content of glycoalkaloids in fresh berries of Solanum scabrum and Solanum
nigrum.

S. scabrum S. scabrum S. nigrum S. nigrum
RT WorldVeg WorldVeg USDA Simlaw
Compounds | Code V| Ex Hai BG-29 PI 381289 Seeds
A B A B A B A B

1 073 | 0.13 0.06 0.16 0.07 N.D. ND.; 0.14 0.06
DHMS glycosides 2 1.00 | 0.10 0.04 0.11 0.05 N.D. ND. 001 001
(460 m/z series) 3 135 | 028 0.13 0.19 0.09 N.D. ND. 0.17 0.08
subtotal 0.50 0.23 0.46 0.21 ND. N.D.: 032 015
1 0.81 | 001 0.01 0.23 0.10 N.D. ND. 108 048
1.07 T T 0.05 0.02 N.D. ND.: 0.10 0.05
3 142 | 001 001 0.13 0.06 N.D. ND.: 046 021
4 2.67 | ND. N.D.: N.D. N.D. | ND. ND. 007 003
subtotal 0.03 0.01 042 0.19 ND. ND.: 171 076
1 188 | ND. ND.: ND. N.D. : ND. ND.: 002 0.01
231 | ND. NJD. 0.07 0.03 N.D. N.D. 000 0.00
3 2.54 T T 0.04 0.02 N.D. N.D. T T

DHS glycosides
(446 m/z series)

HMS glycosides

(444 m/z series)
4 2.89 | 0.02 001 0.21 0.09 ND. ND.: 002 0.01
subtotal 0.02 0.01 0.32 0.14 N.D. N.D. 0.05 0.02
1 223 | ND. NJD. 0.02 0.01 N.D. ND. T T
HS g]ycosides 2 247 N.D. N.D. T T N.D. N.D. N.D. N.D.
(430 m/z series) 3 2.82 T T 0.06 0.02 N.D. ND. T T
subtotal T T 0.08 0.03 N.D. N.D. T T
1 332 | ND. NJD. 0.02 0.01 ND. ND.: 0.12 0.05
2 355 | 004 001 1.41 0.58 ND. ND.: 004 0.02
3 3.66 T T 0.09 0.04 ND. ND.: 0.13 0.05
S Series
. 4 379 | 0.13 0.06 0.83 0.34 T T 0.01 0.00
(414 m/z series)
5 415 | 0.10 0.04 0.67 0.28 N.D. ND.: 000 0.00
6 6.01 0.00 0.00 0.01 0.00 T T 0.00 0.00
subtotal 027 0.1 3.03 1.25 T T 030 0.12
Total alkaloid 081 0.36 4.24 1.80 T T 238 1.05

The content is reported respectively in unit of pmol glycoalkaloid / 100 g fresh weight (FW)
in column A, and mg aglycone / 100 g FW in column B. Aglycone abbreviations refer to
the prior chapter Table VI-1, and individual compound codes correspond to Figure VIII-3.
The plants are noted as species identity, source and accession number if applicable. Berry
germplasms were collected from World Vegetable Center (WorldVeg, Arusha, Tanzania);
U.S. Department of Agriculture (USDA, Ames, IA, USA), and a private seed company
Simlaw Seeds (Nairobi City, Kenya). For content notation, T, trace amount; N.D., not
detected.
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4 Conclusion

This work developed a rapid detection method for SNB glycoalkaloids using UHPLC-
ISF-MS/MS. The innovative use of ISF successfully overcame the difficulty posed by the
diversity and complexity of glycosides and the scarcity of reference standards, and allowed
for application of MRM-based targeted analysis methodology to achieve the highest
throughput. By selecting characteristic product ions that are generated from the same
fragmentation pathway of that of solamargine, compound content estimation was also
made possible, allowing for estimation of berry toxicity based on glycoalkaloidal profile.
The method established was superior to prior untargeted profiling methodology by being
glycoalkaloid-specific, free from interference of the rich existence of non-glycoalkaloidal
compounds and the cumbersomeness of mass spectra interpretation and database search. It
is a powerful tool for SNB glycoalkaloids quality control, safety inspection and breeding
selection, etc. Part of the ongoing and future work involves the isolation of additional SNB
glycoalkaloids as standards to use for more accurate quantification, and to investigate the
association between glycoalkaloidal structures and signal responses relative to that of
solamargine, which is the only one whose standard is commercially available, so as to
provide the correction rules for glycoalkaloids quantification using solamargine as the sole

standard.
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CHAPTER IX. SUMMARY AND FUTURE WORK

Given the nutritional richness of the edible African nightshades (Solanum spp.,
primarily S. scabrum and S. nigrum, etc.) and the absence of anti-nutritive factors,
specifically the glycoalkaloids in the leaves of these vegetables, the undervalued
indigenous or traditional leafy greens could be playing far more important roles in
enhancing food security, improving nutrition, and contributing toward agricultural and
economic development in sub-Saharan Africa. This work that focuses on African
nightshades, just one of the many African indigenous vegetables (AIVs), contributes new
knowledge and insight into the chemistry of these vegetables, and provides the needed
scientific guidance for safe and nutritious consumption. In summary, various LC-MS
methods were developed for phytochemical determination to support exploratory analysis
and/or high-throughput quality control. Using developed methods, the leafy
phytochemistry in different accessions of nightshades were analyzed and quantified. The
profile showed a deficiency of toxic glycoalkaloids, substantiating the safe consumption
status of the leaves from all nightshades investigated. The profile of free amino acids was
determined in leaves of an expanding number of AIVs, including nightshades, amaranth,
mustard and spider plant. The total free amino acids presented high content ranging from
several to ten percent of the dry mass. Machine learning methods and an interactive online
program were applied and constructed for AIV classification prediction based on the
profile of free amino acids.

Apart from leafy chemistry, the berry bioactive compounds in nightshades were also
quantitfied. A range of glycoalkaloids with potentially novel structure were discovered

with the structure tentatively identified. Content of glycoalkaloids differed significantly in
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different genetic sources. Certain genetic lines were found lacking in glycoalkaloids while
meantime rich in polyphenols and other micronutrients, and were identified as potential
lines that could be utilized and promoted as additional source of food supply in sub-Saharan
Africa.

Many chapters as well as projects presented in the Appendix have been published as
this dissertation was completed [1-5] An additional few have been submitted for
publication. Built upon the current momentum, more exciting work remains to be achieved.

In chapter IV, a high-throughput and sensitive method was established for amino acid
analysis, and was used for determination of free amino acids in leafy AIVs. However, the
current progress is not enough to understand the leafy protein nutrition. One of the
important future work is to determine the proteinaceous amino acids profile so as to unveil
the total protein content and the associated protein quality. It is of excitement to note that
on one hand the total content of free amino acids in leafy AIVs is high from several to ten
percent of dry mass, and on the other, the total crude protein in leafy AIVs have also been
reported in literature (by Kjeldahl’s method) to be satisfactorily high at many tens of
percent (up to 70%) of the dry mass. An amino acid-based accurate determination of the
total protein content and particularly the protein quality is likely to reveal high value in use
of AIVs as an important source of protein. An online interactive dashboard using R Shiny,
etc., could be conveniently set up to calculate dietary ratio of AIVs to make a complete
protein formula. The protein quality data of household vegetables apart from AIVs could

be readily accessed from the USDA database (https://data.nal.usda.gov/dataset/usda-

national-nutrient-database-standard-reference-legacy-release), which should also be

incorporated into this online dashboard. This online program could be readily applied in
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sub-Saharan Africa to guide African people’s day-to-day dietary practice for improved
protein nutrition.

Based on this idea, one specific proposal is to formulate an AIV protein shake. With
increasingly more people nowadays turn to a healthier and greener diet, vegetable
smoothies are getting amazingly popular too. Commercially available cold-pressed bottled
veggie-smoothies are available on the market sold at high price. AIV-based smoothies are
not only green, but also high in protein, meanwhile also being an ideal supplement for
vegetarians. This project could be one of prospective commercial potential.

Apart from a nutritional perspective, in Chapter IV machine learning (ML) methods
were used for AIV classification purpose based on free amino acids profile. More work
would be done for improvement of prediction accuracy. One way is to further fine-tune
each model already in use, and also to test more ML methods. Another important approach
is to ensemble different machine learning methods into a single method, drawing upon the
respective strengths of each model at different sample space. Interpretation of ML methods
is an emerging and rapidly developing branch and filed of ML, which turns the ML black
box into a more understandable and transparent mechanism. It is of excitement to use these
many new techniques to further enhance the work presented in this dissertation.

In chapter VI, the structure of potentially novel glycoalkaloids were tentatively
identified using mass spectrometry as aforementioned. However, the exact structure
remains to be further clarified and confirmed. Fractionation and purification of individual
compounds by column chromatography and following NMR study is needed.
Toxicological and medicinal activities of the glycoalkaloids, in form of individual

compounds, as mixture, or in form of glycoalkaloid-enriched berry extract, etc., remains to
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be investigated. The bioactivity comparison between the glycosidic form and the free
aglycone is also interesting and important to study. The knowledge regarding these issues
provides insight and guidance to consumption safety and potential medicinal application.

In Chapter VII and VIII, solamargine as the only commercially available standard was
used to construct calibration for quantification of all glycoalkaloids in the berries. Such
quantitation remained approximate as small changes in glycoalkaloidal structure may lead
to noticeable difference in instrumentational signal response, and as such solamargine may
not necessarily be representative for all glycoalkaloids. After collection of individual
glycoalkaloids, more standards will be available to use for improved quantitation accuracy.
Re-determination of the content of glycoalkaloids in the nightshade berries using the
harvested standards may be beneficial. In addition, signal comparison between new
glycoalkaloids vs. solamargine provides insight into the association of chemical structures
and signal response, which could be applied for correction of quantification when
solamargine is used as the sole standard (after all it’s the only commercial standard
conveniently available).

With the harvest of the many individual novel glycoalkaloids, another topic of interest
is a re-visit of the fragmentation pathway of glycoalkaloids. While the basic fragmentation
pattern of the glycoalkaloidal skeleton (here particularly regarding solamargine-like
compounds) has been well investigated in both literature and this dissertation, many
nuances remains unclear, such as the fine-tune of this pattern (regarding intensity and m/z)
induced by the various substitution on the spirosolane skeleton and stereo-isomerization.
Rationalization of the observed fragments of the many new glycoalkaloids under different

collision energy using high-resolution mass spectrometry can produce more insight into
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mass spectra interpretation, and provides a solid foundation for structural identification of

new glycoalkaloids to be found in the future.
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APPENDIX A. SUPPLEMENTARY TABLES & FIGURES
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Figure A-1. Glycoalkaloid hydrolysis profile of Solanum nigrum fruit. Hydrolysis was
conducted at 70°C using 0.5 M HCI] methanol with different water percent in solvent. For
solvent with 32% (vol. percent) water, 0.9 ml concentrated hydrochloric acid (CHA)
(35~37%, mass percent, ~1.2g/mL) was mixed with 20 ml 70:30 (v/v) methanol/water. For
solvent with 3% water (vol. percent), 0.9 ml CHA was mixed with 20 ml methanol. For
anhydrous solvent, CHA was dripped into heated concentrated sulfuric acid (CSA), and
hydrogen chloride generated was passed through a secondary flask filled with CSA for
additional dehydration, and then channeled into chilled methanol to make a stock solution.
The stock was then diluted with methanol to 0.5 M HCI determined by titration using
standardized 0.1 M sodium hydroxide solution. Standard deviation was based on two
replicates. Glycosides refer to solamargine, solasonine and corresponding di- or mono-
glycosylated counterparts. The aglycone refers to solasodine.
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Figure A-2. Hydrochloric acid loss in methanol solution during storage in different
conditions.

Table A-1. Moisture content in methanol solution of 1M [H]* prepared by blending
methanol with concentrated hydrochloric acid (37%) or sulfuric acid (98%).

trated
source of acid acid molarity (M) coanc(rll ( a)e moisture (g) moisture percent
acid (g
hydrochloric acid 1.0 98.6 62.15 6.21%
sulfuric acid 0.5 50.0 1.00 0.10%

Calculation is based on 1L acidified methanol solution.

1.00 1.04 1.08 1.12 1.16 min 3.30 3.33 3.36 3.39 3.42 min

Figure A-3. In-source fragmentation of solamargine (A) and dioscin (B). Chromatograms
(overlaid) were acquired using method (a) but in multiple reaction monitoring (MRM)
mode, not in dynamic MRM (dMRM). Peaks with the precursor ion being the parent
glycosides are noted in black, and peaks with the precursor ion being the in-source
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produced aglycone ion noted in scarlet. Notice the lack of peak smoothness due to fewer
data points acquired across peak elution time using MRM instead of dMRM. MRM
transitions are separately listed below for easy reading.

Solamargine MRMs:
A1,868.5 ->129.0; A2, 868.5 -> 850.5; A3, 868.5 -> 253.5;
A4,4143 ->157.0; AS,414.3 ->253.1; A6,414.3 -> 396 4;

Dioscin MRMS:
B1,4153 ->271.2;B2,415.1 ->253.1; B3,415.1 -> 157.0;
B4, 869.5 -> 253.1; B5,869.5 -> 146 .9, B6. 869.5 -> 271.0.

005 0.1 0.5 02 025 03 035 min 005 01 0.5 02 025 03 035 min

Figure A-4. Higher signal response of quercetin (A) and kaempferol (B) acquired under
negative (red peak) than positive polarity (black peak). Union was used in replacement of
column for rapid elution. Three most intense MRM chromatograms (overlaid) under each
polarity are shown for each compound. MRM transitions are shown below; collision energy
(CE) for positive MRMs are noted in parenthesis (in unit V), and for the negative refers
to Table III-2.

Quercetin MRMs,

A1,301.0 ->1509; A2,301.0 > 178.9; A3,301.0 -> 121.0;
A4,303.1 > 153.0 (36); AS, 303.1 ->229.0 (32); A6, 303.1 ->257 (28).
Kaempferol MRMs,

B1, 2850 ->93.0; B2, 285.0 -> 159.0; B3, 285.0 ->186.9
B4,287.0 ->120.9 (36); BS, 287.0 -> 153.0 (40); B6, 287.0 -> 230.8 (28).
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Figure A-5. Contrast analysis of S. nigrum vs. S. scabrum species mean content. Sample
16 was excluded from calculation compared with Figure III-4, resulting in insignificant
difference in the mean content of diosgenin (p > 0.05) and tigogenin (p > 0.5) of the two
species. Sample 16 may be considered as an “outlier” due to its peculiar profile, with its
unique rhamnetin and the unusual highest content in diosgenin and lowest tigogenin among
all samples investigated. *,p < 0.05; ***,p <0.001. Compounds are abbreviated into initial
letters; refer to Table IT1-2.

Table A-2. Condition and formula for preparation of the mobile phase, testing the effect
of different ammonium formate concentration in the mobile phase upon chromatographic
performance.

Mobil
ob1e AFconc.(mM) 001 005 0.1 0.25 0.5 1 5
phase
A (water FA vol. (mL) 0.6 0.6 0.6 0.6 0.6 0.6 0.6
phase), AMF stock vol.
21 105 210 525 1050 2100 10500
with 0.15% (uL) i
FA After mixing FA and AMF stock solution, use water to bring the final volume to 400 mL.
B (organic FA vol. (mL) 0.6 0.6 0.6 0.6 0.6 0.6 0.6
phase), AMF stock vol.
with 0.15% (SME‘; Yo 21 105 210 525 1050 2100 10500
FQAS’;"' water vol. (mL) 16.8 16.7 166 16275 1575 147 6.3
(0
acetonitrile | After mixing FA, AMF stock solution and water, use acetonitrile to bring the final volume
to 400 mL.

For abbreviations, AMF, ammonium formate; FA, formic acid. Note that in this part of
method development, both mobile phase A and B were buffered with AMF. Addition of
AMF to only the water phase not in the organic phase, though commonly seen in literature,
was not considered efficient in this work as the buffer imbalance could cause difficulty in
column equilibration in gradient elution and thus requires long time of column
equilibration.
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Figure A-6. Overlaid multiple reaction monitoring (MRM) chromatograms of amino acids
using different concentrations of ammonium formate in the mobile phase. Product ions of
the most abundance (note: not necessarily the quantifier ion. See manuscript section 3.2
for more discussion) were shown. The binary mobile phase was composed with water and
acetonitrile (ACN), both with 0.15 % formic acid (the finalized method used 0.1% formic
acid), with more specifications referring to Table A-2. Amino acid standard mixture was
used and prepared in 50/50 water/ACN (finalized method used 10/90 water/ACN with 10
mM HCI) with 3 pL injection. Column was thermostatted at 30 °C. Buffer concentration
was coded with: 1, 5mM; 2, ImM; 3,0.5 mM; 4,0.25 mM; 5,0.1 mM; 6,0.05 mM; 7,0.01
mM; 8, buffer free. The buffer notes are bolded for peaks remarkably distorted or with
wide width. Note the remarkable bifurcation of proline at 0.1 mM buffer condition (peak
5), as well as similar phenomena of tyrosine at 0.25 and 0.5 mM (peak 3 and 4) and alanine
at 0.05 mM buffer concentration (peak 6). Also note that for isobaric compounds leucine
and isoleucine, the secondary qualifier ion transition 132->86 was used for demonstration
of coelution and decreasing chromatographic resolution with lower buffer concentration.
The two compounds were distinguished from one another by using different quantifier
product ions unique to each other in the final optimized method.
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Figure A-7. Sample solvent effect on amino acids’ calibration. Compounds are arranged
in order of increasing susceptibility to sample solvent composition. The sample solvent
used was 90 % acetonitrile (ACN) with different acid composition. 90 % ACN with 0.1%
formic acid (FA) was the starting mobile phase composition. Injection of each calibration
set was replicated over two days, during which time the samples were stored in 4 °C. For
some compounds such as glycine, cysteine and 4-hydroxyproline, etc., the results under
100 mM HCI are not shown as the retention time shifted (due to solvent effect, see Figure
IV-2) outside dIMRM time zone in the experiment and thus not detected.
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Table A-4. Validated matrix effect of the HILIC-MS/MS method for amino acid analysis.
Matrix effect was validated at six spike levels noted as A to E and G. The values are
presented in unit of percentage (%).

No. compounds A B C D E G
1 4-hydroxyproline { 101.9+33 1025+53 101.1+35 96.1+69 103.7+33  112+163
2 alanine 99.7+39 103.8+4.6 1009+x46 974=x6.1 10646 102.7+224
3 arginine 1004 +£43 99.6+47 1019+34 974+79 104.6+7.5 99.8+189
4 asparagine 1002+4.3 102.7+4.6 1004+4.6 98 +7 97.8+123 116+249
5 aspartic acid 99.7+23 100.7+42 102749 969+98 98.5+5 743 +£199
6 cysteine 99.3+42 1054+45 100.8+33 98 +5.8 97.6+47 1073+139
7 glutamic acid 1064+73 1092+64 1005+113 1152+228 1057+122 83.8+3738
8 glutamine 1009+42 1029+4.8 1014+42 1033+82 103.6+58 1248+235
9 glycine 983+39 111.6+x4.6 1068+54 1004+x7.6 1099+97 110.1x£212
10 histidine 1022+46 947+6.1 102152 100.8+103 96.6+x12.7 829+246
11 isoleucine 972+6.1 1013+51 101.1+78 964 +7 100.5+4.8 121 +147
12 leucine 96.5+2.6 96 +4.1 913+38 86.1+69 9137 863+ 15
13 lysine 100.6 £4 988+4.1 1003+38 925+75 928+65 575x125
14 methionine 103.8+6.1 10687 99.6 £6.1 93.8+8.7 102.5+7.7 103 +8.9
15 phenylalanine 929.6+39 1008+44 1009+52 97.8+7.1 101.2+2.8 107 +14.6
16 proline 98.8+35 1034+45 101.1x56 973x73 1029+£83 99.9+50.3
17 serine 101 +34 101.7+6.6 98543 949+79 90.8+5.6 61.3+13
18 threonine 1047+52 1014+35 98345 974+6.6 102.6+3.1 1349738
19 tryptophan 100.7+3.7 101.7+42 1013+44 979x7.6 100.6 £2.3 105472
20 tyrosine 100.8+29 1032+49 100.8=+4.1 97.1+£6.6 100.7+2.7 1059+89
21 valine 1022+4.1 1024+47 1006+52 964+69 101.1£58 1063+173
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Table A-5. Validated precision of the HILIC-MS/MS method for amino acid analysis.
Precision was validated at seven spike levels noted as A to G. The values are presented in
unit of percentage (%).

No. compounds A B C D E F G
1 4-hydroxyproline 1.13 1.78 0.95 1.92 4.45 533 7.35
2 alanine 1.45 1.93 1.05 2.66 1.66 2.54 1.52
3 arginine 0.93 0.69 0.79 2.20 4.63 5.95 1.43
4 asparagine 1.75 2.19 0.85 4.14 3.88 15.31 10.36
5 aspartic acid 1.68 2.29 2.25 7.58 5.99 9.89 3.59
6 cysteine 0.87 1.69 1.40 1.11 2.47 7.20 6.09
7 glutamic acid 1.35 2.80 1.80 438 3.28 14.81 6.51
8 glutamine 1.45 1.64 0.95 1.21 3.82 7.98 12.01
9 glycine 0.69 1.44 1.51 3.63 7.38 9.33 6.93

10 histidine 1.19 0.88 1.18 3.57 11.42 16.12 9.39

11 isoleucine 2.34 1.70 2.40 0.90 2.00 2.76 5.34

12 leucine 1.95 2.40 2.89 1.39 3.86 5.87 9.27

13 lysine 1.77 1.44 0.86 3.26 7.12 15.33 18.34
14 methionine 2.54 2.75 0.61 1.23 2.26 1.35 5.36

15 phenylalanine 1.58 1.26 1.38 0.76 1.54 342 3.16

16 proline 2.07 2.22 0.70 1.42 2.34 1.59 2.56
17 serine 2.95 1.87 1.55 7.75 5.13 11.24 341

18 threonine 0.22 2.25 2.03 1.51 5.60 4.52 9.00

19 tryptophan 0.80 2.26 2.05 1.37 2.68 0.46 2.07

20 tyrosine 1.26 2.08 0.64 1.54 1.89 2.93 3.04
21 valine 0.77 2.06 1.06 1.23 1.87 1.36 1.67
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Figure A-8. Partition of the variance of accuracy at different spike levels. The error source
is split to the measurement of the spiked quality control (QC) samples and that of the
original unspiked QC samples.
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Figure A-9. Visualization of calibration linearity range. To facilitate visualization across
a liner range of three orders of magnitude, the intercept, computed based on regression with
1/x weight, is subtracted from peak response, and then both x and y scales are
logarithmically transformed. That is, it is log(y - b) (now the new y axis) = log(ax) =log(a)
(the new y-intercept) + log(x)(the concentration, with slope coefficient being one) that is
being plotted, instead of y = ax + b, with y being the response, a the slope coefficient, x the
concentration, and b the y-intercept, both a and b regarding the original scale. Note that
each of the four replicates of the calibration sets were prepared separately by serial dilution
from the same stock solution.
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Figure A-10. Calibration accuracy and error analysis. Plot (A) shows the calibrator
accuracy (CA) at each concentration level, with CA defined as the ratio of back-calculated
concentration using constructed calibration curve vs. expected concentration. Four
calibration sets were each prepared separately by serial dilution from the same stock
solution. The CA plot reflects calibrators’ linearity and consistency at each concentration
level of the calibration curve. Note that the CA defined in this context is very different and
clearly distinguished from the validated accuracy using spiked quality control samples as
aforementioned. (B) shows the error propagation profile, with the error at each dilution
step defined as the standard deviation of the four calibrator replicates’ peak area divided
by the average level. Each amino acid is separately regressed, and all points are jointly
regressed represented by the central bold black regression line. The overall regression
model follows a slope coefficient of 0.52, suggesting that with each additional step of
dilution, an extra 0.52% of error percentage could be induced at that given level due to
error propagation effect. This number gives a rough estimation of the researcher’s
consistency at using the pipette for serial dilution. In addition, this number also reflects the
increasing susceptibility of integration consistency to decreasing concentration.
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Predicted
Actual
Amaranth Mustard  Nightshade Spider plant
Amaranth 143 0 0 0
Mustard 1 86 0 3
Nightshade 11 0 128 0
Spider plant 5 1 0 166

Figure A-11. Confusion matrix of the linear discriminant analysis performed on all African
indigenous vegetable samples. This confusion matrix is a summary of Figure IV-7B. Note
that in this analysis, there was no training-testing set split. The model was built up and

tested on the entire AlV dataset.
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Figure A-12. Representative mass spectra of glycosides of different aglycones in the fruits
of edible nightshade, Solanum scabrum, acquired by method (a). Each mass spectrum is
labeled by the corresponding compound number in the upper right corner.
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Figure A-13. Representative mass spectra of anthocyanins acquired by method (b). Each
individual mass spectrum is labeled by the corresponding compound number in the upper

right corner.
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Figure A-14. UV-vis profile of neochlorogenic and chlorogenic acid (a-6 and a-9) (A),
quercetin glycoside (a-34) (B), petunidin-containing acylated anthocyanin (b-3) (C) and

non-acylated simple anthocyanin (b-1) (D), and petunidin standard (E).
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Figure A-15. UV chromatograms of anthocyanins in edible nightshade, Solanum scabrum
fruits USDA PI 643126 under 520 nm using different mobile phase modifiers, i.e., (A) 0.4 %
trifluoroacetic acid; (B) 0.1 % formic acid (FA). W, s, peak width is the full width at half
maximum. A,, asymmetry factor is distance from centerline to the back edge divided by
the distance from the centerline to the front edge, measured at 10% maximum. N,
theoretical plates numbers per column, is calculated as N = 5.54 (tgx / Wys)?, tz being
retention time.
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—
In-source
fragmentation
—
S OSC - ABCD-EF* S ABCD-EF * 414 m/z
HS  OSC- ABCD-EF-(OH)* HS  ABCD-EF-(OH)* 430 m/z
HMS  OSC - ABCD-EF-(OH)(CH3)* HMS ABCD-EF-(OH)(CHj)* 444 m/z
DHS  OSC- (OH)-ABCD-EF-(OH)* DHS (OH)-ABCD-EF-(OH)* 446 m/z
DHMS OSC - (OH)-ABCD-EF-(OH)(CH3)* DHMS (OH)-ABCD-EF-(OH)(CHs)* 460 m/z

H+

S 17:20.160 ABCD* 253 mlz S 17:20.220 ABCD * 271 mlz S +0 ABCD-EF * 396 m/z
HS 17:20.16:0 ABCD* 253 mlz HS 17:20.2220 ABCD *+ 271 mlz HS 30 ABCD-EF-(OH)* 412 m/z
HMS 720,160 ABCD* 253 m/z HMS '720.220 ABCD * 271 mlz HMS 39 ABCD-EF-(OH)(CH3)* 426 m/z
DHS  !720.160(OH)-ABCD* 269 m/z DHS  !720.220 (OH)-ABCD* 287 m/z DHS  39(OH)-ABCD-EF-(OH)* 428 m/z
DHMS !7-20.160(OH)-ABCD* 269 m/z DHMS 1720220 (OH)-ABCD * 287 m/z DHMS *©(OH)-ABCD-EF-(OH)(CH3)* 442 m/z

Figure A-16. Proposed fragmentation pathway and associated fragmental ions of
glycoalkaloids. This figure is a more detailed specification based on prior Figure VI-6.

Table A-6. The central composite design (CCD) of drying gas temperature and sheath gas
temperature.

Sti?:::rrd design points A (Coded) B (Coded) A (Actual) B (Actual) run order
1 -1 -1 200 200 12
2 . . 1 -1 300 200

factorial point
3 -1 1 200 300 7
4 1 1 300 300
5 -1.414 0 179.3 250 10
6 . . 1414 0 320.7 250

star/axial point
7 0 -1.414 250 179.3 8
8 0 1414 250 320.7 9
9 0 250 250 11
10 0 0 250 250 5
11 center point 0 0 250 250 1
12 0 0 250 250 3
13 0 0 250 250 13
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Figure A-17. Number of collectable data points across a chromatographic peak vs. number
of MRM transitions under different dwell time and baseline peak width (BLPW).
Regardless of its more rigid definition [5], the BLPW in this context for practical
convenience simply refers to the baseline time range across the automatically / manually
integrated chromatographic peak.

As demonstration of calculation, suppose that an MRM table contains a total of 100
compounds, each compound having 2 transitions, with each transitions dwell time 10 ms.
As such, the total cycle or duty time to scan across all MRM transitions once would be
approximately 100 (compounds) x 2 (transitions/compound) x 10 (ms/transition) = 2000
(ms), or 2 sec. Therefore, the number of data points that could be collected across a
chromatographic peak of BLPW of 10 sec would be 10 sec / 2 sec = 5 data points, leading
to very jagged unsmooth peak shape, and likely compromised sensitivity as well.

As a rule of thumb, the number of data points across a chromatographic peak should be no
less than 15 to ensure good peak smoothness and symmetry. Reduction of dwell time to
decrease the cycle time is a quick and convenient option to increase collectable data points.
This adjustment nonetheless should be practiced with careful design. Based on our
experience and current instrumental condition, the dwell time at best should be at least 10
ms; dwell time below 5 ms would compromise instrumental sensitivity noticeably.
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APPENDIX B. RASPBERRY KETONE ANALYSIS WITH

LC-MS'!

A highly sensitive ultra-high performance liquid
chromatography/tandem mass spectrometry method with
in-source fragmentation for rapid quantification

of raspberry ketone

! This work has been published and refers to: Yuan, B., Zhao, D., Du, R., Kshatriya, D., Bello, N. T., Simon,
J. E., & Wu, Q. (2019). A highly sensitive ultra-high performance liquid chromatography/tandem mass
spectrometry method with in-source fragmentation for rapid quantification of raspberry ketone. journal of
food and drug analysis, 27(3), 778-785.
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Abstract

Raspberry ketone (RK) is the characteristic aromatic compound in raspberry (Rubus
idaeus L.) with wide applications as food additive and anti-obesity agent. However,
quantification of RK has presented difficulties in MS detection and reliable LC-MS method
for RK analysis in literature is in limit to date. In order to facilitate quality control of
raspberry derived products and RK metabolomics study, this study aimed to develop a
validated and sensitive UHPLC-MS/MS method. Strong in-source fragmentation was
noted and the fragmental ion of 107 m/z produced was selected as the precursor ion for
MRM detection, and as such the electrospray ionization performance was optimized by
fractional factorial design to accommodate such ion-source dissociation behavior as well
as its moderate volatility. A pathway involving the formation of quinone-like structure with
strong conjugation was proposed to explain the intense in-source fragmentation. The MRM
transition was optimized with product ion of 77 m/z selected as the quantifier ion. The
method featured low limit of quantification of ~2 ng/mL and allowed for rapid detection
of RK in fresh raspberries following direct sample preparation. RK contents were found to
be higher from locally grown and harvested farm sources compared to commercial
products shipped into the state, and higher in those at late-stage compared with early-stage
maturity. No correlations in RK content between organic and non-organic labels were

noted.
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1. Introduction

Red raspberry (Rubus idaeus L.) has been a commonly consumed berry fruit for
hundreds of years and remains a highly popular fruit. The appeal of red raspberries to
consumers largely arises from the berry’s characteristic taste and aroma. Among the large
number of volatile compounds identified, 4-(4-hydroxyphenyl)-2-butanone, commonly
known as raspberry ketone (RK), is recognized as the primary compound responsible for
the characteristic raspberry flavor [1-3]. In addition, RK is an FDA-designated generally
recognized as safe (GRAS) additive, which has been widely used in the perfumery,
cosmetics and food industry to impart raspberry aroma [4]. Due to its low abundance in
nature, fruit-derived RK is among the most expensive natural flavor compounds with an
estimated market value up to $20,000/kg [5]. Based on the structural similarity to other
phenolic compounds (e.g., ephedrine, synephrine, and capsaicin and zingerone), RK also
has been investigated as a putative weight loss supplement and appetite suppressant [6].
Rodent studies indicated that RK protected animals from high-fat diet-induced
nonalcoholic steatohepatitis [7], prevented diet-induced obesity, and reduced the
inclination towards high-fat diets [7, 8]. In vitro studies also suggested that RK activates
pathways that promotes fatty acid oxidation and reduces lipogenesis in adipocytes [9, 10].
Therefore, having an effective methodology for measuring RK content in raspberries of all
sources would better facilitate selection of raspberries that are more appealing to
consumers and richer in bioactive components including RK.

The analysis of RK content in red raspberry sources has been predominated by GC-
MS as reported in literature [1]. However, there is limited reliable study employing LC-

MS methodologies to detect and measure content of RK in red raspberries and related
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products. In the study by Urska ef al. in 2012, a targeted metabolomics method using LC-
MS was established for analyzing up to 135 phenolics in fruit with RK included as one of
the metabolites. This method, unfortunately, lacked specificity for RK and the limit of
detection was not low enough to allow detection of RK in raspberries following direct
sample preparation [11].

The aim of this study was to develop a rapid and sensitive method using ultra-high
performance liquid chromatography (UHPLC) coupled with triple quadrupole mass
spectrometry (QqQ-MS) for reliable quantification of RK in different sources of red
raspberries to facilitate quality control, and could also extended the application for RK

pharmacokinetic study.

2. Materials and methods

2.1. Chemical reagents and raspberries

Reference standard of RK was purchased from Sigma-Aldrich (St. Louis, MO, USA).
Methanol, acetic acid, and HPLC grade water and acetonitrile and formic acid were
purchased from Fisher Scientific (Fair Lawn, NJ, USA). Fresh raspberry fruits at different
stages of maturity were harvested from local New Jersey farms and stored at -20°C prior
to analysis. Fresh raspberries marketed as organic or non-organic products were purchased
from local supermarkets, stored at 4°C and then analyzed within two days. The harvest or

purchase dates and location, and sample conditions are shown in Table B-1.

2.2. Standard and sample preparation
For the standard preparation, approximately 10 mg of RK standard was accurately

weighed and dissolved in 25 mL methanol as stock solution. This was further diluted with
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70 % methanol for use as the work solution. For sample preparation, frozen fresh fruits of
raspberry were first ground with liquid nitrogen, and approximately 3 g was then
subsampled, accurately weighed and extracted using 8 mL pure methanol. The mixture was
vigorously vortexed for 1 min, sonicated for 5 min and then centrifuged at 3000 rpm for
10 min. The supernatant was transferred to a glass vial and the precipitate was extracted
two more times with 8 mL methanol likewise. The supernatants were combined and
brought to a final volume of 30 mL. The extract was then diluted 5-fold with 70 % methanol
and centrifuged at 13,000 rpm for 10 min prior to LC-MS injection. Three extracts were
prepared for each raspberry sample. The final RK content was presented as pg/100 g fresh

weight (FW).

Table B-1. Identification of the raspberry samples used in this study and their respective
raspberry ketone concentration.

No. Source/Brand Purchase/Harvest location Purchas.e/ Content
harvest time (ug/kg FW)

Driscoll's, mature and red, . .

1 USDA certified organic Shoprite, Piscataway, NJ October, 2017 2935+409

2 Driscoll's, mature and red Target, Piscataway, NJ October, 2017 82.0x£2.6
Driscoll's, mature and red, .

3 USDA certified organic Target, Piscataway, NJ October, 2017 939+3.1

4 Driscoll's, mature and red Stop & Shop, Piscataway, NJ October, 2017 741145
Driscoll's, mature and red

5 ’ ’ t hop, Piscat. NJ tober, 2017 2960+ 19.7

USDA certified organic Stop & Shop, Piscataway, October, 96.0 £ 19
6 DHSC,OI,I S matur.e and red, USDA Trader Joe's, New Brunswick, NJ October, 2017 402+14
certified organic, (trademark1)
7 DHSC,O,H S matur.e and red, USDA Trader Joe's, New Brunswick, NJ October, 2017 99+2.1
certified organic, (trademark 2)
g Farm berpes, half mature, Hacklebarney Farms Cider Mill, August, 2016 480.9 + 24.0
pink to red Chester, NJ
Farm berries, mature, Hacklebarney Farms Cider Mill,
9 dark and deep red Chester, NJ August, 2016 712.1+£670
10 Farm berries, half mature, Rutgers University Cook Organic July, 2016 4164 + 60.0

pink to red

garden, New Brunswick, NJ
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Farm berries, mature, Rutgers University Cook Organic

11
dark and deep red garden, New Brunswick, NJ

July, 2016 6220+444

Notes: FW, fresh fruit weight.

2.3. Instrumentation

An Agilent 1100 series LC/MSD instrument (Agilent Technologies, Waldbronn,
Germany) was used to facilitate determination of the precursor ion of RK. The HPLC was
equipped with an auto-degasser, quaternary pump, column thermostat and a diode-array
detector (DAD). Column Phenomenex Luna C18 (2), 150 x 4.60 mm, 5 um (Torrance, CA)
was used for compound separation. The LC-MS interface was electrospray ionization (ESI).
Nitrogen was used as nebulizing gas and drying gas. The MS featured an ion trap analyzer
and helium was used as the collision gas. Data was acquired using the Agilent ChemStation
(ver A.08.03) and LC/MSD Trap Control (ver 5.1).

An Agilent 1290 Infinity I UHPLC coupled with 6470 triple quadrupole (QqQ)
(Agilent Technologies, Waldbronn, Germany) was used for development of fully
optimized method of quantification of RK. The UHPLC was equipped with a built-in auto-
degasser, binary pump and column thermostat. The DAD was bypassed to reduce peak
broadening. Waters Acquity BEH CI18 column, 50 x 2.1 mm, 1.7 um (Milford, MA)
equipped with Waters Acquity UPLC BEH C8 VanGuard pre-column 5 x 2.1 mm, 1.7 um
(Milford, MA) was used for compound separation. The LC-MS interface was electrospray
ionization (ESI) with jet stream. Nitrogen was used as nebulizing gas, drying gas, sheath
gas and collision gas. MassHunter Workstation LC/MS Data Acquisition (ver B.08.00) was
used for data acquisition and MassHunter Workstation Optimizer (ver B.08.00) for MRM

optimization.
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2.4. Determination of precursor ion by ion trap MS

Agilent 1100 series ion trap MS was used for screening of the precursor ion.
Specifically, for HPLC, mobile phase A was water with 0.1 % formic acid and mobile
phase B was acetonitrile with 0.1 % formic acid at a flow rate of 1 mL/min. The gradient
started at 30 % B at O min and increased to 60 % B at 15 min. The injection volume was
20 pL and around 800 ng of RK was injected onto column. The column thermostat was set
at 25 °C. The wavelength of DAD was set at 254 nm with the reference wavelength at 400
nm. About a third of the HPLC eluent was split into MS. For MS, the nebulizer was set at
40 psi, drying gas temperature at 350 °C with a flow rate of 12 L/min. The capillary voltage
was 43500 V in positive scan and -3500 V in negative scan. Either positive or negative
polarity was used in separate injections. The full scanning range of ion trap was from 50 to
500 m/z. Collision energy noted as compound stability was set at 80%, which generally
allowed structurally similar small phenolic acids to retain integrity in the ion trap. Ion
charge control (ICC) was set with a target of 40,000 with a maximum accumulation time

of 300 ms.

2.5. Determination of precursor ion by QqQ-MS

Following the experiment using ion trap MS, Agilent 1290 UHPLC-6470 QqQ was
used as the principal instrument in the successive studies. First, full scan mode was used to
identify the precursor ion. For UHPLC, the mobile phase components were the same as in
the ion trap experiment with a flow rate of 0.4 mL/min. 2. The injection volume was 5 pLL
and around 5.5 ng standard of RK was injected onto column. The column thermostat was

set at 30°C. With respect to QqQ-MS, the ESI was preliminary set as environment suitable
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for small phenolic acids with modification, i.e., nebulizer was set at 30 psi, drying gas
temperature at 300°C with a flow rate of 12.0 L/min, sheath gas temperature at 300°C with
a flow rate of 10.0 L/min, capillary voltage at +2500 V (positive scan) or -2500 V (negative
scan), and nozzle voltage at +1000 V (positive scan) or -1000 V (negative scan) [12]. Either
positive or negative polarity was used in separate injections. Three segments were included
in one run, each having the same scan range from 50 to 200 m/z and scanning time of 500
ms but different fragmentor voltage (FV) (voltage applied to the exit end of the capillary)
at 80, 110, and 140 V, respectively. The three FVs represented a reasonably wide range
found to be suitable for structurally similar small phenolic acids [12]. The accuracy of the
mass of the predominant ion, the prospective precursor, was further confirmed by full scan

using narrower scanning range down to + 5 Da of the detected mass.

2.6. Optimization of MRM transitions

To facilitate MRM optimization, an isocratic gradient with 28% B was employed and
the RK peak was eluted out within 1 min. Other parameters remained the same as those in
the precursor confirmation study using QqQ (section 2.5) unless otherwise specialized. The
most abundant RK fragment or cluster ions detected in section 2.5 was manually added to
the MassHunter Optimizer as the prospective precursor, and then subjected to an
optimization procedure composed of five consecutive injections under scanning modes of
selected ion monitoring (SIM), SIM, product ion (PI) scan, MRM and then PI, respectively.
The injection steps are shown in . Around 5 ng of RK was injected onto column for SIM

and MRM and 10 ng injected for PI scan to compensate for the low sensitivity of PI scan
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mode. The most abundant product ion was selected as the quantifier ion as the result of a

successful optimization.

2.7. Optimization of ESI

The optimized MRM transitions so far acquired and relevant LC-MS conditions as
aforementioned were applied for the optimization of ESI. Seven key parameters, i.e.,
drying gas temperature (X;) and flow rate (X,), nebulizer pressure (X;), sheath gas
temperature (X4) and flow rate (Xs), capillary voltage (Xs) and nozzle voltage (X;), were
optimized by the design of experiment (DOE) approach using fractional factorial design.
Two levels of each factor were tested by expanding the general setting to an empirically
higher and lower end. As the instrumental sensitivity was dependent on signal response
(peak area) and background noise, signal-to-noise ratio (S/N) was used as the DOE model
response. Injections were made in triplicate for each trial and the averaged S/N was used

as the response. The factorial design conditions are presented in Table C-2.

2.8. Optimization of other parameters

For the UHPLC part, influences of mobile phase modifiers, i.e. formic acid and acetic
acid at 0.1 or 0.2% on detection sensitivity were studied. For the QqQ MS part, the
quadrupole resolution set at either “unit” or “wide” was compared for impact on detection
sensitivity. The cell accelerator voltage was studied in a range of 4 to 8 V. The detector

Delta EMV was fine-tuned ranging from O to 100 V.
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2.9. Method validation

The method was validated in terms of linearity range, low limit of detection (LLOD),
low limit of quantification (LLOQ), accuracy and intra-batch and inter-batch precision.
The LLOD and LLOQ were defined as S/N ratio at 3 and 10, respectively. For accuracy
validation, a known amount of RK standard was spiked in the quality control (QC) sample
at 200%, 100% and 50% level of expected concentration, and accuracy was calculated as
(detected concentration — endogenous concentration)/spiked concentration x 100 %. Fresh
raspberries manually harvested from the Rutgers University Cook College Campus
Organic garden, New Brunswick, were used as the QC sample. Precision was calculated as
the standard deviation of repeated injections in single sequence for intra-batch precision
and separated sequences for inter-batch precision at three levels, i.e., LLOQ, middle point

of linearity range (MP), and high limit of quantification (HLOQ).

2.10. Data analysis and statistics

Analysis of data acquired from Agilent 1100 LC-MS system was conducted by
Agilent Data Analysis (ver 2.2). Analysis of data acquired from Agilent UHPLC-QqQ MS
system was performed on MassHunter Workstation Qualitative Analysis (ver B.07.00) and
Quantitative Analysis (ver B.07.01). Fractional factorial design was analyzed by Design

Expert (ver 8.0.6).
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3. Results and discussion

3.1. Method development and validation

3.1.1. Determination of precursor ions

Precursor ions that are protonated, deprotonated and adducted with cations such as
sodium and ammonium are the most common precursors formed in the ESI compartment.
However, selection of these most common ions as prospective precursors was found in the
preliminary RK study failing to generate reliable product ions with strong MS responses.
This suggested formation of cluster ions or severe in-source fragmentation in the ESI
compartment. In view of the significantly lower sensitivity under full scan mode of triple
quadrupole MS compared with ion-trap MS [13], screening for the possible cluster ion(s)
and in-source fragment(s) was first conducted using ion-trap MS. As the ion trap MS
featured analogous ESI configuration and parameters with those of QqQ MS, ionization
behavior of RK observed in the ion trap MS study could provide valuable reference for the
subsequent study using QqQ-MS.

The ion trap MS study conducted under positive polarity using low collision energy
revealed low abundance of parent ions that were protonated ([M+H]*, 165 m/z) and
adduction with a sodium ion ([M+Na]*, 187 m/z), while the predominant peak was detected
at 107 m/z (Figure B-1). A separate analysis of RK under negative polarity did not generate
any noticeable RK peak.

The major challenge in the following QqQ study was the low sensitivity of full scan
and that RK peak was barely visible in total ion chromatogram (TIC), as shown in Figure
B-2 inset. Considering that the injected concentration (5.5 ng injected onto column) was

already on the high end, injection of higher concentration to improve peak visibility was
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avoided to prevent contamination. With reference to the aforementioned ion trap study, the
positively charged ion at 107 m/z was tentatively extracted and this successfully led to
identification of RK peak at 3.8 min. Careful comparison of the mass spectra of RK with
that of the background confirmed the actual MS response of the ion at 107 m/z and lack of
detectable protonated and adducted parent ions (Figure B-2). This explained the
unsuccessful detection of RK in the preliminary study inappropriately selecting protonated
or adducted parent ions as the precursor ions. In addition, negative polarity did not generate
significant RK peak on QqQ MS either. Thus, the positive 107 m/z ion formed as the result

of in-source fragmentation was selected as the precursor ion for the subsequent MRM study

using QqQ MS.

A TIC
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Figure B-1. Mass spectrum of raspberry ketone as acquired by ion trap MS. Inset was the
corresponding chromatograms of total ion (TIC), UV-vis at 254 nm and that of extracted
ion (EIC) of the major fragment at 107.1 m/z with 800 ng raspberry ketone injected on
column.
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Figure B-2. Overlaid mass spectra of raspberry ketone (RK) and background acquired by
QgQ MS. Mass spectrum of RK (red) was acquired at 3.8 min and background (blue) at
4.6 min. Fragmentor voltage was preliminary set at 110 V. Inset in the upper left was the
corresponding chromatograms with 5.5 ng of RK injected on column. Notice the near
invisibility of RK peak in total ion chromatogram (TIC). RK peak was rendered visible by
extracted ion chromatogram (EIC). 161.0 m/z was a random ion from the background.

3.1.2. Optimization of MRM transitions

Optimization of MRM transitions can be most conveniently achieved via injection
mode instead of the conventional infusion method. Under this injection mode, a connection
union can be used in replacement of an analytical column thus without compound
separation, so that each injection could be finished within ten seconds. Usage of connection
union in the case of RK, however, seemed to result in less accurate “locking” of the

characteristic 107 m/z ions during the fragmentor voltage (FV)-optimization injections and
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led to questionable optimized data. This was realized by comparison of the inaccurately
optimized MRM transitions with the corresponding transitions under SIM mode using the
same precursor. The inefficiency of optimization was manifested by insignificant
improvement or even reduction in S/N acquired under MRM versus SIM mode, as shown
in Figure C-1. This optimization inadequacy might be a result of interference from isobaric
impurities in the injected solvent, which simultaneously entered ESI compartment with RK
without column separation.

Thus, an analytical column was used to replace the connection union so as to
chromatographically separate RK from possible solvent impurities and to facilitate
targeting at the 107 m/z ions. Under isocratic elution with 28% B, RK could be timely
eluted out at around 1 min with adequate separation from the background impurities, with
one optimization cycle (five injections) finished within minutes. The optimization
procedure using column was shown in Figure B-3 and the corresponding key parameters
were listed in Table C-1. This led to improved optimization efficiency as shown in Figure
C-2. The eventual optimization result was FV at 130 V and quantifier ion at 77.1 m/z under

CE 25 eV.



214

< | SIM —>j= 2SIM —}~ 3Pl —~<= 4MRM >|=— 5P —

/
a | — Y a - l

130 C
e 110 g cn 2% N
‘\ /Oll E | 150 / -T
zoom in g :‘—j 9 2
> | ’/ 1 ! u\ / =)
w \\ / dwell \ F §
\ / time \ <
/ \\ .
\\ ’ 70 \\ //,/
W/WWUWWM 0g- " _______l__
1

Figure B-3. Real time optimization chromatograms of raspberry ketone (RK). (A),
chromatographic overview of five consecutive injections and scanning mode; (B), zoomed-
in peak of RK in the first SIM injection; (C) zoomed-in data points (red dots) showing
varied signal counts under different fragmentor voltage (numbers). x-axis was time and y
-axis signal counts and not shown for clarity. The corresponding settings were shown in
Table C-1. Notice the ‘sawtooth-like’ peak curve and “filling” effect under the peak curve
due to Acounts, which indicated differences in sensitivity of signal counts according to the
given varying parameter. Also notice the high counts and low S/N in product ion (PI) scan,
compared with the low counts and high S/N in MRM.

3.1.3. Optimization of ESI

Unlike most compounds that get ionized remaining intact in the ESI, the intense in-
source fragmentation as well as the moderate volatility of RK required the ESI settings to
be particularly optimized to achieve the optimal sensitivity. Fractional factorial design was
applied to optimize and evaluate the significance of different ESI setting variables and

interactions involved, and to reduce trial numbers without losing essential information [14].
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The conditions used in the fractional factorial design were included in Table C-2. The
function using factor codes was established as Y =-15.56X; + 23.94X, - 2.69X; + 12.44X,
- 13.69X;5+ 17.31X6 +42.81X; - 36.06X, X, + 19.56X,X; - 15.81X,X, + 306.69,R*=0.9722,

and adjusted R?>=0.9166. The influence and interactions among the seven ESI parameters
are schematically depicted in Figure B-4. Among the gas-related parameters, S/N was

most effectively modulated by changing the temperature and flow rate of drying gas and
meantime also fine-tuned by others. When the drying gas flow rate was low, simultaneous
elevation in drying and sheath gas temperature and nebulizer pressure significantly
increased S/N presumably by increasing the evaporation of solvent in and thus RK
desorption from the electrosprayed aerosol. At higher drying gas flow rate, in contrast,
optimal S/N could be achieved by reduction in both drying gas temperature and nebulizer
pressure. Change in sheath gas temperature had little impact on S/N when the drying gas
flow was high. Sheath gas flow was found to be the least important factor with a slight
negative impact on S/N. The two voltage settings, nozzle and capillary voltage both had
noticeably positive impact on S/N, especially the former being the single most influential
in all seven parameters. Higher nozzle voltage beyond the experimented upper bound only
generated minor improvement in S/N. Considering all factors collectively, the optimal
setting for all seven parameters were determined as drying gas at 250°C with a flow rate at
13 L/min, nebulizer at 25 psi, sheath gas at 300°C with a flow rate at 8 L/min, capillary

voltage of 3000 V and nozzle voltage of 1500 V.
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Figure B-4. Impact of ESI settings to signal/noise ratio based on fractional factorial design
model. Upward arrows indicate increase in S/N when the corresponding setting increases,
and downward arrows indicate increase in S/N when the setting is tuned down. Circled
cross indicates negligible influence. Arrows at the plot center indicate direction of vertical

gliding of the entire plot when the given variables increase. Arrows at the two sides indicate
independent shifting of separated data points. Temp is short for temperature.

3.1.4. Optimization of other settings

The two most commonly used mobile phase modifiers, formic acid and acetic acid,
were found to have important impact on instrumental performance. Acetic acid at 0.1%
gave the best S/N, and a higher concentration at 0.2% led to marginal reduction in S/N.
Addition of formic acid resulted in lower S/N than acetic acid at the same concentrations.
Particularly, formic acid at 0.2% led to nearly two times reduction in S/N than 0.2% acetic

acid. Mobile phase without modification with formic or acetic acid resulted in high



217

background and low signal response and thus the lowest S/N. Therefore, 0.1% acetic acid
was selected as the optimal mobile phase modifier.

The quadrupole resolution setting defines broadness of the ionic filtration window.
Quadrupole resolution set in “unit”, filtration window of 0.7 Da wide, was found to give
higher S/N than resolution in “wide”, which had a filtration window of 1.2 Da wide, by
reduction of background noise. Cell accelerator voltage (CAV) was the voltage gradient
applied to the collision cell to increase drifting velocity of ions traversing the collision cell
and hence to prevent stalling of ions in collision cell and cross-talk between MRMs, the
latter being a phenomenon of one ongoing MRM transition getting “contaminated” by
product ions produced by the last transition. The range CAV adjusted was from 4 to 8 V,
and comparable S/N ratios were obtained. CAV was then set to 5 V. Delta EMV was the
extra voltage applied to the detector and adjusted as the last resort for fine tune of sensitivity.
S/N increased by around 20% with the elevation of Delta EMV from 10 to 20 V, reached
its maximum at around 30 £10 V, and then decreased slightly and plateaued at higher Delta

EMV. Accordingly, the optimal Delta EMV value was set at 30 V.

3.1.5. Optimized method and validation

The optimized method was summarized as below. For the UHPLC part, water with
0.1 % acetic acid was used as mobile phase A, and acetonitrile with 0.1 % acetic acid was
used as mobile phase B. The flow rate was 0.4 mL/min. The gradient started at 28% B,
held for 1.2 min, then increased to 100% B at 1.3 min and held for 1 min before returning
to initial conditions. Eluent between O to 0.8 min and after 1.2 min was directed into waste.

The column was equilibrated with 28 % B for 1.5 min between injections. The column was
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thermostatted at 30 °C. The injection volume was 3 pL. For the QqQ part, the ESI featured
a setting of drying gas at 250°C with a flow rate of 13 L/min, nebulizer at 25 psi, sheath
gas at 300°C with a flow rate of 8 L/min, capillary voltage of 3000 V and nozzle voltage
of 1500 V. The precursor ion was 107 m/z with FV at 130 V, and product ions were 77.1
m/z with CE of 25 eV as the quantifier ion. Dwell time was 30 ms. The quadruple resolution
was “unit”. CAV was at 5. Delta EMV value was +30V. Representative MRM
chromatograms of standard solution of RK are shown in Figure C-3.

The validation result of the method as summarized in Table B-2 shows excellent
accuracy and precision for quantification. The LLOQ was 2 ng/mL or 6 pg injected on
column and was low enough to allow for detection of trace level of RK in fresh raspberries
following routine analysis. The linearity range had three orders of magnitude, allowing for
detection of samples with large dynamic range of content of RK. Accuracies of all QC
levels were less than 20% off the expected value. Intra-batch precision was excellent for
MP and HLOQ), with all less than 3% deviation, and precision at LLOQ was below 15%.
Inter-batch precision as expected showed higher deviation but all below 18% for the three

levels validated.

Table B-2. Validation of method for quantification of raspberry ketone.

LLOD LL
© oQ Linear range (ng/ml) Calibration curve R?
(ng/ml) (ng/ml)
0.9951
097° 1.95°¢ 1.95~998.90 Y=33.380 X + 29.634 9?5
Accuracy (%)* Intra-batch precision (%) Inter-batch precision (%)
i i HL
50% level 100% level 21233 + LLOQ MP  HLOQ : LLOQ MP QO

102.7 101.7 116.9 13.8 1.6 2.8 17.6 8.6 8.3
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Quant, quantifier ion; LLOD, low limit of detection; LLOQ, low limit of quantification;
MP, middle point of linearity range; HLOQ, high limit of quantification. °, LLOD and
LLOQ were acquired with 3 pL injection volume, corresponding to 2.91 pg and 5.85 pg
injected on column, respectively. *, the percentage levels for accuracy refers to the
percentage of expected RK concentration in the QC sample. #, R? was calculated with 1/x
weight.

3.2. RK Fragmentation behavior

The fragmentation pathway of RK could be rationalized as shown in Figure C-4A.
The intense in-source fragmentation of RK could be favored by formation of highly stable
fragments with extended conjugation. A possible mechanism started with protonation on
the carbonyl site due to its high electronegativity, which triggered electron delocalization
for structure rearrangement. This resulted in the cleavage of 3 bond, a neutral loss of
propen-2-ol, and migration of the positive charge to the fragmental ion of 107 m/z which
had a formula of C;H,;0O* suggested by high-resolution MS (Figure C-4B) with a proposed
conjugated quinone-like structure [15, 16]. The precursor ion 107 m/z further experienced
net loss of CH,O in the collision cell to form ion 77 m/z with formula of CsHs* (Figure
C-4C) [15]. The positive charge in the product ion was stabilized by the conjugated double

bonds. The identities of major fragments were further confirmed by HR-MS.

3.3. Quantification of RK in raspberries

Most published studies related to RK analysis can be dated back to early 1990s, with
a broad concentration range reported in raspberries. RK levels were commonly reported in
the range of 10 ~700 ug/kg fresh weight (FW) [17, 18], yet one was reported to be up to
4000 pg/kg FW [2]. In this study, fresh raspberries labeled as certified organic or non-

organic products were purchased from four different local supermarkets, and cultivated
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berries at different stages of maturation were harvested from two local farms. RK was then
extracted and quantified. The contents were also found to be divergent, ranging from 10 to
600 pg RK/kg FW, which was within the typical range as previously reported [17, 18]. The
RK content levels detected are summarized in Table B-1. Representative chromatograms
of RK in the raspberry extract are shown in Figure C-3. There was a significant difference
in RK concentrations among raspberries of the same brand purchased from different
supermarkets. While the objective was not to compare total RK relative to what is ‘best’
but only to ensure the sensitivity of this new method could differentiate the content in
different berry sources, the levels of RK did not bear significantly relationship with the
screened “organic” or “non-organic” products. There is a significant recognized impact by
production and postharvest handling systems, by genetics (e.g. varieties) and seasonal
impacts that would impact fruit quality. A strikingly higher level of RK was found in the
farm berries than those commercially marketed. As hypothesized, the mature berries

contained much higher RK than those only partially mature or artificially ripened.

4. Conclusion

A UHPLC-QqQ/MS method for rapid and sensitive quantification of RK was
successfully developed and validated. In particular, full scan experiment using both ion-
trap MS and QqQ MS revealed severe in-source fragmentation of RK. Potential mechanism
of fragmentation in the ESI and collision cell was proposed for the first time. In view of
the unusual in-source fragmentation as well as high volatility of RK, settings for ESIT were
specially optimized using fractional factorial design, which effectively enhanced the

sensitivity. Further, the findings from this study indicate that RK concentration in
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commercial and farm berries can be vastly different. This discrepancy could be related to
selection process adopted by commercial manufacturers before bringing berries to market.
In this regard, organic labeling has little correlation with RK content. A difference in the
maturity stage, however, is more likely to influence RK content. Late-stage maturity
raspberries were found to have higher RK content, which suggests that RK accumulates
with increasing maturity, and this agrees with earlier reports [1]. One limitation of the
present study is that there is no sensory evaluation of the red raspberry for taste or aroma.
Future work needs to examine the accumulation pattern over a wider degree of fruit
maturation. In addition, there is a need to determine influencing factors of RK contents,

including light and oxidation, source-sink relationships and other environmental conditions.
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Table C-1. Itemized MRM optimization steps for raspberry ketone using MassHunter

Optimizer.
1st injection, SIM, 171 ms/cycle, 5.9 cycle/s
precursor (MS2%) (m/z) ) dwell fragmentor (V)
time (ms)

107.1 25 50

107.1 25 70

107.1 25 90

107.1 25 110

107.1 25 130

107.1 25 150

2nd injection, SIM, 285 ms/cycle, 3.5 cycle/s
precursor (MS2%) (m/z) .dwell fragmentor (V)
time (ms)

107.1 25 80

107.1 25 90

107.1 25 100

107.1 25 110

107.1 25 120

107.1 25 130

107.1 25 140

107.1 25 150

107.1 25 160

107.1 25 170

3rd injection, PI, 526.7 ms/cycle, 1.9 cycle/s
( h[j[rgiglf(:/rz) MS?2 scan range (m/z) scan time (ms) fragmentor (V) CE (eV)
107.1 50 ~ 174.08 124 130 5
107.1 50 ~ 174.08 124 130 16
107.1 50 ~ 174.08 124 130 27
107.1 50 ~ 174.08 124 130 38
4th injection, MRM, 1111.5 ms/cycle 0.9 cycle/s
precursor product ion dwell
(MS1) (m/z) (MS2) (m/z) * time (ms)  regmentor (V) CE(eV)

107.1 109.8 * 25 130 5
107.1 109.8 * 25 130 9
107.1 109.8 * 25 130 13
107.1 109.8 * 25 130 17
107.1 109.8 * 25 130 21
107.1 109.8 * 25 130 25
107.1 109.8 * 25 130 29
107.1 109.8 * 25 130 33
107.1 109.8 * 25 130 37
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107.1 109.8 * 25 130 41
107.1 109.8 * 25 130 45
107.1 109.8 * 25 130 49
107.1 109.8 * 25 130 50
107.1 77.1 25 130 5
107.1 77.1 25 130 9
107.1 77.1 25 130 13
107.1 77.1 25 130 17
107.1 77.1 25 130 21
107.1 77.1 25 130 25
107.1 77.1 25 130 29
107.1 77.1 25 130 33
107.1 77.1 25 130 37
107.1 77.1 25 130 41
107.1 77.1 25 130 45
107.1 77.1 25 130 49
107.1 77.1 25 130 50
107.1 51.1° 25 130 5
107.1 51.1° 25 130 9
107.1 51.1° 25 130 13
107.1 51.1° 25 130 17
107.1 51.1° 25 130 21
107.1 51.1° 25 130 25
107.1 51.1° 25 130 29
107.1 51.1° 25 130 33
107.1 51.1° 25 130 37
107.1 51.1° 25 130 41
107.1 51.1° 25 130 45
107.1 51.1° 25 130 49
107.1 51.1° 25 130 50

5th injection, PI, 150 ms/cycle, 6.7 cycle/s

( h[j[rgglf(:/rz) MS?2 scan range (m/z) scan time (ms) fragmentor (V) CE (eV)
107.1 497 ~52.7 50 130 37
107.1 75.6 ~78.6 50 130 25
107.1 108.3~111.3 50 130 5

Notes: SIM, selected ion monitoring; PI, product ion scan; MRM, multiple reaction
monitoring; CE, collision energy. ¥, the QqQ used in this study was composed in sequence
of a quadrupole (MS1, the first “Q”), a hexapole which functioned as the collision cell (the
small “q”. The hexapole traps ions with higher efficiency than quadrupole and thus
installed as the collision cell in the QqQ in replacement of a quadrupole), and the second
quadrupole (MS2, the second “Q”). In SIM, it was the second quadrupole MS2 that worked
as the essential mass analyzer performing ion filtration while MS1 only functioned for ion

transmission. *, only three product ions out of the designated maximum of four were



226

detected and picked up during the PI scan as the most abundant and consistent product ions.
*, arandom wrong “product ion” picked up from background interference. 7, 51.1 m/z was
detected as a qualifier candidate of RK, but was not detected in another independent study
by high-resolution Fourier transform MS, and was thus not included in the finalized method
due to such inconsistency. Around 5 ng RK was injected on column for SIM and MRM
and 10 ng injected for PI scan.

Table C-2. Fractional factorial design conditions for the raspberry ketone studies and
model results

Experimental condition and results Modeled response

(i(lilzr Stj:;;rd X X X5 Xs X Xe X7  Response | Predicted e(rt;bo)r
1 5 -1 -1 1 -1 1 1 1 237 258 -8.9
2 12 1 1 -1 1 -1 -1 -1 208 212 2.1
3 9 -1 -1 -1 1 -1 1 1 385 387 -0.4
4 16 1 1 1 1 1 1 1 357 339 5.1
5 3 -1 1 -1 -1 1 1 -1 371 369 0.6
6 15 -1 1 1 1 -1 1 -1 333 345 -3.5
7 14 1 -1 1 1 -1 -1 1 373 388 -39
8 8 1 1 1 -1 1 -1 -1 207 225 -8.9
9 2 1 -1 -1 -1 1 -1 1 275 270 1.8
10 6 1 -1 1 -1 -1 1 -1 295 280 5.1
11 10 1 -1 -1 1 1 1 -1 270 275 -2.0
12 7 -1 1 I -1 -1 -1 1 414 403 2.8
13 13 -1 -1 1 1 1 -1 -1 216 194 10.0
14 11 -1 1 -1 1 1 -1 1 411 413 -0.5
15 -1 -1 -1 -1 -1 -1 -1 211 210 0.6
16 4 1 1 -1 -1 -1 1 1 344 339 14

Codes for factors and levels
Level X, X X5 Xu Xs X X7
-1 250 8 25 250 8 1500 500
1 350 13 40 350 12 3000 1500

Signal to noise ratio was used as the model response.
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Figure C-1. Inefficient MRM optimization using connection union as shown by overlaid
chromatograms under MRM (c, d, and e) and SIM (a and b) modes. Analytical column
with 28 % B isocratic elution was used in this experiment to show the background and
potential contaminant peak interference. The SIMs were literally run in MRM mode with
the product ion m/z being the same as that of the precursor with 0 eV collision energy.
MRMs of ¢, d and e showed insignificant improvement in S/N than SIM of b, and SIM b
(Frag=180 V, FV optimized incorrectly) featured higher background noise and lower peak
height than SIM a (Frag=110 V, a voltage empirically selected also with reference to
literature). This suggested an optimization result of either inappropriate fragmentor voltage
or wrong product ions. Notice the huge solvent front peak especially on the green line,

which suggested that impurities from the background might be a source of interference for
optimization without column. Frag is short for fragmentor voltage.
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Frag=130'V, 107.1 ->77.1 m/z, CE=25eV (f) —

Frag= 130V, 107.1 -> 51.1 m/z, CE=37 eV (g)

Frag= 180V, 107.1 -> 77.1 m/z, CE=21 eV (c)

Frag= 180V, 107.1 -> 51.2 m/z, CE=37 ¢V (d)

Frag= 180V, 107.1 -> 79.1 m/z, CE=13 eV (e)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Figure C-2. Overlaid MRM chromatograms under settings optimized by connection union
(c, d, and e) and analytical column (f and g, in bold). The improvement using analytical
column vs. connection union was manifested by the elevated S/N, featuring both increased
peak height and lowered background noise. This improvement was achieved by correction
of the fragmentor voltage from 180 V to 130 V. Products 77.1 and 51.2 m/z in transitions
¢ and d, respectively, were both potentially valid product ion candidates, but 79.1 m/z in
transition e was incorrect. It should be noted that the product ion candidate 51 m/z was not
detected in another independent study by high-resolution Fourier transform MS, and was
thus not included in the finalized method due to such inconsistency. Frag is short for
fragmentor voltage.

0.8 10 1.2 min 0.8 10 1.2 min
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Figure C-3. Representative MRM chromatograms of standard solution of raspberry ketone
with 12 pg injected on column (A) and extract of mature raspberries manually harvested
from Rutgers University Cook Organic garden, New Brunswick, NJ (B).

in-source fragmentation collision induced dissociation
+ OH
0] H
H mco /L\
e S HO — g
HO HO + A
. H CH,0
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8
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Figure C-4. Raspberry ketone (RK) fragmentation pathway proposed and accurate mass
measurement by Fourier-transform mass spectrometry. A, the proposed fragmentation
pathway of RK. B, mass spectrum acquired by full scan (50 ~ 180 m/z). C, mass spectrum
acquired by product ion scan with 107 m/z as the precursor and collision energy of 28 eV.
Mass accuracy (ppm) was calculated as (m; —m,)/m x 10, with m; being the measured mass
and m, the calculated or accurate mass.
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APPENDIX D. RASPBERRY KETONE METABOLOMICS

UHPLC-QqQ-MS/MS method development and validation with
statistical analysis: determination of raspberry ketone

metabolites in mice plasma and brain
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Abstract

Raspberry ketone (RK) (4-(4-hydroxyphenyl)-2-butanone) is the major compound
responsible for the characteristic aroma of red raspberries, and has long been used
commercially as a flavoring agent and recently as a weight loss supplement. A targeted
UHPLC-QqQ-MS/MS method was developed and validated for analysis of RK and 25
associated metabolites in mouse plasma and brain. Dispersion and projection analysis and
central composite design were used for method optimization. Random effect analysis of
variance was applied for validation inference and variation partition. Within this
framework, repeatability, a broader sense of precision, was calculated as fraction of
accuracy variance, reflecting instrumental imprecision, compound degradation and carry-
over effects. Multivariate correlation analysis and principle component analysis were
conducted, revealing underlying association among the manifold of method traits. R
programming was engaged in streamlined statistical analysis and data visualization. Two
particular phenomena, the analytes’ background existence in the enzyme solution used for
phase II metabolites deconjugation, and the noted liability of analytes in pure solvent at 4 °C
vs. elevated stability in biomatrices, were found critical to method development and
validation. The approach for the method development and validation provided a foundation

for experiments that examine RK metabolism and bioavailability.
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1. Introduction

4-(4-hydroxyphenyl)-butan-2-one or raspberry ketone (RK) is the major aromatic
compound responsible for the characteristic flavor of red raspberries (Rubus idaeus) [1],
and has been widely used for long time as a generally recognized as safe (GRAS) flavoring
substance in foods, perfumery and cosmetics. Due to the low natural concentration (0.01~4
mg/kg fresh weight in raspberries), RK is mainly produced by chemical synthesis.

In recent years, RK has received growing attention for its potential health benefits.
RK was shown to reduce lipid accumulation in adipocytes [10, 19], prevent high-fat diet
induced obesity in mice [7] and associated nonalcoholic steatohepatitis in rats [6]; and also
alleviate ovariectomy-induced obesity in rats [19]. Apart from anti-obesity related benefits,
other functions have also been reported, including antiandrogenic activity in the human
breast cancer cells [20]; depigmentation activities for zebrafish and mice [21]; anti-
inflammatory properties in E.coli lipopolysaccharide-stimulated macrophages [22]; as well
as cardioprotective action against isoproterenol-induced cardiotoxicity in rats [23]. Of the
many health benefits reported, the anti-obesity effects have attracted most attention, and
there has been an increased demand for RK as a food supplement for weight loss in recent
years, despite a lack of pharmacokinetics and toxicological data. As such, it is imperative
to examine the in vivo bioavailability and toxicity to ensure safe human consumption at the
labeled doses in commercial products [4, 24].

In contrast to the abundant number of studies reporting RK’s biological effects,
studies on RK metabolism are scarce. In a pioneering work conducted in the 1980s,
Sporstgl et al. studied RK metabolites in the urine of rats, guinea-pigs and rabbits using

GC/MS [25]. After enzymatic deconjugation, 13 metabolites were identified, with the
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reduction product 4-(4-hydroxyphenyl) butan-2-ol or raspberry alcohol (ROH) being the
predominant one; other metabolites were derived from modification of RK side chain
and/or aromatic ring through hydroxylation, methylation, carboxylation and/or
decarboxylation. Apart from this landmark study, there has been no other related study
reported.

To comprehensively study RK metabolism, pharmacokinetics and bioavailability, and
to prepare for translation into clinical trials to assess RK safety / toxicity at the
recommended intake amount in RK-enriched supplements, this work focused on
development and validation of an ultra-high performance liquid chromatography with a
triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS) method for targeted
determination of RK and its metabolites in plasma and brain specimens from mice. In this
work, RK and 25 associated metabolites were investigated which were selected based on
the potential RK biopathway(s) and structural similarity to RK [26]. Building upon modern
MS/MS methodology, improved statistics and visualization tools with streamlined analysis
using R programming were applied for method performance evaluation and validation

results interpretation.

2. Materials and Methods

2.1. Chemicals and reagents

Standards of analytes (analytical or reference grade) used included RK (1), and its
phenolic  aldehyde  derivatives, 4-(4-methoxyphenyl)-2-butanone (RK-Me) or
anisylacetone (2), benzylideneacetone (PhLiAce) (3), 3, 4-dihydroxybenzylideneacetone

(3,4-DHPhLiAce) (4), vanillylacetone (VLAce) (5), vanillylidenacetone (VLiAce) (6);
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phenolic alcohol derivatives, ROH (7), 2-(4-hydroxyphenyl) ethanol or tyrosol (4-HPE)
(8), 2-(3, 4-dihydroxyphenyl) ethanol (3, 4-DHPE) or 3-hydroxytyrosol (9), 4-
hydroxybenzyl alcohol (4-HBOH) (10); phenylpropionic derivatives, 3-(3-hydroxyphenyl)
propionic acid (3-HPPA) (11), 3-(4-hydroxyphenyl) propionic acid (4-HPPA) (12), 3-(3,
4-dihydroxyphenyl) propionic acid (3, 4-DHPPA) (13), 3-(3-methoxy, 4-hydroxyphenyl)
propionic acid or dihydroferulic acid (DFA) (14); cinnamic acid derivatives, 4-
hydroxycinnamic acid (4-HCA) or p-coumaric acid (15), ferulic acid (FA) (16), caffeic
acid (CA) (17); phenyl acetic derivatives, 3-hydroxyphenylacetic acid (3-HPAA) (18), 4-
hydroxyphenylacetic acid (4-HPAA) (19), 3, 4-dihydroxyphenylacetic acid (3,4-DHPAA)
(20); benzoic acid derivatives, 3-hydroxybenzoic acid (3-HBA) (21), 4-hydroxybenzoic
acid (4-HBA) (22), 3, 4-dihydroxybenzoic acid or protocatechuic (3, 4-DHBA) (23),
vanillic acid (VA) (24), homovanillic acid (HVA) (25), and hippuric acid (HA) (26). In
addition, trans-cinnamic acid-d; (27) and 4-hydroxybenzoic-d, acid (28) were used as
internal standards (ISs). The chemical structures are presented in Figure D-1. The
aforementioned standards, and ascorbic acid and 3-glucuronidase (from limpets (Patella
vulgate), 285,000 units/mL in contamination with sulfatase) were purchased from Sigma-
Aldrich (St. Louis, MO), except that standards of 4 and 14 from Alfa Aesar (Tewksbury,
MA), 7 from USP (Rockville, MD), 16 and 23 from ChromaDex (Irvine, CA). Other
reagents including methanol, ethyl acetate, glacial acetic acid, formic acid, concentrated
hydrochloric acid and LC/MS grade water and acetonitrile were obtained from Fisher
Scientific (Pittsburgh, PA). Associated reagent solution preparation for various purposes

refers to the supplementary information.
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2.2. Instrument

Analytical work was performed using an Agilent 1290 Infinity II UHPLC coupled
with 6470 triple quadrupole mass spectrometry (QqQ-MS/MS) with an electrospray
ionization (ESI) source (Agilent Technologies, Santa Clara, CA). Nitrogen from a Parker
Balston NitroFlow60NA nitrogen generator (Lancaster, NY) was used as the nebulizer gas
and collision gas. Chromatographic separation was achieved using a Waters Acquity UPLC
BEH C18 column (2.1 x 50 mm, 1.7 um) with a VanGuard Acquity C18 guard column

(2.1 x 5 mm, 1.7 pm) (Milford, MA).

2.3. Mice plasma and brain collection

Seven-week old male C57BL/6J mice (Jackson Laboratory, Bar Harbor, ME) fed on
polyphenol-free diet were deeply anesthetized with isoflurane 5% with oxygen for blood
collection by cardiac puncture. Plasma was acquired after blood centrifugation at 3000 xg
for 10 min at 4 °C, and then acidified with 2% formic acid to a final concentration of 0.2%
(v/v). After cardiac puncture and exsanguination, and perfusion with 0.9% saline, brains
were excised, homogenized with 0.2% formic acid (1:2, w/v) and snap frozen in liquid
nitrogen. Plasma and brain were stored at -80 °C before analysis. All protocols involving
animals were approved by the Institutional animal Care and Use Committee of Rutgers

University (OLAW #A3262-01, protocol #13-001).
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2.4. Sample preparation

For preparation of reference standard solution, about 15 mg of each standard was
accurately weighted and prepared in 25 mL 70% methanol with 0.1% formic acid as stock
solution, as then separately aliquoted into 1.5 mL. Eppendorf tubes and stored under -80°C.
Stock solutions for each compound (except internal standards (IS)) after conditioned to
room temperature were mixed as a standard cocktail, and then diluted with 60% methanol
with 0.1% formic acid to desired concentration (~200 ng/mL) for instrumental optimization,
or diluted with the same solvent into serial concentration (0.1 ng/mL ~ 6 pg/mL) with
spiked IS (~100 ng/mL) for calibration. For [(-glucuronidase solution (~2000 U)
preparation, the original enzyme extract was diluted by 40 times using NaH,PO, buffer
(0.4 mol/L, pH 5.0).

For analyte extraction from biomatrices, an 100 uL aliquot of plasma was thawed on
ice followed by adding 5 uL of each IS solution (ca 2 pg/mL), 300 L of 0.4 M NaH,PO,
buffer (pH 5.4), and 50 uL of (3-glucuronidase solution (~2000 U diluted in NaH,PO,
buffer). The cocktail was gently mixed, briefly purged with nitrogen to exclude headspace
oxygen, and then incubated at 37°C for 45 minutes. The analytes were then extracted with
500 pL of ethyl acetate, vigorously vortexed for 10 sec, sonicated in ice water for 10 min,
and then centrifuged at 5000 xg for 5 min. The supernatant was collected in a glass tube
containing 20 uL. 2% ascorbic acid methanol solution. The precipitate was then extracted
in like manner for two more times. The pooled supernatant was dried under a gentle stream
of nitrogen. The residue was reconstituted in 100 uL of 60% methanol containing 0.1%
formic acid, centrifuged at 16, 000 xg for 10 min before LC-MS analysis. The brain

samples were processed in similar procedure as plasma, except the following: the tissue



238

amount used was 500 pL; enzyme solution amount used was 100 uL; after incubation, 100

uL of 4% HCI was added before extraction to denature and precipitate proteins.

2.5. UHPLC-QqQ-MS/MS method

For chromatographic separation, water with 0.1% acetic acid (AA) was used as mobile
phase A and acetonitrile with 0.1% AA as phase B, with a flow rate at 0.45 mL/min. The
gradient elution (noted as B%) was 5% at 0 min; 10% at 0.5 min; 28% at 3.8 min; 40% at
3.9 min; 55% at 5.5 min; 80% at 5.6 min and then held isocratically until 6 min. The column
was equilibrated for 2.5 min before next injection. The column was thermostatted at 30 °C
and the autosampler maintained at 4°C. The injection volume was 3.5 pL.

For MS analysis, a further statistical analysis was conducted upon prior reported RK
ESI 2/;3 fractional factorial design [27]_as preparation for ESI optimization of all other 25
analytes. Dispersion analysis was conducted to investigate instrumental stability operated
at each parameter level, and projection analysis was performed to select and confirm
important ESI parameters for further optimization [28] . Following that, drying gas
temperature (DGT), drying gas flow rate (DGF) and nozzle voltage (NV), confirmed as the
most important ESI parameters, were then further tuned for all analytes, particularly with
DGT and DGF optimized collectively by central composite design (CCD). The final ESI
conditions were set at DGT 200°C, DGF 12 L/min, and NV +1500 / -1000 V; as to other
ESI settings, nebulizer pressure at 30 psi, sheath gas temperature at 250 °C with its flow
rate at 8 L/min, and capillary voltage at + 3000 V/ - 2500 V. The MS was operated in
dynamic multiple reaction monitoring ({AMRM) mode with switching polarities, optimized

as previously described [27, 29].
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2.6. Method validation

The validation procedure followed U. S. Food and Drug Administration guidelines
and relevant literature [30, 31] with necessary adaptation. For accuracy assessment, quality
control samples (QCS’s) were prepared by spiking blank biomatrices with standard mixture
containing all analytes at four levels (A, 2000 ng/mL; B, 1000 ng/mL; C, 150 ng/mL; and
D, 15 ng/mL, concentration in final processed samples to be injected), each level with five
replicates. All QCS’s were injected in randomized order, with duplicate injections spaced
by ca 10 hours in a single sequence as a simulation of a typical batch time. Accuracy was
computed following the rule of error propagation and random effects analysis of variance
(RND-ANOVA). Repeatability was calculated as the mean square error associated with
RND-ANOVA variance partition. Validation of matrix effects, recovery and processing
efficiency, adapted from the approach by Matuszewski et al. [32, 33], comprised two-level
(B, ©) spiking post-extraction (vs. spiking pre-extraction for accuracy validation) and
spiking in pure solvent, with calculation following the error propagation rule. Method
validation results and associated statistical quantities were then subjected to multivariate
correlation analysis and principle component analysis (PCA) [34]. Associated formulas are

shown in Supplementary Material.

2.7. Statistics analysis
Microsoft Excel (version 16.16.5), Design Expert (version 8.0.6) and R (version

1.1.463) were used for statistical computation [35, 36]. The R script constructed for data
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analysis refers to https://yuanbofaith.github.io/RK LCMS/. The original data from which

the script reads refer to the Supplementary Material.

3. Results and Discussion

3.1. ESI dispersion and projection analysis

Dispersion analysis upon a prior reported RK-oriented ESI 27,3 fractional factorial
design [27] revealed in this work higher measurement volatility at the elevated level of
nebulizer pressure as well as sheath gas flow, and thus the lower levels for both settings
were used in the developed method of this work. The magnitude of other ESI settings did
not exert noticeable impact on performance consistency (Figure E-1). In addition, the prior
work reported the large effects of DGT, DGF and NV, yet without considering what is
known as the alias structure, i.e., the apparent effects of investigated factors were in fact
confounded or “contaminated” with other effects (see Supplementary spreadsheet
“Fractional factorial”). To clear-up the alias effects, projection analysis was conducted in
this work by collapsing the original design into two replicates of 23 full factorial design of
DGT, DGF and NV (Table E-1, Table E-2 and Table E-3) while treating other ESI factors
as background noise, and indicated more than 70% accountability for total data variability
from the three factors alone. As such, the three factors were subjected to further

optimization for all metabolites investigated.

3.2. DGT and DGF optimization by CCD
As DGT and DGF presented strong interaction while negligible interaction with NV

as suggested by projection analysis, DGT and DGF were collectively optimized using CCD
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(unlike NV tuned independently), with CCD design displayed in Table E-4. A quadratic
model was used to approximate signal responses of all analytes, shown in Figure D-2-A-
C. Generally, higher signal response was favored by increased DGF, and thus 12 L/min
was selected as the final DGF. For DGT, special consideration was given to VLAce and 3-
HPAA, both of which showed highest susceptibility to DGT but in an opposite manner,
i.e., one was favored at low level while the other at high end. As such, 200°C was selected
as the DGT. Modelling efficiency was strongly associated with measurement consistency,
which was manifested by the degree of scattering of CCD center points (repetitive
measurements at the middle level of the tested factors), as shown in Figure E-2. Compound
degradation (Figure E-3) over the period of CCD batch time was later found to be the
cause of measurement inconsistency, accounting for 75% of modelling inadequacy, as

shown in Figure D-2-D.

3.3. dMRM transitions

The dMRM parameters are displayed in Table D-1. Generally, phenolic acids showed
higher sensitivity under negative than positive polarity by easy deprotonation of the
carboxylic group. Most product ions were formed by subsequent loss of the carboxyl group
by 44 Da, in agreement with prior research [37]. Other product ions were generated by loss
of a methyl group for the precursors with methoxy group (e.g., VA, 167 -> 152 m/z; FA,
193 -> 178 m/z), cleavage of a phenyl bond (e.g., HA, 178 -> 77 m/z) or rupture of the
aromatic ring (e.g., 3-HPAA, 151 - > 65 m/z). Phenolic aldehydes and alcohols generally
exhibited higher sensitivity under positive polarity, and in-source fragmentation was

noticeable for many such compounds. RK and its respective reduced and methylated
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derivatives ROH and RK-Me, for example, had intense in-source fragmentation by
cleavage of the beta-bond (or the equivalent benzyl bond) [27], and 4-HPE featured in-
source dehydration. Fragmental ions produced in the ESI chamber if predominant were
selected as the precursor ions for MRM transitions. Such in-source phenomenon rendered
analogues RK, ROH and 4-HBOH spectrometrically undistinguishable by having identical

MRMs, but they were efficiently resolved chromatographically.



243

“¥ JO IopIo SuISeaIdap Ul paguelre ore spunodwo)) “sTxe-A swes oy} a1eys (g)
pue () s10[d “Arqeis punodwod i ASUIdIIIe [9pot JO UOTR[RII0d ) s1uasaid () 10[J “s10[d 101u0d AR uasaIdaI smoys
(D) 1014 “-¥ paisnipe pue (;3]) UONLUIULIRIOP JO JUIIIIJJI0D [opowt oy} sAe[dsIp (g) 10[d “$199JJ° oneipenb Surpuodsarrod oy ‘gg
PUR YV $S199]]9 UOTORIANUI ) ‘qV ‘A[oAN0adsaI1 ‘g pue ‘Y SI010] JO $199]J° UTeW Y] 0] I9JI { puR Y SISN9[ ‘Suoneiouue U]
J10,] “SIUQIONJJR0d WiId) Jo sanfea d o) smoys (V) 10[J ‘T[opouwr oneipenb (D)D) udisop aysodwod enuad Jursn (g 1030e] . IO()
91eI Mo[J sed Sutkip pue (Y 10100 ‘ [O(]) 2Imeraduwd) ses Sutkip ([SH) uonezmuol Aeidsonosfe Jjo uonezrundQ *g-( 2In31

00 G0 050 G20 O
B 24 pajsnipe Y|
Ayisuajul asuodsal paziewioN . .
(9.) (v) @1nyesadwiay Aoauaioyya |apow (anjea d) 1601
0SZ 002 0S5}  0SZ 00Z OSh  0SZ 002 OS  0SZ 00Z OSh ors0o0o0 0 W e & ¥~ S 9
v : [ [ ' ' ! ] ] ! ! ! o e (wmmv juaoLye00 adojs uonepesbaq FvO
-8 S5 g™ |vavas 19 0 o~ oz oe- LVVdHa-v'e
| 13
oL imml [ | SEveE "M J v FvaHa-v'e
! L 60l x6= 4 I e
ml v g <" S§L0=28 vaugfe |¥0 vddHd=v € .
et mll [ (8wva v vfave | o [9OVIUdHA-b'E
! L B |VYIMUAHG oL _
3dHa-t's VOH-¥ VH l w9 vary L7 o0 S vaH-¥
mill - gvavas!v e 2 ¥ 2 rvd
— "
\ E—— il | (eswv | g M,\:w@v,m 2 rvaH-e
\ mEl | EVELY | -80 ™ L eoyIA
mll - |aswv g} 9|menr o a k40
z i gwvgg v | Lo1 F3dHa-v'e
s dil | ova | v FVOH-Y
VddH-¥ HOgH-V m l s\ m v LVAH m
® [ — aav vvi v FVYH .m
- . 1
T i avag 18vvyv rVddH-v  §
3 vy g g FHogH-v &
=] L —
3 s gwa ! g v VVdH-€
i—— aw ' g v FVVdH-Y
L] VddH-¢ VA I vagd | v e o
[ gawy, 9 v FVddH-€
[ avEs | g FVA
] g b av  wv LOOVTA
] vy ;% v g L 3dH-b
TR av . g8 vwv v € LN
s v v ag g Feovriud
| —1 - ' 1
3dH-V SIN-MH 3YINud HOH 0 I m vy - av wg g FHoH <




244

34. Validation results

All compounds presented ideal limit of quantification down to picograms injected on
column, with linear dynamic range spanning across over three orders of magnitude. The
majority of compounds including RK had accuracy achieved at 80~120 % in both plasma
and brain at four different spiked levels, though for certain compounds accuracy was more
inflated or underestimated. Repeatability was mostly below or around 5%, with brain
samples presenting more data variability than plasma. Matrix effects, recovery and
processing efficiency validated at two spike levels was generally restricted within
80~120%, though brain samples imposed higher challenge to recovery than plasma, and
that accuracy-aberrant compounds showed similar drifting behavior with respect to these
three validated aspects. Detailed results are shown in Figure D-3 and Figure E-4, and

Table E-5 down to Table E-9.
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Table D-1. Compounds and dynamic multiple reaction monitoring (dAMRM) parameters of

the developed method.

Elution Compounds MW RT Pol ; Precursor  Frag ; Quantifier CE ; Qualifier CE ratio ; ]?i‘:ell IS
order (Da)  (min) E (m/z) V) E (m/z) V) E (m/z) V) E (ms)
1 4HBOH 124 101 | + | 1070 450 i 770 24 1 - - - 138 |1
2 34-DHBA 154 102 | - 1530 860 109.1 12 1081 28 25 31 |1
3 34-DHPE 154 106 | - @ 153.1 850 1 1232 14 1 1224 23 6 ' 31 1
4 34-DHPAA 168 1.9 | - 1670 600 123.1 5 - - - 27 |1
5 4-HBA 138 143 | - 1370 740 93.1 16 - - - 25 |1
6 4-HPE 138 142 | + 1211 600 77.1 24 512 44 50 23 |1
7 HA 179 156 | - @ 1781 800 @ 1341 8 1 772 16 37 1 22 |1
8 4-HPAA 152 161 | - 1510 700 107.2 0 - - - 21 |1
9 IS-1 142 14 | - 1411 730 97.1 16 69.1 36 8 32 | -
10  34DHPPA 182 162 | - 1811 800 137.1 9 592 13 2 21 |1
11 VA 168 167 | - 1 1670 80 1520 12 ¢ 108.1 16 30 1 21 1
12 CA 180 169 | - 1790 880 135.1 16 89.1 36 2 21 |1
13 3-HBA 138 18 | - 1370 880 93.1 8 - - - 21 |1
14 HVA 182 185 | - 1811 580 137.1 4 122.1 2 7 21 |1
15 3-HPAA 152 186 | - i 1510 550 ¢ 107.1 4 1 652 28 6 1 21 1
16 4-HPPA 166 217 | - 1651 780 59.1 8 121.1 8 27 2 |1
17 4-HCA 164 227 | - 1630 800 119.1 12 93.1 36 8 23 |1
18 DFA 196 244 | - 195.1 100 136.1 11 1211 27 39 23 |2
19 DHPhLiAce 178 248 | + ! 179.1 870 1430 16 ¢ 1150 28 52 24 |2
20 3-HPPA 166 254 | - 165.1 88.0 121.1 8 119.1 12 14 24 | 2
21 FA 194 258 | - 193.1 88.0 134.1 16 178.1 12 66 25 |2
2 ROH 166 279 | + 107.0 130.0§ 77.1 24 512 40 46 30 |2
23 RK 164 301 | + @ 1071 1200 771 21 1 511 37 47 ¢ 35 |2
24 VLAce 194 326 | + 1951 600 137.1 4 - - - 53 |2
25 VLiAce 192 345 | + 193.1 110.0§ 175.1 12 1430 16 82 66 | 2
26 1S-2 155 442 | - 1542 740 110.1 8 822 20 7 108 | -
27 PhLiAce 146 478 | + ! 1471 900 @ 129.1 - - - 119 | 2
28 RK-Me 178 486 | + 1210 110.0§ 78.1 28 771 20 64 168 | 2

For table header abbreviations, MW, molecular weight; RT, retention time; Pol, polarity;
Frag, fragmentor voltage; CE, collision energy; IS, internal standard. Compound
abbreviations refer to 2.1.The column of “ratio” refers to the expected abundance of
qualifier ion relative to the quantifier ion. Each transition was monitored within one-minute
time window. The dwell time was calculated based on dMRM mode, depending on the
width of detection time window and the extent of retention time overlap.
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Spike levels

Spike levels
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3.5. Accuracy inference with RND-ANOVA at spike levels

The following statistical consideration motivated the use of RND-ANOVA for
accuracy validation: a reliable validation may be always favored by preparation of many
QCS (the factor), ideally by an imaginary pool of QCS’s of infinite size (the population),
while in practice the QCS prepared essentially represents only a random sample (a = 5)
drawn from the infinite population, with each QCS being a random treatment or level. With
such experimental limitation in mind, RND-ANOVA was applied to make generalization
or inference to the method based on the random QCS prepared. The RND-ANOV A-derived
accuracy variation was mostly ca 5% higher than otherwise not used (Figure E-5).

Another important function of RND-ANOVA is variance partition. The total variance
of accuracy, by law of error propagation, could be split and attributed to errors respectively
from blank samples (n’ = 3) and QCS’s; and the latter could be further split by RND-
ANOVA and attributed to intrinsic differences in QCS’s (a = 5) and pure measurement
error (n = 2), as shown in Figure D-4 (prior page). The variance attributed to QCS’s
reflected spiking inconsistency and sample inhomogeneity. The variance due to
measurement error mirrored within biomatrix instrumental imprecision, integration-
associated inconsistency, and compound liability during the 10-hour period between
injection repetitions; as injections were made in complete randomized order across

different spike concentrations, such measurement error also incorporated carryover effects.

3.6. Accuracy inference with RND-ANOVA throughout calibration range
While accuracy was routinely validated at several representative discrete

concentration levels, the analyte concentration in an unknown sample in practice could
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reside anywhere across the continuous scale of calibration beyond the validated levels. As
such, RND-ANOVA was applied for accuracy inference across the entire calibration range,
with the mean square error associated with within-level variability substituted by the
pooled accuracy variance across spike levels. The accuracy inference is shown in Figure

D-4 and Figure E-6.

3.7. Repeatability and precision

Repeatability can be conveniently derived from accuracy validation based on the
associated mean square error. Compared with “precision” in literature, which is typically
conducted with multiple injections on the same sample, repeatability takes reduced
repetitions (n = 2) on each sample and subjects the samples across different QCS’s (a = 5)
(variation in QCS’s per se was then partitioned out) with randomized injection order.
Therefore, repeatability validated in this work essentially constitutes precision yet
scrutinized in a more complete context, comprehensively reflecting errors from multiple
sources (see QCS’s measurement error as mentioned above) and better reflects the true
consistency in a real batch analysis. In addition, an “anatomized” analysis of repeatability
appears to suggest an analyte-specific instrumental drifting over the batch time (Figure

E-7).

3.8. Analytical method correlation analysis
The analytical and statistical results validated and computed in this work were
subjected to a comprehensive pairwise correlation analysis to understand the underlying

mechanism of method performance, with an overview presented as a multivariate



251

correlation matrix heatmap in Figure D-5A. Below follows a brief discussion of some key
perspectives.

Accuracy was positively correlated with recovery, which reflects analyte extraction
efficiency; and positively correlated with matrix effects. This mirrors suppression or
enhancement of analyte ionization in the ESI chamber caused by co-extracted biomatrical
compounds and as a result, positively correlated with processing efficiency, which is the
multiplied product of and therefore a reflection of combined effects of matrix effect and
recovery, accounting for 74~84% of accuracy levels in plasma and brain samples (Figure
D-6A). As processing efficiency was calculated based on peak area, it essentially
constitutes the accuracy without use of IS for correction of extraction loss and matrix
effects. As such, the difference between accuracy and processing efficiency reflects the
correction efficacy of IS. To analyze such efficacy, IS correction index is introduced and
defined here as the absolute deviation of accuracy from one hundred percent divided by
such deviation of processing efficiency. Thus, the smaller the index number, the higher
correction power the IS exerts. The IS correction index was positively correlated with
accuracy determined for the brain tissue with about 58% contribution, yet less so in plasma

(Figure D-7).
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Figure D-6. Correlation analysis of validated accuracy mean value and standard deviation
(SD) with recovery (RE), matrix effect (ME) and processing efficiency (PE) (A), and with
endogenous or background concentration in the biomatrices (B). In plot (A), accuracy was
averaged across three spike levels of A, B and C (D the lowest level was not counted due
to high susceptibility to background interference), and RE, ME and PE were respectively
averaged across two levels of B and C. In both plots (A) and (B), linear regression statistics
were calculated based on base-10 logarithmically transformed data.

Accuracy variability was increasingly susceptible to blank concentration at lower
spike concentrations. At spike level of d (15 ng/mL spiked in processed sample) in plasma
and brain matrices, 73% and 90% of increase in the total accuracy variability could be
respectively attributed to error from blank concentration deduction (Figure D-6B). This

effect rendered quantification imprecise at the lower end of calibration range for
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compounds with high concentration in the background, such as 4-HPAA, 4-HBA, 3 4-
DHPAA, HVA and 3-HPAA (100 ~ 700 ng/mL in sample). Interestingly, most of the
background interference was introduced from the commercial (3-glucuronidase solution
(extracted from limpets or Patella vulgata) used for deconjugating phase II metabolites,
while fewer compounds were found truly endogenous in the blank biomatrices. For
example, 3,4-DHPAA and HVA were found at high levels in blank brain matrices yet

lacking in plasma (Figure E-8).
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Figure D-7. Analysis of internal standard (IS) correction efficiency. The correction
efficiency was manifested by the difference between the accuracy and processing
efficiency. Compounds are arranged in numerically decreasing order of accuracy, and
compounds with IS correction index smaller than 0.5 are shaded in light orange color.
Regression statistics were calculated based on base-10 logarithmically transformed data.

Compound (in)stability is another factor with relevant impact on method development
and validation results. Among all analytes investigated, about half featured 2 ~ 36% loss
per hour in pure solvent at 4 °C following a short-term zero-order dynamic model (Figure

D-8A and Figure E-3). In contrast, all compounds presented remarkably elevated stability
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in biomatrices, manifested by the excellent repeatability which also incorporated
compound degradation effects as aforementioned (mostly below 5% error; See Figure E-7
for additional stability analysis based on repeatability analysis and Figure E-9 for a
separate stability experiment). A similar phenomenon was also noted in some earlier
studies [38, 39]. Such (in)stability discrepancy in pure solvent and biomatrices, as a result,
increased and contributed to ca 65% of the apparent variability of matrix effect and
processing efficiency, whose validation involved both pure solvent and biomatrical
samples; but with little impact on recovery, which only involved biomatrical samples
(Figure D-8B). Thus, (in)stability of compounds within a particular biological matrix
could also lead to overestimation of the validated accuracy when calibration is prepared in
neat solvent (Figure E-10, as well as the aforementioned modelling insufficiency in the

ESI optimization.
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3.9. Analytes profile comparison by PCA

All analytes’ profile was compared using PCA with selected key validation
parameters, as shown in Figure D-5-B, C and D. Explaining ca 74% of total variation, the
first two principle components (PCs) reflect the closeness / uniqueness of analytes in
context of their analytical characteristics. In contrast, the loading arrows reflect correlations
among original variables (OAs, the analytical characteristics), i.e., OAs clustered together
are generally positively correlated, those with reverse directions negatively correlated, and
those close to perpendicularity only marginally correlated, agreeing with the correlation
matrix in Figure D-5A. The loadings display the correlation of PCs and OAs and serve as
the gateway to PC interpretation. The associated eigenvectors elements (Figure D-5D),
which are the variance-unadjusted counterpart of loadings, provide a more straightforward
approach for PC interpretation, as the eigenvector elements per se are the exact coefficients
of the linear transformation for PCs’ construction, and directly measures the weight and
functionality of each OA (in presence of other OAs; while loadings measure the weight
ignoring all other OAs by standardizing off the associated variance) in this procedure. As
such, the PCs in this work was interpreted mostly using the eigenvectors as the primary
tool as discussed below.

PCl1 is first and foremost associated with compounds’ neat-solvent liability, expressed
as the zero-order kinetic degradation slope, with a negative sign (Figure D-5D). As such
liability is causally associated with validation performance in terms of accuracy, matrix
effects and processing efficiency as aforementioned, PC1 is therefore also associated with
these validation results yet with a positive sign, but not as much association with recovery

as expected. As such, PC1 essentially constituted the “degradation dimension”. This leads
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to CA as well as 3, 4-DHBA and 3, 4-DHPPA with their high liability sliding to the right
side along the direction of PCI1, while 4-HBOH and 3, 4-DHPE with their somehow
positive slope slightly shifted to the left side.

PC2 is first of all significantly associated with the background level in the biomatrices.
As the background interference propagates to accuracy determination especially at low
levels as discussed above. PC2 is therefore also positively associated with the validated
accuracy. As such, PC2 may be interpreted as the “background interference” dimension.
Following this, 4-HPAA, due to its high background occurrence in enzyme solution, was

found at the very periphery of the PCA plot along the PC2 direction.

4. Conclusion

A UHPLC-QqQ-MS/MS method for RK and 25 analytes identified as RK-derived
metabolites was developed and validated. Design of experiment methodology was applied
for efficient method optimization. Application of RND-ANOVA, a universal correlation
analysis and PCA diagnosis revealed how the multiple parameters contributed to method
performance. Two particular phenomena, the analytes’ background occurrence in the
commercial enzyme solution used for metabolites deconjugation, and the unexpected rapid
degradation of analytes under 4 °C in pure solvent vs. elevated stability in biomatrices,
constituted the essence of the first two PCA dimensions, exerting crucial impact on method
performance. In view of the validation results, the proposed method could serve for studies
on RK metabolism, pharmacokinetics and bioavailability and associated safety / toxicity

evaluation using in vivo models or in clinical trials.
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APPENDIX E. SUPPORTING MATERIAL OF APPENDIX D

Supporting material

UHPLC-QqQ-MS/MS method development and validation with
statistical analysis: determination of raspberry ketone

metabolites in mice plasma and brain
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Validation calculations

Accuracy at a given spike level was calculated as:
AC (%) =(MC - BC)x 100/ SC 1)
S2(AC)(%?) = (S*(MC) + S?(BC)) x 1002 / SC? )
where MC and SC respectively refer to the measured and spiked concentration in quality control samples
(QCS’s), and BC is the background concentration measured in blank matrices. $? denotes the variance, and

S the standard deviation. S? (MC) was calculated using random effects analysis of variance (RND-ANOVA)

as below:
MS, ii(MG Mc,) &
inj = 2.2, ij i) /(an—a)
S “4)
MSy = Z n(MC.—MC.) /(a—1)
S2(inj) = MS,;, S2(QC) = (MSyc — MSy,j) / n 6))
$2(MC) = S%(inj) + $2(QC) (6)

where MS;,, j and MS, respectively refer to the squared mean associated with injection repetitions (n = 2)
and quality control sample (QCS) replicates (a = 5); MC;; refers to the calculated concentration of the ;"
injection (j = 1, 2...n) of the i sample (i = 1, 2...a); MC;., the calculated concentration of the i sample

averaged across injection repetitions; and MC.., the grand mean of concentration averaged across all QCS

and injection repetitions.

Repeatability was calculated as:

RP(%) = S(inj) x 100/ MC.. (N

Matrix effects, recovery and processing efficiency was calculated as below:

RE (%) = PrB x 100 / PoB 8)
S2(PrB)  S2(PoB)
= 9
S?(RE)(%?) = RE? X (——3 e ©)
ME (%) = (PoB — BK) x 100 / NS (10)
_ S2(PoB) + S2(BK)  S2(NS)
S2(ME)(%?) = ME? x ( I T T ) (11)
PE (%) = (PrB — BK) X 100 / NS (12)
_ S2(PrB) + S2(BK)  S%(NS)
S2(PE)(%?) = PE? x ( rb 5K o) (13)

where PrB refers to the peak area of analytes spiked pre-extraction in blank biomatrices (being the same set

of QCS’s used for accuracy validation); PoB, the peak area of analytes spiked post-extraction in blank
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biomatrices; NS, the peak area of analytes spiked in pure solvent (60 % methanol with 0.1% formic acid);

BK, the peak area in blank biomatrices (being the same blank samples used in accuracy validation).
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Figure E-1. Dispersion analysis of prior RK-oriented ESI 27,3 fractional factorial design.
Residuals were calculated based on the reported model. Notice the dispersion effect at
higher levels of nebulizer pressure and of, to a lesser extent, sheath gas flow rate, as
highlighted by the shaded trapezoid. The assumed residual normality was examined by
Shapiro-Wilk test (W = 0974, p = 0.9014) and quantile-quantile plot and considered
satisfied. For experimental levels (-1 / +1) in the prior work, X;, 250 / 350 °C; X,, 8 / 13
L/min; X3, 25 / 40 psi; X4, 250 / 350 °C; Xs, 8 / 12 L/min; Xg, 1500 / 3000 V; X5, 500 /

1500 V.
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Table E-4. Central composite design (CCD) of drying gas temperature (DGT, factor A)
and flow rate (DGF, factor B).

Standard run Design Coded levels Actual levels
order order points A B A (°C) B (L/min)
1 7 -1 -1 200 8
2 6 Factorial 1 -1 300 8
3 5 point -1 1 200 12
4 9 1 1 300 12
""""" s 1144 o0 119 100
6 4 Star/axial 1.414 0 320 10
7 8 points 0 -1.414 250 7.2
8 2 0 1414 250 12.8
""""" o 12 o o 250 1000
10 1 0 0 250 10
11 10 Center 0 0 250 10
points
12 3 0 0 250 10
13 13 0 0 250 10

The other electrospray ionization (ESI) settings were: nebulizer pressure 30 psi; sheath gas
temperature 250 °C, with its flow rate 8 L/min; capillary voltage + 3000 V / -2500 V and
nozzle voltage + 1500 V /-1000V.
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Figure E-2. Scatterplot of fitted vs. actual response of analytes by central composite design
(CCD) quadratic model in electrospray ionization (ESI) optimization. Model coefficient of
determination (R?) is noted at the bottom right corner of each faceted plot. Compounds are
arranged in decreasing order of R2. Notice the increasing dispersibility of center points
(repeated measurements under the same instrumental settings) accompanying the decrease
in R2. Further analysis shows compound degradation (Figure E-3) over the batch time as
the major cause of large dispersion of center points.
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Table E-6. Repeatability error (%) validated for 26 analytes in plasma and brain at four
spike levels A-D.

No compound Plasma Brain
A B C D A B C D
1 RK 3.69 1.69 2.43 3.50 4.67 2.39 5.48 7.01
2 RK-Me 2.70 2.59 2.60 4.46 3.16 1.39 2.67 291
3 PhLiAce 1.66 2.81 1.74 2.70 2.68 1.75 1.82 10.18
4 3,4-DHPhLiAce | 2.31 047 3.95 8.53 2.87 301 2.34 443
5 VLAce 2.66 1.53 2.11 3.13 2.82 291 3.51 3.78
6 VLiAce 1.80 1.82 1.64 3.20 5.13 593 4.58 8.18
7 ROH 2.26 2.13 3.13 5.96 4.23 3.97 4.09 7.48
8 4-HPE 2.38 0.84 1.94 2.52 4.70 4.13 3.10 6.74
9 3,4-DHPE 3.89 1.98 2.01 343 5.44 4.35 2.85 18.44
10 4-HBOH 2.67 1.48 3.69 5.27 5.77 4.12 8.74 23.30
11 3-HPPA 1.11 5.31 2.84 3.28 3.24 3.59 2.08 5.34
12 4-HPPA 2.28 2.25 2.75 2.95 5.18 452 4.02 1147
13 3,4-DHPPA 2.78 3.35 1.21 18.58 5.47 491 9.02 30.80
14 DFA 5.38 1.91 2.82 5.19 3.97 1.81 2.70 3.68
15 4-HCA 2.57 2.40 1.62 3.63 4.83 3.05 2.74 6.36
16 FA 7.92 4.95 4.28 4.72 4.17 2.15 2.22 6.29
17 CA 4.66 3.63 3.33 15.84 6.73 3.85 3.09 6.13
18 3-HPAA 2.61 2.30 2.21 1.99 4.65 4.17 2.06 2.58
19 4-HPAA 2.63 3.23 2.16 2.40 542 5.63 447 6.21
20 3,4-DHPAA 1.84 5.17 2.20 12.11 3.84 2.94 1.87 4.74
21 3-HBA 2.77 1.84 2.17 4.75 4.19 4.50 3.52 2.58
22 4-HBA 1.82 1.84 1.46 1.23 424 2.85 2.04 2.75
23 3,4-DHBA 2.16 1.66 2.13 5.56 4.72 3.98 1.70 5.63
24 VA 2.56 3.31 2.79 3.79 5.66 6.10 1.87 4.72
25 HVA 5.83 2.00 2.47 9.28 7.47 7.01 2.01 1.40
26 HA 1.68 1.95 3.59 7.25 4.29 3.59 2.40 8.22
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Table E-7. Matrix effects (%) validated for 26 analytes in plasma and brain at two spike

levels B and C.

No. compound Plasma Brain
B C B C
1 RK 832+ 18.9 101.9+2.1 88.6 £20.2 1074 +£2.7
2 RK-Me 809+3 823+3.6 95.1+423 882+1.8
3 PhLiAce 942 +3.1 98.8+3.5 108.1£5.1 1058 +3.2
4 3,4-DHPhLiAce 165 +15.8 227.7+28.1 1653+ 143 2183 +£27.1
5 VLAce 107.3+3.9 113.9+2.6 113.1+3.2 114 +2.3
6 VLiAce 1177+ 6.4 1289+5.6 1329+6.2 1399 +4.7
7 ROH 100.2 +4.5 1029 +4 113.7+4.6 110.6 £33
8 4-HPE 89.5+45 87275 83.5x2.1 742+223
9 3,4-DHPE 120.6 +5.9 136.1 +32 93.6+44 102.5+109
10 4-HBOH 939+3.8 94.7+94 95.8+2 94.7+32
11 3-HPPA 103.8 +4.1 107.2 +4.7 1151 +£3.7 120+ 34
12 4-HPPA 105.6 +4.3 111.9+7.3 1158 +4.6 1202+ 6.4
13 3,4-DHPPA 2275+419 2755 +35.7 235.6+42.7 280 +41
14 DFA 123.7+7.7 1417112 1148 +5.5 1231115
15 4-HCA 123.9+7 1464 +113 1454 +7.8 162.7 £ 10.6
16 FA 194.1 £ 25 2549 +44.5 1729 +22 2123 +£372
17 CA 401.6+108.6 71041253 4933 +133.2 738.5 +129
13 3-HPAA 894 +3.1 91.3+6.1 8272 789 +4.1
19 4-HPAA 66.3+5.6 60 = 10.8 614+64 448 +15.2
20 3,4-DHPAA 260.2 + 64.7 4145+ 1447 1979 +515 278.1 £98.7
21 3-HBA 99.5+4.1 102.8 +5.3 112.7+34 111.1x£2
22 4-HBA 935+3.38 935+153 1014 +4.4 932+ 14.8
23 3,4-DHBA 200.5+323 2373 +£562 264.6 £42.6 322 +70.7
24 VA 119 +6.7 131.8+ 115 124 + 6.6 1374 +9
25 HVA 121.6 £ 114 143.6 £ 16.7 85.1+8.3 89.6+ 144
26 HA 99 +33 98.1+94 116.1 +£3.7 113.5+2.2
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Table E-8. Recovery (%) validated for 26 analytes in plasma and brain at two spike levels

B and C.
No. compound Plasma Brain
B C B C
1 RK 947+3.1 88.8+4.6 715+4.7 699+5.6
2 RK-Me 70.1+6.5 63.5+8.3 61.7+7.5 654+47
3 PhLiAce 343+10.7 33.9+8.5 475+8.1 552+5.1
4 3,4-DHPhLiAce 82.8+4.7 69.8 +6.5 735+5 67.8+6.3
5 VLAce 91.7+3.7 86.6+6.3 705+52 708 +£4.2
6 VLiAce 902 +4.7 83.2+7.2 69 +5 66.4+4.8
7 ROH 93+42 908 +5.8 673+3.7 61.8+4.3
8 4-HPE 93.5+4.8 88.6 +8.7 46+2.8 438+32
9 3,4-DHPE 649+24 535+12.4 242+25 20.1+24
10 4-HBOH 623+6.7 62.5+8.7 12712 11.6+3.3
11 3-HPPA 928+3.6 89.7 +6.1 75.6+4.3 725+4.5
12 4-HPPA 933+32 88.5+7.5 723+39 692+64
13 3,4-DHPPA 68.1+49 505+4.5 759+29 699+9.5
14 DFA 922+45 852+6 76.7+34 74.1+6.3
15 4-HCA 87.4+3 922+6.7 55.6+54 623 +4.5
16 FA 789+5 78.8 +8.5 60.6+6.3 643+6
17 CA 74.6+4.5 534+37 57.6+5.5 54.1+38
18 3-HPAA 93.6+3.3 933+6.7 76.1+2.8 81.5+39
19 4-HPAA 1022 +3.1 101.3+73 88.1 +6.1 958+5
20 3,4-DHPAA 56.1+24 395+4.5 69 +5.8 78.1+7.1
21 3-HBA 958+4.2 90.5+59 734+42 748 +5.8
22 4-HBA 999+33 1019+7.8 80.3+5.6 93+39
23 3,4-DHBA 929+38 89.7+10.7 69.6 +4.8 68.8+6.5
24 VA 972+42 91.8+7.8 77 £4.1 72.6+3.7
25 HVA 859+3.1 85+55 82.8+2.8 91+5.1
26 HA 405+2 417 x4 63.6+2.5 62.7+4.3




Table E-9. Processing efficiency (%) validated for 26 analytes in plasma and brain at two

spike levels B and C.

276

No. compound Plasma Brain
B C B C

1 RK 78.8+17.9 903 +4.5 632+14.7 739+6.1
2 RK-Me 56.7+49 52.1+6.5 58.7+6.8 5774

3 PhLiAce 323 +10.1 332+84 513+84 584 +5.1
4 3,4-DHPhLiAce | 136.6+12.5 158.8 +24.3 121.6 £ 13 1479 +£225
5 VLAce 984 +2.6 98.5+7.1 79.7+5.7 80.6+48
6 VLiAce 1062 +5.2 107.1+9.5 91.7+7 929+73
7 ROH 93.1+33 934+62 763 +4 673+53
8 4-HPE 83.7+29 77.1+49 38324 32125
9 3,4-DHPE 782 +4.5 724 +6.7 226+2.6 204+2.3
10 4-HBOH 583+6 585+6.2 12+1.1 103+32
11 3-HPPA 96.3+2.7 96 £ 6.2 87+48 86.7+5.7
12 4-HPPA 984+29 983+74 83.7+43 829+73
13 3,4-DHPPA 154.8 £29.7 1374 +£209 178.8 £33 1959 +£32.7
14 DFA 114 +6 1203+ 125 88 5.5 912+92
15 4-HCA 108 +5.8 133.6+128 80.7+8.6 100.9+9.9
16 FA 153 +20.9 199.7 £40.1 104.7 £ 16.8 136.4 + 26
17 CA 2994 +822 379.2+70.1 283.6 +80.8 396.7+74 .4
18 3-HPAA 83316 838 60.6+2.2 55+5.7
19 4-HPAA 68.9+6.8 64 +19.8 437+9.6 26.6 +21
20 3,4-DHPAA 1459 +£36.2 162.2 +56.1 127.9£322 166.4 +62.5
21 3-HBA 953+2.7 92.6+44 824+44 813+69
22 4-HBA 934+2.8 993+17.9 69.1 +9.1 62.6+21.5
23 3,4-DHBA 186.2 +£29.2 2123 +449 183.2 +£30.6 2158 +472
24 VA 1156 +6 1207+ 112 953+6.1 984 +8.3
25 HVA 1043 +9.5 121.5+15.7 62.7+6.2 584179
26 HA 387+1.7 342+28 73.6+22 69.8 5
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Figure E-4. Two-dimensional density plots of (A) accuracy vs. repeatability, and (B)
recovery vs. matrix effects. All compounds and spike levels validated are displayed. The
marginal barcode-like plots present the corresponding one-dimensional data distribution.
Note that axes are logarithmically scaled.
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Figure E-5. Distribution of numeric difference of standard deviation (SD) of measured
spiked concentration in biomatrices calculated by random effects analysis of variance
(RND-ANOVA) vs. (higher than) otherwise not used (using the ordinary SD formula
instead). The SD of measured spiked concentration in biomatrices are the major constituent
of accuracy variability in most cases (refer to prior chapter Figure D-4).
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Figure E-6. Accuracy inference across linear dynamic range (LDR) using random effects
analysis of variance (RND-ANOVA). The inference was made based on three or four spike
levels (level A, 2000 ng/mL; B, 1000 ng/mL; C, 150 ng/mL; and D, 15 ng/mL), with five
replicates per spike level. For compounds noted with blue stars, the level D spike
concentration was not included in calculation, considering the large data volatility or
aberrance due to blank or other interference at this level. The shaded area denotes 80~120 %
range.
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Figure E-7. The peak area error percent of the 2" relative to the 1% injection (spaced by ca
10 hours) of the same quality control samples (QCS) of plasma and brain in the validation
experiment. The error percent was calculated as (Peak Area sng injection — AT€a 15 injection,) / Area
1stinjecion X 100%. The barcode-like plot on the left inside each faceted plot show the data
distribution of corresponding spike concentration. X-axis does not hold practical meaning;
it’s intended only for display convenience with point scatterings. A minor number of
outliers beyond the applied scales are not displayed. Dots’ position reflected compound
degradation and instrumental precision. All compounds presented unperceivable
degradation over 10 hours in biomatrices; though for some compounds such as DFA, FA
and CA, the 2" injections showed almost consistently higher response than the 1* injections,
possibly due to instrumental drifting (mostly less than 10%). Dot dispersion is calculated
as repeatability on a level-specific manner. For spike levels, A (2000 ng/mL), B (1000
ng/mL), C (150 ng/mL) and D (15 ng/mL), with concentration shown in the final processed
samples before injections. Autosampler was maintained at 4°C.
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Figure E-8. Analytes’ concentration in the fotal blank and the exogenous proportion
originating from [3-glucuronidase enzyme solution (from limpets or Patella vulgata). The
concentration difference between total blank and enzyme-derived amount is the
endogenous quantity from mice tissues. The concentration presented here is the level in
final processed sample before injection (so as for convenience of comparison with spike
concentrations).

Note:

1) total blank = exogenous quantity from enzyme + endogenous quantity from mice tissues
(the vehicle control)

2) The amount of enzyme solution (2000 U) used for processing brain samples was twice
that of plasma.
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Figure E-9. Compound degradation profile across ten hours in pure solvent and plasma
matrices in a separate study. This study was independent of all prior experiments
aforementioned. Compounds are displayed in decreasing order of degradation rate.
Compound in pure solvent (60 % methanol with 0.1% formic acid) showed similar
degradation profile as in prior study Figure E-3. Compounds liable in pure solvent
exhibited noted degradation in plasma matrices, which somewhat disagreed from the
unperceived degradation shown in the validation study (as shown in Figure E-7), possibly
due to dissimilarities in the involved biomatrices from different lots or longer observation
time. However, both studies congruently demonstrated improved compound stability in the
biomatrices than in pure solvent.



282

Plasma Brain
3,4-DHBA
200 R2 = 0.38 R?=0.30
3,4-DHBA — -
p=2x10° 82 p=2x107
3,4-DHBA 3:4-BHPRA 4-HPAA
54.Dppa S4-DHPhLiACe Spike
1501 3,4-DHBA CA 4 DHPHLIA concentration
—_— 3,4 P 4= IACe
o\e %E—"I‘I?Hé/% §;$ﬁBHBHHAE§ 4-HPAA level
= R 3,4-DHPPA VLiAce 3-HPPA
g P XA
= ~DHPAA
§ 100 4_pppa/s4-DHPPA X B
< “BHRAR X C
3,4-DHPPA ™
3,4-DHPE B-HPAA T
~DHPAA 3 4_DHPE 4-HBOFK-MS 4-HCA BhLiAmy
3/4-DHPE M
50 FRBREK Mg
HA 4=HPE
PhLiAce
8,4=-DHPE
3,4-DHPE 4=HBBH
-30 -20 -10 0 -30 -20 -10 0

Degradation model slope coefficient

Figure E-10. Correlation of accuracy with compound degradation in pure solvent. The
slope coefficient of zero-order kinetic model noted on the x-axis corresponds to the percent
loss per hour. Depending on liability, compound degradation in the calibration work
solution prepared in pure solvent (60% methanol with 0.1% formic acid) could cause
systematic error to various extent for quantification in biomatrices, leading to numerically
higher accuracy (e.g. CA and 3, 4-DHBA above 150%).
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APPENDIX F. URL’s (R SCRIPT & SHINY APP)

% Nightshade leafy phytochemical quantification

https://yuanbofaith.github.io/NSleaf PhvtochemQqQ/

¢ Free amino acid analysis in African indigenous vegetables and classification
prediction using machine learning

https://yuanbofaith.github.io/AfricanVegetables AminoAcids/

R Shiny app: https://boyuan.shinyapps.io/AIV_Classifier/

++*Nightshade glycoalkaloid rapid screening

https://yuanbofaith.github.io/Solanum_alkaloid in-source-fragmentation MSMS/

“*Raspberry ketone metabolomics study (1) (plasma and brain analysis)

https://yuanbofaith.github.io/RK LCMS/

s*Raspberry ketone metabolomics study (2) (adipose tissue cleanup using EMR-lipid
cleanup sorbent in 96-well plate)

https://yuanbofaith.github.io/RK adipose QuEChERS EMR/index.html

% Logistic regression vs. Gaussian discriminant analysis comparison

R Shiny app:
https://boyuan.shinyapps.io/Logistic and Gaussian Discriminant Analysis/
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% Lemon juice authentication vs. adulteration classification prediction (a
collaboration project, all data collected and analyzed by Weiting Lyu)

https://yuanbofaith.github.io/Lemon Juice Classification2/index.html

R Shiny app:_https://boyuan.shinyapps.io/LemonClassification/

s+ Catnip quality control visualization tool
(a collaboration project with Erik Gomes et al.)

https://bovuan.shinyapps.io/CatnipQC/

https://vuanbofaith.github.io/Catnip ShinyVisualization RawScript/

R visualization mini-gallery

https.//vuanbofaith.github.io/Rvision/

“*Protag: searching tagged peptides based on MALDI-TOF MS peptide fingerprint
(a self-motivated project inspired by an internship project)

e R Shiny app: https://boyuan.shinyapps.io/protag/

¢ R package downloadable from CRAN

https://cran.r-project.org/web/packages/protag/index.html

e Package user guide: https://rpubs.com/Boyuan/guide protag




