Staff View
Designing tougher and amorphization-resistant boron carbide ceramics

Descriptive

TitleInfo
Title
Designing tougher and amorphization-resistant boron carbide ceramics
Name (type = personal)
NamePart (type = family)
Yang
NamePart (type = given)
Qi Rong
NamePart (type = date)
1991-
DisplayForm
Qi Rong Yang
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Haber
NamePart (type = given)
Richard A
DisplayForm
Richard A Haber
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
LEHMAN
NamePart (type = given)
RICHARD L
DisplayForm
RICHARD L LEHMAN
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Matthewson
NamePart (type = given)
Michael J
DisplayForm
Michael J Matthewson
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Mann
NamePart (type = given)
Adrian B
DisplayForm
Adrian B Mann
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Raymond
NamePart (type = given)
Raymond E
DisplayForm
Raymond E Raymond
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
School of Graduate Studies
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
Genre (authority = ExL-Esploro)
ETD doctoral
OriginInfo
DateCreated (qualifier = exact); (encoding = w3cdtf); (keyDate = yes)
2020
DateOther (type = degree); (qualifier = exact); (encoding = w3cdtf)
2020-10
CopyrightDate (encoding = w3cdtf); (qualifier = exact)
2020
Language
LanguageTerm (authority = ISO 639-3:2007); (type = text)
English
Abstract (type = abstract)
Boron carbide is a superhard ceramic that has attracted considerable research attention for decades. However, hard ceramics are generally considered brittle due to the lack of energy dissipation mechanisms, such as dislocation slip, deformation twinning, and micro-cracking, to accommodate irreversible deformation. The highly covalent nature of boron carbide and the low symmetry in its crystal structure imply that localized dislocation movement is difficult. In fact, despite numerous transmission electron microscopy (TEM) studies, localized dislocation movement has never been identified. The lack of plasticity hinders the widespread use of boron carbide in common engineering applications that demand a level of compliance in materials. Boron carbide also suffers from stress-induced amorphization that has a deleterious effect on its mechanical properties. Amorphization occurs when the consolidated boron carbide experiences pressure exceeding its strength, leading to the formation of nano-scale amorphous bands inside the crystalline matrix. The network of amorphous bands acts as a “path of least resistance” for crack growth leading to catastrophic failure. This thesis focuses on resolving the two prevailing issues of boron carbide (brittleness and susceptibility to stress-induced amorphization) and proposes a design strategy for fabricating the next-generation boron carbide with enhanced toughness and resistance to amorphization.

In this thesis, dislocation mediated plasticity was enabled in boron carbide by tuning its bond characteristics by adding Al to its crystal structure. The addition of Al-B and Al-C bonds increased the propensity of ionic bonds and allowed inter-icosahedra (planar) glide to occur. The toughness of boron carbide could be further increased by making eutectic composite with ZrB2 and particulate composite with TiB2. The tougher diborides provided a means to blunt crack tips and accumulated residual stress at the phase boundaries. The presence of residual stress deflected the crack path and preferentially guided the crack to travel between the phase boundaries.

Stress-induced amorphization was resolved through Si/B co-doping. Si/B co-doped boron carbide was synthesized in various ways (arc melting, diffusion couple, and reaction hot-pressing) and characterized to understand the role of Si in reducing amorphization. We found that as little as 1 at.% addition of Si substantially suppressed amorphization when compared to B-doping alone. Our TEM study comparing the single crystal undoped and Si/B co-doped boron carbide revealed a dramatic change in deformation behavior. Instead of forming long distinct parallel amorphous shear bands, Si/B co-doped boron carbide manifested short and diffusion micro cracks. The mechanism implies that the involvement of Si facilitates local fragmentation as opposed to large-scale amorphization and microcracks.

Lastly, a composite comprised of Si/B co-doping and 10 wt% TiB2 reinforcement was synthesized. Compared to Si/B co-doped boron carbide, the composite showed an improvement in toughness (10%), hardness (6%), strength (21%), and smaller grain size while minimizing a density increase (4%). Our composite has similar overall mechanical properties to a commercial boron carbide tiles while having 6% higher in elastic modulus and 44% higher in amorphization resistance.
Subject (authority = local)
Topic
Boron carbide
Subject (authority = RUETD)
Topic
Materials Science and Engineering
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_11071
PhysicalDescription
Form (authority = gmd)
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xvii, 218 pages) : illustrations
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
RelatedItem (type = host)
TitleInfo
Title
School of Graduate Studies Electronic Theses and Dissertations
Identifier (type = local)
rucore10001600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/t3-2wns-hg54
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Yang
GivenName
Qi Rong
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2020-08-04 11:56:52
AssociatedEntity
Name
Qi Rong Yang
Role
Copyright holder
Affiliation
Rutgers University. School of Graduate Studies
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.5
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2020-07-22T19:27:24
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2020-07-22T19:27:24
ApplicationName
Microsoft® Word 2013
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024