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ABSTRACT OF THE THESIS 

Prediction of surface texture parameters using machine learning in laser surface texturing 

by LIHANG YANG 

Thesis Director: 

Tuğrul Özel 

Laser surface texturing provides several benefits such as improved tribological 

behavior of the surface, reduced friction, increased anti-adhesive properties and improved 

wettability and lubrication applications. However, surface topography or surface texture 

resulting from laser processing and the relation between laser texturing parameters and 

surface texture parameters are not well understood. Fiber lasers provide a flexible 

solution for texturing different materials with different surface structures.  

In this thesis, experimental results from laser surface texturing of a tool steel are 

examined. A nanosecond fiber laser system is utilized to scan and texture the surfaces of 

the tool steel under a shield of an inert gas stream to prevent from oxidation. The effects 

of laser energy density, scan velocity, and strategy on the texture line width and resultant 

surface roughness have been investigated. Surface measurements in 3D are conducted 

using a white light interferometry based optical surface metrology system.  

Surface texture parameters including arithmetic mean and root-mean squared heights 

of the scale-limited surface and skewness and kurtosis of the scale-limited surface can 

reveal the distinct effects of laser power, energy density, and scan velocity on the surface 
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texture parameters. Machine learning methods such as Artificial Neural Networks are 

utilized to generate a predictive modelling capability for the relationships between laser 

surface processing parameters and the resultant texture parameters on the scale-limited 

surfaces surveyed. 
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Chapter 1 

Introduction 

1.1 Definitions 

In the field of industrial and manufacturing engineering, surface texture also known 

as surface topography, or surface finish is the resultant micro-scale structure of a 

manufactured product’s surfaces and is often used to describe an attribute of a product. 

Surface texture usually defined with three different characteristics that are surface 

roughness, waviness, and lay.  

Lay is the direction of the predominant surface pattern, ordinarily determined by the 

production method used. Surface roughness is a measure of the total spaced surface 

irregularities. Waviness is the measure of surface irregularities with a spacing greater than 

that of surface roughness.  

Surface measurement also known as surface metrology can be defined as measuring 

the topography or roughness of manufactured surfaces. Surface measurement can be 

performed either as two-dimensional (2D) profile measurement or three-dimensional 

(3D) surface areal measurement. This process can be crucial for determining a surface’s 

suitability for a particular application. When analyzing and processing the data related to 

surface measurements, some terminologies are repeatedly used, such as surface form, 

surface finish, surface profile roughness (either as arithmetic average of surface 

deviations, , or mean squared average of surface deviations, ,) and structural Ra Rq
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characterization. The ability to perform surface roughness measurements is important for 

maintaining component quality within predefined limits and controlling the 

manufacturing processes for desired performance.  

2D profile measurement and analysis has been dominant in the assessment of surface 

texture. In modern manufacturing technology, a more precise 3D approach is required 

due to following reasons: (i) The surface texture is actually three-dimensional. (ii) The 

profile in 2D does not always represent the actual surface peaks and valleys exist on a 3D 

surface texture. (iii) The analysis of surface texture in 3D allows the calculation of 

significant new parameters for more accurate surface characterization. (4) Statistically 

speaking, the analysis in 3D is more precise than the analysis 2D since more data points 

are included and analyzed. 

For these reasons, the manufactured surfaces are often characterized with 3D surface 

measurement data following the ISO 25178 standards for surface texture definitions [1]. 

These are listed as scale-limited surface texture definitions: 

Sa: arithmetical mean height of the scale-limited surface.  

Sq: root mean square height of the scale-limited surface.  

Ssk: skewness of the scale-limited surface.  

Sku: kurtosis of the scale-limited surface.  

1.2 Surface Texturing and Benefits for the Manufactured Product 
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Surface texturing is a surface modification approach, resulting in an improvement in 

tribological performance such as friction and wear resistance. Surface texturing can be 

performed either as a protruded or recessed asperity, and it becomes more and more 

popular lately due to advantages in terms of micro-lubrication and ease of manufacturing 

[2]. Surface texturing is mainly used in improving tribological performance. The most 

familiar and earliest commercial application of surface texturing is that of cylinder 

honing. Most of ideas of adding texture on the surface of workpiece is motivated by that 

the surface texturing provides micro-reservoirs to enhance lubricant retention or micro-

traps to capture wear debris. Usually, optimization of the texturing dimensions is done by 

a trial and error approach [3]. 

Hamilton et al. presented in 1996 [4] surface texturing in the form of micro-asperities 

that act as micro-hydrodynamic bearings. This idea was promoted mainly for parallel 

sliding, as is the case in mechanical seals [5,6].  

There are numerus ways of creating surface texture, and the most advanced method used 

is laser surface texturing, since its flexibility and high accuracy. Other than laser surface 

texturing, manufacturing methods are utilized in industry for surface texturing including 

(i) abrasive finishing and grinding-based surface texturing, (ii) micro electric discharge 

machining (EDM)-based surface texturing, (iii) ion beam machining-based surface 

texturing and others. 

Surface texturing is being used in variety of fields such as bioengineering to improve 

biocompatibility of metal implant surfaces, electronics to improve efficiencies of silicon 
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wafer, automobile to reduce friction in moving mechanical components, cutting tools to 

reduce friction and improve lubricity.  

Surface texturing is a widely used approach to improve the load capacity, wear 

resistance, and friction coefficient to tribological mechanical components, including 

sliding surfaces. Surface texture can also improve the running-in process, to smooth 

contact surfaces, resulting in low friction [3,4]. 

The effect of texturing on improving the tribological properties relies on shape, 

density, depth and pattern of dimples been created on the material surface. Through 

studies been done by different groups, it becomes a fact that Micro-textured surfaces can 

improve the tribological performance between parts in contact, by modifying the stress 

distribution, improving the friction coefficient, and reducing the amount of heat 

transferred between the parts. The micro-cavities which known as dimples acting as 

lubricant reservoirs, they provide lift effect by generating hydrodynamic pressure to 

reduce the surface contact between two parts, such as reducing the friction between 

piston and engine block or between gears in a transmission. 

1.3 Motivation and Research Objective 

The main motivation for this thesis is to achieve higher sustainability of metal 

surface texturing process by using fiber laser, in terms of reducing friction, improve 

tribological behavior, improve wear-resistance. Also, by importing in-situ process 

monitoring technique, the stability of laser texturing process hopes to be improved. 
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Statistical or intelligent process models should be developed to predict the behavior of 

laser processing.  

The main focus of this research is to explore the combinations of fiber laser 

processing parameters which may create fine finished micro-textured surfaces. Those 

combinations of laser parameters which lead to process out of control will affect the 

stability of texturing via laser ablation by having under-ablated or over-ablated sections 

on the work piece surface, compromise the surface morphology, eventually cause surface 

irregularities.  

This proposed research will seek answers to the following questions. How can one 

understand how the laser parameters affect the formation of textured surfaces? How 

would the same surface textured workpieces that were produced by different laser 

parameters perform under the same loading conditions? How does adding micro-texture 

with different laser parameters contribute to the tribological performance? What is the 

optimum combination of laser texturing parameters? 
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Chapter 2 

Laser Surface Texturing 

Surface texturing are commonly used on parts and components in contacted with 

each other such as bearings, pistons, and cylinders. It is also used in structuring cutting 

tools geometry and surfaces. During the manufacturing process of those workpieces, a 

same property is shared, that they all made from high strength metal materials (e.g. 

tungsten carbide, ceramics) which are difficult to be machined. But due to the recent 

development of advanced manufacturing technologies, it is possible to accurately 

fabricate different type of surface morphologies on the workpiece, and many 

manufacturers take advantages of such technologies to advance their products’ 

performances. Currently following advanced manufacturing technologies are widely 

adopted by manufactures, abrasive finishing and grinding based surface texturing, micro 

EDM based surface texturing, and laser processing-based surface manufacturing. In this 

thesis, the focus will be on laser processing based advanced manufacturing of surface 

textures. The behavior of laser processing and ablation is known as difficult to 

understand, and there are more than hundred parameters can affect the overall quality of 

the textured workpieces, so it is necessary to introduce machine learning and statistical 

learning during to improvement of such processes. A model should also be developed to 

estimate and predict the behavior of laser surface texturing process.  
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2.1  Laser Surface Texturing for Friction Reduction 

Laser surface texturing (LST) involves making patterns on surfaces to improve 

properties and performance of engineering applications [7, 8]. Etsion [7] states that laser 

processing became the most popular method among various other texturing methods 

because it offers the most promising design flexibility and allows shorter processing 

times since it is extremely fast and direct not requiring tooling. It is an advanced, 

sustainable, environmentally friendly production method that gives the best shape and 

size an end user expects [8]. 

It is reported that tribology related improvements at interface contacts can be 

achieved such as reduced wear rates, forces and load, improved lubrication [9] and 

reduced friction coefficients [10]. Laser texturing provides distinct patterns on surfaces at 

micro scales in the form of very fine detailed geometrical features such as grooves, 

dimples, cross-patterns with high depth resolution. As mentioned, it allows the creation of 

textures that change the functional properties of surfaces, improved anti-adhesive 

behavior, reduced friction or altered optical properties.  

An example of a dimple texture applied to a drilling tool’s surface is shown in Figure 

1. The curved flute surface of a drill is machined with a texture consisting of oblong 

shaped dimples with a non-symmetrical cross section. 
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Figure 1. LST regular micro-surface structure in the form of micro-dimples (Courtesy of 

Lightmotif company). 

In a tribology study, the micro-dimples were created on the surfaces of stationary and 

rotating ring walls by using LST. A trial-and-error approach was adopted. The result of 

the experiment was as expected from theory. Micro-dimples functioned as micro-traps for 

wear particles or micro-reservoirs for lubricant retention. However, in other cases, where 

the micro-dimples functioned as micro-hydrodynamic bearing, the effects was not clear 

and it was recommend further study to be performed to investigate and optimize the LST 

parameters for the best tribological performance (see Fig. 2).  
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(a)            (b) 

Figure 2. Seal model and mode of operation (a) and comparison of the friction torque for 

textured and nontextured surfaces (b). 

Based on the experiment designed and performed by the authors, the increase in 

tribological performance was clear as expected. Testing of the sealing prototype in water 

showed dramatic reduction of up to 65% in friction torque. The reduction in friction 

torque is gradually disappeared at higher sealing pressures, corresponding to higher unit 

loads. The solution for this phenomenon was seen as applying higher density LST over a 

portion of the sealing wall adjacent to the high-pressure side and leaving the remaining 

portion as non-textured. The result in the corresponding friction torque of the textured 

seal at higher pressure was unbelievably small, and a reduction in friction of more than 

90% was achieved. 
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2.2 Laser Surface Texturing for Changing Surface Wettability 

The laser surface texturing process can be applied on any material and can be used 

for texturing complex curved surfaces as well. Several different properties for a large 

field of applications and in different industries can be provided with fine textured 

surfaces. For example, micro-texturing has created surfaces with tailorable chemical and 

wetting properties for improved biocompatibility or biological reaction in biomedical 

applications [11,12]. Therefore, laser surface texturing at micro scale offers several 

tribological and biological benefits while retaining the main functionality of the structure. 

Nanosecond pulsed laser processing was utilized to reduces the wettability change of 

a copper surface from a hydrophilic surface to a superhydrophobic surface using 

additional low-temperature annealing [13].  

To create a superhydrophobic surface on metals, laser beam machining and chemical 

coating have been widely utilized, some researchers tried to use only laser machining 

with our extra coating for easy fabrication and removal of unwanted properties of the 

coating layer. However, this approach resulted in a very long time for hydrophilic surface 

to change to superhydrophobic. Chun et al. [13] stated that by using nanosecond laser 

surface texturing, it will take 30 days for aluminum to achieve a nearly superhydrophobic 

or superhydrophobic surface. By using femtosecond laser processing, it requires also 30 

days for stainless steel 304L surface to fully change. Also 11-12 days for copper/brass by 

a nanosecond laser to achieve a nearly superhydrophobic or superhydrophobic surface 

[8-12].  
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This paper conducted a research that after laser machining, by utilizing the laser 

surface texturing techniques along with low temperature annealing, material achieved 

superhydrophobic within hours, and the time was reduced even more with the use of 

ethanol [13]. 

 

Figure 3: Schematics of the laser beam machining system (a) and (b) beam path design 

[13]. 

In experiment performed in this article, a Q-switched Nd: YAG 355-nm UV 

nanosecond pulsed laser was utilized since this is the most common and widely accepted 

setup in the industry (see Figure 3). Pure copper plate with 2 mm thickness was used as a 

substrate, laser beam machining was carried out with a grid pattern, which showed 

isotropic superhydrophobic properties in all directions with trapped air. Adding ethanol 

on the laser textured surface with low temperature annellation will acceleration the 

reaction since copper is stable with ethanol and organic materials can enhance 

superhydrophilicity of laser textured metals (see Figures 4, 5, 6).  
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Figure 4. Measure of water droplet contact angle of samples exposed to ambient air [13]. 

 

Figure 5. Measure of water droplet contact angle of samples with low-temp annealing 

without ethanol [13]. 
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Figure 6. Measure of water droplet contact angle of samples with low-temp annealing 

with ethanol [13]. 

 

Figure 7. Schematic image of mechanism for superhydrophobic to superhydrophobic 

surfaces with laser beam machining and post process [13]. 

The significant time change is explained in this article, that due to laser texturing, the 

molten copper becomes a CuO structure, which is hydrophilic. Then the top layer of CuO 

rapidly becomes O which is a hydrophobic material, a hydrophobic material with Cu2
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post process and a partially wetted state with grid patterned burrs were necessary for a 

superhydrophobic surface (see Fig. 7) [13].  

2.3 Laser Surface Texturing for Cutting Tool Tribological Performance 

Recently, laser surface texturing gained attention due to the improvement on 

tribological performance of cutting tool surface. But the effective texture patterns and 

dimensions on a tool surface still need to be investigated and studied through trial-and-

error method.  

For machining applications, cutting tools having micro-textured surfaces have been 

also developed by using laser surface texturing. These are developed on high speed steel 

for cutting aluminum [14], as well as on advanced tool materials such as cemented 

carbide for cutting steel [15] and polycrystalline cubic boron nitride or diamond for 

machining difficult-to-cut materials; laser textured dimples tested on cemented carbide 

tools [16], surface texturing applied on cubic boron nitride for anti-adhesion in high 

speed cutting of Inconel 625 alloy [17], and micro/nano-textures created on diamond 

tools for higher wear resistant cutting [18].  

There are often two different types of surface texture patterns are applied on tool surface; 

groove-shaped and dimple-shaped textures. Sugihara & Enomoto [16] focused on 

dimple-shaped textured surface with different dimensions and arrays, generated on the 

tool rake face. They evaluated the wear resistance and cutting forces of the developed 

tools with a series of face milling experiments on medium carbon steel under wet and dry 

cutting conditions [16]. Laser surface textures were fabricated using femtosecond 
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ytterbium-doped Yb:KGW laser with a wavelength of 515 nm, a pulse width 190 fs on 

the rake face of the WC-Co cemented carbide cutting tool with a 100 µm wide chamfer 

(see Fig. 8). A constant depth of Ddep = 5 µm, a distance from chamfer of Ew= 30 µm, and 

dimple spacing of Din= 75 µm were applied to all milling inserts. Dimple diameters were 

varied as Ddia = 50, 30, 70 µm for linear tool designs DT-01, DT-03, DT-05 and for zigzag 

tool designs DT-02, DT04, DT06 respectively. Texture pattern was further altered by 

changing dimple spacing to Din = 90 µm for linear tool designs DT-07, DT-09 and for 

zigzag tool designs DT-08, DT10 respectively (see Fig. 8 for micro-texture parameters). 

 
(a) linear pattern  (b) zigzag pattern 

 

Figure 8. A milling insert and its rake face micro-textured with micro-dimples [16]. 
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The cutting experiments were conducted on medium carbon steel using a vertical 

machining center by using a cutting speed of vc = 200 m/min, and a feed rare of f = 

0.2mm/tooth as shown in Fig. 9 [16] under both dry and lubricated cutting conditions. 

The crater wear on the rake face of the milling tool inserts were inspected. The result 

of the performance for laser textured tool was as expected no matter what the cutting 

condition was. Especially for tools DT-05 and DT-06 which share the same geometrical 

parameter of dimples, but a different alignment performed better than other combinations 

in both cutting condition. 

 

Figure 9. Schematic image of milling experimental setup [16]. 

 

Figure 10. Crater wear of textured tools under the wet cutting condition. 
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Figure 11. Crater wear of textured tools under the dry cutting condition. 

In addition, Sugihara & Enomoto [16] fabricated cutting tools with micro-grooved 

textures for comparison against the cutting tools with micro-dimpled textures. Figure 12 

shows their design on micro-grooved cutting tool rake face and the measured micro-

groove geometry. They performed experiments to compare micro-dimpled tools against 

the micro-grooved tool under dry, paste, and wet cutting conditions (see Fig. 13). 

 

Figure 12. Developed cutting tool with micro-groove textured rake face (MS-01). 
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Figure 13. Friction coefficient at tool-chip interface under different cutting conditions 

[16]. 

From the experimental comparison, Sugihara & Enomoto [16] concluded that “open 

shape” texture in the form of micro-grooves performed better results in crater wear and 

friction coefficient when compared with conventional cutting tools. Furthermore, the 

“close shape” structure in the form of micro-dimple textures performed even better than 

micro-dimpled texture when cutting steel workpieces. They also noted that when cutting 

low melting point materials such as titanium alloys, both textured cutting tools showed 

much less adhesion behavior compared to the conventional cutting tools.  

The explanation behind this observation is very straight forward. In surface textured 

cutting tools, the micro-texture pattern, especially close shaped texture, act like micro-

reservoirs for the cutting fluid and micro-traps for wear debris. Therefore, under both wet 

and dry cutting conditions, textured tools performed a lot better than the conventional 

tool. 
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2.4 Laser Surface Texturing for Tribology Enhancement in Drilling of Titanium 

Alloys 

The work of Sugihara & Enomoto [16] provided sufficient evidence that laser 

texturing can reduce the friction between workpiece and cutting tools and improve the 

tribological performance by significant amount. Currently, in manufacturing, cutting 

titanium alloys such as Ti-6Al-4V still remains challenging, since metals like titanium 

has much lower thermal conductivity compared with steel, so build-up edges always is 

one of the main affections which compromise the quality of manufactured workpieces.  

Niketh & Samuel [19] utilized laser surface texturing technique, adding textures on 

both the flute and margin side of the drilling tools with an objective to minimize the 

cutting forces by reducing the sliding friction at the tool-chip and tool-work piece 

interfaces as shown in Figs. 14 and 15.  

 

Figure 14. CAD drawing of micro textures at the flute and margin side [19]. 
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Figure 15. SEM image of micro textures at the flute and margin side [19]. 

The micro-dimples fabricated were evaluated by using optical imaging and 3D aerial 

texture measurements as given in Fig. 16. Micro-textured drilling tool surfaces were 

patterned with micro-dimples with slightly varying dimensional accuracy as shown in 

depth profile of the tool surface with micro-dimples. 

Drilling process experiments were carried out on Ti-6Al-4V work material under dry 

cutting conditions by using three different combinations of carbide drilling tools; i) flute 

textured only, ii) margin textured only, and iii) non-textured. The machine tool provided a 

spindle speed range up to 6000 rev/min and a maximum traverse range of 350 mm (x-

axis), 300 mm (y-axis), 300 mm (z-axis). A six-component dynamometer with eight-
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channel charge amplifier was used for recording the thrust force and torque generated 

during drilling [19]. The schematics of the forces in drilling process are shown in Fig.17. 

         

(a) optical image of micro-dimples     (b) 3D measured aerial texture 

 

(c) Depth profile of the micro-dimples 

Figure 16. Characterization of drilling tool surface with micro-dimples [19]. 

 

Figure 17. Schematics of the drilling process [19]. 
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The friction results for textured surfaces was found to be favorable with lower 

friction coefficients as given in Fig. 18. The results on measured thrust force and torque 

during drilling also revealed the lowered force and torque when using textured drill tool 

(see Fig. 19). 

 

Figure 18. Variation of friction coefficient with sliding time for textured and non-

textured surfaces [19]. 

  

Figure 19. Comparison of the thrust force (a) and torque (b) during drilling [19]. 
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By analyzing the force data and observation the chip morphology, the authors found 

out that there is 16.33% reduction in friction coefficient while using micro-grooved 

surface and 14.29% reduction in case of micro-dimpled surfaces. A net reduction of 

10.68% in thrust force and 12.33% in torque was reported in the case of margin textured 

tool even at a higher cutting speed of 60 m/min and a feed of 0.07 mm/rev [19]. 

Therefore the conclusion is very clear that micro dimples at the margin were 

effective in reducing the sliding friction between drill head and workpiece, and flute 

textured minimizes the contact length of chip clogging phenomenon leading to a lower 

chip evacuation force [19]. 
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Chapter 3 

Nanosecond Laser Surface Texturing Experiments 

3.1 Laser Processing Characteristics and Parameters 

In recent studies, it is shown that laser surface texturing with picosecond (ps) fiber 

lasers on tool steels can be performed competitively with adequate results, efficient pulse 

repetition rates and processing times [20]. The laser energy density can be controlled by 

modulating the laser power and scan velocity to obtain an ideal texture or pattern 

generation. Depending on the laser power and scan strategy, microstructures in the order 

of a few micrometers (µm) along with macrostructures over millimeter (mm) 

topographies can be generated.  

In general, laser parameters that are related to physical characteristics include power, 

wavelength, pulse duration, pulse repetition rate, and focused spot size as listed in Table 

1. 

Table 1. Laser characteristics. 

Characteristic Symbol Unit

Laser power P [W]

Laser wavelength λ [nm]

Laser pulse energy E [mJ]

Pulse duration τ [s]

Laser spot size d0 [mm]

Laser energy density Φ [J mm-2]
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For instance, laser texturing using picosecond solid state Nd: Vanadate (Nd: YVO 4) 

(τ= 10 ps, λ= 1064 nm, PRR= 5 kHz) for micro-dimple fabrication on titanium alloy 

Ti-6Al-4V and aluminium alloy AA2024 was performed [21]. Dimpled surface textures 

were created with laser ablation at pulse energies in the range of Φ =1 µJ and Φ = 20 µJ 

and by applying in the range of 10 to 200 pulses per dimple. 

On the other hand, laser surface processing involves a set of parameters that are 

programmable by using numerical programming of the positioning stage that moves the 

workpiece as listed in Table 2.  

Finally, the micro-texture lines are fabricated through laser ablation that includes the 

following dimensional characteristics (see Table 2).  

Therefore, this study aims to investigate the relation between the nanosecond fiber 

laser processing parameters (laser power, scan velocity) and the resultant micro-texture 

line width and surface texture parameters for the AISI D2 tool steel workpiece. 

Table 2. Laser surface processing and texture line dimensional parameters. 

3.1 Laser Surface Texturing of AISI D2 Steel 

Parameter Symbol Unit

Pitch between laser tracks p [mm]

Scan velocity vs [mm s-1]

Texture line length ll [mm]

Texture line width wl [mm]
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In this thesis study, an experimental system for laser surface texturing was developed 

in which a ytterbium pulsed fiber laser (YLP-V2-1-100-50-50) from IPG photonics that 

operates at 1064 nm wavelength, 50 W maximum power, 100×10-9 s pulse duration, and 

20×103 s-1 nominal pulse repetition rate was employed. The fiber laser was coupled to a 

1064 nm high power focusing objective (Thorlabs LMH-5x-1064). The focusing lens 

provided a focus length of 35 mm. The collimated beam diameter is 5.9 mm. The beam 

quality factor M2 < 2. The focused beam diameter was measured to be 0.150 mm ± 10 

µm. The experimental laser surface texturing apparatus used in this investigative study is 

shown in Fig. 20. The laser beam delivery optics is used to focus the beam on the top 

surface of the work piece. The fiber laser collimator and the optics were mounted onto 

the Z-axis motion stage for simplicity in adjusting and controlling the focal position. This 

was used for controlling the motion of laser beam. Since the beam delivery optics can 

introduce power losses to the laser surface texturing system, a power meter was used to 

measure laser power. A two-axis XY positioning system (Aerotech Model 

ATS100-100-20P) was used to control the position of the workpiece sample. 

A flow chamber was designed for focus beam coupling with Argon gas supply. The 

design requirements that were considered are that the flow chamber shall clamp to the 

fiber laser and house the focusing beam concentrically beneath the laser’s collimated 

beam, it would allow the focused beam to reach to the workpiece surface that is 35 mm 

away from the objective lens. Therefore, a flow chamber design was created for shielding 

gas without any leaks for contaminated air to enter as shown in Fig. 21. A standard flow 
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rate of 0.567 m3 hr -1 Argon shielding gas O-2 (98% argon/ 2% oxygen) supply was used 

as sufficient enough to shield the laser processed steel surface from oxidation. 

 

Figure 20. The experimental laser surface texturing system used in this study. 

 

Figure 21. The flow chamber designed for Argon gas shielding. 

AISI D2 tool steel is a high carbon, high chromium cold-work steel and has good 

corrosion resistance. The chemical composition is given in Table 3. Its yield strength and 

Young’s modulus are 650 MPa and 209.9 GPa respectively. It also possesses better than 
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average wear resistance and retains its hardness up to 425 °C. In this study, the workpiece 

specimen is selected as an AISI D2 tool steel plate with a thickness of 3.175 mm that is 

ground to a fine surface finish with arithmetic surface roughness of Ra = 0.06 µm. The 

hardness of the specimen is measured as 61.5 ± 0.5 HRC before laser surface texturing. 

Table 3. Nominal chemical composition of AISI D2 tool steel. 

Micro-textures were fabricated on the ASI D2 tool steel surface by a fiber laser system 

that operates with a constant pulse duration of 100×10-9 s, a constant pulse energy of E = 

0.1 mJ, and a constant wavelength of  λ = 1064 nm. The laser power can be regulated by 

increasing the pulse repetition rate between PRR = 10 kHz and 50 kHz as given in Eq. 

(1).  

     (1) 

Micro-grooves perpendicular to the direction of the texture were fabricated on the 

surface through ablating AISI D2 tool steel material by fiber laser again as shown in Fig. 

22. The laser trajectory is controlled by the computer controlled 2-axis XY positioning 

stage to move the workpiece a certain distance in the X direction, while the subsequent 

laser beam is at a hatch distance of p from the last laser line in the Y direction. The initial 

laser surface texturing parameters were listed as; a processing area of A = 2 mm ⋅ 8 mm, a 

Element C Cr Mo Si Mn P S V

wt. % 1.5 11.0 0.90 0.30 0.45 0.030 0.030 1.0

P = E  ∙ PRR
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constant maximum pulse energy of E = 0.1 mJ, a scan velocity of vs = 0.8 mm.s-1, a pulse 

repetition rate of PRR = 50 kHz  and a hatch spacing of p = 0.2 mm.  

 

Figure 22. The processing path for the laser beam in laser surface texture. 

The energy density provided during laser surface texturing is estimated using the laser 

power, P, and scan velocity, vs, and the focused laser beam diameter d0 as given in Eq. 

(2). 

  (2) 

The flow chamber coupling design (see Fig. 22) integrated optical components and 

also channeled the Argon gas in order to shield the processed steel’s surface while 

focused laser beam processes it for ablation. Scan velocities of vs = 0.625 mm s-1, 0.833 

mm s-1, and 1.538 mm s-1 have been tested. The detailed fiber laser surface texturing 

parameters are given in Table 4. 

Table 4. Laser surface texturing parameters. 

Φ =
P

vsd0
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Nanosecond fiber laser processing of AISI D2 tool steel for surface texturing is 

achieved by continuously irradiating the sample with the focused laser beam in order to 

ablate a thin surface of the steel substrate thermally through melt formation. Therefore, 

the ablated steel vaporizes initially creating small valleys, and when solidifying, the 

surface tension smooths the workpiece surface, hence reducing the roughness forming the 

texture. 

The optical configuration and the control of the laser power allow the accurate 

determination of the surface texture modification. With low or modest laser energy 

density that irradiates the workpiece, the tool steel substrate reaches its melting 

temperature, whereas at high laser energy density vaporization temperature is reached. 

These two different temperature profiles will lead to a successful texturing without 

melting a wider area. 

3.2 Line-to-line and Pulse-to pulse Overlapping 

Laser trajectory produces a path with a width defined by the diameter of the laser beam 

focal spot formed by the laser and focal objective. The amount of overlap produced by 

parallel laser trajectories is the pitch distance between parallel lines. The finished area on 

Parameter Value Unit

Laser power, P 20, 30, 40, 50 [W]

Pulsed repletion rate, PRR 10, 20, 30, 50 [kHz]

Scan velocity, vs 0.625, 0.833, 1.538 [mm s-1]

Pitch between laser tracks, p 0.1, 0.2 [mm]

Trajectory Linear, double, cross [-]
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the surface is the result of multiple overlapping trajectories. The trajectory line overlap 

percentage (LO%) is introduced as a parameter that describes the impact of overlapping 

trajectories on the change in surface texture parameters and is defined as in Eq. (3), 

                                          (3) 

where p is the pitch distance (mm) between trajectory lines, d0 is the laser beam spot size 

(mm) formed by the laser beam and focal objective. This was kept constant as LO% = 

33.33% in study and its effect is not investigated yet. Another parameter, a pulse 

overlapping factor, is also defined as it ranges between 99.95% and 99.99% for vs = 1.538 

mm s-1, PRR = 20 kHz, d0 = 0.15 mm, P = 25 W, achieving a fluence of   and vs 

= 0.625 mm  s-1, PRR = 50×103 s-1, d0 = 0.15 mm, achieving a fluence of 

 respectively using the expression given in Eq. (4).  

             (4) 

By using linear, double and cross pattern trajectories for laser processing, texture patterns 

such as line, grid, and chaotic patterns have been obtained (Fig. 23) and the lines with 

micro-grooves have been further analyzed to understand the effect of laser parameters on 

the resultant textured surface. 

LO% = (1 −
p
d0

) × 100

Φ99.95%

Φ99.95% = 213.3 J . mm−2

PO% = (1 −
vs

d0 PRR
) × 100
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Figure 23. Texture morphology to improve adhesion strength of AISI D2 steel. 

3.4 Surface Areal Texture Measurements 

The surface areal topography was measured after laser texturing by using a Polytec 

TopMap E42405 (by Ploytec GmbH) white light interferometry based optical surface 

metrology system with a 1.45 nm vertical resolution [22]. These textured surfaces have 

been characterized with the arithmetical mean height of the scale-limited surface Sa, the 

root mean square height of the scale-limited surface Sq (standard filtering conditions), 

and Ssk and Sku, skewness and kurtosis of the scale-limited surface respectively 

according to ISO 25178-2 [23] with the optical metrology system.  

These measured surface areal height maps of textured surfaces in colored scale are 

given in Figs. 24, 25, 26 for the texture produced with single, double, and triple pass scan 

strategies respectively. During measurements, scale-limited (SL) surfaces were obtained 

by applying form removal F-operator (fitting with nominal shape), short-scale component 

removal with S- filtering, and long-scale component removal L- filtering using the 

default settings of ISO 25178-3 [24] in the instrument software of the PolyTec white light 

interferometry based measurement system. At first, levelling and filtering was performed.  
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A Gaussian regression L-filter nesting index of 8.0 mm and an S-filter nesting index of 

0.025 mm, per ISO 25178-3, were applied to each surface. A linear regression approach, 

S-filter gaussian high pass with 8.0 mm, gaussian low pass with 0.05 mm and then 

parameter calculation by applying gaussian filter with a nesting index of 0.8 mm was 

performed. 
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Figure 24. Surface areal texture height maps of the AISI D2 tool steel (single pass 

strategy). 
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Figure 25. Surface areal texture height maps of the AISI D2 tool steel (double pass 

strategy). 
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Figure 26. Surface areal texture height maps of the AISI D2 tool steel (triple pass 

strategy). 

The measured values of the arithmetical mean height of the scale-limited surface Sa, 

the root mean square height of the scale-limited surface Sq (standard filtering conditions), 

and Ssk and Sku, skewness and kurtosis of the scale-limited surface are given in Table 5 

for the single pass scan strategy with a pulse-to-pulse overlapping percentages between 

99.95% and 99.99%. 

Table 5. Surface texture parameters using single pass strategy. 

P (W) vs (mm. s-1) Trajectory Sa (µm) Sq (µm) Sku Ssk

50 0.625 Linear 2.74 3.28 0.59 2.93

50 0.833 Linear 8.27 9.60 -0.27 1.98

50 1.538 Linear 4.93 5.76 -0.14 2.00

35 0.625 Linear 2.25 3.10 -0.88 5.70

35 0.833 Linear 2.21 3.17 -1.25 9.41

35 1.538 Linear 2.43 2.74 0.34 2.17

20 0.625 Linear 1.76 2.26 0.23 3.83

20 0.833 Linear 3.13 4.03 -1.10 4.40

20 1.538 Linear 3.51 4.72 -1.46 -1.03
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3.5 Effects of Process Parameters on Surface Texture 

This analysis helped identifying effects of laser power and scan velocity on the 

measured texture line width, wl, as shown in Fig. 27. It is observed that the line width of 

the parallel micro-texture ranges between little less than 0.200 mm and 0.220 mm with 

varying scan velocity from vs = 0.625 mm. s-1 up to 1.538 mm. s-1, and varying laser 

power from P = 20 W to 50 W. Increasing scan velocity lowers the texture line width and 

increasing laser power widens the line width, wl, as expected. Hence, the combination as 

energy density can be used to control both effects of increasing laser power and 

increasing scan velocity.  

Figure 8 shows the variation in texture line width as a function of laser power and scan 

velocity. Higher line width is preferred for the larger laser power and lower scan velocity. 

As can be seen from the figure, a non-linear variation of line width was found with 

increasing laser power and decreasing scan velocity which could also be illustrated by 

using energy density (the ratio between laser power and scan velocity). A line width of wl 

= 0.2 mm and lower surface roughness was achieved with a laser power of P = 20 W.  

A laser power greater than P =35 W and a scan velocity that is greater than 0.833 mm. 

s-1 produced a non-reasonable line width. Varying levels of power and scan velocity were 

also led to the similar results on the surface roughness (Sa, arithmetical mean height of 

the scale-limited surface). With the increase of scan velocity, the roughness decreased 

significantly while increased with the increase of laser power as shown in Fig. 28.  
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In order to achieve melting and vaporization, a threshold for plasma explosion is found 

to be 3 GW.cm-2 or 20 J.mm-2 for carbon steel [20]. The early stages of plasma ignited by 

surface electron emission action during nanosecond laser pulse processing.  

In this study, the minimum laser fluence is (P = 20 W, vs = 

1.538 mm. s-1) that is higher than this threshold of plasma. This requires plasma shielding 

to improve the efficiency of the laser surface texturing since plasma plume absorbs 

incoming laser energy and reduces the ablation efficiency [20].  

At PRRs up to 60 ×103 s-1, even though pulse overlapping is high, a low ablation 

efficiency occurs due to the synergetic effects of early-stage plasma shielding and thermal 

diffusion loss. The stronger plasma irradiation and molten droplets explosion result in 

chaotic ablated surface topography or molten metal accumulation at the edges of 

linewidth. It is shown that higher PRRs can stabilize this situation and the heat 

accumulation effect causes temperature approaching to or exceeding the carbon steel 

evaporation temperature, hence improving ablation efficiency. Consequently, combined 

effects of low ablation threshold, high heat accumulation and low plasma shielding could 

be accomplished in an acceptable range of PRR to improve ablation efficiencies and 

surface quality.  

This illustrates the relationship between roughness and scan velocity/laser power for 

both double and triple passes scan strategies. They have the similar trend as the single 

pass has. A laser power higher than P =35 W produced significant surface roughness and 

a scan velocity higher than vs = 0.833 mm.s-1 resulted in better roughness when double 

Φmin = 86.7 J . mm−2 
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pass strategy is employed. For the triple passes, it was found that the roughness decreased 

when the scan velocity and laser power increased. 

Especially for the interaction effects between laser power and scan velocity on the 

surface roughness value (Sa), regardless of beam offset, increase in power deteriorates 

the surface finish, irrespective of the scan velocity. The reason is that laser power plays 

much more important role to the surface roughness than the scan velocity. The 

improvement in surface finish is attributed to repeated melting and thermal ablation, 

which effectively removed surface imperfections. A minimum surface roughness, Sa, of 

2.19 µm or 4.2 µm was achieved when multiple passes such double and triple pass scan 

strategies are applied. It should be noted that the goal is not to achieve minimum surface 

roughness but a distinct texture with an acceptable texture line width.  
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a)  

b)  

c)  

Figure 27. The effect of laser power in a single pass strategy (a) and scan velocity in a 

double pass strategy (b) and triple pass strategy (c) on the line width of the parallel 

micro-textures. 
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a)  

b)  

c)  
Figure 28. The effect of laser power in a single pass strategy (a) and scan velocity in a 

double pass strategy (b) and triple pass strategy (c) on the surface roughness (Sa) on the 

surface of the parallel micro-textures. 
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From above results, the high laser power and slow scan velocity lead to wider texture 

line width whereas low laser power combined with fast scanning results in narrow texture 

line width. The line width increases with laser power and decreases with scan velocity 

while all other parameters are constant.  

By combining laser power and scan velocity, the rise in laser energy density leads to 

rising in texture line width. The same trend is observed in all scan passes. The variation 

in texture line width with increasing energy density is represented with a regression 

model, which gives the texture line width value at a particular laser energy density as 

combination of laser power and scan velocity as embedded in Fig. 29.  

Higher productivity (energy density) can be achieved with high scan velocity and low 

energy input (laser power). Laser power and scan velocity has significant control on the 

texture line width and its surface roughness during the laser surface texturing process.  

From the above analysis, with increasing laser power, the line width increases 

correspondingly. With further increases in input energy, the surface condition starts to 

deteriorate. Similar effects were noticed when changing scan velocity for a constant laser 

power. At an optimal scan velocity, the striation patterns disappeared, and a uniform 

surface was achieved. Further increases in scan velocity resulted in small texture line 

width.  
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a)  

b)  

c)  

Figure 29. The effect of energy density on the line width of the parallel micro-textures in 

a single pass strategy (a) and scan velocity in a double pass strategy (b) and triple pass 

strategy (c). (R2 represents the goodness of fit) 
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Chapter 4 

Application of Machine Learning Methods 

Machine learning is a form of artificial intelligence (AI) that enables a system to 

learn from data rather than through explicit programming. Machine learning methods are 

often utilized when trying to capture the process behavior by utilizing existing measured 

data. The methods involve either emulating the process behavior from the measured 

experimental data sets (artificial neural network) or using search method to search over a 

class of feasible solutions to find the optimal (generical programming) [25].  

A machine learning model is the output generated when one trains an algorithm with 

measured data. After the training, one can use the predictive model that will provide an 

output with each given input. Machine learning techniques are required to improve the 

accuracy of predictive models. There are different approaches based on the type and 

volume of the data. Supervised learning typically begins with an established set of data 

and a certain understanding of how that data is classified. Supervised learning is intended 

to find patterns in data that can be applied to an analytics process. This data has labeled 

features that define the meaning of the data [25].  

In this thesis study, based on the nature of the laser surface texturing data set, all of 

the processing parameters are categorized as labeled data, such as Sa, Sq, Ssk, Sku 

variables are used to identify surface texture parameters. Unsupervised learning is used 

when problem requires a massive amount of unlabeled data, such as social media 

applications.  
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In order to understand the logic behind imported data requires algorithms that 

classify the data based on the patterns or cluster it finds. Unsupervised learning conducts 

an iterative process, analyzing data without human intervention [25]. 

Artificial neural networks are one of the many tools used in machine learning. Neural 

networks are brain-inspired systems which are intended to replicate the way human brain 

learns. Neural networks consist of input and output layers along with multiple hidden 

layers that transform the input into something that output layer can use. They are useful 

tools for human programmer to extract and teach the machine to recognize patterns [26].  

 

Figure 30. Artificial Neural Network Model (Multi-layer perceptron) 

The principles of each layers can be easily explained by using the example of image 

processing. Input layer will be a picture of some object, first hidden layer will analyze the 

gray scale of each pixel in that photo, which tells the programmer the brightness of the 

object pixels. Then the second layer may identify edges of the image, by using edge 

descriptor base on lines of similar pixels. After this, another layer will gather the 

information from first two layers and recognize textures and shapes. Eventually the 

program goes through multiply layers like this and be able to distinguish certain image 

elements.  
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4.1 Artificial Neural Network Modeling Approach 

A feedforward neural network is an artificial neural network wherein connections 

between the nodes do not form a cycle, its different from the descendant: recurrent neural 

network. Due to the nature of the problem, in this thesis the focus will be on feedforward 

neural network to generate a proper model to illustrate the relation between input 

parameters (laser power, scanning velocity, and energy density) and output which will 

surely be the surface texture parameters (Sa, Sq, Ssk, Sku) as shown in Fig.31. 

 

Figure 31. Model of a neural network algorithm for LST. 

By utilizing feedforward neural network, one must understand which type of 

perceptron one needs to select. There are commonly two types of perceptron, single-layer 

perceptron or multi-layer perceptron. A single-layer perceptron network consists a single 
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layer of output nodes, and the inputs are directly fed to the output through a series of 

weights. The sum of the products of the weights and the inputs is calculated in each node, 

and activation function will be applied on each neuron. The activation function will 

simply act like a “OR” logic, means if the value is above some threshold the neuron takes 

the activated value, usually 1, otherwise the deactivated value will usually be -1. Neurons 

with this kind of activation function are called linear threshold units, therefore we can 

draw the conclusion that single-layer perceptron is only a good fit for data which has 

linear relation. 

Where the multi-layer perceptron usually interconnected in a feedforward way, each 

neuron in one layer has directed connections to the neurons of the subsequent layer, for 

this type of network, sigmoid functions is typically the activation function (other 

commonly used activation functions are rectified linear unit (ReLU) function and tanh 

function). Sigmoid function can alternate the value of each element from 0 to 1. 

        (5) 

According to the chain rule, the derivative of sigmoid function will be: 

  (6) 

The purpose of setting up hidden layer is achieve deep learning’s rethinking 

generalization, in order to mimic some function which can represent the real world 

scenario. Any combination of two linear layer is not feasible to create non-linear relation, 

sigmoid(x) =
1

(1 + e−x)

sigmoid′ (x) = sigmoid(x)*(1 − sigmoid(x))
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due to the fundamental theory of matrix operation, which is binary operators like 

multiplication or addition always generate an affine transformation between matrixes. 

The most obvious way in creating a non-linear network is applying activation function 

which is different from the “OR” logic that was stated earlier when discussing about 

single-layer perceptron, and “sigmoid function” is one of those different activation 

functions can be utilized to create non-linear network.  

After choosing multi-layer perceptron network, backpropagation algorithm is utilized 

to train the feedforward neural networks for supervised learning [26].  

 

Figure 32. Model of a backpropagation algorithm 

In fitting a neural network, backpropagation computes the gradient of the loss 

function with respect to the weights of the network for a single input-output example, this 

efficiency makes it feasible to use gradient methods for training multilayer network, 

updating weights to minimize loss; gradient descent, or variants such as stochastic 

gradient descent, are commonly used.  

4.2 Predictive Artificial Neural Network Model by Using Backpropagation 

In this section, the measurement data will be utilized in a multilayer perceptron 

(MLP) feedforward neural network approach that consists of three layers: input, hidden, 



49

and output layer to obtain relations between LST process parameters and surface texture 

parameters of the fabricated texture patterns on AISI D2 tool steel.  

The inputs are laser power (P), scan velocity (vs) and energy density (E). The outputs 

to be predicted are the surface texture parameters including arithmetic mean (Sa) and 

root-mean squared (Sq) heights of the scale limited surface and skewness (Ssk) and 

kurtosis (Sku) of the scale-limited surface are reported with the distinct effects of energy 

density and scan strategy on them. 

Due to the design of experiment, and the process parameters tested are discrete 

values and it is not possible to adjust their values in a continuous manner, a binarized 

categorical treatment of process variables is a viable approach. In this sense, the process 

parameters can be treated as binary categorical variables instead of using their real 

values, and all process parameters do not have more than three levels. The measured 

values of surface texture parameters used in the predictive neural network modeling is 

given in Table 6. The categorial variables (x1, x2, x3, x4, x5 are given in Table 7). 

Table 6. The process input nominal value for surface texture measurement data used. 

Data P  
[W]

vs  
[mm. s-1]

p  
[mm]

E  
[J.mm-2]

Sa  
[µm]

Sq  
[µm]

Sku  
[-]

Ssk  
[-]

1 50 0.625 0.40 200 2.74 3.28 0.59 2.93

2 50 0.833 0.40 150 8.27 9.60 -0.27 1.98
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Table 7. The process input defined as binary values (True=1, False=0). 

The steps of the algorithm are given below, and it is run separately for each 

prediction output:  

3 50 1.538 0.40 81 4.93 5.76 -0.14 2.00

4 35 0.625 0.40 140 2.25 3.10 -0.88 5.70

5 35 0.833 0.40 105 2.21 3.17 -1.25 9.41

6 35 1.538 0.40 57 2.43 2.74 0.34 2.17

7 20 0.625 0.40 80 1.76 2.26 0.23 3.83

8 20 0.833 0.40 60 3.13 4.03 -1.10 4.40

9 20 1.538 0.40 32 14.23 10.11 -1.46 -1.03

Data x1  
(P =50W)

x2  
(P =35W)

x3 
(vs =0.625 mm. s-1)

x4 
(vs =0.833 mm. s-1)

x5  
(E =150 J.mm-2)

x6  
(E =50 J.mm-2)

1 1 0 1 0 1 0

2 1 0 1 0 1 0

3 1 0 1 0 1 0

4 0 1 0 1 0 1

5 0 1 0 1 0 1

6 0 1 0 1 0 1

7 0 0 0 0 0 0

8 0 0 0 0 0 0

9 0 0 0 0 0 0
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Step 1: The samples for training the network are prepared. In our study, the inputs 

are laser power, scan velocity and energy density, while the outputs are the arithmetic 

mean (Sa) and root-mean squared (Sq) heights of the scale limited surface and skewness 

(Ssk) and kurtosis (Sku) of the scale-limited surface. 

Step 2: The initial parameters of the network are determined. Actually, those 

parameters could be changed according to the effects of training. 

Step 3: The network weights and thresholds are initialized. The dimension of weight 

matrix  is determined by the number of input factor and the number of neurons of 

hidden layer. The threshold is a critical value set to activate the neurons. Therefore, the 

number of thresholds is equal to the number of neurons based on the structure of the 

neural network. 

Step 4: The input and output of the first layer of neurons are calculated. Assume that 

 is the input data. If the activation function of the first layer is linear function, the input 

and output of the first layer are equal to the values of the actual input data, . 

However, it is important to normalize the input and output samples since their dimensions 

and magnitudes are totally different. 

Step 5: The input of the second layer of neurons are calculated. For the second layer, 

the input of neurons  must be the sum of the values of all neurons in the first layer and 

threshold, , where  is an array of all ones. 

wij(t)

X

O1 = X

I2

I2 = wij × X + Bij × ones ones
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Step 6: The output of the second layer of neurons are calculated. If the activation 

function of the second layer is sigmoid function,  , the output of the 

second layer is . 

Step 7: The input and output of the third layer are calculated. Similar with the second 

layer, the input of third layer is . Since the activation 

function of the third layer is linear function, the output of the third layer is . 

Step 8: The energy function E is calculated. The purpose of calculating the energy 

function is to stop training the network when the predetermined error is reached. 

According to the definition of energy function,  

         (7) 

where  is the actual output. 

Step 9: The adjustments of weight and threshold between the second and third layers 

are calculated. Hence, 

   (8) 

   (9) 

Step 10: The adjustments of weight and threshold between the first layer and the 

second layer are calculated. Calculate the weight and threshold adjustment between the 

f (x) =
1

1 + e−x

O2 =
1

1 + e−I2

I3 = wjk × O2 + Bjk × ones

O3 = I3

E = ∑ (Y − O3)
2

Y

∆ wjk = − η
∂E

∂wjk
= − η × (Y − O3) × O2

∆ Bjk = − η
∂E
∂Bjk

= − η × (Y − O3) × ones
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second and third layer before calculating those adjustments between the first and second 

layer. Therefore,  

  (10) 

 (11) 

Step 11: The weight and threshold after adjustment are calculated. The weights and 

thresholds at time  are equal to the sum of them at time  and adjustments. The 

equations are listed as follows, 

  (12) 

  (13) 

  (14) 

   (15) 

Step 12: The network output values are restored. Because the input and output are 

normalized for training the network, the  needs to be denormalized to ordinary data. 

Both categorical values (Table 7) and nominal values (Table 6) are implemented into 

the same ANN model and trained by strictly following steps presented above. The results 

∆ wij = − η
∂E
∂wij

= − η × wjk × (Y − O3) × O2 × (1 − O2) × X

∆ Bij = − η
∂E
∂Bij

= − η × wjk × (Y − O3) × O2 × (1 − O2) × ones

t + 1 t

wjk(t + 1) = − η
∂E

∂wjk
+ wjk(t) = Δwjk + wjk(t)

Bjk(t + 1) = − η
∂E
∂Bjk

+ Bjk(t) = ΔBjk + Bjk(t)

wjk(t + 1) = − η
∂E
∂wij

+ wij(t) = Δwij + wij(t)

Bij(t + 1) = − η
∂E
∂Bij

+ Bij(t) = ΔBij + Bij(t)

O3
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are compared in terms of two performance metrics: i.e., Mean Square Error (MSE) and 

Mean Absolute Percentage Error (MAPE),  

        (16) 

        (17) 

where;  is the actual value of the ith data point and  is the predicted value of the ith 

data point. From Table 8, it is obvious that ANN model adopting nominal values has 

much better performance than categorical. The nominal values implemented model has 

smaller Mean Square Error (MSE) and Mean Absolute Percentage Error (MAPE).  

Table 8. Results of categorical and nominal values for predicting the surface texture 

parameters. 

 

The predictive ANN model is used against the measured data as shown in Fig. 33. 

The measured and predicted surface texture/ roughness parameters using the ANN model 

at varying energy levels (no rotations for a single line trajectory) are shown for Sa, Sq, 

Sku, Ssk.  

MSE =
6

∑
i=1

(yi − ŷi)
2 /n 

MAPE =
6

∑
i=1

yi − ŷi /n 

yi ŷi

MSE MAPE MSE MAPE
Sa 0.5485 6.6383 2.99E-05 1.51E-09
Sq 0.3432 3.1102 2.73E-04 1.59E-07
Ssk 0.9017 0.2149 1.67E-05 1.72E-10
Sku 0.3512 1.5299 1.72E-04 3.20E-10

Catagorical Values Nominal Values
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These figures indicate the goodness of computations when ANN are utilized with the 

full test data set utilized as training set in surface texture measurements in LST. However, 

if one of the test conditions is removed from the training set, the computations are found 

to be not so good. This means that there should be more measurement data needed to 

improve the ANN model computations. Especially ANNs tend to overfit the model to the 

data in the absence of sufficient data; hence, with inclusion of more measurement data, 

the ANN model is expected to reflect the actual conditions. 

 

Figure 33. BP feedforward ANN model for predicting surface texture parameters. 
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Chapter 5 

Conclusions and Future Work 

This thesis study investigates the laser surface texturing (LST) process. In particular, 

the thesis focuses on effect of laser processing parameters such as laser power, scan 

velocity, on fabricating parallel textures with desired surface texture parameters. By 

applying multiple passes of parallel trajectories during the laser surface texturing process, 

it was possible to significantly reduce the measured surface texture parameters such as 

average surface roughness.  

Furthermore, a regression relationship between laser energy density and surface texture 

parameters are defined so that these can be used for process planning purposes in laser 

surface texturing.  

Surface topography investigations of laser textured surfaces were performed by 

obtaining areal height maps using white light interferometry technique for tool steel 

samples processed at various laser energy density settings and three different scan 

strategies, i.e. single, double, and triple passes.  

Surface areal height maps showed the highly irregular surface texture created by laser 

surface texturing at low scan velocities and high energy densities due to chaotic laser 

ablation. Effects of laser surface texturing process parameters on the surface texture and 

roughness parameters have been identified.  
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Machine learning methods with neural networks were applied to the measured surface 

texture data to determine input and output relationships between LST process parameters 

and measured surface texture parameters with good predictive capabilities.  

Some specific conclusions on the LST process can be drawn from this study include: 

i) Micro-pattern produced on the surface of tool steel is sensitive to laser energy 

density as well as laser power, scan velocity, and pulse repetition rate.  

ii) The combined effects of low ablation threshold, high heat accumulation, and 

low plasma shielding could be accomplished in an acceptable range of pulse 

repetition rate to improve ablation efficiencies and surface quality. 

iii) An inefficient ablation can occur because of early-stage plasma shielding and 

thermal diffusion loss when high overlapping is employed.  

iv) A chaotic ablated surface topography or molten metal accumulation can be seen 

due to plasma irradiation and molten droplets explosion. 

The advantages of employing such predictive models for laser surface texturing is the 

highlight of this thesis research. The future work is recommended on the following topics 

for further investigations.  

i) There is an improvement needed in replacing positioning stages with step motor 

drives with a precision scan head instrument based on fast scanning galvanometers for x-

axis and y-axis motions and a finer focus optics for the laser beam 

ii) There is a need to develop in-situ process monitoring system to view the laser 

processes area using optical or thermal camera imaging systems. 
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iii) There is also more data needed to construct and develop a fully competent 

predictive modelling system that can predict the surface texture and roughness more 

accurately. 

iv) Other methods of machine learning such as deep learning methods should be 

studied for more established predictive artificial intelligence capability for the machine 

tool. 
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