Staff View
Label-free electronic detection of biomarkers using nanowell impedance sensor

Descriptive

TitleInfo
Title
Label-free electronic detection of biomarkers using nanowell impedance sensor
Name (type = personal)
NamePart (type = family)
Xie
NamePart (type = given)
Pengfei
NamePart (type = date)
1989-
DisplayForm
Pengfei Xie
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Javanmard
NamePart (type = given)
Mehdi
DisplayForm
Mehdi Javanmard
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Hassan
NamePart (type = given)
Umer
DisplayForm
Umer Hassan
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Wu
NamePart (type = given)
Chung-Tse Michael
DisplayForm
Chung-Tse Michael Wu
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Allen
NamePart (type = given)
Mark
DisplayForm
Mark Allen
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
School of Graduate Studies
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
Genre (authority = ExL-Esploro)
ETD doctoral
OriginInfo
DateCreated (qualifier = exact); (encoding = w3cdtf); (keyDate = yes)
2020
DateOther (type = degree); (qualifier = exact); (encoding = w3cdtf)
2020-10
CopyrightDate (encoding = w3cdtf); (qualifier = exact)
2020
Language
LanguageTerm (authority = ISO 639-3:2007); (type = text)
English
Abstract (type = abstract)
The application of lab-on-a-chip or microfluidic technologies to perform protein assays is an emerging field and has the potential to be used for point-of-care devices. High-sensitivity and general-use biosensors play a crucial role in achieving this goal. The quantification of protein provides a crucial perspective of pathology, drug treatment, and understanding of the disease.

Label-free electronic affinity-based immunosensing is an attractive candidate as a platform technology for analyzing biomarkers due to the ease of miniaturization and the minimal use of reagents. Electronic-based sensing approaches, however, have lagged behind their optical counterparts in terms of detection limit, selectivity, and reliability. In addition, the matrix-dependent nature of electronic sensing modalities makes the analysis of biomarkers in high salt concentration samples, such as the serum, difficult due to charge screening.
In this dissertation, I present a novel impedance-based nanowell biosensor and its application in multiple novel solutions for detecting protein biomarkers in purified buffers and serum matrixes using a micro-sized biochip. I discuss sensor fabrication, sample preparation, theoretical considerations, data analysis, and various experiments.

In the first chapter, I introduce the fundamental perspective of protein studies and protein quantification and summarize and review the gold standard and state-of-the-art techniques of protein quantification. Next, I introduce the impedance-based biosensors used in protein detection. In the second chapter, I introduce the theory and modeling of the proposed nanowell sensor, including the systematic analysis, determination of the parameters, results of the simulations, and the derivation of the formula. In the third chapter, I propose the nanowell-based label-free assay for the quantitative assessment of cytokine levels, present the results of a series of experiments, and discuss the validity and novelty of the technique. In the fourth chapter, I present multiplexed protein assay measurements achieved using an embedded microprocessor. The standard titration curves of multiple proteins are also presented, followed by the correlation analysis between the nanowell sensor and the Luminex technique and the results of the nanowell sensor to the characteristic biological parameters. In the fifth chapter, I present the most recent results on the analysis of mouse clinical samples with inflammatory arthritis. The results of different experiments with different treatments, a comparison between the standard titration curves of different techniques, and the correlation curves of all samples are presented in this chapter. And in the sixth chapter, the results of human clinical samples including the titration curve of different biomarkers, cytokine levels of different patient samples were introduced.
Subject (authority = local)
Topic
Biosensing
Subject (authority = RUETD)
Topic
Electrical and Computer Engineering
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_11149
PhysicalDescription
Form (authority = gmd)
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xiii, 107 pages) : illustrations
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
RelatedItem (type = host)
TitleInfo
Title
School of Graduate Studies Electronic Theses and Dissertations
Identifier (type = local)
rucore10001600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/t3-a85d-bg81
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Xie
GivenName
Pengfei
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2020-09-23 15:55:12
AssociatedEntity
Name
Pengfei Xie
Role
Copyright holder
Affiliation
Rutgers University. School of Graduate Studies
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.4
ApplicationName
Microsoft® Word 2010
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2020-09-24T13:01:25
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2020-09-24T13:01:25
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024