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ABSTRACT OF THE DISSERTATION

The Divide-and-Combine Approaches for Multivariate Survival Analysis and

Multistate Survival Analysis in Big Data

by Wei Wang

Dissertation Director: Prof. Shou-En Lu

Multivariate failure time data can be unordered or ordered, which can be analyzed using

multivariate survival analysis and multistate survival analysis, respectively. When sample

sizes are extraordinarily large, both analyses could face computational challenges. In this

dissertation, we propose divide-and-combine approaches to analyze large-scale multivari-

ate failure time data in both multivariate survival analysis and multistate survival analysis.

Our approaches are motivated by the Myocardial Infarction Data Acquisition System (MI-

DAS), a New Jersey statewide database that includes 73,725,160 admissions to non-federal

hospitals and emergency rooms (ERs) from 1995 to 2017. We propose to randomly di-

vide the full data into multiple subsets and propose a weighted method to combine these

estimators obtained from individual subsets. In divided subsets, estimated regression pa-

rameters and estimated cumulative hazards are calculated, respectively, for multivariate

survival analysis and multistate survival analysis. Under mild conditions, we show that the

combined estimators are asymptotically equivalent to the estimators obtained from the full

data as if the data were analyzed all at once. In addition, to screen out risk factors with weak

signals in multivariate survival analysis, we propose to perform the regularized estimation

on the combined estimators using their combined confidence distributions. Theoretical

properties of proposed approaches, such as asymptotic equivalence between divide-and-
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combine analysis and full-data analysis, estimation consistency, selection consistency, and

oracle properties are studied. Performances of proposed estimators are investigated using

simulation studies. The MIDAS data are used to illustrate our proposed methodologies.
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CHAPTER 1

INTRODUCTION

1.1 Divide-and-Combine in Big Data

With the advancement of computing and storage technologies, data sets on a massive scale

in terms of volume, intensity, and complexity (“big data”) have become increasingly ac-

cessible. Big data are generated by a variety of sources, from internet search engines,

social network tools, and internet of things, to electronic health records, medical imaging,

and genomic sequencing, to name a few. Three characteristics distinguish them from tradi-

tional data: volume (amount of data), velocity (speed of data in and out), and variety (range

of data types and sources), which is also known as the 3V definition of big data (Laney,

2001). High volume and high velocity may introduce scalability and storage bottleneck,

noise accumulation, spurious correlation, incidental endogeneity, and measurement errors

(Fan et al., 2014). High variety may bring non-traditional or even unstructured data types

(Wang et al., 2016). As a result, researchers appreciate the great promises held by big data

for discovering subtle population patterns and heterogeneities that are not possible with

small-scale data, but also face the challenges of limited capacity of standard analytic tools.

Performing standard regression analysis in big data presents considerable computa-

tional challenges: 1) the entire data can be too big to be loaded and analyzed in one single

processor; 2) the estimation algorithms of traditional software packages can be too com-

plex and thus the computing tasks can take too long to wait for the results. To overcome

these difficulties, sound statistical procedures with scalable computational capacities have

been proposed. For example, bags of little bootstrap (Kleiner et al., 2014), divide and com-

bine (Lin and Xi, 2011), and online updating (Schifano et al., 2016). We shall focus on

the divide-and-combine approaches in this dissertation due to their simplicity and effec-
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tiveness. Their principle is to divide a data set into multiple subsets, perform statistical

inference in each subset separately and sometimes recursively, then combine these individ-

ual results into a final result. Divide-and-combine has a long history in computer science

(Aho and Hopcroft, 1974), and has advanced rapidly in recent statistical development using

the distributed computing architecture with a focus on the regularized estimation (Shamir

et al., 2014; Chen and Xie, 2014; Lee et al., 2015; Tang et al., 2016; Battey et al., 2018;

Wang et al., 2019; Jordan et al., 2019).

Most of the existing divide-and-combine approaches require one round communication

only: estimates in subsets are aggregated to form a final result. For example, Chen and Xie

(2014) combine LASSO estimators (Tibshirani, 1996) by a majority voting method; Battey

et al. (2018) and Lee et al. (2015) simply average debiased LASSO estimators (Van de Geer

et al., 2014); Tang et al. (2016) combine debiased LASSO estimators (Van de Geer et al.,

2014) using the confidence distribution approach (Xie and Singh, 2013). While these “one-

shot” approaches are highly efficient in communication, their statistical inference might not

be available or may be sub-optimal in many occasions (Jordan et al., 2019). To achieve the

best efficiency in statistical estimation, iterative algorithms are proposed. For instance,

approximate Newton-type algorithms (Shamir et al., 2014) and one-step algorithms (Wang

et al., 2019). However, these iterative algorithms require multiple-round communications

to broadcast information back and forth between subsets and global aggregation, which

makes them computationally intensive when compared to those “one-shot” approaches.

To date, all these divide-and-combine methods have been exclusively discussed and ap-

plied to univariate outcomes and mostly under the framework of generalized linear models

(McCullagh, 1989) and the Cox proportional hazards model (Cox, 1972). None of them are

applicable for dependent outcomes. This dissertation intends to fill this void and focuses

on the multivariate failure time data.
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1.2 Multivariate Failure Time Data

Time-to-event outcomes differ from lots of other measurements. There are chances that

the prespecified events do not occur in a given study period and we say these outcomes are

“censored”. Because of censoring, appropriate statistical modelling approaches are needed

to handle the possibly incomplete time-to-event data. Among them, the Cox proportional

hazards model (Cox, 1972) and its associated statistical methods based on the partial like-

lihood (Cox, 1975) is the most popular one. Usually, we call the prespecified event a

“failure”, and the time period until a event occurs a “failure time”.

Multivariate failure time data are commonly encountered in biomedical research where

study subjects from the same cluster (e.g., patient or family) share common genetic and/or

environmental factors such that the failure times within the same cluster are correlated.

Multivariate failure times can be either unordered or ordered. Examples for correlated

unordered failure times include times to blindness of the laser-treated eye and the other

untreated one for an individual patient in a diabetic retinopathy study (Diabetic Retinopathy

Study Research Group, 1981). Similarly, times to affective illness among relatives of the

same proband in a genetic epidemiologic study of schizophrenia (Pulver et al., 1991) are

also correlated and unordered. On the other hand, due to the biological process of a disease,

it is possible that after experiencing the first failure, the risk of the next failure may change.

For instance, times to tumor recurrences for one patient in a bladder cancer study (Byar,

1980) or times to multiple pyogenic infection episodes for another patient in a chronic

granulomatous disease study (Fleming and Harrington, 2011) are correlated and ordered.

Analysis of multivariate unordered failure time data (commonly known as “multivariate

survival anlaysis”) has been extensively studied in the statistical literature (e.g., Hougaard

(2000)). Extensions of the Cox proportional hazards model (Cox, 1972) for the multivariate

survival analysis include marginal models and frailty models. The marginal model method

estimates the marginal distributions of multivariate unorderd failure times. This method
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either separately models the intra-cluster association or leaves the structure of the intra-

cluster association unspecified but adjusts for it in the inference (Lin, 1994). The frailty

model method, in contrast, formulates the dependence explicitly by using a frailty term

which corresponds to a random block effect (Hougaard, 2000).

One key assumption for the above multivariate survival analysis is that the failure time

distribution and the censoring time distribution for each of the multiple correlated failures

are independent or at least conditionally independent given some covariates. However,

there are situations in which the independence assumption may be violated. For exam-

ple, the occurrences of multiple correlated failures may be mutually exclusive (“competing

risks”), under which the Cox proportional hazards model (Cox, 1972) can still be used but

the interpretation of the results is different (see details in Section 3 of Putter et al. (2007)).

Another example is that multiple correlated failures may occur sequentially (“event his-

tory”). Rather than interested in time to the first failure, which may lose some information,

researchers are more likely to be interested in what happens after the first non-fatal failure.

The intermediate failures can provide more detailed information on the event history and

allow for more precision in predicting future failures. Both scenarios (competing risks case

and event history case) can be handled by the multistate models (Hougaard, 1999). When

using multistate models, at any time in the time period we are considering, each subject

is said to be in a state. The non-fatal failures are regarded as transitions from one state to

another. Analysis of such multivariate ordered failure times is called multistate survival

analysis.

1.3 Regularization Using Confidence Distribution

Variable selection is a classical but critically important problem. This is because in practice,

the number of available covariates is typically large, but only a small subset of them are re-

lated to the response. Classical methods for variable selection, such as best-subset selection

and forward/backward stepwise selection, are widely used as they have been successfully
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integrated into many commonly-used statistical software packages. Despite their popular-

ity, the sampling properties (e.g., unbiasedness and distributions) are mostly unknown (Fan

and Li, 2002). In the past decades, various variable selection techniques through regular-

ization have been studied in depth and extended into univariate survival analysis using the

Cox proportional hazards model (Cox, 1972), such as the LASSO estimator (Tibshirani,

1997), the SCAD estimator (Fan and Li, 2002), the adaptive LASSO estimator (Zhang and

Lu, 2007; Wang and Leng, 2007), and the MCP estimator (Zhang et al., 2010). Among

them, only the SCAD estimator has been studied in multivariate survival analysis (Fan and

Li, 2002; Cai et al., 2005), but the nonconvex penalty term makes its optimization hard

to solve for globally. In this dissertation, we propose a confidence distribution approach

to perform regularized estimation to achieve variable selection and statistical inference.

Our proposed method applies to multivariate survival analysis and its convex penalty term

makes it computationally appealing.

Confidence distribution (CD) (Xie and Singh, 2013) is a sample dependent distribution

function that can be used to estimate and provide all aspects of statistical inference for a

parameter of interest. It provides simple and interpretable summaries of what can be rea-

sonably learned from data and an assumed model (Cox, 2013). CD has a long history (see,

e.g, Cox (1958), Fisher (1956), and Efron (1993)) but recent development has redefined

the CD concept and focused on providing inference tools for problems in modern applied

statistics (Xie et al., 2011). The useful features can be seen in Xie et al. (2011), Tian et al.

(2011) and Liu et al. (2015).

In this dissertation, as opposed to optimizing the objective function typically con-

structed from the original data in the sample(s), we propose to perform regularized esti-

mation by optimizing the objective function based on the CD of regression parameters.

This approach leads to substantial dimensionality reduction and savings in computation

time when the sample size is much larger than the number of covariates. With a proper

choice of regularization parameters, our proposed regularized estimators have some desired
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statistical properties: estimation consistency, selection consistency, and oracle properties.

Moreover, our proposed confidence distribution approach enables regularized estimation

in multivariate survival analysis using existing software packages (e.g., the R package,

glmnet (Friedman et al., 2010)), without the need for any new algorithm specific to mul-

tivariate survival analysis to perform regularized estimation.

1.4 A Motivating Example: MIDAS Study

Cardiovascular diseases (CVDs) are the number one cause of death globally, resulting in

17.7 million deaths annually (Thomas et al., 2018). CVDs prediction is one of the most

effective measures for CVDs control. Existing predictive models for CVDs, such as Fram-

ingham Risk Score (D’Agostino et al., 2008) recommended by the American College of

Cardiology/American Heart Association (ACC/AHA), Systematic Coronary Risk Evalua-

tion (SCORE) algorithm (Piepoli et al., 2016) recommended by the European Society of

Cardiology (ESC), and QRISK score (Hippisley-Cox et al., 2017) recommended by the

National Institute for Health and Care Excellence (NICE) in the United Kingdom, are only

applicable to either a combined CVD outcome consisting of myocardial infarction (MI),

heart failure (HF), stroke, and cerebrovascular disease, or one single disease. Because

the multivariate failure times recorded for one patient are usually clustered and correlated

but those existing predictive models implicitly ignore the intra-cluster association, a new

predictive model considering intra-cluster association is needed. Moreover, existing pre-

dictive models are typically developed using information on patient cohorts of relatively

small sample size with limited number of risk factors due to the limited computing capac-

ity. It is imperative to build a new predictive model using big data from a large population

with a long follow-up to fully capture the important risk factors, especially those with weak

to moderate effects. In developing predictive models, analyzing big data and identifying

significant risk factors is the key step.

This dissertation employs the the Myocardial Infarction Data Acquisition System (MI-
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DAS) database to identify significant risk factors. MIDAS has been published elsewhere

(e.g., Kostis et al. (2007), Swerdel et al. (2016), Wellings et al. (2018)). It is a New

Jersey statewide database that includes all admissions to non-federal hospitals and emer-

gency rooms (ERs). It contains 73,725,160 records of hospital admissions and ER visits

of 15,519,554 New Jersey patients from 1995 to 2017. MIDAS was originally dedicated

for research on cardiovascular diseases and now it has been used in a broader fields of

biomedical research. It records patient admission dates and a wide range of admission

causes, including MI, HF, stroke, and other cardiovascular diseases. In addition, MIDAS

contains patient clinical characteristics, for instance, age, gender (male and female), race

(white, black, and other), length of stay, admission type (inpatient, ER outpatient, non-ER

outpatient, same day surgery outpatient, and other outpatient), discharge type (discharge

to hospice, discharge to home, discharge to long-term care, discharge to short-time care,

and other), health insurance payer (medicare, medicaid, HMO, blue cross plans, commer-

cial, and self pay), diagnosis year and month, comorbidity conditions and medical pro-

cedures received (diabetes, hypertension, chronic obstructive pulmonary disease (COPD),

liver disease, renal disease, anemia, cannabidiol use, cancer, obesity, saccular aneurysms,

heart valve disease, conduction disorder, cardiac catheterization, percutaneous coronary

intervention, coronary artery bypass surgery, cardiac ablation, cardiac resynchronization

therapy, and artificial cardiac pacemaker).

MIDAS can be more useful by linking with other databases. For example, patient

county-level socioeconomic information obtained from New Jersey State Health Assess-

ment Data (https://www-doh.state.nj.us/doh-shad/home/Welcome.html),

including general health status (percentage of fair or poor condition), percentage of health

care coverage, education attainment (percentage of high school attainment), poverty status

(percentage of poverty), median household income, percentage of blood cholesterol screen-

ing history, percentage of high cholesterol diagnosis, percentage of high blood pressure

diagnosis, percentage of angina diagnosis, percentage of stroke diagnosis, and percentage

https://www-doh.state.nj.us/doh-shad/home/Welcome.html
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of obesity diagnosis, can be linked to the MIDAS database through ZIP code. Hospital

characteristics, such as teaching status (teaching, minor-teaching, and non-teaching), loca-

tion (inner city, urban, suburban, and rural), and size (number of beds), can be linked to the

MIDAS database using CMS certification number (CCN). Moreover, the new jersey death

record can also be linked to the MIDAS database using probabilistic matching to obtain

patient death dates.

The long follow-up in the general population not only lends the MIDAS database a

major advantage in unveiling risk factors with weak to moderate effects that cannot be

discovered in a short follow-up period or in a particular population with selected character-

istics, but also helps understand and characterize the natural history of diseases over a long

period. When taking into account the intrinsic order and failure-related dependence among

multivariate cardiovascular-related failure times, the multistate stochastic processes used

in multistate survival analysis provide a framework to longitudinally describe transitions

(i.e., CVDs) of patients between their different health states, and to dynamically predict

transition probabilities for patients with particular characteristics.

1.5 Research Questions and Objectives

Motivated by utilizing data sets with extraordinarily large sample size (n) and large num-

ber of covariates (d) (n � d), such as MIDAS, to better understand the natural courses

of diseases and more accurately capture significant risk factors for diseases, our research

interests are centered on relating multivariate unordered failure times to a collection of risk

factors, and building a multistate stochastic model for multivariate ordered failure times to

predict the prognosis of patients. With that in mind, our multivariate survival analysis is

focused on estimating and identifying significant regression parameters; whereas our mul-

tistate survival analysis is mainly used for estimating cumulative hazards and predicting

transition probabilities.

The objective of this dissertation is to develop divide-and-combine approaches for mul-
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tivariate survival analysis and multistate survival analysis to analyze large-scale multivari-

ate failure time data. Specifically,

1) develop a divide-and-combine approach for multivariate survival analysis to estimate

regression parameters.

2) develop a confidence distribution approach to perform regularized estimation in mul-

tivariate survival analysis.

3) develop a divide-and-combine approach for multistate survival analysis to estimate

cumulative hazards and predict transition probabilities.

The rest of this dissertation is organized as follows. Chapter 2 reviews the related liter-

ature on multivariate survival analysis and multistate survival analysis. Major topics for the

former include both marginal models and frailty models, and their statistical inference pro-

cedures; those for the latter include structures of multistate stochastic processes, setups of

multistate models, and statistical inference procedures. Regularization using the confidence

distribution is also briefly reviewed in Chapter 2. The divide-and-combine approach to es-

timating regression parameters in multivariate survival analysis is proposed in Chapter 3, in

which we show the asymptotic equivalence between the divide-and-combine estimators and

the “analyzed-all-at-once” full-data estimators. By using the asymptotic distributions of the

divide-and-combine estimators, a confidence distribution based regularized estimation ap-

proach in multivariate survival analysis is proposed in Chapter 4, with the establishment

of estimation consistency, selection consistency, and oracle properties of the regularized

estimators. In Chapter 5, we propose a divide-and-combine approach in multistate sur-

vival analysis to estimating cumulative hazards and predicting transition probabilities, in

which we show that the predicted transition probabilities using both divide-and-combine

analysis and full-data analysis are asymptotically equivalent. Numerical illustrations of the

proposed methods, including simulation studies and real data examples, are presented in
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Chapter 6. We conclude this dissertation with a discussion and possible future work in

Chapter 7.
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CHAPTER 2

LITERATURE REVIEW

2.1 Multivariate Survival Analysis

Multivariate failure times can be either unordered or ordered as described in Section 1.2.

When they are unordered (or referred to as “parallel data” in Hougaard (2000)), their fail-

ure time distributions are considered independent of the censoring distributions, or at least

conditionally independent given some covariates. Analysis of such data is called multivari-

ate survival analysis. This section focuses on multivariate survival analysis and its related

statistical models. Two distinct classes are reviewed: marginal models and frailty mod-

els. These two classes of models differ in interpretation and by procedures used to handle

correlation within a cluster. The appropriateness of one model over the other depends on

the research interest, the study design, and the nature of the data structure under study.

These issues are discussed in detail in this section. In particular, extensions of the Cox

proportional hazards model (Cox, 1972) in both classes are of interest in this dissertation.

In multivariate survival analysis, consider n independent clusters, with cluster i poten-

tially experiencing K distinct types of failures, i = 1, 2, . . . , n. Let Tik and Cik denote,

respectively, the failure and censoring times for the kth type of failure in the ith cluster,

and let Zik be a d-dimensional vector of possibly time-varying covariates, with n � d.

We assume d can be large but still finite. Correspondingly, let Xik = min(Tik, Cik) be

the observed time and δik = I(Tik ≤ Cik) be the censoring indicator, where I(.) is the

indicator function. It is assumed that Tik and Cik are conditionally independent given

Zik and that the censoring mechanism is noninformative. Denote the observed data by

Di = {Xik, δik,Zik; k = 1, 2, . . . , K} for i = 1, 2, . . . , n, and assume that Di’s are an in-

dependent and identically distributed random sample from a certain population {X, δ,Z}.
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A full likelihood of the observed data is given by

L =
n∏
i=1

K∏
k=1

{λik(Xik|Zik)}δik Sik(Xik|Zik), (2.1)

where λik(.|Zik) and Sik(.|Zik) are the conditional hazard function and the conditional

survival function of Tik given Zik.

2.1.1 Marginal Models

Marginal models analyze multivariate unordered failure time data by modeling marginal

distributions of multivariate failure times and estimating the intra-cluster association sep-

arately or even leave the structure of intra-cluster association unspecified when the re-

gression parameters are of primary interest. The former approach includes a two-step

estimation method (Mahé and Chevret, 1999) to take into account the correlation, while

the latter approach finds the estimate under the (incorrect) assumption of independence

within clusters. This yields directly the final estimate of regression coefficients. The un-

certainty/variance of the regression coefficient estimate is evaluated by a sandwich/robust

estimator. The latter approach is called the independence working model method, which is

closely related to the generalized estimating equations (GEE). The independence working

model method is of interest in this dissertation for its flexibility with model assumptions

and its convenience for implementation.

Model Setups

By formulating the marginal distribution of each type of failure with a proportional hazard

model (Cox, 1972), the hazard function for the kth type of failure in the ith cluster is

λik(t|Zik) = λ0k(t)e
βTZik(t), (2.2)
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where λ0k(.), k = 1, 2, . . . , K, are unspecified baseline hazard functions for K distinct

failure types, and β = (β1, β2, . . . , βd)
T is a vector of unknown regression parameters

having an interpretation of log hazard ratio at a population average level. When K = 1,

model (2.2) reduces to the model with identical baseline hazard functions. Model (2.2)

can accommodate type-specific regression parameters by appropriately specifying Zik for

k = 1, 2, . . . , K, such as introducing type-specific covariates (Lin, 1994) or including

interactions of failure types and covariates (Therneau and Lumley, 2015). We used these

approaches in the simulation studies and the real data example (Chapter 6) to allow varying

regression parameters among failure types.

Note that the marginal survival function is fully determined by model (2.2) through

Sik(t) = exp(−
∫ t

0
λik(s|Zik)ds). However, the specification of the joint survival function

is not completed without providing the intra-cluster association. The joint survival function

for the K-variate failure time Ti = (Ti1, Ti2, . . . , TiK) can be expressed as

Si(ti1, ti2, . . . , tiK) = Pr(Ti1 > ti1, Ti2 > ti2, . . . , TiK > tiK |Zi1,Zi2, . . . ,ZiK)

= C (Si1(ti1), Si2(ti2), . . . , SiK(tiK)) ,

(2.3)

where C(.) is a copula function, i.e., a distribution function with uniform (0, 1) marginals

and parameterized by θ (possibly a vector). Clearly, different choices of C lead to different

joint survival functions for Ti, whereas the same marginal distributions specified by model

(2.2) for each of K types of failures are preserved. For example, a commonly used copula

in multivariate survival analysis is the Clayton-Oakes copula (Clayton and Cuzick, 1985;

Oakes, 1989), in which C(u, v, . . . , s) = L{L−1(u) + L−1(v) + · · ·+ L−1(s)}, where

L(s) = (1 + s)1/(1−θ) and L−1(s) = s1−θ − 1, (2.4)

with θ ≥ 0. L(.) is the Laplace transform of the one-parameter gamma density, whose
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density function is given by

fU(ui|θ) =
u

(2−θ)/(θ−1)
i e−ui

Γ(1/(θ − 1))
. (2.5)

This gamma density corresponds to mean of 1
θ−1

and variance of 1
θ−1

. By using the Clayton-

Oakes copula, the joint survival function in (2.3) then becomes

Si(ti1, ti2, . . . , tiK) =

[
K∑
k=1

{Sik(tik)}1−θ −K + 1

]1/(1−θ)

. (2.6)

In addition, the intra-cluster association can be measured by Kendall’s tau1, given by

κ = 4

∫ ∞
0

sp(s)p
′′
(s)ds− 1, (2.7)

where p(.) is the Laplace transform of copula-related density function and p
′′
(.) is the

second derivative of p(.). When multivariate failure times within clusters are independent,

κ = 0. When p(.) = L(.), κ = θ−1
θ+1

.

Estimation and Inference

A number of researchers studied the estimation and inference procedures in the marginal

proportional hazards model. Wei et al. (1989) and Lee et al. (1992) proposed a Cox-type

semiparametric model for stratified and unstratified multivariate unorderd failure time data,

respectively. They extended the marginal parametric model considered in Huster et al.

(1989) and borrowed the independence working model assumption therein. Spiekerman

and Lin (1998) proposed a general semiparametric regression model which has a nested

structure allowing for different baseline hazard functions among distinct failure types and

imposing a common baseline hazard function on the failure times of the same type. The

models considered in Wei et al. (1989) and Lee et al. (1992) are special cases of this model.

1Kendall’s tau is denoted by κ to avoid confusion with τ , the end of the follow-up period.
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Spiekerman and Lin (1998) developed the rigorous asymptotic theory in the marginal pro-

portional hazards model for regression parameter estimators via the elegant counting pro-

cess martingale theory, which was firstly connected with the Cox proportional hazards

model by Andersen and Gill (1982).

In the counting process notation, Nik(t) = δikI(Xik ≤ t) records the number of the kth

failures observed on the ith cluster by time t, and Yik(t) = I(Xik ≥ t) indicates whether

the ith cluster is at risk for the kth type of failure at time t. Before stating the estimation

and inference procedures in the marginal proportional hazards model, it is convenient to

introduce the following notation. Denote the true value of β by β0, and the end of the

follow-up period by τ . For the kth (k = 1, 2, . . . , K) failure type, we define

S
(r)
k (β, t) = n−1

n∑
i=1

Yik(t)e
βTZik(t)Zik(t)

⊗r, s
(r)
k (β, t) = E

{
S

(r)
k (β, t)

}
,

Ek(β, t) =
S

(1)
k (β, t)

S
(0)
k (β, t)

, ek(β, t) =
s

(1)
k (β, t)

s
(0)
k (β, t)

,

Vk(β, t) =
S

(2)
k (β, t)

S
(0)
k (β, t)

− Ek(β, t)
⊗2, vk(β, t) =

s
(2)
k (β, t)

s
(0)
k (β, t)

− ek(β, t)
⊗2,

where a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT and E denotes expectation. Throughout this

dissertation, we assume that the following regularity conditions hold for the marginal pro-

portional hazards model. For some constant τ > 0:

(M1) Pr{Yik(t) = 1, for all t ∈ [0, τ ]} > 0 for all i and k.

(M2) |Zikj(0)|+
∫ τ

0
|dZikj(u)| < BZ a.s. for all i, k, j and some constant BZ <∞.

(M3) There exists a neighborhood B of β0 such that for r = 0, 1, 2 and k = 1, 2, . . . , K,

sup
t∈[0,τ ],β∈B

∥∥∥S(r)
k (β, t)− s

(r)
k (β, t)

∥∥∥
max

P−→ 0, as n −→∞,

where ‖a‖max = supi |ai| for a column vector a = (ai), and ‖A‖max = supi,j |aij|

for a matrix A = (aij).
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(M4) A(β0) =
∑K

k=1

∫ τ
0

vk(β0, u)s
(0)
k (β0, u)λ0k(u)du is positive definite.

(M5)
∫ τ

0
λ0k(u)du <∞ for each k.

(M6) s
(r)
k (β, t) (k = 1, 2, . . . , K; r = 0, 1, 2) are continuous functions of β ∈ B uniformly

in t ∈ [0, τ ] and are bounded on B × [0, τ ], s(0)
k (β, t) (k = 1, 2, . . . , K) are bounded

away from 0 on B × [0, τ ], and

s
(1)
k (β, t) =

∂

∂βT
s

(0)
k (β, t), s

(2)
k (β, t) =

∂2

∂βT∂β
s

(0)
k (β, t)

for k = 1, 2, . . . , K, β ∈ B, and t ∈ [0, τ ].

Following Breslow’s idea (Breslow, 1972) and treating λ0k(.) in model (2.2) as piece-

wise constant between uncensored failure times, under the independence working model

assumption, the full likelihood in (2.1) can be derived into a pseudo-partial likelihood (Cox,

1972, 1975; Spiekerman and Lin, 1998) upon which the statistical inference on β is usually

based

PL(β) =
n∏
i=1

K∏
k=1

{
eβ

TZik(Xik)

nS
(0)
k (β, Xik)

}δik

. (2.8)

The detailed mathematical derivation from the full likelihood to the pseudo-partial likeli-

hood can be found in Appendix A.1. The first and minus second derivatives of logarithm

of PL(β) in (2.8) are given by

U(β) =
∂logPL(β)

∂βT
=

n∑
i=1

K∑
k=1

∫ τ

0

{Zik(t)− Ek(β, t)} dNik(t), (2.9)

and

I(β) = −∂
2logPL(β)

∂βT∂β
=

n∑
i=1

K∑
k=1

∫ τ

0

Vk(β, t)dNik(t). (2.10)

By solving U(β) = 0, we can obtain the maximum pseudo-partial likelihood estimator β̂,

which is unique if I(β) is nonsingular.
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Theorem 2.1.1 (Lemma 1 and Corollary 1 in Spiekerman and Lin (1998)). Under regu-

larity conditions (M1) to (M6) in Section 2.1.1, the maximum pseudo-partial likelihood

estimator β̂ satisfies the following as n −→∞:

(1) (Consistency) β̂ P−→ β0;

(2) (Asymptotic Normality) n1/2(β̂−β0)
D−→ N (0,Σ1 = {A−1(β0)}{B(β0)}{A−1(β0)}T );

(3) Σ1 can be consistently estimated by the sandwich estimator {Â−1(β̂)}{B̂(β̂)}{Â−1(β̂)}T ,

where Â(β̂) = n−1I(β̂), and B̂(β̂) = n−1
∑n

i=1 ŵ⊗2
i , with

I(β̂) =
n∑
i=1

K∑
k=1

∫ τ

0

Vk(β̂, t)dNik(t), (2.11)

and

ŵi =
K∑
k=1

[∫ τ

0

{
Zik(t)− Ek(β̂, t)

}
dNik(t)

−
n∑
j=1

∫ τ

0

{
Zik − Ek(β̂, s)

} Yik(s)eβ̂TZik(s)dNjk(s)

nS
(0)
k (β̂, s)

]
.

(2.12)

Proof. The detailed proof can be found in Spiekerman and Lin (1998). �

2.1.2 Frailty Models

Frailty models assumes that the correlation within a cluster is induced by a set of unob-

served random quantities, called frailties. Given the frailty, failures in the same cluster are

assumed to be independent. Frailty models are useful in estimating correlations in multi-

variate survival analysis, in which, the correlation structure is specified by incorporating a

random effect (frailty) that is common to failures within the same cluster. The covariate

effect is then interpreted as being conditional on the frailties and is cluster specific. The

simplest model is the shared frailty model. In this model, all the failures within each cluster
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share a common frailty, each failure belongs to precisely one cluster, and frailties of differ-

ent clusters are independent. More complex models are possible. Frailties can be nested;

individuals within a family may share a common frailty, while families within communities

share another common frailty. In this dissertation, the shared frailty model is of interest due

to its simplicity and sound statistical properties.

Model Setups

Instead of modeling the marginal distribution of Tik, we model the conditional distribution

of Tik given frailties. In particular, the conditional hazard function for the kth type of failure

in the ith cluster, conditional on the cluster frailty ui, is assumed to take the form

λik(t|Zik, ui) = uiλ0(t)eβ
TZik , (2.13)

where λ0(.) is the unspecified baseline hazard function and β represents a d-dimensional

unknown regression parameter having an interpretation of log hazard ratio specific to the in-

dividual cluster. Of note, in our proportional hazards frailty model,Zik is time-independent.

We assume that, givenZik and ui, the censoring is noninformative, and that the frailty ui is

independent of Zik and has a density fU(ui|θ), where θ is an unknown parameter. Similar

to the marginal proportional hazards model in (2.2), the proportional hazards frailty model

also can accommodate type-specific regression parameters by introducing type-specific co-

variates.

Note that in the marginal proportional hazards model, it is usually assumed that the

number of failure types are the same across clusters; whereas in the proportional hazards

frailty model, clusters rather than K distinct failure types are of primary interest, such that

the number of failure types can vary in different clusters. Our proportional hazards frailty

model in (2.13) can handle such situations by letting K = Ki and the statistical properties

below remain the same.
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In the frailty model, under the conditional independence assumption, the joint condi-

tional survival function for the ith cluster is Si,u(ti1, ti2, . . . , tiK) = exp[−ui{Λi1(ti1|Zi1)+

Λi2(ti2|Zi2) + · · · + ΛiK(tiK |ZiK)}], where Λik(t|Zik) =
∫ t

0
λ0(s)eβ

TZikds is the condi-

tional cumulative baseline hazard for the kth failure type in the ith cluster. The joint survival

function can be obtained by integrating out these frailties with respect to their density func-

tion

Si(ti1, ti2, . . . , tiK) = Pr(Ti1 > ti1, Ti2 > ti2, . . . , TiK > tiK |Zi1,Zi2, . . . ,ZiK)

=

∫ ∞
0

Si,u(ti1, ti2, . . . , tiK)fU(ui|θ)dui.
(2.14)

The joint survival function is determined by the frailty density. For example, in the com-

monly used gamma shared frailty model, by using the same gamma density function as in

(2.5), it can be shown that the joint survival function in (2.14) is the same as the one in

(2.6).

Here, to be consistent with the formulation in the R package, frailtySurv (Monaco

et al., 2018), used in this dissertation, we assume u1, u2, . . . , un are independent realiza-

tions of a one parameter gamma density with mean of one and variance of θ, whose density

is given by

fU(ui|θ) =
u

1/θ−1
i e−ui/θ

θ1/θΓ(1/θ)
. (2.15)

Correspondingly, the joint survival function in (2.14) becomes

Si(ti1, ti2, . . . , tiK) =

[
K∑
k=1

{Sik(tik)}−θ −K + 1

]−1/θ

, (2.16)

where Sik(tik) is the marginal survival function obtained by having til = 0 (l = 1, 2, . . . , K, l 6=

k) in Si,u(ti1, ti2, . . . , tiK) and integrating out frailties. It follows that

Sik(tik) =

∫ ∞
0

exp [−ui {Λik(tik|Zik)}] fU(ui|θ)dui. (2.17)
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Of note, these integrals in (2.14) and (2.17) are nothing but the Laplace transforms of the

frailty density function, thus they can be easily solved. In the proportional hazards frailty

model, the intra-cluster dependence can also be measured by Kendall’s tau using (2.7).

When p(.) is the Laplace transform of the density function in (2.15), κ = θ
θ+2

.

Estimation and Inference

In frailty models, the estimation of the regression coefficients (β), the cumulative baseline

hazard function (Λ0(.)), and the dependence parameter (θ) in the frailty density function,

has been extensively studied in the statistical literature. For example, under the semi-

parametric and shared frailty setting adopted in this dissertation, Klein (1992) proposed

estimators using the expectation-maximization (EM) algorithm in the partial likelihood,

which is a natural estimation tool since the frailties are latent parameters. There are also

other estimators in this setting, such as the hierarchical likelihood (HL) based estimators

(Ha et al., 2001), the maximum penalized partial likelihood (PPL) estimators (Therneau

et al., 2003), and the maximum penalized likelihood estimators (MPLE) (Rondeau et al.,

2006). Among them, the EM algorithm method perhaps is one of the most frequently used

approaches with a notable challenge in estimating the variance of the estimated parameters

and establishing the asymptotic distributions of the estimators (Parner, 1998; Zeng et al.,

2008). In this dissertation, we build up our proposed approach based on the estimators

proposed by Gorfine et al. (2006) because they established the asymptotic properties of the

estimators and implemented their estimation and inference procedures in the R package,

frailtySurv.

Before stating the estimation and inference procedures in the proportional hazards

frailty model, we introduce the following notation and regularity conditions. Denote the

true value of γ = (θ,βT )T by γ0 = (θ0,β
T
0 )T and the end of the follow-up period by τ .

Throughout this dissertation, we assume that the following regularity conditions hold for

the proportional hazards frailty model. For some constant τ > 0:
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(F1) E{
∑K

k=1(τ)} > 0 for all i, where E denotes expectation.

(F2) The frailty ui has finite moments up to order (K+2).

(F3) |Zikj(0)|+
∫ τ

0
|dZikj(u)| < BZ a.s. for all i, k, j and some constant BZ <∞.

(F4) The parameter γ lies in a compact subset of R1+d containing an open neighbourhood

of γ0.

(F5)
∫ τ

0
λ0(u)du <∞.

(F6) The function f ′U(ui|θ) = dfU(ui; θ)/dθ is absolutely integrable.

(F7) The censoring distribution has at most finitely many jumps on [0, τ ].

(F8) Pr(δik > 0 for at least two k’s, k = 1, 2, . . . , K) > 0 for all i.

(F9) Pr[{∂U(γ, Λ̂0(.))/∂γ}|γ=γ0
is invertible]

P−→ 1 as n→∞.

(F10) Either of the following two conditions holds:

(a) There exist b(θ) > 0 and C(θ) > 0 such that

sup
θ

∣∣∣∣∣ fU(ui|θ)
C(θ)u

b(θ)−1
i

− 1

∣∣∣∣∣ P−→ 0, as h→ 0,

with h is the cumulative hazard and b(θ) bounded from below over θ (see

Lemma 1 in Zucker et al. (2008) for more details);

(b) There exists a > 0 independent of θ such that fU(ui|θ) is increasing in ui over

ui ∈ [0, a] and we have

lim
ui→0

[
sup
θ
fU(ui|θ)

]
= 0.
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Under the conditional independence assumption, the full likelihood in (2.1) can be

rewritten as

L(β, θ,Λ0(.)) =
n∏
i=1

[
K∏
k=1

{
λ0(Xik)e

βTZik
}δik]

∫ ∞
0

u
Ai(τ)
i exp

{
−ui

K∑
k=1

Λ0(Xik)e
βTZik

}
fU(ui|θ)dui,

(2.18)

where Ai(t) =
∑K

k=1 δikI(Xik ≤ t), Λ0(.) is the cumulative baseline hazard function. The

corresponding first derivative of logarithm of L(β, θ,Λ0(.)) in (2.18) with respect to θ and

β are given by

U(θ) =
n∑
i=1

∫∞
0
u
Ai(τ)
i Hif

′
U(ui|θ)dui∫∞

0
u
Ai(τ)
i HifU(ui|θ)dui

, (2.19)

and

U(β) =
n∑
i=1

K∑
k=1

δikZik

−
n∑
i=1

{∑K
k=1 Λ0(Xik)e

βTZikZik

}∫∞
0
u
Ai(τ)+1
i HifU(ui|θ)dui∫∞

0
u
Ai(τ)
i Hif(ui|θ)dui

,

(2.20)

with f ′U(ui|θ) = dfU(ui|θ)/dθ and Hi = exp
{
−ui

∑K
k=1 Λ0(Xik)e

βTZik

}
. The maximum

pseudo-likelihood estimator γ̂ =
(
θ̂, β̂

T
)T

can be obtained by solving U(θ,β,Λ0(.)) = 0,

where U(θ,β,Λ0(.)) =
(
U(θ),U(β)T

)T with Λ0(.) substituted by a Breslow-type estima-

tor Λ̂0(.). This pseudo-likelihood approach proposed Gorfine et al. (2006) avoids compli-

cated iterative optimization process in the EM algorithm by using a simplified Breslow-type

plug-in estimator for Λ0(.), which is not computationally intensive compared to the EM al-

gorithm method.

Theorem 2.1.2 (Section 3 in Gorfine et al. (2006) and Section 3 in Zucker et al. (2008)).

Under regularity conditions (F1) to (F10) in Section 2.1.2, the maximum pseudo-likelihood

estimator γ̂ satisfies the following as n→∞:
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(1) (Consistency) γ̂ P−→ γ0;

(2) (Asymptotic Normality) n1/2(γ̂−γ0)
D−→ N (0,Σ2 = {A−1(γ0)}{B(γ0)}{A−1(γ0)}T );

(3) Σ2 can be consistently estimated by the sandwich estimator {Â−1(γ̂)}{B̂(γ̂)}{Â−1(γ̂)}T ,

where Â(γ̂) = n−1I(γ̂), B̂(γ̂) = V̂(γ̂) + Ĝ(γ̂) + Ĉ(γ̂). Of note, I(.) is the mi-

nus second derivative of logarithm of L(β, θ,Λ0(.)) in (2.18), and V̂(γ̂), Ĝ(γ̂), and

Ĉ(γ̂) can be found in Appendix A.2.

Proof. The detailed proof can be found in Zucker et al. (2008). �
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2.2 Multistate Survival Analysis

Multivariate ordered failure time data collected in many clinical or epidemiological lon-

gitudinal studies can be used to gain insight into the disease processes of patients. It is

particularly useful in studying the prognosis of patients (e.g., prediction of survival for car-

diovascular disease patients) in the course of time by incorporating intermediate events.

Multistate models are a natural choice to analyze such data. In this dissertation, we adopt

a finite-state Markov multistate model where the hazard for each possible transition in the

multistate stochastic processes is estimated by a separate Cox proportional hazards model

(Cox, 1972). In multistate survival analysis, this model is also known as the “Andersen-type

Cox Markov model” (Andersen et al., 1991).

2.2.1 Examples of Multistate Processes

Multistate models are models for multivariate ordered failure time data in which all subjects

start in one or possibly more states (e.g., post transplantation for patients with liver cirrhosis

or index HF hospitalization for patients with cardiovascular diseases) and eventually may

end up in one (or more) absorbing state(s) (e.g., death or relapse). In between, intermediate

states can be visited. Some subjects are censored before they reach an absorbing state.

The classical statistical model for univariate survival analysis may be considered as a

special case of multistate models with only two states, namely alive state and dead state.

The force of transition from the alive state to the dead state is the hazard function λ(t)

of the failure time distribution. A typical example of multistate models is illustrated in

Figure 2.1. This example is often referred to as the “illness-death model” and the simplest

true multistate model. In Figure 2.1, health states (i.e., healthy, illness, and death) are

represented by boxes. Transitions (i.e., failures) are represented by arrows going from

one state to another. Although, as suggested by the name, the typical application of this

illness-death model is one where the illness state is an unfavorable intermediate state, this
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is not necessarily the case. It could correspond to a favorable development during the

disease processes. In this dissertation, we shall restrict to uni-directional models though

bi-directional is possible. Our interests are probabilities of transitions between these states,

especially those probabilities given some intermediate states. For example, the probabilities

of state 1 to state 3 are different depending on experiencing state 2 or not.

State 1
(Healthy)

State 2
(Illness)

State 3
(Death)

λ12(t) λ23(t)

λ13(t)

Figure 2.1: The illness-death model.

2.2.2 Multistate Models

In multistate survival analysis, a multistate model is modeling a stochastic process X(t)

with a finite state space Q = {1, 2, . . . , Q}. Consider n independent subjects, with subject

i potentially visiting Q states, i = 1, 2, . . . , n. The value of the process Xi(t) denotes the

state being occupied by subject i at time t. The transition hazard λi,hj(t), which expresses

the instantaneous risk of a transition from state h to state j at time t for subject i, is defined

as

λi,hj(t) = lim
∆t→0

Pr(Xi(t+ ∆t) = j|Xi(t) = h)

∆t
. (2.21)

The Markov assumption adopted in this dissertation is implicitly present in definition

(2.21). It says only the current state and time govern the future trajectory of the process.

Formally, Pr(Xi(t+ ∆t) = j|Xi(t) = h, {Xi(s), s < t}) = Pr(Xi(t+ ∆t) = j|Xi(t) =

h). Correspondingly, the cumulative transition hazard is defined as Λi,hj(t) =
∫ t

0
λi,hj(s)ds.

Cumulative transition hazards between states can be gathered into a Q × Q matrix Λi(t),

with diagonal elements Λi,hh(t) = −
∑

j 6=h Λi,hj(t). If a direct transition from state h to
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state j is impossible, Λi,hj(t) = 0. Hereinafter, a transition from state h to state j refers to

the direct transition, unless otherwise specified. The cumulative transition hazard matrix of

the illness-death model in Figure 2.1 is illustrated below in (2.22):

Λi(t) =


−{Λi,12(t) + Λi,13(t)} Λi,12(t) Λi,13(t)

0 −Λi,23(t) Λi,23(t)

0 0 0

 . (2.22)

The transition probability matrix Pi(s, t) is of primary interest in this dissertation. Its

element Pi,hj(s, t) = Pr(Xi(t) = j|Xi(s) = h) denotes the transition probability from

state h to state j in the time interval (s, t]. Pi,hj(s, t) combines both direct and indirect

transitions from state h to state j. In Markov multistate models, we have

Pi,hj(s, t) =

Q∑
q=1

Pi,hq(s, u)Pi,qj(u, t). (2.23)

The corresponding matrix form of transition probabilities can also be found

Pi(s, t) = R
u∈(s,t]

{I + dΛi(u)} , (2.24)

where I is the identity matrix and R is the sign of product integral, which has the same

relation to a product as the well-known integral has to a sum. The detailed derivation for

Pi(s, t) and a heuristic explanation of the product integral can be found in Appendix A.3.

In Markov multistate models with finite state spaces, the estimation and inference pro-

cedures are two steps: 1) estimation of cumulative transition hazards using nonparametric

or semiparametric approaches; 2) estimation of transition probabilities using estimated cu-

mulative transition hazards. This dissertation is focused on the semiparametric approach

and assume a Cox proportional hazards model (Cox, 1972) for each possible transition in

the multistate stochastic processes.
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The Markov assumption adopted in this dissertation implies that the time t in our mul-

tistate processes refers to the time since the subject entered the initial state (this category is

also called “clock-forward” models in Putter et al. (2007)). If the time scale is modified to

represent the time since entry of the current state (this category is also called “clock-reset”

models in Putter et al. (2007)), the Markov assumption cannot hold. The resulting multi-

state model is called a Markov renewal model or a semi-Markov model. In both Markov

models and semi-Markov models, the sojourn time in a current state or the current state

itself as a time-dependent covariate can also be incorporated. In this dissertation we only

focus on Markov multistate models and shall not distinguish Markov models, semi-Markov

models, or non-Markov models, unless necessary.

2.2.3 Estimation of Transition Hazards in Cox Models

Model Setups

We use Cox proportional hazards model (Cox, 1972) for each transition separately. The

hazard function in transition from state h to state j for subject i is

λi,hj(t|Zi,hj) = λ0,hj(t)e
βTZi,hj , (2.25)

where λ0,hj(t), h, j = 1, 2, . . . , Q and h 6= j, are unspecified baseline hazard functions

for different transitions, β = (β1, β2, . . . , βd)
T is a vector of regression parameters that

describe the effect of covariates, and Zi,hj is a time-independent covariate vector for tran-

sition from h to j. Similar to the marginal proportional hazards model in (2.2), the Markov

proportional hazards multistate model in (2.25) can also accommodate transition-specific

regression coefficients by introducing appropriate transition-specific covariates, as elabo-

rated in the simulation studies and the real data example (Chapter 6).

Yet time-dependent covariates are possible in estimating transition hazards using the

Cox proportional hazards model (Cox, 1972), prediction of transition probabilities based
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on most types of time-dependent covariates, in practical applications, gives problems of

estimation and interpretation (e.g., Cortese and Andersen (2010)). Thus, generally we

need the covariate Zi,hj to be time-independent and measured at the baseline to enable

prediction of transition probabilities. However, there is one exception: a time-dependent

covariate Z̃(t) used to distinguish between different transitions into the same state, can be

used in model (2.25) and for further prediction of transition probabilities. This exceptional

time-dependent covariate Z̃(t) is useful in modeling the proportionality among transitions

into the same state. For instance, in the illness-death model example (illustrated in Figure

2.1), if we assume λ0,23(t) = ω̃λ0,13(t), model (2.25) can accommodate this proportionality

between transitions (i.e., 2→ 3 and 1→ 3 ) into the same state 3 by denoting eβ̃Z̃(t) = ω̃

and letting Z̃(t) = 1 if the subject has already visited state 2 or Z̃(t) = 0 otherwise. Of

note, although prediction is in general no longer possible when endogenous covariates are

used (see Section 6.3 in Kalbfleisch and Prentice (2002)), this time-dependent covariate

Z̃(t) is a special kind of endogenous covariate that serves only to distinguish between

transitions sharing the same baseline hazard. Thus the use of Z̃(t) does not cause problems

in prediction of transition probabilities.

Estimation and Inference

The estimation of cumulative transition hazards in model (2.25) can be achieved in the same

way as in the marginal proportional hazards model, except that K distinct types of failures

in the marginal proportional hazards model are replaced by the transitions from state h to

state j for h, j = 1, 2, . . . , Q and h 6= j. We adopt the method discussed in Andersen et al.

(1991) and Andersen et al. (1993).

Before stating the asymptotic properties of the cumulative estimated transition hazards,

we need to define some notation. Adopting the notation in De Wreede et al. (2010) and

Andersen and Keiding (2002), let Ni,hj(t) be the number of direct transitions from state h

to state j for subject i in the time interval [0, t], and Yi,h(t) = I{Xi(t−) = h}. For the
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transition from state h to state j (h, j = 1, 2, . . . , Q, h 6= j), we define

S
(r)
hj (β, t) = n−1

n∑
i=1

Yi,h(t)e
βTZi,hjZ⊗ri,hj, s

(r)
hj (β, t) = E

{
S

(r)
hj (β, t)

}
,

Ehj(β, t) =
S

(1)
hj (β, t)

S
(0)
hj (β, t)

, ehj(β, t) =
s

(1)
hj (β, t)

s
(0)
hj (β, t)

,

Vhj(β, t) =
S

(2)
hj (β, t)

S
(0)
hj (β, t)

− Ehj(β, t)
⊗2, vhj(β, t) =

s
(2)
hj (β, t)

s
(0)
hj (β, t)

− ehj(β, t)
⊗2,

where a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT and E denotes expectation. Throughout this

dissertation, we assume that the same regularity conditions (M1) to (M6) as in Section

2.1.1, hold for the Markov proportional hazards multistate model — except that the failure

type k should be replaced by transition from state h to state j.

The regression coefficient β is estimated by β̂ from solving U(β) = 0, where

U(β) =
∑
h6=j

n∑
i=1

∫ τ

0

{Zi,hj − Ehj(β, t)} dNi,hj(t), (2.26)

with τ is the end of the follow-up period. The use of (2.26) in estimating regression coef-

ficients is justified in Appendix A.4. The cumulative baseline transition hazard function,

Λ0,hj(t) =
∫ t

0
λ0,hj(s)ds, is estimated by the Breslow estimator (Breslow, 1972)

Λ̂0,hj(t) =
n∑
i=1

∫ t

0

dNi,hj(s)

nS
(0)
hj (β̂, s)

. (2.27)

Denote the true value of β by β0. For a future subject with a covariate z0,hj having the

same structure of Zi,hj as considered in model (2.25), the cumulative transition hazard

function, Λhj(t|z0,hj) = eβ
T
0 z0,hjΛ0,hj(t) is estimated by

Λ̂hj(t|z0,hj) =
n∑
i=1

∫ t

0

eβ̂
T
z0,hjdNi,hj(s)

nS
(0)
hj (β̂, s)

. (2.28)

Theorem 2.2.1 (Section 3 in Andersen et al. (1991) and Theorem VII.2.3 (Page 503) in An-
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dersen et al. (1993)). Under regularity conditions in Section 2.2.3, Λ̂hj(t|z0,hj) converges

in probability to Λhj(t|z0,hj) uniformly in t ∈ [0, τ ], i.e., as n→∞,

sup
t∈[0,τ ]

∣∣∣Λ̂hj(t|z0,hj)− Λhj(t|z0,hj)
∣∣∣ P−→ 0. (2.29)

Proof. The proof for Theorem 2.2.1 can be found in Andersen et al. (1991) and Andersen

et al. (1993). A similar proof also can be found in Spiekerman and Lin (1998). �

Theorem 2.2.2 (Section 3 in Andersen et al. (1991) and Corollary VII.2.6 (Page 505) in

Andersen et al. (1993)). Under regularity conditions in Section 2.2.3, the stochastic pro-

cess n1/2
{

Λ̂hj(t|z0,hj)− Λhj(t|z0,hj)
}

converges weakly to a zero-mean Gaussian process

whose variance function is given by

b2(t|z0,hj) + aT (t|z0,hj)Σ3a(t|z0,hj), (2.30)

where n1/2(β̂ − β0)
D−→ N (0,Σ3) and β̂ is obtained by solving U(β) = 0 in (2.26), and

b2(t|z0,hj) =

∫ t

0

e2·βT0 z0,hjλ0,hj(s)ds

s
(0)
hj (β0, s)

,

a(t|z0,hj) =

∫ t

0

{z0,hj − ehj(β0, s)} eβ
T
0 z0,hjλ0,hj(s)ds.

(2.31)

Corollary 2.2.2.1. Under conditions in Theorem 2.2.2, the variance function of the random

process n1/2
{

Λ̂hj(t|z0,hj)− Λhj(t|z0,hj)
}

can be uniformly consistently estimated by

b̂2(t|z0,hj) + âT (t|z0,hj)Σ̂3â(t|z0,hj), (2.32)
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where

b̂2(t|z0,hj) =
n∑
i=1

∫ t

0

e2·β̂T z0,hjdNi,hj(s)

n
{
S

(0)
hj (β̂, s)

}2 ,

â(t|z0,hj) =
n∑
i=1

∫ t

0

{
z0,hj − Ehj(β̂, s)

}
eβ̂

T
z0,hjdNi,hj(s)

nS
(0)
hj (β̂, s)

,

Σ̂
−1

3 = n−1
∑
h6=j

n∑
i=1

∫ τ

0

Vhj(β̂, t)dNi,hj(t).

(2.33)

The asymptotic normality of Λ̂hj(t|z0,hj) presented in Theorem 2.2.2 and Corollary

2.2.2.1 implicitly assume the cumulative baseline hazards of different transitions are un-

correlated, which is the general model setup adopted in this dissertation. However, as

discussed in the part of model setups of Section 2.2.3, by incorporating a time-dependent

covariate, model in (2.25) can be adjusted to accommodate possibly correlated transition

hazards. We provide the asymptotic results for the cumulative transition hazard functions

taking into account the possible correlation in the following Corollary 2.2.2.2. For the ease

of notation, in the following corollary only, denote the type-specific cumulative baseline

hazards by Λ0k(t) and Λ0k′(t) for types k and k′(k, k′ = 1, 2, . . . , K). Note that multi-

ple transition-specific baseline hazards may share the same type of baseline hazard, i.e.,

λ0,hj(t) = λ0k(t) and λ0,lm(t) = λ0k(t) for h, j, l,m = 1, 2, . . . , Q, h 6= j, l 6= m, and

K ≤ Q. Other notation in the following corollary should be modified accordingly.

Corollary 2.2.2.2 (Proposition 1 in De Wreede et al. (2010)). Under conditions in Theorem

2.2.2, the process

n1/2
{
eβ̂

T
z0kΛ̂0k(t)− eβ

T
0 z0kΛ0k(t), e

β̂
T
z0k′ Λ̂0k′(t)− eβ

T
0 z0k′Λ0k′(t)

}
(2.34)

converges weakly to a bivariate Gaussian process with mean zero and a covariance function



32

which can be estimated uniformly consistently by

ωkk′
n∑
i=1

∫ t

0

eβ̂
T
z0keβ̂

T
z0k′dNik(s)

n
{
S

(0)
k (β̂, s)

}2

+
n∑
i=1

∫ t

0

{
z0k − Ek(β̂, s)

}T
eβ̂

T
z0kdNik(s)

nS
(0)
k (β̂, s)

× Σ̂3

×
n∑
i=1

∫ t

0

{
z0k′ − Ek′(β̂, s)

}
eβ̂

T
z0k′dNik′(s)

nS
(0)
k′ (β̂, s)

,

(2.35)

in which ωkk′ = 1 if k = k′ and 0 otherwise.

Proof. The detailed proofs for Theorem 2.2.2, Corollary 2.2.2.1, and Corollary 2.2.2.2 can

be found in Andersen et al. (1991), Andersen et al. (1993), and De Wreede et al. (2010). �

2.2.4 Estimation of Transition Probabilities

When there are no covariates, Aalen and Johansen (1978) suggested to estimate the transi-

tion probability matrix in (2.24) by the nonparametric Aalen-Johansen estimator. Andersen

et al. (1991) extended this method to the case where each transition hazard is specified via

a Cox proportional hazards model (Cox, 1972) and derived the asymptotic properties of the

Aalen-Johansen estimator in the semiparametric approach. Indeed, the estimation of tran-

sition probabilities depends only on the estimation of the transition hazards. This relation

does not depend on the presence or absence of covariates, nor how hazards are related to

covariates — nonparametrically, semiparametrically, or parametrically (De Wreede et al.,

2010). In this dissertation, we are interested in estimating transition probabilities for a

given subject with a covariate z0, thus in the remainder of this section, we suppress the

subscript i in the notation of P and Λ for simplicity. That has been said, we estimate the

transition probability matrix P(s, t) in (2.24) by the Aalen-Johansen estimator

P̂(s, t|z0) = R
u∈(s,t]

{
I + dΛ̂(u|z0)

}
, (2.36)
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where Λ̂(u|z0) is the semiparametric estimator of Λ(u) for a given subject with a covari-

ate z0. Note that z0 is a basic covariate and can be extended into the transition-specific

structure z0,hj for h, j = 1, 2, . . . , Q and h 6= j.

Transition Probability Matrix

Since Λ(t|z0) is aQ×Qmatrix, the dimension of the transition probability matrix P(s, t|z0)

is also Q × Q. Here, we illustrate the structure of the transition probability matrix using

the illness-death model as shown in Figure 2.1 and demonstrate its relation with univariate

survival analysis.

Given λ(t|z0) of the illness-death model in (2.37),

λ(t|z0) =


−{λ12(t|z0) + λ13(t|z0)} λ12(t|z0) λ13(t|z0)

0 −λ23(t|z0) λ23(t|z0)

0 0 0

 , (2.37)

under the Markov model framework adopted in this dissertation, we find the transition

probability matrix P(s, t|z0) in (2.38)

P(s, t|z0) =


P11(s, t|z0) P12(s, t|z0) P13(s, t|z0)

0 P22(s, t|z0) P23(s, t|z0)

0 0 P33(s, t|z0)

 , (2.38)

as the solution of the Kolmogorov forward equation

∂

∂t
P(s, t|z0) = P(s, t|z0)λ(t|z0). (2.39)

The derivation of (2.39) can be found in Appendix A.3. Apparently, state 3 is the absorbing
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state and thus P33(s, t|z0) = 1. And by (2.39), we have

∂

∂t
P11(s, t|z0) = −{λ12(t|z0) + λ13(t|z0)}P11(s, t|z0), (2.40)

thus we get the solution

P11(s, t|z0) = exp

[
−
∫ t

s

{λ12(u|z0) + λ13(u|z0)} du
]
. (2.41)

Similarly, P22(s, t|z0) = exp
{
−
∫ t
s
λ23(u|z0)du

}
. Further, we have P23(s, t|z0) =

1− P22(s, t|z0), and P13(s, t|z0) = 1− P11(s, t|z0)− P12(s, t|z0). Note that P13(s, t|z0)

includes not only the direct transition 1 → 3 but also the indirect transition 1 → 2 → 3.

The last probability P12(s, t|z0) is the solution to

∂

∂t
P12(s, t|z0) = λ12(t|z0)P11(s, t|z0)− λ23(t|z0)P12(s, t|z0). (2.42)

After solving the differential equation in (2.42), we find the solution

P12(s, t|z0) =

∫ t

s

P11(s, u|z0)λ12(u|z0)P22(u, t|z0)du. (2.43)

The detailed step-by-step derivation leading to (2.43) is given in Appendix A.5.

In the illness-death model, P13(0, t|z0) gives the conditional probability of death prior

to time t, given healthy at time 0, which is closely related to {1− S(t)} in univariate sur-

vival analysis, where S(t) is the overall survival probability. When compared to univariate

survival analysis, using multistate models enables more accurate prediction in the proba-

bility of death by incorporating intermediate events. For instance, P23(s, t|z0) gives the

conditional probability of death prior to time t, given ill at time s, which is more accurate

than {1− S(t)} when the information of being ill is available.
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Estimation and Inference

By incorporating the estimate of cumulative hazard matrix Λ̂(t|z0) whose elements can be

obtained in (2.28), into the Aalen-Johansen estimator P̂(s, t|z0) in (2.36), we can obtain

the estimate for transition probabilities. As P̂ itself is aQ×Qmatrix, its estimated variance

matrix is defined as ˆvar(vec(P̂)), where vec(P̂) is defined as the vectorizedQ2×1 matrix

where the columns are stacked on top of each other. Thus the dimension of ˆvar(P̂) is

Q2 ×Q2.

Theorem 2.2.3 (Section 3 in Andersen et al. (1991) and Theorem IV.4.1 (Page 317) in

Andersen et al. (1993)). Under regularity conditions in Section 2.2.3, P̂(s, t|z0) converges

in probability to P(s, t|z0) uniformly in s, t ∈ [0, τ ], i.e., as n→∞,

sup
t∈[s,τ ]

∥∥∥P̂(s, t|z0)−P(s, t|z0)
∥∥∥

1

P−→ 0, (2.44)

where ‖A‖1 = supi
∑

j |aij| for a matrix A = (aij).

Proof. See the detailed proof for Theorem 2.2.3 in Andersen et al. (1991) and Andersen

et al. (1993). �

Theorem 2.2.4 (Section 3 in Andersen et al. (1991) and Page 514 in Andersen et al.

(1993)). Under regularity conditions in Section 2.2.3, n1/2
{

P̂(s, t|z0)−P(s, t|z0)
}

can

be asymptotically rewritten as

∫ t

s

P̂(s, u|z0)d {W1(u) + W2(u)}P(u, t|z0), (2.45)

where the Q × Q matrices W1(t) and W2(t) are asymptotically independent. They have

(h, j) elements, h 6= j,

W1,hj(t) = n1/2(β̂ − β0)T
∫ t

0

{z0,hj − ehj(β0, u)} eβT0 z0,hjλ0,hj(u)du (2.46)
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and

W2,hj(t) =

∫ t

0

Jh(u)eβ
T
0 z0,hjdMhj(u)

n1/2S
(0)
hj (β0, u)

, (2.47)

respectively, in which Jh(u) = I {
∑n

i=1 Yi,h(u) > 0} and Mhj(u) =
∑n

i=1Ni,hj(u) −∑n
i=1

∫ u
0
Yi,h(v)eβ

T
0 Zi,hjλ0,hj(v)dv. Furthermore, we define Wν,hh(t) = −

∑
j 6=hWν,hj(t),

for h = 1, 2, . . . , Q and ν = 1, 2.

Corollary 2.2.4.1. Under regularity conditions in Theorem 2.2.4, the stochastic process

n1/2
{

P̂(s, t|z0)−P(s, t|z0)
}

converges weakly to a zero-mean Gaussian process whose

variance function can be estimated by

V̂(s, t|z0) =

∫ t

s

P̂(u, t|z0)T ⊕ P̂(s, u|z0)d [W1(u) + W2(u)] P̂(u, t|z0)⊕ P̂(s, u|z0)T ,

(2.48)

where ⊕ denotes the Kronecker product and [W(u)] is the quadratic variation process of

W(u).

Corollary 2.2.4.2. Under regularity conditions in Theorem 2.2.4, the variance of the pro-

cess P̂(s, t|z0) can be estimated by ˆvar(P̂(s, t|z0)), whose (hj,mr) element is given by

v̂ar1(P̂hj(s, t|z0), P̂mr(s, t|z0)) + v̂ar2(P̂hj(s, t|z0), P̂mr(s, t|z0)), where

v̂ar1(P̂hj(s, t|z0), P̂mr(s, t|z0))

=

{∫ t

s

∑
g,l

P̂hg(s, u|z0)dDgl(u)P̂lj(u, t)

}

× (n−1Σ̂3)

{∫ t

s

∑
g,l

P̂mg(s, u|z0)dDgl(u)P̂lr(u, t|z0)

}
,

(2.49)
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and

v̂ar2(P̂hj(s, t|z0), P̂mr(s, t|z0))

=
∑
g 6=l

∫ t

s

P̂hg(s, u|z0)P̂mg(s, u|z0)
{
P̂lj(u, t)|z0 − P̂gj(u, t|z0)

}
×
{
P̂lr(u, t|z0)− P̂gr(u, t|z0)

}
Jg(u)e2·β̂T z0,gl

{
nS

(0)
gl (β̂, u)

}−2

dNgl(u),

(2.50)

in which for g 6= l,Dgl(t) =
∫ t

0

{
z0,gl − Egl(β̂, u)

}
Jg(u)eβ̂

T
z0,gl

{
nS

(0)
gl (β̂, u)

}−1

dNgl(u)

while Dgg(t) = −
∑

l 6=gDgl(t), and Ngl(u) =
∑n

i=1Ni,gl(u).

Proof. The detailed proofs for Theorem 2.2.4, Corollary 2.2.4.1, and Corollary 2.2.4.2 can

be found in Andersen et al. (1991), and Andersen et al. (1993). �
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2.3 Regularization Using Confidence Distribution

2.3.1 Regularized Likelihood Approach

When studying the dependence between response and covariates using regression analysis,

often, many covariates are collected and to reduce possible modeling bias, a large para-

metric model is built. In such cases, variable selection is important in that it not only

enhances the model interpretability with parsimonious representation, but also improves

the prediction performance of the fitted model. Traditionally, the best-subset selection

method is widely used to select significant predictors, but this procedure, according to

Zou (2006), has two limitations: 1) it is computationally infeasible when the number of

predictors is large; 2) it is extremely variable because of its inherent discreteness. The

forward/backward/stepwise selection, which is used as a computational surrogate to best-

subset selection, also suffers from lacking stability and in addition is often trapped into a

local optimal solution rather than the global optimal solution. Furthermore, the statistical

properties of selected predictors using these traditional methods are mostly unknown (Fan

and Li, 2001).

In the past decades, a family of new techniques based on the regularized likelihood

framework has been proposed to approach the problem of variable selection. Assume that

β = (β1, β2, . . . , βd)
T is a parameter of interest and ln(β) is a plausible loss function (e.g.,

least square function or log likelihood function). In the regularized likelihood estimation

approach, it is of interest to consider the objective function

−n−1ln(β) +
d∑
j=1

pi(|βj|) (2.51)

where pi(.) is the penalty function indexed by the regularization parameter ρi that is pos-

sibly different for each βj . By minimizing (2.51), the parameter estimation and variable

selection can be simultaneously executed. In other words, those covariates whose regres-
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sion coefficients are estimated as zero are automatically deleted.

Fan and Li (2001) advocated penalty functions that give estimators with three proper-

ties: (1) the resulting estimator is nearly unbiased, especially when the true coefficient βj

is large, to reduce model bias (“unbiasedness”) ; (2) the resulting estimator automatically

sets small estimated coefficients to zero to accomplish variable selection and reduce model

complexity (“sparsity”); (3) the resulting estimator is continuous in the data to reduce in-

stability in model prediction (“continuity”).

It is known that the convex Lq penalty function with q > 1 does not satisfy the spar-

sity condition, whereas the convex L1 penalty (also known as LASSO penalty (Tibshi-

rani, 1996)) does not satisfy the unbiasedness condition, and the concave Lq penalty with

0 ≤ q < 1 does not satisfy the continuity condition. The SCAD penalty introduced by Fan

and Li (2001) and the MCP penalty developed by Zhang et al. (2010) not only satisfy the

above three conditions, but also enjoy oracle properties; namely, they perform as well as if

the true underlying model were given in advance. In the language of Fan and Li (2001),

denote the true model byA =
{
j : β∗j 6= 0

}
and further assume that |A| = d0 < d, then the

regularized estimator β̂(δ) obtained by using the oracle procedure δ satisfies the following

oracle properties:

• identifying the right subset model:
{
j : β̂j(δ) 6= 0

}
= A;

• has the optimal estimation rate: n1/2
(
β̂A(δ)− β∗A

)
D−→ N (0,Σ∗), where Σ∗ is the

variance matrix knowing the true subset model.

The adaptive LASSO estimator proposed by Zou (2006) also has these nice properties

given a good initial estimate is provided. In the adaptive LASSO penalty

pi(|βj|) = ρ0|β̃j|−φ, (2.52)

where ρ0 and φ are tuning parameters, generally, β̃j is required to be n1/2-consistent. For in-

stance, β̃j’s can be chosen as the un-regularized minimizer β̂
mle

= argminβ {−n−1ln(β)}.
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Alternatively, if collinearity is a concern, the ridge estimator β̂
ridge

(van Wieringen, 2015)

is suggested to serve as the initial estimate. The adaptive LASSO estimator (Zou, 2006) is

computationally appealing as its penalty function is convex. The entire solution path to the

adaptive LASSO optimization can be obtained as efficiently as a single un-regularized full

model fitting — at the order of O(nd2). On the other hand, the noncovex penalty functions,

such as SCAD or MCP, the global optimality is not guaranteed.

These regularized estimation approaches have been extensively studied and extended

into univariate survival analysis using the Cox Proportional hazards model (Cox, 1972),

such as the LASSO estimator (Tibshirani, 1997), the SCAD estimator (Fan and Li, 2002),

the adaptive LASSO estimator (Zhang and Lu, 2007; Wang and Leng, 2007), and the MCP

estimator (Zhang et al., 2010). However, only the SCAD estimator has been studied in mul-

tivariate survival analysis (Fan and Li, 2002; Cai et al., 2005). The desired properties, such

as consistency and asymptotic normality of the SCAD estimators were established in both

the proportional hazards frailty model and the marginal proportional hazards model. They

further demonstrated that, with proper choices of tuning parameters, the SCAD estima-

tors can correctly identify the true model, as if it were known in advance. Moreover, they

provided sandwich formulas to obtain the standard errors of estimated regularized estima-

tors. However, these approaches are not widely used in statistical analysis of biomedical

research. A main reason for this could be the lack of software. In this dissertation, we

propose to perform variable selection via a regularized confidence distribution approach,

which is easy to be implemented using existing software packages.

2.3.2 Regularized Confidence Distribution Approach

Confidence distribution (CD) is a concept loosely referring to a distribution function that

can represent confidence intervals of all levels for a parameter of interest (Xie et al., 2011).

The concept of CD has a long history (e.g., Cox (1958), Fisher (1956), and Efron (1993)),

but recent development has redefined the CD concept as a purely frequentist concept and
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focused on providing inference tools for problems in modern applied statistics (Xie et al.,

2011). Generally speaking, the CD approach is a statistical inference tool in providing a

distribution estimate, instead of a point estimate, or an interval estimate, for a parameter of

interest. For example, let X = {Xi; i = 1, 2, . . . , n} denote an independent and identically

distributed random sample drawn from a normal density with mean µ and variance 1, where

µ is the parameter of interest. A point estimate and an interval estimate are given by

n−1
∑n

i=1 Xi and (n−1
∑n

i=1 Xi − 1.96 · n−1/2, n−1
∑n

i=1Xi + 1.96 · n−1/2), respectively.

Whereas the distribution estimate provided by the CD approach is N (n−1
∑n

i=1 Xi, n
−1),

where N stands for normal distribution.

The CD approach can be used as a device to combine information from independent

samples. Suppose Hs(θ) = Hs(Xs, θ), s = 1, 2, . . . , S are CD functions (i.e., sample-

dependent continuous cumulative distribution functions) for the same parameter θ from S

independent samples Xs and the sample size of Xs is ns. Singh et al. (2005) proposed to

combine CD functions using a coordinate-wise monotonic function from the S-dimensional

cube [0, 1]S to the real line R = (−∞,+∞). Specifically, they suggested to combine S

CD functions as

H(c)(θ) = Gc [gc {H1(θ), H2(θ), . . . , HS(θ)}] , (2.53)

where gc(u1, u2, . . . , uS) is a given continuous function on [0, 1]S → R which is mono-

tonic (without loss of generality, say, increasing) in each coordinate, and Gc is completely

determined by gc, i.e., Gc(t) = Pr {gc(U1, U2, . . . , US) ≤ t}, where U1, U2, . . . , US are

independent random variables following the uniform distribution U [0, 1]. It can be shown

that H(c)(θ) is also a CD function for the parameter θ when the underlying true parameter

values of the S individual CD functions Hs(θ) are the same (Xie et al., 2011).

The usefulness of the CD approach in combining information from multiple sources

has been demonstrated in many practical situations with much success. For example, Xie

et al. (2011) proposed robust meta-analysis approaches using the CD approach, with sup-

porting asymptotic theories. Their proposed methodologies performed well even when data
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are contaminated and have realistic sample sizes and number of studies. Liu et al. (2014)

combined the p-value functions (i.e., distribution estimators of the unknown parameter) as-

sociated with the exact tests from multiple studies of discrete data. Their proposed exact

approach was shown to be efficient and, generally, outperformed commonly used methods

in discrete data, such as Mantel-Haenszel and Peto methods. Liu et al. (2015) proposed

a meta-analysis method that can incorporates heterogeneous studies, which are excluded

from conventional meta-analysis, by combining the confidence density functions derived

from the summary statistics of individual studies. Their proposed meta analysis is shown

to be asymptotically as efficient as the maximum likelihood approach using individual par-

ticipant data from all studies.

Consider S independent studies with ns participants in the sth study, s = 1, 2, . . . , S.

Assume we are interested in making inference for a d-dimensional parameter vector θ,

which is associated with the S studies. Under the general likelihood framework, in the sth

study (s = 1, 2, . . . , S), denote the maximum likelihood estimator of θ by θ̂s, namely, θ̂s =

argmaxθ Ls(θ); and express the observed information as Is(θ) = −∂2logLs(θ)/∂θT∂θ,

where Ls(θ) is the likelihood function. Then Σ̂s = I−1
s (θ̂s) is an estimate of the variance

matrix for θ̂s. Under typical regularity conditions in likelihood inference, it follows that

Is/ns
P−→ Is, and n−1/2

s

{
∂logLs(θ)/∂θT

} D−→ N (0, Is), as ns → ∞. Here, Is is the

Fisher information. As discussed in Singh et al. (2007) and Liu et al. (2015), the density

function of N (θ̂s, Σ̂s) can serve as a confidence density (i.e., the density function of a

confidence distribution) for the parameter θ. Denote the density function by hs(θ|Ss),

where Ss represents the sample in the sth study. More specifically,

hs(θ|Ss) =
1

(2π)d/2(det(Σ̂s))1/2
exp

{
−1

2
(θ − θ̂s)T Σ̂

−1

s (θ − θ̂s)
}
, (2.54)

for s = 1, 2, . . . , S, where det(C) is the determinant of a matrix C. The combined confi-

dence density can be obtained by combining these confidence density functions hs(θ|Ss)
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in the S studies as suggested in (2.53). Then the combined confidence density function can

be used for regularization because this distribution estimator contains as much information

as that in the full likelihood function constructed using all participants from S studies.
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CHAPTER 3

PROPOSED DIVIDE-AND-COMBINE IN MULTIVARIATE SURVIVAL

ANALYSIS

3.1 Introduction

The idea behind the divide-and-combine approach can be illustrated by a toy example of

ordinary linear regression for univariate outcomes. Denote the regression parameter by α

and assume that the full data are divided into S subsets. Some algebraic calculations show

that a weighted average of the subset ordinary least squares (OLS) estimators α̂s’s, with

weight XT
s Xs, is identical to the full-data estimator, i.e,

α̂dc =

(
S∑
s=1

XT
s Xs

)−1 S∑
s=1

XT
s Xsα̂s =

(
XTX

)−1
XTy = α̂full, (3.1)

where α̂dc denotes the weighted-average estimator, Xs, ys, and X, y are the design ma-

trices and the response vectors in subset s (s = 1, 2, . . . , S) and the full data, respectively.

Note that the weight XT
s Xs is proportional to Is(α̂s) that is the inverse of v̂ar(α̂s), where

Is(.) denotes the observed information matrix of the log likelihood function. Thus, we can

rewrite α̂dc as

α̂dc =

{
S∑
s=1

Is(α̂s)

}−1 S∑
s=1

Is(α̂s)α̂s. (3.2)

This type of weighted-average estimator has been extensively studied in the meta anal-

ysis and other divide-and-combine literature (e.g., Lin and Zeng (2010) and Tang et al.

(2016)). In this chapter, we extend this divide-and-combine and weighted average idea to

the multivariate survival analysis. Section 3.2 setups models in multivariate survival analy-

sis, including both marginal models and frailty models. The proposed divide-and-combine

estimators are presented in Section 3.3.
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3.2 Model Setups

Two classes of models in multivariate survival analysis are of interest in this dissertation,

including the marginal proportional hazards model and the proportional hazards frailty

model. In the marginal model approach, we assume that the marginal distributions of

failure times of K different failure types follow proportional hazards models (Cox, 1972).

The hazard function for the kth type of failure is given by

λk(t|Zk) = λ0k(t)e
βTZk(t), (3.3)

where λ0k(.) is the unspecified baseline hazard function andβ is a d-dimensional regression

parameter whose associated covariate Zk(.) is possibly time-varying. In the frailty model

approach, the conditional distributions of failure times, given frailties, are formulated again

by proportional hazards models (Cox, 1972). The hazard function for the kth type of failure

takes the form

λk(t|Zk, u) = uλ0(t)eβ
TZk , (3.4)

where λ0(.) is the unspecified baseline hazard function, u is the frailty with a density func-

tion fU(u|θ) indexed by θ, and β represents a d-dimensional regression parameter. Of note,

in our proportional hazards frailty model, Zk is a time-fixed covariate. Both the marginal

model in (3.3) and the frailty model in (3.4) can accommodate type-specific regression pa-

rameters by appropriately specifying Zk for k = 1, 2, . . . , K (see more details in Sections

2.1.1 and 2.1.2).

By using the estimation and inference procedures described in Sections 2.1.1 and 2.1.2,

we can estimate β̂ in the marginal model and γ̂ = (θ̂, β̂
T

)T in the frailty model, respec-

tively. Our proposed divide-and-combine approach applies to both the marginal model

and the frailty model. Thus, for the ease of notation, denote the unknown parameter by

η, where η = β in the marginal proportional hazards model and η = γ = (θ,βT )T in
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the proportional hazards frailty model, and use η̂full to denote the full-data estimator from

the (all-at-once) full data analysis. Specifically, η̂full = β̂ for the marginal model and

η̂full = γ̂ for the frailty model. Throughout the remainder of this dissertation, we will use

η to discuss our methodology without distinguishing marginal models or frailty models,

unless necessary.

3.3 Divide-and-Combine Estimators for Regression Parameters

In multivariate survival analysis, we are interested in estimating regression parameters.

However, when the sample size is extraordinarily large (when using the marginal model) or

the estimation procedure is complex (when using the frailty model), it is difficult to finish

the analysis within a reasonable time period. Thus to conquer these issues, we propose our

divide-and-combine approach for estimating regression parameters as follows.

Divide Consider n independent clusters with cluster i potentially experiencing K dis-

tinct types of failures, i = 1, 2, . . . , n. The observed full data can be denoted by Di =

{Xik, δik,Zik; k = 1, 2, . . . , K}, where Xik is the observed time, δik is the censoring in-

dicator, and Zik is a d-dimensional vector of covariates for i = 1, 2, . . . , n. We randomly

divide the full data by independent clusters into S subsets, Dsi = {Xsik, δsik,Zsik; k =

1, 2, . . . , K} for s = 1, 2, . . . , S and i = 1, 2, . . . , ns, where ns is the number of indepen-

dent clusters of the sth subset with ns � d. Note that
∑S

s=1 ns = n, where n is the total

sample size. Theoretically, the simple random splitting would yield homogeneous subsets

and each subset would be a representative random sample of the full data. Thus it is rea-

sonable to assume the same marginal proportional hazards model or the same proportional

hazards frailty model holds in subsets as in the full data. In each subset s, we obtain the

parameter estimator η̂s using the aforementioned marginal model approach or frailty model

approach in Section 3.2 (see Sections 2.1.1 and 2.1.2 for more details). Throughout this

dissertation, we assume that all ns’s diverge in the same order of O(n/S) and S = o(n1/2),

following Zhang et al. (2013), Chen and Xie (2014), and Rosenblatt and Nadler (2016).
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Additionally, we also consider stratified random splitting by the number of events per

cluster to balance the distribution of the number of events across divided subsets. This

method is implemented in the simulation studies (Chapter 6).

Combine We use a weighted average similar to (3.2) to combine the S estimators and

define the divide-and-combine estimator η̂dc by

η̂dc =

{
S∑
s=1

Ws(η̂s)

}−1 S∑
s=1

Ws(η̂s)η̂s, (3.5)

where Ws(.) is a weight function. Specifically, we consider Ws(.) with three choices: 1)

the minus second derivative of the log likelihood, i.e., W1s(η̂s) = Is(η̂s), motivated by the

previous simple OLS regression example; 2) the inverse of the estimated variance of η̂s,

i.e., W2(η̂s) = v̂ar−1
s (η̂s), motivated by the meta approach studied by Lin and Zeng (2010)

and Tang et al. (2016); 3) the sample size, i.e., W3(η̂s) = ns, a simple and frequently used

weight. Note that in multivariate survival analysis, when the intra-cluster association is

non-trivial, Is(β̂s) 6= v̂ar−1
s (β̂s) (see Sections 2.1.1 and 2.1.2).

Here, we state formally the following assumptions, which are the key to establishing

the asymptotic properties for divide-and-combine estimators.

Homogeneity Assumptions Let η0 and ηs0 (s = 1, 2, . . . , S) be the true values of η in

the full data and individual subsets. The homogeneity is two-fold:

(H1) Underlying parameters are the same across all subsets, i.e., ηs0 = η0;

(H2) Partitioned subsets are representatives of the full data, i.e., As(η) = A(η) and

Bs(η) = B(η).

We assume the regularity conditions (M1) to (M6) and (F1) to (F10) (see Sections 2.1.1

and 2.1.2) hold in individual subsets for the marginal model approach and the frailty model

approach, respectively. Then the aforementioned consistency and asymptotic normality

properties in the marginal model or in the frailty model also hold for η̂s, s = 1, 2, . . . , S.
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Under the homogeneity assumptions, it follows that n1/2(η̂full − η0)
D−→ N (0,Σ), where

Σ = Σ1 or Σ = Σ2 when the marginal model approach or the frailty model approach

is used, respectively. We establish the asymptotic properties of η̂dc in Theorem 3.3.1.

Specifically, we show that the estimators η̂dc using the three weights are asymptotically

equivalent to the estimator η̂full from the full data, in the sense that they all are consistent

and converge to the same limiting distribution.

Theorem 3.3.1. Under regularity conditions (M1) to (M6) in Section 2.1.1, (F1) to (F10) in

Section 2.1.2, and the homogeneity assumptions (H1) to (H2) in Section 3.3, the estimator

η̂dc using weight W1s(.), W2s(.), or W3s(.), satisfies the following as n→∞:

(1) (Consistency) η̂dc P−→ η0;

(2) (Asymptotic Normality) n1/2(η̂dc−η0)
D−→ N (0,Σ = {A−1(η0)}{B(η0)}{A−1(η0)}T );

(3) The variance Σ corresponding to η̂dc can be consistently estimated by Σ̂dc, where

Σ̂dc = [{
∑S

s=1(ns/n)Âs(η̂s)}−1][
∑S

s=1(ns/n)B̂s(η̂s)][{
∑S

s=1(ns/n)Âs(η̂s)}−1]T

when Ws(.) = W1s(.); Σ̂dc = n{
∑S

s=1 v̂ar−1
s (η̂s)}−1 when Ws(.) = W2s(.);

and Σ̂dc =
∑S

s=1(n2
s/n)v̂ars(η̂s) when Ws(.) = W3s(.). Of note, v̂ars(η̂s) =

n−1
s {Â−1

s (η̂s)}{B̂s(η̂s)}{Â−1
s (η̂s)}T , and Âs(.) and B̂s(.) are defined in the same

form as Â(.) and B̂(.) in Sections 2.1.1 and 2.1.2, for each subset s, s = 1, 2, . . . , S.

Proof. The homogeneity assumptions guarantee that, when the same weight function is

used, n−1
s Ws(.) converges to a constant in probability, and that η̂s converges to η0 in prob-

ability. It follows immediately that η̂dc is a consistent estimator. The asymptotic normality

of η̂dc can be demonstrated using the Taylor series expansion. When deriving the asymp-

totic properties of η̂dc, it is suggested that both the total sample size (n) and the number

of subsets (S) can go to infinity, but S should be chosen such that its order is smaller than

n1/2, i.e., S = o(n1/2). See Appendix A.6 for the detailed proof. �

Under the special case of univariate failure time data, η̂dc with W1s(.) and W2s(.)

are the same because Is(η̂s) = v̂ar−1
s (η̂s), and it reduces to the inverse-variance meta
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estimator considered in Lin and Zeng (2010). When the subsets are “equal splits” (i.e.,

ns = n/S, for s = 1, 2, . . . , S), η̂dc using W3s(.) becomes the simple average of η̂s’s, i.e.,

η̂dc =
∑S

s=1 η̂s/S.

When the sample size is large, theoretically η̂dc using all three weights are equivalent

under the homogeneity assumptions (H1) to (H2). When the homogeneity assumption (H2)

is violated such that As(η0) 6= A(η0) or Bs(η0) 6= B(η0) for some s (1 ≤ s ≤ S), we

show in Appendix A.7 that the consistency and the asymptotic normality of η̂dc still hold.

However, the asymptotic variance of n1/2(η̂dc − η0) varies with weight and it satisfies that

Σw2 ≤ Σw1, Σw2 ≤ Σw3, Σw1 = Σ, and Σw1 6= Σw3, where Σwi represents the asymptotic

variance using weight Wis(.) for i = 1, 2, 3. Note that Σw1 = Σ, and Σ is the asymptotic

variance of η̂full. Because the sandwich-type Σ may not be optimal (i.e., minimal) in terms

of efficiency (in contrast to the inverse of Fisher’s information as the asymptotic variance

of the maximum likelihood estimator) (Kauermann and Carroll, 2001), it is possible to

achieve that Σw2 ≤ Σ. Also, in our simulation studies of finite samples, it is shown

that, empirically, Σw2 is slightly smaller than Σw1, and as a result, the empirical coverage

probability of the confidence interval is slightly under the nominal level. Finally, since

W1s(.) and W2s(.) utilize more empirical information from the data in individual subsets

(in the form of either Is(η̂s) or v̂ar−1
s (η̂s)), while W3s(.) only utilizes the information

of the subset sample size (a single number), one may expect that, empirically, η̂dc using

W1s(.) or W2s(.) may outperform that using W3s(.). Performance of η̂dc using these

three weights is assessed in the simulation studies (Chapter 6).
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CHAPTER 4

PROPOSED REGULARIZATION USING CONFIDENCE DISTRIBUTION

4.1 Introduction

In modern statistical analysis, as discussed in Section 2.3.1, variable selection can be

achieved by regularized estimation whose objective function is typically constructed from

the likelihood function using the original data in the sample(s). When it comes to the mul-

tivariate survival analysis, the intra-cluster association needs to be appropriately taken care

of. As a result, the regularized estimation algorithm is complicated and thus the existing

software packages cannot be directly applied. In this chapter, we propose a simple regular-

ized estimation approach in multivariate survival analysis using the confidence distribution

of parameters. The proposed confidence distribution approach uses just the asymptotic dis-

tribution of η̂dc obtained from divide-and-combine analysis in Chapter 3, and enables vari-

able selection in multivariate survival analysis using existing software packages. Section

4.2 presents the proposed objective functions using the confidence distribution approach.

The asymptotic properties of the regularized estimators are given in Section 4.3. Section

4.4 shows two useful asymptotic equivalences. The optimization of the proposed objective

functions, including determination of tuning parameters, is discussed in Section 4.5.

4.2 Proposed Objective Functions

Our proposed regularized estimation is based on confidence distribution of parameters.

Inference using confidence distribution has been discussed extensively (e.g., Efron (1993,

1998); Lehmann (1993); Singh et al. (2007); Xie and Singh (2013)). A confidence density

is the density function representation of a confidence distribution. By Singh et al. (2007),

we write the confidence density of the parameter η based on the asymptotic distribution of
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η̂dc shown in Theorem 3.3.1,

h(η) =
1

(2π)d/2(det(n−1Σ̂dc))1/2
exp

{
−1

2
(η − η̂dc)T (n−1Σ̂dc)

−1(η − η̂dc)
}
, (4.1)

where det(C) is the determinant of a matrix C. To facilitate statistical inference, we use

adaptive LASSO (Zou, 2006). Other penalty functions such as SCAD (Fan and Li, 2001)

or MCP (Zhang et al., 2010) can be easily adopted. After dropping constant terms, we

propose to construct the objective function by adding penalty terms to the log confidence

density in (4.1):

R(η) = n(η − η̂dc)T Σ̂
−1

dc (η − η̂dc) + n
d∑
j=1

ρj|βj|, (4.2)

where ρ1, ρ2, . . . , ρd denote tuning parameters, and |.| is the absolute value of a scalar. Note

that we only apply penalty restrictions on the regression parameter β, and not on the as-

sociation parameter θ when the divide-and-combine estimator is obtained using the frailty

model approach, i.e., η̂dc = γ̂dc. Interestingly, the objective function in (4.2) takes the

same form as the objective function based on the least squares approximation of Wang

and Leng (2007). Similar coincidence also happens in linear regression where the objec-

tive functions in maximum likelihood and least squares estimation are identical under the

normality assumption.

The regularized estimator of η is denoted by η̂dcρ obtained from minimizing (4.2) glob-

ally. With a proper choice of ρ = (ρ1, ρ2, . . . , ρd)
T (see discussion in Section 4.5), some

of the estimated coefficients will shrink to zero to achieve variable selection. Note that

the objective function R(η) in (4.2) has taken into account the intra-cluster association in

multivariate survival analysis via Σ̂dc. The following Theorems 4.3.1 and 4.3.2 show that

the variance estimator of η̂dcρ does not require additional adjustment in the variance esti-

mation, nor the joint estimation of regression coefficients and intra-cluster correlation in

the regularized estimation (e.g., Cai et al. (2005) for multivariate unordered failure time
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regression analysis; Rothman et al. (2010), Ibrahim et al. (2011), and Sofer et al. (2014)

for multivariate regression analysis).

In our proposed method, the objective function R(η) in (4.2) is only based on a pseudo

sample of size d, instead of n, which leads to a substantial reduction in computational cost

when n � d. Compared to some previous divide-and-combine approaches that perform

variable selections in each subset before combination (e.g., Chen and Xie (2014); Tang

et al. (2016)), our proposed method avoids the possibly inconsistent variable selection from

different subsets before the final combination step. Furthermore, our proposed regularized

estimation method is solely based on the confidence distribution of regression parameters,

which lends itself to a unified approach for variable selection in a large family of regression

models as long as consistent estimators and their well-established asymptotic distributions

are tractable.

4.3 Regularized Estimators in Multivariate Survival Analysis

Marginal Models

In the marginal model, η = β. The proposed objective function in (4.2) can be rewritten

as

R(β) = n(β − β̂
dc

)T Σ̂
−1

dc (β − β̂
dc

) + n
d∑
j=1

ρj|βj|, (4.3)

then the regularized estimator η̂dcρ becomes β̂
dc

ρ in the marginal model. Next we establish

the asymptotic properties of β̂
dc

ρ in Theorem 4.3.1. Without loss of generality, we assume

that only the first d0 predictors are informative, i.e.,

β0 =

β0a

β0b

 , β0a =


β01

...

β0d0

 6= 0, and β0b =


β0d0+1

...

β0d

 = 0. (4.4)
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Similarly, we write

β̂
dc

ρ =

β̂dcρa
β̂
dc

ρb

 . (4.5)

Theorem 4.3.1. Under regularity conditions (M1) to (M6) in Section 2.1.1 and homo-

geneity assumptions (H1) to (H2) in Section 3.3, given an = max {ρj, j ≤ d0} and bn =

min {ρj, j > d0}, the regularized estimator β̂
dc

ρ satisfies the following as n→∞:

(1) (Estimation Consistency) If n1/2an
P−→ 0, β̂

dc

ρ
P−→ β0;

(2) (Selection Consistency) If n1/2an
P−→ 0 and n1/2bn

P−→∞, Pr(β̂
dc

ρb = 0)→ 1;

(3) (Oracle Property) If n1/2an
P−→ 0 and n1/2bn

P−→∞, n1/2(β̂
dc

ρa−β0a)
D−→ N (0, ([Σ−1]d0d0)

−1),

in which [Σ−1]d0d0 is the leading d0 × d0 submatrix of Σ−1;

(4) [Σ−1]d0d0 can be consistently estimated by [Σ̂
−1

dc ]d0d0 , where Σ̂dc is defined in Theo-

rem 3.3.1.

Proof. Following Fan and Li (2001), projecting the ball
{
β0 + n−1/2u : ||u||2 ≤ C

}
to the

objective function R(β), a n1/2-consistent local minimizer is implied by the fact that the

projection is locally bounded with probability tending to one. The estimation consistency

follows. The selection consistency is demonstrated by contradiction. The asymptotic nor-

mality and the oracle property is shown by decomposing the objective function into zero

components and nonzero components. See Appendix A.8 for the detailed proof. �

In Theorem 4.3.1, the estimation consistency ensures the consistency of the estimators

of the nonzero coefficients; the selection consistency guarantees the zero coefficients must

be estimated as zero, with probability tending to one. Together, they both imply that the

proposed confidence distribution based regularized estimator can identify the true model

consistently. The oracle estimator is defined as an estimator that knows in advance which

coefficients are zero and which coefficients are not, and maximum likelihood is applied

using only the nonzero covariates. The oracle property in Theorem 4.3.1 ensures that our
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proposed regularized estimator performs as well as the oracle estimator (i.e., oralce maxi-

mum likelihood estimator), and that β̂
dc

ρa has the same asymptotic distribution as that of the

oracle estimator.

Frailty Models

In the frailty model, η = (θ,βT )T . Decompose the regularized estimator η̂dcρ obtained

from minimizing (4.2), as

η̂dcρ =

η̂dcρa
β̂
dc

ρb

 , and η̂dcρa =

 θ̂dc

β̂
dc

ρa

 , (4.6)

and let the true values be

η0 =

η0a

β0b

 =

η0a

0

 , and η0a =

 θ0

β0a

 6= 0. (4.7)

Theorem 4.3.2. Under regularity conditions (F1) to (F10) in Section 2.1.2 and homo-

geneity assumptions (H1) to (H2) in Section 3.3, given an = max {ρj, j ≤ d0} and bn =

min {ρj, j > d0}, the regularized estimator η̂dcρ satisfies the following as n→∞:

(1) (Estimation Consistency) If n1/2an
P−→ 0, η̂dcρ

P−→ η0;

(2) (Selection Consistency) If n1/2an
P−→ 0 and n1/2bn

P−→∞, Pr(β̂
dc

ρb = 0)→ 1;

(3) (Oracle Property) If n1/2an
P−→ 0 and n1/2bn

P−→∞, n1/2(η̂dcρa−η0a)
D−→ N (0, ([Σ−1](1+d0)(1+d0))

−1),

in which [Σ−1](1+d0)(1+d0) is the leading (1 + d0)× (1 + d0) submatrix of Σ−1;

(4) [Σ−1](1+d0)(1+d0) can be consistently estimated by [Σ̂
−1

dc ](1+d0)(1+d0), where Σ̂dc is

defined in Theorem 3.3.1.

Proof. The proof is similar to that of Theorem 4.3.1. See Appendix A.9 for the detailed

proof. �
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Theorem 4.3.2 ensures that the true model can be selected consistently and that η̂dcρa has

the same asymptotic distribution as that of the oracle estimator.

4.4 Asymptotic Equivalence

The regularized estimation we discussed above in Section 4.3 is achieved by using the

asymptotic distribution of the divide-and-combine estimator η̂dc. However, the regularized

estimation can certainly be applied to the confidence distribution of η based on the asymp-

totic distribution of the full-data estimator η̂full. Define the regularized full-data estimator

η̂fullρ as

η̂fullρ = argmin
η

{
n(η − η̂full)T Σ̂

−1

full(η − η̂
full) + n

d∑
j=1

ρfullj |βj|

}
, (4.8)

where Σ̂full is the estimator for variance Σ in the full data analysis. Since η̂full is asymp-

totically equivalent to η̂dc (Theorem 3.3.1), we can establish estimation consistency, selec-

tion consistency, and oracle properties for η̂fullρ as in Theorems 4.3.1 and 4.3.2. Then we

establish the following Theorem 4.4.1.

Theorem 4.4.1. Under conditions in Theorems 4.3.1 and 4.3.2, the regularized full-data

estimator η̂fullρ is asymptotically equivalent to the regularized divide-and-combine estima-

tor η̂dcρ in the sense that they have the same properties of estimation consistency, selection

consistency, and oracle properties.

Proof. The proof for Theorem 4.4.1 is straightforward and thus is omitted here. �

We now consider a special case in the marginal proportional hazards model where only

one failure could be potentially observed, i.e., β̂
dc

ρ is obtained by using divide-and-combine

statistics from the univariate Cox proportional hazards model (Cox, 1972). Define β̂z as the

adaptive LASSO estimator from the full-data analysis under the Cox proportional hazards
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model by Zhang and Lu (2007), i.e.,

β̂z = argmin
β

Rz(β) = argmin
β

{
−logPL(β) + n

d∑
j=1

ρzj |βj|

}
, (4.9)

where ρzj denotes the tuning parameter for j = 1, 2, . . . , d, and logPL(β) is the log partial

likelihood in the Cox proportional hazards model (Cox, 1972). In the following Theorem

4.4.2, we show that the difference between two objective functions Rz(β) and R(β)/2

(see definition of R(β) in (4.3)) is asymptotically ignorable. Therefore, the minimizers

β̂z = argminβ Rz(β) and β̂
dc

ρ = argminβ R(β) are asymptotically equivalent.

Theorem 4.4.2. Under the univariate Cox proportional hazards model, and the regularity

conditions (M1) to (M6) in Section 2.1.1 and homogeneity assumptions (H1) to (H2) in

Section 3.3, Rz(β) = R(β)/2 + op(1), provided that ρzj = ρj/2, for j = 1, 2, . . . , d.

Proof. The asymptotic equivalence can be demonstrated by the Taylor series expansion and

by acknowledging that Σ̂
−1

full = n−1I(β̂
full

) in the univariate case. See Appendix A.10 for

the detailed proof. �

As indicated in the proof of Theorem 4.4.2, Σ̂
−1

full generally does not equal n−1I(β̂
full

)

when the intra-cluster association in multivariate survival analysis is non-trivial. There-

fore, the asymptotic equivalence between the partial likelihood function and the confidence

density function established in Theorem 4.4.2 may not be directly extended to multivari-

ate failure time data. It follows immediately that the regularized estimators obtained by

minimizing both functions, generally, are not asymptotically equivalent. Nevertheless, un-

der a more general framework, for example, the generalized methods of moments (GMM)

(Hansen, 1982), it is possible to obtain a similar asymptotic equivalence between the ob-

jective function using GMM and the confidence density function for multivariate survival

analysis, which is a potential direction for future research.
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4.5 Optimization in Regularized Estimation

The objective function in (4.2) is strictly convex and therefore can be solved by many stan-

dard optimizers, such as R packages, glmnet (Friedman et al., 2010), CVXR (Fu et al.,

2017), and lars (Efron et al., 2004). However, it is not straightforward to directly ap-

ply these optimizers in our case because of the annoying portion Σ̂
−1

dc inserted within the

quadratic term in the objective function. To facilitate the optimization, similar to Zhang

and Lu (2007), we rewrite the objective function in (4.2) as

R(β) = (Γβ −Ψ)T (Γβ −Ψ) + n

d∑
j=1

ρj|βj|, (4.10)

where (n−1Σ̂dc)
−1 = ΓTΓ and Ψ = Γβ̂

dc
, in which Γ can be easily obtained using the sin-

gular value decomposition. Now the objective function in (4.10) becomes a typical problem

in the convex optimization, and those optimizers can be used without any difficulties.

The tuning parameter ρ for the adaptive LASSO (Zou, 2006) penalty function can be

chosen by an exhaustive search in a d-dimensional Euclidean space, which is, however,

computationally challenging and practically infeasible. A simple solution suggested by

Zou (2006) is to replace each tuning parameter ρj by

ρj = ρ0|β̂dcj |−φ, for j = 1, 2, . . . , d, (4.11)

where φ is some prespecified positive number, for example φ = 1 for simplicity. It can

be verified that the tuning parameter ρj satisfies all the technical requirements for adaptive

LASSO (Zou, 2006) as long as n1/2ρ0
P−→ 0 and n(1+φ)/2ρ0

P−→∞.

Tuning parameters usually can be chosen using some model selection criteria, such as

cross validation (CV), Akaike information criterion (AIC), or Bayesian information cri-

terion (BIC). Wang and Leng (2007) recommended BIC instead of the commonly used

CV since the latter approach tends to generate overfitted models when a finite dimensional
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model truly exists. Specifically, we consider minimizing the following to obtain the optimal

ρ

BICρ = n(β̂
dc

ρ − β̂
dc

)T Σ̂
−1

dc (β̂
dc

ρ − β̂
dc

) + (log n)dfρ, (4.12)

where dfρ is the number of nonzero coefficients in β̂
dc

ρ , a simple estimate for the degrees of

freedom (Zou et al., 2007).
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CHAPTER 5

PROPOSED DIVIDE-AND-COMBINE IN MULTISTATE SURVIVAL ANALYSIS

5.1 Introduction

Heart failure and atrial fibrillation have emerged as new cardiovascular epidemics over the

past decades (Braunwald, 1997). Although the association between heart failure and atrial

fibrillation has been appreciated since a century ago (Mackenzie, 1914), the causal relation-

ship between these two conditions has not yet been fully determined (Anter et al., 2009).

The prognostic significance of atrial fibrillation in patients with heart failure remains con-

troversial because some argues that atrial fibrillation is a marker rather than an independent

risk factor of some adverse cardiovascular outcomes (see Anter et al. (2009) for a detailed

review of heart failure and atrial fibrillation). To characterize the disease courses of car-

diovascular disease patients while taking into account the complicated relationship between

heart failure and atrial fibrillation, in this chapter, we propose a five-state Markov stochastic

model to study the dynamic process of cardiovascular diseases (CVDs).

In cardiovascular disease studies, the progress of a disease can be defined through sev-

eral dynamic states, such as multiple hospitalizations due to different non-fatal cardiovas-

cular diseases, and death or loss of follow-up. The proposed five-state model, as illustrated

in Figure 5.1, contains four hospitalization states due to non-fatal cardiovascular diseases

and one death state. Four hospitalization states include being hospitalized once due to heart

failure (HF-1), being hospitalized twice and both due to heart failure (HF-2), being hospi-

talized twice and one due to heart failure the other due to atrial fibrillation (AF), and being

hospitalized three times and two due to heart failure the other one due to atrial fibrillation

(HF-2+AF). As described in Section 2.2.1, a patient can potentially visit any of the four

hospitalization states depending on their starting state. During the entire follow-up period,
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a patient may die or may be censored at any time because of the loss of follow-up.

HF-1
(State 1)

HF-2
(State 2)

AF
(State 3)

HF-2+AF
(State 4)

Death
(State 5)

λ12(t)

λ13(t)

λ24(t)

λ34(t)

λ15(t)

λ25(t)

λ35(t)

λ45(t)

Figure 5.1: The five-state model for cardiovascular disease patients.

In the rest of this chapter, Section 5.2 presents the Andersen-type Cox Markov model

in multistate survival analysis. The proposed divide-and-combine estimators for cumula-

tive hazards are presented in Section 5.3. Section 5.4 shows the asymptotic equivalence

of predicted transition probabilities using either divide-and-combine statistics or full-data

statistics.

5.2 Model Setups

Recall that the random process X(t) records the state being occupied at time t by a certain

subject, and X(t) takes values from the state spaceQ = {1, 2, . . . , 5}. Then the hazard for

transition h→ j is defined as

λhj(t) = lim
∆t→0

Pr(X(t+ ∆t) = j|X(t) = h)

∆t
(5.1)
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for h, j = 1, 2, . . . , 5 and h 6= j. Correspondingly, the matrix of transition hazards of the

proposed five-state model is given by

λ(t) =



λ11(t) λ12(t) λ13(t) 0 λ15(t)

0 λ22(t) 0 λ24(t) λ25(t)

0 0 λ33(t) λ34(t) λ35(t)

0 0 0 λ44(t) λ45(t)

0 0 0 0 0


, (5.2)

where λhh(t) = −
∑

j 6=h λhj(t) for h, j = 1, 2, . . . , 5. Note that h → j, hereinafter, refers

to the direct transition from state h to state j, unless otherwise specified.

To adjust for different risk profiles in different subjects, we relate the transition hazards

to covariates through a Cox proportional hazards regression model (Cox, 1972). The hazard

function for transition h→ j is

λhj(t|Zhj) = λ0,hj(t)e
βTZhj , (5.3)

in which λ0,hj(t), h, j = 1, 2, . . . , 5 and h 6= j, is the unspecified baseline hazard func-

tion for transition h → j, β is a d-dimensional regression parameter, and Zhj is a time-

independent covariate vector (see Section 2.2.3 for a discussion of possible time-dependent

covariates). In fact, by using proper transition-specific covariates, model (5.3) can accom-

modate transition-specific regression coefficients, as elaborated in the simulation studies

and the real data example (Chapter 6).

By using the estimation approach described in Section 2.2.3, the cumulative hazard

function in transition h → j (h, j = 1, 2, . . . , 5 and h 6= j) for a future subject with a

covariate z0,hj , can be estimated by

Λ̂hj(t|z0,hj) =
n∑
i=1

∫ t

0

eβ̂
T
z0,hjdNi,hj(s)

nS
(0)
hj (β̂, s)

, (5.4)
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where β̂ is the estimated regression coefficients, S(0)
hj (β, s) = n−1

∑n
i=1 Yi,h(s)e

βTZi,hj ,

and Ni,hj(s) and Yi,h(s) are the counting process and the at risk process for subject i in a

sample of size n, respectively. See detailed definitions in Section 2.2.3. The corresponding

matrix for estimated cumulative hazards is given by

Λ̂(t|z0) =



Λ̂11(t|z0) Λ̂12(t|z0) Λ̂13(t|z0) 0 Λ̂15(t|z0)

0 Λ̂22(t|z0) 0 Λ̂24(t|z0) Λ̂25(t|z0)

0 0 Λ̂33(t|z0) Λ̂34(t|z0) Λ̂35(t|z0)

0 0 0 Λ̂44(t|z0) Λ̂45(t|z0)

0 0 0 0 0


, (5.5)

in which Λ̂hh(t|z0) = −
∑

j 6=h Λ̂hj(t|z0) for h, j = 1, 2, . . . , 5. Note that z0 is the basic

covariate that can be easily extended into the transition-specific structure z0,hj for h, j =

1, 2, . . . , 5 and h 6= j.

5.3 Divide-and-Combine Estimators for Cumulative Hazards

Instead of estimating regression coefficients in multivariate survival analysis, we are more

interested in estimating cumulative hazards and predicting transition probabilities in mul-

tistate survival analysis. Therefore, we propose a divide-and-combine estimator for the

cumulative hazard in multistate survival analysis by using the Andersen-type Cox Markov

model (see more details in Section 2.2). The proposed divide-and-combine estimator in

multistate survival analysis is motivated by and similar to the η̂dc in multivariate survival

analysis. We introduce our divide-and-combine approach for estimating cumulative haz-

ards as follows.

Divide Consider n independent subjects and use the Markov random process Xi(t) to

record the state being occupied by subject i at time t. Xi(t) takes values from a state space

Q = {1, 2, . . . , 5}. Denote the observed full data by Di(t) = {Xi(t),Zi; t ∈ [0, τ ]} for

i = 1, 2, . . . , n, where τ is the end of the follow-up period andZi is a d-dimensional vector
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of basic covariates that can be extended into transition-specific structureZi,hj for transition

h → j, h, j = 1, 2, . . . , 5 and h 6= j. We divide the full data by independent subjects into

S subsets, Dsi(t) = {Xsi(t),Zsi; t ∈ [0, τ ]} for s = 1, 2, . . . , S and i = 1, 2, . . . , ns,

where ns is the number of independent subjects of the sth subset with ns � d. Note that

n =
∑S

s=1 ns. Because different subjects may stop at different “final states” (i.e., the states

being occupied at the end of the follow-up period), the simple random splitting method

may result in biased distribution of disease processes in divided subsets. Therefore, we

implement a stratified random splitting method, stratified on the “final states”, to make the

“final states” evenly distributed across S subsets. We demonstrate this splitting method in

the simulation studies and the real data example (Chapter 6). As in multivariate survival

analysis, throughout this dissertation, we assume that all ns’s diverge in the same order

of O(n/S) and S = o(n1/2), following Zhang et al. (2013), Chen and Xie (2014), and

Rosenblatt and Nadler (2016).

Similar to the heuristic justification in multivariate survival analysis, in multistate sur-

vival analysis, the divided subsets generated by stratified random splitting would be homo-

geneous and each of them would be a representative random sample of the full data. Thus

we can reasonably assume the same Andersen-type Cox Markov model in subsets as in the

full data. In each subset s, we can estimate the transition-specific baseline cumulative haz-

ards and thus obtain the cumulative hazard estimators of individual transitions for a subject

with a covariate z0,hj using (5.4) (see Section 2.2.3 for more details), i.e., Λ̂s,hj(t|z0,hj) for

h, j = 1, 2, . . . , 5 and h 6= j.

Combine We combine the S estimators obtained from subsets and obtain the divide-

and-combine estimator by the following procedure:

Λ̂dc
hj(t|z0,hj) = n−1

S∑
s=1

nsΛ̂s,hj(t|z0,hj), (5.6)

for h, j = 1, 2, . . . , 5 and h 6= j.
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Before studying the asymptotic properties of Λ̂dc
hj(t|z0,hj), we state formally the fol-

lowing assumptions, which is the key to establishing the following Theorems 5.3.1 and

5.3.2.

Homogeneity Assumptions Let β0 and βs0 (s = 1, 2, . . . , S) be the true values of β

in the full data and individual subsets. Accordingly, s
(r)
s,hj(β, t) and Λs,hj(t|z0,hj) denote

the counterparts of s
(r)
hj (β, t) and Λhj(t|z0,hj) in the sth subset for s = 1, 2, . . . , S. See

definitions of s
(r)
hj (β, t) and Λhj(t|z0,hj) in Section 2.2.3. The homogeneity is two-fold:

(C1) Underlying parameters are the same across subsets, i.e., βs0 = β0, and Λs,hj(t|z0,hj) =

Λhj(t|z0,hj);

(C2) Limiting processes s
(r)
s,hj(β, t) are identical across all subsets, i.e., s(r)

s,hj(β, t) = s
(r)
hj (β, t).

Assume that regularity conditions in Section 2.2.3 hold in each of the divided subsets,

as shown in Theorems 2.2.1 and 2.2.2, the estimators Λ̂s,hj(t|z0,hj) (s = 1, 2. . . . , S) are

uniformly consistent and asymptotically normal. Under homogeneity assumptions (C1) to

(C3), it follows that Λ̂full
hj is also uniformly consistent and n1/2

{
Λ̂full
hj (t|z0,hj)− Λhj(t|z0,hj)

}
is asymptotically normally distributed with mean zero and a variance of b2(t|z0,hj) +

aT (t|z0,hj)Σ3a(t|z0,hj), where Λ̂full
hj (t|z0,hj) is the full-data estimator using the entire data

set, b2(t|z0,hj), a(t|z0,hj), and Σ3 are defined in the form as in Theorem 2.2.2. We estab-

lish the asymptotic properties of Λ̂dc
hj(t|z0,hj) in Theorems 5.3.1 and 5.3.2, which imply

that the proposed divide-and-combine estimator Λ̂dc
hj(t|z0,hj) is asymptotically equivalent

to the full-data estimator Λ̂full
hj (t|z0,hj), in the sense that they converge weakly to the same

Gaussian process.

Theorem 5.3.1. Under regularity conditions in Section 2.2.3 and homogeneity assumptions

(C1) to (C3) in Section 5.3, Λ̂dc
hj(t|z0,hj) converges in probability to Λhj(t|z0,hj) uniformly

in t ∈ [0, τ ], i.e., as n→∞,

sup
t∈[0,τ ]

∣∣∣Λ̂dc
hj(t|z0,hj)− Λhj(t|z0,hj)

∣∣∣ P−→ 0. (5.7)



65

Theorem 5.3.2. Under regularity conditions in Section 2.2.3 and homogeneity assumptions

(C1) to (C3) in Section 5.3, the random process n1/2
{

Λ̂dc
hj(t|z0,hj)− Λhj(t|z0,hj)

}
D−→

GP(0,Ωhj(t)), where GP denotes Gaussian process, and the variance function is given by

Ωhj(t) = b2(t|z0,hj) + aT (t|z0,hj)Σ3a(t|z0,hj), (5.8)

in which b2(t|z0,hj), a(t|z0,hj), and Σ3 are defined in the same form as in Theorem 2.2.2.

Corollary 5.3.2.1. Under conditions in Theorem 5.3.2, the variance function of the random

process n1/2
{

Λ̂dc
hj(t|z0,hj)− Λhj(t|z0,hj)

}
can be uniformly consistently estimated by

Ω̂dc
hj(t) = n−1

S∑
s=1

ns

{
b̂2
s(t|z0,hj) + âTs (t|z0,hj)Σ̂s3âs(t|z0,hj)

}
, (5.9)

where

b̂2
s(t|z0,hj) =

ns∑
i=1

∫ t

0

e2·β̂Ts z0,hjdNsi,hj(u)

ns

{
S

(0)
s,hj(β̂s, u)

}2 ,

âs(t|z0,hj) =
ns∑
i=1

∫ t

0

{
z0,hj − Es,hj(β̂s, u)

}
eβ̂

T
s z0,hjdNsi,hj(u)

nsS
(0)
s,hj(β̂s, u)

,

Σ̂
−1

s3 = n−1
s

∑
h6=j

ns∑
i=1

∫ τ

0

Vs,hj(β̂s, t)dNsi,hj(t),

(5.10)

in which β̂s is the estimated regression coefficients in the sth subset, andNsi,hj(t), S(0)
s,hj(β, t),

Es,hj(β, t), and Vs,hj(β, t) are the counterparts in the sth subset of Ni,hj(t), S(0)
hj (β, t),

Ehj(β, t), and Vhj(β, t) (see definitions in Section 2.2.3).

Proof. Along the lines of the proof for η̂dc in multivariate survival analysis, the asymptotic

properties of Λ̂dc
hj(t|z0,hj) in Theorems 5.3.1 and 5.3.2, and Corollary 5.3.2.1 can be easily

established. See the detailed proof in Appendix A.11. �

Theorems 5.3.1 and 5.3.2 imply the asymptotic equivalence between Λ̂dc
hj(t|z0,hj) and
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Λ̂full
hj (t|z0,hj). It follows immediately that the corresponding matrices Λ̂

dc
(t|z0) and Λ̂

full
(t|z0)

are also asymptotically equivalent because Λ̂(t, |z0) is an element-wise aggregation of

Λ̂hj(t|z0), h, j = 1, 2, . . . , 5. Λ̂
dc

(t|z0) and Λ̂
full

(t|z0) are defined in the same struc-

ture as (5.5) with their elements are replaced by Λ̂dc
hj(t|z0,hj) and Λ̂full

hj (t|z0,hj) for h, j =

1, 2, . . . , 5 and h 6= j, respectively.

5.4 Prediction of Transition Probabilities Using Estimated Cumulative Hazards

In the proposed five-state model, the transition probability matrix for a subject with a basic

covariate z0 in the time interval (u, t]1 is given by

P(u, t|z0) =



P11(u, t|z0) P12(u, t|z0) P13(u, t|z0) 0 P15(u, t|z0)

0 P22(u, t|z0) 0 P24(u, t|z0) P25(u, t|z0)

0 0 P33(u, t|z0) P34(u, t|z0) P35(u, t|z0)

0 0 0 P44(u, t|z0) P45(u, t|z0)

0 0 0 0 1


, (5.11)

where Phj(u, t|z0) (h, j = 1, 2, . . . , 5) denotes the transition probability from state h to

state j, including both direct and indirect transitions. Of note, z0 is a basic covariate that

can be extended into the transition-specific structure z0,hj (h, j = 1, 2, . . . , 5 and h 6= j).

The transition probability matrix P(u, t|z0) can be estimated by the Aalen-Johansen

estimator (Andersen et al., 1991)

P̂(u, t|z0) = R
v∈(u,t]

{
I + dΛ̂(v|z0)

}
, (5.12)

where R is the sign of product integral (See Section 2.2.2 for more details), I is the identity

matrix, and Λ̂(v|z0) is the estimated cumulative hazard matrix. According to Corollaries

2.2.4.1 and 2.2.4.2, the variance estimator for the estimated transition probability matrix

1Interval (u, t] instead of the previous (s, t], is used here to avoid confusion with s, the notation of the
divided subset.
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is ˆvar(P̂(u, t|z0)), whose (hj,mr) element is given by v̂ar1(P̂hj(u, t|z0), P̂mr(u, t|z0)) +

v̂ar2(P̂hj(u, t|z0), P̂mr(u, t|z0)), which is defined in the same form as in Corollary 2.2.4.2.

Using Λ̂
dc

(t|z0) obtained from the divide-and-combine analysis, we can predict the cu-

mulative hazard matrix by P̂dc(u, t|z0) and obtain its variance estimator ˆvar(P̂dc(u, t|z0)).

Similarly, by using the full-data analysis, we obtain P̂full(u, t|z0) and ˆvar(P̂full(u, t|z0)).

Theorem 5.4.1. Under conditions in Theorem 5.3.1, P̂dc(u, t|z0) is asymptotically equiv-

alent to P̂full(u, t|z0), in the sense that they both are uniformly consistent and converge

weakly to the same Gaussian process.

Proof. Because the necessary ingredients for the calculation of P̂(u, t|z0) and ˆvar(P̂(u, t|z0))

are just the estimates of the cumulative transition hazards and of their variance matrices,

irrespective of how these estimates were obtained. Since Λ̂
dc

(t|z0) is asymptotically equiv-

alent to Λ̂
full

(t|z0) as implied by Theorems 5.3.1 and 5.3.2, following the same arguments

in the proofs of Theorems 2.2.3 and 2.2.4, and Corollaries 2.2.4.1 and 2.2.4.2, we can prove

Theorem 5.4.1. Similar to the divide-and-combine approach in multivariate survival analy-

sis, in multistate survival analysis, both the total sample size (n) and the number of subsets

(S) can also go to infinity, but S should be chosen such that its order is smaller than n1/2,

i.e., S = o(n1/2). �

Theorem 5.4.1 implies that when the sample size n is large enough, by using the divide-

and-combine analysis, we can predict the transition probabilities as accurately as those by

using the full-data analysis. However, the proposed divide-and-combine is only performed

in the estimation of transition hazards but not the estimation of transition probabilities. As

a result, the savings in computational cost may not be as significant as those in multivariate

survival analysis. The performance of P̂dc(u, t|z0), including the asymptotic equivalence

with P̂full(u, t|z0) and the reduction in computation time, is evaluated in the simulation

studies (Chapter 6).



68

CHAPTER 6

SIMULATION STUDIES AND DATA ANALYSES

6.1 Introduction

In this chapter, we present simulation studies to demonstrate the performances of the pro-

posed divide-and-combine estimators in multivariate survival analysis and multistate sur-

vival analysis, respectively, and use real data examples to illustrate both methodologies.

The proposed regularized estimators in multivariate survival analysis are also assessed us-

ing simulation studies and real data analyses. In particular, the comparisons of the pro-

posed divide-and-combine estimators with the full-data estimators in both multivariate sur-

vival analysis and multistate survival analysis are provided in Sections 6.2.1 and 6.2.2,

and Section 6.2.3, respectively. The variable selection ability of the proposed regularized

estimators is summarized in Sections 6.2.1 and 6.2.2, too.

6.2 Simulation Studies

6.2.1 Marginal Models in Multivariate Survival Analysis

A simulation study of n = 100, 000 independent clusters was conducted to evaluate the

asymptotic equivalence between the divide-and-combine estimator β̂
dc

and the full-data

estimator β̂
full

. The statistical properties of the regularized estimators β̂
dc

ρ and β̂
full

ρ , in-

cluding estimation consistency, selection consistency, and oracle properties were also as-

sessed.

We simulated multivariate unordered failure time data from the Clayton-Oakes dis-

tribution (Clayton and Cuzick, 1985; Oakes, 1989) with a marginal Weibull distribution

for K = 3 types of failures. We parameterized the marginal baseline hazard function

by λ0k(t) = h0kλ0(t) = hokξh(ht)ξ−1, where λ0(t) = ξh(ht)ξ−1 is denoted by t ∼
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Weibull(shape = ξ, scale = h) and set ξ = h = 2. We chose h01 = e0, h02 = e0.01,

and h03 = e0.05 to differentiate three types of failures. Therefore, according to (2.6), the

joint survival function of failure times Ti1, Ti2, and Ti3 in the ith cluster (i = 1, 2, . . . , n) is

given by

Pr(Ti1 > ti1, Ti2 > ti2,Ti3 > ti3|Zi1,Zi2,Zi3)

=

[
3∑

k=1

exp
{
−(1− ν)hok(htik)

ξeβ
TZik

}
− 2

]1/(1−ν)

,

(6.1)

where we chose ν = 13/7, corresponding to Kendall’s tau κ = 0.3, for a moderate intra-

cluster correlation. Specifically, we generated K-variate correlated unordered failure times

for n independent clusters by the following steps.

(S1) Generate αi from Gamma(shape = 1
ν−1

, rate = 1);

(S2) Generate K i.i.d. random variables Uik from Uniform(0, 1) for the conditional sur-

vival functions Sik(tik|αi), k = 1, 2, . . . , K;

(S3) Solve for Sik(tik|αi) in terms of Sik(tik) and αi. Here, Sik(tik) = exp
{
−h0k(htik)

ξeβ
TZik

}
,

after some derivation, one gets

Tik =

{
1

1−ν · log(1− logUik
αi

)

−eβTZik · h0khξ

}1/ξ

(6.2)

for the kth type of failure in the ith cluster, k = 1, 2, . . . , K, i = 1, 2, . . . , n. (See

Chen (1998) for the detailed derivation.)

To allow for varying covariate effects on different failure types, in the ith cluster, data

were simulated according to type-specific regression parameters: β∗1 = (0.84,0.64,092)T ,

β∗2 = (0.84,0.44,092)T , and β∗3 = (0.84,0.24,092)T , corresponding to covariate Cik =

(Cik1 , . . . , Cik100 )T (k = 1, 2, 3) generated from a multivariate normal distribution with

standard normal marginals and an equal correlation of 0.2. Each of β∗k, k = 1, 2, 3, contains
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8 nonzeros and 92 zeros. We considered the marginal proportional hazards model (3.3) with

a design matrix Zi = (Zi1,Zi2,Zi3)T , where


ZT

i1

ZT
i2

ZT
i3

 =


Ci11 , · · · , Ci14 , Ci15 , Ci16 , Ci17 , Ci18 , 0, 0, 0, 0, 0, 0, 0, 0, Ci19 , · · · , Ci1100

Ci21 , · · · , Ci24 , 0, 0, 0, 0, Ci25 , Ci26 , Ci27 , Ci28 , 0, 0, 0, 0, Ci29 , · · · , Ci2100

Ci31 , · · · , Ci34 , 0, 0, 0, 0, 0, 0, 0, 0, Ci35 , Ci36 , Ci37 , Ci38 , Ci39 , · · · , Ci3100

 ,

and a common regression parameter vector β = (0.84,0.64,0.44,0.24,092)T . Note that

βTZi1 = β∗T1 Ci1, βTZi2 = β∗T2 Ci2, and βTZi3 = β∗T3 Ci3. This illustrates that using a

common β notation for the multivariate (K-variate) marginal proportional hazards models

does not preclude type-specific regression parameters.

To approximate the event rate (13%) in the motivating example (i.e., MIDAS data)

and further study the low event rate issue, fixed administrative censoring times of 0.031

and 0.056 were used to yield event rates of 5% and 10%, respectively. In the divide-

and-combine analysis, three sets of partition ratios were used: ns/n = (2/83,1/82),

ns/n = (2/155,1/155), and ns/n = (2/3010,1/3010), corresponding to S = 5, 10,

and 20 subsets, respectively. Note that our simulation studies were designed following the

recommendation of Vittinghoff and McCulloch (2007), such that the number of events per

covariate is at least 5 to 10 in each subset. In each configuration, we ran simulations 500

times. All simulations were carried out on a Linux cluster via parallel computing (S cores)

with one subset allocated to one core. The average computation time was calculated based

on 50 simulations performed on Intel R© Xeon R© E5-2680 v4 @2.40GHz. All statistical

analyses regarding fitting marginal proportional hazards models were performed using R

package, survival (Therneau, 2020), and regularized estimation was conducted using R

package, glmnet (Friedman et al., 2010).
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Simulation Results

We first assessed the performance of the divide-and-combine estimator β̂
dc

, compared

to the full-data estimator β̂
full

in average computation time (Time), mean of biasedness

(Bias), empirical standard error (ESE), mean asymptotic standard error (ASE) using the

theoretical formula and the associated standard error, and empirical coverage probability

(CovP) of the 95% Wald-type confidence interval (Table 6.1). As expected, the computa-

tion time of β̂
dc

is shorter than that for β̂
full

. More subsets save more time. In terms of

biasedness, ESE, ASE, and CovP, the performance of β̂
dc

using all three weights is gen-

erally close to that of β̂
full

. The bias of β̂
dc

is generally small; ESE and ASE are close

to each other; and CovP is close to the nominal 95% level. However, the estimator β̂
dc

using W3s(β̂s) = ns appears to have large bias and a poor coverage probability when the

magnitude of β is large (say, 0.6, 0.8) and the number of subsets (S) is big. We conjecture

that W1s(.) and W2s(.) outperformed W3s(.) might be because W1s(.) and W2s(.) utilize

more empirical information from the data in individual subsets than W3s(.) does as we dis-

cussed in Section 3.3. Under both event rates of 5% and 10%, the asymptotic equivalence

between β̂
dc

and β̂
full

as discussed above can be observed.

We next investigated the performances of the regularized estimators β̂
dc

ρ and β̂
full

ρ . In

addition to computation time, biasedness, ESE, ASE, and CovP, we also evaluated the per-

formance of variable selection (selection consistency) using sensitivity (Sn), the percentage

of true-nonzero parameters being selected, and specificity (Sp), the percentage of true-zero

parameters being selected (Table 6.2). When we calculated computation time, we only cal-

culated the time of the regularization process using the confidence distribution approach,

including the determination of tuning parameters. Because the dimension of the “data” is

greatly reduced from the original data of n = 100, 000 to the dimension of the multivari-

ate normal distribution associated with β̂
dc

and β̂
full

, the computation time of this step is

small (< 1 second) and about the same across all regularized estimators β̂
dc

ρ and β̂
full

ρ . In

terms of biasedness, ESE, ASE, and CovP, the performance of β̂
dc

ρ using all three weights
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is generally close to that of β̂
full

ρ . The bias of these estimators is generally small, ESE and

ASE are close to each other, and CovP is close to the nominal 95% level, with the exception

of β̂
dc

ρ using W3s(β̂s) = ns. This is because the bias of the previous estimator β̂
dc

using

W3s(β̂s) = ns is large when the magnitude of β is big, and the number of subsets is large.

For the performance of variable selection, the sensitivity and specificity are almost 100%

for all estimators. The performance of β̂
dc

ρ is similar to that of β̂
full

ρ , irrespective of event

rates (5% or 10%).

We also conducted simulation studies under the same setting as above using a strati-

fied random splitting approach to make the number of events evenly distributed across S

subsets. Specifically, we stratified the full data into 4 strata by the number of events per

cluster (0, 1, 2, and 3), then randomly split the data in each stratum into S sets according

to the pre-specified partition ratios (ns/n), and formed each subset by combining one set

in each stratum. Results are summarized in Tables 6.3 and 6.4. The performance of our

proposed method using the stratified random splitting is similar to that using the simple

random splitting approach.
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Table 6.1: Performances of β̂
dc

and β̂
full

for estimating β = β0 in marginal models with
simple random splitting.

5 Subsets 10 Subsets 20 Subsets Full Data

β0 β̂
dc

β̂
dc

β̂
dc

β̂
full

W1s(.) W2s(.) W3s(.) W1s(.) W2s(.) W3s(.) W1s(.) W2s(.) W3s(.)

Event Rate = 0.05

Time1 (min) 1.3 1.3 1.3 0.5 0.5 0.5 0.2 0.2 0.2 12.7

0.8 Bias (ESE) (×10−3) 1.0 (9.5) 1.2 (9.6) 6.1 (9.6) 0.3 (9.6) 0.5 (9.9) 12.7 (10.1) -2.9 (9.3) -3.1 (10.0) 25.7 (10.2) 1.3 (9.5)
ASE (SE) (×10−3) 9.5 (0.1) 9.3 (0.1) 9.6 (0.1) 9.5 (0.1) 9.1 (0.1) 9.7 (0.1) 9.4 (0.1) 8.8 (0.1) 10.0 (0.1) 9.5 (0.1)
CovP (%) 95.3 94.1 90.1 93.9 92.3 74.1 94.2 89.3 27.9 95.3

0.6 Bias (ESE) (×10−3) 0.8 (13.8) 1.0 (14.1) 5.4 (14.1) -0.1 (13.4) 0.0 (14.0) 10.6 (14.0) -2.1 (13.7) -2.4 (14.6) 22.3 (14.7) 1.1 (13.8)
ASE (SE) (×10−3) 13.6 (0.2) 13.4 (0.2) 13.7 (0.2) 13.5 (0.2) 13.1 (0.2) 13.9 (0.2) 13.4 (0.2) 12.5 (0.2) 14.3 (0.2) 13.7 (0.2)
CovP (%) 95.2 94.2 93.0 95.4 93.6 88.1 94.0 90.5 65.3 95.1

0.4 Bias (ESE) (×10−3) 0.2 (15.5) 0.3 (15.9) 2.9 (15.8) -0.2 (16.2) 0.1 (16.8) 6.0 (16.8) -1.8 (15.7) -1.6 (16.8) 12.5 (17.0) 0.4 (15.5)
ASE (SE) (×10−3) 15.6 (0.2) 15.4 (0.2) 15.8 (0.2) 15.6 (0.2) 15.1 (0.2) 16.0 (0.2) 15.4 (0.2) 14.4 (0.2) 16.4 (0.2) 15.7 (0.2)
CovP (%) 95.5 94.5 94.5 94.3 92.8 92.3 93.5 90.6 87.7 95.6

0.2 Bias (ESE) (×10−3) 0.8 (18.5) 0.9 (18.6) 1.7 (18.7) -0.3 (18.2) -0.2 (18.8) 1.7 (18.7) -0.8 (18.8) -0.7 (19.9) 4.5 (20.0) 0.9 (18.5)
ASE (SE) (×10−3) 18.3 (0.3) 18.0 (0.3) 18.5 (0.3) 18.2 (0.3) 17.6 (0.3) 18.7 (0.3) 18.1 (0.3) 16.9 (0.3) 19.1 (0.3) 18.3 (0.3)
CovP (%) 94.5 94.1 94.5 94.7 93.2 94.8 93.5 91.1 93.5 94.5

0.0 Bias (ESE) (×10−3) 0.0 (9.0) 0.0 (9.2) 0.0 (9.2) 0.0 (9.1) 0.0 (9.4) 0.0 (9.4) 0.0 (9.1) 0.0 (9.7) 0.0 (9.8) 0.0 (9.0)
ASE (SE) (×10−3) 9.0 (0.1) 8.9 (0.1) 9.1 (0.1) 9.0 (0.1) 8.7 (0.1) 9.2 (0.1) 8.9 (0.1) 8.3 (0.1) 9.4 (0.1) 9.0 (0.1)
CovP (%) 94.8 93.9 94.6 94.8 93.0 94.4 94.4 90.6 94.0 94.9

Event Rate = 0.10

Time1 (min) 2.1 2.2 2.1 0.8 0.8 0.8 0.3 0.3 0.3 24.0

0.8 Bias (ESE) (×10−3) 0.7 (6.9) 0.7 (6.9) 3.8 (7.0) 0.5 (6.6) 0.7 (6.7) 7.7 (6.8) -0.6 (6.7) -0.3 (7.0) 15.4 (7.0) 0.8 (6.9)
ASE (SE) (×10−3) 6.8 (0.0) 6.7 (0.0) 6.8 (0.0) 6.7 (0.0) 6.6 (0.0) 6.8 (0.0) 6.7 (0.0) 6.4 (0.0) 6.9 (0.0) 6.8 (0.1)
CovP (%) 94.5 94.2 90.6 95.0 94.2 79.5 95.2 92.6 40.1 94.5

0.6 Bias (ESE) (×10−3) 0.4 (10.3) 0.5 (10.5) 3.1 (10.4) 0.5 (10.2) 0.7 (10.5) 6.4 (10.5) -0.2 (10.4) -0.2 (10.8) 13.3 (10.9) 0.5 (10.3)
ASE (SE) (×10−3) 10.1 (0.1) 9.9 (0.1) 10.1 (0.1) 10.0 (0.1) 9.8 (0.1) 10.2 (0.1) 10.0 (0.1) 9.5 (0.1) 10.3 (0.1) 10.1 (0.1)
CovP (%) 94.6 94.2 93.4 94.8 93.6 89.8 94.3 91.8 72.4 94.7

0.4 Bias (ESE) (×10−3) -0.1 (11.2) 0.0 (11.3) 1.5 (11.3) 0.0 (11.1) 0.1 (11.4) 3.6 (11.4) -0.4 (11.0) -0.2 (11.3) 7.8 (11.5) -0.1 (11.2)
ASE (SE) (×10−3) 10.9 (0.1) 10.8 (0.1) 11.0 (0.1) 10.9 (0.1) 10.7 (0.1) 11.1 (0.1) 10.9 (0.1) 10.4 (0.1) 11.2 (0.1) 11.0 (0.1)
CovP (%) 94.1 94.0 94.2 94.0 93.2 93.5 95.0 92.8 88.8 94.2

0.2 Bias (ESE) (×10−3) -0.1 (12.1) 0.0 (12.2) 0.6 (12.2) 0.1 (12.3) 0.1 (12.5) 1.6 (12.5) -0.3 (12.1) 0.0 (12.5) 3.0 (12.6) -0.1 (12.1)
ASE (SE) (×10−3) 12.1 (0.1) 12.0 (0.1) 12.1 (0.1) 12.1 (0.1) 11.8 (0.1) 12.2 (0.1) 12.0 (0.1) 11.5 (0.1) 12.4 (0.1) 12.1 (0.1)
CovP (%) 95.3 94.3 95.2 94.4 93.7 94.0 94.5 93.1 93.6 95.2

0.0 Bias (ESE) (×10−3) 0.0 (6.3) 0.0 (6.4) 0.0 (6.4) 0.0 (6.4) 0.0 (6.5) 0.0 (6.5) 0.0 (6.4) 0.0 (6.6) 0.0 (6.7) 0.0 (6.3)
ASE (SE) (×10−3) 6.3 (0.0) 6.3 (0.0) 6.4 (0.0) 6.3 (0.0) 6.2 (0.0) 6.4 (0.0) 6.3 (0.0) 6.0 (0.0) 6.5 (0.0) 6.3 (0.0)
CovP (%) 94.8 94.4 94.7 94.7 93.6 94.5 94.6 92.5 94.2 94.9

1 Average computation time in minutes.
Abbreviations: ASE: asymptotic standard error using the theoretical formula; ESE: empirical standard error; SE: standard error of ASE; CovP: empirical
coverage probability of 95% confidence interval.
Note: β0 is the true value of β; Intra-cluster association is Kendall tau κ = 0.3; Sample size is 100, 000; Event rates of top panel and bottom panel are 5%
and 10%, respectively.
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Table 6.2: Performances of β̂
dc

ρ and β̂
full

ρ for estimating β = β0 in marginal models with
simple random splitting.

5 Subsets 10 Subsets 20 Subsets Full Data

β0 β̂
dc

ρ β̂
dc

ρ β̂
dc

ρ β̂
full

ρ

W1s(.) W2s(.) W3s(.) W1s(.) W2s(.) W3s(.) W1s(.) W2s(.) W3s(.)

Event Rate = 0.05

Time1 (min) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.8 Bias (ESE) (×10−3) 1.0 (9.5) 1.1 (9.6) 6.2 (9.7) -0.1 (9.5) 0.1 (9.8) 12.1 (9.9) -3.6 (9.7) -3.8 (10.3) 25.1 (10.5) 1.3 (9.5)
ASE (SE) (×10−3) 9.5 (0.1) 9.3 (0.1) 9.6 (0.1) 9.4 (0.1) 9.1 (0.1) 9.7 (0.1) 9.4 (0.1) 8.8 (0.1) 10.0 (0.1) 9.5 (0.1)
CovP (%) 94.5 93.5 90.2 94.6 93.2 74.8 92.5 88.5 29.2 94.3
Sn (%) 100 100 100 100 100 100 100 100 100 100

0.6 Bias (ESE) (×10−3) 0.2 (13.6) 0.3 (13.9) 4.8 (13.9) -0.2 (13.7) 0.1 (14.1) 10.5 (14.3) -2.6 (13.7) -2.9 (14.7) 21.8 (14.9) 0.5 (13.6)
ASE (SE) (×10−3) 13.6 (0.2) 13.4 (0.2) 13.7 (0.2) 13.5 (0.2) 13.1 (0.2) 13.9 (0.2) 13.4 (0.2) 12.5 (0.2) 14.3 (0.2) 13.7 (0.2)
CovP (%) 95.0 94.0 92.6 95.0 92.7 87.3 94.1 89.5 66.2 95.0
Sn (%) 100 100 100 100 100 100 100 100 100 100

0.4 Bias (ESE) (×10−3) 0.2 (15.3) 0.3 (15.6) 2.8 (15.5) 0.1 (15.9) 0.4 (16.4) 6.4 (16.4) -2.1 (15.2) -2.0 (16.5) 12.3 (16.4) 0.4 (15.3)
ASE (SE) (×10−3) 15.6 (0.2) 15.4 (0.2) 15.8 (0.2) 15.6 (0.2) 15.0 (0.2) 16.0 (0.2) 15.4 (0.2) 14.4 (0.2) 16.4 (0.2) 15.7 (0.2)
CovP (%) 95.4 94.5 94.9 94.7 92.5 92.8 95.5 91.2 88.7 95.4
Sn (%) 100 100 100 100 100 100 100 100 100 100

0.2 Bias (ESE) (×10−3) 0.2 (18.9) 0.3 (19.3) 0.9 (19.3) -0.1 (18.1) 0.0 (18.7) 1.9 (18.7) -0.3 (18.2) -0.4 (19.7) 5.0 (19.4) 0.2 (18.9)
ASE (SE) (×10−3) 18.3 (0.3) 18.0 (0.3) 18.5 (0.3) 18.2 (0.3) 17.6 (0.3) 18.7 (0.3) 18.1 (0.3) 16.9 (0.3) 19.1 (0.3) 18.4 (0.3)
CovP (%) 94.4 93.0 94.2 95.0 93.1 94.3 95.2 90.6 93.8 94.3
Sn (%) 100 100 100 100 100 100 100 100 100 100

0.0 Bias (ESE) (×10−3) 0.0 (0.5) 0.0 (0.6) 0.0 (0.5) 0.0 (0.4) 0.0 (0.6) 0.0 (0.4) 0.0 (0.4) 0.0 (0.9) 0.0 (0.5) 0.0 (0.1)
Sp (%) 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.8 99.9 99.9

Event Rate = 0.10

Time1 (min) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.8 Bias (ESE) (×10−3) 0.5 (6.7) 0.6 (6.8) 3.6 (6.8) 0.2 (6.7) 0.4 (6.8) 7.3 (6.8) -0.6 (6.9) -0.3 (7.1) 15.5 (7.2) 0.7 (6.7)
ASE (SE) (×10−3) 6.8 (0.0) 6.7 (0.0) 6.8 (0.0) 6.7 (0.0) 6.6 (0.0) 6.8 (0.0) 6.7 (0.0) 6.4 (0.0) 6.9 (0.0) 6.8 (0.0)
CovP (%) 95.4 94.8 91.7 95.0 94.0 80.8 94.2 92.2 39.2 95.4
Sn (%) 100 100 100 100 100 100 100 100 100 100

0.6 Bias (ESE) (×10−3) 0.6 (10.2) 0.7 (10.3) 3.2 (10.4) 0.3 (10.0) 0.4 (10.2) 6.2 (10.3) -0.4 (10.0) -0.3 (10.3) 13.0 (10.5) 0.7 (10.2)
ASE (SE) (×10−3) 10.1 (0.1) 9.9 (0.1) 10.1 (0.1) 10.0 (0.1) 9.8 (0.1) 10.2 (0.1) 10.0 (0.1) 9.5 (0.1) 10.3 (0.1) 10.1 (0.1)
CovP (%) 95.0 94.6 93.0 95.1 94.0 90.3 95.2 93.2 74.8 95.2
Sn (%) 100 100 100 100 100 100 100 100 100 100

0.4 Bias (ESE) (×10−3) 0.5 (10.9) 0.6 (11.0) 2.1 (11.0) 0.2 (10.9) 0.4 (11.2) 3.9 (11.2) -0.5 (10.6) -0.2 (11.0) 7.7 (11.1) 0.5 (10.9)
ASE (SE) (×10−3) 10.9 (0.1) 10.8 (0.1) 11.0 (0.1) 10.9 (0.1) 10.7 (0.1) 11.1 (0.1) 10.9 (0.1) 10.4 (0.1) 11.2 (0.1) 11.0 (0.1)
CovP (%) 95.2 94.7 94.7 95.0 94.2 93.8 94.9 93.6 90.3 95.2
Sn (%) 100 100 100 100 100 100 100 100 100 100

0.2 Bias (ESE) (×10−3) -0.2 (12.0) -0.1 (12.2) 0.4 (12.1) -0.3 (12.6) -0.2 (12.8) 1.2 (12.9) -0.1 (12.0) 0.1 (12.5) 3.3 (12.6) -0.1 (12.0)
ASE (SE) (×10−3) 12.1 (0.1) 12.0 (0.1) 12.1 (0.1) 12.1 (0.1) 11.8 (0.1) 12.2 (0.1) 12.0 (0.1) 11.5 (0.1) 12.4 (0.1) 12.1 (0.2)
CovP (%) 94.9 94.5 94.7 93.5 92.9 93.1 94.8 93.0 93.8 94.8
Sn (%) 100 100 100 100 100 100 100 100 100 100

0.0 Bias (ESE) (×10−3) 0.0 (0.2) 0.0 (0.3) 0.0 (0.2) 0.0 (0.2) 0.0 (0.3) 0.0 (0.2) 0.0 (0.2) 0.0 (0.4) 0.0 (0.2) 0.0 (0.2)
Sp (%) 100 100 100 100 99.9 100 100 99.9 100 100

1 Average computation time in minutes.
Abbreviations: ASE: asymptotic standard error using the theoretical formula; ESE: empirical standard error; SE: standard error of ASE; CovP: empirical
coverage probability of 95% confidence interval; Sn: sensitivity; Sp: specificity.
Note: β0 is the true value of β; Intra-cluster association is Kendall tau κ = 0.3; Sample size is 100, 000; Event rates of top panel and bottom panel are 5%
and 10%, respectively.
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Table 6.3: Performances of β̂
dc

and β̂
full

for estimating β = β0 in marginal models with
stratified random splitting.

5 Subsets 10 Subsets 20 Subsets Full Data

β0 β̂
dc

β̂
dc

β̂
dc

β̂
full

W1s(.) W2s(.) W3s(.) W1s(.) W2s(.) W3s(.) W1s(.) W2s(.) W3s(.)

Event Rate = 0.05

Time1 (min) 1.3 1.3 1.3 0.4 0.4 0.4 0.2 0.2 0.2 12.5

0.8 Bias (ESE) (×10−3) 1.5 (9.4) 1.6 (9.6) 6.7 (9.6) 0.0 (9.4) 0.2 (9.7) 12.3 (9.8) -3.0 (9.3) -3.2 (9.9) 25.7 (10.2) 1.9 (9.4)
ASE (SE) (×10−3) 9.5 (0.1) 9.3 (0.1) 9.6 (0.1) 9.5 (0.1) 9.1 (0.1) 9.7 (0.1) 9.4 (0.1) 8.8 (0.1) 10.0 (0.1) 9.5 (0.1)
CovP (%) 95.0 94.2 90.6 94.4 93.5 74.9 94.0 90.0 27.2 95.2

0.6 Bias (ESE) (×10−3) 0.8 (14.2) 0.8 (14.5) 5.3 (14.4) -0.2 (13.6) -0.2 (14.2) 10.4 (14.2) -2.3 (13.7) -2.5 (15.0) 22.1 (14.8) 1.0 (14.2)
ASE (SE) (×10−3) 13.6 (0.2) 13.4 (0.2) 13.7 (0.2) 13.5 (0.2) 13.1 (0.2) 13.9 (0.2) 13.4 (0.2) 12.5 (0.2) 14.3 (0.2) 13.7 (0.2)
CovP (%) 94.2 93.2 92.1 95.0 93.0 88.5 93.9 89.3 66.5 94.3

0.4 Bias (ESE) (×10−3) 0.4 (15.7) 0.4 (16.0) 3.0 (16.0) -0.3 (16.2) -0.1 (16.9) 5.8 (16.7) -1.9 (15.8) -1.8 (16.9) 12.5 (17.0) 0.5 (15.8)
ASE (SE) (×10−3) 15.6 (0.2) 15.4 (0.2) 15.8 (0.2) 15.6 (0.2) 15.1 (0.2) 16.0 (0.2) 15.4 (0.2) 14.4 (0.2) 16.4 (0.2) 15.7 (0.2)
CovP (%) 95.2 94.1 94.6 94.0 92.0 91.3 93.8 90.3 88.9 95.2

0.2 Bias (ESE) (×10−3) 0.0 (18.3) 0.1 (18.7) 0.9 (18.6) 0.2 (18.3) 0.2 (18.8) 2.3 (18.8) -0.8 (18.8) -0.8 (20.2) 4.3 (20.0) 0.1 (18.3)
ASE (SE) (×10−3) 18.3 (0.3) 18.0 (0.3) 18.4 (0.3) 18.2 (0.3) 17.6 (0.3) 18.7 (0.3) 18.1 (0.3) 16.9 (0.3) 19.1 (0.3) 18.3 (0.3)
CovP (%) 94.7 94.0 94.7 95.0 93.7 94.8 93.7 89.8 93.0 95.0

0.0 Bias (ESE) (×10−3) 0.0 (9.1) 0.0 (9.2) 0.0 (9.2) 0.0 (9.1) 0.0 (9.4) 0.0 (9.4) 0.0 (9.1) 0.0 (9.7) 0.0 (9.9) 0.0 (9.1)
ASE (SE) (×10−3) 9.0 (0.1) 8.9 (0.1) 9.1 (0.1) 9.0 (0.1) 8.7 (0.1) 9.2 (0.1) 8.9 (0.1) 8.3 (0.1) 9.4 (0.1) 9.0 (0.1)
CovP (%) 94.9 94.1 94.6 94.8 93.1 94.5 94.4 90.5 94.0 94.9

Event Rate = 0.10

Time1 (min) 2.3 2.3 2.3 0.7 0.7 0.7 0.3 0.3 0.3 24.7

0.8 Bias (ESE) (×10−3) 0.9 (7.0) 1.0 (7.0) 4.0 (7.0) 0.5 (6.6) 0.7 (6.8) 7.7 (6.7) -0.6 (6.8) -0.3 (7.1) 15.4 (7.1) 1.0 (7.0)
ASE (SE) (×10−3) 6.8 (0.0) 6.7 (0.0) 6.8 (0.0) 6.7 (0.0) 6.6 (0.0) 6.8 (0.0) 6.7 (0.0) 6.4 (0.0) 6.9 (0.0) 6.8 (0.1)
CovP (%) 93.8 93.5 90.1 95.3 94.2 81.2 95.3 92.6 39.9 93.8

0.6 Bias (ESE) (×10−3) 0.5 (10.1) 0.6 (10.3) 3.1 (10.3) 0.4 (10.1) 0.6 (10.3) 6.5 (10.4) -0.2 (10.4) -0.1 (10.8) 13.2 (11.0) 0.6 (10.1)
ASE (SE) (×10−3) 10.1 (0.1) 9.9 (0.1) 10.1 (0.1) 10.0 (0.1) 9.8 (0.1) 10.2 (0.1) 10.0 (0.1) 9.5 (0.1) 10.3 (0.1) 10.1 (0.1)
CovP (%) 95.2 94.2 93.1 94.8 93.3 89.7 94.0 92.0 72.8 95.1

0.4 Bias (ESE) (×10−3) 0.0 (11.0) 0.0 (11.1) 1.5 (11.1) 0.3 (10.8) 0.4 (11.0) 4.0 (11.1) -0.2 (11.0) 0.0 (11.5) 8.0 (11.5) 0.0 (11.0)
ASE (SE) (×10−3) 10.9 (0.1) 10.8 (0.1) 11.0 (0.1) 10.9 (0.1) 10.7 (0.1) 11.1 (0.1) 10.9 (0.1) 10.4 (0.1) 11.2 (0.1) 11.0 (0.1)
CovP (%) 94.5 94.1 94.6 95.5 94.9 93.3 94.9 92.6 88.8 94.5

0.2 Bias (ESE) (×10−3) -0.1 (12.1) -0.1 (12.2) 0.5 (12.3) 0.0 (12.1) 0.1 (12.4) 1.4 (12.4) -0.3 (12.1) -0.1 (12.7) 3.1 (12.7) -0.1 (12.2)
ASE (SE) (×10−3) 12.1 (0.1) 12.0 (0.1) 12.1 (0.1) 12.1 (0.1) 11.8 (0.1) 12.2 (0.1) 12.0 (0.1) 11.5 (0.1) 12.4 (0.1) 12.1 (0.1)
CovP (%) 94.8 94.6 94.6 95.0 94.0 94.8 94.7 92.5 93.3 94.8

0.0 Bias (ESE) (×10−3) 0.0 (6.4) 0.0 (6.4) 0.0 (6.4) 0.0 (6.4) 0.0 (6.5) 0.0 (6.5) 0.0 (6.4) 0.0 (6.6) 0.0 (6.7) 0.0 (6.4)
ASE (SE) (×10−3) 6.3 (0.0) 6.3 (0.0) 6.4 (0.0) 6.3 (0.0) 6.2 (0.0) 6.4 (0.0) 6.3 (0.0) 6.0 (0.0) 6.5 (0.0) 6.3 (0.0)
CovP (%) 94.8 94.5 94.7 94.8 93.7 94.5 94.5 92.5 94.1 94.9

1 Average computation time in minutes.
Abbreviations: ASE: asymptotic standard error using the theoretical formula; ESE: empirical standard error; SE: standard error of ASE; CovP: empirical
coverage probability of 95% confidence interval.
Note: β0 is the true value of β; Intra-cluster association is Kendall tau κ = 0.3; Sample size is 100, 000; Event rates of top panel and bottom panel are 5%
and 10%, respectively.
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Table 6.4: Performances of β̂
dc

ρ and β̂
full

ρ for estimating β = β0 in marginal models with
stratified random splitting.

5 Subsets 10 Subsets 20 Subsets Full Data

β0 β̂
dc

β̂
dc

β̂
dc

β̂
full

W1s(.) W2s(.) W3s(.) W1s(.) W2s(.) W3s(.) W1s(.) W2s(.) W3s(.)

Event Rate = 0.05

Timeq (min) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.8 Bias (ESE) (×10−3) 1.2 (9.7) 1.3 (9.9) 6.4 (9.9) -0.1 (9.7) 0.0 (10.1) 12.3 (10.1) -3.6 (9.7) -3.7 (10.2) 25.0 (10.6) 1.5 (9.7)
ASE (SE) (×10−3) 9.5 (0.1) 9.3 (0.1) 9.6 (0.1) 9.4 (0.1) 9.1 (0.1) 9.7 (0.1) 9.4 (0.1) 8.8 (0.1) 10.0 (0.1) 9.5 (0.1)
CovP (%) 93.8 93.3 89.7 93.8 92.0 74.4 92.3 88.1 30.1 93.8
Sn (%) 100 100 100 100 100 100 100 100 100 100

0.6 Bias (ESE) (×10−3) 0.9 (13.9) 1.0 (14.2) 5.4 (14.1) 0.0 (13.8) 0.0 (14.2) 10.7 (14.4) -2.6 (13.7) -2.9 (14.6) 21.7 (15.0) 1.2 (14.0)
ASE (SE) (×10−3) 13.6 (0.2) 13.4 (0.2) 13.8 (0.2) 13.5 (0.2) 13.1 (0.2) 13.9 (0.2) 13.4 (0.2) 12.5 (0.2) 14.3 (0.2) 13.7 (0.2)
CovP (%) 94.8 94.0 92.3 94.6 93.0 87.5 94.0 89.9 66.9 94.9
Sn (%) 100 100 100 100 100 100 100 100 100 100

0.4 Bias (ESE) (×10−3) 0.3 (15.7) 0.5 (15.8) 2.9 (15.9) 0.0 (15.7) 0.2 (16.2) 6.1 (16.3) -2.0 (15.3) -1.8 (16.5) 12.2 (16.7) 0.5 (15.6)
ASE (SE) (×10−3) 15.6 (0.2) 15.4 (0.2) 15.8 (0.2) 15.6 (0.2) 15.0 (0.2) 16.0 (0.2) 15.4 (0.2) 14.4 (0.2) 16.4 (0.2) 15.7 (0.2)
CovP (%) 94.5 94.0 94.4 94.5 93.5 92.8 95.6 91.0 87.7 94.8
Sn (%) 100 100 100 100 100 100 100 100 100 100

0.2 Bias (ESE) (×10−3) 0.6 (18.8) 0.6 (19.1) 1.3 (19.0) -0.1 (18.0) 0.0 (18.8) 1.9 (18.6) -0.3 (18.3) 0.1 (19.7) 4.9 (19.5) 0.6 (18.8)
ASE (SE) (×10−3) 18.3 (0.3) 18.0 (0.3) 18.5 (0.3) 18.2 (0.3) 17.6 (0.3) 18.7 (0.3) 18.1 (0.3) 16.9 (0.3) 19.1 (0.3) 18.3 (0.3)
CovP (%) 94.2 93.0 94.0 95.2 93.1 95.2 95.0 91.2 93.8 94.2
Sn (%) 100 100 100 100 100 100 100 100 100 100

0.0 Bias (ESE) (×10−3) 0.0 (0.5) 0.0 (0.5) 0.0 (0.6) 0.0 (0.4) 0.0 (0.4) 0.0 (0.4) 0.0 (0.4) 0.0 (0.9) 0.0 (0.5) 0.0 (0.5)
Sp (%) 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

Event Rate = 0.10

Time1 (min) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.8 Bias (ESE) (×10−3) 0.7 (6.6) 0.8 (6.7) 3.8 (6.7) 0.1 (6.8) 0.3 (6.9) 7.4 (6.9) -0.6 (6.8) -0.2 (6.9) 15.6 (7.1) 0.8 (6.6)
ASE (SE) (×10−3) 6.8 (0.0) 6.7 (0.0) 6.8 (0.0) 6.7 (0.0) 6.6 (0.0) 6.8 (0.0) 6.7 (0.0) 6.4 (0.0) 6.9 (0.0) 6.8 (0.1)
CovP (%) 95.1 94.6 91.5 94.8 94.0 80.5 94.4 93.4 38.1 95.2
Sn (%) 100 100 100 100 100 100 100 100 100 100

0.6 Bias (ESE) (×10−3) 0.9 (10.1) 1.1 (10.2) 3.6 (10.2) 0.5 (10.1) 0.7 (10.3) 6.6 (10.4) -0.4 (10.0) -0.3 (10.4) 12.9 (10.5) 1.0 (10.1)
ASE (SE) (×10−3) 10.1 (0.1) 9.9 (0.1) 10.1 (0.1) 10.0 (0.1) 9.8 (0.1) 10.2 (0.1) 10.0 (0.1) 9.5 (0.1) 10.3 (0.1) 10.1 (0.1)
CovP (%) 95.0 94.8 93.5 94.7 93.3 89.9 94.9 92.5 75.8 95.1
Sn (%) 100 100 100 100 100 100 100 100 100 100

0.4 Bias (ESE) (×10−3) 0.4 (10.9) 0.5 (11.0) 2.0 (10.9) 0.6 (10.8) 0.8 (10.9) 4.2 (11.0) -0.7 (10.8) -0.4 (11.3) 7.5 (11.3) 0.5 (10.9)
ASE (SE) (×10−3) 10.9 (0.1) 10.8 (0.1) 11.0 (0.1) 10.9 (0.1) 10.7 (0.1) 11.1 (0.1) 10.9 (0.1) 10.4 (0.1) 11.2 (0.1) 11.0 (0.1)
CovP (%) 95.7 95.4 95.4 95.0 94.3 93.0 94.8 92.8 89.3 95.6
Sn (%) 100 100 100 100 100 100 100 100 100 100

0.2 Bias (ESE) (×10−3) -0.3 (12.0) -0.2 (12.1) 0.4 (12.1) -0.4 (12.5) -0.3 (12.8) 1.1 (12.8) -0.1 (12.1) 0.2 (12.5) 3.2 (12.5) -0.2 (12.0)
ASE (SE) (×10−3) 12.1 (0.1) 12.0 (0.1) 12.1 (0.1) 12.1 (0.1) 11.8 (0.1) 12.2 (0.1) 12.0 (0.1) 11.5 (0.1) 12.4 (0.1) 12.1 (0.1)
CovP (%) 94.8 94.4 94.8 94.0 92.9 93.9 95.2 92.7 94.0 95.0
Sn (%) 100 100 100 100 100 100 100 100 100 100

0.0 Bias (ESE) (×10−3) 0.0 (0.2) 0.0 (0.2) 0.0 (0.2) 0.0 (0.2) 0.0 (0.3) 0.0 (0.3) 0.0 (0.2) 0.0 (0.3) 0.0 (0.3) 0.0 (0.1)
Sp (%) 100 100 100 100 99.9 99.9 100 100 99.9 100

1 Average computation time in minutes.
Abbreviations: ASE: asymptotic standard error using the theoretical formula; ESE: empirical standard error; SE: standard error of ASE; CovP: empirical
coverage probability of 95% confidence interval; Sn: sensitivity; Sp: specificity.
Note: β0 is the true value of β; Intra-cluster association is Kendall tau κ = 0.3; Sample size is 100, 000; Event rates of top panel and bottom panel are 5%
and 10%, respectively.
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6.2.2 Frailty Models in Multivariate Survival Analysis

In frailty models, the estimation and inference procedures are excessively complex, thus a

simulation study with reduced numbers of independent clusters (n = 400 and 1000) was

conducted to assess the asymptotic equivalence between the divide-and-combine estimator

γ̂dc and the full-data estimator γ̂full. The statistical properties of the regularized estimators

γ̂dcρ and γ̂fullρ were also evaluated, such as estimation consistency, selection consistency,

and oracle properties. Note that γ contains both the dependence parameter and the regres-

sion parameters, i.e., γ = (θ,βT )T .

The multivariate unordered failure time data were generated from the gamma frailty

model (Hougaard, 2000) with a conditional Weibull distribution forK = 3 types of failures.

Conditional on the frailty u, the baseline hazard function was parameterized by uλ0(t) =

uξh(ht)ξ−1 where λ0(t) = ξh(ht)ξ−1 is denoted by t ∼Weibull(shape = ξ, scale = h) and

set ξ = h = 2. The frailty u was assumed to follow a gamma distribution with mean of one

and variance of θ, whose density function, as discussed in (2.15), is given by

fU(u|θ) =
u1/θ−1e−u/θ

θ1/θΓ(1/θ)
. (6.3)

Therefore, according to (2.16), the joint survival function of failure times Ti1, Ti2, and Ti3

in the ith cluster (i = 1, 2, . . . , n) is given by

Pr(Ti1 > ti1, Ti2 > ti2,Ti3 > ti3|Zi1,Zi2,Zi3)

=

[
3∑

k=1

{
1 + θ (htik)

ξ eβ
TZik

}
− 2

]−1/θ

,

(6.4)

where θ = 6/7 is chosen, corresponding to Kendall’s tau κ = 0.3 for a same moderate

intra-cluster association as in the simulation studies for marginal models. Specifically, we

generated K-variate correlated unorderd failure times for n independent clusters by the

following steps.
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(S1) Generate ui from Gamma(shape = 1
θ
, rate = 1

θ
);

(S2) Generate K i.i.d. random variables Uik from Uniform(0, 1) for the conditional sur-

vival function Sik(tik|ui), k = 1, 2, . . . , K;

(S3) Recognizing that Sik(tik|ui) is the function defined in (2.17), following the principle

in the Monte Carlo method, we have Uik = exp
{
−uiΛ0(Tik)e

βTZik

}
. Given that

Λ0(Tik) = (hTik)
ξ, one gets

Tik =

{
logUik

−eβTZik · uihξ

}1/ξ

(6.5)

for the kth type of failure in the ith cluster, k = 1, 2, . . . , K, i = 1, 2, . . . , n.

We considered the proportional hazards frailty model (3.4) with a shared regression pa-

rameter β = (0.82,0.42,06)T consisting of four nonzeros and six zeros. In the ith cluster,

the covariate Zik, k = 1, 2, 3, were generated from a multivariate normal distribution with

standard normal marginals and an equal correlation of 0.2. A fixed administrative censoring

time of 0.48 was used to yield an event rate of 50%. Because relatively small sample sizes

were considered in the simulation study for frailty models, a simpler partition algorithm

was used: ns/n = (2/52,1/51) and ns/n = (2/83,1/82), corresponding to S = 3 and 5

subsets, respectively. Similar to the simulation study for the marginal models, we ran simu-

lations 500 times in each configuration. All simulations were carried out on a Linux cluster

via parallel computing (S cores) with one subset allocated to one core. The average compu-

tation time was calculated based on 50 simulations performed on Intel R© Xeon R© E5-2680

v4 @2.40GHz. All statistical analyses regarding fitting proportional hazards frailty models

were performed using R package, frailtySurv (Monaco et al., 2018), and regularized

estimation was conducted using R package, glmnet (Friedman et al., 2010).
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Simulation Results

The performance of the divide-and-combine estimator γ̂dc was assessed, compared to the

full-data estimator γ̂full in regard to average computation time (Time), mean of biasedness

(Bias), empirical standard error (ESE), mean asymptotic standard error (ASE) using the

theoretical formula and its associated standard error, and empirical coverage probability

(CovP) of the 95% Wald-type confidence interval, with results summarized in Table 6.5.

When n = 1000, fitting a proportional hazards frailty model in the full data could not be

finished within a reasonable time period—it took more than 420 minutes for each simula-

tion run and thus the results of γ̂full for n = 1000 were not reported. The computational

barriers in the full-data analysis for n = 1000 were easily overcome by using the divide-

and-combine analysis. The estimation was completed without loosing any efficiency in 24

minutes when the full data were split into S = 3 subsets. When any of the three weights

(W1s(.), W2s(.), and W3s(.)) is used for γ̂dc, the bias is generally small, ESE and ASE

are close to each other, and CovP is close to the nominal 95% level. The computation time

was further shortened to 6 minutes while keeping similar estimation efficiency for β when

the full data were split into S = 5 subsets. However, the CovP for θ when W1s(.) or

W2s(.) is used, is less than the nominal level. The similar trends were also observed when

n = 400, but under the reduced sample size the estimation algorithm in divided subsets

was less stable due to the small sample size. As a result, the performance of γ̂dc using

W1s(.) or W2s(.) generally, was not as good as expected, especially when estimating the

dependence parameter θ.

The performances of the regularized estimators γ̂dcρ and γ̂fullρ were also investigated

(Table 6.6). Because regularization was only applied on β but not θ, thus only β̂
dc

ρ and

β̂
full

ρ were summarized in Table 6.6. As in the simulation studies for marginal models,

computation time, biasedness, ESE, ASE, CovP, as well as sensitivity and specificity were

assessed in β̂
dc

ρ and β̂
full

ρ to evaluate their performances. The computation time was only

measured in the regularization step. Because the dimensionality of the “data” is signif-
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icantly reduced from n to d, the average computation time of this step is small (i.e., < 1

second) across different scenarios. When n = 1000, β̂
dc

ρ using W1s(.) and W3s(.) achieved

acceptable statistical performance as reflected by the near nominal-level coverage proba-

bility and the almost 100% sensitivity and specificity. When β̂
dc

ρ using W2s(.) was used

in the divide-and-combine analysis, there was some amount of efficiency lost, especially

when the magnitude of β is large and the number of subsets is big. When the sample

size was reduced to n = 400, the similar patterns were observed but the performance was

relatively worse than that in n = 1000.

We also conducted simulation studies under the same setting as above using a strati-

fied random splitting approach to make the number of events evenly distributed across S

subsets. Specifically, we stratified the full data into 4 strata by the number of events per

cluster (0, 1, 2, and 3), then randomly split the data in each stratum into S sets according

to the pre-specified partition ratios (ns/n), and formed each subset by combining one set

in each stratum. Results are summarized in Tables 6.7 and 6.8. The performance of our

proposed method using the stratified random splitting is similar to that using the simple

random splitting approach.
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Table 6.5: Performances of γ̂dc and γ̂full for estimating γ = γ0 = (θ0,β
T
0 )T in frailty

models with simple random splitting.

3 Subsets 5 Subsets Full Data

γ0 γ̂dc γ̂dc γ̂full

W1s(.) W2s(.) W3s(.) W1s(.) W2s(.) W3s(.)

n = 400

Time1 (min) 1.7 1.7 1.7 0.7 0.7 0.7 20.7

θ0

6/7 Bias (ESE) (×10−3) -88.8 (118.6) -112.4 (124.2) -2.0 (123.8) -184.3 (119.6) -227.8 (132.5) -7.0 (127.8) -0.7 (122.3)
ASE (SE) (×10−3) 138.3 (14.7) 133.9 (14.5) 149.1 (15.8) 132.6 (14.9) 123.5 (15.0) 155.6 (18.0) 143.2 (14.9)
CovP (%) 89.5 85.3 97.3 69.8 54.0 96.6 97.3

β0

0.8 Bias (ESE) (×10−3) -15.7 (58.4) -22.9 (61.8) 14.1 (63.3) -36.1 (57.5) -51.0 (62.9) 25.5 (66.8) 6.5 (61.0)
ASE (SE) (×10−3) 63.7 (4.6) 60.7 (4.4) 66.7 (5.2) 63.2 (4.6) 57.2 (4.1) 69.9 (6.5) 64.5 (4.8)
CovP (%) 95.2 91.5 96.4 92.3 82.9 95.4 96.1

0.4 Bias (ESE) (×10−3) -7.5 (55.7) -11.8 (57.3) 7.1 (58.7) -16.7 (53.5) -23.8 (58.2) 13.7 (59.4) 2.9 (56.9)
ASE (SE) (×10−3) 56.5 (3.8) 53.9 (3.6) 58.8 (4.1) 55.9 (3.8) 50.9 (3.5) 60.7 (4.6) 57.1 (3.8)
CovP (%) 95.4 92.6 95.2 94.3 88.1 95.2 95.1

0.0 Bias (ESE) (×10−3) 0.6 (53.6) 0.7 (56.0) 0.8 (56.5) 0.0 (52.1) -0.1 (57.0) 0.1 (58.2) 0.7 (54.7)
ASE (SE) (×10−3) 53.9 (3.3) 51.5 (3.2) 55.8 (3.6) 53.5 (3.3) 48.7 (3.1) 57.5 (3.8) 54.4 (3.4)
CovP (%) 95.2 92.9 94.8 95.6 90.2 94.7 95.2

n = 1000

Time1 (min) 23.7 23.5 23.3 5.6 5.6 5.6 —2

θ0

6/7 Bias (ESE) (×10−3) -33.7 (76.2) -45.3 (75.6) 3.2 (79.0) -69.4 (73.4) -89.2 (74.7) 3.8 (77.3) —
ASE (SE) (×10−3) 88.9 (5.9) 87.9 (5.9) 91.6 (6.3) 87.7 (5.7) 85.5 (5.7) 93.1 (6.2) —
CovP (%) 94.8 94.3 98.2 90.1 83.5 98.3 —

β0

0.8 Bias (ESE) (×10−3) -4.6 (38.6) -8.0 (38.9) 7.5 (39.7) -11.8 (39.1) -17.9 (40.1) 12.5 (41.6) —
ASE (SE) (×10−3) 40.3 (1.9) 39.5 (1.8) 41.0 (2.0) 40.1 (1.9) 38.6 (1.8) 41.6 (2.1) —
CovP (%) 94.6 93.9 94.7 93.5 91.5 94.0 —

0.4 Bias (ESE) (×10−3) -1.9 (34.1) -3.5 (34.4) 4.3 (34.9) -5.9 (34.0) -9.1 (35.3) 6.2 (35.7) —
ASE (SE) (×10−3) 35.8 (1.5) 35.1 (1.5) 36.3 (1.5) 35.6 (1.4) 34.3 (1.4) 36.7 (1.5) —
CovP (%) 95.8 95.2 96.4 95.8 93.5 95.4 —

0.0 Bias (ESE) (×10−3) -0.4 (34.0) -0.5 (34.4) -0.5 (34.7) -0.5 (34.1) -0.4 (34.9) -0.5 (35.6) —
ASE (SE) (×10−3) 34.2 (1.4) 33.6 (1.4) 34.6 (1.4) 34.1 (1.4) 32.9 (1.3) 35.0 (1.4) —
CovP (%) 95.1 94.5 95.0 94.7 93.6 94.2 —

1 Average computation time in minutes.
2 Computation in full data is infeasible due to unreasonably long time (i.e., > 420 minutes).

Abbreviations: ASE: asymptotic standard error using the theoretical formula; ESE: empirical standard error; CovP: empirical coverage
probability of 95% confidence interval.
Notes: γ0 is the true value of γ; Intra-cluster association is Kendall tau κ = 0.3; Event rate is 50%; Sample sizes of top panel and bottom
panel are 400 and 1000, respectively.
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Table 6.6: Performances of γ̂dcρ and γ̂fullρ for estimating γ = γ0 = (θ0,β
T
0 )T in frailty

models with simple random splitting.

3 Subsets 5 Subsets Full Data

β0
1 γ̂dcρ γ̂dcρ γ̂fullρ

W1s(.) W2s(.) W3s(.) W1s(.) W2s(.) W3s(.)

n = 400

Time2 (min) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.8 Bias (ESE) (×10−3) -37.8 (56.9) -44.5 (60.8) -11.1 (61.2) -57.8 (56.8) -71.3 (62.6) -2.9 (64.4) -15.9 (59.2)
ASE (SE) (×10−3) 63.7 (4.6) 60.7 (4.4) 66.7 (5.2) 63.2 (4.6) 57.2 (4.1) 69.9 (6.5) 64.5 (4.8)
CovP (%) 92.0 86.9 96.7 86.0 73.7 97.1 95.5
Sn (%) 100 100 100 100 100 100 100

0.4 Bias (ESE) (×10−3) -30.1 (57.6) -34.1 (59.9) -17.5 (60.5) -38.9 (55.4) -45.2 (61.5) -12.5 (60.3) -19.8 (58.4)
ASE (SE) (×10−3) 56.5 (3.8) 53.9 (3.6) 58.8 (4.1) 55.9 (3.8) 50.9 (3.5) 60.7 (4.6) 57.1 (3.8)
CovP (%) 91.6 87.2 94.1 89.2 79.8 94.4 92.9
Sn (%) 100 100 100 100 100 100 100

0.0 Bias (ESE) (×10−3) 0.4 (15.5) 0.7 (18.1) 0.4 (17.0) 0.5 (14.5) 1.1 (21.9) 0.8 (18.1) 0.5 (15.6)
Sp (%) 97.8 96.8 97.6 98.0 95.1 97.4 97.8

n = 1000

Time2 (min) 0.0 0.0 0.0 0.0 0.0 0.0 —3

0.8 Bias (ESE) (×10−3) -15.3 (37.7) -18.4 (38.3) -3.8 (38.9) -22.8 (38.0) -28.3 (39.1) 0.4 (40.4) —
ASE (SE) (×10−3) 40.3 (1.9) 39.5 (1.8) 41.0 (2.0) 40.1 (1.9) 38.6 (1.8) 41.6 (2.1) —
CovP (%) 93.6 91.6 95.0 92.2 89.2 95.6 —
Sn (%) 100 100 100 100 100 100 —

0.4 Bias (ESE) (×10−3) -12.3 (34.3) -13.8 (34.8) -6.6 (35.1) -16.4 (34.2) -19.3 (35.6) -5.0 (35.8) —
ASE (SE) (×10−3) 35.8 (1.5) 35.1 (1.5) 36.3 (1.5) 35.6 (1.4) 34.3 (1.4) 36.7 (1.5) —
CovP (%) 94.7 94.5 95.1 94.6 91.2 95.6 —
Sn (%) 100 100 100 100 100 100 —

0.0 Bias (ESE) (×10−3) 0.2 (6.6) 0.1 (8.0) 0.1 (7.0) 0.2 (7.1) 0.3 (9.0) 0.2 (8.2) —
Sp (%) 99.2 98.9 99.1 99.1 98.6 98.9 —

1 Regularization only applies to β but not θ, thus only β is summarized in this table.
2 Average computation time in minutes.
3 Regularized estimation in full data is not available due to the absence of γ̂full.

Abbreviations: ASE: asymptotic standard error using the theoretical formula; ESE: empirical standard error; CovP: empirical
coverage probability of 95% confidence interval; Sn: sensitivity; Sp: specificity.
Notes: γ0 is the true value of γ; Intra-cluster association is Kendall tau κ = 0.3; Event rate is 50%; Sample sizes of top panel
and bottom panel are 400 and 1000, respectively.
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Table 6.7: Performances of γ̂dc and γ̂full for estimating γ = γ0 = (θ0,β
T
0 )T in frailty

models with stratified random splitting.

3 Subsets 5 Subsets Full Data

γ0 γ̂dc γ̂dc γ̂full

W1s(.) W2s(.) W3s(.) W1s(.) W2s(.) W3s(.)

n = 400

Time1 (min) 1.7 1.7 1.7 0.7 0.6 0.6 20.8

θ0

6/7 Bias (ESE) (×10−3) -99.5 (121.3) -122.8 (126.1) -9.1 (122.9) -198.4 (120.2) -243.6 (131.4) -16.7 (130.1) -7.5 (122.1)
ASE (SE) (×10−3) 136.5 (14.9) 132.2 (14.9) 147.5 (15.6) 130.2 (14.6) 120.9 (14.6) 154.6 (20.3) 142.0 (15.1)
CovP (%) 88.6 82.2 96.3 64.5 50.6 96.1 95.7

β0

0.8 Bias (ESE) (×10−3) -19.0 (60.7) -27.0 (62.4) 11.2 (64.5) -39.3 (58.6) -53.4 (63.6) 23.9 (68.9) 2.2 (62.4)
ASE (SE) (×10−3) 63.6 (4.6) 60.6 (4.4) 66.5 (5.4) 63.0 (4.6) 56.9 (4.1) 69.7 (6.7) 64.3 (4.6)
CovP (%) 95.1 92.1 95.7 92.0 80.6 95.5 95.8

0.4 Bias (ESE) (×10−3) -7.4 (57.5) -11.3 (59.5) 7.5 (61.5) -17.5 (55.5) -23.9 (59.7) 13.3 (62.6) 2.2 (57.9)
ASE (SE) (×10−3) 56.4 (3.7) 53.9 (3.6) 58.6 (4.1) 55.9 (3.7) 51.0 (3.5) 60.6 (4.8) 56.9 (3.8)
CovP (%) 93.7 92.2 94.1 93.7 87.7 93.6 94.5

0.0 Bias (ESE) (×10−3) -0.2 (54.8) -0.2 (56.4) 0.0 (57.7) -0.7 (53.4) -0.6 (59.3) -1.3 (59.6) -0.4 (55.5)
ASE (SE) (×10−3) 54.0 (3.3) 51.6 (3.2) 55.8 (3.5) 53.4 (3.3) 48.7 (3.1) 57.5 (3.9) 54.5 (3.3)
CovP (%) 94.7 93.0 94.3 95.2 89.3 94.3 94.8

n = 1000

Time1 (min) 24.3 24.0 23.8 5.7 5.6 5.6 —2

θ0

6/7 Bias (ESE) (×10−3) -42.3 (78.4) -53.1 (79.1) -4.1 (80.4) -74.7 (78.6) -95.2 (79.9) 0.2 (81.0) —
ASE (SE) (×10−3) 88.0 (6.1) 86.9 (6.1) 90.8 (6.3) 87.1 (6.0) 84.9 (6.0) 92.5 (6.4) —
CovP (%) 91.6 89.8 95.3 86.2 79.4 96.0 —

β0

0.8 Bias (ESE) (×10−3) -4.1 (40.6) -7.4 (40.9) 7.6 (41.7) -11.4 (40.1) -17.5 (41.6) 12.4 (42.0) —
ASE (SE) (×10−3) 40.2 (1.9) 39.4 (1.9) 40.9 (2.0) 40.1 (1.9) 38.5 (1.8) 41.5 (2.1) —
CovP (%) 94.7 93.1 93.7 93.4 89.9 93.7 —

0.4 Bias (ESE) (×10−3) -2.7 (36.6) -4.3 (37.0) 3.2 (37.4) -7.5 (35.9) -10.8 (36.2) 4.7 (37.5) —
ASE (SE) (×10−3) 35.7 (1.5) 35.1 (1.5) 36.3 (1.5) 35.6 (1.5) 34.4 (1.4) 36.7 (1.6) —
CovP (%) 94.0 93.7 94.0 93.9 92.0 94.0 —

0.0 Bias (ESE) (×10−3) -1.0 (34.6) -0.8 (35.1) -1.1 (35.4) -1.0 (34.0) -1.0 (35.1) -1.2 (35.6) —
ASE (SE) (×10−3) 34.1 (1.3) 33.5 (1.3) 34.6 (1.4) 34.0 (1.3) 32.8 (1.3) 34.9 (1.4) —
CovP (%) 95.1 94.1 94.8 95.2 93.1 94.5 —

1 Average computation time in minutes.
2 Computation in full data is infeasible due to unreasonably long time (i.e., > 420 minutes).

Abbreviations: ASE: asymptotic standard error using the theoretical formula; ESE: empirical standard error; CovP: empirical coverage prob-
ability of 95% confidence interval.
Notes: γ0 is the true value of γ; Intra-cluster association is Kendall tau κ = 0.3; Event rate is 50%; Sample sizes of top panel and bottom
panel are 400 and 1000, respectively.
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Table 6.8: Performances of γ̂dcρ and γ̂fullρ for estimating γ = γ0 = (θ0,β
T
0 )T in frailty

models with stratified random splitting.

3 Subsets 5 Subsets Full Data

β0
1 γ̂dcρ γ̂dcρ γ̂fullρ

W1s(.) W2s(.) W3s(.) W1s(.) W2s(.) W3s(.)

n = 400

Time2 (min) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.8 Bias (ESE) (×10−3) -41.8 (59.4) -48.6 (61.4) -14.6 (62.4) -61.6 (57.3) -74.4 (62.8) -6.4 (65.1) -21.1 (61.4)
ASE (SE) (×10−3) 63.6 (4.6) 60.6 (4.4) 66.5 (5.4) 63.0 (4.6) 56.9 (4.1) 69.7 (6.7) 64.3 (4.6)
CovP (%) 90.9 86.0 95.3 84.1 70.8 97.2 94.9
Sn (%) 100 100 100 100 100 100 100

0.4 Bias (ESE) (×10−3) -31.0 (57.4) -34.0 (60.5) -18.1 (61.1) -40.6 (55.5) -46.7 (61.9) -15.4 (61.9) -21.7 (58.0)
ASE (SE) (×10−3) 56.4 (3.7) 53.9 (3.6) 58.6 (4.1) 55.9 (3.7) 51.0 (3.5) 60.6 (4.8) 56.9 (3.8)
CovP (%) 90.1 86.7 92.2 88.8 80.6 93.8 92.3
Sn (%) 100 100 100 100 100 100 100

0.0 Bias (ESE) (×10−3) 0.5 (16.2) 0.7 (20.1) 0.5 (17.3) 0.5 (16.1) 1.1 (24.3) 0.6 (17.7) 0.5 (16.7)
Sp (%) 97.7 96.3 97.5 97.7 94.1 97.6 97.7

n = 1000

Time2 (min) 0.0 0.0 0.0 0.0 0.0 0.0 —3

0.8 Bias (ESE) (×10−3) -15.0 (39.9) -18.1 (40.2) -3.8 (40.9) -22.0 (39.3) -27.9 (41.0) 0.6 (40.9) —
ASE (SE) (×10−3) 40.2 (1.9) 39.4 (1.9) 40.9 (2.0) 40.1 (1.9) 38.5 (1.8) 41.5 (2.1) —
CovP (%) 93.0 91.0 94.8 91.2 86.5 95.1 —
Sn (%) 100 100 100 100 100 100 —

0.4 Bias (ESE) (×10−3) -13.7 (36.4) -15.3 (37.0) -8.3 (37.3) -18.4 (35.8) -21.8 (36.1) -7.3 (37.5) —
ASE (SE) (×10−3) 35.7 (1.5) 35.1 (1.5) 36.3 (1.5) 35.6 (1.5) 34.4 (1.4) 36.7 (1.6) —
CovP (%) 92.4 90.8 93.0 91.3 88.9 93.1 —
Sn (%) 100 100 100 100 100 100 —

0.0 Bias (ESE) (×10−3) 0.0 (3.7) 0.0 (4.3) 0.0 (4.7) -0.1 (3.5) 0.0 (6.3) -0.1 (4.6) —
Sp (%) 99.6 99.4 99.4 99.6 99.1 99.5 —

1 Regularization only applies to β but not θ, thus only β is summarized in this table.
2 Average computation time in minutes.
3 Regularized estimation in full data is not available due to the absence of γ̂full.

Abbreviations: ASE: asymptotic standard error using the theoretical formula; ESE: empirical standard error; CovP: empirical
coverage probability of 95% confidence interval; Sn: sensitivity; Sp: specificity.
Notes: γ0 is the true value of γ; Intra-cluster association is Kendall tau κ = 0.3; Event rate is 50%; Sample sizes of top panel
and bottom panel are 400 and 1000, respectively.
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6.2.3 Multistate Survival Analysis

We performed a simulation study of n = 100, 000 independent subjects to evaluate the

asymptotic equivalence of the divide-and-combine estimator P̂dc(u, t|z0) and the full-data

estimator P̂full(u, t|z0).

We simulated Markov multistate processes for our proposed five-state model, as illus-

trated in Figure 5.1, by simulating multivariate ordered failure times. Hence, for each of

the n independent subjects, we simulated failure times T12 for transition 1 → 2, T13 for

transition 1 → 3, T15 for transition 1 → 5, T 2
15 for transition 1 → 2 → 5, T 3

15 for tran-

sition 1 → 3 → 5, T 2
14 for transition 1 → 2 → 4, T 3

14 for transition 1 → 3 → 4, T 24
15

for transition 1 → 2 → 4 → 5, and T 34
15 for transitions 1 → 3 → 4 → 5. Note that in

Markov models, which are of interest in this dissertation, all times are measured from the

same time origin, i.e., the start of the follow-up period. It is also worth explaining that,

for example, T12 is the failure time of a subject from state 1 to state 2, whereas T 2
15 is the

failure time of a subject from state 1 to state 5 through state 2. We describe the procedures

to simulate multivariate ordered failure times below. For the ease of notation, we assume

the hazard function for transition j → k follows a Weibull distribution and takes the form

λjk(t) = ajkt
bjk (j, k = 1, 2, . . . , 5 and j 6= k). This hazard function can be easily incorpo-

rated with covariates and modified to the conventional form by letting ajk = ξjkh
ξjk
jk e

βTZjk

and bjk = κjk − 1 (j, k = 1, 2, . . . , 5 and j 6= k).

Consider transition 1 → 2 with hazard λ12(t). The survival function is expressed by

S12(t) = e−Λ12(t), where

Λ12(t) =

∫ t

0

λ12(u)du =

∫ t

0

a12u
b12du =

a12

b12 + 1
tb12+1. (6.6)

It is known that S12(T12) = U12 ∼ Uniform(0, 1), then by using (6.6), the failure time for
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transition 1→ 2 is given by

T12 =

(
−b12 + 1

a12

logU12

)1/(b12+1)

. (6.7)

Similarly, we have

T13 =

(
−b13 + 1

a13

logU13

)1/(b13+1)

, (6.8)

and

T15 =

(
−b15 + 1

a15

logU15

)1/(b15+1)

. (6.9)

Consider another transition 1 → 2 → 5 with hazard λ25(t) for transition 2 → 5. The

survival function for the subject having visited state 2 at time T12 and being at risk of state

5 is expressed by S25(t|T12) = e−{Λ25(t)−Λ25(T12)}, where

Λ25(t)− Λ25(T12) =

∫ t

T12

a25u
b25du =

a25

b25 + 1
tb25+1 − a25

b25 + 1
(T12)b25+1. (6.10)

Given that S25(T 2
15|T12) = U25 ∼ Uniform(0, 1), by (6.10), the failure time for transition

1→ 2→ 5 is given by

T 2
15 =

(
−b25 + 1

a25

logU25 + (T12)b25+1

)1/(b25+1)

. (6.11)

Similarly, we have

T 3
15 =

(
−b35 + 1

a35

logU35 + (T13)b35+1

)1/(b35+1)

, (6.12)

T 2
14 =

(
−b24 + 1

a24

logU24 + (T12)b24+1

)1/(b24+1)

, (6.13)

and

T 3
14 =

(
−b34 + 1

a34

logU34 + (T13)b34+1

)1/(b34+1)

. (6.14)
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Next we consider the most complicated transition 1 → 2 → 4 → 5 with hazard

λ45(t) for transition 4 → 5. The survival function for the subject having visited state 2

at time T12 and state 4 at time T 2
14 and being at risk of state 5 is expressed by S45(t|T 2

14) =

e−{Λ45(t)−Λ45(T 2
14)}, where

Λ45(t)− Λ45(T 2
14) =

∫ t

T 2
14

a45u
b45du =

a45

b45 + 1
tb45+1 − a45

b45 + 1
(T 2

14)b45+1. (6.15)

Given that S45(T 24
15 |T 2

14) = U45 ∼ Uniform(0, 1), by (6.15), the failure time for transition

1→ 2→ 4→ 5 is given by

T 24
15 =

(
−b45 + 1

a45

logU45 + (T 2
14)b45+1

)1/(b45+1)

. (6.16)

Similarly, we have

T 34
15 =

(
−b45 + 1

a45

logU45 + (T 3
14)b45+1

)1/(b45+1)

. (6.17)

Of note, U45 appears in both T 24
15 and T 34

15 but this does not impact the independent gener-

ation of failure times in the same subject because these two “potential” failure times T 24
15

and T 34
15 cannot happen at the same time.

We adopted a censoring mechanism in which subjects have the same probability to be

censored at any time. We also chose a threshold τ that is the end of the follow-up period

to stop the observation. Let Ucen ∼ Uniform(0, α) where α > τ , then the censoring time

C = min(Ucen, τ).

In multistate models, observed times Tq and censoring indicators δq (q = 1, 2, . . . , Q)

for each of Q = 5 states are not straightforward as in the conventional survival analysis.

Thus we explicitly define the notation in the following. State 1 is the start of the entire

multistate processes and thus T1 = 0. For state 2, T2 = min(T12, T13, T15, C) and δ2 =

I(T2 = T12). For state 3, T3 = min(T12, T13, T15, C) and δ3 = I(T3 = T13). For state 4, if
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δ2 = 1 and δ3 = 0, then T4 = min(T 2
14, T

2
15, C) and δ4 = I(T4 = T 2

14); if δ2 = 0 and δ3 = 1,

then T4 = min(T 3
14, T

3
15, C) and δ4 = I(T4 = T 3

14); if δ2 = 0 and δ3 = 0, then T4 = 0

and δ4 = 0. For state 5, if δ2 = 0 and δ3 = 0, T5 = min(T15, C) and δ5 = I(T5 = T15);

if δ2 = 1 and δ3 = 0 and δ4 = 0, T5 = min(T 2
15, C) and δ5 = I(T5 = T 2

15); if δ2 = 1

and δ3 = 0 and δ4 = 1, T5 = min(T 24
15 , C) and δ5 = I(T5 = T 24

15 ); if δ2 = 0 and δ3 = 1

and δ4 = 0, T5 = min(T 3
15, C) and δ5 = I(T5 = T 3

15); if δ2 = 0 and δ3 = 1 and δ4 = 1,

T5 = min(T 34
15 , C) and δ5 = I(T5 = T 34

15 ).

In our simulation study, multivariate ordered failure times for n independent subjects

were generated by the following steps.

(S1) Generate Ui,12, Ui,13, Ui,15, Ui,24, Ui,25, Ui,34, Ui,35, and Ui,45 from Uniform(0, 1);

(S2) Generate Ui,cen from Uniform(0, α = 2.3) and obtain the censoring times Ci =

min(Ui,cen, τ = 1.5) — parameters are chosen such that 25% of the subjects are left

in state 1 at time τ , i.e., P11(0, τ) = 0.25;

(S3) Based on the procedures described above, solve for the observed times Ti1, Ti2,

Ti3, Ti4, Ti5, and censoring indicators δi1, δi2, δi3, δi4, δi5, for the ith subject, i =

1, 2, . . . , n.

In the Andersen-type Cox Markov model (5.3) considered in this simulation study, we

set h12 = 0.38, h13 = 0.08, h15 = 0.32, h24 = 0.06, h25 = 0.31, h34 = 0.30, h35 = 0.29,

h45 = 0.14, and ξ12 = ξ13 = ξ15 = ξ24 = ξ25 = ξ34 = ξ35 = ξ45 = 1, to differentiate

baseline hazards of different transitions. To allow for varying covariate effects for different

transitions, in the ith subject, for transitions h→ j, h, j = 1, 2, . . . , 5 and h 6= j, data were

simulated according to transition-specific regression parameters: β∗12 = (0.94,0.84,092)T ,

β∗13 = (0.94,0.74,092)T , β∗15 = (0.94,0.64,092)T , β∗24 = (0.94,0.54,092)T , β∗25 =

(0.94,0.44,092)T , β∗34 = (0.94,0.34,092)T , β∗35 = (0.94,0.24,092)T , andβ∗45 = (0.94,0.14,092)T ,

corresponding to covariate Ci,hj = (Ci,hj1 , Ci,hj2 , . . . , Ci,hj100 )T (h, j = 1, 2, . . . , 5 and

h 6= j) generated from a multivariate normal distribution with standard normal marginals
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and an equal correlation of 0.2. Each of β∗hj, h, j = 1, 2, . . . , 5 and h 6= j, contains 8

nonzeros and 92 zeros. As a result, model (5.3) used in this dissertation can accommo-

date type-specific regression parameters by using a common regression parameter vector

β = (0.94,0.84,0.74,0.64,0.54,0.44,0.34,0.24,0.14,092)T and a design matrix Zi =

(Zi,12,Zi,13,Zi,15,Zi,24,Zi,25,Zi,34,Zi,35,Zi,45)T , where



ZT
i,12

ZT
i,13

ZT
i,15

ZT
i,24

ZT
i,25

ZT
i,34

ZT
i,35

ZT
i,45


=



Ci,121 , · · · , Ci,124 , · · · · · · · · · · · · · · · · · · Ci,129 , · · · , Ci,12100

Ci,131 , · · · , Ci,134 , · · · · · · · · · · · · · · · · · · Ci,139 , · · · , Ci,13100

Ci,151 , · · · , Ci,154 , · · · · · · · · · · · · · · · · · · Ci,159 , · · · , Ci,15100

Ci,241 , · · · , Ci,244 , · · · · · · · · · · · · · · · · · · Ci,249 , · · · , Ci,24100

Ci,251 , · · · , Ci,254 , · · · · · · · · · · · · · · · · · · Ci,259 , · · · , Ci,25100

Ci,341 , · · · , Ci,344 , · · · · · · · · · · · · · · · · · · Ci,349 , · · · , Ci,34100

Ci,351 , · · · , Ci,354 , · · · · · · · · · · · · · · · · · · Ci,359 , · · · , Ci,35100

Ci,451 , · · · , Ci,454 , · · · · · · · · · · · · · · · · · · Ci,459 , · · · , Ci,45100


.

Transition-Specific Portion

The transition-specific portion in the design matrix is given by



Ci,125 , Ci,126 , Ci,127 , Ci,128 , 04, 04, 04, 04, 04, 04, 04

04, Ci,135 , Ci,136 , Ci,137 , Ci,138 , 04, 04, 04, 04, 04, 04

04, 04, Ci,155 , Ci,156 , Ci,157 , Ci,158 , 04, 04, 04, 04, 04

04, 04, 04, Ci,245 , Ci,246 , Ci,247 , Ci,248 , 04, 04, 04, 04

04, 04, 04, 04, Ci,255 , Ci,256 , Ci,257 , Ci,258 , 04, 04, 04

04, 04, 04, 04, 04, Ci,345 , Ci,346 , Ci,347 , Ci,348 , 04, 04

04, 04, 04, 04, 04, 04, Ci,355 , Ci,356 , Ci,357 , Ci,358 , 04

04, 04, 04, 04, 04, 04, 04, Ci,455 , Ci,456 , Ci,457 , Ci,458


.

Note that βTZi,12 = β∗T12Ci,12, βTZi,13 = β∗T13Ci,13, βTZi,15 = β∗T15Ci,15, βTZi,24 =

β∗T24Ci,24, βTZi,25 = β∗T25Ci,25, βTZi,34 = β∗T34Ci,34, βTZi,35 = β∗T35Ci,35, andβTZi,45 =

β∗T45Ci,45. This illustrates that using a common β notation for the transition-specific pro-

portional hazards models does not preclude transition-specific regression parameters.

In the divide-and-combine analysis, to balance the “final states” of subjects at the end
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of follow-up period, we used a stratified random splitting method to partition the full data.

Specifically, we stratified the full data into 5 strata by the “final states” that subjects oc-

cupied when t = τ (1, 2, 3, 4, and 5), then randomly split the data in each stratum into

S sets according to the pre-specified partition ratios (ns/n), and formed each subset by

combining one set in each stratum. In this simulation study, three sets of partition ratios

were used: ns/n = (2/83,1/82), ns/n = (2/155,1/155), and ns/n = (2/3010,1/3010),

corresponding to S = 5, 10, and 20 subsets, respectively. In each configuration, we ran

simulations 500 times. All simulations were carried out on a Linux cluster (CPU speci-

fication: Intel R© Xeon R© E5-2680 v4 @2.40GHz) via parallel computing (S cores) with

one subset allocated to one core. The average computation time was calculated based on

all 500 simulation runs. All statistical analyses regarding fitting transition-specific propor-

tional hazards models were performed using R package, survival (Therneau, 2020), and

estimation of cumulative hazards and prediction of transition probabilities were conducted

using R package, mstate (de Wreede et al., 2011).

Simulation Results

The performance of the divide-and-combine estimator P̂dc(u, t|z0) was assessed, com-

pared to the full-data estimator P̂full(u, t|z0) in terms of average computation time (Time),

mean of biasedness (Bias), empirical standard error (ESE), mean asymptotic standard er-

ror (ASE) using the theoretical formula and the associated standard error, and empiri-

cal coverage probability (CovP) of the 95% Wald-type confidence interval. Note that

z0 is the covariate vector of a future subject whose all covariates are at the mean lev-

els (continuous variables). In this dissertation, we are particularly interested in predict-

ing probabilities of advancing to worse conditions at a future time t for an average sub-

ject given that they have only been hospitalized once due to heart failure at time u, i.e.,

P11(u, t|z0), P12(u, t|z0), P13(u, t|z0), P14(u, t|z0), and P15(u, t|z0). Comparisons be-

tween P̂dc(u, t|z0) and P̂full(u, t|z0) for predicting these probabilities are summarized in
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Table 6.9. The true transition probabilities P0(u, t|z0) can be calculated based on the

Kolmogorov forward equation in (2.39). See the detailed derivations for these transition

probabilities of interest in Appendix A.12. The computation times of P̂dc(u, t|z0) were 57

minutes, 58 minutes, and 55 minutes when the full data were divided into S = 5, 10, and

20 subsets in the divide-and-combine analysis, whereas the computing of P̂full(u, t|z0)

took a longer time of 95 minutes. The computational savings in multistate survival analysis

using the divide-and-combine approach were not as significant as we observed in multi-

variate survival analysis (multivariate: divide-and-combine analysis vs. full-data analysis

is ∼ 1 : 10; multistate: divide-and-combine analysis vs. full-data analysis is ∼ 6 : 10;

when S = 5). As discussed in Section 5.4, the less computational savings may be caused

by the fact that the divide-and-combine in multistate survival analysis was only used for

estimating the cumulative hazards, which is only an intermediate step for predicting the

transition probabilities.

In terms of biasedness, ESE, ASE, and CovP, the performance of P̂dc(u, t|z0) for dif-

ferent combinations of u and t is generally close to that of P̂full(u, t|z0). The bias of

P̂dc(u, t|z0) is generally small; ESE and ASE are close to each other; and CovP is close

to the nominal 95% level. However, when the number of subsets (S) is large or the pre-

diction is made at an earlier time u, P̂dc(u, t|z0) has a relatively large bias and thus a poor

coverage probability. We conjecture that the unsatisfactory performance when S is large

might be because the homogeneity assumptions which are the key to establishing the large

sample property of P̂dc(u, t|z0) may be violated to some extent in practice as the number

of subsets increases. The issue with the prediction time u needs more research in the future.
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Table 6.9: Performances of P̂dc(u, t|z0) and P̂full(u, t|z0) for predicting P(u, t|z0) =
P0(u, t|z0) in multistate models with stratified random splitting.

5 Subsets 10 Subsets 20 Subsets Full Data

P0
1 P̂dc P̂dc P̂dc P̂full

u t Bias (ESE) ASE (SE) CovP Bias (ESE) ASE (SE) CovP Bias (ESE) ASE (SE) CovP Bias (ESE) ASE (SE) CovP
(×10−3) (×10−3) (%) (×10−3) (×10−3) (%) (×10−3) (×10−3) (%) (×10−3) (×10−3) (%)

P11

0 τ/2 0.4 (3.3) 2.8 (0.0) 89.2 -2.5 (3.3) 2.9 (0.0) 81.8 -5.5 (3.3) 2.9 (0.0) 52.4 0.0 (3.3) 2.8 (0.0) 89.6
0 τ -0.3 (4.3) 3.8 (0.0) 91.0 -2.1 (4.2) 3.8 (0.0) 87.0 -4.2 (4.4) 3.8 (0.0) 76.0 -0.2 (4.3) 3.7 (0.0) 90.8
τ/2 3τ/4 -0.5 (5.0) 4.7 (0.1) 93.4 -0.7 (4.6) 4.7 (0.1) 95.4 -1.5 (4.9) 4.8 (0.1) 94.0 -0.2 (4.9) 4.7 (0.1) 93.4
τ/2 τ -0.9 (6.6) 6.2 (0.1) 93.4 -1.3 (6.1) 6.2 (0.1) 95.0 -2.0 (6.5) 6.2 (0.1) 93.2 -0.5 (6.6) 6.1 (0.1) 92.8

P12

0 τ/2 0.0 (2.5) 2.0 (0.0) 88.2 0.3 (2.6) 2.0 (0.0) 88.0 0.7 (2.5) 2.0 (0.0) 88.2 0.0 (2.5) 2.0 (0.0) 88.2
0 τ 0.3 (4.0) 3.2 (0.0) 88.4 -1.0 (3.9) 3.2 (0.0) 88.0 -1.7 (3.8) 3.2 (0.0) 86.0 0.1 (4.0) 3.2 (0.0) 88.8
τ/2 3τ/4 0.4 (3.7) 3.5 (0.1) 93.6 0.0 (3.7) 3.5 (0.1) 94.4 0.0 (3.7) 3.6 (0.1) 93.8 0.2 (3.7) 3.5 (0.1) 93.4
τ/2 τ 0.5 (5.3) 4.8 (0.1) 91.6 -0.2 (5.0) 4.8 (0.1) 94.2 -0.3 (4.9) 4.8 (0.1) 94.0 0.3 (5.3) 4.8 (0.1) 91.6

P13

0 τ/2 -0.2 (0.7) 0.6 (0.0) 89.0 0.1 (0.7) 0.6 (0.0) 90.6 0.4 (0.7) 0.6 (0.0) 88.0 -0.1 (0.7) 0.6 (0.0) 89.6
0 τ -0.1 (1.0) 0.9 (0.0) 91.2 -0.2 (1.0) 0.9 (0.0) 91.0 -0.2 (1.0) 0.9 (0.0) 90.0 0.0 (1.0) 0.9 (0.0) 91.8
τ/2 3τ/4 -0.1 (0.9) 1.0 (0.0) 95.8 0.1 (0.9) 1.0 (0.0) 96.8 0.4 (1.0) 1.0 (0.0) 93.8 0.0 (0.9) 1.0 (0.0) 96.0
τ/2 τ -0.1 (1.3) 1.3 (0.0) 95.4 0.1 (1.3) 1.3 (0.0) 95.8 0.3 (1.4) 1.3 (0.0) 92.6 0.0 (1.3) 1.3 (0.0) 95.8

P14

0 τ/2 0.0 (0.2) 0.2 (0.0) 91.4 0.3 (0.2) 0.2 (0.0) 75.4 0.6 (0.3) 0.2 (0.0) 27.6 0.0 (0.2) 0.2 (0.0) 92.0
0 τ -0.1 (0.7) 0.6 (0.0) 92.2 0.5 (0.7) 0.6 (0.0) 85.4 1.2 (0.8) 0.6 (0.0) 55.4 0.0 (0.7) 0.6 (0.0) 92.2
τ/2 3τ/4 0.0 (0.1) 0.1 (0.0) 98.4 0.1 (0.1) 0.1 (0.0) 94.8 0.1 (0.1) 0.2 (0.0) 87.0 0.0 (0.1) 0.1 (0.0) 98.2
τ/2 τ 0.0 (0.4) 0.4 (0.0) 94.2 0.2 (0.4) 0.4 (0.0) 94.0 0.4 (0.4) 0.4 (0.0) 86.4 0.0 (0.4) 0.4 (0.0) 94.4

P15

0 τ/2 -0.2 (2.3) 2.0 (0.0) 91.4 1.8 (2.5) 2.0 (0.0) 78.0 3.8 (2.4) 2.0 (0.0) 54.6 0.0 (2.3) 2.0 (0.0) 91.8
0 τ 0.2 (3.8) 3.2 (0.0) 90.6 2.7 (4.1) 3.3 (0.0) 80.8 4.9 (3.9) 3.3 (0.0) 66.8 0.2 (3.8) 3.2 (0.0) 90.0
τ/2 3τ/4 0.1 (3.3) 3.2 (0.1) 94.0 0.6 (3.3) 3.2 (0.1) 93.8 1.0 (3.3) 3.2 (0.1) 92.8 0.0 (3.2) 3.1 (0.1) 94.8
τ/2 τ 0.5 (4.7) 4.5 (0.1) 93.4 1.2 (4.8) 4.5 (0.1) 92.6 1.6 (4.7) 4.5 (0.1) 93.4 0.2 (4.7) 4.5 (0.1) 93.6

1 Transition probabilities starting from state 1 are of primary interest and thus only these probabilities are summarized in this table.
Abbreviations: ASE: asymptotic standard error using the theoretical formula; ESE: empirical standard error; SE: standard error of ASE; CovP: empirical
coverage probability of 95% confidence interval.
Notes: P0(u, t|z0) is the true value of P(u, t|z0); Transition probabilities are predicted at time u for time t, in which τ = 1.5 is the end of the follow-up
period; Sample size is 100, 000; The rate of staying in state 1 at the end of the follow-up period is 25%.
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6.3 MIDAS Data Analyses

6.3.1 Marginal Models in Multivariate Survival Analysis

MIDAS data was used to illustrate the proposed divide-and-combine approach in the marginal

proportional hazards model. We analyzed data on 2,117,763 patients who had at least one

hospitalization record due to cardiovascular diseases during 1995 to 2014 in the MIDAS

database. Times from index cardiovascular hospitalization to the subsequent hospitaliza-

tions due to myocardial infarction (MI), heart failure (HF), and stroke were calculated and

censored by death or the end of study (December 31, 2014), whichever occurred first. The

median follow-up was 11.3 years; a total of 427,288 (20%) patients were re-admitted to

hospitals due to one of MI, HF, or stroke, whereas 154,670 (7%) patients and 22,413 (1%)

patients were re-admitted to hospitals due to occurrences of two or all of MI, HF or stroke,

after the index hospitalizations. Covariates of interest include patient clinical characteristics

at the index admissions, including age, gender, race, length of stay, comorbidity conditions,

medical procedures received, and health insurance payer. Patient ZIP code level socioeco-

nomic information, including general health status, health care coverage, education attain-

ment, poverty status, median household income, blood cholesterol screening history, high

cholesterol diagnosis, high blood pressure diagnosis, angina diagnosis, stroke diagnosis,

obesity diagnosis, is also considered. In addition, some hospital characteristics of index

admissions, i.e., teaching status, location, and size are included. Moreover, we modeled

type-specific and gender-specific regression coefficients for selected covariates (i.e., age,

length of stay, general health status, health care coverage, education attainment, poverty

status, median household income, blood cholesterol screening history, high cholesterol di-

agnosis, high blood pressure diagnosis, angina diagnosis, obesity diagnosis, hospital size)

by using interaction terms of these covariates with failure types and genders. In order to

test the performance of variable selection of our proposed method, we added ten unrelated

and randomly generated noise variables into the data set. The final data set ended up with
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6,353,289 rows of records with 121 covariates for data analysis.

After several unsuccessful attempts to analyze the entire data set all at once in a sin-

gle computer (CPU specification: Intel R© CoreTM i7-4790 @3.60GHz), we used our pro-

posed divide-and-combine approach (with simple random splitting) and randomly parti-

tioned full data set into S = 20 subsets with a partition ratio of ns/n = (2/3010,1/3010).

The data analysis was finished in 120 minutes on a Linux cluster via parallel comput-

ing (20 cores) with one subset allocated to one core (CPU specification: Intel R© Xeon R©

E5-2680 v4 @2.40GHz). We show the estimated regularized regression coefficients (β̂
dc

ρ

using W1s(β̂s) = Is(β̂s)) and associated 95% confidence intervals (CIs) in Figure 6.1. To

explore whether or not one may gain advantages by using a large data set over a smaller

subset (a common practical compromise between large data sets and limited computing ca-

pability), we applied the same marginal regression analysis by randomly selecting a subset

of 140,766 patients, with β̂
full

ρ and its 95% CIs obtained in this subset analysis summarized

in Figure 6.1, too. Among the 121 covariates, 27 covariates identified as significant risk fac-

tors by the divide-and-combine analysis are not selected or determined as insignificant by

the subset analysis. For example, medical procedure cardiac ablation shows a “significant”

protective effect on lowering the occurrence of hospitalization due to MI, HF, or stroke in

the divide-and-combine analysis (β̂dcρ = -0.103, 95% CI: -0.200, -0.006), and its estimate

β̂fullρ is -0.161 (95% CI: -0.546, 0.224) in the subset analysis. In addition, 10 random noise

variables are estimated as zero by both divide-and-combine and subset analyses, indicating

the selection consistency of our proposed regularization approach. Therefore, bigger data

seem to provide more reliable estimates and enable better selection of plausible covariates

than the smaller data set, especially for those with weak to moderate effects. Nevertheless,

one should note that the present MIDAS analysis is only an illustration of our proposed

method. These estimates may not be appropriate for clinical guidance.
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Poverty Status in Female (Percentage)*Event(MI)
Patient Race (Other)

Patient Age*Event(MI)
Hypertension

Saccular Aneurysms
Coronary Artery Bypass Surgery

Patient Age*Patient Gender(Male)
Patient Age*Event(Stroke)

Hospital Location (Rural)
Patient Race (White)

Percutaneous Coronary Intervention
Cardiac Ablation

High School Attainment in Male Aged 65+ (Percentage)*Event(MI)
Cancer

Median Household Income
Length of Stay in Hospital*Event(MI)
Hospital Teaching Status (Teaching)

Hospital Location (Suburban)
High School Attainment in Female Aged 45−64 (Percentage)*Event(MI)

Hospital Size*Event(MI)
Having Diagnosed High Blood Pressure (Percentage)*Event(Stroke)

High School Attainment in Male Aged 45−64 (Percentage)
High School Attainment in Male Aged 35−44 (Percentage)*Event(Stroke)

Having Had Stroke (Percentage)*Event(MI)
Hospital Size

Having Diagnosed High Cholesterol (Percentage)*Event(MI)
Having Diagnosed High Cholesterol (Percentage)*Event(Stroke)

Length of Stay in Hospital*Patient Gender(Male)
High School Attainment in Female Aged 65+ (Percentage)

High School Attainment in Male Aged 65+ (Percentage)*Patient Gender(Male)
Having Blood Cholesterol Screening (Percentage)*Event(Stroke)

Hospital Size*Patient Gender(Male)
Median Household Income*Patient Gender(Male)

Poverty Status in Female (Percentage)*Patient Gender(Male)
Poverty Status in Male (Percentage)*Patient Gender(Male)

Poverty Status in Male (Percentage)*Event(Stroke)
General Health Status (Fair or Poor Percentage)*Patient Gender(Male)

High School Attainment in Male Aged 45−64 (Percentage)*Patient Gender(Male)
High School Attainment in Male Aged 45−64 (Percentage)*Event(Stroke)

High School Attainment in Male Aged 35−44 (Percentage)*Patient Gender(Male)
High School Attainment in Male Aged 35−44 (Percentage)*Event(MI)

High School Attainment in Female Aged 65+ (Percentage)*Event(Stroke)
High School Attainment in Female Aged 65+ (Percentage)*Event(MI)

High School Attainment in Female Aged 45−64 (Percentage)*Patient Gender(Male)
High School Attainment in Female Aged 45−64 (Percentage)*Event(Stroke)

High School Attainment in Female Aged 35−44 (Percentage)*Patient Gender(Male)
High School Attainment in Female Aged 35−44 (Percentage)*Event(Stroke)

Obesity (Percentage)*Patient Gender(Male)
Obesity (Percentage)*Event(Stroke)

Obesity (Percentage)*Event(MI)
Having Had Stroke (Percentage)*Patient Gender(Male)

Having Had Stroke (Percentage)*Event(Stroke)
Having Had Angina (Percentage)*Patient Gender(Male)

Having Diagnosed High Blood Pressure (Percentage)*Patient Gender(Male)
Having Diagnosed High Blood Pressure (Percentage)*Event(MI)

Having Diagnosed High Cholesterol (Percentage)*Patient Gender(Male)
Having Blood Cholesterol Screening (Percentage)*Patient Gender(Male)

Having Blood Cholesterol Screening (Percentage)*Event(MI)
Health Care Coverage (Percentage)*Patient Gender(Male)

Health Care Coverage (Percentage)*Event(Stroke)
Hospital Size*Event(Stroke)

Length of Stay in Hospital*Event(Stroke)
Random Noise 10

Random Noise 9
Random Noise 8
Random Noise 7
Random Noise 6
Random Noise 5
Random Noise 4
Random Noise 3
Random Noise 2
Random Noise 1

Poverty Status in Female (Percentage)
Poverty Status in Male (Percentage)

High School Attainment in Male Aged 65+ (Percentage)
High School Attainment in Female Aged 35−44 (Percentage)

Obesity (Percentage)
Having Had Stroke (Percentage)
Having Had Angina (Percentage)
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Figure 6.1: Estimated regularized regression coefficients in full data (β̂
dc

ρ ) and random

subset data (β̂
full

ρ ) using marginal models.
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6.3.2 Frailty Models in Multivariate Survival Analysis

Due to the complexity of the estimation algorithms in frailty models, we employed a ran-

dom subset of MIDAS data used in the data analysis for marginal models to illustrate the

proposed divide-and-combine approach in the proportional hazards frailty model. We ana-

lyzed data on 10,343 patients who had at least one hospitalization record due to cardiovas-

cular diseases during 1995 to 2014 in the MIDAS database. Times from index cardiovas-

cular hospitalization to the subsequent hospitalizations due to myocardial infarction (MI),

heart failure (HF), and stroke were calculated and censored by death or the end of study

(December 31, 2014), whichever occurred first. The median follow-up was 11.5 years; a

total of 2,203 (21%) patients were re-admitted to hospitals due to one of MI, HF, or stroke,

whereas 719 (7%) patients and 115 (1%) patients were re-admitted to hospitals due to oc-

currences of two or all of MI, HF or stroke, after the index hospitalizations. Covariates

of interest include patient clinical characteristics at the index admissions, such as age and

length of stay. Patient ZIP code level socioeconomic information, including health care

coverage and median household income, is also considered. In addition, the hospital size

of index admissions is included. Moreover, we modeled type-specific regression coeffi-

cients for all five covariates by specifying a type-specific design matrix. The performance

of variable selection of the proposed regularized estimation approach was also tested by

adding five unrelated and randomly generated noise variables into the data set. The final

data set ended up with 31,029 rows of records with 20 covariates for data analysis.

After several unsuccessful attempts to analyze the full data all at once in a single

computer (CPU specification: Intel R© CoreTM i7-4790 @3.60GHz), we used our proposed

divide-and-combine approach (with simple random splitting) and randomly partitioned full

data into S = 20 subsets with a partition ratio of ns/n = (2/3010,1/3010). The divide-

and-combine analysis was finished in 265 minutes on a Linux cluster via parallel comput-

ing (20 cores) with one subset allocated to one core (CPU specification: Intel R© Xeon R©

E5-2680 v4 @2.40GHz). The estimated regularized regression coefficients (γ̂dcρ using
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W1s(γ̂s) = Is(γ̂s)) and associated asymptotic standard error are shown in Table 6.10.

Note that regularization was only applied on β but not θ, thus only β̂
dc

ρ was summarized

in Table 6.10. As expected, all five noise variables are estimated as zero, which indicates

the selection consistency of our proposed regularization method. The effects of hospital

size and percentage of health care coverage for three types of failures are estimated as zero.

Median household income shows a protective effect on lowering the occurrence of hospi-

talization due to MI, HF, or stroke; on the contrary, staying longer in the hospital and being

older increase the risk of hospitalization.
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Table 6.10: Estimated regularized regression coefficients (γ̂dcρ ) using divide-and-combine
analysis in frailty models.

β0
1 γ̂dcρ

Estimate (ASE2 )

Noise Variable 1 0.00 (—)
Noise Variable 2 0.00 (—)
Noise Variable 3 0.00 (—)
Noise Variable 4 0.00 (—)
Noise Variable 5 0.00 (—)

Length of Stay*Event(MI) 0.09 (0.032)
Length of Stay*Event(HF) 0.26 (0.030)
Length of Stay*Event(Stroke) 0.17 (0.029)

Age*Event(MI) 0.56 (0.033)
Age*Event(HF) 1.51 (0.044)
Age*Event(Stroke) 0.65 (0.032)

Hospital Size*Event(MI) 0.00 (—)
Hospital Size*Event(HF) 0.00 (—)
Hospital Size*Event(Stroke) 0.00 (—)

Percentage of Health Care Coverage*Event(MI) 0.00 (—)
Percentage of Health Care Coverage*Event(HF) 0.00 (—)
Percentage of Health Care Coverage*Event(Stroke) 0.00 (—)

Median Household Income*Event(MI) 0.00 (—)
Median Household Income*Event(HF) -0.06 (0.044)
Median Household Income*Event(Stroke) -0.02 (0.034)
1 Regularization only applies to β but not θ, thus only β is summarized

in this table.
2 ASE: asymptotic standard error using the theoretical formula.

Note: β0 is the true value of β.
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6.3.3 Multistate Survival Analysis

MIDAS data was utilized to demonstrate the proposed divide-and-combine approach in

multistate survival analysis. As discussed in Section 5.1, the proposed five state Markov

model (illustrated in Figure 5.1) can be used to study the disease processes in cardiovas-

cular disease patients while taking into account the complicated relationship between heart

failure and atrial fibrillation. We analyzed data on an incident cohort of 203,334 patients

who had at least one hospitalization record due to heart failure from 2000 to 2017 and had

no hospitalization due to heart failure within a five-year period before the incident heart

failure hospitalization. Times from incident hospitalization due to heart failure (HF-1, i.e.,

state 1) to the subsequent second hospitalization due to heart failure (HF-2, i.e., state 2)

or atrial fibrillation (AF, i.e., state 3), and the third hospitalization due to atrial fibrillation

or heart failure (HF-2+AF, i.e., state 4) were calculated. Death (state 5) could happen to

patients in any of the four hospitalization states, and thus the death times were calculated

accordingly. All the patients were censored by the end of the study (December 31, 2017).

The median follow-up was 11.7 years; after the incident hospitalization due to heart fail-

ure, a total of 48,718 (24%) patients and 6,546 (3%) patients were re-admitted to hospitals

once due to heart failure (state 2) and atrial fibrillation (state 3), respectively; whereas

6,788 (3%) patients were re-admitted twice due to one heart failure and one atrial fibril-

lation (state 4), after the incident hospitalization. Among all the patients, 41, 162 (21%)

patients stayed in state 1 without experiencing any admission after the incident hospital-

ization; while 100,120 (49%) patients were dead. Covariates of interest include patient

clinical characteristics at the incident hospitalization, including age, gender, race, length of

stay, comorbidity conditions, medical procedures received, and health insurance payer. Pa-

tient ZIP code level socioeconomic information, including general health status, health care

coverage, education attainment, poverty status, median household income, blood choles-

terol screening history, high cholesterol diagnosis, high blood pressure diagnosis, angina

diagnosis, stroke diagnosis, obesity diagnosis, is also considered. In addition, some hos-
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pital characteristics of incident hospitalization, i.e., teaching status, location, and size are

included. A transition-specific design matrix was specified to include transition-specific

effects of all covariates. The final data set ended up with 808,356 rows of records with 416

covariates for data analysis.

The full data were analyzed using the proposed divide-and-combine approach (with

stratified random splitting) and were randomly partitioned into S = 5 subsets with a par-

tition ratio of ns/n = (2/83,1/82). The divide-and-combine analysis was finished in 18

minutes on a Linux cluster via parallel computing (5 cores) with one subset allocated to

one core (CPU specification: Intel R© Xeon R© E5-2680 v4 @2.40GHz). As a comparator,

the full-data analysis was also performed in the full data, which was finished in 42 minutes

on the same Linux cluster. We compared the estimated transition probabilities, P̂dc(u, t|z0)

and P̂full(u, t|z0) obtained from using the divide-and-combine analysis and full-data anal-

ysis, respectively. The probabilities were predicted at time u for a future subject at time t,

whose covariates (z0) are at the mean levels (continuous variables) or the reference levels

(binary variables). We summarized the estimated transition probabilities from state 1 to

states 2, 3, 4, 5, and their associated asymptotic standard errors (ASE) in Table 6.11. The

results obtained from both divide-and-combine and full-data analyses are close enough,

which shows the advantage by using the divide-and-combine analysis. It not only saves

computational costs, but also achieves estimates as accurate as the full-data analysis.
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Table 6.11: Estimated transition probabilities using divide-and-combine analysis
(P̂dc(u, t|z0)) and full-data analysis (P̂full(u, t|z0)) in multistate models.

P0
1 P̂dc P̂full

u t Estimate (ASE2 ) Estimate (ASE)

P11

0 τ/2 0.28 (0.006) 0.28 (0.006)
0 τ 0.23 (0.005) 0.23 (0.005)
τ/2 3τ/4 0.87 (0.008) 0.87 (0.008)
τ/2 τ 0.83 (0.010) 0.83 (0.010)

P12

0 τ/2 0.29 (0.007) 0.29 (0.007)
0 τ 0.29 (0.007) 0.29 (0.007)
τ/2 3τ/4 0.05 (0.005) 0.05 (0.005)
τ/2 τ 0.06 (0.006) 0.06 (0.006)

P13

0 τ/2 0.04 (0.003) 0.04 (0.003)
0 τ 0.04 (0.003) 0.04 (0.003)
τ/2 3τ/4 0.02 (0.003) 0.02 (0.003)
τ/2 τ 0.02 (0.005) 0.03 (0.005)

P14

0 τ/2 0.03 (0.003) 0.03 (0.003)
0 τ 0.04 (0.004) 0.04 (0.004)
τ/2 3τ/4 0.00 (0.000) 0.00 (0.000)
τ/2 τ 0.00 (0.000) 0.00 (0.000)

P15

0 τ/2 0.36 (0.007) 0.36 (0.007)
0 τ 0.40 (0.007) 0.40 (0.007)
τ/2 3τ/4 0.06 (0.006) 0.06 (0.006)
τ/2 τ 0.08 (0.007) 0.09 (0.007)

1 Transition probabilities starting from state 1 are of
primary interest and thus only these probabilities are
summarized in this table. They are predicted at time
u for time t, in which τ = 6574 days is the end of the
follow-up period.

2 ASE: asymptotic standard error using the theoretical
formula.
Note: P0(u, t|z0) is the true value of P(u, t|z0).
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CHAPTER 7

DISCUSSION AND FUTURE WORK

7.1 Discussion

In this dissertation, we propose divide-and-combine approaches for multivariate survival

analysis and multistate survival analysis to analyze large-scale multivariate ordered and un-

ordered failure time data. Specifically, a divide-and-combine estimator η̂dc for estimating

regression parameters in multivariate survival analysis, and a divide-and-combine estimator

Λ̂
dc

(t|z0) for estimating cumulative hazards in multistate survival analysis, are proposed.

It is shown that the proposed divide-and-combine estimators η̂dc and Λ̂
dc

(t|z0) are statis-

tically efficient in the sense that they are consistent and asymptotically equivalent to the

full-data estimators η̂full and Λ̂
full

(t|z0). We also propose a confidence distribution ap-

proach to perform regularized estimation in multivariate survival analysis and construct

the objective function based on the asymptotic distribution of η̂dc. Because the objective

function using the confidence distribution has taken into account the intra-cluster associ-

ation in the multivariate unordered failure time data, we do not need additional variance

adjustment in the regularized estimation. In contrast to the typical regularized estimation

whose objective function is constructed using original data in the sample(s), our confidence

distribution based regularization substantially reduces the dimensionality of data from n to

d, which escalates the computational efficiency. Moreover, since our regularized estima-

tion is performed after the combination step, we avoid the possibly inconsistent variable

selection if the regularized estimation is performed on the individual subsets. We show that

the proposed regularized estimator in the multivariate survival analysis η̂dcρ possesses esti-

mation consistency, selection consistency, and oracle properties. We also demonstrate that

the proposed divide-and-combine approaches tremendously reduce computation time in an
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extraordinarily large data set. Generally, more subsets can save more time in computation.

Besides the statistical efficiency and the computational efficiency mentioned above,

the proposed divide-and-combine approaches are also communication-efficient as it only

requires one-round communication: individual parameter estimates in subsets are broad-

cast once to a “central” core to form the final estimates. Unlike other divide-and-combine

algorithms with recursive communication design (e.g., Shamir et al. (2014); Wang et al.

(2019)), our proposed approaches are simple and easy to be implemented using existing

software packages.

Our simulation studies in multivariate survival analysis show that the empirical perfor-

mance of η̂dc and η̂dcρ using W1s(.) and W2s(.) is better than that using W3s(.) when the

magnitude of regression coefficients is large and the number of subsets is big. This might

be because W1s(.) and W2s(.) utilize more empirical information from the data in indi-

vidual subsets (in the form of either Is(η̂s) or v̂ar−1
s (η̂s)), while W3s(.) only utilizes the

information of the subset sample size (a single number). Therefore, in practice, we suggest

to use W1s(.) or W2s(.) when applying the divide-and-combine approach in multivariate

survival analysis.

The simulation studies in multistate survival analysis indicate that the empirical perfor-

mance of P̂dc(u, t|z0) is better when the number of subsets (S) is smaller and the prediction

is made at a later time. We conjecture that the unsatisfactory performance when S is large

may result from violation of the homogeneity assumptions in practice.

Theoretically, in both multivariate survival analysis and multistate survival analysis,

the number of subsets (S) is allowed to go to infinity with the order of S = o(n1/2).

In practice, we suggest to choose S such that the number of events per covariate is at

least 5 to 10, following the recommendation of Vittinghoff and McCulloch (2007). The

simulation studies show that our proposed approaches work well when the number of events

per covariate is at least 5 to 10 in each divided subset, in spite of the low event rate.

When there are rare events and/or rare exposure(s), the simple random splitting may
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result in no events or no exposure(s) in some subsets, and the divide-and-combine approach

may not work. Thus we also implement the stratified random splitting in the divide step,

which can be used to ensure events or exposures to evenly distributed across subsets and

avoid too few events in some subset, for instance, to meet the condition of “5 to 10 events

per covariate in each subset”. In situations where the event is rare and the condition can

hardly be met, there are other possible solutions. For example, we can perhaps adopt the

Firth penalty term in our divide-and-combine analysis which has shown promising results

in the univariate failure time data when there are unbalanced covariates (including rare

covariates), large parameter effects, and heavy censoring (Heinze and Schemper, 2001;

Nagashima and Sato, 2017). Another approach is to adopt the principle of case-control

design (e.g., case-cohort design) to handle rare events and achieve computational efficiency,

instead of the divide-and-combine approaches. Some references on the case-cohort design

for multivariate unordered failure time data are Lu and Shih (2006), Kang and Cai (2009),

Kim et al. (2018), among others.

7.2 Future Work

As suggested in the simulation studies for multistate survival analysis, the savings in the

computational cost in the proposed divide-and-combine estimators for combining cumu-

lative hazards are not as significant as those in multivariate survival analysis. It is under

research to propose the divide-and-combine estimators for combining transition probabili-

ties, which may save more computation time. Another topic for future research in multistate

survival analysis is to study the impact of the prediction time for the performance of the

proposed divide-and-combine approaches.

Regarding the rare events/rare exposure issues in both multivariate survival analysis and

multistate survival analysis, the firth penalty as discussed above, is also a research topic in

the future because it can be incorporated into the divide-and-combine framework.
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APPENDIX

A.1 Derivation of Pseudo-Partial Likelihood from Full Likelihood

Inserting the model (2.2) into the full likelihood (2.1), we obtain

L(β, λ0k(.)) =
n∏
i=1

K∏
k=1

{
λ0k(Xik)e

βTZik(Xik)
}δik

× exp

{
−
∫ Xik

0

λ0k(t)e
βTZik(t)dt

}
.

(A.1.1)

If we discretize λ0k(.) to mass points at Lk uncensored failure times for the kth type

of failure, 0 < tk[1] < tk[2] < · · · < tk[Lk], the logarithm of the full likelihood in (A.1.1)

becomes

logL(β, λ0k(.)) =
n∑
i=1

K∑
k=1

[
δik
{
logλ0k(Xik) + βTZik(Xik)

}
−

Lk∑
l=1

I(Xik ≥ tk[l])λ0k(tk[l])e
βTZik(tk[l])

]
.

(A.1.2)

For given β, we can maximize logL(β, λ0k(.)) in (A.1.2) over λ0k(.) by setting

∂

∂λ0k(tk[l])
logL(β, λ0k(.)) =

dk[l]

λ0k(tk[l])
−

n∑
i=1

I(Xik ≥ tk[l])e
βTZik(tk[l]) = 0, (A.1.3)

where dk[l] is the number of failures at the failure time tk[l]. The resulting maximizer is

given by

λ̂0k(tk[l]) =
dk[l]∑n

i=1 I(Xik ≥ tk[l])e
βTZik(tk[l])

(A.1.4)
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Plugging λ̂0k(tk[l]) back into (A.1.2) and assuming no ties (i.e., dk[l] = 1), we have

logL(β, λ̂0k(.))

=
K∑
k=1

Lk∑
l=1

{
log

1∑n
j=1 I(Xjk ≥ tk[l])e

βTZjk(tk[l])

}

+
n∑
i=1

K∑
k=1

[
δik
{
βTZik(Xik)

}]
−

K∑
k=1

Lk∑
l=1

∑n
i=1 I(Xik ≥ tk[l])e

βTZik(tk[l])∑n
j=1 I(Xjk ≥ tk[l])e

βTZjk(tk[l])

=
n∑
i=1

K∑
k=1

[
δik

{
log

eβ
TZik(Xik)∑n

j=1 I(Xjk ≥ Xik)eβ
TZjk(Xik)

}]
−K · Lk

=
n∑
i=1

K∑
k=1

[
δik

{
log

eβ
TZik(Xik)

nS
(0)
k (β, Xik)

}]
−K · Lk

= logPL(β) +Op(1),

(A.1.5)

that is the pseudo-partial log-likelihood used in the marginal proportional hazards model.
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A.2 Matrices for Asymptotic Variance Estimators in Frailty Models

(1) V̂(γ̂) = n−1
∑n

i=1 ξiξ
T
i , in which ξi is a (1 + d)-variate vector with the 1st element

given by

ξi1 =

∫∞
0
u
Ai(τ)
i Ĥif

′
U(ui|θ̂)dui∫∞

0
u
Ai(τ)
i ĤifU(ui|θ̂)dui

, (A.2.1)

and the rth element, r = 2, 3, . . . , (1 + d) given by

ξir =
K∑
k=1

δikZikr

−

{∑K
k=1 Λ̂0(τ)eβ̂

T
ZikZikr

}∫∞
0
u
Ai(τ)+1
i ĤifU(ui|θ̂)dui∫∞

0
u
Ai(τ)
i ĤifU(ui|θ̂)dui

,

(A.2.2)

where Ĥi = exp
{
−ui

∑K
k=1 Λ̂0(τ)eβ̂

T
Zik

}
.

(2) Ĝ(γ̂) is a matrix with rlth element, r, l = 1, 2, . . . , (1 + d) given by

Ĝrl(γ̂)

= n−1

n∑
i=1

K∑
k=1

δik

πr(Xik, γ̂)πl(Xik, γ̂) {R(Xik, γ̂)}−2

( ∏
t≤Xik−

[
1 +

n∑
j=1

K∑
m=1

{δjmP (t) +Qjm(t,Xik−)} I(Xjm ≤ t)

])2
 ,

(A.2.3)

where

πr(s, γ̂)

= n−1

n∑
i=1

K∑
k=1

I(s < Xik ≤ τ)

[( ∏
t≤Xik

[
1+

n∑
j=1

K∑
m=1

{δjmP (t) +Qjm(t,Xik)} I(Xjm ≤ t)

])−1

Tikr(γ̂, Xik)

 ,
(A.2.4)
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Tik1(γ̂, Xik) = eβ̂
T
Zik

{
φi2(γ̂, Λ̂0(τ), τ)φ

(θ)
i1 (γ̂, Λ̂0(τ), τ)

φ2
i1(γ̂, Λ̂0(τ), τ)

−φ
(θ)
i2 (γ̂, Λ̂0(τ), τ)

φi1(γ̂, Λ̂0(τ), τ)

}
,

(A.2.5)

Tikr(γ̂, Xik) = −

{
φi2(γ̂, Λ̂0(τ), τ)

φi1(γ̂, Λ̂0(τ), τ)
eβ̂

T
ZikZikr

−φi2(γ̂, Λ̂0(τ), τ)

φi1(γ̂, Λ̂0(τ), τ)
eβ̂

T
Zik

K∑
m=1

Λ̂0(Xij)e
β̂
T
ZimZimr

+
φ2
i2(γ̂, Λ̂0(τ), τ)

φ2
i1(γ̂, Λ̂0(τ), τ)

eβ̂
T
Zik

K∑
m=1

Λ̂0(Xij)e
β̂
T
ZimZimr

} (A.2.6)

for r = 2, 3, . . . , (1 + d),

P (t) = n−2 {R(t, γ̂)}−2
n∑
i=1

K∑
k=1

I(Xik > t)eβ̂
T
Zikν1i(t){

K∑
m=1

I(Xim ≥ t)eβ̂
T
Zim

}
,

(A.2.7)

Qik(s, t) = n−2eβ̂
T
Zik

n∑
j=1

K∑
m=1

δjmI(s < Xjm ≤ t)

[
{R(Xjm, γ̂)}−2

ν1i(Xjm)

{
K∑
u=1

I(Xiu ≥ Xjm)eβ̂
T
Ziu

}]
,

(A.2.8)

R(t, γ̂) = n−1

n∑
i=1

Ψ(wi|t, γ̂)
K∑
k=1

I(Xik ≥ t)eβ̂
T
Zik , (A.2.9)

Ψ(wi|t, γ̂) =
φi2(γ̂, Λ̂0(t), t)

φi1(γ̂, Λ̂0(t), t)
, (A.2.10)



117

ν1i(t) =
φi3(γ̂, Λ̂0(t), t)

φi1(γ̂, Λ̂0(t), t)
−

{
φi2(γ̂, Λ̂0(t), t)

φi1(γ̂, Λ̂0(t), t)

}2

, (A.2.11)

φim(γ̂, Λ̂0(t), t) =

∫ ∞
0

u
Ai(t)+(m−1)
i

exp

{
−ui

K∑
k=1

Λ̂0(t)eβ̂
T
Zik

}
fU(ui|θ̂)dui,

(A.2.12)

φ
(θ)
im(γ̂, Λ̂0(t), t) =

∫ ∞
0

u
Ai(t)+(m−1)
i

exp

{
−ui

K∑
k=1

Λ̂0(t)eβ̂
T
Zik

}
f ′U(ui|θ̂)dui,

(A.2.13)

and

Λ̂0(t) =
n∑
i=1

K∑
k=1

δikI(Xik ≤ t)∑n
j=1

∑k
m=1 Ψ(wi|Xik−, γ̂)I(Xjm ≥ Xik)eβ̂

T
Zjm

. (A.2.14)

(3) Ĉ(γ̂) is a matrix with rlth element, r, l = 1, 2, . . . , (1 + d) given by

Ĉrl(γ̂) = n−1

n∑
i=1

(ξirµil + ξilµir), (A.2.15)
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where

µir =

K∑
k=1

(
δik

∏
t≤Xik−

[
1 +

n∑
j=1

K∑
m=1

{δjmP (t) +Qjm(t,Xik−)} I(Xjm ≤ t)

]

× {R(XXik , γ̂)}−1 πr(Xik, γ̂)

−
n∑
j=1

K∑
m=1

δjm
eβ̂

T
ZikI(Xik ≥ Xjm)Ψ(wi|γ̂, Xjm−)∑n

u=1

∑K
v=i Ψ(wi|γ̂, Xjm−)I(Xuv ≥ Xjm)eβ̂

T
Zuv

×
∏

t≤Xjm−

[
1 +

n∑
u=1

K∑
v=1

{δuvP (t) +Quv(t,Xjm−)} I(Xuv ≤ t)

]

×{R(Xjm, γ̂)}−1 πr(Xjm, γ̂)

)
.

(A.2.16)
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A.3 Derivation of Transition Probability Matrix

In Markov multistate models, using the total probability theorem, the transition probability

from state h to state j in the time interval (s, t] can be calculated as

Pi,hj(s, t) =

Q∑
q=1

Pi,hq(s, u)Pi,qj(u, t), (A.3.1)

where Q is the total number of states that subject i can potentially visit. (A.3.1) is also

called the Chapman-Kolmogorov equation.

By using (A.3.1), we have

Pi(s, t+ ∆t)−Pi(s, t) = Pi(s, t)Pi(t, t+ ∆t)−Pi(s, t)

= Pi(s, t) {Pi(t, t+ ∆t)− I}

≈ Pi(s, t)λi(t)∆t,

(A.3.2)

where λi(t) = lim∆t→0 ∆t−1 {Pi(t, t+ ∆t)− I}. Hence we have the Kolmogorov for-

ward equation
∂

∂t
Pi(s, t) = Pi(s, t)λi(t). (A.3.3)

By integrating both sides, (A.3.3) can be equivalently expressed as

Pi(s, t) = I +

∫ t

s

Pi(s, u)dΛi(u). (A.3.4)

Note that Λi(t) is the element-wise integral of λi(t).

To solve Pi(s, t) from (A.3.4), we may partition the time interval (s, t] into G suffi-

ciently small sub-intervals (s = t0, t1], (t1, t2], . . . , (tG−1, t = tG], and by using (A.3.2),

write the transition probability Pi(s, t) as

Pi(s, t) = Pi(t0, t1)Pi(t1, t2) · · ·Pi(tG−1, tG). (A.3.5)
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Plugging (A.3.4) into (A.3.5), we obtain

Pi(s, t) =
G∏
g=1

[I + {Λi(tg)−Λi(tg−1)}]

= R
u∈(s,t]

{I + dΛi(u)} ,
(A.3.6)

where R is the sign of product integral, which has the same relation to a product as the

well-known integral has to a sum. It can be understood using the simple example below.

In univariate survival analysis, if we divide the time interval (0, t] into G sub-intervals

(0 = t0, t1], (t1, t2], . . . , (tG−1, t = tG], the survival function can be expressed by a product

of conditional survival functions

S(t) = Pr(T > t)

= Pr(T > t1)Pr(T > t2|T > t1) · · ·Pr(T > t|T > tG−1)

=
G∏
g=1

S(tg|tg−1).

(A.3.7)

Given S(t) = e−Λ(t), we can derive that dS(t) = −S(t)dΛ(t), which can be approxi-

mated by S(tg)− S(tg−1) ≈ −S(tg−1){Λ(tg)−Λ(tg−1)}. Dividing both sides by S(tg−1),

we have

S(tg|tg−1) ≈ 1− {Λ(tg)− Λ(tg−1)} . (A.3.8)

Now plugging (A.3.8) in (A.3.7), we get

S(t) =
G∏
g=1

[1− {Λ(tg)− Λ(tg−1)}] . (A.3.9)

If we let the lengths of G sub-intervals go to zero uniformly, by definition the survival
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function in (A.3.9) can be expressed as the product integral

S(t) = R
u∈(0,t]

{1− dΛ(u)} . (A.3.10)

Using the approximation of exp(−λ(u)du) ≈ 1− λ(u)du, we can see the equality be-

tween survival functions expressed in the product integral and expressed in the conventional

way below

S(t) = R
u∈(0,t]

{1− dΛ(u)} = R
u∈(0,t]

{1− λ(u)du} = exp(−
∫ t

0

λ(u)du) = S(t).

(A.3.11)
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A.4 Construction of Likelihood in Markov Multistate Models

Assume each subject can potentially visit each state once and denote the failure time of

transition h→ j for subject i by T ihj for i = 1, 2, . . . , n, and h, j = 1, 2, . . . , Q, and h 6= j.

Using the similar idea in Cox partial likelihood (Cox, 1975), the likelihood function in the

Markov multistate models can be constructed as

L =
n∏
i=1

∏
h6=j

Pr
{
Xi(T

i
hj) = j,Xi(0) = h

}
(A.4.1)

We can rewrite Pr
{
Xi(T

i
hj) = j,Xi(0) = h

}
as

Pr
{
Xi(T

i
hj) = j|Xi(T

i
hj−) = h

}
Pr
{
Xi(T

i
hj−) = h

}
Pr {Xi(0) = h} , (A.4.2)

where Pr
{
Xi(T

i
hj) = j|Xi(T

i
hj−) = h

}
and Pr

{
Xi(T

i
hj−) = h

}
are transition-specific

hazard and survival functions for transition h→ j, respectively.

Then the likelihood in (A.4.1) becomes

L =
n∏
i=1

π{Xi(0)}
∏
h6=j

∏
Ni,hj(τ)6=0

λi,hj(T
i
hj) exp

{
−
∫ T ihj

0

λi,hj(t)Yi,h(t)dt

}
, (A.4.3)

where π{Xi(0)} is the initial distribution of subject i, which is oftentimes fixed and can be

omitted during optimization. The core part of the likelihood in (A.4.3) takes the same

form as the full likelihood in multivariate survival analysis as shown in (2.1). It follows

immediately that the likelihood in (A.4.3) can be derived into the the partial likelihood

as demonstrated in Appendix A.1. Then the estimation approach used in Section 2.2.3 is

justified.
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A.5 Derivation of the Expression of P12(s, t|z0)

By manipulating the differential equation

∂

∂t
P12(s, t|z0) = λ12(t|z0)P11(s, t|z0)− λ23(t|z0)P12(s, t|z0), (A.5.1)

we have
∂

∂t
P12(s, t|z0) exp

{∫ t

s

λ23(u|z0)du

}
+ λ23(t|z0)P12(s, t|z0) exp

{∫ t

s

λ23(u|z0)du

}
= λ12(t|z0)P11(s, t|z0) exp

{∫ t

s

λ23(u|z0)du

}
.

(A.5.2)

Recognizing the left-hand side as a partial derivative, we obtain

∂

∂t

[
P12(s, t|z0) exp

{∫ t

s

λ23(u|z0)du

}]
= λ12(t|z0)P11(s, t|z0) exp

{∫ t

s

λ23(u|z0)du

}
,

(A.5.3)

and hence

P12(s, t|z0) = exp

{
−
∫ t

s

λ23(u|z0)du

}
×
∫ t

s

λ12(u|z0)P11(s, u|z0) exp

{∫ u

s

λ23(v|z0)dv

}
du

=

∫ t

s

P11(s, u|z0)λ12(u|z0) exp

{
−
∫ t

u

λ23(v|z0)dv

}
du

=

∫ t

s

P11(s, u|z0)λ12(u|z0)P22(u, t|z0)du.

(A.5.4)
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A.6 Proof of Theorem 3.3.1: Asymptotic Properties of η̂dc

Under regularity conditions (M1) to (M6) and (F1) to (F10) plus the homogeneity assump-

tions (H1) to (H2), and asymptotic properties for β̂s (Theorem 2.1.1) and γ̂s (Theorem

2.1.2), we have η̂s
P−→ η0, n−1

s Is(η̂s) = Âs(η̂s)
P−→ A(η0), B̂s(η̂s)

P−→ B(η0), and

n
−1/2
s Us(η0)

D−→ N (0,B(η0)) as ns → ∞. These asymptotic properties are explicitly

shown in Spiekerman and Lin (1998) and Gorfine et al. (2006). We introduce the following

Lemma A.6.1 before proving Theorem 3.3.1.

Lemma A.6.1. Under conditions in Theorem 3.3.1, we have that n−1
s Ws(η̂s)

P−→ w(η0)

as ns →∞, where

w(η0) =


w1(η0) = A(η0), if Ws(.) = W1s(.);

w2(η0) = {A(η0)}T{B−1(η0)}{A(η0)}, if Ws(.) = W2s(.);

w3(η0) = 1, if Ws(.) = W3s(.).

(A.6.1)

Proof. Given that η̂s
P−→ η0, n−1

s Is(η̂s) = Âs(η̂s)
P−→ A(η0), B̂s(η̂s)

P−→ B(η0) as ns →

∞, and v̂ar−1
s (η̂s) = ns{Âs(η̂s)}T{B̂−1

s (η̂s)}{Âs(η̂s)}, we can verify the following

n−1
s W1s(η̂s) = n−1

s Is(η̂s)
P−→ A(η0) = w1(η0),

n−1
s W2s(η̂s) = n−1

s v̂ar−1
s (η̂s)

P−→ {A(η0)}T{B−1(η0)}{A(η0)} = w2(η0),

n−1
s W3s(η̂s) = 1 = w3(η0),

(A.6.2)

as ns →∞. This completes the proof of Lemma A.6.1. �

We now show Theorem 3.3.1. In light of Lemma A.6.1 and given that η̂s
P−→ η0, it can
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be seen that

η̂dc =

{
S∑
s=1

(ns/n)n−1
s Ws(η̂)

}−1 S∑
s=1

(ns/n)n−1
s Ws(η̂)η̂s

P−→

{
S∑
s=1

(ns/n)w(η0)

}−1 S∑
s=1

(ns/n)w(η0)η0

= η0,

(A.6.3)

as n→∞. Before showing the asymptotic normality, we apply the Taylor series expansion

and obtain

n−1
s Us(η̂s) =n−1

s Us(η0)− n−1
s Is(η0)(η̂s − η0)

+
d∑
j=1

(2ns)
−1(η∗ − η0)T

∂2Us(η)

∂ηj∂η

∣∣∣∣
η=η∗

(η∗ − η0),
(A.6.4)

where η∗ lies between η0 and η̂s. Notice that Us(η̂s) = 0, n−1
s Is(η0) = A(η0) +

Op(n
−1/2
s ), n−1

s ∂2Us(η)/∂ηj∂η|η=η∗ = Op(1), and η̂s = η0 +Op(n
−1/2
s ), then we have

n1/2
s (η̂s − η0) = A−1(η0)n−1/2

s Us(η0) +Op(n
−1/2
s ). (A.6.5)

To show the asymptotic normality, by using (A.6.5), we write

n1/2(η̂dc − η0)

= n1/2

{
S∑
s=1

Ws(η̂s)

}−1{ S∑
s=1

Ws(η̂s)(η̂s − η0)

}

=

{
S∑
s=1

(ns/n)n−1
s Ws(η̂s)

}−1 [ S∑
s=1

(ns/n)1/2n−1
s Ws(η̂s)

{
n1/2
s (η̂s − η0)

}]

=

{
S∑
s=1

(ns/n)n−1
s Ws(η̂s)

}−1 [ S∑
s=1

(ns/n)1/2n−1
s Ws(η̂s)A

−1(η0)n−1/2
s Us(η0) +Op(n

−1/2S)

]
.

(A.6.6)

Because S = o(n1/2), Op(n
−1/2S) is op(1), and as n → ∞, n−1

s Ws(η̂s)
P−→ w(η0)
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(Lemma A.6.1) and n−1/2
s Us(η0)

D−→ N (0,B(η0)), (A.6.6) converges in distribution to a

multivariate normal distribution with mean 0 and variance Σ = {A−1(η0)}{B(η0)}{A−1(η0)}T .
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A.7 Proof for Varied Variances When Homogeneity Assumption (H2) Is Violated

Under regularity conditions (M1) to (M6) and (F1) to (F10) and given that the homogene-

ity assumption (H2) is violated, we have η̂s
P−→ η0, n−1

s Is(η̂s) = Âs(η̂s)
P−→ As(η0) and

B̂s(η̂s)
P−→ Bs(η0) as ns → ∞. Similar to Lemma A.6.1, we have n−1

s W1s(η̂s)
P−→

As(η0), n−1
s W2s(η̂s)

P−→ {A−1
s (η0)}T{Bs(η0)}{A−1

s (η0)}, and n−1
s W3s(η̂s) = 1 as

ns → ∞. Given that η̂dc = {
∑S

s=1(ns/n)n−1
s Ws(η̂)}−1

∑S
s=1(ns/n)n−1

s Ws(η̂)η̂s, it

is shown that the divide-and-combine estimator satisfies η̂dc P−→ η0 conceding η̂s
P−→ η0 as

n → ∞. Denote cs = ns/n. With similar arguments in the proof for Theorem 3.3.1, we

can see that n1/2(η̂dc − η0) converges in distribution to a multivariate normal distribution

with mean 0, and variance Σw1, Σw2, or Σw3, when Ws(.) = W1s(.), Ws(.) = W2s(.),

or Ws(.) = W3s(.), respectively, where

Σw1 = lim
n→∞

{ S∑
s=1

csAs(β0)

}−1
{ S∑

s=1

csBs(β0)

}{ S∑
s=1

csAs(β0)

}−1
T ,

Σw2 = lim
n→∞


S∑
s=1

csA
T
s (β0)B−1

s (β0)As(β0)


−1

,

Σw3 = lim
n→∞

 S∑
s=1

cs
{
A−1
s (β0)

}
{Bs(β0)}

{
A−1
s (β0)

}T .
(A.7.1)

Note that
∑S

s=1 csAs(β0) = A(β0) and
∑S

s=1 csBs(β0) = B(β0), we can conclude

Σw1 = Σ. It is shown below that Σw2 ≤ Σw1, Σw2 ≤ Σw3, and the relation between Σw3

and Σw1 is indeterminate.

We now introduce the following Lemma A.7.1 before showing the inequality of vari-

ances Σw2 ≤ Σw1.

Lemma A.7.1. For any d × d square matrices As and Bs (s = 1, 2, . . . , S) with Bs’s are
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positive definite, we have

(
S∑
s=1

As

)(
S∑
s=1

Bs

)−1( S∑
s=1

As

)T

≤
S∑
s=1

AsB
−1
s AT

s . (A.7.2)

The equality holds if and only if AmB−1
m = AnB

−1
n for any m and n (1 ≤ m,n ≤ S).

Proof. We first prove the inequality under a special scenario when S = 2, then Lemma

A.7.1 follows immediately on the principle of mathematical induction. When S = 2, the

inequality becomes

(A1 + A2)(B1 + B2)−1(A1 + A2)T ≤ A1B
−1
1 AT

1 + A2B
−1
2 AT

2 , (A.7.3)

the equality holds if and only if A1B
−1
1 = A2B

−1
2 .

Since Bs > 0, we can find a nonsingular matrix P such that B1 = Pdiag{e1, e2, . . . , ed}PT

and B2 = Pdiag{f1, f2, . . . , fd}PT , where ei > 0 and fi > 0 (i = 1, 2, . . . , d). By redefin-

ing As as As(P
T )−1 (s = 1, 2), it suffices to prove (A.7.3) when B1 = diag{e1, e2, . . . , ed}

and B2 = diag{f1, f2, . . . , fd}. Let asi be the ith column of As (s = 1, 2 and i =

1, 2, . . . , d), then (A.7.3) becomes

d∑
i=1

(ei + fi)
−1(a1i + a2i)(a1i + a2i)

T ≤
d∑
i=1

(e−1
i a1ia

T
1i + f−1

i a2ia
T
2i). (A.7.4)

The inequality (A.7.4) holds as long as we can show that (ei+fi)
−1(a1i+a2i)(a1i+a2i)

T ≤

e−1
i a1ia

T
1i + f−1

i a2ia
T
2i or equivalently eifi(a1ia

T
2i + a2ia

T
1i) ≤ e2

ia2ia
T
2i + f 2

i a1ia
T
1i for all

i (i = 1, 2, . . . , d). By the union-intersection principle, the desired inequality holds if, for

any vector η,

ηT
{
eifi(a1ia

T
2i + a2ia

T
1i)
}
η ≤ ηT (e2

ia2ia
T
2i + f 2

i a1ia
T
1i)η. (A.7.5)

After rearrangement, (A.7.5) can be equivalently written as 2eifi(η
Ta1i)(η

Ta2i) ≤
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(eiη
Ta2i)

2 +(fiη
Ta1i)

2, which holds from the Cauchy-Schwartz inequality. The foregoing

inequality becomes equality if and only if e−1
i a1i = f−1

i a2i. Thus the equality in (A.7.3)

holds if and only if A1B
−1
1 = A2B

−1
2 . This completes the proof of Lemma A.7.1. �

Now we show the inequality of variances. Redefine As as csAT
s and Bs as csBs, by

Lemma A.7.1, we have (
∑S

s=1 csAs)
T (
∑S

s=1 csBs)
−1(
∑S

s=1 csAs) ≤
∑S

s=1 csA
T
s B−1

s As.

It follows that (
∑S

s=1 csA
T
s B−1

s As)
−1 ≤ {(

∑S
s=1 csAs)

T (
∑S

s=1 csBs)
−1(
∑S

s=1 csAs)}−1,

because of Bs > 0, which implies Σw2 ≤ Σw1.

As regards the inequality Σw2 ≤ Σw3, it suffices to reach the conclusion by showing

the following (
S∑
s=1

csA
T
s B−1

s As

)−1

≤
S∑
s=1

cs
(
AT
s B−1

s As

)−1
. (A.7.6)

After rearrangement, (A.7.6) can be equivalently written as

S∑
s=1

c2
sI +

S∑
s,t=1
s<t

csct

{(
AT
s B−1

s As

) (
AT
t B−1

t At

)−1
+
(
AT
t B−1

t At

) (
AT
s B−1

s As

)−1
}
≥ I.

(A.7.7)

Because
(
AT
s B−1

s As

) (
AT
t B−1

t At

)−1
+
(
AT
t B−1

t At

) (
AT
s B−1

s As

)−1 ≥ 2I for s, t =

1, 2, . . . , S, in (A.7.7), the left-hand side ≥ (
∑S

s=1 c
2
s +

∑S
s,t=1
s<t

2csct)I = (
∑S

s=1 cs)
2I =

the right-hand side. This completes the proof.

The indeterminate relation between Σw1 and Σw3 is demonstrated by the following

example: when S = 2, d = 2, and the corresponding matrices are

A1 =

13, 4

4, 17

 , A2 =

11, 4

4, 9

 , B1 =

14, 5

5, 16

 , B2 =

14, −5

−5, 16

 ,

(A.7.8)

it can be shown that, in this case, (Σw1 − Σw3) is indefinite (with eigenvalues of 0.00015

and -0.00527). In other words, the relative order between Σw1 and Σw3 is indeterminate.
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A.8 Proof of Theorem 4.3.1: Asymptotic Properties of β̂
dc

ρ

In the marginal model, η = β. We shall use β throughout this proof. Since the objective

function R(β) in (4.3) is a strictly convex function for β, a local consistent minimizer is

the global consistent minimizer. Thus the estimation consistency follows immediately as

long as we can show the existence of a local consistent minimizer. Following Fan and Li

(2001) and letting u = (u1, u2, . . . , ud)
T , the existence of a local consistent minimizer is

implied by the fact that for any given ε > 0, there exists a large constant C such that

lim
n→∞

P

{
inf

u∈Rd:||u||2=C
R(β0 + n−1/2u) > R(β0)

}
> 1− ε, (A.8.1)

where ||a||2 = (aTa)1/2 for a column vector a.

By the definition of R(β) in (4.3), some algebraic manipulations show that

R(β0 + n−1/2u)−R(β0)

= uT Σ̂
−1

dc u + 2uT Σ̂
−1

dc

{
n1/2(β0 − β̂

dc
)
}

+ n
d∑
j=1

ρj(|β0j + n−1/2uj| − |β0j|)

≥ uT Σ̂
−1

dc u + 2uT Σ̂
−1

dc

{
n1/2(β0 − β̂

dc
)
}

+ n

d0∑
j=1

ρj(|β0j + n−1/2uj| − |β0j|)

≥ uT Σ̂
−1

dc u + 2uT Σ̂
−1

dc

{
n1/2(β0 − β̂

dc
)
}
− n

d0∑
j=1

ρj|n−1/2uj|

≥ uT Σ̂
−1

dc u + 2uT Σ̂
−1

dc

{
n1/2(β0 − β̂

dc
)
}
− d0(n1/2an)||u||2, (A.8.2)

followed by β0b = 0, the triangle inequality, and an = max{ρj, j ≤ d0}, respectively.

According to the condition n1/2an
P−→ 0, the third term in (A.8.2) is op(1). Based on

Theorem 3.3.1, β̂
dc

and Σ̂dc are consistent, thus the second term in (A.8.2) is bounded by

2C||Σ̂
−1

dc n
1/2(β0−β̂

dc
)||2, which is linear in terms ofC with a coefficient 2||Σ̂

−1

dc n
1/2(β0−

β̂
dc

)||2 = Op(1). As the variance Σ and its estimate Σ̂dc are positive semidefinite, the first

term in (A.8.2) is larger than µmin(Σ̂
−1

dc )C2 P−→ µmin(Σ−1)C2, where µmin(.) refers to the
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minimal eigenvalue. It follows that, with probability tending to one, the first term in (A.8.2)

is larger than µmin(Σ−1)C2 which is quadratic in terms of C. By choosing a sufficiently

large C, the first term will dominate the other two terms. Hence, by choosing a sufficiently

large C, (A.8.1) holds and the proof of estimation consistency is completed.

The selection consistency can be shown by contradiction. We want to show that Pr(β̂dcρj =

0)→ 1 for any d0 < j ≤ d. Suppose β̂dcρj 6= 0 for some d0 < j ≤ d, then by definition

n−1/2 ∂R(β)

∂βj

∣∣∣∣
β=β̂

dc
ρ

= 2Σ̂
−1

dc(j)n
1/2(β̂

dc

ρ − β̂
dc

) + n1/2ρjsgn(β̂
dc

ρj
) = 0, (A.8.3)

where Σ̂
−1

dc(j) represents the jth row of Σ̂
−1

dc and sgn(.) is the sign function. It can be

shown that the first term on the right hand side of (A.8.3) is Op(1). Based on the condition

n1/2bn
P−→ ∞, we have n1/2ρj ≥ n1/2bn

P−→ ∞. Then to satisfy (A.8.3), with probability

tending to one, β̂dcρj = 0, which however, contradicts the assumed condition that β̂dcρj 6= 0.

As a result, with probability tending to one, β̂dcρj = 0 for any d0 < j ≤ d. This completes

the proof of selection consistency.

Before proving the oracle property, for notational ease, we write Σ̂dc = Σ̂, suppressing

the divide-and-combine notation. We also decompose Σ and Σ−1 into block matrices:

Σ =

Σaa Σab

Σba Σbb

 , Σ−1 = Ω =

Ωaa Ωab

Ωba Ωbb

 , (A.8.4)

whereM aa is the leading a× a submatrix ofM . Decomposing (4.3), we have

R(β) =n


βa
βb

−
β̂dca
β̂
dc

b



T Ω̂aa Ω̂ab

Ω̂ba Ω̂bb



βa
βb

−
β̂dca
β̂
dc

b




+ n

d0∑
j=1

ρj|βj|+ n
d∑

j=d0+1

ρj|βj|.

(A.8.5)
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Taking partial derivative ofR(β) and evaluating at the global minimizers, by definition,

we have

∂R(β)

∂βTa

∣∣∣∣
β=

β̂dcρa
0

 = 2nΩ̂aa(β̂
dc

ρa − β̂
dc

a ) + 2nΩ̂ab(0− β̂
dc

b ) + nD(β̂
dc

ρa) = 0, (A.8.6)

where D(β̂
dc

ρa) = (ρ1sgn(β̂dcρ1), ρ2sgn(β̂dcρ2), . . . , ρd0sgn(β̂dcρd0
))T . Reorganize (A.8.6), we

have β̂
dc

ρa = β̂
dc

a + (Ω̂aa)
−1Ω̂abβ̂

dc

b − 1/2(Ω̂aa)
−1D(β̂

dc

ρa), which leads to

n1/2(β̂
dc

ρa − β0a) = n1/2(β̂
dc

a − β0a) + (Ω̂aa)
−1Ω̂ab(n

1/2β̂
dc

b )− 1/2(Ω̂aa)
−1n1/2D(β̂

dc

ρa).

(A.8.7)

According to the condition n1/2an
P−→ 0, we have n1/2ρj ≤ n1/2an

P−→ 0. Thus the third

term in (A.8.7) is op(1). Then, we can rewrite (A.8.7) as

n1/2(β̂
dc

ρa − β0a) =
{

1, (Ω̂aa)
−1Ω̂ab

}
· n1/2

β̂dca − β0a

β̂
dc

b − 0

+ op(1). (A.8.8)

Given that

n1/2

β̂dca − β0a

β̂
dc

b − 0

 D−→ N

0,

Σaa Σab

Σba Σbb


 , (A.8.9)

and that Ω̂aa
P−→ Ωaa, Ω̂ab

P−→ Ωab, (A.8.8) can be derived into

n1/2(β̂
dc

ρa − β0a)
D−→ N

0,
{

1, (Ωaa)
−1Ωab

}Σaa Σab

Σba Σbb

{1, (Ωaa)
−1Ωab

}T .

(A.8.10)

Providing the fact that

Ω =

Ωaa Ωab

Ωba Ωbb

 =

 N −NΣab(Σbb)
−1

−(Σbb)
−1ΣbaN (Σbb)

−1 + (Σbb)
−1ΣbaNΣab(Σbb)

−1

 ,

(A.8.11)
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where N = (Σaa −Σab(Σbb)
−1Σba)

−1, the proof of the oracle property is completed by

verifying that

{
1, (Ωaa)

−1Ωab

}Σaa Σab

Σba Σbb

{1, (Ωaa)
−1Ωab

}T
= Σaa −Σab (Σbb)

−1 Σba −ΣabΣab (Σbb)
−1 + Σab (Σbb)

−1 ΣbbΣab (Σbb)
−1

= Σaa −Σab (Σbb)
−1 Σba

=
([

Σ−1
]
aa

)−1
.

(A.8.12)
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A.9 Proof of Theorem 4.3.2: Asymptotic Properties of η̂dcρ

Theorem 4.3.2 for the frailty model can be established along the same lines in the proof

of Theorem 4.3.1 for the marginal model. Note that in the frailty model, η = (θ,βT )T .

Following the same arguments, the estimation consistency is implied by the fact that for

any given ε > 0, there exists a large constant C such that

lim
n→∞

P

{
inf

u∈R1+d:||u||2=C
R(η0 + n−1/2u) > R(η0)

}
> 1− ε, (A.9.1)

where ||a||2 = (aTa)1/2 for a column vector a, and u = (u1, u2, . . . , u(1+d))
T .

Similarly, based on R(η) in (4.2), we can derive that

R(η0 + n−1/2u)−R(η0)

= uT Σ̂
−1

dc u + 2uT Σ̂
−1

dc

{
n1/2(η0 − η̂dc)

}
+ n

d∑
j=1

ρj(|β0j + n−1/2uj| − |β0j|)

≥ uT Σ̂
−1

dc u + 2uT Σ̂
−1

dc

{
n1/2(η0 − η̂dc)

}
+ n

d0∑
j=1

ρj(|β0j + n−1/2uj| − |β0j|)

≥ uT Σ̂
−1

dc u + 2uT Σ̂
−1

dc

{
n1/2(η0 − η̂dc)

}
− n

d0∑
j=1

ρj|n−1/2uj|

≥ uT Σ̂
−1

dc u + 2uT Σ̂
−1

dc

{
n1/2(η0 − η̂dc)

}
− d0(n1/2an)||u||2, (A.9.2)

followed by β0b = 0, the triangle inequality, and an = max{ρj, j ≤ d0}, respectively.

Due to the same arguments in the proof of Theorem 4.3.1, it can be shown that, with

probability tending to one, the first term in (A.9.2) is larger than a quadratic term of C,

and that by choosing a sufficiently large C the first term will dominate the other two terms.

This completes the proof of estimation consistency.

The selection consistency can be shown by contradiction. We want to show that Pr(β̂dcρj =
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0)→ 1 for any d0 < j ≤ d. Suppose β̂dcρj 6= 0 for some d0 < j ≤ d, then by definition

n−1/2 ∂R(η)

∂βj

∣∣∣∣
η=η̂dcρ

= 2Σ̂
−1

dc(1+j)n
1/2(η̂dcρ − η̂

dc) + n1/2ρjsgn(β̂
dc

ρj
) = 0, (A.9.3)

where Σ̂
−1

dc(1+j) represents the (1+ j)th row of Σ̂
−1

dc and sgn(.) is the sign function. Follow-

ing the same rationale in the proof of Theorem 4.3.1, we can show that, with probability

tending to one, β̂dcρj = 0, for any d0 < j ≤ d. This completes the proof of selection

consistency.

As in the proof of Theorem 4.3.1, we write Σ̂dc = Σ̂ and decompose Σ and Σ−1 into

block matrices:

Σ =

Σaa Σab

Σba Σbb

 , Σ−1 = Ω =

Ωaa Ωab

Ωba Ωbb

 , (A.9.4)

whereM aa is the leading a× a submatrix ofM . Decomposing (4.2), we have

R(η) =n


ηa
βb

−
η̂dca
β̂
dc

b



T Ω̂aa Ω̂ab

Ω̂ba Ω̂bb



ηa
βb

−
η̂dca
β̂
dc

b




+ n

d0∑
j=1

ρj|βj|+ n
d∑

j=d0+1

ρj|βj|.

(A.9.5)

Taking partial derivative ofR(η) and evaluating at the global minimizers, by definition,

we have

∂R(η)

∂ηTa

∣∣∣∣
η=

η̂dcρa
0

 = 2nΩ̂aa(η̂
dc
ρa − η̂

dc
a ) + 2nΩ̂ab(0− β̂

dc

b ) + nD(β̂
dc

ρa) = 0, (A.9.6)

where D(β̂
dc

ρa) = (ρ1sgn(β̂dcρ1), ρ2sgn(β̂dcρ2), . . . , ρd0sgn(β̂dcρd0
))T . Reorganize (A.9.6), we
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have η̂dcρa = η̂dca + (Ω̂aa)
−1Ω̂abβ̂

dc

b − 1/2(Ω̂aa)
−1D(β̂

dc

ρa), which leads to

n1/2(η̂dcρa − η0a) = n1/2(η̂dca − η0a) + (Ω̂aa)
−1Ω̂ab(n

1/2β̂
dc

b )− 1/2(Ω̂aa)
−1n1/2D(β̂

dc

ρa).

(A.9.7)

The condition n1/2an
P−→ 0 guarantees the third term in (A.9.7) is op(1). Thus, (A.9.7)

can be rewritten as

n1/2(η̂dcρa − η0a) =
{

1, (Ω̂aa)
−1Ω̂ab

}
· n1/2

η̂dca − η0a

β̂
dc

b − 0

+ op(1). (A.9.8)

Given that

n1/2

η̂dca − η0a

β̂
dc

b − 0

 D−→ N

0,

Σaa Σab

Σba Σbb


 , (A.9.9)

and that Ω̂aa
P−→ Ωaa, Ω̂ab

P−→ Ωab, (A.9.8) can be derived into

n1/2(η̂dcρa − η0a)
D−→ N

0,
{

1, (Ωaa)
−1Ωab

}Σaa Σab

Σba Σbb

{1, (Ωaa)
−1Ωab

}T .

(A.9.10)

As in the proof of Theorem 4.3.1, providing the fact that

Ω =

Ωaa Ωab

Ωba Ωbb

 =

 N −NΣab(Σbb)
−1

−(Σbb)
−1ΣbaN (Σbb)

−1 + (Σbb)
−1ΣbaNΣab(Σbb)

−1

 ,

(A.9.11)

where N = (Σaa −Σab(Σbb)
−1Σba)

−1, the proof of the oracle property is completed by

verifying that

{
1, (Ωaa)

−1Ωab

}Σaa Σab

Σba Σbb

{1, (Ωaa)
−1Ωab

}T
=
([

Σ−1
]
aa

)−1
. (A.9.12)
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A.10 Proof of Theorem 4.4.2: Asymptotic Equivalence between Rz(β) and R(β)/2

We apply the Taylor series expansion on Rz(β) and obtain that

Rz(β) =− logPL(β) + n

d∑
j=1

ρzj |βj|

=− logPL(β̂
full

)− (β − β̂
full

)T
{

∂

∂βT
logPL(β̂

full
)

}
− 1/2(β − β̂

full
)T
{

∂2

∂βT∂β
logPL(β̂

full
)

}
(β − β̂

full
)

+ n
d∑
j=1

ρzj |βj|+ op(1). (A.10.1)

Notice that ∂logPL(β̂
full

)/∂βT = 0, −∂2logPL(β̂
full

)/∂βT∂β = I(β̂
full

), and that

logPL(β̂
full

) is a constant. Of note, in the univariate survival analysis (K = 1), I(β̂
full

) =

nΣ̂
−1

full, but in the multivariate survival analysis (K > 1), I(β̂
full

) generally does not equal

nΣ̂
−1

full when the intra-cluster association is non-trivial. We can rewrite (A.10.1) as

Rz(β) = −logPL(β) + n
d∑
j=1

ρzj |βj|

= n/2(β − β̂
full

)T Σ̂
−1

full(β − β̂
full

) + n
d∑
j=1

ρzj |βj|+ op(1)

= n/2(β − β̂
dc

)T Σ̂
−1

dc (β − β̂
dc

) + n/2
d∑
j=1

ρj|βj|+ op(1)

= Q(β)/2 + op(1). (A.10.2)

The third equality is due to the asymptotic equivalence between β̂
full

and β̂
dc

(Theorem

3.3.1) and providing that ρzj = ρj/2 for j = 1, 2, . . . , d. This completes the proof of

Theorem 4.4.2.
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A.11 Proofs of Theorems 5.3.1 and 5.3.2: Asymptotic Properties of Λ̂dc
hj(t|z0,hj)

under regularity conditions in Section 2.2.3, Theorem 2.2.1 ensures that in t ∈ [0, τ ], as

n→∞,

sup
t∈[0,τ ]

∣∣∣Λ̂hj(t|z0,hj)− Λhj(t|z0,hj)
∣∣∣ P−→ 0. (A.11.1)

By the triangle inequality, we have

∣∣∣Λ̂dc
hj(t|z0,hj)− Λhj(t|z0,hj)

∣∣∣ < n−1

S∑
s=1

ns

∣∣∣Λ̂s,hj(t|z0,hj)− Λhj(t|z0,hj)
∣∣∣ , (A.11.2)

thus it follows that

sup
t∈[0,τ ]

∣∣∣Λ̂dc
hj(t|z0,hj)− Λhj(t|z0,hj)

∣∣∣ < n−1

S∑
s=1

ns sup
t∈[0,τ ]

∣∣∣Λ̂s,hj(t|z0,hj)− Λhj(t|z0,hj)
∣∣∣ P−→ 0.

(A.11.3)

This completes the proof for uniform consistency in Theorem 5.3.1.

Before showing the asymptotic normality of Λ̂dc
hj(t|z0,hj), following the proof of The-

orem 2.2.2, we recognize that n1/2
{

Λ̂s,hj(t|z0,hj)− Λhj(t|z0,hj)
}

can be written into two

asymptotically independent terms, i.e.,

n1/2
s

{
Λ̂s,hj(t|z0,hj)− Λhj(t|z0,hj)

}
=n1/2

s

ns∑
i=1

∫ t

0

eβ
T
0 z0,hjdMsi,hj(u)

nsS
(0)
s,hj(β0, u)

+

[
ns∑
i=1

∫ t

0

{z0,hj − Es,hj(β
∗, u)}T eβ∗T z0,hjdNsi,hj(u)

nsS
(0)
s,hj(β

∗, u)

]
n1/2
s (β̂ − β0),

(A.11.4)

whereβ∗ lies betweenβ0 and β̂s, andMsi,hj(t) = Nsi,hj(t)−
∫ t

0
Ysi,h(u)eβ

T
0 Zsi,hjλ0,hj(u)du.

Note that Nsi,hj(t), S(0)
s,hj(β, t), and Es,hj(β, t) are the counterparts in the sth subset of

Ni,hj(t), S(0)
hj (β, t), and Ehj(β, t) (see definitions in Section 2.2.3).
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By using (A.6.5) and (A.11.4), we can write

n1/2
{

Λ̂dc
hj(t|z0,hj)− Λhj(t|z0,hj)

}
=

S∑
s=1

(ns/n)1/2n1/2
s

{
Λ̂s,hj(t|z0,hj)− Λhj(t|z0,hj)

}
=

S∑
s=1

(ns/n)1/2

{
n1/2
s

ns∑
i=1

∫ t

0

eβ
T
0 z0,hjdMsi,hj(u)

nsS
(0)
s,hj(β0, u)

}

+
S∑
s=1

(ns/n)1/2

([
ns∑
i=1

∫ t

0

{z0,hj − Es,hj(β
∗, u)}T eβ∗T z0,hjdNsi,hj(u)

nsS
(0)
s,hj(β

∗, u)

]

×Σ3n
−1/2
s Us(β0)

)

+Op(n
−1/2S).

(A.11.5)

Because S = o(n1/2), Op(n
−1/2S) = op(1), and as n→∞, n−1/2

s Us(β0)
D−→ N (0,Σ−1

3 ).

Note that here Σ3 is assumed to be identical across subsets, which is generally true under

homogeneity assumptions (C1) to (C3) in Section 5.3. Then the asymptotic normality in

Theorem 5.3.2 follows.
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A.12 True Transition Probabilities in Proposed Five-State Model

The transition-specific hazard function for a subject with covariate z0 is

λjk(t|z0,jk) = ξjkh
ξjk
jk t

ξjk−1eβ
T z0,jk , (A.12.1)

for j, k = 1, 2, . . . , 5 and j 6= k. Note that z0 is the basic covariate that can be extended into

the transition-specific structure z0,jk. For notational ease, we write the transition-specific

hazard function as λjk(t) = ajkt
bjk . Of note, this hazard function can be easily converted

into (A.12.1) by letting ajk = ξjkh
ξjk
jk e

βT z0,jk and bjk = ξjk − 1. Moreover, when deriving

the true transition probabilities P(s, t|z0) for the proposed five-state model considered in

the simulation studies, we suppress z0, and use λjk(t) and P(s, t) in the following.

Since transition probabilities starting from state 1 are evaluated in the simulation stud-

ies, we only provide their true probabilities here. Note that most of the true transition

probabilities have no analytic solutions and thus should be evaluated numerically.

Given the Kolmogorov forward equation

P(s, t) = I +

∫ t

s

P(s, u)dΛ(u) (A.12.2)

and motivated by the results of P11(s, t) in (2.41) and P12(s, t) in (2.43), we derive

P11(s, t) = exp

[
−
∫ t

s

{λ12(u) + λ13(u) + λ15(u)} du
]

= exp

(
− a12

b12 + 1
tb12+1 − a13

b13 + 1
tb13+1 − a15

b15 + 1
tb15+1

+
a12

b12 + 1
sb12+1 +

a13

b13 + 1
sb13+1 +

a15

b15 + 1
sb15+1

)
,

(A.12.3)
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P12(s, t) =

∫ t

s

P11(s, u)λ12(u)P22(u, t)du

=

∫ t

s

exp

(
− a12

b12 + 1
ub12+1 − a13

b13 + 1
ub13+1 − a15

b15 + 1
ub15+1

+
a12

b12 + 1
sb12+1 +

a13

b13 + 1
sb13+1 +

a15

b15 + 1
sb15+1

)
× a12u

b12

× exp

(
− a24

b24 + 1
tb24+1 − a25

b25 + 1
tb25+1

+
a24

b24 + 1
ub24+1 +

a25

b25 + 1
ub25+1

)
du,

(A.12.4)

P13(s, t) =

∫ t

s

P11(s, u)λ13(u)P33(u, t)du

=

∫ t

s

exp

(
− a12

b12 + 1
ub12+1 − a13

b13 + 1
ub13+1 − a15

b15 + 1
ub15+1

+
a12

b12 + 1
sb12+1 +

a13

b13 + 1
sb13+1 +

a15

b15 + 1
sb15+1

)
× a13u

b13

× exp

(
− a34

b34 + 1
tb34+1 − a35

b35 + 1
tb35+1

+
a34

b34 + 1
ub34+1 +

a35

b35 + 1
ub35+1

)
du,

(A.12.5)

P24(s, t) =

∫ t

s

P22(s, u)λ24(u)P44(u, t)du

=

∫ t

s

exp

(
− a24

b24 + 1
ub24+1 − a25

b25 + 1
ub25+1

+
a24

b24 + 1
sb24+1 +

a25

b25 + 1
sb25+1

)
× a24u

b24

× exp

(
− a45

b45 + 1
tb45+1 +

a45

b45 + 1
ub45+1

)
du,

(A.12.6)
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P34(s, t) =

∫ t

s

P33(s, u)λ34(u)P44(u, t)du

=

∫ t

s

exp

(
− a34

b34 + 1
ub34+1 − a35

b35 + 1
ub35+1

+
a34

b34 + 1
sb34+1 +

a35

b35 + 1
sb35+1

)
× a34u

b34

× exp

(
− a45

b45 + 1
tb45+1 +

a45

b45 + 1
ub45+1

)
du,

(A.12.7)

P45(s, t) =

∫ t

s

P44(s, u)λ45(u)P55(u, t)du

=

∫ t

s

exp

(
− a45

b45 + 1
ub45+1 +

a45

b45 + 1
sb45+1

)
× a45u

b45du.

(A.12.8)

Then by using P45(s, t), we have

P25(s, t)

=

∫ t

s

P22(s, u) {λ25(u)P55(u, t) + λ24(u)P45(u, t)} du

=

∫ t

s

exp

(
− a24

b24 + 1
ub24+1 − a25

b25 + 1
ub25+1

+
a24

b24 + 1
sb24+1 +

a25

b25 + 1
sb25+1

)
×
[
a25u

b25 + a24u
b24 ×

{∫ t

u

exp

(
− a45

b45 + 1
vb45+1 +

a45

b45 + 1
ub45+1

)
×a45v

b45dv

}]
du,

(A.12.9)
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P35(s, t)

=

∫ t

s

P33(s, u) {λ35(u)P55(u, t) + λ34(u)P45(u, t)} du

=

∫ t

s

exp

(
− a34

b34 + 1
ub34+1 − a35

b35 + 1
ub35+1

+
a34

b34 + 1
sb34+1 +

a35

b35 + 1
sb35+1

)
×
[
a35u

b35 + a34u
b34 ×

{∫ t

u

exp

(
− a45

b45 + 1
vb45+1 +

a45

b45 + 1
ub45+1

)
×a45v

b45dv

}]
du.

(A.12.10)

Next by using P24(s, t) and P34(s, t), we derive

P14(s, t)

=

∫ t

s

P11(s, u) {λ12(u)P24(u, t) + λ13(u)P34(u, t)} du

=

∫ t

s

exp

(
− a12

b12 + 1
ub12+1 − a13

b13 + 1
ub13+1 − a15

b15 + 1
ub15+1

+
a12

b12 + 1
sb12+1 +

a13

b13 + 1
sb13+1 +

a15

b15 + 1
sb15+1

)
×
[
a12u

b12 × exp

(
a24

b24 + 1
ub24+1 +

a25

b25 + 1
ub25+1 − a45

b45 + 1
tb45+1

)
×
{∫ t

u

exp

(
− a24

b24 + 1
vb24+1 − a25

b25 + 1
vb25+1

)
× a24v

b24

× exp

(
a45

b45 + 1
vb45+1

)
dv

}
+ a13u

b13 × exp

(
a34

b34 + 1
ub34+1 +

a35

b35 + 1
ub35+1 − a45

b45 + 1
tb45+1

)
×
{∫ t

u

exp

(
− a34

b34 + 1
vb34+1 − a35

b35 + 1
vb35+1

)
× a34v

b34

× exp

(
a45

b45 + 1
vb45+1

)
dv

}]
du.

(A.12.11)
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Finally by using P25(s, t) and P35(s, t), we derive

P15(s, t)

=

∫ t

s

P11(s, u) {λ15(u)P55(u, t) + λ12(u)P25(u, t) + λ13(u)P35(u, t)} du

=

∫ t

s

exp

(
− a12

b12 + 1
ub12+1 − a13

b13 + 1
ub13+1 − a15

b15 + 1
ub15+1

+
a12

b12 + 1
sb12+1 +

a13

b13 + 1
sb13+1 +

a15

b15 + 1
sb15+1

)
×
[
a15u

b15 + a12u
b12 × exp

(
a24

b24 + 1
ub24+1 +

a25

b25 + 1
ub25+1

)
×
{∫ t

u

exp

(
− a24

b24 + 1
vb24+1 − a25

b25 + 1
vb25+1

)
×
[
a25v

b25 + a24v
b24 × exp

(
a45

b45 + 1
vb45+1

)
×
{∫ t

v

exp

(
− a45

b45 + 1
wb45+1

)
× a45w

b45dw

}]
dv

}
+a13u

b13 × exp

(
a34

b34 + 1
ub34+1 +

a35

b35 + 1
ub35+1

)
×
{∫ t

u

exp

(
− a34

b34 + 1
vb34+1 − a35

b35 + 1
vb35+1

)
×
[
a35v

b35 + a34v
b34 × exp

(
a45

b45 + 1
vb45+1

)
×
{∫ t

v

exp

(
− a45

b45 + 1
wb45+1

)
× a45w

b45dw

}]
dv

}]
du.

(A.12.12)
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