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This dissertation provides an analytical framework for tackling the long-term 

microgrid expansion planning problem. In the wake of the highly electrified future 

that is ahead of us, the need for reliable and economical power supply will become 

more urgent than ever. The role of microgrids in fulfilling this need is expected to be 

highly crucial. While there is a lot of active research going on related to developing 

optimization models for such systems, the current work innovates by considering both 

economic and reliability aspects, as well as the stochastic nature of various 

components in the energy industry. Furthermore, the fact that the microgrids will be 

placed at the core of the future energy systems will naturally give birth to another 

important problem from the planning perspective; this problem concerns the 

derivation of optimal strategies when expanding the microgrids, both in storage and 

power capacity. The criticality of formulating systematic, analytical and novel 

methodologies to tackle this problem can be easily justified by considering the steady 

growth of load demand, the technological advancements continuously being made, 

and the high operating costs incurred in these processes. The research work that can 
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be found currently in the literature lacks in considering several peculiarities of 

microgrids. Moreover, many proposed approaches fail to provide realistic and 

complex-enough formulations due to the incompetence of traditional solution 

techniques in handling problems of that scale. The current research work serves as the 

first attempt to formulate a highly detailed long-term expansion planning problem in 

microgrid setting and solve it using advanced artificial intelligence techniques. 

Towards this direction, a simulation-based approach is developed to determine cost-

optimal battery sizing under preset reliability constraints, and a unified dynamic 

optimization framework is built and used to derive holistic optimal expansion 

strategies. Overall, the goal of the present research work is to provide novel baseline 

models that give a well-shaped structure to the stochastic problem of long-term 

expansion planning, while utilizing advanced machine learning tools and techniques. 
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1. Introduction 

The main topic of the dissertation is to present novel optimization frameworks 

for traditional long-term energy planning problems. Although the focus is given to 

microgrids, this research work intends to become the first comprehensive approach to 

tackle long-term planning problems with modern algorithmic techniques and to 

provide holistic approaches that could be generalized to other areas as well. 

Microgrids are local energy grids, close to distribution, which can operate connected 

or disconnected from the grid and are mostly comprised by distributed generators, 

batteries, and/or renewable resources (DoE 2014). In the forthcoming years, the 

optimization of planning, operation, and expansion, either in storage or in power 

capabilities, of the microgrids will be crucial and will affect millions of customers 

who currently, or will in the future, have their load demand served by these 

microgrids. The need for a reliable and resilient power grid will become even more 

urgent in the highly technological future that lies ahead and the microgrids could be 

the path to this kind of grid. 

It is undoubtable that there are plenty of ongoing research studies and industry 

reports discussing the tradeoffs between conventional power plants and renewable 

energy resources, like solar or wind (Zhou, Tsianikas et al. 2019). The question of 

whether the world will stop using fossil fuels in the near future remains unanswered 

and depends heavily on the oil, gas and coal reserves around the globe (Helm 2016) 

(Covert, Greenstone et al. 2016). Oil peaking is an academic debate that has not yet 

concluded, and some optimists believe that the oil production rate will continue to rise 

until 2100 (Abas, Kalair et al. 2015). However, what is for sure known is that fossil 

fuels resources are finite and environmentally hostile compared to renewable energy 

resources (Atilgan and Azapagic 2015). Renewable energy is a physically replenished 
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source of energy which is coming either directly (thermal, photo-chemical and photo-

electric) or indirectly (wind, hydropower) from the sun, or from other environmental 

processes (geothermal) (Ellabban, Abu-Rub et al. 2014). 

1.1 Problem motivation 

One of the most critical reasons that has contributed to the increasing attention 

that is given to microgrids is indubitably the cost-effectiveness of certain renewable 

energy sources. This is one aspect of the problem that has changed drastically during 

the last years and it can be verified by calculating and comparing the Levelized Cost 

of Energy (LCOE) for different energy generation technologies: 

 

Fig. 1.1 LCOE comparison for various energy generation technologies (LAZARD 2018) 

It can be seen in Fig. 1.1 that certain alternative energy generation 

technologies are now cost-competitive with some conventional generation 

technologies that were traditionally considered as more economical. Moreover, recent 

studies have shown that the impact of renewable energy consumption to the economic 
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growth of developed and developing countries may be much more statistically 

significant than what was initially thought (Inglesi-Lotz 2016). The enthusiasts 

around renewable energy sources are exponentially growing and the reasons around 

this fact are various and well beyond the economic reasons mentioned above. Inside 

this set of renewable technologies, solar energy is the one that has attracted the most 

interest, although its contribution to the worldwide energy supply is still negligible. 

However, its penetration in the energy market is constantly increasing, as it can be 

shown in Fig. 1.2: 

 

Fig. 1.2 Annual additions of new electric capacity in the U.S. (SEIA, 2018) 

Except for solar energy’s increased contribution to installed capacity, one 

thing that is indubitable by observing Fig. 1.2 is that coal’s new annual additions are 

almost diminished, with the last significant ones dating back to 2014. This fact is 

indeed very optimistic for the future of renewable technologies in general. 

However, there is a major problem occurring almost always when renewable 

energy resources are extensively deployed: intermittency. Naturally, renewable 

energy sources, such as solar or wind energy, are not dispatchable and cannot be 

predictable with an adequate assurance (Hakimi and Moghaddas-Tafreshi 2014) (Su, 
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Wang et al. 2014). The operation of solar PV and other distributed resources without 

energy storage still requires dependence on the grid, which impairs their ability to 

supply reliable power to customers during grid outages and to maintain system 

stability (Zhou, Tsianikas et al. 2019) (Chauhan and Saini 2014). Nevertheless, the 

addition of batteries or in general energy storage units to a PV system can balance the 

mismatch between the energy generation and the load demand (Caruana, Sattar et al. 

2015). 

Studying the problem of the generation and capacity expansion planning of the 

grid was always a highly important task from both economic and reliability aspects. 

However, tailoring the methodologies to storage sizing and renewable energy plants 

additions in a microgrid, and more specifically creating dynamic programming 

models to solve these problems, are nowadays becoming even more crucial research 

topics. This fact can be supported based on two main reasons which are explained in 

the following paragraphs. 

The transition from traditional fossil fuels-based plants to renewable energy 

plants and accordingly from a centralized grid to distributed energy resources seems 

inevitable for the foreseeable future. The serious concerns for avoiding, or at least 

mitigating the effects of, climate change coincides with an ever-increasing 

electrification of the grid, which may be even sharper if electric vehicles are 

massively adopted by the public (McKinsey 2018). These two facts combined will 

result in a compulsory need for a record-breaking reliable and resilient grid, which 

will simultaneously need to incorporate a high penetration of renewable energy 

sources. This need will bring microgrids and their optimal design in the first place of 

attention among other energy-related research topics. 
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Furthermore, the technological advancements that are currently being made 

and that will facilitate this whole process need to be highlighted. More specifically, it 

is already reported that solar panel investment costs, as well as battery costs, have 

significantly declined in the past years and are forecasted to continue in this 

decreasing trend (IRENA 2017). These reported results can be seen in Figs. 1.3-1.4: 

 

Fig. 1.3 Gross cost per watt for solar price (EnergySage 2019) 

In Fig. 1.3, it is shown that the gross cost of the solar price decreased from 

3.86 $/Watt in the second half of 2014 to 3.05 $/Watt in the second half of 2018. That 

means approximately a 21% cost reduction in only 4 years. 
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Fig. 1.4 Lithium-ion battery price, 2010-2016 (Colonnese 2017) 

In Fig. 1.4, a lithium-ion (Li-ion) battery price survey is presented for the 

years of 2010-2016. The Li-ion battery is the dominant battery type at the moment for 

the majority of applications in the energy, as well as the automotive, industry. Herein, 

it is seen that the price of this specific Li-ion battery has fallen from 1000 $/kWh in 

2010 to 273 $/kWh in 2016, indicating a 72.7% decrease in 6 years. 

These findings are indeed very promising for the energy systems that will need 

to have reliability and resilience as a top priority in the future. When examined jointly 

with the electrification of the grid mentioned above, it is rational to conclude that in 

the future power grids, it will be increasingly unaffordable to experience outage 

interruptions and simultaneously cost-efficient to install larger storage capacities and 

to increase renewables penetration. 

1.2 Research overview and objectives 

In the present research work, all the necessary frameworks for the long-term 

microgrid expansion planning problem are provided. Encouraged not only by the 
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technological advancements which are expected to happen in the renewable energy 

industry, but also by the emerging need for reliable and cost-efficient decentralized 

power supply in several applications, a specific focus on microgrid studies is required. 

It is necessary therefore at this point to emphasize on the deficiencies that the current 

literature possess. First of all, most of these works seldom consider simultaneously the 

economic and reliability objectives of the system planners, as well as the stochastic 

nature that inherently exists in the problem. It is one of the main research objectives to 

fulfill this gap in the literature. But besides that, most of the current research studies 

fail to present a holistic optimization framework for determining optimal strategies 

when expanding the microgrids, both in storage and power capacity. More 

specifically, these studies do not tailor their applicability in the particular case of 

microgrids and even when they do so, most of them fail to formulate problems which 

can present reasonable and realistic levels of details. The reason for that is merely due 

to the unfitness of traditional solution techniques in solving problems of that scale. 

The current research work plans to serve as the first attempt to formulate a highly 

detailed long-term expansion planning problem in microgrid setting and to solve it 

using advanced artificial intelligence techniques.  

The general optimization framework for solving the long-term microgrid 

optimization problem encompasses several sub-components, all of them serving its 

general goal. These sub-components are briefly described here before presented 

thoroughly in the subsequent sections of the dissertation. 

Initially, a model for determining the optimal battery size to be attached in a 

given photovoltaic array is presented, along with its corresponding case study and 

results. In this work, a simulation-based optimization method is deployed to 

investigate the effects of battery size on meeting load demand of facilities at different 
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reliability levels during grid outages with minimal cost. The efficacy of the proposed 

simulation method is demonstrated by numerical examples using actual data sets of 

solar irradiation and example facilities’ load profiles hourly throughout a whole year. 

Afterwards, specific focus is given in selected problem parameters, in order to 

examine how they affect the optimal solutions and how they interact with each other. 

The underlying relationship between the changes and uncertainty of unmet load 

penalty costs and battery price is explored by comparing the optimal total system cost 

under different scenarios. The results can provide guidance and insights regarding the 

impact of cost-related factors on photovoltaic + battery system design to make them 

grid-outage resilient and economically viable. 

Secondly, a novel framework for dynamically expanding the microgrid’s 

storage capacity using Markov Decision Processes (MDP) and reinforcement learning 

algorithms are shown and explained. The detailed mathematical formulation is given, 

as well as the necessary information for the algorithms used. In this section, 

highlighting and showcasing the importance of answering properly four questions is 

the priority: whether you actually need to add storage in your energy system, when to 

install this storage, how much capacity you should add and which storage technology 

you should choose. Along with the answers to these questions, supplemental research 

findings of this model are presented and discussed. 

Afterwards, the focus is given on expanding the previous models to include 

the investment of power plants in the microgrid, as well as potential retirement of 

existing units. Therefore, the resulting model encompasses both power and storage 

expansion capabilities. Moreover, deep neural networks are utilized in conjunction 

with the reinforcement learning algorithms in order to pass the barrier of the 

increasing computational complexity of a realistic enough problem. The incorporation 
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of reliability in the present dynamic model is now accomplished via the introduction 

of KKT multipliers in the reward function. Finally, a sensitivity analysis is conducted 

through exploration of alternative scenarios for the future, such as the high 

electrification of the grid via the mass adoption of the electric vehicles. 

In the last section of the dissertation before the conclusion, the problem of 

forecasting short-term residential electricity load is studied. The motivation behind 

this research part lies in the fact that in most real cases, perfect information is not 

available for the microgrid planner when decisions concerning energy scheduling 

need to be made. Herein, perfect information refers mostly to the actual energy 

demand, but it could also refer to meteorological data. Therefore, there is a crucial 

need to develop and test analytical methodologies to forecast the aforementioned time 

series. These methodologies need to be specifically tailored to short-term residential 

load; the reason is that residential load is significantly more unpredictable than other 

types of loads in the industrial or commercial sector. Consequently, in this section 

various deep learning-based methodologies are developed and tested against each 

other in three aspects: their general performance in forecasting the energy demand, 

their ability to capture the “peaks” and “valleys” which are inherently taking place in 

residential load data and finally their computational efficiency. 

1.3 Research contributions 

The major contribution of this research is to provide a general and 

comprehensive approach in tackling long-term capacity and power expansion 

planning problems, specifically tailored for microgrid applications. Despite the fact 

that the generalization of this framework and the reproducibility of the results are one 

of the author’s main priorities, the models are tested with real and location-specific 

environmental, load demand and grid outage data for the state of NY. Although the 
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most important novelty of the current research work is to derive optimal microgrid 

expansion plans through analytical methodologies and tested methods, there are 

various contributions which can collectively serve towards the desired direction. 

These research initiatives are presented as follows: 

1. Provide a novel framework for the optimal storage sizing problem 

specifically tailored to renewable-based microgrid systems. In the 

wake of technological advancements which will consecutively bring 

lower storage investment costs, the significance of this research 

contribution becomes even higher. 

2. Formulate the first-ever unified dynamic optimization problem which 

is able to derive optimal expansion policies for a finite time horizon, 

either these actions concern storage or power plants additions. It is safe 

to assume that the analytical consideration and incorporation of 

stochastic modeling for several aspects of the problem are able to 

further strengthen this research contribution. 

3. Propose new modeling approaches and methodologies that can prove 

to be sufficient in their capability of solving large-scale expansion 

planning problems and can replace existing simplified formulations 

and techniques. Towards this direction, it is mandatory to utilize and 

expand advanced machine learning tools and techniques that have not 

been used in long-term energy planning problems before. 

Overall, the current research work attempts to study the crucial topic of 

optimal expansion planning in microgrid setting, derive analytical methodologies to 

do so and provide a baseline for even more detailed frameworks in the future, which 

are going to be increasingly complex and realistic. 
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1.3.1 Theoretical contributions 

In order to be more specific, presenting the research contributions should start 

by the two main theoretical ones. These contributions are specific to the topics of 

renewable energy systems combined with storage, power systems planning and 

dynamic programming. They are presented as follows: 

1. Provide fresh optimization methods to system planners which allow 

them to simultaneously minimize their incurred costs and achieve their 

desired reliability performance. By exploiting the power of the created 

techniques, the whole process of selecting power plants and storage 

units for microgrid applications can be automated without the need of 

making unnecessary simplistic assumptions. 

2. Put together a rigorous and novel long-term microgrid expansion 

planning problem, by studying and incorporating all the existing 

stochastic behaviors that can be found in the area. The inherent 

dynamic nature of the problem is accommodated with the use of 

Markov Decision Processes, which have seldom been used in this type 

of problems before. 

Elaborating more on the first theoretical research contribution, it should be 

mentioned that there are several studies whose subject is to examine thoroughly the 

economics and the reliability of microgrids in general or more specifically the storage 

sizing problem in energy systems. However, these studies seldom consider the outage 

costs explicitly in the objective function, on top of any reliability constraints in the 

mathematical formulation. Moreover, a sensitivity analysis is conducted which links 

directly the desired reliability improvements in an energy system with the associated 

cost that it is incurred. Finally, another novelty of this work is the accurate 
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probabilistic outage modeling developed, which is based on real and location-specific 

outage data. 

Concerning the second contribution, it should be noted that expansion 

planning problems in energy systems, either referring to generation, transmission or 

capacity expansion, are being solved for a long time by many researchers in the field. 

Moreover, reinforcement learning algorithms, like Q-learning, have also been used in 

the field but mostly in short-term planning problems, such as unit commitment or 

battery scheduling. However, the special novelty of this work is that it attempts for the 

first time to use Markov Decision Processes and reinforcement learning techniques, 

either established or modern ones, to solve long-term energy planning problems 

which are becoming more and more important in the wake of technological 

advancements and governmental attempts to pursue ambitious goals for the future of 

renewables in the energy sector. 

1.3.2 Applied contributions 

Herein, it is considered appropriate to continue with some other very 

important research contributions of the current work, which however relate to more 

practical issues and could be adopted in the near future by practitioners in the field of 

energy systems. These applied contributions include but are not limited to: 

1. Obtain more realistic and better engineering solutions while studying 

the problem of sizing battery capacity in existing photovoltaic arrays. 

Original simulation-based optimization frameworks and real-time and 

location-specific datasets help to build towards this research 

contribution. 

2. Introduce advanced reinforcement learning techniques to tackle large-

scale versions of the proposed stochastic dynamic optimization 
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problem. That way, the solutions can be adapted to various scenarios in 

the future and can facilitate long-term energy planning via developing 

a priori awareness of what the outcomes of specific actions will be. 

For the first out of these two contributions, the findings of the current research 

indicate that there can be situations when a decision to invest in a larger battery is 

accompanied by a reduction in total costs incurred. The reason for this lies in the fact 

that the savings from lowering unmet demand are greater than the investment cost for 

a larger battery. This is a highly significant result, which proves that the proposed 

methodology can be used successfully by many practitioners in the field whose tasks 

are to optimally design backup energy systems. 

Concerning the second applied contribution, it is observed in the literature that 

many existing long-term planning models are seldom incorporating simultaneously a 

stochastic and dynamic behavior in their defined problems, a fact that makes the 

results of limited practical use for the future, no matter how scientifically accurate the 

proposed approach could be. Nevertheless, even in the cases where stochastic 

dynamic models have been proposed, the solution approaches chosen are classical 

dynamic programming approaches. These are algorithms of great theoretical 

importance, but they assume a perfect model for the environment and also, they are 

computationally expensive. Therefore, the proposed approach serves as a great 

baseline for more detailed and advanced frameworks which would be able to be used 

for extracting precise and flexible long-term expansion plans. 

To sum up, a visual representation of the main research tasks and subtasks that 

the present work accomplishes is given in Fig. 1.5: 
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Fig. 1.5 Main research tasks and subtasks  
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2. Background and Literature Review 

The literature review of this dissertation needs to cover a wide range of topics 

related to this research and therefore is broken into five main parts. Firstly, 

information about generating units in the electrical power systems is provided, as well 

as some important planning problems that arise from their study, such as the 

generation expansion planning (GEP) problem. In the second part, specific emphasis 

is given in the renewable energy sources and their crucial role in designing modern 

distributed energy systems is highlighted. In the third part of this literature review, the 

concentration is given on the importance of energy storage in microgrids, as well as 

on some existing and potential storage solutions in the market. Afterwards, it is 

explained why and how neural networks can prove a valuable tool for solving the 

problem of energy load forecasting. Lastly, Markov decision processes (MDP) are 

presented and the notions of dynamic programming and reinforcement learning are 

introduced; their clear understanding is proven very important in Sections 4 and 5 of 

the present dissertation. 

2.1 Electrical power systems planning 

Traditional electric power systems are designed with the main purpose being 

the power production in central generating stations and its delivery to the points of 

end use via transmission and distribution systems (NREL 2008). Herein, the role of 

generating units is pretty straightforward; they convert energy from other sources to 

electric energy, ready for industrial, residential or commercial consumption. 

However, the roles of transmission and distribution systems are more complicated and 

interrelated than the independent purpose of the generation system. Transmission 

system helps to transfer the power over sufficiently long distances and consequently 

make the operation of generating stations feasible, optimal and under the desired and 
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preset reliability levels. On the other hand, the distribution system is responsible for 

the delivery infrastructure in order for the power to be able to “meet” the load in the 

final destination. It should be mentioned that most distribution systems require 

bidirectional power flow between power substations and the end-user loads and also 

dictate the existence of sufficient power supply from the transmission systems. In Fig. 

2.1, most of the aforementioned processes can be seen schematically: 

 

Fig. 2.1 Overview of how a typical electric grid works (Staff research, Entergy) 

2.1.1 Overview of generating technologies 

The backbones of electric power systems are all the various ways for actually 

producing electricity. Of course, there are multiple types of generating units that are 

used to satisfy the load demand, and there are various taxonomies which can be used 

for organizing the different technologies. Before giving a categorization of generating 

units, what is an electric generator should be clearly explained. It was the scientist 

Michael Faraday who discovered in 1831 that when a magnet is moved inside a coil 

of wire, an electric current flow in the wire (eia 2018). Therefore, an electric 

generator is generally described as a device that transforms a specific form of energy 

into electricity. Generators operate because of this exact feature of magnetism and 

electricity. A schematic representation of an electric generator can be seen in Fig. 2.2: 
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Fig. 2.2 Schematic representation of an electric generator (Source: ElectronicsTutorials) 

Though it is true that the majority of the electricity generation in the United 

States is from power plants that use a turbine or a similar machine to drive electric 

generators, there are electricity generators which do not require a turbine in order to 

produce electricity. Therefore, the existence of a turbine in the electricity generation 

process could be a distinguishing factor among different generating technologies. 

The most common type of turbines is steam turbines. In steam turbines, hot 

water and steam are produced by burning a fuel in a boiler or by using a heat 

exchanger to capture heat from a fluid heated with other types of energy, like solar or 

geothermal (eia 2018). The steam is the one that gives motion to a turbine, which 

sequentially powers a generator. The fuels or in general energy sources that are 

typically seen in steam turbines include but are not limited to biomass, coal, 

geothermal energy, petroleum fuels, natural gas, nuclear energy, and solar thermal 

energy. A steam turbine can be seen in Fig. 2.3: 
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Fig. 2.3 Steam turbine (Source: Siemens) 

Other types of turbines are the combustion gas turbines and the internal 

combustion turbines. Moreover, it should be mentioned that there are combined-heat-

and-power (CHP) plants, which use the heat for other purposes, such as space heating 

or industrial process heat. The heat used by CHP plants is the one that cannot be 

immediately converted into electricity using the other types of turbines. Lastly, it 

should be reported that there are also hydroelectric turbines, which use as their driving 

force water to spin turbine blades and also wind turbines, which of course use the 

wind. 

On the other hand, there are also generating technologies that do not require 

the use of a turbine to produce electricity. It is appropriate to say that the most typical 

examples in this category are the solar photovoltaic cells and the fuel cells. The 

former converts the solar irradiation directly to electricity, while the latter convert 

fuels into electricity through a chemical process. The most common type of fuel used 

in fuel cells is hydrogen. An example of a fuel cell is shown in Fig. 2.4: 
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Fig. 2.4 Fuel cell (Source: FCHEA) 

2.1.2 Short-term operation planning 

The first subclass of problems that the energy planners are required to solve 

have a short-term nature and are usually solved on an hour-by-hour basis. This 

subclass includes but is not limited to problems, such as unit commitment and 

determining scheduling regime of conventional units, i.e. their cyclical operating 

modes in response to dispatch requirements: on/off operation, low-load cycling 

operations and load following (Sadeghi, Rashidinejad et al. 2017). These processes 

are highly important in the optimal operation of an energy system from both 

economic and reliability aspects. 

In this section, the mathematical formulation of a specific problem in this 

subclass is presented, which is called unit commitment dispatch. But before that, two 

other problems should be explained; economic dispatch, and unit commitment. These 

two problems combined build up to the unit commitment dispatch (Rodgers 2016). 

Firstly, the economic dispatch problem refers to the problem of determining the 

optimal combination of generators in order to meet the load demand at a given time 

interval. On the other hand, the unit commitment problem relates to the optimal 

scheduling of units, such as start-up and shut-down times, in order again to become 

feasible for a specific forecasted load to be met. 
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As mentioned above, the unit commitment dispatch model is a combination of 

the economic dispatch model and the unit commitment model. This model is a mixed 

integer nonlinear optimization problem that minimizes start-up costs, shutdown costs, 

and variable costs from energy generation. The decision variables in this problem 

include dispatching decisions as well as start-up and shutdown decisions (Rodgers 

2016). As an example, a formulation for a unit commitment problem is presented 

(Huang, Pardalos et al. 2017). 
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The objective function (2.1) is composed of three main terms. The first cost 

component is affected directly by the day-ahead decisions of the control unit, such as 

startup and/or shutdown decision for each generating unit. The second cost 
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component includes the fuel costs and finally, the third cost component denotes the 

possible unserved energy penalty. Constraint (2.2) denotes the minimum ON-time of 

generators, while constraint (2.3) denotes the minimum OFF-time of generators. 

Moreover, constraints (2.4) and (2.5) are the start-up and shut-down action constraints 

respectively. (2.6) is the thermal generation constraint and (2.7) is a basic constraint to 

address generation ramping. An emission constraint is presented in (2.8) and (2.9) is 

the unserved energy constraint. Finally, (2.10) and (2.11) are binary and nonnegativity 

constraints. 

2.1.3 Long-term expansion planning 

Besides short-term planning problems, there is a second subclass of problems 

in energy planning which is also more tightly related to the current research. This 

subclass consists of the well-known and studied expansion planning problems. 

Generally, electric power system expansion can be carried out in generation, 

transmission and distribution sectors (Hemmati, Hooshmand et al. 2013). However, 

since the investment on generation expansion planning (GEP) and transmission 

expansion planning (TEP) is much more than the relevant investment in the 

distribution expansion, these two parts become significantly more important from the 

energy planning perspective. 

More specifically, GEP refers to the monetary and unit investment needed for 

energy production. This kind of planning should take into account the sizing, timing, 

technology of new generation units, etc. In GEP, the objective is to expand the 

existing power system to serve the growing demand in the future, achieving the 

lowest possible cost and satisfying the preset reliability criteria (Hemmati, 

Hooshmand et al. 2013). The planning horizon in GEP problems is typically 10-30 

years. It is clearly a challenging problem due to the ever-increasing demand for 
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uninterrupted electricity supply in almost every aspect of the modern everyday life as 

well as in every part of most production and service systems in society (Sadeghi, 

Rashidinejad et al. 2017). 

Known as one of the most complicated types of power system planning 

problems, the GEP problem has been broadly investigated through numerous studies. 

These studies present a wide range of objectives ranging from cost minimizing in 

monopoly markets to profit maximization in the competitive environment. Therefore, 

in this section, it is tried to present several existing research studies on GEP problems 

and use a specific criterion for breaking down the different approaches. This criterion 

is closely related to the topic of the current research work and is the environmental 

scope under which the author is trying to examine the GEP problem. This 

environmental scope may refer to the extensive usage of renewable technologies, to 

deploying carbon capture mechanisms or to ways of mitigating health implications 

caused by power generation plants. Consequently, in the first part of this section, 

existing general research studies on GEP are reviewed, while in the second part the 

emphasis is given on those research studies that examined the GEP problem through 

the environmental lens, as it is described above. 

System dynamics are investigated very frequently in joint with the optimal 

solution of a GEP problem. Valinejad et al. presented a new framework to study the 

generation capacity expansion in a multi-stage horizon in the presence of strategic 

generation companies (GENCOs) (Valinejad, Marzband et al. 2017). In this context, 

they proposed a three-level model as a pool-based network-constrained electricity 

market that is presented under uncertainty in the predicted load demand modeled by a 

discrete Markov model. In the same direction, Pereira et al. created a model to solve 

the GEP problem in competitive electricity markets (Pereira and Saraiva 2011). In this 
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research work, they developed an approach which recognizes that the objective of the 

various generating companies in the problem is to maximize their monetary earnings. 

Besides that, this study is able to incorporate the several uncertainties in this problem, 

which include but are not limited to demand, fuel prices, investment and maintenance 

costs, as well as the electricity price. Furthermore, Park et al. have mentioned long 

ago the need for building sophisticated solutions for the GEP problem in the 

competitive environment, due to the high complexity of the problem, which arises 

from the conflicts among generation companies (Park, Kim et al. 2002). The novelty 

of this work is that in order for someone to find the optimal solution of a specific 

GENCO competing in the environment, they have to successfully solve the 

conflicting and correlated subproblems among GENCOs. 

From a different perspective, the GEP problem has also been solved with 

primary criterion the most accurate modeling of the problem’s stochasticity. For 

example, Coit et al. identified the high level of uncertainty in the GEP problem, due 

to its high level of space and timing complexity (Coit, Selcuklu et al. 2015). In order 

to facilitate the process of the decision-making process under uncertainty, they 

introduced a systematic way of dealing with uncertainty. This approach involves the 

selection of non-dominated solutions for the Pareto optimal set. The proposed 

methodology of this research work is very significant, because it successfully 

preserved the non-deterministic information of solutions in the objective space, 

allowing the decision makers to consider simultaneously the multiple objectives and 

the stochastic aspects of their problem. A somewhat more risk-averse approach was 

adopted in (Tekiner-Mogulkoc, Coit et al. 2015), in which the authors incorporated 

demand uncertainties considering conditional-value-at-risk and maximum regret as 

risk measures. Furthermore, Tekiner et al. used Monte-Carlo simulation to generate 
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numerous scenarios related to system sub-component availabilities and anticipated 

electricity load demand, in order to find a Pareto front for the multi-objective GEP 

problem (Tekiner, Coit et al. 2010). In this study, they solved the GEP problem as a 

two-stage stochastic programming problem. In that way, they managed to tackle the 

problem of simultaneously incorporating reliability and expansion planning 

optimization. 

Nevertheless, it would be interesting to examine the previous research studies 

on GEP problems from another scope; the optimization techniques. Several different 

solvers have been used in the past for solving the stochastic and dynamic, by nature, 

GEP problem. One of the most common approaches used to solve the GEP problem is 

without doubt the genetic algorithms. For example, Firmo et al. used a special type of 

chromosome, christened pointer-based chromosome (PBC), in order to develop an 

iterative genetic algorithm for solving the investment subproblems in GEP (Firmo and 

Legey 2002). Moreover, genetic algorithms were the chosen solver approach used in 

(Pereira and Saraiva 2011) and (Park, Kim et al. 2002), too. On the other hand, a 

mixed-integer linear programming (MILP) framework is considered appropriate in 

several other studies. As an example, Bakirtzis et al. presented a MILP model for the 

solution of the centralized GEP problem (Bakirtzis, Biskas et al. 2012). In their 

research work, the authors aimed to minimize the total present value of the 

investment, operation and unmet penalty energy costs net the salvage value of the new 

units at the end of the planning horizon. Moreover, Zhang et al. took into account line 

losses and energy storage systems in their deterministic single-stage MILP model 

(Zhang, Hu et al. 2013). Finally, metaheuristic techniques, in general, have been used 

widely to solve the GEP problem, such as in (Kannan, Slochanal et al. 2005). Therein, 

the authors applied and compared several metaheuristic techniques in their capability 
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of solving the GEP problem; differential evolution, evolutionary programming, ant 

colony optimization, and tabu search are only some of these techniques. It should be 

mentioned here that these studies seldom considered dynamic programming 

approaches and if so, they did with relaxed assumptions or reduced problem 

dimensionality. Of course, this fact serves as one of the main and ultimate goals of the 

current research. 

Last but not least, it is useful to mention that the GEP problem has often been 

studied in accordance with the TEP problem. Nemati et al. proposed a static model for 

coordinated generation and transmission expansion planning (CGTEP) (Nemati, 

Latify et al. 2018). While the main objective is still to minimize investment costs, 

operation costs and energy not served within the system, their model also targets in 

making the power more robust against physical deliberate attacks in the planning 

horizon. Finally, Zhang et al., although considered solely the transmission expansion 

planning problem, they successfully incorporated energy storage systems planning in 

their formulation (Zhang, Hu et al. 2013). 

At this point, there should be a clear attempt to pay specific attention in 

several GEP studies which incorporated elements that made them distinct from others, 

in the sense that these studies had transparent environmental considerations in their 

formulations and results. If needed to create a broad taxonomy of these research 

works, it could have been said that they mainly belong in two categories, based on the 

scope they examine the environmental impacts in their formulation. In the first 

category, researchers are trying to give an emphasis on minimizing emissions as one 

of their objective functions or measure health externalities occurring from 

environmentally-hostile GEP solutions. Studies incorporating climate change 

scenarios fall into this category, too. On the other hand, there are several studies 
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which are mainly concentrated on the higher penetration of renewables, either 

combined with storage or not. It is safe to assume that these studies, although serving 

the overall goal of providing “green” solutions of the GEP problem, are different from 

the studies of the first category in the way they approach and solve their formulated 

problems. 

Sirikum et al. presented an application of genetic algorithms for solving a 

mixed integer nonlinear programming (MNILP) version of the GEP problem, under 

consideration of power generation limits and load demand levels, loss of load 

probability (LOLP) levels and environmental limitations (Sirikum and 

Techanitisawad 2006). This study is mainly motivated by the widespread social 

awareness about environmental concerns and also by the continuously increasing 

attention that expansion planning policies pay to environmental costs. Therefore, the 

authors added the environmental factor into the GEP problem, by trying to control 

emissions. In another study, Tekiner et al. tried to include the minimization of air 

emissions as a separate objective in their multiple-objective formulation (Tekiner-

Mogulkoc, Coit et al. 2012). In order to do so, they considered the impact of several 

smart grid technologies by testing and comparing different scenarios, based on the 

level of deployment of these technologies. At this point, the focus should be given to 

the studies that tried to quantify the health or other externalities caused by large 

penetration of fossil fuels in the fuel mix of the resulting solution in the GEP problem. 

The purpose of these research works is mainly to highlight the importance of 

proceeding with “green” technologies, even though their economic impacts are not 

accurately measurable in most of the cases. Rodgers et al. solved exactly this 

problem, by enabling decision makers to directly assess the health implications of 

power grid expansion decisions by explicitly estimating the total societal costs and by 
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quantifying externalities of any proposed planning strategy (Rodgers, Coit et al. 

2019). One of the key research findings in this work is that by enforcing emission 

limits and by deploying renewable portfolio standards it is possible to reduce health 

and other damages, and consequently minimize the total societal costs. In another 

study, Rodgers et al. were able to provide significant algorithmic research 

advancements by developing an analytical metamodeling framework for direct 

estimation of health damages incurred in the process of GEP (Rodgers, Coit et al. 

2019). Khan et al. attempted to internalize environmental externalities on the GEP 

problem, with the ultimate goal of making a large scale integration of renewable 

energy sources economically feasible (Khan, Sun et al. 2014). Indeed, the results of 

this study showed that the planning interest inclined in favor of RES confirming that 

including externalities in the planning models can be used as an extremely efficient 

policy mechanism for the mass explosion and deployment of RES. Lastly, there are 

existing studies which considered exclusively climate change and made it their driver 

for the optimal solution of GEP problem. Li et al. supported that climate change is 

and will be affecting power plant investment decisions in new and more uncertain 

ways (Li, Coit et al. 2016). Therefore, the authors formulated a robust electric power 

GEP optimization model minimizing the expected total cost under different climate 

change scenarios. According to their methodology, the authors successfully proved 

that the stochasticity in the climate change affects directly not only the demand for 

electricity but also supply, reliability and other related factors. Therefore, it is 

considered necessary to be able to derive systematic methodologies incorporating 

stochastic modeling and also come up with new and efficient solution methods. 

Herein, the examination relates to the studies that fall into the second 

category; these studies mention directly the higher penetration that renewable energy 
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sources should have in the future grids and they formulate their problems based on 

that. Distributed energy resources are placed in the core of this research work, due to 

the fact that microgrid power and storage expansion planning is one of the main 

topics. Therefore, this part of the literature review requires special attention. Firstly, 

Rajesh et al. investigated the impact of the introduction of solar power plants with a 

storage facility in the GEP problem (Rajesh, Karthikeyan et al. 2016). This study, 

while attempting to highlight the challenges of the general decision-making process in 

introducing solar plants into an existing system, provided a four-level hierarchy which 

helped energy planners in understanding several policy-related issues that might arise 

in GEP and therefore in tailoring the corresponding solutions to each case separately. 

On the other hand, Luz et al. presented a multi-objective model for expansion with 

high penetration of renewable energy (Luz, Moura et al. 2018). In this study, the 

authors claimed that it was possible to meet 90% of the annual load with renewable 

sources (with 23% being supplied by non-hydro) and that the capacity of solar power 

could be increased from 21 MW to 40,000 MW by 2030. Furthermore, wind farms is 

a major consideration for the GEP problem (Hemmati, Hooshmand et al. 2016). In 

this research work, the authors used probabilistic modeling and Monte-Carlo 

simulation to consider the wind power uncertainty and to conclude that GENCOs and 

transmission companies (TRANSCOs) are able to achieve their goal of profit 

maximization if they incorporate in great detail in their optimization models the wind 

farm stochasticity. Last but not least, Careri et al. investigated the GEP problem under 

the prism that humans live in the Age of Green Economy, as they called it in (Careri, 

Genesi et al. 2011). In this paper, the impact of some of the most popular incentive 

systems (namely feed-in tariffs, quota obligation, emission trade, and carbon tax) on 

generation planning is studied. The authors formulated and extended a comprehensive 
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GEP model with an appropriately modified objective function and additional policy-

related constraints. The results of this research work showed that incentive systems 

for RES deployment and CO2 mitigation could greatly affect the strategic generation 

planning for a GENCO operating in a liberalized environment. Renewable-based 

generation expansion planning is also studied in (Pereira, Ferreira et al. 2017). The 

special characteristic of this work can be found in the fact that the authors considered 

explicitly the variable output of renewables in their binary mixed integer non-linear 

mathematical formulation. Lastly, Sadeghi et al. used the gravitational search 

algorithm to solve their comprehensive GEP model, with the ultimate goal of 

enforcing the GENCOs in more renewable energy sources investments (Sadeghi, 

Mohammadian et al. 2014). After their tests and results, they were able to conclude 

that it is possible to limit significantly emitted contaminations through careful and 

optimally designed RES-based penetration. Overall, it is safe to assume that 

renewable energy sources are lying in the core of future grids and should be 

thoroughly studied and optimized until they finally become a standard. 

2.2 Distributed generation in energy systems 

In this section of the dissertation, after providing the necessary definitions and 

explanations, the study is tailored specifically to distributed generation, renewable 

energy sources and microgrids. In the first subsection, a definition of a microgrid is 

given, the operation of a typical microgrid is explained and also several types of 

microgrids are presented. In the second subsection, specific emphasis is given to the 

various types of renewable energy sources used widely in microgrids, especially when 

it comes to solar cells or wind turbines. Finally, it is considered necessary to further 

highlight the importance of optimal planning in backup systems in general, and in 

microgrids specifically.  
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The main factors driving microgrid development and deployment in locations 

with existing electrical grid infrastructure fall into three broad categories: energy 

security, economic benefits and clean energy integration (Hirsch, Parag et al. 2018), 

which are simultaneously the backbone of the current research motivation. To be 

more specific, the main reason behind the mass interest given in microgrid 

applications in the United States has been their potential to increase the resilience (the 

ability to bounce back from a problem quickly) and reliability (the fraction of time an 

acceptable level of service is available) of “critical operations” in sectors such as 

transportation, communications, health care and emergency response infrastructure 

(Hirsch, Parag et al. 2018). 

It should be mentioned that the penetration of distributed generation (DG) at 

medium and low voltages, both in utility networks as well as downstream of the 

meter, is increasing in developed and developing countries worldwide (Hatziargyriou, 

Asano et al. 2007). It is considered true that a large-scale deployment of distributed 

energy resources (DERs) can potentially offset the requirement for traditional system 

expansion. However, managing a huge number of DERs is itself an operation that 

creates challenges. One of these major challenges is operating and controlling the 

network under preset safety and efficiency standards and luckily this can be addressed 

by microgrids at a satisfactory level.  

2.2.1 Definition and types of microgrids 

Although someone can find multiple definitions of microgrids in the literature, 

a formal one is given by the U.S. Department of Energy (Ton and Reilly 2017); a 

microgrid is a group of interconnected loads and distributed energy resources (DERs) 

with clearly defined electrical boundaries that acts as a single controllable entity with 

respect to the grid. It can connect and disconnect from the grid to enable it to operate 
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in both grid-connected or island modes. The characteristics mentioned in the 

definition above, present microgrids as relatively small-sized power systems with 

certain capabilities. These capabilities include but are not limited to self-supply of 

load demand, operating in islanding mode and generating and distributing 

simultaneously electricity to local customers (Parhizi, Lotfi et al. 2015). It may seem 

that microgrids play solely the role of backup generation. However, microgrids are 

more than just that. Their main difference is that backup generation units’ main 

purpose is to provide a temporary supply of electricity to local loads when there are 

operating problems and disconnections from the main grid. On the other hand, 

microgrids are entitled to a broader spectrum of abilities and are significantly more 

flexible than just a backup generation. In Fig. 2.5, the reader can see a schematic 

overview of a microgrid: 

 

Fig. 2.5 A schematic overview of a microgrid (Source: Microgrids at Berkeley Lab) 

Before proceeding with how a microgrid works, it should be useful to 

understand how the main grid works. The main grid is able to connect the power 

generation from the main power plants to residential, commercial and industrial lines 
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via the transmission network. Though it is known for its local character, a microgrid 

actually has similar functionality. However, despite the conventional energy sources 

that the main grid occasionally utilizes, a microgrid is highly dependent on renewable 

energy sources, such as solar cells, wind turbines and energy storage systems 

(Mbuwir, Ruelens et al. 2017). Besides the above-mentioned distributed energy 

sources, as well as the storage options, that a microgrid incorporates, it is crucially 

important to mention that almost every microgrid has a point of common coupling 

(PCC) - ON/OFF “switch” in Fig. 2.5 -, which allows the controller to operate the 

microgrid in a connected or disconnected mode from the main grid. The PCC may 

seem a negligible feature of a microgrid, but actually, it is one of the major 

advantages in contrast with the main grid. Microgrid’s capability of breaking off the 

tie with the grid and operating in an isolated mode is the characteristic that energy 

system planners desire for a reliable and resilient power generation and distribution. 

Last but not least, the PCC also maintains the voltage at the same level as the main 

grid, under normal operating conditions (Lantero 2014). Except the energy stability 

the microgrid has to offer, there are also potentially huge cost savings via leveling the 

cost of energy, due to the decentralization driven by renewables (Telegraph 2019). 

While there is a vast amount of great theoretical research around microgrids 

and their benefits, it could be really useful to track some real-life microgrid 

applications. According to Navigant Research, which has recorded microgrid 

applications since 2011, the United States has been the historical leader in deployed 

capacity; today, though, the U.S. and Asia have roughly the same capacity of live or 

ongoing microgrid projects, each with 42% of the market. Europe trails with 11%, 

Latin America with 4%, and the Middle East and Africa currently have just a 1% 

share (Hirsch, Parag et al. 2018).  
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At this point, it is considered appropriate to present the most common types of 

microgrids that someone can find operating nowadays around the globe (Hirsch, 

Parag et al. 2018). Firstly, campus microgrids use mostly combined cooling, heat, and 

power (CCHP, also known as “trigeneration”) technologies with the various loads 

collocated on a campus facility owned by the same entity. In another microgrid type, 

on-grid or off-grid military microgrids provide a quintessential characteristic; cost-

effective energy security. An illustrative case study of military microgrid research can 

be found at the Smart Power Infrastructure Demonstration for Energy Reliability and 

Security (SPIDERS) Joint Capability Technology Demonstration (JCTD), a three-

phase program (DoD 2015). Probably the most common type of microgrids available 

right now, are the residential microgrids. Abundant around the world, they are able to 

supply cost-efficient and reliable power supply at the level of individual homes, by 

using microgrid technologies. As a natural extension of the residential microgrids, 

someone can find also many community microgrids. These are again small-scale 

microgrids, however, now comprised by different facilities which require 

uninterrupted electricity supply at different reliability levels but are served by the 

same set of distributed energy resources and storage systems. Finally, an emerging 

type of microgrid lately, is the remote, or so-called “off-grid” microgrid, which is 

mainly located in developing and underdeveloped countries which currently lack 

access to uninterrupted power supply. These specific microgrids, which combine 

clean generation, storage and are sometimes supported by novel mobile payment 

platforms, can provide life-saving features to many people living in rural areas, 

allowing children to study at night or hospitals and medical centers to operate 

continuously (Hirsch, Parag et al. 2018). At this point, it should be made clear that the 

case studies that the current research attempts to explore concern mainly community 



34 

 

 
 

microgrids which possess islanding capabilities during grid outages via using a PCC. 

However, the theoretical methodologies developed and applied here could be easily 

expanded and modified in order to encompass the optimization of other types of 

microgrids. 

2.2.2 Generation options in microgrid 

According to the issue of power generation in a microgrid, the energy system 

planners have a wide variety of options. There are multiple studies in the literature, 

which cover exactly the topic of elaborating on the different distributed energy 

resources that can be incorporated in a microgrid structure (Akorede, Hizam et al. 

2010) (El-Khattam and Salama 2004) (Mariam, Basu et al. 2016). However, in this 

context, it is considered appropriate to mention only some of them and then elaborate 

more on specific renewable generation units, which are lying in the core of this 

research. 

Firstly, one of the options available in the market are the diesel and spark 

ignition reciprocating internal combustion engines. This option has several advantages 

and disadvantages (Hirsch, Parag et al. 2018); for example, these engines are 

dispatchable and have a quick startup, but on the other side they generate a large 

amount of noise and more importantly they contribute to a significant amount of 

greenhouse gas emissions. The next option for power generation is the microturbines; 

this technology is mechanically simple, provides multiple fuel options but has a 

reasonable amount of greenhouse gas emissions, too. Furthermore, there is a recent 

research development in the area of fuel cells, which have zero on-site pollution and 

high efficiency rates, but they are still more expensive than the rest of the options. 

Last but not least, the most common type of technology used in modern microgrids 

are renewable energy sources. In this broad class of technologies, someone can find 
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solar photovoltaic cells, wind turbines and mini-hydro plants. The apparent 

advantages following these options are the zero emissions and the zero variable/fuel 

operating costs. On the other hand, renewable-based generation is still not 

dispatchable without storage and it is also considered highly variable. 

Towards expanding the topics which are of main interest in this research work, 

it is considered necessary to provide detailed information about two of these 

renewable sources: solar cells and wind turbines. 

Only solar energy itself, it could be able to satisfy the whole global energy 

demand, if the necessary technology advancements are made (Kabir, Kumar et al. 

2018). Almost four million exajoules of solar energy reach the earth annually and a 

significant percentage is believed to be harvestable (iea 2018). Of course, it should be 

noted here that the solar power distribution and intensity are highly dependable on the 

exact location under examination. 

A very interesting matter that arises from the increasing penetration of solar 

energy in the market, is its implications on the reliability and resilience of the power 

supply. In recent years, it is observed that power outages on several systems around 

the globe occur more frequently. For instance, the large blackout caused by 

Superstorm Sandy affected 8.2 million people in 17 states (Hines, Apt et al. 2008). 

According to (Klinger, Landeg et al. 2014), only in the first quarter of 2013, there had 

been 14 power outages in the US, affecting more than half a million people. But even 

very recently, a massive blackout left millions of people without power in South 

America (KCBD 2019). It was considered as an unprecedented catastrophe and 

several hours after the outage occurred, half of the Argentina’s population was still 

without power. It is self-proven at this point that solar energy could play a crucial role 

in addressing this type of problems because distributed PV generation enables 
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customers to access electricity even during grid failure. As a result, several studies 

have explored the supplemental resilience value of adding battery capacity to PV 

systems (Birnie 2014) (Zhou, Tsianikas et al. 2019). 

On the opposite side, the main drawback of solar energy systems that holds 

back their full exploitation is their cost-efficiency. Although the costs of solar panels 

have declined rapidly, there are still technological gaps that need to be filled in order 

to achieve highly scalable deployment (Lewis 2016). For instance, improved thermal 

storage fluids would provide longer-term storage to compensate for cloudy days in 

areas of high direct insolation. In another area, some recently proposed ideas include 

the use of perovskite in the manufacturing of solar cells, which could theoretically 

increase their efficiency tremendously (EnergySage 2018). Besides the movements 

that need to be made from the technical scope, there are also policy incentives which 

can help in a great degree the solar growth. The solar Investment Tax Credit (ITC) is 

one of the most important federal policy mechanisms to support the deployment of 

solar energy in the United States (SEIA 2019). Solar panel installations peaked in 

2016 ahead of potential drop down of the ITC, but an extension in late 2015 has 

ensured federal policy stability through 2021. The yearly US installations, along with 

the ITC landmark dates, can be seen in Fig. 2.6: 
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Fig. 2.6 Yearly U.S. Solar Installations by sector, with ITC landmarks 

Besides the clear increasing trend of solar installations that can be noticed in 

Fig. 2.6, another thing worth mentioning is that the same trend exists in every sector. 

In particular, for residential customers, the amount of solar capacity installed is almost 

tripled up from the year 2013 to the year 2016. To sum up, it is required to mention 

that innovative applications and usages of solar energy are currently being studied in 

the literature. For example, Birnie researched the capabilities of vehicle solar roofs on 

energy capture (Birnie 2016). Birnie analyzed the operation of vehicle-installed solar 

panels in the roof from the perspective of a commuter’s travel and one of his major 

findings was that the energy capture may be blocked by battery capacity saturation. 

Another renewable energy source that is continuously increasing its share in 

the renewables market is undoubtably wind power. The wind is actually a form of 

solar energy caused by a combination of three concurrent events: the sun heating 

unevenly the atmosphere, irregularities of the earth’s surface and the rotation of the 

earth (Office 2014). The wind turbines are responsible for converting the kinetic 

energy of the wind to mechanical energy and then a generator finally converts into 

electricity. Wind turbines are mainly categorized based on their rotation axis; vertical-

axis turbines or horizontal-axis turbines. The size of utility-scale wind turbines can 

vary from a few kilowatts to many megawatts (Office 2014). In 2017, cumulative 

installed wind power capacity in the United States increased by 8.3 percent to reach 

around 89 gigawatts, according to (statista 2019). A schematic representation of the 

U.S. cumulative installed wind power capacity for the years 2000-2017 is presented in 

Fig. 2.7: 
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Fig. 2.7 Yearly U.S. Wind Power Capacity, 2000-2017 

While the increasing penetration of wind power in the energy markets is 

clearly a positive signal for the energy planners working with renewable sources, its 

economic feasibility as long as its capability for reliable power supply still remains 

debatable. Towards the direction of settling wind turbines as a standard for renewable 

energy plants’ design, there are several studies ongoing concerning the optimization 

of onshore or offshore wind farms. These studies break up into several 

subcomponents of the optimization process; turbine layout design, wind uncertainty 

modeling, and wake effect models are only some of them. As an illustration, Song et 

al. developed a two-stage optimization model for an offshore wind farm that 

combined optimal layout design and turbine maintenance strategies (Song, Li et al. 

2018). In this research work, the authors used probabilistic models to tackle the 

stochasticity of wind speed and direction and they applied their proposed algorithm in 

a case study for a wind farm along the New Jersey coast. Overall, their results are 
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reasonably optimistic for the future of this specific technology, since they are able to 

maximize the wind energy profit by integrating the decisions about layout design and 

maintenance scheduling. 

2.2.3 Importance of optimal planning on backup systems 

While it is well-established up to now that reliable and cost-efficient power 

supply is a crucial element of operating energy systems of any size or any type, it is 

considered mandatory at this point to pay more attention to backup systems and 

microgrids in general. This decision can be sufficiently justified by two main reasons: 

the various uncertainties incorporated in the operation of the local grids which mainly 

utilize distributed energy resources, and the uninterrupted power supply dictated by 

the type of facilities they have promised to serve. While the uncertainties are abundant 

in almost every microgrid around the globe, the second reason applies mainly to this 

category of microgrids which encompass hospital facilities, governmental buildings 

and even education centers. In these facilities, the unmet penalty costs incurred by 

potential loss demand are much more devasting, if properly quantified. However, 

besides the economic damages resulting from power losses, there are also other types 

of costs incurred, even more important in some cases; health implications and societal 

costs are only some of them. Consequently, there is an emerging need for further 

research whose purpose would be to optimally design these systems from both 

economic and reliability aspects. 

Intermittency is not the only reason behind the multiple uncertainties existing 

in the planning process of microgrids. Moreover, there is a high degree of variability 

in forecasted topical load demand as well as in market prices. Consequently, many 

researchers have studied the expansion planning of microgrids while carefully 

modeling and closely examining the various uncertainties. Ceseña et al. adopted 
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methods of finance, and more specifically real options, to solve a stochastic mixed 

integer linear program for the optimization of distributed generation system expansion 

planning subject to relevant uncertainties (Cesena, Capuder et al. 2016). Continuing in 

the real options approaches, Farzan et al. modeled the inherent uncertainties of the 

microgrid investment problem by utilizing closed form contingent analysis (Farzan, 

Mahani et al. 2015). The authors provided an analytical framework in assessing the 

value of the option to invest instead of directly making this decision. This work is 

particularly important in this research context, due to the stochastic decision-making 

problem that is formulated and solved in Section 4, too. The problem’s stochasticity is 

also a primary consideration in (Khodaei, Bahramirad et al. 2015). The authors 

decomposed the microgrid planning into two phases; an investment master problem 

and an operation subproblem. The specific uncertainties considered in this study 

include but are not limited to load forecasts, renewable energy generation, and market 

prices. However, one novelty of this research is the incorporation of another type of 

uncertainty, specifically related to when and how long disturbances occur in the main 

grid, or so called “grid outages”. Grid outage events, which are rarely studied in great 

detail in the literature, is one of the primary research considerations in this 

dissertation. An accurate modeling of grid outages is essential, due to the fact that it 

significantly affects the optimization results in microgrid planning. The issue of when, 

where and how long natural disasters will happen and last is another major concern 

and source of uncertainty. This happened to be exactly the motivation behind the 

research presented in (Chen and XI 2018). The authors used a joint power flow 

analysis and Monte Carlo simulation approach to optimally design a microgrid under 

natural disasters. By testing different scenarios of increasing severity, they were able 

to provide a reliability-based two-stage design selection process for the distributed 
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generation resources used in the microgrid. Nevertheless, it is worth mentioning that 

uncertainties are considered in various other studies in the literature such as in 

(Khayatian, Barati et al. 2018) and in (Wagar, Wang et al. 2015). 

Wang et al. concentrated on isolated microgrids and their optimal expansion 

plans (Wang, Chen et al. 2017). Isolated microgrids are the responsible energy 

suppliers for remote and rural areas and therefore they certainly fall into the category 

described before. In their research work, Wang et al. formulated a tri-level expansion 

planning framework, composed of a demand expansion layer, a capacity optimization 

layer and an operation optimization layer. They are also able to test a case study based 

on Weizhou Island in Guangxi Province, China and proved that the yearly profit could 

increase by 25% by utilizing properly controllable loads. Solar-powered microgrids 

are the core topic of research in (Mahani, Liang et al. 2019). In their research work, 

the authors posed the goal of optimizing operation and maintenance (O&M) policies 

in such types of microgrids. Swartz et al. developed a methodology for the proper 

sizing of renewable energy systems in microgrids (Swartz, Ghofrani et al. 2017). By 

adopting relevant physics equations and by integrating the design suggestions into a 

hybrid energy system, the authors are able to test their methodologies in the software 

TRNSYS and conclude to the optimal system configurations. In a similar topic, 

Hajipour et al. took into account reliability issues and cost factors in their study about 

stochastic expansion planning of remote microgrids (Hajipour, Bozorg et al. 2015). 

Recognizing that this type of microgrids is generally supported by diesel generators, 

the authors highlighted the high costs incurred by this fact. Therefore, they proposed a 

stochastic programming approach along with scenario reduction techniques, in order 

to successfully deploy renewable energy sources, such as wind farms, and storage 

systems in isolated microgrids. A critical issue when dealing with this type of 
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problems is without any doubt the proper inclusion of unmet demand in the 

optimization models. While reliability is used as a model constraint in many 

optimization models existing in the literature, the attempt to properly quantify the 

penalty costs of unmet load demand is less. Khodaei and Shahidehpour presented an 

algorithm whose objective is to minimize the total system planning costs jointly with 

the expected cost of unserved energy (Khodaei and Shahidehpour 2013). The problem 

that the authors solved in their study is a microgrid-based co-optimization of 

generation and transmission planning and they managed to do so by explicitly 

defining the expected energy not served by the microgrid and by running a case study 

in a modified IEEE 118-bus system. 

In addition, it should not be omitted to pay special attention to the recurring 

challenges faced when dealing with generation planning in microgrids; intermittency 

and manufacturing barriers, which keep efficiency down and simultaneously costs up. 

Therefore, it is obvious that the introduction of an emerging technology is needed, 

which also happens to present a declining trend in its incurred costs: energy storage 

(World 2018). By using recent advancements in software and management tools, it 

could become possible to utilize this technology at maximum; this fact could not only 

tackle the problem of renewable power output variability, but could also drive the 

total system costs of a microgrid down and therefore make it obviously more 

attractive. Overall, it would be useful to elaborate more on this exact research field in 

the next section of the dissertation. 

2.3 Storage solutions for microgrids 

The inclusion of energy storage systems (ESS) in almost all types of 

microgrids becomes increasingly important (Mbuwir, Ruelens et al. 2017) and the 

reason behind that is not only the problem of intermittency as mentioned before. ESS 
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can benefit the microgrid in multiple other ways, such as peak shaving, smoothing 

power flow, volt-ampere reactive (Casares, Lopez-Luque et al.) support and other 

behind-the-meter benefits (Mahani, Nazemi et al. 2020). This fact along with the 

forecasted decline in their investment costs can definitely make ESS an integral part 

of most medium or large-scale microgrids. In order to prove that argument, it should 

be mentioned that according to Navigant Research, ESS are present in more than 40% 

of the installed new project capacity after their update in 4Q of 2016 (Knowledge 

2016). More specifically, the chart below in Fig. 2.8 shows the percentage of ESS 

utilization by microgrid segment for both the 4Q 2015 and the 2Q 2016: 

 

Fig. 2.8 ESS Utilization by Microgrid Segment 

While it is clear that ESS utilization grew in almost every sector, it is worth 

observing that the biggest increase occurred in the commercial and industrial sectors. 

The findings of this report would become even more useful when combined with 

another finding of Navigant Research: the solar PV capacity grew by almost 840 MW 

since the company’s last update (Knowledge 2016). It is already known that 

renewable energy sources, such as solar or wind energy, have a higher need for ESS 
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due to their inherent characteristics. Consequently, it would be very reasonable to 

assume that a more explosive deployment of ESS could coincide with an equally 

significant deployment of solar PV capacity. 

Towards this direction, many recent research studies have been concentrated 

on exploring photovoltaic and battery systems as a model for strengthening the 

resilience of distributed power generation to reduce power interruptions of critical 

facilities (O'Brien and Hope 2010) (Prehoda, Schelly et al. 2017). The more frequent 

power outages have adverse impacts on industrial operations and personal lives 

(Amin 2008) (Zhou, Huang et al. 2018). However, adoption of ESS allows customers 

to be electric grid independent in some areas where the grid is distant or is not very 

reliable (Bhattacharyya 2012). Additional benefits of these systems are their 

independence and energy-saving potential as well as their environmentally friendly 

character (Lucio, Valdes et al. 2012). PV + battery systems were not economically 

viable until recently as the battery prices have come down. Batteries though remain 

relatively expensive especially in contrast with other distributed backup energy 

resources, e.g., diesel generators. Therefore, there is a pressing need to understand 

battery size and cost tradeoffs for adding battery storage capacity to any existing PV 

systems, especially when evaluating the economic consequences to health-care, 

manufacturing, or other sectors under circumstances of outages, while making careful 

assessment of the reliability improvements for meeting load demand (Hontoria, 

Aguilera et al. 2005) (Mellit, Kalogirou et al. 2009) (Jakhrani, Othman et al. 2012). 

2.3.1 Review of energy storage system technologies 

Given that the ESS importance in microgrid applications is already illustrated 

up to now, it is considered appropriate to provide a comprehensive review of the 

different types of ESS at the market at this point. 
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Mechanical energy storage systems are beneficial because of their flexible 

operation and their ability to deliver the stored power when required for mechanical 

work (Göğüş 2009). Three major subclasses that fall into the greater family of 

mechanical energy storage systems are flywheel energy storage systems, compressed-

air energy storage systems and gravity energy storage systems (Faisal, Hannan et al. 

2018). The flywheel is a massive rotating cylinder that is supported on a stator by 

magnetically levitated bearings (Chen, Cong et al. 2009) and is the main part of the 

flywheel energy storage systems (FESS). FESS can be divided into two main 

categories: high-speed and low-speed FESS. While it is not one of the major scopes of 

the current research work to elaborate in great detail about the mechanisms underlying 

the energy storage systems, it is considered appropriate here to mention some of the 

advantages of the FESS technology: high cycle life (hundreds of thousands), long 

calendar life (more than 20 years), fast response, high round trip efficiency, high 

charging/discharging rates, high power density and low environmental impacts 

(Amiryar and Pullen 2017). Therefore, it is easy to see why this technology has great 

potential to be used in many real-life applications in the future. However, it should be 

noted that it is still very expensive to install, and especially for small-scale 

microgrids. 

Electrochemical storage systems (EcSS) are definitely the largest and most 

common group of energy storage devices and refer mostly to conventional 

rechargeable batteries and flow batteries (Faisal, Hannan et al. 2018). The biggest 

advantage of this storage category is that it is available in different sizes and possesses 

different characteristics depending on the battery type that someone chooses. 

Undoubtedly batteries play a major role in the current research work, so a deeper dive 

in some battery types commonly used in microgrid applications is appropriate. 
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Concerning mobile consumer electronics, the most important type of battery at the 

moment is without any doubt the Li-ion battery. Li-ion batteries exchange lithium 

ions between the anode and the cathode, which are made from lithium intercalation 

compounds (IRENA 2017). A schematic representation of a Li-ion cell composed by 

lithium metal oxide cathode and carbon-based anode can be seen in Fig. 2.9: 

 

Fig. 2.9 A typical Li-ion cell 

Overall, Li-ion batteries have the advantage of high energy and power density 

when compared to other battery technologies. It is also known that they have high 

power discharge capabilities, excellent round-trip efficiency, a relatively long lifetime 

and a low self-discharge rate. On the other hand, someone could mention that their 

costs are still high and also there are some concerns about their thermal stability and 

safety (IRENA 2017). Another important type of battery is the lead-acid battery, 

which is mainly famous for its cost-effectiveness. Most of the lead-acid batteries use 

liquid sulfuric acid as an electrolyte. The advantages and disadvantages of a lead-acid 

battery are well-known and studied; it is probably the less costly type of storage 

available in the market and it can be easily implemented in large-scale storage 

applications, but on the other hand, has a comparably low round trip efficiency and 

also has a low cycle life. The last type of battery that is worth a special reference, is 
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the family of redox flow batteries. Flow batteries (FBs) operate in charged or 

discharged mode by a reversible chemical reaction (Faisal, Hannan et al. 2018). This 

chemical reaction is happening between the battery electrolytes, which are contained 

in separate tanks. The vanadium redox flow battery (VRFB) specifically is based on 

redox reactions in the cell that are fed by active ionic vanadium materials from the 

tanks, resulting in electron transference in the circuit (IRENA 2017). The mechanism 

of a VRFB is shown illustratively in Fig. 2.10: 

 

Fig. 2.10 Operation mechanism of a vanadium redox flow battery system 

There are really plenty of advantages accompanying this specific battery type; 

long cycle life, long duration discharge feature and fast response times are only some 

of them (IRENA 2017). Its low efficiency, compared to Li-ion, and its high repair and 

maintenance costs are the only drawbacks of VRFB that are worth-mentioning 

besides its cost. This last factor, which seems to be rapidly declining, has the potential 

to become a tie-breaking factor on the competition between VRFB and the rest of the 

ESS. 

Although the main energy storage systems used in microgrids is a topic 

already covered, it is now necessary to proceed with some other options that the 

energy planners have or may have in the near future. For example, there are chemical 
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storage systems and the most famous system in this family is undoubtedly the 

hydrogen fuel cell (HFC) storage system. It is a topic that has recently attracted a lot 

of research attention and this of course happened for specific reasons; it can be used 

for zero-emission electricity generation and also can be applied in distributed 

generation to the electric automobile industry (Faisal, Hannan et al. 2018). The main 

process involved in this storage system is that HFC burns at a quick rate and releases 

water vapor only into the environment. As long as the environmental footprints of 

HFC continue to be negligible and its associated raw materials costs are decreasing, it 

should not be surprising to see this technology attracting more and more enthusiasts. 

Last but not least, it is useful to note here that there are also even more storage options 

available like supercapacitors, which belong to the broad family of electrical storage 

systems, or like sensible heat systems, which belong to the category of thermal 

storage systems. 

Herein, it should be mentioned that no matter the type of energy storage 

system chosen for an application, there are always inherent uncertainties concerning 

the state-of-charge or the general management of the system. Xi et al. have covered 

exclusively the topic of battery diagnostics, prognostics and uncertainty management 

in (Xi, R. et al. 2016). Furthermore, Dahmardeh et al. studied the topic of state-of-

charge uncertainty in (Dahmardeh and Xi 2019). In their research work, the authors 

provided a unified framework for state-of-charge estimation given the variability that 

exists from cell-to-cell. Based on the number of cells that exist in a battery pack, they 

propagated the model parameters in order to provide an estimate for the overall state-

of-charge. 

It is mandatory to conclude the taxonomy of different energy storage systems 

by providing some information about hybrid energy storage systems (HESS). HESS 
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can be considered as a separate category of storage systems, but it is actually the 

combination of two or more aforementioned ESS. Given the fact that it is widely 

recognized that there is no single storage type that can provide all the desirable 

features from the planner’s perspective, integrating more ESS in the same application 

could actually be a great idea (Faisal, Hannan et al. 2018). Extensive literature review 

in this area has proved that efficient configurations of HESS can be achieved by 

optimizing the power management strategies involved (Jing, Lai et al. 2017) or by 

combining storage systems with supplemental characteristics (Bocklisch 2015); an 

illustrative example for the latter is the integration of conventional batteries (high 

energy) with flywheel energy systems (high power) or fuel cells (high energy) with 

batteries (high power). 

2.3.2 Previous research on energy storage systems in microgrids 

After demonstrating the urgent need for utilizing ESS in the modern grids, it is 

time to turn the attention to the existing research works that studied the optimal ESS 

sizing and integration in microgrids. Although the problem is roughly the same in all 

cases, there are some distinct traits in these studies depending on whether the authors 

are considered isolated (“off-grid”) or connected (“on-grid”) systems. Before 

presenting the relevant works, it should be noted that these studies seldom considered 

the dynamic nature of storage investments in a microgrid and/or whether hybrid 

energy storage systems would provide benefits to the local grids. It should be 

highlighted that the close examination that is attempted at these topics is another 

research novelty of the current work. 

Alsaidan et al. formulated a comprehensive model with the goal of optimal 

battery storage sizing in microgrid applications (Alsaidan, Khodaei et al. 2018). The 

real novelty of their work though lies in the fact that they incorporated accurate 
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modeling for several problem-related factors that are usually ignored; distributed 

deployment, the impact of depth-of-discharge (DoD) and the number of 

charging/discharging cycles in battery life are only some of them. Bahramirad et al. 

put specific emphasis on the reliability constraints of the ESS optimization sizing 

problem (Alsaidan, Khodaei et al. 2018). In another study, Nandi and Ghosh ran a 

feasibility test for a hybrid power system in Bangladesh, composed by wind-PV-

battery (Nandi and Ghosh 2010). Their study showed that the optimized version of 

this hybrid system was more cost-efficient than all the other possible configurations 

that they tried. Mahani et al. presented a mathematical model to assess distributed 

energy resources, combined with energy storage, from both economic and operational 

perspective (Mahani, Jamali et al. 2020). Alsaidan et al. dealt again with the problem 

of optimal battery sizing in microgrids, however from a different perspective; through 

their mathematical formulation, they were able to compare two distinct ESS 

configurations: the aggregated and the distributed one (Alsaidan, Khodaei et al. 2016). 

Dufo-López and Bernal-Agustín presented a novel triple multi-objective 

design of isolated hybrid systems (Dufo-Lopez and Bernal-Agustin 2008). Their three 

objectives consisted of minimizing the total cost, pollutant emissions, and unmet load. 

The authors used an evolutionary algorithm, supported by a secondary genetic 

algorithm, to solve their problem and they concluded that by using their methodology, 

the system designers are able to select the most adequate solution from the non-

dominated set of solutions obtained, based on their application-specific criteria. 

Mandelli et al. examined closely the effect of load profile uncertainty on the 

optimization process of an isolated PV + battery system used for rural electrification 

(Mandelli, Brivio et al. 2016), while Diaf et al. made a technical and economic 

evaluation of hybrid PV/wind/battery system in Corsica island (Diaf, Belhamel et al. 
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2008). Kaldellis et al. tailored his focus on autonomous small islands (Kaldellis, 

Zafirakis et al. 2010); the authors proposed a comprehensive methodology in order to 

determine the sizing of an autonomous system at the lowest possible cost. Another 

really useful study in this research area can be found in (Maleki and Pourfayaz 2015). 

The authors of this research work compared different evolutionary algorithms in their 

performance when solving the optimization problem of sizing a hybrid 

wind/PV/battery system. Another research contribution of this work lies in the fact 

that they have used a constraint for the maximum allowable loss of power supply 

probability (LPSPmax), which resulted in more reliable final system configurations. 

Arun et al. presented a methodology for the optimum sizing of a PV + battery system 

with different reliability levels considering solar insolation uncertainty (Arun, 

Banerjee et al. 2009). Cabral et al. developed a stochastic model for optimal sizing of 

stand-alone PV + battery systems based on given load, which is shown to be more 

reliable and realistic (Cabral, Oliveira et al. 2010). Birnie focused on using known 

seasonal/daytime insolation variability to predict likely steady through-the-night 

emergency power delivery levels for PV + battery systems for arbitrary PV array size 

and battery storage capacity, assuming a system that can shift to island mode in 

response to a storm-damaged grid outage (Birnie 2014). In another study focused on a 

remote island, Ma et al. used HOMER software to run simulations and evaluate an 

“off-grid” hybrid PV/wind/battery system from technical and economic aspects (Ma, 

Yang et al. 2014). In (Yang, Lu et al. 2007), Loss of Power Supply Probability 

(LPSP) model and Levelized Cost of Energy (LCOE) are used in joint with a model 

for a hybrid PV/wind/battery system, in order to construct an analytical and detailed 

Hybrid Solar-Wind System Optimization Sizing (HSWSO) model. Lastly, Zhou et al. 

presented a very intriguing research work in (Zhou, Lou et al. 2010). The authors’ 
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main research purpose is to present a detailed overview of the research progress 

happened so far in the area of optimum sizing of stand-alone hybrid energy systems. 

Besides that, the authors are able to motivate and inform the readers for several areas 

in which more research and development efforts need to be done. 

Finally, there are research attempts in an area whose main scope is slightly 

deviated from what it is seen up to now. For example, Hemmati et al. orchestrated a 

dual optimization problem for their microgrid optimization: short-term scheduling and 

long-term expansion planning (Hemmati, Saboori et al. 2017). Although the presence 

of renewable energy sources in joint with energy storage is present in this research 

paper too, the fact that they attempted to coordinate two problems of different time 

scale dissociates their work from others. In another work by Hemmati et al. the 

optimization focus had been given in large scale energy storage systems and how their 

optimal sizing can affect generation expansion planning costs and environmental 

footprints (Hemmati 2016). Finally, Mahani et al. formulated two stochastic 

optimization problems concerning the energy storage allocation and scheduling in 

systems with high penetration of renewables (Mahani, Farzan et al. 2017). In their 

illustrated example, they proposed an approximation model which managed to bring a 

45% reduction in computational complexity. 

Overall, it is safe to assume that although the relevant studies in the field are 

abundant, research attempts to provide unified and holistic dynamic frameworks for 

tackling the problem of optimally expanding the power and the storage of microgrids 

in a finite time horizon are rarely seen. Also, the integration of different ESS in the 

so-called hybrid energy storage systems (HESS) is clearly missing from the vast 

majority of those studies. Herein, it should be mentioned that it is the author’s 
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responsibility for filling these gaps in the literature with the research that is presented 

in this framework. 

2.4 Energy load forecasting using neural networks 

In this section of the dissertation, the attention is given to neural networks and 

how these can be used as a forecasting tool for energy load. Artificial neural networks 

have proven to be a reliable methodology on various forecasting tasks. This of course 

includes applications closely related to microgrids’ environments (Hernandez, 

Baladron et al. 2014). The techniques used when it comes to energy load forecasting 

include traditional discrete-time neural network-based approaches, but also time 

horizon independent methods (Xie, Parlikad et al. 2019). In the first subsection, three 

classical neural network approaches are explained in great detail. In the second 

subsection, the attention is turned into techniques that can be utilized in order to 

enable the development of neural networks with multiple parallel input and multi-step 

output. Multiple parallel input refers to multiple synchronous demand datasets coming 

from various sources and facilities. In other words, someone could be able to produce 

forecasts for many different load profiles using a single neural network architecture. 

Moreover, by using these techniques, someone could also boost the prediction 

performance of the neural networks with the addition of meteorological data. This 

type of data has extensively been used when energy demand (or renewable energy 

output) forecasting is the problem (Chen, Duan et al. 2011). On the other hand, multi-

step output refers to the fact that many times the forecast needs to be made for not just 

one, but multiple steps ahead. 

2.4.1 Classical neural network approaches 

The most used neural network-based frameworks for short-term energy load 

forecasting are illustrated in this section. Neural networks can be broadly defined as 
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powerful learning models which have already proved their efficacy in a wide range of 

supervised and unsupervised learning tasks (Lipton, Berkowitz et al. 2015). Their 

success is mainly based on their ability to learn hierarchical representations and 

complex underlying features in various datasets by utilizing the ever more increasing 

computational power and storage capability that the new digital era has brought to the 

table. Despite their superiority over traditional techniques in various tasks, they still 

have limitations and therefore room for improvement. After defining the vanilla 

neural network, more advanced configurations are explained, such as the recurrent 

and the convolutional neural networks. 

Artificial neural network (ANN) is a network whose inspiration is heavily 

based on the neural structure of the human brain (Muralitharan, Sakthivel et al. 2018). 

The neurons in an ANN are, like in human brain, trained using given data points and 

with the sole purpose to minimize the prediction errors for this specific dataset. The 

overall goal is therefore to find the optimal weights that connect the existing neurons 

in a specified ANN architecture. 

The next question that arises here is how these neural nodes of computation 

could be organized so they become capable of recognizing complex patterns and 

representing highly nonlinear functions. Feedforward networks are a restricted class 

of networks which form a directed and acyclic graph of nodes. Using this 

configuration, the neural nodes are arranged in the following layers: input, hidden and 

output. Of course, depending on the desired depth of the ANN someone could use any 

number of hidden layers in this configuration. In order to introduce nonlinearity in the 

ANN, activation layers are succeeding some or all the hidden layers of the network. 

These activation layers transform their given input based on rules defined by 



55 

 

 
 

activation functions. Common activation functions nowadays are the sigmoid or the 

rectified linear unit (ReLU). 

Using the sequential organization defined above, the feedforward ANN is able 

to map the input X  to the desired output ŷ . The input is fed to the input layer of the 

network, flows to the hidden and activation layers of the network and finally output is 

generated in the output layer. The most common and successful algorithm used to 

train feedforward ANNs is called backpropagation (Lipton, Berkowitz et al. 2015). 

The goal is to minimize the loss function  ˆ,L y y , whose goal is to penalize the 

distance between the predicted output ŷ  and the actual output y . In order to do so, 

the backpropagation algorithm uses the chain rule to calculate derivatives of the loss 

function with respect to each weight and then update these weights using gradient 

descent. Nowadays, most neural networks are trained using several variants of 

stochastic gradient descent with mini batches, such as the popular Adam algorithm 

(Kingma and Ba 2014). For example, stochastic gradient descent with mini-batch size 

equal to 1, updates the weights based on: 

 w iw Lw                                                                                                                             (2.12) 

Where w  is the network weights,   is the learning rate and w iL  is the 

gradient of the loss function with respect to the weights as calculated by a single 

training example  ,i ix y . 

At this point, it is well proven that many feedforward neural networks have 

achieved state-of-the-art performance in various supervised or unsupervised learning 

tasks. However, their high performance depends on the assumption for independence 

between training and testing data (Zheng, Xu et al. 2017). This assumption clearly 

does not hold when dealing with time series datasets. In this scenario, there is 
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correlation between present and past data and therefore between training and testing 

datasets.  

On the contrary, Recurrent Neural Networks (RNNs) have been specifically 

designed to work with this kind of datasets. RNNs allow a bidirectional information 

flow, by incorporating recurrent edges that connect adjacent time steps (Lipton, 

Berkowitz et al. 2015). By doing so, they are able to capture the temporal 

relationships inherently existing in the time series dataset. At each time point, the 

nodes in the network receive information from both the current data points but also 

from the hidden node values that stored information from previous time steps. Given 

an input time series  1 2, ,..., Tx x xx , the RNN computes a hidden sequence 

 1 2, ,..., Th h hh  and an output sequence  1 2, ,..., Ty y yy  by using the following 

equations: 

 1t hx t hh t hh f W x W h b                                                                                               (2.13) 

 t yh t yy g W h b                                                                                                                         (2.14) 

where hxW , hhW  and yhW are the input-hidden, hidden-hidden and hidden-output weight 

matrices. The biases for the hidden and the output layer are represented by hb  and yb

respectively and finally f  and g  are the activation functions. 

In this work, the emphasis is given on two specific RNN architectures. The 

first one is the most popular architecture up to now, called Long Short-Term Memory 

(LSTM) and initially introduced in (Hochreiter and Schmidhuber 1997). The second 

one is a slight variation of LSTM, called Gated Recurrent Unit (GRU) that is now 

considered equally powerful but computationally more efficient than its predecessor.  

The motivation behind the development of the LSTM networks is mainly the 

vanishing gradients problem of the classic RNN architecture when dealing with long-
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term dependencies. Therefore, it is considered necessary to introduce the notion of 

memory in the RNNs. In order to do so, the LSTM architecture utilizes four integral 

parts: the input gate, the forget gate, the output gate and the memory cell state. A 

schematic representation of an LSTM can be seen in Fig. 2.11: 

 

Fig. 2.11 Schematic representation of an LSTM module 

First, the forget gate is responsible for helping the network to forget useless 

past information and update accordingly the memory cell. The input gate controls the 

new memory content to be added. Sigmoid functions σ  are used to compute their 

activations: 

( )1t fx t fh t ff W x W h bσ −= + +                                                                                                      (2.15) 

( )1t ix t ih t ii W x W h bσ −= + +                                                                                                          (2.16) 

In order to compute the new memory cell state, two element-wise 

multiplications are needed, between the output of the input gate and the new values to 

be added and between the output of the forget gate and the previous memory cell 

state: 

( )1 1t sx t sh t s t t ts g W x W h b i s f− −= + + +                                                                                  (2.17) 



58 
 

 
 

Finally, using the information from the forget and input gate, and from the 

updated cell state, the network is able to compute the output gate to  and the final 

output th : 

( )1t ox t oh t oo W x W h bσ −= + +                                                                                                       (2.18) 

( )t t th s oϕ=                                                                                                                                (2.19) 

where ϕ  is the activation function of the memory cell. Of course, it should be noted 

again that fxW , fhW , ixW , ihW , sxW , shW , oxW  and ohW  represent input-hidden and hidden-

hidden weight matrices for the forget gate, input gate, memory cell and output gate, 

respectively. Moreover, fb , ib , sb , and ob  denote the bias units. It can be seen here 

that, unlike the traditional recurrent unit, the LSTM is able to make decisions on 

whether to keep or forget incoming sequential information (Chung, Gulcehre et al. 

2014). 

In a similar fashion, GRUs were first introduced in 2014 in (Cho, Van 

Merriënboer et al. 2014) to make the recurrent unit capable of capturing temporal 

information from different time scales. An illustration of a GRU unit can be seen in 

Fig. 2.12: 



59 

 

 
 

 

Fig. 2.12 Schematic representation of gated recurrent unit (GRU) 

GRU is able to combine both input and forget gates to one single, update gate. 

In addition to this gate, it uses another gate called reset gate. The equations for these 

newly introduced update tz  and reset gate tr  are presented here: 

 1t zx t zh t zz W x W h b                                                                                                          (2.20) 

 1t rx t rh t rr W x W h b                                                                                                           (2.21) 

The resulting network is a simplified version of the LSTM, with fewer weights 

to compute and therefore it is more efficient in terms of computational cost. 

Convolutional neural networks (CNNs) were first developed for handling two-

dimensional image data, with the idea of local connectivity. In order to achieve this 

local connectivity, the weighted sums of the previous neural networks are now 

replaced with convolution operations. In each layer of the CNN, the input is 

convolved with the weight matrix (called filter in this context) in order to create a 

feature map. The intuition behind this approach is to be able to create a network that 

is extracting all the useful spatial information from the input and results into more 

efficient training. 
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The input to a traditional convolutional layer is usually three-dimensional: the 

height, weight and number of channels. In each layer of the network, the input is 

convolved with a set of three-dimensional CNNM filters, in order to create the feature 

output map. The third dimension of these filters is always the number of channels in 

the input (Borovykh, Bohte et al. 2017). However, a one-dimensional CNN is a 

convolution network which is designed to operate over a 1D sequence 

 1 2, ,..., Tx x xx . As in the traditional CNN hidden layer, the 1D convolutional 

layers are followed by pooling layers, whose responsibility is to preserve only the 

most salient features. In each of these hidden convolutional layers 1,2,..., CNNl L , the 

input feature map 
1lx 
 is convolved with a set of 

CNN

lM filters l

pw , where 

1,2,..., CNN

lp M . It should be noted here that in the case of time series data, the input 

shape is of dimension in fN n , where inN  is the number of time steps in the input 

window and fn is the number of features in the dataset. The output of the convolution 

operation is then passed through the nonlinearity activation layer g to finally produce 

the output feature map 
lx . This whole process is described in Eq. (2.22): 

        1 1

1

, , ,

CNN
lM

l l l l l

p pi
j m

x i h g w x g w j m x i j m


 

 

 
     

 
                                     (2.22) 

The output of CNNL  convolutional layers in total is
CNNLx . In the 1D CNN, this 

output is then usually passed through a flatten layer to reduce the feature maps to 1D 

vectors and finally by one or more densely connected layers in order to produce the 

final predicted output ŷ . Of course, the purpose of the optimization algorithm is again 

to penalize the distance between the predicted output ŷ and the actual target y . 

2.4.2 Pre-processing techniques for multiple parallel input and multi-step output 
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For the context of this section, let us consider a matrix inX , consisting of fn

stacked columns, where each of these columns represents an input feature. Herein, by 

input feature it means either a real time series vector of electricity load demand for a 

specific facility or any other feature available to use, i.e. weather predictors such as 

temperature or precipitation. Therefore, it is possible to define  1 2, ,...,
f

in in in in

nX x x x . 

Each column in this matrix contains inN observations, where inN is the number of time 

steps of the input window, so  ,1 ,2 ,, ,...,
in

in in in in

i i i i Nx x x x  where  1,2,..., fi n . Now, 

define outN  as the number of time steps of the output window and hn  the number of 

different facilities that their demand should be predicted. Therefore, the task of the 

multi-step ahead forecasting is using inX to predict outX , which can be defined as 

 1 2, ,...,
h

out out out out

nX x x x where  ,1 ,2 ,, ,...,
out

out out out out

i i i i Nx x x x  and  1,2,..., hi n . 

The main strategies that are used at this task of multi-step ahead forecasting 

are three-folded (Zheng, Xu et al. 2017): the recursive strategy, the direct strategy and 

the multiple-input multiple-output (MIMO) strategy. It would be useful here to see 

what each of these strategies represent. Firstly, the recursive strategy is probably the 

most intuitive of all these. It refers to generating one-step ahead predictions and 

incorporate these in the input dataset one-step at a time in a recursive fashion. Using 

this strategy and the notation defined above, it is possible to produce a matrix outX  in 

a total of outN  times, where  , ,j out m j infX X  is the prediction for the output time 

step j and  , , , ,

, , 1 ,, ,...,
out

j in j in j in j in

i i j i j i j N x x x x  where  1,2,..., fi n  and mf  is the model 

estimator. On the other hand, the direct strategy refers to constructing outN  different 

models, each for every time step of the output window. Therefore, in that case it is 
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true that  , ,j out j j infX X  where  1,2,..., outj N  and jf  is the estimator for the 

output time step j. One advantage of the direct strategy against the recursive is that it 

does not utilize any forecasted data as part of the input data and therefore it is less 

prone to accumulated errors. However, given the fact that all models are trained 

separately in the direct strategy, there is a risk of degrading performance due to the 

statistical independence among the outN  forecasted values. Both aforementioned 

techniques are considered single output techniques as they are able to map multiple 

inputs (vector) to a single output (scalar). Lastly, the third strategy mentioned above 

(MIMO) should be presented. This strategy utilizes multiple inputs to produce 

directly, and by constructing only one model, multiple outputs. This is the reason why 

it is referred to as vector-to-vector technique. Using MIMO, it is possible to produce 

 out m infX X , where outX  is the whole output matrix (for all output time steps) and 

mf  is a single model estimator. It is intuitive now that the advantage of this strategy 

is to preserve the statistical dependency among the forecasted time series. 

In Section 6 of the present dissertation, the MIMO strategy is adopted. In 

order to utilize a vector-to-vector approach, a specific data preprocessing procedure is 

needed though. First of all, given the matrices inX  and outX , the task is to produce a 

predicted ˆ out
X . In order to do so, the data sequences should be split in such a way that 

they can be used from neural networks. Each observation consists of different 

matrices inX  and outX , depending of course on the time period and the given input 

and output time windows inN  and outN  respectively. Afterwards, it is feasible to use a 

vector-output model. Using this model, it is possible to produce directly the output in 

the desired output time window without using any intermediate models. To do so, the 

output layer of the neural networks should be a dense “flatten” layer with size equal to 
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the total size of the desired predictions. At this point, it is worth mentioning another 

model that someone could use: the encoder-decoder model. This one is specifically 

developed to handle situations that it is required to predict an output sequence given 

an input sequence. As its name suggests, this model is comprised of two sub-models: 

the encoder and the decoder. Firstly, the encoder’s responsibility is to interpret the 

input sequence and output a fixed-length vector representing this interpretation. On 

the other hand, the decoder should receive this interpretation, once for each output 

time step, and produce the desired output sequence. Of course, as in all types of neural 

networks, multiple layers can be stacked together to produce deeper versions of the 

aforementioned architectures. 

2.5 Markov decision processes and reinforcement learning 

In the last section of the literature review, it is considered appropriate to dig 

deeper into the areas of machine learning and more specifically, reinforcement 

learning. The exploration of these notions starts by defining and explaining the 

concept of Markov Decision Processes (MDPs) during the first subsection of this 

chapter. After that, the topic of dynamic programming is explained and brief details 

are given about classical approaches on this type of problems. In the third and last 

subsection, emphasis is given on reinforcement learning and the core algorithmic 

approaches involved in this area are provided. It should be mentioned here that the 

proper understanding of these topics could be proven very useful in Section 4 and 

Section 5 of this dissertation. 

2.5.1 Markov decision processes 

Learning from interaction and achieving a goal is the main and sole purpose of 

reinforcement learning. In order to understand how this process works, the reader 

should be familiar with a specific class of stochastic processes which is called Markov 
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Decision Processes (MDPs). Key definitions in MDPs are the notions of the agent and 

the environment (Sutton and Barto 2015). The agent is basically the decision-maker in 

the problem and the one who is responsible for learning. The environment is all the 

things that the agent should interact with, in order to get information. The agent and 

the environment are interacting continuously and the process which describes these 

communications is pretty straightforward: the agent takes actions and the 

environment, based on these actions, gives feedback to the agent called reward. 

Overall, the purpose of the agent is to maximize the sum of earned rewards over a 

finite (or infinite) time horizon. This process is illustrated in Fig. 2.13: 

 

Fig. 2.13 Agent-environment interactions in reinforcement learning setting (Sutton and Barto 2015) 

To be more specific, the agent and the environment interact at specific discrete 

time steps, 0, 1, 2, 3...t At each time step t, the agent receives a representative 

description of the environment’s state tS S , where S is the set of possible states of 

the environment and selects an action  t tA A S , where  tA S is the set of possible 

actions in state tS . Consecutively, the environment sends back a numerical signal to 

the agent, which is usually affected by the agent’s chosen action. This signal is called 

a reward in this context and it is denoted 1 tR R . The agent then is responsible to do 

a mapping at each time step from states to actions. This mapping is called the agent’s 

policy, is denoted by  t and basically   t s refers to the probability that tA , 
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given that tS s . Finally, the system transits to a new state 1tS  and this procedure 

should continue iteratively until convergence is reached (Sutton and Barto 2015). 

Continuing with the terminology used above, the necessary equations are 

presented now in order to fully define an MDP (Sutton and Barto 2015): 

   1 1', , Pr ', ,t t t tp s r s a S s R r S s A a                                                              (2.23) 

 1
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( , ) , ', ,t t t

r R s S

r s a E R S s A a p s r s a

 

                                                                (2.24) 

     1' , Pr ' , ', ,t t t

r R

p s s a S s S s A a p s r s a



                                                    (2.25) 
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p s s a


        


                                   (2.26) 

Eq. (2.23) gives the probability of each possible pair of next state and reward, 

',s r , given the current state s  and action a . Eq. (2.24) defines the expected reward 

that is received if an action a  is chosen at state s . Eq. (2.25) provides the state 

transition probabilities from state s  to state 's , given the fact that action a  was 

chosen and finally, Eq. (2.26) calculates the expected rewards for a triple of state-

action-next state , , 's a s .  

The issue that naturally arises here is that, besides the notation and equations 

previously mentioned, the metrics and the rules that actually determine how good the 

agent is doing in the overall goal of maximizing its rewards are required. In order to 

do so, the notion of value functions in reinforcement learning should be properly 

defined. By formally defining the total discounted returns up to time t as: 

1

1

0

T t
k

t t k

k

G R
 

 



                                                                                                                          (2.27) 

where γ is the discount factor of the rewards and by recalling that π is the agent’s 

policy, it is possible, therefore, to define the value of a state s given policy π as: 
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k

t t t k t

k

v s E G S s E R S s     



 
        

 
                                                              (2.28) 

It should be noted here that the value of the terminal state should always be 

zero. Therefore, Eq. (2.28) gives the expected value of the discounted sum of rewards, 

if being in state s and following policy π. v  is officially called the state-value function 

of policy π. 

If Eq. (2.28) is doublechecked, it is clear that there is no action involved in the 

state-value function definition. However, in a similar way the value of taking action 

a while in state s and following policy π can be defined: 

  1

0

, , ,k

t t t t k t t

k

q s a E G S s A a E R S s A a     



 
          

 
                              (2.29) 

in which q is intuitively called the action-value function of policy π. 

 At this point, it should be seen that Eq. (2.28) has actually a recursive nature 

and correlates the value of a state s to the value of its successor states. 

Mathematically, this feature can be given by the following derivations: 
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                      (2.30) 

The final version of Eq. (2.30) is called Bellman equation. It basically defines 

the relationship between the value of state s and the value of all its successor states 

and it is a fundamental equation in dynamic programming. The computation of the 

value function of a specific state depends highly on the next states that are going to be 
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encountered, so a mathematical relationship such as the Bellman equation provides 

the baseline for looking ahead at what is going to happen on those states. 

In order to conclude the introduction to MDPs, the element of optimality 

should be added. It is appropriate to find formal ways to compare policies among each 

other and be able to extract the policies that are to best interest; by best interest here, it 

always means the overall goal of maximizing the discounted sum of rewards in a 

finite (or infinite) time horizon. A formal definition of a better policy can be given as: 

a policy π is better than π’ if and only if    '   v s v s s S , that is if its expected 

rewards are greater than the ones of π’, for all states. Towards the goal of optimality, 

firstly two more functions are provided: 

   * maxv s v s                                                                                                                      (2.31) 

     * 1 * 1, , max ,t t t tq s a E R v S S s A a q s a                                                (2.32) 

Eq. (2.31) is called the optimal state-value function and Eq. (2.32) is called the 

optimal action-value function. Both of them provide necessary tools for extracting the 

overall optimal policy and are used in multiple ways in the next sections. Of course, 

both of these equations should satisfy the properties of the Bellman equation and can 

be rewritten in that context. Next, the so-called Bellman optimality equation is 

presented for the optimal value function (Sutton and Barto 2015): 
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                                                        (2.33) 
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Eq. (2.33) illustrates the recursive nature of the optimal state-value function by 

formally correlating the optimal state-value of state s with the optimal state-value of 

its successor states. In a similar fashion, the Bellman optimality equation is defined 

for the action-value function: 

 

  

* 1 ' * 1

' *

',

, max ( , ') ,
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t a t t t
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q s a E R q S a S s A a

p s r s a r q s a





       

 
                                                     (2.34) 

It should be mentioned that Eqs. (2.33) and (2.34) have unique solutions for 

finite-horizon MDPs. These two equations actually are consisted of two subsets of 

equations, where each set consists of N equations, where N is the number of possible 

states of the problem. The problem of solving these equations is the actual 

optimization framework and is going to be discussed in the next sections. 

2.5.2 Dynamic programming 

Dynamic programming refers to a set of algorithmic techniques used to find 

optimal policies, given a perfect model for the existing environment. The classical 

dynamic programming approaches that are going to be presented in this section are of 

great theoretical significance, but they have two serious limitations: they are 

computationally inefficient and they always assume a perfect model for the 

environment. This section of the dissertation is organized as follows: firstly, the 

necessary tools for evaluating policies are provided, followed by ways for improving 

policies and lastly, two classical dynamic programming approaches are presented: 

policy iteration and value iteration. 

Examining again Eq. (2.28) and (2.30), it can be observed that the state-value 

function can be expressed in closed form and computed accurately if the 

environment’s dynamics are completely known (Sutton and Barto 2015). Eq. (2.30) 

becomes then a set of N linear equations with N unknowns, where N is the number of 
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possible states, |S|.  However, this method would prove computationally expensive 

and an iterative solution would be preferred. By using the Bellman equation for v , 

someone can compute: 

 

     

1 1 1
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                                                             (2.35) 

It should be mentioned here that the sequence   , as  kv v k . By using 

Eq. (2.35), the state-value function can be computed for all possible states. This 

operation is called a full backup because each computation is based on all possible 

next states than just a sample (Sutton and Barto 2015). Consequently, in order to use 

the aforementioned way for policy evaluation, it is required to examine the entire state 

space, which can be proven extremely inefficient, even for modern computational 

machines. 

Now that the necessary tools for determining “how good” a policy is are 

defined, the next tool that is required is a way to improve these policies. If it is 

thought as a one-step problem, it could be restated as follows: if in state s following 

policy π, would it be better to choose α and then continue following policy π or should 

the previous plans hold? The generalization of this question is called policy 

improvement theorem. If, for given deterministic policies , '  (by deterministic, the 

policies themselves define the state transitions in a deterministic fashion), it is true 

that for all s S : 

    , 'q s s v s                                                                                                                     (2.36) 

It means that policy '  should be better than policy  . In order to construct 

the final version of the policy improvement theorem, it should be observed that, given 

the fact that there is a way to improve a policy at a given state, what is needed is 
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actually to expand this methodology to all possible states and actions. Therefore, a 

greedy policy can be computed for all states s S  by: 

   
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                                                       (2.37) 

At the end, this greedy policy is able to give the optimal action α at every 

possible state s. Given the aforementioned ways for evaluating and improving 

policies, it is time to mention the two most important classical dynamic programming 

approaches: policy iteration and value iteration. The former approach is actually self-

explanatory: by utilizing the fact that a finite MDP has always a finite number of 

policies, it iteratively uses policy evaluation and policy improvement until it finally 

converges to the optimal policy. The algorithm is shown in Fig. 2.14: 

 

Fig. 2.14 Policy iteration algorithm (Sutton and Barto 2015) 

As it can be seen, there are three main steps involved in the algorithm: firstly a 

random policy is chosen, afterwards it is evaluated for all the possible states and lastly 

it is improved for each one of these states. It should be noted that the last two steps of 
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the algorithm are iterative themselves. This iteration stops when it is possible to 

conclude in an optimal policy, based on preset convergence criteria. 

 The second algorithm presented, value iteration, attempts to solve a serious 

problem involved in the first approach; at each iteration, all policies are evaluated 

again and again. This fact, of course, hurts in terms of computational cost. It is proven 

that policy evaluation steps can be truncated without losing the convergence 

guarantees (Sutton and Barto 2015). Using this exact fact and by integrating it with 

policy improvement, the value iteration algorithm uses its own backup update: 
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                                                           (2.38) 

Eq. (2.38) holds for all s S  and now with   * , as  kv v k . In order to 

understand it in a simpler way, the reader can think the value iteration algorithm as 

converting the Bellman optimality equation for state-value function that it was seen in 

Eq. (2.33) to an update rule such as the one in Eq. (2.38). An illustrative 

representation of the value iteration algorithm can be shown in Fig. 2.15: 

 

Fig. 2.15 Value iteration algorithm (Sutton and Barto 2015) 

Concisely, value iteration joins successfully the procedure of policy evaluation 

and the procedure of policy improvement in each of its iterations. To sum up, it 
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should be mentioned that there is a whole class of truncated policy iteration 

algorithms that are although out of the scope of the current research. 

2.5.3 Reinforcement learning 

Reinforcement learning algorithms are actually only one branch of the broad 

family of machine learning algorithms. Before presenting the theory and definitions 

required, it is mandatory to understand the broad categorization of machine learning 

areas. In order to do that, a taxonomy of all learning approaches existing right now in 

the literature is presented. A widely used classification of machine learning is given in 

Fig. 2.16: 

 

Fig. 2.16 Categorization of machine learning techniques (Source: Enaxis Consulting) 

As it can be seen, the first category belonging to the family of machine 

learning is called supervise learning; it is probably the most well-known branch of 

machine learning and it refers to situations where the target variable is known. In this 

case, the target variable is present in the dataset and the model should learn based on 

the value of this target variable (Solutions 2017). The main subproblems belonging to 

this category are the famous regression and classification problems. The second type 

of machine learning is somewhat more complicated and is called unsupervised 
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learning; the main difference between supervised and unsupervised learning is that in 

the latter, the model should learn to optimize without having a specific target as a 

purpose. Examples of this category include but are not limited to clustering 

(“grouping” inputs based on their distinct attributes) and dimensionality reduction 

(“learning” what are the most important features in a dataset). The third and last type 

of machine learning is called reinforcement learning and is the one that is going to be 

used heavily in this research work; it could easily be said that reinforcement learning 

lies in a gray area between supervised and unsupervised learning, given the fact that 

there is still no target from which the model can extract information from, but 

however there is a specific form of interaction between an environment and an agent 

responsible to make the optimal decisions. Therefore, in reinforcement learning, there 

are reward signals that the agent should receive from an environment and therefore 

decide which actions are good or bad for the problem that it is trying to solve. The 

applications of reinforcement learning nowadays are abundant given the data-centric 

era that is approaching and the number of processes requiring accurate and optimal 

decision-making. In the last part of this section, the existing applications of 

reinforcement learning are covered in greater detail and specifically tailored for the 

energy systems research field, which are therefore related to a high degree to the 

current research work. 

There are two main criteria that can be used to classify different reinforcement 

learning approaches. The first criterion refers to whether there is a perfect model of 

the environment (or if someone can build and use such a model) or not. Model-based 

methods know or “learn” how the environment works and so they can predict the next 

states that they are going to enter or the rewards that they are going to receive. 

However, most model-based approaches become impractical when dealing with very 
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large state-action spaces (Huang 2018). On the contrary, model-free approaches 

simply learn by trial-and-error. These approaches do not require knowledge about the 

environment and therefore can “learn” an optimal policy by iteratively experiencing 

trajectory paths and their corresponding sets of rewards and states. These are the kind 

of algorithms that have attracted a lot of interest recently and the reason behind that is 

straightforward: computational efficiency. The second criterion that can be used to 

classify reinforcement learning algorithms is whether the algorithms “learn” off-

policy or on-policy; off-policy means that the agent estimates its returns given that a 

greedy policy is followed after, even though the agent itself may not follow this 

greedy action. On the other hand, on-policy calculates the expected rewards based on 

the policy that is currently following. The first algorithm that is described and 

presented in this subsection is probably the most famous reinforcement learning 

algorithm, called Q-learning. In the subsequent paragraphs after that though, some 

different approaches that could be taken are elaborated. These are motivated by some 

limitations that the Q-learning algorithm imposes. 

Q-learning is a model-free, off-policy learning algorithm that depends heavily 

on the well-known Bellman equation that was presented in (2.34). By using (2.34), 

the Q-learning algorithm is able to update its Q-values by using the following update 

rule: 

     , , max ( ', ) ( , )aq s a q s a r q s a q s a                                                               (2.39) 

where   here denoting the learning rate of the algorithm, i.e. how fast to 

approach the optimal solution. Herein, it can be observed that the Q-learning update 

rule resembles a lot to the value iteration algorithm. However, this approach has the 

advantage that it does not require the transition probability matrix of the classical 
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dynamic programming approach. In the following Table 2.1, the Q-learning algorithm 

is presented in steps: 

Table 2.1 Q-learning algorithm 

 Algorithm: Q-learning 

1: initialization: Q table 

2: for every training episode do: 

3:           initialization: starting state s 

4:           for every decision period do: 

5:                     select action α based on Q and ε-greedy policy 

6:                     observe reward r and next state 's   

7:                            , , max ', ,aQ s a Q s a r Q s a Q s a        

8:                     's s  

9:           end for 

10: end for 

The algorithm is pretty straightforward: in line 1, a look-up table Q is 

initialized, which is actually a matrix, in which different states are in different rows 

and actions are in different columns. For every training episode of the algorithm, the 

state of the environment is initialized and then for every decision period (or time 

epoch), an action is chosen based on the look-up table that there is at hand and 

following an ε-greedy policy. The ε-greedy policy refers to the 

exploration/exploitation tradeoff; initially, the agent chooses actions almost randomly 

(so ε should be high) but as convergence is approaching, the agent is forced to choose 

actions mostly based on the maximum q-values of the look-up table, depending on the 

specific state (row) that it is found at any time (so ε should be low). More information 

about exploration/exploitation tradeoff can be found in (ADL 2018). After that, the 

agent observes the reward that it received and the next state that it goes to. Finally, it 

updates the corresponding element of the look-up table based on the Q-learning 

update rule and also updates its next state. The Q-learning has been proven to 

converge to the optimal solution, given Markov properties in the state-to-state 

transitions and an infinite number of visits to each state-action pair. A simple proof of 
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convergence can be found in (Melo 2001). The final result of the Q-learning 

algorithm is actually the “trained” look-up table with size S A , which can give the 

optimal action for every state by simply checking the column which has the maximum 

q-value. An example of the look-up table can be seen in Fig. 2.17: 

 

Fig. 2.17 Look-up table of Q-learning algorithm 

Despite its simplicity and its high usage rate in many MDP settings, Q-

learning has been proven that suffers from some serious underperformance issues. van 

Hasselt showed that the algorithm’s performance can have really poor performance in 

stochastic MDPs due to a large overestimation of action values (van Hasselt 2010). 

This overestimation comes from the fact that positive bias is inherent to the Q-

learning algorithm from using the maximum action value as an approximation of the 

maximum expected action value. Q-learning uses the single estimator approach for 

estimating the value of the next state;  max ',a q s a is an estimate for 

 max ',  aE q s a , but then, in turn, it is used as an estimator for  max ',  a E q s a . 

van Hasselt proved that this estimator is biased in highly stochastic environments 

because instead of the expectation over the next state, only the average over all 
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possible results of the experiment is computed. It would be useful here to see an 

illustrative example of this problem in Fig. 2.18: 

 

Fig. 2.18 An example of an MDP with four states (Salloum 2018) 

Let Fig. 2.18 define an MDP with four states and where D, C represent the 

terminal states. All the rewards are 0 , except for the reward associated with the 

transition of the agent from state B to state D: ( 0.5,1)→ −B Dr N . It is intuitively clear 

from this example, that the optimal strategy for the agent would be to move right to 

the terminal state C directly. However, Q-learning may be tricked in this setting and 

think that the optimal strategy is to move left because some of the rewards incurred by 

these actions would be positive. Therefore, in order to solve the aforementioned 

problem, van Hasselt proposed a new approach, called Double Q-learning (van 

Hasselt 2010); the intuition behind this approach is that the selection of the best action 

should be decorrelated with the evaluation of this action. The algorithm is presented 

in Table 2.2: 

Table 2.2 Double Q-learning algorithm 

 Algorithm: Double Q-learning 

1: initialization: AQ  table and BQ  table 
2: for every training episode do: 
3:           initialization: starting state s 
4:           for every decision period do: 
5:                     select action α based on AQ , BQ  and ε-greedy policy 
6:                     observe reward r and next state 's   
7:                     generate ( )0,1d U  
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8:                     if 0.5d  do: 

9:                                 , , ',argmax ', ,A A B A A

aQ s a Q s a r Q s Q s a Q s a     
 

 

`10:                     else do: 

11:                                 , , ',argmax ', ,B B A B B

aQ s a Q s a r Q s Q s a Q s a     
 

 

12:                     end if 

13:                     's s  

14:           end for 

15: end for 

The idea is simple and straightforward; instead of one Q-table, two are going 

to be used: AQ and BQ . At each iteration of the algorithm, only one of these is 

arbitrarily selected to be updated. The crucial point of the algorithm and its’ 

characteristic difference with Q-learning is that the selection of the optimal action is 

based on one look-up table, while the evaluation of the action-value is based on the 

other look-up table. That way, it is possible to avoid the pitfall of overestimation bias 

that the Q-learning imposes. 

Although the algorithms presented up to now are powerful (and are used later 

on in Section 4), there are still some drawbacks concerning their ability to 

generalization. These algorithms use mainly two-dimensional arrays to store their Q-

values, a procedure which resembles a lot to dynamic programming (Huang 2018). 

Therefore, it is clearly seen that in higher dimensions, this could potentially pose a 

danger; the agent has no knowledge for unseen states or at least less knowledge for 

less seen states. As the dimensionality of the problem increases, this impact becomes 

more serious, too. The solution to this problem can come from the utilization of deep 

Q-networks (DQN). Given a state s as an input, the DQN is able to output a vector of 

action-values  ,:;Q s , where θ are the parameters of the network. The key notions 

behind deep Q-learning are two: experience replay and target network (Choudhary 

2019). The former one refers to the systematic way that input data are selected for the 

training of the deep neural network. More specifically, the experiences of the agent 
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are not immediately used to train the network, but instead are stored in a buffer to be 

used later. At predetermined intervals, a random sample of the buffer’s experiences 

are chosen and then the deep neural network can be trained based on this sample. This 

fact ensures that the correlations between training samples is low, while this would 

not be the case if there was not this specific experience buffer. It should be mentioned 

here that by experiences, it is actually meant a tuple of (state, action, reward, next 

state). Concerning the target network, it should be noted that if a single network was 

used for calculating both the predicted and the target value, there could be a lot of 

divergence between these two (Choudhary 2019). A good analogy that is often given, 

is that this process looks like someone is trying to hit a moving target. Therefore, a 

separate network is used to estimate the target. The target network has similar 

architecture with the main one, but its’ parameters are “frozen”. Again, at 

predetermined intervals, the parameters of the main network can be copied to the 

target network and this could lead to a more stable training. Overall, a visualization of 

how deep Q-learning relates to tabular Q-learning can be seen in Fig. 2.19: 
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Fig. 2.19 Relationship between tabular and deep Q-learning (Choudhary 2019) 

In a similar fashion presented above for the Double Q-Learning theory, van 

Hasselt presented that his framework can be extended to include neural networks, 

resulting in a network called Double Deep Q-Network (DQN) (van Hasselt, Guez et 

al. 2016). Double DQN has achieved exciting performance in many applications, with 

the most notable one being the DeepMind successful attempt to use it in playing Atari 

games (Mnih, Kavukcuoglu et al. 2013).  

Finally, it is considered appropriate to mention a few other well-known 

reinforcement learning techniques that have already achieved significant results. 

State-Action-Reward-State-Action (SARSA) is a very similar methodology with Q-

learning. The key difference is that SARSA is an on-policy algorithm. Therefore, it 

implies that SARSA updates the Q-values based on the policy currently followed and 

not a greedy policy (Huang 2018). Furthermore, a variant to the Deep Q-learning 

algorithm is the Deep Deterministic Policy Gradient (DDPG) framework. The 

motivation for the DDPG algorithm arises from situations where the action space is 

continuous (or close to continuous – largely discretized). DDPG relies on the actor-

critic architecture (Huang 2018). Although further details on this architecture are out 

of the scope of the current research, it should be noted that DDPG utilizes temporal 

differences in a learning procedure called Temporal-Difference (TD) learning, which 

is actually a superset of the Q-learning presented in this section. 

Reinforcement learning techniques have been previously used in the energy 

systems research field. The following paragraphs of this section are devoted to 

presenting such applications. It should be mentioned though that almost all of these 

works, if not all, utilized reinforcement learning frameworks in order to solve mostly 

short-term planning problems, such as battery scheduling or unit commitment. 
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Consecutively, another novelty of the current research work is that it is one of the first 

attempts to deploy reinforcement learning algorithms to expansion planning problems 

on a multi-year horizon. Although this fact poses additional limitations and dangers, 

mainly concerning the higher degree of stochasticity involved, it is the author’s belief 

that by using detailed and analytical modeling and methodologies it is able to present 

a comprehensive framework for dealing with this kind of problems. 

Mbuwir et al., intrigued by recent advancements in batch reinforcement 

learning, presented an approach in which they utilized this method in battery energy 

management (Mbuwir, Ruelens et al. 2017). After modeling their agent and 

environment setting for the battery using MDP, they used an algorithm called fitted 

Q-iteration which is used by the agent to derive optimal control policies. The authors 

tested their methodology in Belgian residential customers and they showed that they 

can achieve a performance increase of 19%. Yousefi et al. used a Q-learning-based 

approach to develop a new dynamic maintenance methodology for systems with 

individually repairable components (Yousefi, Tsianikas et al. 2020). In another study, 

Raju et al. dealt with the battery scheduling optimization in a microgrid setting where 

photovoltaic cells and battery are present (Raju, Sankar et al. 2015). The algorithm 

used in that case is called Coordinated Q-learning (CQL) and it involves multiple 

agents taking actions in the same environment. Multi-agent reinforcement learning for 

deriving optimal control policies in microgrids is also used in other studies (Dimeas 

and Hatziargyriou 2010) (Li, Wu et al. 2012). Furthermore, a very intriguing study is 

presented in (François-Lavet, Taralla et al. 2016). The novelty of this work, which is 

also relevant to the current research topic, is that the authors considered microgrids 

which incorporate different types of storage systems. After presenting the deep 

reinforcement learning framework, they tailored the state, action and reward 
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definition to their microgrid case study and they proved that the deep network 

variation of reinforcement learning is able to generalize efficiently in situations where 

unseen configurations of the system are met. This is a result of great importance to 

this research because it can show that this specific framework can be used in 

environments with high level of stochasticity, such as the environment that exists in 

this research work. Finally, Kuznetsova et al. proposed an algorithm for battery 

scheduling in a microgrid scenario with a hybrid wind and battery system 

(Kuznetsova, Li et al. 2013). The authors defined their own sets of scenarios, actions, 

and rewards for the battery scheduling problem, which they solved it by using a 2 

steps-ahead reinforcement learning algorithm. This example is indeed an authentic 

approach in the research area of multi-state and multi-criteria decision making for 

medium-term energy storage management. 
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3. Static Storage Expansion Planning in Microgrids 

This section of the dissertation is concerned with the static problem of storage 

expansion planning in microgrids. This problem refers to determining the optimal 

battery size to be attached in a given PV array. By static, it is meant that any 

investment in energy storage in the microgrid should take place at the start of the time 

horizon under examination. In the first subsection, the general problem is presented, 

along with the optimization frameworks used and the results of the case study. In the 

second subsection, the emphasis is given in the trade-off between investment and 

unmet load penalty costs. 

3.1 Benefits of adding battery capacity to solar/battery microgrids 

Power systems with photovoltaic (PV) arrays combined with battery backup 

storage are frequently analyzed to assess their capability of working in power island 

mode during grid outages. The problem under examination is to determine the optimal 

battery sizes for PV + battery systems with given solar array sizes, from both 

reliability and economic perspectives. Concisely, the methodology used to optimize 

battery capacity for PV + battery systems is presented, which can operate in island 

mode to supply customers with reliable power economically during a grid outage. 

Sensitivity analysis of the impact of cost on reliable energy supply for facilities is also 

performed. The results can finally provide with insight into the trade-off between 

minimal system total cost and reliable power supply of PV + battery systems. 

3.1.1 Simulation-based optimization as a preliminary model 

In this section, the proposed optimization problem formulation for battery 

sizing for PV + battery systems, with the reliability level of power supply as a 

constraint, is presented. The main variables and parameters considered in the 

optimization problem are: 
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1) Total system cost, which is the objective of the problem that needs to be 

minimized. Total system cost includes two parts: the investment cost of added battery 

capacity and the loss of load cost which denotes the incurred cost of unsatisfied load 

demand of customers. 

2) Solar irradiation, which represents the solar radiation input of the PV panel. Real 

solar insolation data of hourly GHI are considered (NREL 2016) (global horizontal 

irradiance, combining both direct and scattered light hitting a level local reference 

plane). 

3) Load demand, which is the electricity usage demand of customers. Actual data of 

load demand for specific model facilities are applied in this work (NREL 2013). 

4) Loss of load probability (LOLP), which is calculated as the proportion of time 

when load demand of facilities cannot be met by PV + battery system during a grid 

outage. It is adopted as one of the reliability metrics for the electricity supply of PV + 

battery system, which has already been used by some researchers to develop sizing 

algorithms to minimize system cost (Kazem and Khatib 2013) (Khatib 2012) (Yang 

2008). 

The corresponding mathematical model is shown as follows (Zhou, Tsianikas 

et al. 2019): 

1

min (1 ) ( )
K
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
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( ) ( ) ,P t I t A t                                                                                                                  (3.3)

 min 1rB B DoD                                                                                                                      (3.4) 

 Pr 1LOLP                                                                                                                     (3.5) 

where  

  min, ; ( ) ( ) ( )
t t
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The objective function consists of two parts, i.e., Br×b represents battery 

investment cost and 
1

(1 ) ( )
K

k

k t

VOLL AEL t 



 
  

 
  denotes the total cost of lost load 

during grid failure for all k years of the planning horizon K, discounted with a rate γ. 

Br is battery capacity (kWh), and b denotes battery price ($/kWh). VOLL is the 

penalty cost of unmet demand ($/kWh), which is a typical monetary expression for 

the costs caused by electricity interruptions (Leahy and Tol 2011) (Mandelli, Brivio et 

al. 2016) (Willis and Garrod 1997). Time is a discrete parameter in this formulation 

with increments of Δt, typically one hour in these analyses. 

Eq. (3.1) presents the amount of load demand that is not satisfied by the PV + 

battery system at time t. Bmin is minimum battery energy value (kWh), and QB(t) is the 

energy stored in the battery (kWh) at time t. P(t) is the power generated by PV array 

(kW) at time t and D(t) is load demand (kW) at time t. e represents the efficiency of 
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discharging/charging process of the battery. The assumption made in this aspect is 

that no partial demand satisfaction is allowed. Eq. (3.2) presents the change of energy 

stored in the battery over a short time period Δt due to the power generation of the PV 

array and load demand of the facilities. It describes the energy balance of the PV + 

battery system, and several previous methods are proposed based on this topic 

(Bucciarelli 1986) (Klein and Beckman 1987). Eq. (3.3) denotes the energy produced 

by the PV array at time t. η is the energy conversion efficiency of the PV array. I(t) is 

solar irradiation (W/m2) at time t. A is PV array area (m2). Eq. (3.4) denotes how Bmin 

is calculated with DoD, which is the abbreviation of the maximum depth-of-discharge 

of the battery (%). Eq. (3.5) presents the definition of Chance Constraint Probability 

(CCP), and 1 – a denotes the minimum desired probability. LOLP is obtained as 




t DNS

t  divided by T, which is limited to be not more than β. T is grid outage duration, 

and DNS denotes the set of time when demand is not satisfied by the power output of 

the PV + battery system during a grid outage. The smaller the β and a are, the more 

strict and limiting the constraints are. 

Herein, it is considered appropriate to elaborate more on the simulation 

methodology that has been developed and applied to solve the problem, and also on 

several assumptions considered for the environment. Like other industrial systems, the 

life cycle of a PV + battery system should be taken into account when a cost-benefit 

problem is analyzed. Whereby, the investment of battery is designed for 20-year 

operation of a PV + battery system in the simulation model (Koutroulis, Kolokotsa et 

al. 2006), i.e., decisions for the PV + battery system are made considering 20 years of 

operation, and loss of load cost is accumulated for these 20 years. It should be noted 

that loss of load cost in each year is calculated as the present value with a discount 

rate of 4%. 
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Three metrics are used to evaluate the islanding capability of the PV + battery 

system from both economic and reliability aspects, which are total system cost, CCP 

and system achieved LOLP. Chance constraint probability is estimated as the 

proportion of grid outages in which the LOLP constraint are satisfied by the islanding 

operation of PV + battery system with specific battery sizing, i.e., an estimate of the 

probability that the LOLP constraint could be met by PV + battery system energy 

supply during outage duration. System achieved LOLP denotes the actual LOLP 

achieved by islanding mode of PV + battery system during 20 years of operation. 

These two metrics represent the reliability level of the PV + battery system power 

supply during a grid outage. 

CAIDI and SAIFI are two standard customer-oriented reliability indices of 

electricity distribution systems (Association 2012). SAIFI is reported in average 

interruptions per year on the system. CAIDI is reported as the average length of time 

that a customer’s outage lasts in minutes (Association 2014). In this work, grid outage 

duration T is assumed to follow a shifted or scale adjusted Poisson distribution in 

which T > 0 and the expected outage duration is approximately equal to CAIDI. The 

number of outages per year equals to SAIFI. It should be noted that CAIDI is applied 

with the unit of hours in this context. The starting time of a grid outage is assumed to 

be uniformly distributed throughout a year. It is also assumed that VOLL is uniformly 

distributed in a specific range, which is determined based on the criticality of the 

facility, as described below. VOLL is chosen as a random value within a range 

because the economic impact of each outage could vary depending on specific 

missions or unique characteristics of the facilities. 

Overall, the simulation steps can be seen in Table 3.1: 

Table 3.1 Simulation procedure 
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 Simulation procedure 

1: initialization: random outages for all simulation runs 

2: for every array size do: 

3:           for every simulation run do: 

4:                     calculate PV array production 

5:                     simulate charging/discharging of battery 

6:                     compute amount of energy lost and associated cost 

7:           end for 

8:           compute total system cost and reliability metrics for a specific array 

9: end for 

By iteratively following this procedure, it is possible to obtain the optimization 

results that are presented in Section 3.1.2 for the case study. 

3.1.2 Case study results and analysis 

A hospital facility, subject to grid outage and served only by the PV + battery 

system, is selected for demonstration purposes. Most of the previous methods which 

describe the energy balance of the PV + battery system assume a constant daily load 

demand and even rely on random models for generating solar radiation data (Casares, 

Lopez-Luque et al. 2014), which are inconsistent with real situations to some extent. 

In the present work, actual historical data for solar irradiation and load demand are 

applied to numerical examples as an improvement, which makes the results more 

realistic (NREL 2013) (NREL 2016). The considered facility is a hospital in Islip, 

Long Island, NY, USA.  

Concerning the numerical assumptions considered this case study, it should be 

mentioned that the battery price equals 162 $/kWh (Curry 2017). VOLL is within the 

selected 90% confidence-level (CL) range of (5 $/kWh - 25 $/kWh), which is based 

on the expectation of VOLL level in 2030 (van der Welle and van der Zwaan 2007). 

The solar radiation profile and load profile of the facilities used are for Islip, Long 

Island, NY, USA (NREL 2013) (NREL 2016). It is commonly assumed that the 

generator efficiency remains constant (Ambrosone, Catalanotti et al. 1985); here the 

PV array conversion efficiency is set to be 16% (Aggarwal 2019). The efficiency of 
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the battery charging/discharging process is set to be 85%, and DoD is 70%. Values of 

CAIDI and SAIFI are 8.23 and 1.17 for the Long Island, NY area (Service 2018).  

The selected, model hospital is a large (average load demand is 1,138 kW) and 

critical facility, so VOLL for this facility is selected between 22 $/kWh and 25 $/kWh. 

The LOLP constraint is 10%. Simulations (100,000 in total) are performed on three 

different solar array sizes, i.e., 200 m2, 5200 m2, 10200 m2, with battery capacities 

ranging from 200 kWh to 20,000 kWh. The final model’s goal is to determine the 

optimal battery size for the given PV array. It should be noted that each outage hour is 

considered to be independent. 

 

Fig. 3.1 Probability distribution of hourly PV generation and demand power 

Fig. 3.1 shows the cumulative probability distributions for both the hourly 

energy generated by the PV array and the hourly load demand vs. the fraction of hours 

in a year that experience less PV energy generation or less load demand. As the 

labeled dots show, the probability that a randomly chosen hourly PV generation from 

the largest solar array size of 10200 m2 is less than 730 kW is about 83%, while the 
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probability that a randomly chosen hourly demand power is less than 730 kW is 

around 4%. Thus, the hourly energy generated by the three considered solar array 

sizes can rarely satisfy the hourly load demand. Since there is no sunlight during the 

night, there is an approximately 50% probability that a randomly chosen PV hourly 

energy generation is 0 kWh. 

 

Fig. 3.2 Proportion of outage hours when load demand is satisfied 

Fig. 3.2 shows the results of the simulation. For the three considered array 

sizes, battery capacity is the x-axis vs. the proportion of outage hours when load 

demand is satisfied by the PV + battery system as the y-axis. As it can be observed, 

the increasing trend of each curve can be divided into three different stages. Stage 1 

presents the initial sharply increasing trend of the curves. This sharp increase is 

because the proportion of outage hours when load demand is satisfied increases if a 

battery is added to a PV system. The larger the battery capacity, the higher the 

proportion of outage time when load demand is satisfied. According to Fig. 3.1, the 

maximum hourly load demand for this example facility is 1,554 kW. Thus, if the 
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battery capacity exceeds 1,554 kWh, the battery alone can provide enough output for 

a single hour outage; smaller batteries might fail unless the solar array output is large 

enough to fill the gap for the first hour (and perhaps successive hours). Then comes 

stage 2, which shows a reasonably stable linear relationship between battery capacity 

and the proportion of outage hours when load demand is satisfied. When the battery 

capacity goes beyond the battery capacity corresponding to the lowest total system 

cost, the growth trend of the curves becomes clearly flatter. 

 

Fig. 3.3 The enlarged view of the initial part of curves in Fig. 3.2 
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Fig. 3.4 Total system cost for islanding operation of PV + battery systems 

In Fig. 3.3, the initial part of Fig. 3.2 can be seen in an enlarged view, 

highlighting the change in slope after the battery becomes large enough to nearly 

provide for an average hour’s building energy needs; increasing solar array size 

compensates somewhat for batteries that are not quite big enough. Total system cost is 

graphed in Fig. 3.4 and also shows the three distinct stages. In stage 1, it can be seen 

that total system cost for the cases with 200 m2 and 5200 m2 array sizes actually 

increases initially, when a small battery is added to the PV system. It is attributed to 

the large difference between load demand and PV energy generation as shown in Fig. 

3.1. As it can be seen in Fig. 3.3, until battery capacity goes up to around 900 kWh for 

the array size of 200 m2 and 400 kWh for the array size of 5200 m2, the proportion of 

outage time when load demand is satisfied stays at 0%. Thus, the addition of a small 

battery does not help to noticeably reduce the unsatisfied load demand, and the 

increasing investment of battery contributes to a higher total system cost. After 

battery capacity exceeds these threshold values (as it is shown in Fig. 3.3), the 
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proportion of outage time with satisfied demand increases as battery capacity 

increases, and the obtained significant reduction of unsatisfied load demand drives 

system total cost down sharply. Considering the case with 10200 m2 array size, the 

initial total system cost without investment of battery (i.e., only loss of load cost 

incurred) is much smaller than that of the other two cases, since the PV system with 

an array size of 10200 m2 alone can approximately satisfy the load demand of 4% of 

the outage time. According to Figs. 3.3 and 3.4, the increasing battery capacity 

continually decreases total system cost in stage 1 for this large-array case. 

Considering an array size of 5200 m2 as an example, after the battery capacity 

exceeds the threshold value of 1800 kWh, it enters into stage 2, where the decreasing 

rate of total system cost slows down and there is a linear trend as battery capacity 

increases. It corresponds to stage 2 indicated in Fig. 3.2, where the proportion of 

outage time when load demand is satisfied increases linearly with the increase of 

battery capacity. After the battery capacity exceeds about 12000 kWh, as it is labeled 

in Fig. 3.4, it comes to stage 3, where the increasing investment cost of adding more 

battery capacity leads to a higher total system cost instead. This is because increasing 

battery capacity in stage 3 does not increase the proportion of outage hours when load 

demand is satisfied as efficiently as it does in stage 2, as it is shown in stage 3 in Fig. 

3.2.  

Table 3.2 Total system cost of PV + battery system operation in island mode with a combination of 

battery and array sizing 

Total system cost (× 106$)  
 

Array size (m2) 

Battery Capacity (kWh) 

  200  5200  10200 

    200  3.54  3.54  3.31 

10250  3.11  2.77  2.48 

11990  3.09  2.75  2.52 

12480  3.08  2.76  2.54 

Note:  Values in bold are the lowest total system cost corresponding to each PV array size. 
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Table 3.2 presents the total system cost for the three considered array sizes and 

the battery capacities which correspond to the lowest total system cost for each 

specific array. The smallest battery tested (200 kWh) is also included as this nearly 

represents the baseline lost load system cost as a comparison. Based on the results in 

Table 3.2, it could be seen that the lowest total system cost for a given PV array size 

decreases as the PV array size increases, and the corresponding battery capacity 

decreases as well. This is because a larger PV array generates more electricity (subject 

to the sunlight variability), which contributes to less loss of load cost leading to a 

lower total system cost and a smaller required battery capacity to address power needs 

during an outage. All of these minimum cost battery/array configurations yield 

substantial financial savings compared to the baseline scenario. The optimal battery 

capacities satisfying 10% LOLP constraints are also labeled in Fig. 3.4, which, for the 

present scenario, are larger than the battery capacities corresponding to the lowest 

total system cost. 

 

Fig. 3.5 Chance constraint probability for islanding operation of PV + battery system 
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Table 3.3 Chance constraint probability of PV + battery system islanding operation with different 

combinations of battery and array sizing 

Chance constraint probability 

(%) 
 

 

Array size (m2) 

Battery Capacity (kWh) 

  200  5200  10200 

10250  18.32  26.90  40.63 

11990  28.92  40.84  54.65 

12480  32.69  44.95  58.57 

Note: Values in bold are chance constraint probabilities corresponding to each scenario with the lowest 

total system cost. 

As it was defined in the problem statement, chance constraint probability 

denotes the proportion of grid outages in which LOLP constraint is satisfied by the 

islanding operation of PV + battery system, i.e., an estimate of the probability that 

LOLP constraint can be met by PV + battery system energy supply during a grid 

outage.  

It can be seen from Fig. 3.5 that the optimal battery capacities which meet the 

10% LOLP constraint are larger than the battery capacities which achieve the lowest 

total system cost. Higher chance constraint probabilities, which indicate more reliable 

islanding energy supply of PV + battery systems, could also be achieved with these 

optimal battery capacities. 
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Fig. 3.6 Achieved LOLP for islanding operation of PV + battery system 

Table 3.4 Achieved LOLP of PV + battery system islanding operation with a combination of battery 

and array sizing 

System achieved LOLP (%)  
 

Array size (m2) 

Battery Capacity (kWh) 

  200  5200  10200 

10250  33.95  25.67  19.46 

11990  25.39  17.86  12.95 

12480  23.09  16.02  11.44 

Note: Values in bold are system achieved LOLP corresponding to each scenario with optimal total 

system cost. 

The upper labeled dots in Fig. 3.6 are system achieved LOLP corresponding to 

the lowest total system cost. System achieved LOLP denotes the real LOLP achieved 

by islanding mode of PV + battery system during a grid outage. The optimal battery 

capacities which meet the 10% LOLP constraint are also highlighted in the figure, 

which (in this case) are larger than the battery capacities achieving the lowest total 

system cost. However, it is worth mentioning here that in another case study 

conducted by Tsianikas et al., it was proven that it may be feasible to design a PV + 
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battery system which is less expensive and provides more resilience simultaneously 

(Tsianikas, Zhou et al. 2019). 

A sensitivity analysis has also been conducted in terms of total system cost 

and the two reliability metrics. The relationship between every 1% decrease of the 

system achieved LOLP (or 1% increase of the chance constraint probability) and the 

corresponding change of total system cost has been investigated, i.e., how total system 

cost changes (higher or lower) while the reliability performance of the system is 

improving. One specific array size is taken as an example. Figs. 3.7 and 3.8 are 

provided to demonstrate sensitivity analysis results.  

Fig. 3.7 shows the results of sensitivity analysis of total system cost vs. system 

achieved LOLP. An example of how Fig. 3.7 should be interpreted is the following; 

the circle point (13, 12,490) indicates that a positive cost increase of $12,490 is 

incurred if system achieved LOLP decreasing from 13% to 12% is desired because 

more battery capacity would need to be purchased. 

 

Fig. 3.7 Sensitivity analysis of cost change and achieved LOLP 
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Fig. 3.8a shows the results of sensitivity analysis of total system cost and 

chance constraint probability. An important characteristic of Figs. 3.7 and 3.8a is the 

presence of cross points, i.e., points where the system reliability improvement is 

accompanied by a decrease in total system cost. That is easily justified by 

simultaneously looking at Figs. 3.8a and 3.8b. 

 

Fig. 3.8 a) Sensitivity analysis of cost change and chance constraint probability, b) Total system cost 

vs. battery capacity 

It can be observed that the lowest total system cost in Fig. 3.8b, which is 

labeled with an arrow, corresponds to the threshold where cross points end and circle 

points begin in Fig. 3.8a. It demonstrates the argument that the optimal battery size 

with respect to system power output performance should be always greater than or 

equal to this threshold value, given the fact that chance constraint probability is a non-

decreasing function of battery capacity. As a result, a battery which is smaller than 

this threshold value not only causes worse system islanding operation capability but 

also incurs higher total system cost. 

3.1.3 Criticality of several domain-specific parameters 
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To sum up, in this section of the dissertation a mathematical model is 

proposed to optimize battery capacity for a PV + battery system starting with a given 

PV array size. The optimum system is able to meet the load demand of facilities 

during grid outage for a certain reliability level with minimal cost. The effectiveness 

of the simulation method is demonstrated by numerical examples using actual data 

sets of solar irradiation and model facilities’ load profiles hourly throughout the year. 

Overall, the presented methodology is helpful for the future design of grid outage-

resilient PV + battery system from both economic and reliability aspects. 

At this point, it is considered appropriate to mention one key observation 

made after completing this work and that is related to the factors that affected the 

model’s results heavily. As was seen, the objective function consisted of two terms: 

the investment cost and unmet load penalty cost. Therefore, it is safe to assume that 

the parameters behind these two cost terms, i.e. battery price and VOLL are extremely 

crucial in selecting the optimal battery size for a given PV array. The fact that there is 

a critical facility (so VOLL is high) and also the fact that forecasts predict a sharp 

decline in battery prices (IRENA 2017) not only strengthen this assumption but also 

make the need for extensive research in this area more important. This is exactly the 

research motivation for the work that is presented in Section 3.2. 

3.2 Trade-off between investment and unmet load penalty costs 

This section investigates the trade-off between two critical factors that could 

influence or even dictate the rate of adoption of battery systems used to support 

photovoltaic arrays. The value of lost load (VOLL) and battery price greatly influence 

the economic viability of photovoltaic + battery systems to provide energy resilience 

during grid outages. The simulation-based optimization method described in Section 

3.1 is modified and improved to investigate the effects of VOLL and battery price on 
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the balance between total system cost and system islanding resilience to meet 

customer demand during a grid outage (Tsianikas, Zhou et al. 2019). One of the great 

findings of this work is the positive effect that the anticipated decline in battery price 

could have in enhancing the resilience and effectiveness of renewable energy systems 

combined with energy storage. 

3.2.1 Problem formulation 

Before proceeding with the updated problem formulation for this section, it is 

considered necessary to elaborate more on the approach used to model grid outages. 

Firstly, Nk is defined as a random set containing all grid outages that occurred in year 

k, while Ojk is defined as a random set of all time intervals of grid outage j in year k. 

Time, with increments of Δt, is again a discrete parameter. Therefore, tijk denotes the 

ith time interval for the jth outage in year k. Finally, the indicator function ( ) ijkt  

shows whether the demand at the ith time interval for the jth outage in year k is 

satisfied or not. It takes the value of 1 when the demand is lost for the corresponding 

time interval, while it is 0 in the opposite case. 

Furthermore, it is assumed that the duration of the jth grid outage in year k, Tjk, 

follows a scale adjusted Poisson distribution in which Tjk > 0. The total grid outage 

time in year k is 
k

jk

j N

T


 . K denotes the planning time horizon in years, so the 

cumulative outage time during the planning horizon is 
1 k

K

jk

k j N

T
 

 . Based on the 

definition of ( ) ijkt , the outage time with unmet load demand in year k can now be 

defined as  
 

 
k jk

ijk

j N i O

t t , while the cumulative outage time with unmet load 

demand can be defined as  
1


  

 
k jk

K

ijk

k j N i O

t t . Similarly, the unmet load demand in 
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year k is ( ) ( )
 

 
k jk

ijk ijk

j N i O

t D t t  and the cumulative unmet load can be calculated as 

1

( ) ( )
  

 
k jk

K

ijk ijk

k j N i O

t D t t . Meanwhile, the starting time of each simulated grid 

outage is assumed to follow uniform distribution throughout the year. 

In the proposed model, there are constraints for energy balance, energy 

generation and the reliability metrics, i.e., LOLP (Loss of Load Probability) and CCP 

(Chance Constraint Probability). The updated formulation is shown as follows 

(Tsianikas, Zhou et al. 2019): 

1

min (1 ) ( ) ( )
k jk

K
k

r ijk ijk

k j N i O

B b VOLL t D t t 

  

      

 s.t. ( ) ( ) , , , 1,2,3,...,    ijk ijk jk kP t I t A i O j N k K                                 (3.6) 

 min 1 rB B DoD                                                                                                (3.7) 

 1( ) , , 1,2,3,...,   B jk c r kQ t I B j N k K                                                            (3.8) 
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                                                                                                                   , 1,2,3,...,kj N k K                                                                                                                                                               

min 0, 0, 0 , , 1rB B        

The objective function consists again of two different terms, in a similar 

fashion with the formulation in Section 3.1. The first term, rB b , refers to the battery 

investment cost. The second term, 
1

(1 ) ( ) ( )
k jk

K
k

ijk ijk

k j N i O

VOLL t D t t 

  

     , refers to 

the cost of lost load demand of customers during grid outages. These two terms of the 

objective function compose total system cost (TSC), which needs to be minimized. 

The objective function is stochastic due to the random sets Nk and Ojk involved in the 

second term. As mentioned earlier, Nk is the random set of grid outages for year k and 

Ojk is the random set of time intervals of outage j for year k. According to the 

modeling procedures described before, the second term in the objective function can 

be obtained as the expected cost of lost load demand of customers during grid 

outages. 

Eq. (3.6) determines the energy generated by the PV array at time tijk. Eq. (3.7) 



103 

 

 
 

denotes the calculation of  minB  based on DoD. Eq. (3.8) defines the amount of energy 

stored in the battery at the beginning of each outage, where Ic is used to decide the 

initial charging state of the battery. Ic depends on several realistic factors, for 

example, self-discharge of a battery (%/month), which is an important feature of a 

battery. As an example, for the case of lead-acid battery, it is equal to 2-5%/month, 

while for Li-ion battery, self-discharge is 1%/month (Divya and Ostergaard 2009). 

Eq. (3.9) focuses on the energy balance of PV + battery system during grid outages. 

When a PV + battery system islands during an outage, non-critical load demand of 

facilities may be shed, so the PV + battery system only needs to meet the proportion 

of critical load demand, which is denoted by Cp (Alsaidan, Khodaei et al. 2018). Eq. 

(3.10) presents the condition under which the indicator function δ(tijk) equals 1 or 0, 

which determines whether the load demand at time tijk is lost or not. Eq. (3.11) 

indicates the reliability of the islanding generation of the PV + battery system, with α 

as the upper bound for the expected value of LOLP. LOLPjk is defined as the 

proportion of time when load demand of customers cannot be met by PV + battery 

system during the jth grid outage for year k. The definition of CCP is given in Eq. 

(3.12), which incorporates the LOLP constraint.  

The simulations here are conducted under different combinations of battery 

price and VOLL in order to investigate the interplay between them. Different battery 

capacities are evaluated from both economic and reliability aspects according to the 

simulated grid outages. To obtain the expected values of stochastic functions used in 

the analyses, it is necessary to introduce some new notation. S denotes the total 

number of simulated grid outages. Gs is the random simulated set of time intervals for 

the sth simulated outage and tis is the ith time interval of the sth simulated outage. Cs 

and LOLPs are the cost of lost load and loss of load probability corresponding to the 
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sth simulated outage. Note that in the simulation model 1 t , but it could be any 

other incremental value. The estimated expected values of the cost of lost load, LOLP 

and CCP regarding the simulated grid outages are presented as follows: 

     1ˆ , where
s

S

s

s
s is is

i G

C

E C VOLL C t D t
S


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 


                                         (3.13) 
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


 


   



                                (3.15) 

In other important assumptions, the efficiency of PV array conversion in the 

simulation, η, is again assumed to be 16%. The efficiency of battery 

charging/discharging process, e, is assumed to be 85% and the maximum depth-of-

discharge of the battery (DoD), is 70%. Because of the intended use of battery storage 

as an energy backup system for facility electrification, it should be classified as an 

energy-oriented and long-duration battery storage system (Padilla 2018). For all the 

above reasons, charging and/or discharging the battery is not allowed during normal 

grid operation, which apparently leads to 1cI  , i.e., the battery is considered fully 

charged at the starting time of each outage. Because of the criticality of a hospital as a 

test case, Cp is set to be 80%, which determines the proportion of critical load demand 

of hospital that needs to be met during grid outages. CAIDI and SAIFI are again 8.23 

hours/interruption and 1.17 interruptions/year for the Long Island, NY area (Service 

2018), where the actual historical solar irradiation data and the hospital load profile 

are selected (NREL 2013) (NREL 2016). Before proceeding with the test case, it 

should be mentioned that the main research contribution of this work is to explore, 
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quantify and visualize the effects and interaction of two important cost-related factors 

in the optimal configuration of a backup energy system for critical facilities.  

3.2.2 Case study and results 

In order to consider price fluctuations and variations, it is now assumed that 

battery price is varying within the range of 20 $/kWh to 220 $/kWh in the simulation. 

In addition, VOLL is varying within the selected 90% confidence level (CL) range of 

5 $/kWh to 25 $/kWh, which is based on the expectation of VOLL level in 2030 (van 

der Welle and van der Zwaan 2007).   

It is needed now to explain why it is the author’s belief that a hospital is an 

excellent and insightful test case to serve as the facility to implement the proposed 

mathematical models. During the design of energy backup systems, the criticality of 

buildings is one of the most significant independent variables because it influences the 

strictness of the system modeler. Therefore, the high-reliability standards required for 

the operation of a hospital and the high penalty costs for unmet load demand make 

this specific facility a good test case. Nowadays, the use of electronic equipment and 

machinery in healthcare is abundant and requires uninterrupted operation with no 

exceptions at all. Some examples of this type of equipment currently used in hospitals 

include operating room machinery, life support, nurse calls, blood storage, fire alarm, 

mass notification, etc. (Padilla 2018). Therefore, robust design of such redundant 

systems should be made with reliability as the first and top criterion. 

For the purposes of this research, a 2-way factorial experimental design is 

used and analyzed, with battery price and VOLL being the two factors. In total, 11 

distinct VOLL values and 11 distinct battery prices are considered, which means that 

an 11x11 factorial design with a total of 121 treatments is applied. The measurements 

are the battery capacities required for the optimal TSC, the actual optimal TSC, the 
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expected LOLP, and the CCP, which are obtained from 1,000 independent simulation 

runs for each treatment. The photovoltaic array size considered in this analysis is 

6,000 m2. The problem is analyzed under two different scenarios, which are defined 

as follows: 

1) The unconstrained case, in which the optimal TSC corresponds to the minimum 

TSC of the PV + battery system, without imposing any reliability criteria or 

constraints. 

2) The constrained case, in which the optimal TSC is the minimum TSC of the PV + 

battery system which also satisfies all the reliability criteria of the problem. 

The distinction between the two scenarios is noticeable. The battery sizes 

contributing to the unconstrained optimal TSC are different than that contributing to 

the constrained optimal TSC unless the former ones are also able to satisfy the 

reliability constraints. The results are presented in both contexts in the following 

paragraphs. 

Figs. 3.9 to 3.16 are 3D figures (presented in subfigures (a)) and contour 

figures (presented in subfigures (b)) of the experiment results regarding the two 

factors, i.e., battery price and VOLL, being indicated in the horizontal axis and vertical 

axis, respectively. In the third axis, the presented variables are the battery size, TSC, 

the expected LOLP, and the CCP, respectively. 

1) Unconstrained case 

The results shown in Figs. 3.9 to 3.12 correspond to the unconstrained case 

where the optimal TSC is achieved. Battery capacities that contribute to the 

unconstrained optimal TSC under different combinations of battery price and VOLL 

are shown in Fig. 3.9a) (3D figure), and Fig. 3.9b) (2D figure with contours). In Figs. 
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3.10 to 3.12, the horizontal and the vertical axes are the same with Fig. 3.9, but the 

third axis is the TSC, the expected LOLP, and the CCP, respectively.  

 

Fig. 3.9a). Battery capacity for the unconstrained scenario as a function of battery price and VOLL 

 

Fig. 3.9b). Contours corresponding to Fig. 3.9a) 
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Fig. 3.10a). Optimal TSC for the unconstrained scenario as a function of battery price and VOLL 

 

Fig. 3.10b). Contours corresponding to Fig. 3.10a) 
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Fig. 3.11a). Expected LOLP for the unconstrained scenario as a function of battery price and VOLL 

 

Fig. 3.11b). Contours corresponding to Fig. 3.11a) 
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Fig. 3.12a). CCP for the unconstrained scenario as a function of battery price and VOLL 

 

Fig. 3.12b). Contours corresponding to Fig. 3.12a) 

An important observation from Fig. 3.9a) is that the battery capacities, which 

are required for the optimal TSC, increase when battery price decreases or when 

VOLL increases. As it can be observed, the required optimal TSC increases when 

battery price decreases from 200 $/kWh to 40 $/kWh with the same VOLL of 15 
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$/kWh or when VOLL increases from 9 $/kWh to 21 $/kWh with the same battery 

price of 120 $/kWh. These results come in agreement with the previous findings in 

Section 3.1 that lower battery price leads to a larger required battery to achieve the 

optimal TSC. When Fig. 3.9a) is analyzed together with Fig. 3.9b), a big plateau is 

noticeable in the region of low values of VOLL and high values of battery price. This 

plateau means that, if it is too expensive to invest in a battery and simultaneously 

affordable to allow demand lost during outages, then the actual batteries that 

correspond to the unconstrained optimal TSC are the ones with the lowest sizes. 

Moreover, as it can be seen from Fig. 3.9b), when VOLL decreases, the impact of a 

change of battery price on the required batteries for the optimal TSC becomes larger. 

In Fig. 3.10a) it can also be observed that the optimal TSC increases when the 

battery price and/or VOLL increases, which is actually what would be expected. 

However, an important feature of Fig. 3.10b) is that in the upper-left part, the change 

rate of the optimal TSC with respect to battery price is much greater than that of the 

optimal TSC with respect to VOLL. Noticing the lower-right part of Fig. 3.10b), the 

change rate of the optimal TSC with respect to battery price becomes smaller than that 

of the optimal TSC with respect to VOLL. This phenomenon can be explained by 

observing Fig. 3.9a) and Fig. 3.9b). When it is economical to invest in batteries, the 

optimal battery capacities are close to the upper limit required by the facility load 

profile and outage statistics and are independent of the VOLL. It leads to a similar 

investment cost and outage cost, which is not the case when battery investment costs 

become higher. 

According to Fig. 3.11a), the expected LOLP corresponding to the optimal 

TSC decreases only when battery price decreases or VOLL increases. On the contrary, 

it can be observed from Fig. 3.12a) that the CCP shows the opposite behavior. 
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Nevertheless, the most interesting feature that should be highlighted is the two 

plateaus that exist in Figs. 3.11a) and 3.11b). The first one, which occupies the high 

VOLL and low battery price area, indicates that it is cost-effective to invest in bigger 

batteries to achieve a very low expected LOLP. The other plateau, found in the low 

VOLL and high battery price area, shows the opposite results. If the penalty cost of 

lost demand is low while the batteries are expensive, it is preferable to endure lost 

demand during outages instead of investing more in battery storage. These two 

plateaus can also be observed in Figs. 3.12a) and 3.12b) but in different and opposite 

regions. The CCP is very high when it is economical to invest in battery storage and 

simultaneously expensive to afford the lost demand during outages, while the CCP 

becomes very low when the opposite conditions are considered. 

2) Constrained case 

The results shown in Figs. 3.13 to 3.16 correspond to the case where the 

optimal TSC is achieved while adhering to the predetermined reliability constraints. 

Battery capacities that contribute to the constrained optimal TSC with different 

combinations of battery price and VOLL are shown in Fig. 3.13a) (3D figure) and Fig. 

3.13b) (2D figure with contours). In Figs. 3.14 to 3.16, the horizontal and the vertical 

axes are the same as Fig. 3.13, but the third axis of these figures is the constrained 

optimal TSC, the expected LOLP, and the CCP, respectively. 
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Fig. 3.13a) Battery capacity for the constrained scenario as a function of battery price and VOLL 

 

Fig. 3.13b). Contours corresponding to Fig. 3.13a) 
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Fig. 3.14a) Optimal TSC for the constrained scenario as a function of battery price and VOLL 

 

Fig. 3.14b). Contours corresponding to Fig. 3.14a) 
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Fig. 3.15a) Expected LOLP for the constrained scenario as a function of battery price and VOLL 

 

Fig. 3.15b). Contours corresponding to Fig.3.15a) 
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Fig. 3.16a). CCP for the constrained scenario as a function of battery price and VOLL 

 

Fig. 3.16b). Contours corresponding to Fig. 3.16a) 

Fig. 3.13a) indicates that for battery prices higher than 100 $/kWh, the 

required battery capacities for the optimal TSC have very small variations among 

them. This fact is independent of the value of VOLL. Furthermore, the battery 
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capacity that is required to achieve the optimal TSC increases as VOLL increases, for 

example, from 9 $/kWh to 21 $/kWh with a low battery price of 40 $/kWh. 

Figs. 3.14a) and 3.14b) present the most consistent and smoothest trend among 

all figures. In Fig. 3.14b), the change rate of the optimal TSC with respect to battery 

price is greater than the change rate of the optimal TSC with respect to VOLL. 

However, the latter rate of change becomes greater in the high battery price area. 

Finally, the big plateau appearing in Figs. 3.15a) and 3.15b) should be 

compared with the plateau in Figs. 3.13a) and 3.13b). When it is expensive to invest 

in a battery and the economic losses of load demand are relatively low, the required 

battery capacities barely satisfy the reliability constraints. When compared with Fig. 

3.13a), it can be observed that the PV + battery systems with the lowest TSC can also 

satisfy the predetermined LOLP constraint when battery price is low. It denotes that 

the decline of battery price not only decreases the lowest TSC but also enhances 

system output capability in island mode because the system planner can afford to buy 

a larger battery for the system. Conclusions extracted from the existing plateau in 

Figs. 3.16a) and 3.16b) are consistent with the previous results. In the region where 

battery price is high, the CCP constraint is almost tight for the optimal battery size. 

3.2.3 Key findings 

Besides the general conclusions described in Section 3.2.2, it would be 

valuable if the obtained results are interpreted from the more specific scope of a 

hospital. It means that the attention should be given to the high VOLL and the low 

battery price based on the forecasted decline in battery prices (IRENA 2017). 

Furthermore, the discussion focuses only on Figs. 3.13 to 3.16, which correspond to 

the constrained cases where a relatively strict LOLP constraint is satisfied. This is 
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supported by the high priority that resilience possesses in critical facilities, like a 

hospital. 

There is a pressing need to install relatively large batteries for such critical 

applications, as can be observed in Fig. 3.13a). This trend is expected to remain the 

same or even to be intensified in the future when battery prices decrease, which 

makes energy storage systems more cost-efficient. However, there is also great 

potential ahead because when battery investment costs decrease, the corresponding 

TSC can be anticipated to be reduced accordingly, as Figs. 3.14a) and 3.14b) suggest. 

To further strengthen this argument, it can be reminded that the forecasted changing 

trend of battery price can also bring positive influence on system resilience. As Fig. 

3.15a) illustrates, the system designer would be able to decrease the budget and also 

enhance the energy system resilience. 

Finally, there are some interesting relationships between the contour trends 

shown in Fig. 3.13 and Figs. 3.15 to 3.16, which are collectively presented in Fig. 

3.17: 
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Fig. 3.17 Comparison among battery capacity, expected LOLP and CCP for the constrained case 

There is a plateau that can be clearly seen in the lower-right part of Fig. 

3.17a), b) and c). Based on Table 1 and the data labels shown in Fig. 3.17, there are 

three critical contours in Fig. 3.17a): the required battery is close to 11,000 kWh; b): 

the expected LOLP is close to 0.1; and c): the CCP is close to 0.78.  

Table 3.5 Selected points in three critical contours with the same battery price and VOLL in Fig. 3.17 

Evaluation Metrics                 Fig. 3.17a)             Fig. 3.17b)              Fig. 3.17c) 

[Battery price, 

VOLL] 

[40,9]  10890   0.095  0.787 

[100,21]  11090  0.103  0.756 

[120,25]  11030  0.093  0.794 

The impacts of VOLL and battery price on the required batteries, the expected 

LOLP, and the CCP become insignificant after exceeding the critical contours. The 

explanation for this phenomenon is that there are specific combinations of VOLL and 

battery price, upon which the battery capacities that contribute to the optimal TSC 

make both the expected LOLP and the CCP constraints not binding. It indicates that 

even lower TSC can be achieved with the desired system islanding output reliability. 

This is an extremely important research result because it proves that by properly 

incorporating VOLL in the mathematical formulation, it is possible to obtain solutions 

which are beneficial from the economic and reliability perspectives simultaneously. 

Finally, it should be mentioned that the validity of all the above models and 

results has been verified by querying industry experts of the field. 

3.2.4 Importance of exploring more storage types 

It is shown in the analyses that the future decline in battery price crucially 

affects applications where the associated VOLL is high. Consequently, it is necessary 

to combine the latter result with the interaction that exists between VOLL and battery 

price for future optimization of PV + battery system. Although in general it is 

observed that higher VOLL results in higher TSC, it is also showed that this 
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relationship becomes weaker as the battery price decreases. This finding brings great 

potential for all kinds of applications and especially for those whose energy backup 

systems need to be highly reliable and efficient.  

The natural question that arises at this point is whether battery price is the only 

characteristic that affects significantly the results of the optimization problem. As it 

was seen in Section 2.3.1, there are multiple storage types available in the market for 

microgrid use. Each one of them possesses its own distinct features, such as 

efficiency, depth-of-discharge (DoD), etc. Therefore, it would be worthwhile from a 

research perspective to study how the selection of a specific storage type tweaks the 

results that are presented in Sections 3.1 and 3.2.  

For this exact reason, Tsianikas et al. dived deeper into the problem of 

investigating the effects that different battery types have on the optimal configuration 

of photovoltaic (PV) and battery systems (Tsianikas, Zhou et al. 2019). The authors 

adopted and improved the simulation-based method presented in (Zhou, Tsianikas et 

al. 2019) and compared different battery types based on their projected characteristics 

for the year 2030 (IRENA 2017). The four battery types considered are lead-acid, 

sodium sulphur, vanadium redox, and Li-ion and the tested facility is again a hospital 

but now located in Orlando, FL. The location-specific datasets used in this work can 

be found in (NREL 2013) (NREL 2016). The specific values of the characteristics 

used are provided in Table 3.6 (IRENA 2017): 

Table 3.6 Approximate central estimates for year 2030 of cost, efficiency and DoD for four battery 

types (IRENA 2017) 

                         Parameter 

Battery Type 
Cost ($/𝑘𝑊ℎ) Efficiency (%) DoD (%) 

Lead-Acid 75 86 55 

Sodium Sulphur 165 86 100 

Vanadium Redox 120 78 100 

Li-ion 224 97 90 
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In Fig. 3.18, results can be seen for all types of batteries in a dual axis format 

for TSC (left) and CCP (right) with a preset LOLP constraint of 10%: 

 

 

Fig. 3.18 TSC and CCP vs battery capacity for the four battery types considered 

There are some very important and intuitive conclusions that can be drawn 

from Fig. 3.18, and this can be done through individual or pairwise observations. 

Firstly, it can be shown that lead-acid battery achieved the worst performance in terms 

of CCP and this is almost exclusively due to its extremely low DoD. Li-ion was the 

most expensive battery and this can be easily justified from the highest comparative 

TSC. On the contrary, it should be noticed that vanadium redox battery is a storage 

type with great potential because TSC stays low as the battery capacity of this type 

changes in the considered range with a satisfactory level of CCP. Lastly, sodium 

sulphur battery type achieved the highest CCP, although the differences are small 
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when compared with that achieved by vanadium redox and Li-ion battery types. On 

the contrary, the corresponding TSC of sodium sulphur battery lies between that of 

vanadium redox and Li-ion battery types. 

An interesting comparison that should also be examined carefully is between 

sodium sulphur battery and vanadium redox battery. It should be reminded here that 

the former type had higher efficiency than that of the latter one, as well as a higher 

cost. However, their differences in TSC are much more significant than their 

differences in CCP. It demonstrates that vanadium redox battery is more cost-

effective than the sodium sulphur battery. Another worthwhile comparison is between 

vanadium redox battery and Li-ion battery. The 10% difference in the DoD of these 

two batteries is able to offset their higher difference of 19% in terms of efficiency, 

resulting in a very similar CCP assessment and therefore making cost the dominant 

factor for choosing between these two batteries.  

Conclusively and based on the simulation results, a general conclusion that 

can be drawn is the high importance of the three selected battery properties, i.e. cost, 

efficiency and DoD regarding the performance of photovoltaic and battery systems. 

The results presented here, especially if combined with the insightful research works 

from the literature on hybrid energy storage systems (HESS) that were presented in 

Section 2.3.1, are giving birth to a new research need: create temporally dynamic 

models that integrate different types of storage systems in the same microgrid. This 

research need is one of the main drivers for the research work that is presented in 

Section 4. 
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4. Dynamic Storage Expansion Planning in Microgrids 

Herein, a novel mathematical framework that attempts to tackle the dynamic 

long-term storage expansion planning problem is introduced. In order to do so, the 

notions of Markov Decision Processes (MDP) and reinforcement learning are heavily 

utilized, as these were presented in Section 2.5. In the first subsection, the updated 

framework of the problem is presented. The changes considered in the microgrid 

formation, as well as changes in the storage modeling, are mentioned there, too. 

Moreover, the problem formulation as an MDP is provided, along with the necessary 

mathematical definitions and assumptions. A method which takes advantage of 

synthetic datasets to mitigate the problem of bias overestimation that the Q-learning 

algorithm possesses is also proposed. Afterwards, numerical assumptions and case 

study results are presented, along with the necessary acknowledgment of the 

limitations of the proposed framework, which however naturally lead to the 

subsequent research work. In the last subsection, the emphasis is given on how the 

outage modeling can significantly affect the optimization results. 

4.1 Problem framework 

Firstly, it is required to present the updated and detailed problem framework 

that this research work attempts to solve. The objective of the problem is to derive 

optimal dynamic storage expansion plans for a given microgrid. The main changes 

from the formulations in Section 3 concern the microgrid formation (power plants, 

storage options, etc.) and the battery modeling, in terms of investment and operation 

scheduling. In the end, other necessary assumptions considered in this work are 

mentioned. 

4.1.1 Microgrid formation 
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In this problem formulation, the microgrid considered belongs to the family of 

community microgrids, as these are presented in Section 2.2.1. It means that the 

renewable plants, combined with energy storage units, need to serve a number of 

facilities in this situation and not a single one. However, it should be mentioned here 

that the main role of the microgrid is again to provide reliable and uninterrupted 

backup generation, due to the existence of critical facilities that rely on its electricity 

supply, such as a hospital. That being said, each facility in the considered microgrid 

has its own gVOLL and critical load factor 
g

pC , where g G and G is the set of 

existing facilities. This is a crucially important change, as it affects the way that 

energy produced by power plants or provided by energy storage systems should be 

distributed. Concerning this matter, a prioritized scheme is adopted, in which facilities 

are ranked based on their criticality and need to be served accordingly. Last but not 

least, the assumption now is that multiple renewable energy plants are incorporated in 

the microgrid, such as solar panels and wind turbines. 

It is clearly established in Section 2.3 of the present dissertation that a mixture 

of different storage units, resulting in so-called Hybrid Energy Storage Systems 

(HESS), is leaning towards more beneficial solutions overall for the microgrid. 

Therefore, it is appropriate to consider not only different storage options in the 

planning process but also mixing them together in an aggregated fashion, which 

implies that all of them are together responsible for supplying energy to the microgrid. 

However, another real novelty of this work is that storage investments do not need to 

be made at the beginning of each planning period, but they may be made at various 

decision periods within the planning horizon. This fact could clearly let the system 

planners leverage the declining projections in storage systems prices in the future. 

4.1.2 Storage scheduling and investment scheme 
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A typical problem existing in all energy systems that contain different types of 

storage units is the charging and discharging scheduling of the storage systems. While 

it is an entire optimization problem by itself, it should be mentioned herein that the 

biggest problem in the presence of multiple ESS units is that a simultaneous 

discharging of paralleled ESSs would unavoidably result in significant state-of-charge 

(SoC) differences between the various storage units (Semënov, Mirzaeva et al. 2017). 

These differences, if propagated through several periods, could result in system power 

drops. The potential solution to this problem depends on whether there is a centralized 

or decentralized control in the microgrid. In the former case, there is a centralized 

control unit in the microgrid, which gathers all the necessary information and 

distribute the amount of energy provided by different ESSs in such a way that 

guarantees similar SoC levels among all the storage units in the system. On the 

contrary, in the latter case, there are various techniques that can be implemented, such 

as relating droop coefficients to the levels of SoC (Semënov, Mirzaeva et al. 2017). 

The present implementation is more closely related to the decentralized approach and 

is based on predetermined contribution ratios that are able to achieve the necessary 

SoC balancing, and actually without utilizing SoC real-time information. Towards this 

direction, it is required to introduce the definitions of these charging and discharging 

ratios considered in this work. These ratios reflect the proportion of energy that each 

ESS should contribute while charging or discharging respectively. Therefore, the 

charging proportions 
i

cp and the discharging proportions 
i

dp  are defined as follows: 

,
i i

i r
c j j

i r

j
j SU

B DoD
p i SU

B DoD
e

e

  


                                                                                                (4.1) 
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∑                                                                                                (4.2) 

where SU is the set of the various storage units existing in the microgrid, i
rB is the 

capacity of the ith storage unit, iDoD its corresponding depth-of-discharge and ie  the 

round-trip efficiency. These parameters guarantee similar SoC levels among the 

different storage units and also guarantee that: 

max 1 1,i i
i SU SoC SoC i SU∈ = ⇒ ≈ ∀ ∈                                                                                   (4.3) 

min 1 1 ,i i i i
i SU SoC DoD SoC DoD i SU∈ = − ⇒ ≈ − ∀ ∈                                                     (4.4) 

which technically means that all storage units reach simultaneously their maximum 

and minimum allowed levels of charge. 

Concerning the monetary investment in storage units, an amortization model 

has been adopted where the payments are made annually, and each payment is 

calculated as follows: 

( )
annuity principal    

1
=    ,

(1 ) 1

i

i

L
i i

L

IR IR
P P i SU

IR
+

∀ ∈
+ −

                                                                         (4.5) 

where principal    
iP is the principal investment amount of the ith storage unit, IR is the 

annual interest rate and Li is the lifetime of the ith storage unit. This amortization 

model resembles a leasing scheme, in which annual payments and the existence of the 

storage unit in the system are continued after the lifetime period of the unit expires. 

This may seem counterintuitive; however, it stems from the fact that storage units 

cannot be retired under the current approach. Although it would be ideal to include 

such decisions in the problem formulation, and this would become feasible in the 

expanded model of Section 5, Eq. (4.5) provides an easy way to incorporate 
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information about the lifetime of the various storage options in the problem 

economics, without altering the information about their cost parameters. 

4.1.3 Other assumptions 

In other assumptions worth mentioning, it should be noted that accurate solar 

and wind output power calculation has been adopted, based on solar cells per panel, 

available solar panels, rotor swept area of the wind turbine and the total number of 

wind turbines (Song, Li et al. 2018). The equations are shown as follows: 

        =  , , , 1,2,3,...,solar ijk solar cell cpp pan ijk jk kP t A n n I t i O j N k K                  (4.6) 

 

 

 

 

   

0, if  

1
 = , if  , , , 1,2,3,...,

2

0, if 

ijk in

wind ijk wind tur tur ijk in ijk out jk k

ijk out

W t W

P t A n W t W W t W i O j N k K

W t W

 

 



     

 


                                                                                                                                                             (4.7) 

where solar is the solar panel efficiency, cellA is the area of each solar cell, cppn is the 

number of solar cells per panel, pann is the number of solar panels in the system, wind

is the wind turbine efficiency,  is the air density, turA  is the rotor swept area of the 

turbine and turn is the total number of wind turbines in the system. Moreover,  ijkI t

and  ijkW t  denote the solar irradiance and the wind speed at time ijkt  accordingly. Nk 

is defined again as a random set containing all grid outages that occurred in decision 

period k, while Ojk is defined as a random set of all time intervals of grid outage j in 

decision period k and K is the total number of decision periods. Finally, inW and outW

are called cut-in and cut-out wind speeds and define the range in which the wind 

turbine can safely produce energy. 

4.2 Problem formulation as a Markov Decision Process 
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At this point, the definition of the Markov Decision Process (MDP) is given, 

in which the solver algorithm is based on. Firstly, a detailed definition of the state and 

action sets and the reward and transition functions are given, following the 

terminology defined in Section 2.5.1. After that, an approach is proposed to mitigate 

the overestimation bias problem of the Q-learning algorithm that was described in 

Section 2.5.3, by using synthetic datasets and metamodeling. Lastly, and before 

proceeding with case study and results, the final algorithm is presented step-by-step. 

4.2.1 MDP formulation 

Every MDP, as defined in Section 2.5.1, is actually a tuple of (S,A,f,R), 

meaning that it is fully defined with the state and action sets S,A, the transition and 

reward functions f, R and the discount factor γ. Therefore, it is considered necessary to 

provide the required definitions for these elements, in order to be able to use the 

appropriate algorithms to derive optimal policies. 

Starting with the state space S of the problem, it should be mentioned that it 

consists of three sub-features; time feature, external features, and internal features: 

 

 

 

,

where: 1,2,...,

      , ,

,

tf ef if

tf tf

ef ef ef

i j

if if if

i

S S S S

s S K

s i SU j SC S

s i SU S

  

 

    

   

s

s

                                                                  (4.8) 

tfS is the time-dependent component of the state space and it simply denotes the 

current decision period. It should be noted here that it is highly advised for the timing 

feature to be explicitly included in the state information of the problem. It has been 

proven that the agent’s learning performance is significantly improved when time-

awareness of the agent is introduced, by specifically incorporating a time-related 

space component (Pardo, Takavoli et al. 2018) (Harada 1997). efS defines the set of 
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external features of the problem, such as the price, the efficiency and the depth-of-

discharge of the storage unit, where SU is again the set of storage units and SC is the 

set of storage characteristics included in the formulation. They are called external 

because the information coming from these characteristics comes from the 

information that is received from the environment, without the option for the agent to 

affect them. As an example, an instance of efS is the vector ef
s , consisting of all the 

elements ,

ef

i js which denote the value of the jth characteristic of the ith storage unit. 

Finally, ifS is the set of internal features of the problem, such as the storage capacity 

already installed in the system. They are called internal because the agent is able to 

affect these components by taking appropriate actions. Therefore, the microgrid’s 

state is defined by a vector such as  , ,tf ef ifss s s . 

Concerning the action set of the problem, it is clearly defined based on the 

possible actions that the agent can take. In the context of the current problem, the 

agent should choose between taking no action or deciding to expand the storage 

capacity of a specific storage unit at one of the available predetermined levels (to 

align with the discrete time and space assumptions of a DTMC framework). 

Therefore, it is pretty straightforward that the agent’s action can be defined as a vector 

such as: 

 , , ,i la i SU l SL A    α                                                                                                     (4.9) 

,s.t. 1i l

i SU l SL

a
 

  

 , 0,1 , ,i la i SU l SL     

In this context, ,i la  denotes the binary action of expanding the capacity of the 

ith storage unit at the lth level, where SL is the set of available expansion levels. The 
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first constraint imposed in (4.9) limits the agent so it cannot take more than one 

expansion actions per period, while the second constraint guarantees the binarity of 

the action components. 

Proceeding with more definitions, the focus is now given to the state transition 

function f. Given the fact that the state is composed by three parts (time, external and 

internal component) and by using the notation s for the current state and 's  for the 

next state, the state transition equations are provided below: 

  1,tf tf tf tf tf tfs f s s s S           (4.10)

   , ,, where: ,  is a DTMC with transition matrix , ,ef ef ef ef tf tf ef

i j i jf s s S p i SU j SC     s s  

                                                                                                                                (4.11) 

  '

,, , where: ,if if if if if

i i i l

l SL

f s s l a i SU


     s s α                                                        (4.12) 

Eq. (4.10) is the state transition equation for the time feature of the state space 

and is simply an incremental by-one operation. Eq. (4.11) preserves the Markov 

property of the external features of the state space; it means that the jth characteristic 

of the ith storage unit follows a DTMC with the corresponding ,

ef

i jp transition matrix. 

Finally, Eq. (4.12) is the transition equation for the internal feature of the state space; 

if it is decided to expand the ith unit’s storage capacity at the lth level, the 

corresponding 
if

is is going to be increased appropriately. Overall, the next state could 

be described by the vector       , , ,tf tf ef ef if iff s f f s s s α . 

The last component of the MDP that needs to be properly defined is the 

reward function. This is a crucial part since it affects the way that the agent receives 

signals (i.e. rewards) from the environment. These signals are the main drivers that 

guide the agent to the derivation of the optimal policies. In a similar fashion with the 
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previous chapters, but now following the expanded formulation, the reward at the kth 

decision period can be defined as: 

     ,, ( 1) , ,
k jk

i g g

k i l annuity ijk p ijk

i SU l SL g G j N i O

r K k y a P VOLL t g C D t g
    

       s α                   

                                                                                                                                (4.13) 

The first term of the reward function is the investment part, which is 

calculated as ( 1)K k y   equal payments of 
i

annuityP for each facility i if there is a 

decision to invest, and where y denotes the number of years in one decision period. 

The second term of the reward function defines the loss of load cost, for all facilities 

in the set G of the formulation. Eq. (3.10) presented the definition of δ function for the 

previous setting, where only one facility was existing. However, herein it is needed to 

give an updated definition of the δ function, in which it should be assumed that the 

facilities in the set G are ranked based on the prioritization scheme that is introduced 

in Section 4.1.1 (i.e. facility 1 is the most critical, facility 2 is the second most critical, 

etc.): 

    min
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1, if ( ) ( ) ( , )
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                           for an arbitrary and , , ,jk kb SU i O j N k K g G                  (4.14) 

In simpler terms, ( , )ijkt g is equal to 1 for the facility g if the energy stored in 

storage units, defined as bQ , combined with the energy production by renewable 

plants net the demand of facility g, defined in the second part of the left-hand side of 

the inequality in the first branch of Eq. (4.14), are lower than the minimum allowed 

energy level minB . It should be noted here that minB  is determined by the depth-of-



132 

 

 
 

discharge of the storage unit. On the contrary, ( , )ijkt g is equal to 0, only when the 

system (energy in storage units and energy production by renewable plants net the 

demand of the facility g) is able to satisfy the demand for all the facilities up to g. 

Therefore, for the most critical facility (g=1), the system needs to be able to meet the 

demand only for this facility, in order for the load demand to be met. For the second 

most critical facility (g=2), the system needs to meet the demand for facility 1 and 

facility 2, etc. An important point is that just one arbitrary b SU  is chosen, in order 

to determine whether the demand is lost or not for a specific facility. The justification 

for this comes from Eq. (4.4) which suggests that if one storage unit b falls below the 

minimum allowed level min

bB , then the same should apply for the rest of the storage 

units. Finally, and because of the fact that the system is designed with the main 

purpose to be backup energy provider, the storage units are utilized only during grid 

outages. Therefore, it is clear that the larger the storage, the longer the system is able 

to satisfy the demand of facilities and the fewer are the times that the indicator 

function   is equal to 1. 

4.2.2 Utilization of synthetic datasets to tackle overestimation bias 

In Section 2.5.3 it is shown why the Q-learning algorithm suffers from 

overestimation bias in highly stochastic environments. Practically, this means that if 

the agent assumes that there is a chance it would receive an extremely “good” reward 

if being in a specific state, he may try to transition to that state, even though the 

average reward is lower than the average rewards from being in other states. In this 

subsection, it is explained how this phenomenon applies to the examined case and a 

way that could potentially mitigate this effect is proposed. 

Remembering how this overestimation bias problem of the Q-learning 

algorithm is illustrated in Section 2.5.3, it can be safely assumed that the problem 
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arises from situations where the agent can get misleading “signals” on how the 

optimal strategy is structured. In this context, these signals correspond to the rewards 

that the agent receives in every decision period of the problem. Due to the way that 

the reward function is defined in Eq. (4.13), it is mainly composed of two negative 

components: the investment cost and the outage penalty. While the investment is 

clearly affected solely by the decision to expand storage capabilities, the outage 

penalty relies heavily on the stochastic events of outages. Considering the scenario of 

having 0 (or at least very few and/or short-lived) outages in a specific decision period, 

the agent may consider beneficial for the system to go as is and “suffer” these 

outages, instead of taking actions to protect against them, i.e. investment actions. This 

fact results exactly in the misleading “signals” that are mentioned before. In the best 

possible scenario for us, this phenomenon would just slow down the convergence of 

the solution algorithm, while in the worst scenario it could result in deriving sub-

optimal policies. Consequently, it would be beneficial here to propose a novel 

approach for mitigating this effect using synthetic datasets and function 

approximation for the outage cost component of the reward function. 

As its name basically reveals, synthetic datasets consist of data observations 

that are generated programmatically using simulation techniques, and not by real-life 

experiments and data collection (KDnuggets 2018). In this case, similar simulation 

techniques to those explained in Sections 3.1 and 3.2 can be utilized in order to 

generate a synthetic dataset consisting of multiple input features and one output 

feature, the outage cost. Afterwards, a function approximation technique can be used 

to map, as closely as possible, the given inputs to the desired output. Therefore, the 

features needed to “predict” the outage cost form a vector of the following form: 

  , ,tf if

is s i SU  , meaning that this specific cost component depends on the timing 
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feature of the state space and the installed capacity of every storage unit in the system. 

In this context, 
if

is  denotes the installed capacity of the ith storage unit. 

As the first step of this process, a systematic way has to be derived to generate 

observations to be added in the synthetic dataset. As previously mentioned, each of 

these observations comes from running n individual and independent simulation runs 

of the system and averaging the obtained results. In order to generate independent 

observations, a random sample of the input features can be used. That means that each 

input feature of the dataset (timing feature and installed capacities for all storage 

units) is arbitrarily picked from specified corresponding ranges. Moreover, for each of 

these individual simulation runs, outages are generated using again the standard 

reliability metrics of CAIDI and SAIFI. More specifically, the duration of a specific 

outage is a shifted Poisson distributed random variable with mean CAIDI and the 

outage events form a Poisson process with rate SAIFI. After the input features are 

selected for a specific observation and the outages are generated for each run, the 

system is simulated n times and the output (outage cost) is computed by averaging the 

results of these n simulations. This procedure is iteratively followed until an S-sized 

dataset is created, where S is the predetermined desired length of the dataset. Lastly, 

the random forest algorithm is used as a function approximation for the outage cost, 

given the synthetic dataset. Therefore, it can now be seen that the reward for the kth 

decision period can be rewritten as: 

    ,, ( 1) , ,i RF if

k i l annuity i

i SU l SL

r K k y a P f k s i SU
 

      s α                              (4.15) 

4.2.3 Final algorithm 

At this point, and before proceeding with the numerical case studies and 

results, it would be useful to provide a schematic and holistic representation of the 

proposed approach. Although the algorithm used is the classic Q-learning approach, it 
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should be mentioned that the preprocessing step of synthetic data creation and 

function approximation is added. The procedure can be seen in Table 4.1 and is the 

one followed in (Tsianikas, Yousefi et al. 2019): 

Table 4.1 Schematical representation of the Q-learning algorithm with preprocessing step 

 Algorithm: Q-learning with preprocessing step 

1: initialization: random outages for all simulation runs 
2: for every observation do: 
3:           select arbitrarily ( )( ), ,if

ik s i SU∀ ∈  

4:           for every simulation run do: 
5:                     simulate system and compute outage cost 
6:           end for 
7:           average over all runs and store observation in the synthetic dataset 
8: end for 
9: use random forest to derive RFf from the synthetic dataset 

10: initialization: Q table 
11: for every episode do: 
12:           initialization: starting state s 
13:           for every decision period do: 
14:                     select action α based on Q and ε-greedy policy 
15:                     observe reward ( ), RFr a f and next state 's  function f  
16:                     ( ) ( ) ( ) ( ), , max ', ,aQ s a Q s a r Q s a Q s aα γ← + + −    
17:                     's s←  
18:           end for 
19: end for 

The first nine lines of the algorithm define the preprocessing step and the last 

ten lines compose the typical steps of the Q-learning algorithm, adjusted for the 

current problem. It should be mentioned here, that the main reason for the mitigation 

of the overestimation bias problem that the Q-learning algorithm imposes comes from 

the seventh line of the proposed approach. The fact that the average over a large 

number of simulation runs is used in order to get an estimation of the outage cost, 

makes the “signal” that the agent perceives much clearer and without unnecessary 

variance. 

4.3 Case study 
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In this section, results are presented from a case study conducted using the 

methodologies described above. The microgrid considered in this case study consists 

of several facilities (hospitals, schools, and residential houses) and is located in 

Westhampton, NY. In Fig. 4.1, the whole area of Westhampton can be seen as a 

satellite view: 

 

Fig. 4.1 Satellite view of the Westhampton, NY area (Google 2019) 

The reason that this particular location is chosen lies in the fact that this is an 

area with a high wind energy potential, very close to the North Atlantic Ocean. 

Location-specific demand and meteorological data are again used (NREL 2013) 

(NREL 2016). Each facility in the microgrid comes with its associated VOLL and 

critical load factor. Concerning the storage options existing in the formulation, four 

different types of storage technologies are tried: Li-ion battery, lead-acid battery, 

vanadium redox battery, and flywheel storage system. It is clear from the choices 

made that it is the author’s intent to explore various storage options, including not 

only electrochemical storage systems but other less common ones. Each storage type 

has its own characteristics, which of course are expected to affect the results in a 
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significant fashion. For simplicity and dimensionality reduction purposes, it is 

assumed that all the storage system characteristics can be described by a different 

deterministic function of the decision period, except the storage system price which 

holds its stochastic nature. This stochasticity of the storage price is modeled using 

Markov Chains, as it is described in the theoretical formulation. For example, the 

Markov Chain used to model the storage price of the first storage unit (Li-ion) can be 

seen in Fig. 4.2 below: 

 

Fig. 4.2 Markov chain for the price of Li-ion storage type 

4.3.1 Numerical assumptions 

Regarding the numerical assumptions of the case study, a 20-year time horizon 

is considered, where the decision periods are every 5 years, therefore results in a total 

of 4 decision periods. The interest rate for storage investment is considered 2% 

annually. Solar and wind power plants are considered in the microgrid and their 

production is calculated using Eqs. (4.6) and (4.7) and by considering (Song et al. 

2018) (Zhou et al. 2019): 0.16solar  , 
20.0232258cellA m , 72cppn   , 6000pann   , 

23inW m ,
222outW m , 0.48wind  , 31.25

kg
m

  ,
21520.53turA m , 10turn  . 

CAIDI and SAIFI are considered 5.122 and 1.155 respectively (Service 2016) 

(Service 2017). According to the facilities, there are three different types: hospital, 

school, and residential houses. The assumptions made for these facilities can be seen 

in Table 4.2 (van der Welle et al. 2007) (Alsaidan et al. 2018a): 

Table 4.2 Data related to facilities and their characteristics 
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In the aspect of storage systems, it should be mentioned that it is considered 

that the agent has the option to choose among three capacity levels for each storage 

unit and for each decision period. However, it should be noted that the agent is 

restricted to choose one action at maximum for each decision period, according to Eq. 

(4.9). The levels used in this case study are 300, 1000 and 3000 kWh. The various 

storage systems characteristics for each decision period of the problem can be seen in 

Tables 4.3-4.6 (IRENA 2017): 

Table 4.3 Li-ion characteristics for all decision periods 

Table 4.4 Lead acid characteristics for all decision periods 

Table 4.5 Vanadium redox characteristics for all decision periods 

Table 4.6 Flywheel storage characteristics for all decision periods 

                          Data                                     

Facility 

Number VOLL Cp 

Hospital 2 25 0.8 

School 5 17 0.6 

Residential 300 8 0.4 

                                              Period                                     

Li-ion 

1 2 3 4 

State for price MC ($/kWh) 420 310 167 150 

Probability for price MC 0.70 0.70 0.70 0 

Lifetime (yrs) 12 17 19 20 

Efficiency 0.95 0.96 0.97 0.98 

DoD 0.90 0.90 0.90 0.90 

                                              Period                                     

Lead-acid 

1 2 3 4 

State for price MC ($/kWh) 142 115 77 65 

Probability for price MC 0.70 0.70 0.70 0 

Lifetime (yrs) 9 11 13 14 

Efficiency 0.80 0.81 0.83 0.84 

DoD 0.55 0.55 0.55 0.55 

                                              Period                                     

Vanadium redox 

1 2 3 4 

State for price MC ($/kWh) 385 255 120 95 

Probability for price MC 0.70 0.70 0.70 0 

Lifetime (yrs) 13 17 20 21 

Efficiency 0.70 0.73 0.78 0.79 

DoD 1 1 1 1 

                                              Period                                     

Flywheel storage 

1 2 3 4 
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Finally, the algorithmic assumptions considered in this case study should be 

declared. Firstly, concerning the simulated synthetic data collection, a total of 1000 

observations are obtained, where each observation is produced after simulating the 

system 100 times. For the random forest model that is used to approximate the cost 

component related to outages, the dataset is split to train/test using a 0.8/0.2 ratio and 

a total number of 10 forests is used. Finally, concerning the Q-learning algorithm, a 

total of 107 number of episodes is used, 0.9  and linearly decaying rates   and   

ranging from 1 to 0.02. The decision for a linearly decaying exploration/exploitation 

tradeoff parameter  is very important, as it dictates the performance of the algorithm. 

It basically means, that it would be ideal to explore as much as possible at the initial 

episodes, while it would be better to just exploit the acquired knowledge and approach 

convergence at the final episodes. 

4.3.2 Results and discussion 

As a first step in presenting the results of the case study, it would be 

interesting to examine the performance of the random forest model for approximating 

the outage cost. It should be mentioned here that the model obtained an R-squared 

score of 0.98 on the test set. R-squared is a metric which is used to quantify how well 

a model fits a set of observations. It is always in the range of [0,1] and a value of 1 

technically means that the model is able to explain all the variability of the response 

variable around the mean. Therefore, it can be fairly sure that the model used explains 

the data very well. Theoretically, the outage costs are likely to follow a decreasing 

function of the capacity already installed in the system. However, a decaying rate for 

this behavior is expected, meaning that the gain from adding more capacity of a 

State for price MC ($/kWh) 3100 2600 1950 1700 

Probabilityfor price MC 0.70 0.70 0.70 0 

Lifetime (yrs) 20 26 30 32 

Efficiency 0.84 0.85 0.87 0.88 

DoD 0.86 0.86 0.86 0.86 
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specific storage type in the system is negligible after a point where the already 

installed capacity is large enough. On the opposite hand, given the distribution of the 

outage durations, it would also be expected to see an initial phase where adding more 

capacity does not result in significant outage cost savings. The aforementioned 

features can be observed schematically in Fig. 4.3 for the storage units of Li-ion and 

vanadium redox: 

 

Fig. 4.3a). Outage cost savings b). Distribution of outage duration 

Before proceeding with analyzing Fig. 4.3, it should be made clear that Fig. 

4.3 corresponds to the initial state of the environment and does not imply any overall 

superiority of the Li-ion battery over the vanadium redox one. It is clear from 

observing Fig. 4.3a) that the expected results are obtained. The behavior is similar for 

both storage types; after the initial phase where the cost savings for adding capacity 

are small, a peak is observed where the installed capacity is around 3000kWh. After 

that point, the cost savings are still positive but much more negligible than they were 
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before. It is also very interesting to examine Fig. 4.3a) in accordance with Fig. 4.3b). 

It should be reminded here that the duration for each outage simulated follows a 

shifted Poisson distribution with mean approximately equal to 5.122. Fig. 4.3b) 

presents the approximate probability that a random outage obtains a value in the range 

of the horizontal axis. There is a clear threshold around 7hrs where after that, the 

outage events are really rare. That means, that when a capacity which is fairly enough 

to satisfy a large number of these outages is reached, it is no more cost-efficient for 

the planners to expand storage. 

After verifying that the random forest model behaves as it should, it is time to 

observe the optimal policies derived from the proposed methodology. In order to be 

able to extract optimal policies from the results, it should be remembered that the 

output of the Q-learning algorithm is the completed Q-table with each field denoting 

the Q-value of each state-action pair. The amount of knowledge that the Q-learning is 

able to produce depends heavily of course on the number of episodes that the agent is 

allowed to experience. In the case study, each state of the environment is actually a 

tuple of 9 elements: the first element is the timing feature (4 possible values), the next 

4 elements are the price states for each storage technology (4 possible values each) 

and the last 4 elements are the installed capacity again for each storage unit (10 

possible values each). Therefore, the total number of states in the system can be 

calculated to be 2,758,578 states. If they are also multiplied by the number of possible 

actions in each decision period, the outcome is a total of 35,861,514 number of state-

action pairs. Given the large magnitude of the state-action space, the only feasible 

way for observing the results of the proposed approach would be to derive scenarios 

for price movement in the Markov Chains and obtain optimal policies for each 

scenario separately. 
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Towards this direction, the first 3 scenarios are defined and examined. 

Scenario 1 refers to the case where the price of each storage unit is declining in every 

time period. Referring to Fig. 4.2, this scenario corresponds to the case where all the 

forward transitions are realized. Scenario 2 describes the case where again all storage 

prices are declining, except the price of vanadium redox unit for the periods 1, 3 (it 

only declines in period 2). Finally, scenario 3 refers to the case where all storage 

prices are again declining, except the price of Li-ion battery for periods 1, 3 (it only 

declines in period 2). Results can be observed schematically in Fig. 4.4: 

 

Fig. 4.4 Optimal policies derived for various scenarios 

The results in Fig. 4.4 reveal some very interesting trends. The “baseline” 

scenario 1 presents the optimal policy under which nothing should be done in the first 

decision period, Li-ion battery should be installed at level 2 (1000 kWh) in the second 

decision period, again Li-ion battery should be installed at level 3 (3000 kWh) in the 

third period and finally vanadium redox battery should be installed at level 3 (3000 

kWh). These results could be anticipated by looking at Tables 4.3 and 4.5. While the 
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price difference of these two storage units is statistically negligible in the initial 

phases, this difference becomes much more significant in the later stages. In these 

later stages, besides the lower price of vanadium redox battery, its excellent DoD 

plays a crucial role in making this type the preferred choice. These results come in 

accordance with the findings of Section 3.2.4, where there were already insights that 

vanadium redox battery holds special potential for future usage. However, in scenario 

2 there is a significant difference compared to scenario 1; investment in the last 

decision period goes to the lead-acid type, removing vanadium redox from the 

preferred choices. The reason behind this change is straightforward; the vanadium 

redox price did not decline as sharply as in scenario 1, making it therefore relatively 

expensive compared to cheaper options. In this situation, lead-acid became the 

dominant choice, despite its very low DoD value. Finally, in scenario 3 the dominance 

of vanadium redox battery type in all decision periods from 2 and on can be observed. 

During this scenario, all prices are declining sharply, except for the price of Li-ion 

battery type. Consequently, vanadium redox took its place and resulted in investments 

of Level 2, Level 3 and Level 2 again for the decision periods 2, 3, 4 respectively. 

At this point, it would be useful to note two more conclusions that can be 

drawn from Fig. 4.4. Firstly, it is observed that there is a difference between the total 

installed capacity among the three scenarios; 7000 kWh in scenario 1 and 5000 kWh 

in scenarios 2, 3. While it would be expected that these values are equal, the results of 

Fig. 4.3a) should now be revised. There is a certain threshold after which installing 

more capacity of the same storage type does not result in significant savings. 

Therefore, that is why in scenario 2 the replacement of the vanadium redox 

installation at Level 3, is an installation of lead-acid at Level 2 instead of adding more 

capacity of Li-ion at Level 3. Of course, the same applies to scenario 3 and the case of 



144 

 

 
 

vanadium redox battery. However, it is acknowledged that this behavior could be a 

weakness of the modeling technique and the ways to mitigate these effects are 

explored in the next section. Lastly, it is also seen that there is no installation of 

flywheel energy storage system in any scenario. This happened because of the 

extremely high price of this specific storage type compared to its competitors. In the 

case study, where critical facilities are located in the microgrid and outages can last 

several hours, it is clear that someone can find more use in high energy density 

storage units. As it is seen in Section 2.3.1, flywheel storage systems can be 

considered as high power density units and low energy density. Of course, these 

results do not mean in any case that this specific storage type cannot find applications 

in the microgrid sector. Instead, they would be considered appropriate in situations 

where fast response is the top criterion for choosing storage options. 

To elaborate more on the results obtained concerning optimal policies under 

various scenarios, it is considered suitable to analyze here a greater number of 

scenarios. These results are presented in the context of Table 4.7: 

Table 4.7 Optimal policies for more potential scenarios 

Scenario # Storage type Price 

change 

Period 2 Period 3 Period 4 

Scenario 1 

Li-ion ↓ ↓ ↓ L2 L3 - 

Lead-acid ↓ ↓ ↓ - - - 

VR ↓ ↓ ↓ - - L3 

Flywheel ↓ ↓ ↓ - - - 

Scenario 2 

Li-ion ↓ ↓ ↓ L2 L3 - 

Lead-acid ↓ ↓ ↓ - - L2 

VR → ↓ → - - - 

Flywheel ↓ ↓ ↓ - - - 

Scenario 3 

Li-ion → ↓ → - - - 

Lead-acid ↓ ↓ ↓ - - - 

VR ↓ ↓ ↓ L2 L3 L2 

Flywheel ↓ ↓ ↓ - - - 

Scenario 4 

Li-ion → ↓ → - L2 L3 

Lead-acid ↓ ↓ ↓ - - - 

VR → ↓ → - - - 

Flywheel ↓ ↓ ↓ - - - 
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Scenario 5 

Li-ion → → → - - - 

Lead-acid ↓ ↓ ↓ - - - 

VR ↓ → ↓ L2 L3 L2 

Flywheel ↓ ↓ ↓ - - - 

Scenario 6 

Li-ion ↓ → ↓ L2 L3 - 

Lead-acid ↓ ↓ ↓ - - L2 

VR → → → - - - 

Flywheel ↓ ↓ ↓ - - - 

Scenario 7 

Li-ion → ↓ ↓ - L2 L3 

Lead-acid → ↓ ↓ - - - 

VR → ↓ ↓ - - - 

Flywheel → ↓ ↓ - - - 

Scenario 8 

Li-ion → → ↓ - L1 - 

Lead-acid → ↓ ↓ - - L2 

VR → → ↓ - - - 

Flywheel → ↓ ↓ - - - 

Scenario 9 

Li-ion ↓ ↓ → L2 L3  

Lead-acid ↓ ↓ ↓ - - L2 

VR ↓ ↓ → - - - 

Flywheel ↓ ↓ ↓ - - - 

Scenario 10 

Li-ion ↓ → → L2 L3 - 

Lead-acid ↓ ↓ ↓ - - L2 

VR ↓ → → - - - 

Flywheel ↓ ↓ ↓ - - - 

It should be noted that investment in period 1 is omitted in Table 4.7 because 

it does not depend on the price scenarios and it was never realized. Table 4.7 contains 

a total of 10 scenarios: scenarios 1-3 correspond to the ones studied before in Fig. 4.3. 

The rest of the scenarios in Table 4.7 correspond mainly to various combinations of 

price movements for the Li-ion and the vanadium redox battery. The reason for that is 

the other two storage types examined are not able to become the dominant ones unless 

they gain a competitive advantage against the other two. More specifically, as 

mentioned before, flywheel energy storage is not chosen under any scenario. One 

important thing to notice here is that the only scenario in which the total installed 

capacity at the end of the time horizon is 7000 kWh is the one in which both Li-ion 

and vanadium redox batteries experience continuous declining trends. In all the other 

scenarios, the final obtained capacity was 5000 kWh, or even lower; for example, 

when the two dominant storage types’ prices remained steady for the first two periods 
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(scenario 8), the total installed capacity is way lower than typically. In another aspect, 

the high penetration of the vanadium redox battery depends heavily on its price 

movements; in the situations where this type of battery presents a steady behavior for 

at least two periods, the lead-acid battery is able to surpass it in the decision maker’s 

choices even in cases where its own behavior remained steady for one period, like in 

scenario 8. Finally, it is obvious that the role of the Li-ion battery in energy systems 

such as the one examined in this case study is expected to remain crucial for the 

future. Nevertheless, there is a case where a potential level-off of Li-ion price, 

combined with a simultaneous decrease in vanadium redox price, could change the 

things in the hierarchy of these two storage types, as it happened in scenarios 3 and 5. 

The final part of the presentation of the research findings contains a check on 

whether the agent improves its experience with an increasing number of episodes. It 

should be reminded here that the number of episodes chosen for this experiment is 

107. However, the question here is how it can be asserted that this number of episodes 

is enough or not. Given the fact that the exploration/exploitation tradeoff parameter is 

decaying as a function of the number of episodes, it should always be expected to see 

improving performance of the agent as time passes by. The answer to this question 

can originate from running the experiment using a different number of episodes. The 

results of this procedure can be shown in Fig. 4.5: 
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Fig. 4.5 Convergence check for the required number of episodes 

In the horizontal axis of Fig. 4.5, the different percentiles of the total number 

of episodes are shown. In the vertical axis, the averaged total rewards can be seen for 

the corresponding batch of episodes belonging to that specific percentile. Of course, 

the exact number of episodes belonging to every percentile depends on the total 

number of episodes; for example, for the case of 106 number of episodes, each batch 

contains a total of 104 number of episodes. This is exactly the reason why different 

curves present different smoothness levels. However, Fig. 4.5 can prove as a great 

tool for proving that 107 is a well-suited number for this research purposes. In order to 

see why, specific focus should be given to the last 10 percentiles (90%-100%) in Fig. 

4.5; this is exactly the region where the agent starts mostly to exploit its current 

knowledge and does not explore any more. In other words, the agent’s performance 

becomes there as best as it can get. Therefore, it can be observed that the agent’s 

performance is much worse in the case where 104 or 105 number of episodes are used. 

Now comparing the results for the situations of 106 and 107 number of episodes, 
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someone could object that the difference is negligible. Nevertheless, given the scale of 

the problem, even this seemingly small margin constitutes a difference of a few 

thousand dollars. In hypothetical scenarios where the dimensionality of the problem 

becomes even higher (which is true in more realistic settings), this difference could 

become even more significant. On the other hand, by using this logarithmic scale to 

compare different number of episodes required for convergence, it can definitely be 

assured that running these experiments for 108 or more number of episodes would 

probably be a waste of computational resources. 

4.3.3 The impact of analytical outage modeling 

The purpose of this subsection is to highlight the significance of accurate 

outage modeling when solving optimization problems in the area of expansion 

planning of energy systems. In order to do so, it is needed to compare two different 

modeling approaches for the outage events in a microgrid and explore how the 

optimization results are affected. The problem formulation, the mathematical model 

and the numerical assumptions are the same as the ones presented in the previous 

subsections of Section 4.3. In other words, the objective of this problem is again to 

derive the optimal storage expansion plans for a specific microgrid in a predetermined 

time horizon. However, the results are now compared under the two outage 

probabilistic models considered. 

Firstly, the current modeling approach used in Sections 3 and 4 up to now 

should be explained in more detail. Let   , [0, )N t t   be the counting process 

which defines the outage events in the system.  N t  is considered to be a Poisson 

Process with rate   and therefore the number of outages at any given time 0   

follows a Poisson distribution with rate  . Moreover, the duration of each outage T  

is following a shifted Poisson distribution with a rate  . It becomes clear from the 
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definition that all outages are assumed to be independent and identically distributed. 

While the assumption about the independence of each outage may seem reasonable in 

some cases, specific attention should be paid to the distribution under which various 

outages are happening. In order to do that, someone should check the data for the 

average duration per interruption (CAIDI) that the NY state provided in Table 8, for 

the case of PSEG-LI (Service 2018): 

Table 4.8 CAIDI data provided by NY state for PSEG-LI, years 2012-2017 

By examining the data provided in Table 4.8 it is observed that the outages do 

not seem to come from the same distribution. There is a huge spike in the average 

duration per outage in the year 2012 and the most obvious reason for that is the 

devastating Hurricane Sandy that happened on October 22, 2012, and affected a vast 

majority of the US Northeast area for prolonged periods. Therefore, it may seem 

reasonable to propose and test an alternative modeling for outage events, following 

the approach in (Tsianikas, Yousefi et al. 2020). This alternative scheme is based on 

the premise that outages can be broadly classified into two categories: regular and 

severe. 

Under this taxonomy, it can still be assumed that each type of events follows a 

Poisson Process and outages, in general, follow a Poisson Process which is truly a 

superposition of these two types. Therefore, if   1 , [0, )N t t  with rate 1  is a 

counting (Poisson) process for the regular outage events and   2 , [0, )N t t  with 

rate 2  is a counting (Poisson) process for the severe outage events, 

     1 2N t N t N t   is a superposed Poisson Process with rate 1 2    . In that 

case, the probability that a random outage event comes from either of these processes 

                     Year                                                                       

Duration 

2012 2013 2014 2015 2016 2017 

CAIDI (hrs/int) 22.55 1.65 1.42 1.95 1.46 1.70 
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should also be defined. Therefore, let  Pr i
nZ i




  where nZ is the type of nth event 

and of course  1,2i in this case. Of course, the duration of the outages can still be 

assumed to follow a shifted Poisson distribution but in a similar way, two distinct 

random variables are now defined, such as 1 2,T T with respective rates 1 2,  . For a 

better illustration of the abovementioned modifications, Fig. 4.6 shows how the 

distribution of the outage duration can potentially change: 

 

Fig. 4.6 Distribution of outage duration using two different probabilistic modeling approaches 

By observing Fig. 4.6, it is more than clear that the distribution of the outage 

duration is significantly altered, even though the mean duration may have stayed the 

same. 

The optimization results of the two outage modeling approaches can now be 

presented and compared. As already mentioned, the numerical assumptions are the 
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same with the ones in Section 4.3.1. The only difference is the number of episodes of 

the Q-learning algorithm which is now 106, for the sake of computational efficiency. 

The purpose is to showcase that the optimal policies are significantly affected by the 

outage modeling used. In order to explore and examine the results, specific scenarios 

need to be defined, in a similar way that they are defined in Section 4.3.2. These 

scenarios correspond to the price movements in the DTMCs that are used to define the 

external feature of the state space. By using fixed price trajectories for both 

approaches, it is possible to compare them in an unbiased way: that means, the 

difference in the optimal policies can be attributed exclusively to the different outage 

models. The scenario that is going to be examined here refers to a 

420310167150 $/kWh price trajectory for the Li-ion storage unit, 

1421157765 $/kWh for the lead-acid battery, 38525512095 $/kWh for 

the vanadium redox and 3100260019501700 $/kWh for the flywheel energy 

storage system. The results are presented in Table 4.9: 

Table 4.9 Optimal policies for both outage models 

It is clear from observing Table 4.9 that the optimal policies obtained from the 

two outage models differ significantly. The first thing that it should be noticed is the 

fact that the total storage capacity installed in the microgrid in the single Poisson 

process scenario is much higher (7000 kWh) than the corresponding total storage 

capacity installed in the superposed Poisson process scenario (4000 kWh). This 

                      Outage  

                      model                                                                     

Decision  

period 

 

Single Poisson Process Superposed Poisson Process 

Period 1 
State (0,420,142,385,3100,0,0,0,0) (0,420,142,385,3100,0,0,0,0) 

Action Do nothing Do nothing 

Period 2 
State (1,310,115,255,2600,0,0,0,0) (1,310,115,255,2600,0,0,0,0) 

Action Add Li-ion at 1000 kWh Do nothing 

Period 3 
State (2,167,77,120,1950,1000,0,0,0) (2,167,77,120,1950,0,0,0,0) 

Action Add Li-ion at 3000 kWh Add Li-ion at 1000 kWh 

Period 4 
State (3,150,65,95,1700,4000,0,0,0) (3,150,65,95,1700,1000,0,0,0) 

Action Add vanadium redox at 3000 kWh Add Li-ion at 3000 kWh 
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finding could be attributed to the fact that in the latter scenario, the vast majority of 

outages are not long-lasting and therefore can be handled with a moderate amount of 

installed storage capacity. 

However, this is obviously not the only difference existing in the two optimal 

policies. In the single Poisson process scenario, it can be observed that the first 

storage investment happens one decision period earlier than in the superposed Poisson 

process scenario. It indicates that under this scenario, lost demand during outages is 

costly enough so it not efficient to just endure the outages and it is better to proceed 

with storage installation earlier. Finally, it should also be mentioned that in the single 

Poisson process scenario, vanadium redox battery is chosen in the last decision 

period, while this is not the case for the superposed Poisson process scenario. 
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5. Deep Reinforcement Learning for Power and Storage Expansion Planning 

At this point, the unified framework for tackling the generalized long-term 

expansion planning problem should be presented, tested, and analyzed. The purpose 

of this framework is to provide all the necessary mathematical tools and 

methodologies for solving real-scale expansion planning problems. It should be 

mentioned here that although the analysis is again focused in the case of microgrids, 

the proposed approach could be easily transferred to other applications and domains 

in which sequential decision making is inherent. 

In the first subsection, the focus is given on the main changes in the problem 

formulation. These changes can be divided into two main categories: firstly, the 

changes which refer to the updated action space of the problem, and secondly, 

changes related to the economical rewards associated with the agent. The action space 

of the problem presented in Section 4 consisted mainly of storage investment actions 

and this is the exact assumption that is going to be relaxed here. Concerning the 

reward function, besides the various components that are now added in the current 

formulation, it is crucial to present the way that reliability is going to be incorporated 

in the problem. This feature is very important as it is going to further highlight the 

importance of optimal planning while designing resilient systems serving critical 

infrastructure. In the second subsection, the details around the algorithmic approach 

chosen for the given problem are given and explained. This fact is closely connected 

with Section 5.1.1, due to the fact that the double deep Q-learning algorithm is the 

exact reason that enables the dimensionality enlargement of the action space. 

Afterwards, the emphasis is given in the case study, which is going to be presented 

alongside with results and discussion. The effect of incorporating reliability (in 

different levels of strictness) into the problem is going to be made clear via Section 
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5.3. In the fourth subsection, the proposed model is validated against a greedy 

approach. It is shown illustratively why accounting for delayed rewards is the key to 

unveiling successful and near-to-optimal investment and retirement policies. Finally, 

there is going to be a section dedicated exclusively to sensitivity analysis. Various 

scenarios for the future are explored and presented in accordance with their 

corresponding findings and discussion. 

5.1 Expanded action space and restructured reward function 

In this section, the updated action space and reward function are presented. As 

mentioned above, several components of the MDP formulation presented in Section 4 

are shown to be useful in the present section, too. However, these two components 

(action space and reward function) are significantly altered and therefore new 

notations and definitions are required. At the end of Section 5.1.1, the updated 

definitions for the state space and the transition function are also provided. 

5.1.1 Action space  

The main motivation of this new model is to relax as many simplistic 

assumptions made in previous sections and be able to provide methodologies and 

frameworks capable of tackling real-scale expansion problems. Towards this 

direction, the focus should be given to the main options that the microgrid planner has 

in terms of MDP actions, as defined in Eq. (4.9). Based on this one, in every decision 

period, it is possible to invest in any of the available storage units of the set SU at any 

of the available predetermined levels of the set SL. Although this provides some 

flexibility to the microgrid designer, two critical types of options are omitted. 

The first type refers to investment in power plants. In Sections 3 and 4, the 

microgrid entities responsible for local energy production, mainly renewable ones, are 

considered to be given and therefore there is no option from the design perspective to 
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affect these. In real cases though, the developed frameworks should incorporate 

actions related to power plants. As to microgrid entities, in this context, it means the 

union of power plants and storage units available in the system. Renewable 

investment costs are also declining and this is the exact same motive that drove the 

development of a dynamic model for storage expansion. The second type of actions 

that needs to be added deals with the retirement of existing power plants or storage 

units. In real cases, there are many occasions (and for many reasons) that it is deemed 

appropriate to retire an existing unit, no matter if it is replaced by a newer one or not. 

These reasons may be strictly economical (operations and maintenance costs are 

higher than decommissioning costs and savings) or environmental. 

In order to incorporate actions such as the ones described above, it is 

necessary to define a new set, PP, which refers to the available power plant 

technologies in the system. Besides, the available expansion levels are now specific 

for each microgrid entity and defined by the corresponding sets ,iCL i PP SU   . 

The updated action set is given in Eq. (5.1): 

 , , ,i l ia i PP SU l CL A     α                                                                                        (5.1) 

,s.t. 1
i

i l

i PP SU l CL

a
  

   

 , 0,1 , ,i l ia i PP SU l CL      

One last thing to be noted here is that in this context, actions refer to bringing 

the capacity of a specific microgrid entity at a specific level and not expanding it. This 

is an important difference, as it allows the microgrid planner to take retirement actions 

for any i PP SU  , if of course 0 iCL . However, adding capacity on top of an 

existing one is not permitted under the current model, given the fixed dimension of 

the state space and the existence of other internal characteristics, too. Therefore, 
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before proceeding with the reward function, it is required to present the definitions of 

the state space and transition function, updated with the new set notation introduced 

here: 

 

 

 

,

,

where: 1,2,...,

      , ,

, ,

tf ef if

tf tf

ef ef ef

i j i

if if if

i j i

S S S S

s S K

s i PP SU j EC S

s i PP SU j IC S

  

 

     

     

s

s

                                                     (5.2) 

  1,tf tf tf tf tf tfs f s s s S                                                                                                (5.3) 

   , ,, where: ,  is a DTMC with , ,ef ef ef ef tf tf ef

i j i j if s s S p i PP SU j EC      s s  

                                                                                                                                  (5.4) 

 
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l CL l CL
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i j
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i j i l i j i l
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s s j

 

 

 

 

  
    

     
 
   

 

 

 

s s α                     (5.5) 

Eq. (5.2) is the updated definition of the state space, where EC is the set of 

external characteristics of the microgrid entities and IC is the set of the internal ones. 

Some example components of the set EC are price, efficiency and lifetime and some 

example components of IC are capacity of the corresponding microgrid entity, current 

efficiency and current lifetime. The word “current” is used here to denote the 

characteristic of the entity currently existing in the system and to differentiate with the 

external characteristics, which correspond to the technologies in general. Each of 

these sets is again different for each microgrid entity. Eqs. (5.3) and (5.4) are the 

transition functions for the timing feature and the external feature of the state space, 

adjusted to account for the inclusion of power plants in the investment decisions. 

Specific focus is required for Eq. (5.5). The first thing that needs to be mentioned is 
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that the branching refers to whether it is the state transition of the capacity internal 

characteristic ( 1j  ), or the rest of the internal characteristics ( 1j  ). Therefore, if 

1j  , the next state of this feature depends on the level l of the chosen investment 

action. For all the other internal characteristics (such as efficiency, lifetime etc.), the 

next state depends on the current state of the corresponding external characteristic, 

i.e., if an action is taken to invest in a particular technology, the efficiency internal 

characteristic is dictated by the efficiency state of the external characteristic. 

5.1.2 Reward function  

The reward function of the MDP formulation in Section 4, as defined in Eq. 

(4.13), is the sum of two components: the investment cost and the outage cost. There 

is an inherent trade-off between these two components which was sufficiently 

analyzed and explained in the previous sections of this dissertation. Herein, the 

reward function consists of multiple components which are simultaneously affecting 

and driving the agent towards the desired optimal policies. Therefore, it is deemed 

appropriate to present these terms in a sequential manner: 

1) Investment cost: 

Before proceeding with providing the definition of the investment component 

of the cost, it is required to note that herein there is no reason to take into account the 

lifetime of the microgrid entities in the investment consideration. The reason why this 

is the case stems from the fact that lifetime can now be included directly in the state 

of the problem, as it is explained in Section 5.1.1. Therefore, instead of the leasing 

scheme considered in Section 4, it is appropriate to consider a lending scheme, where 

LT refers to the loan term and is measured in years. Using this notation, the annual 

payment for year n  from the start of investment is now: 
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,annuity

1
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
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                                     (5.6) 

where
principal

iP  refers again to the principal amount corresponding to a specific 

microgrid entity. It should be made clear that, for a specific decision period, 
principal

iP

depends of course on 
,1

ef

is  where 1j   here is the price external characteristic. Finally, 

the investment cost for the kth decision period is given in Eq. (5.7): 

 ,annuity ,1

1

,  where ; 0,  
y

inv e if

k n i

e ME n

C P ME PP SU s i PP SU
 

                                (5.7) 

ME is simply a set containing all the microgrid entities existing in the system 

right now. It should be reminded that y is the number of years in a decision period and 

,1

if

is  refers to the capacity internal feature. 

2) Operational cost: 

Investment in storage units is incentivized by the delayed rewards that the 

agent perceives in terms of loss of load cost savings. In order to incorporate 

efficiently investment actions for the power plants as well, similar incentives should 

be provided. One such incentive is the inclusion of operational costs (or savings in 

this case). Of course, during grid outages, the variable operational costs incurred 

should be taken into consideration. On the contrary, when there is no outage in the 

main grid, the total amount of electricity required to be purchased for the operation of 

the microgrid equals the total (critical) load net the production of these power plants 

that have variable costs lower than the electricity price at the moment. The rest is the 

savings incurred by the operation of the distributed energy resources in the microgrid. 

Finally, the operational cost component for the kth decision period can be given by Eq. 

(5.8): 
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                                                                                                                                  (5.8) 

It should be reminded here that kN  is the set of outages in decision period k, 

while jkO  is a random set of all time intervals for outage j in decision period k. pVC is 

the variable cost of power plant p and G is the set of facilities in the microgrid. 

 ijkE t is the electricity price at time ijkt  and  ijkeVC t  is the effective variable cost at 

time ijkt . 

The first term of Eq. (5.8) corresponds to the microgrid operation during 

outages. It is the variable cost that would be incurred by the production of its 

distributed energy resources. The second term of Eq. (5.8) is the one that defines the 

savings that would be incurred by the inclusion of power plants which have lower 

variable costs compared to the electricity price. It is clear that the higher the 

production (and the lower the variable cost) of these cost-efficient power plants, the 

higher the savings that the microgrid is going to receive. To conclude, the reason why 

the min operator is used in Eq. (5.8) is that in this context it is considered infeasible to 

sell electricity from the microgrid back to the main grid. 

3) Outage cost: 

Proceeding with the outage cost, it is now appropriate to examine the slightly 

modified indicator function for loss load of facility g: 

    min

1

1, if ( , )
( , )

0, otherwise

ljk

ljk

b g
t t

b b m bd
ijk c p ijk pbt

p PP mijk

p
Q t p P t C D u m du B

t g e



 

   
          




                                                      

                                                         for an arbitrary and , ,jk kb SU i O j N g G      
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                                                                                                                                  (5.9) 

By using Eq. (5.9), the outage component of loss load cost can be defined: 

   , ,
k jk

los g g

k ijk p ijk

g G j N i O

C VOLL t g C D t g
  

                                                                    (5.10) 

This component is simply the second (negated) term of the reward function, as 

presented in Eq. (4.13). As it is seen later in the present subsection, reliability is 

considered separately via the method of Lagrange multipliers. 

4) Operations and maintenance cost: 

The fact that the action space is expanded to include retirement actions, means 

that in a similar way that power plant investments are incentivized by the inclusion of 

operational costs (or savings), this type of actions should also properly incentivized. 

This incentive can be provided by the inclusion of operations and maintenance 

(O&M) costs for every microgrid entity in the system. Therefore, an entity with high 

O&M costs and simultaneously low contribution to the system, it can be expected to 

be retired. This exact cost component can be seen in Eq. (5.11): 

om i i

k k

i PP SU

C OM CC
 

                                                                                                                (5.11) 

where 
iOM is the O&M rate for entity i and 

i

kCC  is the capacity of entity i installed at 

the system at the kth decision period. Of course, 
i

kCC  is the 
,1

if

is  feature of the state 

representation for the kth decision period. 

5) Retirement cost: 

Lastly, the retirement cost needs to be defined. This is done via a single 

equation, although it is basically the result of decommissioning costs net any salvage 

value of the retired unit. Herein, it should be reminded that action ,i la  refers to the 

action to invest in entity i at level l. Therefore if 0l   it constitutes a retirement 
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action, while if 0l  , it is actually a replacement action. The retirement cost 

component can be seen in Eq. (5.12): 

,

i

ret i i

k i l k

i PP SU l CL

C a RT CC
  

                                                                                                       (5.12) 

where iRT is simply the retirement rate for entity i and 
i

kCC  is again the capacity of 

entity i already installed at the system at the kth decision period. 

6) Final reward function including reliability constraint: 

Before proceeding with providing the updated reward function, there is one 

final and crucially important piece that needs to be added: reliability consideration. In 

the frameworks presented so far in Section 4 and Section 5, reliability is only 

considered indirectly via the VOLL. It should be reminded here that one of the 

competitive advantages of the microgrids against central grids is the existence of PCC 

(point of common coupling). This feature enables the microgrid to disconnect from 

the main grids in disrupting situations and therefore increases its reliability and 

resilience (Roberts and Chang 2018). It is imperative for this research to take a 

decisive step to tackle this problem by expanding the current methodologies and 

properly adding this feature. 

Reliability is considered in terms of LOLP and CCP, as these are presented in 

Section 3. The CCP constraint for facility g at the kth decision period is given by: 

   , Pr 0g g g g

k jkh LOLP    s α                                                                                    (5.13) 

where: 
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where g  is the constraint limiting g

jkLOLP  and g  is the constraint limiting 

 ,g g

k kCCP h s α . 

It should be noted here that the MDP formulation and reinforcement learning 

algorithms are well suited to solve unconstrained optimization problems. However, in 

this case, the maximization problem that needs to be solved, according to Eq. (2.27) 

and the definitions provided in Eqs. (5.7) - (5.13), is the following:   

 1

0

1

max  ,
K

k

k

k

G r 



 s α                                                                                                          (5.16) 

   s.t.   , Pr 0g g g g

k jkh LOLP    s α                                                                          (5.17) 

 where   , inv opr los om ret

k k k k k kr C C C C C     s α                                                                (5.18) 

In order to convert this constrained maximization problem to an unconstrained 

one, it is appropriate to use an approach called Karush-Kuhn-Tucker (KKT) approach. 

With this approach, a new function, called the generalized Lagrangian, is introduced 

to the problem (Goodfellow, Bengio et al. 2016). As the first step in this process, it is 

needed to define the set FP, which contains all the feasible solutions (policies) of the 

constrained optimization problem: 

    , 0, , 1,2,3,...,Kg

kFP h g G k    s α                                                                (5.19) 

Also, by introducing the new variables g , called KKT multipliers, the 

generalized Lagrangian is now defined as: 
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It is now feasible to solve the constrained maximization problem defined in 

Eqs. (5.16) - (5.18) using unconstrained optimization in Eq. (5.20). It is proven that, 

as long as at least one feasible solution exists, then  
, 0

max min ,L
 




λ  has the same 

optimal solution as  1

1

max ,
K

k

k
FP

k

r


 




 s α , which was of course the original goal. This 

follows because: 
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 s α
λ                                                                        (5.21) 

This of course guarantees that the optimal policy is always within the set of 

feasible policies. 

5.2 Double deep Q-learning for expansion planning 

An issue that naturally arises from Section 5.1.1 is that more complex and 

realistic planning agendas should be accompanied by equally complex and 

computationally efficient programming techniques. While the action space could 

theoretically be expanded arbitrarily, it is a requirement to create the necessary tools 

and frameworks that could successfully accommodate and solve problems of that 

scale. Towards this direction, techniques and algorithms should be proposed to build 

models that are not directly affected by the size of the action spaces. In realistic 

scenarios, the microgrid owners should be able to choose between many investment 

options and at various levels. However, creating problems of such complexity could 

make their solutions unreachable; in that case, it is required either to compromise and 

make simplistic and non-realistic assumptions, or to devise innovative ways to tackle 

these problems in their entirety. Choosing the latter option makes the research 

extension of the current section a necessity. 
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Therefore, it is now time to dig deeper into the exploration of the deep 

learning-based algorithmic techniques that are presented in Section 2.5.3. More 

specifically, it is appropriate to solve the expanded long-term planning problem using 

advanced reinforcement learning approaches, such as double deep Q-learning (van 

Hasselt, Guez et al. 2016). While the implementation of the double Q-learning 

algorithm helps to solve definitely the overestimation bias problem of the single Q-

learning approach, the inclusion of deep neural networks in this framework 

accomplishes something even more important: it makes it feasible to disassociate the 

size of the action space with the derivation of optimally trained Q-tables. 

It should be reminded here that, as mentioned in Section 2.5.3, the key 

elements of deep Q-learning are two: experience replay and target network 

(Choudhary 2019). Experience replay refers to the way that the deep Q network 

selects the data to be trained on. The experiences (sequences of state, action, reward, 

next state) are first stored in a buffer and recovered later in a randomized way. This 

fact decreases the correlations between training samples. As for the target network, it 

exists because, if a single network is used both for predictions and targets, the whole 

training process could be unstable (Choudhary 2019). Consequently, a target network 

is used separately and has most of the time its’ parameters constant. At regular 

intervals, these are updated by a simple copy of the main deep Q network parameters. 

Specifically, for the case of the double deep Q-learning algorithm, this two-network 

approach is very convenient, since the algorithm is already designed this way: the two 

tables existing in double Q-learning can now serve as the two Q networks in the deep 

learning version of this approach. 

Before proceeding with presenting the proposed approach, it is necessary to 

explain the role of the simulation-based approach for estimating the outage cost 
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component, 
los

kC . In Section 4, synthetic datasets are constructed via the help of the 

simulation-based method, in order to eventually construct a model that it would be 

able to produce estimates for the outage cost, given a specific configuration of the 

system. The whole purpose of the metamodeling technique was to tackle the 

overestimation bias problem of the single Q-learning algorithm. However, this is no 

longer needed in the current section, since the double Q-learning approach is 

specifically designed to deal with this issue (van Hasselt 2010). This fact does not 

mean that the simulation-based approach is not used in the current context, because it 

is still needed to provide estimates for the outage cost component, 
los

kC . Besides, the 

inclusion of the reliability constraint in Eq. (5.13) requires the existence of a 

systematic way to assess the reliability performance of different system 

configurations. The number of simulation runs depends on the desired level of 

confidence in the estimations, as well as on the level of computational resources. In 

order to obtain a holistic view of the current algorithmic technique used in this 

section, the reader can refer to Table 5.1: 

Table 5.1 DoubleDQN algorithm with supporting simulation-based approach 

 Algorithm: Double deep Q-learning with use of simulation-based techniques 

1: initialization: main network AQ  , target network BQ and experience replay buffer b 

2: for every training episode do: 

3:           initialization: starting state s 

4:           for every decision period do: 

5:                     select action α based on AQ  and ε-greedy policy 

6:                     simulate the system n times and obtain estimates for 
los

kC and 
g

kh  

7:                     compute reward 
1

, 0
min( )k g

k g k

g G

r r h
 

 




   and observe next state 's  

8:                     store ( , , , )s r s  in experience replay buffer b 

9:                     if experience replay do: 

10:                               sample experiences from the replay buffer b 

11:                               for every experience in sample do: 

12:                                                  * , ', argmax ',B A

aQ s a r Q s Q s a                                         
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13:                               end for 

14:                               train AQ  on sample by minimizing     
2

* , ,AQ s Q s   

15:                     end if 

16:                     if update target do: 

17:                               copy main network AQ  weights to target network BQ  

18:                     end if 

19:                     's s  

20:           end for 

21: end for 

The simulation approach comes into play in lines 6-7 of the algorithm, where 

it is required to obtain estimates for the outage component of the cost, as well as for 

the achieved reliability of the system. Experience replay is performed at 

predetermined intervals and is shown in lines 9-15. The same applies for the update of 

the target network parameters which is displayed in lines 16-18. Finally, it should be 

noted that the actual training of the main Q network happens in line 14. 

5.3 Case study 

In this section, results are presented from a case study conducted for a 

microgrid located again in Westhampton, NY. Location-specific demand and 

meteorological data are used (NREL 2013, NREL 2016). This microgrid is 

considerably larger in terms of number of facilities and electricity demand 

(approximately 3.5 MW with a 1% annual growth rate). Furthermore, in this section, 

there are various external and internal features considered. More specifically, 

concerning the external variables, the following are included: price, lifetime, 

efficiency and depth-of-discharge (applicable only for storage units). As for the 

internal variables, these are: installed capacity, remaining life, current efficiency and 

current depth-of-discharge (applicable only for storage units). It should be reiterated 

that external features refer to all these characteristics of the technologies that the agent 

is allowed only to observe and not to affect. On the contrary, internal features are all 

the aspects of the problem that the agent can modify with its’ actions. 
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5.3.1 Microgrid formation and numerical assumptions 

The facilities that the microgrid is expected to serve are the following: 

hospitals, outpatient clinics, supermarkets, hotels, offices, schools, restaurants and 

residential houses. Concerning the power plants that the agent is able to choose 

amongst, are the following: solar panels, onshore wind turbines, offshore wind 

turbines, diesel generators and hydro power plants. Lastly, the energy storage options 

are: Li-ion battery, lead-acid battery, vanadium redox battery, flywheel storage 

system and pumped-storage hydropower. For the electrochemical storage options, 

degradation rate is now considered in terms of annual capacity loss (Yang, Xie et al. 

2018). The reason why a calendar only, and not a cyclical as well, capacity loss is 

considered stems from the fact that the energy stored in the system is again intended 

for backup use during emergency situations, i.e. main grid outages.  

By using the deep learning-based methodologies outlined in Section 5.2, it is 

clear that the state and action space of the problem can be enlarged, incorporating 

multiple power plant and storage unit options. Due to the increased dimensionality 

and therefore number of parameters, the data for each facility and microgrid entity 

considered in this case study, are presented collectively in Appendix A. The yearly 

data in Tables A.9 - A.18 refer to forecasts based on real past data and are obtained by 

using Holt-Winters forecasting method. For the Markov Chains of the external 

features, a 0.8 forward transition probability is assumed for all the decision periods, 

unless mentioned otherwise. It should be noted that in order to compare results of 

different test cases in Section 5.3.2 and Section 5.5 in an objective and unbiased way, 

the optimal policies are derived by using fixed random walks for all the external 

features of the problem. 
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Concerning the renewable energy production, solar and wind power are 

calculated using Eqs. (4.6) and (4.7). Specifically for the case of offshore wind power, 

a 20% linear reduction of wind speeds from offshore to onshore is assumed (Song, Li 

et al. 2018). The price of diesel is assumed to be 2.459 $/gallon (Administration 2020) 

and the electricity price is 0.1386 $/kWh (Administration 2020). It should also be 

noted that, for algorithmic purposes, the capacity internal feature is represented by the 

nominal power for the hydro and diesel generators (but without considering the 

respective efficiencies), while it is represented by the actual number of solar 

panels/wind turbines for the rest. In order to obtain the nominal power then, the 

number of solar panels/wind turbines should be multiplied with the nominal power of 

one solar panel/wind turbine. The horizon of the problem is still 20 years but now the 

decision periods are 20 (one decision period per year). As to the investment 

economics, a 2% annual interest rate is assumed with yearly loan payments and a loan 

term of 10 years. 

As for the algorithmic assumptions of the problem, the algorithm of Table 5.1 

is run for a total number of episodes equal to 106. The buffer b has a total capacity of 

20,000 experiences, 0.9  and the ε-greedy policy refers to a linearly decaying 

exploration/exploitation rate, ranging from 1 to 0.01. The neural networks (main and 

target) have a total of 2 hidden layers. The hidden units in each layer are 128. The 

optimizer is Adam (Kingma and Ba 2014) with a learning rate of 0.01. The experience 

replay is performed every 32 experiences and the target update every 1,000 episodes. 

Finally, the number of runs n of the embedded simulation approach of line 6 from 

Table 5.1 is set to 3. 

5.3.2 Results 
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In order to start exploring the experimental results, a baseline test case needs 

to be defined. This test case corresponds to using all the technology options 

mentioned above, but for now assuming 0,  g g G    . In other words, no 

reliability constraint has been imposed yet. The optimal policy derived for this test 

case is depicted in Fig. 5.1: 

 

Fig. 5.1 Optimal policy derived for the baseline test case 

Fig. 5.1 shows the optimal actions for every year (decision period) of the 

problem horizon. In the vertical axis, there are the decision periods. The investments 

in power plants are shown on the left horizontal axis, while the investments in storage 

units are shown on the right horizontal axis. The actual power corresponds to the 

power that a specific power plant outputs, by accounting for efficiency losses and its 

capacity factor. Respectively, the actual capacity corresponds to the capacity of a 

storage unit, by incorporating its depth-of-discharge. Although the focus should be 
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given on the actual power and capacity values, another two variables are illustrated in 

Fig. 5.1 by using color: the nominal power and the nominal capacity. These nominal 

values correspond to the power and capacity ratings of the power plants and the 

storage units respectively. In other words, the actual values are the ones someone 

would actually observe at the system, while the nominal values are the ones which 

would be obtained if capacity factor and depth-of-discharge are neglected. Finally, the 

labels show the type and size of investment, as well as the cumulative installed 

power/capacity in the system up to that year, by following the policy shown. 

It can be noted in Fig. 5.1 that investments in power plants are in the first four 

years, as well as in year 16. This is a result that would be expected from the 

operational cost component of the reward function and from the fact that the total load 

demand for year 1 is 3,491 kW, with an annual 1% growth rate since then. The agent 

is trying to “save” as much as possible by investing in power plants which reduce the 

need to buy energy from the main grid, according to Eq. (5.8). One interesting feature 

is the investment in solar in year 16. It should be mentioned that this investment 

corresponds to a simultaneous replacement of the old solar power plant and it can be 

attributed to potential technology improvements and price reductions of solar energy, 

as per Table A.9. However, probably the most important observation coming from 

Fig. 5.1 stems from the negligible investment in storage; only lead acid is chosen in 

years 11 and 12 and in a minor size. In fact, in order to further strengthen this 

observation, the fixed random walk could be slightly modified, by keeping the price 

of lead acid storage unit constant for all decision periods. This can be achieved by 

fixing 
2,1 0efp  , where 2i   corresponds to lead acid unit and 1j   to the price 

external feature. The optimal policy then can be seen as follows in Fig. 5.2: 
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Fig. 5.2 Optimal policy derived for the baseline test case with fixed lead acid price 

In this scenario, although the other investments are the same, there is 

absolutely zero investment in storage. It is therefore clear that the agent seems 

uninterested in storage investment under this baseline test case. The most obvious 

explanation for this behavior stems from the fact that there is still no reliability 

consideration. In other words, although there is a penalty for lost demand incorporated 

in the reward function, there is no penalty for not meeting the specified reliability 

criteria, as these are defined in Tables A.1 - A.8. Consequently, the next test case to 

be examined, is going to test exactly this feature; including reliability consideration 

by fixing 
510 ,  g g G    . The optimal policy should be observed in contrast with 

the one obtained in Fig. 5.1. The results are shown in Fig. 5.3: 
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Fig. 5.3 Optimal policy derived for the baseline test case with reliability consideration 

By imposing reliability constraints, the investment in storage is now more than 

three times higher (measured in actual capacity) compared to the original test case in 

year 12. Moreover, Li-ion technology is now chosen in expense of lead acid, which is 

of course considered a less efficient option. Last but not least, the cumulative storage 

capacity installed in the system is close to 4 MW, compared to 0.825 MW for the 

baseline test case without reliability consideration. According the power plant 

investments, these are almost the same between the two test cases; however, it should 

be mentioned that an investment in onshore wind is now taking place in year 19. This 

investment is due to the fact that the lifetime of the original onshore wind investment 

expired in year 19, and the agent decided that the optimal action is to replace the 

retired unit with a newer and more efficient one. 

Continuing the analysis, the focus should be turned to the case of hydro power 

plants. The investment in this type is happening in the first year, no matter whether 
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reliability is incorporated or not. The credit for this choice should be given to two 

factors; firstly, hydro energy is one of the most cost-efficient renewable options of the 

recent years. Its corresponding LCOE is considered to be the lowest one among all the 

other options available in this case study and this can be also seen in Fig. 5.4: 

 

Fig. 5.4 Global LCOE of utility-scale renewable power generation technologies, 2010-2018 (IRENA 

2019) 

Therefore, the optimal policies obtained in Fig. 5.3 can verify the expected 

results coming from the industry perspective. However, the attention should be given 

to one peculiarity of this type of energy compared to its renewable counterparts; 

hydro energy is much less intermittent than solar or wind energy. The availability 

factor of hydro energy is close to 1, and therefore, much higher than the 

corresponding factor of solar or wind energy. This basically means that the agent is 

deciding to kickstart the investments with hydro power plants, in order not only to 

reduce the need for buying energy from the main grid, but also to protect the system 

against potential outages. In simpler terms, it can be said that hydro is taking the 
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major part in providing reliability for the system, in expense of storage units that 

could play this role. Although hydropower is a fierce competitor in the field of 

renewable energy, it should also be mentioned that there are disadvantages when 

coming to this renewable energy type: firstly, installation of hydro plants is only 

feasible in certain places where water flow is abundant and secondly, there are 

associated environmental impacts related to affecting the natural habitat, changing 

water flow or flooding whole areas. Consequently, the next experiment refers to the 

baseline test case with reliability consideration in the absence of hydropower option. 

The results should be compared with the ones of Fig. 5.3 and can be seen illustratively 

in Fig. 5.5: 

 

Fig. 5.5 Optimal policy derived for the baseline test case not including hydropower 

The effect is drastic. Not only the cumulative storage capacity is higher (with a 

peak of 5.875 MW compared to 3.975 MW in Fig. 5.3), but more importantly the 

agent perceives a much more urgent need to invest in storage much earlier; year 3, 
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compared to year 12 in the original test case. This fact verifies the hypothesis made 

earlier; when only intermittent renewable power plants are available, the role of 

energy storage is (and is going to remain) crucial. Moreover, it can be seen in Fig. 5.5 

that investment in vanadium redox is chosen before Li-ion in this configuration. This 

finding may be attributed to the delayed rewards that the agent is looking to receive, 

by expecting the price of the Li-ion storage unit to further decline, before it decides to 

invest in that. 

As a final test case in this section, it is worthwhile to explore the effect of 

choosing the appropriate KKT multipliers. These are the way that reliability 

constraints are imposed in the problem, according to the generalized Lagrangian 

function as this is defined in Eq. (5.20). However, it is possible that the agent selects 

policies that occasionally violate the reliability criteria, by risking of course to endure 

the corresponding penalties. Therefore, in this test case the KKT multipliers are 

increased for selected facilities (
610g   for the hospital, 

53 10g   for the 

outpatient and 
510g   for the rest). This modification is expected to result in stricter 

policies, when it comes to the reliability satisfaction of the selected facilities. The 

results can be seen in Fig. 5.6: 
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Fig. 5.6 Optimal policy derived when stricter constraints for selected facilities are imposed 

The findings can again verify the initial hypothesis. Although this was a 

seemingly minor change, it altered the optimization results significantly. In this 

modified test case, the agent decides to start the investment process in storage units 

for the first time. On top of that, the size of investment is also higher, both in terms of 

the first-year investment and the cumulative ones. This result can further strengthen 

the argument that reliability consideration (especially when it comes to critical 

facilities) should play a major role when designing and testing expansion planning 

optimization models. For the subsequent Sections 5.4 and 5.5, this last test case of 

Fig. 5.6 (no hydro and stricter reliability constraints for selected facilities) is 

considered as the benchmark test case. 

5.4 Model validation 

In this section, the model is validated against a greedy approach. By greedy 

approach, it herein means an approach where the agent is simply selecting the action 
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that seems optimal for the current decision period, discarding any potential delayed 

rewards. This can be achieved by simply changing line 12 of the algorithm in Table 

5.1 from     * , ', argmax ',B A

aQ s a r Q s Q s a   to  * ,Q s a r . It means that 

the output layer of the neural network does not represent the discounted sum of 

rewards, but instead only the reward associated with the current decision period. Of 

course, the use of a second target network is no longer required. 

It would be expected that a greedy algorithm in this case, would always 

produce policies that decide to not invest in any type of power plants or storage units. 

This would be reasonable to assume if someone considers the high upfront costs 

associated with investments and that in most of the cases there is a waiting period 

until the investment reaches the break-even point and starts becoming profitable, if 

ever. In this case though, this is not exactly true and the reasons are two: firstly, and 

most importantly, the annual upfront costs are computed using Eq. (5.6), which is 

basically an amortized lending scheme. This fact, not only helps the agent in its 

optimal policy discovery, but also makes certain actions economically feasible from 

year 1. Secondly, there are also other cost components in the reward function which 

can drive towards that direction. As an example, which falls to this category, there are 

the operational costs in Eq. (5.8) which, in conjunction with the lending scheme 

mentioned above, can make investments in power plants profitable immediately. All 

the above, can be proven by observing the experimental results shown in Fig. 5.7, 

when a greedy approach is chosen: 
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Fig. 5.7 Optimal policy derived when a greedy algorithm is chosen 

Although the obtained policy seems similar to the one obtained in Fig. 5.6 

using the DoubleDQN algorithm of Table 5.1, there are minor differences that can 

ultimately play a crucial part: larger storage investments (especially in lead acid 

technology) or postponing investment in offshore wind are only two of them. But the 

main purpose here is not to analyze the optimal policy derived from the greedy 

approach. Instead, the goal is to compare the actual cumulative rewards obtained by 

this approach and those obtained by the original DoubleDQN algorithm. For this 

purpose, the two approaches are tested against the same set of 10,000 simulations 

(random walks of the external features) of the system. In this way, it is possible to 

compare the two algorithms in an objective and unbiased way. The number of runs in 

the embedded simulation approach is now 10. The metric chosen for the comparison 

is the cumulative reward (in $) per random walk and the results can be shown 

illustratively in Fig. 5.8: 
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Fig. 5.8 Comparison of DDQN and greedy algorithm 

The 10,000 random walks are split into 100 batches, for the sake of smoothing 

the results. The corresponding random walk batch is on the horizontal axis, while the 

cumulative reward per random walk (single random walk and not the whole batch) is 

on the vertical axis. Therefore, this quantity represents the expected cumulative 

reward for a single simulation of the system. The superiority of the DDQN algorithm 

can be clearly seen in Fig. 5.8. On average, the difference is slightly more than 

$72,000, while in some cases it can surpass the amount of $84,000. Ultimately, what 

is proven here, is the undoubtable dominance of these approaches that account for 

delayed rewards in their various configurations. 

5.5 Sensitivity analysis 

In this last subsection of Section 5, several scenarios about the future are 

explored and sensitivity analysis tests are conducted. The optimal policy derived for 

the benchmark test case defined in Fig. 5.6 is put in contrast with optimal policies 

derived for slight modifications of this test case, according to various assumptions 
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about the environment. Especially in situations where these alternations correspond to 

scenarios that will bring a significant disruption in the energy industry, it would be 

insightful to examine them with an even higher level of detail and rigorousness. 

5.5.1 Mass adoption of electric vehicles 

For example, how the load distribution will be shaped in the future by mass 

deployment of electric vehicles (EV) is still an open debate and no one will be able to 

safely predict it until it is seen in motion. However, the best preparation possible is 

urgently needed and therefore research has already been done in many sub-

components of this general problem. Nazemi et al. have tried to create several EV 

charging profiles, depending on the location of the charging dock (Nazemi and Jafari 

2019). Their results can be seen in Fig. 5.9: 

 

Fig. 5.9 Several EV charging profiles created by simulation (Nazemi and Jafari 2019) 

While the amount of additive electricity demand can be predicted with a 

satisfactory confidence level, the exact times that this demand will be added to 

remains still unknown. This fact, combined with the intermittent nature of the 

renewable energy technologies used in most microgrids, necessitates the analysis 
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required to be done towards this direction. Therefore, the first component of this 

sensitivity analysis work corresponds to adding EV loads in certain facilities of the 

considered microgrid. More specifically, 20 electric vehicles are considered per hotel 

facility (building 2 type of Fig. 5.9 assumed), 10 electric vehicles per office facility 

and 2 per residential household. The results are presented in Fig. 5.10: 

 

Fig. 5.10 Optimal policy derived when assuming mass adoption of electric vehicles 

The first and most obvious finding of Fig. 5.10 has to do with the investment 

in storage units: not only the cumulative installed capacity is higher for most of the 

decision periods of the horizon, but also a certain technology (vanadium redox) is 

replaced in year 16, long before the expiration of the previous unit’s lifetime. 

However, there is another hidden attribute of Fig. 5.10 that may require increased 

attention. It should be noticed that investment in solar is for the first time coming third 

in the order of the agent’s preferences. Instead, investments in offshore wind and Li-

ion storage are preceding. This fact could be attributed to the absence of solar energy 
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during the day and at the same time the distributional shift to nightly electricity loads 

according to Fig. 5.9 (vast majority of EVs are found in residential households). Wind 

energy, in rough terms, present a complimentary profile compared to solar energy: 

abundant during the night and less significant during the day. Consequently, if such a 

distributional change is realized, it may be the case that wind energy takes a lead 

among the other various renewable energy sources. 

5.5.2 Value of lost load as a function of outage duration 

In most of the analyses so far, the value of lost load 
gVOLL for a facility 

g G  is considered constant, no matter how many hours g  has gone with lost 

demand. However, in real cases, it may be the case that an outage is increasingly 

catastrophic for a facility as the time since the start of it goes by. This may be due to 

critical equipment existent in the facility, damage in food supplies, customers lost etc. 

The purpose of this section is to relax this exact assumption by relating the actual 

value of lost load with the outage duration and the consecutive hours with unmet 

demand. In order to achieve this goal, it is required to define an updated indicator 

function c , which is a modified version of Eq. (5.9) and is basically a counter of the 

hours with unmet demand for a given facility: 

   ( 1) min
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                                                                                                                                (5.22) 

Having defined an indicator which outputs the number of consecutive hours 

with unmet demand for a given facility, what is left now is to update the actual outage 
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cost component of Eq. (5.10) with an equivalent which would represent the actual 

value of lost load as a function of this newly created indicator. The purpose of this 

section is not to do a comprehensive analysis on the function families that could play 

this role, but rather do a sensitivity analysis on what would change in the optimization 

results with an increasing function of value of lost load. Therefore, an exponential 

function is chosen and the updated outage cost component for the kth decision period 

can be found in Eq. (5.23): 

      
,

, ,c ijk

k jk

z t glos g g

k ijk p ijk

j N i O g G

C t g VOLL e C D t g



  

                                             (5.23) 

Taking into account the results of Fig. 4.6, which show the distribution of 

outage duration under the superposed Poisson process, Eq. (5.23) could give 

drastically different outage costs compared to its predecessor of Eq. (5.10). It should 

be noted that z in Eq. (5.23) is simply a multiplier which would control this 

component to not explode. Table 5.2 shows the value of the quantity 
 ,c ijkz t ggVOLL e




for various choices of z and different values of ( , )c t g , in the case of a facility g with 

25gVOLL  (as the hospital in this present case study): 

Table 5.2 The effect of the choice of z in the updated value of lost load function 

 

Therefore, the optimal policy derived with the updated value of lost load 

function, and a choice of 0.2z   can be shown in Fig. 5.11: 

                                   ( , )c t g                                     

z 
15 20 25 

0.2 45.09 79.60 173.41 

0.3 115.02 428.43 1833.04 

0.4 428.43 3005.96 22051.47 
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Fig. 5.11 Optimal policy derived assuming exponential VOLL with z = 0.2 

The investment in storage in year 1 remains exactly the same, however in year 

9 there is an additional investment in lead acid unit, meaning that the need for energy 

storage is indeed more urgent. However, the differences after year 15 are smoothed 

out (7.275 MW total capacity installed compared to 6.65 MW in Fig. 5.6). It would be 

interesting to examine also the case where 0.3z  in Fig. 5.12: 
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Fig. 5.12 Optimal policy derived assuming exponential VOLL with z = 0.3 

Fig. 5.12 showcases the effect of the exact choice of exponential function to 

represent the actual value of lost load. In year 1, the investment in Li-ion storage is 

the highest ever seen in any experiment before. However, again after year 13, the 

differences in the cumulative installed capacity are not as significant when compared 

to the results of Fig. 5.6. This could be another argument on how important energy 

storage is, especially in the absence of sufficient renewable energy resources. Lastly, 

it should be noticed that in the case where 0.3z  , the renewal of the solar panels 

takes place 2 periods earlier than when 0.2z   in Fig. 5.11 and 1 period earlier than 

the original benchmark test case in Fig. 5.6. It means that not only energy storage, but 

also newer and more efficient renewable energy power plants can help in the battle of 

fighting potentially catastrophic events. 

As a side note, it would be worthwhile to highlight how sensitive is the 

training process of the algorithm, when exploding rewards take place. In Table 5.2, it 
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is shown that when 0.4z  , the actual value of lost load and consequently the outage 

cost component 
los

kC  are significantly different than those for the other values of z . In 

that case, the agent receives exploding rewards in many decision periods that 

ultimately cause him to not be able to converge in the optimal policy. The training 

process of course becomes noisy and the output policy is clearly not the optimal one. 

All the above can be observed in Fig. 5.13: 

 

Fig. 5.13 Optimal policy derived assuming exponential VOLL with z = 0.4 

The agent is proposing investment in solar energy in every decision period, 

although this would require to replace the older units every year. Although this would 

result in increasing the actual power in the microgrid (due to advancements in 

efficiency of solar energy technology), it should eventually result in significantly 

lower cumulative rewards when compared to the previous test cases. This is of course 

due to the retirement cost component as defined in Eq. (5.12) and the total absence of 
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energy storage units in the proposed policy. Consequently, it can be concluded that 

this is a case where the algorithm did not converge due to exploding rewards. 

5.5.3 Increasing battery prices 

Most of the analyses, results, and modeling so far relied on a specific 

assumption; that, in general, energy storage investment costs are declining and will 

continue to decline in the future. This assumption is based on industry reports and 

research works such as (IRENA 2017) which considered that this is the most likely 

outcome for the future. The adoption of this assumption in the present dissertation can 

be seen in Tables A.14 - A.18. 

Although there is no reason to question the predictions made by field experts, 

it is more than mandatory to mention that there are also industry reports and news 

which mention that a price increase is also possible, especially for the Li-ion battery. 

The price of cobalt, a raw material used in this specific type of batteries, rose 26% in 

the first quarter of 2018, following 114% annual increase in 2017, according to 

(Clover 2018). It should be noted here that Sections 5.5.1 and 5.5.3 are somehow 

correlated, given the fact that Li-ion batteries’ price decrease is one of the main 

drivers of the potential growth of electric vehicles. Another fact that could work as an 

additive reason for Li-ion batteries’ price to increase could be the illnesses that have 

been reported in cobalt mines in Congo which of course, besides the disastrous 

humane problems that cause, can affect crucially the production of the metal (Duff 

2018). While the issue seems to relate only to this specific type of battery up to now, 

it seems reasonable that it can cause a more general disruption in the energy storage 

market. If demand for other types of batteries goes higher, then their associated prices 

should be expected to go higher, too. 
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Conclusively, all the above facts constitute some very insightful reasons to 

conduct further research and explore what would happen under the realization of these 

scenarios. It should be mentioned here that it is considered mandatory that these 

scenarios should not be explored without the inclusion of reliability constraints in the 

dynamic model. Given higher energy storage prices, acquiring new storage for a given 

microgrid could become economically infeasible, unless there are strong drivers from 

the reliability perspective. Therefore, the results should again be put in contrast with 

the ones obtained from the benchmark test case in Fig. 5.6. Finally, the last 

experiment explores the effect on the optimal policy when the price states of Li-ion 

battery are actually an increasing function of time, instead of a decreasing one. For the 

specific data, the reader should refer to Table A.14. The optimal policy derived in this 

test case can be seen in Fig. 5.14: 

 

Fig. 5.14 Optimal policy derived when Li-ion price states are increasing 
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Fig. 5.14, compared with 5.6, presents a similar storage investment (although 

in a smaller size) in Li-ion technology in year 1. This is an expected outcome, since 

the price of Li-ion is considered equal in both test cases initially, no matter whether it 

is an increasing or decreasing function of time. However, the crucial difference is 

found in year 13. That is the time when in Fig. 5.14 a significantly larger investment 

in vanadium redox is chosen (9.5 MW compared with 3.5 MW in Fig. 5.6) in order to 

replace the old Li-ion unit. In year 14, the agent chose not to install additional storage 

capacity. On the contrary, in the original benchmark test case, the smaller vanadium 

redox investment is followed by another investment in Li-ion storage. The above 

result comes to verify the findings of Section 4, in which it is explained in detail how 

it is highly probable that these two technologies are likely to be fierce competitors in 

the energy storage industry in the future. Of course, as it is illustrated in Fig. 5.14, 

which technology will gain the upper hand depends heavily on their corresponding 

future costs. 

To conclude with this subsection, it is necessary to highlight the importance of 

accurate forecasting when studying expansion problems such as the one in the current 

research work. It is shown in Fig. 5.14 that minor changes in the price forecasting of 

just one microgrid entity can significantly alter the optimization results. Of course, the 

same applies for any other problem parameter (such as energy load for the various 

facilities) whose forecast is used in the optimization frameworks and algorithms. In 

the next section of the dissertation, the focus is turned on the short-term energy load 

and how accurate forecasts for this quantity can be produced. 
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6. Short-term Energy Load Forecasting 

Energy load forecasting is important for the efficient and reliable operation of 

grids, especially smart grids, which leads to uninterrupted power supply to consumers. 

From the perspective of the practical application, energy load forecasting can be 

divided into four distinct bins: (a) very short-term load forecast when the prediction 

horizon is in the order of the upcoming few minutes (vSTLF), (b) short-term load 

forecast (STLF), usually from several minutes to one week ahead, (c) medium-term 

forecast, usually from a week to a year ahead, and (d) long-term forecast, usually 

longer than a year ahead. In this section of the dissertation, the analysis is restricted to 

short-term load forecasting mainly for residential household demands, and ranging 

from several minutes up to few hours into the future. Such short-term demand 

prediction is often required for various applications, such as scheduling power system 

operation, energy balancing or energy market trading. In a nutshell, STLF plays a 

significant role in improving the power systems planning and operations within a 

power grid setup. 

The purpose of the current section can be summarized in two main points. 

Firstly, it is explained how analytical and accurate forecasting techniques can be used 

in the context of the models presented in previous sections of the present dissertation 

and why this is another crucial step towards relaxing simplistic assumptions. In this 

aspect, it is also elaborated why neural network-based techniques are seemingly 

superior than their competitors at the moment, when assigned such tasks. Secondly, 

there is a detailed comparison and analysis among the most popular neural network-

based techniques based on three metrics: their degree of success to predict short-term 

energy load, their ability to capture inherent uncertainties of typical residential load 

datasets and also their computational efficiency. Finally, the effect of incorporating 
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weather predictors in the forecasting tools is studied, as well as some peculiarities of 

energy load datasets at the residential level. 

6.1 Motivation behind the usage of forecasted energy load 

The main driver behind the need for development accurate and analytical tools 

for energy load prediction is the fact that in many cases (especially as the size of the 

grid gets larger) it has become inefficient to use real data from the control perspective 

(Hernandez, Baladron et al. 2014). This fact could cause discrepancies on how the 

proposed models are trained (if trained with real data) and tested. Additionally, the 

new players that are introduced in the electrical systems (Electric Vehicles, Smart 

Customers, Renewable Energy) are expected to provide an extra motive for demand 

forecasting. 

Computational techniques that utilize past data and forecasted weather 

parameters or incorporate daily activities and appliance usages, have demonstrated 

reasonable forecasting accuracy for some residential and commercial building level 

data. These techniques range from simple linear and nonlinear regression type 

models, decision trees, support vector machines (SVM), autoregressive moving 

average models, fuzzy-logic based approaches, gradient boosting methods and 

artificial neural networks to name a few. Essentially, conventional models try to 

estimate the parameters from an assumed sequential model. However, these models 

are generally not expressive enough for describing the dynamics behind complex real-

life data such as household level electricity consumption. With the advent of modern 

computing architectures such as graphical processing units (GPUs) and cheap cloud 

computational power, it has now become common practice to deploy machine 

learning-based models. 
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Indeed, over the past few years, deep learning techniques such as DNN, DBN 

and RNN have become an active research field within STLF for consumption at 

different levels. These deep learning techniques are mainly adopted with the task to 

learn layers of meaningful latent representations. Therefore, in the next subsection, a 

thorough comparison of neural network-based approaches is attempted to facilitate a 

better understanding about the relationship between STLF accuracy and architecture, 

weather predictors and size of facilities. 

6.2 Comparison of neural network approaches 

Leveraging the theoretical methodologies outlined in Section 2.4, it is 

considered appropriate to dive in a practical case study, following the methodology in 

(Tsianikas, Xie et al. 2020). To evaluate and compare the different neural network-

based approaches, benchmark electricity energy load dataset and corresponding 

weather dataset are used. These energy load datasets are comprised of half-hourly 

collected observations. In the case of weather dataset with hourly data interval, it is 

appropriate to use interpolation techniques to fill the missing observations.  

In the first subsection, more information is given on the datasets initially, the 

computational techniques afterwards and the evaluation metrics at last. Afterwards, 

the results comparison for the classical neural network approaches is conducted, 

where some space is also devoted to highlight the importance of utilizing weather data 

as well as to showcase the peculiarities of residential energy datasets. 

6.2.1 Experimental setup and evaluation metrics 

The chosen benchmark dataset arises from energy consumption readings for a 

sample of 5,567 London Households that took part in the UK Power Networks 

(UKPN) led Low Carbon London project (Networks 2014). This archive contains 

36,460 measurements gathered between November 2011 and February 2014. 



193 

 

 
 

Readings are taken at half hourly intervals, i.e. values are reported in kWh/hh (per 

half hour). The customers in the trial are recruited as a balanced sample representative 

of the Greater London population. The consumption of a single household, identified 

with ID: MAC000002 (Network 2015) belonging to the CACI Acorn group (CACI 

2014), utilizing a Standard tariff is used in this study. Additionally, meteorological 

service provided by Meteoblue (Meteoblue 2012) is used for easy access of consistent 

weather data in hourly resolution during the studied period. However, it is considered 

appropriate that the comparison between the neural network-based methodologies to 

be conducted in an additional dataset, coming from a different location. For this 

reason, three more energy consumption datasets are used, provided by the Office of 

Energy Efficiency & Renewable Energy for all TMY3 locations in United States 

(NREL 2013). The readings in these datasets are provided in kW (hourly). Also, 

meteorological data are obtained by NREL using their interactive data viewer tool 

(NREL 2016). The location chosen for these datasets is Central Park, NY, USA. The 

characteristics of all facilities used in this research work can be seen in Table 6.1: 

Table 6.1 Characteristics of facilities used in this research work 

Facility  

ID 

Facility  

Type 

Facility 

Location 

Min Demand  

(kW) 

Max Demand 

(kW) 

Avg Demand 

(kW) 

1 Residential London 0.130 5.988 0.485 

2 Residential NYC 0.456 3.564 1.418 

3 Hotel NYC 102.997 475.391 283.637 

4 Hospital NYC 523.416 1546.208 1,136.961 

In terms of the classical neural network approaches that are used and tested in 

this section, these are mainly four: firstly, a vanilla feedforward neural network 

(FFNN) is used, with densely connected layers and dropout layers between them. 

Afterwards, RNNs are tested and more specifically the LSTM and the GRU 

architectures. It should be noted here that both single and stacked versions of these 

networks were tested. Finally, a CNN is used where the convolutional and the pooling 
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layers are followed by two densely connected layers, including the output. This 

architecture is similar with the one used in (Van Zaen, El Achkar et al. 2018). The 

input window is kept fixed at 24 hours (48 half-hourly observations) and the output 

window varies between 0.5 hours (1 observation) and 6 hours (12 observations). The 

reason why different output windows are tested is that it is appropriate to examine 

whether the predicting performance of the neural networks deteriorates as the horizon 

for prediction gets longer. Furthermore, the weather predictors appended in the 

dataset include three variables: temperature (measured in ℃), precipitation (measured 

in mm) and sunshine duration (measured in min). Due to the different units of the 

various electricity and weather variables, it is considered appropriate that the datasets 

are preprocessed by scaling each feature to a default range between 0 and 1. Of 

course, predicted results should be postprocessed by inverse transforming them to the 

original units. Finally, the datasets comprise observations for one whole year, which 

is split to train/validation using the following rule: the first 345 days are used for 

training purposes, where the last 20 days are used for testing. The results presented 

refer mostly to the performance of the algorithms in the test set. 

Herein, it is useful to present the evaluation metrics used to compare the 

various methodologies. The main metrics are three: normalized root mean squared 

error (NRMSE), maximum error (maxERR) and runtime. The NRMSE corresponds to 

the whole testing dataset and therefore provides an objective baseline for comparison 

among the selected methods. In order to obtain the NRMSE, the RMSE is computed 

initially and then normalized by dividing with the range of the energy consumption 

values. On the other hand, in this context the maxERR is defined as the mean absolute 

error (MAE) for the top 10% of absolute errors in the testing dataset. The reason why 

this specific metric is chosen is because of a well-known problem when predicting 
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electricity demand in household level: due to the high variability of electricity usage 

in a household, there are certain “peaks” and “valleys” that many popular forecasting 

techniques are unable to capture. Therefore, it is considered appropriate to use 

maxERR so the neural network-based methodologies can be evaluated on this aspect, 

too. The maxERR is also normalized using the range of values in the whole dataset. 

Finally, in order to measure the computational efficiency of the different approaches, 

the runtime is defined as average runtime (in sec) per training epoch of the neural 

networks until convergence. 

6.2.2 Results and discussion 

In this section, the results of the classical neural network approaches are 

presented. Firstly, the overall comparison of the four approaches for facility 1 from 

Table 6.1 is done, using all three evaluation metrics mentioned in Section 6.2.1. 

Afterwards, it is considered necessary to highlight the importance of incorporating 

weather variables in the predictive models, by showing in contrast the results with and 

without the weather predictors. Finally, the effect of facility size (or level of 

aggregation) in the prediction results is shown. For this task, facilities 2-4 from Table 

6.1 are used and NRMSE and maxERR are plotted with respect to the size of the 

facilities. 

Before diving deeper into the numerical results, it should be mentioned that 

proper hyperparameter tuning is needed for all four neural network approaches. The 

final hyperparameter values that showed the best performance for each neural 

network architecture can be seen in Table 6.2: 

Table 6.2 Selected hyperparameter values for the four approaches 

 Number 

of layers 

Units Dropout Filters Kernel 

size 

Pool size 

FFNN 1 256 0.2 - - - 

LSTM 1 128 0.3 - - - 
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GRU 1 128 0.3 - - - 

CNN 1 256 0.2 128 2 2 

It should be noted that number of layers refers to: the number of neural 

network layers without considering the output layer for the FFNN, the number of 

stacked RNN layers for LSTM and GRU and the number of 1D convolutional layers 

that preceded two dense layers for the case of CNN. Different values (ranging from 1-

5) were tried to determine the optimal number of layers and although some deeper 

networks outperformed their shallower counterparts, the differences were negligible 

and that is the reason why the shallow networks are finally chosen. The optimizer 

used is Adam algorithm with a learning rate of 0.001. 

As a first step in the attempted comparison, it is required to present the overall 

results of the aforementioned neural network techniques. Results are presented for 

both a short-term prediction window (0.5 hours) and a long-term prediction window 

(6 hours). The input window is kept fixed at 24 hours. The facility under 

consideration is facility 1 from Table 6.1. Results can first be seen schematically in 

Fig. 6.1: 

 

Fig. 6.1 Comparison of CNN, FFNN, GRU and LSTM using three evaluation metrics 
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There are several interesting observations that can be made from Fig. 6.1. First 

of all, the differences between the various approaches are much smaller in the long-

term prediction window than in the short-term prediction window. That basically 

means that when the output window interval is narrowed down, there are specific 

methodologies that can significantly outperform others, while this is not the case for a 

larger output window. 

Therefore, in order to compare the four methodologies, it is necessary to focus 

the attention to the short-term prediction window (0.5 hours). In this aspect, it seems 

that CNN performed worse in terms of NRMSE and maxERR, although it was the 

fastest approach used. The regular FFNN achieved the second lowest runtime among 

all approaches tested. This can be reasoned due to the number of parameters need to 

be optimized compared with the other types of neural networks. However, the 

emphasis should probably be given on the RNN methodologies (LSTM, GRU). They 

outperformed their competitors in both NRMSE and maxERR, although they are also 

slower. Based on the results presented in Fig. 6.1, it would be valid to claim that GRU 

achieved the best performance among all approaches tested, since it scored the lowest 

for NRMSE and maxERR and additionally it was notably faster than LSTM. 

Proceeding with results, it is worth mentioning and proving the effect that 

using weather predictors has in the prediction accuracy of these models. It is 

important to show that this performance gain from utilizing weather information is 

invariant of the specific model architecture used and applies to various 

methodologies. In order to do so, NRMSE is presented for facility 1 from Table 6.1 

for all neural network approaches by using bars for both scenarios: the NRMSE 

obtained without using weather data and the NRMSE obtained with using weather 

data. The results can be seen in Fig. 6.2: 
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Fig. 6.2 The effect of using weather predictors in NRMSE 

From Fig. 6.2, it can be seen that the hypothesis explained earlier is now 

verified. There is a performance gain occurring for all types of neural networks used. 

However, it may be useful noting that this performance gain seems to correlate with 

the prediction power of the neural network approach. Methodologies that achieved the 

best results according to Fig. 6.1 (LSTM, GRU) seemed to also present the highest 

performance increase when weather data are also fed to their pipelines. 

To conclude with this section, it is worth digging deeper into why forecasting 

residential energy load is notably more difficult than forecasting for other types of 

facilities. For this purpose, the attention is given to the NYC-based facilities 2-4 of 

Table 6.1. These are three types of buildings with increasing size, in terms of average 

energy consumption (residential, hotel and then hospital). NRMSE and maxERR 

results are presented in the vertical and horizontal axis respectively. It should be 

mentioned here that in order for the results to be comparable amongst the various 

facilities, both NRMSE and maxERR are now normalized by dividing not with the 

range but with the average demand of facilities. The results can be observed 

schematically for all neural network architectures in Fig. 6.3: 
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Fig. 6.3 NRMSE and maxERR for three different types of facilities 

In Fig. 6.3, the size of the circle is used to denote the type of facility. Smaller 

circles are for residential facility, moderate-sized circles are for the hotel and the 

larger circles are for the hospital. Moreover, color is used in a similar fashion with 

Figs. 6.1 and 6.2, to denote the neural network architecture. Therefore, the purpose of 

Fig. 6.3 is to showcase that it is common (although not always true) to observe lower 

(normalized) errors as the size of the facility under consideration becomes larger. This 

finding applies to all four methodologies considered in this work. It justifies that 

usually residential facilities are more difficult to predict by nature and require 

developing accurate and detailed approaches for dealing with them. As a final note in 

Fig. 6.3, there is one observation which could be considered an outlier: the 

performance of the residential facility for the CNN architecture. Compared to the 

other datapoints, it is lying in the far upper-right corner of Fig. 6.3, shrinking the rest 

of them to the bottom-left. 

  



200 

 

 
 

Conclusions and Research Extensions 

To sum up, the current research suggests a unified framework for the long-

term microgrid expansion planning problem. By placing renewable energy sources 

and energy storage systems at the center of the formulation and modeling, the 

examined problems are solved by utilizing simulation-based techniques and 

reinforcement learning algorithms. The work that has been done is significant from 

both theoretical and applied research contributions’ perspective and can successfully 

pinpoint to potential research extensions that could follow. The current work includes 

but is not limited to presenting an approach to determine optimal battery sizing with 

given photovoltaic arrays, investigating the relationships between critical problem 

parameters and developing dynamic expansion models considering various renewable 

energy plants and energy storage technologies. Lastly, a study on forecasting short-

term residential energy load is conducted and presented. All of the above serve 

together the purpose of tackling successfully the multi-period, stochastic and dynamic 

problem of power and storage expansion planning in microgrid setting. 

At this point, it would be beneficial to reiterate on the highly important 

research contributions. The most notable of these is definitely the formulation of 

dynamic expansion models, tailored specifically to microgrid use cases, which have 

not been extensively studied in the literature, to the best of the author’s knowledge. 

Moreover, the introduction of modern and advanced reinforcement learning 

algorithms to the field of long-term energy planning is another significant novelty of 

the present work. Q-learning and its’ neural network-based counterparts have recently 

been used in the energy sector, but mostly in short-term planning problems, such as 

unit commitment and battery scheduling. The incorporation of these techniques in the 

current research work have definitely a strong impact from a research perspective, as 
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they facilitate and enhance the process of rigorous formulation of such complex types 

of problems. Moreover, developing simulation-based techniques that are taking a 

closer look at several problem parameters, while utilizing real and location-specific 

data, can be considered as another novelty of this research work. Last but not least, 

studying thoroughly the problem of forecasting short-term residential energy load 

with neural network-based techniques is found to be missing from the literature up to 

this point. The analytical and detailed consideration and incorporation of stochastic 

modeling for several aspects of the problem is able not only to further strengthen the 

research contributions from the theoretical perspective, but also to create eventually a 

more realistic problem formulation compared to the ones found in the literature. 

However, this last task is one task for which the work should never stop and of course 

the goal of this research is to guide through that direction. 

Towards this idea of never-ending research, it would be interesting to present 

some potential research extensions of the current work. These extensions can be 

broadly categorized in the following: 

 Quantification and analysis of VOLL 

 State space: Expand-and-extract 

 Investigation of other promising RL techniques 

 Incorporation of forecasting in dynamic models 

According the first research extension, it should be reiterated that the current 

study attempts to study and model as many stochastic parameters of the problem as 

possible. One of them, VOLL, is specifically modeled as an exponential function of 

the outage duration and a sensitivity analysis test is conducted in Section 5. However, 

there is clearly a lot more room for research in that space. Proper quantification with 

detailed mathematical models is not only encouraged but required, if such studies in 
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the future aim to produce results as realistic as possible. The correlation between the 

monetary penalties associated with lost load and the duration of outages should be 

further studied and expanded. VOLL is one of the most critical parameters of models 

such as the ones presented in this research, and even slight modifications in the way it 

is perceived are expected to bring significant changes. 

In Section 5, there is a specific focus on expanding the action space of the 

problem, by incorporating new types of actions into the model. However, there is an 

equally critical from a research perspective need to elaborate more on what is 

considered the ideal state representation in such problems. From one side, it is 

required to expand the state space of the environment, in order to account for more 

internal and external characteristics and to add more functionality into the model. On 

the other side, the attention should be given to extracting the most important of these 

characteristics, that would help the agent to converge faster. Convergence time is 

crucial from the practical perspective, since optimizing on this one would allow to 

solve efficiently problems of realistically large scale. 

In terms of the reinforcement learning algorithms studied, the focus is clearly 

given to Q-learning and its’ neural network-based versions. However, it is imperative 

that other RL techniques are also examined and compared with the ones already 

implemented. There is recently an increasing attention to actor-critic methods in RL, 

such as Deep Deterministic Policy Gradient (DDPG). Actor-critic methods are able to 

simultaneously estimate value functions (critic) and update accordingly the policy 

distribution (actor). Especially DDPG has the additive advantage that it handles 

continuous action spaces, which would be of course a great feature in the models. 

Finally, it is worthwhile mentioning Monte Carlo Tree Search (MCTS), another 

algorithm that is being studied and implemented recently mostly in game-based RL. 
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The basic idea of MCTS is to build a tree on all the possible scenarios of the 

simulation but explore only those that are the most promising ones. Overall, it should 

be mentioned that exploring new ideas, testing new algorithms and comparing them to 

ones that have been already implemented can only bring positive value to the subject. 

The last research extension refers to how forecasting (of energy load or other 

problem parameters) could be used as an addition to the present models. In Section 6, 

there is a thorough comparison of neural network-based techniques on their 

forecasting short-term residential energy load capabilities. In a similar manner, many 

researchers are constantly developing modern and efficient techniques for forecasting 

other parameters related to the problem under examination. However, the specific 

issue of how to incorporate these forecasts in the dynamic expansion models is still to 

be investigated. The successful completion of such a task would further help towards 

the direction of relaxing as many simplistic assumptions as possible and therefore 

increase the robustness of the optimization models and frameworks. 

The ultimate goal of this research is to highlight the awareness and attention 

that needs to be paid in the optimal design of microgrids and the future grids in 

general, incorporating renewable energy sources and storage systems. It is safe to 

assume that by developing analytical and detailed methodologies, such as the ones 

presented in this work, a decisive step towards this direction can be taken. Further 

research should always be encouraged and motivated and it can be stated that the 

current methodologies and frameworks can serve as a great driver for that purpose. 
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Appendix A: Supplemental data for facilities, power plants and storage units 

Table Α.1 Hospital facility parameters (van der Welle and van der Zwaan 2007) 

Table Α.2 Outpatient clinic facility parameters (van der Welle and van der Zwaan 2007) 

Table Α.3 Supermarket facility parameters (van der Welle and van der Zwaan 2007) 

Table Α.4 Hotel facility parameters (van der Welle and van der Zwaan 2007) 

Table Α.5 Office facility parameters (van der Welle and van der Zwaan 2007) 

Table Α.6 School facility parameters (van der Welle and van der Zwaan 2007) 

Table Α.7 Restaurant facility parameters (van der Welle and van der Zwaan 2007) 

Table Α.8 Residential house facility parameters (van der Welle and van der Zwaan 2007) 

Table Α.9 Solar energy parameters (NREL 2016, Raimi 2017, IRENA 2019) 

Count VOLL ($/kWh) Critical load Cp LOLP constraint β CCP constraint ζ 

2 25 0.8 0.2 0.8 

Count VOLL ($/kWh) Critical load Cp LOLP constraint β CCP constraint ζ 

2 19 0.8 0.2 0.8 

Count VOLL ($/kWh) Critical load Cp LOLP constraint β CCP constraint ζ 

3 10 0.6 0.5 0.5 

Count VOLL ($/kWh) Critical load Cp LOLP constraint β CCP constraint ζ 

3 9 0.5 0.5 0.5 

Count VOLL ($/kWh) Critical load Cp LOLP constraint β CCP constraint ζ 

5 8 0.5 0.5 0.5 

Count VOLL ($/kWh) Critical load Cp LOLP constraint β CCP constraint ζ 

3 7 0.4 0.5 0.5 

Count VOLL ($/kWh) Critical load Cp LOLP constraint β CCP constraint ζ 

7 6 0.9 0.5 0.5 

Count VOLL ($/kWh) Critical load Cp LOLP constraint β CCP constraint ζ 

300 5 0.3 0.5 0.5 

Year # / Variable Price state ($/kW) Lifetime state (yrs) Efficiency state 

1 1183.51 33 0.17 

2  1157.02  33  0.18 

3  1130.53  34  0.19 

4  1104.05  34  0.20 

5  1077.56  35  0.21 

6  1051.07  35  0.22 
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Table Α.10 Onshore wind energy parameters (NREL 2016, Raimi 2017, Song, Li et al. 2018, IRENA 

2019) 

7  1024.58  36  0.23 

8  998.09  36  0.24 

9  971.60  37  0.25 

10  945.11  37  0.26 

11  918.63  38  0.27 

12  892.14  38  0.28 

13  865.65  39  0.29 

14  839.16  39  0.30 

15  812.67  40  0.31 

16  786.18  40  0.32 

17  759.69  41  0.33 

18  733.21  41  0.34 

19  706.72  42  0.35 

20  680.23  42  0.36 

Action levels (solar 

panels) 
2000, 4000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000 

Retirement cost ($/solar 

panel) 
17.23 

O&M annual cost rate 

(%) 
0.63 

Capacity factor (%) 17 

Year # / Variable Price state ($/kW) Lifetime state (yrs) Efficiency state 

1 1484.54 17 0.48 

2 1453.04 17 0.48 

3 1421.54 18 0.48 

4 1390.04 18 0.48 

5 1358.54 19 0.49 

6 1327.05 19 0.49 

7 1295.55 20 0.49 

8 1264.05 20 0.49 

9 1232.55 21 0.49 

10 1201.05 21 0.50 

11 1169.56 22 0.50 

12 1138.06 22 0.50 

13 1106.56 23 0.50 

14 1075.06 23 0.51 

15 1043.56 24 0.51 

16 1012.07 24 0.51 

17 980.57 25 0.51 

18 949.07 25 0.52 

19 917.57 26 0.52 

20 886.07 26 0.52 

Action levels (onshore 

wind turbines) 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

Retirement cost 

($/onshore wind 

turbine) 

5737.94 

O&M annual cost rate 

(%) 
0.70 

Capacity factor (%) 34 
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Table Α.11 Offshore wind energy parameters (NREL 2016, Raimi 2017, Song, Li et al. 2018, IRENA 

2019) 

Table Α.12 Diesel generator parameters (Kozlowski 2002, Raimi 2017, Ericson and Olis 2019) 

*without considering efficiency 

Year # / Variable Price state ($/kW) Lifetime state (yrs) Efficiency state 

1 4290.92 17 0.48 

2 4251.77 17 0.48 

3 4212.61 18 0.48 

4 4173.46 18 0.48 

5 4134.30 19 0.49 

6 4095.14 19 0.49 

7 4055.99 20 0.49 

8 4016.83 20 0.49 

9 3977.68 21 0.49 

10 3938.52 21 0.50 

11 3899.37 22 0.50 

12 3860.21 22 0.50 

13 3821.05 23 0.50 

14 3781.90 23 0.51 

15 3742.74 24 0.51 

16 3703.59 24 0.51 

17 3664.43 25 0.51 

18 3625.28 25 0.52 

19 3586.12 26 0.52 

20 3546.97 26 0.52 

Action levels (offshore 

wind turbines) 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

Retirement cost 

($/offshore wind 

turbine) 

36385.23 

O&M annual cost rate 

(%) 
1.40 

Capacity factor (%) 45 

Year # / Variable Price state ($/kW*) Lifetime state (yrs) Efficiency state 

1 800 20 0.39 

2 800 20 0.40 

3 800 20 0.41 

4 800 20 0.42 

5 800 20 0.43 

6 800 20 0.44 

7 800 20 0.44 

8 800 20 0.44 

9 800 20 0.44 

10 800 20 0.44 

11 800 20 0.45 

12 800 20 0.45 

13 800 20 0.45 

14 800 20 0.45 

15 800 20 0.45 

16 800 20 0.46 

17 800 20 0.46 

18 800 20 0.46 

19 800 20 0.46 
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Table Α.13 Hydro power plant parameters (Oldham 2009, IRENA 2019, Association 2020, Company 

2020) **without considering efficiency 

Table Α.14 Li-ion parameters (Unterreiner, Julch et al. 2016, IRENA 2017, Marchi, Pasetti et al. 2017, 

Yang, Xie et al. 2018, Cole and Frazier 2019) ***right sub-column corresponds to increasing prices 

(Section 5.5.3), left sub-column to the baseline scenario (rest of Section 5) 

20 800 20 0.46 

Action levels (kW) 100, 400, 700, 1000, 1300, 1600, 1900, 2200, 2500, 2800 

Retirement cost ($/kW) 31 

O&M annual cost rate 

(%) 
4.38 

Year # / Variable Price state ($/kW**) Lifetime state (yrs) Efficiency state 

1 1518.20 40 0.80 

2 1544.40 40 0.80 

3 1570.60 40 0.80 

4 1596.80 40 0.80 

5 1623.00 40 0.80 

6 1649.19 40 0.80 

7 1675.39 40 0.80 

8 1701.59 40 0.80 

9 1727.79 40 0.80 

10 1753.99 40 0.80 

11 1780.19 40 0.80 

12 1806.39 40 0.80 

13 1832.59 40 0.80 

14 1858.79 40 0.80 

15 1884.99 40 0.80 

16 1911.19 40 0.80 

17 1937.38 40 0.80 

18 1963.58 40 0.80 

19 1989.78 40 0.80 

20 2015.98 40 0.80 

Action levels (kW) 100, 400, 700, 1000, 1300, 1600, 1900, 2200, 2500, 2800 

Retirement cost ($/kW) 303.64 

O&M annual cost rate 

(%) 
2.50 

Capacity factor (%) 50 

Year # / Variable Price state 

($/kW***) 

Lifetime state (yrs) Efficiency state DoD state 

1 470.00 470.00 12 0.94 0.90 

2 449.47 478.95 13 0.94 0.90 

3 428.95 487.89 14 0.94 0.90 

4 408.42 496.84 15 0.94 0.90 

5 387.89 505.79 16 0.95 0.90 

6 367.37 514.74 16 0.95 0.90 

7 346.84 523.68 17 0.95 0.90 

8 326.32 532.63 17 0.95 0.90 

9 305.79 541.58 18 0.96 0.90 

10 285.26 550.53 18 0.96 0.90 

11 264.74 559.47 19 0.96 0.90 

12 244.21 568.42 19 0.96 0.90 

13 223.68 577.37 20 0.97 0.90 
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Table Α.15 Lead acid parameters (Unterreiner, Julch et al. 2016, IRENA 2017, Marchi, Pasetti et al. 

2017, Yang, Xie et al. 2018, Cole and Frazier 2019) 

Table Α.16 Vanadium redox parameters (Unterreiner, Julch et al. 2016, IRENA 2017, Marchi, Pasetti 

et al. 2017, Yang, Xie et al. 2018, Cole and Frazier 2019) 

14 203.16 586.32 20 0.97 0.90 

15 182.63 595.26 21 0.97 0.90 

16 162.11 604.21 21 0.97 0.90 

17 141.58 613.16 22 0.98 0.90 

18 121.05 622.11 22 0.98 0.90 

19 100.53 631.05 23 0.98 0.90 

20 80.00 640.00 23 0.98 0.90 

Action levels (kWh) 1500, 3500, 5500, 7500, 9500, 11500, 13500, 15500, 17500, 19500 

Retirement cost ($/kWh) 220 

O&M annual cost rate 

(%) 
2.50 

Degradation annual rate 

(%) 
1.71 

Year # / Variable Price state ($/kW) Lifetime state (yrs) Efficiency state DoD state 

1 260.00 9 0.80 0.55 

2 248.95 10 0.80 0.55 

3 237.89 11 0.80 0.55 

4 226.84 12 0.80 0.55 

5 215.79 13 0.81 0.55 

6 204.74 13 0.81 0.55 

7 193.68 14 0.81 0.55 

8 182.63 14 0.81 0.55 

9 171.58 15 0.82 0.55 

10 160.53 15 0.82 0.55 

11 149.47 16 0.82 0.55 

12 138.42 16 0.82 0.55 

13 127.37 17 0.83 0.55 

14 116.32 17 0.83 0.55 

15 105.26 18 0.83 0.55 

16 94.21 18 0.83 0.55 

17 83.16 19 0.84 0.55 

18 72.11 19 0.84 0.55 

19 61.05 20 0.84 0.55 

20 50.00 20 0.84 0.55 

Action levels (kWh) 1500, 3500, 5500, 7500, 9500, 11500, 13500, 15500, 17500, 19500 

Retirement cost ($/kWh) 88 

O&M annual cost rate 

(%) 
2.50 

Degradation annual rate 

(%) 
1.71 

Year # / Variable Price state ($/kW) Lifetime state (yrs) Efficiency state DoD state 

1 400.00 13 0.70 1.00 

2 383.16 14 0.71 1.00 

3 366.32 15 0.72 1.00 

4 349.47 16 0.73 1.00 

5 332.63 17 0.74 1.00 

6 315.79 17 0.74 1.00 

7 298.95 18 0.75 1.00 
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Table Α.17 Flywheel storage parameters (Amiryar and Pullen 2017, IRENA 2017, Marchi, Pasetti et al. 

2017, Yang, Xie et al. 2018, Cole and Frazier 2019) 

Table Α.18 Pumped-storage hydropower parameters (Oldham 2009, IRENA 2017, Marchi, Pasetti et 

al. 2017, Yang, Xie et al. 2018, Cole and Frazier 2019, Association 2020) 

8 282.11 18 0.75 1.00 

9 265.26 19 0.76 1.00 

10 248.42 19 0.76 1.00 

11 231.58 20 0.77 1.00 

12 214.74 20 0.77 1.00 

13 197.89 21 0.78 1.00 

14 181.05 21 0.78 1.00 

15 164.21 22 0.79 1.00 

16 147.37 22 0.79 1.00 

17 130.53 23 0.80 1.00 

18 113.68 23 0.80 1.00 

19 96.84 24 0.81 1.00 

20 80.00 24 0.81 1.00 

Action levels (kWh) 1500, 3500, 5500, 7500, 9500, 11500, 13500, 15500, 17500, 19500 

Retirement cost ($/kWh) 300 

O&M annual cost rate 

(%) 
2.50 

Degradation annual rate 

(%) 
1.71 

Year # / Variable Price state ($/kW) Lifetime state (yrs) Efficiency state DoD state 

1 3100.00 20 0.83 0.86 

2 2989.47 21 0.83 0.86 

3 2878.95 22 0.84 0.86 

4 2768.42 22 0.84 0.86 

5 2657.89 23 0.85 0.86 

6 2547.37 23 0.85 0.86 

7 2436.84 24 0.86 0.86 

8 2326.32 24 0.86 0.86 

9 2215.79 25 0.87 0.86 

10 2105.26 25 0.87 0.86 

11 1994.74 26 0.88 0.86 

12 1884.21 26 0.88 0.86 

13 1773.68 27 0.89 0.86 

14 1663.16 27 0.89 0.86 

15 1552.63 28 0.90 0.86 

16 1442.11 28 0.90 0.86 

17 1331.58 29 0.91 0.86 

18 1221.05 29 0.91 0.86 

19 1110.53 30 0.92 0.86 

20 1000.00 30 0.92 0.86 

Action levels (kWh) 1500, 3500, 5500, 7500, 9500, 11500, 13500, 15500, 17500, 19500 

Retirement cost ($/kWh) 50 

O&M annual cost rate 

(%) 
2.50 

Degradation annual rate 

(%) 
0 

Year # / Variable Price state ($/kW) Lifetime state (yrs) Efficiency state DoD state 

1 1000.00 60 0.80 0.90 
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2 989.47 60 0.80 0.90 

3 978.95 60 0.80 0.90 

4 968.42 60 0.80 0.90 

5 957.89 60 0.80 0.90 

6 947.37 61 0.81 0.90 

7 936.84 61 0.81 0.90 

8 926.32 61 0.81 0.90 

9 915.79 61 0.81 0.90 

10 905.26 61 0.81 0.90 

11 894.74 62 0.82 0.90 

12 884.21 62 0.82 0.90 

13 873.68 62 0.82 0.90 

14 863.16 62 0.82 0.90 

15 852.63 62 0.82 0.90 

16 842.11 63 0.83 0.90 

17 831.58 63 0.83 0.90 

18 821.05 63 0.83 0.90 

19 810.53 63 0.83 0.90 

20 800.00 63 0.83 0.90 

Action levels (kWh) 1500, 3500, 5500, 7500, 9500, 11500, 13500, 15500, 17500, 19500 

Retirement cost ($/kWh) 200 

O&M annual cost rate 

(%) 
2.50 

Degradation annual rate 

(%) 
0 



211 

 

 
 

References  

Abas, N., A. Kalair and N. Khan (2015). "Review of fossil fuels and future energy 

technologies." Futures 69: 31-49. 

ADL (2018) "A brief introduction to reinforcement learning." 

Administration, U. S. E. I. (2020). Electric Power Monthly. 

Administration, U. S. E. I. (2020). Gasoline and Diesel Fuel Update. 

Aggarwal, V. (2019) "What are the most efficient solar panels on the market? Solar 

panel efficiency explained." 

Akorede, M. F., H. Hizam and E. Pouresmaeil (2010). "Distributed energy resources 

and benefits to the environment." Renewable & Sustainable Energy Reviews 

14(2): 724-734. 

Alsaidan, I., A. Khodaei and W. Gao (2018). "A comprehensive battery energy 

storage optimal sizing model for microgrid applications." IEEE Transactions 

on Power Systems 33(4): 3968-3980. 

Alsaidan, I., A. Khodaei and W. Z. Gao (2016). "Distributed Energy Storage Sizing 

for Microgrid Applications." 2016 Ieee/Pes Transmission and Distribution 

Conference and Exposition (T&D). 

Alsaidan, I., A. Khodaei and W. Z. Gao (2018). "A Comprehensive Battery Energy 

Storage Optimal Sizing Model for Microgrid Applications." Ieee Transactions 

on Power Systems 33(4): 3968-3980. 

Ambrosone, G., S. Catalanotti, U. Coscia and G. Troise (1985). "Comparison between 

Power and Energy Methods of Analyses of Photovoltaic Plants." Solar Energy 

34(1): 1-8. 

Amin, M. (2008). "Challenges in Reliability, Security, Efficiency, and Resilience of 

Energy Infrastructure: Toward Smart Self-healing Electric Power Grid." 2008 

Ieee Power & Energy Society General Meeting, Vols 1-11: 69-73. 

Amiryar, M. E. and K. R. Pullen (2017). "A Review of Flywheel Energy Storage 

System Technologies and Their Applications." Applied Sciences-Basel 7(3). 

Arun, P., R. Banerjee and S. Bandyopadhyay (2009). "Optimum sizing of 

photovoltaic battery systems incorporating uncertainty through design space 

approach." Solar Energy 83(7): 1013-1025. 

Association, I. S. (2012). IEEE Guide for Electric Power Distribution Reliability 

Indices. IEEE. 

Association, I. S. (2014). "APPA distribution system reliability & operations survey 

report." 

Association, N. H. (2020) "Affordable." 



212 

 

 
 

Atilgan, B. and A. Azapagic (2015). "Life cycle environmental impacts of electricity 

from fossil fuels in Turkey." Journal of Cleaner Production 106: 555-564. 

Bakirtzis, G. A., P. N. Biskas and V. Chatziathanasiou (2012). "Generation Expansion 

Planning by MILP considering mid-term scheduling decisions." Electric 

Power Systems Research 86: 98-112. 

Bhattacharyya, S. C. (2012). "Energy access programmes and sustainable 

development: A critical review and analysis." Energy for Sustainable 

Development 16(3): 260-271. 

Birnie, D. P. (2014). "Optimal battery sizing for storm-resilient photovoltaic power 

island systems." Solar Energy 109: 165-173. 

Birnie, D. P. (2016). "Analysis of energy capture by vehicle solar roofs in conjunction 

with workplace plug-in charging." Solar Energy 125: 219-226. 

Bocklisch, T. (2015). "Hybrid energy storage systems for renewable energy." 9th 

International Renewable Energy Storage Conference, Ires 2015 73: 103-111. 

Borovykh, A., S. Bohte and C. W. Oosterlee (2017) "Conditional time series 

forecasting with convolutional neural networks." 

Bucciarelli, L. L. (1986). "The Effect of Day-to-Day Correlation in Solar-Radiation 

on the Probability of Loss-of-Power in a Stand-Alone Photovoltaic Energy 

System." Solar Energy 36(1): 11-14. 

Cabral, C. V. T., D. Oliveira, A. S. A. C. Diniz, J. H. Martins, O. M. Toledo and L. D. 

B. M. Neto (2010). "A stochastic method for stand-alone photovoltaic system 

sizing." Solar Energy 84(9): 1628-1636. 

CACI (2014). Acorn User guide. 

Careri, F., C. Genesi, P. Marannino, M. Montagna, S. Rossi and I. Siviero (2011). 

"Generation Expansion Planning in the Age of Green Economy." Ieee 

Transactions on Power Systems 26(4): 2214-2223. 

Caruana, C., A. Sattar, A. Al-Durra and S. M. Muyeen (2015). "Real-time testing of 

energy storage systems in renewable energy applications." Sustainable Energy 

Technologies and Assessments 12: 1-9. 

Casares, F. J., R. Lopez-Luque, R. Posadillo and M. Varo-Martinez (2014). 

"Mathematical approach to the characterization of daily energy balance in 

autonomous photovoltaic solar systems." Energy 72: 393-404. 

Cesena, E. A. M., T. Capuder and P. Mancarella (2016). "Flexible Distributed 

Multienergy Generation System Expansion Planning Under Uncertainty." Ieee 

Transactions on Smart Grid 7(1): 348-357. 

Chauhan, A. and R. P. Saini (2014). "A review on Integrated Renewable Energy 

System based power generation for stand-alone applications: Configurations, 



213 

 

 
 

storage options, sizing methodologies and control." Renewable & Sustainable 

Energy Reviews 38: 99-120. 

Chen, C., S. Duan, T. Cai, B. Liu and G. Hu (2011). "Smart energy management 

system for optimal microgrid economic operation." Iet Renewable Power 

Generation 5(3): 258-267. 

Chen, H. S., T. N. Cong, W. Yang, C. Q. Tan, Y. L. Li and Y. L. Ding (2009). 

"Progress in electrical energy storage system: A critical review." Progress in 

Natural Science-Materials International 19(3): 291-312. 

Chen, Z. and Z. XI (2018). Reliability-based optimal design of a micro-grid system 

under natural disasters. ASME 2018 International Mechanical Engineering 

Congress and Exposition. 

Cho, K., B. Van Merriënboer, D. Bahdanau and Y. Bengio (2014) "On the properties 

of neural machine translation: Encoder-decoder approaches." 

Choudhary, A. (2019) "A Hands-On Introduction to Deep Q-Learning using OpenAI 

Gym in Python." 

Chung, J., C. Gulcehre, K. Cho and Y. Bengio (2014) "Empirical evaluation of gated 

recurrent neural networks on sequence modeling." 

Clover, I. (2018) "Lithium-ion battery prices could rise as cost of cobalt shoots up, 

warn analysts." 

Coit, D. W., S. Selcuklu, N. Chatwattanasiri and N. Wattanapongsakorn (2015). 

"Stochastic Multiple Objective Electric Generation Expansion Planning." 2015 

12th International Conference on Electrical Engineering/Electronics, 

Computer, Telecommunications and Information Technology (Ecti-Con). 

Cole, W. and A. W. Frazier (2019). Cost projections for utility-scale battery storage. 

NREL. 

Colonnese, A. (2017). "Microgrid Business Strategy: An Evolutionary Industry 

Perspective." 

Company, W. V. I. (2020) "How Hydropower Works." 

Covert, T., M. Greenstone and C. R. Knittel (2016). "Will We Ever Stop Using Fossil 

Fuels?" Journal of Economic Perspectives 30(1): 117-137. 

Curry, C. (2017). Lithium-ion Battery Costs and Market. Bloomberg New Energy 

Finance. 

Dahmardeh, M. and Z. Xi (2019). "State-of-Charge Uncertainty of Lithium-ion 

Battery Packs Considering the Cell-to-Cell Variability." ASCE-ASME Journal 

of Risk and Uncertainty in Engineering Systems. 



214 

 

 
 

Diaf, S., M. Belhamel, M. Haddadi and A. Louche (2008). "Technical and economic 

assessment of hybrid photovoltaic/wind system with battery storage in Corsica 

island." Energy Policy 36(2): 743-754. 

Dimeas, A. L. and N. D. Hatziargyriou (2010). "Multi-Agent Reinforcement Learning 

for Microgrids." Ieee Power and Energy Society General Meeting 2010. 

Divya, K. C. and J. Ostergaard (2009). "Battery energy storage technology for power 

systems-An overview." Electric Power Systems Research 79(4): 511-520. 

DoD, U. S. (2015). Naval Facilities Engineering Command. Technology transition 

final public report: smart power infrastructure demonstration for energy 

reliability and security (SPIDERS). 

DoE. (2014). "How microgrids work." from https://www.energy.gov/articles/how-

microgrids-work. 

Duff, L. (2018). TrendForce Expects Prices of Lithium-ion Batteries to Increase by 

5~15% in 3Q18 Due to Rising Costs of Materials. TrendForce. 

Dufo-Lopez, R. and J. L. Bernal-Agustin (2008). "Multi-objective design of PV-wind-

diesel-hydrogen-battery systems." Renewable Energy 33(12): 2559-2572. 

eia. (2018). "How electricity is generated." from 

https://www.eia.gov/energyexplained/index.php?page=electricity_generating. 

El-Khattam, W. and M. M. A. Salama (2004). "Distributed generation technologies, 

definitions and benefits." Electric Power Systems Research 71(2): 119-128. 

Ellabban, O., H. Abu-Rub and F. Blaabjerg (2014). "Renewable energy resources: 

Current status, future prospects and their enabling technology." Renewable & 

Sustainable Energy Reviews 39: 748-764. 

EnergySage. (2019). "How much do solar panels cost in the U.S. in 2019?". 

Ericson, S. and D. Olis (2019). A comparison of fuel choice for backup generators. 

NREL, Joint Institute for Strategic Analysis. 

Faisal, M., M. A. Hannan, P. J. Ker, A. Hussain, M. Bin Mansor and F. Blaabjerg 

(2018). "Review of Energy Storage System Technologies in Microgrid 

Applications: Issues and Challenges." Ieee Access 6: 35143-35164. 

Farzan, F., K. Mahani, K. Gharieh and M. A. Jafari (2015). "Microgrid investment 

under uncertainty: a real option approach using closed form contingent 

analysis." Annals of Operations Research 235(1): 259-276. 

Firmo, H. T. and L. F. L. Legey (2002). "Generation expansion planning: An iterative 

genetic algorithm approach." Ieee Transactions on Power Systems 17(3): 901-

906. 

https://www.energy.gov/articles/how-microgrids-work
https://www.energy.gov/articles/how-microgrids-work
https://www.eia.gov/energyexplained/index.php?page=electricity_generating


215 

 

 
 

François-Lavet, V., D. Taralla, D. Ernst and R. Fonteneau (2016). Deep reinforcement 

learning solutions for energy microgrids management. European Workshop on 

Reinforcement Learning. 

Göğüş, Y. (2009). "Mechanical energy storage." Energy Storage Syst. 

Goodfellow, I., Y. Bengio and A. Courville (2016). "Deep Learning." Deep Learning: 

1-775. 

Google. (2019). "Google Maps." from https://www.google.com/maps. 

Hajipour, E., M. Bozorg and M. Fotuhi-Firuzabad (2015). "Stochastic Capacity 

Expansion Planning of Remote Microgrids With Wind Farms and Energy 

Storage." Ieee Transactions on Sustainable Energy 6(2): 491-498. 

Hakimi, S. M. and S. M. Moghaddas-Tafreshi (2014). "Optimal Planning of a Smart 

Microgrid Including Demand Response and Intermittent Renewable Energy 

Resources." Ieee Transactions on Smart Grid 5(6): 2889-2900. 

Harada, D. (1997). Reinforcement learning with time. AAAI, AAAI-97 Proceedings. 

Hatziargyriou, N., H. Asano, R. Iravani and C. Marnay (2007). "Microgrids." Ieee 

Power & Energy Magazine 5(4): 78-94. 

Helm, D. (2016). "The future of fossil fuels-is it the end?" Oxford Review of 

Economic Policy 32(2): 191-205. 

Hemmati, R., R. A. Hooshmand and A. Khodabakhshian (2013). "Comprehensive 

review of generation and transmission expansion planning." Iet Generation 

Transmission & Distribution 7(9): 955-964. 

Hemmati, R., R. A. Hooshmand and A. Khodabakhshian (2016). "Coordinated 

generation and transmission expansion planning in deregulated electricity 

market considering wind farms." Renewable Energy 85: 620-630. 

Hemmati, R., H. Saboori and P. Siano (2017). "Coordinated short-term scheduling 

and long-term expansion planning in microgrids incorporating renewable 

energy resources and energy storage systems." Energy 134: 699-708. 

Hernandez, L., C. Baladron, J. M. Aguiar, B. Carro, A. Sanchez-Esguevillas and J. 

Lloret (2014). "Artificial neural networks for short-term load forecasting in 

microgrids environment." Energy 75: 252-264. 

Hernandez, L., C. Baladron, J. M. Aguiar, B. Carro, A. J. Sanchez-Esguevillas, J. 

Lloret and J. Massana (2014). "A Survey on Electric Power Demand 

Forecasting: Future Trends in Smart Grids, Microgrids and Smart Buildings." 

Ieee Communications Surveys and Tutorials 16(3): 1460-1495. 

Hines, P., J. Apt and S. Talukdar (2008). "Trends in the History of Large Blackouts in 

the United States." 2008 Ieee Power & Energy Society General Meeting, Vols 

1-11: 4545-+. 

https://www.google.com/maps


216 

 

 
 

Hirsch, A., Y. Parag and J. Guerrero (2018). "Microgrids: A review of technologies, 

key drivers, and outstanding issues." Renewable & Sustainable Energy 

Reviews 90: 402-411. 

Hochreiter, S. and J. Schmidhuber (1997). "Long short-term memory." Neural 

Computation 9(8): 1735-1780. 

Hontoria, L., J. Aguilera and P. Zufiria (2005). "A new approach for sizing stand 

alone photovoltaic systems based in neural networks." Solar Energy 78(2): 

313-319. 

Huang, S. (2018) "Introduction to Various Reinforcement Learning Algorithms. Part I 

(Q-Learning, SARSA, DQN, DDPG)." 

Huang, Y., P. M. Pardalos and Q. P. Zheng (2017). Electrical power unit 

commitment: deterministic and two-stage stochastic programming models and 

algorithms. 

iea. (2018). "World Energy Outlook." from https://www.iea.org/weo/. 

Inglesi-Lotz, R. (2016). "The impact of renewable energy consumption to economic 

growth: A panel data application." Energy Economics 53: 58-63. 

IRENA. (2017). "Electricity storage and renewables: Costs and markets to 2030." 

IRENA (2019). Renewable power generation costs in 2018. 

Jakhrani, A. Q., A. K. Othman, A. R. H. Rigit, S. R. Samo and S. A. Kamboh (2012). 

"A novel analytical model for optimal sizing of standalone photovoltaic 

systems." Energy 46(1): 675-682. 

Jing, W. L., C. H. Lai, W. S. H. Wong and M. L. D. Wong (2017). "Dynamic power 

allocation of battery-supercapacitor hybrid energy storage for standalone PV 

microgrid applications." Sustainable Energy Technologies and Assessments 

22: 55-64. 

Kabir, E., P. Kumar, S. Kumar, A. A. Adelodun and K. H. Kim (2018). "Solar energy: 

Potential and future prospects." Renewable & Sustainable Energy Reviews 82: 

894-900. 

Kaldellis, J. K., D. Zafirakis and E. Kondili (2010). "Optimum sizing of photovoltaic-

energy storage systems for autonomous small islands." International Journal of 

Electrical Power & Energy Systems 32(1): 24-36. 

Kannan, S., S. M. R. Slochanal and N. P. Padhy (2005). "Application and comparison 

of metaheuristic techniques to generation expansion planning problem." Ieee 

Transactions on Power Systems 20(1): 466-475. 

Kazem, H. A. and T. Khatib (2013). "A novel numerical algorithm for optimal sizing 

of a photovoltaic/wind/diesel generator/battery microgrid using loss of load 

probability index." International Journal of Photoenergy 2013. 

https://www.iea.org/weo/


217 

 

 
 

Khan, A. Z., Y. Y. Sun and A. Ashfaq (2014). "Generation Expansion Planning 

Considering Externalities for Large Scale Integration of Renewable Energy." 

2014 Ieee International Conference on Intelligent Energy and Power Systems 

(Ieps): 135-140. 

Khayatian, A., M. Barati and G. J. Lim (2018). "Integrated Microgrid Expansion 

Planning in Electricity Market With Uncertainty." Ieee Transactions on Power 

Systems 33(4): 3634-3643. 

Khodaei, A., S. Bahramirad and M. Shahidehpour (2015). "Microgrid Planning Under 

Uncertainty." Ieee Transactions on Power Systems 30(5): 2417-2425. 

Khodaei, A. and M. Shahidehpour (2013). "Microgrid-Based Co-Optimization of 

Generation and Transmission Planning in Power Systems." Ieee Transactions 

on Power Systems 28(2): 1582-1590. 

Kingma, D. P. and J. Ba (2014) "Adam: A method for stochastic optimization." 

Klein, S. A. and W. A. Beckman (1987). "Loss-of-Load Probabilities for Stand-Alone 

Photovoltaic Systems." Solar Energy 39(6): 499-512. 

Klinger, C., O. Landeg and V. Murray (2014) "Power Outages, Extreme Events and 

Health: a Systematic Review of the Literature from 2011-2012." 

Knowledge, M. (2016) "The Growing Role of Energy Storage in Microgrids." 

Koutroulis, E., D. Kolokotsa, A. Potirakis and K. Kalaitzakis (2006). "Methodology 

for optimal sizing of stand-alone photovoltaic/wind-generator systems using 

genetic algorithms." Solar Energy 80(9): 1072-1088. 

Kozlowski, D. (2002) "Onsite Options." 

Kuznetsova, E., Y. F. Li, C. Ruiz, E. Zio, G. Ault and K. Bell (2013). "Reinforcement 

learning for microgrid energy management." Energy 59: 133-146. 

Lantero, A. (2014). "How Microgrids Work." from 

https://www.energy.gov/articles/how-microgrids-work. 

LAZARD (2018). Lazard's Levelized Cost of Energy Analysis. 

Leahy, E. and R. S. J. Tol (2011). "An estimate of the value of lost load for Ireland." 

Energy Policy 39(3): 1514-1520. 

Lewis, N. S. (2016). "Research opportunities to advance solar energy utilization." 

Science 351(6271). 

Li, F. D., M. Wu, Y. He and X. Chen (2012). "Optimal control in microgrid using 

multi-agent reinforcement learning." Isa Transactions 51(6): 743-751. 

Li, S. Y., D. W. Coit and F. Felder (2016). "Stochastic optimization for electric power 

generation expansion planning with discrete climate change scenarios." 

Electric Power Systems Research 140: 401-412. 

https://www.energy.gov/articles/how-microgrids-work


218 

 

 
 

Lipton, Z. C., J. Berkowitz and C. Elkan (2015) "A critical review of recurrent neural 

networks for sequence learning." 

Lucio, J. H., R. Valdes and L. R. Rodriguez (2012). "Loss-of-load probability model 

for stand-alone photovoltaic systems in Europe." Solar Energy 86(9): 2515-

2535. 

Luz, T., P. Moura and A. de Almeida (2018). "Multi-objective power generation 

expansion planning with high penetration of renewables." Renewable & 

Sustainable Energy Reviews 81: 2637-2643. 

Ma, T., H. X. Yang and L. Lu (2014). "A feasibility study of a stand-alone hybrid 

solar-wind-battery system for a remote island." Applied Energy 121: 149-158. 

Mahani, K., F. Farzan and M. A. Jafari (2017). "Network-aware approach for energy 

storage planning and control in the network with high penetration of 

renewables." Applied Energy 195: 974-990. 

Mahani, K., M. A. Jamali, D. Nazemi and M. Jafari (2020). Economic and 

Operational Evaluation of PV and CHP combined with Energy Storage 

Systems considering Energy and Regulation Markets. 2020 IEEE Texas Power 

and Energy Conference (TPEC). 

Mahani, K., Z. L. Liang, A. K. Parlikad and M. A. Jafari (2019). "Joint Optimization 

of Operation and Maintenance Policies for Solar-Powered Microgrids." Ieee 

Transactions on Sustainable Energy 10(2): 833-842. 

Mahani, K., D. Nazemi, M. A. Jamali and M. Jafari (2020). "Evaluation of the 

behind-the-meter benefits of energy storage systems with consideration of 

ancillary market opportunities." The Electricity Journal. 

Maleki, A. and F. Pourfayaz (2015). "Optimal sizing of autonomous hybrid 

photovoltaic/wind/battery power system with LPSP technology by using 

evolutionary algorithms." Solar Energy 115: 471-483. 

Mandelli, S., C. Brivio, E. Colombo and M. Merlo (2016). "Effect of load profile 

uncertainty on the optimum sizing of off-grid PV systems for rural 

electrification." Sustainable Energy Technologies and Assessments 18: 34-47. 

Mandelli, S., C. Brivio, E. Colombo and M. Merlo (2016). "A sizing methodology 

based on Levelized Cost of Supplied and Lost Energy for off-grid rural 

electrification systems." Renewable Energy 89: 475-488. 

Marchi, B., M. Pasetti and S. Zanoni (2017). "Life cycle cost analysis for BESS 

optimal sizing." International Scientific Conference - Environmental and 

Climate Technologies, Conect 2016 113: 127-134. 

Mariam, L., M. Basu and M. F. Conlon (2016). "Microgrid: Architecture, policy and 

future trends." Renewable & Sustainable Energy Reviews 64: 477-489. 



219 

 

 
 

Mbuwir, B. V., F. Ruelens, F. Spiessens and G. Deconinck (2017). "Battery Energy 

Management in a Microgrid Using Batch Reinforcement Learning." Energies 

10(11). 

McKinsey. (2018). "The potential impact of electric vehicles on global energy 

systems." 

Mellit, A., S. A. Kalogirou, L. Hontoria and S. Shaari (2009). "Artificial intelligence 

techniques for sizing photovoltaic systems: A review." Renewable & 

Sustainable Energy Reviews 13(2): 406-419. 

Melo, F. S. (2001). "Convergence of Q-learning: A simple proof." Institute for 

Systems and Robotics. 

Meteoblue (2012). Hourly historical weather simulation data since 1985. 

Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra and M. 

Riedmiller (2013). Playing atari with deep reinforcement learning, arXiv. 

Muralitharan, K., R. Sakthivel and R. Vishnuvarthan (2018). "Neural network based 

optimization approach for energy demand prediction in smart grid." 

Neurocomputing 273: 199-208. 

Nandi, S. K. and H. R. Ghosh (2010). "Prospect of wind-PV-battery hybrid power 

system as an alternative to grid extension in Bangladesh." Energy 35(7): 3040-

3047. 

Nazemi, D. and M. A. Jafari (2019). EV Charging Profiles. 

Nemati, H., M. A. Latify and G. R. Yousefi (2018). "Coordinated generation and 

transmission expansion planning for a power system under physical deliberate 

attacks." International Journal of Electrical Power & Energy Systems 96: 208-

221. 

Network, U. P. (2015). SmartMeter Energy Consumption Data in London 

Households. 

Networks, U. P. (2014). Low Carbon London. 

NREL (2008). Power System Planning: Emerging Practices Suitable for Evaluating 

the Impact of High-Penetration Photovoltaics. 

NREL (2013). Commercial and Residential Hourly Load Profiles for all TMY3 

Locations in the United States. OpenEI (Ed.). 

NREL (2016) "Distributed generation renewable energy estimate of costs." 

NREL (2016). PSM Global Horizontal Irradiance. Viewer, N.D. (Ed.). 

O'Brien, G. and A. Hope (2010). "Localism and energy: Negotiating approaches to 

embedding resilience in energy systems." Energy Policy 38(12): 7550-7558. 



220 

 

 
 

Office, W. E. T. (2014) "How Do Wind Turbines Work?". 

Oldham, K. (2009) "Decommissioning dams - costs and trends." 

Padilla, F. (2018) "Critical power: hospitals and data centers." 

Pardo, F., A. Takavoli, V. Levdik and P. Kormushev (2018) "Time limits in 

reinforcement learning." 

Parhizi, S., H. Lotfi, A. Khodaei and S. Bahramirad (2015). "State of the Art in 

Research on Microgrids: A Review." Ieee Access 3: 890-925. 

Park, J. B., J. H. Kim and K. Y. Lee (2002). "Generation expansion planning in a 

competitive environment using a genetic algorithm." 2002 Ieee Power 

Engineering Society Summer Meeting, Vols 1-3, Conference Proceedings: 

1169-1172. 

Pereira, A. J. C. and J. T. Saraiva (2011). "Generation expansion planning (GEP) - A 

long-term approach using system dynamics and genetic algorithms (GAs)." 

Energy 36(8): 5180-5199. 

Pereira, S., P. Ferreira and A. I. F. Vaz (2017). "Generation expansion planning with 

high share of renewables of variable output." Applied Energy 190: 1275-1288. 

Prehoda, E. W., C. Schelly and J. M. Pearce (2017). "US strategic solar photovoltaic-

powered microgrid deployment for enhanced national security." Renewable & 

Sustainable Energy Reviews 78: 167-175. 

Raimi, D. (2017). Decommissioning US Power Plants: Decisions, Costs and Key 

Issues. 

Rajesh, K., K. Karthikeyan, S. Kannan and C. Thangaraj (2016). "Generation 

expansion planning based on solar plants with storage." Renewable & 

Sustainable Energy Reviews 57: 953-964. 

Raju, L., S. Sankar and R. S. Milton (2015). "Distributed Optimization of Solar 

Micro-grid using Multi Agent Reinforcement Learning." Proceedings of the 

International Conference on Information and Communication Technologies, 

Icict 2014 46: 231-239. 

Roberts, D. and A. Chang (2018) "Meet the microgrid, the technology poised to 

transform electricity." 

Rodgers, M., D. Coit, F. Felder and A. Carlton (2019). "Assessing the effects of 

power grid expansion on human health externalities." Socio-Economic 

Planning Sciences 66: 92-104. 

Rodgers, M., D. Coit, F. Felder and A. Carlton (2019). "A Metamodeling Framework 

for Quantifying Health Damages of Power Grid Expansion Plans." 

International Journal of Environmental Research and Public Health. 



221 

 

 
 

Rodgers, M. D. (2016). Simulation-based Optimization Models for Electricity 

Generation Expansion Planning Problems Considering Human Health 

Externalities. Doctoral, Rutgers University. 

Sadeghi, H., M. Mohammadian, A. Abdollahi, M. Rashidinejad and S. M. Mahdavi 

(2014). "Renewable-Based Generation Expansion Planning Considering 

Environmental Issues Using GSA." 2014 Iranian Conference on Intelligent 

Systems (Icis). 

Sadeghi, H., M. Rashidinejad and A. Abdollahi (2017). "A comprehensive sequential 

review study through the generation expansion planning." Renewable & 

Sustainable Energy Reviews 67: 1369-1394. 

Salloum, Z. (2018) "Double Q-Learning, the Easy Way." 

SEIA (2019) "Solar Industry Research Data." 

Semënov, D., G. Mirzaeva, C. D. Townsend and G. C. Goodwin (2017). A battery 

storage control scheme for AC microgrids. 20th International Conference on 

Electrical Machines and Systems (ICEMS). 

Service, D. o. P. (2018). 2017 ELECTRIC RELIABILITY PERFORMANCE 

REPORT. 

Sirikum, J. and A. Techanitisawad (2006). "Power generation expansion planning 

with emission control: a nonlinear model and a GA-based heuristic approach." 

International Journal of Energy Research 30(2): 81-99. 

Solutions, V. (2017) "Introduction to Reinforcement Learning." 

Song, S. L., Q. Li, F. A. Felder, H. G. Wang and D. W. Coit (2018). "Integrated 

optimization of offshore wind farm layout design and turbine opportunistic 

condition-based maintenance." Computers & Industrial Engineering 120: 288-

297. 

statista (2019). Wind energy - cumulative installed capacity in the United States 2017. 

Su, W. C., J. H. Wang and J. Roh (2014). "Stochastic Energy Scheduling in 

Microgrids With Intermittent Renewable Energy Resources." Ieee 

Transactions on Smart Grid 5(4): 1876-1883. 

Sutton, R. and A. Barto (2015). Reinforcement Learning: An Introduction, The MIT 

Press. 

Swartz, J., A. Ghofrani and M. Jafari (2017). "Sizing Methodology for Combined 

Renewable Energy Systems." 2017 Ieee Power & Energy Society Innovative 

Smart Grid Technologies Conference (Isgt). 

Tekiner-Mogulkoc, H., D. W. Coit and F. A. Felder (2012). "Electric power system 

generation expansion plans considering the impact of Smart Grid 

technologies." International Journal of Electrical Power & Energy Systems 

42(1): 229-239. 



222 

 

 
 

Tekiner-Mogulkoc, H., D. W. Coit and F. A. Felder (2015). "Mean-risk stochastic 

electricity generation expansion planning problems with demand uncertainties 

considering conditional-value-at-risk and maximum regret as risk measures." 

International Journal of Electrical Power & Energy Systems 73: 309-317. 

Tekiner, H., D. W. Coit and F. A. Felder (2010). "Multi-period multi-objective 

electricity generation expansion planning problem with Monte-Carlo 

simulation." Electric Power Systems Research 80(12): 1394-1405. 

Telegraph, T. (2019). "How do we harness renewable energy sources?", from 

https://www.telegraph.co.uk/education/stem-awards/electrical/microdgrid-

technology/. 

Ton, D. and J. Reilly (2017). "Microgrid Controller Initiatives: An Overview of R&D 

by the US Department of Energy." Ieee Power & Energy Magazine 15(4): 24-

31. 

Tsianikas, S., X. Xie, S. R. Puri, A. K. Parlikad and D. Coit (2020). Comparison of 

Neural Network Based Approaches for Short-term Residential Energy Load 

Forecasting. Submitted manuscript to: "Energy and Buildings". 

Tsianikas, S., N. Yousefi, J. Zhou and D. Coit (2020). The impact of analytical outage 

modeling on expansion planning problems in the area of power systems. IISE 

Annual Conference. 

Tsianikas, S., N. Yousefi, J. Zhou, D. Coit and M. Rodgers (2019). A Sequential 

Resource Investment Planning Framework using Reinforcement Learning and 

Simulation-Based Optimization: A Case Study on Microgrid Storage 

Expansion. Submitted manuscript to: "Production and Operations 

Management". 

Tsianikas, S., J. Zhou, D. P. Birnie and D. Coit (2019). Economic trends and 

comparisons for optimizing grid-outage resilient photovoltaic and battery 

systems. Applied Energy. 

Tsianikas, S., J. Zhou, D. P. Birnie and D. Coit (2019). Techno-economic 

optimization of a PV + battery system: A case study for a hospital in Orlando, 

FL. IISE Annual Conference. 

Tsianikas, S., J. Zhou, N. Yousefi and D. Coit (2019). Battery selection for optimal 

grid-outage resilient photovoltaic and battery systems. IISE Annual 

Conference. 

Unterreiner, L., V. Julch and S. Reith (2016). "Recycling of Battery Technologies - 

Ecological Impact Analysis Using Life Cycle Assessment (LCA)." 10th 

International Renewable Energy Storage Conference, Ires 2016 99: 229-234. 

Valinejad, J., M. Marzband, M. F. Akorede, T. Barforoshi and M. Jovanovic (2017). 

"Generation expansion planning in electricity market considering uncertainty 

in load demand and presence of strategic GENCOs." Electric Power Systems 

Research 152: 92-104. 

https://www.telegraph.co.uk/education/stem-awards/electrical/microdgrid-technology/
https://www.telegraph.co.uk/education/stem-awards/electrical/microdgrid-technology/


223 

 

 
 

van der Welle, A. and B. van der Zwaan (2007). An Overview of Selected Studies on 

the 

Value of Lost Load (VOLL). Energy research Centre of the Netherlands (ECN). 

van Hasselt, H. (2010). Double Q-Learning. Advances in Neural Information 

Processing Systems. 

van Hasselt, H., A. Guez and D. Silver (2016). Deep Reinforcement Learning with 

Double Q-Learning. Proceedings of the Thirtieth AAAI Conference on 

Artificial Intelligence (AAAI-16). 

Van Zaen, J., C. M. El Achkar, R. E. Carillo and A. Hutter (2018). Detection and 

Classification of Refrigeration Units in a Commercial Environment: 

Comparing Neural Networks to Unsupervised Clustering. 

Wagar, A., S. R. Wang, S. M. Dawoud, T. Tao and Y. D. Wang (2015). "Optimal 

Capacity Expansion-Planning of Distributed Generation in Microgrids 

considering Uncertainties." 2015 5th International Conference on Electric 

Utility Deregulation and Restructuring and Power Technologies (Drpt 2015): 

437-442. 

Wang, Z. J., Y. Chen, S. W. Mei, S. W. Huang and Y. Xu (2017). "Optimal expansion 

planning of isolated microgrid with renewable energy resources and 

controllable loads." Iet Renewable Power Generation 11(7): 931-940. 

Willis, K. G. and G. D. Garrod (1997). "Electricity supply reliability - Estimating the 

value of lost load." Energy Policy 25(1): 97-103. 

World, R. E. (2018) "Making Modern Microgrids Work." 

Xi, Z., J. R., L. C. and H. M. (2016). Recent Research on Battery Diagnostics, 

Prognostics, and Uncertainty Management. Advances in Battery 

Manufacturing, Service, and Management Systems. 

Xie, X., A. K. Parlikad and R. S. Puri (2019). "A Neural Ordinary Differential 

Equations Based Approach for Demand Forecasting within Power Grid Digital 

Twins." 2019 Ieee International Conference on Communications, Control, and 

Computing Technologies for Smart Grids (Smartgridcomm). 

Yang, F., Y. Y. Xie, Y. L. Deng and C. Yuan (2018). "Predictive modeling of battery 

degradation and greenhouse gas emissions from US state-level electric vehicle 

operation." Nature Communications 9. 

Yang, H. X., L. Lu and W. Zhou (2007). "A novel optimization sizing model for 

hybrid solar-wind power generation system." Solar Energy 81(1): 76-84. 

Yousefi, N., S. Tsianikas and D. W. Coit (2020). "Reinforcement learning for 

dynamic conditionbased maintenance of a system with individually repairable 

components." Quality Engineering. 



224 

 

 
 

Zhang, F., Z. C. Hu and Y. H. Song (2013). "Mixed-integer linear model for 

transmission expansion planning with line losses and energy storage systems." 

Iet Generation Transmission & Distribution 7(8): 919-928. 

Zheng, J., C. C. Xu, Z. Zhang and X. H. Li (2017). "Electric Load Forecasting in 

Smart Grids Using Long-Short-Term-Memory based Recurrent Neural 

Network." 2017 51st Annual Conference on Information Sciences and 

Systems (Ciss). 

Zhou, J., N. Huang, D. W. Coit and F. A. Felder (2018). "Combined effects of load 

dynamics and dependence clusters on cascading failures in network systems." 

Reliability Engineering & System Safety 170: 116-126. 

Zhou, J., S. Tsianikas, D. P. Birnie and D. W. Coit (2019). "Economic and resilience 

benefit analysis of incorporating battery storage to photovoltaic array 

generation." Renewable Energy 135: 652-662. 

Zhou, J., S. Tsianikas, N. Yousefi and D. W. Coit (2019). "Sizing optimization of 

solar power projects using machine learning techniques for time series 

forecasting (in progress)." 

Zhou, W., C. Z. Lou, Z. S. Li, L. Lu and H. X. Yang (2010). "Current status of 

research on optimum sizing of stand-alone hybrid solar-wind power 

generation systems." Applied Energy 87(2): 380-389. 

 

 


