Staff View
Microgrid expansion planning using simulation-based optimization and reinforcement learning

Descriptive

TitleInfo
Title
Microgrid expansion planning using simulation-based optimization and reinforcement learning
Name (type = personal)
NamePart (type = family)
Tsianikas
NamePart (type = given)
Stamatis
DisplayForm
Stamatis Tsianikas
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Coit
NamePart (type = given)
David
DisplayForm
David Coit
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
School of Graduate Studies
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
Genre (authority = ExL-Esploro)
ETD doctoral
OriginInfo
DateCreated (qualifier = exact); (encoding = w3cdtf); (keyDate = yes)
2020
DateOther (type = degree); (qualifier = exact); (encoding = w3cdtf)
2020-10
CopyrightDate (encoding = w3cdtf); (qualifier = exact)
2020
Language
LanguageTerm (authority = ISO 639-3:2007); (type = text)
English
Abstract (type = abstract)
This dissertation provides an analytical framework for tackling the long-term microgrid expansion planning problem. In the wake of the highly electrified future that is ahead of us, the need for reliable and economical power supply will become more urgent than ever. The role of microgrids in fulfilling this need is expected to be highly crucial. While there is a lot of active research going on related to developing optimization models for such systems, the current work innovates by considering both economic and reliability aspects, as well as the stochastic nature of various components in the energy industry. Furthermore, the fact that the microgrids will be placed at the core of the future energy systems will naturally give birth to another important problem from the planning perspective; this problem concerns the derivation of optimal strategies when expanding the microgrids, both in storage and power capacity. The criticality of formulating systematic, analytical and novel methodologies to tackle this problem can be easily justified by considering the steady growth of load demand, the technological advancements continuously being made, and the high operating costs incurred in these processes. The research work that can be found currently in the literature lacks in considering several peculiarities of microgrids. Moreover, many proposed approaches fail to provide realistic and complex-enough formulations due to the incompetence of traditional solution techniques in handling problems of that scale. The current research work serves as the first attempt to formulate a highly detailed long-term expansion planning problem in microgrid setting and solve it using advanced artificial intelligence techniques. Towards this direction, a simulation-based approach is developed to determine cost-optimal battery sizing under preset reliability constraints, and a unified dynamic optimization framework is built and used to derive holistic optimal expansion strategies. Overall, the goal of the present research work is to provide novel baseline models that give a well-shaped structure to the stochastic problem of long-term expansion planning, while utilizing advanced machine learning tools and techniques.
Subject (authority = RUETD)
Topic
Industrial and Systems Engineering
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_11054
PhysicalDescription
Form (authority = gmd)
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xxi, 224 pages) : illustrations
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
RelatedItem (type = host)
TitleInfo
Title
School of Graduate Studies Electronic Theses and Dissertations
Identifier (type = local)
rucore10001600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/t3-037x-6774
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Tsianikas
GivenName
Stamatis
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2020-07-21 21:33:22
AssociatedEntity
Name
Stamatis Tsianikas
Role
Copyright holder
Affiliation
Rutgers University. School of Graduate Studies
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.6
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2020-07-22T01:11:33
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2020-07-21T21:21:55
ApplicationName
www.ilovepdf.com
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024