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ThesisDirector:

Richard G. Lathrop

The Americanhorseshoe crabimulus polyphemu@HSC)spawrs in their greatest
dengtiesin the Delaware Bay; howevayerharvesthhavereduced their population size
by 90%in the late 2t centuy and climate change @egrading their spawning habitat.

Becauseheir eggsareanimportantfood sourcdor threatened shorebird specasl
adjustthe timingthey spawndue toocean temperaturegforts were made tonderstand
sea surfaceemperature$SSTS) throughout thdayshore area, patterns of egdgster

abundanceand surface densifs identify a SST thresholdfor peak spawningctivity,
andusephysicalcharacteristicselatedto specific siesidentified asncreasng egg

abundance Thehighestegg abundancésspecifically cluster$ werein the southern

region and decreased northwandile SSTs showed theppositepattern Surface egg
densitiesvere also the most abundamthe Southermegion butare believedo be

transportedvidely within and between regisnThe CART analysis identifiedhatthe



five-day moving average f@STof 17° Cwhenabundance shifted fropre-peakto
postpeakand currently occursetweerMay 29 and June T.his temperaturehreshold
was determined tbaveadvancedy several days for all regions and beachéh the
Northernregion experiencing the most significadivancementsuggesting tha
potential does existor a mismatch to develop HSCsspawn earlier to match this
advancemenBeachnourishmengctivitieswill be important for the continueekistence
of suitable habitat for HSC spawning in the Bayshore anelashould focus on increasing
thephysical parametethat increase cluster abundasceh asavingsanddepthof at
least40 cmandbeachwidth of at leas2 m.As climate change continues to alter the
physicalhabitat in the Bayshore araantinuied monitoring of when HSCs are spawning
as a response to S%ill be important to understand if this mismatchieseloping
potentially jeopardizinghe recovering reknot populationThe MUR dataset is aseful
and timeandcostefficientway to monitor SSTs in the Bayshore aifer bothbeaches
and regionsdlowing it to be implementeth surveying HSC spawnini identify more

specifictemperaturgatterns.
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Introduction

The main objective of this project is to understand the SST in the Delaware Bay
area and how it potentially impacts the spawning beha¥ibr polyphemusalong with
the distribution of their egg densities on beach surfaces and those laid as clusters in
burrows. Efforts have been made to understand changes ateebdition for
individual beaches in the Bayshore area to better understand geographic patterns
concerning sea surface temperatures and egg abundances. These efforts are aimed further
at usingindependent variables to relate restoration efforts at individual beaches to better
understand their effectiveness, such as beach nourishment activities, towards improving

the ecological resilience of HSC spawning habitat.

Research Questions

Three main qu&tions were addressed:

1) Has the temporal pattern of SSTs in rglanre zone of Delaware Bay during the
peak spawning season of H8Rangedluring the 2003 and 201#&ne period,
utilizing the MUR dataset?
a. Do SST measurements from MUR correlate well witiydaeanin situ
buoy measurements over this time period?
b. Do patterns of anomalous SST emerge geographically?
2) What is the SST threshold for spawning activity in the Delaware Bay utilizing the
MUR dataset and collected data on HSC surfaceleggities, cluster
abundances, and other physical variables between 2015 and 2019 using a

Classification and Regression Tree Analysis?



a. Do patterns of abundance emerge for HSC egg clusters and surface
densities emerge geographically?

b. What are the significare of the variables used deciding the abundance of
HSC egg clusters and surface egg densities, along with their individual
importance in the model?

c. Is a similar temperature threshold proposed for both surface egg densities
and egg clusters?

3) At what datedoes each individualorseshoe crab spawnibgach reacthe
proposed threshold across the 2003 to 2019 time period, and does a significant

trend emerge during this time period at these locations?



Background

Coastal Systemend Climate Changen the Northeast United States

Coastal systems are highly dynamic and susceptible to changes at a variety of
spatial and temporal scales due to natural and anthropogenic processes. Locations of high
energy due to wind and wa®etionhave assisted in the devetoent of large beach
systemxomposeaf dunes, barrier islands, and sandy beaches that are attractive for
humans andvildlife species alik¢Defeo, et al., 2009; Lazarus, et al., 2018w energy
coastal systems haessisted ithe development of some of the most productive
ecosystems such as extensive coastal wetlands and estuaries, along with a variety of
geomorphological structuréisat create diverse macro and micro habitads are of
ecological importanctor a variety of specieso thrive(Jackson, et al., 2002;
Tagliapietra, et al., 2009Many of thesecosystems have become firmly estahkd
over the last 5,000 years as the rate ofleeal rise (SLR) slowed tapproximately2.2 +
0.8 mm/yr and increased generally in a linear fashioce ther{Gehrels, 1994; Miller,
et al., 2013) This low rateof SLR has not only benefited coastal ecosystanasthe
individual species that comprise litut communitiesand industrithat have developdd
these regiondue to the abundance of natural resources and access tiNicu#ls,

2011)

Today the stability of these ecosystems and communities are experiencing
changes due to anthropogenic forcing suctimemighdam development, beach
nourishment, and urbanization, aore importantiythrough climate change due t
increagng anthropogenic activitieSpalding, et al., 2014, Lazarus, et al., 2016; Sanchez

Arcilla, et al., 2016; He & Silliman, 20197s more heat is trapped in the atmosphere it is



radiated dowrtowards the surface increasing ocean temperatures as heat is absorbed and
accelerating the rate of SLR through thermal expansion, potentially faster than
ecosystems and communities can ad@purch & White, 2006; Nicholls, 2011; Miller,

et al., 2013; Spalding, et al., 2014; Sanehealla, et al., 2016; He & Silliman, 2019)

Physical changes to the environment including SLR, coastal erosion, and habitat
degradatiorhave been identd#d as stressors to society and ecosystems in the

northeastern U.S. by coastal managers that need to be considered in the future for



effective management and policy actiomsvake ofa changing climaté€Smith, et al.,

2018)

Northeast Average Temperature
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Figure 1: Average air surface temperature baseline determined between 1901 to 2000
shows that there has been approximately a 0.8° C linear increase, with 0.11° C/decade
(NOAA, 2020)

Physical changes in coastal ecosystems can be exensiying from salinity,
sediment amount and type, nutrient loading, SLR, coastal erosion, and habitat
degradatior{Hale, et al., 2015; Smith, et al., 201But changes in the atmosphere and

oceantemperaturecan create significant changesndividual species or ecosystems at



large(Thomas, et al., 2017; Piao, et al., 2018)the northeast of the United States
reliable records for atmospheric temperaturae ¢hack to the late 1800s and show a
linear increasing trend of 0.11° C/decadse seen in Fige 1(NOAA, 2020) Changes in
ocean temperatures, specifically sea surface temperature (SST), differ based upon where
you look inthe water column, scale, time of yeand the instruments uséOkuro, et al.,
2014; Saba, et al., 2016; Thomas, et al., 20IAYmaset al.(2017) found with over 33
years of satellite data that SST haeef warming at a rate approximately0.3°

Cl/decade in the Mid\tlantic Bight, with more rapid warming in early and late summer
with rates of approximately 1° C/decade.tAs rates ofvarmingincreaseduring these
time periodsSST reach highdemperaturesarlier in the year it can encourage some
organisms to begispecificbiological activities earlier in the year in response to warmer
temperatureand arémperativeto study in importanecologicallocations such as the

Delaware Bay{Finchman, et al., 2013; Cheng, et al., 2016; Thomas, et al.,.2017)



Delaware Bay and the Atlantic Horseshoe Crab

The Delaware Bay Estuary is situated on the eastern seaboard of the United States
betweerthe states oNew Jersey and Delawanith Pennsylvaniat the most northern
inland extentDelaware Bays a low energyntertidal estuary withvave heights
averaging less tham20 m with a maximum mean height of 0.50 m during storm events
(Jackson, 1995; Jackson, et al., 2002; Smith, et al., 2011; Jackson, et al.TEO20\
wave energy has allowed for tHevelopment of expansisea | t mar shesd fring
sandyveneer in the mid tonorthern reaches of the bay, withndy beaches in the
southern reachessthe mouth of the bay to the Atlantic Ocgdackson, 1995; Lathrop,
et al., 2006; Lathrop, et al., 2013; Partnership of the Delaware Estuary, 2h&Tpw
energy characteristics of the bay in conjunction \&itrariety of habitats from sandy
beaches, coadtaetlands, and intertidareeks provides ideal habitat for a variety
spawningmarinespeciesncluding Atlantic sturgeonAcipensenxyrinchus oxyrinchus
Blue crab Callinectes sapidysWeakfish Cynosciof), andthe Atlantic horseshoe crab
(Limulus polyphemydo name a fewPartnership of the Delaware Estuary, 2017;

Jackson, et al., 2020)

The Atlantichorseshoe crab approximately 450 millioryears old and has
fondly been given the title of a living fossil as its been lttlanged since thgVatson
I, et al., 2016) The species spends most of its tifmeaging in the benthos of the
Atlantic Oceanbut makes its way to the coastal zone tobégeeding Sekiguchi &
Shuster, 2009; Smith, et al., 201Z) polyphemuganbefound spawningver a large
geographiareafrom Maine to the Gulf of Mexico, but the largest numbenes observed

in theDelaware BaySekiguchi & Shuster, 2009; Lathrop, et al., 2013; Smith, et al.,



2017) Spawning in thé&ayshore areaan occur betweefpril throughJuly, but the peak
of the spawningctivity occurs between May through Juhependinguponlunar cycles,
ocean temperatureand storm activitfLathrop, et al., 2006; Smith, et al., 2010; Smith,
et al., 2011, Lathrop, et al., 2013; Smith, et al., 2017; Atlantic States Marine Fisheries

Commission, 2019)

AlthoughL. polyphemuspawn in their greatest densities in this location, their
population size has experienced significant decreases histonctly Bayshore aress
a source of f er t(Breesez2017)Ttk papulation begaw encreas0 0 6 s
again with the creation of more modédentilizers, but in recent years population declines
are due to anthropogenic stressors from aquaculture, habitat disturbance, and to a limited
extent the pharmaceutical indus(gimmerman, et al., 2016; Breese, 2017; Smith, et al.,
2017; Atlantic States Marine Fisheries Commission, 20183 largest contributor to the
recentdeclinesin population was due tiheir overharvestingor use as bain the
emergingwvhelkfisheryi n t h e |(Baekse, 2A1P; 8mith, €t al., 201Because of
the importance of. polyphemugggsbeing a valuable food resource for migratory and
threatenedird species a moratorium was placed on harvesting ferimathe early
2 0 0 ™ assist the populatian reboundhg, but because it takesl® years for
juveniles to reach sexual maturapdit is currentlyunknownthe effectiveness of these
resource manageentefforts (Breese, 2017)Despite this factor being unknown, it is
believed that the current horseshoe crab population is either stable or increasing gradually

at the present timg@&mithet.al, 2017).

L. polyphemusprefers low energgoastakenvironmentandhave shown a

preference to delay spawning to prevent morality from strandiitly wave heightgess



than 0.25 m and periodicityof 2.5 s(Smith, et al.2002; Jackson, et al., 2020he

Bayshore area exhibitssemidiurnalmicrotidal cycleranging between 1.61.9 m

(Jackson, et al., 2020Beach morphology and sediment size are important characteristics
for beach seldion with a preference for coarse grained sedimentsslope angle, and
smallerbeach width(Jackson, 1995; Smith, et al., 2002; Smith, et al., 2011; Shuster,
2015; Smith, et al2017; Jackson, et al., 2020hese 4k specific characteristics are
important to understarfaieach selection, bwatertemperature antidal pressure are

widely accepted asportantfactorsfor increased HS@ctivity and spawning
synchronization of the speci€Smith, et al., 2010; Chabot & Watson, 2010; Smith, et al.,

2017; Atlantic States Marine Fisheries Commission, 2019)

L. polyphemuspawn inlarge groups in the Bayshore asgal havebeen shown
that they haveynchronizd their spawning based upchanges in tidal pressure
associated with lunar cyclesd typically coincide with high tides the primary driver of
spawning(Chabot & Watson, 2010; Smith, et al., 20IHyrseshoe crabs spawn
communallywith males clgped to thecarapac®f a female makingheir way onto the
beach tdurrowinto the sedimentreatinga nesin which egg clusterare deposited
exceeding 2,300 eggs on averageith opportunistic satellite mesnearbyto attempt to
fertilize eggs(Smith, et al., 2017)This event cawrreatehigh surfaceeggdensitieson the
beachsurface, as seen in Figuzethat have the potential tiveraye several thousand per
square metedue towave action and bioturbatidhat brings them to the surface from
their ness (Jackson, et al., 2020 his signalo initiatespawnings believed to be
relatively stable resulting in a predictable signal for horseshoe twrdleg)in spawning

that is understooldy humansand othesspecis, however spawning will be delayed if
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suitable water temperaturasenot presenbr occur earlier ifoceantemperatures are
suitablemaking it a prime secondary drivierinitiate spawning activities the Bayshore
area(Smith, et al., 2002; Smith & Michels, 2006; Chabot & Watson, 2010; Smith, et al.,

2010; Watson lll, et al., 2016; Cheng, et al., 2016; Smith, et al., 2017)
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Figure 2: Image on thdeach surface during the 2018 HSC spawning season. Fhe off
green colored sediments are the dense surface egg densities exhumed through
bioturbation and wave action located near Fortescue Beach, New Jersey, on May 24.

Watertemperatures the Delaware BapetweerMay and June aneidely
believed to be suitabler the spawning of. polyphemusvhenit reaches 15° QSmith,

et al., 2002; Smith & Michels, 2006; Tucker, et al., 20h8yeverthisis based on
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limited spatial data from thBrandywine ShoalShip John Shoaape May, ot.ewes
buoys in the baynaintained by NOAAas seen inigure 3 These buoys are situated
close to the moutbr centralareasof theBay, but do not provide detailed information on
temperature in the whole area or close to the doa&ing periods of timeAlong with

the limited spatial coveragether research suggests thatifferentsuitable temperature
thresholdmay exist and coulle different between populations or regionsthe eastern
seaboardbased upotaboratory andn situ studiesChabot & Watson, 2010; Smith, et

al., 2010; Watson lll, et al., 2016)
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Chabot& Watson (2010foundduring laboratory manipulation studies that
polyphemudecomes activin the Great Estuary, MAgnd may begimctivities related to
spawning, such as making their way into shallow coasitérs whenwater
temperatures reached 101° Candbegan spawningrhen temperatures reach 17° C
Smithet al (2010)used telemetry data on tagged horseshoe andhe Delaware Bay
andfoundsimilar resultson their movements as Chabot & Watson (2ahéjthey begin
to move into shallowewater,whenmean water temperatureshtay rangebetween
13.7%16.3° C duringthe years of interestVatsonetal. (2016)used telemetry dataith
similar methodologies as Smi¢h al.and found that horseshoe crabs in the Great Bay
Estuary MA, became more activend moved into shallower wateasocean
temperatureseached 1011° C then began spawnimghen oceamemperatures reached
15°-17° C Althoughan optimal temperaturiiaresholdof 15° C mayexistthere is no
definitive evidencat specifically initiates spawning activignd could be& selection for
optimal eggncubationtemperatureand potentially differenfor individual popuations
acrosdts geographicdange(French, 1979; Smith & Michels, 2006; Smith, et al., 2010;

Watson lll, et al., 2016; Smith, et al., 2017)

An important findingconducted bysmithet al.(2010)during the spawning
seasons of 2004 and 20@4as that for every 1° C afiean dailyocean temperature
increasaluring theMay spawning of.. polyphemuspawning activityadvanced by
approximatelffour days.Similar results were also found in Watsondtlal.(2016)as
ocean temperatures in the Great Bay Estuary, MAe weceptionally warm in 2012
resulting in spawning activity tbegin one month earlier than expectéde

advancement of spawning activesrlier in the seasaouldplay a key role in
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deleteriouslyinfluencing the population siznd distributiorof otherspeciegSmith, et

al., 2002; Smith & Michels, 2006; Smith, et al., 2010; Smith, et al., 2Théhigh
abundance agéggson the beaches in Delaware Batyracs thousands of migratory
making their way from their southern wintering grouimts the northeast antkararctic

to replenishtheir energy reservedut changing when these periods of higgy
abundances are present could createcatogicalmismatchdeleteriouslympacting the
fecundity of their population in the long tefiMcGowan, et al., 2011; Zimmerman, et al.,

2016; Atlantic States Marine Fisheries Commission, 2019; Tucker, et al., 2019)

Ecological Match/Mismatch Hypothesis

Ecological match/mismatch hypothefidMH) was proposed in 1969 by David
Cushing as a mechanism to explain how predators time their spawning with periods of
high prey abundancés marine system@ushing, 1969MMH is useful for
understanding how predatory organismik synchronizeheir spawningactivities to
coincide witha speciedrom a lower trophic level they prey upon that receives their
spawningand migratiorcues from other environmental factors such as temperature
(Durant, et al., 2005; Durant, et al., 200%3 the impacts of climate changgensify,
temporal shifts inthe environmental signasich as temperatuoan tigger a species to
begin reproductive activities earlier in the ye&s a resulspecies that receive their cues
to begin reproduction or migration from relatively catsit signalssuch as
photoperiodcould potentiallymiss these periods of high food abundazte decrease

their overall fitnes¢Durant, et al., 2005; Durant, et al., 2007; Jones & Cresswell, 2010)

The potential for mismatch increases for avian speciesréva tong distances

betweertheir wintering and breeding grounblscause the impacts of climate change do
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not occuruniformly across the planet, higher latitudes experience a higher degree of
warming when compared to lower latitudes for exanijpdmes & Cresswell, 2010yhe
work conducted by Jones and Cresswell (2010) showed that the populatiohlsizg
distance migrant birds are expected to decline because of temporal changes of prey
abundances at key stop over locations along their migration routes, changes at their
breeding grounds, and delayed signals to begin migration due to minimal temgerat

changes in their low latitude wintering locations.

One species in particular that is being impacted in this way is the red knot
(Calidris canutus rufathatprimarily migrates from three known locatiomsTerra del
Fuego in Argentina and Chile, Mat#o in Brazil, and the Southe&sthe United States
towards theArctic, but stops in the Delaware Bay during the peak horseshoéH3al)
spawning period in May and early Juondgeed upon the high egtgnsitiesand replenish
their depletedbody masgMcGowan,etal., 2011) The spring migration poleward of the
red knot historically has temporally aligned with the spawning®€in the Delaware
Bay area, such that it is understood to be the most important stdpcaton along their
migratoryrouteto ensure they have the required body mass to make it to their breeding
grounds with enough energy to reprod@ideGowan, et al., 2011 As the population
size of spawninfporseshoe crabs decreased resulting in lower surface egg densities on
Bayshore beachegsignificant population declines of the red kpopulationfollowed,
whichled it to become classified as a threatened spec&15(Niles, et al., 2009;
McGowan, et al., 2011; U.S. Fish and Wildlife Service, 2014, U.S. Fish and Wildlife
Service, 2019)As the impacts of anthropogenic climate chaimgensify understanding

how physical changes in thevironmentparticularly temperaturenfluencewhen
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periods of high resource abundance ematdey stopover locations important for

both conservatiorand resiliencynitiatives.

Sea Surface Temperaturiegimitations andResolutionmprovements

Increasing atmospheric temperatures have been well documented since the onset
of industrialization(Luthi et.al, 2008 Solomonet.al, 2009 IPCC, 2019), but increases
in surface ocean temperatures has been limited spatially and tempueailarge area
due to instrumental and technological limitatiodergtet.al, 2010) Sea surface
temperatur€SST) is the mean temperature of the top few millimeters to the top few
meters of the ocean surface depending upon the methodologfFisest & Mustard,
2004; Kent, et al., 2010; Okuro, et al., 201%he earliest measurements for SST were
accomplishedby measuringhe water temperature inbacket hoisted from the ocean
onto a ship and tlmemeasung the temperature dhe water with a thermometer,
howeverwas prone to errafue toheat loss to the atmosphékent, et al., 2010More
frequentmeasurements were taken throggiips engineoomintakepipesin the 1900s
used to coothe engines, but were prone to a warming biasto instrumentational error
and poor pipe insulatiofKent, et al., 2010)n the 1970s moored and driftifogioys
were introducegbroviding continuous standardized observatioh§STwithin a0.1° C

of the true valué€Kent, et al., 2010)

Thelong record of SST measuremeuatsizing the aforementioned
methodologies mvide a useful dataset tmderstand variatiorsver long periodsf
time, but does not provide high tempasald spatiatesolution as data collectiavas not

consisentor occurred over a limited geographic a(gant, et al., 20Q). In 1993 remote
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sensing technologies began recordifgpal SST with a 25 km spatial resoluti¢ient,

et al., 2010; Okuro, et al., 2014pwever this still proved to be to coarse of a resolution
to be applied to understanding SST changes near the coastéFstee & Mustard,
2004) Othersatelliteplatforms suctas LandsaandMODIS can measure SSWith a
resolution of 30 m and 250 respectivelyandrequire corrective algorithms to improve
their accuracybut theyalsomake these measurements usititgared sensorandare
easilyobscured byloud coverand have limited temporal coveragdgsher & Mustard,

2004; Haines, et al., 2007; Okuro, et al., 2014; Chin, et al., 2017)

A new dataset from NASA Jet Propulsion Lab called the Multiscale-bigyia
Resolution (MUR) SST has been created that takes in a multitude of datasets that
measures SST and provides a 1 km spatial resol(@ibim, et al., 2017)This dataset
blends measurements from buoys and vessels, with data collected from satellites
including but not limited to MODIS and AVHRR to create a daily SST snapshot of the
planet from 2003 to the present by utilizing a gridless mesh to intezgelaperature
(Chin, et al., 2014; Chin, et al., 201The MUR dataset opens up new possibilities to
examine the spatial and temporal dynamics of SST, and in particulsshw@arSST, in
much greater detaiUndersanding changes in SST in the Delaware Bay coastaineg
will help to determine when temperatures in the coastal zone are appropriate for
horseshoe crateproduction(Smith & Michels, 2006; Chabot & Watsp2010; Cheng, et
al., 2016; Smith, et al., 2017hhis information will inform the longerm protection and
development of policies aimed at HSC population conservation and promote a more

resilient Delaware Bay ecosystem.
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Resiliencé AnEcological Perspective

The concept of resilience has a long history dating back to its Latin roots in
ancient Rome, and has been applied to many different fields such as disaster risk analysis,
engineering, and human psychology to describe how asystgeregrs on can Oboun
backoé af t e (Alesanddrj 201t3)Rasilieace asaised here to describe the
ability of an ecological system to return to a state of equilibrium after a disturbance
occurs was originally proposed biplling in 1973. Holling describes resilience as the
property of the ecological system to absorb changes within state variiatiels as
temperaturé and continue to persist into the futkolling, 1973) Although an
ecologcal system may be resilient because of its ability to absorb disturbances, as the
state variables of a system continue to change due to the impacts associated with climate
changeit could cause a system to rebound into a new equilibrium (Gatederson,
2000) Likewise an ecosystem may return to its previous state, but the biological
community or biodiversity will not be the same or as high as its original state prior to the
disturbance that created the change to o€hazdon, 2008)As the physical parameters
that govern the composition and distribution of ecosystems change due to climate change
and urbanization processes, it is important to keep in mind that changes in these systems
could lead to a variety of regime shiftshe clange of one ecosystem into anothan
coastal regionéErnstson, et al., 2010As this process continues it can change the
abundance, distributions, and types of ecosystems and resources that are usually found in
these areasnaking our current strategies of managing coastal resources obsolete if the
spatial distributions of important ecosystems continue to change threatening the resilience

of species that depend upon them.
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In the Delaware Bay efforts have been made to protganisms that are
important to sustain migratory species and restore degraded habitats within the estuary to
i mprove the overall resilience of these ec
the Bay area restrictions have been placed$€ hawests to encourage population
stabilization efforts due to significant declines associated with the species being used as
bait in the fishing industry, with a complete moratorium on the harvest of females on the
New Jersey side of the Bay since 2@B8ese, 2017)Although the ban was initially
enacted to assist in stabilizing the population size of the horseshoe crabs reproducing in
the Bayshore area, it remains in place today because sifittiequerdecline in the
populatian size of the migratory red knot that depends upon high quantities of horseshoe
crab eggs to complete their spring migratidnmmerman, et al., 2016; Breese, 2Q17)
The decline in the red knot population was so sulisieat the end of the $0and early
21%tcentury that in 2015 the species was federally recognized as threatened, providing
additional protections to defend against human disturbance and horseshoe crab harvests
(U.S. Fish and Widlife Service, 2019)Despite these types of protection for individual
species under the Endangered Species Act in the case of the threatened red knot to
increase the resilience of the species and that of its primanséawde climate change
remains a primary threat to the ecological resilience of the estuary throughout the

remainder of the 23 century.
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Methodology

HorseshoeCrab SamplingMethodology
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Figure 4: Geographic area of HSC egg cluster asudface egg densities beach sampling
locations in the Delaware Bay.

TheHSC egg cluster and surface densigya used for this projeetas provided
by Smithand closely followed sampling methodologies outlibgdSmithet al. (2020)
along transects at 14 beaches between-2019 as seen in Table Beach selection for
this project was determined by choosing the beaches that account for a majority of the
spawning activity, a combination of beaches that have and have noesewed
recently, and correspond to locations identified as optimal or suitable habitat for
spawning horseshoe crabs by Lathebjal. (2013). Sampling did not occur every year in

each of these 14 locations, but the years sampling did occur at eacmlgeatialso be
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observed in Table 2. These beaches were also grouped into three distinct geographic
areas corresponding to their location in the Bayshore area, specifically Northern, Central,
and Southern groupbserved in Figurd and Table 1to make comarisons on

abundance and SST spatially to answer questions 3a and 3b.

Beach Groupings 2015 2016 2017 2018 2019
Gandybés Beach X X X X X
Dyers Beach X X X X
Fortescue X X X X X
East Point X X X

Thompsons X X X X
Mooreds Beach X X X X X
North Reeds Beach X X X X X
Cooks Beach X X X X X
South Kimbleb X X X X X
North Pierce Point X X X X
Highs Beach X X X X X
North Norbury X X X X
Sunray Beach Preserve X X X X X
Villas X X X X

Tablel: Table thatdisplays the beaches selected to collect data on horseshoe crab surfac
densities and the years samples were collected at these locations for the years between
2019 between May and Julgolors correspond to the three geographic regibiduein the
Northern, Green in the Central, and Red in the Southern.

Surface egg density samples were collected weekly between May and June along
9 m transects between 2015 to 2018 and intermittently in 2019. 9 surface samples at each
sampling transect were collected in a 5.7 cm diameter at a depth of 5 cm, placeddn plasti
bags, and sorted in the lab to separate eggs from the remaining sand. During the
separation process the number of eggs collected were counted using a click counter to
keep track of the total number of eggs in each saripke counted number of eggs were
rescaledo represent surface eggs petfior each of the samplingansects toepresent
the surface egg densities on the sampled beaches between May and June. Once the

surface egg densities were determitieddataset was imported into a GIS environment
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and spatially joined to the individual sampling sites they were collected from. This data
was further summarized by date to identify the weekly mean surface egg densities at each
location between 2015 to 2019 and classified agppek, peak, and peptakfor the

spawning period that year based upon when the maximum density was observed.

HSC egg clusters were also sampled aloidd Sransects at treamebeaches
depending upon the size of individual beaches. Sampling of HSC clusters began the
second weekfdViay and continued until the second week of July throughout-2015.

Along these transectsZ® cm3holes were dug with egg clusters of at least 2.5 cm wide in
at least one dimension being counted as a single cluster. Thedd{@ister data was

also mported into a GIS environment and spatially joined to their sampling locations and
summarized by date to determine the average number of clusters per transect at each
beach. Like the surface egg density data clusters were also classifieghaalprpeak

and posipeak for the spawning period that year based upon when the maximum density

was observed.

Sea Surface Temperatsre

Week Number Date Range
1 4/25 to 5/1
2 5/2 to 5/8
3 5/9 to 5/15
4 5/16 to 5/22
5 5/23 to 5/29
6 5/30 to 6/5
7 6/6 t06/12
8 6/13 to 6/19
9 6/20 to 6/26
10 6/27 to 7/3
11 7/4 10 7/10
12 7/11 to 7/17
13 7/18 to 7/24
14 7/25 to 7/31

Table2: The weekly breakdown for how yearly and total baselines were cre
to determine SSdnomalies utilizing the MUR dataset.
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SST data from MUR was obtained franA S A 6 fropillsidnLab between

April 25 to July 31 for the years between 2003 and 2019 and from 4/235 ito Z020.

Data from the Cape May, NJ, buoy (44009) was obtained froMNdtienal Buoy Center

from NOAA also between April 25 to July 31, but extended between the years 1997 to
2019. Data from this bay was obtained hourly, but only tineghttimetemperatures were
aggregated together to allow them to be comparable with the MUR dataset. The purpose
of extending the year range was to determine if the observed trends in the MUR datas
are comparable to the situobservations and these trends began prior to the inception

of the MUR dataset as mentioned in question 1a. This also assisted in corroborating the
accuracy of SST measurements in the Bayshore area to ensure thatdhtasets

located close to each other geographically displayed similar patterns over time. It is
important to note that the two datasets were similar but not identical because the buoy
recorded SST measurements approximately 0.6 m below the water suffdedhev

MUR dataset includes satellite measurements that traditionally measured the top few

millimeters and othein stu observations at various depf{@hin, et al., 2017)

The MUR dataset was imported into a GIS platformaadused to compile
weekly mearSST baseline rasters utilizing the day rarigéd weeks total between
20032019 and 10 weeks total in 2020 as observed in Tabléeeks were chosen to
detect anomliesinstead of days because SSTs can exhibitificant variation between
individual days, providing a more suitable determinatibwiwat typical SSTsvereto
detect significant anomalie§he baseline rasters were then used to compare weekly
baseline rasters for each individual year to determine the presence of statistically

significant warmeopr colder anomalies throughout the Bayshore area. The anomaly


https://podaac.jpl.nasa.gov/dataset/JPL-L4UHfnd-GLOB-MUR
https://www.ndbc.noaa.gov/station_history.php?station=44009
https://www.ndbc.noaa.gov/station_history.php?station=44009
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rasters were used to understand lamwmalous SST has potentially changed throughout
the Bayshore are# specific geographic regions of anomalous SST were occurring
during the HSC spawning seagoas mentioned in question 1kand if anomalous
temperatures have impactin timing ofHSC egg abundances during the years of 2015

to 20191 as mentioned in question 3a.

Due to the high spatial resolution of the MUR dataset for &8&avy emplss
was placed odetermining SSTs for specific locatiomsthe Delaware BayA 3 km
buffer wasapplied toevery beach in the Bayshore ateaonstruct a high resolution
datasetor the daily mean neahore SST from April 25 to July 31 betwe2®03 and
201971 53 in totali with a subset if these locatioheing used to understartSC
spawning behavian significant detail A 3 km buffer was decided upon to ensure that
enough pixels containing values for SST were available to determidaithenean,
while pixels within each buffer zone that represented the land surtaeggwored from
this analysisThe daily mean SShetweerthe yearof the MUR datasedtthese
locations were then used to computdadly baseline to determine how SST has vaaied
thedaily levelfor individual beacheduring the spawning seasarhis information was
used to determine tH&ST during thelay samplingoccurred at each locati@andthe SST
prior tothe sampled spawning activity with a 5 day moving avevageh were variables
usedto assistansweing questions 3a and 3hlong withcomparing SST betwedhe 14
individual HSC samplingitesgeographically which was importatat understand

geographic patteenconcerning SS@&s mentioned in question 1b.
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Physical Parameter

Physical characteristics besides SST were also meadsy®aiithet al.(2020)at
individual beachedncludingthe sand depth until peat mudin cm, beach width in m,
Julian day, and the number of days since the new or full asrseen in Table 3
Because HSC shapreference for beaches with sand depth greater or equal to 40 cm,
this variable was used to understand if it played a role with cluster abundance aod surf
egg densities. Beach width was also considered as it has been noted that beach width
plays a role in surface egg abundance and may influence spawning behavior if it is
smaller as it may be related to lower wave he{§mith, et al., 2011Wave heights
were not considered in this analysis becausts &dw spatial resolutiotbeingin the
Bayshore areand not at the individual beach lev€hree geographic regioiisnorthern,
central, andgouthi were also used to categorize the location of each beach to understand
how abundancéor surface egg densities and clusters changed between different locations
in the bay, along with if it impacted spawning behaviors. A-flag moving averagef
SST was also determined for each beach to provide the average SST prior to sampling to
better understand temperature conditions prior to the sangiinog HSC activity has
been observed to increase in the Bayshore area when it rd8che$6.3° C(Smith, et
al., 2010) Lastly the number of days since the new and full moon during the sampling
day was determined becaus#atipressure is believed to be one of the predominant
factors to synchronize HSC spawning activdy the species throughout the eetly of
its geographic arefCheng, et al., 2016; Smith, et al., 2017; Atlaiates Marine

Fisheries Commission, 2019)



Table3: Summary table on the dependent and independent variables in the CART

analysis with the sample sizes and sources.

Cluster Physical Parameters

Variable Variable Type| Analysis | Sample Size Source
Clusters Dependent Regression 676 (Smith, et al., 2020)
Julian Day Dependent Classification Y
Class Dependent Classification I
SST Independent Both 490 MUR
Five-day SST
Average Independent Both 676 Derived from MUR
Lunar Phase Independent Both 676 https://www.moonpage.con
Region Independent Both 3 | e
Sand Depth Independent Both 649 (Smith, et al., 2020)
Beach Width Independent Both 579 (Smith, et al., 2020)

Surface Egg Density Physical Parameters
Variable Variable Analysis Sample Sizg Source
Surface Egg Density  Dependent Regression 366 (Smith, et al., 2020)
Julian Day Dependent Classification 400 | -
SST Independent Both 400 MUR
Five-day SST
Average Independent Both 382 Derived from MUR
Lunar Phase Independent Both 400 https://www.moonpage.con]
Region Independent Both 3 | e
Sand Depth Independent Both 220 (Smith, et al., 2020)
Beach Width Independent Both 334 (Smith, et al., 2020)

Threshold Detectioin Classification and Regression Tree Analysis
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The physical parameter variables discussed above along with cluster abundance
surface egg densitgnd SSTsvere used in a Classification and Regression Tree (CART)
to identify the important variables that influence spawning on beaches using surface egg
density and clusters that influence abundance and identify a spawning tengperatu
threshold to answer questions 2a and 2b. The data collected to determine a temperature
threshold and variables important for spawning to be initiated and abundance were a
combination of both categorical and numerical data, and includes missing variables

making many statistical methods impractical. CART grows decision trees from the top


https://www.moonpage.com/
https://www.moonpage.com/
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down beginning with a root node and based upon if the dependent variable is either
categorical or numerical is classificationregressiontespectively. Independent

variables can consist dfothtypes of data to determine how to split the data in the best
possible way utilizing recursive binary partitioning. This methodology of growing
decision trees utilizes each of the independent variables to determine hmivtteeslata

to decrease the uncertainty of improperly classifying the data into a specified category in
the case of a classification tree, or by reducing the sum of squares error in a regression
tree. In both cases the trees grown are typically larg@eerdit the data used to train the
model, requiring the trees to be pruned prior to their use on the test dataset to determine

themo d eatcaracy.

The data inputted for both surface egg density and egg clusters was split using
67% as training data foretm o d edevélgpment and the remaining 33% as test data to
use on the trained model to determine accuracy. For the classification tree the trained
model was created to identify if the data collected was prior to, at, or after the peak
spawning period forhiat given year using tHeve-day SST moving average, the SST
during the day of sampling, geographic region, and the number of days since the new or
full moon for the data collected between 2015 and 2019 as independent gaAable
second model was alsceated with the Julian Day, replacing the SST during the day of
sampling,and removing the fivelay moving averagdecaus¢éhe SSTand day are
highly correlated since temperatures increase between the dates selected. Model
accuracy was then determinedusing the testing data for surface egg density and egg

clusters in a validation matrix on correctly and incorrectly classified categories.
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The same training and testing datathe classificatiowas used when growing
the regressiotrees In this instance the dependent variable was average clpsters
transects of the log average surface egg densitly the SST during the day of sampljng
five-day moving averag®r SST, sand depth, beach width, region, and days since the
new or full moon as independent varialfi@sthe data collected between 2015 and 2019
The modelwasthen pruned by selecting the optimal subtree with the lowest by utilizing
the lowest value of the sbcomplexity parameter, a value that possstbe lowesicross
validationerror and reduces the tree size to increase its predictive accuracy. The model

accuracy was then determined usingRIMSE.

Lastly the daily mean SST for the 14 HSC spawning besaalas used to
determine when théulianday of the determined threshdldm the CART analysis
occurred between 208819 tocharacterize whethéhis date has advancedretreated
bothfor geogrghic regions and specific beach&ecaus¢he date when SST is suitable
for spawning to begin varies temporally basealimatological and meteological
factorsbeyond the scope of this study, it serves as a proxy for whemté§Begin
spawning in this locatiosinceit has beeidentified as a primary secondary driver
(Smith & Michels, 2006; Watson llI, et al., 2016; Smith, et al., 20f he advancement
is significant it coulddeleeriously impacthevalueof theBayshore areas a stopover
for migratory shorebirdgotentially decreasing the resilienceadfuite of shorebird
species that depend &8C eggs akey energy resourd®cGowan, et al., 2011,

Zimmerman, et al., 2016)
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Mean HSC Egg Clusters by Beach 2015-2019
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Figure 5: The distribution of mean cluster abundance per transect on individual beaches
between 2015 to 2019. Sampling reveals a normal distribution at most beaches related to

Julian Day.

Thedistribution of clusters, observed in Figure 5, have a normal distribution

related to the Julian Day between 2015 to 2019 during the spawning season. The

distribution suggestthat the beginning, peak, aagproximateend of the HSC spawning

season was captured during these years when aggregated together. Although the entirety

of the spawning season was captured, not all beaches equally hosted the same mean

clusterabundanceer transect or the high temporal resolutidsapling. Cooks Beach,

Highs Beach, and Sunray Beach Preserve are all situated in the southern geographic
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region ancdpossessigh mean cluster abundances per transect, while others in the
southern geographic area such as Cape Shore Lab, Kimbles Behbfil|amall exhibit
moderate cluster abundances when compared to the aforementioned locations. This
pattern is also present in other ge@bia regions such as the Central Bayshore area. East
Point has the lowest mean clusd@undanceer transect out dheobservedocations,

while Moores Beach and Thompsons Beach have similar distributions in clusters during

this time period.

Summary Statistics HSC Egg Cluster 2012019 by Geographic Region
Year 2015 Year 2016 Year 2017 Year 2018 Year 2019
Region | N| C|S|N|C|S|N|[C|S|N|C|[S|N|C]|S
Mean 0.54| 058 | 0.76 | 0.56| 0.60| 0.51| 0.71| 0.50| 0.61| 0.84| 0.55| 0.62 | 0.51 | 0.50 | 0.78

Standard
Error 0.13| 0.07] 0.10| 0.14| 0.23| 0.06| 0.18| 0.09| 0.07| 0.17| 0.11]| 0.09| 0.15| 0.13] 0.10

Standard
Deviation | 0.40 | 0.26 | 0.55| 0.53 | 0.87 ]| 0.38| 0.60| 0.37| 0.46| 0.64| 0.38]| 0.49| 0.36| 0.32] 0.42

Range 130 093|173 196|331|131|159|125|154|190| 1.07| 1.68| 0.92| 0.80| 1.25
Minimum | 0.09 | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.04 | 0.04 | 0.02 | 0.02 | 0.00 | 0.17 | 0.06 | 0.06
Maximum | 1.38 | 1.15| 1.73| 1.96| 3.31| 1.31 | 1.65| 1.29| 1.58| 1.92 | 1.09| 1.68 | 1.09 | 0.86 | 1.31
Peak Day | 151 | 155 | 154 | 156 | 164 | 154 | 160 | 165| 156 | 141 | 170 | 151 | 156 | 147 | 151

Count 10 15 31 15 15 39 11 18 40 14 11 30 6 6 18

Table4: Summary statistics for HSC egg clusters by geographic regions in the Delaware Bay spawning s
from 2015 to 2019.

Patternconcerningcluster abundance per transectetioerge geographically, as
seen in Figur®é. Beaches situated in the Southezgionof the Bayshore area were
observe to have a higher number wfean clusters per transect in all yeaompared to
the other regions except for2017 observed in Table Bhose located in the Northern
region of the Bayshore area were expected to show a lower number of mean pleisters
transect compare those in the Central region, howebetween 2015 to 2019 they

werehighercomparativelyi with exceptiosin 2015and 2016
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Mean HSC Clusters by Region 2015-2019
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Figure 6: The aggregated distribution of mean cluster abundance per transect by
geographic region from 2015 to 2019. Like the results in individual beaches, the cluster
abundances by geographic region display a normal distribution.
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Log Mean HSC Surface Egg Density by Beaches 2015-2019
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Figure 7: The distribution of the logneanssurface egg density inZrSampling shows
that high surface egg densities do exist, however the peak abundance of surface egg
density may not have captured duetoly cessation of sampling during the spawning
seasons between 2015 to 2019

Unlike the distributions for HSC clustdoy beaches in Figui® the distribution
of surfaceegg densitieslo not share the same pattern obserdeigure7. Sampling of
HSC surface egg densities shaweneral increase in surface egg densities from the
beginning of the sampling period in eak\ay butwascut shoriin early June. Despite

this limitationin data collectionit does clearly show that surface egg denstsseasily
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exceed 10,0087? in many location$ including East Point which had low mean clusters

per transect.

Log Mean HSC Surface Egg Density by Region 2015-2019
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Figure 8: Distribution of log mean surface egg densities pébased upon geographic
region. Despite the limited sampling after early June between 2015 to 2019, egg densities
in all locations can exceed 10,008 with more than 100,000%in rare cases. Densities

in the southern region were higher, with similar abumckss observed in the North and

Central regions.

Surface egg deitges by geogmghic region, observed iRigure8, clearly show
the abrupt break in sampliradter earlyJune in all three geographic regiomewever
insights can be made concerning #fveindance asurface egg densitieSurfaceegg
densitiegegularly exceed 10,0007 all three regions, however the highest densities

are observed in the Southern regioams seen in Figure 8 and Table 4. HSC surface egg



35

densities are similar in the Northern and Central groupings, however more eggs were

observed in the Northern regiomn2015 and 2016. Comparing surface egg densities to

cluster abundances shows that clusters increase grathuallghouthe spawning

season, however surface egg densities can increase rapidly throughout the spawning

season by several magnitudes in a enaif days particularly in the Southern region.

Summary Statistics HSC Surface Egg Densities 202919 by Geographic
Region

Year 2015

Year 2016

Year 2017

Year 2018

Year 2019

Region

N

C

S

N

Cc

S

N

C

S

N

Cc

S

N

C

S

Mean

3.44

3.38

3.55

3.17

2.66

3.28

2.81

2.97

2.84

3.42

3.63

3.38

3.09

3.52

3.52

Standard
Error

0.22

0.13

0.16

0.22

0.33

0.17

0.29

0.26

0.17

0.41

0.36

0.24

0.36

0.27

0.17

Standard
Deviation

0.53

0.37

0.69

0.71

1.11

0.84

0.71

0.62

0.84

0.91

0.80

0.94

0.88

0.67

0.70

Range

1.36

1.06

2.72

2.16

3.20

3.22

1.85

1.74

3.24

2.33

1.94

3.38

2.26

2.05

2.37

Minimum

2.65

2.68

1.83

2.09

0.84

1.23

2.06

2.25

0.95

1.86

2.33

1.08

1.76

2.32

2.10

Maximum

4.01

3.74

4.55

4.25

4.04

4.45

3.91

3.99

4.19

4.18

4.27

4.46

4.02

4.37

4.46

Peak Day

158

149

153

152

156

153

151

150

155

143

149

151

161

160

156

Count

6

8

18

10

11

25

6

6

25

5

5

15

6

6

18

Table5: Summary statistics on HSC surface egg densities during theZZd®bspawning season in the Delaware Bay fc
geographic regions.
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SSTWeeklyAnomalies

Sca Surface Temperature Weekly Basclines from 2003 to 2019

Figure 9: Weekly observations of baseline SST comprised of daily observations for each
individual week between the years of interest. As temperatures increase between Weeks 1
through 10 SSTs increases as they move from mid spring to early summer. SSTs are
observed to increase more rapidly in the Northern region of the Bayshore area and

decrease with increasing proximity to the ocean.

Weekly kaseline SSTomposeaf the dailySSTobservationsrom the MUR
datasetan be obseedin Figure9. SSTs increasthroughout the geogphic area as the
seaons change from midpring to early summegSTs increase more rapidly in the
northern area ahe Delaware Bagnd more slowlywith deceasingproximity to the
oceanThis increase is likg due to the shallogr waterthat warms up more quickbpan
the deeper water closer to the ocddowever,by Week 10the SST in the area is fairly

homogenousdespite warmer SSdeingpresent in the Northern areas.
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Figure 10: Weekly SST anomalies for 2015 in the Delaware Bay area compared to the
baseline SST observed in Figure 7. Beige represents no statistically significant anomaly,
warmercolors as statistically significant higher SSTs, and cooler colors as statistically

significant lower SSTs.

These baselines were further useddmpare tdhe weekly baselines for each
individual year between 2003 to 2020, howeveryddSTanomaliedetween 2015 to
2020 are reported her8ST aomaliesfor 2015, observed in Figud, showed that
colder anomalies did not emerge at the spawning lesattowevewarmerSST
anomaliedbetweerl® to 1.5° Cwere observed ilVeeks 3, 5, and, along with higher

anomalies exceeding 2.5° C were observed in the Nortbgron inWeek 9.

























































































































































