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ABSTRACT OF THE DISSERTATION
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research

by Shridatt Sugrim

Dissertation Director: Janne Lindqvist

Machine learning in modern systems security research is common. Researchers reg-

ularly use machine learning based models for tasks such as authentication and user

identification. Often the practices followed for developing and evaluating a machine

learning model that forms the decision logic of these systems are misleading. For ex-

ample, the maximum accuracy (ACC) can be inflated when the data used to train a

model is class skewed. Additionally, models built on data from small user groups may

achieve high performance values but fail to generalize in a larger population. These

inflated performance values will lead to unexpected system-level failures.

There are several metrics that are used to evaluate how well a system performs at

the task of distinguishing users. Existing metrics are often inadequate because they fail

to capture the range of possible contingencies that arise when the measurements that

decisions are based on have inherent ambiguities. These ambiguities can result in mis-

taking one user for another. For authentication or user identification, the consequences

for such mistakes is dictated by the target application. Mistakenly granting access to

a bank account has significantly different consequences than loading the wrong set of

user preferences. Many of the common metrics hide underlying problems within the

machine learning models. Models that are not tested with an adequate number of users
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can fail in surprising ways.

In this PhD thesis, we explore the underlying reasons why the metrics are mislead-

ing, and models fail to generalize. We identify the flaws with the metrics and show

how some metrics can degrade in performance when assumptions about the number

of users are violated. We present surveys of proposals for new authentication or user

identification systems from top-tier publication venues. We found that 94% (33/35)

the authentication systems surveyed had reporting flaws and 77% of user identification

systems used less than 20 participants to validate their system. Finally, we present

solutions to these issues in the form of metrics that can be visually checked for flaws

and testing methods that can be used to determine when assumptions about population

size break down.

iii



Acknowledgements

No man is an island entire of itself [1], and it takes a small suburb to grow a Phd.

This journey has been so long and there are so many to thank, it’s not possible to fit

them all in these pages. To everyone who has ever taught me something, you have my

deepest thanks.

Folks at Rutgers that were a great influence include: Ivan Seskar, Rich Howard,

Melike and Kemal Gursoy, Predrag Spasojevic, Richard Gundy, John Kolassa, and

many others.

I am grateful for the support of my family: Gomatie Sugrim, Dowlat Sugrim, Chan-

drakia Sugrim and Larry Averick. I was also supported by many friends and colleagues

including: Ben Firner, Jenny Shane, Dragoslav Stojadinovic, Teajaswhy Hari, Haris

Kremo, Sanjit Kaul, Bin Zan, K. C. Huang, Kahn Le, Francesco Branzino, John Austen,

Roy Montalvo, Rick Anderson, Robert Miller, and countless more.

I am indebted to all my co-authors: Can Liu, Meghan McLean, Xianyi Gao, Victor

Kaiser-Pendergrast, Yulong Yang, Michael Sherman, Gradeigh Clark, Arttu Modig,

Antti Oulasvirta, Teemu Roos, Hyeong-Sook Park, and Youn-Ok Park for helping make

the publications happen. This material is based upon work supported by the National

Science Foundation under Grant Number 1750987.

A special thank you to all the ECE folks that helped me travel along my path

including: Wade Trappe, Narayan Mandayam, Yanyong Zhang, Athina Petropul, Zoran

Gajic, Chris Rose, and Christy Lafferty. I’d also like to remember Zoran Miljanic, David

Daut, and Etian Fenson, all of whom we lost too soon.

Finally, without the guidance and encouragement of my advisor, Janne Lindqvist,

a dsylexic kid from the Bronx would have never come this far. This is not the end of

our collaboration, it’s the beginning.

iv



Dedication

I dedicate this work to my mother and father, Gomatie and Sugrim Sugrim. A seed of

curoisty planted decades ago, still continues to grow.

v



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Robust Performance Metrics for Authentication Systems . . . . . . . 6

2.1. Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2. Review of recent authentication systems . . . . . . . . . . . . . . . . . . 7

2.2.1. Common Flaws . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Flaw 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Flaw 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Flaw 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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Chapter 1

Introduction

1.1 Overview

All systems that make decisions have a possibility of making the wrong decision [2, 3].

Unfortunately, the correctness of a decision is dependent on the context the decision is

made [4]. When the model a system is based on captures the context correctly, then the

decision made will align with the expectations of the systems behavior. This contextual

knowledge is built into the model a system uses to make decisions by the choices that

are made during design and evaluation [5, 6]. For example, decision performance can be

measured via a multitude of metrics, each capturing some aspect of how well decisions

are made. Since all metrics are a summary of performance, they only give a limited view

of the system performance. The context in which the system is evaluated will make

some metrics more applicable than others. Thus, the conditions on which a system was

designed and tested shape the system’s model. If the test conditions do not align with

the conditions the system are used under, then the performance metric values acquired

in testing will not hold in the realized system. This disparity between testing and usage

can lead to unexpected system behavior and ultimately impacts the systems security

because the system is unpredictable when used outside it’s expected environment.

It is rarely the case that proposed systems are tested beyond the initial evaluation

done in the literature. Between 1994 and 2010 Silvia et al. [7], identified only 96 out of

16, 055 papers in the software engineering community that replicated an existing study.

It is well accepted that other communities have similar study replication numbers since

replication of results is usually considered unpublishable [8]. Therefore, it is important

that publications be upfront about the limitations of the system they propose. While

much of the literature is focused on developing the model, very little is focused on
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identifying the limitations of the model. The limitations are just as important because

they are often needed to explain the failures of the system. Often consumers of the

research are not in a position to make judgments about the possibility of system failures

in their context because the publications present only the most interesting / novel (i.e

publishable) aspects of the research. The published literature is often lacks the details

required to enable replication or implementation.

Because the decision systems are often used as a black box, the literature tends

to focus more novel inputs to or usages of, the classification algorithms. Performance

reporting often follows defacto standards inherited from the literature body which the

publications draw from. There is however no consensus on what metrics should be

reported (see Section 2.2). It is rarely the case that systems are tested to determine

the at what point do the assumptions of the model no longer hold (see Section 3.2).

Since the task of testing for robustness falls to the proposer of the system, in this

PhD proposal we consider two simple questions that are often overlooked when reporting

the details of a system. These questions are:

• Given several proposed systems, which one performs the best in my target con-

text?

• What is the limit on the number of users that my system can handle?

To answer the first question we consider the problem of how to measure performance

of an authentication system, i.e., a system that performs binary classification of users

into authorized and unauthorized classes. Different performance metrics attempt to

summarize different aspects of the system performance. Not all metrics are applicable

in all contexts and each reported metric must strike a balance between the amount of

paper space used, the ability to compare with existing literature, and the amount of

information conveyed. Metrics should be chosen not only by what they convey, but

also what they leave out. Some metrics convey more information but are more difficult

to interpret. Single number summaries like the equal error rate (EER), are easy to

compare but hide many details of system performance. These summaries should not

be the only performance reporting, instead they should be part of a complete story
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of performance, that conveys the possible trades offs in error rates one can make by

adjusting the parameters of the system. In Section 2, we argue for the reporting of the

frequency count of scores (FCS) to augment an receiver operator characteristic (ROC)

curve. We show that these metrics together enable side by side comparison of the range

of system performance under the breadth of possible conditions (instead of the idealized

ones that maximize a specific summary).

To answer the second question we consider the problem of identifying the limits on

the number of users that can be identified with a bound on error for an identification

system, i.e., a system that uses multi-class classification to identify distinct users. Thus

the relevant performance metrics are different for these types of systems. However, the

development process for these systems is very similar to those used for authentication

systems. An initial step in the process is to identify features to extract from the

measurements of observable properties of users.

The features extracted from the measurements are chosen to be representative of the

physical phenomenon the system is trying to model. Features are validated with user

studies that ultimate produce performance metric values. If the performance results

don’t meet the desired goals, the design process is iterated potentially adding more

preprocessing, or choosing new features (e.g different functions of the measurements).

This iteration repeats until the desired performance targets are met [9]. What is often

constant in these studies is the user data sources. These source of data often have low

user counts.

Since recruitment and collection can be expensive, it is often done only once. This

is not ideal because the iteration of the model development process causes the model

to becomes more specialized to the current set of user data, i.e., the model becomes

overfit. We argue that systems should be tested with a reasonably sized number of

users to identify the models sensitivity to the number of users in the system. Since it

is often difficult to determine what an appropriate limit on the number of users is, we

recommend an iterative approach to testing which uses subsets of the user base with

increasing size. We show that this approach determines how sensitive the performance

metrics are to the number of users in the system.
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Because cheap computation is omnipresent, it is of great importance that our statis-

tical tools evolve to take advantage of this resource. This process is already occurring in

some areas of machine learning. As an example, consider how model selection in done

today as compared to approaches of the past. Model selection was traditionally done by

selecting a distribution family and then finding the parameter value that maximizes a

divergence based metric (e.g. Akaike information criterion) [10]. This method required

expertise in distribution forms and asymptotic behavior of functions to be employed

correctly. However such methods have been replaced with more computationally expen-

sive but easier to interpret tools such as cross validation [11]. The metrics we propose

follow this trend of leveraging modern computational availability to lower the amount

of expertise required to use statistical learning tools.

1.2 Contributions

In this body of work we determined what were the underlying causes for the observed

failures. Beyond examining the underlying details of the developed models our work

had the follow contributions:

• We surveyed literature from appropriate venues to demonstrate that the issues

we raise are present in the literature.

• We show how commonly used metrics in authentication systems, including TPR,

FPR, EER, AUROC, ACC, and GC are inherently flawed metrics for understand-

ing authentication system performance.

• We show how any single-number summary provides incomplete information for

the evaluation of authentication systems.

• We propose unnormalized Frequency Count Scores (FCS) as an augmentation to

current authentication metrics that enable visual comparison and identification

of some errors.

• We show how using the FCS with the ROC can further solve the limitations

associated with current authentication system metrics.
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• We demonstrate flawed comparisons with several existing proposed authentication

systems by reimplementing those proposed systems.

• We examined the difficulty of obtaining high recognition performance in identifi-

cation systems with low participant counts.

• We mimicked the evaluation procedure of an identification system by constructing

five distinct systems based on publicly available datasets, each with 20 partici-

pants. We used support vector machines, random forests, and neural networks on

these datasets and achieved greater than 90% accuracy in three cases.

• We explored the reasons why the low participant count are not adequate to eval-

uate identification systems.

• We examine the impact of participant count on performance results and observed

that performance may degrade as participant count increases. In addition to

participant count, we also considered the impact of measurement count, number

of measurements per participant, and feature dimension on performance.

• We propose measuring how the performance metrics degrade when the participant

count increases as a gauge of the robustness of an identification system.

• We examine how to anticipate this degradation by using randomized participant

subsets and note that this is a crucial criteria to demonstrate the stability/security

of a novel identification system.
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Chapter 2

Robust Performance Metrics for Authentication Systems

2.1 Chapter Overview

Many authentication systems utilizing machine learning have been proposed (see Ta-

ble 2.2). However, there is no clear agreement in the community about how these

systems should be evaluated or which performance metrics should be reported. Specifi-

cally, publications often report misleading single-number summaries which include true

positive rate (TPR), false positive rate (FPR), equal error rate (EER), area under ROC

curve (AUROC), and maximum accuracy (ACC). Figure 2.1 enumerates the reporting

rates of common metrics for thirty-five recent publications.

Improving the metrics and reporting methods can resolve two primary obstacles to

the evaluation of authentication systems. These obstacles are (1) skew in the distri-

butions used to train and evaluate the systems, and (2) misleading comparisons that

arise from the reported metrics. For example, skew within the population of study

participants can artificially inflate the maximum accuracy. Additionally, misleading

comparisons can result from commonly reported metrics. For example, it is inappropri-

ate to conclude that one system performs better than another by comparing an EER of

0.05 to 0.10. Similarly, an accuracy of 80% versus 90% does not allow clear inferences

about the system performance.

We show the following three primary flaws with existing metrics: 1) It is incomplete

to report performance using solely single-number metrics, like the ACC, FPR, TPR,

FAR, and FRR. Single-number summaries hide the details of how and what errors

occurred. For example, because if a system was trained on mostly unauthorized users’

data, it will learn to recognize unauthorized users very well and may not recognize

authorized users. 2) Reporting performance results without the parameters of the
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Figure 2.1: The frequency of reported metrics from Table 2.1 for thirty-five recent
publications surveyed from venues listed in Table 2.2. Classical biometric and detection
summaries such as EER and TPR are often reported because they are widely used in
the literature. The FPR is the most reported because it is the common element for two
frequently reported metric pairs, the (TPR,FPR) and (FPR,FRR).

model hinders the implementation of the system. The system cannot be faithfully

replicated when only the performance is reported. 3) Performance comparisons cannot

be made when using single-number summaries derived from the ROC. One cannot

conclude that one system will perform better than another in a target application by

direct comparison of the EER and other ROC-derived summaries.

In this work, we uniquely propose and demonstrate how the ROC, combined with the

unnormalized Frequency Count Scores (FCS) (shown in Figure 2.2), aids in the ability

to understand the trade-offs for authentication performance and adequately evaluate

the proposed approach.

2.2 Review of recent authentication systems

To determine the current state of performance metric reporting, we surveyed recent re-

search published in top venues. The selection criteria for including papers in the review

was the following: (1) The article was published in a top venue for systems security, mo-

bile computing, human-computer interaction, or pattern recognition for authentication.

These venues included NDSS, CCS, CHI, IMWUT/UbiComp, INFOCOM, MobiCom,
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Figure 2.2: The left figure is the ROC curve of an authentication system. The right
figure is its corresponding FCS that displays score distributions for measurements of
authorized and unauthorized users. The ROC curve is computed by varying the value of
the threshold required to grant access and computing the true positive rate (TPR) and
the false positive rate (FPR). The FCS is a histogram of measurement scores separated
by ground truth. In this FCS figure, the blue histogram represents unauthorized users’
scores, determined by the ground truth of the measurement. The red histogram in the
FCS figure represents authorized users’ scores.

MobiSys, SOUPS, SS&P (Oakland), USENIX Security and Pattern Recognition jour-

nal. Machine learning venues (e.g. NIPS) were not included due to their primary focus

on algorithms and lack of attention to system applications. (2) In order to evaluate

current practices, the paper had to be published within the last 2 years (2016 to 2018).

(3) The paper had to propose an authentication scheme. Specifically, the paper had

to use machine learning to label users as authorized and unauthorized (as opposed to

identifying users from a group). Although we identified many related papers (n = 58),

only 35 proposed an authentication scheme and were included in the review. We note

that we did not find any publications matching our criteria from USENIX Security.

In order to find these articles, one researcher used the Google Scholar search engine

to limit results to these venues and included the following search terms: authentication,

behavioral, biometric, machine learning, password, recognition, and access. A second

researcher separately reviewed the venue proceedings using the search terms in order

to generate a complete list of related work.
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Figure 2.3: The flaws noted in Section 2.2.1 occur several times in many of the pub-
lications. We note that the common practice of recruiting N participants and then
electing one as the authorized user often leads to skewed measurement populations.
Twenty-three of the thirty-five papers surveyed had skewed measurement populations.

In the thirty-five publications that were surveyed, we discovered no uniform ap-

proach for reporting metrics. However, there were several recurring themes. Figure 2.1

shows that the most common metric reported is the FPR since the FPR is the common

element in two different but related metric pairs: the (TPR,FPR) and (FPR,FRR)

pairs. These pairs are often reported when one value is held constant and the other

is minimized (e.g. fixing the FPR and adjusting the system parameters until the TPR

is optimized). There is often no justification for the value that is chosen to be held

constant. Another frequently reported metric is the EER. It is often reported for

comparison with existing systems in the literature. Unfortunately, without a uniform

approach, we cannot make comparative quantitative conclusions about the performance

across all the proposed systems.

Sixteen (less than half) of the publications reported the ROC. Eleven of the publi-

cations that reported the ROC had measurement populations that were skewed (here

measurement population is defined as the set of measurements from users). In some of

these cases we concluded that the effects of the skew did not impact the validity of the

claims because the performance claims were based on the ROC.

2.2.1 Common Flaws

We observed three flaws that were common to many publications. The three flaws are

as follows:
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Flaw 1

Incomplete performance reporting. Reporting based solely on single-summary metrics

is incomplete. For example, the maximum accuracy (ACC) metric does not identify

the type of user (authorized or unauthorized) an error was made on. For example, an

accuracy of 90% does not mean that the system makes errors 10% of the time. A sys-

tem may have been tested on data it would almost always get correct. Specifically, if a

system was trained on mostly unauthorized users’ data, it will learn to recognize unau-

thorized users very well. If this system is only tested on unauthorized users, the ACC

metric will be very high. However, because this system was built on only unauthorized

users’ data, it may not recognize authorized users very well. The system will not be

trained to identify authorized users’ data because it has no model for authorized users.

The model is thus incomplete when trained on data that is either mostly authorized or

unauthorized users.

Comparisons made solely based on TPR, FPR, or FRR are also incomplete. It is

not possible to tell if the optimized value is the result of better discrimination between

users or simply an adjustment of system parameters for the purpose of inflating a

metric. Since the (TPR,FPR) and (FPR,FRR) are the result of a specific compromise

between the two kinds of errors. One can trade one error type for another by adjusting

the parameters (e.g. threshold), without improving overall performance.

It is imperative that authors incorporate this knowledge into the interpretation of

their metrics. If the authors do not report the frequency of authorized and unauthorized

users’ data, then the ACC metric provides little information about the system. Of the

thirty-five publications surveyed, eleven directly exhibited this flaw. Several others

made performance claims based only on one of these metrics but also reported other

metrics for comparison.

Flaw 2

Results without model parameters. Performance results reported without the parameters

of the model hinders the implementation of the system. The confusion matrix (CM),
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and all metrics derived from it (e.g. the ACC or TPR), depend on the threshold used

to obtain the results. For metrics derived from the confusion matrix, the system cannot

be implemented when only the performance is reported. Researchers tend to determine

their own thresholds in isolation when they design a system (they cannot know what an

implementer would need). If the threshold is unknown, the conditions under which the

original research was completed cannot be replicated. We recommend that the ROC

and FCS are reported to surpass this limitation. The ROC and FCS show how the

system responds to changes in the threshold and covers a range of possible thresholds

enabling implementers to choose the threshold that is right for their application.

Every machine learning algorithm has parameters that, when adjusted, significantly

change their behavior (e.g. slack factor, size and number of hidden layers, K). Since

machine learning usage is often off-the-shelf, it is easy to overlook the necessary param-

eters required to use the system even though these parameters control the behavior of

one of the most critical parts of the system. In our survey, seventeen of the thirty-five

publications left out the parameters of the machine learning algorithms used. Without

these parameters, the task of replicating the system becomes much more difficult.

In one case, a publication studied the effects of environment on the system perfor-

mance by comparing the accuracy of the system in several environments. Based on the

described methods, the test data had a positive bias as the authors elected a very small

subset of the participants to be attackers. The publication did not disclose whether

the threshold remained the same in all environments tested. The authors concluded

that since the accuracies were less than 5% from each other, that the environmental

effects were negligible. However, because the population was skewed, that less than 5%

difference could also be accounted for by shifting the threshold in each of the environ-

ments. Since the data was mostly comprised of positive samples from authorized users,

moving the threshold up or down could yield more or less correct decisions purely due

to sampling effects.
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Flaw 3

Misleading interpretations. Performance comparisons cannot be made when using

single-number summaries derived from the ROC. Direct comparison of the EER (and

other ROC-derived summary metrics) does not show whether one system performs

better than another. Two systems with similar values for these metrics can have very

different ROCs. Because the ROCs are different, the performance will be different when

implemented. When a system is implemented, it must be implemented with a target

application in mind (e.g. banking or loyalty discounts). These different target applica-

tions come with requirements for the amount of false positives (wrong people allowed

in) or the amount of false negatives (correct people kept out) that the application can

tolerate. In our survey, seven of the thirty-five papers drew direct comparisons about

system performance by comparing one of these summary values. Twenty-two of the

thirty-five papers reported one of the metrics with the expectation that similar systems

could be compared using these summaries.

Systems with different ROCs behave differently when implemented. These differ-

ences can lead to unexpected behavior because the error rates of the implemented

system may differ from the error rates the implementer expected. As a toy example,

consider a case in which an implementer desired to improve the performance of an appli-

cation that used Touchalytics [47] and required the false positive rate to be 0.1. In this

scenario, the implementer may consider switching to SVC2004 [48]. The implementer

may look at the EER of SVC2004 which is 0.185 and compare this to the Toucha-

lytics EER of 0.198. From this comparison, an implementer would conclude that the

system’s performance will improve. He or she would be unpleasantly surprised when

their true positive rate dropped from 0.8 to 0.6 at the false positive rate their applica-

tion required. Therefore, comparing systems on these metrics can lead to detrimental,

real-world security consequences.

In several of the surveyed publications the EER and AUROC were used in two

different ways. In the first use case, authors made direct claims about the relative

behavior of two or more systems either by comparing the proposed system to an existing
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system which uses the same types of measurements or by adjusting the parameters for

their own measurements, to determine the impact on the metric. In some cases, authors

concluded that a change in parameter had no impact on performance because the metric

was unchanged. However, because they did not include the ROC, we do not know what

effect the changes had on the ends of the curve. In contrast, some authors reported the

ROC for multiple parameterizations of their system demonstrating that their systems

behavior was predictable over a wide range of parameterizations, even though they did

not make this claim.

In the second use case, the EER or AUROC is reported with the expectation that

these metrics will be used to compare the proposed system to other competing systems.

This use case only allows for näıve comparisons such as those detailed in Section 2.2.2.

Since the second use case requires knowing what the authors intended the reported

metric to be used for, we did not count these cases as evidence of flaw 3.

2.2.2 A näıve comparison

Table 2.3 enumerates the top five systems based on the reported performance metrics.

We consider the three most common metrics: the EER, ACC, and FPR. For any single

metric, this comparison fails to produce a meaningful result for several reasons.

• Not all publications report the same metric. Comparison across different metrics

does not have a meaningful interpretation.

• Individually using any of the three above-mentioned metrics can lead to flawed

conclusions because no individual metric captures the complete performance.

• Just because a system optimizes a metric, does not mean that it can be utilized

in the target application (e.g. an approach implemented for keyboards may not

work on touchscreens directly).

It is clear that such a näıve comparison cannot lead to an informed comparison of the

proposed systems. It is even difficult to identify if a system is suitable because some

of the metrics fail to provide information that is relevant to the context of the target

application (e.g. an FPR may not be achieved at a target TPR).



14

Of importance, system evaluation requires the ability to evaluate the potential se-

curity trades-offs of a system. Instead of answering the question, “Has the system

produced a single metric that has surpassed a seemingly adequate threshold?” imple-

menters need to answer the question, “Can this system be tuned to meet the needs of

my application such that reported metrics show possible security trade-offs?” Many of

the current metrics that are reported fail to answer the latter question.

These flaws occur in many of the publications surveyed. Figure 2.3 enumerates the

observation frequency of each of the described flaws. We also note that almost two-

thirds of publications have skewed measurement populations. It is common practice

to recruit N participants, take M number of measurements from each of them, and

then elect one participant as the authorized user. When this is done, the measurement

populations are skewed because there are N − 1×M measurements from unauthorized

users, and only M measurements from authorized users. In some cases, we were unable

to assess whether the measurement population was skewed because the publication did

not report the sources of measurements. This was the case in 23 of the 35 publications

we reviewed. However a few reported balanced accuracy in an attempt to compensate

for the skew. As we will see, had the FCS been reported, we would have been able

to visually assess if there was measurement population skew. One of the publications

actually reported a normalized FCS but did not use it for analysis.

2.3 Related Work

We discovered only one publication in the systems security community that has studied

how performance metrics are reported [49]. They studied flaws that occur in reporting

for continuous authentication systems. They note that the EER is among the most

popular metrics and observe the misleading characteristics of only reporting the EER

and false negative rate (FNR). They also note that data sets are rarely made available,

which creates a barrier to follow-up analyses. They additionally advocate for the use

of the Gini Coefficient (GC) which is functionally related to the AUROC. We show

that the GC and AUROC are also flawed metrics that hinder the comparison and

implementation of a system and we instead advocate for the combination of FCS and
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the ROC.

Bonneau et al. [50] compared different types of authentication systems to text pass-

words with qualitative metrics in usability, deployability, security. They provide a wide

range of real-world constraints but they did not provide quantitative approaches to

evaluate the metrics. In contrast, we focus on quantitative metrics in this paper.

The efficacy of the EER in communicating performance has been questioned in

other fields [51]: the EER has the significant disadvantage of representing only a single

point in the performance continuum and that this misrepresents the capabilities of a

system. The paper [51]: argues for the ROC as the main performance metric but does

not consider how measurements are separated, nor the utility of looking at score range

overlap (we will address how these factors limit the utility of the ROC). Others [52, 53]

have argued for using the ROC curve over the accuracy as a performance metric. Papers

from several fields, including clinical medicine [54], chemistry [55] and psychiatry [56],

have been arguing for the use of the ROC. Although many disciplines call for the

usage of the ROC, the interpretation and consequences of a classification error are

distinct to each discipline. In our work, we focus on classification error in the context

of authentication and show how the ROC alone is an inadequate metric.

Prior research has used normalized histograms to estimate score distributions [5].

This approach is fundamentally different from what we propose. We propose that an

unnormalized metric - the Frequency Counts of Scores (FCS) can be used to diagnose

security flaws for authentication systems. This approach is not widely known or applied.

Some of the flaws we discuss may be known in the machine learning community.

For example, previous research in machine learning has discussed population skew [53].

However, our work clearly shows that our suggestions are unknown in this context and

novel to the authentication systems community. Thus, it is imperative that the flaws

and our proposed recommendations are discussed.

In summary, using EER as a performance metric has been questioned in continuous

authentication systems and other fields. However, there is no work that propose a

convincing alternative metrics to EER. We are the first to propose the FCS in addition

to the ROC to augment the comparability of authentication systems. Although prior
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texts discussed the normalized histogram for estimating score distributions, we are

the first to use the unnormalized FCS for diagnosing security flaws of authentication

systems. The FCS addresses the deficiencies in the availability of data for analysis by

enabling analyses to be done on the distribution of scores. This is true even in cases

where the data may be sensitive and cannot be made available to the public. The FCS

can be used to directly identify thresholds that fit the application criteria. Analysis of

the scores can give insight into the modifications a score function might need to achieve

better separation of users. With FCS, we can identify two types of flaws in the surveyed

publications in top venues: incomplete performance reporting and misleading metric

interpretation.

2.4 Machine Learning in Authentication Systems

Authentication systems that utilize machine learning can use a variety of methods to

distinguish users (e.g. fingerprints, visited locations, and keystroke dynamics). Regard-

less of the authentication method, the machine learning methods used to classify the

measurements are the same. Figure 2.4 shows how machine learning in most authentica-

tion systems includes three major operations: preprocessing, scoring and thresholding.

In the preprocessing operation, the measurements are filtered, re-centered and scaled [4].

This operation may discard measurements that fail to meet any admissibility criteria

the authentication system may have (e.g. measurements that are too short). Scoring

applies a mathematical function (f : M → R) to the measurements to generate a nu-

merical summary of the measurements (by numerical summary, we mean a number

that is used to describe a characteristic of a dataset). Scores of measurements from au-

thorized users by convention score higher (to the right of) than those of unauthorized

users [57].

The scoring operation is the most critical part of the authentication process. Scoring

measurements well enables unambiguous classifications by separating measurements.

The better scoring is at separating measurements, the fewer errors will be made. The

scores between different authentication systems are rarely comparable and bare no
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Figure 2.4: The use of machine learning as a classifier is common to many authentication
systems. The preprocessing phase prepares measurements by filtering, re-centering and
scaling. The scoring phase applies a mathematical function to the measurements to map
them to a number. The thresholding phase compares the number to a fixed threshold
to make a decision. The full authentication system feeds measurements taken from the
user to the machine learning classifier and then evaluates the performance based on the
decisions that come out of it.

direct relevance to each other, even if the systems measure the same thing.

Thresholding uses the score (a numerical summary) as evidence for a decision. The

choice threshold establishes the minimum required score to be deemed authorized. For

any user’s measurements, if the score is below the threshold, the user will be denied

access. Similarly, if the user’s score is above the threshold, the user will be granted

access. The further away the score is from the threshold, the more confident we can

be in our classification. Thus, user measurements that score significantly higher than

the threshold are considered strong evidence for a decision to grant access. User mea-

surements that score significantly lower than the threshold yield a confident decision to

deny access. In this sense, the choice of threshold dictates the strength of the decision.

2.4.1 How authentication systems research is consumed

While there is no formula for implementing a proposed system from its publication

description, there is a common theme that many publications follow. Many publications

start with a description of what is measured and why it is important to be measured.

A case then is made for why the measured quantities will produce good performance or

have some additional benefit (e.g. easy to remember, resistant to some types of attacks,

and require fewer resources). A classification algorithm is typically chosen based on
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criteria such as ease of implementation or good performance with available data for a

chosen metric. Finally, a user study is performed to validate the design choices made,

demonstrate the claims of utility or defensibility, and potentially compare to existing

systems.

An implementer of these systems will have to determine what was measured from

the description, and then collect those measurements. The implementer will then need

to use the classification and compare the performance metrics achieved by their imple-

mentation against those reported in the publications. The implementer will have to

pick a system based on a comparison of the reported performance values, the ability to

recreate the measurement apparatus (e.g. collecting heart rhythms or breath sounds),

and applicability of the system’s benefits to their specific case (e.g. the need for re-

sistance to shoulder surfing). As we will see, comparing performance values between

publications is often challenging for a variety of reasons, complicating the process of

choosing a system. Implementing the classification algorithm can also prove daunt-

ing because the descriptions are often inadequate (e.g. often lacking critical parameter

values).

2.4.2 How classifiers work

The performance of a classifier is influenced by two major factors. The first is how well

the scoring function separates the measurements from different users and the second is

how well the threshold is chosen.

The scoring operation plays the most important role in the authentication system

performance. The score function’s ability to separate measurements via their score

values reflects the underlying capability of the measurements collected to separate users.

The score function can be seen as extracting information, in the form of score separation,

from the measurements. If all the measurements from authorized users are distinct from

the measurements of unauthorized users, an optimal score function was achieved. If the

distinction between authorized and unauthorized users is inadequate, the score function

will be inadequate.
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The thresholding operation comes immediately after the scoring operation in im-

portance. The selection of a threshold represents the choice of a compromise between

error types that a classification system can make [3]. It cannot eliminate error; it can

only trade one type of error for another (e.g. decrease the error of authorizing illegiti-

mate users by increasing the error of denying legitimate users). If the scoring function

provides good separation, there will be many choices of threshold that yield a good

compromise between the error types. Several of the metrics (e.g. EER and ACC) fix

a specific threshold and derive a performance metric value from this fixed point. The

threshold is often chosen to optimize this metric and it is only this optimized value that

is reported.

2.4.3 Why authentication systems make mistakes

From a security standpoint, what distinguishes one system from another is not the

measurements they collect, but how well they tell authorized users apart from unau-

thorized users. For example, the problem of granting access to the wrong person has

severe consequences if the target application is banking. On the other hand, the prob-

lem of denying access to the correct person is not a significant infraction if the target

application is loyalty discounts.

Measurements collected from users are often random with an unknown distribution.

When these random measurements are fed into a scoring function, the resulting scores

will also be randomly distributed. These variable scores will be compared against a

fixed threshold and a decision will be made to grant or deny access based on this

comparison. If the randomness of the measurements causes the score to incorrectly

cross the threshold, an error is made.

The scores of measurements from authorized users score higher than measurements

from unauthorized users; therefore, if a score falls above the threshold, it is assumed to

have come from an authorized user. If a score is below the threshold, it is assumed to

have come from an unauthorized user. In the ideal case, all authorized users’ measure-

ments will score much higher than those of unauthorized users. This, however, is rarely

the case. Often the scores from both types of users overlap (see Figure 2.2) because
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of the randomness in the measurements. The greater the overlap between scores, the

more likely it is that the system will make a mistake and thus make more errors [2].

2.5 Common performance metrics

used in authentication

For every decision a classifier must make, there are four possible contingencies: (1)

authorize a legitimate user (true positive or TP), (2) authorize an illegitimate user

(false positive or FP), (3) deny an illegitimate user (true negative or TN), and (4) deny

a legitimate user (false negative or FN). The decision counts (TP, FP, TN, FN) are

the fundamental components of all performance metrics. To compute these counts,

the authentication system is used on a set of measurements where the ground truth is

known. Once the scoring and thresholding is complete, the authentication system will

produce a set of decisions based on those measurements. The counts are then computed

by comparing the decisions with the ground truth.

There are two families of metrics which differ in the metric from which they are

derived (shown in Figure 2.5). The families are: (1) confusion matrix (CM) derived

metrics which depend on the threshold and (2) ROC curve derived metrics which may

not depend on the threshold. The CM is a count of all possible contingencies arranged

in a grid. This contingency table is computed for a fixed value of the threshold and thus

depends on it. All related metrics inherit this dependence. Many of the other perfor-

mance metrics are ratios of the counts enumerated in the confusion matrix (e.g. ACC).

The ROC represents many confusion matrices under varying values of the threshold

and thus does not depend on it. Metrics derived from the ROC may be specific points

on the ROC, such as the EER, or functions of the ROC (e.g. AUROC). Since the

EER is a specific point on the ROC, it corresponds to a specific value of the threshold.

Figure 2.5 shows the relationships between the CM related metrics and ROC curve

related metrics.
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2.5.1 Confusion Matrix (CM) related metrics

Table 2.4 shows a confusion matrix and the related metrics derived from it. The true

positive rate (TPR) and false positive rate (FPR) are two key metrics that are com-

puted from a confusion matrix to evaluate authentication system performance. TPR is

interpreted as the probability that an authorized user will successfully authenticate and

FPR is the probability that an unauthorized user will successfully authenticate. FPR

is sometimes called the false accept rate (FAR). Other ratios often reported include the

false negative rate (FNR) which is alternatively called the false reject rate (FRR), and

the true negative rate (TNR).

The maximum accuracy (ACC) is another key metric for authentication system

performance. It is interpreted as the relative frequency of a correct classification of

a measurement source, regardless of its origin. Since the accuracy is a function of

the threshold, often the value of accuracy that is reported is the maximum across all

thresholds. The maximum accuracy represents the best performance the classifier can

offer, however, solely reporting accuracy can be misleading. Because only a single

threshold is represented in this performance metric, consumers of the research cannot

know how the accuracy will change if the threshold changes. This may lead to the

conclusion that a system is unfit for an application because the accuracy achieved is

below an error requirement even though a judicious choice of threshold would satisfy

an FPR requirement (at the cost of some TPR).

Other accuracy metrics

The maximum accuracy is not the only accuracy metric reported. There are several

other metrics that are functions of the values across the columns of the CM, such as the

balanced accuracy (BAC), F1 score and half total error rate (HTER). Some of these

metrics, such as BAC and HTER, attempt to weight the ratios to adjust for skews

within the measurement populations. We note that these metrics are also functions of

the confusion matrix, and thus still dependent on the value of the threshold. These

metrics are reported less frequently than others considered in this paper, and they share
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Figure 2.5: Many of the commonly reported metrics are derived from the CM or the
ROC. The ROC represents multiple CMs under varying thresholds. The connection
between the ROC and the CM is realized through the (TPR, FPR) pairs. Each point
on the ROC is one (TPR, FPR) pair for a fixed value of the threshold.

many issues with the metrics that we consider.

2.5.2 ROC curve related metrics

Despite the overwhelming reliance on single threshold metrics generated by a confusion

matrix, they have limited utility. Single threshold metrics present an incomplete picture

of the system’s performance. All of these metrics give no indication of how changes to

the threshold affect the behavior of the metric. If the thresholds that were used to derive

the metric are not reported, it is not possible to repeat the experiment to determine

if the achieved metric values can be obtained in subsequent trials. To implement a

system, some insight into the relationship between the performance metrics and the

threshold is needed.

The ROC is computed by varying the authentication threshold from the maximum

to the minimum possible values of the score and calculating the TPR and FPR for each

threshold value. As the threshold lowers, scores that were not initially high enough to

grant access will eventually rise above the threshold. Formally, we consider a binary

hypothesis of the form:
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X
h0∼ f0 (2.1)

X
h1∼ f1

Where X is the measurement score we are trying to classify and fi, i ∈ {1, 0} are

hypothesized score distributions. With these hypothesis, we can compute the false

positive rate (FPR) as

FPR(T ) = α(T ) =

∫ ∞

T
f0(x)dx

Where T is the threshold parameter. Similarly we can calculate the true positive rate

(TPR) as

TPR(T ) = 1− β(T ) =

∫ ∞

T
f1(x)dx

The ROC curve is then the parametric graph of (α(T ), 1 − β(T )). Using the vi-

sualization tool at [58] we can visualize how a single point on the curve is computed.

The tool assumes that we have assumed that the fi are normally distributed, however,

in practice we would have to estimate these distributions over the scores computed

from the collected measurements. In Figure 2.6, we have a generated ROC curve and

a marked specific point corresponding to a single threshold value. In Figure 2.7, we

show the two normal distributions assumed to generate the ROC curve, and the black

threshold line, T specified in the integrals.

An unauthorized user is erroneously granted access because the random variation

caused their measurements to score above the threshold. However, if the random vari-

ation caused an authorized user’s measurements to score lower than is typical, the user

would still be granted access because the threshold is lower. Eventually, as the thresh-

old is lowered, both the number of TPs and the number of FPs will increase. Each value

of threshold represents a specific trade-off between the TPR and FPR. In Figure 2.2,

we show an estimated ROC curve from a sample distribution. Also shown is the line

of indifference, y = x (green line of Figure 2.2). If the ROC is close to this line, the

system performance is comparable to blind guessing.

There are three common single-number performance metrics for summarizing the

ROC curve: the EER, the AUROC (or AUC in some texts), and the GC.
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Figure 2.6: An example ROC curve with a specific point marked. This ROC curve
assumes the hypothesized distributions are normal.

Equal Error Rate (EER)

As Figure 2.2 shows, it is the point on the ROC where the FPR = 1 − TPR. It is

easily identified as the intersection of the line y = 1− x (red dashed line of Figure 2.2)

and the ROC curve. It represents the probability of making an incorrect positive or

negative decision in equal probability. Since the ROC is a parametric curve, there is a

specific value of the threshold that corresponds to the EER.

Area Under the ROC Curve (AUROC)

The AUROC is defined as the area below the ROC curve and is depicted as the shaded

region in Figure 2.2. It reflects the probability that a random unauthorized user’s

measurement is scored lower than a random authorized user’s measurement. It can

be interpreted as a measure of how well a classifier can separate measurements of an

authorized user from their unauthorized counterparts. Hanely et al. [57] show that the

AUROC is equivalent to a Wilcoxon test of rank, while this proof is involved, we will

describe the intuition here. If we consider the computation of the single point shown in

Figure 2.6, the TPR integral (red area in Figure 2.7) can be viewed as the probability

of observing a score above the threshold T . The value of this integral is the y coordinate
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Figure 2.7: The black line in the center of this figure is the specific threshold value used
to compute the TPR and FPR of the point marked in Figure 2.6.

which lies above the value of the FPR integral (blue area in Figure 2.7). By integrating

this function we use the FPR as our differential element. This means we are summing

the probability of observing a positive score above the threshold in units of probability

that a negative score is above the threshold. As we move along the FPR axis, the

threshold sweeps through the range of possible values, integrating out dependence in

the intermediate variable T . Thus we are left with the probability that a positive score

lies above a negative score.

Gini Coefficient (GC)

The Gini Coefficient (GC) is functionally related to the AUROC as follows [59]: GC =

2 × AUROC − 1. It also tries to quantify how much separation there will be in the

measurements.

2.6 Proposed Metric:

The Frequency Count of Scores (FCS)

We propose the Frequency Count of Scores (FCS) as an additional performance metric

to be reported with the ROC curve. Figure 2.2 shows examples of the FCS coupled
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with the ROC. The FCS provides the ability to visually diagnose and explain the

achieved performance reported in the ROC because the ROC can be constructed from

the FCS. By examining the distribution skew and overlap of the score frequencies,

we can determine if the proposed systems exhibit any biases towards a positive or

negative decision. We can also justify the reported performance observed in the ROC

by examining how well the score distributions are separated. Good score separation

will yield good system performance which will be reflected in an ROC with a low EER.

Sensitivity to changes in the threshold can be assessed by looking at how the scores are

spread relative to each class. The two metrics complement each other.

The FCS is a fundamental metric that is different from the ROC and the confusion

matrix. It is considered fundamental in this context because it is not derived from

the CM or the ROC. It can be used to diagnose model problems, compare systems,

and validate implementations. The FCS is constructed by identifying the maximum

and minimum scores across all measurements and then choosing a common bin width

over this range. Scores are separated by the ground truth and then plotted as separate

histograms which are binned using the common bin width. The bin width is a free

parameter that can be chosen to reflect the amount of data available and the observed

score variability.

The FCS should not be normalized to make it look like a distribution. The unnor-

malized version makes the population skews, score distribution imbalances and score

overlap regions visually apparent. The FCS is a useful addition to the reported metrics

because it allows a research consumer to visually perform additional analyses which

would not be possible with the ROC or CM metrics alone.

How the scores are distributed plays a central role in the performance of a sys-

tem. A large majority of the decision errors are made because the random variation in

measurements causes the scores to erroneously cross a chosen threshold. Because the

measurements are not deterministic, the scores are variable even if they are a determin-

istic function of the measurements. How well the score function separates measurements

in the presence of this variability dictates the range of possible error trade-offs between

TPR and FPR for a system. If the separation of scores is large, then it is possible to
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achieve high TPR while keeping the FPR low. Since each choice of threshold represents

a compromise between TPR and FPR, larger score separation implies better choices of

threshold.

The FCS can be used to gain performance insights beyond what the existing

metrics show

Many of the existing metrics can actually be derived from the FCS. For example, the

TPR can be computed as the relative frequency of positive scores that lie beyond

the threshold.The proportion of the score range from authorized and unauthorized

users that overlaps is important because many of the performance metrics, such as the

EER and ACC, attempt to summarize system performance by quantifying how often

a measurement from either user will get a score in this overlapping range. The ACC

and EER both depend on the width of the overlapping region as well as the relative

frequency of the scores that fall within this overlap. Neither metric considers the portion

of the scores that lie outside the overlapping score region for either score distribution

(authorized and unauthorized). It is this lack of consideration for these other aspects of

the scoring that cause these metrics to be incomplete. By reporting the FCS, difficult

concepts can be easily visualized. Consider the AUROC: its definition is very technical,

and is thus difficult to interpret. However, if we look at two different FCS and note the

score overlaps are smaller in one vs. the other, we have captured the essence of what

the AUROC is trying to measure.

Some insights into system performance that only the FCS can provide are gained by

considering scores that lie outside the overlapping region. Performance metrics, such

as the TPR, are directly impacted by the portion of these types of scores. For example,

authorized users’ scores that lie outside the overlap can only contribute to the TPR. If

this portion is not empty, then the TPR may never practically reach zero (e.g. there is a

threshold for (A) of Figure 2.9 that achieves non-zero TPR at zero FPR because scores

above this threshold could not have come from unauthorized users). Although this can

be visually confirmed on the ROC, it would be difficult to identify why it happens from

the ROC.
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The differing slopes of the ROCs in Figure 2.9 do not indicate how sensitive the

classifier is to changes in the threshold. A research consumer cannot ascertain how

far along the ROC a change in the threshold will move them purely by looking at the

ROC. However, this information can be gathered by looking at the spread of the score

distributions in the FCS. If the scores are spread wide relative to the width of the

overlapping region, then the classifier is not particularly sensitive to the threshold. If

the width of the overlapping region is small compared to the score distributions, small

changes in the threshold will cause significant movement along the ROC.

If scores from authorized users that are above the overlap occur with higher relative

frequency than scores within the overlap, then the authentication system will produce

more positive declarations. A similar result holds for the TNR and unauthorized users’

scores which are below the overlap. When examining the FCS of a proposed system, if

only one user has scores that lie outside the overlap (e.g. FCS (F) in Figure 2.10), the

system may be biased towards decisions in favor of that type of user (e.g denying access

since most of the scores range comes from unauthorized users). Without the FCS, it

is difficult to determine if a proposed system has this kind of flaw, even if the ROC is

reported.

2.7 Flaws with Existing Metrics

In this section, we discuss in detail the implications of the observed flaws we summarized

in Section 2.2. We note the cases where the FCS aids in diagnosing whether a flaw is

present or explains why the flaws occur.

2.7.1 Incomplete performance reporting

Skews within the measurement population can artificially inflate some CM derived

metrics. Measurements are often split into training and testing data. Training data

is used to build a model and testing data is used to compute performance metrics.

If the measurement population is skewed, both data sets will exhibit this skew. If

this approach is coupled with a report that uses only a single performance metric,
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misconceptions arise. For example, in one of the papers we reviewed, the authors only

report the FNR. Unfortunately, their measurement population was skewed. From their

reporting, we cannot know whether the low FNR is due to their system’s ability to

discern users or due to a skew in the measurement population.

If we only have a single metric available, such as the ACC for two systems we are

trying to compare, the system with the better value can be deemed superior. On the

surface this seems like a perfectly fine criteria. For example, given that the interpre-

tation of the ACC as an approximation of the probability of a correct classification, a

higher ACC would seem to indicate superior performance. Unfortunately, relying on

the ACC as the sole criteria can be very misleading. It is possible that the ACC value

was inflated by skew in the measurement population.

When a classifier has poor ACC, the scores from authorized and unauthorized mea-

surements will have significant overlap (as seen in the left side of Figure 2.8). These

overlapping scores are ambiguous and thus difficult to classify. If we skew the measure-

ment population to have mostly unauthorized users, the scores from the unauthorized

users overshadow the scores from the authorized users’ measurements (right side of

Figure 2.8). In this instance, possible values of the threshold that cause the classifier to

make mostly negative decisions (denials of access) will be favored because most classi-

fiers are optimized by minimizing the error over the data on which they are trained [6].

Since the test data is skewed in the same way, a classifier that returns mostly negative

decisions will be correct most of the time. This skew in the test data will make the

classifier appear to be more accurate because it is being tested on data it would always

get correct.

While the detrimental effects of skew are evident for the ACC, any metric that

depends on both N and P at the same time (cross column in the confusion matrix

of Table 2.4) will be affected by population skew [53]. For reference, N = TN + FN

and P = TP + FP . Figure 2.8 also demonstrates how the ROC is mostly unaffected

by population skew. Population skew can mask the poor score separation by providing

performance numbers that are artificially high. However, these flaws are easily identified

by the frequency count of scores. The unnormalized counts in FCS show that the total
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volume of scores from unauthorized users vastly outnumber those of authorized users.

This visualization helps designers easily examine the skewed measurement population.

2.7.2 Results without model parameters

In the ideal case, the code used to derive the results of a study would be published along

with the proposed system. This may not be feasible in all situations. However, most of

the systems that use machine learning do not implement the algorithms from scratch.

Instead, they often apply to existing implementations in libraries such ask Weka [60]

or libSVM [61]. The novelty of these proposed systems often lies in the complete end-

to-end performance, not the algorithm used to make decisions. Implementations of the

proposed systems can be simplified by having the model parameters (e.g. SVM slack

factor, number of hidden layers in the NN, and learning rate) that were used to derive

the reported results. These parameters control the behavior of the algorithm and reflect

a value judgment made by the researcher based on their understanding of the how the

algorithm interacts with the measurements.

By providing the parameters of the algorithms used, authors enable replication of

the research, benefiting the community in two ways. First, the data analysis can be

replicated exactly to determine if other factors contributed to the reported results. If

the data is also available, follow-up analyses can be more easily performed. Updated

versions of the libraries that may have fixes for vulnerabilities or performance enhance-

ments can be validated against existing results. Second, any potential implementers

of the system only need to replicate the measurement collection and data processing

portions of the proposed systems. The properly parameterized software library can

essentially be treated as a black box.

2.7.3 Misleading performance metric interpretations

A key issue with reporting only a single performance metric as a summary of the system

is that the value of the metric does not uniquely identify the classifier from which it

came. This information is lost, and with it all knowledge of how the system performs

when the parameters are adjusted. In Figure 2.9, we can directly observe this issue
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in the EER and AUROC performance metrics. The graph shows several ROC curves

from different score functions that all have very similar EERs and AUROCs. Each of

the ROC’s linear portions have different slopes. These differing slopes reflect different

sensitivities to the threshold, due to the difference in how the scores are distributed. A

change in the threshold has much more impact on the ROC (F) than on the ROC (A)

curve, thus an implementation can fail in unexpected ways because the implementers

were unaware of this difference.

If we are only given the EER to evaluate a system and we have a specific target for

our TPR or FPR, we are unable to determine from the EER if our target will be met.

This information is not knowable because many ROCs (and thus many classifiers) have

the same EER. Because we do not know which classifiers were used, there are many

possibilities for how the performance can vary with the threshold. As we note in the

Introduction, many applications have specific requirements for the TPR or FPR, which

are attained by controlling the threshold.

By definition, all ROCs must connect the point (0, 0) to the point (1, 1) (i.e. setting

the threshold of a classifier higher than the maximum achieved score will result in 0

TPs and 0 FPs, whereas setting it below the minimum will have the opposite effect).

The EER fixes a third point that the curve must pass through. However, as depicted

in Figure 2.9, these three points do not uniquely determine the curve. There are many

ROCs that correspond to a small range of EERs due to what the EER is measuring.

The EER is the point on the ROC in which the probability of an incorrect denial

of access is equal to the probability of an incorrect granting of access. Both of these

probabilities are proportional to the width of the region of overlap in the scores. In

Figure 2.10, the corresponding FCS for each ROC in Figure 2.9 is depicted. Each score

distribution has the same width of overlap region, however, the overlapping region moves

to the right as the figures are read left to right, top to bottom. As the overlapping region

moves right, it consumes more of the score range for the authorized users’ measurements.

As the authorized users’ score range shrinks, the unauthorized users’ score range

grows to maintain the width of the overlap. Because all of the overlapping regions

are the same width in all cases, a threshold can be identified for each score set that
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strikes the same balance between the two error types (FP and FN). This threshold

will be in a different place for each of the different score distributions. However, each

classifier can be tuned to achieve the same EER by picking the correct threshold, even

though their individual tolerances to threshold shifts vary greatly. Since there are fewer

authorized users’ scores, the sensitivity of the classifier to changes in the threshold goes

up because each change has a greater impact on the classifications that are made causing

the distinct differences in slope in Figure 2.9.

A key shortcoming of the EER is that it focuses only on the overlap between the

score ranges. It fails to consider the proportion of the score range that lies outside the

overlapping region for either measurement source or any asymmetries in the distribu-

tion. Only scores that are within the overlap contribute to classification errors because

they can be confused with scores from the alternate class. The proportion of scores

outside the overlap is as important as the width of the overlap itself because it governs

the probability that an easily confused score will be observed. The EER fails to account

for asymmetries in the score distribution. The graph of FCS depicted in Figure 2.10

makes the proportion and the asymmetry visually apparent.

There is no measurement population skew in any of the graphs in Figure 2.10;

instead, the authorized range is shrinking. The unnormalized frequency count shows

that the probability mass across authorized measurement scores is being redistributed

over a smaller range. Thus, the score distributions are becoming more asymmetric.

The classifier is becoming more biased because the probability of observing a score

that could only have come from an authorized user’s measurements is getting smaller.

Similar to the skew accuracy problem of Section 2.7.1, observing the weight and range

of the scores from both measurement sources allows for the identification of problems,

with the authentication system making the overlapping region width and distribution

asymmetry apparent.

AUROC and GC are also flawed

The AUROC is interpreted as the probability that scores of differing measurement

sources separate well [57]. This probability is proportional to the width of the overlap
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in score range. As the width of the overlap gets smaller, the probability increases. Thus

bigger values of the AUROC are desirable. If the AUROC → 1, then all authorized

users’ measurements will score higher than unauthorized users’ measurements. The

probability of separation is maximum, thus there may be a threshold that achieves

perfect classification. Since the Gini Coefficient (GC) is functionally related to the

AUROC, it is also functionally tied to the width of the overlap in score range.

Unfortunately, the AUROC and GC also exhibit interpretation flaws because they

are summary metrics. They also mask the complexity of the classifier performance. In

Figure 2.9, the AUROC was computed for each of the curves (the GC can be computed

from the formula). As expected, the range of the AUROC does not vary significantly

even though the resulting ROCs are very different. The AUROC is within the range

(0.84 − 0.88) across the different classifiers. The AUROC does not vary due to the

width of the overlapping region which is held constant, as seen in Figure 2.10. Like the

EER, the AUROC focuses heavily on the overlap of scores.

2.8 Recommendations for reporting: Solutions to the Pitfalls of Cur-

rent Reported Metrics

In the ideal case, authors would make all source material available, including data

and code. This approach would yield the best results for system evaluation because

evaluators and implementers could verify their implementations against the reference

provided by the researcher.

Although there is no one-size-fits-all strategy for analysis, we propose guidelines that

can be followed to simplify the task of evaluating the proposed system. The following

three suggestions may aid consumers of research, including an implementer who needs

to choose the best authentication system for their target application.

First suggestion: Report as many metrics as possible including both the ROC and the

FCS. These two graphs enable comparisons across many parameterizations and serve

as a visual check for biases. The FCS enables both researcher and reader to diagnose

issues with population skew and score distribution via immediate visual analysis. It can
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also serve as a diagnostic tool for implementations to verify that the scores produced

by the implemented system are within the range the researcher originally reported.

Other metrics such as the EER, AUC and ACC should also be reported for comparison

with existing literature. These metrics can be added to abstracts and introductions for

glanceability but are not a substitute for a complete analysis that includes an ROC and

FCS.

Second suggestion: If the FCS cannot be reported, report the ROC curve to enable

an implementer to decide if the system has a threshold that meets the error performance

requirements of their target application. Implementers can find specific points on the

ROC curve that satisfy their requirements and be assured that if the implementation

is faithful to the proposed system, the can find a value of the threshold that yields the

chosen error rates.

Third suggestion: If the ROC cannot be reported (e.g. for space constraints), report

multiple summary metrics that are not functionally dependent. Since each of the sum-

mary metrics, EER, ACC, and AUROC only represent a single aspect of the system’s

performance, the reader can obtain a more thorough evaluation of the performance if

all three are reported. Reporting all three gives readers the ability to compare the

proposed systems from the existing body of literature that often only report one or two

of these metrics.

2.8.1 Case Study

To demonstrate how to use the ROC and FCS to compare systems, we evaluated the

authentication performance of three existing datasets via the ROC and FCS. We will

first describe the datasets and classifiers that were built. Each publication provides a

dataset and a system model to test their dataset. When the classifier is used on the

dataset, an FCS and ROC will be computed. Because each publication’s dataset and

classifier has its own population distribution and score function, we expect the FCS

and ROC from each publication’s proposed system to be very different. We will show

how to use the ROC and FCS to decide between these systems.
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Datasets and classifiers used to create ROCs and FCSs

The SVC2004 dataset [62] is a public signature dataset with 40 types of signatures and

20 genuine samples for each signature. We implemented the linear classifier of Principal

Component Analysis, proposed by Kholmatov [48]. The Touchalytics [47] is a public

touching behavioral biometric dataset with 41 participants’ continuous touching be-

havior data. We built the authentication system with k-nearest-neighbors as described

in their paper. We selected k=100 and each user contributed 150 periods of touching

behavior as templates. The dynamic keystroke dataset [63] is a set of keystroke features

that was collected while users input a password. Typing behavior was observed for 51

users, and each user contributed 400 typing samples. The proposed system was built

with a one-vs.-all-classifier for each user. In our study, we randomly chose a user and

built the authentication system with Manhattan (scaled) similarity that was described

in the paper.

Analysis of these three systems with the FCS and ROC

In Figure 2.11, we display the ROC curves for all three systems. We assumed that

the implementer has a fixed requirement on the FPR of 0.1. To choose a system that

meets our requirements, we drew a solid black vertical line at our FPR limit. Thus,

we can visually identify the system that has the highest TPR for our FPR limit. In

this case, Keystroke is the clear winner, even though it does not have the lowest EER.

Thus, potential implementers would not able to assess a proposed system when given

only the EER.

We also see the slope of the ROC near the fixed FPR target. Observe how quickly the

TPR degrades if we need to make the FPR tolerance lower. For example, the segment

of the ROC from SVC2004 classifiers around the FPR target is very steep, indicating

that a small change in threshold will lead to a significant change of the system’s TPR

and FPR rates. In contrast, the ROC of the Keystroke dataset is very stable because

the TPR changes slightly with the change of FPR. If we have an upper bound on the

FPR and want a system that gracefully degrades when the FPR target is lowered, the
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Keystroke classifier is the clear winner. It should be noted that if we could tolerate an

FPR of 0.3 or higher, the Keystroke system would be inferior to both SVC2004 and

Touchalytics when considering both the the TPR value for a fixed FPR and the slope

around a fixed FPR.

The FCS can be used to show the asymmetry of the score distributions in detail.

Figure 2.12 displays the ROC curves of the three systems along with their correspond-

ing FCS. For example, the ROCs of SVC2004 and Touchalytics are similar, but their

FCS shows that the SVC2004 classifier has an advantage because the authorized and

unauthorized scores are more separable than the Touchalytics classifier. Additionally,

the EERs of SVC2004 and Keystroke classifier are similar, but their FCS shows that the

SVC2004 classifier is superior because the unauthorized and authorized users’ scores

overlap significantly in the Keystroke dataset.

From the FCS of Figure 2.12, we can observe the asymmetry in the scores. The

unauthorized users’ scores in the Touchalytics classifiers almost cover the entire score

range, indicating that the classifiers can never be certain about granting access. Every

authorized user’s score could have come from an unauthorized user, thus this system

may be biased to deny access more often. The Keystroke classifiers are biased in the

other direction: all unauthorized users’ scores could have come from an authorized user.

The SVC2004 classifiers have some score range which does not overlap, and thus can

make some decisions with certainty. If our application needs to be balanced, SVC2004

is our best choice. If the application needs to be biased towards denials, then we

should choose Touchalytics. If we want more positive decisions, Keystroke has a higher

probability of delivering them.

We have showed how relying on the EER can produce erroneous conclusions about

authentication systems. We have provided evidence for the limitations of reporting the

EER in three systems: Keystroke, SVC2004, and Touchalytics. We have also showed

how the ROC and FCS should be implemented as a solution to the limitations of single

number summaries. In Figure 2.12, we show how the FCS compliments ROC to improve

reporting authentication system metrics.
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2.9 Discussion and Conclusions

We have proposed robust metrics for evaluating machine learning-based authentication

systems: ROC curves and their corresponding FCS. We argue for the ROC as a method

of reporting classification performance because it is able to provide an overview of

the authentication performance across all thresholds. However, the ROC misses some

scoring details, such as the difference in the width of score ranges and the asymmetry

of score distributions. This scoring detail can indicate whether a classification bias is

present in the scoring function and how sensitive the error rates are to changes in the

threshold. Therefore, we introduce the FCS as an augmentation to the ROC curve. We

believe reporting the ROC and FCS together provides a robust metric for evaluating

the performance of authentication systems.
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The commonly used authentication performance metrics, such as EER, AUROC,

GC and ACC, are inherently flawed. EER only focuses on the overlap between the

score ranges and does not consider the proportion of the score range that lies outside

of the overlapping region. Since the scores inside the overlapping region are the reason

errors are made in the authentication system, there always needs to be balance between

the two types of errors.

The two types of error rates of the system depend heavily on the thresholds in the

overlapping region of scores. If the proportion of scores inside the overlap is large,

one will likely encounter a score that is difficult to classify. We show in Figure 2.10

that with a similar EER, system (A) is much better than system (F) because system

(A) is able to completely separate some of the measurements from different user types.

Therefore, EER, AUROC, and ACC hide important information that could be used for

comparison between authentication systems. Even the ROC by itself provides a limited

analysis. While the differences between (A) and (F) visually manifest in the ROC as

a higher TPR at 0.0 FPR and a different slope, it is not visually obvious why this

happens or how the TPR changes as the threshold changes. Reporting practices that

focus on a single metric limit the ability to compare systems by ignoring these factors.

We introduce the FCS to augment the ROC in order to evaluate and compare the

performance of authentication systems. The FCS is fundamentally different from the

ROC curve and the CM because it is not derived from either and thus brings additional

information into the analysis. We can use FCS to detect the measurement popula-

tion skew, asymmetries in the scoring distribution and assess sensitivity to threshold

changes. Since the scores in FCS are not normalized, the population skews are visually

apparent. Usage of the FCS is not limited to authentication systems. The ability to

identify distribution imbalance and threshold sensitivity is relevant to any applications

that use machine learning to decide where their measurements come from.

We have illuminated the problems with current reporting practices in authentica-

tion system research. Reporting these single-number summaries alone is a barrier to

comparison between systems and can misrepresent a system’s potential. For example,

some metrics do not show the performance trade-offs or whether performance degrades
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outside the conditions for which the system was designed. We proposed a solution

to the limitations of current metrics: reporting a full set of metrics that includes the

FCS and the ROC. We argue that performance reporting should be as comprehensive

as possible and that the the FCS and ROC can help in this regard by provides addi-

tional information to evaluate authentication systems. We believe it is crucial for our

community to adopt more transparent reporting of metrics and performance.
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Definition Description

TP True Positive Authorized legitimate users count.
FP False Positive Authorized illegitimate users count.
TN True Negative Denied illegitimate users count.
FN False Negative Denied legitimate users count.

CM Confusion Matrix Table of contingency counts.
ACC Maximum Accuracy Probability of a correct declaration.
TPR True Positive Rate How often a legitimate users is authorized.
TNR True Negative Rate How often an illegitimate user is denied.
FPR
(FAR)

False Positive Rate
(False Accept Rate)

How often an illegitimate user is authorized.

FNR
(FRR)

False Negative Rate
(False Reject Rate)

How often a legitimate user is denied.

ROC
Receiver operator
characteristic curve

Curve of (TPR, FPR) by varying threshold

ERR Equal Error Rate The point that TPR equals 1-FPR

AUROC
Area under the
ROC curve

Probability of scores of random legitimate
users are higher than illegitimate user.

GC Gini-coefficient Calculated from the AUROC

FCS
Unnormalized frequency
count of scores

Histogram of scores separated by
ground truth

Table 2.1: Performance metric name abbreviations

Venue References

CCS [12, 13, 14]
CHI [15, 16, 17, 18]

IMWUT/UbiComp [19, 20, 21, 22, 23]
INFOCOM [24, 25, 26, 27, 28]
MobiCom [29, 30]
MobiSys [31, 32]
NDSS [33, 34, 35, 36]

Pattern Recognition [37, 38, 39, 40, 41, 42, 43]
SS&P (Oakland) [44]

SOUPS [45, 46]

Table 2.2: Publications surveyed grouped by venues

EER % ACC % FPR %

0.00 [38] 99.30 [14] 0.00 [19]
0.34 [40] 98.61 [30] 0.01 [38]
0.59 [37] 98.47 [27] 0.10 [22]
0.95 [42] 98.00 [28] 0.10 [33]
1.26 [14] 97.00 [18] 0.10 [42]

Table 2.3: The top five authentication systems according to a näıve comparison of their
best reported values for EER, ACC, and FPR metrics. These metrics are reported the
most often but rarely yield a meaningful comparison. There is no clear winner as each
of the top five performers in each category varies significantly.
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Measurement Source
Authorized
(Positive)

Unauthorized
(Negative)

Grant Access
(Positive)

TP FP

Deny Access
(Negative)

FN TN

TPR = TP
TP+FN FPR = FP

FP+TN

ACC = TP+TN
TP+TN+FN+FP

Table 2.4: For a single value of the threshold, the confusion matrix (CM) arranges the
counts of all possible contingencies in a grid.



42

Figure 2.8: Measurement population skew can cause low accuracy classifiers to have
artificially high accuracy values. On the left side, the set of 2000 measurements is
evenly split between authorized and unauthorized. We drew the FCS and computed
maximum accuracy ACC ≈ 60% and the ROC under this measurement split. On the
right side, the set of 2000 measurements is skewed to include 10% authorized and 90%
unauthorized measurements. Because of this skew, the FCS shows that the positive
scores are effectively buried in the negative scores. The maximum accuracy achieved is
ACC ≈ 90% which is reached by choosing a threshold that results in mostly negative
declarations. This reported accuracy is misleading because the scoring function was
the same.
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Figure 2.9: The EER does not represent a single ROC curve. Instead, it represents
a family of ROC curves. While each member of this family have similar EER, their
performance varies significantly across the range of possible thresholds. Unexpected
sensitivity to changes in the threshold can lead to surprises in system behavior when
the thresholds used in the implementation deviate from the published values. In this
case, ROC (F) is mostly inferior to ROC (A) because (A) achieves a higher TPR at 0.0
FPR. However, according to the EER, they are essentially the same. If an implementer
has a specific TPR or FPR target, the EER may be of little value to them as they
cannot determine how the TPR/FPR may vary between the EER and their target. It
should be noted that if the target application can tolerate an FPR > EER then (F) is
the superior choice, however this tolerance cannot be known to the researcher. There
is no skew in these examples.
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Figure 2.10: These FCS graphs show where the shapes in Figure 2.9 come from. They
were constructed so that as we move from left to right and top to bottom, the region of
scores that an authorized source has to definitively identify as authorized is shrinking,
however the width of the overlap stays the same. This explains why (A) has non-zero
TPR at FPR(0.0) but (F) does not. As the authorized score region is consumed by
the overlap in scores, there are fewer distinct scores from the authorized user and thus
fewer ways to get a purely true declaration. This difference explains why the range
of possible trade-offs is worse for (F) than (A), as reflected in the slope of the ROC.
The ROCs are linear because these score distributions are uniform (purely for example
purposes). If the distribution shape changes but the overlap region remains the same,
the EER behavior will be unchanged, however the ROC will be more curved. There is
no skew in these examples, only the score distributions change.
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Figure 2.11: Comparing systems with a specific FPR target in mind is done by finding
the highest TPR for that FPR. To find the highest, TPR draw a vertical line at that
FPR and then identify the ROC that crosses the line at the highest point. A similar
procedure works for specific TPR targets with horizontal lines.
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Figure 2.12: The FCS can be used to decide between different systems that have similar
EERs and ROCs.
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Chapter 3

Exploring Performance Limits For User Identification

Systems

3.1 Chapter Overview

Identifying individuals is a key component in many systems like automated grocery

(e.g. Amazon Go [64], Alibaba Taocafe, DeepBlue Takego), personalized recommenda-

tion systems [65] (e.g. ads [66, 67], movies [68], products [69], music [70]), or multi-user

interfaces [71]. The typical identification system measures observable features of a user

and then feeds these measurements to a decision mechanism. The decision mechanism

learns the distributions of measurements from the dataset and makes predictions by

partitioning the space of measurement values.

Many recently proposed identification systems use machine learning classification

algorithms as their decision mechanism [72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,

85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97]. An identification system’s performance

is measured by how well it performs classification. These systems are often validated

with a user study where participants are recruited, observables are measured multiple

times, and then the measurements are used as a dataset for a classification algorithm.

For a system to be robust, it is critical to know what conditions cause it to fail. The

user studies used to evaluate these proposed systems should provide some insights about

the limits of the proposed systems. Even the most ideal systems which are capable of

identifying large numbers of participants with minimal error will fail in unexpected ways

when used beyond its upper bounds (an upper limit on number that can be identified

with minimal error) as described in Figure 3.1. Often these bounds are not included in

the analysis of a proposed system nor are they reported in the publications if known.
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Figure 3.1: Even an ideal system that is capable of identifying many users with minimal
error will eventually reach an upper bound, N , beyond which the performance will
decrease with out recovery. Because the measurement value range is finite, the ability
to distinguish participants based on these measurements begins to degrade as more
participants are added. Consequently, users that were easily identified will be confused
with new users that have similar measurement values. We can choose a threshold
(e.g. accuracy greater than 80%) below which we declare that the systems error rate
makes it unsuitable. Beyond this point, we declare that the system has failed. Because
the measurements can vary randomly, it is often very difficult to identify the bound,
N , beyond which the performance decreases monotonically.
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User studies reported in the literature are often inadequate to consider a system well

tested. Although researchers may collect large amounts of measurement data per par-

ticipant, the participant count is often low. Collecting a large number of measurements

from a small group of participants does not test the limits of the decision mechanism.

To verify that small participant counts is an issue for identification systems, we sur-

veyed 30 recently proposed identification systems and noted that the median number of

participants for their user studies was 12. Of the systems surveyed no system reported

a limit on the number of users that can be handled by the system or identified the

conditions which drive the system to failure. Several of these systems use classifica-

tion algorithms such as support vector machines, neural networks or random forests as

multiclass classifiers. Their performance is often measured using two common metrics,

accuracy and the confusion matrix [98]. Accuracy is the relative frequency of a cor-

rect classification. The confusion matrix is a contingency table that enumerates how

often any one class gets confused for any other class. Together, both metrics quantify

different aspects of how often the decision mechanism fails.

In this paper, we aim to make a strong generalizable claim: no one should be

surprised that classification algorithms are able to distinguish classes derived

from small numbers of participants. We demonstrate this by building five different

identification systems based on five different publicly available datasets that measured

humans. We tasked these systems with identifying the humans who were measured. We

chose human-generated data to ensure the probability distributions of the data would be

similar those encountered when conducting a user study to evaluate a proposed system.

The datasets were used only as a source of human-generated measurements: we are not

concerned with the datasets’ original purposes. We purposely minimized the effort to

make the classifiers perform better than guessing. We examine the reasons why this is

easy to achieve. We consider the impact of measurement count (the total number of

measurements taken across all participants), feature dimension (a function of number

of distinct measured observables), sample diversity (how distinct the measurements of

each participant are from each other), and participant count (number of participants

in the user study). We use the insights from our dataset analysis to reason about the
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degradation of performance as the participant count increases. The major contributions

are as follows:

We examined the recognition performance of identification systems with

low participant counts. We mimicked the evaluation procedure of an identification

system by constructing five distinct systems based on publicly available datasets, each

with 20 participants. We used support vector machines, random forests, and neural

networks on these datasets and achieved greater than 90% accuracy in three cases.

We explored the reasons why the low participant count is not adequate

to evaluate identification systems. We examined the impact of participant count

on performance results and observed that performance may degrade as participant

count increases. In addition to the participant count, we also analyzed the impact of

measurement count, number of measurements per participant, and feature dimension

on performance.

We outlined a method for more rigorous testing of an identification sys-

tem. We proposed measuring how the performance metrics degrade when the par-

ticipant count increases as a gauge of the robustness of an identification system. We

examined how to anticipate this degradation by using randomized participant subsets,

and noted it as a crucial criteria to demonstrate the performance of a novel identification

system.

It is fairly well accepted that having a small participant count in a user study is

inadequate to asses that system [99, 100]. However, the literature does not document

the impact of small participant counts on the performance metrics of identification

systems proposed in literature. To determine the scope of this problem, we describe

our survey of the literature on recently proposed systems in Section 3.2. We then con-

struct five systems from human generated datasets in Section 3.3, which explore what

performance can be achieved with minimal data processing effort. We then examine

how the properties of a dataset impact the performance metrics in Section 3.4. From

this analysis, we identify probability distributions that play a central role in system

performance. We discussed how these probability distributions create bounds on the

number of easily identified participants in Section 3.5. We argue that the bounds are
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Figure 3.2: Summary of the participant counts and classification approaches used in the
surveyed two types of identification systems: user identification and multiclass identifi-
cation. (a) shows the cumulative distribution function of the two types of identification
systems. We found more than 77% of the publications in these two types of systems
recruited 20 or less participants in their user studies. (b) summarizes the classification
techniques used. We found support vector machines (SVM), random forests and neu-
ral networks are among the most common. Others category includes Hidden Markov
Model [101, 103], Jaccard similarity coefficient [104], k-nearest neighbors [87, 83].

a realization of limits on measurement precision. Because of the stochastic nature of

these systems, it is hard to definitively identify when the bound has been reached. We

suggest strategies for testing the robustness of a system without concrete knowledge of

its bounds in Section 3.6. Finally, we give related work in Section 3.7 and summarize

the findings in Section 3.8.

3.2 Survey of Recently Proposed Identification Systems

To understand how many participants were recruited in recent publications, we sur-

veyed the papers published in top venues during the last four years (2016-2019). We

focused on systems literature where machine learning is often used as a black box.

We considered systems papers from top-tier conferences in mobile and ubiquitous com-

puting, human-computer interaction and networking. These conferences included CHI,

IMWUT/UBICOMP, Infocom, MobileHCI, MobiSys, MobiCom (no papers discovered),

and UIST (see Table 3.1).

The systems proposed in these articles can be separated in to two cases: multi-

class identification systems and user identification systems. A multiclass identification
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system measures a user and attempts to predict one of several classes (e.g. standing

posture, handwritten digits, or a hand gesture in free space). The user identification

system is a subset of the multiclass identification system where the classes are in one-to-

one correspondence with the users. That is, each class uniquely identifies an individual

user. For multiclass identification, the number of classes could be less than the number

of participants (e.g. a fixed set of gestures). In this case the probability distributions

of measurements become concentrated into a smaller set of classes. The underlying

decision mechanism is still the same in both cases because the distribution of classes

depends on the distribution of measurements. These systems measure users, compute

distributions of classes based on those measurements, and then predict on new inputs

based on those distributions. We argue that the reliability and performance of iden-

tification systems cannot be fully evaluated with the user studies of low participant

counts.

We did not consider machine learning and data mining conferences, such as NeurIPS

and KDD, because they focus on algorithms instead of system applications and often

use curated datasets instead of generating their own data by recruiting participants.

Figure 3.2 summarizes the participant counts and techniques that were used in the 30

surveyed publications. Our goal is to bring attention to the misleading results that

arise from recruitment practices and to advocate for testing for failures.

3.3 Datasets and Construction Of The Identification Systems

To analyze the potential issues of the identification systems with small participant

counts, we constructed five user identification systems using publicly available datasets.

We chose the user identification task as it was easy to implement, had readily avail-

able data, and has a simple interpretation of the measurement distributions. We used

common classification techniques with minimal tuning. We discovered that high classi-

fication performance is achievable when the participant count is low.

In all cases, the data was used only as a source of human-generated measurements.

We did not assess the datasets usefulness for its collected purposes (e.g recognizing
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walking activity). We were solely interested in the discerability of the measurements

from distinct participants. Our study was approved by the Institutional Review Board

(IRB) of our institution.

3.3.1 Choosing Datasets

To identify datasets that we could use, we examined datasets from several public reposi-

tories including, UCI Machine Learning Repository [105], Kaggle.com [106], Data.gov [107],

and other public data repositories. For a dataset to be included in our study, the dataset

had to meet the following simple criteria:

• Unique identifier for each participant

• More than 20 participants

• More than one measurement per participant

We did not restrict datasets based on measurement type, number of features, or other

dataset properties to maintain generalizability of the results. Table 3.2 lists the datasets.

3.3.2 Choosing Identification Methods

To construct a user identification system, we applied the three most common algorithms

used in our survey reported in Section 2 - Figure 3.2(b)): random forest, support vector

machines and neural networks. Each identification system was constructed with 20 users

with unique identifiers. The unique identifiers served as the class labels that would be

learned by the machine learning algorithms. The systems were evaluated on how well

they predicted the identifier when given an unlabeled measurement. In the case of a

multiclass identification system the evaluation would be the same, however, the number

of classes may not be equal to the number of participants.

All classifiers were implemented using the sci-kit learn [108] library. We aimed to

minimize the amount of machine learning knowledge required to implement an identi-

fication system with high performance. We performed very little optimization on each
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of the algorithms. In the cases where we did not use the default parameters, the se-

lected parameters were chosen strictly to prevent infinite loops and minimize run time

in order to treat the machine learning as a black box. Our principal effort was to build

identification systems from human-generated data. Our goal was to demonstrate how

misleading results will arise when a selection of participants produced a dataset that

was artificially easy to classify.

3.3.3 Identification Systems Performance

The performance metrics we computed were 1) the accuracy score (ACC), 2) the confu-

sion matrix (CM), and 3) the number of easily identified users. The first two metrics are

widely reported in our survey of identification systems and machine learning literature

when multi-class classification is evaluated [82, 86, 77, 76, 87, 75, 89, 90, 88, 91, 103,

80, 95, 109, 104, 110, 97, 81, 92, 93, 94, 111, 96]. The number of easily identified users

is a simple metric derived from the confusion matrix (see table 3.4).

These metrics were computed using a standard validation technique where the data

is split into two subsets, a training set which consists of 80% of the measurements and

a testing set with the remaining 20%. For datasets where there were more than 20

participants, we also ran the analysis over multiple randomly chosen subsets of 20 par-

ticipants. This was done to eliminate the possibility that a specific chosen subset would

inflate the performance metrics purely by chance. A large variation in performance

across these randomized subsets would indicate bias in the identification system.

No preference was given to any particular algorithm. In the case of support vector

machines and neural networks, the default parameters were used. For random forest we

set the n estimators (number of decision trees to test) to 1000 to ensure a large breadth

search and the max depth to 20 to prevent infinite loops (more details in Appendix 5.2).

Accuracy Score

The accuracy score provides a simple summary of performance by computing the rela-

tive frequency of a correct decision. This summary, however, is incomplete as it looses

details of the systems performance on each individual participant. Additionally, the
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Figure 3.3: Each confusion matrix and accuracy reported in this figure represents the
best achieved performance across 10 iterations. A solid black square on the main
diagonal means that the participant represented by this identifier is easy to identify.
In all cases there were at least a few participants that were easy to identify which
implies that their measurement values were distinct. The EEG dataset was the only
case where the off-the-shelf algorithms were unable to achieve the accuracy goal across
all participants. The axes contain the numeric identifiers used in the most favorable
run, the identifiers have no ordering.

accuracy score can be misleading when the number of measurements per participant is

unbalanced [98].

To calculate the accuracy score (ACC), we ran ten iterations with randomized par-

ticipant subsets and reported the best accuracy achieved across all sets. Table 3.3

shows the best results achieved across ten different re-samplings. This method of model

selection demonstrates a scenario where the performance is misleading because of the

serendipitous favorability of the dataset. In one case the reported accuracy was 100%.

The classifiers performances were similar when the measurement values from differ-

ent participants was very distinct. In all cases, the accuracy metric varied by at most

≈ 8%. The values presented in Figure 3.3 are among the highest observed to highlight

what is achievable with favorable subsets. Table 3.3 shows that three of the data sets

had at least one algorithm that was able to achieve 80% accuracy. Thus, an algorithm

was discovered that would achieve reasonable performance with minimal tuning.

All algorithms performed poorly on the EEG readings dataset regardless of parametriza-

tion of the algorithms. The best achieved accuracies were ≈ 52% for random forest,

≈ 51% for neural networks and ≈ 33% for support vector machines. Parameter op-

timization techniques such as grid / random parameter search did not improve the

results. This observation informs the strategy we propose and we will discuss why the

reasons for this failure lie with the measurements in Section 3.4.
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Confusion Matrix (CM)

To illuminate the identification performance we computed the confusion matrix. It

is a contingency table that tabulates how often one participant identifier is confused

for another. The confusion matrix allows us to identify when participants fail to be

distinct. Figure 3.3 shows both of the accuracy score and confusion matrix results.

Number Of Easily Identified Users

A user is easily identified if their measurements are classified correctly most of the time.

This can be computed as a count of the main diagonal probabilities which are above

a threshold (e.g. 80%). Table 3.4 enumerates the number of participants that can be

easily identified by the classifier.

The strength of this metric lies in its dependence on how the measurement values

separate participants. Because this metric is more sensitive to measurement separa-

tion than accuracy, it gives a more meaningful summary of the identification systems

performance. Using this second metric we can see that the accuracy does not always

give the full picture. For example in the NBA dataset, random forest has a slightly

higher accuracy than neural networks, however, neural networks easily identifies more

participants. This would indicate that neural networks are better at finding the struc-

tural separations in this type of measurement data. In contrast, random forests do

significantly better at separating users in the walking activity data. Finally, support

vector machines have a slight advantage in the CT scan data, because of the accuracy

metric, even though all algorithms can easily classify all participants. Multiple metrics

help to identify cases where a single metric is artificially high because of artifacts in the

data.

In summary, we noticed the performance of identification systems varies across the

different data sets and classification algorithms. We will analyze the reasons that cause

the differences in performance.
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3.4 The impact of dataset properties on classification performance

The reliability of an identification system depends on the generalizability of classifica-

tion. Generalizability here means how the classifier performs with participants which

it was not trained on. To achieve such generalization, the dataset will need to be both

representative of the intended user base, and contain enough information to ensure that

the distributions governing the observations of measurements are approximated well.

Predicting the generalizability of a system is often a difficult task because the properties

of the reported datasets can only be used to gauge expected performance under certain

constraints.

The representativeness of a dataset is related to the diversity of participants and

dimensionality of the feature space. The expectation is that measuring more observables

from a diverse array of participants would yield a model that has better coverage of the

intended users. We show in this section that it is very difficult to define the diversity of

a dataset. For example, we often lack ground truth about its intended user base. We

also demonstrate that feature dimensionality rarely predicts performance because the

size of the feature space is not a predictor of discernibility.

The size of the dataset is often used to gauge whether there are enough measure-

ments to deem the approximation of a distribution sufficient. Generally, more data-

points yields a better approximation of a distribution [3]. However, it is often unclear

which distribution is being approximated. We argue that sample size is poorly defined

and neither of the potential definitions is sufficient to predict the error in approxima-

tion of the distributions that the system is attempting to learn. There are two types of

distributions that impact performance and each definition of sample size is only related

to one of them.

We compare impact of variation in the dataset properties, including measurement

count, participant diversity and feature dimension (Table 3.2) on system performance

when the participant count was fixed at 20. All of these properties of the data sets may

affect performance because all algorithms attempt to optimize their fit of the data [6].

These differences between datasets can be lensed through the distributions that the
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identifier is trying to learn.

3.4.1 What is Sample Size: Participant Count or Measurement Count?

Sample size is a term used often, but unfortunately ambigious. Different disciplines

do not agree on the definition of a sample [112]. Different disciplines tend to focus on

different aspects of the analysis, the term sample size get used in two ways.

Often in the HCI literature, sample size means the number of participants. However,

in the machine learning literature, sample size is usually used to refer to the count of

measurements taken across all participants.

To avoid confusion, we will explicitly identify either the participant count, N , or

the measurement count, T . One critical observation is that a large measurement count

does not imply large participant count. The number of participants within a study and

how the participants were selected impacts sample diversity [113, 114], which is a gauge

of how different the measurements from distinct participants are.

Why Do the Differences between Participant Count, N , and Measurement

Count, T , Matter?

The classification performance is controlled by two types of distributions: 1) the distri-

bution of measurements taken from all participants, P (V ) (also known as the population

distribution), and 2) the distributions of measurements from a single participant, Ph(V )

where h is a unique index for the participants. We will call this the individual distri-

bution. Both of these distributions are approximated by machine learning algorithms

when it fits a curve to the points in the dataset. The errors in approximation are

directly related to the number of points within the dataset, but each of the different

counts is only related to a specific distribution. We argue that participant count, N ,

can be used to gauge the error in approximation of the distributions among participants

if there is sufficient participant diversity. We also argue that measurement count, T ,

alone is insufficient to gauge whether either distribution is well-approximated because

it does not represent how many measurement points exist per individual. Thus, a crit-

ical difference between N and T is that, under specific conditions, N , can be used to
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compare the evaluations done between two systems, while T cannot.

The population distribution, P (V ), is illustrated in Figure 3.4 (B) and (D). It cap-

tures how a specific measured observable (or sets of measured observables) varies across

the intended user base. It is approximated by the relative frequency of a measurement

values collected across a sampling of that user base. The individual distributions,

Ph(V ), are illustrated in Figure 3.4 (A) and (C). Since the measurements from each

participant may have different variation characteristics, each participant, h, has their

own distribution Ph(V ). How these Ph(V ) distributions overlap will impact how well

the measurements separate, and ultimately dictate the system performance.

If there is sufficient participant diversity, then larger participant count, N , may

imply a better approximation of the population distribution, P (V ). In the absence of

a systematic selection biases, as N increases, so do the chances of observing distinct

measurement values. Thus, when N is sufficiently large, we can consider P (V ) well

approximated as more of the range of measurement values has been explored.

Total measurement count, T , is insufficient to ensure that P (V ) is well-approximated.

The number of measurement per participant, M , also impacts the approximation. If

we assume that each individual distribution, Ph(V ), is well-approximated and that

the sampling has no systematic bias, then a larger N may also imply that the set of

distributions has better coverage over the range of possible measurement values.

Both distributions are necessary to estimate the details of data. The population

distribution, P (V ), can inform the sampling procedure. If we knew the population

distribution, we could build our recruiting policy using standard techniques [115, 116,

100, 99, 117, 118], allowing us to answer questions such as “For a given measurement

value (or values), V , how likely, P (V ), is it to observe this V from the population?”

However, the population distribution cannot discern whether the measurement type

effectively separates individuals because the distribution lacks that granularity. By

looking at the overlap in individual distributions, Ph(V ), can be used to gauge if the

measurements are adequate for distinguishing individuals in the sample of the intended

user base. However, the Ph(V ) distributions can not discern if there are additional

distinct individuals among the intended users that were not accounted for. To answer
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this question we could use the population distribution, P (V ), to identify probable

measurement values that are not present in our data (e.g. values beyond 5 and −5

in Figure 3.4). The individual distributions, Ph(V ), also cannot assess the likelihood

that an unseen user is easily confused with the members of the sample. To solve this

issue, we would need to compute the conditional probabilities of overlap which uses the

P (V ) distribution as a prior. Thus, a purely mathematical analysis would require both

distributions in order to determine how many individuals a system must be tested with

before the performance degrades below tolerable levels.

Given that distributions of users are rarely known, user studies help to estimate

these distributions. In most systems, there is an enrollment phase [4] in which several

measurements are taken from all the participants, h, that are available and an estimate

of Ph(V ) is made. This process is applied to each h which may use the system. When

the system encounters new, unlabeled measurements, it makes a decision using these

estimated distributions. The quality of the distribution estimates is a function of the

number of measurements taken from each individual. Since each individual has a dif-

ferent level of variability for any type of measurement, the number of measurements

required to get a good estimate will generally not be the same across individuals. Even

though these differences are present, in practice a large number, M , is selected which

accommodates some range of variability across all h and ensure that all Ph(V ) are

well-approximated. Under this assumption M ∗N = T .

For any given measurement value, V , if only a small number of participants have

a high probability of producing that value, the performance will be high. This is

a property of what is being measured, and we consider the measurement discerning

when this happens (case (A) in Figure 3.4). When this is true, we may be able to

identify individuals in the sample population easily. In contrast, if many individuals

produce the same V when measured, then the probability, Ph′(V ), of observing a V

from a randomly chosen individual, h′, is high, thus this measurement type will be less

useful for identifying individuals (case (C) in Figure 3.4)). The multiclass classification

problem tries to identify h for an arbitrary V by considering all the probabilities, Ph(V ),

across all h for which we have an approximation of the individual distribution. In the
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simplest case we can ask the question “for any V which h was the most likely to produce

this V ?” (however the decision logic is often more complex, e.g. taking into account

correlations between individuals).

The Impact of M and N on Performance

It is difficult to gauge how effective a system will be at identifying individuals just by

looking at the number N of users used to test it. Consider the examples of identifiers

built for the EEG dataset from section 5.1.4 and the CT scan dataset of section 5.1.3.

We observe significantly different performance (CT scan ACC ≈ 100% vs. EEG ACC ≈

52%) for two datasets where the number of participants used to build the identifiers

was kept the same, N = 20. For each dataset the average number of measurements

per participant, M , was comparable (see Table 3.2). Therefore, the total number of

measurements, T ≈M ∗N , was comparable. The significant difference in performance

can only be explained by the discernibility of the feature space, which is a function of

the individual distributions, Ph(V ). The performance of the random forest classifier on

the CT scan dataset only dropped by ≈ 1% when the participant count was increased

to N = 80 (See Figure 3.5). In contrast, using the random forest classifier on a subset

of 10 participants for the EEG dataset achieved an increased accuracy of ≈ 65%.

A system with more samples per participant (higher M) will not necessarily yield

better results. For example, the NBA data set of Section 5.1.5 has an order of mag-

nitude fewer measurements per participants than the activity recognition data set of

Section 5.1.2, yet it achieves ≈ 3% higher maximum accuracy. If the feature space

is highly discerning, then under-sampling the participants may not cause significant

degradation in performance because the individual distributions are spread apart. On

the other hand, if a feature space is not discerning, sampling each participant further

will not produce any improvement. The approximations of the individual distributions

will become tighter, but distribution overlaps will remain the same.
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3.4.2 How Participant Diversity Affects Performance

The two types of distributions from Section 4.1 highlight a key challenge when for-

mulating a participant recruiting policy: ensuring that you have covered the breadth

of measurement variation within a population. To be sufficiently representative, a

dataset must collect measurements from a wide range of distinct individuals in order

to determine if we have adequately covered the range of measurement values that have

non-trivial probabilities in the population distribution, P (V ). If the value range is not

covered, the generalization beyond the participants recruited will suffer because a sys-

tem built from this dataset will encounter measurement values in the intended users

that are significantly different than the values with which it has been trained. These

circumstances render the behavior of the system indeterminate.

For any population, diversity refers to the degree of difference between members of

that population. Other disciplines, such as ecology, attempt to categorize the variation

within in a population by computing the Shannon entropy of the probability distribu-

tion on specimen observation [113]. Such metrics often assume that all specimens are

readily distinguishable from each other, that is, low variation within an individual. It

is expected that when a rare specimen is observed, the observer would be able to easily

recognize that the observed specimen is distinct from the previously observed samples.

In comparison, it is more difficult to determine population diversity within the con-

text of identification systems, because we are viewing each participant through the lens

of limited precision measurements. In Figure 3.4 we observed cases where the partici-

pant count, N , was inadequate to cover the entire range of possible measurement values,

V . A fully characterized feature space requires the recruitment of more participants.

If the measurement values not observed are rare (e.g. 7.5 in case (B) of Figure 3.4),

then we may need to recruit significantly more participants before we observe these rare

values. If we could sample until we covered the full range of values, we would ensure

that we have a reasonable participant diversity. Unfortunately in most cases, the range

of values is not known apriori.
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The number of participants in a study, N , cannot always be used to directly deter-

mine the if the study was sufficiently diverse because of the break down in distributions

covered in Section 3.4.1. Consider the participant counts of the CT scan and the EEG

datasets in Table 3.2). The two datasets have similar number of participants, but the

best achieved performance of an identification system built from EEG dataset was 65%

accuracy when the participant count was 10 (see Figure 3.5). As the participant count

increased, the system performance degraded. We argue that the system is well tested

because we can identify a participant count beyond which the performance guarantees

no longer hold. In contrast, the performance of the identification system built with the

CT scan data does not degrade significantly as the participant count increases. For this

identifier, the user limit is unknown because our tests could not produce a reduction

in performance even with 80 users. This difference in performance as the participant

count increases will play a large role in the robustness of systems built upon these

identification systems.

3.4.3 How Feature Dimension Affects Performance

Feature dimension is a count of the number of distinct measurement types and func-

tions of the measurements values that make up feature vector. It does not consider

redundancy among features in the feature space nor does it contain any information

about the distribution of measurement values. For example, if we use a length as a

feature, this length could be measured in meters or kilometers. Since one value is sim-

ply a scalar multiple of the other, good algorithms will treat them as the same feature.

Techniques such principal component analysis can be used to reduce the feature dimen-

sion by considering the minimal number of vector components required to represent the

information within the feature space.

Feature dimension is rarely useful for predicting how well a system will preform.

Despite this, it is often reported. It cannot be used to perform relative comparisons

of identification systems. For example, the identifier built from the walking activity

data set uses only four features (see Table 3.2), but still achieves ≈ 71% accuracy

(see Table 3.3). In contrast, the EEG data set identifier has 39 features to work with
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but performs significantly worse (≈ 51% at best) than the walking activity data set

identifier. Further still, the NBA data set identifier uses 51 features and achieves ≈ 95%

accuracy. The CT scan dataset identifier has a lower feature dimension to work with

than the activity recognition dataset identifier, but performs better. The ability of a

system to distinguish individuals is only as good as the discernibility of measurements

will allow.

3.5 Bounds on the number of easily identified participants

All identification systems degrade in performance as the number of users increases. This

is because the system reaches the upper bound (or the upper limit) of easily identifiable

users. In this section, we show that the upper bound arises because each measurement

obeys a natural distribution across the intended users, P(V ).

The natural distribution, P(V ), can only assign non-zero probabilities to a finite

range of values. All participant measurements values are drawn from this range. As the

participant count, N , increases, it becomes increasingly probable that any measurement

value will be observed from multiple participants. To be able to predict when the system

will fail, we need to know at what participant count, N , performance begins to degrade

beyond tolerable levels. The upper bounds in all systems differ in how large that

bound is, and how quickly it can be found in a practical setting. In the example of

the identifier built from CT scan dataset of Appendix 5.1.3, the upper bound is very

large (see Figure 3.5). Thus, any system based on these measured observables would

be able to distinguish a large number of participants. It would not be practical to

build an identification system that requires a full body scan of an individual to perform

the identification. However, the system demonstrates a case where machine learning

algorithms do most of the work with minimal configuration.

We can notice trends in performance with a scatter plot of the principal components

as N increases. Figure 3.6 shows four scatter plots of the first two principal components

for the NBA stats dataset. Each scatter plot is labeled with the achieved accuracy and

participant count, N . When participant count is small (N = 20), the measurement
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separation is very good, and thus, the classifier will easily discern participants. As N

increases, we can see crowding within the center of the graph. This crowding is a form

of concept drift [119], where the conditional distribution of a participants identifier

given the measurement, P (h|V ), changes as the number of participants grows. In our

case, an increased participant count is the source of the distribution shift as opposed

to temporal drifts which are normally observed. This comparison demonstrates that

performance analysis with a small number of participants (compared to the bound on

participants that can be represented) is incomplete at best.

3.5.1 Why Are the Metric Values of Low Participant Count Studies

Misleading?

If variability of measurements within an individual is low enough to produce distinct

participant measurements, such as those shown in Figure 3.4 (A), then the system will

only make mistakes if the recruiting procedure produces two individuals with the sim-

ilar individual distributions, Ph(V ) (e.g. similar location and scale). In a Bayesian

formulation, the equivalent condition is P (V ) ∝ P (h).Thus, the performance of either

class of identification system with small number of distinct participants, N , is largely

dictated by the population distribution P (V ). The distinctiveness of participants im-

plies that the probability of observing a specific measurement value is very dependent

on recruiting a specific individual.

The identification system can be thought of as partitioning the space of measurement

values into bins which correspond to the classes (as in Figure 3.7). In the case of user

identification, each distinct participant’s measurements might neatly fall into a bin

designated for them. As long as the participant count is low, the values in each bin

will mostly have come from distinct participants with overlaps being rare. Such a

condition would artificially inflate summary metrics that try to count mistakes, for

example, accuracy or the confusion matrix, because mistakes are artificially rare. As

the number of participants increases, N ↗, it becomes more likely that a bin will have

measurements from more than one participant. If there are naturally N distinct bins,

then the pigeonhole principle [121] guarantees that there will eventually be at least one
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bin with multiple measurements from different participants and thus the system will

start to accumulate errors which will drive accuracy down.

For multiclass identification systems, the number of bins may not coincide with

the number of participants. In many cases the raw measurements are mapped into a

different representation via a deterministic function to achieve the same bin separation.

When the number of bins is smaller than N , a single participant might get mapped into

multiple bins. Although this mapping may lower the effective number of participants

required by concentrating them into fewer classes, it does not eliminate the problem

that too few participants underexplores the space of possible inputs. Thus, it is still

necessary to test with increased participant count to ensure that the space of possible

measurement values does not contain values that fail to be mapped.

Machine learning algorithms are designed to optimize the amount of information

that is extracted from measurement data. This optimization tries to bin measurements

to have a maximal separation between classes. This separation translates to classifi-

cation performance, for example, accuracy. The problem of misleading metrics arises

when the participant count is so small that the ability to draw these boundaries is

artificially easy. When this occurs, the performance of a system is less influenced by

the effectiveness of the measurements at separating participants and more influenced by

the how diverse a sample population the recruiting process produces.

3.6 An Iterative Approach to Testing Systems

In this section, we describe an iterative approach for testing identification systems.

Instead of setting a goal number for participants N in the beginning of the study,

we can keep increasing N while studying the system and its performance. This is in

contrast to statistical group comparisons in experimental designs using null hypothesis

statistical testing (NHST) where you must set the target N in advance.

We cannot make performance guarantees on identifications system by only knowing

the number of participants N . This is because we do not know the upper bounds as

described in Section 3.5. Although it may not be possible to know how far we are
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from the bounds, we can gauge how the performance degrades as N increases. This

can serve as a method for relative comparison of systems. We can take an iterative

approach where we assess how the performance metrics of the system react to increasing

N without starting a study with a large set of participants. Instead, we can iteratively

add participants to the study until we have identified an N that causes the performance

to degrade below a tolerable level. We describe this in Algorithm 1.

The analysis in Section 3.4 demonstrates no single property of the dataset is a good

indicator that the resulting system will perform well. Individually, none of these values

can guarantee that the experiments conducted truly tested the generalization limits

of an identification system. Even when these values are optimal, such systems might

still be susceptible to unexpected identification errors if participants were chosen with

some systematic bias which causes the dataset fail to be representative. It is usually not

possible to know the variability of the measured quantities apriori. Thus, it is difficult to

construct a practical recruiting policy that eliminates all possible bias before collecting

some measurements.

By establishing trends in how the performance varies when different subgroups of

participants are selected and degrades when the sample diversity increases, we can

determine if a system requires further testing. Cycling the participants into randomized

subsets compliments the approach of increasing participants. It can identify subsets of

the population that are artificially distinctive, which would produce higher than normal

accuracies. It can also identify subsets which are very similar, which would lead to lower

than normal accuracies. This cycling provides another check on how brittle the models

learned from a specific size subset are. Sample diversity itself is difficult to measure

directly. Instead, we can use participant count, N , as a proxy for sample diversity

with some considerations. We need to ensure a reasonably sized number of samples per

participant, M . This M , will can be chosen as the largest number of samples required to

ensure good approximation of Ph(V ) for all h. It has to be determined empirically after

the initial set of measurements is taken by looking at the variance of the distribution

estimations. We would also need to eliminate systematic participant selection bias in

our recruiting process by identifying factors in the process that might limit the range
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of measurement values.

ALGORITHM 1: Iterative approach to testing

Data: Initial n
Result: Plot of performance metric vs n
Collect m labeled measurements from all n participants (where m is sufficiently
large as in Section 3.4.1);

Choose randomized subsets from n participants;
foreach Randomized subset do

Build model on data of subset;
Compute performance metric for each model;

end
Compute interquartile range (IQR) as a measure variability of the performance
metric across subsets;

while Performance metric above tolerable level and performance metric
unstable do

Increase number of participants to n′ ;
Collect m labeled measurements from new participants ;
Choose randomized subsets from n′ participants;
foreach Randomized subset do

Build model on data of subset;
Compute performance metric for each model;

end
Compute IQR;
n←− n′;

end
Plot metric against n with interquartile range error bars;

3.6.1 Test with Increasing Participant Counts, N

The rate of degradation of the performance metrics is both a function of the dataset

and the machine learning algorithms. We argued in Section 3.5 that performance

degradation as participant count, N , increases will occur regardless of algorithm or

sampled dataset. However, each system will differ in the rate of degradation because

each algorithm has a different efficiency for extracting information from the dataset

and each dataset’s representation of the natural phenomenon begin measured is of

varying quality. The differences in the rate of degradation can be used to compare both

algorithms (see Figure 3.8) and measurement types (see Figure 3.5) as each exhibits

differing rates of degradation as N increases.

The rates of degradation may differ for each algorithm and dataset pair. The bound
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on easily identified users is largely a function of the measurement type. Specifically, it

depends on the amount of information that can be extracted from a measurement type.

We will always observe a steady degradation in performance as new participants are

added, even in the ideal case. The identification system will only experience gradual

drops in performance. For example, it not possible that the accuracy remains constant

at 100% up to N participants and then goes to 0% with the N + 1 participants, unless

all N participants are replaced with a new set of N participants that are distributed

differently. Knowing the rate at which new participants degrade the performance gives

us an idea of where the bound on users that can be identified while satisfying a constraint

on error occurs. The perfect identifier scenario would lead to a degradation rate that

is proportional to the probability of observing each individual in the population (see

Figure 3.1). However, most identifiers will not be perfect, and the rate of degradation

will often be faster than this ideal scenario. In Figure 3.5, we observe that a single

algorithm (parameterized in the same way) has very different performance degradations

as the number of participants, N , increases up to 80. The various sensitivities to

increasing participant count gives us an idea of how the system will fail when the

participant count grows larger than anticipated.

3.6.2 Test with Randomizing Subsets

When the number of participants is limited, an additional check for unstable identifica-

tion performance is to select multiple randomized subsets of participants and evaluate

models derived from these subsets independently. Similar to leaving-out-k cross valida-

tion [120], we obtain multiple values for the performance of the system. Randomizing

the subsets differs from standard cross validation in several ways. First, when a subset

of participants is chosen, the data is partitioned into a training and testing portions.

The model is trained and tested with the respective portions. This includes computing

the performance metric. Participants not chosen for this subset will not be evaluated

against this model since no training data was present for them. Additional analysis

could be done by testing the system with these left out members, though this analysis
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would produce a different performance evaluation (a test of out-experiment generaliza-

tion). Secondly, the distributions being trained on changes with every subset, instead

of being drawn from a common pool as is the case in cross validation procedures. Each

subset iteration builds a new model which reflects the current subset. Thus, the pro-

cess of randomizing subsets is not testing a specific model, but instead the ability to

construct discerning models across a breadth of user sub populations.

Figure 3.5 shows how different measurement types exhibit significant variation in

scale. This variation is a function of the discernibility of measurement type. If a

measurement type has high discernibility, then the performance metrics will be stable

across a wide range of participants.

By cycling different participant subsets, we increase the likelihood that our system

will encounter subsets of participants that may artificially increase performance. When

the algorithm is fixed, each subset will yield different overlap behavior for natural

distributions, Ph(V ), for all h in the subset. These distributions will result in differing

boundary choices (see Figure 3.7). The differences between subsets will ultimately

dictate the variation in performance. If the variation in performance across subsets

is significant, then the performance may degrade quickly as the participant count, N ,

increases because participants that are hard to classify will be added to the subset. On

the other hand, if the variation across subsets is not large, we will need to test with

more participants to determine the limit on easily identifiable participants.

We can measure the spread of performance metric values (e.g. IQR or variance) as

the subsets are varied to quantify how much a metric value can change when a subset

is favorable. If the subsets are very different, the spread will be large. In Figure 3.5, for

each N , ten participant subsets of size N were chosen from the larger dataset. Then,

a classifier was trained and tested with the data from these ten subsets. The CT scan

identifier barely degrades as N increases, and the error bars for the metric IQR across

all subsets are so small that it is not visible on the plot. In contrast, the identifier built

on the EEG dataset starts with varying performance, but this variation stabilizes as

the performance degrades. The performance stabilizes because the subset distributions

become more stable (and overlap significantly more) as the participant counts increases.
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Thus, after some intermediate N , it becomes more difficult to find a subset of the

population which will separate well by chance. Since the performance metric variability

on subsets is only a weak gauge of the potential performance degradation, the technique

of cycling subsets of participants should be used to augment the analysis with increasing

participant counts.

3.7 Related work

The subject of sample size has been discussed for decades [99, 100]. Studies have

determined sample size with power analysis where the shape of the distribution is

assumed to belong to a specific family [117, 122]. In these cases samples size means

participant count and the number of measurements per participant was one. This class

of analysis is not applicable to studies where the goal is to build a decision system based

on multiple measurements from many diverse participants. The assumed distribution

families are too simplistic and the number of measurements from a single participant

is often greater than one.

The issue of low participant count in user studies is common across different re-

search communities. Caine [115] analyzed the sample sizes of all 465 manuscripts in

the proceedings of CHI 2014 and found the common sample size is only 12. In the HCI

community, researchers may try to mitigate the issue by collecting more data from the

same participants. However, we showed that this approach is not adequate because

each participant can only provide a limited amount of variation for a given measured

observable.

Many other fields have raised concerns when the participant count is low. Raudys

and Jain [123] discussed the influences of sample sizes on feature selection and error es-

timation for different types of simple classifiers such as Euclidean distance classifier and

Fisher’s linear discriminant. Button et al. [118] showed the average statistical power of

studies in neurosciences is very low. They emphasize that this situation leads to over-

estimates of effect size and low reproducibility of results. Anderson and Vingrys [116]

proposed three situations that need to be considered while conducting research with
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small sample sizes in psychophysical and neurophysiological studies. Hackshaw [124]

overviews the strengths and limitations of small sample size in clinical studies. The

main issue for small participant count studies is that the outcomes have large standard

error and no firm conclusions.

Our survey shows that small participant counts are an issue in user and multi-

class identification studies. The breadth of previous work focused on trying to learn

population distribution parameters of an assumed distribution shape. These shape as-

sumptions were used as a guiding principle to select participant count. Bounds on error

were established only as an afterthought by considering measurement variation after

the procedure was done.

In our approach, we do not make strong assumptions about the shape of the popu-

lation distribution to determine when our statistics have converged. Instead, we apply

an iterative approach that uses the error metrics to identify the limits of the system’s

ability to discern individuals. We update our model as new data is made available and

estimate distributions we cannot know a priori. Our approach provides a method for

reasoning about a problem that is often poorly defined without making assumptions

that limit generalizability. Our approach is adaptive and can react to shifts in the

population and unexpected experimental conditions.

3.8 Discussion and Conclusions

We have shown that testing an identification system with a small number of users is

rarely adequate and often misleading. To demonstrate this, we constructed five user

identification systems from publicly available datasets. Three of these systems yielded

≥ 90% accuracy when the participant count was small.

To explain why such misleading results can arise from low participant count user

studies, we delved into the properties of the measurements that would impact these

metrics. We demonstrated that as the participant count increases, the system perfor-

mance must decrease. We reasoned that because all measurements can only be made

with finite precision, an upper bound on the number of easily identifiable individuals
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must exist. As the participant count approaches this bound, the performance of the

system must degrade.

We showed the issue of low participant count is common in the user and multiclass

identification studies by surveying the recently published papers in top-tier venues.

Seventy-seven percent of the 30 surveyed papers were supported by user studies with

20 or less participants. Although some of the work collected thousands of measurements

from the small participant sets, we argued that these measurements do not compen-

sate for a lack of sample diversity, which is mainly affected by the variation between

participants.

We showed that the participant count can be used as a proxy for sample diversity,

given that the user study factors are controlled. We can establish an estimate that

gauges how the system performance will degrade when the participant count increases.

We demonstrated that performance metric variation on randomized participant subsets

can be a useful approach to diagnose performance degradation when the participant

count increases. Knowing these factors will enable us to reason about the likelihood of

failure for a system in a target application.

To conclude, we argue that limit on easily identified participants can and should be

experimentally determined by increasing the participant count iteratively. There is no

single participant count that will be sufficient for every experiment. As such, we cannot

prescribe a fixed value or gauge what a large value would be. To learn how a system

performance degrades when the number of participants increases, it is critical that we

recruit until it fails.
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Table 3.1: Publications surveyed grouped by publication venues. Others category in-
cludes Infocom, MobileHCI, and MobiSys

Venue Case 1: User Identification Case 2: Multiclass Identification

IMWUT/UBICOMP [101], [72], [73], [74], [75], [76], [77] [82], [83], [84], [85], [86], [87], [102]
CHI [78], [79], [80] [88], [103], [89], [90], [91]
UIST [92], [93], [94]

OTHERS [81] [95], [104], [96], [97]

Table 3.2: We chose datasets that had at least 20 participants. The total measurement
count is often misinterpreted as the sample size. The average number of measurements
per participant can indicate how well-characterized the statistics of an individual par-
ticipant is. The feature dimension is an indication of the complexity of what is being
measured.

Act.
Recogn.

Walking
Act.

CAT
Scan

EEG
NBA
Stat.

Participant Count 30 22 97 81 296
Total Measurements 10299 149332 53500 23986 5444

Average Measurements 343 6788 552 296 18
Feature Dimensions 562 4 385 39 51

Table 3.3: Maximum Accuracy - We achieved greater than 50% accuracy for all datasets
with at least one algorithm. Each algorithm was tested on randomized subsets of each
dataset for 10 iterations. In all cases where there were more than 20 participants in
the dataset, each iteration was done with a random choice of 20. Thus we can achieve
very high accuracies if we carefully select our participants and algorithms.

EEG
NBA
Stat.

Act.
Recogn.

Walking
Act.

CAT
Scan

Neural Network 0.51 0.95 0.82 0.5901 1.00
Random Forest 0.52 0.96 0.92 0.7119 1.00

SVM 0.3297 0.79 0.79 0.57 1.00

Table 3.4: Easy Identification - We define participant easily identified when they are
identified correctly at least 80% of the time. Note that the accuracy of random forest
is higher than neural network in the NBA case (see Table 3.3), though neural networks
easily identifies more participants. This is because accuracy only considers correct
decisions without concern for whom they occur. In these datasets, random forests make
more correct decisions overall, but neural networks have more certainty per individual.

EEG
NBA
Stat.

Act.
Recogn.

Walking
Act.

CAT
Scan

Neural Network 1 18 12 2 20
Random Forest 1 16 20 5 20

SVM 1 12 12 1 20
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Figure 3.4: The variation of a measurement’s value has two possible sources. The first is
random fluctuations in the value when repeated measurement are taken from an individ-
ual (i.e variation within an individual). The second is random fluctuations in the value
when measurements are taken from many individuals through out the population. If
the variation within an individual is small compared to the variation among individuals
then these measurements may separate participants well. For example, the ten par-
ticipants in (A) separate well. When the variation condition holds, any measurement
value, Vh from a particular participant h, has a low probability, Ph′(Vh), of coming from
another participant h′. For example, repeated CT scans within a small time window
of a single individual should have very little variation, however, these scans should be
very different between individuals because they measure the entire body. In contrast,
when the variation among participants is high compared to the variation among users
(C), all measurement values have comparable probabilities of coming from each user
(e.g. EEG data has so much noise in the measurement that any individual value can
easily have come from many individuals). The population distributions shown in (B)
and (D) show the measurement range of the full population of 20 participants. This
distribution can tell us if a measurement value is reasonable for a population, that is,
has a non-zero probability of being observed. It cannot be used to determine whether
the measurements are useful for distinguishing individuals.
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Figure 3.5: We can compare the accuracy of the random forest classifier when run on
three of the data sets with enough participants to increase N significantly. For each
N , we perform 10 runs with randomized subsets of size N . The CT scan dataset has
significantly less variation in the performance metric. We measured this by looking
at the interquartile range of performance metric values when the given randomized
participant subsets. This variation in the CT scan dataset was an order of magnitude
lower that the other datasets. The range is not visible in this figure because of scale.
Because the CT scan dataset is resilient to variations across humans, its performance
degrades much more slowly as the number of participants increases. The variability
between randomized subsets may give an indication of how performance will degrade
as the participant count increases.

Figure 3.6: As we increase the size of the participant count, N , the first two princi-
pal components become more crowded. The feature space in often multi-dimensional
and these two principal components are the most variable linear combinations of the
components in the feature space [120]. The clustering of points in this figure is a two
dimensional representation of the per-individual distributions, Ph(V ) discussed in Fig-
ure 3.4. This crowding explains why the performance of the identifier will degrade
with increased N . When N is large, the various point distributions overlap into an
incoherent mass.
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Figure 3.7: When the variation within participants is low (low variance in Ph(V )) and
the participant count, N , is small, the probability of observing a measurement value is
proportional to the probability of picking that participant, P (V ) ∝ P (h). At low N ,
samples drawn from the natural individual distribution, Ph(V ), separate well. Thus,
it is very easy to draw the boundaries of the bins (e.g. the top row where N = 5). As
the number of participants increases, the Ph(V ) over lap, thus the samples will overlap,
and the bins become more difficult to draw (e.g. the bottom row where N = 20). The
identification system tries to optimize the placement of bin boundaries by using the
sampled dataset as an approximation for the natural distribution.
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Figure 3.8: In the NBA dataset, we can observe a drop in accuracy as the participant
count, N , increases regardless of which algorithm was used. For each algorithm, we
trained a model with N participants taken from the full population of 290+ players. We
then calculated the accuracy for each model and repeated the process for ten iterations.
The graph shows the median value and the interquartile range used as error bars. As N
increases, we can see that all models’ performance degrades. However, some are more
impacted than others. As we noted in Section 3.3.2, each algorithms performs differently
when given different types of measurement data. Although these differences indicate
that the degradation rates will not be the same, it should be noted that eventually all
algorithms degrade when participant count is large enough.
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Chapter 4

Conclusion

Our work in this thesis is a step towards shoring up the science of security research.

The goal is to shift from obscure qualitative statements which cannot be verified, to

more quantitative analysis. While this is not always possible, it should be a design

principle that we do as much quantitative analysis as is possible.

We cannot expect that most modern researchers will also become experts in statis-

tical methods. This is equivalent to attempts at solving computer security problems by

making all the users security experts. Since we want the systems we build to be useful to

the widest audience possible, there is a clear need to have modern tools that can leverage

the ubiquity of cheap computation while still maintaining a level of understand-ability

that doesn’t require years of statistical training.

Because measurements come in varying degrees of quality, decision problems have

varying degrees of difficulty. However, at the beginning of a study it may not be

apparent if the decision problem that is being solved is difficult or easy. There are

many factors that can contribute to a problems difficulty. We have explored some

issues that may lead to unexpected system behaviors such as poor scoring, or under

sampled populations. However, there are many more potential problems that could

be improved by leveraging computation power to perform exploratory analysis in an

explainable way. Modern researchers need methods and tools that will give them answer

to questions like:

• Is there enough information in the measurements to make the decision I’ve built

my system around with some degree of certainty?

• Does the system I’ve built use all the information available in the measurements
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to ensure the most informed decision?

– Going beyond model selection, am I loosing valuable information in other

parts of my pipeline (e.g pre-processing that erroneously drops data as out-

liers, or feature encodings that are not faithful representations of the data)

• Are the reported metric values relevant to the problem being solved and trust-

able?

• Does my collected data cover the population I expect to use the proposed system?

• Under what conditions do the assumptions of my system break?

Security is, by it’s very nature, a competition. Given the proliferation of computing

devices, it is incorrect to expect that the users should shoulder any significant portion

of the burden of ensuring that their devices take the most secure action in questionable

situations. Systems should be built to protect the user from unintended consequences

of the systems behavior. This can be achieved by considering the failure modes of

a system during the design phase, and having sane failure behavior when the system

is used outside the conditions it was designed for. To make these kinds of analysis

possible, future researchers need to be armed with tools that make the failure modes

of a system easily identifiable.
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Chapter 5

Appendix

5.1 DataSet details

The following URLs were used to retrieve each dataset:

• Walking Activity - https://archive.ics.uci.edu/ml/datasets/User+Identification+

From+Walking+Activity

• NBA Player Statistics - https://www.kaggle.com/drgilermo/nba-players-stats

• CAT Scan Localization - https://www.kaggle.com/uciml/ct-slice-localization

• Activity Recognition - https://archive.ics.uci.edu/ml/datasets/Human+Activity+

Recognition+Using+Smartphones

• EEG Readings - https://www.kaggle.com/broach/button-tone-sz

5.1.1 Activity Recognition - A Common Mobile Platform Example

The initial purpose of this dataset was to determine the posture of a participant [125].

The authors recruited participants between the ages of 19 and 48 to provide an inertial

measurement unit (IMU) data. The feature space consisted of time and frequency

domain components read from a mobile phone based accelerometer and gyroscope.

The full feature space has 561 features. This dataset is a typical example of the kinds

of measurements that would be used to build a mobile platform identification system

(e.g. gait recognition [39])

To process the dataset for use as an identification dataset, we merged the train

and test sets that were provided with the ground truth labels, which we used as an
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additional feature. We then separated the user field from the measurements and used

this as our class label. We then randomly selected 20 random labels and ran the multi-

class classifiers.

The best confusion matrix for this dataset (see Figure 3.3) shows that all participants

were easily distinguished by the random forest algorithm (black squares along the main

diagonal of the matrix). This metric might lead us to believe that a system constructed

from this data might be a viable identification system. Unfortunately, because the

participant count is small, we do not have any idea how this system would perform

when more participants were tested.

The feature list for this data is stored in a separate file names features.txt, there is

a total of 561 features, all of which were used as the data. The user ID for each record

was also stored in a separate file named subject train.txt and subject test.txt.

5.1.2 Walking Activity - Having a Small Number of Features Does

Not Imply All Is Lost

The Walking Activity dataset was initially collected to perform gait authentication

using two staged approaches. The dataset authors first inferred the posture from the

data (e.g. walking or standing) and then perform a one class classification to determine

if the posture readings correspond to the authorized user [126]. This dataset has only

4 features: time-step, x acceleration, y acceleration, z acceleration. There were a total

of 22 participants who were all recruited by convenience methods.

To use this dataset to build an identification system, each of the individual partici-

pants readings was separated into individual files. To process this dataset we merged all

of the files while applying a label corresponding to the file name/participant identifier.

Since this data was time series, it would normally be the case that multiple samples

would be analyzed as a group (e.g. within a time window of 5 seconds) to determine

if they belonged to a particular participant. To see how far we could get with a naive

approach, we treated each sample as a distinct measurement labeled by userID.

The random forest classifier had the best performance on this dataset, achieving

≈ 71% accuracy (shown in Figure 3.3). While the identification performance of this
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dataset was not as good as the activity recognition dataset, it should be noted that

this dataset is using significantly fewer features (561 → 4). Since this is time series

data, by treating each sample as distinct, we are not taking advantage of the tem-

poral correlations that exist between samples. We could potentially capture some of

these correlations if we folded samples that span a fixed interval into higher dimension

samples. This would lower the total sample size but increase the feature space dimen-

sion, which could capture some of the time information. Still, the naive approach does

perform better than guessing, even though the temporal information is ignored. The

results of this dataset demonstrate that even with a very low dimension feature space

high performance can be achieved.

For the walking activity dataset all features were used. The id’s served as labels.The

feature list was:

”time-step”, ”x acceleration”, ”y acceleration”, ”z acceleration”.

5.1.3 CAT Scan Localization - When Discernibility Is High, More

Testing Is Required to Identify the Limits of the System

This dataset consisted of 384 features extracted from full body CT scan images which

were used to localize CT slices [127]. Data from 97 participants was analyzed and

histograms of the physiological features (bone structures and air inclusions) were ex-

tracted. This dataset did not have an existing label, however, each record was labeled

with a patientID. To process this dataset, we separated the patientID for each mea-

surement and used it as the label. Because this dataset had such a large participant

count we ran the analysis with several different 20 participants subsets. The support

vector machine performance was 100% for most subset chosen (see Figure 3.3) and the

variation between subsets was ≤ 1%.

The discernibility of this feature space is incredibly high. We ran the random forest

algorithm with a 90 participant subset and only saw a ≈ 1% drop in accuracy. To

ensure that the features were not leaking label information into the classifier (e.g. one

of the features may have been equal to the patientID), we identified the maximum

feature importance (as reported by the random forest algorithm) and then removed
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all features that had an importance within 50% of that maximum (8 features total).

With the most important features removed, the random forest classifier still achieved

≈ 99% classification accuracy with a participant subset of 20, and ≈ 98% accuracy

with a subset of 90. The high discernibility of this feature space is not surprising since

the measurements are the result of an entire body scan in a room sized instrument.

Because the discernibility of this feature space is very good, determining an upper-

bound on number of distinct individuals this type of measurement could distinguish

would require testing with a significantly larger number of participants.

All features were used from this dataset. The patient id served as the label, and

all other columns were used as the feature vector. To ensure that one of the values

was not highly correlated with the patient id, we took the top 5 features from the high

accuracy random forest and removed them from the dataset. When this was done the

performance values did not change much.

5.1.4 EEG Readings - Poorly Discernible Features Will Easily Fail

But PCA Might Give You Insight into Why

In this dataset measurements from a head mount EEG instrument were collected. There

was a total of 81 participants, several of these who were suffering from Schizophrenia, a

chronic illness. The original authors used the measurements to determine if there was

a correlation between the illness and certain patterns in the measurements [128].

The EEG dataset represents measurement data where all users look very similar.

In Figure 3.3 we show the best achieved classification results. The best algorithm was

random forest however, the difference between random forest and neural networks was

not significant (see Table 3.3). As in the CT scan case, we selected several random

subsets of the participant count, and re-ran the analysis several times. Each sampling

produced approximately the same results (no greater than ≈ 3% variation).

Since the procedure and algorithms used for this dataset mirror the procedure and

algorithms used for the CT scan dataset, why was the performance so different? One

easy observation is that the size of the feature space is significantly smaller (384→ 40).

However, in the walking activity dataset, the feature space was significantly smaller
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Figure 5.1: The first two principal components of the measurements for each dataset
is shown. These components can be used to explain the differences in performance ob-
served for each dataset. For the CT scan, activity recognition and NBA stats datasets,
the high accuracy is coupled with significant separation in the measurements from each
participant. Distinct clusters can be observed indicating that even the limited infor-
mation captured in these two components is enough to distinguish may participants.
The walking activity dataset begins to hint at why performance would degrade as there
are clusters, but they fail to be distinct and have some significant overlap. The EEG
dataset demonstrates the worst case where there is almost no separation. Most of the
participants measurements are overlapping in one large area with only a small portion
lying outside this giant component. All test set measurements from each of the 20 par-
ticipants that were classified in Figure 3.3 are plotted. The measurements form each
participant have a distinct colors and marker shapes.

than the activity recognition dataset, yet this system achieved ≈ 70% accuracy.

We can gain some insight into why the performance is so different by looking at

a scatter plot of the first two principal components. In Figure 5.1, we show the first

two principal components for each of the 20 participant subset that corresponds to the

confusion matrix of Figure 3.3. As we can see, in the CT scan case, measurements from

each participant form clusters and the overall shape are not uniformly distributed about

the origin. In contrast, consider the EEG components where most of the measurements

form one giant component sitting on top of the origin with other highly overlapping

components to the right. This measurement dataset represents the worst case scenario

for discernibility of the feature space. All participants produce measurements that vary

significantly and the ranges over which they vary completely overlap. In this situation,

it becomes very difficult to identify which measurement came from which participant.

For the EEG dataset we filtered out the following features:

u’trial’, u’condition’, u’ITI’, u’rejected’, u’Fz N100’, u’FCz N100’, u’Cz N100’, u’FC3 N100’,

u’FC4 N100’, u’C3 N100’, u’C4 N100’, u’CP3 N100’, u’CP4 N100’, u’Fz P200’, u’FCz P200’,

u’Cz P200’, u’FC3 P200’, u’FC4 P200’, u’C3 P200’, u’C4 P200’, u’CP3 P200’, u’CP4 P200’,
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u’Fz B0’, u’FCz B0’, u’Cz B0’, u’FC3 B0’, u’FC4 B0’, u’C3 B0’, u’C4 B0’, u’CP3 B0’,

u’CP4 B0’, u’Fz B1’, u’FCz B1’, u’Cz B1’, u’FC3 B1’, u’FC4 B1’, u’C3 B1’, u’C4 B1’,

u’CP3 B1’, u’CP4 B1’

to eliminate some empty columns. The subject column was used as the label.

5.1.5 NBA Player Statistics - Large Numbers of Samples Per Partici-

pant Are Not Necessary If the Features Are Highly Discernible

The NBA Player statistics dataset is an artificial dataset constructed from player statis-

tics spanning the years 1950 to 2017 [106]. Since the player careers tend to be shorter

than 25 years, this dataset was explicitly constructed to have only a small number of

samples per players on average. The stats of a player is a function of the players’ capa-

bility and environmental circumstances of that year. Thus each measurement’s features

should be centered around a mean, but have random variation due to environmental

factors (e.g. health or number of home games).

The dataset was processed to have a small number of partially distinct samples

from each player, but a large number of players overall. The player statistics served as

a measurement source with enough variation such that there should be some overlap

between players. Each measurement of a player has the potential to overlap with

another player’s measurement. When this happens the classifier may confuse one player

for another.

All players were given a unique numerical identifier, and each time-stamped playing

statistic was treated as a single measurement. Several categorical values (E.g. team

or position) were also encoded as a single integer value. Only players with at least

15 measurements were counted, thus the final dataset had measurements from 290+

players (there are very few datasets with such a large participant size).

We conducted the same analysis on this dataset as on all other previous datasets.

Given the small measurement size and low density of measurements per participant,

as compare to all other datasets, we might expect much worse performance. The

classification performance, however, is high because the each player has values that are

very distinct. The team and position alone provide significant clustering into distinct



87

groups. These groups are then refined further by playing characteristics. In Figure 5.1

we see the first two principal components of all the samples in the test set for the 20

players shown in the CM of Figure 3.3. Even though the point density is very low (≈ 15

per player), the clustering of each players samples is very tight. These two features alone

provide significant discernibility between players.

For the NBA player statics, all names were encoded as numeric identifiers including

the player name and team name. The full feature list was:

u’Year’, u’Player’, u’Pos’, u’Age’, u’Tm’, u’G’, u’GS’,u’MP’, u’PER’, u’TS%’, u’3PAr’,

u’FTr’, u’ORB%’, u’DRB%’, u’TRB%’,u’AST%’, u’STL%’, u’BLK%’, u’TOV%’, u’USG%’,

u’blanl’, u’OWS’, u’DWS’,u’WS’, u’WS/48’, u’blank2’, u’OBPM’, u’DBPM’, u’BPM’,

u’VORP’, u’FG’,u’FGA’, u’FG%’, u’3P’, u’3PA’, u’3P%’, u’2P’, u’2PA’, u’2P%’, u’eFG%’,u’FT’,

u’FTA’, u’FT%’, u’ORB’, u’DRB’, u’TRB’, u’AST’, u’STL’, u’BLK’,u’TOV’, u’PF’,

u’PTS’

Where player was the player name which served as the label to be predicted.

5.2 Parameters used for each algorithm on each dataset

Table 5.1 enumerates all the parameters used for each dataset. In most cases the

defaults were sufficient. For the case of EEG we used a random parameter search to try

to improve results for the Random Forest and Support Vector Machine algorithms, but

there was no significant gain in performance. The default neural network has a single

hidden layer with 100 neurons. The default kernel for support vector machines was the

RBF kernel and it makes multi-class decisions via one-vs-one run offs.
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Table 5.1: All parameter arguments used for every algorithm, dataset pair
Act.

Recogn.
Walking

Act.
CT

Scan
EEG

NBA
Stat.

RandomForestClassifier

n_estimators

=1000

max_depth

=20

n_estimators

=1000

max_depth

=20

n_estimators

=1000

max_depth

=20

n_estimators

=1000

max_depth

=20

n_estimators

=1000

max_depth

=20

svm.SVC default default default default default
MLPClassifier default default default default default
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