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Abstract of the Thesis 

 

Multidimensional Coding by Neurons of the Basolateral Amygdala  

and Prefrontal Cortex 

By: Pinelopi Kyriazi 

Dissertation Director: Dr. Denis Pare 

 

The medial prefrontal cortex (mPFC) and basolateral complex of the amygdala 

(BLA), consisting of the lateral (LA), and basolateral (BL) and basomedial nuclei, are 

two nodes involved in the regulation of emotional memories. Specifically, BLA is 

involved in the acquisition and expression of conditioned responses (CRs) to stimuli 

(CSs) that predict aversive or appetitive outcomes. These CRs are thought to result from 

the activation of specific subsets of valence-coding BLA neurons. Under this model, the 

responses of BLA cells to CSs and the activity that drives CRs are closely related. In the 

third chapter of this thesis, I tested this hypothesis using a novel paradigm that dissociates 

BLA activity related to CS responses and CRs. At odds with this model, the CS responses 

and CR-related activity of individual BLA cells were separable. Moreover, while the 

incidence of valence-coding cells did not exceed chance, at the population level there was 

similarity between valence coding for CSs and CRs. In fact, both LA and BL neurons 

concurrently encoded multiple task features and behaviors.  

 The mPFC forms dense reciprocal connections with the BLA and has been shown 

to serve similar functions as the BLA in fear and reward conditioning. Additionally, these 
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two brain regions have common cortical, striatal, and brainstem connections involved in 

emotional expression, neuromodulation, and autonomic regulation. Hence, to understand 

the overlapping and separable roles of the mPFC and BLA in appetitive and aversive 

conditioning, in the fourth chapter of this thesis, I recorded cells in both regions and 

compared their coding properties. Several similarities were apparent, including the 

proportions of stimulus and behavior responsive cells. However, mPFC neurons had 

more selective coding especially in relation to CRs evoked by different CSs. Importantly, 

neurons in the two structures encoded the same task features but to different degrees, 

leading to gradients of task representations. While PL and BL neurons represented many 

task variables through small fluctuations in their firing rates, LA cells coded fewer task 

features with stronger changes in activity. Population analyses revealed that while 

valence could be decoded from the activity of BLA and PL neurons, PL neurons were 

superior at distinguishing trial identity information. Thus, PL neurons have greater 

representational capacity than BLA neurons. The significance of these differences for the 

regulation of emotional memories is discussed.  
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Chapter I: 

 

Introduction 

 

 

1.1 Defensive behaviors are shared across mammalian species 

Animals respond to threats using a diverse repertoire of defensive behaviors that 

promote survival. These behaviors have been retained by natural selection and are 

expressed similarly in various mammalian species, including humans. Indeed, while most 

studies of defensive behaviors have been performed in rodents, their results parallel those 

obtained in monkeys and humans (Blanchard, Hynd, Minke, Minemoto, & Blanchard, 

2001; Kalin & Shelton, 1989). Defensive behaviors commonly studied in rodents include 

freezing (to avoid detection), fighting, fleeing, making vocalizations (that warn con-

specifics a threat is present), and quickly orienting toward unexpected stimuli (Headley, 

Kanta, Kyriazi, & Pare, 2019). Environmental factors such as predator distance and the 

availability of escape routes play a major role in determining the type of defensive 

behavior evoked by threats (Roelofs, 2017). Distal threats in environments that lack 

escape routes evoke freezing. When escape options are available, proximal and imminent 

threats lead to fleeing or avoidance. In contrast, when there are no opportunities for 

escape, they elicit fighting (Blanchard, Griebel, Pobbe, & Blanchard, 2011; Fanselow, 

1994; Perusini & Fanselow, 2015). 
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 The neural circuits mediating defensive behaviors are also similar across the 

mammalian kingdom. Early studies in monkeys identified the medial temporal lobe as a 

critical brain region for fear responses. When the medial temporal lobe was lesioned, 

monkeys showed reduced fear responses to aversive stimuli (Kluver & Bucy, 1997). 

Most importantly, it was later determined that this impairment was due to lesioning of the 

amygdala (Weiskrantz, 1956). Additionally, human neuroimaging studies of fear 

conditioning have implicated similar amygdala pathways as seen in rodents and monkeys 

(Mobbs et al., 2010; Phelps & LeDoux, 2005). Given this evidence, many studies have 

focused on the role of the amygdala in fear learning and expression. 

 The amygdala is a medial temporal lobe structure consisting of several nuclei and 

cortex-like structures (Pape & Pare, 2010), which can be distinguished based on their 

connections as well as cyto- and chemo-architectonic features (Pitkanen, Savander, & 

LeDoux, 1997). Three main amygdala nuclei are involved in regulating conditioned fear 

and emotional memories (Fig. 1): the lateral nucleus (LA), the basolateral nucleus (BL), 

and the central nucleus (CE). The LA, BL, and basomedial nuclei together form the 

basolateral complex of the amygdala (BLA). Morphologically, the BLA has a similar 

neuronal composition as the cerebral cortex, with the exception that the latter has a 

laminar organization. In contrast, BLA cells appear to be oriented randomly throughout 

the structure, with approximately 80% being glutamatergic pyramidal neurons and 20% 

GABAergic (Muller, Mascagni, & McDonald, 2006; Pape & Pare, 2010).  



3 
 

 

 

Figure 1. The rodent amygdala. 
Thionin-stained coronal section of the rat amygdala. The lateral nucleus (LA), basolateral 
nucleus (BL), and central nucleus (CE) are outlined. ec: external capsule; ASt: 
amygdalostriatal transition area; st: stria terminalis. 

 

In general terms, most sensory information enters the amygdala enters through 

LA. Tracing studies have indicated that auditory and visual sensory inputs from the 

thalamus and sensory association cortices mainly target the dorsolateral portion of LA 

(Doron & Ledoux, 1999; LeDoux, Farb, & Ruggiero, 1990; Romanski, Clugnet, Bordi, & 

LeDoux, 1993), albeit BL and CE also receive some sensory inputs. In turn, the 

dorsolateral sector of the LA projects more ventrally in the nucleus, which then projects 

to BL (Pitkanen et al., 1997). Unlike LA, BL has dense rostrocaudal connections within 

itself, allowing for intradivisional communication (Pitkanen et al., 1997). Additionally, 

BL is reciprocally connected with cortical structures including the medial prefrontal 

cortex (mPFC), the insula, perirhinal and entorhinal cortices, and various hippocampal 

fields (Pape & Pare, 2010). While LA is also connected with cortical structures, 

particularly the perirhinal cortex, LA’s cortical connections are typically less dense than 

BL

LA CE

st
ASt

ec



4 
 

 

BL’s, especially in relation to mPFC (Hintiryan et al., 2019; McDonald, 1991; 

McDonald, Mascagni, & Guo, 1996).  

From the BLA, information flows to CE via unidirectional projections (Pitkanen 

et al., 1997). CE is considered the major output of the amygdala to fear effector 

structures, such as the brainstem and hypothalamus. CE is a striatal-like structure because 

it contains one main cell type: GABAergic neurons (McDonald, 1992; Pare & Smith, 

1993). It is typically divided into lateral (CeL) and medial (CeM) sectors. CeM mediates 

freezing behaviors via its projections to the ventrolateral periaqueductal gray (Ciocchi et 

al., 2010; Haubensak et al., 2010). CeL is thought to gate this output because it receives 

excitatory input from the BLA and sends GABAergic projections to CeM. However, BL 

also has direct projections to medial CE, allowing for direct control of CeM output 

projections (Pape & Pare, 2010; Savander, Go, LeDoux, & Pitkanen, 1995).  

 In the following sections, I review studies that have advanced our understanding 

of the role of the amygdala in conditioned emotional behaviors (both aversive and 

appetitive). Next, I introduce a novel behavioral paradigm that overcomes the limitations 

of commonly used conditioning paradigms. Then, I explore the role of mPFC in 

mediating defensive and appetitive behaviors. Finally, I compare the role of the BLA and 

mPFC in the regulation of emotional memories.  

 

1.2 Role of the basolateral amygdala in conditioned emotional behaviors. 

In animals, fear has predominantly been studied using the Pavlovian fear 

conditioning paradigm. In this task, a conditioned stimulus (CS) such as a tone predicts 

the delivery of an aversive unconditioned stimulus (US), typically a footshock. As 
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animals learn the association between the CS and the US, they develop a freezing 

conditioned response (CR) to the CS. This experimental paradigm has been very useful 

for studying brain regions involved in the acquisition and expression of conditioned fear. 

However, it suffers from an important pitfall. Animals can only display one defensive 

behavior, freezing. Hence, our understanding of the neural circuits of fear have been 

constrained by studying one defensive behavior while leaving out the rest. This 

limitation, has led to the notion that fearful stimuli automatically activate defensive CRs. 

New paradigms are needed to expand our understanding of how mammals select different 

defensive behaviors, giving a more complete picture of how the neural circuits of fear 

function.  

The BLA is necessary for the acquisition and expression of CRs to stimuli that 

predict aversive or rewarding outcomes (Ambroggi, Ishikawa, Fields, & Nicola, 2008; 

Fanselow & Poulos, 2005; LeDoux, 2000). In the LA, the main input station of the 

amygdala for sensory inputs (LeDoux, 2000; Sah, Faber, Lopez De Armentia, & Power, 

2003), conditioning enhances the efficacy of synapses that convey CS information 

(McKernan & Shinnick-Gallagher, 1997; Rumpel, LeDoux, Zador, & Malinow, 2005; 

Tye, Stuber, de Ridder, Bonci, & Janak, 2008), resulting in an increased CS 

responsiveness of target neurons (Genud-Gabai, Klavir, & Paz, 2013; Ghosh & Chattarji, 

2015; Maren & Quirk, 2004; Quirk, Repa, & LeDoux, 1995). Within the LA and BL, 

largely separate populations of cells acquire responses to appetitive or aversive stimuli 

(Belova, Paton, & Salzman, 2008; Burgos-Robles et al., 2017; Lee, Amir, Haufler, & 

Pare, 2017; Sangha, Chadick, & Janak, 2013; however see Shabel & Janak, 2009) and 

they project to different downstream structures, which in turn mediate distinct behavioral 
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responses (Beyeler et al., 2016; Namburi et al., 2015). Together these findings suggest 

that the changes in CS responsiveness displayed by BLA cells following appetitive or 

aversive conditioning constitute potentiated sensory responses that can automatically 

trigger approach or defensive CRs through distinct neuronal outputs. 

However, several observations are inconsistent with this rigid serial mechanism. 

For instance, BLA cells can be recruited into memory traces based on increased 

excitability irrespective of their underlying function (Han et al., 2007; Yiu et al., 2014). 

Furthermore, a recent Ca2+ imaging study reported that, at the population level, fear 

conditioning-induced changes in CS representation do not involve a potentiation of BLA 

responses to the CS, but a qualitative shift toward the representation of the US (Grewe et 

al., 2017). Yet another study revealed that the activity of BL neurons is not related to the 

sensory properties of the CSs but is closely tied to the reward-seeking behavior the CSs 

elicit (Lee, Amir, Headley, Haufler, & Pare, 2016). Last, animals display different 

defensive behaviors (Pellman & Kim, 2016) depending on threat proximity (Perusini & 

Fanselow, 2015) and a strict serial mechanism cannot account for such flexibility. 

 

1.3 A novel paradigm for studying defensive and appetitive behaviors 

As the previous studies highlight, current conditioning paradigms, such as 

Pavlovian fear conditioning, typically limit animal behavior to a single CR (e.g. 

freezing). This can give the impression that CSs automatically trigger CRs when in fact it 

is the only option the experimental conditions allow. Since conditioning increases the 

likelihood that CSs will elicit a particular CR, it is difficult to disentangle whether 
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training-induced alterations in BLA activity are related to the valence or sensory 

properties of the CSs, the behavior they elicit, or a mixture thereof.  

 To overcome these limitations, we developed a novel paradigm, the Risk-Reward 

Interaction (RRI) task, where rats can respond to a light CS in different ways depending 

on where the CS is presented. Rats learn that in some positions, the CS signals reward 

availability (CS-R) and in others, an impending footshock (CS-S). The footshock can be 

avoided passively or actively, depending on the rats’ position in relation to the CS. 

Behavioral freezing is also observed, allowing us to compare neuronal activity related to 

different defensive behaviors. In appetitive trials, animals must approach a port to 

retrieve a water reward. Hence, this paradigm builds on previous tasks and allows 

animals to display a more diverse repertoire of behaviors. In Chapter III, I use this new 

paradigm to test whether the responses of BLA cells to CSs and the activity that drives 

CRs are closely related. 

 

1.4 Role of the medial prefrontal cortex in conditioned emotional behaviors 

The RRI task requires animals to flexibly choose between different defensive or 

appetitive behavioral outputs based on the location of the CS on each trial. Given this 

need for flexibility and decision making, the mPFC is a likely candidate area for 

mediating such decisions. Indeed, the mPFC has been implicated in goal-directed actions, 

memory and decision making, maintaining task contingencies in working memory, fear 

or reward-guided learning, and many other complex cognitive functions (Euston, Gruber, 

& McNaughton, 2012; Miller, 2000; Miller & Cohen, 2001). Furthermore, this brain 

region is interconnected with sensory and motor cortical areas as well as subcortical 
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structures such as the amygdala and hippocampus (Heidbreder & Groenewegen, 2003; 

McDonald, 1998; Vertes, 2004). It is widely believed that this extremely diverse 

connectivity allows the mPFC to process the wide range of information needed for the 

regulation of complex behaviors.  

Prefrontal areas are mainly defined by their thalamocortical, subcortical, and 

cortico-cortical projections. The mPFC is subdivided into two main regions, the 

prelimbic (PL) and infralimbic (IL) areas (Fig. 2). In this thesis, I will focus on PL, which 

has prominent reciprocal connections with the BLA (Hoover & Vertes, 2007; McDonald, 

1998; Vertes, 2004). Specifically, it was shown that the same amygdala cells that receive 

PL inputs project back to PL, and that PL cells receiving amygdala inputs also project to 

the amygdala. This connectivity allows for closed-loop routing between the two regions 

to exchange information (Little & Carter, 2013; McGarry & Carter, 2017).  

 

Figure 2. The rodent medial prefrontal cortex. 
Thionin-stained coronal section of the rat medial prefrontal cortex. The prelimbic (PL) 
and infralimic (IL) subregions are outlined. Cg: cingulate cortex; DP: dorsal peduncular 
cortex; fmi: forceps minor of the corpus callosum. 

PL

IL

Cg

DP

fmi

1 mm
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PL also makes cortico-cortical connections within itself and with other medial 

prefrontal areas including the anterior cingulate cortex, the medial and ventral orbital 

cortex, and the infralimbic area (IL; Hoover & Vertes, 2007). Additionally, some of these 

projections are contralateral, especially with the anterior PL and medial orbital areas. 

Other prominent cortical connections include links with the agranular insular cortex, the 

claustrum, as well as the perirhinal and entorhinal cortices (Hoover & Vertes, 2007; 

Ongur & Price, 2000; Swanson, 1981; Vertes, 2004).  

Similar to other cortical areas, PL receives thalamic inputs, mainly arising from 

the mediodorsal nucleus (MD), the paraventricular nucleus (PVT), and nucleus reuniens. 

The connection with MD is reciprocal. Moreover, MD receives input from the amygdala, 

forming an indirect connection between the amygdala and PL (Ray & Price, 1992). PVT 

also projects to the amygdala, allowing it to influence both PL and BLA (Vertes & 

Hoover, 2008). Finally, PL receives a unidirectional projection from the hippocampus, 

mainly its ventral portion, and a light input from the lateral hypothalamus (Hoover & 

Vertes, 2007). 

On the other hand, PL sends a prominent projection to nucleus accumbens 

(Sesack, Deutch, Roth, & Bunney, 1989), which is thought to support the role of PL in 

mediating appetitive behaviors (Burgos-Robles, Bravo-Rivera, & Quirk, 2013; Otis et al., 

2017). Additionally, PL projects to brainstem nuclei, including the periaqueductal gray 

region (PAG; Floyd, Price, Ferry, Keay, & Bandler, 2000), which has been implicated in 

threat reactions such as freezing and escape behaviors (Amorapanth, Nader, & LeDoux, 

1999; Bittencourt, Carobrez, Zamprogno, Tufik, & Schenberg, 2004; Mobbs et al., 2010). 
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Functionally, PL has been shown to influence both aversive and rewarding CRs. 

Thus, depending on the task, manipulations that enhance PL excitability will enhance 

drug-seeking or behavioral freezing (Giustino & Maren, 2015; Peters, Kalivas, & Quirk, 

2009; Sotres-Bayon & Quirk, 2010). In a fear conditioning paradigm, the unit responses 

of PL neurons to conditioned tones were sustained and correlated with the expression of 

freezing (Burgos-Robles, Vidal-Gonzalez, & Quirk, 2009). Moreover, pharmacological 

inactivation of PL reduced the expression of conditioned freezing (Corcoran & Quirk, 

2007; Laurent & Westbrook, 2009; D. Sierra-Mercado, Padilla-Coreano, & Quirk, 2011).  

In agreement with these studies, PL is also involved in the acquisition and 

expression of avoidance behaviors. PL inactivation impairs the expression of avoidance 

(Beck et al., 2014; Bravo-Rivera, Roman-Ortiz, Brignoni-Perez, Sotres-Bayon, & Quirk, 

2014), and PL activity has been associated with persistent avoidance in rats that failed to 

extinguish the avoidance response (Bravo-Rivera, Roman-Ortiz, Montesinos-Cartagena, 

& Quirk, 2015). Surprisingly however, PL recordings indicated that more neurons are 

inhibited during avoidance compared to classical fear conditioning, and if this inhibition 

is countered with optogenetic activation to maintain cells at their baseline firing, then 

avoidance expression is impaired (Diehl et al., 2018). These results suggest that PL 

interacts with the BLA during both active and passive response strategies in appetitive 

and aversive situations. 

 

1.5 Comparing the role of BLA and mPFC in conditioned emotional behaviors 

Of the structures regulating memory and emotions, the amygdala and mPFC stand 

out for their remarkably similar connectivity (reviewed in Ongur & Price, 2000; Pitkanen 



11 
 

 

et al., 1997). Not only do these structures form dense reciprocal connections with each 

other, but they both have access to high order sensory information, share close ties with 

the insula, project to overlapping striatal territories, and target a common array of 

brainstem nuclei involved in neuromodulation, emotional expression, and autonomic 

regulation (Allen, Saper, Hurley, & Cechetto, 1991; Gabbott, Warner, Jays, Salway, & 

Busby, 2005; Hoover & Vertes, 2007; Krettek & Price, 1977, 1978; McDonald, 1998; 

Ongur & Price, 2000). 

Consistent with their similar connectivity, the functions of the amygdala and 

mPFC are tightly intertwined. For instance, they are both required for the expression and 

extinction of CRs to cues that predict aversive outcomes such as behavioral freezing and 

active avoidance (Bravo-Rivera et al., 2014; Fanselow & Poulos, 2005; LeDoux, 2000; 

Moscarello & LeDoux, 2013; D. Sierra-Mercado, Jr., Corcoran, Lebron-Milad, & Quirk, 

2006). Moreover, they both regulate cued reward-seeking behaviors (Ambroggi et al., 

2008; Burgos-Robles et al., 2013; Ishikawa, Ambroggi, Nicola, & Fields, 2008; Peters et 

al., 2009).  

If the roles of the amygdala and mPFC overlap so much, what is the 

computational advantage of having both? One possibility is that mPFC and amygdala 

neurons code information differently, allowing them to implement distinct sets of input-

output functions.  

While many emotional conditioning studies have examined the coding properties 

of amygdala and, to a lesser extent, mPFC neurons, most relied on simple conditioning 

tasks that featured one or just a few stimuli and behaviors, giving the misleading 

impression that neurons encode single, easily interpretable dimensions (Pare & Quirk, 
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2017). By contrast, studies relying on more complex or diverse experiment paradigms, 

revealed that amygdala (Grundemann et al., 2019; Kyriazi, Headley, & Pare, 2018; A. 

Saez, Rigotti, Ostojic, Fusi, & Salzman, 2015) and mPFC neurons (Ma, Hyman, 

Durstewitz, Phillips, & Seamans, 2016; Ma, Hyman, Lindsay, Phillips, & Seamans, 2014; 

Rigotti et al., 2013) encode various conjunctions of task features or behaviors, in effect 

implementing high-dimensional representations.   

Unfortunately, other than simple conditioning studies, the coding properties of 

mPFC and amygdala neurons have not been examined in the same task yet. A few studies 

compared the coding properties of amygdala and anterior cingulate or orbitofrontal 

neurons in non-human primates (Klavir, Genud-Gabai, & Paz, 2013; Livneh, Resnik, 

Shohat, & Paz, 2012; Munuera, Rigotti, & Salzman, 2018; Pryluk, Kfir, Gelbard-Sagiv, 

Fried, & Paz, 2019; R. A. Saez, Saez, Paton, Lau, & Salzman, 2017), revealing 

significant differences between them.  For instance, whereas in the amygdala, the same 

neurons encode social hierarchical rank and the reward value of non-social stimuli, in the 

orbitofrontal and anterior cingulate cortex, they only encode reward value (Munuera et 

al., 2018). 

In this thesis, I use the RRI task to improve our understanding of how conditioned 

emotional stimuli and behaviors are processed by the amygdala and mPFC. In Chapter 3, 

I examine how LA and BL neurons encode conditioned stimuli and behaviors in the RRI 

task. Given that mPFC is also a critical node in regulating emotional memories, in 

Chapter 4 I compare the coding properties of mPFC and amygdala neurons using the RRI 

task. Finally, in the Discussion I integrate my findings from these two structures and 

discuss how they work together and independently to mediate emotional behaviors.   



13 
 

 

 

 

 

 



14 
 

 

Chapter II: 

 

General methods 

  

 

2.1 Subjects 

Procedures were approved by the Institutional Animal Care and Use Committee 

of Rutgers University, in compliance with the Guide for the Care and Use of Laboratory 

Animals. Ten adult male (300 – 350 grams) and two adult female (280 – 320 grams) 

Long Evans rats (Charles River Laboratories) were housed individually with ad libitum 

access to food and water and maintained on a 12 h light/dark cycle. Animals were 

habituated to the animal facility for one week and then to handling 15 minutes daily for 

3-5 days. One week prior to training in the RRI task, animals were placed on water 

restriction while maintaining them at ≥85% of initial body weight. The water restriction 

protocol consisted of 6 consecutive days of restriction followed by one day of ad libitum 

access to water. All experiments were performed during the light cycle. 

 

2.2 Risk Reward Interaction Task  

The apparatus (Fig. 3) consisted of a dimly lit rectangular arena (90 cm in length 

x 30 cm in width) with high walls (60 cm), a floor of metal bars (5 mm od, spaced 8 mm) 

and no ceiling. The floor was divided into 3 equal sectors (30 cm x 30 cm), with an array 

of light-emitting diodes (LEDs) below each sector (Fig. 3A). At each end of the arena, 
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there was a water port with an LED behind it (Fig. 3A). A programmable microcontroller 

(Arduino, SparkFun, Niwot, CO) controlled the activation of the LEDs, the delivery of 

water through the water ports (60 μl), and the delivery of footshocks in each sector 

independently (0.4 mA, 10 s).  

Reward availability was signaled by activation of an LED (CS-R) behind the 

active water port for 20 seconds. The reward was delivered 10 seconds after CS-R onset 

through a dipper which retracted at the end of the CS-R. Similarly, shock delivery was 

signaled by an LED (CS-S) below one of the floor sectors for 20 seconds. A mild 

footshock was delivered to the corresponding sector 10 seconds after CS-S onset. The 

shock and CS-S co-terminated. If rats were located in the sector when the CS-S activated, 

they could actively avoid the shock by leaving that sector in the first 10 seconds 

following CS-S onset. If rats were not in the shock sector at CS-S onset, they could 

passively avoid the shock. An overhead video camera (29.97 or 40 frames/s) recorded the 

behavior. A white noise maker was used to mask any sounds from the room during the 

task. 

 



16 
 

 

Figure 3. Risk-reward interaction task. 
(A) Apparatus. LEDs at different locations signal reward availability (blue; behind left 
wall, CS-R1; behind right wall, CS-R2) or an impending shock (red; under the three 
different floor sectors, CS-S1-3). (B) Acquisition of aversive (red) and appetitive (blue) 
CRs. Percent correct trials ± SEM (y-axis) as a function of training day (x-axis). (C) 
Examples of CRs. C1, active avoidance. C2, passive avoidance. C3, reward approach. 
Superimposed trajectory (start, red; end, yellow) of a rat on multiple types of trials where 
the rat’s starting position was in sector 1, on the left. 
 

The day before training began, rats were habituated to the arena for 1 hour. No 

light stimuli, water rewards, or shocks were delivered during habituation. The white noise 

maker was on and the lights were off for the duration of habituation. Behavioral training 

on the RRI task occurred over seven days. During this period, rats gradually learned to 

retrieve water rewards at each of the two ports and avoid shocks from each of the three 

sectors when signaled by the corresponding LED. The first two days, rats were trained for 

two 15 minute sessions (9 shock trials, 6 reward trials); one in the morning and one in the 

afternoon. Once animals acquired the active avoidance behavior, the sessions were 

extended to one hour (48 shock trials, 32 reward trials). Training continued on days 3 

through 7 with 1 one-hour long sessions per day until animals reached at least 85% 

performance, on all trial types combined, usually within 7 days (Fig. 3B). For learning 

curves of animals used in chapter IV, see figure 16B. 

 

2.3 Surgical procedures  

Once they reached criterion, animals were implanted with silicon probes aimed at 

the BLA, mPFC, or both. Rats were anesthetized with a mixture of isoflurane and O2 and 

administered atropine sulfate (0.05mg/kg, i.m.) to aid breathing. They were then placed 

in a stereotaxic apparatus with nonpuncture ear bars. A local anesthetic (bupivacaine, 
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S.C.) was injected in the scalp. Fifteen minutes later, an incision was made to expose the 

skull and a craniotomy performed over the mPFC and/or amygdala. One of three types of 

silicon probes (see below) was attached to a 3D-printed microdrive, and aimed just dorsal 

to the BLA (coordinates in mm relative to bregma: AP -2.2 to -3.6, ML 5.2, DV 6.0) or 

mPFC (coordinates: AP +2.3 to +3.7, ML 0.6 10º angle, DV 3). The microdrive allowed 

us to lower the probe(s) gradually between recording sessions. The three types of silicon 

probes we used are Buzsaki32L (Fig. 4A), Buzsaki64L (Fig. 4B), and a custom-designed 

probe (Fig. 4C). The Buzsaki32L and 64L probes respectively consist of four and eight 

shanks spaced 200 μm apart. The custom-designed probe has 4 shanks with 16 channels 

on each shank arranged in a tetrode formation. Each tetrode is 333 μm from the 

neighboring tetrode and the inter-shank distance is 250 μm. Rats are allowed 1-2 weeks 

to recover from surgery.  
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Figure 4. Methods used to record, classify, cluster, and locate BLA neurons. 
The same methods are used for mPFC cells. (A-C) Three different types of silicon 
probes. (D,E) Classification of LA (D) and BL (E) cells in presumed projection cells 
(blue) or fast-spiking interneurons (red) based on spike duration (y-axis; through to peak 
interval; see inset; cut-off, 0.55 ms) and firing rate (x-axis; cut-off, 6 Hz). Cells that do 
not satisfy both criteria (unclassified, gray) are not considered further. (F) Average spike 
waveforms ± SEM of a clustered projection cell (blue) or interneuron (red), as 
simultaneously recorded on eight neighboring leads of the same silicon probe shank. (G) 
Coronal section of the amygdala showing trajectory (dashed line) and final position 
(arrow marking electrolytic lesion made at the end of the experiment) of a silicon probe 
shank in the BLA. Abbreviations: BL, basolateral nucleus; BM, basomedial nucleus; 
CeA, central nucleus of the amygdala; EC, external capsule; OT, optic tract. 
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2.4 Unit recordings and clustering  

Once animals recovered from the surgery, unit recordings begin. Red and green 

LEDs on the rat’s headcap during the recording sessions allowed us to track the rat’s 

activity throughout the task. Red LEDs were always positioned on the rostral end of the 

headcap and green LEDs on the caudal end. This allowed us to track head position by 

taking the midpoint between the red and green LEDs, and head direction by calculating 

the angle between the midpoint and the red LEDs with respect to the apparatus. The 

silicon probe was lowered ≥140 μm after every recording session to avoid recording the 

same cells across days.  

 Electrophysiological data was recorded using Intan Technologies equipment 

(RHD2000-Series amplifier evaluation system; intantech.com). Data were sampled at 30 

kHz and stored on a hard drive for offline processing. A high pass filter (300 Hz) was 

initially applied to the recording data, followed by a median filter (median amplitude 

subtracted from all channels at each sample point). One of two clustering methods were 

used: principal component analysis with Klustakwik, or Kilosort 

(https://github.com/cortex-lab/KiloSort). For Klustakwik, principal component analysis 

was used on the spikes and the first three components were clustered 

(http://klustakwik.sourceforge.net/). For Kilosort, spike waveforms were identified by 

matching them to template waveforms as described in Pachitarium, Steinmetz, Kadir, 

Carandini, and Harris (2016). For both KlustaKwik and Kilosort methods, spike clusters 

were refined manually using Klusters (Hazan, Zugaro, & Buzsaki, 2006). For sessions 

clustered using Kilosort, a custom code was written to convert Kilosort output files to 

Klusters-compatible files to allow manual refinement.  



20 
 

 

In order to reliably separate clusters, the autocorrelograms and cross-correlograms 

of each cluster were inspected.  Autocorrelograms had to show a refractory period of at 

least 2 ms. Cross-correlograms could not have a refractory period as this indicated that 

the same unit was shared between clusters. If a unit had unstable spike shapes, it was 

excluded.  

Spike duration was calculated for a given unit by selecting the channel with the 

largest action potentials and peak-to-trough amplitude. The time between spike trough 

and peak represents the spike’s duration (Bartho et al., 2004). BLA units were classified 

as presumed projection cells or interneurons based on their baseline firing rates (6 Hz 

cutoff) and trough-to-peak duration (0.55 ms). For PL units, a firing rate cutoff of 10 Hz 

and 0.5 ms trough-to-peak interval were used. Striatal units were divided into fast-spiking 

interneurons and presumed medium spiny neurons based on interspike interval and 

trough-to-peak durations. Based on Berke (2008), highly active cells with less than 2% of 

their interspike intervals longer than 1s were classified as interneurons. The trough-to-

peak duration used for striatal units is the same as for BLA cells (0.55 ms). All cells that 

failed to meet both criteria were labeled unclassified and excluded from analyses.  

In a prior study (Amir, Headley, Lee, Haufler, & Pare, 2018), we tested the 

reliability of these classification criteria on a different sample of rat BL neurons recorded 

with the same methods. Using cross-correlograms in ~17,500 pairs of BL neurons, we 

looked for evidence of monosynaptic inhibition from putative principal cells to other cells 

(a case where an interneuron would be misclassified as a projection cell) or excitation 

from putative interneurons to other cells (indicating a principal cell misclassified as an 
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interneuron). Only 0.99% of principal cells and 3.6% of interneurons with putative 

connections were found to be misclassified.  

With respect to the usefulness of spike duration to distinguish principal BL 

neurons, only one study (Bienvenu, Busti, Magill, Ferraguti, & Capogna, 2012) directly 

compared the duration of extracellularly measured spike waveforms in principal cells 

(n=23) and different types of interneurons (n=51) of the basolateral amygdala. On 

average, all four classes of BLA interneurons examined in this study (pavalbumin 

positive, calbindin positive, axo-axonic, amygdalo-striatal projecting) generated spikes of 

shorter duration than principal cells. Of the 51 interneurons described in this study, only 

two interneurons had a spike duration as high as the principal cell with the lowest spike 

duration. Together, these earlier findings support the reliability of the criteria we used to 

distinguish principal cells and interneurons. 

 

2.5 Histology 

At the end of experiments, while rats were anesthetized, electrolytic marking 

lesions were made on either the most dorsal or ventral electrodes, alternating on each 

shank (10 μA for 16 s), so that lesions marking different shanks were distinct.  Twenty-

four to 48 hours after lesions, rats were perfused-fixed through the heart, their brains 

extracted and cut on a freezing microtome. The sections (80 µm) were counterstained 

with 1% thionin solution. Only neurons histologically determined to have been recorded 

in the structures of interest were analyzed.  
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2.6 Behavioral Analyses 

All behaviors were analyzed using a custom made graphical user interface (GUI) 

in MATLAB (The MathWorks, Inc., Natick, Massachusetts, U.S.A). Behavior start and 

end times were determined in the GUI by indicating the first and last frame of the video 

recording when the rat initiated and ended a behavior. A total of five behaviors were 

considered for analyses: freezing (Frz), active avoidance (AA), passive avoidance (PA), 

reward approach (RA), and reward anticipation (RAnt). Behavior start and end times 

were defined as follows: for AA, the start was noted as the first frame when the rat began 

to move off the lit sector, and the end of the behavior was denoted as the first frame when 

the rat ended the continuous avoidance behavior on one of the unlit sectors. PA start time 

was denoted as the first frame of a CS-S trial where the animal was away from the lit 

sector and ended either at the end of the trial (provided the animal remained away from 

the lit sector for the entire trial duration) or until the animal approached or engaged with 

the lit sector. Frz was denoted as any period of immobility except for respiration lasting 

at least one second during CS-S trials. For RA, the start time was the first frame the rat 

began movement toward the reward port and the end was the frame when his/her nose 

reached the port. RAnt began when the rat placed both front paws on the reward port and 

waited there until reward delivery.  

 

2.7 Classification of valence neurons  

A cell was defined as a R-cell if, relative to the 5 s immediately preceding the CS-

R, it had a significant increase in firing rate (based on rank-sum test p<0.005) either 

during the first 1s after CS-R onset or during the initial 10s CS-R period and an inhibition 
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or no change to the CS-Ss. S-cells were similarly defined using the opposite valence CSs. 

AA-cells and RA-cells were defined as cells with a significant increase in firing rate for 

1s after behavior onset compared to 2s prior to behavior onset.  

 

2.8 Generalized Linear Model (GLM)  

A regularized regression, group Lasso, with Poisson distribution (grpreg R 

package; Breheny & Huang, 2015) and ten-fold cross validation was used to fit the 

spiking of individual cells for the duration of the task. Spiking was binned (50 ms bins) 

across the entire recording session and stimuli and behaviors were indicated with ones 

when they occurred. After Park, Meister, Huk, and Pillow (2014), the stimulus and 

behavior events were convolved with basis functions defined by log-time scaled raised 

cosine bumps separated by π/2 radians (50 ms). Each event kernel was represented as a 

linear combination of basis functions spanning a duration of time (see below) 

The model was fit by minimizing the value β in 

𝑄(𝛽) =
1
2𝑛 |

|𝑦 − 𝑋𝛽||! + 𝜆/0𝐾"
"

|2𝛽"2| 

where y represents the spike train across time, X is the design matrix with the basis 

functions for stimuli and behaviors, βs are the least-squares regression coefficients, λ is 

the regularization penalty for an 𝐿# norm, n is the total number of predictors, and 0𝐾" is a 

matrix of the kernels for each predictor j and it serves as a way to normalize across 

groups of different sizes. The lasso penalty parameter (λ) to the Euclidean (𝐿#) norm was 

chosen based on the lowest cross-validation error and it was applied to each group, 

creating sparsity and variable selection at the group level (Breheny & Huang, 2015; 
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Robert Tibshirani, 1996; Ming Yuan & Yi Lin, 2006). Furthermore, the penalty is applied 

to the entire group such that if group j is selected then all βs are either set to zero or all βs 

are non-zero. Cross-validation sets were assigned by dividing the recording session into 

ten equal segments. 

 For BLA data in chapter III, there were a total of 17 parameters used in the GLM 

including speed, position, CS-R1, CS-R2, CS-S1, CS-S2, CS-S3, US-R1, US-R2, US-S1, 

US-S2, US-S3, AA, PA, Frz, RA, and RAnt. For chapter IV data, which included the 

original BLA dataset and all newly recorded PL and BLA units, there were a total of 22 

grouped parameters used in the GLM: speed, position, CS-R1, CS-R2, CS-S1, CS-S2, 

CS-S3, US-R1, US-R2, US-S1, US-S2, US-S3, AA, Frz, RA, RAnt, CS-R2 RA, CS-R2 

RAnt, CS-S2 AA, CS-S2 Frz, CS-S3 AA, CS-S3 Frz. In chapter IV, the aim was to 

capture interaction terms in the model hence, the original dataset of chapter III was re-fit 

with a new Lasso GLM. Interaction terms were computed by multiplying the stimulus 

variable with the corresponding behavior variable (i.e. CS-S1 * AA = CS-S1 AA). In 

order to avoid perfect collinearity with interaction terms, we did not include CS-R1 and 

CS-S1 variables interaction terms.  

 

GLM Basis Functions and Kernels. The GLM kernels for each stimulus and 

behavior type that best fit spiking activity were created by combining a set of pre-

determined basis functions. We used two different sets of basis functions to represent CSs 

and CRs. Stimulus basis functions covered the initial 10 s, have a sharp onset and narrow 

width which becomes smoother and wider across time (Fig. 5A), reflecting stimulus 

responses that tend to have sharp onsets and decay slowly. Behavior basis functions 
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extended before and during the behavior onset to capture spiking activity related to 

planning and executing the behavior (Fig. 5B). However, they were bounded by the start 

of a trial. These functions were then scaled by the model’s beta values and summed 

within time bins to create a single kernel for each stimulus and behavior (see Fig. 5C-D 

for example stimulus and behavior kernels from a cell fit by the model). Most 

importantly, if a cell did not encode a parameter, the group Lasso GLM gives beta values 

of 0 for the corresponding basis functions. Thus, only parameters that best fit observed 

spiking of a given cell were selected by the model, allowing us to perform dimensionality 

reduction. 

To compare the model fit to observed spiking, we used the coefficient of 

determination (R2). Kernels fit with all model parameters for appetitive and aversive 

trials during the 10s CS period were adjusted for firing rate and concatenated. Similarly, 

observed PETHs for the 10s CS period during all appetitive and aversive trials were 

concatenated and smoothed with a Gaussian window of 550 ms. These model-estimated 

kernels and observed PETHs were used to calculate the coefficient of determination as 

follows: 

𝑅! = 1 −
∑(𝑦$ − 𝑓$)!

∑(𝑦$ − 𝑦7)!
 

where 𝑦$ represents the observed PETH, 𝑓$ is the model-estimated kernel, at different 

time points, 𝑖, and 𝑦7 is the mean of the observed PETH.  
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Figure 5. GLM basis and kernel functions. 
(A) The 10 basis functions used to fit stimulus responses starting at the onset of the 
stimulus presentation and extending out to 10 seconds. (B) The 14 basis functions used to 
fit neural responses related to behaviors; expanding before behavior onset to capture 
preparatory signals. (C) Example kernels for each stimulus produced by multiplying the 
stimulus basis functions and beta values computed by the GLM. (D) Example behavior 
kernels fit by the GLM for the same cell as in C. Note, the kernels capture the transient 
inhibition prior to active behavior onset (active avoidance, purple trace; reward approach, 
green trace) and excitation during the execution of the behaviors.  
 

2.9 Multidimensional scaling (MDS) 

To visualize and quantify the coding of task dimensions at the population level for 

each region in chapter III, we mapped our codes (see Fig. 14A4) into a low dimensional 

space created using multidimensional scaling (MDS). This technique projects a set of 

points in a high dimensional space into a low dimensional space, while trying to preserve 

their pairwise distances. For a given unit we constructed a feature vector by taking the 
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GLM-estimated peak modulations by the five stimuli (CS-R1, CS-R2, CS-S1, CS-S2, 

CS-S3) and five behaviors (RA, Rant, AA, Frz, speed) and ranked each dimension 

relative to the other units in the data set. We then calculated the Euclidean distance 

between all pairs of feature vectors within a region. This set of distances was passed to 

the MDS algorithm (non-metric, squared stress criterion) to reduce the distribution from 

ten to two dimensions, while still preserving the relative distances between the cells. 

Then, for each unit type and region we added a third dimension that corresponded to one 

of the codes suggested by the correlation matrices (behavior valence, stimulus valence, 

stimulus/behavior) or previous studies (speed, active vs. passive behaviors; Amir, Lee, 

Headley, Herzallah, & Pare, 2015). This created a collection of points in a three-

dimensional space, and we fit a plane (code-value = 𝛽#MDS-Dim1 + 𝛽!MDS-Dim2 + 

intercept) to those points to determine if the feature of interest was systematically 

mapped across the population (Borg & Groenen, 2005). The magnitude of the slope of 

the plane, 0𝛽#! + 𝛽!!), indicated the degree to which that feature was mapped across the 

population. By comparing the difference in the direction, arg(𝛽# + 𝑖𝛽!), between two 

feature planes, we could determine the degree of overlap in their representations at the 

population level. 

 

2.10 Normalized peak firing rate modulations.  

The absolute peak of each CS and CR kernel is normalized by the baseline firing 

rate as follows: (Peak-Baseline)/Baseline. The sign of the modulation is preserved in the 

normalized peak in order to identify cells excited or inhibited in relation to each task 

feature. Normalized peak modulations ≤ 0.001 are considered non-significant and are set 
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to zero. The average modulations to the task features are computed by taking the mean of 

the absolute value of all significant peak modulations for each parameter. For figure 12, 

the observed normalized peak firing rate during active avoidance and reward approach 

are plotted on the x and y axes, respectively. These values are calculated by binning the 

observed spiking in 50ms bins and referencing PETHs to behavior onset. The mean firing 

rate during the behavior is normalized by the firing rate during the 5 s preceding behavior 

onset, similarly to the normalized peaks for the GLM. 

 

2.11 Similarity Matrices  

We computed similarity matrices using a Spearman correlation of the peak firing 

rate modulations by all stimuli and behaviors across cells. In chapter III, the p-value is 

corrected for multiple (45) comparisons (p=0.001). In chapter IV, no p-values were 

calculated for the similarity matrices. 

 

2.12 Number of Features Encoded.  

To identify how many features cells encoded in chapter III, we used the 

significant normalized peak firing rate modulations of each cell task features: CS-R, CS-

S, RA, RAnt, Frz, AA, and PA. For the CSs, we averaged modulations within CS types 

(CS-R1-2; CS-S1-3). The number of significant excitatory modulations was counted for 

each cell and that value represented the number of features encoded. To test if the 

distributions of features encoded differs between structures, we used the Kullback-

Leibler divergence as a test statistic. A null distribution was created by shuffling the 

location of each cell randomly 10,000 times and computing a divergence score after each 
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permutation. This gave us a distribution of divergence scores which we then used to 

compare the observed scores. If the observed score was outside the two-sided 95th 

percentile of the null distribution, it was considered significant. 

 

2.13 Gini and dimensionality indices 

Gini Index. To understand how the code was distributed across the population we 

used the Gini index. This index quantifies the coding distribution across the neuronal 

population and ranges from 0 to 1, with 0 representing a perfectly equally distributed 

code among neurons, and 1 representing a perfect inequality of code distribution. The 

Gini index is calculated using the following function: 

 

𝐺𝑖𝑛𝑖	𝑖𝑛𝑑𝑒𝑥 = A𝑛 + 1 − 2 ∗
∑ (𝑛 + 1 − 𝑖) ∗ 𝑌$	&
$'#

∑ 𝑌$&
$'#

D ∗	
1

𝑛 − 1 

 

where Yi represents the peak firing rate modulation for each task feature n. The Gini 

index was computed for each neuron individually based on the GLM firing rate 

modulation to each task variable. The distribution of the Gini indices across all cells in 

each structure is plotted in Fig. 24B (top). A rank-sum test was used to test whether the 

Gini index distributions differed across brain regions (p<0.001). 

Dimensionality Index. To identify how many features cells encoded in chapter IV, 

we used the significant normalized peak firing rate modulations of each cell for all task 

features: CS-R1, CS-R2, CS-R1 RA, CS-R1 RAnt, CS-R2 RA, CS-R2 RAnt, CS-S1, CS-

S3, CS-S1 Frz, CS-S1 AA, CS-S3 Frz, CS-S3 AA. The number of non-zero modulations 

were counted for each cell and that value represented the number of features encoded. 
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The dimensionality index was then plotted in Fig. 24B (bottom) as the distribution of the 

number of features encoded across all cells. 

 

2.14 D-prime analyses 

The d-prime (d’) metric was used to measure the separation between different 

coding dimensions based on the distributions of the correlation coefficients in the 

similarity matrices (Keene et al., 2016; McKenzie et al., 2014). The coding dimensions 

tested were valence (chapter III: CS-R1, CS-R2, RA, RAnt vs. CS-S1, CS-S2, CS-S3, 

Frz, AA; chapter IV: CS-R1, CS-R2, CS-R1 RA, CS-R1 RAnt, CS-R2 RA, CS-R2 RAnt 

vs. CS-S1, CS-S3, CS-S1 Frz, CS-S1 AA, CS-S3 Frz, CS-S3 AA), valence-CS (chapter 

III: CS-R1, CS-R2 vs. CS-S1, CS-S2, CS-S3), valence-behavior (chapter III: RA, RAnt 

vs. Frz, AA), and active vs. passive behaviors (chapter III: RA, AA vs. RAnt, Frz; 

chapter IV: CS-R1 RA, CS-R2 RA, CS-S1 AA, CS-S3 AA vs. CS-R1 RAnt, CS-R2 

RAnt, CS-S1 Frz, CS-S3 Frz). The d’ metric was calculated for each coding dimension 

by comparing the degree to which within-coding dimension correlations exceeded those 

between-coding dimension correlations, as follows: 

𝑑( =	
𝜇)$*+$& − 𝜇,-*)--&

F12 (𝜎)$*+$&
! + 𝜎,-*)--&! )

 

Where 𝜇)$*+$& and 𝜇,-*)--& are the means of the correlation coefficients for the within 

and between coding dimension features, respectively, and their corresponding variances, 

𝜎)$*+$&!  and 𝜎,-*)--&! . To identify d’ values significantly different from 0, we compared 

the observed d’ values to a bootstrap distribution in which normalized peak values are 

randomly sampled 10,000 times, and similarity matrices and d’ values were then re-
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computed for each bootstrap sample. The p-value of the observed d’ was calculated based 

on the bootstrapped distribution and considered to be significant if p<0.05. To compare if 

two d’ values were significantly different from each other, we computed a shuffled 

distribution of d’-difference values (10,000 permutations). If the observed d’-differences 

were >95% of the shuffled distribution then the d’-differences were considered 

significant.  

 

2.15 Principal Component Analysis (PCA) 

To visualize the coding of task dimensions at the population level for each region, 

we mapped the firing rate into a low dimensional space (3-dimensions) created using 

principal component analysis (PCA) across the trial duration (Rozeske et al., 2018; Zhang 

& Li, 2018). Spiking was extracted from 5 s before to 10 s after CS-onset. The firing 

rates for baseline, CS-onset, and behaviors (AA and RA) were normalized by binning the 

firing rate into 20 bins for each time epoch. This time normalization was conducted to 

ensure that spiking to behaviors was always aligned despite trial-to-trial variations in the 

timing of behaviors.  The binned spikes were then z-scored using the 5 s baseline period 

and averaged across trials. A boxcar function convolution was applied to the z-scored 

spiking before conducting the PCA analysis. The first 3 dimensions of the PCA scores 

were smoothed with a Gaussian window of 10 bins for visualization. All further 

calculations using the PCA scores were applied to the raw, unsmoothed scores. 

Euclidean Distance Based on PCA Scores. The 3-dimensional Euclidean distance 

was calculated at every time bin between each trial type (CS-R1, CS-R2, CS-S1, and CS-

S3) using the raw, unsmoothed PCA scores. The distances across time were then 
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averaged to calculate a mean distance value for each trial type comparison, which is 

plotted in Fig. 26B. 

 

2.16 Support Vector Machine Decoder  

 Support vector machine analyses were conducted in a time-normalized fashion 

similar to PCA, but instead of creating 20 bins for each time epoch, 1 bin was used, 

resulting in 3 bins total (baseline period, CS-onset period, active behavior period (AA or 

RA)). The SVM decoder was conducted similarly to Meyers, Freedman, Kreiman, Miller, 

and Poggio (2008). Briefly, a pseudo-population of 150 cells with replacement was 

selected from each brain region. For each cell, 5 trials of each type were selected (5 CS-

R1, 5 CS-R2, 5 CS-S1, and 5 CS-S3 trials). For the trial type comparison, the two 

appetitive trial types were compared to each other, and the two aversive trial types were 

compared to each other. This process was repeated 50 times. The appetitive and aversive 

decoder performance repetitions were combined to create the trial identity category. The 

mean decoder accuracy and SEM were computed using the 100 total repetitions. For the 

valence category, the CS-R responses were compared to the CS-S responses using 10 

trials of each type.  

To test for significantly different decoding accuracies between brain regions, we 

bootstrap resampled the decoder accuracy repetitions of two brain regions 10,000 times, 

and each time calculated a difference score. If the 95th percentile of this null distribution 

crossed zero then the difference was not considered significant, if it did not cross zero 

then it was considered significant. 
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 Population size decoder. The size of the pseudo-population was varied from 1, 5, 

and then 10 to 150 cells in increments of 10 cells. Decoder performance was calculated 

with each pseudo-population size and the mean and SEM were calculated from the 50 

repetitions. 

 

2.17 Statistical Analyses 

Group data are reported as average ± SEM. All neurons with stable firing rates 

and spike shapes were included. Firing rates reported logarithmically were natural 

logarithms. All statistical tests were two sided. Different procedures were used to assess 

statistical significance depending on the type of data, as specified below. 

Observed behavior- or CS-related changes in firing rates. To determine if 

individual neurons showed significant behavior- or CS-related changes in firing rates, we 

used the Wilcoxon rank-sum test (p < 0.005) on the observed binned spiking locked to 

either the behavior or CS onset. Spiking was binned in 50 ms windows. A baseline of 5 s 

before the event onset was used to compare binned spiking with either 1 s after 

CS/behavior onset or 10 s after CS onset. 

Incidence of valence cells. In order to determine if the proportion of valence cells 

was significantly higher than expected by chance given the proportions of cells whose 

activity modulated the various CSs and CRs, we permuted the model-estimated peak 

firing rate modulations for all task variables across cells 10,000 times. This shuffling 

procedure randomized any potential associations between encoded variables and yielded 

a null distribution for the incidence of valence-coding cells. Using this null distribution, 
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we then calculated the percentile of the observed proportions. If this value fell outside the 

two-sided 95th percentile of the null distribution it was considered significant. 

Assessment of population response maps. We estimated the distribution of the 

slopes using bootstrap resampling. The plane was refit 500 times using different 

collections of neurons that were resampled with replacement. Each of the coding planes 

were recalculated for the same collection of resampled data points, generating matched 

pairs. For each code, these were used to generate 95% confidence intervals. To determine 

if a coding dimension was significantly mapped across the MDS space, we permuted 

code values across neurons and recalculated the planes (500 times), yielding the 

distribution of null planes. To determine if two codes were significantly different in their 

strength or direction, we took the difference in the magnitude or angle (using circular 

distance) of the slopes between the matched pairs and found the probability of a 

difference of zero. When comparing between codes, a Bonferroni correction for multiple 

comparisons (10 potential comparisons) was performed on all p-values. 
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Chapter III: 

 

Multidimensional coding by basolateral amygdala neurons 

 

 

3.1 Rationale 

The basolateral complex of the amygdala (BLA) is a structure involved in the 

acquisition and expression of conditioned responses (CRs) to stimuli (CSs) that predict 

aversive or appetitive outcomes. These CRs are thought to result from the activation of 

specific subsets of valence-coding BLA neurons. Under this model, the responses of BLA 

cells to CSs and the activity that drives CRs are closely related. In this chapter, I test this 

hypothesis using a novel paradigm which can dissociate BLA activity related to stimulus 

responses and conditioned behaviors. Eight rats were trained on the RRI task while 

recording neurons in LA, BL, and the striatum using movable silicon probes. See chapter 

II for a detailed description. 

 

3.2 Rats quickly learn the Risk Reward Interaction task 

In the RRI task (Fig. 3), light CSs indicated different outcomes based on their 

location. When the CS appeared below one of three shock sectors (CS-S; Fig. 3A, red), it 

signaled an impending footshock in that sector. When a CS was presented behind the left 

or right wall (CS-R; Fig. 3A, blue), it indicated that a water reward would be delivered at 

that location. The rats’ position and head direction were monitored throughout the task. 
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After training, rats (n=8) displayed different defensive and appetitive behaviors 

during the RRI task. On CS-S trials, if rats were on the shock sector at trial onset, they 

generally avoided the shock by moving to one of the unlit sectors (Fig. 3C1). In 19% of 

such active avoidance trials, animals showed behavioral freezing prior to avoiding the 

shock. Alternatively, if rats were already on one of the unlit sectors at the start of the CS-

S, then they typically displayed passive avoidance; that is, they stayed away from the lit 

sector until the trial ended (Fig. 3C2). 
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Figure 6. Incidence, duration, and latency of different types of CRs during training. 
(A) Incidence (% trials; y-axis) of passive avoidance as a function of training day (x-
axis). (B) Overall performance (% correct trials; y-axis) as a function of training day (x-
axis). Frequency distributions of the duration (C) or latency from CS onset (D) of the 
various CRs monitored in this study. 
 

During appetitive trials, rats ran to the reward port shortly after CS-R onset. This 

reward approach behavior (Fig. 3C3) was then followed by reward anticipation, defined 

as rats placing their two front paws onto the reward port and waiting there until reward 

delivery.  

During the training phase, rats acquired active avoidance faster than reward seeking (Fig. 

3B; two-way ANOVA, Behavior Type x Session, F(1,104)=33.32, p=8.15x10-8). Passive 

avoidance remained stable throughout training (Fig. 6A). As detailed in figure 6C-D, 

conditioned behaviors varied significantly in their duration (one-way ANOVA, 

F(4,5259)=31.74, p=3.62x10-26) and latency from CS onset (one-way ANOVA, 

F(4,5259)=7238.91, p=0). Once rats performed ≥85% of the trials correctly (Fig. 6B), they 

were implanted with silicon probes aimed at the BLA (Fig. 4A-C).  

 

3.3 Activity of principal BLA cells during CSs 

We recorded 344 cells in LA and 305 cells in BL while rats performed the RRI 

task. Cells were classified as putative principal neurons (PNs; LA n=264; BL n=212) or 

fast-spiking interneurons (ITNs; LA n=31; BL n=45) based on spike width and mean 

firing rate (Fig. 4D-E). To assess how the proportion of cells with CS-responses in the 

RRI task compared to previous reports on appetitive and aversive tasks, we computed the 

proportion of cells significantly responsive during the first second after CS onset. We 

found that ~20% of LA and ~35% of BL cells significantly increased or decreased their 
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firing rates in response to the CS-Rs or CS-Ss (Fig. 7A-B, top row; rank-sum tests, 

p<0.005), consistent with prior studies (Beyeler et al., 2016; Burgos-Robles et al., 2016; 

Lee et al. 2016, 2017; Namburi et al., 2015; Sangha et al., 2013; Shabel and Janak, 2009). 

When we expanded the test window from one to ten seconds (the CS period prior to the 

US), the proportion of cells responsive during the CS-Rs and CS-Ss increased 

significantly in both LA (Fig. 7A-B; chi-square tests: CS-Rs, χ2=32.59, p<0.00001; CS-

Ss, χ2=20.48, p=0.000036) and BL (Fig. 7A-B; CS-Rs, χ2=50.83, p<0.00001; CS-Ss, 

χ2=16.36, p=0.00028). 

 

Figure 7. Activity of BLA neurons during the CS-Rs and CS-Ss. 
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(A) CS-R. (B) CS-S. Proportion of LA or BL cells with significantly altered firing rates 
during the first second of the CSs (top) or their entire duration (bottom). (C-F), 
Representative examples of cells that showed significant changes in firing rates during 
one or more of the CSs. S-Cells (C) and R-Cells (D) are neurons whose firing rates 
increased selectively during the CS-Rs or CS-Ss, respectively. Mixed cells (E,F) are 
neurons that displayed marked trial-to-trial variations in the late part of their CS-related 
activity. Ticks, individual spike times. Thick lines, z-scored averages of firing rates. 
Vertical dashed lines, onset of CS-Rs (blue) or CS-Ss (red). Related to figure S2. 
Abbreviations: CS-R, reward-predicting conditioned stimulus; CS-S, shock-predicting 
conditioned stimulus; US, unconditioned stimulus. 
 

Also consistent with prior studies, our sample included cells whose firing rates 

increased selectively during the CS-Rs or CS-Ss. These cells, respectively termed R-Cells 

(Fig. 7C; LA, 5%; BL, 10%) and S-Cells (Fig. 7D; LA, 19%; BL, 20%), showed similar 

changes in activity during CSs of the same valence: if a cell was responsive to one CS-R 

(or one CS-S), it responded similarly to the other CS-R (or CS-Ss), but displayed no 

response or an inhibition during CSs of the opposite valence. Furthermore, these 

responses were independent of head direction (three-way ANOVA for stimulus-excited 

cells, Head Direction x Stimulus Type x Region, F(12,712)=1.05, p=0.4039) and stimulus 

proximity at CS onset (three-way ANOVA for stimulus-excited cells, Stimulus Proximity 

x Stimulus Type x Region, F(2,276)=1.4, p=0.2487). However, most CS-responsive cells, 

hereafter termed mixed cells (LA, 40%; BL, 53%), displayed marked between-cells as 

well as trial-to-trial variations in the late part of their CS-related activity, making it 

difficult to classify them into separate groups. Two examples of mixed cells are depicted 

in figure 7E-F. The first shows a transient inhibition at the onset of all CS types followed 

by an excitation during some CS-R and CS-S trials (Fig. 7E). The second increased its 

firing rate at the onset of all CSs but displayed a late persistent excitation only during the 

CS-Rs (Fig. 7F). 
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3.4 Activity of principal BLA cells in relation to CRs 

We reasoned that the trial-to-trial fluctuations seen in the late part of CS 

responses could be related to variations in the type or timing of the CRs. To test this, we 

computed peri-event time histograms (PETHs) of unit activity referenced to the onset of 

CRs instead of CSs, revealing that the activity of many PNs in LA (30.6%) and BL 

(31.1%) significantly increased in relation to one or more CRs relative to their firing rate 

immediately preceding behavior onset (rank-sum test, p<0.005; see Methods). CR-

activated cells were found among the three groups described above (R-cells, S-cells and 

mixed cells). In many of these cells (LA, 56 of 81; BL, 38 of 66), CR-locked activity 

occurred despite the absence of significant short-latency CS responses. Two examples of 

such cells are shown in figure 8A-B. The first cell selectively increased its firing rate at 

the onset of active avoidance (Fig. 8A1) and remained at baseline during passive 

avoidance trials (Fig. 8A2). Note the absence of increased spiking at the onset of the light 

stimulus (CS-S), indicated by the orange lines in figure 8A. The second cell did not 

change its firing rate during reward approach (Fig. 8B1), but subsequently displayed a 

marked and persistent activation whose onset coincided with that of reward anticipation 

(Fig. 8B2).  
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Figure 8. Behavioral correlates of unit activity. 
(A,B) Individual examples of principal neurons that strongly increase their firing rates in 
relation to (A1) active avoidance (AA) but not passive avoidance (PA; A2) or (B2) 
reward anticipation (RAnt) but not reward approach (RA, B1). Vertical dashed lines, 
onset of reference behavior. Ticks, individual spike times (as many trials as rows of ticks 
are shown). Thick lines, z-scored averages of firing rates. Yellow ticks, onset of CS. 
Cyan ticks, end of reference behavior. (C) Comparison between z-scored averaged firing 
rate ± SEM of principal cells (n=81) during AA (red) vs. PA (blue), referenced to 
behavior onset (C1) or CS onset (C2). (D) Comparison between z-scored averaged firing 
rate ± SEM of principal cells during correct (black) and error (red) CS-S (D1; n=68) or 
CS-R (D2; n=53) trials. (E,F) Relation between behavior onset (arrowheads) and unit 
activity for CS-S (E) and CS-R trials (F). Individual principal cells are shown in E1 and 
F1 (z-scored average ± SEM of multiple trials). Z-scored average ± SEM of all available 
principal cells are shown in E2 and F2.   
 

To test whether these CR-related increases in firing rates in fact represent delayed 

sensory responses to the light stimuli, we compared the activity of all putative CR-coding 

cells in three conditions: when rats emitted different CRs in response to the same CS, on 

correct vs. error trials, or when rats emitted the same CR at different times with respect to 

CS onset. For the first analysis, we took advantage of the fact that on aversive trials, rats 
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could avoid the US actively or passively, depending on their location with respect to the 

CS-S. Thus, we averaged the activity of all cells that, individually, showed significant 

increases in firing rates during active avoidance (hereafter termed AA-cells for simplicity; 

LA, n=49; BL, n=32) and compared their activity on aversive trials that called for an 

active (red, Fig. 8C) or passive avoidance (blue, Fig. 8C) response. Whether the activity 

of AA-cells was referenced to the onset of CRs (Fig. 8C1) or CS-Ss (Fig. 8C2), they 

showed significantly lower firing rates during trials that called for a passive instead of an 

active avoidance response (paired t-tests; CR-locked responses, t(29)=3.373, p=0.002; 

CS-locked responses, t(29)=4.44, p=0.0001). However, it is possible that on CS-S trials 

calling for an active vs. passive avoidance response, rats actually experienced a different 

CS. At odds with this interpretation however, we noticed that in 29% of trials where the 

rats were outside the shock sector, they nevertheless generated behavioral freezing in 

response to the CS-S, indicating that on those trials, they perceived the CS-S and 

interpreted it as threatening even though they were not in the shock sector.  

To determine whether this contrast resulted from the rats’ differing proximity to 

the light stimuli on active vs. passive avoidance trials, we next compared the averaged 

activity of all the AA-cells recorded during sessions with one or more error trials, where 

the rats failed to actively avoid the shock (46 LA cells, 22 BL cells, 18 sessions, 137 error 

trials). During the first five seconds following CS onset, by which time active avoidance 

responses are typically completed, AA-cells showed significantly higher firing rates on 

correct than error trials (Fig. 8D1; black, correct; red, error), even though their position 

relative to the light stimuli was the same in both cases (paired t-test t(10)=8.497, 

p=6.92x10-6). Furthermore, consistent with a recent report (Lee et al., 2016), this was also 
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true for cells with significant increases in firing rates during the CS-Rs (31 LA cells; 22 

BL cells, 14 sessions, 167 error trials). In these cells, while the early sensory-related part 

of the response to the CS-R remained when rats failed to approach and anticipate reward 

delivery, the late component was nearly abolished (Fig. 8D2; paired t-test t(19)=17.345, 

p=4.17x10-13). 

Additional evidence of the behavioral dependence of unit activity was obtained by 

comparing the time course of firing rates on trials where rats emitted the correct CRs at 

different latencies with respect to CS onset. Figure 8E1 shows an example AA-cell 

whose activity increased when the avoidance behavior was emitted at different latencies 

across trials (black arrows). This dependence of cell activity on behavior latency was also 

evident when all AA-cells (n=81) were considered (Fig. 8E2). Similar results were 

obtained with RA-cells (n=44; Fig. 8F1,2).  

 

3.5 Generalized linear model untangles cell activity 

Even though the above suggests that the activity of BLA neurons is related to both 

stimuli and behaviors, the temporal overlap between CSs and associated CRs constitutes 

a major obstacle when determining what variables LA and BL cells actually encode with 

PSTHs. To circumvent these limitations, we fit the spiking of individual cells using a 

group Lasso generalized linear model (GLM) with ten-fold cross validation. This method 

is not based on PETHs, but takes full advantage of trial-to-trial variations in the type, 

timing and duration of the variables of interest (stimuli, evoked and spontaneous 

behaviors) to infer which one(s) neurons encode. It is used to fit the spiking of individual 

cells for the duration of the task. Importantly, this type of GLM allows for dimensionality 
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reduction in correlated data and encourages sparsity when identifying the task variables 

that are related to cell activity (Breheny & Huang, 2015; Robert Tibshirani, 1996; Ming 

Yuan & Yi Lin, 2006).  

To test whether the GLM’s coding estimates had face validity, we first compared 

the model’s output to the results of PETHs referenced to different variables. For instance, 

standard analyses had revealed that the cell shown in figure 9A (same as in Fig.7F) had 

short-latency (behavior-independent) responses to all CSs, that it increased its firing rate 

in relation to reward anticipation and, more weakly, during active avoidance. The model 

correctly captured this complex response profile (Fig. 9A, CSs row 1; reward anticipation 

row 3, columns 4-5; active avoidance, row 3, column 1). 

 

Figure 9. Coding of task variables by example BLA cells, as estimated by the GLM. 
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A and B, two different principal BLA cells. In both cases, the six top rows show GLM-
estimated spiking (blue lines and left y-axis) for different task variables (gray lines and 
right y-axis) whereas the bottom row superimposes the observed spiking of the cell (red 
lines) and estimated spiking (full model, blue lines) for each CS. CS-Ss and associated 
behaviors (red letters) are shown on the left whereas CS-Rs and associated behaviors 
(blue letters) are shown on the right of each panel. Abbreviations: AA, active avoidance; 
Frz, freezing; PA, passive avoidance; RA, reward approach; RAnt, reward anticipation. 

 

 

Figure 10. Coefficient of determination for principal cells and interneurons. 
(A1) Boxplots of R2 values for LA, BL, and striatal principal cells. Red line represents 
median value, lower and upper bounds of blue box represent 25th and 75th percentiles, 
respectively, and the whiskers extend to the most extreme data points not considered 
outliers. (A2) R2 values as a function of the number of features encoded by each cell 
(Mean ± SEM). Correlation coefficients and p-values reported on the top left corner of 
each plot. (B) Boxplots of R2 values for interneurons. 
 

Although the model estimates were generally consistent with the results of the 

standard analyses, there were some discrepancies. These likely resulted from the GLM’s 
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ability to disentangle coding for concurrent variables that PETHs could not isolate. A 

prime example of this is the encoding of movement speed vs. active CRs (reward 

approach and active avoidance). This is illustrated in figure 9B, which shows a principal 

BLA cell that had been identified as an AA- and RA-cell with PETHs. In order for the 

model to assess whether the increases in firing rates seen during active CRs were, in sum 

or in part, actually due to the coding of locomotion, we had the GLM fit the cell’s activity 

to the rat’s movement speed throughout the task (including the inter-trial intervals). The 

model estimated that part of the spiking observed during active avoidance and reward 

approach trials was related to speed (Fig. 9B row 5). However, since speed did not fully 

account for the cell’s increases in firing rates, the model attributed the rest of the response 

to the active CRs. Most importantly, the model-estimated spiking combined across all 

task-related variables closely matched observed spiking (Fig. 9B, bottom row). See Fig. 

10 for a characterization of the model’s estimation accuracy. 

 

3.6 Task-related activity in the BLA and striatum 

Next, we used the GLM output to characterize coding of task variables by LA and 

BL neurons at the population level. For comparison, we carried out the same analyses in 

striatal neurons (n=208) recorded dorsal to the amygdala. In the three structures, ≥62% of 

presumed principal cells (Fig. 11A1) and ≥65% of interneurons (Fig. 11A2) encoded two 

or more task variables. The number of encoded task features was distributed similarly 

across structures in principal cells and interneurons (Kullbeck-Leibler tests for permuted 

distributions: all percentiles within 95th two-sided cut-offs; see General Methods). 
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To study regional differences in the coding of task variables, we computed the 

proportion of cells with excitatory and inhibitory modulations (respectively, red and blue 

bars in Fig. 11B1,C1) and their average absolute magnitude (Fig. 11B2,C2). These 

analyses revealed a remarkable degree of regional similarity in the encoding of task 

features. In the three regions, >48% of principal cells (Fig. 11B1) and >71% of 

interneurons (Fig. 11C1) showed excitatory or inhibitory modulations by all task features 

with the exception of freezing in the striatum (41% of PNs, 37% of ITNs). A three-way 

ANOVA on the magnitude of the modulations revealed that PNs (Fig. 11B2) had 

stronger modulations than interneurons (Fig. 11C2) across all task features (F(1,3785) = 

71.52,  p=0). Furthermore,  an  interaction  effect  between  feature type  and  structure   
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Figure 11. Multidimensional coding by BLA neurons, as determined by the GLM. 
In A-C, the left, middle, and right columns show data obtained in LA, BL, and striatum, 
respectively. (A) Frequency distributions of the number of task variables encoded by 
presumed principal cells (A1) and interneurons (A2). (B1) Proportion of presumed 
principal cells (y-axis) that exhibited excitatory (red) or inhibitory (blue) coding of 
different task variables (x-axis). (B2) Absolute average ± SEM modulation of firing rates 
in relation to each variable. (C1) Proportion of presumed interneurons (y-axis) that 
exhibited excitatory (red) or inhibitory (blue) coding of different task variables (x-axis). 
(C2) Absolute average ± SEM modulation of firing rates in relation to each variable. 
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Abbreviations: AA, active avoidance; Frz, freezing; ITNs, interneurons; PA, passive 
avoidance; PNs, principal neurons; RA, reward approach; RAnt, reward anticipation. 
 

(F(7,3785)=2.47, p=0.0158) indicated that striatal cells were more strongly modulated by 

speed than LA and BL cells (Fig. 11B2; Tukey-Kramer test, STR vs. LA p=5.91x10-6, 

STR vs. BL p=5.91x10-6), consistent with the role of the striatum in motor control 

(Brown and Robbins, 1989; Kravitz et al., 2010; Kreitzer, 2010; Reading et al., 1991). 

Finally, LA cells were most strongly driven by freezing and this modulation was 

significantly higher than in striatal but not BL neurons (Fig. 11B2; Tukey-Kramer test, 

LA vs. STR p=0.0198, LA vs. BL p=0.0892). 

 It was previously reported that BLA cells encode valence during appetitive and 

aversive tasks (Belova et al., 2008; Beyeler et al., 2016; Lee et al., 2017; Namburi et al., 

2015; Sangha et al., 2013). In these prior studies however, the definition of valence was 

based on CS responsiveness, raising the question of the degree to which BLA cells 

encode valence in both the stimulus and behavioral dimensions. Presumably, if a cell is 

encoding valence, it should not only respond in a selective manner to the cues that elicit 

positive or aversive outcomes but also show corresponding changes in activity in relation 

to the conditioned behaviors they elicit. Thus, we defined valence as an excitatory 

response to either an appetitive or aversive CS, and at least one behavior of the same 

valence, plus an inhibition or no change in firing rate to the CS and behaviors of the 

opposite valence. 

To study valence coding among BLA neurons, we plotted the observed 

normalized change in firing rate of LA and BL cells to reward approach (Fig. 12, y-axes) 

as a function of that seen in relation to active avoidance (Fig. 12, x-axes) and color-coded 
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the points corresponding to each cell based on the model-estimated modulation (blue, 

inhibition; red, excitation) by the various task variables (Fig. 12: top CSs; middle, active 

CRs; bottom, passive CRs). First, we verified that the model-estimated modulation by 

reward approach and active avoidance matched the change in firing rate observed in 

relation to these behaviors. Generally, the two matched: cells with strong positive 

estimated modulations by reward approach (red dots in Fig. 12A2) or active avoidance 

(red dots in Fig. 12B2) had higher values on the y- and x-axes, respectively (RA r=0.56, 

p=1.75x10-17; AA r=0.66, p=3.29x10-25). Cells that deviated from this trend strongly 

encoded speed, as discussed above (not shown).  
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Figure 12. Relation between GLM-estimated coding of task variables and firing rate 
change observed during active conditioned behaviors. 
For all available principal cells (left) cells or interneurons (right), all panels plot the peak 
firing rate change observed during reward approach (y-axis) as a function of that seen 
during active avoidance (x-axis). Although the position of the circles representing each 
cell does not vary between plots, their color changes, reflecting the degree to which they 
were, according to the GLM, excited (red) or inhibited (blue) in relation to the following 
variables: (A1) CS-R; (A2) reward approach - RA; (A3) reward anticipation -RAnt; (B1) 
CS-S; (B2) active avoidance - AA; (B3) freezing - Frz. See color scale at bottom of 
figure. 
 

Consistent with the notion of valence coding in the BLA, a minority of principal 

BLA cells encoded valence along both stimulus and behavior dimensions. We first 

provide a qualitative description of these findings and then summarize the results of the 

statistical analyses. In figure 12, cells encoding positive valence are huddled near and 

high along the y-axis. They tend to show strong positive modulations by the CS-R (Fig. 

12A1), reward approach (Fig. 12A2) and reward anticipation (Fig. 12A3). Conversely, 

cells encoding negative valence hug the x-axis. They tend to show strong positive 

modulations by the CS-S (Fig. 12B1), active avoidance (Fig. 12B2) and freezing (Fig. 

12B3). Additionally, a subset of these valence-coding cells flipped their responses from 

an excitation to an inhibition in relation to variables of the opposite valence.  

Overall, a low proportion of principal cells encoded positive or negative valence 

in LA (3.4 and 9.5%) and BL (1.9 and 17.5%), respectively. To test if this incidence was 

significantly higher than expected by chance given the proportions of cells whose activity 

was modulated by the various CSs and CRs, we permutated the normalized peak values 

of all task features (see Methods) 10,000 times to break any relationships between stimuli 

and behaviors and tested whether the proportion of valence-coding cells fell outside the 

two-sided 95th percentile of the null distribution. The incidence of valence-coding cells 
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did not exceed chance levels in LA or BL (33rd and 84th percentile, respectively). Of note, 

this negative result was not due to the fact that BLA neurons responded sparsely: most 

encoded multiple task features (Fig. 11A), including CSs and CRs (Fig. 11B). The low 

incidence of valence-coding we report is due to the fact that our definition of valence-

coding not only takes into account the CS-specificity of the cells responses, as in prior 

studies, but also their behavioral correlates. 

 

3.7 Heterogeneous Coding in LA and BL  

Since explicit coding of valence is not prominent at the single cell level in the 

BLA, we tested if a valence code is present in the population activity. To examine this, 

for each region and cell type, we correlated the cells’ peak modulations of all task 

variables (Fig. 13, dots mark significant values at p<0.001). Principal LA neurons 

exhibited a marked tendency to show correlated responses to task events of the same 

valence, and decreased or negative correlations between those of different valences. This 

pattern was less striking for BL, but still apparent. To test the possibility that the 

correlations might partly result from correlations between the features themselves, we re-

assessed the significance of the correlation matrices by comparing them to shuffled 

neural activity. To this end, the peak values of each task features were shuffled 10,000 

times and the correlation matrices were recomputed for each shuffled distribution. The 

actual correlation coefficients were considered significant if they fell outside the two-

sided 99.9th (p<0.001) percentile of the null distribution. However, the two approaches 

yielded nearly identical results: There was a 98% agreement between the two methods for 

principal cells and 100% for interneurons. 
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Figure 13. Correlation between firing rate modulations associated with behaviors 
and CSs. 
Spearman correlation matrices for LA (left), BL (middle) and striatal (right) principal 
cells (top) or interneurons (bottom). Warmer and cooler colors indicate positive and 
negative correlations, respectively, as indicated by the color scale on the left. Dots 
indicate significant correlations (p<0.001). Abbreviations: AA, active avoidance; Frz, 
freezing; PA, passive avoidance; RA, reward approach; RAnt, reward anticipation. 
 

Similar results were obtained using a d-prime score (d'; Keene et al., 2016; McKenzie et 

al., 2014) that measured the degree to which within-valence (CSs plus CRs) correlations 

exceeded those between-valence (bootstrap confidence intervals from zero, LA=1.56, 

p<10-4; BL=0.99, p=0.0009). In LA, valence coding was also evident when restricting the 

d-prime analysis to the valence of behaviors (d’=5.99, p<10-4) or CSs (d’=1.26, p=0.004), 

whereas in BL it was significant for behaviors (d’=1.96, p=0.0009) but not CSs (d’=0.58, 

p=0.1). The same analyses applied to ITNs revealed significant valence coding for 

behaviors (LA=3.27, p=0.014; BL=6.57, p=0.0028), but not CSs (LA=2.48, p=0.27; 

BL=0.09, p=0.4).  
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` While the above analyses indicate that valence is coded along multiple 

dimensions in the BLA, it remains unclear how these codes are distributed at the 

population level and how they relate to each other. To address these questions, we 

applied multidimensional scaling (MDS; Fig. 14A), a dimensionality reduction strategy 

that proved useful to study coding in the gustatory and olfactory systems, where sensory 

representations are obscure (Di Lorenzo, Chen, & Victor, 2009; Youngentob, Johnson, 

Leon, Sheehe, & Kent, 2006). The peak firing rate modulations related to the ten 

variables of interest (3 CS-Ss, 2 CS-Rs, 4 CRs, and speed) were used to plot the position 

of cells in a ten-dimensional space (Fig. 14A1). This map was then collapsed into two 

dimensions (Fig. 14A2,3) based on the similarity of the cells’ peak responses, while 

minimizing errors in setting their relative distance. Once this map was generated for each 

region, we examined how it related to various coding dimensions (e.g. valence-behavior, 

valence-CS) by fitting a plane in 3D space where the first two dimensions were provided 

by the MDS and the third was one of the coding dimensions (Fig. 14A4,5; labels at top of 

plots in Fig. 14B). In these maps, the steepness of the color gradient is proportional to 

how strongly the coding dimension is represented in the population. The orientation of 

the color gradients indicates whether the different coding dimensions are related. That is, 

orthogonal orientations indicate independent codes whereas parallel orientations indicate 

closely related codes. For simplicity, figure 14C represents the steepness and orientation 

of the color gradients by vectors, one for each of the coding dimensions examined. For 

consistency, in each region, we set to vertical the vector associated with the coding 

dimension most strongly represented, while preserving the relative orientation of the 

other vectors.  



55 
 

 

 

Figure 14. Coding for different task dimensions at the population level. 
(A1) Each neuron was described by a vector composed of their responses to CSs and 
behaviors. (A2,3) These were mapped to a two dimensional space using MDS. (A4) For 
each neuron we also computed a code value that was derived by contrasting responses to 
different stimuli and behaviors. (A5) PNs from each region were placed in a space where 
the first two dimensions were their MDS values, and the third was the value for one of 
their codes. A three dimensional plane was fit in this space that could capture a 
systematic mapping of the code under consideration in the low dimensional space. (B) 
Low dimensional maps of coding for LA PNs. Each PN (filled circle) was placed into a 
two dimensional space such that nearby PNs had similar response vectors. The code 
value for each neuron was then added (color of the filled circle). A code that is 
systematically represented in the low dimensional response space produces a strong 
gradient (e.g. ValBeh), and one that is not produces a weak gradient (e.g. BehCS). (C) 
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Length and direction of plane gradients from the PNs recorded in each region. The 
gradient for each plane plotted on a polar plot as colored arrows. The plot was rotated so 
that the gradient with the longest length pointed up at 90 degrees. Contour plots with 
fading colors are the bootstrap probability distributions for the gradients. (D) Ordering of 
the coding gradients by length. Error bars denote the 95% bootstrap confidence intervals 
for the gradient length. Dashed lines are 95% confidence intervals returned by computing 
null gradients where code value was randomly permuted across the population. 
 

Consistent with the correlation matrices (Fig. 13), valence-behavior was the 

strongest coding dimension in LA and BL (Fig. 14C1,2). Although less salient, the 

valence-CS dimension was also expressed in LA and BL and aligned to valence-

behavior. Coding for speed also fell roughly along the same axis as valence, except that 

its direction was opposite in LA and BL. Evidence of this can also be found in the 

correlation matrices where the speed-related activity of LA neurons tended to correlate 

positively with their modulation by aversive events (Fig. 13, top left) and less so or 

inversely in BL (Fig. 13, top middle). The active-passive coding dimension was also 

present in LA and BL (Fig. 14C1,2), but it was orthogonal to the valence code, implying 

that the two populations could simultaneously represent both types of information with 

minimal interference. As for speed, the modulation along the active-passive coding 

dimension was opposite in LA vs. BL. Finally, while the same coding dimensions were 

observed in the striatum (Fig. 14C3), their relative importance and overall organization 

differed markedly from LA and BL. In particular, speed emerged as the dominant coding 

dimension followed by the active-passive, behavior-CS, valence-CS, and valence-

behavior codes.  

To assess the variability of vector length estimates, we used a 95% bootstrap 

confidence interval (Fig. 14D). For each vector length, we also defined 95% confidence 

intervals returned by computing null gradients where code values were randomly 
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permuted across the population (dashed lines in Fig. 14D denote 97.5 and 2.5 percentile 

of the null distributions). Using this approach, it was determined that all vector lengths 

were significant with the exception of behavior-CS in LA (Fig. 14D1) and valence-

behavior in the striatum (Fig. 14D3). To assess whether vector lengths differed 

significantly from the others within a region, we used a permutation test with correction 

for multiple comparisons, confirming that valence-behavior was the dominant coding 

dimension in LA and BL (p=0.04; Fig. 14D1,2) whereas speed dwarfed the others in the 

striatum (p=0.04; Fig. 14D3). Bootstrap resampling with threshold p of 0.05 (corrected 

for ten comparisons) was also used to assess the difference of angle estimates between 

codes (Fig. 14C, concentric circles at tip of vectors), indicating that the active-passive 

coding dimensions differed significantly from the valence dimensions in LA and BL 

(valence-behavior vs. active-passive BL p=0.04, LA p<0.002; valence-CS vs. active-

passive BL p=0.04; LA p<0.002), but not in the striatum (both p>0.05). See Fig. 15 for 

similar analyses in interneurons. 
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Figure 15. Putative interneurons in both the amygdala and striatum exhibited 
systematic mapping of coding.  
(A) Coding gradients for LA, BL, and STR interneurons plotted similarly to those seen in 
Fig. 14C. In both LA and BL, ValBeh had the strongest gradient, although it was only 
significantly stronger in LA when compared with ValCS (p = 0.04). Interneurons in STR 
showed the strongest coding for speed, which was significantly stronger than the codes 
for ActPas (p = 0.04), ValCS (p = 0.04), and BehCS (p = 0.04). (B) Coding strengths for 
interneurons across LA, BL, and STR plotted similarly to those seen in Fig 14D. 
 

3.8 Conclusions 

It was reported that appetitive or aversive conditioning leads to the potentiation of 

CS inputs onto valence-specific BLA neurons (McKernan & Shinnick-Gallagher, 1997; 

Rumpel et al., 2005; Tye et al., 2008). As a result, CSs would trigger approach or 

defensive CRs through the activation of valence-coding neurons with distinct outputs 

(Beyeler et al., 2016; Namburi et al., 2015; Tye et al., 2008). However, because of the 

close temporal relation between CSs and CRs, and the fact that in most prior studies, each 

CS could only trigger one CR, it remained unclear whether BLA neurons encode CS 
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identity, the behavior it elicits, or if the two are one and the same. Our study aimed to 

shed light on this question using a task where rats could emit different CRs in response to 

the same CSs, allowing us to dissociate normally intertwined task features that BLA 

neurons potentially encode.  

Using this approach, we found that in most LA and BL cells, the magnitude and 

time course of their activity during the CS depended on the type and timing of the CRs. 

Thus, the CS responses of BLA cells, that is their sensory aspects, are separable from the 

activity that drives CRs; one does not necessarily cause the other. Second, while valence 

could be decoded at the population level, the incidence of valence-coding cells, as 

defined by their corresponding CS- and CR-related selectivity, did not exceed chance. 

Last, most BLA neurons concurrently encode multiple task features and behaviors.  
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Chapter IV: 

 

Multidimensional representations in the amygdalo-prefrontal network 

 

 

4.1 Rationale 

Of the structures regulating memory and emotions, two nodes stand out for their 

remarkably similar connectivity: the medial prefrontal cortex (mPFC) and amygdala 

(reviewed in Ongur & Price, 2000; Pitkanen, 2000). Not only do these structures form 

dense reciprocal connections with each other, but they both have access to associative 

sensory information, share close ties with the insula, project to overlapping striatal 

territories, and target a common array of brainstem nuclei involved in neuromodulation, 

emotional expression, and autonomic regulation (Allen et al., 1991; Gabbott et al., 2005; 

Hoover & Vertes, 2007; Krettek & Price, 1977, 1978; McDonald, 1998; Ongur & Price, 

2000).  

Consistent with their similar connectivity, the functions of the amygdala and 

mPFC are tightly intertwined. For instance, they are both required for the expression and 

extinction of conditioned responses (CRs) to cues (CSs) that predict aversive outcomes 

(USs) such as behavioral freezing and active avoidance (Bravo-Rivera et al., 2014; 

Fanselow & Poulos, 2005; LeDoux, 2000; Moscarello & LeDoux, 2013; D. Sierra-

Mercado, Jr. et al., 2006). Moreover, they both regulate cued reward-seeking behaviors 
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(Ambroggi et al., 2008; Burgos-Robles et al., 2013; Ishikawa et al., 2008; Peters et al., 

2009).  

If the roles of the amygdala and mPFC overlap so much, what is the 

computational advantage of having both? One possibility is that mPFC and amygdala 

neurons code information differently, allowing them to implement distinct sets of input-

output functions. Thus, in this chapter I compare the coding properties of mPFC and 

amygdala neurons using the RRI task. 

 

4.2 CS responsiveness and behavioral correlates of PL neurons 

Rats were trained on the RRI task, as described in the previous chapter, to avoid 

footshocks based on the sector where the CS-S appeared, and retrieve rewards based on 

the location of the CS-R (Fig. 16A). Once they reached criterion (>85% correct trials on 

all CSs combined), generally in less than a week (Fig. 16B), they were implanted with a 

silicon probe just dorsal to the prelimbic (PL) sector of the mPFC (n=4). Three of these 

rats were also implanted with silicon probes in the amygdala. Throughout the recording 

sessions, we monitored the rats’ position, head direction, and movement velocity with an 

overhead camera. The probes were lowered after each recording session by at least 140 

μm to obtain new cells the following day. At the conclusion of the experiments, the 

location of the probe was marked with small electrolytic lesions for subsequent 

histological verification of recording sites (Fig. 16C). 

 Cells recorded in the amygdala in chapter 3, were combined for analyses with all 

newly recorded neurons. Only cells histologically determined to have been recorded in 

PL (n=526), LA (n=365), and BL (n=307) are included in this chapter. PL and amygdala 
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cells were classified as putative PNs or fast-spiking interneurons based on their firing 

rates and spike duration (trough-to-peak interval; Fig. 16D). However, only PNs will be 

considered further, resulting in samples of 452 cells in PL, 284 cells in LA and 214 BL 

neurons.  

 

Figure 16. RRI task, histological verification of PL neurons, and their classification 
(A) RRI task apparatus: a rectangular arena with high walls, no ceiling, and a floor made 
of metal bars. Light-emitting diodes (LEDs) at different positions signal an upcoming 
reward (blue; behind left and right wall, CS-R1 and CS-R2, respectively) or an 
impending footshock (red; under each of three different floor sectors, CS-S1-3). (B) 
Acquisition of conditioned active avoidance (B1) and reward seeking (B2). Gray lines, 
individual rats (n=4). Colored lines, average ± SEM. (C) Histological verification of 
recording site. Coronal section stained with cresyl violet. A small electrolytic lesion 
(arrow) marks the last recording site. (D) Classification of recorded cells as presumed 
projection cells (PNs, blue) or fast-spiking interneurons (ITNs, red) based on their spike 
duration (y-axis, peak-to-trough interval, cut-off of 0.5 ms) and firing rate (x-axis, cut-off 
of 10 Hz). Cells that did not meet both criteria (UNCL, gray) were not considered further. 
Abbreviations: Cg, cingulate cortex; DP, dorsal peduncular cortex; fmi, forceps minor of 
the corpus callosum; IL, infralimbic cortex; PL, prelimbic cortex. 
 

The task-related activity of PL neurons was similar to that of LA and BL cells in 

many respects. Figure 17 illustrates the responses of LA, BL, and PL neurons to CS-Rs 

(top) and CS-Ss (bottom), z-scored based on their activity during the pre-CS period (5 s). 

Cells were rank-ordered based on the amplitude of their responses to CS-R1 or CS-S1 

and the same order was kept for CS-R2 and CS-S3, respectively. Although the magnitude 
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of firing rate changes tended to be lower in PL (see also below), CS responses at the three 

sites were similar, ranging from transient or sustained increases in firing rates to long 

lasting inhibitory responses (Fig. 17).  

 

Figure 17. CS-evoked activity in LA, BL, and PL neurons. 
Heatmaps of activity evoked by CS-Rs (top) or CS-Ss (bottom) in all available principal 
LA (A, n=284), BL (B, n=214), and PL (C, n=452) neurons. Firing rates were z-scored 
based on activity during the pre-CS period. Data is plotted with 200 ms bins. Warmer 
colors indicate higher firing rates (see color bar). In A1-C1, neurons were rank ordered 
based on the amplitude of their responses to CS-R1 and the same order was kept for CS-
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R2, respectively. In A2-C2, cells were rank ordered based on the amplitude of their 
responses to CS-S1 and the same order was kept for CS-S3. 

 

To assess the statistical significance of CS responses, we compared firing rates 

during the time bins in the first second following CS-onset to the 5-s pre-CS baseline (50 

ms bins) using rank-sum tests with a significance threshold of p<0.005. We restricted this 

comparison to the first second after CS onset because other analyses described below 

revealed that PL neurons, like BLA cells, also fired in relation to CRs occurring later 

during the CSs. With this approach, the proportion of cells with significantly increased 

firing rates during at least one of the CSs did not differ significantly at the three sites for 

the CS-Rs (LA, 7%; BL, 9%, PL, 7%; χ2=0.31, p=0.86) or the CS-Ss (LA, 8%; BL, 13%, 

PL, 11%; χ2=3.36, p=0.19; Fig. 18). 

 

Figure 18. CS and behavior response patterns of LA, BL, and PL neurons. 
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Percent of cells with a significant increase in firing rate (rank-sum test, p=0.005) during 
time bins in the first one second after CS or behavior onset compared to 5 s baseline pre-
CS period in LA, BL, and PL. Left: Percent of cells with no CS response, response to at 
least one CS-R and no CS-S response, response to at least one CS-S and no CS-R 
response, mixed responses to either CS-R or CS-S, and all CSs. Right: Percent of cells 
with one of the CS-response categories on the left and an increase in firing rate during 
AA, RA, neither or both. 
 

  Another similarity between LA, BL and PL neurons was the strong dependence 

of their CS-related activity on behavior. To examine this question, we referenced unit 

activity to the onset of CRs instead of CSs, computed peri-event time histograms 

(PETHs) of neuronal discharges, and determined whether firing rates increased in relation 

to one or more CRs relative to firing rates preceding behavior onset (rank-sum tests, 

p<0.005; see Methods). Figure 19 illustrates three different PL neurons where trials were 

aligned to the onset of CSs (top) or CRs (bottom). As we reported in LA and BL (Kyriazi 

et al., 2018), some PL cells with robust CS responses lacked behavior-related activity 

(Fig. 19A). Conversely, some PL cells with no CS responses showed strong CR 

correlates (Fig. 19B). And finally, some cells had both, CS- and behavior-related 

increases in firing rates (Fig. 19C). A detailed analysis of the relation between CS 

responsiveness and CR-related activity revealed a remarkably similar profile at the three 

sites (Fig. 18). The proportion of cells with increased firing rates during active CRs did 

not differ significantly between amygdala and PL neurons for the CS-R (RA: LA, 9.9%; 

BL, 12.6%; PL, 13.2%; χ2=1.98, p=0.37) or CS-S (AA: LA, 16.5%; BL, 17.2%; PL, 

15%; χ2=0.64, p=0.73).  
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Figure 19. CS- and CR-related activity of PL neurons. 
(A-C) Three different PL neurons. Top, rasters where ticks represent individual spike 
times and each row represents a trial. Bottom, z-scored peri-event histograms (PEHs) of 
firing rates. In A1-C1, rasters and PEHs are referenced to CS onset whereas in A2-C2, 
they are referenced to CR onset. (A) Cell with a CS response but no CR correlate. (B) 
Cell with no CS response that fires in relation to the CR. (C) Cell with both, a CS 
response and a CR correlate. (D) Comparison between z-scored averaged firing rate ± 
SEM of PL cells during AA (red) vs. PA (blue), referenced to CS onset. Only cells 
increasing their firing rate during AA are included in this panel. (E) Comparison between 
z-scored average firing rate ± SEM of PL cells during correct (black) and error (red) CS-
S trials. The number of cells included in this analysis is lower than in panel E because 
error trials did not occur in all recording sessions. This figure is based on ten error trials 
from seven recording sessions. (F) Comparison between z-scored average firing rate ± 
SEM of PL cells during correct (black) and error (red) CS-R trials (60 error trials from 12 
sessions). 
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In fact, further analyses revealed that, as we previously observed in LA and BL 

(Kyriazi et al., 2018), much of the CS-related increases in PL firing rates, even those 

developing shortly after CS onset, were not linked to the CSs but to the behavior they 

elicited. For instance, when we compared the same cells with AA-related activity on CS-

S trials that called for AA vs. PA responses, we found that the CS-S related activity was 

drastically lower on trials that called for PA than AA responses (Fig. 19D). Similarly, 

when we compared the activity of AA or RA cells on correct vs. error trials, their firing 

rate during the CS was lower on error than correct trials (Fig. 19E-F). 

 

4.3 Differences between the selectivity of PL and BLA neurons 

 Despite the similarities, there were also clear differences. First, the cells’ 

responses to different CSs of the same type (e.g. CS-R1 vs. CS-R2; CS-S1 vs. CS-S3) 

were more dissimilar in PL (Fig. 17C) than in LA (Fig. 17A) or BL neurons (Fig. 17B). 

To quantify this, we first averaged the z-scored response of each cell during the first 

second after CS onset and then calculated the correlation between CS-R1 vs. CS-R2 and 

CS-S1 vs. CS-S3 for each brain region, separately. The correlation was lower in PL than 

LA or BL neurons for the CS-Rs (LA, 0.53; BL, 0.69; PL, 0.42) and CS-Ss (LA, 0.5, BL, 

0.58; PL, 0.45).  

To shed light on the origin of this difference, we then compared the incidence of 

cells whose firing rates significantly increased or decreased in response to just one of the 

CSs of a given type. This method disclosed a clear difference between PL and amygdala 

neurons. That is, the proportion of cells with inhibitory responses to only one CS of a 

given type was significantly higher in PL (Fig. 20A1, blue). This was true of the CS-Rs 
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(χ2=18.7, p<0.0001) and the CS-Ss (χ2=9.64, p=0.0081) but did not hold for excitatory 

responses (Fig. 20A1, red) to CS-Rs (χ2=1.03, p=0.59) or CS-Ss (χ2=0.17, p=0.92). 

Figure 20A2 shows an example of cell with inhibitory response to CS-R2 but not to CS-

R1.  

PL neurons also showed greater selectivity for CRs evoked by different CSs. That 

is, a higher proportion of PL cells were activated in relation to RA evoked by only one of 

the CS-Rs (e.g. RA to CS-R1 but not CS-R2) or AA elicited by only one of the CS-Ss 

(e.g. AA to CS-S1 but not 3) than in LA or BL (RA: χ2=12.11, p=0.0024; AA: χ 2=19.99, 

p<0.0001; Fig. 20B1, red). The difference in selectivity was less marked (RA) or absent 

(AA) when considering inhibitory responses (RA: χ2=20.61, p<0.0001; AA: χ2=0.03, 

p=0.99; Fig. 20B1, blue). Figure 20B2 shows an example of a cell activated in relation to 

AA elicited by CS-S1 but not CS-S3. 

 

Figure 20. Higher incidence of CS- and CR-selective cells in PL 
 (A1) Comparison between the incidence of cells with excitatory (red) or inhibitory (blue) 
responses to only one CS-R (top) or CS-S (bottom) among LA (left), BL (middle) and PL 
(right) neurons. Percentages represent selective cells out of total number of responsive 
cells. The total number of CS-R excited cells was 24 in LA, 22 in BL and 40 in PL. The 



69 
 

 

total number of CS-S excited cells was 31 in LA, 26 in BL, and 47 in PL. The total of 
CS-R inhibited cells was 25 in LA, 52 in BL, and 49 in PL. The total number of CS-S 
inhibited cells was 20 in LA, 46 in BL and 38 in PL. (A2) Example of cell with inhibitory 
response to CS-R2 but not to CS-R1. (B1) Comparison between the incidence of cells 
with excitatory (red) or inhibitory (blue) CR-related activity in relation to only one CS-R 
(top) or one CS-S (bottom). The total number of RA-excited cells was 28 in LA, 27 in 
BL, and 60 in PL. The total number of AA-excited cells was 47 in LA, 37 in BL, and 68 
in PL. The total number of RA-inhibited cells was 35 in LA, 44 in BL, and 148 in PL. 
The total number of AA-inhibited cells was 47 in LA, 37 in BL, and 68 in PL. (B2) 
Example of cell activated in relation to AA elicited by CS-S1 but not CS-S3. (A2, B2) 
Top, rasters where ticks represent individual spike times and each row represents a trial. 
Bottom, z-scored PEHs of firing rates. 
 

4.4 Disentangling the correlates of unit activity with a generalized linear model (GLM) 

In the prior section, our analyses were complicated by the presence of multiple 

sensory and behavioral variables whose relative timing varied between trials. 

Specifically, a number of factors potentially influenced neuronal activity, including CS 

identity, the rats’ position with respect to the CS, the type and timing of the required (or 

erroneous) CRs, the speed at which the rats moved, and potential interactions between 

these variables. Since PSTHs cannot possibly isolate the influence of these interacting 

factors, we turned to a different approach: we inferred the variables PL neurons encode 

using a group lasso GLM with ten-fold cross validation.  

The GLM relies on variations in the timing, duration and type of variables 

occurring on different trials to determine which ones neurons encode. Of note, the group 

lasso GLM permits dimensionality reduction in correlated data and favors sparsity in the 

identification of variables related to neuronal activity (Breheny & Huang, 2015; R. 

Tibshirani, 1996; M. Yuan & Y. Lin, 2006). Due to the prevalence of selective responses 

observed in PL (Fig. 20), we added interaction terms in the GLM to capture the 

differential associations between individual trial types and behaviors (e.g. CS-R1 with 
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RA, CS-R2 with RA, CS-S1 with AA, CS-S3 with AA, etc.; see Methods for full list of 

parameters).  

 

Figure 21. Coding of task variables by an example PL cell as estimated by the GLM. 
The first six columns show GLM-estimated spiking (blue lines) for each task variable 
(gray lines). The last column on the right consists of the estimated spiking (blue lines) 
superimposed on the observed spiking of the cell (red lines) for each CS. CS-Rs and 
associated behaviors (blue letters) are shown in the first two rows, CS-Ss and associated 
behaviors (red letters) shown in the bottom two rows. Abbreviations: AA, active 
avoidance; Frz, freezing; RA, reward approach; RAnt, reward anticipation. 

 

To ensure the GLM captured the observed coding parameters, we compared the 

model’s output to PETHs referenced to different variables. One example cell shown in 

figure 21 had a complex profile of responses, including a transient inhibition at the onset 

of all CSs, a selective increase to RA only on CS-R2 trials, and an inhibition related to 

AA. As indicated in the first six columns of figure 5, the model accurately captured all of 

these responses, including selective responses with interaction terms such as CS-R2 RA 

(row 2, column 3). Additionally, it identified that a proportion of the response was related 
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to speed, a parameter that is tracked throughout the sessions. Locomotion effects on 

firing rate are a factor that traditional PETH analyses cannot account for. Often, apparent 

behavior correlates are in fact related to changes in the animal’s speed (see example of 

such a cell in figure 22). The GLM allows us to factor speed out, and attribute firing 

related to behaviors without the confounding influence of movement speed.  

 

Figure 22. Example PL neuron with speed correlate fit with GLM and model 
accuracy. 
(A) A PL cell with a speed correlate estimated by the GLM. The first six columns show 
GLM-estimated spiking (blue lines) for each task variable (gray lines). The last column 
on the right consists of the estimated spiking (blue lines) superimposed on the observed 
spiking of the cell (red lines) for each CS. CS-Rs and associated behaviors (blue letters) 
are shown in the first two rows, CS-Ss and associated behaviors (red letters) shown in the 
bottom two rows. Abbreviations: AA, active avoidance; Frz, freezing; RA, reward 
approach; RAnt, reward anticipation. (B) Coefficient of determination (R2) for all 
putative principal cells recorded in striatum, LA, BL, and PL. Red lines represent median 
values, blue box bottom and top lines represent the 25th and 75th percentiles, respectively, 
black whisker lines extend to the most extreme data points. Red crosses represent 
outliers.  

 

Another benefit of the lasso GLM is its ability to set parameters to zero when they 

do not contribute to the firing rate prediction of a given cell. For example, in figure 21, 
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the freezing behavior variables are all set to zero including both main and interaction 

effects, because the firing rate of the cell was unaffected by freezing even though the 

animal spent several trials freezing to CS-S1. This ability prevents overfitting and favors 

sparsity in identifying variables related to firing rate.  

The GLM output was used to characterize coding by LA, BL, and PL neurons. As 

a control, we performed the same analyses on putative principal striatal cells (n=237) that 

were recorded dorsal to the amygdala (see identification criteria in Methods). The 

model’s estimation accuracy was comparable between striatum, amygdala, and PL cells, 

although the fit for BL cells was superior to the other regions (Fig. 22B; χ2(3)=25.81, 

p<0.0001). Based on the model predictions, we computed the proportion of cells with 

inhibitory and excitatory modulations (Fig. 23A, blue and red bars, respectively) as well 

as the average absolute magnitude of the modulations (Fig. 23B). With few exceptions, 

the encoding of task variables was similar in the four regions. At the four sites and for 

each task feature, >35% of cells (Fig. 23A) showed excitatory or inhibitory modulations 

with the exception of freezing, a variable that was especially under-represented among 

PL neurons.  

A two-way ANOVA with recording site and feature type as factors on the 

modulation of responses revealed a significant main effect for recording site and feature 

(F(3,17)=96.77 and 41.8, respectively; p<0.0001; Fig. 23B). A distinguishing feature of PL 

neurons was the generally low magnitude of their modulations. A Tukey Kramer multiple 

comparison test confirmed that the magnitude of the modulations differed between all 

recording sites at p<0.0001 with the exception of BL vs. PL (p=0.1545).  
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Figure 23. Comparison between coding of RRI task variables by striatal, LA, BL, 
and PL neurons, as determined using the GLM. 
Proportion of presumed PNs (y-axis) in the striatum (A1), LA (A2), BL (A3) and PL 
(A4) that exhibited excitatory (red) or inhibitory (blue) coding of different task variables 
used in the GLM (x-axis). (B) Absolute average ± SEM modulation of the firing rates of 
striatal (B1), LA (B2), BL (B3) and PL (B4) PNs in relation to each variable used in the 
GLM. Abbreviations: AA, active avoidance; Frz, freezing; RA, reward approach; RAnt, 
reward anticipation. 
 

To further characterize coding at the four sites, we correlated the cells’ peak 

modulations by all task variables. As we reported previously (Kyriazi et al., 2018), LA 

cells tended to show correlated modulations by task events of the same valence (upper 

left and lower right quadrants in Fig. 24A2), and lower or negative correlations between 

modulations by task events of different valences (lower left and upper right quadrants in 

Fig. 24A2). By contrast, this pattern was less apparent among BL neurons (Fig. 24A3) 

and even less so in PL cells (Fig. 24A4). To quantify this aspect, we computed the d-

prime score (d'; Keene et al., 2016; McKenzie et al., 2014), which measures the 

separation between different coding dimensions based on the distributions of the 
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correlation coefficients in the similarity matrices. The d’ metric was calculated for each 

coding dimension by comparing the degree to which within-valence correlations 

exceeded those between-valence (see Methods). Consistent with the impression gained 

from visual inspection of the matrices, valence coding (Fig. 25A) was significantly lower 

in PL (0.75) than LA (1.66) and BL (1.43; bootstrap resampling, p<0.05) but did not 

differ from the striatum (0.83). In contrast, the d’ metric for active vs. passive behaviors 

(Fig. 25B) was significantly higher in the striatum (1.26) than in LA (0.50) and BL (0.22; 

bootstrap resampling, p<0.05) but did not differ from PL (0.86; bootstrap resampling, 

p>0.05).  

 

Figure 24. Contrasting representation of task variables in the striatum, amygdala, 
and prelimbic cortex. 
Presumed PNs in the striatum (1), LA (2), BL, (3), and PL (4). (A) Spearman correlation 
matrices between activity elicited by different task variables. As indicated by the color 
scale on the left, warmer and cooler colors indicate positive and negative correlations, 
respectively. (B) Frequency distributions of Gini index. (C) Frequency distributions of 
dimensionality index. Abbreviations: AA, active avoidance; Frz, freezing; RA, reward 
approach; RAnt, reward anticipation. 
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Figure 25. D-prime values. 
D-prime values for valence (A) and active vs. passive (B) codes. Error bars represent 
95% confidence intervals. 
 

To compare how coding of the various dimensions is allocated within neurons in 

the striatum, LA, BL, and PL, we computed the Gini index, a measure of statistical 

dispersion originally used in economics to measure income equality (Gini, 1921). A high 

Gini index indicates a less distributed code where neurons encode different dimensions 

unevenly, whereas a low Gini index indicates a more distributed code where neurons 

encode different dimensions more equally. As shown in figure 24B (top), striatal and LA 

neurons tended to have higher Gini indices than BL and PL neurons. Wilcoxon Ranksum 

tests confirmed that the Gini indices of LA and striatal neurons did not differ from each 

other (p=0.091) but were significantly higher than in BL (BL vs. LA, p=0.011; BL vs. 

striatum, p<0.0001) and PL neurons (PL vs. LA, p=0.026; PL vs. striatum, p<0.0001), 

with no difference between PL and BL cells (p=0.44). Hence, BL and PL neurons form a 

more distributed representation of task features than striatal and LA neurons. 

Complementing these results, the dimensionality index, which measures how 

many features each neuron encodes (see Methods) was lowest among striatal and LA 

neurons and highest among BL and PL cells (Figure 24B, bottom). Wilcoxon Ranksum 
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tests confirmed that the dimensionality indices of striatal neurons were lower than those 

of LA (p=0.023), BL (p<0.0001), and PL (p<0.0001) neurons. In addition, these tests 

revealed that the dimensionality indices of LA cells were lower than that of BL cells 

(p=0.002) but did not differ from PL cells (p=0.217), with BL cells having higher 

dimensionality indices than PL neurons (p<0.007).  

 

4.5 Population analyses reveal multidimensional representations 

 Together, the results obtained so far suggest that neurons in the four regions 

encode information differently. Striatal and LA neurons tend to have strong modulations 

and encode few task features. By contrast, PL and BL neurons represent multiple features 

through small fluctuations in their firing rates.  

 To assess the impact of these differences in the representation of task features at 

the population level, we performed dimensionality reduction into a 3-dimensional space 

using principal component analysis (PCA; see General Methods) across the different trial 

types (CS-R1, CS-R2, CS-S1 and CS-S3; Fig. 26). Given that the timing of behaviors 

varied between trials and that firing rates fluctuated depending on the behaviors emitted, 

we divided each trial into four equal epochs and time-normalized each epoch by 

assigning them a fixed number of bins. The four epochs represented the baseline period, 

the CS-onset period (before any behaviors occurred), the behavior period (RA or AA), 

and the rest of the trial until US onset.  
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Figure 26. Principal component analysis trajectories by trial type. 
(A) Time-normalized trajectories in 3-dimensional PCA space starting 5s before to 10s 
after CS-onset for STR (A1), LA (A2), BL (A3), and PL (A4) neurons. Colors go from 
faded to darker across time. The black circle denotes the onset of the stimulus. The 3-
dimensional space has been rotated for each structure to show the best dimension of 
separation. (B) Mean Euclidean distances calculated between each trial type for STR 
(B1), LA (B2), BL (B3), and PL (B4) neurons.  
 

Figure 26A shows the PCA trajectories for each brain region, starting 5 s before 

trial onset until 10 s after trial onset (pale to dark colors, respectively). The PCA 

trajectories revealed striking differences between the four structures. Striatal and LA cells 

showed trial trajectories separated by valence (Fig. 26A1,2). That is, within CS types 

(e.g. CS-R1 and CS-R2) trials followed similar paths, whereas between CS types (CS-R 

vs. CS-S), trial trajectories diverged (Fig. 26A1,2). In PL by contrast, trial paths differed 

within CS types and by valence (Fig. 26A4). Finally, BL neurons showed an intermediate 

pattern where trial paths were well separated for only one of the trial types (CS-Ss) while 

showing divergence as a function of valence (Fig. 26A3). Notably, the divergence 
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observed in PL trajectories does not appear to be driven by a larger proportion of cells 

modulated by position information (Fig. 27). 

 

Figure 27. Neural representation of position based on the GLM. 
Top: Percent of cells excited (red) and inhibited (blue) by position for presumed PNs 
recorded in striatum, LA, BL, and PL as estimated by the GLM. Bottom: Absolute 
average ± SEM modulation of the firing rates of striatal, LA, BL and PL PNs in relation 
to position used in the GLM. 

 

To quantify the visual representation of PCA trajectories, we compared the 

Euclidean distances in 3-dimensional space between trial types (Fig. 26B). Euclidean 
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distances were significantly different between structures (χ2(3)=85.81, p<0.0001), with 

PL (Fig. 26B4) showing higher distances compared to striatum (Fig. 26B1), LA (Fig. 

26B2), and BL (Fig. 26B3; Tukey-Kramer post-hoc, all p<0.01). Additionally, all other 

distances differed except for LA and BL (p=0.9669).  

Since our PCA analyses indicate that population activity diverges based on trial 

type in PL, then a linear decoder should identify trial type more reliably based on the 

activity of PL than striatal or BL and LA neurons. Algorithms such as support vector 

machines implement decoders that are physiologically plausible (Baker, 2003; Poirazi, 

Brannon, & Mel, 2003). Thus, to test this prediction, we trained a support vector machine 

with 10-fold cross validation on a resampled population of 150 cells from each brain 

region and compared decoder performance on individual trial types (Fig. 28; see General 

Methods). Since a binary decoder only allows for two-class comparisons, we trained one 

decoder on identifying CS-R1 vs. CS-R2 trials and another decoder on CS-S1 vs. CS-S3 

trials. We then pooled the performance accuracy of the two decoders to calculate a 

performance score for trial identity. Indeed, the decoders were superior at identifying trial 

type based on the activity of PL than BLA or striatal neurons, during both, the stimulus 

(Fig. 28A1) and behavior (Fig. 28B1) epochs. Consistent with the higher response 

selectivity we observed earlier in PL using PSTHs (Figs. 17 and 20), CS identity was 

decoded with higher accuracy by PL neurons (93%) than BL (70%), LA (68%), and 

striatal (55%) neurons (Fig. 28A1). While decoding accuracy during the behavior epoch 

was high with all cell types (striatal: 74%, LA: 84%, BL: 92%), PL neurons still 

outperformed the others with 98% accuracy (Fig. 28B1). Nevertheless, all decoders 

performed above chance as calculated by shuffling trial labels (dashed line).  
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Figure 28. Trial type and valence decoders. 
(A1) Decoder accuracy of trial type (CS-R1 vs. CS-R2 and CS-S1 vs. CS-S3) during the 
stimulus period before behaviors are initiated. Dashed line represents shuffled trial type, 
indicating chance. Error bars represent the SEM based on 50 decoder repetitions. (B1) 
Decoder accuracy of trial type during active CRs (CS-R1 RA vs. CS-R2 RA and CS-S1 
AA vs. CS-S3 AA). (C1) Decoder accuracy of valence (CS-Rs vs. CS-Ss) during the 
stimulus period before behaviors are initiated. (D1) Decoder accuracy of valence active 
CRs (RA vs. AA). (A2-D2) Decoder accuracy as population size increases. Dark colored 
lines represent observed decoder performance. Light colored lines represent decoder 
performance with shuffled trial labels.   
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Next, we tested whether valence could be decoded from the same population 

activity. Accordingly, we collapsed CS-R1 and CS-R2 trials into a CS-R category as well 

as CS-S1 and CS-S3 trials into a CS-S category and then trained the decoder to 

distinguish between CS-R vs. CS-S trials. Decoding accuracy for valence was above 90% 

in all brain regions for both stimulus (Fig. 28C1) and behavior (Fig. 28D1; AA vs. RA 

behaviors) periods. 

            To determine how the size of the population influences decoding accuracy, we 

increased the number of cells (from 1 to 5, and then 10 to 150 in steps of 10 units). This 

approach revealed significant differences between structures for trial identity during the 

stimulus (Fig. 28A2; χ2(3)=54.46, p<0.0001) and behavior (Fig. 28B2; χ2(3)=34.29, 

p<0.0001) periods as well as for valence during behavior (Fig. 28D2; χ2(3)=18.11, 

p<0.001). Decoding trial identity during the stimulus period resulted in improved 

performance with growing population size only in PL. In BLA, the number of cells did 

not contribute to the decoder’s performance, indicating that few cells hold a weak 

representation of trial identity information at the stimulus level. Trial identity 

performance decreased as the number of striatal cells was increased but remained above 

chance. This early decrease could be an artifact of the few number of trials used. There 

were only 10 trials total used in this analysis (5 CS-R, 5 CS-S) meaning that 10-fold cross 

validation would use only 9 trials to calculate performance, leading to chance levels 

<50%, hence the decrease below chance when few cells are used to decode trial identity. 

A Tukey-Kramer post hoc test showed that all structures differed in decoding 

performance for trial identity during the stimulus period (p<0.05), except LA and BL 

(p=0.5345). During the behavior period, trial identity decoder accuracy increased in all 
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brain structures with increasing population size, but only striatum vs. BL (p=0.001) and 

PL (p<0.0001), as well as LA vs. PL (p<0.0001) were significantly different from each 

other. Finally, valence decoding during the stimulus period did not differ between 

structures (Fig. 28C2; χ2(3)=4.05, p=0.2557), while valence during the behavior period 

was lower for striatum compared to LA (p=0.0048) and BL (p<0.0001).  

The prevalence of the valence code across regions was surprising and raises the 

question of whether the valence code in LA and BL is similar to the one in PL and 

striatum. One way to address this is to determine whether the coding of valence during 

the CS period generalizes to the CR period. Cross-temporal generalization analyses 

capture this by training a decoder during one trial period, and testing during another 

period. Valence codes in LA and BL generalized better between CS and CR periods than 

those in PL and striatum (Fig. 29A). These analyses also showed that the PL code for 

trial identity generalized between trial periods, suggesting that its ensemble activity codes 

for trial identity in a manner that is consistent across the entire trial (Fig. 29B). 

Together the decoder results indicate that PL neurons are better at holding 

information about multiple representations simultaneously including trial identity and 

valence, while BLA and striatal units are more specialized for valence coding. 

Additionally, increasing population size influences decoding accuracy differently 

depending on the brain structure and the item being decoded. 
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Figure 29. Cross-temporal generalization of the SVM decoder.  
Cross-temporal generalization of the SVM decoder. (A1) SVM decoders were trained for 
valence on one time point during the trial and tested on another. Training ensembles were 
comprised of 150 PNs. Dashed lines indicate trial periods, solid squares encompass 
train/test pairs that were averaged together to measure cross-temporal generalization. 
(A2) The mean response during the cross-temporal generalization periods were 
recalculated 50 times using resamples of trials and units from our database. The 
distribution of mean differences between regions was bootstrap recalculated 10,000 times 
and deemed significant when 0 difference was either below 2.5% or above 97.5% of the 
difference distribution. LA showed the strongest generalization of the valence code 
between stimulus and behaviors periods, followed by BL, PL and striatum. (B1) and (B2) 
are similar to A1 and A2, but with the decoder trained on trial identity. 
 

4.6 Conclusions 

In keeping with their similar connectivity, the BLA and mPFC are involved in 

closely related functions, raising the question of what is the computational advantage of 

having both. Here, I tested the hypothesis that mPFC and BLA neurons code information 

differently, potentially allowing them to implement distinct types of input-output 

functions. Accordingly, I compared the coding properties of PL, LA, and BL neurons 

during the performance of a task where rats generate different defensive or appetitive 

Decoder trained to classify trial identity (CS-R1 vs CS-R2, CS-S1 vs CS-S3)
STR

Baseline CS RA/AA

Ba
se

lin
e

C
S

R
A/

AA

LA

Baseline CS RA/AA

BL

Baseline CS RA/AA

PL

Baseline CS RA/AA

Tr
ai

ni
ng

 p
er

io
d

Testing period

50

100

Accuracy (%
)

Decoder trained to classify valence (CS-R1/R2 vs CS-S1/S3)
STR

Baseline CS RA/AA

Ba
se

lin
e

C
S

R
A/

AA

LA

Baseline CS RA/AA

BL

Baseline CS RA/AA

PL

Baseline CS RA/AA

Tr
ai

ni
ng

 p
er

io
d

Testing period

50

100

Accuracy (%
)

B1

Str LA BL PL
0

20

40

60

80

100

Trial ID cross-temporal 
generalization

Ac
cu

ra
cy

 (%
)

Region

Str LA BL PL
0

20

40

60

80

100

Valence cross-temporal
generalization

Ac
cu

ra
cy

 (%
)

Region

B2

A1 A2

* *
**

*

* ** *

*



84 
 

 

behaviors depending on CS location on each trial. The findings indicate that while 

amygdala and mPFC neurons have specialized functions, they also form overlapping 

representations of task features. Hence, the amygdalo-prefontal network is not 

characterized by clear-cut regional differences in the identity of the variables encoded but 

by gradients in the representation of the same variables and how they are encoded.  
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Chapter V: 

 

General Discussion 

 

 

5.1 Independent encoding of CSs and CRs by BLA neurons 

 In chapter III, several lines of evidence indicated that sensory responses and CRs 

are encoded concurrently, yet independently, by the same BLA neurons. For instance, 

separately plotting BLA firing rates when CRs were emitted at different latencies 

revealed an early CS-locked response and a later component whose latency increased 

with that of the CRs. Similarly, comparing BLA activity on correct and error trials 

provided evidence for two response components: an early sensory-related part that was 

present on correct and error trials and a late component, present on correct trials but 

nearly absent on error trials.  

The fluctuating character of the late, CR-related component despite the stability of 

the early CS-locked phase is inconsistent with the view that, due to the potentiation of CS 

inputs on BLA neurons, CRs are automatically triggered by CSs. Instead, these results 

suggest that the receipt of sensory information about CSs and the emission of CRs are 

distinct, yet related processes.  Most likely, interactions between the BLA and other 

structures such as the medial prefrontal and temporal cortices (Pitkänen, 2000) regulate 

whether and when a given CS will elicit a CR of a particular type. Such interactions 
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would account for the behavioral flexibility exhibited by animals depending on context 

(Perusini & Fanselow, 2015). 

The realization that BLA neurons separately, yet concurrently encode CSs and 

CRs sheds new light on earlier findings. For instance, using Ca2+-imaging of large groups 

of BLA neurons in vivo, Grewe et al. (2017) reported that after fear conditioning, the 

representation of the CS by BLA neurons morphed into that of the US. Since our results 

indicate that individual BLA cells show similar activity in relation to behaviors of the 

same valence, and considering that after (but not before) training, both USs and CSs 

elicited negatively valenced behaviors, the change in representation Grewe et al. (2017) 

observed could have resulted from the shift in the behavioral outcome of the CS.  

 

5.2 At the level of individual cells, valence-coding is not prevalent in the BLA 

 Here, valence-coding neurons were defined as cells that showed a firing rate 

increase in relation to at least one CS and CR of the same valence coupled to an 

inhibition or no change in activity in relation to all CSs and CRs of the opposite valence. 

Under this definition, few valence-coding cells were observed in the BLA (<20%). Given 

the proportions of cells whose activity was modulated by the various CSs and CRs, the 

incidence of valence-coding cells did not exceed chance. Yet, the GLM analyses 

indicated that valence information is encoded in the collective activity of BLA neurons. 

To gain insights into this apparent contradiction, the estimated modulation of BLA 

activity by CSs and CRs was correlated. This revealed that in LA, the firing rate 

modulations by CSs of opposite valence were positively correlated whereas those 
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associated with CRs of opposite valence were not. Thus in this paradigm, valence 

information is mostly derived from the modulation of activity by CRs.   

 Of note, the correlated modulations of BLA activity by the CS-Rs and CS-Ss were 

expected in this paradigm given that rats had to rely on location to determine whether 

similar light stimuli were CS-Ss or CS-Rs. The fact that BLA neurons showed 

differentiated modulations to CRs of opposite valence despite the similar sensory 

properties of the CSs casts further doubt on the notion that potentiated CS inputs onto 

distinct subsets of valence-coding BLA neurons is the sole factor supporting the 

differentiated expression of conditioned emotional behaviors. Rather, these findings 

again suggest that in between the receipt of sensory information about CSs by BLA 

neurons and the emission of CRs are additional processing steps where other streams of 

information, in this case about place, determine the outcome of the CS. 

  Another unexpected finding in this study was the positive correlation, particularly 

marked in LA, between the activity modulations associated with freezing and active 

avoidance. Although these CRs constitute markedly different defense strategies, BLA 

cells, even valence-coding cells showed similar activity modulations in relation to both 

behaviors. This observation suggests that while different subsets of BLA neurons may 

generate distinct CRs via their particular outputs, it is incumbent on target effector 

neurons to decode what CRs should be generated. Presumably, other inputs allow them to 

disambiguate the significance of BLA inputs at any given time. 
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5.3 Multidimensional coding by BLA neurons 

While explicit coding of valence by individual neurons was not prominent in the 

BLA, valence information was present at the population level. In fact, MDS analyses 

suggested that several coding dimensions are represented in the ensemble activity of BLA 

neurons, including valence, speed, and active vs. passive behaviors. Unexpectedly, 

valence coding was primarily seen in the behavioral domain. The preferential association 

of valence coding with behavior rather than CSs is reminiscent of a trace conditioning 

study in monkeys where valence coding by BLA neurons was more prominent during the 

trace period, shortly before the CR (Paton, Belova, Morrison, & Salzman, 2006). 

Furthermore, the active-passive coding dimension was orthogonal to valence coding, 

which suggests that LA and BL neurons can concomitantly represent different types of 

information with minimal interference. Interestingly, the active-passive and speed 

dimensions had opposite directions in LA vs. BL. Whereas in LA, a negative modulation 

by speed was associated with a positive modulation by valence-behavior, the opposite 

relationship was found in BL. The origin of these differences remains unclear. 

Consistent with these findings, other behavioral paradigms have uncovered 

coexisting codes in BLA ensemble activity. For instance, Munuera et al. (2018) reported 

that in non-human primates, cells that encode the reward value of non-social stimuli also 

encode the hierarchical rank of conspecifics. Moreover, in a paradigm where the reward 

associated with different stimuli varied in a context-dependent fashion, BLA cells 

encoded context, CS identity, and reinforcement expectations (A. Saez et al., 2015). 

Overall, these considerations suggest that conditioned emotional behaviors do not 

depend on the recruitment of discrete, dedicated subsets of cells that explicitly encode a 
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particular valence, but on multiplexed representations distributed across the ensemble 

activity of BLA neurons. These high-dimensional coding schemes confer major 

computational advantages (Fusi, Miller, & Rigotti, 2016), notably a dramatic increase in 

the range of input-output relations that can be mapped by the same network. While this 

perspective is relatively novel for the amygdala, its ubiquity in the brain has long been 

recognized. For instance, high-dimensional population coding has been documented in 

many cortical areas (Fusi et al., 2016; McKenzie et al., 2014; Morris, Bremmer, & 

Krekelberg, 2016; Rigotti et al., 2013). Even the control of spinal motor neurons by 

cortical and rubral cells depends on such distributed codes (Fetz, 1992).  

 The presence of distributed coding would seem to contradict the numerous 

demonstrations of emotional behaviors controlled by specific cell types in the amygdala. 

While our findings argue against a strong view where neurons are treated as labeled lines 

for specific emotional behaviors and states, they are consistent with the fact that those 

variables are only partially correlated with anatomical position (Beyeler et al., 2018), 

projection target (Beyeler et al., 2016) or genetic profile (Kim, Pignatelli, Xu, Itohara, & 

Tonegawa, 2016). Thus, it might be better to view coding in the amygdala as a spectrum, 

not a switchboard.  

 

5.4 Comparing BLA and mPFC activity 

In keeping with their similar connectivity and responsiveness to task events (i.e. 

stimuli, behaviors), BLA and mPFC neurons are involved in closely related functions, 

raising the question of what is the computational advantage of having both regions. In 

chapter IV, I tested the hypothesis that mPFC and BLA neurons code information 
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differently, potentially allowing them to represent distinct task dimensions (e.g. valence). 

Accordingly, I compared the responses of PL, LA, and BL neurons during a task where 

rats generated different defensive or appetitive behaviors depending on CS location. The 

findings showed that while specific task events were represented by individual neurons in 

PL, LA, and BL, cells differed in the combinations of events they responded to. At the 

population level, these differences scaled-up to variations in their proclivity to encode 

certain task dimensions. Hence, the amygdalo-prefrontal network is not characterized by 

clear-cut regional differences in the identity of the task features encoded, but by 

gradations in the representation of task dimensions.  

 

5.5 Gradations in task representations 

On the surface, the task-related activity of PL neurons appeared similar to that of 

LA and BL cells. For instance, a nearly identical proportion of neurons at the three sites 

significantly increased their firing rate in response to at least one CS. Also, cells with 

CR-related activity seemed as prevalent in PL, LA, and BL. Moreover, at the three sites, 

CS-evoked activity showed a strong dependence on behavior, with the same CS eliciting 

larger responses on trials where rats emitted the appropriate CR than on error trials. 

Beneath these superficial similarities however, there were conspicuous differences. First, 

the cells’ responses to different CSs of the same valence were more dissimilar in PL than 

in LA or BL. That is, many more PL than LA or BL cells had inhibitory responses to only 

one CS of a given valence. PL neurons also showed greater selectivity for CRs evoked by 

different CSs: whereas in LA and BL, most CR-activated cells were recruited similarly 

irrespective of the CS being presented, the CR-related activity of most PL neurons varied 
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depending on the CS that evoked it. This encoding of specific conjunctions of task 

features is known as mixed selectivity, which has been described previously in other 

prefrontal areas including lateral PFC (Lindsay, Rigotti, Warden, Miller, & Fusi, 2017; 

Rigotti et al., 2013), orbitofrontal, and anterior cingulate cortices (A. Saez et al., 2015). 

Furthermore, mixed selectivity is thought to provide a computational advantage for 

multidimensional representations (Fusi et al., 2016). 

 

 

Figure 30. Representation gradients across the amygdalo-striatal-prefrontal 
network. 
Gradient scales of representation for items listed on the left side. Scale values for each 
brain region were calculated based on measures listed on the right side. 
 

That LA, BL, and mPFC neurons encode overlapping task features while showing 

differences in how they are represented at the population level, suggests that these 

regions serve partially distinct functions. Indeed, directly comparing these population 

representations between regions does not reveal discrete differences in what task 

dimensions are encoded, but instead differing propensities for the representation of some 
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dimensions over others, hereafter referred to as representation gradients. In our study, we 

observed several instances of this phenomenon (Fig. 30). First, we observed a gradient of 

valence coding across the amygdalo-striatal-prefrontal network. While it is well known 

that LA and BL cells are modulated by valence (Belova et al., 2008; Kyriazi et al., 2018; 

Namburi et al., 2015; Paton et al., 2006; Sangha et al., 2013), striatal and PL neurons 

were found to represent valence to a lesser degree, as evidenced by their low d’ index. 

Nevertheless, valence could be easily decoded from the population activity of all four 

regions, as indicated by the linear decoder results (Fig. 28A-D). However, the ability for 

a decoder to derive valence from striatum and PL does not necessarily mean that those 

areas code for valence in the same way as LA and BL. In LA and BL, neurons tended to 

respond similarly to all CSs and CRs with the same valence (Figs. 24A, 25A), while this 

was not the case for either striatum or PL. An additional confirmation of this came from 

cross-temporal generalization analyses of our decoders (Fig. 30), which found that 

striatal and PL decoders trained on the CS period did not perform well during the 

behavior period. Thus, while the valence code in LA and BL strongly generalizes across 

conditions, in striatum and PL the generalization is weaker. 

Another gradient of representation was found for active vs. passive behaviors. In 

this case, striatal cells had the strongest representation, followed by PL, and finally 

amygdala cells (Fig. 30). That striatal cells can easily distinguish different behavioral 

strategies is consistent with the involvement of the striatum in motor functions (Wall, De 

La Parra, Callaway, & Kreitzer, 2013). Similarly, mPFC neurons respond differently to 

movement excitation and inhibition during fear conditioning (Halladay & Blair, 2015), 

and an inhibitory signal in PL was found to mediate active avoidance (Diehl et al., 2018). 
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Finally, given that amygdala neurons weakly distinguish between active and passive 

strategies, it is unlikely that they orchestrate the execution of such behaviors, but rather 

integrate inputs from mPFC and provide a bias for approaching or avoiding stimuli based 

on valence (Lazaro-Munoz, LeDoux, & Cain, 2010; Sangha, Diehl, Bergstrom, & Drew, 

2020).  

 

5.6 Gradations in the manner of population representations 

 Besides what is encoded by BLA and PL neurons, there is also the question of 

how the codes are represented by these cell populations. Here too, there is a continuum in 

the form of representation across these regions (Fig. 30), as quantified with the Gini, 

dimensionality indices, and event-evoked firing rates. While individual PL and BL 

neurons tended to weakly respond to many different task events, LA and striatal cells 

coded fewer task features with stronger changes in their firing rates. Although it may 

seem odd that PL was more similar to BL than the neighboring LA nucleus in this 

respect, this finding is consistent with the connections between these three structures. 

That is, PL forms stronger reciprocal connections with BL than LA (Krettek & Price, 

1977; McDonald, 1991; McDonald et al., 1996). Moreover, BL projections to LA are 

sparse (Krettek & Price, 1978; Pitkanen et al., 1997).  

 Another instance of graded regional differences in coding was found in their 

representational capacity (Fig. 30). Using PCA analyses, we observed that whereas 

striatal and LA populations showed trial trajectories only separated by valence (or its 

associated CSs and CRs), PL exhibited a unique trajectory for each trial type. Between 

these extremes, BL neurons distinguished valence, but they also differentiated the two 
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types of CS-S trials. The ability of PL neurons to maintain independent representations of 

each trial type indicates that the population activity of PL neurons holds more 

information than that of BLA or striatal neurons. The more distinct representations found 

in PL may prevent interference when learning new associations (Bartolo, Saunders, Mitz, 

& Averbeck, 2019). 

If these representations are physiologically meaningful, then they must be 

decodable by downstream neurons. Indeed, decoders were superior at identifying trial 

identity based on the activity of PL than BLA or striatal neurons, during either the 

stimulus or behavior periods (Fig. 28A-D). Moreover, gradually increasing the size of the 

cell populations used in these analyses for the stimulus period only improved decoder 

performance with PL neurons, suggesting that although BLA and striatal cells hold some 

information about trial identity, redundancy between cells limits population level 

decoding of trial types. This may arise because BLA neurons respond similarly to stimuli 

and behaviors of the same valence, in effect causing them to act as ‘valence-detectors.’ 

Indeed, smaller sized BLA ensembles outperformed those from PL and striatum for 

encoding valence (Fig. 28D). But as population size increased, PL caught up, achieving 

comparable performance. These results indicate that even though PL neurons show small 

task-related fluctuations in firing rates, their population activity has greater 

representational capacity, as it can encode both trial identity and valence information 

simultaneously. This is in line with recent observations that the activity of prefrontal 

neurons forms a geometric pattern in multidimensional space that makes it possible to 

decode abstract representations such as context and history of reward value (Bernardi et 

al., 2018). 
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5.7 Codes and computations 

 Different situations often call for distinct behavioral strategies, and 

correspondingly different computations (Headley et al., 2019). The activity patterns that 

accompany these processes will reflect these differences and constrain the kinds of 

information that downstream areas can extract. Our results indicate that PL neurons 

encode a wide variety of contingencies, that LA and striatum preferentially represent 

valence and behaviors, while BL lies between PL and LA. Prefrontal areas such as PL are 

important for planning and executing context-dependent behaviors (Hyman, Ma, 

Balaguer-Ballester, Durstewitz, & Seamans, 2012; Ma et al., 2016; Moorman & Aston-

Jones, 2015), while LA links stimuli with their value (Repa et al., 2001; Tye et al., 2008). 

This gradient, from the generic (PL) to the specific (LA), may reflect the distinct 

cognitive demands placed on these regions (Mobbs, Headley, Ding, & Dayan, 2020). 

And yet, these areas are coactive during even the simplest behaviors (e.g. Vetere et al., 

2017). Thus, the gradients of representations we observed across the amygdalo-prefrontal 

network may enable the sharing of information, and provide parallel portraits of task 

contingencies, allowing for flexibility and redundancy in the production of emotional 

behaviors. 

 

5.8 Gaps and future directions 

 While our study helped reveal multidimensional representations in the amygdalo-

prefrontal network, it suffers from some gaps and shortcomings that could be addressed 

in future research. The main drawback of our task is the unique timing of each trial: 
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animals may perform any of the behaviors at different timepoints across the trial and for 

different durations of time. While this lack of a fixed structure makes the task more 

naturalistic, it complicates analyses. For this reason, many of the analytical techniques I 

used relied on the peak of the modulation of cells responses (e.g., GLM, correlation 

matrices, and modulations of firing rate, MDS) regardless of the timing in the trial. Some 

attempts to overcome this were made by normalizing the timing of each trial as the 

analyses performed for the PCA (Fig. 26), SVM (Fig. 28), and cross-temporal 

generalization  (Fig. 29). However, normalizing time in a trial results in stretching or 

shortening of trial periods leading to slight alterations in firing rate. This shortcoming 

may have overstated some of the multidimensional representations found through the 

MDS analysis. Examples of studies with fixed trial types come from the monkey 

literature (Belova et al., 2008; Paton et al., 2006; A. Saez et al., 2015). Future research 

should find ways to standardize trials and use analyses to understand the temporal 

dynamics of cell activity across trials. 

 Another limitation of this study was our inability to analyze the US responses of 

the cells due to artifacts. Studies have indicated that after conditioning, CS responses 

become more similar to US representations (Grewe et al., 2017). This was not something 

we could study in our task due to electrical artifacts from footshocks and licking. 

However, it is an important question and one that will contribute to our understanding of 

amygdala and prefrontal representations. Hence future studies should use techniques such 

as calcium imaging to overcome electrical artifacts and study population representations 

of US responses.  
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 Finally, even though we show that cells fire in relation to different conditioned 

behaviors, it is unclear whether these cells are mediating these actions. Most likely their 

contribution is not one of behavior execution but rather a bias signal guiding the animal 

towards a certain brain state. As a result, the animal may be more likely to engage in 

behaviors of a certain valence such as reward approach or anticipation and avoidance or 

freezing. As other regions provide more refined information, the bias for a certain 

behavior may go beyond valence. We observed this signal in PL, where cells did not only 

signal the valence of a given behavior but differentiated when the behavior was 

performed in response to each CS-R or CS-S.  

The coordination of different brain regions giving similar signals at the same 

time, most likely result in guiding downstream effectors such as PAG to engage in 

specific behaviors. Indeed, some studies have indicated that signals leading to PAG 

activation drive different defensive behaviors, such as escape,  freezing, and avoidance 

(Evans et al., 2018; Fadok et al., 2017; Rozeske et al., 2018). Future studies using the 

RRI task should try to understand how the signals from BLA and PL drive downstream 

effectors, including PAG, to produce different appetitive and aversive behaviors.   
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