BORANE-FUNCTIONALIZED POLYOLEFINS FOR CATALYSIS AND MATERIALS APPLICATION

by
HUINA LIN
A Dissertation submitted to the
Graduate School - Newark
Rutgers, The State University of New Jersey
in partial fulfillment of requirements for the degree of Doctor of Philosophy
Graduate Program in Chemistry written under the direction of
Professor Frieder Jäkle and approved by

\qquad
\qquad
\qquad
Newark, New Jersey
October, 2020
(C) 2020

Huina Lin

ALL RIGHTS RESERVED

ABSTRACT OF THE THESIS BORANE-FUNCTIONALIZED POLYOLEFINS FOR CATALYSIS AND MATERIALS APPLICATION

By Huina Lin
Dissertation Director: Professor Frieder Jäkle

Boron-containing polymers have received tremendous attention over the past decades due to the diverse potential applications, including their use as polymer-supported catalysts, in drug delivery, optoelectronic materials, and sensors for anions. The ability of the empty p_{B}-orbital in tri-coordinate boranes to delocalize π-electrons and to form Lewis acid-base complexes is widely applied in Lewis acid catalysis, supramolecular assembly, and the development of luminescent materials. Here we focus on the incorporation of tri-coordinate borane moieties into the side chains of polystyrene (PS) and its derivatives for catalysis applications. An alternative strategy to incorporate boron into polymeric systems is the replacement of a C-C unit for an isosteric B-N unit. Nowadays, the study of carbon-boronnitrogen (CBN) heterocycles has become one of the most popular topics in organic and materials chemistry. Numerous BN-embedded aromatic compounds have been synthesized. Thus, in a second direction of this thesis, we targeted new azaborine-substituted polymers,
with the goal of expanding the diversity and functionality of polystyrene via BN for CC substitution.

We designed a new class of polymers that feature bulkier groups in the ortho-position to boron to stabilize the borane moiety. The attachment of the tailored triarylborane moieties to the polyolefin backbone provides access to new polymer-supported Lewis acids with improved stability and recyclability that we applied in the catalytic hydrosilylation of unsaturated organic substrates. In addition, we discovered that both the model compounds and copolymers are strongly luminescent, and display thermally activated delayed fluorescence (TADF), a phenomenon that is attracting much current interest.

To expand the diversity and functionality of polystyrenes via BN for CC substitution, we successfully prepared a series of new isomeric azaborine-substituted polymers with high molecular weights via standard free-radical polymerization. Furthermore, we investigated the effects of the position of the vinyl group relative to the BN moiety on the polymerization reactivity and physical properties of the respective polymers. The results revealed that the reactivity and physical properties strongly depends on the substitution pattern. Lastly, the ring opening metathesis polymerization of BN Dewar isomers was accomplished with Grubbs $2^{\text {nd }}$ generation catalyst. The synthesized polymer features fourmembered BN -heterocycles alternating with vinylene groups in the main chain.

Acknowledgements

First and foremost, I would like to thank my supervisor and mentor, Prof. Frieder Jäkle, for his continuous support and guidance over the past years. His enthusiasm for research and discovery, along with his unmatched dedication to his students are what make him an excellent scientist, advisor, and person. He helped me to become a better researcher. I would also like to thank my research committee members Prof. John Sheridan, Prof. Michal Szostak and Prof. Elizabeth Elacqua (The Pennsylvania State University) for their help, advice and corrections to my thesis.

I am grateful for the wonderful time with many knowledgeable postdoctoral fellows and young talented chemists in the Jäkle group. I would like to thank Dr. Fernando Vidal who helped me with my research and interview. Thanks to Dr. Jiawei Chen, Dr. Xiaodong Yin and Dr. Yi Ren for their guidance and suggestions. In addition, I am thankful to all the past and present group members for their friendship and encouragement throughout my time in the Jäkle lab. I am also grateful to many of the faculty and staff at Rutgers University, especially Prof. Roger Lalancette for his help with single-crystal X-ray crystallography, Dr. Lazaros Kakalis for his expertise in NMR spectroscopy.

I am also appreciative of the many funding organizations that have supported me financially over the past years. These include the National Science Foundation under Grants CHE-1609043 and CHE-1904791. The Bruker 500 MHz NMR spectrometer used in this study was acquired with partial support by an NSF-MRI grant (CHE-1229030). Equipment in the Polymer and Nanomaterials Facility at Rutgers University Newark was acquired with support by the New Jersey Higher Education Equipment Leasing Fund (ELF III 047-04).

Last and certainly not least, I would like to thank my family and my sister for their support. Mon and dad always supported and encouraged me throughout all the good and bad times. I would also like to thank my friends Jingyao Zuo, Kanglei Liu and plenty of friends in China for their encouragement and support.

Table of Contents

ABSTRACT OF THE THESIS ii
Acknowledgements iv
Table of Contents vi
List of Figures ix
List of Schemes xxi
List of Tables xxiii
Chapter 1 General Introduction 1
1.1 Synthesis and Applications of Boron-containing Polyolefins 1
1.1.1 Synthesis of polymers with tri-coordinate organoborane pendant groups 2
1.1.1.1 Direct polymerization 2
1.1.1.2 Post-polymerization modification approaches 6
1.1.2 Applications 9
1.1.2.1 Lewis acids in catalysis 9
1.1.2.2 Supramolecular materials 16
1.1.2.3 Luminescent materials 18
1.1.2.4 Synthesis of polymers with tetra-coordinate organoborane pendant groups 21
1.2 Boron-Nitrogen-Doped Aromatic Compounds and Polymers 23
1.2.1 Azaborines as BN-Isosters of Benzene 24
1.2.1.1 1,2-Azaborines 25
1.2.1.2 1,3-Azaborines 28
1.2.1.3 1,4-Azaborines 29
1.2.2 BN-Substituted Polymers 30
1.3 References 34
Chapter 2 Tailored Triarylborane Polymeric Lewis Acids as Supported Catalysts and Luminescent Materials with TADF Characteristics 42
2.1 Introduction 42
2.2 Results and Discussion 45
2.3 Conclusions 66
2.4 Experimental 67
2.5 References 79
2.6 Appendix 82
Chapter 3 Changing up BN-Polystyrene: Effect of Substitution Pattern on the Free- Radical Polymerization and Polymer Properties 120
3.1 Introduction 120
3.2 Results and Discussion 122
3.3 Conclusions 139
3.4 Experimental 141
3.5 References 158
3.6 Appendix 162
Chapter 4 Ring Opening Metathesis Polymerization (ROMP) of the Dewar Isomer of a1,2-Azaborinine201
4.1 Introduction 201
4.2 Results and Discussion 204
4.3 Conclusion 215
4.4 Experimental 216
4.5 References 219
4.6 Appendix 221
Overall Conclusions 228

List of Figures

Figure 1-1. Selected architectures of boron-containing polymers. ${ }^{1}$ [Adapted with permission from reference 1. Copyright © 2006 Elsevier B.V.]

Figure 1-2. Examples of boron-containing monomers for ROMP and ROP studied by Chung ${ }^{11}$ (1), Gilroy ${ }^{12}$ (2), Sneddon ${ }^{13}$ (3), and Manners ${ }^{14}$ (4, R $=R^{\prime}=\operatorname{SiMe}_{3} / R=\operatorname{Si}, R^{\prime}=$ $\left.t \mathrm{Bu} / \mathrm{R}=\mathrm{R}^{\prime}=i \mathrm{Pr}\right)$.

Figure 1-3. Formation of organoboron polymers from dibromoborylated polystyrene. ${ }^{3}$ [Adapted with permission from reference 3. Copyright © 2005 Springer Science+Business Media, Inc.]

Figure 1-4. Tris(pentafluorophenyl)borane $\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$.
Figure 1-5. Design concepts for moisture-tolerant FLP hydrogenation by Soós. ${ }^{27}$ [Adapted with permission from Ref. 27. Copyright © 2015, American Chemical Society] 12

Figure 1-6. Examples of well-tuned Lewis acidic boranes by Soós. ${ }^{25-27} 12$
Figure 1-7. Poly(FLPs) as a second-generation CO_{2}-responsive system designed by Yan. ${ }^{36}$ [Adapted with permission from Ref. 36. Copyright © 2018 Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim]

Figure 1-8. Poly(FLPs) as pre-catalysts for the C-H borylation of heteroarenes designed by Fontaine. ${ }^{37}$ [Adapted with permission from Ref. 37. Copyright © The Royal Society of Chemistry 2019]

Figure 1-9. Classical Lewis pairs in transient polymer networked reported by Jäkle. ${ }^{39}$ [Adapted with permission from Ref. 39. Copyright © 2019 American Chemical Society]

Figure 1-10. Poly(FLPs) as responsive self-healing gels reported by Shaver. ${ }^{40}$ [Adapted with permission from Ref. 40. Copyright © 2017 American Chemical Society] 18

Figure 1-11. Luminescent triaryboranes for OLEDs application by Marder. ${ }^{44}$
Figure 1-12. (a) The first triarylborane for fluoride sensing by Yamaguchi ${ }^{46}$ and (b) triarylborane polymers PSBMesAr for fluoride and cyanide sensing by Jäkle. ${ }^{47}$

20

Figure 1-13. (a) Synthetic route to methacrylate polymers with a switchable boron chromophore. (b) Photographs showing the emission colors of the homopolymers (P1 to P9) in toluene (top), DCM (middle), and THF (bottom) under 365 nm UV irradiation. (c) Illustration of the switching of the boron chromophore based on the reversible intramolecular $\mathrm{B} \leftarrow \mathrm{O}$ bond. ${ }^{48}$ [Adapted with permission from reference 48 . Copyright © 2019 Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim]

Figure 1-14. (a) Synthesis of organoboron quinolate polymers. (b) Photographs of solutions of PSBPhQ in THF (ca. $2^{*} 10^{-3} \mathrm{M}$) excited with black light at $365 \mathrm{~nm}^{49}$ (from left to right: $\mathrm{R}=$ Bpin, $\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{H}, \mathrm{Cl}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}$, respectively). [Adapted with permission from reference 49. Copyright © 2006 American Chemical Society]

Figure 1-15. Early examples of BN arenes by $\operatorname{Stock}^{51}(\mathbf{9})$, Dewar ${ }^{52,53}(\mathbf{1 0}, \mathbf{1 1)}$ and White ${ }^{54}(12)$. 24

Figure 1-16. Calculated stability trends of benzene and azaborine isomers. ${ }^{55}$
Figure 1-17. Examples of B-N units embedded in conjugated polymers by Jäkle ${ }^{74}(\mathbf{1 3})$ and by Helten ${ }^{75,76}(\mathbf{1 4}, \mathbf{1 5})$.

Figure 1-18. Examples of B-N embedded in polymer side chain by Sneddon ${ }^{77}$ (16), Allen ${ }^{78}$ (17), Jäkle ${ }^{5}(\mathbf{1 8}, \mathbf{1 9})$, Staubitz ${ }^{79}(\mathbf{2 0})$, and Klausen ${ }^{80}(\mathbf{2 1})$. 33

Figure 2-1. Triarylborane Lewis acid-functionalized polymers and their applications. 44
Figure 2-2. ${ }^{19} \mathrm{~F}$ and ${ }^{11} \mathrm{~B}$ NMR spectra of model compounds (bottom) and polymers (top) in CDCl_{3}.

Figure 2-3. (a, b) UV-vis absorption, excitation and emission spectra of borane model compounds and polymers in DCM solution. Photographs of solutions of (c) Mod1-BPf2 / Mod2-BPf2 (right), (d) P1-BPf2 (left) / P2-BPf2 (right) in CDCl3 irradiated with a handheld UV lamp (254 nm).

Figure 2-4. (a) UV-vis absorption and emission spectra of Mod1-BPf2 in DCM (black), toluene (green) and hexanes (blue) solution. (b) UV-vis absorption and emission spectra of Mod2-BPf2 in DCM (red), toluene (orange) and hexanes (gray) solution.

Figure 2-5. Fluorescence (black) and delayed fluorescence (orange) emission spectra of (a) Mod1-BPf2, (b) Mod2-BPf2, (c) P1-BPf2, and (d) P2-BPf2 in DCM solution.

Figure 2-6. Prompt fluorescence emission decay curves of (a) Mod1/P1-BPf2 and (b) Mod2/P2-BPf2 in DCM solution. Delayed emission decay curves of (c) Mod1/P1-BPf2 and (d) Mod2/P2-BPf2 in DCM solution.

Figure 2-7. DFT calculated frontier orbitals for Mod1-BPf2 and Mod2BPf2 (rb3lyp/6$31 \mathrm{~g}(\mathrm{~d})$, DCM solvation model, isovalue $=0.02$).

Figure 2-8. Comparison of the energy of the excited states S_{1}, T_{1} and relative to the S_{0} ground state for model compounds computed in DCM solvent. 66

Figure 2-S1. ${ }^{1} \mathrm{H}$ NMR spectrum of (4-bromo-2,6-dimethylphenyl)trimethylsilane (1) in CDCl_{3}.

Figure 2-S2. ${ }^{1} \mathrm{H}$ NMR spectrum of monomer M1 in CDCl_{3}.
Figure 2-S3. ${ }^{13} \mathrm{C}$ NMR spectrum of monomer M1 in CDCl_{3}. 83
Figure 2-S4. ${ }^{1} \mathrm{H}$ NMR spectrum of (4-bromo-2-chlorophenyl)trimethylsilane (2) in CDCl_{3}.

Figure 2-S5. ${ }^{1} \mathrm{H}$ NMR spectrum of monomer M2 in CDCl_{3}. 84
Figure 2-S6. ${ }^{13} \mathrm{C}$ NMR spectrum of monomer M2 in CDCl_{3}. 85
Figure 2-S7. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 1 - S i}$ in CDCl_{3}. 85
Figure 2-S8. GPC trace of P1-Si obtained from conventional free radical polymerization, eluent: THF, $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$.

Figure 2-S9. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 1 - B B r 2}$ (after precipitation into hexanes) in CDCl_{3}.

Figure 2-S10. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{P 1} \mathbf{- B B r} 2$ (after precipitation into hexanes) in CDCl_{3}.

Figure 2-S11. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 1}$-BPf2 in CDCl_{3}.
Figure 2-S12. ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{P 1 - B P f} 2$ in CDCl_{3}. 88
Figure 2-S13. ${ }^{11} \mathrm{~B}$ NMR spectrum of P1-BPf2 in CDCl_{3}. 88

Figure 2-S14. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 2 - S i}$ in CDCl_{3}.
Figure 2-S15. GPC trace of P2-Si obtained from conventional free radical polymerization, eluent: THF, $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$.

Figure 2-S16. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 2 - B B r 2}$ (after precipitation into hexanes) in CDCl_{3}.

Figure 2-S17. ${ }^{11}$ B NMR spectrum of $\mathbf{P} 2-\mathbf{B B r} 2$ (after precipitation into hexanes) in CDCl_{3}.

Figure 2-S18. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 2 - B P f} 2$ in CDCl_{3}. 91
Figure 2-S19. ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{P} 2$ - $\mathbf{B P f} \mathbf{2}$ in CDCl_{3}. 91
Figure 2-S20. ${ }^{11}$ B NMR spectrum of P2-BPf2 in CDCl_{3}. 92
Figure 2-S21. ${ }^{1} \mathrm{H}$ NMR spectrum of Mod1-Si in CDCl_{3}. 92
Figure 2-S22. ${ }^{13} \mathrm{C}$ NMR spectrum of Mod1-Si in CDCl_{3}. 93
Figure 2-S23. ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction solution of $\mathbf{M o d 1 - B B r 2}$ in CDCl_{3}. 94
Figure 2-S24. ${ }^{11} \mathrm{~B}$ NMR spectrum of the reaction solution of Mod1-BBr2 in CDCl_{3} (signal at 38.9 ppm due to excess BBr_{3}). 95

Figure 2-S25. ${ }^{1} \mathrm{H}$ NMR spectrum of Mod1-BPf2 in CDCl_{3}. 95
Figure 2-S26. ${ }^{19}$ F NMR spectrum of Mod1-BPf2 in CDCl_{3}. 96
Figure 2-S27. ${ }^{11}$ B NMR spectrum of Mod1-BPf2 in CDCl_{3}. 96
Figure 2-S28. ${ }^{13} \mathrm{C}$ NMR spectrum of Mod1-BPf2 in CDCl_{3}. 97
Figure 2-S29. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HSQC NMR spectrum of Mod1-BPf2 in CDCl_{3}. 97
Figure 2-S30. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ NMR spectrum of Mod1-BPf2 in CDCl_{3}. 98
Figure 2-S31. MALDI-TOF MS data of [Mod1-BPf2]F- generated by addition of TBAF to Mod1-BPf2 (anthracene, neg. mode). 98

Figure 2-S32. ${ }^{1} \mathrm{H}$ NMR spectrum of Mod2-Si in CDCl_{3}.
Figure 2-S33. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{M o d 2 - S i}$ in CDCl_{3}.
Figure 2-S34. ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction solution of Mod2-BBr2 in CDCl_{3} (the signals at 2.40 and 7.1-7.4 ppm are attributed to toluene). 100

Figure 2-S35. ${ }^{11} \mathrm{~B}$ NMR spectra of the reaction solution of Mod2-BBr2 in CDCl_{3} after removal of volatile components.

Figure 2-S36. ${ }^{1} \mathrm{H}$ NMR spectrum of Mod2-BPf2 in CDCl_{3}.
Figure 2-S37. ${ }^{19}$ F NMR spectrum of Mod2-BPf2 in CDCl_{3}. 101
Figure 2-S38. ${ }^{11}$ B NMR spectrum of Mod2-BPf2 in CDCl_{3}. 102
Figure 2-S39. ${ }^{13} \mathrm{C}$ NMR spectrum of Mod2-BPf2 in CDCl_{3}. 102
Figure 2-S40. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HSQC NMR spectrum of Mod2-BPf2 in CDCl_{3}. 103
Figure 2-S41. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ NMR spectrum of Mod2-BPf2 in CDCl_{3}. 103
Figure 2-S42. MALDI-TOF MS data of [Mod2-BPf2]F- generated by addition of TBAF to Mod2-BPf2 (anthracene, neg. mode). 104

Figure 2-S43. ${ }^{19}$ F NMR spectra of Mod1-BPf2 in wet CDCl_{3}. 104
Figure 2-S44. ${ }^{11}$ B NMR spectra of Mod1-BPf2 in wet CDCl_{3}. 105
Figure 2-S45. ${ }^{19}$ F NMR spectra of Mod2-BPf2 in wet CDCl_{3}. 105
Figure 2-S46. ${ }^{11}$ B NMR spectra of Mod2-BPf2 in wet CDCl_{3}. 106
Figure 2-S47. ${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{P 1 - B P f} \mathbf{2}$ in wet CDCl_{3} (polymer precipitation was observed).

106
Figure 2-S48. ${ }^{11} \mathrm{~B}$ NMR spectra of $\mathbf{P 1 - B P f} 2$ in wet CDCl_{3} (polymer precipitation was $\begin{array}{ll}\text { observed). } & 107\end{array}$

Figure 2-S49. ${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{P 2}$ - $\mathbf{B P f} \mathbf{2}$ in wet CDCl_{3} (polymer precipitation was observed). 107

Figure 2-S50. ${ }^{1} \mathrm{H}$ NMR spectra for the hydrosilylation of benzaldehyde catalyzed by 10 $\mathrm{mol} \%$ of the model compounds in CDCl_{3}.

Figure 2-S51. ${ }^{1} \mathrm{H}$ NMR spectra for the hydrosilylation of benzaldehyde catalyzed by Lewis acids in CDCl_{3}. 108

Figure 2-S52. ${ }^{1} \mathrm{H}$ NMR spectra for the hydrosilylation of acetophenone catalyzed by Lewis acids in CDCl_{3}.109

Figure 2-S53. ${ }^{1} \mathrm{H}$ NMR spectra for the hydrosilylation of N -benzylidiene aniline catalyzed by Lewis acids in CDCl_{3}.

Figure 2-S54. ${ }^{1} \mathrm{H}$ NMR spectra for the hydrosilylation of styrene catalyzed by $10 \mathrm{~mol} \%$ of the model compounds in CDCl_{3}.

Figure 2-S55. Recyclability of P2-BPf2 catalyzed hydrosilylation of benzaldehyde in CDCl_{3}.

Figure 2-S56. Single-exponential fit of fluorescence decay of Mod1-BPf2 in degassed DCM excited with a 390 nm nanoLED.

Figure 2-S57. Triple-exponential fit of fluorescence decay of Mod2-BPf2 in degassed DCM excited with a 390 nm nanoLED.

Figure 2-S58. Single-exponential fit of fluorescence decay of P1-BPf2 in degassed DCM excited with a 390 nm nanoLED.

Figure 2-S59. Double-exponential fit of fluorescence decay of P2-BPf2 in degassed DCM excited with a 390 nm nanoLED.

Figure 2-S60. Single-exponential fit of TADF of Mod1-BPf2 in degassed DCM excited with pulsed Xe lamp.

Figure 2-S61. Double-exponential fit of TADF of Mod2-BPf2 in degassed DCM excited with pulsed Xe lamp.

Figure 2-S62. Single-exponential fit of TADF of P1-BPf2 in degassed DCM excited with pulsed Xe lamp.

114

Figure 2-S63. Double-exponential fit of TADF of P2-BPf2 in degassed DCM excited with pulsed Xe lamp.

Figure 3-1. Examples of previously reported polymers that have C-C units replaced by BN units ($\mathrm{Fc}=$ ferrocenyl, mesityl $=2,4,6$-trimethylphenyl).

Figure 3-2. a) Structures of the B-mesitylazaborinine and mesitylstyrene compounds (the lowest energy conformers are shown); b) electrostatic potential (ESP) maps; c) Mulliken charges of selected atoms; d) calculated bond dissociation energies (BDEs). 127

Figure 3-3. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ (aromatic region), and ${ }^{11} \mathrm{~B}$ NMR spectra of monomers (bottom) and polymers (top) in $\mathrm{CDCl}_{3}\left({ }^{*}\right)$. Vinyl groups are indicated with a black square, and signals attributed to the pendent mesityl groups with " M ".

Figure 3-4. B-Mesitylazaborinine-(mesityl)styrene copolymer structures.
Figure 3-5. Comparisons of TGA traces (A-C) and DSC traces (D-F) for azaborinine polymers with those of the respective isosteric carbon analogs. TGA data were acquired at scan rates of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ and DSC data at $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$. 136

Figure 3-6. Comparison of UV-Vis spectra of B-mesityl azaborinine (A-C) and mesitylstyrene (D-E) homopolymers with those of the respective monomers in THF solution.

Figure 3-7. Illustration of the calculated electronic excitations for the isomeric vinyl azaborinine monomers (left) and the respective ethyl-substituted model compounds (right); only major contributions are shown.

Figure 3-S1. DSC traces of (A) P4V-NBMes-co-PS, (B) P5V-NBMes-co-PS, and (C) P6V-NBMes-co-PS.

Figure 3-S2. ${ }^{1} \mathrm{H}$ NMR spectrum of 2 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Figure 3-S3. ${ }^{13} \mathrm{C}$ NMR spectrum of 2 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Figure 3-S4. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Figure 3-S5. ${ }^{1} \mathrm{H}$ NMR spectrum of 4 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure 3-S6. ${ }^{13} \mathrm{C}$ NMR spectrum of 4 in $\mathrm{C}_{6} \mathrm{D}_{6}$.
Figure 3-S7. ${ }^{11}$ B NMR spectrum of $\mathbf{4}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. 171
Figure 3-S8. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. 172
Figure 3-S9. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. 172
Figure 3-S10. ${ }^{11}$ B NMR spectrum of $\mathbf{5}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. 173
Figure 3-S11. ${ }^{1} \mathrm{H}$ NMR spectrum of 4V-NBMes monomer in CDCl_{3}. 174
Figure 3-S12. ${ }^{13} \mathrm{C}$ NMR spectrum of 4V-NBMes monomer in CDCl_{3}. 174
Figure 3-S13. ${ }^{11}$ B NMR spectrum of $4 \mathrm{~V}-\mathrm{NBMes}$ monomer in CDCl_{3} (B-free NMR tube).

Figure 3-S14. ${ }^{1} \mathrm{H}$ NMR spectrum of 5V-NBMes monomer in CDCl_{3}. 175
Figure 3-S15. ${ }^{13} \mathrm{C}$ NMR spectrum of 5V-NBMes monomer in CDCl_{3}. 176
Figure 3-S16. ${ }^{11}$ B NMR spectrum of $5 \mathrm{~V}-\mathrm{NBMes}$ monomer in CDCl_{3} (B-free NMR tube).

Figure 3-S17. ${ }^{1} \mathrm{H}$ NMR spectrum of 6V-NBMes monomer in CDCl_{3}. 177
Figure 3-S18. ${ }^{13} \mathrm{C}$ NMR spectrum of 6V-NBMes monomer in CDCl_{3}. 177
Figure 3-S19. ${ }^{11}$ B NMR spectrum of 6 V -NBMes monomer in CDCl_{3} (B-free NMR tube).

Figure 3-S20. ${ }^{1} \mathrm{H}$ NMR spectrum meta-mesitylstyrene ($m \mathrm{MesSt}$) in CDCl_{3}.
Figure 3-S21. ${ }^{13} \mathrm{C}$ NMR spectrum of meta-mesitylstyrene ($m \mathrm{MesSt}$) in CDCl_{3}. 179
Figure 3-S22. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HMQC NMR spectrum of $m \mathrm{MesSt}$ in CDCl_{3}. 179
Figure 3-S23. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ - HMBC NMR spectrum of $m \mathrm{MesSt}$ in CDCl_{3}. 180
Figure 3-S24. ${ }^{1} \mathrm{H}$ NMR spectrum of para-mesitylstyrene ($p \mathrm{MesSt}$) in CDCl_{3}. 181

Figure 3-S25. ${ }^{13} \mathrm{C}$ NMR spectrum of para-mesitylstyrene ($p \mathrm{MesSt}$) in CDCl_{3}.
Figure 3-S26. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HMQC NMR spectrum of $p \mathrm{MesSt}$ in CDCl_{3}. 182
Figure 3-S27. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ NMR spectrum of $p \mathrm{MesSt}$ in CDCl_{3}. 183
Figure 3-S28. ${ }^{1} \mathrm{H}$ NMR spectrum of ortho-mesitylstyrene (oMesSt) in CDCl_{3}. 184
Figure 3-S29. ${ }^{13} \mathrm{C}$ NMR spectrum of ortho-mesitylstyrene (oMesSt) in CDCl_{3}. 184
Figure 3-S30. ${ }^{1} \mathrm{H}$ NMR spectrum of P4V-NBMes polymer in CDCl_{3}. 185
Figure 3-S31. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{P} 4 \mathrm{~V}-\mathrm{NBMes}$ polymer in CDCl_{3}. 185
Figure 3-S32. Comparison of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMQC}$ NMR spectra of $4 \mathrm{~V}-\mathrm{NBMes}$ and P 4 V $\begin{array}{ll}\text { NBMes in } \mathrm{CDCl}_{3} \text {. } & 186\end{array}$

Figure 3-S33. ${ }^{11}$ B NMR spectrum of $\mathrm{P} 4 \mathrm{~V}-\mathrm{NBMes}$ polymer in CDCl_{3} (B-free NMR tube).

Figure 3-S34. GPC-RI trace of P4V-NBMes; eluent: THF, $1 \mathrm{~mL} \mathrm{~min}^{-1}$. 187
Figure 3-S35. ${ }^{1} \mathrm{H}$ NMR spectrum of P5V-NBMes polymer in CDCl_{3}. 187
Figure 3-S36. ${ }^{13} \mathrm{C}$ NMR spectrum of P5V-NBMes polymer in CDCl_{3}. 188
Figure 3-S37. Comparison of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMQC}$ NMR spectra of 5 V -NBMes and P5VNBMes in CDCl_{3}.

Figure 3-S38. ${ }^{11}$ B NMR spectrum of $\mathrm{P} 5 \mathrm{~V}-\mathrm{NBMes}$ polymer in CDCl 3 (B-free NMR tube).

Figure 3-S39. GPC-RI trace of P5V-NBMes; eluent: THF, $1 \mathrm{~mL} \mathrm{~min}^{-1}$. 190
Figure 3-S40. ${ }^{1} \mathrm{H}$ NMR spectrum of P6V-NBMes polymer in CDCl_{3}. 191
Figure 3-S41. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{P} 6 \mathrm{~V}-\mathrm{NBMes}$ polymer in CDCl_{3}. 191
Figure 3-S42. Comparison of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMQC}$ NMR spectra of $6 \mathrm{~V}-\mathrm{NBMes}$ and P 6 V NBMes in CDCl_{3}. 192

Figure 3-S43. ${ }^{11}$ B NMR spectrum of $\mathrm{P} 6 \mathrm{~V}-\mathrm{NBMes}$ polymer in CDCl_{3} (B-free NMR tube).

Figure 3-S44. GPC-RI trace of P6V-NBMes; eluent: THF, $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$. 193
Figure 3-S45. ${ }^{1} \mathrm{H}$ NMR spectrum of mMesSt polymer in CDCl_{3}. 194
Figure 3-S46. ${ }^{13} \mathrm{C}$ NMR spectrum of m MesSt polymer in CDCl_{3}. 194
Figure 3-S47. GPC-RI trace of m MesSt polymer; eluent: THF, $1 \mathrm{~mL} \mathrm{~min}^{-1}$. 194
Figure 3-S48. ${ }^{1} \mathrm{H}$ NMR spectrum of $p \mathrm{MesSt}$ polymer in CDCl_{3}. 195
Figure 3-S49. ${ }^{13} \mathrm{C}$ NMR spectrum of p MesSt polymer in CDCl_{3}. 195
Figure 3-S50. GPC-RI trace of p MesSt polymer; eluent: THF, $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$. 195
Figure 3-S51. ${ }^{1} \mathrm{H}$ NMR spectrum of o MesSt polymer in CDCl_{3}. 196
Figure 3-S52. GPC-UV trace of crude mixture for o MesSt polymerization; eluent: THF, 1 $\mathrm{mL} \mathrm{min}{ }^{-1}$ (peak at 136 Da corresponds to residual monomer).

Figure 3-S53. ${ }^{1} \mathrm{H}$ NMR spectrum of isolated $\mathrm{P} 4 \mathrm{~V}-\mathrm{NBMes}-\mathrm{co}-\mathrm{PS}$ in CDCl_{3}. 197

Figure 3-S54. GPC trace of isolated P4V-NBMes-co-PS; eluent: THF, $1 \mathrm{~mL} \mathrm{~min}^{-1} .197$
Figure 3-S55. ${ }^{1} \mathrm{H}$ NMR spectrum of P5V-NBMes-co-PS polymer in CDCl_{3}. 197
Figure 3-S56. GPC trace of P5V-NBMes-co-PS; eluent: THF, $1 \mathrm{~mL} \mathrm{~min}^{-1}$. 198
Figure 3-S57. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{P} 6 \mathrm{~V}-\mathrm{NBMes}-\mathrm{co-PS}$ polymer in CDCl_{3}. 198
Figure 3-S58. GPC trace of P6V-NBMes-co-PS; eluent: THF, $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$. 198
Figure 3-S59. ${ }^{1} \mathrm{H}$ NMR spectrum of P4V-NBMes-co-PmMesSt polymer in CDCl_{3}. 199
Figure 3-S60. GPC trace of P4V-NBMes-co-PmMesSt; eluent: THF, $1 \mathrm{~mL} \mathrm{~min}^{-1} .199$
Figure 3-S61. ${ }^{1} \mathrm{H}$ NMR spectrum of P5V-NBMes-co-PpMesSt polymer in CDCl_{3}. 199
Figure 3-S62. GPC trace of P5V-NBMes-co-PpMesSt; eluent: THF, $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$. 200

Figure 3-S63. ${ }^{1} \mathrm{H}$ NMR spectrum of P6V-NBMes-co-PmMesSt polymer in CDCl_{3}.
Figure 3-S64. GPC trace of P6V-NBMes-co-PmMesSt; eluent: THF, $1 \mathrm{~mL} \mathrm{~min}^{-1} .200$
Figure 4-1. First order kinetic plot for ROMP of Dewar isomer 1 with G2/HG2. ROMP conditions: $\left[\mathrm{M}_{0}\right]=0.3 \mathrm{M}$; conversion determined by ${ }^{1} \mathrm{H}$ NMR integration. 208

Figure 4-2. GPC-RI traces of polymers obtained with G2 (a) and HG2 (b); eluent: THF, 1 $\mathrm{mL} \min ^{-1}$. 209

Figure 4-3. (a) ${ }^{1} \mathrm{H}$ and (b) ${ }^{11} \mathrm{~B}$ NMR spectra of monomer (bottom) and polymer (top) in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure 4-4. (a) Structure of head-to-tail trans-vinylene bridged model dimer. (b) Section of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum of polymer 2 in $\mathrm{C}_{6} \mathrm{D}_{6}$. 212

Figure 4-5. FT-IR spectrum of Dewar isomer 1 and poly(1,2-azaborinine) 2. 213
Figure 4-6. TGA trace of poly(1,2-azaborinine) $\mathbf{2}$ acquired at a scan rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$.

Figure. 4-S1. Figure 4-S1. Stacked ${ }^{1} \mathrm{H}$ NMR spectra at different time points during ROMP of Dewar isomer $1(0,0.5,1,1.5,2.5,3.5,4.5$ hours from bottom to top). "H4" represents the proton in 4-position of the monomer and the anisole reference standard is labeled with "A".

Figure. 4-S2. Overlay of GPC-RI and RALS traces for polymers obtained with G2 (a) and HG2 (b); eluent: THF, $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$.222

Figure. 4-S3. ${ }^{13} \mathrm{C}$ NMR spectrum of poly(1,2-azaborinine) in $\mathrm{C}_{6} \mathrm{D}_{6}$. 222
Figure. 4-S4. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HSQC NMR spectrum of poly(1,2-azaborinine) in $\mathrm{C}_{6} \mathrm{D}_{6}$. 223
Figure. 4-S5. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ NMR spectrum of poly(1,2-azaborinine) in $\mathrm{C}_{6} \mathrm{D}_{6}$. 224
Figure. 4-S6. Full NOESY NMR spectrum of poly(1,2-azaborinine) in $\mathrm{C}_{6} \mathrm{D}_{6}$. 224
Figure. 4-S7. ${ }^{1}$ H NMR spectrum of ROMP of 1 with the cis-selective catalyst HGM2001 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure. 4-S8. Optimized structures of (a) trans-dimer, (b) cis-dimer (Gaussian 16; rb3lyp/6$31 \mathrm{~g}(\mathrm{~d})$). C dark grey, B green, N blue, Si light blue-grey; only selected H atoms are shown.

Figure. 4-S9. Full FT-IR spectrum of Dewar isomer $\mathbf{1}$ and poly(1,2-azaborinine) 2. 227

List of Schemes

Scheme 1-1. Examples of standard free radical polymerization (a), ATRP (b), and RAFT (c) polymerization of organoboron monomers. ${ }^{4-7}$

Scheme 1-2. Synthesis of syndiotactic poly(vinyl alcohol) via Ziegler-Natta polymerization of BN2VN by Klausen. ${ }^{10}$

Scheme 1-3. Hydroboration of polyolefins with unsaturated groups and further oxidation by Studer. ${ }^{17}$

Scheme 1-4. General methods for the synthesis of organoboron polymers of varying Lewis acidity by Jäkle. ${ }^{18}$

Scheme 1-5. Synthesis of syndiotactic polystyrene ionomers functionalized with sulfonic acid groups via transition metal-catalyzed C-H activation of polyolefins by Bae. ${ }^{21}$

Scheme 1-6. (a) Lewis acid catalyzed hydrosilylation by Piers ${ }^{23}$ and (b) FLP activation of dihydrogen by Stephan ${ }^{24}$; the photograph illustrates the color changes observed upon hydrogenation and dehydrogenation of the boron-phosphorous Lewis pair.

Scheme 1-7. Mechanism of the $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$-catalyzed hydrosilylation of ketones $(\mathrm{X}=\mathrm{O})$ and imines $\left(X=N R^{3}\right) .{ }^{30}$ [Adapted with permission from Ref. 30. Copyright © The Royal Society of Chemistry 2015]

Scheme 1-8. Cyclohexa-1,4-dienes and cyclohexa-1,3-dienes as hydrosilane surrogates in $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$-catalyzed transfer processes to alkenes. ${ }^{31,32}$

Scheme 1-9. Photochromic random copolymers with $\mathrm{B}(\mathrm{ppy}) \mathrm{Mes}_{2}$ as the pendant unit designed by Wang and Li. ${ }^{50}$ [Adapted with permission from reference 50 . Copyright © 2017 American Chemical Society]

Scheme 1-10. Mild synthesis of 1,2-azaborine by Ashe. ${ }^{56}$
Scheme 1-11. Late-stage functionalization of monocyclic 1,2-azaborines at different positions by Liu. ${ }^{58-60}$

Scheme 1-12. Diels-Alder reaction between 1,2-azaborine and maleic anhydride by Liu. ${ }^{61}$

Scheme 1-13. a) Photoisomerization of 1,2-dihydro-1,2-azaborine in matrix; ${ }^{62}$ b) photoisomerization of 1,2-dihydro-1-tert-butyldimethylsilyl-2-mesityl-1,2-azaborine in solution; ${ }^{63}$ c) synthesis of aminoborylated cyclobutane. ${ }^{64}$

Scheme 1-14. Synthesis and post-functionalization of 1,3-azaborines by Liu. ${ }^{65,66}$
Scheme 1-15. Synthesis and post-functionalization of 1,4-azaborines by Liu. ${ }^{67} \quad 30$
Scheme 1-16. a) Synthesis of poly(aminoborane)s by Manners; ${ }^{72}$ b) synthesis of poly(iminoborane)s by Helten. ${ }^{73} 31$

Scheme 2-1. Synthesis of Silane-functionalized Polymers and Model Compounds. 47
Scheme 2-2. Conversion to Arylborane-functionalized Polymers and Model Compounds.

Scheme 3-1. Synthesis of the 4V-NBMes, 5V-NBMes and 6V-NBMes monomers (TBS = t-butyldimethylsilyl; dppf = 1,1'-bis(diphenylphosphino)ferrocene; MTBE $=$ methyl tbutyl ether; TBAF = tetra-n-butylammonium fluoride; pin = pinacolato). 124

Scheme 3-2. Synthesis of the azaborinine polymers and their all-carbon analogs by free radical polymerization (AIBN = 1,1'-azobisisobutyronitrile). 128

Scheme 4-1. (a) Photoisomerization of \mathbf{A} to the Dewar isomer \mathbf{B} (TBS $=$ tbutyldimethylsilyl, Mes $=$ 2,4,6-trimethylphenyl). (b) Sequential isomerization/hydrogenation of \mathbf{C} to azaborabicyclohexane \mathbf{D} and subsequent ring opening to form aminoborylated cyclobutane \mathbf{E}. 203

Scheme 4-2. Selected examples of ROMP of strained cyclobutenes. 204
Scheme 4-3. ROMP Synthesis of polymer 2. 206

List of Tables

Table 2-1. Gutmann-Becket analysis of organoborane model compounds and polymers 52
Table 2-2. Investigation of Lewis acids in catalytic hydrosilylation of selected substrates

Table 2-3. Comparison of Photophysical Data of Model Compounds and Polymers
Table 2-4. TD-DFT calculated photophysical data for Mod1-BPf2 and Mod2-BPf2 (rcam-b3lyp/6-31g(d), DCM solvation model) 64

Table 2-5. Comparison of structural parameters at the $\mathrm{S}_{0}\left(\mathrm{rb} 3 \operatorname{lyp} / 6-31 \mathrm{~g}(\mathrm{~d})\right.$) and S_{1} (rcam-b3lyp/6-31g(d)) states 65

Table 2-S1. UV-vis Absorption and Fluorescence Data of Model Compounds in Various Solvents 111

Table 2-S2. Summary of TD-DFT data (rb3lyp/6-31g(d))
Table 2-S3. Summary of TD-DFT data (rcam-b3lyp/6-31g(d))
Table 2-S4. Comparison of the calculated singlet state and triplet state energies for Mod1BPf2 and Mod2-BPf2

Table 2-S5. Kohn-Sham HOMO and LUMO orbital plots for Mod1-BPf2 and Mod2-BPf2 (rb3lyp/6-31g(d) 118

Table 2-S6. Kohn-Sham HOMO and LUMO orbital plots for Mod1-BPf2 and Mod2-BPf2 (rcam-b3lyp/6-31g(d) 119

Table 3-1. Data for the free radical polymerization of vinyl-functionalized azaborinines and their all-carbon analogs 128

Table 3-2. Data for the free radical copolymerization of vinyl-functionalized azaborinines with styrene (St) and mesitylstyrene (MesSt) 132

Table 3-S1. Comparison of copolymer glass transition temperatures to predicted values based on the relative composition using the Fox equation $1 / T_{\mathrm{g}, \mathrm{calc}}=\left(\mathrm{w}_{\mathrm{BN}} / T_{\mathrm{g}, \mathrm{BN}}\right)+\left(\mathrm{w}_{\mathrm{St}} / T_{\mathrm{g}, \mathrm{St}}\right)$
where w_{BN} and w_{St} are the weight fractions of vinyl azaborinine and styrene respectively as determined from the monomer conversion

Table 3-S2. HOMO - LUMO orbital plots for B-mesityl vinylazaborinines (cam-b3lyp/6$311 \mathrm{~g}(\mathrm{~d}, \mathrm{p})$)

Table 3-S3. Summary of TD-DFT data (cam-b3lyp/6-311g(d,p))
Table 4-1. Ring-opening metathesis polymerization condition of Dewar isomer 1.
Table 4-2. Comparison of vibrational frequencies and calculated absorptions for Dewar isomer $\mathbf{1}$ and poly(1,2-azaborinine) 2.

Table 4-S1. Comparison of the ground state energies for head-to-tail trans- and cis-dimer, optimized at rb3lyp/6-31g(d) level of theory. 225

Table 4-S2. Comparison of the distances between hydrogens (distances in \AA) in head-totail trans and cis-dimer obtained from DFT calculations (Gaussian 09; rb3lyp/6-31g(d))

Chapter 1 General Introduction

1.1 Synthesis and Applications of Boron-containing Polyolefins

The incorporation of borane moieties into polymers has received tremendous attention over the past decades due to the diverse potential applications, including their use as polymersupported catalysts, in drug delivery, optoelectronic materials, and sensors for anions. Figure 1-1 shows some of the most commonly studied architectures of boron-containing polymers. ${ }^{1}$ The boron element can be either embedded into the main chain of conjugated polymers or as pendant groups; the attachment of organoborane moieties as side chains or as end groups to polyolefins has also been studied extensively. ${ }^{2}$ Although a lot of synthetic routes have been developed to incorporate boron into the polymer main chain, the challenges in achieving control over the molecular weight and polymer architecture still present an obstacle. In contrast, the functionalization of polyolefins offers some advantages such as excellent solubility, easier access to materials of controlled molecular weight and architecture, and the facile combination with other functional groups. Thus, diverse methods for the preparation of borane-functionalized polyolefins have been introduced, including systems with tricoordinate and tetracoordinate borane moieties. Here, we will mainly focus on the attachment of borane moieties to the side chains of soluble polyolefins. The different synthetic routes to these tricoordinate organoborane polymers will be presented, followed by a brief overview of their applications.

Figure 1-1. Selected architectures of boron-containing polymers. ${ }^{1}$ [Adapted with permission from reference 1. Copyright © 2006 Elsevier B.V.]

1.1.1 Synthesis of polymers with tri-coordinate organoborane pendant groups

Organoborane-functionalized polyolefins are generally synthesized either by direct polymerization of boron-functionalized monomers or via so-called post-modification of pre-formed functional polymers. Both methods have been applied successfully for the attachment of boron substituents to the side chains of polyolefins. ${ }^{3}$

1.1.1.1 Direct polymerization

The direct polymerization approach requires the preparation of boron-functionalized monomers that contain polymerizable groups, most commonly vinyl functional groups. Conventional free radical polymerization and controlled free radical polymerization both work well for the polymerization of boron-containing monomers, since the synthetic
protocols are straightforward and the compatibility of the propagating radicals with B-C bonds tends to be reasonably good. Meanwhile, Ziegler-Natta polymerization is also well suited, especially for strongly Lewis acidic monomers. In addition, ring-opening metathesis polymerization can be applied for the polymerization of cyclic olefinic monomers with pendent borane groups.

Conventional free radical polymerization has been frequently used for monomers that feature air-stable borane moieties, such as boronic acids and esters. ${ }^{4}$ Even some more unusual monomers such as 1-hydro-2-vinyl-1,2-azaborine and 1-hydro-2-styryl-1,2azaborine have successfully been polymerized by thermally induced radical polymerization with AIBN (azobisisobutyronitrile), BPO (benzoyl peroxide) or ACHN (1,1'-azobis(cyclohexanecarbonitrile) as initiators (Scheme 1-1a). ${ }^{5}$ "Living" free radical polymerization has also been applied to the preparation of organoboron polymers with controlled molecular weight and end groups. Moreover, this is the most common strategy for the preparation of block copolymer architectures. Our group presented the first example of controlled polymerization of a boron-containing monomer to achieve homopolymers and block copolymers with styrene via atom transfer free radical polymerization (ATRP) (Scheme 1-1b). ${ }^{6}$ Later on, we demonstrated the direct and controlled polymerization of dimesitylborane-substituted styrenes via reversible addition-fragmentation chain transfer (RAFT). A block copolymer with PNIPAM (poly(N-isopropylacrylamide)) was used to detect fluoride anions in aqueous solution at a remarkably low level of less than one ppm (Scheme 1-1c). ${ }^{7}$
a

b

Scheme 1-1. Examples of standard free radical polymerization (a), ATRP (b), and RAFT (c) polymerization of organoboron monomers. ${ }^{4-7}$

Ziegler-Natta polymerization presents a powerful method that has commonly been employed to polymerize α-olefins with high linearity and stereoselectivity. This method is compatible with highly reactive and strongly Lewis acidic organoboron species. Chung and coworkers reported the copolymerization of propylene with hexenyl-9-BBN (9-BBN $=9$-borabicyclononane) in toluene with TiCl_{3} as catalyst and $\mathrm{Et}_{2} \mathrm{AlCl}$ as cocatalyst. ${ }^{8}$ The direct copolymerization of ethylene with a triarylborane monomer has been studied by Do and Lee and coworkers to prepare a luminescent polyethylene derivative in the presence of
$\mathrm{Me}_{2} \mathrm{Si}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\eta^{1}-\mathrm{N}-t-\mathrm{Bu}\right) \mathrm{TiCl}_{2} /$ methylaluminoxane (MAO) as the catalyst system. ${ }^{9}$ More recently, Klausen and coworkers investigated the Ziegler-Natta polymerization of BN-substituted 2-vinylnaphthalene (BN2VN). The polymerization with $\mathrm{Cp}^{*} \mathrm{TiMe}_{3}$ as the catalyst and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ as the cocatalyst proceeded in a syndioselective fashion (Scheme 12). Syndiotactic poly(vinyl alcohol) was prepared by stereoretentive post-polymerization oxidation of the pendent organoborane units using $\mathrm{NaOOH} .{ }^{10}$

Scheme 1-2. Synthesis of syndiotactic poly(vinyl alcohol) via Ziegler-Natta polymerization of BN2VN by Klausen. ${ }^{10}$

Chung and coworkers have extended the toolbox to ring-opening metathesis polymerization (ROMP) to achieve boron-containing polymers. The $\mathrm{WCl}_{6} / \mathrm{SnMe}_{4}{ }^{-}$ catalyzed ROMP of monomers such as 9-BBN-norbornene (1) produced polymers with an equal ratio of cis/trans isomer composition (Figure 1-2). ${ }^{11}$ More recently, Gilroy and coworkers polymerized a novel norbornene-based boron difluoride formazante monomer (2) by ROMP. The resulting polymer retained the unique characteristics of the monomers with large Stokes shifts and the ability to serve as electron reservoirs. ${ }^{12}$ Other cyclic olefins that possess considerable ring strain include 6-(cyclooctenyl)decaborane (3). ${ }^{13}$ The scope of ring-opening polymerizations (ROP) is not limited to cyclic olefins. Manners and Braunschweig explored the synthesis of ferrocenylborane polymers via the ROP of boron-
bridged [1] ferrocenophanes (4), which show tilt-angles between the planes of two cyclopentadienyl rings of up to 32°. The high strain energy within the organoborane monomers results in the ring-opening reaction of these boracycles. ${ }^{14}$

2

1

3

4

Figure 1-2. Examples of boron-containing monomers for ROMP and ROP studied by Chung ${ }^{11}$ (1), Gilroy ${ }^{12}$ (2), Sneddon ${ }^{13}$ (3), and Manners ${ }^{14}\left(4, R=R^{\prime}=\operatorname{SiMe}_{3} / R=S i, R^{\prime}=\right.$ $\left.t \mathrm{Bu} / \mathrm{R}=\mathrm{R}^{\prime}=i \mathrm{Pr}\right)$.

1.1.1.2 Post-polymerization modification approaches

Post-polymerization modification represents an alternative to direct polymerization that has proved to be highly versatile for attachment of organoborane moieties to polyolefins. Hydroboration, modification based on organolithium or organomercury intermediates, and later on developed borylation of silylated polystyrene, are among the most versatile synthetic methods for the preparation of borane-containing polymers. Besides, unfunctionalized polyolefins have been borylated via transition metal-catalyzed C-H activation procedures.

Hydroboration of vinyl-functionalized polyolefins is an efficient method for the synthesis of organoborane-substituted polyolefins. In the 1990s, early studies of the hydroboration of polyolefins with unsaturation in either the main chain or side chain were reported by

Ramakrishnan and Chung. ${ }^{15,16}$ After the hydroboration, the borane moiety can be replaced by other functional groups. For instance, Studer and coworkers reported the synthesis of functionalized poly(alkoxyamine)s by hydroboration of polyolefins with catecholborane and subsequent oxidation by nitroxides (Scheme 1-3). ${ }^{17}$
a

b

Scheme 1-3. Hydroboration of polyolefins with unsaturated groups and further oxidation by Studer. ${ }^{17}$

Early work of post-polymerization modification also relied on lithiated and mercuriated polymers. However, the obstacles of low selectivity, low conversion, and crosslinking issues limited applications. To solve these issues, our group has demonstrated a strategy using silylated polystyrenes instead. This approach consists of three steps: the preparation of the trimethylsilyl-functionalized polystyrene, the exchange of the trimethylsilyl groups for dibromoboryl groups, and the replacement of the bromines with other functional groups. The advantages of this strategy are: (1) silylated polymers and copolymers of wellcontrolled architecture, molecular weight, and degree of functionalization can be accessed;
(2) the boron-silicon exchange occurs under mild reaction conditions; (3) facile fine-tuning of the Lewis acidity of the boron centers can be achieved by introducing different substituents (Scheme 1-4, Figure 1-3). ${ }^{3,18,19}$

Scheme 1-4. General methods for the synthesis of organoboron polymers of varying Lewis acidity by Jäkle. ${ }^{18}$

Figure 1-3. Formation of organoboron polymers from dibromoborylated polystyrene. ${ }^{3}$ [Adapted with permission from reference 3. Copyright © 2005 Springer Science+Business Media, Inc.]

In 2005, Hillmyer and coworkers reported the transition metal-catalyzed C-H activation of polyolefins. The regioselective functionalization of polypropylenes of varying tacticity was achieved using $\mathrm{Cp} * \mathrm{Rh}\left(\mathrm{C}_{6} \mathrm{Me}_{6}\right)$ as the catalyst. In this process the methyl $\mathrm{C}-\mathrm{H}$ bonds are
functionalized with Bpin (pin = pinacolato) groups. ${ }^{20}$ Aromatic C-H activation is also possible; for instance, Bae's group reported a highly effective borylation of polystyrene using bis(pinacolato)diboron $\left(\mathrm{B}_{2} \mathrm{pin}_{2}\right)$ in the presence of $[\operatorname{IrCl}(\mathrm{COD})]_{2}(\mathrm{COD}=$ cyclooctadiene) under mild conditions while tolerating various functional groups (Scheme 1-5). Aromatic ionomers were pursued by subsequent Suzuki-Miyaura coupling between sulfonated phenyl bromides and the boron-containing polystyrene. ${ }^{21}$

Scheme 1-5. Synthesis of syndiotactic polystyrene ionomers functionalized with sulfonic acid groups via transition metal-catalyzed C-H activation of polyolefins by Bae. ${ }^{21}$

1.1.2 Applications

Due to the ability of the empty p_{B}-orbital of boron to delocalize π-electrons and to form Lewis acid-base complexes, organoboranes are widely applied in catalysis, the formation of supramolecular materials, and luminescent materials.

1.1.2.1 Lewis acids in catalysis

Over the past decade, frustrated Lewis pair (FLP) chemistry has emerged and is nowadays widely applied in catalysis. This concept is based on the notion that the reactivity of an unquenched Lewis pair, consisting of a Lewis acid and a Lewis base, can be harnessed to activate a third molecule. The potent boron Lewis acid $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (Figure 1-4) was first prepared back in the early 1960s, without a specific purpose, until Marks and coworkers found that electron deficient-boranes are excellent cocatalysts in metallocene-mediated alkene polymerization. ${ }^{22}$ The catalytic ability of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$, by itself, was discovered in the late 1990s by Piers and coworkers in the $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$-catalyzed hydrosilylations of $\mathrm{C}=\mathrm{X}$ bonds (Scheme 1-6a). ${ }^{23}$ Catalytic applications of Lewis acids developed relatively slowly until 2006 when Stephan and coworkers first introduced the concept of FLPs. This concept represents a fundamental and novel strategy to develop catalysts for small molecule activation (Scheme 1-6b). ${ }^{24}$ Following the successful implementation of organoboranes in FLP chemistry by Stephan, numerous catalytic processes, including hydrogenation, hydroamination, and CO_{2} reduction, have been explored. Meanwhile, organoboranepromoted hydrosilylation reactions have also been further investigated, including many different substrates.

Figure 1-4. Tris(pentafluorophenyl)borane $\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$.
a

b

Scheme 1-6. (a) Lewis acid catalyzed hydrosilylation by Piers ${ }^{23}$ and (b) FLP activation of dihydrogen by Stephan ${ }^{24}$; the photograph illustrates the color changes observed upon hydrogenation and dehydrogenation of the boron-phosphorous Lewis pair.

Metal-free hydrogenation catalysis is an essential application of FLPs. Over the past decade, the scope of the substrate has been expanded dramatically to more polar substrates, including enamines, silyl enol ethers, enones, oximes, olefins, and polyaromatics. As the most common and privileged Lewis acid, the applicability of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ is restricted owing to its relatively low functional group tolerance and moisture sensitivity. Two strategies have been successfully implemented to reduce the incompatibility of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ with substrates encompassing oxygen or nitrogen-centered Lewis base sites. One is the mitigation of electron-deficiency of the boron, and the other is the size-exclusion approach (Figure 1-5). In this way, Soós and coworkers developed a series of well-tuned Lewis acidic boranes that serve as more tolerant FLP catalysts for hydrogenation ${ }^{25-27}$ (Figure 1-
6). In addition to hydrogenation, the hydroamination of alkynes with arylamines can be used to produce the corresponding aryl enamines. ${ }^{28}$ Beyond the activation of H_{2}, a variety of other small molecules are captured by FLPs. An example is the reduction of CO_{2}. Since Ashley and O'Hare discovered the potential of FLPs to promote the reduction of CO_{2} to methanol, ${ }^{29}$ more diverse FLPs for CO_{2} capture and reduction have been exploited.

Figure 1-5. Design concepts for moisture-tolerant FLP hydrogenation by Soós. ${ }^{27}$ [Adapted with permission from Ref. 27. Copyright © 2015, American Chemical Society]

Figure 1-6. Examples of well-tuned Lewis acidic boranes by Soós. ${ }^{25-27}$

Without additional Lewis bases, electron-deficient boranes as Lewis acids catalyze the hydrosilylation of $\mathrm{C}=\mathrm{X}$ bonds by a counterintuitive mechanism shown in Scheme 1-7. ${ }^{30}$

That is, the Lewis acid activates the hydrosilane through reversible η^{1} coordination, rather than the Lewis basic sites in the substrate, to form intermediate IV. The nucleophilic attack by the Lewis basic atom in I is then facilitated by the enhanced Lewis acidity of the silicon atom in IV. The hydride migration from silicon to boron generates an ion pair VI. Transfer of the hydride from the borohydride to the electrophilic substrate completes the catalytic cycle. Piers and coworkers found that $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ is a suitable catalyst for the activation of the $\mathrm{Si}-\mathrm{H}$ bond. Various aromatic and aliphatic carbonyl compounds were hydrosilylated by $\mathrm{Ph}_{3} \mathrm{SiH}$. These findings encouraged the exploration of new electron-deficient boranes that have higher functional group tolerance. The extension of this carbonyl reduction chemistry to thioketones, imines, and alkenes was successfully achieved. Oestreich and coworkers also established cyclohexa-1,4-diene- and cyclohexa-1,3-diene-based trimethylsilane as new platforms for ionic transfer hydrosilylation of alkenes (Scheme 1-8). The hydrosilane is released in situ by $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$-promoted decomposition of silylated cyclohexadiene. ${ }^{31,32}$ This approach avoids the usage of gaseous hydrosilanes, such as $\mathrm{Me}_{3} \mathrm{SiH}$.

Scheme 1-7. Mechanism of the $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$-catalyzed hydrosilylation of ketones $(\mathrm{X}=\mathrm{O})$ and imines $\left(X=N R^{3}\right) .{ }^{30}$ [Adapted with permission from Ref. 30. Copyright © The Royal Society of Chemistry 2015]

Scheme 1-8. Cyclohexa-1,4-dienes and cyclohexa-1,3-dienes as hydrosilane surrogates in $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$-catalyzed transfer processes to alkenes. ${ }^{31,32}$

The attachment of tricoordinate borane moieties to polyolefins produces polymeric Lewis acids ${ }^{1}$ and allows for the separation and recovery of the Lewis acid catalysts. ${ }^{33}$ Although the idea of using polymer-supported Lewis acids as catalysts in these transformations is appealing, only very few efforts have been reported to date. In 2002, Piers and coworkers reported the first example of a dendrimer-supported Lewis acid catalyst. The carbosilane
dendrimers capped with $4,8,12$ perfluoroarylborane Lewis acids were prepared and successfully utilized as catalysts in the catalytic hydrosilylation of acetophenone. ${ }^{34}$ As an alternative, embedding Lewis base into polymer networks was studied by Thomas and coworkers. The combination of porous polymeric Lewis base and Lewis acid $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ yields semi-immobilized FLPs, which are capable of splitting dihydrogen and catalyze hydrogenation at ambient temperature and low hydrogen pressure. ${ }^{35}$ Very recently, Yan and coworkers found a new CO_{2}-responsive system for the catalytic formylation of $\mathrm{N}-\mathrm{H}$ bonds based on two complementary Lewis acidic and basic block copolymers (Figure 17). Interestingly, CO_{2} acts as a cross-linker that enables the formation of micelles as recyclable nanocatalysts in this system. ${ }^{36}$ The group of Fontaine reported in 2019 the preparation of alkylammoniotrifluoroborate functionalized polystyrenes. These polymeric FLPs were tested as heterogeneous pre-catalysts for the borylation of heteroarenes, and the reusability of the polymers may lead to greener processes for these catalytic C-H borylation processes (Figure 1-8). ${ }^{37}$

Figure 1-7. Poly(FLPs) as a second-generation CO_{2}-responsive system designed by Yan. ${ }^{36}$ [Adapted with permission from Ref. 36. Copyright © 2018 Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim]

Figure 1-8. Poly(FLPs) as pre-catalysts for the C-H borylation of heteroarenes designed by Fontaine. ${ }^{37}$ [Adapted with permission from Ref. 37. Copyright © The Royal Society of Chemistry 2019]

1.1.2.2 Supramolecular materials

Researchers have recently started to explore organoborane polymers as macromolecular building blocks for advanced supramolecular materials. The dative interaction between LAs and LBs offers potential benefit relative to other approaches. A particular benefit of classical LPs for applications in supramolecular polymeric materials is that a vast range of binding strengths is accessible via simple substituent variation. Brook and coworkers reported the first example of thermoreversible cross-linked polymer networks that build on the dative LP interactions by use of terminal or pendant functionalized silicone boronates and amines. ${ }^{38}$ Our group reported the construction of transient polymer networks promoted by unhindered LPs as the crosslinking points. Matching of polymers with appended weak/strong organoborane LAs and amine LBs offered access to dynamic materials with
mechanical properties that are tunable over a wide range (Figure 1-9). ${ }^{39}$ The formation of the first silicone elastomers based on dynamic B-N crosslinks was demonstrated as well. Different from the approach described above, extending the concept of FLPs with latent reactivity to polymer science permits the development of yet another new class of responsive, functional, self-healing materials. The combination of sterically hindered Lewis acids and bases has been used as a platform for the formation of dynamic polymer networks in the presence of small molecules like carbon dioxide ${ }^{36}$ and diethyl azodicarboxylate (DEAD). Shaver and coworkers reported a poly(FLP) system comprised of B- and P-functionalized polystyrene (Figure 1-10). The addition of DEAD triggered rapid network formation. The resulting gel is dynamic, self-healable, heat-responsive, and can be reshaped by post-gelation processing. ${ }^{40}$

Figure 1-9. Classical Lewis pairs in transient polymer networked reported by Jäkle. ${ }^{39}$ [Adapted with permission from Ref. 39. Copyright © 2019 American Chemical Society]

Figure 1-10. Poly(FLPs) as responsive self-healing gels reported by Shaver. ${ }^{40}$ [Adapted with permission from Ref. 40. Copyright © 2017 American Chemical Society]

1.1.2.3 Luminescent materials

With the vacant p_{z} orbital on boron, tri-coordinated organoboron moieties serve as excellent electron acceptors. However, in the absence of stabilization by the binding of a Lewis base, the empty p-orbital also renders tri-coordinate organoboranes often unstable to air and moisture. Steric protection of the boron center with bulky aromatic substituents can be used to increase the stability of organoboranes towards nucleophilic attacks. The most common substituents used for steric protection strategies are 2,4,6-trimethylphenyl (Mes), 2,4,6-tri-iso-propylphenyl (Tip) and 2,4,6-tri-tert-butylphenyl (Mes*). Numerous triarylboron compounds have been explored for applications in optoelectronic devices (OLEDs, FETs, photovoltaics, etc.) and anion sensing. Organic light emitting diodes (OLEDs) have attracted considerable interest because of their potential application in flat panel displays and solid-state lighting. ${ }^{41}$ Since the first demonstration by Shirota and coworkers that bithiophene or terthiophene with $\operatorname{Mes}_{2} \mathrm{~B}$ substituents can be used as efficient electron-transporting materials in OLEDs, ${ }^{42}$ many different luminescent materials
based on tri-coordinate organoboranes have been designed. ${ }^{43}$ More recently, Marder and coworkers ${ }^{44}$ studied the difference between $(\mathrm{Mes})_{2} \mathrm{~B}$ and $(\mathrm{FMes})_{2} \mathrm{~B}$ moieties $(\mathrm{FMes}=$ 2,4,6-tris(trifluoromethyl)phenyl), finding that the much enhanced acceptor strength makes (FMes) $)_{2} \mathrm{~B}$-substituted derivatives promising for OLEDs application (Figure 1-11).

8a, $\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{CF}_{3}$
8b, $\mathrm{R}=\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}, \mathrm{R}^{\prime}=\mathrm{CF}_{3}$
8c, $R=\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}, \mathrm{R}^{\prime}=\mathrm{CF}_{3}$
8d, $\mathrm{R}=\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}, \mathrm{R}^{\prime}=\mathrm{CH}_{3}$

Figure 1-11. Luminescent triaryboranes for OLEDs application by Marder. ${ }^{44}$

On the other hand, the binding of anions, such as fluoride and cyanide, to boron results in quenching of luminescence or a shift in the emission wavelength, which allows the use of triarylboranes for anion sensing. ${ }^{45}$ Yamaguchi and coworkers reported the first organoborane system for fluoride detection in 2001. They developed a highly sterically hindered tris(9-anthryl)borane, which is stable toward air and moisture, but readily binds the small fluoride anion. The addition of fluoride switched the color from orange to colorless (Figure 1-12a). ${ }^{46}$ More recently, polymeric materials have also been developed (Figure 1-12b), including systems that show amplified sensory responses and operate in aqueous solution (see also Scheme 1-1c). ${ }^{7,47}$
a

PSBMesAr

Figure 1-12. (a) The first triarylborane for fluoride sensing by Yamaguchi ${ }^{46}$ and (b) triarylborane polymers PSBMesAr for fluoride and cyanide sensing by Jäkle. ${ }^{47}$

Organoborane polymers that show changes in their emission upon application of other stimuli (temperature, solvent polarity, photoirradiation, additives) have also been developed. In a recent example, Li and Wang introduced a new class of multiemissive/responsive polymers based on a methacrylate monomer containing a switchable boron chromophore (Figure 1-13a). The internal $\mathrm{B} \leftarrow \mathrm{O}$ bond in the chromophore can undergo structural switching between a blue-emitting open form and a red-emitting closed form. The degree of polymerization greatly influences the ratio of the open and closed form, leading to tunable multicolor fluorescence (Figure 1-13b). ${ }^{48}$
a

C

Figure 1-13. (a) Synthetic route to methacrylate polymers with a switchable boron chromophore. (b) Photographs showing the emission colors of the homopolymers (P1 to P9) in toluene (top), DCM (middle), and THF (bottom) under 365 nm UV irradiation. (c) Illustration of the switching of the boron chromophore based on the reversible intramolecular $\mathrm{B} \leftarrow \mathrm{O}$ bond. ${ }^{48}$ [Adapted with permission from reference 48 . Copyright © 2019 Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim]

1.1.2.4 Synthesis of polymers with tetra-coordinate organoborane

pendant groups

Tetra-coordinate organoboranes are also attractive as chromophores due to their typically high stability. These chromophores can be embedded in the polymer main chain or side chain. Our group reported a one-pot approach to achieve well-defined organoboron quinolate polymers. Their photoluminescence can be tuned from the blue to the red region by adjusting the quinoline substituents from electron-withdrawing to electron-donating groups (Figure 1-14). ${ }^{49}$ In another example, Wang and Li developed the first examples of
organoboron-based photochromic polymers. The copolymer bearing a photochromic $\mathrm{B}($ ppy $) \mathrm{Mes}_{2}$ unit (ppy = 2-phenylpyridyl, Mes $=$ mesityl) undergoes photoisomerization upon 365 nm irradiation, leading to switchable color and fluorescence as shown in Scheme $1-9 .{ }^{50}$

Figure 1-14. (a) Synthesis of organoboron quinolate polymers. (b) Photographs of solutions of PSBPhQ in THF (ca. $2 * 10^{-3} \mathrm{M}$) excited with black light at $365 \mathrm{~nm}^{49}$ (from left to right: $\mathrm{R}=$ Bpin, $\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{H}, \mathrm{Cl}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}$, respectively). [Adapted with permission from reference 49. Copyright © 2006 American Chemical Society]

Scheme 1-9. Photochromic random copolymers with $\mathrm{B}(\mathrm{ppy}) \mathrm{Mes}_{2}$ as the pendant unit designed by Wang and Li. ${ }^{50}$ [Adapted with permission from reference 50. Copyright © 2017 American Chemical Society]

In Chapter 2 of this thesis, we demonstrate the preparation of a new class of polystyrenebased triarylborane polymers. The exploration of their catalysis applications and the investigation of their photophysical properties are discussed. The results indicate the strong potential of these polymeric Lewis acids as catalysts in the hydrosilylation of unsaturated organic substrates and their potential utility as luminescent materials.

1.2 Boron-Nitrogen-Doped Aromatic Compounds and Polymers

Boron and nitrogen-doped aromatic systems generated by replacing a C-C unit with B-N unit have recently received significant attention. Despite the fact that a B-N unit is an isosteric replacement of a C-C unit, having the same number of valence electrons as a pair of carbon atoms, differences can be expected in molecular and electronic properties of BN doped aromatic compounds due to the dipolar nature of the BN bond. The first example of $\mathrm{BN} / \mathrm{CC}$ isosterism of an arene to give borazine $\left(c-\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}\right)$ was reported by Alfred Stock in 1926 (9). ${ }^{51}$ In 1958, Dewar successfully synthesized the first BN-substituted aromatic compound 9,10-azaboraphenathrene (10) by replacing a single $\mathrm{C}=\mathrm{C}$ bond in a polycyclic aromatic hydrocarbon (PAH) with a BN bond. ${ }^{52}$ Dewar and White later prepared the first monocyclic 1,2-azaborines (11, 12)..${ }^{53,54}$ Nowadays, the study of carbon-boron-nitrogen (CBN) heterocycles has become one of the most popular topics in organic chemistry and material chemistry. Numerous BN-embedded aromatic compounds have been synthesized. Monocyclic azaborines (more precisely named azaborinines), the isosteres of benzene, can
be categorized into three isomers referred to as 1,2 -azaborine, 1,3 -azaborine, and $1,4-$ azaborine according to the particular substitution pattern.

9

10

11

12

Figure 1-15. Early examples of BN arenes by $\operatorname{Stock}^{51}$ (9), Dewar ${ }^{52,53}(\mathbf{1 0}, \mathbf{1 1)}$ and White ${ }^{54}(12)$.

1.2.1 Azaborines as BN-Isosters of Benzene

The stability of the different azaborine isomers decreases in the order of 1,2-azaborine $>$ 1,4-azaborine $>1,3$-azaborine, and all of them are relatively less stable than benzene (Figure 1-16). ${ }^{55}$ Following a breakthrough in the mild synthesis of monocyclic 1,2azaborine achieved by Ashe's group in 2000, ${ }^{56}$ 1,2-azaborine as the most stable isomer has attracted considerable interest as a versatile aromatic building block. Meanwhile, efforts by the Liu and Braunschweig groups also resulted in significant progress in the synthesis of 1,3-azaborines and 1,4-azaborines. Overall, numerous synthetic reports for azaborines support further investigations into the functional utility in biochemistry and pharmacology, material science, and transition-metal-based catalysis.

Figure 1-16. Calculated stability trends of benzene and azaborine isomers. ${ }^{55}$

1.2.1.1 1,2-Azaborines

Scheme 1-10. Mild synthesis of 1,2-azaborine by Ashe. ${ }^{56}$

In 2000, Ashe and coworkers developed a ring-closing metathesis/oxidation procedure that enabled the mild and efficient formation of 1,2-azaborines (Scheme 1-10). Liu and coworkers subsequently introduced an important innovation to Ashe's method that allows the synthesis of 1,2-azaborines comprising various substituents on boron by preserving the reactivity of the $\mathrm{B}-\mathrm{Cl}$ bond. ${ }^{57}$ Additionally, Liu's group demonstrated postfunctionalization methods for each of the ring positions, paving the way to a greater diversity of 1,2-azaborines. The $\mathrm{C}(3)$ and $\mathrm{C}(6)$-substitutions were achieved by a series of versatile coupling reactions. Diverse $C(3)$ functionalization has been accomplished by the Negishi coupling reaction (Scheme 1-11a). ${ }^{58}$ Substitution at $\mathrm{C}(6)$ has been realized through iridium-catalyzed borylation, followed by palladium-catalyzed (hetero)arylation (Scheme

1-11b). ${ }^{59}$ More recently, methods for further functionalization of the previously inaccessible $\mathrm{C}(4)$ and $\mathrm{C}(5)$-positions of the 1,2-azaborine heterocycle have been introduced (Scheme 1-11c). Although the product of C-H borylation consists of a mixture of $\mathrm{C}(4)$ and $C(5)$-borylated 1,2-azaborines, the distinct electronic properties of the $\mathrm{C}(4)$ and $\mathrm{C}(5)$ positions enable their isolation via resolution chemistry. For example, the oxidation by N-methylmorpholine-N-oxide (NMP) is selective for the C4-borylated 1,2-azaborine and the Ir-catalyzed deborylation occurs selectively for the C5-borylated 1,2-azaborine. These two new 1,2-azaborine building blocks are anticipated to expand the diversity and functionality of 1,2-azaborines greatly. ${ }^{60}$
a

$X=B r, I$
$\mathrm{R}=$ alkyl, vinyl, aryl

Scheme 1-11. Late-stage functionalization of monocyclic 1,2-azaborines at different positions by Liu. ${ }^{58-60}$

Besides these synthetic advances, many studies on the fundamental properties and reactivities have been pursued. For example, Liu's group demonstrated the first example of a Diels-Alder reaction with 1,2-azaborines (Scheme 1-12). ${ }^{61} \mathrm{~A}$ variety of electrondeficient dienophiles were shown to react with N-TBS-B-Me-1,2-azaborine to produce cycloadducts with high functional complexity.

Scheme 1-12. Diels-Alder reaction between 1,2-azaborine and maleic anhydride by Liu. ${ }^{61}$ Another exciting advance is the photoisomerization of 1,2-azaborines, studied by Bettinger and Liu. The Dewar isomer of the parent 1,2-azaborine was only achieved by irradiation with UV light under matrix isolation conditions (Scheme 1-13a), but B- and N -substituted derivatives could be generated in solution and isolated under ambient conditions (Scheme 1-13b). ${ }^{62,}{ }^{63}$ They proposed that the energy that is reversibly stored in this Dewar valence isomer could be utilized in molecular solar-thermal system applications. They also extended this strategy to synthesize 1,2 -substituted cyclobutanes (Scheme 1-13c), ${ }^{64}$ first using photoinduced valence isomerization of 1,2-azaborines to furnish the corresponding BN isosteres of Dewar benzene, followed by the cleavage of the B-N bond to furnish an unfused cyclobutane substituted with boron and nitrogen. Ultimately, a diverse set of 1,2substituted cyclobutanes rings could be easily generated via further functionalization at boron-bound carbon.
a

b

c

Scheme 1-13. a) Photoisomerization of 1,2-dihydro-1,2-azaborine in matrix; ${ }^{62}$ b) photoisomerization of 1,2-dihydro-1-tert-butyldimethylsilyl-2-mesityl-1,2-azaborine in solution; ${ }^{63}$ c) synthesis of aminoborylated cyclobutane. ${ }^{64}$

1.2.1.2 1,3-Azaborines

Due to the low stability of 1,3-azaborines, only one synthetic route is available that was introduced by Liu in 2011. Cyclization is achieved through ring-closing metathesis, followed by catalytic dehydrogenation to afford the desired 1,3-azaborines (Scheme 114). ${ }^{65}$ A general method to diversify the substituent on boron was reported, ${ }^{66}$ but the modification of other positions of the 1,3-azaborine ring remains to be developed, except for the single isolated example of electrophilic aromatic substitution at $\mathrm{C}(6)$ using Böhme's salt (Scheme 1-14). ${ }^{65}$

Scheme 1-14. Synthesis and post-functionalization of 1,3-azaborines by Liu. ${ }^{65,66}$

1.2.1.3 1,4-Azaborines

For 1,4-azaborine, most of the pioneering work has centered on polycyclic dibenzo-fused derivatives. In 2012, Braunschweig and coworkers reported the first synthesis and isolation of a monocyclic 1,4-azaborine via a Rh-mediated cyclization. Liu and coworkers developed a more versatile three-step synthetic route to access a wide range of substituted monocyclic 1,4-azaborine derivatives (Scheme 1-15). They also found that the placement of donor and acceptor substituents on the boron and nitrogen atoms dramatically affects the optical properties of the corresponding 1,4-azaborines. ${ }^{67}$

Scheme 1-15. Synthesis and post-functionalization of 1,4-azaborines by Liu. ${ }^{67}$

1.2.2 BN-Substituted Polymers

With a long-standing interest in the isoelectronic relationship between boron-nitrogen and carbon-carbon bonds, and increasing research efforts to create analogues, the placement of boron-nitrogen in the main chain and side chain of polymers is receiving ever increasing attention as an alternative to hydrocarbon-based materials. ${ }^{68,69}$ The implications on the materials' properties, both chemical and physical, are profound, which suggests intriguing characteristics and novel applications that are not accessible to traditional materials.

Polymers with B-N units as an inorganic backbone are interesting as they are isoelectronic with C-C units but strongly polarized. Manners pioneered the substitution of $\mathrm{B}-\mathrm{N}$ for $\mathrm{C}-\mathrm{C}$ units in the main chain of polyolefins, giving rise to exciting new classes of polymeric materials. The unsubstituted poly(aminoborane)s with the general formula $\left[\mathrm{NH}_{2}-\mathrm{BH}_{2}\right]_{\mathrm{n}}$ is the most investigated polymer in this class of materials. ${ }^{70,71}$ However, a synthetic route to give access to soluble, well defined, and high-molecular-weight polymers remained elusive,
until Manners and coworkers demonstrated the catalytic dehydropolymerization of a series of alkylamine-boranes, using $\mathrm{IrH}_{2} \mathrm{POCOP}\left(\mathrm{POCOP}=\kappa^{3}-1,3-\left(\mathrm{tBu} \mathrm{H}_{2} \mathrm{PO}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$ as the catalyst (Scheme 1-16a). ${ }^{72}$ Since then many catalysts have been explored for this reaction. Later, Helten and coworkers reported the synthesis of linear poly(iminoborane)s, which can be regarded as the inorganic analogues of poly(acetylene) (Scheme 1-16b). ${ }^{73}$

Scheme 1-16. a) Synthesis of poly(aminoborane)s by Manners; ${ }^{72}$ b) synthesis of poly(iminoborane)s by Helten. ${ }^{73}$

An alternative strategy to generate BN -substituted polymers is to embed boron and nitrogen in the backbone of conjugated polymers. In 2015, our group reported the first example of an azaborine-based conjugated polymer (13). Although the polymer main chain is isoelectronic to poly(p-phenylene), the photophysical experimental observation and computational studies suggest that the polymers more closely resemble a B-N bridged polyacetylene rather than a poly(p-phenylene). ${ }^{74}$ In 2016, Helten and coworkers developed a new organic-inorganic hybrid polymer, a poly[N-(para-phenylene)diimidoborane] (14), which comprises alternating NBN and para-phenylene units. ${ }^{75}$ In another example, Helten's group replaced the vinylene groups in poly(phenylene vinylene) with boron-
nitrogen units. The B-N bonds in compound $\mathbf{1 5}$ are polarized and only exhibit partial double bond character. ${ }^{76}$

13

14

15

Figure 1-17. Examples of B-N units embedded in conjugated polymers by $\mathrm{Jäkle}^{74}(\mathbf{1 3})$ and by Helten ${ }^{75,76}(\mathbf{1 4}, \mathbf{1 5})$.

The isosteric replacement of $\mathrm{C}-\mathrm{C}$ with BN moieties in the side chains of polyolefins has also recently been developed. In earlier work, a few studies on borazine-functionalized polyolefins $(\mathbf{1 6}, \mathbf{1 7})$ have been reported by Sneddon and Allen. ${ }^{77,78}$ In 2016, the first synthesis of azaborine-substituted polystyrene (BN-PS, 18) as well as its phenyleneexpanded congener (BN-PVBP, 19) were reported by our group. The increased polarity of the side groups and the presence of N-H moieties completely altered the physical properties of the polymers, such as solubility characteristics and thermal behavior. ${ }^{5}$ Several related works have appeared in the literature. Staubitz reported a high molecular weight poly(N-methyl-B-vinylazaborine) (20) as a B-N analogue of poly(methylstyrene); ${ }^{79}$ Klausen developed a gram-scale synthesis of the BN-substituted vinylnaphthalene polymer 21 and of corresponding copolymers with styrene. Most importantly, they also demonstrated that the oxidative cleavage of the BN -naphthalene moieties results in poly(styrene-covinylalcohol) copolymers that are desirable as compatibilizers because of the additional polar functional groups. ${ }^{80}$

Figure 1-18. Examples of B-N embedded in polymer side chain by Sneddon ${ }^{77}$ (16), Allen ${ }^{78}$ (17), Jäkle ${ }^{5}(\mathbf{1 8}, \mathbf{1 9})$, Staubitz ${ }^{79}(\mathbf{2 0})$, and Klausen ${ }^{80}(\mathbf{2 1})$.

In Chapter 3 of this thesis, the preparation of a series of new isomeric azaborine-substituted polymers is reported. Detailed investigations into the effects of the substitution pattern of vinylated B-mesityl azaborines on the polymerization reactivity and physical properties of the respective polymers are discussed. Both computational studies and experimental results demonstrate that the attachment of the vinyl groups to different carbon atoms in the heterocycle results in tunable reactivity. ${ }^{81}$ Chapter 4 expands the investigation on the polymerization of a Dewar isomer of a 1,2-azaborine derivative. The first synthesis of poly(BN-Dewar benzene) via ROMP is demonstrated. The Grubbs $2^{\text {nd }}$ generation catalyst is found to successfully catalyze the polymerization to give a product that features fourmembered BN -heterocycles alternating with vinylene groups in the main chain.

1.3 References

1.Jäkle, F., Lewis acidic organoboron polymers. Coordination Chemistry Reviews 2006, 250 (9), 1107-1121.
2.Jäkle, F., Advances in the Synthesis of Organoborane Polymers for Optical, Electronic, and Sensory Applications. Chemical Reviews 2010, 110 (7), 3985-4022.
3.Jäkle, F., Borylated Polyolefins and their Applications. Journal of Inorganic and Organometallic Polymers and Materials 2005, 15 (3), 293-307.
4.Lennarz, W.; Snyder, H., Arylboronic Acids. III. Preparation and Polymerization of pVinylbenzeneboronic Acid 1. Journal of the American Chemical Society 1960, 82.
5.Wan, W.-M.; Baggett, A. W.; Cheng, F.; Lin, H.; Liu, S.-Y.; Jäkle, F., Synthesis by free radical polymerization and properties of BN-polystyrene and BN-poly(vinylbiphenyl). Chemical Communications 2016, 52 (93), 13616-13619.
6.Qin, Y.; Sukul, V.; Pagakos, D.; Cui, C.; Jäkle, F., Preparation of Organoboron Block Copolymers via ATRP of Silicon and Boron-Functionalized Monomers. Macromolecules 2005, 38 (22), 8987-8990.
7.Cheng, F.; Bonder, E. M.; Jäkle, F., Electron-Deficient Triarylborane Block Copolymers: Synthesis by Controlled Free Radical Polymerization and Application in the Detection of Fluoride Ions. Journal of the American Chemical Society 2013, 135 (46), 17286-17289.
8.Ramakrishnan, S.; Berluche, E.; Chung, T. C., Functional group-containing copolymers prepared by Ziegler-Natta process. Macromolecules 1990, 23 (2), 378-382.
9.Park, M. H.; Kim, T.; Huh, J. O.; Do, Y.; Lee, M. H., Luminescent polyethylene with side-chain triarylboranes: Synthesis and fluoride sensing properties. Polymer 2011, 52 (7), 1510-1514.
10.Mendis, S. N.; Zhou, T.; Klausen, R. S., Syndioselective Polymerization of a BN Aromatic Vinyl Monomer. Macromolecules 2018, 51 (17), 6859-6864.
11.Ramakrishnan, S.; Chung, T. C., Poly(exo-5-hydroxynorbornene): a functional polymer using metathesis polymerization of an organoborane derivative. Macromolecules 1989, 22 (7), 3181-3183.
12.Novoa, S.; Paquette, J. A.; Barbon, S. M.; Maar, R. R.; Gilroy, J. B., Side-chain boron difluoride formazanate polymers via ring-opening metathesis polymerization. Journal of Materials Chemistry C 2016, 4 (18), 3987-3994.
13.Wei, X.; Carroll, P. J.; Sneddon, L. G., New Routes to Organodecaborane Polymers via Ruthenium-Catalyzed Ring-Opening Metathesis Polymerization. Organometallics 2004, 23 (2), 163-165.
14.Berenbaum, A.; Braunschweig, H.; Dirk, R.; Englert, U.; Green, J. C.; Jäkle, F.; Lough, A. J.; Manners, I., Synthesis, Electronic Structure, and Novel Reactivity of Strained, Boron-Bridged [1]Ferrocenophanes. Journal of the American Chemical Society 2000, 122 (24), 5765-5774.
15.Ramakrishnan, S., Well-defined ethylene-vinyl alcohol copolymers via hydroboration: control of composition and distribution of the hydroxyl groups on the polymer backbone. Macromolecules 1991, 24 (13), 3753-3759.
16.Chung, T. C.; Lu, H. L.; Li, C. L., Synthesis and Functionalization of Unsaturated Polyethylene: Poly(ethylene-co-1,4-hexadiene). Macromolecules 1994, 27 (26), 75337537.
17.Wagner, C. B.; Studer, A., Oxidation of Alkylcatecholboranes with Functionalized Nitroxides for Chemical Modification of Cyclohexene, Perallylated Polyglycerol and of Poly(butadiene). European Journal of Organic Chemistry 2010, 2010 (30), 5782-5786.
18.Qin, Y.; Cheng, G.; Achara, O.; Parab, K.; Jäkle, F., A New Route to Organoboron Polymers via Highly Selective Polymer Modification Reactions. Macromolecules 2004, 37 (19), 7123-7131.
19.Qin, Y.; Cheng, G.; Sundararaman, A.; Jäkle, F., Well-Defined Boron-Containing Polymeric Lewis Acids. Journal of the American Chemical Society 2002, 124 (43), 1267212673.
20.Bae, C.; Hartwig, J. F.; Boaen Harris, N. K.; Long, R. O.; Anderson, K. S.; Hillmyer, M. A., Catalytic Hydroxylation of Polypropylenes. Journal of the American Chemical Society 2005, 127 (2), 767-776.
21.Chang, Y.; Brunello, G. F.; Fuller, J.; Hawley, M.; Kim, Y. S.; Disabb-Miller, M.; Hickner, M. A.; Jang, S. S.; Bae, C., Aromatic Ionomers with Highly Acidic Sulfonate Groups: Acidity, Hydration, and Proton Conductivity. Macromolecules 2011, 44 (21), 8458-8469.
22.Chen, E. Y.-X.; Marks, T. J., Cocatalysts for Metal-Catalyzed Olefin Polymerization: Activators, Activation Processes, and Structure-Activity Relationships. Chemical Reviews 2000, 100 (4), 1391-1434.
23.Parks, D. J.; Piers, W. E., Tris(pentafluorophenyl)boron-Catalyzed Hydrosilation of Aromatic Aldehydes, Ketones, and Esters. Journal of the American Chemical Society 1996, 118 (39), 9440-9441.
24.Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W., Reversible, Metal-Free Hydrogen Activation. Science 2006, 314 (5802), 1124.
25.Dorkó, É.; Szabó, M.; Kótai, B.; Pápai, I.; Domján, A.; Soós, T., Expanding the Boundaries of Water-Tolerant Frustrated Lewis Pair Hydrogenation: Enhanced Back Strain in the Lewis Acid Enables the Reductive Amination of Carbonyls. Angewandte Chemie International Edition 2017, 56 (32), 9512-9516.
26.Erős, G.; Mehdi, H.; Pápai, I.; Rokob, T. A.; Király, P.; Tárkányi, G.; Soós, T., Expanding the Scope of Metal-Free Catalytic Hydrogenation through Frustrated Lewis Pair Design. Angewandte Chemie International Edition 2010, 49 (37), 6559-6563.
27.Gyömöre, Á.; Bakos, M.; Földes, T.; Pápai, I.; Domján, A.; Soós, T., MoistureTolerant Frustrated Lewis Pair Catalyst for Hydrogenation of Aldehydes and Ketones. ACS Catalysis 2015, 5 (9), 5366-5372.
28.Mahdi, T.; Stephan, D. W., Frustrated Lewis Pair Catalyzed Hydroamination of Terminal Alkynes. Angewandte Chemie International Edition 2013, 52 (47), 12418-12421.
29.Ashley, A. E.; Thompson, A. L.; O'Hare, D., Non-Metal-Mediated Homogeneous Hydrogenation of CO2 to CH3OH. Angewandte Chemie International Edition 2009, 48 (52), 9839-9843.
30.Oestreich, M.; Hermeke, J.; Mohr, J., A unified survey of Si-H and H-H bond activation catalysed by electron-deficient boranes. Chemical Society Reviews 2015, 44 (8), 2202-2220.
31.Keess, S.; Simonneau, A.; Oestreich, M., Direct and Transfer Hydrosilylation Reactions Catalyzed by Fully or Partially Fluorinated Triarylboranes: A Systematic Study. Organometallics 2015, 34 (4), 790-799.
32.Yuan, W.; Orecchia, P.; Oestreich, M., Cyclohexa-1,3-diene-based dihydrogen and hydrosilane surrogates in $\mathrm{B}(\mathrm{C} 6 \mathrm{~F} 5) 3$-catalysed transfer processes. Chemical Communications 2017, 53 (75), 10390-10393.
33.Bergbreiter, D. E., Soluble Polymers as Tools in Catalysis. ACS Macro Letters 2014, 3 (3), 260-265.
34.Roesler, R.; Har, B. J. N.; Piers, W. E., Synthesis and Characterization of (Perfluoroaryl)borane-Functionalized Carbosilane Dendrimers and Their Use as Lewis

Acid Catalysts for the Hydrosilation of Acetophenone. Organometallics 2002, 21 (21), 4300-4302.
35.Trunk, M.; Teichert, J. F.; Thomas, A., Room-Temperature Activation of Hydrogen by Semi-immobilized Frustrated Lewis Pairs in Microporous Polymer Networks. Journal of the American Chemical Society 2017, 139 (10), 3615-3618.
36.Chen, L.; Liu, R.; Yan, Q., Polymer Meets Frustrated Lewis Pair: Second-Generation CO2-Responsive Nanosystem for Sustainable CO2 Conversion. Angewandte Chemie International Edition 2018, 57 (30), 9336-9340.
37.Bouchard, N.; Fontaine, F.-G., Alkylammoniotrifluoroborate functionalized polystyrenes: polymeric pre-catalysts for the metal-free borylation of heteroarenes. Dalton Transactions 2019, 48 (15), 4846-4856.
38.Dodge, L.; Chen, Y.; Brook, M. A., Silicone Boronates Reversibly Crosslink Using Lewis Acid- Lewis Base Amine Complexes. Chemistry - A European Journal 2014, 20 (30), 9349-9356.
39.Vidal, F.; Gomezcoello, J.; Lalancette, R. A.; Jäkle, F., Lewis Pairs as Highly Tunable Dynamic Cross-Links in Transient Polymer Networks. Journal of the American Chemical Society 2019, 141 (40), 15963-15971.
40.Wang, M.; Nudelman, F.; Matthes, R. R.; Shaver, M. P., Frustrated Lewis Pair Polymers as Responsive Self-Healing Gels. Journal of the American Chemical Society 2017, 139 (40), 14232-14236.
41.Fu, G.-L.; Zhang, H.-Y.; Yan, Y.-Q.; Zhao, C.-H., p-Quaterphenyls Laterally Substituted with a Dimesitylboryl Group: A Promising Class of Solid-State Blue Emitters. The Journal of Organic Chemistry 2012, 77 (4), 1983-1990.
42.Noda, T.; Shirota, Y., 5,5‘-Bis(dimesitylboryl)-2,2‘-bithiophene and 5,5"‘-Bis(dimesitylboryl)-2,2‘:5",2"-terthiophene as a Novel Family of Electron-Transporting Amorphous Molecular Materials. Journal of the American Chemical Society 1998, 120 (37), 9714-9715.
43.Mellerup, S. K.; Wang, S., Boron-Doped Molecules for Optoelectronics. Trends in Chemistry 2019, 1 (1), 77-89.
44.Zhang, Z.; Edkins, R. M.; Nitsch, J.; Fucke, K.; Steffen, A.; Longobardi, L. E.; Stephan, D. W.; Lambert, C.; Marder, T. B., Optical and electronic properties of air-stable organoboron compounds with strongly electron-accepting bis(fluoromesityl)boryl groups. Chemical Science 2015, 6 (1), 308-321.
45.Wade, C. R.; Broomsgrove, A. E. J.; Aldridge, S.; Gabbaï, F. P., Fluoride Ion Complexation and Sensing Using Organoboron Compounds. Chemical Reviews 2010, 110 (7), 3958-3984.
46.Yamaguchi, S.; Akiyama, S.; Tamao, K., Colorimetric Fluoride Ion Sensing by BoronContaining π-Electron Systems. Journal of the American Chemical Society 2001, 123 (46), 11372-11375.
47.Parab, K.; Venkatasubbaiah, K.; Jäkle, F., Luminescent Triarylborane-Functionalized Polystyrene: Synthesis, Photophysical Characterization, and Anion-Binding Studies. Journal of the American Chemical Society 2006, 128 (39), 12879-12885.
48.Wang, J.; Wang, N.; Wu, G.; Wang, S.; Li, X., Multicolor Emission from Nonconjugated Polymers Based on a Single Switchable Boron Chromophore. Angewandte Chemie International Edition 2019, 58 (10), 3082-3086.
49.Qin, Y.; Kiburu, I.; Shah, S.; Jäkle, F., Synthesis and Characterization of Organoboron Quinolate Polymers with Tunable Luminescence Properties. Macromolecules 2006, 39 (26), 9041-9048.
50.Wang, J.; Jin, B.; Wang, N.; Peng, T.; Li, X.; Luo, Y.; Wang, S., Organoboron-Based Photochromic Copolymers for Erasable Writing and Patterning. Macromolecules 2017, 50 (12), 4629-4638.
51.Stock, A.; Pohland, E., Borwasserstoffe, IX.: B3N3H6. Berichte der deutschen chemischen Gesellschaft (A and B Series) 1926, 59 (9), 2215-2223.
52.Dewar, M. J. S.; Kubba, V. P.; Pettit, R., 624. New heteroaromatic compounds. Part I. 9-Aza-10-boraphenanthrene. Journal of the Chemical Society (Resumed) 1958, (0), 30733076.
53.Dewar, M. J. S.; Marr, P. A., A Derivative of Borazarene. Journal of the American Chemical Society 1962, 84 (19), 3782-3782.
54.White, D. G., 2-Phenyl-2,1-borazarene and Derivatives of 1,2-Azaboracycloalkanes. Journal of the American Chemical Society 1963, 85 (22), 3634-3636.
55.Ghosh, D.; Periyasamy, G.; Pati, S. K., Density functional theoretical investigation of the aromatic nature of BN substituted benzene and four ring polyaromatic hydrocarbons. Physical Chemistry Chemical Physics 2011, 13 (46), 20627-20636.
56.Ashe, A. J.; Fang, A Synthesis of Aromatic Five- and Six-Membered B-N Heterocycles via Ring Closing Metathesis. Organic Letters 2000, 2 (14), 2089-2091.
57.Marwitz, A. J. V.; Abbey, E. R.; Jenkins, J. T.; Zakharov, L. N.; Liu, S.-Y., Diversity through Isosterism: The Case of Boron-Substituted 1,2-Dihydro-1,2-azaborines. Organic Letters 2007, 9 (23), 4905-4908.
58.Brown, A. N.; Li, B.; Liu, S.-Y., Negishi Cross-Coupling Is Compatible with a Reactive B-Cl Bond: Development of a Versatile Late-Stage Functionalization of 1,2-Azaborines and Its Application to the Synthesis of New BN Isosteres of Naphthalene and Indenyl. Journal of the American Chemical Society 2015, 137 (28), 8932-8935.
59.Baggett, A. W.; Vasiliu, M.; Li, B.; Dixon, D. A.; Liu, S.-Y., Late-Stage Functionalization of 1,2-Dihydro-1,2-azaborines via Regioselective Iridium-Catalyzed CH Borylation: The Development of a New N,N-Bidentate Ligand Scaffold. Journal of the American Chemical Society 2015, 137 (16), 5536-5541.
60.McConnell, C. R.; Haeffner, F.; Baggett, A. W.; Liu, S.-Y., 1,2-Azaborine's Distinct Electronic Structure Unlocks Two New Regioisomeric Building Blocks via Resolution Chemistry. Journal of the American Chemical Society 2019, 141 (22), 9072-9078.
61.Burford, R. J.; Li, B.; Vasiliu, M.; Dixon, D. A.; Liu, S.-Y., Diels-Alder Reactions of 1,2-Azaborines. Angewandte Chemie International Edition 2015, 54 (27), 7823-7827.
62.Brough, S. A.; Lamm, A. N.; Liu, S.-Y.; Bettinger, H. F., Photoisomerization of 1,2-Dihydro-1,2-Azaborine: A Matrix Isolation Study. Angewandte Chemie International Edition 2012, 51 (43), 10880-10883.
63.Edel, K.; Yang, X.; Ishibashi, J. S. A.; Lamm, A. N.; Maichle-Mössmer, C.; Giustra, Z. X.; Liu, S.-Y.; Bettinger, H. F., The Dewar Isomer of 1,2-Dihydro-1,2-azaborinines: Isolation, Fragmentation, and Energy Storage. Angewandte Chemie International Edition 2018, 57 (19), 5296-5300.
64.Giustra, Z. X.; Yang, X.; Chen, M.; Bettinger, H. F.; Liu, S.-Y., Accessing 1,2Substituted Cyclobutanes through 1,2-Azaborine Photoisomerization. Angew Chem.Int.Ed 2019, 58 (52), 18918-18922.
65.Xu, S.; Zakharov, L. N.; Liu, S.-Y., A 1,3-Dihydro-1,3-azaborine Debuts. Journal of the American Chemical Society 2011, 133 (50), 20152-20155.
66.Xu, S.; Mikulas, T. C.; Zakharov, L. N.; Dixon, D. A.; Liu, S.-Y., Boron-Substituted 1,3-Dihydro-1,3-azaborines: Synthesis, Structure, and Evaluation of Aromaticity. Angewandte Chemie International Edition 2013, 52 (29), 7527-7531.
67.Liu, X.; Zhang, Y.; Li, B.; Zakharov, L. N.; Vasiliu, M.; Dixon, D. A.; Liu, S.-Y., A Modular Synthetic Approach to Monocyclic 1,4-Azaborines. Angewandte Chemie International Edition 2016, 55 (29), 8333-8337.
68.Manners, I., Synthetic Metal-Containing Polymers. 2004.
69.Vidal, F.; Jäkle, F., Functional Polymeric Materials Based on Main-Group Elements. Angewandte Chemie International Edition 2019, 58 (18), 5846-5870.
70.Staubitz, A., Generation of High-Molecular-Weight Polymers with Diverse Substituents:AnUnusual Metal-Free Synthesis of Poly(aminoborane)s. Angew.Chem.Int. Ed. 2018, 57, 5990 -5992.
71.Staubitz, A.; Robertson, A. P. M.; Sloan, M. E.; Manners, I., Amine- and PhosphineBorane Adducts: New Interest in Old Molecules. Chem. Rev. 2010, (110), 4023-4078.
72.Resendiz-Lara, D., A. ; Stubbs, N. E.; Arz, M. I.; Pridmore, N. E.; Sparkes, H. A.; Manners, I., Boron-nitrogen main chain analogues of polystyrene: poly(Baryl)aminoboranes via catalytic dehydrocoupling. Chem. Commun. 2017, (53), 11701-11704.
73.Ayhan, O.; Eckert, T.; Plamper, F. A.; Helten, H., Poly(iminoborane)s:AnElusiveClass of Main-GroupPolymers? Angew.Chem. Int.Ed. 2016, 55, 13321-13325.
74.Baggett, A. W.; Guo, F.; Li, B.; Liu, S.-Y.; Jäkle, F., Regioregular Synthesis of Azaborine Oligomers and a Polymer with a syn Conformation Stabilized by $\mathrm{N} \cdot \mathrm{H} \cdots \pi$ Interactions. Angewandte Chemie International Edition 2015, 54 (38), 11191-11195.
75.Lorenz, T.; Lik, A.; Plamper, F. A.; Helten, H., Dehydrocoupling and Silazane Cleavage Routes to Organic-Inorganic Hybrid Polymers with NBN Units in the Main Chain. Angewandte Chemie International Edition 2016, 55 (25), 7236-7241.
76.Lorenz, T.; Crumbach, M.; Eckert, T.; Lik, A.; Helten, H., Poly(p-phenylene iminoborane): A Boron-Nitrogen Analogue of Poly(p-phenylene vinylene). Angewandte Chemie International Edition 2017, 56 (10), 2780-2784.
77.Kai Su, E. E. R., * Helen M. Thompson, Larry G. Sneddon*, Syntheses and Properties of PoIy(B-vinylborazine) and Poly(styrene-co-B-vinylborazine) Copolymers. Macromolecules 1991, (24), 3760-3766.
78.LOGAN A. JACKSON, C. W. A., Organoborazines. 111. Homo- and Copolymerization of p-Vinylphenylcyclotriborazines*. Journal of Polymer Science: Part A Polymer Chemistry 1992, 30, 577-581.
79.Thiedemann, B.; Gliese, P. J.; Hoffmann, J.; Lawrence, P. G.; Sönnichsen, F. D.; Staubitz, A., High molecular weight poly(N-methyl-B-vinylazaborine) - a semi-inorganic B-N polystyrene analogue. Chemical Communications 2017, 53 (53), 7258-7261.
80.van de Wouw, H. L.; Lee, J. Y.; Klausen, R. S., Gram-scale free radical polymerization of an azaborine vinyl monomer. Chemical Communications 2017, 53 (53), 7262-7265.
81.Lin, H.; McConnell, C. R.; Jilus, B.; Liu, S.-Y.; Jäkle, F., Changing up BN-Polystyrene: Effect of Substitution Pattern on the Free-Radical Polymerization and Polymer Properties. Macromolecules 2019, 52 (12), 4500-4509.

Chapter 2 Tailored Triarylborane Polymeric Lewis Acids as Supported Catalysts and Luminescent Materials with TADF Characteristics

2.1 Introduction

Benefiting from a readily accessible low-lying vacant p_{z} orbital on boron, triarylboranes serve important roles both as electron acceptors and as powerful Lewis acids. ${ }^{1}$ Their electron-deficient character and desirable photophysical properties are exploited in applications ranging from nonlinear optics to organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs), and organic photovoltaics (OPVs). ${ }^{2}$ The tunable Lewis acidity of triarylboranes is advantageous in anion sensing, catalysis and small molecule activation. Following the successful implementation of organoboranes in "frustrated Lewis pairs" (FLPs) chemistry by Stephan³ they have been applied in numerous catalytic processes including hydrogenation, ${ }^{4}$ hydroamination, ${ }^{5}$ and CO_{2} reduction. ${ }^{6}$ The high Lewis acidity of organoboranes also facilitates catalytic hydrosilylation based on a weak Lewis acid (LA)-Lewis base (LB) interaction between boron and hydrosilanes. ${ }^{7}$

The attachment of borane moieties to polyolefins offers access to polymer-supported Lewis acids (PLAs, Figure 2-1), potentially providing an opportunity to take advantage of the reusability of the polymers after catalysis. ${ }^{8}$ On the other hand, organoborane-based fluorescent polymers are also promising as optoelectronic materials. ${ }^{9}$ Polymers with tunable emission color, intensity, and delayed fluorescence characteristics are highly sought after for display applications. ${ }^{10}$ In 2002, we first reported on the introduction of

Lewis acidic boranes into the side chains of polystyrene via facile substituent exchange reactions on boron, leading to a family of well-defined PLAs (A). ${ }^{11}$ Straightforward substituent exchange reactions also provided access to borane polymers with π-conjugated bithiophene, carbazole and fluorene pendent groups that are both Lewis acidic and strongly fluorescent $(\mathbf{B}) .{ }^{12}$ These polymers were applied as ratiometric sensors for small anions such fluoride or cyanide. We later demonstrated the controlled polymerization of a dimesitylborane $\left(\mathrm{Mes}_{2} \mathrm{~B}\right)$-substituted vinylbiphenyl monomer via reversible addition fragmentation chain transfer (RAFT) and discovered that a luminescent block copolymer with PNIPAM (C) can be used to detect fluoride anions in aqueous solution at a remarkably low level of less than $1 \mathrm{ppm} .{ }^{13}$ More recently, researchers have explored Lewis acidic organoborane polymers as macromolecular building blocks for advanced supramolecular materials. For instance, Shaver and coworkers demonstrated that the addition of a small molecule, such as diethyl azodicarboxylate, can promote rapid and reversible network formation between Lewis acidic $\mathrm{Ph}_{2} \mathrm{~B}-$ (D) and Lewis basic $\mathrm{Mes}_{2} \mathrm{P}$-substituted polystyrenes. ${ }^{14}$ In the absence of the additive, the LA and LB groups do not interact due to the large steric hindrance on the P sites, instead acting as FLPs. Dithienylboranesubstituted polystyrenes (E) have also proven to be excellent building blocks for the formation of transient polymer networks and recyclable elastomers via reversible formation of B-N classical Lewis pairs (CLPs). ${ }^{15}$

A $x=1$ Jäkle, 2002
B $x=2$ Jäkle, 2006

CLP and FLP Network Polymers

D $\operatorname{Ar}=\mathrm{Ph}$ Shaver, 2017 E $\mathrm{Ar}=\mathrm{Th}$ Jäkle, 2018

Figure 2-1. Triarylborane Lewis acid-functionalized polymers and their applications.

Applications of soluble organoborane polymers in catalysis remain scarce. ${ }^{16}$ Very recently, Yan and coworkers found a new CO_{2}-responsive system for the catalytic formylation of $\mathrm{N}-\mathrm{H}$ bonds based on two complementary Lewis acidic organoborane (\mathbf{F}) and Lewis basic organophosphine block copolymers. Interestingly, in their system CO_{2} acts as a crosslinker that enables micelle formation as recyclable nanocatalysts. ${ }^{17}$ However, one of the obstacles to broader implementation of polymer-supported borane LAs and FLPs is that sterically unprotected arylboranes, such as $\mathrm{Ph}_{3} \mathrm{~B}$ or $\mathrm{PhB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$, undergo gradual hydrolysis and are easily deactivated by Lewis base impurities or substrate functionalities that form strong Lewis pair complexes. The stability of organoboranes can be effectively enhanced by two strategies: the mitigation of the electron-deficiency and the introduction of bulky substituents on the boron atom. Recognizing these issues, Soos, ${ }^{18}$ Wildgoose, ${ }^{19}$
and Ashley ${ }^{20}$ tailored molecular organoborane LAs, optimizing the steric and electronic properties by judicial introduction of substituents $\left(\mathrm{CH}_{3}, \mathrm{CF}_{3}, \mathrm{Cl}\right)$ in ortho-position of the B-aryl substituents.

In a first foray into tailor-made luminescent PLAs and FLPs that are more robust, yet highly active, we set out to prepare copolymers that feature an additional benzene ring between the borane functional group and the polymerizable styryl group. This allows us to stabilize the borane moiety with bulkier groups in ortho-position while also tuning the Lewis acidity. We designed two systems to match these requirements. The ortho-methyl groups in P1 are expected to sterically retard the binding of Lewis bases (including water) to the Lewis acidic center; similarly, the introduction of a chlorine atom in ortho position in $\mathbf{P} 2$ provides some steric hindrance, but also enhances the electron-deficient character. The attachment of these tailored triarylborane moieties to a polyolefin backbone offers access to new polymer-supported Lewis acids with potential for recyclability. ${ }^{21}$ These polymers also display intriguing luminescent properties that could not only prove advantageous for visual observation of the catalyst state (bound vs unbound) ${ }^{22}$ but also enable applications as new materials in optoelectronic devices.

2.2 Results and Discussion

Synthesis of Copolymers and Molecular Model Systems. Precursor 1 was prepared by lithiation of 5-bromo-2-iodo-1,3-dimethylbenzene followed by quenching with $\mathrm{Me}_{3} \operatorname{SiOTf}$ according to a method reported in the patent literature, ${ }^{23}$ and a similar synthesis was developed for 2 starting from 4-bromo-2-chloro-1-iodobenzene. These silylated arenes
were converted to monomers M1 and M2 by Suzuki-Miyaura coupling with 4vinylphenylboronic acid (Scheme 2-1). The monomers were purified by column chromatography on alumina using hexanes as the eluent, and M2 was further recrystallized from MeOH . The products were isolated as white solids in 47% and 53% yield, respectively. Similarly, Suzuki-Miyaura coupling of M1 and M2 with 4-tertbutylphenylboronic acid gave the model compounds Mod1-Si and Mod2-Si as white solid in 44% and 55% yield. The monomers M1 and M2 were then copolymerized with styrene in a 1:5 molar ratio in anisole with 1,1 '-azobisisobutyronitrile (AIBN) as the initiator. After 24 h at $110^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR analyses showed that the copolymers $\mathbf{P 1}$-Si and $\mathbf{P 2}$-Si contain ca. 17 and $13 \mathrm{~mol} \%$ of $-\mathrm{SiMe}_{3}$ pendant group respectively, which matches well the monomer feed ratio. GPC analyses in THF gave estimated molecular weights of $M_{\mathrm{n}}=18.8 \mathrm{kDa}(\Xi=$ 1.65) for P1-Si and $M_{\mathrm{n}}=39.3 \mathrm{kDa}(~(~=2.09)$ for $\mathbf{P 2} \mathbf{- S i}$ relative to narrow polystyrene standards.

Synthesis of Molecular Model Compounds

Mod1-Si R = R' $=$ Me
Mod2-Si $\mathrm{R}=\mathrm{Cl}, \mathrm{R}^{\prime}=\mathrm{H}$

Scheme 2-1. Synthesis of Silane-functionalized Polymers and Model Compounds.

The subsequent silicon-boron exchange to introduce the borane functional groups was first investigated on the molecular model compounds (Scheme 2-2). For Mod1-Si, the trimethylsilyl (TMS) groups were readily replaced with BBr_{2} groups upon reaction with BBr_{3} in a concentrated toluene solution at room temperature over 12 h . In contrast, the conversion of Mod2-Si to Mod2-BBr2 required addition of an excess of BBr_{3} (3 equiv.) and heating of the mixture to $80^{\circ} \mathrm{C}$, because the inductive electron-withdrawing (-I) influence of the Cl substituent in ortho position slows down the electrophilic borylation. The disappearance of the TMS group in the ${ }^{1} \mathrm{H}$ NMR and the appearance of a signal at 63.0 and 57.4 ppm respectively in the ${ }^{11} \mathrm{~B}$ NMR spectra both indicate that the Si-B exchange reactions proceeded successfully. As shown in Scheme 2-2, Mod1-BPf2 and Mod2-BPf2 were obtained by subsequent reaction with bis(pentafluorophenyl)zinc $\left(\mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right)$. Higher temperatures $\left(80^{\circ} \mathrm{C}\right)$ and reaction times (48 hours) were required for the functionalization
of Mod1-BBr2 with $\operatorname{Zn}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ (1.5 equivs.), while conversion of $\operatorname{Mod2-BBr} 2$ to the product proceeded at room temperature over 24 hours with 1.05 equivs. of $\mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$. The structures of these model compounds were confirmed by ${ }^{1} \mathrm{H},{ }^{11} \mathrm{~B},{ }^{19} \mathrm{~F}$, and ${ }^{13} \mathrm{C}$ NMR spectroscopy (Figures 2-S25-28 and Figures 2-S36-39 in the appendix). The ${ }^{11} \mathrm{~B}$ NMR spectra showed broad downfield signals at $69.6 \mathrm{ppm}(\mathbf{M o d 1 - B P f} 2)$ and $63.3 \mathrm{ppm}(\mathbf{M o d} 2-$ BPf2), respectively, which are consistent with the expected chemical shifts of the tricoordinate arylboranes, and slightly downfield from those of the BBr_{2}-functionalized intermediates ($63.0,57.4 \mathrm{ppm}$). The typical patterns were observed in the ${ }^{19} \mathrm{~F}$ NMR spectra with three separate signals for the ortho-, meta-, and para- F atoms on the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups. A larger separation between the para- and meta-F atoms for Mod1-BPf2 $(\Delta \delta=15.4 \mathrm{ppm})$ in comparison to Mod2-BPf2 $(\Delta \delta=14.4 \mathrm{ppm})$ is consistent with the expected more electrondeficient character of Mod2-BPf2. The ${ }^{1} \mathrm{H}$ NMR spectra are also consistent with the expected structures. In addition, high-resolution MALDI-TOF MS data were acquired of the corresponding fluoride anion complexes generated by addition of an excess of [Bu4N]F to solutions of the boranes in THF.

Synthesis of Borane Polymeric Lewis Acids

Synthesis of Molecular Model Compounds

Mod1-Si R = R' $=$ Me Mod2-Si R = CI, R' $=\mathrm{H}$

Mod1-BBr2 R $=\mathrm{R}^{\prime}=\mathrm{Me}$
Mod2-BBr2 R $=\mathrm{Cl}, \mathrm{R}^{\prime}=\mathrm{H}$

Mod1-BPf2 R = R' $=$ Me
Mod2-BPf2 R $=\mathrm{Cl}, \mathrm{R}^{\prime}=\mathrm{H}$

Scheme 2-2. Conversion to Arylborane-functionalized Polymers and Model Compounds.

With this information in hand, we pursued the polymer modification of P1-Si and P2-Si. Using similar methods as for the model compounds the TMS groups were selectively exchanged with BBr_{3} in toluene. As in the case of the model compound, for $\mathbf{P 2}-\mathbf{B B r} 2$ an excess of BBr_{3} and heating to $80{ }^{\circ} \mathrm{C}$ were required to achieve close to quantitative borylation. The conversion to $\mathbf{P 1} \mathbf{- B B r} 2 / \mathbf{P 2} \mathbf{- B B r} 2$ was verified by the disappearance of the signal for the TMS groups in the ${ }^{1} \mathrm{H}$ NMR spectra and the appearance of a signal at ~ 60 and $\sim 55 \mathrm{ppm}$ in the ${ }^{11} \mathrm{~B}$ NMR spectra respectively. For $\mathbf{P 1} \mathbf{- B B r} 2$, the signals for the methyl groups on the functional units shift from 2.52 to 2.39 ppm with only a small residual signal remaining at $2.60 \mathrm{ppm}(<5 \%)$ (Figure S9). The ratio between the ${ }^{1} \mathrm{H}$ NMR integrals for the methyl and aromatic protons of $\mathbf{P 1} \mathbf{- B B r} 2$ is in line with the expected ca. 5:1 ratio of styryl and borane-functionalized styryl units. Similarly, for $\mathbf{P 2} \mathbf{- B B r} 2$ the integral ratio
between three protons on the borane-attached phenyl rings and backbone protons is consistent with the proposed structure (Figure S16). The polymer P1-BBr2 was used in situ for the subsequent arylation reaction, but $\mathbf{P 2} \mathbf{- B B r} 2$ was first precipitated into anhydrous hexanes to remove the excess of BBr_{3}. The dibromoborylated polymers were converted to the target polymers P1-BPf2 and P2-BPf2 by reaction with $\mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{~F} 5\right)_{2}$. Under the conditions established for the model systems, $\mathbf{P 1} \mathbf{- B B r} 2$ was reacted with 1.5 equivs. of $\mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ at $80{ }^{\circ} \mathrm{C}$ for 48 h and $\mathbf{P 2 - B B r 2}$ with 1.05 equivs. of $\mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ at room temperature for 24 h . The final products were isolated in 64 and 56% yield by repeated precipitation into hexanes and dried under high vacuum. The structures of the copolymers were confirmed by ${ }^{1} \mathrm{H},{ }^{11} \mathrm{~B}$ and ${ }^{19} \mathrm{~F}$ NMR spectroscopy (Figure 2-2). The ${ }^{19} \mathrm{~F}$ NMR spectra of P1-BPf2 and P2-BPf2 both show the typical set of three peaks for the ortho-, meta- and para-position fluorines on the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups; the signals appear at chemical shifts that are similar to those of the model compounds but are slightly broadened. The ${ }^{11} \mathrm{~B}$ NMR signals at 68.3 ppm and 62.9 ppm for P1-BPf2 and P2-BPf2, respectively, are also consistent with those of the model compounds. In addition, a characteristic upfield shift of the methyl protons to 2.17 ppm for P1-BPf2 from 2.52 ppm for $\mathbf{P 1 - S i M e} \mathbf{3}$ is consistent with shifts seen for the model compounds. The GPC traces of the triarylboranes substituted copolymers are very broad, indicating a small degree of crosslinking of the copolymers, likely due to the presence of a few $\mathrm{Ar}_{2} \mathrm{~B}-\mathrm{O}-\mathrm{BAr}_{2}$ linkages as suggested by very minor signals in the ${ }^{11} \mathrm{~B}$ NMR spectra at ca. 40 ppm . The possible formation of B-OH/B-O-B species due to the presence of trace amounts of water during the synthesis or isolation processes was further examined by studying the stability of the compounds in wet CDCl_{3}
by ${ }^{19} \mathrm{~F}$ and ${ }^{11} \mathrm{~B}$ NMR spectroscopy in air. Gradual conversion to borinate species was observed over a period of four days for the model compounds (Figures 2-S43-46 in the appendix). For the polymers, precipitation occurred within 30 mins (Figures 2-S47-49 in the appendix), suggesting that even a small extent of hydrolysis results in an insoluble crosslinked material. Although the crosslinked material is still catalytically active (vide infra), these findings suggest that, in the absence of Lewis base stabilization, the polymers are best handled in the absence of air and moisture.

Figure 2-2. ${ }^{19} \mathrm{~F}$ and ${ }^{11} \mathrm{~B}$ NMR spectra of model compounds (bottom) and polymers (top) in CDCl_{3}.

Determination of Lewis Acid Strength. The relative Lewis acidity of the boron centers in the model compounds and polymers were estimated by treatment with triethylphosphine
oxide $\left(\mathrm{Et}_{3} \mathrm{PO}\right)$ according to the Gutmann-Beckett ${ }^{24}$ method. The ${ }^{31} \mathrm{P}$ NMR shifts of the $\mathrm{Et}_{3} \mathrm{PO}$-borane complexes are summarized in Table 2-1 and compared to the adduct $\left(\mathrm{Et}_{3} \mathrm{PO}\right)-\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$. All model compounds and copolymers are high Lewis acidic, having around 90% relative Lewis acid strength compared with $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$. Mod2-BPf2 and P2BPf2 display relatively higher Lewis acidity than Mod1-BPf2 and P1-BPf2 due to the more electron-withdrawing chlorine substituent in ortho-position to the boron center. The complex formation for Mod1-BPf2 and P1-BPf2 proved to be dynamic at room temperature. Hence the studies were performed at low temperature $\left(-20^{\circ} \mathrm{C}\right)$ where the equilibrium between free acid and $\mathrm{Et}_{3} \mathrm{PO}$ is sufficiently slow to accurately determine the ${ }^{31} \mathrm{P}$ NMR chemical shift of the complex.

Table 2-1. Gutmann-Becket analysis of organoborane model compounds and polymers

Compound	$\delta\left({ }^{31} \mathrm{P}\right)$ adduct $(\mathrm{ppm})^{a}$	$\Delta \delta\left({ }^{31} \mathrm{P}\right)^{b}$	Lewis acidity relative to B(C6F5)3 (\%)	Acceptor number $(\mathrm{AN})^{c}$
Mod1-BPf2 ${ }^{\text {d }}$	74.0	21.3	90	72.9
P1-BPf2 ${ }^{d}$	74.1	21.4	91	73.2
Mod2-BPf2	74.3	21.6	92	73.5
P2-BPf2	74.6	21.8	93	74.2
$\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$	76.2	23.5	100	77.8

$\overline{{ }^{31}} \mathrm{P}$ NMR shifts are recorded in CDCl_{3} relative to $\mathrm{H}_{3} \mathrm{PO}_{4}(\delta=0.00 \mathrm{ppm})$ as internal standard. ${ }^{b} \Delta \delta\left({ }^{31} \mathrm{P}\right)=\delta\left({ }^{31} \mathrm{P}\right)$ adduct $-52.7 \mathrm{ppm} .{ }^{c}$ Gutmann-Beckett method: $\mathrm{AN}=$ $2.21 \times\left(\delta^{31}{ }^{\mathrm{LA}} \cdot \mathrm{Et3PO}-41\right) .{ }^{d}$ Data acquired at $-20^{\circ} \mathrm{C}$.

Applications as Catalysts in Hydrosilylation Reactions. The observed high Lewis acidity prompted us to explore applications in the Lewis acid catalyzed hydrosilylation of unsaturated organic substrates. The objective of these investigations was to test the capacity of these novel Lewis acids as recyclable catalysts. To explore the feasibility, we initially
tested the borane model compounds in the catalyzed hydrosilylation of benzaldehyde (1a), acetophenone (1b), N-benzylideneaniline (1c), and styrene (1d). When using $10 \mathrm{~mol} \%$ of the model compounds as catalysts, quantitative conversion of $\mathbf{1 a}$ was achieved within 10 \min (Table 2-2, entry 1,2), demonstrating the high reactivity of these Lewis acids. This result suggested that even at much lower catalyst loading the reactivity in the catalytic hydrosilylation reaction may be retained. Gratifyingly, both Mod1BPf2 and Mod2-BPf2 were found to promote carbonyl hydrosilylation with $0.5 \mathrm{~mol} \%$ model catalysts loading, reaching high conversions within short reaction time (Table 2-2, entry 3-6). When directly comparing their catalytic performance, Mod2-BPf2 showed relatively higher efficiency. This efficiency difference becomes more pronounced in the hydrosilylation of imine $\mathbf{1 c}$ (Table 2-2, entry 7, 8). While $2 \mathrm{~mol} \%$ of Mod1-BPf2 resulted in 69% conversion at $50^{\circ} \mathrm{C}$ after 48 h , the more Lewis acidic Mod2-BPf2 gave full conversion at ambient temperature over 24 h . Finally, the hydrosilylation of styrene was probed. Even with $10 \mathrm{~mol} \%$ Mod1BPf2 no conversion of the relatively less nucleophilic styrene could be achieved over 48 hours at $60^{\circ} \mathrm{C}$. In contrast, when applying $10 \mathrm{~mol} \%$ of Mod2-BPf2 29\% conversion was reached at $30^{\circ} \mathrm{C}$ after 48 hours. In all cases was the structure of hydrosilylated products confirmed by comparison with ${ }^{1} \mathrm{H}$ NMR data reported in the literature. For the hydrosilylation of styrene only one isomer was detected, consistent with the results reported when using $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ as the catalyst. ${ }^{7 \mathrm{~b}}$ Having identified the catalytic efficiency of the borane model systems, we next focused on exploring the polymeric Lewis acids in the hydrosilylation of $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{1 c}$. When keeping the loading of the active borane moieties in the polymer constant loading, P1-BPf2 and P2-BPf2 display similar catalytic
efficiency as the corresponding model compounds (Table 2-2, entry 11-15). The hydrosilylation of 1c was only carried out with P2-BPf2, because the lower reactivity of Mod1-BPf2 toward 1c that forecast a low efficiency of P1-BPf2. An important aspect is the reusability of the polymeric Lewis acids. Using P2-BPf2 as an example, we found that by simply precipitating and washing the product mixture with hexanes the polymeric catalyst could be separated (confirmed by ${ }^{1} \mathrm{H}$ NMR) from the final product and the catalytic processes repeated for at least 5 times. The catalytic activity towards benzaldehyde was retained, achieving 95% conversion in the fifth cycle (Figure 2-S55 in the appendix). Thus, these polymeric Lewis acids are well suited as reusable Lewis acid catalysts for hydrosilylation reactions.

Table 2-2. Investigation of Lewis acids in catalytic hydrosilylation of selected substrates

	Substrate 1a-d	 1b			
	 1a		 1c		
entry	substrate	catalyst	cat. loading (mol\%)	temp / time (${ }^{\circ} \mathrm{C} / \mathrm{h}$)	conversion (\%)
1	1a	Mod1-BPf2	10	$25 / 10 \mathrm{~min}$	100
2	1a	Mod2-BPf2	10	$25 / 10 \mathrm{~min}$	100
3	1a	Mod1-BPf2	0.5	$25 / 0.5$	85
4	1a	Mod2-BPf2	0.5	$25 / 0.5$	100
5	1 b	Mod1-BPf2	0.5	$25 / 2.5$	98
6	1 b	Mod2-BPf2	0.5	$25 / 2.5$	100
7	1 c	Mod1-BPf2	2	$50 / 48$	69
8	1 c	Mod2-BPf2	0.5	$25 / 24$	100
9	1 d	Mod1-BPf2	10	60 / 48	0
10	1 d	Mod2-BPf2	10	$30 / 48$	29
11	1a	P1-BPf2	0.5	$25 / 0.5$	80
12	1a	P2-BPf2	0.5	$25 / 0.5$	100
13	1 b	P1-BPf2	0.5	$25 / 2$	77
14	1 b	P2-BPf2	0.5	$25 / 2$	85
15	1 c	P2-BPf2	0.5	$25 / 24$	100

Photophysical Properties. During the course of our studies we noticed that both the organoborane model compounds and the copolymers are strongly luminescent in solution. This suggests potential utility also as materials for optoelectronic device or imaging applications. Since the first demonstration by Shirota and coworkers that bithiophene or terthiophene with $\operatorname{Mes}_{2} \mathrm{~B}$ substituents can be used as efficient electron-transporting materials in OLEDs, ${ }^{25}$ many different luminescent materials based on tricoordinate organoboranes have been designed. ${ }^{2}$ More recently, researchers have discovered organoborane donor-acceptor systems that exhibit highly effective thermally activated delayed fluorescence (TADF). ${ }^{26}$ Relevant to our studies is the work by Zhao and coworkers who reported that triarylborane-triarylamine systems with [2.2]paracyclophane, twisted biphenyl or binaphthyl backbones display charge transfer emissions that, depending on the system, are temperature-dependent, circularly polarized, or exhibit TADF characteristics. ${ }^{27}$ Of note is also work by Thilagar and coworker who designed simple structures exhibiting TADF, which encompass tridurylboranes with $\mathrm{NR}_{2}(\mathrm{R}=\mathrm{H}, \mathrm{Me})$ donor moieties. ${ }^{26 \mathrm{~d}}$ In all these compounds, the spatial separation of the donor-centered HOMO and acceptorcentered LUMO plays an important role in enabling the TADF behavior. ${ }^{28}$ While most studies have focused on $\mathrm{Mes}_{2} \mathrm{~B}$ groups as acceptors, Marder and coworkers found that the much enhanced acceptor strength of $(\mathrm{FMes})_{2} \mathrm{~B}(\mathrm{FMes}=2,4,6-$ tris $($ trifluoromethyl $)$ phenyl $)$ derivatives can be beneficial for optoelectronic application. ${ }^{27 \mathrm{~b}, 29}$ These findings prompted us to investigate the photophysical properties of our polymers and model compounds in more detail.

As seen in Table 2-3, the absorption and emission data for the copolymers P1/P2-BPf2 closely track those of the molecular model compounds Mod1/Mod2-BPf2. This is expected considering that the functional group loading for the polymers is about 20%, thus spacing out the chromophores. The UV-visible absorption spectra of Mod1-BPf2 and Mod2-BPf2 in DCM show maxima at 386 and 363 nm , respectively (Figure 2-3). The absorptions for Mod1/P1-BPf2 are redshifted relative to those of Mod2/P2-BPf2, likely due to elevation of the HOMO in the presence of the more electron-rich dimethylphenyl compared to the chlorophenyl group. The presence of a second band at around 260-270 nm for all compounds may indicate additional transitions that involve predominantly orbitals localized on the para-substituted phenyl ring that is common to both systems.

In DCM solution, Mod1/P1-BPf2 give rise to green emissions with maxima at 538 / 543 nm , while Mod2/P2-BPf2 are blue-emissive with maxima at $483 / 490 \mathrm{~nm}$. The fluorescence quantum yields of Mod1/P1-BPf2 $\left(\Phi_{\mathrm{FL}}=0.34 / 0.31\right)$ are higher than those of Mod2/P2-BPf2 $\left(\Phi_{\mathrm{FL}}=0.14 / 0.22\right)$, and the fluorescence lifetimes measured for Mod1/P1-BPf2 $\left(\tau_{\mathrm{FL}}=35.6 / 34.6 \mathrm{~ns}\right)$ are significantly longer than those of Mod2/P2-BPf2 ($\tau_{\mathrm{FL}}=6.9 / 8.4 \mathrm{~ns}$, averaged for two components). From the τ_{FL} and Φ_{FL} values, the radiative $\left(k_{r}\right)$ and nonradiative ($k_{n r}$) decay rate constants were calculated. Mod2/P2-BPf2 show relatively larger k_{r} and $k_{n r}$ values than Mod1/P1-BPf2. The only slightly larger k_{r} values but significantly larger $k_{n r}$ values for Mod2/P2-BPf2 lead to the observation of lower quantum yields for the chlorinated derivatives. A possible explanation is that intersystem crossing (ISC) is facilitated by the chlorine heavy atom effect. The small k_{r} values, together with the large Stokes shifts, may also suggest a twisted excited state structure for these
compounds. ${ }^{27 \mathrm{~b}, \mathrm{c}}$ The excited state structure of Mod1-BPf2 is expected to be more distorted compared to that of Mod2-BPf2, because the ortho-methyl groups are sitting below and above the boron center, generating more steric hindrance.

Figure 2-3. (a, b) UV-vis absorption, excitation and emission spectra of borane model compounds and polymers in DCM solution. Photographs of solutions of (c) Mod1-BPf2 / Mod2-BPf2 (right), (d) P1-BPf2 (left) / P2-BPf2 (right) in CDCl3 irradiated with a handheld UV lamp (254 nm).

Table 2-3. Comparison of Photophysical Data of Model Compounds and Polymers

Compound	$\begin{aligned} & \lambda_{A b s}{ }^{a} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & \lambda_{E x c}{ }^{b} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & \lambda_{\mathrm{FL}}{ }^{c} \\ & (\mathrm{~nm}) \end{aligned}$	Stokes shift (cm^{-1})	$\tau_{\mathrm{FL}}{ }^{d}(\mathrm{~ns})$	$\Phi_{\text {FL }}{ }^{e}$	$\begin{aligned} & k_{r} / k_{n r}{ }^{f} \\ & \left(10^{7} \mathrm{~s}^{-1}\right) \end{aligned}$
Mod1BPf2	386, 260	392, 300	538	7300	$\begin{aligned} & \tau_{1}=35.6,100 \% \\ & \left(\chi^{2}=1.28\right) \end{aligned}$	0.34	0.95/1.8
P1-BPf2	388, 263	389, 293	543	7300	$\begin{aligned} & \tau_{l}=34.6,100 \% \\ & \left(\chi^{2}=1.26\right) \end{aligned}$	0.31	0.89/2.0
Mod2- BPf2	363, 270	369, 302	483	6800	$\begin{aligned} & \tau_{1}=1.7,20 \% \\ & \tau_{2}=8.2,80 \% \end{aligned}$	0.14	2.0/12.4

| | $\left(\chi^{2}=1.59\right)^{g}$ | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| P2-BPf2 | $367,265 \quad 369,305$ | 490 | 6800 | $\tau_{l}=7.9,95 \%$ | 0.22 | $2.6 / 9.3$ |
| | | $\tau_{2}=18.6,5 \%$ | | | | |
| | | $\left(\chi^{2}=1.44\right)$ | | | | |
| | | | | | | |

[^0]Considering the likely role of intramolecular charge transfer (ICT) in the excited state, we investigated the effects of changes in solvent polarity on the absorption and emission spectra. These studies were performed on the model compounds, because the range of suitable solvents is larger. The data are illustrated in Figure 2-4 and summarized in Table 2-S1 (appendix). While the absorption spectra are only slightly dependent on solvent polarity, the emission spectra exhibit a distinct positive solvatochromism. Upon changing the solvent from hexane to DCM, the emission maximum shifted from 469 to 538 nm for Mod1-BPf2 and from 413 to 483 nm for Mod2-BPf2, indicative of a more polarized first excited state in comparison to the ground state.

Figure 2-4. (a) UV-vis absorption and emission spectra of Mod1-BPf2 in DCM (black), toluene (green) and hexanes (blue) solution. (b) UV-vis absorption and emission spectra of Mod2-BPf2 in DCM (red), toluene (orange) and hexanes (gray) solution.

Time-gated spectroscopic studies were carried out at room temperature in DCM solution with a 0.1 ms delay time, revealing the presence of additional slower emission pathways. As seen in Figure 2-5, the prompt and gated emission spectra of Mod1-BPf2 and Mod2BPf2 are virtually identical with maxima around 538 nm and 483 nm , respectively. This strongly suggests TADF to be operative. The lifetime of the delayed component is $54.9 \mu \mathrm{~s}$ for Mod1-BPf2 and 0.73 ms for Mod2-BPf2, while the prompt fluorescence lifetime is 35.6 ns and 6.9 ns respectively (Figure 2-6). Similar measurements were also performed for the copolymers, revealing long lifetimes due to TADF components of 62.4μ s for P1BPf2 and 0.66 ms for P2-BPf2, which are similar to those of the corresponding model compounds.

Figure 2-5. Fluorescence (black) and delayed fluorescence (orange) emission spectra of (a) Mod1-BPf2, (b) Mod2-BPf2, (c) P1-BPf2, and (d) P2-BPf2 in DCM solution.

Figure 2-6. Prompt fluorescence emission decay curves of (a) Mod1/P1-BPf2 and (b) Mod2/P2-BPf2 in DCM solution. Delayed emission decay curves of (c) Singleexponential fit of Mod1-BPf2: $\tau_{1}=54.9 \mu \mathrm{~s}, 100 \%$ and P1-BPf2: $\tau_{1}=62.4 \mu \mathrm{~s}, 100 \%$ and (d) double-exponential fit of Mod2-BPf2: $\tau_{1}=0.16 \mathrm{~ms}, 74 \% ; \tau_{2}=2.34 \mathrm{~ms}, 26 \%$ and P2BPf2: $\tau_{1}=0.16 \mathrm{~ms}, 72 \% ; \tau_{2}=1.95 \mathrm{~ms}, 28 \%$ in DCM solution.

In TADF-active molecules, thermal repopulation of the S_{1} state from the T_{1} state takes place, which requires a fluorophore to have a small energy gap ($\Delta \mathrm{EsT}^{\text {) }}$ between S_{1} and T_{1}, typically within 0.3 eV and ideally less than $0.1 \mathrm{eV} .{ }^{28 \mathrm{~b}}$ The longer TADF lifetimes of Mod2/P2-BPf2 compared to Mod1/P1-BPf2 indicate a lower $\Delta \mathrm{E}_{\text {St }}$ for Mod2/P2-BPf2. To further investigate this aspect, the energy gaps of the model compounds were studied by DFT and TD-DFT calculations as discussed in the following.

Theoretical calculations. The electronic structures of the model compounds and the orbitals involved in the electronic transitions were computed at the b3lyp/6-31g(d) level of theory using the polarizable continuum model (PCM) for solvation in DCM. As seen in Figure 2-7, for Mod1-BPf2 and Mod2-BPf2, the HOMO is localized mainly on the 4-(tert-butyl)-1,1'-biphenyl groups, with a small contribution from the nominally empty p-orbital on the boron atom. The LUMO is localized primarily on the boryl group, with some contribution from the boron-bound phenyl ring. The HOMO and LUMO energy levels are -5.90 and -2.53 eV for Mod1-BPf2, but significantly lower at -6.25 and -2.65 eV for Mod2BPf2. TD-DFT calculations (rcam-b3lyp/6-31g(d)) suggest a small oscillator strength of f $=0.0992$ for the $\mathrm{S}_{0}-\mathrm{S}_{1}$ transition of Mod1-BPf2, in good agreement with the weak intensity of the lowest energy absorption. However, a much larger $f=0.6619$ was found for Mod2BPf2, which clearly overestimates the intensity of the experimental lowest-energy absorption of the latter (Table 2-S3 in the appendix). To address this apparent discrepancy, we carried out a single-point TD-DFT calculation for Mod2-BPf2 using the optimized Mod1-BPf2 geometry as a starting point, but with the methyl groups replaced for -H and -Cl at a distance of $1.771 \AA$. Using this geometry, an oscillator strength of $f=0.1300$ for
the lowest energy absorption of Mod2-BPf2 was found, which is in good agreement with the experimental data (Table 2-S3 in the appendix). The computed excitation wavelengths for the $\mathrm{S}_{0}-\mathrm{S}_{1}$ transition are calculated to be 353 nm (Mod1-BPf2) and 326 nm (Mod2-BPf2; 324 nm for the modified structure using the geometry of Mod1-BPf2) (Table 2-4). These values are reasonably consistent with the experimental lowest-energy absorption maxima ${ }^{[30]}$ The relatively larger HOMO-LUMO energy gap for Mod2-BPf2 correlates well with the longer wavelength absorption maxima of Mod1-BPf2 in comparison to Mod2-BPf2. For both, the HOMO and LUMO predominantly contribute to the excitation to S_{1} (Table 2-S3 in the appendix), suggesting significant intramolecular charge transfer (ICT) character for this process. This also supports the experimentally observed emission solvatochromism of these compounds. ${ }^{29}$

Figure 2-7. DFT calculated frontier orbitals for Mod1-BPf2 and Mod2BPf2 (rb3lyp/6$31 \mathrm{~g}(\mathrm{~d})$, DCM solvation model, isovalue $=0.02$).

Table 2-4. TD-DFT calculated photophysical data for Mod1-BPf2 and Mod2-BPf2 (rcam-b3lyp/6-31g(d), DCM solvation model)

$$
\text { Transition }(f) \quad E_{\text {ex }}{ }^{\mathrm{a}}(\mathrm{eV}) \quad \lambda^{\mathrm{a}}(\mathrm{~nm}) \quad \text { Dominant components }^{\mathrm{b}}(\%)
$$

	Absorption			
Mod1-BPf2	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}(0.0992)$	$3.51(3.21)$	$353(386)$	HOMO-5 \rightarrow LUMO (18) HOMO \rightarrow LUMO (77)
Mod2-BPf2	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}(0.6619)$	$3.81(3.41)$	$326(363)$	HOMO \rightarrow LUMO (74)
		Emission $^{\mathrm{c}}$		
Mod1-BPf2	$\mathrm{S}_{1} \rightarrow \mathrm{~S}_{0}(0.0126)$	$2.94(2.30)$	$421(538)$	H-SOMO-4 \rightarrow L-SOMO (10)
Mod2-BPf2	$\mathrm{S}_{1} \rightarrow \mathrm{~S}_{0}(0.0406)$	$3.27(2.57)$	$379(483)$	H-SOMO \rightarrow L-SOMO (84)

${ }^{\text {a }}$ Values in parentheses are experimental longest-wavelength absorption or emission maxima in DCM. ${ }^{\text {b }}$ Components with greater than 10% contribution shown. Percentage contribution approximated by $2 \times\left(\mathrm{c}_{\mathrm{i}}\right)^{2} \times 100 \%$, where c_{i} is the coefficient for the particular 'orbital rotation'. ${ }^{c}$ Taken as the reverse of excitation to S_{1} from S_{0} at the optimized S_{1} geometry.

We also carried out TD-DFT optimizations of the S_{1} states for both model compounds to investigate the structural relaxation in the excited state. The DFT b3lyp/6-31g(d) calculated ground-state optimized geometries were used as the input, and the rcam- b3lyp/6-31g(d) level of theory was employed using a DCM solvation model. In both cases, a distortion of the $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{~B}$ group occurs, in which a reduction of the dihedral angles between the $\mathrm{C}_{6} \mathrm{~F}_{5}$ planes and the BC_{3} plane leads to enhanced conjugation between the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups with the p-orbital of the boron atom. In addition, the two methyl groups and chlorine substituted phenyl rings of Mod1-BPf2 and Mod2-BPf2 twist out of conjugation from 71.6 to 80.9° and 43.1 to 78.6° respectively, forming a more twisted intramolecular charge transfer (TICT) state, with an elongation of the $B-C_{\text {Ph }}$ bond by 0.034 and $0.043 \AA$ (Table 2-5). To support these results, we performed TD-DFT calculations (rcam-b3lyp/6-31g(d), DCM
solvation) to compute the emission properties. The simulated fluorescence emissions are again slightly higher in energy, ${ }^{30}$ but overall consistent with the experimental data (Table 2-3). Moreover, the small calculated oscillator strength for Mod1-BPf2 and Mod2-BPf2 reflects that the luminescence spectra of these compounds are indeed composed of the sum of both fluorescence and delayed fluorescence components.

Table 2-5. Comparison of structural parameters at the $S_{0}\left(r b 3 l y p / 6-31 \mathrm{~g}(\mathrm{~d})\right.$) and S_{1} (rcam-b3lyp/6-31g(d)) states

Compound	B-C $\mathrm{Ch}_{\text {P }}$	B-C $\mathrm{Cff}^{\text {P }}$	$\mathrm{Ph}_{1} / / \mathrm{Ph}_{2}$	$\mathrm{Ph}_{2} / / \mathrm{BC}_{3}$	$\mathrm{Pf} / / \mathrm{BC}_{3}$
Mod1-BPf2s0	1.572	$\begin{aligned} & 1.577, \\ & 1.575 \end{aligned}$	35.3	71.6	$\begin{aligned} & \hline 36.7, \\ & 37.0 \end{aligned}$
Mod1-BPf2 s1	1.606	$\begin{aligned} & 1.550 \\ & 1.551 \end{aligned}$	18.6	80.9	$\begin{aligned} & \hline 27.0, \\ & 27.8 \end{aligned}$
Mod2-BPf2 ${ }_{\text {s }}$	1.560	$\begin{aligned} & \hline 1.571, \\ & 1.576 \end{aligned}$	34.7	43.1	$\begin{aligned} & \hline 36.7, \\ & 41.9 \end{aligned}$
Mod2-BPf2 S1	1.603	$\begin{aligned} & 1.548 \\ & 1.549 \end{aligned}$	16.9	78.6	$\begin{aligned} & 25.7, \\ & 28.8 \end{aligned}$

One of the determining factors regarding the delayed fluorescence is the energy difference between the S_{1} and T_{1} states. An investigation of the first triplet excited state (T_{1}) was attempted for both model compounds using the ub3lyp functional with a $6-31 \mathrm{~g}(\mathrm{~d})$ basis set and DCM solvation. The estimated difference in vertical transition energies $\Delta \mathrm{EsT}_{\text {st }}$ between the singlet $\left(\mathrm{S}_{1}\right)$ and triplet $\left(\mathrm{T}_{1}\right)$ excited states is extremely small for Mod1-BPf2 $(0.089 \mathrm{eV})$, but more substantial for Mod2-BPf2 (0.242 eV) (Figure 2-8). These results correlate well with the experimental observations, i.e., the lower $\Delta \mathrm{E}_{\text {ST }}$ of Mod1-BPf2 enhances the
reverse intersystem crossing (RISC), resulting in more efficient upconversion from T_{1} to S_{1} that leads to a shorter lifetime for the delayed fluorescence. In contrast, the relatively larger $\Delta \mathrm{EST}_{\text {ST }}$ of Mod2-BPf2 results in slower RISC and a longer lifetime.

Figure 2-8. Comparison of the energy of the excited states S_{1}, T_{1} and relative to the S_{0} ground state for model compounds computed in DCM solvent.

2.3 Conclusions

To summarize, one part of our investigations was dedicated to the design of new polymeric Lewis acids for catalytic hydrosilylation. Two novel copolymers and their corresponding model compounds have been developed and employed as catalysts for the hydrosilylation of $\mathrm{C}=\mathrm{O}$ or $\mathrm{C}=\mathrm{N}$ bonds. These systems encompass either two ortho-methyl or an orthochlorine substituent to provide steric and electronic fine-tuning of the Lewis acidic component. In this way, the high Lewis acidity required for efficient catalysis is maintained while expanding the substrate scope. The polymer-supported Lewis acids present excellent recyclability, as they can be recovered by simple washing with hexanes.

Another part of the present work comprised an investigation of the electronic structure and photophysical properties through a combination of experimental and computational studies. We found that the photophysical properties also vary with the substituents in the orthopositions. The methyl groups in the bridge render Mod1/P1-BPf2 more electron-rich than Mod2/P2-BPf2 with a chlorine substituent. As a result, in DCM solution Mod1/P1-BPf2 show green emission, while Mod2/P2-BPf2 are blue-emissive. In addition, Mod1/P1BPf2 display longer fluorescence lifetimes and higher quantum yields than Mod2/P2-BPf2. Using time-gated spectroscopy we found evidence of an additional slower component of the emission that was attributed to TADF processes involving a twisted intramolecular charge transfer state. The much longer delayed fluorescence lifetime of Mod2/P2-BPf2 than Mod1/P1-BPf2 suggests a smaller gap between S_{1} and T_{1}, which was further confirmed by TD-DFT calculations.

Overall, our results indicate the strong potential of structurally fine-tuned polymersupported Lewis acids as catalysts in the hydrosilylation of $\mathrm{C}=\mathrm{X}$ bonds $(\mathrm{X}=\mathrm{O}, \mathrm{N})$ with excellent recyclability, whereas the intriguing emissive properties suggest potential utility as luminescent materials.

2.4 Experimental

General Method. NMR data were acquired at $25{ }^{\circ} \mathrm{C} .500 .0 \mathrm{MHz}{ }^{1} \mathrm{H}, 160.4 \mathrm{MHz}{ }^{11} \mathrm{~B}$, and 470.3 MHz ${ }^{19} \mathrm{~F}$ NMR data were recorded on a 500 MHz Bruker AVANCE spectrometer; 500.2 MHz ${ }^{1} \mathrm{H}$ and $125.8 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR data on a 500 MHz Bruker Auto AVANCE spectrometer, and $599.7 \mathrm{MHz}{ }^{1} \mathrm{H}, 150.8 \mathrm{MHz}{ }^{13} \mathrm{C}$ and $192.4 \mathrm{MHz}{ }^{11} \mathrm{~B}$ NMR data on a

Varian INOVA 600 spectrometer. ${ }^{11} \mathrm{~B}$ NMR spectra were acquired with boron-free quartz NMR tubes either on the Varian INOVA 600 with a boron-free 5 mm dual broadband gradient probe (Nalorac, Varian Inc., Martinez, CA) or the 500 MHz Bruker Auto Avance with a 5 mm PH SEX $500 \mathrm{~S} 111 \mathrm{~B}-\mathrm{H} / \mathrm{F}-\mathrm{D}$ probe. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were referenced internally to solvent signals $\left(\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H} N M R, 77.16 \mathrm{ppm}$ for $\left.{ }^{13} \mathrm{C} N \mathrm{NR}\right)$ and all other NMR spectra externally to SiMe_{4} (0 ppm).

UV-visible absorption data were acquired on a Varian Cary 5000 UV-Vis/NIR spectrophotometer or a Cary 60 UV-Vis spectrophotometer. The fluorescence data and lifetimes were measured using a Horiba Fluorolog-3 spectrofluorometer equipped with a 390 nm nanoLED and a FluoroHub R-928 detector. The thermally activated delayed fluorescent lifetimes were measured using a FL-1040A phosphorimeter incorporated into the Fluorolog setup. The excitation source was a pulsed xenon flash lamp, the full-width half-maximum of each pulse is $3 \mu \mathrm{~s}$. A delay of 0.1 ms was used to ensure full decay of the prompt fluorescent response and the Xe lamp output. Absolute quantum yields $\left(\Phi_{\mathrm{F}}\right)$ were measured on the HORIBA Fluorolog-3 using a pre-calibrated Quanta- φ integrating sphere. Light from the sample compartment is directed into the sphere via a fiber-optic cable and an F-3000 Fiber-Optic Adapter, and then returned to the sample compartment (and to the emission monochromator) via a second fiber-optic cable and an F-3000 Fiber-Optic Adapter.

GC-MS data were acquired on an Agilent HP6890 GC System with an HP-5MS 5\% phenyl methyl siloxane column and Agilent 5973A inert XL EI/CI MSD using helium as the carrier gas at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$. The initial oven temperature was $50^{\circ} \mathrm{C}$, after holding
for 3 mins the temperature was increased with a $10^{\circ} \mathrm{C} / \mathrm{min}$ ramp to a final temperature of $220^{\circ} \mathrm{C}$, then held at $220^{\circ} \mathrm{C}$ for 15 min (splitless mode of injection, total run time of 22.0 min). MALDI-TOF MS measurements were performed on a Bruker Ultraflextreme in reflection mode with delayed extraction. Red phosphorus was used for calibration.

GPC-RI analyses were performed in THF ($1.0 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$) using a Viscotek GPCmax with a VE 2001 GPC solvent/sample module, a 2600 UV-PDA detector, and a TDA 305 triple detector array. A set of two columns consisting of one PLgel 5 mm mixed-D and one PLgel 5 mm mixed-C column was used for separation and ten narrow polystyrene standards ($580 \mathrm{Da}-364000 \mathrm{Da}$, Polymer Laboratories, Varian Inc.) for calibration.

All calculations (DFT and TD-DFT) were carried out with the program package Gaussian 16 (Rev. B. 01 or Rev. D.01) and were performed on a parallel cluster system. The input files were generated from Chem3D and pre-optimized in Spartan '08 V 1.2.0. Ground state geometries were then optimized in Gaussian 16 using the hybrid density functional b3lyp with a $6-31 \mathrm{~g}(\mathrm{~d})$ basis set. Frequency calculations were performed to confirm the presence of local minima (only positive frequencies). Vertical excitations were calculated by TDDFT methods at the rcam-b3lyp/6-31g(d) and rb3lyp/6-31g(d) level. First triplet excited state geometries were optimized by DFT methods at the ub3lyp/6-31g(d) level and first singlet excited state geometries were optimized by TD-DFT methods at the b3lyp/6-31g(d) level. All calculations were performed using the polarizable continuum model (PCM) for solvation in DCM.

Materials. Toluene and hexanes were purified using a solvent purification system (Innovative Technologies) and stored over Na / K alloy. Diethyl ether was distilled from $\mathrm{Na} /$ benzophenone; anisole and all chlorinated solvents were distilled from CaH_{2}. Azobisisobutyronitrile (AIBN) initiator was recrystallized in methanol. All other chemicals were purchased from commercial sources and directly used without further purification. All oxygen- and moisture-sensitive manipulations were carried out under an inert atmosphere using either standard Schlenk techniques or a glove box. Reactions involving BBr_{3} were conducted in Teflon-stoppered Schlenk tubes, avoiding the use of silicone grease.

Synthesis of (3,5-Dimethyl-4'-vinyl-[1,1'-biphenyl]-4-yl)trimethylsilane (Monomer

 M1). In a 250 mL Schlenk flask, 5-bromo-2-iodo-1,3-dimethylbenzene ($5.00 \mathrm{~g}, 16.1 \mathrm{mmol}$) was dissolved in diethyl ether (200 mL). Under N_{2} flow, a solution of n-butyl lithium (1.6 M in hexanes, $10.6 \mathrm{~mL}, 17.0 \mathrm{mmol}, 1.05$ equiv.) was added dropwise at $-78^{\circ} \mathrm{C}$ and the mixture was kept stirring at $-78^{\circ} \mathrm{C}$ for 1 h . Trimethylsilyl trifluoromethanesulfonate (3.49 $\mathrm{mL}, 19.3 \mathrm{mmol}, 1.2$ equiv.) was dropwise added at $-78^{\circ} \mathrm{C}$. The temperature was raised to room temperature and the reaction mixture stirred overnight. The product, (4-bromo-2,6dimethylphenyl)trimethylsilane, was extracted with diethyl ether and then purified by fractional distillation. Yield: $3.43 \mathrm{~g}(83 \%) .{ }^{1} \mathrm{H}$ NMR ($500.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.12(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{Ph}), 2.41(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 0.38\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right) .{ }^{[23]}$ GC-MS (retention time 12.3 min) calcd. for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{BrSi}(\mathrm{m} / \mathrm{z})$ 256.0, found 256.1.In an oven-dried 250 mL Schlenk flask were dissolved (4-bromo-2,6dimethylphenyl)trimethylsilane ($3.00 \mathrm{~g}, 11.7 \mathrm{mmol}$) and 4-vinylphenylboronic acid (2.07
$\mathrm{g}, 14.0 \mathrm{mmol}, 1.2$ equiv.) with toluene $(90 \mathrm{~mL})$. Then $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ was added ($11.4 \mathrm{~g}, 35.0$ mmol, 3 equiv.). The mixture was degassed by 3 freeze-pump-thaw procedures. A solution of the catalyst $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.67 \mathrm{~g}, 0.58 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ in toluene $(10 \mathrm{~mL})$ was added and the reaction mixture was kept stirring under N_{2} flow overnight at $90^{\circ} \mathrm{C}$. After aqueous workup and extraction with DCM the solvent was removed under vacuum to give a brownish oil. The crude product was purified by column chromatography on alumina with hexanes as the eluent and then recrystallized from MeOH at room temperature by slow solvent evaporation. Yield: $1.53 \mathrm{~g}(47 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.57(\mathrm{~d}, \mathrm{~J}=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.47(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.22(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph}), 6.76(\mathrm{dd}, \mathrm{J}=17.5,10.5 \mathrm{~Hz}$, 1 H , vinyl), 5.79 (d, J = $17.5 \mathrm{~Hz}, 1 \mathrm{H}$, vinyl), 5.27 ($\mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}$, vinyl), 2.53 ($\mathrm{s}, 6 \mathrm{H}$, Me), $0.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($150.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=144.9,141.0,140.3,136.8$, 136.6, 135.9, 127.3, 126.7, 113.9, 25.2, 3.7. GC-MS (retention time 19.4 min) calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{Si}(\mathrm{m} / \mathrm{z})$ 280.2, found 280.2. Elemental analysis: Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{Si}$: C 81.36; H 8.63\%. Found: C 81.23; H 8.53\%.

Synthesis of (3-Chloro-4'-vinyl-[1,1'-biphenyl]-4-yl)trimethylsilane (Monomer M2).

4-Bromo-2-chloro-1-iodobenzene ($10.0 \mathrm{~g}, 31.5 \mathrm{mmol}$) was charged into a 500 mL Schlenk flask under nitrogen, followed by adding of 200 mL of degassed diethyl ether, and the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. A solution of n-butyl lithium (2.5 M in hexanes, 13.2 mL , $33.0 \mathrm{mmol}, 1.05$ equiv.) was added dropwise and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Then trimethylsilyl trifluoromethanesulfonate ($8.40 \mathrm{~g}, 37.8 \mathrm{mmol}, 1.2$ equiv.) was added dropwise at $-78{ }^{\circ} \mathrm{C}$. The temperature was raised to room temperature and the reaction mixture kept stirring overnight. The product, (4-bromo-2-chlorophenyl)trimethylsilane,
was extracted with diethyl ether, and then purified by fractional distillation. Yield: 5.10 g (61\%). ${ }^{1} \mathrm{H}$ NMR ($500.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}), 7.36(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph})$, $7.29(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 0.36\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right) . \mathrm{GC}-\mathrm{MS}$ (retention time 10.5 min) calcd. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{BrClSi}(\mathrm{m} / \mathrm{z})$ 262.0, found 264.0.

4-Vinylphenylboronic acid (737 mg, 4.98 mmol), (4-bromo-2chlorophenyl)trimethylsilane ($1.10 \mathrm{~g}, 4.17 \mathrm{mmol})$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(4.10 \mathrm{~g}, 12.6 \mathrm{mmol}, 2.5$ equiv.) were charged into a 50 mL Schlenk flask. After adding 25 mL of toluene, the mixture was degassed by 3 freeze-pump-thaw procedures. A solution of the catalyst $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(241 \mathrm{mg}, 209 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$ in toluene $(5 \mathrm{~mL})$ was added to the Schlenk flask by syringe. The mixture was stirred overnight at $90^{\circ} \mathrm{C}$ under nitrogen flow. The reaction was worked up with water and extracted with dichloromethane. The solvent was removed under vacuum and the residue was purified by column chromatography (alumina gel, hexanes) to give the product as a white solid. Yield: $0.63 \mathrm{~g}(53 \%) .{ }^{1} \mathrm{H}$ NMR (500.0 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}), 7.56(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.53(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph})$, $7.50(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.47(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 6.77(\mathrm{dd}, \mathrm{J}=17.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}$, vinyl), $5.82\left(\mathrm{~d}, \mathrm{~J}=17.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, vinyl), $5.31\left(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, vinyl), $0.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR (150.8 MHz, CDCl_{3}): $\delta=143.3,141.7,139.1,137.4,136.4,136.2,127.6,127.3$, 126.9, 124.5, 114.0, 25.2, -0.6. GC-MS (retention time 18 min) calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClSi}(\mathrm{m} / \mathrm{z})$ 286.1, found 286.2. Elemental analysis: Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClSi}$: C 71.18; H 6.68\%. Found: C 71.28; H 6.75\%.

Synthesis of Poly((3,5-dimethyl-4'-vinyl-[1,1'-biphenyl]-4-yl)trimethylsilane)-co-

Polystyrene (P1-Si). In a glovebox, monomer M1 (1.00 g, 3.57 mmol$)$, styrene (1.86 g ,
17.9 mmol), azobisisobutyronitrile ($17.7 \mathrm{mg}, 0.108 \mathrm{mmol}, 0.5 \mathrm{~mol} \%$), and 2.8 mL of anisole were charged into a 10 mL Schlenk flask. The flask was then taken outside the glovebox, the mixture subjected to three freeze-pump-thaw cycles, and subsequently immersed in an oil bath preset at $110^{\circ} \mathrm{C}$. After stirring for 24 h the flask was cooled to room temperature, one drop of the polymer solution was taken to determine the monomer conversion of M1 (92\%) and styrene (85\%) by ${ }^{1} \mathrm{H}$ NMR integration of the residual vinyl group signals of the monomers relative to the Me group signal of anisole. The reaction mixture was precipitated into methanol. The precipitate was collected by filtration and then redissolved in toluene. The copolymer was recovered by repeated reprecipitation from toluene into hexanes (twice) and dried under vacuum. Yield: $1.60 \mathrm{~g}(56 \%) .{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.4-6.2$ (overlapped aromatic protons), 2.52 (broad s, Me), 2.3-1.3 (overlapped backbone protons), 0.44 (broad s, SiMe_{3}). GPC-RI: $M_{n}=34200 \mathrm{~g} \mathrm{~mol}^{-1}, M_{w}$ $=127600 \mathrm{~g} \mathrm{~mol}^{-1}, ~ D=3.7 ; X(M 1)_{n G P C}=45, X(S t)_{n_{G P C}}=208$. The product contains 18 $\mathrm{mol} \% \mathrm{Si}$ monomer based on ${ }^{1} \mathrm{H}$ NMR integration of the SiMe_{3} signal relative to aromatic signals ($17 \mathrm{~mol} \%$ based on the feed ratio).

Conversion to Poly((3,5-dimethyl-4'-vinyl-[1,1'-biphenyl]-

 4yl)bis(pentafluorophenyl)-borane)-co-Polystyrene (P1-BPf2). In a glovebox, P1-Si ($250.0 \mathrm{mg}, 0.327 \mathrm{mmol} \mathrm{SiMe}_{3}$ groups) was dissolved in toluene (3 mL). A solution of $\mathrm{BBr}_{3}(90.1 \mathrm{mg}, 0.360 \mathrm{mmol})$ in 0.2 mL of toluene was added dropwise, and the mixture was allowed to stir at room temperature for 12 h . The formation of the dibromoborylated intermediate was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR spectroscopy of the crude mixture: ${ }^{1} \mathrm{H}$ NMR ($500.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.2-6.3$ (overlapped aromatic protons, $5 \mathrm{~m}+6 \mathrm{n} \mathrm{H}$, relativeintegration: 29.14), 2.4 (broad s, $\mathrm{Me}, 6 \mathrm{nH}$, relative integration: 6), 2.2-1.3 (overlapped backbone protons), 0.67 (s, $\mathrm{Me}_{3} \mathrm{SiBr}$); ${ }^{11} \mathrm{~B}$ NMR ($160.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 59.6. The polymer mixture was diluted with 10 mL toluene, then, a solution of $\mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(195.6 \mathrm{mg}$, $0.490 \mathrm{mmol})$ in toluene $(0.1 \mathrm{~mL})$ was added dropwise at room temperature. The mixture was kept stirring at $80^{\circ} \mathrm{C}$ for 48 h . A solid precipitate formed and was removed by filtration through a small pad of celite. The solvent was removed under high vacuum. Purification by reprecipitation from toluene into hexanes (three times) and drying under high vacuum gave the product as a light yellow fluorescent solid. Yield: $0.218 \mathrm{~g}(64 \%) .{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.4-6.2$ (overlapped aromatic protons, $5 \mathrm{~m}+6 \mathrm{n} \mathrm{H}$, relative integration: 29.17), 2.20 (broad s, Me, 6n H, relative integration: 6), $2.0-1.2$ (overlapped backbone protons). ${ }^{19} \mathrm{~F}$ NMR ($470.3 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-128.3$ (4n F, Pf), -145.0 (2n F, Pf), -160.4 (4n F, Pf). ${ }^{11} \mathrm{~B} \mathrm{NMR}\left(160.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=68$ (very broad).

Synthesis of Poly((3-chloro-4'-vinyl-[1,1'-biphenyl]-4-yl)trimethylsilane)-co-PS (P2-

 Si). In a glovebox, monomer M2 $(1.00 \mathrm{~g}, 3.49 \mathrm{mmol})$, styrene $(1.81 \mathrm{~g}, 17.4 \mathrm{mmol})$, azobisisobutyronitrile ($17.2 \mathrm{mg}, 0.105 \mathrm{mmol}, 0.5 \mathrm{~mol} \%$), and 2.8 mL of anisole were charged into a 10 mL Schlenk flask. The flask was then taken outside the glovebox, the mixture subjected to three freeze-pump-thaw cycles, and subsequently immersed in an oil bath preset at $110^{\circ} \mathrm{C}$. After stirring for 24 h the flask was cooled to room temperature and one drop of the polymer solution was taken to determine the monomer conversion of M2 (75%) and styrene (68%) by ${ }^{1} \mathrm{H}$ NMR integration of the residual vinyl group signals of the monomers relative to the Me group signal of anisole. The reaction mixture was precipitated into methanol. The precipitate was collected by filtration and then redissolved in toluene.The copolymer was recovered by repeated reprecipitation from toluene into hexanes (twice) and dried under high vacuum. Yield: $1.72 \mathrm{~g}(61 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.6-$ 7.3 (aromatic protons of functional monomer), $7.3-6.2$ (overlapped aromatic protons), 2.3 -1.2 (overlapped backbone protons), 0.45 (broad s, SiMe_{3}). GPC-RI: $M_{n}=31500 \mathrm{~g} \mathrm{~mol}^{-1}$, $M_{w}=97400 \mathrm{~g} \mathrm{~mol}^{-1}, Đ=3.09 ; X(M 2)_{n}{ }_{G P C}=31, X(S t)_{n_{G P C}}=217$. The product contains 13 $\mathrm{mol} \%$ Si monomer based on ${ }^{1} \mathrm{H}$ NMR integration of the SiMe_{3} signal relative to the aromatic signals ($17 \mathrm{~mol} \%$ based on the feed ratio).

Conversion to Poly((3-chloro-4'-vinyl-[1,1'-biphenyl]-4-yl)bis(pentafluoro-

 phenyl)borane)-co-PS (P2-BPf2). In a glovebox, P2-Si (500.0 mg, 0.492 mmol) was dissolved in toluene (3 mL), followed by dropwise addition of a solution of $\mathrm{BBr}_{3}(0.370 \mathrm{~g}$, $1.48 \mathrm{mmol})$ in toluene $(0.2 \mathrm{~mL})$. The mixture was allowed to stir at $80^{\circ} \mathrm{C}$ for 24 h . The formation of the dibromoborylated intermediate was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR spectroscopy. ${ }^{1} \mathrm{H}$ NMR $\left(500.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.5-7.3$ (aromatic protons of borane monomer, 3 nH , relative integration: 3), $7.3-6.2$ (overlapped aromatic protons), $2.3-1.2$ (overlapped backbone protons, $3 \mathrm{~m}+3 \mathrm{n} \mathrm{H}$, relative integration: 25.28); ${ }^{11} \mathrm{~B}$ NMR (160.4 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.1$. The polymer was precipitated into dry hexanes to remove the excess of BBr_{3}. The precipitate was redissolved in toluene $(20 \mathrm{~mL})$, a solution of $\mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ $(0.206 \mathrm{~g}, 0.516 \mathrm{mmol})$ in toluene $(5 \mathrm{~mL})$ was added dropwise, and stirring was continued at room temperature for 24 h . A white precipitate formed that was removed by filtration through a small pad of celite. The solvent was evaporated under high vacuum. Purification by repeated reprecipitation from toluene into hexanes (three times) and drying under high vacuum gave the product as a light yellow solid. Yield: $0.350 \mathrm{~g}(56 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz ,CDCl_{3}): $\delta=7.7-7.4$ (aromatic protons of borane monomer, 3 n H , relative integration: 3), $7.3-6.2$ (overlapped aromatic protons), $2.3-1.2$ (overlapped backbone protons, $3 \mathrm{~m}+3 \mathrm{n}$ H, relative integration: 25.22). ${ }^{19} \mathrm{~F}$ NMR ($470.3 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-128.0(4 \mathrm{n}, \mathrm{Pf}),-146.2$ (2n F, Pf), $-160.6(4 \mathrm{n} \mathrm{F}, \mathrm{Pf}) .{ }^{11} \mathrm{~B} \operatorname{NMR}\left(160.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=62.9$.

Synthesis of (4'-(tert-Butyl)-3,5-dimethyl-[1,1'-biphenyl]-4-yl)trimethylsilane (Mod1-

Si). In a 250 mL dry Schlenk flask, (4-bromo-2,6-dimethylphenyl)trimethylsilane (2.00 g, 7.77 mmol) and 4-tert-butylphenylboronic acid ($1.66 \mathrm{~g}, 9.32 \mathrm{mmol}, 1.2$ equiv.) were dissolved in toluene (90 mL). $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ was added ($7.60 \mathrm{~g}, 23.3 \mathrm{mmol}, 3$ equiv.) and the mixture was degassed by purging with N_{2} for 30 min . A solution of the catalyst $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(0.45 \mathrm{~g}, 0.39 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ in toluene $(10 \mathrm{~mL})$ was added and the reaction mixture was kept stirring under N_{2} flow overnight at $90^{\circ} \mathrm{C}$. After aqueous workup and extraction with DCM the solvent was removed under vacuum to give a brownish oil. The crude product was recrystallized from hexanes by slow evaporation of the solvent at room temperature. Yield: $1.05 \mathrm{~g}(44 \%) .{ }^{1} \mathrm{H}$ NMR (500.2 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.52(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.44$ $(\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.20(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph}), 2.52(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 1.36(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.43(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{SiMe}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=150.4,144.8,141.4,138.1,135.4,126.9,126.9$, 125.7, $34.7,31.5,25.2,3.7$. GC-MS (retention time 20.1 min) calcd. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{Si}(\mathrm{m} / \mathrm{z})$ 310.2, found 310.3. Elemental analysis: Calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{Si}$: C 81.22 ; H 9.74\%. Found: C 81.07; H 9.65\%.

Synthesis

 of(4'-tert-Butyl-3,5-dimethyl-[1,1'-biphenyl]-4yl)bis(pentafluorophenyl)borane (Mod1-BPf2). In a glovebox, to a toluene (0.5 mL) solution of Mod1-Si $(50.0 \mathrm{mg}, 0.161 \mathrm{mmol})$ in a reaction tube was added the solution of
$\mathrm{BBr}_{3}(44.4 \mathrm{mg}, 0.177 \mathrm{mmol}, 1.1$ equiv.) in 0.2 toluene dropwise. The mixture was allowed to stir at room temperature overnight. The formation of the dibromoborylated intermediate was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR spectroscopy of the crude mixture: ${ }^{1} \mathrm{H}$ NMR (500.0 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.51(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.46$ (d, overlapped with residual toluene), $2.41(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 1.37(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.60\left(\mathrm{Me}_{3} \mathrm{SiBr}\right) ;{ }^{11} \mathrm{~B} \mathrm{NMR}\left(160.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 63.0. Then a solution of $\mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(67.5 \mathrm{mg}, 0.169 \mathrm{mmol})$ in 0.5 mL of toluene was added dropwise at room temperature. The mixture was kept stirring at $80^{\circ} \mathrm{C}$ for 48 h . A solid precipitate formed that was removed by filtration through a small pad of celite. The solvent was removed under vacuum. Purification by recrystallization from hexanes gave the product as a yellow fluorescent solid. Yield: $54.4 \mathrm{mg}(58 \%) .{ }^{1} \mathrm{H}$ NMR $\left(500.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.55(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.45(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.22(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph}), 2.17(\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{Me}), 1.36(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}) .{ }^{19} \mathrm{~F}$ NMR (470.3 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=-128.2(\mathrm{~m}, 4 \mathrm{~F}, \mathrm{Pf}),-145.1(\mathrm{tt}$, $\mathrm{J}=20.0,5.9 \mathrm{~Hz}, 2 \mathrm{~F}, \mathrm{Pf}),-160.5(\mathrm{~m}, 4 \mathrm{~F}, \mathrm{Pf}) .{ }^{11} \mathrm{~B} \mathrm{NMR}\left(160.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=69.6 .{ }^{13} \mathrm{C}$ NMR (150.8 MHz, CDCl_{3}): $\delta=150.8,148.0(\mathrm{~d}, \mathrm{~J}=241 \mathrm{~Hz}), 144.5(\mathrm{~d}, \mathrm{~J}=271 \mathrm{~Hz}), 142.9$, 140.9 (br, B-C), 138.2, 137.8, $137.6(\mathrm{~d}, \mathrm{~J}=256 \mathrm{~Hz}), 126.8,125.9,125.8,114.9$ (br, B-C), 34.7, 31.5, 22.7. High-resolution MALDI-TOF mass spectrum (anthracene, neg. mode): $\mathrm{m} / \mathrm{z}=601.1569\left([\mathrm{M}]^{-}: 100 \%\right.$, calcd for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{BF}_{11^{-}}$601.1560). Elemental analysis: Calcd for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{BF}_{10}$: C 61.88; H 3.64; for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{BF}_{10} * 0.3$ toluene $\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)$: C 63.21 ; H 3.87\%. Found: C 63.23; H 4.06\%.

Synthesis of (4'-tert-Butyl-3-chloro-[1,1'-biphenyl]-4-yl)trimethylsilane (Mod2-Si). In an oven-dried 250 mL Schlenk flask, (4-bromo-2,6-dimethylphenyl)trimethylsilane (1.60 $\mathrm{g}, 6.07 \mathrm{mmol}$) and 4-tert-butylphenylboronic acid ($1.30 \mathrm{~g}, 7.30 \mathrm{mmol}, 1.2$ equiv.) were
dissolved in toluene (90 mL). Then $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ was added ($5.93 \mathrm{~g}, 18.2 \mathrm{mmol}, 3$ equiv.). The mixture was degassed by purging with N_{2} for 30 min . A solution of the catalyst $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(0.35 \mathrm{~g}, 0.30 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ in 10 mL toluene was added and the reaction mixture was kept stirring under N_{2} flow overnight at $90^{\circ} \mathrm{C}$. After aqueous workup and extraction with DCM the solvent was removed under vacuum to give a brownish oil. The crude product was recrystallized from hexanes by slow evaporation of the solvent at room temperature. Yield: $1.06 \mathrm{~g}(55 \%) .{ }^{1} \mathrm{H}$ NMR (500.2 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.56(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 7.52$ $(\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}), 7.47(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.45(\mathrm{dd}, \mathrm{J}=7.8,1.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ph}), 1.36(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.40\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $151.2,143.7,141.6,136.9,136.1,127.7,126.9,126.0,124.6,34.7,31.5,-0.6$ GC-MS (retention time 19.4 min) calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{ClSi}(\mathrm{m} / \mathrm{z}) 316.1$, found 316.2. Elemental analysis: Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{ClSi}$: C 72.00; H 7.95\%. Found: C 71.99; H 7.73\%.

Synthesis of (4'-tert-Butyl-3-chloro-[1,1'-biphenyl]-4-

 yl)bis(pentafluorophenyl)borane (Mod2-BPf2). In a glovebox, to a solution of Mod2-Si $(50.0 \mathrm{mg}, 0.158 \mathrm{mmol})$ in toluene $(0.5 \mathrm{~mL})$ was added dropwise a solution of $\mathrm{BBr}_{3}(0.118$ $\mathrm{g}, 0.471 \mathrm{mmol}, 3.0$ equiv. $)$ in toluene (0.2 mL). The mixture was allowed to stir at $80^{\circ} \mathrm{C}$ for 24 h . After removal of all volatile components in high vacuum, including the excess of BBr_{3}, the product was obtained as a brown oil. The formation of the dibromoborylated intermediate was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR spectroscopy of the crude mixture: ${ }^{1} \mathrm{H}$ NMR (500.0 MHz, CDCl_{3}): $\delta=7.90(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 7.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}), 7.59(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.58$ (d, overlapped, $1 \mathrm{H}, \mathrm{Ph}$), $7.54(\mathrm{~d}, \mathrm{~J}=8.0,2 \mathrm{H}, \mathrm{Ph}), 1.41(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu})$. ${ }^{11} \mathrm{~B}$ NMR ($160.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=57.4$. The product was redissolved in toluene $(0.3 \mathrm{~mL})$and a solution of $\mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(66.2 \mathrm{mg}, 0.166 \mathrm{mmol})$ in toluene $(0.2 \mathrm{~mL})$ was added dropwise with stirring. The mixture was kept stirring at room temperature for 24 h . A white precipitate formed that was removed by filtration through a small pad of celite. The solvent was removed under high vacuum. Extraction with toluene and subsequent recrystallization from hexanes gave the product as a white solid. Yield: $41.8 \mathrm{mg}(45 \%) .{ }^{1} \mathrm{H}$ NMR (500.0 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}), 7.58(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.55(\mathrm{~d}, \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{Ph})$, $7.51(\mathrm{~d}, \mathrm{~J}=8.5,2 \mathrm{H}, \mathrm{Ph}), 7.43(\mathrm{~d}, \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{Ph}), 1.37(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}) . \delta=-128.0(\mathrm{~m}, 4 \mathrm{~F}$, Pf), $-146.3(\mathrm{tt}, \mathrm{J}=20.2,5.3 \mathrm{~Hz}, 2 \mathrm{~F}, \mathrm{Pf}),-160.7(\mathrm{~m}, 4 \mathrm{~F}, \mathrm{Pf}) .{ }^{11} \mathrm{~B} \mathrm{NMR}\left(160.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=63.3 .{ }^{13} \mathrm{C}$ NMR (150.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=152.6,148.0,147.6(\mathrm{~d}, \mathrm{~J}=249 \mathrm{~Hz}), 144.1(\mathrm{~d}$, $\mathrm{J}=260 \mathrm{~Hz}), 141.1,138.0,137.6(\mathrm{~d}, \mathrm{~J}=254 \mathrm{~Hz}), 135.7,128.5,127.1,126.3,125.0,114.7$, 34.9, 31.4. High-resolution MALDI-TOF mass spectrum (anthracene, neg. mode): $\mathrm{m} / \mathrm{z}=$ $607.0873\left([\mathrm{M}]^{-}, 100 \%\right.$, calcd for $\mathrm{C}_{28} \mathrm{H}_{16} \mathrm{BClF}_{11}{ }^{-}$607.0857). Elemental analysis: Calcd for $\mathrm{C}_{28} \mathrm{H}_{16} \mathrm{BClF}_{10}$: C 57.13; H 2.74. Found: C 56.26; H 2.99 .

2.5 References

1.L. Ji, S. Griesbeck and T. B. Marder, Chem. Sci. 2017, 8, 846-863.

2.a) S. K. Mellerup and S. Wang, Trends in Chemistry 2019, 1, 77-89; b) J. Huo, H. Wang, S. Li, H. Shi, Y. Tang and B. Z. Tang, Chem. Rec. 2019, 19, DOI: 10.1002/tcr. 201900068.
3.a) D. W. Stephan, Accounts of Chemical Research 2015, 48, 306-316; b) D. W. Stephan, Science 2016, 354, aaf7229; c) A. R. Jupp and D. W. Stephan, Trends in Chemistry 2019, 1, 35-48.
4.D. W. Stephan and G. Erker, Angew Chem Int Ed Engl 2010, 49, 46-76.
5.T. Mahdi and D. W. Stephan, Angewandte Chemie International Edition 2013, 52, 12418-12421.
6.M.-A. Courtemanche, M.-A. Légaré, L. Maron and F.-G. Fontaine, Journal of the American Chemical Society 2013, 135, 9326-9329.
7.a) D. J. Parks and W. E. Piers, J. Am. Chem. Soc. 1996, 118, 9440-9441; b) M. Rubin, T. Schwier and V. Gevorgyan, The Journal of Organic Chemistry 2002, 67, 1936-1940; c) S. Rendler and M. Oestreich, Angewandte Chemie-International Edition 2008, 47, 5997-6000; d) W. E. Piers, A. J. V. Marwitz and L. G. Mercier, Inorg. Chem. 2011, 50, 12252-12262; e) A. Y. Houghton, J. Hurmalainen, A. Mansikkamaki, W. E. Piers and H. M. Tuononen, Nature Chemistry 2014, 6, 983-988; f) S. Keess, A. Simonneau and M. Oestreich, Organometallics 2015, 34, 790-799; g) W. Yuan, P. Orecchia and M. Oestreich, Chemical Communications 2017, 53, 10390-10393.
8.a) S. Itsuno in Polymer-Supported Metal Lewis Acids, Vol. 2 (Ed. H. Yamamoto), Wiley VCH, Weinheim, New York, Chichester, Brisbane, Singapore, Toronto, 2000, pp. 945-979; b) F. Jäkle, Coord. Chem. Rev. 2006, 250, 1107-1121; c) F. Vidal and F. Jakle, Angewandte Chemie-International Edition 2019, 58, 5846-5870; d) F. Jäkle in Borylated Polystyrenes as Versatile Functional Materials, (Ed. Y. Chujo), Springer Singapore, Singapore, 2019, pp. 59-76.
9.a) N. Matsumi and Y. Chujo, Polym. J. 2008, 40, 77-89; b) F. Jäkle, Chem. Rev. 2010, 110, 3985-4022; c) A. Nagai and Y. Chujo, Chem. Lett. 2010, 39, 430-435; d) K. Tanaka and Y. Chujo, Macromol. Rapid Comm. 2012, 33, 1235-1255.
10.A. M. Polgar, J. Poisson, N. R. Paisley, C. J. Christopherson, A. C. Reyes and Z. M. Hudson, Macromolecules 2020, 53, 2039-2050.
11.a) Y. Qin, G. Cheng, A. Sundararaman and F. Jäkle, Journal of the American Chemical Society 2002, 124, 12672-12673; b) Y. Qin, G. Cheng, O. Achara, K. Parab and F. Jäkle, Macromolecules 2004, 37, 7123-7131.
12.a) K. Parab, K. Venkatasubbaiah and F. Jäkle, J. Am. Chem. Soc. 2006, 128, 1287912885; b) K. Parab, A. Doshi, F. Cheng and F. Jäkle, Macromolecules 2011, 44, 59615967.
13.F. Cheng, E. M. Bonder and F. Jäkle, Journal of the American Chemical Society 2013, 135, 17286-17289.
14.M. Wang, F. Nudelman, R. R. Matthes and M. P. Shaver, Journal of the American Chemical Society 2017, 139, 14232-14236.
15.a) F. Vidal, H. Lin, C. Morales and F. Jäkle, Molecules 2018, 23, 405; b) F. Vidal, J. Gomezcoello, R. A. Lalancette and F. Jakle, Journal of the American Chemical Society 2019, 141, 15963-15971.
16.a) s. systems in 2020 semiimmobilized systems, Vol. 2020; b) M. Trunk, J. F. Teichert and A. Thomas, Journal of the American Chemical Society 2017, 139, 3615-3618; c) A. Willms, H. Schumacher, T. Tabassum, L. Qi, S. L. Scott, P. J. C. Hausoul and M. Rose, Chemcatchem 2018, 10, 1835-1843; d) Y. Y. Ma, S. Zhang, C. R. Chang, Z. Q. Huang, J. C. Ho and Y. Q. Qu, Chemical Society Reviews 2018, 47, 5541-5553.
17.L. Chen, R. Liu and Q. Yan, Angewandte Chemie International Edition 2018, 57, 93369340.
18.a) G. Eros, H. Mehdi, I. Papai, T. A. Rokob, P. Kiraly, G. Tarkanyi and T. Soos, Angew. Chem., Int. Ed. 2010, 49, 6559-6563; b) Á. Gyömöre, M. Bakos, T. Földes, I. Pápai, A. Domján and T. Soós, ACS Catalysis 2015, 5, 5366-5372; c) É. Dorkó, M. Szabó, B. Kótai, I. Pápai, A. Domján and T. Soós, Angewandte Chemie International Edition 2017, 56, 9512-9516.
19.) R. J. Blagg, E. J. Lawrence, K. Resner, V. S. Oganesyan, T. J. Herrington, A. E. Ashley and G. G. Wildgoose, Dalton Transactions 2016, 45, 6023-6031; b) R. J. Blagg, T. R. Simmons, G. R. Hatton, J. M. Courtney, E. L. Bennett, E. J. Lawrence and G. G. Wildgoose, Dalton Transactions 2016, 45, 6032-6043.
20.D. J. Scott, M. J. Fuchter and A. E. Ashley, Chemical Society Reviews 2017, 46, 56895700.
21.a) D. E. Bergbreiter, J. H. Tian and C. Hongfa, Chemical Reviews 2009, 109, 530-582; b) J. Lu and P. H. Toy, Chemical Reviews 2009, 109, 815-838; c) D. E. Bergbreiter, Acs Macro Letters 2014, 3, 260-265.
22.a) J. R. Gaffen, J. N. Bentley, L. C. Torres, C. Chu, T. Baumgartner and C. B. Caputo, Chem 2019, 5, 1567-1583; b) B. L. Thompson, C. R. Simons and Z. M. Heiden, Chemical Communications 2019, 55, 11430-11433.
23.N. Iwama, T. Tayano and H. Ohtaki in Catalyst component for olefin polymerization, catalyst for α-olefin polymerization and process for the production of α-olefin polymer, Vol. Japan Polypropylene Corporation, Japan . 2005, p. 23 pp.
24.M. A. Beckett, G. C. Strickland, J. R. Holland and K. Sukumar Varma, Polymer 1996, 37, 4629-4631.
25.T. Noda and Y. Shirota, Journal of the American Chemical Society 1998, 120, 97149715.
26.a) T. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono and T. Ikuta, Advanced Materials 2016, 28, 2777-2781; b) T. Agou, K. Matsuo, R. Kawano, I. S. Park, T. Hosoya, H. Fukumoto, T. Kubota, Y. Mizuhata, N. Tokitoh and T. Yasuda, ACS Materials Letters 2020, 2, 28-34; c) M.-Y. Zhang, Z.-Y. Li, B. Lu, Y.

Wang, Y.-D. Ma and C.-H. Zhao, Organic Letters 2018, 20, 6868-6871; d) S. Pagidi, N. K. Kalluvettukuzhy and P. Thilagar, Inorganic Chemistry 2020, 59, 3142-3151.
27.a) G.-L. Fu, H.-Y. Zhang, Y.-Q. Yan and C.-H. Zhao, The Journal of Organic Chemistry 2012, 77, 1983-1990; b) Z. Zhang, R. M. Edkins, J. Nitsch, K. Fucke, A. Steffen, L. E. Longobardi, D. W. Stephan, C. Lambert and T. B. Marder, Chemical Science 2015, 6, 308321; c) Z.-B. Sun, J.-K. Liu, D.-F. Yuan, Z.-H. Zhao, X.-Z. Zhu, D.-H. Liu, Q. Peng and C.-H. Zhao, Angewandte Chemie International Edition 2019, 58, 4840-4846; d) C. Wang, Q.-W. Xu, W.-N. Zhang, Q. Peng and C.-H. Zhao, J. Org. Chem. 2015, 80, 10914-10924.
28.a) H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, Nature 2012, 492, 234238; b) X.-K. Chen, D. Kim and J.-L. Brédas, Acc. Chem. Res. 2018, 51, 2215-2224.
29.H. Belaidi, F. Rauch, Z. Zhang, C. Latouche, A. Boucekkine, T. B. Marder and J.-F. Halet, ChemPhotoChem 2020, 4, 173-180.
30.a) 2020camb3lyp in 2020camb3lyp, Vol. 2020; b) N. S. Makarov, S. Mukhopadhyay, K. Yesudas, J.-L. Brédas, J. W. Perry, A. Pron, M. Kivala and K. Müllen, The Journal of Physical Chemistry A 2012, 116, 3781-3793.

2.6 Appendix

Figure 2-S1. ${ }^{1} \mathrm{H}$ NMR spectrum of (4-bromo-2,6-dimethylphenyl)trimethylsilane (1) in CDCl_{3}.

Figure 2-S2. ${ }^{1} \mathrm{H}$ NMR spectrum of monomer $\mathbf{M 1}$ in CDCl_{3}.

Figure 2-S3. ${ }^{13} \mathrm{C}$ NMR spectrum of monomer $\mathbf{M 1}$ in CDCl_{3}.

Figure 2-S4. ${ }^{1} \mathrm{H}$ NMR spectrum of (4-bromo-2-chlorophenyl)trimethylsilane (2) in CDCl_{3}.

Figure 2-S5. ${ }^{1} \mathrm{H}$ NMR spectrum of monomer M2 in CDCl_{3}.

Figure 2-S6. ${ }^{13} \mathrm{C}$ NMR spectrum of monomer M2 in CDCl_{3}.

Figure 2-S7. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 1 - S i}$ in CDCl_{3}. (the signal at ca. 1.5 ppm is due to a trace of water in the solvent)

Figure 2-S8. GPC trace of P1-Si obtained from conventional free radical polymerization, eluent: THF, $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$.

Figure 2-S9. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 1} \mathbf{- B B r} 2$ after precipitation into hexanes in CDCl_{3} (the signals at ca. 0.87 and 1.25 ppm are attributed to residual hexanes and the sharp signal at 2.34 ppm to residual tolene). The integral ratio between aryl and methyl protons is consistent with a ratio of $\mathrm{m} / \mathrm{n}=5$ (from integration $\mathrm{m} / \mathrm{n}=4.64$)

Figure 2-S10. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{P 1 - B B r 2}$ (after precipitation into hexanes) in CDCl_{3}.

Figure 2-S11. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 1} \mathbf{- B P f} 2$ in CDCl_{3} (the signals at 0.87 and 1.27 ppm are attributed to residual hexanes solvent and the small signal at 2.36 ppm to as residual toluene).

Figure 2-S12. ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{P 1} \mathbf{- B P f} \mathbf{2}$ in CDCl_{3}.

Figure 2-S13. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{P 1} \mathbf{- B P f} 2$ in CDCl_{3}.

Figure 2-S14. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P} \mathbf{2 - S i}$ in CDCl_{3}.

Figure 2-S15. GPC trace of P2-Si obtained from conventional free radical polymerization, eluent: THF, $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$.

Figure 2-S16. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P} \mathbf{2}-\mathbf{B B r} 2$ (after precipitation into hexanes) in CDCl_{3} (the signals at 2.14 and ca. $7.2-7.3 \mathrm{ppm}$ are attritubuted to residual toluene solvent, those at $0 / 88$ and 1.26 ppm to hexanes and the signal at 0.44 ppm to a small number of residual Si-bound methyl groups). The integral ratio between protons on the boron-substituted aryl ring $(3 \mathrm{nH})$ and methylene backbone protons $(3 \mathrm{~m}+3 \mathrm{nH})$ is consistent with a ratio of m / n $=5($ from integration $\mathrm{m} / \mathrm{n}=6.98)$

Figure 2-S17. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{P} 2-\mathrm{BBr} 2$ (after precipitation into hexanes) in CDCl_{3}.

Figure 2-S18. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P} 2$ - $\mathbf{B P f} \mathbf{2}$ in CDCl_{3}. (the signals at 2.36 and ca. 7.2-7.3 ppm are attributed to residual toluene solvent, those at 0.8 ppm to hexanes and that at 0.40 ppm to 7% of residual Si-bound methyl groups). The integral ratio between protons on the boron-substituted aryl ring (3 nH) and methylene/methine backbone protons ($3 \mathrm{n}+3 \mathrm{mH}$) is consistent with a ratio of $\mathrm{m} / \mathrm{n}=5$ (from integration $\mathrm{m} / \mathrm{n}=6.98$)

Figure 2-S19. ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{P 2}$-BPf2 in CDCl_{3}.

Figure 2-S20. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{P 2}$-BPf2 in CDCl_{3}.

Figure 2-S21. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{M o d 1 - S i}$ in CDCl_{3}.

Figure 2-S22. ${ }^{13} \mathrm{C}$ NMR spectrum of Mod1-Si in CDCl_{3}.

Figure 2-S23. ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction solution of Mod1-BBr2 in CDCl_{3}. (the signal at 0.60 ppm is attributed to $\mathrm{Me}_{3} \mathrm{SiBr}$ that is generated as by-product, the signals at 2.43 and in part those at 7.1-7.3 ppm are attributed to toluene).

Figure 2-S24. ${ }^{11}$ B NMR spectrum of the reaction solution of Mod1-BBr2 in CDCl_{3} (signal at 38.9 ppm due to excess BBr_{3}).

Figure 2-S25. ${ }^{1} \mathrm{H}$ NMR spectrum of Mod1-BPf2 in CDCl_{3}.

Figure 2-S26. ${ }^{19} \mathrm{~F}$ NMR spectrum of Mod1-BPf2 in CDCl_{3}.

Figure 2-S27. ${ }^{11} \mathrm{~B}$ NMR spectrum of Mod1-BPf2 in CDCl_{3}.

Figure 2-S28. ${ }^{13} \mathrm{C}$ NMR spectrum of Mod1-BPf2 in CDCl_{3}.

Figure 2-S29. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HSQC NMR spectrum of Mod1-BPf2 in CDCl_{3}.

Figure 2-S30. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ NMR spectrum of Mod1-BPf2 in CDCl_{3}.

Figure 2-S31. MALDI-TOF MS data of [Mod1-BPf2]F ${ }^{-}$generated by addition of TBAF to Mod1-BPf2 (anthracene, neg. mode).

Figure 2-S32. ${ }^{1} \mathrm{H}$ NMR spectrum of Mod2-Si in CDCl_{3}.

Figure 2-S33. ${ }^{13} \mathrm{C}$ NMR spectrum of Mod2-Si in CDCl_{3}.

Figure 2-S34. ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction solution of $\mathbf{M o d} 2-\mathbf{B B r} 2$ in CDCl_{3} (the signals at 2.40 and 7.1-7.4 ppm are attributed to toluene).

Figure 2-S35. ${ }^{11} \mathrm{~B}$ NMR spectra of the reaction solution of $\mathbf{M o d} \mathbf{2 - B B r 2}$ in CDCl_{3} after removal of volatile components.

Figure 2-S36. ${ }^{1} \mathrm{H}$ NMR spectrum of Mod2-BPf2 in CDCl_{3}.

응씃ํㅅNㅅN

00
08080
1010

Figure 2-S37. ${ }^{19} \mathrm{~F}$ NMR spectrum of Mod2-BPf2 in CDCl_{3}.

Figure 2-S38. ${ }^{11} \mathrm{~B}$ NMR spectrum of Mod2-BPf2 in CDCl_{3}.

Figure 2-S39. ${ }^{13} \mathrm{C}$ NMR spectrum of Mod2-BPf2 in CDCl_{3}.

Figure 2-S40. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HSQC}$ NMR spectrum of Mod2-BPf2 in CDCl_{3}.

Figure 2-S41. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ NMR spectrum of Mod2-BPf2 in CDCl_{3}.

Figure 2-S42. MALDI-TOF MS data of [Mod2-BPf2]F ${ }^{-}$generated by addition of TBAF to Mod2-BPf2 (anthracene, neg. mode).

Figure 2-S43. ${ }^{19} \mathrm{~F}$ NMR spectra of Mod1-BPf2 in wet CDCl_{3}.

Figure 2-S44. ${ }^{11} \mathrm{~B}$ NMR spectra of Mod1-BPf2 in wet CDCl_{3}.

Figure 2-S45. ${ }^{19}$ F NMR spectra of Mod2-BPf2 in wet CDCl_{3}.

Figure 2-S46. ${ }^{11} \mathrm{~B}$ NMR spectra of Mod2-BPf2 in wet CDCl_{3}.

Figure 2-S47. ${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{P 1 - B P f} \mathbf{2}$ in wet CDCl_{3} (polymer precipitation was observed).

Figure 2-S48. ${ }^{11} \mathrm{~B}$ NMR spectra of $\mathbf{P 1}$-BPf2 in wet CDCl_{3} (polymer precipitation was observed).

Figure 2-S49. ${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{P} \mathbf{2}$-BPf2 in wet CDCl_{3} (polymer precipitation was observed).

Figure 2-S50. ${ }^{1} \mathrm{H}$ NMR spectra for the hydrosilylation of benzaldehyde catalyzed by 10 $\mathrm{mol} \%$ of the model compounds in CDCl_{3}.

Figure 2-S51. ${ }^{1} \mathrm{H}$ NMR spectra for the hydrosilylation of benzaldehyde catalyzed by Lewis acids in CDCl_{3}.

Figure 2-S52. ${ }^{1} \mathrm{H}$ NMR spectra for the hydrosilylation of acetophenone catalyzed by Lewis acids in CDCl_{3}.

Figure 2-S53. ${ }^{1} \mathrm{H}$ NMR spectra for the hydrosilylation of N -benzylidiene aniline catalyzed by Lewis acids in CDCl_{3}.

Figure 2-S54. ${ }^{1} \mathrm{H}$ NMR spectra for the hydrosilylation of styrene catalyzed by $10 \mathrm{~mol} \%$ of the model compounds in CDCl_{3}.

Figure 2-S55. Recyclability of P2-BPf2 catalyzed hydrosilylation of benzaldehyde in CDCl_{3}.

Table 2-S1. UV-vis Absorption and Fluorescence Data of Model Compounds in Various Solvents

Compound	Solvent	$\lambda_{A b s}{ }^{a}(\mathrm{~nm})$	$\lambda_{\mathrm{FL}}{ }^{b}(\mathrm{~nm})$	Stokes shift $\left(\mathrm{cm}^{-1}\right)$
Mod1-BPf2	hexane	389	469	4400
	toluene	392	512	6000
	DCM	386	538	7300
Mod2-BPf2	hexane	362	413	3400
	toluene	368	456	5200
	DCM	363	483	6800

${ }^{a}$ Only the lowest energy absorption maxima are given. ${ }^{b}$ Excited at the lowest energy absorption maxima.

Figure 2-S56. Single-exponential fit of fluorescence decay of Mod1-BPf2 in degassed DCM excited with a 390 nm nanoLED.

Figure 2-S57. Triple-exponential fit of fluorescence decay of Mod2-BPf2 in degassed DCM excited with a 390 nm nanoLED.

Figure 2-S58. Single-exponential fit of fluorescence decay of P1-BPf2 in degassed DCM excited with a 390 nm nanoLED.

Figure 2-S59. Double-exponential fit of fluorescence decay of P2-BPf2 in degassed DCM excited with a 390 nm nanoLED.

Figure 2-S60. Single-exponential fit of TADF of Mod1-BPf2 in degassed DCM excited with pulsed Xe lamp.

Figure 2-S61. Double-exponential fit of TADF of Mod2-BPf2 in degassed DCM excited with pulsed Xe lamp.

Figure 2-S62. Single-exponential fit of TADF of P1-BPf2 in degassed DCM excited with pulsed Xe lamp.

Figure 2-S63. Double-exponential fit of TADF of P2-BPf2 in degassed DCM excited with pulsed Xe lamp.

Table 2-S2. Summary of TD-DFT data (rb3lyp/6-31g(d))

Compound	Transition ${ }^{\text {a }}$	$E_{\text {ex }}(\mathrm{eV})$	$\lambda(\mathrm{nm})$	Oscillator strength f	Assignment (\%)
Mod1-BPf2	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	2.74	452.8	0.0640	$\mathrm{H}-5 \rightarrow \mathrm{~L}(0.13)$
					$\mathrm{H} \rightarrow \mathrm{L}(0.69)$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{7}$	4.02	308.5	0.3069	$\mathrm{H}-6 \rightarrow \mathrm{~L}(0.68)$
					$\mathrm{H}-5 \rightarrow \mathrm{~L}(0.11)$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{8}$	4.48	278.4	0.7229	$\mathrm{H}-7 \rightarrow \mathrm{~L}(0.55)$
					$\mathrm{H} \rightarrow \mathrm{L}+2$ (0.43)
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{10}$	4.62	268.1	0.3511	$\mathrm{H}-7 \rightarrow \mathrm{~L}(-0.41)$
					$\mathrm{H} \rightarrow \mathrm{~L}+2(0.55)$
Mod2-BPf2	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	3.11	397.9	0.4667	$\mathrm{H} \rightarrow \mathrm{L}$ (0.69)
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{6}$	3.90	318.0	0.2523	$\mathrm{H}-5 \rightarrow \mathrm{~L}(0.69)$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{7}$	4.19	296.1	0.1065	$\mathrm{H}-6 \rightarrow \mathrm{~L}(0.69)$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{9}$	4.73	262.1	0.5111	$\mathrm{H}-7 \rightarrow \mathrm{~L}(-0.23)$
					$\mathrm{H} \rightarrow \mathrm{L}+1$ (0.64)
Mod2-BPf2 ${ }^{\text {b }}$	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	2.97	417.6	0.0734	$\mathrm{H}-6 \rightarrow \mathrm{~L}(-0.12)$
					$\mathrm{H} \rightarrow \mathrm{L}$ (0.69)
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{6}$	4.00	310.1	0.3387	$\mathrm{H}-5 \rightarrow \mathrm{~L}(0.69)$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{8}$	4.43	279.7	0.5470	$\mathrm{H}-7 \rightarrow \mathrm{~L}(0.61)$
					$\mathrm{H} \rightarrow \mathrm{L}+1(-0.33)$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{9}$	4.62	268.2	0.4919	$\mathrm{H}-7 \rightarrow \mathrm{~L}(0.31)$
					$\mathrm{H} \rightarrow \mathrm{L}+1$ (0.61)

${ }^{a}$ Only transition from S_{0} to S_{1} and transitions with oscillator strength >0.1 are presented. ${ }^{\mathrm{b}}$ The ground-state molecule structure of Mod2-BPf2 was obtained from modifying the optimized Mod1-BPf2 geometry by replacing two methyl groups with -H and -Cl in 1.771 $\AA \AA$ distance as starting geometry.

Table 2-S3. Summary of TD-DFT data (rcam-b3lyp/6-31g(d))

Compound	Transition $^{\mathrm{a}}$	$E_{\text {ex }}(\mathrm{eV})$	$\lambda(\mathrm{nm})$	Oscillator strength f	Assignment (\%)
Mod1-BPf2	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	3.51	353.0	0.0992	$\mathrm{H}-5 \rightarrow \mathrm{~L}(0.30)$

					$\mathrm{H} \rightarrow \mathrm{L}(0.62)$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{5}$	4.49	276.2	0.3330	$\begin{aligned} & \mathrm{H}-6 \rightarrow \mathrm{~L}(0.62) \\ & \mathrm{H}-3 \rightarrow \mathrm{~L}(0.26) \end{aligned}$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{6}$	4.92	251.7	1.1423	$\begin{gathered} \mathrm{H}-7 \rightarrow \mathrm{~L}(0.29) \\ \mathrm{H} \rightarrow \mathrm{~L}+1(0.61) \end{gathered}$
Mod2-BPf2	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	3.81	325.6	0.6619	$\left.\begin{array}{c} \hline \mathrm{H}-7 \rightarrow \mathrm{~L}(-0.11) \\ \mathrm{H}-6 \rightarrow \mathrm{~L}(0.20) \\ \mathrm{H}-2 \rightarrow \mathrm{~L}(-0.11) \\ \mathrm{H}-1 \rightarrow \mathrm{~L}(-0.12) \\ \mathrm{H} \end{array}\right) \mathrm{L}(0.61)$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{2}$	4.31	287.7	0.1003	$\begin{aligned} & \mathrm{H}-3 \rightarrow \mathrm{~L}(0.17) \\ & \mathrm{H}-2 \rightarrow \mathrm{~L}(0.40) \\ & \mathrm{H}-1 \rightarrow \mathrm{~L}(0.48) \end{aligned}$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{5}$	4.44	279.4	0.2543	$\begin{aligned} \hline \mathrm{H}-6 & \rightarrow \mathrm{~L}(-0.11) \\ \mathrm{H}-5 & \rightarrow \mathrm{~L}(0.57) \\ \mathrm{H}-4 & \rightarrow \mathrm{~L}(-0.27) \\ \mathrm{H}-3 & \rightarrow \mathrm{~L}(-0.21) \end{aligned}$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{8}$	5.18	239.3	0.4323	$\begin{aligned} & \mathrm{H}-7 \rightarrow \mathrm{~L}(0.40) \\ & \mathrm{H} \rightarrow \mathrm{~L}+1(0.49) \\ & \mathrm{H} \rightarrow \mathrm{~L}+2(0.12) \end{aligned}$
Mod2-BPf2 ${ }^{\text {b }}$	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	3.82	324.4	0.1300	$\begin{aligned} \hline \mathrm{H}-6 & \rightarrow \mathrm{~L}(0.28) \\ \mathrm{H}-2 & \rightarrow \mathrm{~L}(-0.15) \\ \mathrm{H} & \rightarrow \mathrm{~L}(0.61) \end{aligned}$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{4}$	4.47	277.3	0.3844	$\begin{aligned} \mathrm{H}-5 & \rightarrow \mathrm{~L}(0.64) \\ \mathrm{H}-3 & \rightarrow \mathrm{~L}(0.13) \\ \mathrm{H}-2 & \rightarrow \mathrm{~L}(-0.17) \end{aligned}$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{6}$	4.94	250.8	1.0526	$\begin{gathered} \mathrm{H}-7 \rightarrow \mathrm{~L}(0.38) \\ \mathrm{H}-2 \rightarrow \mathrm{~L}+1(0.56) \end{gathered}$

${ }^{\text {a }}$ Only transition from S_{0} to S_{1} and transitions with oscillator strength >0.1 are presented.
${ }^{\mathrm{b}}$ The ground-state molecule structure of Mod2-BPf2 was obtained from modifying the optimized Mod1-BPf2 geometry by replacing two methyl groups with -H and -Cl in 1.771 Å distance as starting geometry.

Table 2-S4. Comparison of the calculated singlet state and triplet state energies for Mod1BPf2 and Mod2-BPf2

Compound	$\begin{gathered} \hline \hline \mathrm{S}_{0}{ }^{\mathrm{a}} \\ \text { (Hartre } \end{gathered}$ e)	$\mathrm{T}_{1}{ }^{\mathrm{a}}$ (Hartre e)	$\mathrm{S}_{1}{ }^{\mathrm{b}}$ (Hartre e)	$\begin{gathered} \Delta \mathrm{E}_{\mathrm{ad}}\left(\mathrm{~S}_{1}-\mathrm{S}_{0}\right) \\ \left(\mathrm{eV} / \mathrm{kJ} \mathrm{~mol}^{-1}\right) \end{gathered}$	$\begin{gathered} \Delta \mathrm{E}_{\mathrm{ad}}\left(\mathrm{~T}_{1}-\mathrm{S}_{0}\right) \\ \left(\mathrm{eV} / \mathrm{kJ} \mathrm{~mol}^{-1}\right) \end{gathered}$	$\begin{gathered} \Delta \mathrm{E}_{\mathrm{ad}}\left(\mathrm{~S}_{1}-\mathrm{T}_{1}\right) \\ \left(\mathrm{eV} / \mathrm{kJ} \mathrm{~mol}^{-1}\right) \end{gathered}$
Mod1-BPf2	2178.6 71863	2178.5 88064	2178.5 84775	2.370/228.6	2.280/220.0	0.089/8.635
Mod2-BPf2	$\begin{gathered} 2559.7 \\ 01063 \end{gathered}$	$\begin{gathered} 2559.6 \\ 13454 \end{gathered}$	$\begin{gathered} 2559.6 \\ 04114 \end{gathered}$	2.638/254.5	2.384/230.0	0.242/23.33

${ }^{\mathrm{a}} \mathrm{S}_{0}$ optimized a rb3lyp/6-31g(d), T_{1} optimized a ub3lyp/6-31g(d) level of theory. ${ }^{\mathrm{b}}$ From TD-DFT optimization of S_{1} state at b3lyp/6-31g(d) level of theory.

Table 2-S5. Kohn-Sham HOMO and LUMO orbital plots for Mod1-BPf2 and Mod2-BPf2 (rb3lyp/6-31g(d)

Mod1-BPf2	S_{0}	S_{1}
LUMO		$-2.77 \mathrm{eV}$
HOMO		$0_{0}^{0} 0_{0}^{0}$
Mod2-BPf2	S_{0}	S_{1}
LUMO		$\mathrm{S}_{-2.83 \mathrm{eV}}^{0}$
HOMO	$-6.25 \mathrm{eV}$	-5.78 ev

Table 2-S6. Kohn-Sham HOMO and LUMO orbital plots for Mod1-BPf2 and Mod2-BPf2 (rcam-b3lyp/6-31g(d)

Mod1-BPf2	S_{0}	S_{1}
LUMO	$-1.38 \mathrm{eV}$	
HOMO	-7.23 eV	00 $-6.81 \mathrm{eV}$
Mod2-BPf2	S_{0}	S_{1}
LUMO		$-1.71 \mathrm{eV}$
HOMO	$\frac{-7.57 \mathrm{eV}}{00}$	$0_{0}^{20} 0_{0}^{0} 0_{0}^{0}$

Chapter 3 Changing up BN-Polystyrene: Effect of Substitution Pattern on the Free-Radical Polymerization and Polymer Properties ${ }^{\text {a }}$

3.1 Introduction

The isoelectronic and isosteric replacement of $\mathrm{C}=\mathrm{C}$ for $\mathrm{B}-\mathrm{N}$ units in conjugated organic systems has attracted tremendous recent interest as novel electronic properties, reactivity, and applications are achieved. ${ }^{1-8}$ Fundamental studies on the replacement of ubiquitous benzene moieties for 1,2-dihydro-1,2-azaborinines, in particular, have revealed significant differences in the aromatic delocalization (the B-N bond shows partial double bond character), whereas the polarity of the azaborinine molecule and increased acidity of the N-H proton tend to also influence intermolecular interactions. ${ }^{9,10}$ These differences have been exploited in diverse applications ranging from conjugated materials for use in luminescent imaging, field effect transistors and organic solar cells, ${ }^{11-16}$ to the development of new ligands for catalysis, ${ }^{17}$ and even the biomedical field in the form of enzyme inhibitors ${ }^{18,19}$.

In the realm of polymeric materials, ${ }^{20-27}$ Manners pioneered the substitution of B-N and BP for C-C units in the backbone of polyolefins, giving rise to exciting new classes of polymeric materials (A, Figure 3-1). ${ }^{28-31}$ Expanding on this theme, Helten recently reported the first B-N analog of polyacetylene (B). ${ }^{32}$ We envisioned a strong potential impact of

[^1]materials in which benzene rings are replaced by azaborinine moieties, given that aromatic groups play a major role in polymer science. In earlier work, Sneddon had examined the polymerization of vinylborazines in an effort to generate boron-containing ceramics. ${ }^{33} \mathrm{We}$ reported in 2015 the first example of an azaborinine-based conjugated polymer (BN-PPP, C), ${ }^{9}$ a B-N analog of poly(p-phenylene), and in 2016 an example of a B-N substituted polystyrene (BN-PS, D) as well as its phenylene-expanded congener (BN-PVBP, E). ${ }^{34}$ Higher molecular weights were achieved for \mathbf{E} compared to \mathbf{D}, and this difference was tentatively attributed to the direct attachment of the vinyl group to boron in \mathbf{D}, which may destabilize the propagating radical in the "benzylic" position. We also found that these polymers exhibit enhanced solubility in polar solvents in comparison to the all-carbon analogs, which we ascribed to the increased polarity of the side groups and the presence of N-H moieties capable of hydrogen bonding. In related work, Staubitz reported high molecular weight polymers $\mathbf{F},{ }^{35}$ which contain a methyl group in place of a hydrogen on N and elegantly demonstrated the effects of tacticity on the NMR spectral patterns. In addition, Klausen developed a gram scale synthesis of BN-substituted vinylnaphthalene polymers (\mathbf{G}), both by free radical and syndiospecific Ziegler-Natta-type polymerization methods. ${ }^{36,37}$ They found that in free radical copolymerizations the reactivity of the respective BN -vinylnaphthalene monomer is somewhat lower but overall is in the same range as that of styrene, allowing for random incorporation into the copolymer products. ${ }^{38}$ Importantly, they also demonstrated that the oxidative cleavage of the BN -naphthalene moieties results in poly(styrene-co-vinylalcohol) copolymers that are desirable as compatibilizers due to the additional polar functional groups. ${ }^{38,39}$

D

$\mathrm{Ar}=\underset{\substack{\text { p-butyl- } \\ \text { phenyl }}}{\mathbf{B}}$

C $\mathrm{Ar}=$ mesityl

F

Figure 3-1. Examples of previously reported polymers that have $\mathrm{C}-\mathrm{C}$ units replaced by BN units ($\mathrm{Fc}=$ ferrocenyl, mesityl = 2,4,6-trimethylphenyl).

Our earlier observation that the parent BN-PS (D), while showing interesting solubility and thermal characteristics, can only be obtained in modest molecular weights prompted us to explore the effects of placing the B-N moiety in different positions relative to the polymer backbone on the polymerizability and the polymer physical properties. We report here the synthesis of a series of isomeric vinylazaborinine monomers, as well as their all-carbon counterparts. We also examine their polymerization activity in standard free radical polymerization and compare the physical properties of the resulting polymers with those of the all-carbon analogs.

3.2 Results and Discussion

Monomer Synthesis. We selected three isomeric azaborinines with the vinyl group attached to carbon at the 4-, 5-, or 6-position of the azaborinine as our targets (Scheme 31). The mesityl (Mes, 2,4,6-trimethylphenyl) group on the boron atom was attached to
provide robustness of the azaborinine heterocycle against water and oxygen. Other possible isomers with the mesityl groups in ortho-position to the polymerizable group (1- and 3position) were not considered, as the steric bulk was presumed to prohibit polymerization. This assumption is supported by the fact that B -vinylborazines with Me or Ph groups attached to the nitrogens in ortho-position have been shown not to be amenable to polymerization whereas the parent B-vinylborazine does undergo thermal polymerization primarily at the vinyl group. ${ }^{33,40}$ In addition, ortho-mesitylstyrene (oMesSt), the respective all-carbon system, was prepared and found to only very slowly polymerize in the presence of $1,1^{\prime}$-azobisisobutyronitrile (AIBN) at $70{ }^{\circ} \mathrm{C}$ (Figures 3-S50-51). ${ }^{41-43}$ The previously synthesized azaborinines $\mathbf{1},{ }^{44} \mathbf{3},{ }^{44}$ and $\mathbf{6}^{45}$ feature functional handles that enable the installation of the vinyl group via a late-stage Suzuki-Miyaura cross-coupling. Crosscoupling of borylated 1 with vinyl bromide followed by removal of the N-TBS group yielded the product, $4 \mathrm{~V}-\mathrm{NBMes}$ in 88% yield. Unexpectedly, the Suzuki coupling of the respective $\mathrm{C}(5)$-borylated isomer 3 did not prove amenable to scale-up. However, $\mathrm{C}(5)$ -iodo-substituted azaborinine 4 allowed for the efficient Suzuki-Miyaura coupling with vinyl pinacol boronate ester to afford 5. Subsequent removal of the TBS group with tetra(n-butyl)-ammonium fluoride yielded the desired 5V-NBMes in 82% yield. Finally, the unprotected pinacolborane-functionalized compound 6 afforded under Suzuki-Miyaura cross-coupling conditions with vinyl bromide the final isomer 6V-NBMes in 71% yield. We also prepared meta-mesitylstyrene ($m \mathrm{MesSt}$) as a direct all-carbon analogue of both 4 V -NBMes and $6 \mathrm{~V}-\mathrm{NBMes}$ and para-mesitylstyrene ($p \mathrm{MesSt}$) as an analogue of 5 V -

NBMes. These monomers were readily obtained by Suzuki-Miyaura cross-coupling of 2bromomesitylene and 3- or 4-vinylphenyl boronic acid, respectively.

Scheme 3-1. Synthesis of the 4V-NBMes, $5 \mathrm{~V}-\mathrm{NBMes}$ and 6 V -NBMes monomers (TBS $=$ t-butyldimethylsilyl; dppf = 1, '’-bis(diphenylphosphino)ferrocene; MTBE $=$ methyl t butyl ether; TBAF = tetra-n-butylammonium fluoride; pin = pinacolato).

Electronic Structure Calculations. When considering the propensity of these different monomers to undergo polymerization it is important to recognize that each position on the azaborinine ring is electronically distinct. ${ }^{19,} 45-48$ We performed electronic structure calculations of the azaborinine isomers as well as their corresponding all-carbon counterparts using the CAM-B3LYP hybrid exchange-correlation functional with the 6$311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set (Figure 3-2). Electrostatic potential (ESP) maps show the charge distribution typical of aromatic compounds, with an electron-rich surface above and below the ring and an electron-deficient region around the $\mathrm{C}-\mathrm{H}$ edge (Figure 3-2b). The
positioning of the vinyl group relative to the mesityl group does not significantly impact the charge distribution (Figure 3-2c) for the carbonaceous mMesSt and pMesSt or the $\mathrm{C}-\mathrm{H}$ bond dissociation energies (BDEs, Figure 3-2d) of the respective ethyl-substituted derivatives. On the other hand, the positioning of the vinyl/ethyl group relative to the more electronegative nitrogen and less electronegative boron atoms in the azaborinine ring does influence both the charge distribution and the $\mathrm{C}-\mathrm{H}$ BDEs. The $\mathrm{C}_{\alpha}-\mathrm{H}$ BDE values for the ethyl derivatives of $6 \mathrm{~V}-\mathrm{NBMes}$, $5 \mathrm{~V}-\mathrm{NBMes}$, and $4 \mathrm{~V}-\mathrm{NBMes}$ (80.1, 82.3 , and 83.6 kcal mol-1, respectively) increase with an increasing distance from the nitrogen atom of the azaborinine ring in the order $\mathrm{C}_{\alpha}-\mathrm{H}_{\text {(6V-NBMes) }}<\mathrm{C}_{\alpha}-\mathrm{H}_{\text {(5V-NBMes) }}<\mathrm{C}_{\alpha}-\mathrm{H}_{\text {(4V-NBMes) }}$. The higher stability of the radical derived from 6V-NBMes may also be related to the enhanced resonance stabilization because of conjugation with the butadiene system of the azaborinine moiety. We note that these differences are relatively modest as a much larger difference in BDEs is seen when comparing B-ethylazaborinine ($\mathrm{C}_{\alpha}-\mathrm{H}$ BDE of 88.2 kcal mol^{-1}) to ethylbenzene $\left(\mathrm{C}_{\alpha}-\mathrm{H}\right.$ BDE of $\left.83.0 \mathrm{kcal} \mathrm{mol}^{-1}\right),{ }^{38}$ indicating a significantly lower stability for the radical derived from B-vinylazaborinine that served as an intermediate in the synthesis of polymer D (see Figure 3-1). Furthermore, as can be seen from the Mulliken charge values (Figure 3-2c), the vinyl-bound intraring C6 carbon (+0.185 in 6V-NBMes) and C 4 carbon (-0.028 in $4 \mathrm{~V}-\mathrm{NBMes}$) in 1,2-azaborinines are relatively electron-deficient in comparison to the intraring ipso-carbon of the mesitylstyrene derivatives (~-0.08 for $m \mathrm{MesSt}$ and $p \mathrm{MesSt})$. On the other hand, the vinyl-bound intraring C5 carbon (-0.166 in $5 \mathrm{~V}-\mathrm{NBMes}$) is significantly more electron-rich. The observed intraring charge distribution is consistent with the nitrogen atom exerting its inductive electron-withdrawing (-I)
influence. Importantly, the mesomeric electron-donating (+M) effect is carried over into the attached vinyl group, rendering the vinyl carbons of 5V-NBMes significantly more electron-rich than those of 4V-NBMes. Those of 6V-NBMes are also relatively electronrich because of the linear conjugation with the butadiene group of the azaborinine moiety. The theoretically predicted differences in the Mulliken charges are nicely reflected in the ${ }^{13} \mathrm{C}$ NMR data of the azaborinine monomers. Specifically, the ${ }^{13} \mathrm{C}$ NMR data are consistent with the notion that the C_{β} carbon of 5V-NBMes (Mulliken charge $-0.217, \delta\left({ }^{13} \mathrm{C}\right)=109.6$ ppm) is the most electron-rich and the C_{β} carbon of 4 V -NBMes (Mulliken charge -0.201 , $\left.\delta\left({ }^{13} \mathrm{C}\right)=115.9 \mathrm{ppm}\right)$ the least electron-rich in this series of isomeric compounds.
a. Structure

Figure 3-2. a) Structures of the B-mesitylazaborinine and mesitylstyrene compounds (the lowest energy conformers are shown); b) electrostatic potential (ESP) maps; c) Mulliken charges of selected atoms; d) calculated bond dissociation energies (BDEs).

Homopolymerizations. We investigated the free-radical polymerization of monomers 4VNBMes, 5V-NBMes, and 6V-NBMes in anisole with AIBN ($2 \mathrm{~mol} \%$) as the initiator (Scheme 3-2). The data are summarized in Table 3-1. After 24 h at $70^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR analyses showed that 76% of the monomer 4V-NBMes, 63% of $5 \mathrm{~V}-\mathrm{NBMes}$, and 51% of $6 \mathrm{~V}-\mathrm{NBMes}$ were converted to the respective polymers. Gel permeation chromatography (GPC) analyses in tetrahydrofuran (THF) gave the estimated molecular weights of $M_{\mathrm{n}}=26.9 \mathrm{kDa}$ $\left(~(=4.84)\right.$ for P4V-NBMes, $M_{\mathrm{n}}=11.6 \mathrm{kDa}(\Xi=3.98)$ for P5V-NBMes, and $M_{\mathrm{n}}=18.2$ $\mathrm{kDa}(\Xi=2.44)$ for $\mathrm{P} 6 \mathrm{~V}-\mathrm{NBMes}$ relative to polystyrene standards. For comparison, the isosteric all-carbon analogues, $m \mathrm{MesSt}$ and $p \mathrm{MesSt}$, were also converted to the corresponding polymers by free-radical polymerization under similar conditions as for the azaborinine monomers. The polymerizations proceeded much faster than in the case of the azaborinines, resulting in quantitative conversion to polymer within only 6.5 h at $70{ }^{\circ} \mathrm{C}$. The fact that both $m \mathrm{MesSt}$ and p MesSt rapidly polymerized and the conversion for $m \mathrm{MesSt}$ was even higher than that for $p \mathrm{MesSt}$ suggests that steric factors play a relatively minor role. Furthermore, the conversion and the degree of polymerization $\left(X_{n}\right)$ of 4V-NBMes, 5V-NBMes, and 6V-NBMes achieved were similar to those obtained in a control reaction with unsubstituted styrene (50% conversion, $M_{\mathrm{n}}=11.5 \mathrm{kDa}, ~ Đ=1.86, X_{n}=111$), but much higher than that for the previously reported 1-hydro-2-vinyl-1,2-azaborinine (BN-St), ${ }^{34}$ in which the vinyl group was attached to boron rather than carbon. $\mathrm{BN}-\mathrm{St}$ was reported to give only sluggish (dimethylformamide, benzene) or no polymerization at all (THF) under
varying conditions (solvent, temperature, and initiator); ${ }^{34}$ under conditions identical to those used for the polymerization of $4 \mathrm{~V}-\mathrm{NBMes}, 5 \mathrm{~V}-\mathrm{NBMes}$, and $6 \mathrm{~V}-\mathrm{NBMes}$, almost no conversion of BN-St was observed $\left(4 \% ; M_{\mathrm{n}}=1.1 \mathrm{kDa}, ~ Đ=1.49, X_{n}=11\right)$. A reason could be that the propagating radical in the "benzylic" position is better stabilized when the vinyl group is attached to C rather than B as is the case for $\mathrm{BN}-\mathrm{St}$.

Scheme 3-2. Synthesis of the azaborinine polymers and their all-carbon analogs by free radical polymerization (AIBN $=1,1^{\prime}$-azobisisobutyronitrile).

Table 3-1. Data for the free radical polymerization of vinyl-functionalized azaborinines and their all-carbon analogs

Monomer	Feed ratio a	T / t $\left({ }^{\circ} \mathrm{C} / \mathrm{h}\right)$	Conv b $(\%)$	M_{n} $(\mathrm{kDa})^{c}$	M_{w} $(\mathrm{kDa})^{c}$	D^{c}	$X_{\mathrm{n}}{ }^{c}$
		$50: 1$	$70 / 24$	76	26.9	130.4	4.84
4V-NBMes	$50: 1$	$70 / 24$	51	18.2	44.4	2.44	80
6V-NBMes	50.19						
m MesSt	$50: 1$	$70 / 6.5$	>95	29.7	61.3	2.07	134

5V-NBMes	$50: 1$	$70 / 24$	63	11.6	46.1	3.98	52
p MesSt	$50: 1$	$70 / 6.5$	82	21.6	42.1	1.95	97

$\overline{{ }^{a} \text { Feed ratio of [monomer]:[AIBN] in anisole, }[\mathrm{M}]=4.5 \mathrm{M} .{ }^{b} \text { Conversion estimated based }}$ on ${ }^{1} \mathrm{H}$ NMR integration of residual monomer before purification relative to anisole standard. ${ }^{c}$ Dispersity $(Ð)$ and average degree of polymerization $\left(X_{\mathrm{n}}\right)$ based on GPC analysis of isolated product in THF relative to PS standards.

Polymer Characterization. The chemical structures of the new BN-substituted polystyrene derivatives were confirmed by multinuclear and two-dimensional (2D) NMR spectroscopy. The disappearance of the vinyl group signals and pronounced peak broadening in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $4 \mathrm{~V}-\mathrm{NBMes}, 5 \mathrm{~V}-\mathrm{NBMes}$, and $6 \mathrm{~V}-\mathrm{NBMes}$ clearly indicate successful polymerization with the formation of polymers that are presumed to be atactic (Figure 3-3). The ${ }^{11} \mathrm{~B}$ NMR spectra provide further evidence for the incorporation of the azaborinine moieties into the polymers P4V-NBMes, P5V-NBMes, and P6V-NBMes. For all the three polymers, a significant upfield shift from ca. 36 to 29 ppm was observed along with a strong signal broadening relative to the monomers (Figure 3-3). Such an upfield shift is commonly observed in the polymerization of boranefunctionalized styrene derivatives and likely a result of shielding effects because of the neighboring groups along the polymer chain. ${ }^{49-51}$ In the ${ }^{1} \mathrm{H}$ NMR spectra, the $\mathrm{N}-\mathrm{H}$ protons were shifted to lower frequency upon polymerization, most dramatically for 6V-NBMes (8.02 to ca. 7.2 ppm) and 5V-NBMes (8.11 to ca. 7.3 ppm), and somewhat less pronounced for 4V-NBMes (7.70 to ca. 7.3 ppm). This difference is likely because of the fact that $\mathrm{N}-\mathrm{H}$ is in closer proximity to the polymer main chain and the neighboring groups in P6VNBMes and P5V-NBMes, but further removed in the case of P4V-NBMes. To further confirm the structural integrity of the azaborinine side groups and the absence of ring-
opening or rearrangements during polymerization, heteronuclear multiple-quantum correlation (HMQC) NMR spectra were acquired for the polymers and the corresponding monomers (Figures 3-S21, 25, 31 and 36 in the appendix). By comparing the HMQC data for the monomers and polymers, and by considering that B-bound carbons generally give rise to quadrupole-broadened signals for the monomers, we were able to fully assign and correlate the NMR signals to the polymer structures. Relatively sharp signals were detected for the mesityl groups in the aromatic region (indicated with " M " in Figure 3-3), and their chemical shifts changed little between monomers and polymers, or between different isomers. For the azaborinine moieties, a consistent upfield shift of the ${ }^{1} \mathrm{H}$ NMR resonances agrees well with our observations from the ${ }^{11} \mathrm{~B}$ NMR data, but these signals were extremely broad, most likely because of tacticity and the neighboring group effects. Meanwhile, wellseparated signals were detected in the ${ }^{13} \mathrm{C}$ NMR spectra, and the chemical shifts generally correlated nicely with those of the monomers, considering the slight differences because of the conversion of vinyl to alkyl substituents upon polymerization. Most notably, the carbons in 5-position, that is meta to N and para to B , appeared far upfield, except for those of 5V-NBMes/P5V-NBMes which contain the vinyl group/polymer chain in this position. In contrast, the carbons in 4-position, that is meta to B and para to N , appeared further downfield. This effect was even more pronounced for 4V-NBMes/P4V-NBMes because of the attachment of the vinyl group/polymer chain. Collectively, these data strongly support the notion that the azaborinine heterocycles remained intact during the free-radical polymerization.

Figure 3-3. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ (aromatic region), and ${ }^{11} \mathrm{~B}$ NMR spectra of monomers (bottom) and polymers (top) in $\mathrm{CDCl}_{3}\left({ }^{*}\right)$. Vinyl groups are indicated with a black square, and signals attributed to the pendent mesityl groups with "M".

Copolymerizations. Although the higher conversion of 4V-NBMes relative to the other isomers in the homopolymerization experiments may suggest a relatively higher reactivity of this monomer, chain transfer and early termination because of trace impurities or side reactions may also play a role, as suggested by the relatively high dispersities for P 4 V NBMes and P5V-NBMes. Another indication is that under otherwise identical conditions, the polymerization of the isosteric carbonaceous mesitylstyrene analogues goes to much higher conversion over a shorter period of time (Table 3-1). To better understand the differences in the polymerization rates, we investigated the free-radical copolymerization
of the azaborinine monomers with styrene as well as with the direct isosteric carbon analogues to produce the corresponding copolymers shown in Figure 3-4. Polymerizations were conducted with $1 \mathrm{~mol} \%$ AIBN in anisole at a monomer concentration of $[\mathrm{M} 1]=[\mathrm{M} 2]$ $=2.25 \mathrm{M}$ for 20 h at $70^{\circ} \mathrm{C}$. The conversion of the monomers in each copolymerization experiment revealed that $4 \mathrm{~V}-\mathrm{NBMes}$ and $6 \mathrm{~V}-\mathrm{NBMes}$ in fact polymerize preferentially, but 5V-NBMes is incorporated at a lower rate than styrene (Table 3-2). This was further verified by elemental analyses of the isolated polymers, which were reasonably consistent with the conversion determined by ${ }^{1} \mathrm{H}$ NMR. To achieve an even more direct comparison of the $\mathrm{B}-\mathrm{N}$ for $\mathrm{C}=\mathrm{C}$ substitution that also takes into consideration the steric and electronic effects of the mesityl groups, we also copolymerized the azaborinine monomers with the respective isosteric monomers, $m \mathrm{MesSt}$ and $p \mathrm{MesSt}$, respectively. The results were qualitatively similar, further confirming these reactivity trends.

P4V-NBMes-co-PS

P4V-NBMes-co-PmMesSt

P5V-NBMes-co-PS

P5V-NBMes-co-PpMesSt

P6V-NBMes-co-PS

P6V-NBMes-co-PmMesSt

Figure 3-4. B-Mesitylazaborinine-(mesityl)styrene copolymer structures.

Table 3-2. Data for the free radical copolymerization of vinyl-functionalized azaborinines with styrene (St) and mesitylstyrene (MesSt)

Copolymer	Feed ratio ${ }^{a}$	T / t $\left({ }^{\circ} \mathrm{C} / \mathrm{h}\right)$	Conv $(\mathrm{BN})^{b}$ $(\%)$	Conv $(\mathrm{St} / \mathrm{MesSt})^{c}$ $(\%)$	M_{n} $(\mathrm{kDa})^{d}$	M_{w} $(\mathrm{kDa})^{d}$	D^{d}
P4V-NBMes-co-PS	$50: 50: 1$	$70 / 20$	57	50	15.6	50.7	3.25
P5V-NBMes-co-PS	$50: 50: 1$	$70 / 20$	41	63	19.6	39.8	2.02
P6V-NBMes-co-PS	$50: 50: 1$	$70 / 20$	57	40	10.9	32.8	3.02
P4V-NBMes-co-	$50: 50: 1$	$70 / 10$	65	66	19.2	54.8	2.85
\quad PmMesSt							

The results of these experiments consistently indicate that at about 50% conversion 5 V NBMes with its vinyl group in metaposition to N and para-position to B is incorporated to a lesser extent than (mesityl)styrene, whereas 4V-NBMes and 6VNBMes are incorporated to a similar extent or even preferentially. This could be because of the differences in the tendency of an azaborinine-terminated polymer radical to add to another azaborinine monomer (azaborinine homopolymerization) and/or the tendency of a (mesityl)styreneterminated polymer radical to add to the specific azaborinine monomer (crossover to azaborinine). In-depth reactivity ratio determinations would be necessary to further evaluate the relative monomer reactivities. ${ }^{38,52}$ However, we note that the relatively lower
incorporation of the $5 \mathrm{~V}-\mathrm{NBMes}$ isomer does not correlate well with the calculated BDE trends (see Figure 3-2), which suggested that the radical derived from 6V-NBMes is the most stabilized and that of 4V-NBMes the least stabilized (Table 3-1). The difference in reactivity for $5 \mathrm{~V}-\mathrm{NBMes}$ is therefore more likely related to a radical polarity mismatch ${ }^{52}$ in that a nucleophilic benzylic radical is predicted to react more slowly with a relatively electron-rich monomer such as $5 \mathrm{~V}-\mathrm{NBMes}$.

Polymer Properties. As a precaution, the azaborinine polymers were stored under N_{2} atmosphere. However, based on ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR analyses, the polymers proved to be perfectly stable over a period of over 1 week in air either as a solid or in aerated chloroform solution. The thermal stability of the polymers was established by thermogravimetric analysis (TGA), revealing the decomposition temperatures (onset) for P4V-NBMes and P6V-NBMes at $365{ }^{\circ} \mathrm{C}$ and for P5V-NBMes at $377{ }^{\circ} \mathrm{C}$; they are very similar to those of the all-carbon analogues, $\mathrm{P} m \mathrm{MesSt}$ and $\mathrm{P} p \mathrm{MesSt}$, at 372 and $379^{\circ} \mathrm{C}$, respectively (Figure 3-5A-C). The thermal characteristics were further examined by differential scanning calorimetry (DSC). Previously, we reported that the glass transition temperature of BN-PS $\left(\mathrm{D}, T_{\mathrm{g}, \text { onset }}=93^{\circ} \mathrm{C}\right.$) was significantly higher than that of PS of similar molecular weight $\left(M_{\mathrm{n}}=2.0 \mathrm{~kg} \mathrm{~mol}^{-1}, T_{\mathrm{g}, \text { onset }}=55-60^{\circ} \mathrm{C}\right)$. We tentatively attributed this difference to the polarization of the $\mathrm{B}-\mathrm{N}$ bonds and the possibility of $\mathrm{N}-\mathrm{H}$ moieties engaged in hydrogenbonding interactions. The glass transitions for P4V-NBMes $\left(M_{\mathrm{n}, \mathrm{GPC}}=26.9 \mathrm{~kg} \mathrm{~mol}^{-1}\right), \mathrm{P} 5 \mathrm{~V}-$ $\operatorname{NBMes}\left(M_{\mathrm{n}, \mathrm{GPC}}=11.6 \mathrm{~kg} \mathrm{~mol}^{-1}\right)$, and P6V-NBMes $\left(M_{\mathrm{n}, \mathrm{GPC}}=18.2 \mathrm{~kg} \mathrm{~mol}^{-1}\right)$ were detected at $T_{\mathrm{g}, \text { onset }}=160,167$, and $138^{\circ} \mathrm{C}$, respectively (Figure 3-5D-F). The glass transitions of the respective all-carbon analogues PmMesSt $\left(M_{\mathrm{n}, \mathrm{GPC}}=29.7 \mathrm{~kg} \mathrm{~mol}^{-1}\right)$ and $\operatorname{PpMesSt}$
$\left(M_{\mathrm{n}, \mathrm{GPC}}=21.6 \mathrm{~kg} \mathrm{~mol}^{-1}\right)$ were found at 152 and $183{ }^{\circ} \mathrm{C}$. They all are significantly higher than that for PS, which is ascribed to the steric effect of the bulky mesityl groups in the side chains. When comparing the T_{g} 's of the isostructural polymers P4V-NBMes, P6VNBMes, and PmMesSt to those of the isostructural polymers P5V-NBMes and PpMesSt, it is clearly evident that the positioning of the mesityl groups in the para-position leads to an increase in the glass transition temperature. Direct comparisons between the isostructural BN and CC systems are hampered by the differences in the molecular weight and dispersity. For instance, the higher molecular weight of $\mathrm{P} p \mathrm{MesSt}$ may be responsible for the higher T_{g} in comparison to P5V-NBMes. The relatively higher T_{g} of $\mathrm{P} 4 \mathrm{~V}-\mathrm{NBMes}$ in comparison to the isosteric P6V-NBMes could be a result of the less hindered environment around the $\mathrm{N}-\mathrm{H}$ moiety which may facilitate hydrogen-bonding interactions, but the higher dispersity for P4V-NBMes makes it impossible to draw unambiguous conclusions. For the copolymers P4V-NBMes-co-PS, P5VNBMes-co-PS, and P6V-NBMes-co-PS, single glass transitions were observed at 152,150 , and $135^{\circ} \mathrm{C}$ in between those recorded for the respective homopolymers and polystyrene (Figure 3-S64 in the appendix).

Figure 3-5. Comparisons of TGA traces (A-C) and DSC traces (D-F) for azaborinine polymers with those of the respective isosteric carbon analogs. TGA data were acquired at scan rates of $10^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$ and DSC data at $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$.

Finally, we investigated the photophysical properties of the new polymers and their precursors. The monomers $4 \mathrm{~V}-\mathrm{NBMes}$, $5 \mathrm{~V}-\mathrm{NBMes}$, and $6 \mathrm{~V}-\mathrm{NBMes}$ showed the longest wavelength absorption maxima at 298, 299, and 303 nm , respectively, and a second higher energy absorption at ca. 240-250 nm. For the polymers, the longest wavelength absorptions were slightly blue-shifted to 273,288 , and 286 nm because of the smaller π system of the chromophores (vinylazaborinine vs azaborinine) after polymerization (Figure 3-6). The longest wavelength absorption maxima of the BN compounds are redshifted in relation to the CC compounds, a typical effect of $\mathrm{BN} / \mathrm{CC}$ isosterism. ${ }^{17}$ Among the isomeric azaborinine monomers and polymers, the absorption maxima are relatively similar. However, intriguingly, the 5V-NBMes monomer exhibits an absorption behavior that is distinct from the other isomers in that its lowest energy absorption peak at 299 nm has a significantly smaller extinction coefficient than its absorption peak at $\sim 260 \mathrm{~nm}$.

Time-dependent density functional theory (TD-DFT) calculations are consistent with this observation, revealing that the oscillator strength of the first excited state of $5 \mathrm{~V}-\mathrm{NBMes}$ is significantly smaller than that of the other monomers and almost 1 order of magnitude smaller than its second excited state. The unusual absorption behavior of the 5V-NBMes isomer is perhaps because of the fact that it is the only isomer in which the vinyl group is linearly conjugated with the nitrogen lone pair.

Figure 3-6. Comparison of UV-Vis spectra of B-mesityl azaborinine (A-C) and mesitylstyrene (D-E) homopolymers with those of the respective monomers in THF solution.

The TD-DFT calculations also revealed distinct differences in regard to the nature of the lowest energy absorptions of the isomeric vinyl azaborinine monomers and the respective ethyl derivatives that serve as models for the polymers (Figure 3-7). For 5V-NBMes, both the very weak lowest energy highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) and the more intense higher energy HOMO to

LUMO +1 transition are primarily because of the $\pi-\pi^{*}$ excitations localized on the vinylazaborinine moiety. However, the LUMO shows no contributions of the vinyl group, whereas the LUMO +1 is primarily centered on the vinyl group and the empty p-orbital on boron. The $\mathrm{S}_{0}-\mathrm{S}_{1}$ transition for 5Et-NBMes is localized on the azaborinine moiety. A similar picture emerges for 6V-NBMes and 6Et-NBMes, except for that the higher energy absorption for 6V-NBMes involves a charge transfer to the mesityl group (LUMO + 3). In sharp contrast, for 4V-NBMes and 4Et-NBMes, which are identical to 5V-NBMes and 5EtNBMes, other than that the positions of B and N in the ring system are switched, the lowest energy absorptions primarily result from charge transfer from the electron-rich mesityl group to the azaborinine moiety.

Figure 3-7. Illustration of the calculated electronic excitations for the isomeric vinyl azaborinine monomers (left) and the respective ethyl-substituted model compounds (right); only major contributions are shown.

3.3 Conclusions

To examine the influence of the vinyl group position on the polymerization activity and the polymer properties, we have synthesized three isomeric B-mesityl vinylazaborinines, as well as the carbon analogues with a mesityl group attached in the meta- or para-position of styrene. The monomers have all been successfully converted into high-molecular-weight polymers by AIBN-initiated standard free-radical polymerization. The polymer structures have been verified by multinuclear and multidimensional NMR experiments that unequivocally confirm the presence of the intact azaborinine heterocycles. The azaborinine polymers exhibit high thermal stability similar to the carbon analogues and, despite the presence of more polar $\mathrm{B}-\mathrm{N}$ units, show good stability to air and moisture. Their glass transition temperatures are significantly higher than for polystyrene and in a similar range as the direct all-carbon analogues derived from mesitylstyrene. The absorptions for the BN polymers are red-shifted in relation to the CC compounds, a typical effect of $\mathrm{BN} / \mathrm{CC}$ isosterism.

Computational studies demonstrate that the isomeric azaborinine monomers differ in terms of the stabilization of the propagating radical species (stability increases from $p \mathrm{MesSt}=$ $m \mathrm{MesSt} \approx 4 \mathrm{~V}-\mathrm{NBMes}<5 \mathrm{~V}-\mathrm{NBMEs}<6 \mathrm{~V}-\mathrm{NBMes})$ as well as the electron density on the vinyl carbons (electron density increases from $4 \mathrm{~V}-\mathrm{NBMes} \approx p \mathrm{MesSt} \approx m \mathrm{MesSt}<5 \mathrm{~V}$ NBMes $\approx 6 \mathrm{~V}-\mathrm{NBMes}$) and the vinyl-bearing ipso-carbons (electron density increases from 6V-NBMes $<4 \mathrm{~V}$-NBMEs $<p \mathrm{MesSt} \approx m \mathrm{MesSt}<5 \mathrm{~V}-\mathrm{NBMes})$. Copolymerization experiments with styrene and $m \mathrm{MesSt} / p \mathrm{MesSt}$ reveal the preferential incorporation of 4 V NBMes and 6V-NBMes, but less effective incorporation of 5V-NBMes.

Overall, our results demonstrate that isomeric azaborinine monomers exhibit similar reactivity as the isosteric styrene analogues, while offering tunability as a result of attachment of the vinyl groups to different carbon atoms in the heterocyclic framework. The new polymers described herein add to a growing but still underdeveloped class of aromatic polymers, in which a $\mathrm{C}-\mathrm{C}$ unit is replaced by an isoelectronic but polarized $\mathrm{B}-\mathrm{N}$ unit. The favorable stability and facile copolymerization suggest that many new functional materials with azaborinine moieties replacing styrenic groups can be accessed.

3.4 Experimental

General Method. All oxygen- and moisture-sensitive manipulations were carried out under an inert atmosphere using either standard Schlenk techniques or a glove box.

NMR data were acquired at $25{ }^{\circ} \mathrm{C} .499 .9 \mathrm{MHz}{ }^{1} \mathrm{H}$ and $160.4 \mathrm{MHz}{ }^{11} \mathrm{~B}$ NMR data were recorded on a 500 MHz Bruker AVANCE spectrometer, $500.2 \mathrm{MHz}{ }^{1} \mathrm{H}$ and 125.8 MHz ${ }^{13} \mathrm{C}$ NMR data on a 500 MHz Bruker Auto AVANCE spectrometer, and $599.7 \mathrm{MHz}{ }^{1} \mathrm{H}$, $150.8 \mathrm{MHz}{ }^{13} \mathrm{C}$ and $192.4 \mathrm{MHz}{ }^{11} \mathrm{~B}$ NMR data on a Varian INOVA 600 spectrometer. ${ }^{11} \mathrm{~B}$ NMR spectra were acquired with boron-free quartz NMR tubes either on the Varian INOVA 600 with a boron-free 5 mm dual broadband gradient probe (Nalorac, Varian Inc., Martinez, CA) or the 500 MHz Bruker Auto Avance with a 5mm PH SEX 500S1 11B$\mathrm{H} / \mathrm{F}-\mathrm{D}$ probe. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were referenced internally to solvent signals $\left(\mathrm{CDCl}_{3}\right.$: 7.26 ppm for ${ }^{1} \mathrm{H}$ NMR, 77.16 ppm for ${ }^{13} \mathrm{C}$ NMR) and all other NMR spectra externally to $\mathrm{SiMe}_{4}(0 \mathrm{ppm})$.

High-resolution mass spectrometry data were obtained at the Boston College mass spectrometry facility on a JEOL AccuTOF instrument (JEOL USA, Peabody, MA), equipped with a DART ion source (IonSense, Inc., Danvers, MA) in positive ion mode. GC-MS data were acquired on an Agilent HP6890 GC System with an HP-5MS 5\% phenyl methyl siloxane column and Agilent 5973A inert XL EI/CI MSD using helium as the carrier gas at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$. The initial oven temperature was $50^{\circ} \mathrm{C}$, after holding for 3 mins the temperature was increased with a $10^{\circ} \mathrm{C} / \mathrm{min}$ ramp to a final temperature of $220^{\circ} \mathrm{C}$, then held at $220^{\circ} \mathrm{C}$ for 15 min (splitless mode of injection, total run time of 22.0 $\mathrm{min})$. GPC-RI analyses were performed in THF ($1.0 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$) using a Viscotek GPCmax with a VE 2001 GPC solvent/sample module, a 2600 UV-PDA detector, and a TDA 305 triple detector array. A set of two columns consisting of one PLgel 5 mm mixedD and one PLgel 5 mm mixed-C column was used for separation and ten polystyrene standards ($580 \mathrm{Da}-364000 \mathrm{Da}$, Polymer Laboratories, Varian Inc.) for calibration. Differential scanning calorimetry (DSC) measurements were performed on a TA Instruments Discovery Series system at a scan rate of $20^{\circ} \mathrm{C} / \mathrm{min}$. The results reported are from the second heating cycle. Thermogravimetric analyses (TGA) were performed on a TA Instruments Discovery Series analyzer at a heating rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$. UV-visible absorption data were acquired on a Varian Cary 5000 UV-Vis/NIR spectrophotometer.

Materials. THF was distilled from Na /benzophenone, anisole and chlorinated solvents were distilled from CaH_{2}. Toluene and hexanes were purified using a solvent purification system (Innovative Technologies). Azobisisobutyronitrile (AIBN) initiator was recrystallized in methanol. Azaborinines 1, 44 3, ${ }^{44}$ and $\mathbf{6}^{45}$ were prepared according to
previously reported procedures. 3-Vinylphenylboronic acid and 4-vinylphenylboronic acid were purchased from Combi Blocks and 2-bromomesitylene from Acros Organics. All other solvents and chemicals were purchased from commercial sources and used without further purification unless noted otherwise.

Syntheses of \mathbf{N}-(tert-butyldimethylsilyl)-B-Mesityl-4-vinyl-1,2-dihydro-1,2-

 azaborinine (2). A 75 mL pressure vessel was charged with N -(tert-butyldimethylsilyl)-B-mesityl-4-(4,4,5,5-tetramethyl-1,3,2-dioxoborolanyl)-1,2-dihydro-1,2-azaborinine (1, $0.510 \mathrm{~g}, 1.20 \mathrm{mmol}$), bromo-ethylene 1.0 M THF solution ($4.81 \mathrm{~mL}, 4.81 \mathrm{mmol}$), $\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(0.044 \mathrm{~g}, 0.60 \mathrm{mmol}), \mathrm{KOH}(0.202 \mathrm{~g}, 3.61 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$, and THF $(5.0 \mathrm{~mL})$. The KOH pellets were ground into a powder and the $\mathrm{H}_{2} \mathrm{O}$ was sparged with argon for 1 hour prior to use. The reaction mixture was then heated at $70^{\circ} \mathrm{C}$ for 1 hour. The organic layer was decanted, and the reaction mixture was concentrated under reduced pressure. The desired product was obtained as a yellow oil after purification by silica gel chromatography with 99:1 pentane:ether as the eluent ($0.312 \mathrm{~g}, 77 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.45(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 2 \mathrm{H}), 6.62(\mathrm{~m}, 1 \mathrm{H}), 6.54(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H})$, $5.79(\mathrm{dd}, \mathrm{J}=17.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}),-0.00$ $(\mathrm{s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 149.67,138.96,138.94,138.63,136.23,126.72$, $115.67,108.18,27.13,23.08,20.81,19.04,-3.69$ (the carbons attached to boron were not observed). ${ }^{11} \mathrm{~B}$ NMR ($160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 40.00$. HRMS (DART) calcd. for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{BNSi}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 338.2475$, found 338.248.
Synthesis of \mathbf{N}-(tert-butyldimethylsilyl)-B-mesityl-5-iodo-1,2-dihydro-1,2-

azaborinine (4). A 100 mL round bottom flask was charged with THF (10 mL) and cooled to $-78^{\circ} \mathrm{C}$. n-butyllithium 2.5 M hexanes solution ($0.89 \mathrm{~mL}, 2.2 \mathrm{mmol}$) was added via syringe. $\quad \mathrm{N}$-(tert-butyldimethylsilyl)-B-mesityl-5-(4,4,5,5-tetramethyl-1,3,2-dioxoborolanyl)-1,2-dihydro-1,2-azaborinine ($3,750 \mathrm{mg}, 1.72 \mathrm{mmol}$) was dissolved in THF (5.0 mL) and added dropwise via syringe to the flask containing n-butyllithium. The reaction mixture was allowed to warm to room temperature, whereupon the formation of the borate was confirmed by ${ }^{11} \mathrm{~B}$ NMR ($\delta 2.83$). The reaction mixture was again cooled to $-78^{\circ} \mathrm{C} . \mathrm{I}_{2}(1.75 \mathrm{~g}, 6.88 \mathrm{mmol})$ was dissolved in methanol $(10 \mathrm{~mL})$ and added via syringe to the flask containing the borate. The reaction mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 30 minutes, then was allowed to warm to room temperature over a period of 1 hour. The reaction mixture was quenched with aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and then extracted with hexanes. The organic layer was then washed with brine. Finally, the organic layer was dried over MgSO_{4}, passed through a Buchner funnel lined with filter paper, and concentrated in vacuo. The desired product was obtained as a highly viscous yellow oil after purification by silica gel chromatography with hexanes as the eluent ($676 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ $7.84(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{dd}, \mathrm{J}=11.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 2 \mathrm{H}), 6.53(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.22$ $(\mathrm{s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 6 \mathrm{H}), 0.75(\mathrm{~s}, 9 \mathrm{H}),-0.14(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 150.01, 143.41, 138.57, 136.63, 126.83, 109.99, 26.96, 23.07, 20.80, 18.96, -3.75 . (the carbons adjacent to boron were not observed). ${ }^{11} \mathrm{~B} \mathrm{NMR}\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 38.96. HRMS (DART) calcd. for $\mathrm{C}_{19} \mathrm{H}_{30}$ BNSiI $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$438.1285, found 438.1281.

Synthesis of \quad-(tert-butyldimethylsilyl)-B-Mesityl-5-vinyl-1,2-dihydro-1,2-

 azaborinine (5). A 150 mL pressure vessel was charged with N -(tert-butyldimethylsilyl)-B-mesityl-5-iodo-1,2-dihydro-1,2-azaborinine ($4,2.00 \mathrm{~g}, 4.57 \mathrm{mmol}$), 4,4,5,5-tetramethyl-2-vinyl-1,3,2-dioxaborolane ($1.06 \mathrm{~g}, 6.86 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(0.167 \mathrm{~g}, 0.229 \mathrm{mmol})$, $\mathrm{KOH}(0.77 \mathrm{~g}, 13.7 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}(2.8 \mathrm{~mL})$, and THF (28 mL). The reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 30 minutes. The organic layer was decanted, and volatiles were removed in vacuo. The product was obtained as a pale yellow oil after purification by silica gel chromatography with $99: 1$ pentane:ether as the eluent ($1.38 \mathrm{~g}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.88(\mathrm{dd}, J=11.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 2 \mathrm{H}), 6.59(\mathrm{~m}, 2 \mathrm{H}), 5.52(\mathrm{~d}$, $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.02$ (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 139.52, 138.94, 138.59, 136.38, 135.50, 121.88, 109.99, 108.61, 27.11, 23.04, 20.81, 18.96, -3.66 (the boron-bound carbons were not observed). ${ }^{11} \mathrm{~B}$ NMR ($160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 40.32$. HRMS (DART) calcd. for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{BNSi}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 338.2475$, found 338.248.Synthesis of B-Mesityl-4-vinyl-1,2-dihydro-1,2-azaborinine (4V-NBMes). A 100 mL round bottom flask was charged with N-(tert-butyldimethylsilyl)-B-mesityl-4-vinyl-1,2-dihydro-1,2-azaborinine ($2,1.28 \mathrm{~g}, 3.79 \mathrm{mmol}$), $\mathrm{H}_{2} \mathrm{O}(0.683 \mathrm{~g}, 37.9 \mathrm{mmol})$ and THF (30 mL). The reaction mixture was allowed to stir at room temperature, and a 1.0 M solution of tetrabutylammonium fluoride in THF ($3.79 \mathrm{~mL}, 3.79 \mathrm{mmol}$) was added dropwise via syringe. More $\mathrm{H}_{2} \mathrm{O}$ was added and the crude product was extracted with diethyl ether. The organic layer was dried over magnesium sulfate, passed through a Buchner funnel lined with filter paper, then concentrated in vacuo. The product was obtained as a clear, colorless
oil after purification by silica gel chromatography with 99:1 pentane:ether as the eluent $(0.70 \mathrm{~g}, 83 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(599.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.73(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.88(\mathrm{~s}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=17,11 \mathrm{~Hz} 1 \mathrm{H}), 6.54(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J$ $=17 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150.8 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=151.2,140.4,139.7,137.4,134.3,129.1$ (br), 127.3, 115.9, 107.6, 23.2, 21.3 (the mesityl carbon adjacent to boron was not observed). ${ }^{11} \mathrm{~B} \mathrm{NMR}\left(160.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ = 36.3. HRMS (DART) calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BN}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$224.1611, found 224.1621. UVVis (THF): $\lambda_{\max }=298,249 \mathrm{~nm}$.

Synthesis of B-Mesityl-5-vinyl-1,2-dihydro-1,2-azaborinine (5V-NBMes). A 50 mL round bottom flask was charged with N -tert-butyldimethylsilyl-B-mesityl-5-vinyl-1,2-dihydro-1,2-azaborinine (5, $620 \mathrm{mg}, 1.84 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}(331 \mathrm{mg}, 18.4 \mathrm{mmol})$ and THF (12 $\mathrm{mL})$. The reaction mixture was allowed to stir at room temperature and a 1.0 M solution of tetrabutylammonium fluoride in THF ($1.84 \mathrm{~mL}, 1.84 \mathrm{mmol}$) was added dropwise via syringe. More $\mathrm{H}_{2} \mathrm{O}$ was added, and the crude product was extracted with diethyl ether. The organic layer was dried over magnesium sulfate, passed through a Buchner funnel lined with filter paper, and concentrated in vacuo. The product was obtained as a clear, colorless oil after purification by silica gel chromatography with 99:1 pentane:ether as the eluent (325 mg, 79\%). ${ }^{1} \mathrm{H}$ NMR ($599.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.38(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H})$, $7.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 2 \mathrm{H}), 6.92(\mathrm{dd}, J=17,11 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}$, $J=18 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150.8 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=141.0,140.3,137.5,134.9,133.7,131.3$ (br), 127.3, 121.4, 109.6, 23.1, 21.3. (the mesityl carbon adjacent to boron was not observed). ${ }^{11} \mathrm{~B} \mathrm{NMR}\left(160.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$=$ 36.1. HRMS (DART) calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BN}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$224.1611, found 224.1621. UVVis (THF): $\lambda_{\text {max }}=299,260 \mathrm{~nm}$.

Synthesis of B-Mesityl-6-vinyl-1,2-dihydro-1,2-azaborinine (6V-NBMes). A sealed reaction vessel was charged with B-mesityl-6-(4,4,5,5-tetramethyl-1,3,2-dioxoborolanyl) -1,2-dihydro-1,2-azaborinine ($6,1.50 \mathrm{~g}, 4.64 \mathrm{mmol}$), bromoethylene solution (1.0 M THF solution, $18.6 \mathrm{~mL}, 18.6 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(0.102 \mathrm{~g}, 0.139 \mathrm{mmol}), \mathrm{KOH}(0.782 \mathrm{~g}, 13.9$ $\mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~mL})$, and MTBE $(45 \mathrm{~mL})$. The KOH pellets were ground into a powder and the $\mathrm{H}_{2} \mathrm{O}$ was purged with argon for 1 hour prior to use. The reaction mixture was then heated at $80^{\circ} \mathrm{C}$ for 1 hour. The organic layer was decanted, and the reaction mixture was concentrated under reduced pressure. The desired product was obtained as a yellow oil after purification by silica gel chromatography with 95:5 pentane:dichloromethane as the eluent $(0.74 \mathrm{~g}, 71 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(599.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=11$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=17,11 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J$ $=6.6,1 \mathrm{H}), 5.57(\mathrm{~d}, J=18 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=144.2,141.2,140.5,138.3$ (br), 137.6, 134.0, 132.0 (br), 127.3, 113.2, 112.0, 23.3, 21.3. ${ }^{11} \mathrm{~B}$ NMR ($160.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=36.3$. HRMS (DART) calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BN}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$224.1611, found 224.1607. UV-Vis (THF): $\lambda_{\max }=303,251$ nm .

Synthesis of meta-Mesitylstyrene (mMesSt, all-carbon analogue to 4V-NBMes and 6V-NBMes). A 500 mL two-neck Schlenk flask was charged with metavinylphenylboronic acid ($2.66 \mathrm{~g}, 18.1 \mathrm{mmol}$), 2-bromomesitylene ($3.00 \mathrm{~g}, 15.1 \mathrm{mmol}$) and
$\mathrm{Na}_{2} \mathrm{CO}_{3}(6.40 \mathrm{~g}, 60.4 \mathrm{mmol})$. Toluene $(100 \mathrm{~mL})$, ethanol $(20 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(70 \mathrm{~mL})$ were then added to the reaction vessel. The reaction mixture was purged with N_{2} for 20 min . A suspension of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.52 \mathrm{~g}, 0.45 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ was then added by syringe. The reaction mixture was heated to $95^{\circ} \mathrm{C}$ for 16 hours under nitrogen flow. After cooling to room temperature, water was added to the reaction mixture, and the mixture extracted with dichloromethane. The organic layer was collected, washed with water, and the solvent removed under reduced pressure. The product was obtained as a colorless oil by column chromatography (silica gel, hexanes). Yield: $1.25 \mathrm{~g}(37 \%) .{ }^{1} \mathrm{H}$ NMR ($500.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.37(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}), 6.74(\mathrm{dd}, \mathrm{J}=18,11 \mathrm{~Hz}, 1 \mathrm{H}), 5.75$ $(\mathrm{d}, \mathrm{J}=18 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125.8 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=141.4,138.8,137.6,137.0,136.7,136.0,128.9,128.6,128.1,127.2$, 124.5, 113.8, 21.0, 20.8. GC-MS (retention time 20 min) calcd. for $\mathrm{C}_{17} \mathrm{H}_{18}(\mathrm{~m} / \mathrm{z}) 222.1$, found 222.2. UV-Vis (THF): $\lambda_{\max }=244 \mathrm{~nm}$.

Synthesis of ortho-Mesitylstyrene (oMesSt). A 250 mL three-neck Schlenk flask was charged with ortho-vinylphenylboronic acid ($0.88 \mathrm{~g}, 7.68 \mathrm{mmol}$), 2-bromomesitylene (1.00 $\mathrm{g}, 5.02 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.13 \mathrm{~g}, 0.02 \mathrm{~mol})$. Toluene (20 mL), ethanol $(20 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}$ $(70 \mathrm{~mL})$ were then added. The mixture was purged with N_{2} for 20 min . A suspension of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.17 \mathrm{~g}, 0.15 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ was then added by syringe. The mixture was heated to $95^{\circ} \mathrm{C}$ for 16 hours under nitrogen flow. After cooling to room temperature, water was added to the reaction mixture, and the mixture extracted with dichloromethane. The organic layer was collected, washed with water, and the solvent removed under reduced pressure. The residue was purified by column chromatography (silica gel, hexanes),
giving the product as a colorless oil. Yield: $0.35 \mathrm{~g}(31 \%) .{ }^{1} \mathrm{H}$ NMR ($500.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.68(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 2 \mathrm{H}), 6.33(\mathrm{dd}, \mathrm{J}=$ $18,11 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, \mathrm{~J}=18 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=139.9,137.4,136.8,136.3,136.0,134.8,129.9,128.1$, 128.0, 127.3, 125.0, 114.4, 21.2, 20.4. GC-MS (retention time 13 min) calcd. for $\mathrm{C}_{17} \mathrm{H}_{18}$ $(\mathrm{m} / \mathrm{z}) 222.1$, found 222.2.

FREE RADICAL HOMOPOLYMERIZATION EXPERIMENTS

General Procedure for the Free Radical polymerization of Azaborinine Monomers.

Into a 10 mL Schlenk tube were loaded the azaborinine monomer ($50.0 \mathrm{mg}, 224 \mu \mathrm{~mol}), 20$ $\mu \mathrm{L}$ of an 0.37 M AIBN solution in anisole, and $30 \mu \mathrm{~L}$ of anisole ([azaborinine]/[AIBN] = $50 / 1$). After 3 freeze-pump-thaw cycles, the tube was fully immersed in a $70^{\circ} \mathrm{C}$ oil bath and kept stirring for 24 h . The tube was placed in liquid nitrogen to terminate the reaction. One drop of the polymerization solution was taken for ${ }^{1} \mathrm{H}$ NMR measurement to determine the monomer conversion. The polymers were then precipitated in a 10 -fold volume of hexanes at $-20^{\circ} \mathrm{C}$, redissolved in toluene, precipitated in a 10 -fold volume of cold hexanes again, and freeze-dried in benzene. After drying in high vacuum, the azaborinine polymers were obtained as off-white powders.

General Procedure for the Free Radical Copolymerization of Mesitylstyrene Monomers. Into a 10 mL Schlenk tube were loaded the mesitylstyrene monomer (100 mg , $448 \mu \mathrm{~mol}$), $20 \mu \mathrm{~L}$ of an 0.45 M AIBN solution in anisole, and $80 \mu \mathrm{~L}$ of anisole
([mesitylstyrene]/[AIBN] = 50/1). The scale was doubled for para-mesitylstyrene (p MesSt). After 3 freeze-pump-thaw cycles, the tube was fully immersed in a $70{ }^{\circ} \mathrm{C}$ oil bath and kept stirring for 6.5 h (for $o \mathrm{MesSt}$ the mixture was heated for 21 h). The tube was placed in liquid nitrogen to terminate the reaction. One drop of the polymerization solution was taken for ${ }^{1} \mathrm{H}$ NMR measurement to determine the monomer conversion ($>95 \%$). The polymer was then precipitated in a 10 -fold volume of hexanes, redissolved in toluene, precipitated in a 10 -fold volume of cold hexanes again, and freeze-dried in benzene. After drying in high vacuum, the mesitylstyrene polymers were obtained as off-white powders.

Homopolymerization of Azaborinine Monomer 4V-NBMes.

Scale: 50 mg of Monomer 4V-NBMes, [4V-NBMes]/[AIBN] $=50 / 1$.

Monomer conversion: 63\%; from ${ }^{1} \mathrm{H}$ NMR integration of residual vinyl group signals of monomer relative to Me group of anisole.

Isolated yield for P4V-NBMes: 22.0 mg (44\%).
${ }^{11} \mathrm{~B}$ NMR (160.4 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=29.1$.
${ }^{13} \mathbf{C}$ NMR (150.8 MHz, $\mathbf{C D C l}_{3}$): ${ }^{13} \mathrm{C}$ NMR ($150.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=161.9,140.2,139.0$, 136.8, 133.4, 127.1, 111.8, 42.8, 23.3, 21.3.

GPC-RI: $M_{\mathrm{n}, \mathrm{GPC}}=26900 \mathrm{~g} \mathrm{~mol}^{-1}, M_{\mathrm{w}, \mathrm{GPC}}=130400 \mathrm{~g} \mathrm{~mol}^{-1}, ~ D=4.84 . X_{n}{ }_{G P C}=119$.

UV-Vis (THF): $\lambda_{\max }=273,238 \mathrm{~nm}$.

Homopolymerization of Azaborinine Monomer 5V-NBMes.

Scale: 50 mg of Monomer 5V-NBMes, [5V-NBMes]/[AIBN] = 50/1.

Monomer conversion: 63\%; from ${ }^{1} \mathrm{H}$ NMR integration of residual vinyl group signals of monomer relative to Me group of anisole.

Isolated yield: 21.0 mg (42\%).
${ }^{11} \mathrm{~B}$ NMR (160.4 MHz, CDCl_{3}): $\delta=28.9$.
${ }^{13} \mathbf{C}$ NMR (150.8 MHz, $\mathbf{C D C l}_{3}$): $\delta=144.0,140.0,138.1,137.3,132.0,131.3,127.3,125.7$, 41.4, 38.3, 23.2, 21.2.

GPC-RI: $M_{\mathrm{n}, \mathrm{GPC}}=11600 \mathrm{~g} \mathrm{~mol}^{-1}, M_{\mathrm{w}, \mathrm{GPC}}=46100 \mathrm{~g} \mathrm{~mol}^{-1}, ~ Đ=3.98 . X_{n} G P C=52$.

UV-Vis (THF): $\boldsymbol{\lambda}_{\max }=288,238 \mathrm{~nm}$.

Homopolymerization of Azaborinine Monomer 6V-NBMes.

Scale: 50 mg of Monomer 6V-NBMes, [6V-NBMes]/[AIBN] $=50 / 1$.

Monomer conversion: 51\%; from ${ }^{1} \mathrm{H}$ NMR integration of residual vinyl group signals of monomer relative to Me group of anisole.

Isolated yield: 16.1 mg (32\%).
${ }^{11} \mathrm{~B}$ NMR (160.4 MHz, CDCl_{3}): $\delta=29.5$.
${ }^{13} \mathbf{C}$ NMR (150.8 MHz, $\mathbf{C D C l}_{3}$): $\delta=146.7,144.1,140.0,137.6,129.5,127.4,109.8,41.3$, 23.4, 21.3.

GPC-RI: $M_{\mathrm{n}, \mathrm{GPC}}=18200 \mathrm{~g} \mathrm{~mol}^{-1}, M_{\mathrm{w}, \mathrm{GPC}}=44400 \mathrm{~g} \mathrm{~mol}^{-1}, ~ Đ=2.44, X_{\mathrm{n}, \mathrm{GPC}}=80$.

UV-Vis (THF): $\lambda_{\text {max }}=286 \mathrm{~nm}$.

Homopolymerization of meta-Mesitylstyrene (m MesSt).

Scale: 100 mg of Monomer $m \mathrm{MesSt},[m \mathrm{MesSt}] /[\mathrm{AIBN}]=50 / 1$.

Monomer conversion: $>95 \%$; from ${ }^{1} \mathrm{H}$ NMR integration of residual vinyl group signals of monomer relative to Me group of anisole.

Isolated yield: $56.1 \mathrm{mg}(56 \%)$.
${ }^{13} \mathbf{C}$ NMR (125.8 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta=146.0,145.0,144.6,140.8,139.2,136.1,135.8,128.0$, 126.7, 40.5, 21.2, 20.8.

GPC-RI: $M_{\mathrm{n}, \mathrm{GPC}}=29700 \mathrm{~g} \mathrm{~mol}^{-1}, M_{\mathrm{w}, \mathrm{GPC}}=61300 \mathrm{~g} \mathrm{~mol}^{-1}, ~ Đ=2.07 . X_{n} G P C=134$.

UV-Vis (THF): $\lambda_{\text {max }}=239 \mathrm{~nm}$.

Homopolymerization of para-Mesitylstyrene ($p \mathrm{MesSt}$).

Scale: 200 mg of Monomer $p \mathrm{MesSt},[p \mathrm{MesSt}] /[\mathrm{AIBN}]=50 / 1$.

Monomer conversion: 82%; from ${ }^{1} \mathrm{H}$ NMR integration of residual vinyl group signals of monomer relative to Me group of anisole.

Isolated yield: 103.0 mg (51\%).
${ }^{13} \mathbf{C}$ NMR (125.8 MHz, $\mathbf{C D C l}_{3}$): $\delta=144.9,143.5,142.8,139.1,138.5,136.3,136.0,129.0$, 128.1, 40.6, 21.1, 20.8.

GPC-RI: $M_{\mathrm{n}, \mathrm{GPC}}=21600 \mathrm{~g} \mathrm{~mol}^{-1}, M_{\mathrm{w}, \mathrm{GPC}}=42000 \mathrm{~g} \mathrm{~mol}^{-1}, ~ D=1.95 . X_{n}{ }_{G P C}=97$.

UV-Vis (THF): $\lambda_{\max }=239 \mathrm{~nm}$.

Homopolymerization of ortho-Mesitylstyrene (oMesSt).

Scale: 100 mg of Monomer $o \mathrm{MesSt},[o \mathrm{MesSt}] /[\mathrm{AIBN}]=50 / 1$. The reaction time was extended to 21 h .

Monomer conversion: 27\%; from ${ }^{1} \mathrm{H}$ NMR integration of residual vinyl group signals of monomer relative to Me group of anisole.

Isolated yield: ca. 5 mg .

GPC-UV: $M_{\mathrm{n}, \mathrm{GPC}}=5000 \mathrm{~g} \mathrm{~mol}^{-1}, M_{\mathrm{w}, \mathrm{GPC}}=7000 \mathrm{~g} \mathrm{~mol}^{-1}, ~ D=1.39 . X_{n} G P C=22$.

FREE RADICAL COPOLYMERIZATION EXPERIMENTS

General Procedure for the Free Radical Copolymerization of Azaborinine Monomers with Styrene. Into a 10 mL Schlenk tube were loaded the azaborinine monomer (50 mg , $224 \mu \mathrm{~mol})$, styrene monomer ($23.3 \mathrm{mg}, 224 \mu \mathrm{~mol}$), $40 \mu \mathrm{~L}$ of an 0.11 M AIBN solution in
anisole, and $60 \mu \mathrm{~L}$ of anisole ([azaborinine]/[St]/[AIBN] = 50/50/1). After 3 freeze-pumpthaw cycles, the tube was fully immersed in a $70^{\circ} \mathrm{C}$ oil bath and the mixture kept stirring for 20 h . The tube was placed in liquid nitrogen to terminate the reaction. One drop of the polymerization solution was taken for ${ }^{1} \mathrm{H}$ NMR measurement to determine the conversion of the monomers. The polymer was then precipitated in a 10 -fold volume of hexanes, redissolved in toluene, precipitated in a 10 -fold volume of cold hexanes again, and freezedried in benzene. After drying in high vacuum, the copolymers were obtained as off-white powders. They were analyzed by ${ }^{1} \mathrm{H}$ NMR, elemental analysis, GPC-RI, and DSC.

General Procedure for the Free Radical Copolymerization of Azaborinine Monomers

 with Mesitylstyrene Derivatives. Into a 10 mL Schlenk tube were loaded the azaborinine monomer ($50 \mathrm{mg}, 224 \mu \mathrm{~mol}$), MesSt monomer ($50.0 \mathrm{mg}, 224 \mu \mathrm{~mol}$), $40 \mu \mathrm{~L}$ of an 0.11 M AIBN solution in anisole, and $60 \mu \mathrm{~L}$ of anisole ([azaborinine]/[MesSt]/[AIBN] = 50/50/1). After 3 freeze-pump-thaw cycles, the tube was fully immersed in a $70^{\circ} \mathrm{C}$ oil bath and kept stirring for 10 h . The tube was placed in liquid nitrogen to terminate the reaction. One drop of the polymerization solution was taken for ${ }^{1} \mathrm{H}$ NMR measurement to determine the conversion of the monomers. The polymer was then precipitated in a 10 -fold volume of hexanes, redissolved in toluene, precipitated in a 10 -fold volume of cold hexanes again, and freeze-dried in benzene. After drying in high vacuum, the copolymers were obtained as off-white powders. They were analyzed by ${ }^{1} \mathrm{H}$ NMR, elemental analysis, and GPC-RI.Scale: 50 mg of each monomer, [azaborinine] $/[\mathrm{St}] /[\mathrm{AIBN}]=50 / 50 / 1$.

Monomer conversion: 4V-NBMes: 57%; styrene: 50% from ${ }^{1} \mathrm{H}$ NMR integration of residual vinyl group signals of monomers relative to Me group of anisole.

Isolated yield: 40.0 mg .

GPC-RI: $M_{\mathrm{n}, \mathrm{GPC}}=15600 \mathrm{~g} \mathrm{~mol}^{-1}, M_{\mathrm{w}, \mathrm{GPC}}=50700 \mathrm{~g} \mathrm{~mol}^{-1}, D=3.25$.

Elemental analysis: Calcd for $\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~B}_{1} \mathrm{~N}_{1}\right)_{\mathrm{n}}\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)_{\mathrm{m}}$ with $\mathrm{n} / \mathrm{m}=1.14 / 1$ (from monomer conversion by ${ }^{1} \mathrm{H}$ NMR integration): C 84.09; H 8.02; N 4.45. Found: C 83.39; H 7.96; N 4.64.

Copolymerization of 5V-NBMes and styrene.

Scale: 50 mg of each monomer, [azaborinine]/[St]/[AIBN] = 50/50/1.

Monomer conversion: 5V-NBMes: 41%; styrene: 63% from ${ }^{1} \mathrm{H}$ NMR integration of residual vinyl group signals of monomers relative to Me group of anisole.

Isolated yield: 43.0 mg .

GPC-RI: $M_{\mathrm{n}, \mathrm{GPC}}=19600 \mathrm{~g} \mathrm{~mol}^{-1}, M_{\mathrm{w}, \mathrm{GPC}}=39800 \mathrm{~g} \mathrm{~mol}^{-1}, ~ D=2.02$.

Elemental analysis: Calcd for $\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~B}_{1} \mathrm{~N}_{1}\right)_{\mathrm{n}}\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)_{\mathrm{m}}$ with $\mathrm{n} / \mathrm{m}=0.65 / 1$ (from monomer conversion by ${ }^{1} \mathrm{H}$ NMR integration): C 85.56 ; H 7.97; N 3.65. Found C 85.53 ; H 7.88; N 3.44 .

Copolymerization of 6V-NBMes and styrene.

Scale: 50 mg of each monomer, [azaborinine] $/[\mathrm{St}] /[\mathrm{AIBN}]=50 / 50 / 1$.

Monomer conversion: 6V-NBMes: 57%; styrene: 40% from ${ }^{1} \mathrm{H}$ NMR integration of residual vinyl group signals of monomers relative to Me group of anisole.

Isolated yield: 34.4 mg .

GPC-RI: $M_{\mathrm{n}, \mathrm{GPC}}=10900 \mathrm{~g} \mathrm{~mol}^{-1}, M_{\mathrm{w}, \mathrm{GPC}}=32800 \mathrm{~g} \mathrm{~mol}^{-1}, ~ Đ=3.02$.

Elemental analysis: Calcd for $\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~B}_{1} \mathrm{~N}_{1}\right)_{\mathrm{n}}\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)_{\mathrm{m}}$ with $\mathrm{n} / \mathrm{m}=1.42 / 1$ (from monomer conversion by ${ }^{1} \mathrm{H}$ NMR integration): C 83.59; H 8.04; N 4.72. Found C 82.00; H 7.84; N 4.85.

Copolymerization of $4 \mathrm{~V}-\mathrm{NBMes}$ and meta-mesitylstyrene ($m \mathrm{MesSt}$)

Scale: 50 mg of each monomer, [azaborinine] $/[\mathrm{MesSt}] /[\mathrm{AIBN}]=50 / 50 / 1$.

Monomer conversion: 4V-NBMes: 65%; m MesSt: 66% from ${ }^{1} \mathrm{H}$ NMR integration of residual vinyl group signals of monomers relative to Me group of anisole.

Isolated yield: $58.0 \mathrm{mg}(58 \%)$.

GPC-RI: $M_{\mathrm{n}, \mathrm{GPC}}=19200 \mathrm{~g} \mathrm{~mol}^{-1}, M_{\mathrm{w}, \mathrm{GPC}}=54800 \mathrm{~g} \mathrm{~mol}^{-1}, ~ D=2.85$.

Elemental analysis: Calcd for $\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~B}_{1} \mathrm{~N}_{1}\right)_{\mathrm{n}}\left(\mathrm{C}_{17} \mathrm{H}_{18}\right)_{\mathrm{m}}$ with $\mathrm{n} / \mathrm{m}=1 / 1$ (from monomer conversion by ${ }^{1} \mathrm{H}$ NMR integration): C 86.28; H 8.15; N 3.14. Found C 84.91; H 8.12; N 3.12 .

Copolymerization of 5V-NBMes and para-mesitylstyrene ($p \mathrm{MesSt}$).

Scale: 50 mg of each monomer, [azaborinine]/[MesSt]/[AIBN] = 50/50/1.

Monomer conversion: 5V-NBMes: 32%; pMesSt: 54% from ${ }^{1} \mathrm{H}$ NMR integration of residual vinyl group signals of monomers relative to Me group of anisole.

Isolated yield: 71.6 mg (72\%).

GPC-RI: $M_{\mathrm{n}, \mathrm{GPC}}=28900 \mathrm{~g} \mathrm{~mol}^{-1}, M_{\mathrm{w}, \mathrm{GPC}}=59300 \mathrm{~g} \mathrm{~mol}^{-1}, ~ D=2.05$.

Elemental analysis: Calcd for $\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~B}_{1} \mathrm{~N}_{1}\right)_{\mathrm{n}}\left(\mathrm{C}_{17} \mathrm{H}_{18}\right)_{\mathrm{m}}$ with $\mathrm{n} / \mathrm{m}=0.59 / 1$ (from monomer conversion by ${ }^{1} \mathrm{H}$ NMR integration): C 87.71 ; H 8.15; N 2.33. Found C 87.71 ; H 8.15; N 2.20 .

Copolymerization of 6V-NBMes and meta-mesitylstyrene ($m \mathrm{MesSt}$).

Scale: 50 mg of each monomer, [azaborinine]/[MesSt]/[AIBN] = 50/50/1.

Monomer conversion: 6V-NBMes: 26%; mMesSt: 15% from ${ }^{1} \mathrm{H}$ NMR integration of residual vinyl group signals of monomers relative to Me group of anisole after 10 hours. In another experiment the polymerization time was extended to 24 h (monomer conversion: 6V-NBMes: 41\%; mMesSt: 14% from ${ }^{1} \mathrm{H}$ NMR integration). All analytical data provided correspond to the experiment with a 10 h reaction time.

Isolated yield: 27.6 mg (28\%).

GPC-RI: $M_{\mathrm{n}, \mathrm{GPC}}=8800 \mathrm{~g} \mathrm{~mol}^{-1}, M_{\mathrm{w}, \mathrm{GPC}}=24400 \mathrm{~g} \mathrm{~mol}^{-1}, ~ Đ=2.77$.

Elemental analysis: Calcd for $\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~B}_{1} \mathrm{~N}_{1}\right)_{\mathrm{n}}\left(\mathrm{C}_{17} \mathrm{H}_{18}\right)_{\mathrm{m}}$ with $\mathrm{n} / \mathrm{m}=1.73 / 1$ (from monomer conversion by ${ }^{1} \mathrm{H}$ NMR integration): C 84.80; H 8.14; N 3.98. Found C 85.71 ; H 8.12; N
3.52. Note that the elemental analysis is more consistent with a ratio of $n / m=1.25 / 1$.

3.5 References

1.Liu, Z. Q.; Marder, T. B., B-N versus C-C: How similar are they? Angew. Chem. Int. Ed. 2008, 47 (2), 242-244.
2.Bosdet, M. J. D.; Piers, W. E., B-N as a C-C substitute in aromatic systems. Can. J. Chem. 2009, 87 (1), 8-29.
3.Campbell, P. G.; Marwitz, A. J. V.; Liu, S. Y., Recent Advances in Azaborine Chemistry. Angew. Chem. Int. Edit. 2012, 51 (25), 6074-6092.
4.Narita, A.; Wang, X. Y.; Feng, X. L.; Müllen, K., New advances in nanographene chemistry. Chem. Soc. Rev. 2015, 44 (18), 6616-6643.
5.Helten, H., $\mathrm{B}=\mathrm{N}$ Units as Part of Extended pi-Conjugated Oligomers and Polymers. Chem.-Eur. J. 2016, 22 (37), 12972-12982.
6.Bélanger-Chabot, G.; Braunschweig, H.; Roy, D. K., Recent Developments in Azaborinine Chemistry. Eur. J. Inorg. Chem. 2017, (38-39), 4353-4368.
7.Stępień, M.; Gońka, E.; Żyła, M.; Sprutta, N., Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds: Synthetic Routes, Properties, and Applications. Chem. Rev. 2017, 117 (4), 3479-3716.
8.Giustra, Z. X.; Liu, S. Y., The State of the Art in Azaborine Chemistry: New Synthetic Methods and Applications. J. Am. Chem. Soc. 2018, 140 (4), 1184-1194.
9.Baggett, A. W.; Guo, F.; Li, B.; Liu, S. Y.; Jäkle, F., Regioregular Synthesis of Azaborine Oligomers and a Polymer with a syn Conformation Stabilized by N-H center dot center dot center dot pi Interactions. Angew. Chem. Int. Ed. 2015, 54 (38), 11191-11195.
10.Lee, H.; Fischer, M.; Shoichet, B. K.; Liu, S. Y., Hydrogen Bonding of 1,2-Azaborines in the Binding Cavity of T4 Lysozyme Mutants: Structures and Thermodynamics. J. Am. Chem. Soc. 2016, 138 (37), 12021-12024.
11.Hatakeyama, T.; Hashimoto, S.; Seki, S.; Nakamura, M., Synthesis of BN-Fused Polycyclic Aromatics via Tandem Intramolecular Electrophilic Arene Borylation. J. Am. Chem. Soc. 2011, 133 (46), 18614-18617.
12.Wang, X. Y.; Wang, J. Y.; Pei, J., BN Heterosuperbenzenes: Synthesis and Properties. Chem.-Eur. J. 2015, 21 (9), 3528-3539.
13.Zhao, R. Y.; Dou, C. D.; Xie, Z. Y.; Liu, J.; Wang, L. X., Polymer Acceptor Based on BN Units with Enhanced Electron Mobility for Efficient All-Polymer Solar Cells. Angew. Chem. Int. Ed. 2016, 55 (17), 5313-5317.
14.Zhang, W. D.; Li, G. P.; Xu, L. T.; Zhuo, Y.; Wan, W. M.; Yan, N.; He, G., 9,10-Azaboraphenanthrene-containing small molecules and conjugated polymers: synthesis and their application in chemodosimeters for the ratiometric detection of fluoride ions. Chem. Sci. 2018, 9 (19), 4444-4450.
15.Zhang, J. Y.; Liu, F. D.; Sun, Z.; Li, C. L.; Zhang, Q.; Zhang, C.; Liu, Z. Q.; Liu, X. G., Synthesis, characterization and properties of aryl-fused bis-BN dihydropyrenes. Chem. Comтип. 2018, 54 (59), 8178-8181.
16.Mellerup, S.; Wang, S., Boron-Doped Molecules for Optoelectronics. Trends Chem. 2019, 1, 77-89.
17.McConnell, C. R.; Campbell, P. G.; Fristoe, C. R.; Memmel, P.; Zakharov, L. N.; Li, B.; Darrigan, C.; Chrostowska, A.; Liu, S. Y., Synthesis and Characterization of 1,2-Azaborine-Containing Phosphine Ligands: A Comparative Electronic Structure Analysis. Eur. J. Inorg. Chem. 2017, 2017 (15), 2207-2210.
18.Knack, D. H.; Marshall, J. L.; Harlow, G. P.; Dudzik, A.; Szaleniec, M.; Liu, S. Y.; Heider, J., BN/CC Isosteric Compounds as Enzyme Inhibitors: N- and B-Ethyl-1,2azaborine Inhibit Ethylbenzene Hydroxylation as Nonconvertible Substrate Analogues. Angew. Chem. Int. Edit. 2013, 52 (9), 2599-2601.
19.Vlasceanu, A.; Jessing, M.; Kilburn, J. P., BN/CC isosterism in borazaronaphthalenes towards phosphodiesterase 10A (PDE10A) inhibitors. Bioorgan. Med. Chem. 2015, 23 (15), 4453-4461.
20.Manners, I., Synthetic Metal-Containing Polymers. Wiley-VCH: 2004.
21.Priegert, A. M.; Rawe, B. W.; Serin, S. C.; Gates, D. P., Polymers and the p-block elements. Chem. Soc. Rev. 2016, 45 (4), 922-953.
22.Gon, M.; Tanaka, K.; Chujo, Y., Recent progress in the development of advanced element-block materials. Polym. J. 2018, 50 (1), 109-126.
23.Baumgartner, T.; Jäkle, F., Main group strategies towards functional hybrid materials. John Wiley \& Sons: Hoboken, NJ, 2018.
24.van de Wouw, H. L.; Klausen, R. S., BN Polystyrenes: Emerging Optical Materials \& Versatile Intermediates. J. Org. Chem. 2019, 84,1117-1125.
25.Jäkle, F., Borylated Polystyrenes as Versatile Functional Materials. In New Polymeric Materials Based on Element-Blocks Chujo, Y., Ed. Springer Nature: Singapore, 2019; pp 59-76.
26.Vidal, F.; Jäkle, F., Functional Polymeric Materials Based on Main Group Elements. Angew. Chem. Int. Ed. 2019, 58, 5846-5870.
27.Staubitz, A.; Hoffmann, J.; Gliese, P. J., Group 13-Group 15 Element Bonds Replacing Carbon-Carbon Bonds. In Main Group Polyolefin Analogs in Smart Inorganic Polymers, Hey-Hawkins, E.; Hissler, M., Eds. Wiley: Weinheim, 2019.
28.Staubitz, A., Generation of High-Molecular-Weight Polymers with Diverse Substituents: An Unusual Metal-Free Synthesis of Poly(aminoborane)s. Angew. Chem. Int. Ed. 2018, 57 (21), 5990-5992.
29.Staubitz, A.; Robertson, A. P. M.; Manners, I., Ammonia-Borane and Related Compounds as Dihydrogen Sources. Chem. Rev. 2010, 110 (7), 4079-4124.
30.Staubitz, A.; Robertson, A. P. M.; Sloan, M. E.; Manners, I., Amine- and PhosphineBorane Adducts: New Interest in Old Molecules. Chem. Rev. 2010, 110 (7), 4023-4078.
31.Resendiz-Lara, D. A.; Stubbs, N. E.; Arz, M. I.; Pridmore, N. E.; Sparkes, H. A.; Manners, I., Boron-nitrogen main chain analogues of polystyrene: poly(B-aryl) aminoboranes via catalytic dehydrocoupling. Chem. Commun. 2017, 53 (85), 11701-11704.
32.Ayhan, O.; Eckert, T.; Plamper, F. A.; Helten, H., Poly(iminoborane)s: An Elusive Class of Main-Group Polymers? Angew. Chem. Int. Ed. 2016, 55 (42), 13321-13325.
33.Su, K.; Remsen, E. E.; Thompson, H. M.; Sneddon, L. G., Syntheses and Properties of Poly(B-vinylborazine) and Poly(styrene-co-B-vinylborazine) Copolymers. Macromolecules 1991, 24, 3760-3766.
34.Wan, W. M.; Baggett, A. W.; Cheng, F.; Lin, H.; Lamm, A. N.; Liu, S. Y.; Jäkle, F., Synthesis by free radical polymerization and properties of BN-polystyrene and BNpoly(vinylbiphenyl). Chem. Commun. 2016, 52 (93), 13616-13619.
35.Thiedemann, B.; Gliese, P. J.; Hoffmann, J.; Lawrence, P. G.; Sönnichsen, F. D.; Staubitz, A., High molecular weight poly(N-methyl-B-vinylazaborine) - a semi-inorganic B-N polystyrene analogue. Chem. Coттии. 2017, 53, 7258-7261
36.van de Wouw, H. L.; Lee, J. Y.; Klausen, R. S., Gram-scale free radical polymerization of an azaborine vinyl monomer. Chem. Commun. 2017, 53 (53), 7262-7265.
37.Mendis, S. N.; Zhou, T.; Klausen, R. S., Syndioselective Polymerization of a BN Aromatic Vinyl Monomer. Macromolecules 2018, 51 (17), 6859-6864.
38.van de Wouw, H. L.; Awuyah, E. C.; Baris, J. I.; Klausen, R. S., An Organoborane Vinyl Monomer with Styrene-like Radical Reactivity: Reactivity Ratios and Role of Aromaticity. Macromolecules 2018, 51 (16), 6359-6368.
39.van de Wouw, H. L.; Lee, J. Y.; Awuyah, E. C.; Klausen, R. S., A BN Aromatic Ring Strategy for Tunable Hydroxy Content in Polystyrene. Angew. Chem. Int. Ed. 2018, 57 (6), 1673-1677.
40.Jackson, L. A.; Allen, C. W., Alkenylborazines. Phosphorus Sulfur 1989, 41 (3-4), 341346.
41.ortho-Phenyl-substituted styrene derivatives have been subjected to polymerization (see refs 42 and 43), but orthomesitylstyrene or other 2,6-disubstituted ortho-phenylstyrene derivatives have never been polymerized.
42.Zhang, Q. K.; Tian, H. J.; Li, C. F.; Zhu, Y. F.; Liang, Y. R.; Shen, Z. H.; Fan, X. H., Synthesis and phase behavior of a new 2-vinylbiphenyl-based mesogen-jacketed liquid crystalline polymer with a high glass transition temperature and low threshold molecular weight. Polym. Chem. 2014, 5 (15), 4526-4533.
43.Qu, W.; Zhu, X. Q.; Chen, J. H.; Niu, L.; Liang, D. H.; Fan, X. H.; Shen, Z. H.; Zhou, Q. F., Synthesis and Characterization of a Mesogen-Jacketed Polyelectrolyte. Macromolecules 2014, 47 (8), 2727-2735.
44.McConnell, C. R.; Haeffner, F.; Baggett, A. W.; Liu, S.-Y. 1,2-Azaborine's Distinct Electronic Structure Unlocks Two New Regioisomeric Building Blocks via Resolution Chemistry. J. Am. Chem. Soc. 2019, 141(22), 9072-9078.
45.Baggett, A. W.; Vasiliu, M.; Li, B.; Dixon, D. A.; Liu, S. Y., Late-Stage Functionalization of 1,2-Dihydro-1,2-azaborines via Regioselective Iridium-Catalyzed CH Borylation: The Development of a New N,N-Bidentate Ligand Scaffold. J. Am. Chem. Soc. 2015, 137 (16), 5536-5541.
46.Marwitz, A. J. V.; Matus, M. H.; Zakharov, L. N.; Dixon, D. A.; Liu, S. Y., A Hybrid Organic/Inorganic Benzene. Angew. Chem. Int. Ed. 2009, 48 (5), 973-977.
47.Daly, A. M.; Tanjaroon, C.; Marwitz, A. J. V.; Liu, S. Y.; Kukolich, S. G., Microwave Spectrum, Structural Parameters, and Quadrupole Coupling for 1,2-Dihydro-1,2-azaborine. J. Am. Chem. Soc. 2010, 132 (15), 5501-5506.
48.Chrostowska, A.; Xu, S. M.; Lamm, A. N.; Maziere, A.; Weber, C. D.; Dargelos, A.; Baylere, P.; Graciaa, A.; Liu, S. Y., UV-Photoelectron Spectroscopy of 1,2-and 1,3Azaborines: A Combined Experimental and Computational Electronic Structure Analysis. J. Am. Chem. Soc. 2012, 134 (24), 10279-10285.
49.Parab, K.; Doshi, A.; Cheng, F.; Jäkle, F., Synthesis and Characterization of Luminescent Polystyrene Derivatives with Sterically Protected Fluorenyl- and Carbazolylborane Moieties. Macromolecules 2011, 44, 5961-5967.
50.Parab, K.; Venkatasubbaiah, K.; Jäkle, F., Luminescent Triarylborane-Functionalized Polystyrene: Synthesis, Photophysical Characterization, and Anion-Binding Studies. J. Am. Chem. Soc. 2006, 128 (39), 12879-12885.
51.Cheng, F.; Bonder, E. M.; Jäkle, F., Electron-Deficient Triarylborane Block Copolymers: Synthesis by Controlled Free Radical Polymerization and Application in the Detection of Fluoride Ions. J. Am. Chem. Soc. 2013, 135 (46), 17286-17289.
52.Hiemenz, P. C.; Lodge, T. P., Polymer Chemistry. Second Edition ed.; CRC Press: Boca Raton, Fl, 2007.

3.6 Appendix

Figure 3-S1. DSC traces of (A) P4V-NBMes-co-PS, (B) P5V-NBMes-co-PS, and (C) P6V-NBMes-co-PS.

Table 3-S1. Comparison of copolymer glass transition temperatures to predicted values based on the relative composition using the Fox equation $1 / T_{\mathrm{g}, \mathrm{calc}}=\left(\mathrm{w}_{\mathrm{BN}} / T_{\mathrm{g}, \mathrm{BN}}\right)+\left(\mathrm{wst} / T_{\mathrm{g}, \mathrm{St}}\right)$ where w_{BN} and w_{St} are the weight fractions of vinyl azaborinine and styrene respectively as determined from the monomer conversion

	$T_{\mathrm{g}, \text { obs }}(\mathrm{K})$	$T_{\mathrm{g}, \text { calcd }}(\mathrm{K})$	w_{BN}	w_{St}	$T_{\mathrm{g}, \mathrm{BN}}(\mathrm{K})$	$T_{\mathrm{g}, \mathrm{St}}(\mathrm{K})$
P4V-NBMes-co-PS	425	413	0.71	0.29	433	371
P5V-NBMes-co-PS	423	408	0.58	0.42	440	371

P6V-NBMes-co-PS	408	399	0.72	0.28	411	371

Note: The slightly lower calculated values may be a reflection of the fact that the measured $T_{\mathrm{g}, \mathrm{BN}}$ for the azaborinine homopolymers is lower than that at infinite molecular weight.

Table 3-S2. HOMO - LUMO orbital plots for B-mesityl vinylazaborinines (cam-b3lyp/6$311 \mathrm{~g}(\mathrm{~d}, \mathrm{p})$)
LUUMO

| LUMO | 5V-NBMes | 5Et-NBMes |
| :--- | :---: | :---: | :---: |
| HOMO | 0.46 eV | |

Table 3-S3. Summary of TD-DFT data (cam-b3lyp/6-311g(d,p))

Compound	Transition ${ }^{\text {a] }}$	$E_{\text {ex }}(\mathrm{eV})$	$\lambda(\mathrm{nm})$	Oscillator strength f	Assignment (\%)
4V-NBMes	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	4.77	260.1	0.242	$\mathrm{H}-3 \rightarrow \mathrm{~L}(0.12)$ $\mathrm{H} \rightarrow \mathrm{L}(0.67)$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{4}$	5.47	226.5	0.632	$\mathrm{H}-3 \rightarrow \mathrm{~L}(0.67)$ $\mathrm{H}-1 \rightarrow \mathrm{~L}+1(0.10)$ $\mathrm{H} \rightarrow \mathrm{L}(-0.11)$
4Et-NBMes	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	5.18	239.5	0.209	$\mathrm{H}-3 \rightarrow \mathrm{~L}+3(-0.14)$ $\mathrm{H} \rightarrow \mathrm{L}(0.68)$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{3}$	5.86	211.7	0.130	$\mathrm{H}-2 \rightarrow \mathrm{~L}+2(0.34)$ $\mathrm{H}-1 \rightarrow \mathrm{~L}(-0.10)$ $\mathrm{H}-1 \rightarrow \mathrm{~L}+1(0.60)$
5V-NBMes	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	4.85	255.7	0.191	$\mathrm{H} \rightarrow \mathrm{L}(0.66)$ $\mathrm{H} \rightarrow \mathrm{L}+1(0.19)$

	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{3}$	5.40	229.5	0.645	$\begin{aligned} & \mathrm{H}-3 \rightarrow \mathrm{~L}(-0.13) \\ & \mathrm{H} \rightarrow \mathrm{~L}(-0.18) \\ & \mathrm{H} \rightarrow \mathrm{~L}+1(0.65) \end{aligned}$
5Et-NBMes	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	5.01	247.3	0.228	$\begin{aligned} & \mathrm{H}-3 \rightarrow \mathrm{~L}+3(0.12) \\ & \mathrm{H} \rightarrow \mathrm{~L}(0.69) \end{aligned}$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{4}$	5.85	211.9	0.140	$\begin{aligned} & \mathrm{H}-2 \rightarrow \mathrm{~L}+2(0.34) \\ & \mathrm{H}-1 \rightarrow \mathrm{~L}+1(0.61) \\ & \hline \end{aligned}$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{5}$	6.25	198.3	0.250	$\begin{aligned} & \mathrm{H}-3 \rightarrow \mathrm{~L}(-0.29) \\ & \mathrm{H}-2 \rightarrow \mathrm{~L}(-0.16) \\ & \mathrm{H}-2 \rightarrow \mathrm{~L}+2(-0.11) \\ & \mathrm{H} \rightarrow \mathrm{~L}+3(0.59) \\ & \hline \end{aligned}$
6V-NBMes	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	4.48	277.0	0.499	$\begin{aligned} & \hline \mathrm{H} \rightarrow \mathrm{~L}(0.69) \\ & \mathrm{H} \rightarrow \mathrm{~L}+3(0.10) \\ & \hline \end{aligned}$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{5}$	5.83	212.7	0.177	$\begin{aligned} & \mathrm{H}-3 \rightarrow \mathrm{~L}(-0.34) \\ & \mathrm{H}-2 \rightarrow \mathrm{~L}(-0.17) \\ & \mathrm{H} \rightarrow \mathrm{~L}(-0.11) \\ & \mathrm{H} \rightarrow \mathrm{~L}+3(0.56) \end{aligned}$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{6}$	5.85	211.8	0.113	$\begin{aligned} & \mathrm{H}-3 \rightarrow \mathrm{~L}(-0.11) \\ & \mathrm{H}-2 \rightarrow \mathrm{~L}(-0.11) \\ & \mathrm{H}-2 \rightarrow \mathrm{~L}+2(0.33) \\ & \mathrm{H}-1 \rightarrow \mathrm{~L}+1(0.60) \\ & \hline \hline \end{aligned}$
6Et-NBMes	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	5.03	246.4	0.327	$\begin{aligned} & \mathrm{H}-3 \rightarrow \mathrm{~L}+3(-0.12) \\ & \mathrm{H} \rightarrow \mathrm{~L}(0.68) \end{aligned}$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{4}$	5.86	211.7	0.109	$\begin{aligned} & \mathrm{H}-2 \rightarrow \mathrm{~L}+2(0.35) \\ & \mathrm{H}-1 \rightarrow \mathrm{~L}+1(-0.22) \end{aligned}$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{5}$	6.31	196.5	0.184	$\begin{aligned} & \mathrm{H}-3 \rightarrow \mathrm{~L}(0.27) \\ & \mathrm{H}-2 \rightarrow \mathrm{~L}(-0.22) \\ & \mathrm{H}-2 \rightarrow \mathrm{~L}+2(-0.10) \\ & \mathrm{H} \rightarrow \mathrm{~L}+1(-0.15) \\ & \mathrm{H} \rightarrow \mathrm{~L}+3(0.56) \\ & \hline \end{aligned}$
$m \mathrm{MesSt}$	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	5.11	242.8	0.233	$\begin{aligned} & \hline \mathrm{H}-3 \rightarrow \mathrm{~L}(-0.38) \\ & \mathrm{H} \rightarrow \mathrm{~L}(0.44) \\ & \mathrm{H} \rightarrow \mathrm{~L}+1(-0.37) \end{aligned}$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{2}$	5.19	238.9	0.296	$\begin{aligned} & \mathrm{H}-3 \rightarrow \mathrm{~L}(0.34) \\ & \mathrm{H} \rightarrow \mathrm{~L}(0.53) \\ & \mathrm{H} \rightarrow \mathrm{~L}+1(0.27) \\ & \hline \end{aligned}$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{5}$	5.93	209.2	0.197	$\begin{aligned} & \mathrm{H}-3 \rightarrow \mathrm{~L}(-0.10) \\ & \mathrm{H}-2 \rightarrow \mathrm{~L}(0.11) \\ & \mathrm{H}-2 \rightarrow \mathrm{~L}+3(-0.34) \\ & \mathrm{H}-1 \rightarrow \mathrm{~L}+2(0.57) \\ & \mathrm{H} \rightarrow \mathrm{~L}+1(0.13) \\ & \hline \end{aligned}$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{6}$	6.21	199.7	0.193	$\begin{aligned} & \mathrm{H}-3 \rightarrow \mathrm{~L}(0.16) \\ & \mathrm{H}-2 \rightarrow \mathrm{~L}(0.65) \\ & \mathrm{H}-1 \rightarrow \mathrm{~L}+2(-0.11) \\ & \mathrm{H} \rightarrow \mathrm{~L}+1(-0.13) \\ & \hline \end{aligned}$
$m \mathrm{Mes-PhEt}$	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	5.35	231.6	0.000	$\begin{aligned} & \mathrm{H}-1 \rightarrow \mathrm{~L}+2(0.48) \\ & \mathrm{H} \rightarrow \mathrm{~L}(-0.19) \end{aligned}$

					$\mathrm{H} \rightarrow \mathrm{L}+3$ (-0.45)
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{3}$	5.94	208.8	0.112	$\begin{aligned} & \mathrm{H}-1 \rightarrow \mathrm{~L}(0.15) \\ & \mathrm{H}-1 \rightarrow \mathrm{~L}+3(0.34) \\ & \mathrm{H} \rightarrow \mathrm{~L}+1(-0.16) \\ & \mathrm{H} \rightarrow \mathrm{~L}+2(0.55) \\ & \hline \end{aligned}$
$p \mathrm{MesSt}$	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	5.04	246.0	0.536	$\begin{aligned} & \mathrm{H}-3 \rightarrow \mathrm{~L}(-0.21) \\ & \mathrm{H} \rightarrow \mathrm{~L}(0.59) \\ & \mathrm{H} \rightarrow \mathrm{~L}+1(-0.27) \end{aligned}$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{2}$	5.20	238.2	0.273	$\begin{aligned} & \mathrm{H}-3 \rightarrow \mathrm{~L}(0.42) \\ & \mathrm{H} \rightarrow \mathrm{~L}(0.35) \\ & \mathrm{H} \rightarrow \mathrm{~L}+1(0.40) \end{aligned}$
$p \mathrm{Mes-PhEt}$	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	5.35	231.7	0.000	$\begin{aligned} & \mathrm{H}-1 \rightarrow \mathrm{~L}+2(0.49) \\ & \mathrm{H} \rightarrow \mathrm{~L}(0.20) \\ & \mathrm{H} \rightarrow \mathrm{~L}+3(-0.46) \end{aligned}$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{3}$	5.93	209.1	0.188	$\begin{aligned} & \mathrm{H}-2 \rightarrow \mathrm{~L}+1(-0.19) \\ & \mathrm{H}-1 \rightarrow \mathrm{~L}(-0.14) \\ & \mathrm{H}-1 \rightarrow \mathrm{~L}+3(0.33) \\ & \mathrm{H} \rightarrow \mathrm{~L}+2(0.57) \end{aligned}$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{4}$	6.07	204.1	0.124	$\begin{aligned} & \mathrm{H}-3 \rightarrow \mathrm{~L}(-0.36) \\ & \mathrm{H}-2 \rightarrow \mathrm{~L}+1(0.55) \\ & \mathrm{H}-1 \rightarrow \mathrm{~L}(-0.12) \\ & \mathrm{H}-1 \rightarrow \mathrm{~L}+3(0.15) \end{aligned}$

Spectral Data for Isolated Compounds

Parameter	Value
1 Title	CRM-2-235-1H-4
2 Comment	NTBSBMes C4 vinyl second fractions
3 Solvent	cd2cl2
4 Temperature	25.0
5 Relaxation Delay	1.0000
6 Acquisition Date	2017-12-05T19:43:55
7 Spectrometer Frequency	399.77
8 Nucleus	15t $\int \sqrt{5}$

Figure 3-S2. ${ }^{1} \mathrm{H}$ NMR spectrum of 2 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure 3-S3. ${ }^{13} \mathrm{C}$ NMR spectrum of 2 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure 3-S4. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

C5lodo-fulchar-1H
Parameter Value 1 Title C5lodo-fullchar-1H 2 Comment 3 Solvent c6d6 4 Temperature 25.0 5 Relaxation Delay 10.0000 6 Acquisition Date 7 Spectrometer Frequency 499.88 8 Nucleus $\int 1 \mathrm{H}$

Figure 3-S5. ${ }^{1} \mathrm{H}$ NMR spectrum of 4 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure 3-S6. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure 3-S7. ${ }^{11} \mathrm{~B}$ NMR spectrum of 4 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure 3-S8. ${ }^{1} \mathrm{H}$ NMR spectrum of 5 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure 3-S9. ${ }^{13} \mathrm{C}$ NMR spectrum of 5 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure 3-S10. ${ }^{11} \mathrm{~B}$ NMR spectrum of 5 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure 3-S11. ${ }^{1} \mathrm{H}$ NMR spectrum of $4 \mathrm{~V}-\mathrm{NBMes}$ monomer in CDCl_{3}.

Figure 3-S12. ${ }^{13} \mathrm{C}$ NMR spectrum of $4 \mathrm{~V}-\mathrm{NBMes}$ monomer in CDCl_{3}.

Figure 3-S13. ${ }^{11} \mathrm{~B}$ NMR spectrum of $4 \mathrm{~V}-\mathrm{NBMes}$ monomer in CDCl_{3} (B-free NMR tube).

Figure 3-S14. ${ }^{1} \mathrm{H}$ NMR spectrum of $5 \mathrm{~V}-\mathrm{NBMes}$ monomer in CDCl_{3}.

Figure 3-S15. ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{~V}-\mathrm{NBMes}$ monomer in CDCl_{3}.

Figure 3-S16. ${ }^{11} \mathrm{~B}$ NMR spectrum of $5 \mathrm{~V}-\mathrm{NBMes}$ monomer in CDCl_{3} (B-free NMR tube).

Figure 3-S17. ${ }^{1} \mathrm{H}$ NMR spectrum of $6 \mathrm{~V}-\mathrm{NBMes}$ monomer in CDCl_{3}.

Figure 3-S18. ${ }^{13} \mathrm{C}$ NMR spectrum of $6 \mathrm{~V}-\mathrm{NBMes}$ monomer in CDCl_{3}.

Figure 3-S19. ${ }^{11} \mathrm{~B}$ NMR spectrum of $6 \mathrm{~V}-\mathrm{NBMes}$ monomer in CDCl_{3} (B-free NMR tube).

8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0

Figure 3-S20. ${ }^{1} \mathrm{H}$ NMR spectrum meta-mesitylstyrene ($m \mathrm{MesSt}$) in CDCl_{3}.

Figure 3-S21. ${ }^{13} \mathrm{C}$ NMR spectrum of meta-mesitylstyrene ($m \mathrm{MesSt}$) in CDCl_{3}.

Figure 3-S22. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMQC}$ NMR spectrum of $m \mathrm{MesSt}$ in CDCl_{3}.

Figure 3-S23. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ NMR spectrum of $m \mathrm{MesSt}$ in CDCl_{3}.

Figure 3-S24. ${ }^{1} \mathrm{H}$ NMR spectrum of para-mesitylstyrene ($p \mathrm{MesSt}$) in CDCl_{3}.

Figure 3-S25. ${ }^{13} \mathrm{C}$ NMR spectrum of para-mesitylstyrene ($p \mathrm{MesSt}$) in CDCl_{3}.

f1 (ppm)

Figure 3-S26. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HMQC NMR spectrum of $p \mathrm{MesSt}$ in CDCl_{3}.

Figure 3-S27. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ NMR spectrum of $p \mathrm{MesSt}$ in CDCl_{3}.

Figure 3-S28. ${ }^{1} \mathrm{H}$ NMR spectrum of ortho-mesitylstyrene (oMesSt) in CDCl_{3}.

Figure 3-S29. ${ }^{13} \mathrm{C}$ NMR spectrum of ortho-mesitylstyrene (oMesSt) in CDCl_{3}.

Figure 3-S30. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{P} 4 \mathrm{~V}-\mathrm{NBMes}$ polymer in CDCl_{3}.

Figure 3-S31. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{P} 4 \mathrm{~V}-\mathrm{NBMes}$ polymer in CDCl_{3}.

Figure 3-S32. Comparison of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMQC}$ NMR spectra of 4 V -NBMes and P 4 V NBMes in CDCl_{3}.

Figure 3-S33. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathrm{P} 4 \mathrm{~V}-\mathrm{NBMes}$ polymer in CDCl_{3} (B-free NMR tube).

Figure 3-S34. GPC-RI trace of P4V-NBMes; eluent: THF, $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$.

Figure 3-S35. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{P} 5 \mathrm{~V}-\mathrm{NBMes}$ polymer in CDCl_{3}.

Figure 3-S36. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{P} 5 \mathrm{~V}-\mathrm{NBMes}$ polymer in CDCl_{3}.

Figure 3-S37. Comparison of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMQC}$ NMR spectra of $5 \mathrm{~V}-\mathrm{NBMes}$ and P 5 V NBMes in CDCl_{3}.

Figure 3-S38. ${ }^{11}$ B NMR spectrum of $\mathrm{P} 5 \mathrm{~V}-\mathrm{NBMes}$ polymer in CDCl 3 (B-free NMR tube).

Figure 3-S39. GPC-RI trace of P5V-NBMes; eluent: THF, $1 \mathrm{~mL} \mathrm{~min}^{-1}$.

Figure 3-S40. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{P} 6 \mathrm{~V}-\mathrm{NBMes}$ polymer in CDCl_{3}.

Figure 3-S41. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{P} 6 \mathrm{~V}-\mathrm{NBMes}$ polymer in CDCl_{3}.

Figure 3-S42. Comparison of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMQC}$ NMR spectra of $6 \mathrm{~V}-\mathrm{NBMes}$ and P 6 V NBMes in CDCl_{3}.

Figure 3-S43. ${ }^{11}$ B NMR spectrum of $\mathrm{P} 6 \mathrm{~V}-\mathrm{NBMes}$ polymer in CDCl_{3} (B-free NMR tube).

Figure 3-S44. GPC-RI trace of P6V-NBMes; eluent: THF, $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$.

Figure 3-S45. ${ }^{1} \mathrm{H}$ NMR spectrum of mMesSt polymer in CDCl_{3}.

Figure 3-S46. ${ }^{13} \mathrm{C}$ NMR spectrum of m MesSt polymer in CDCl_{3}.

Figure 3-S47. GPC-RI trace of m MesSt polymer, eluent: THF, $1 \mathrm{~mL} \mathrm{~min}^{-1}$.

Figure 3-S48. ${ }^{1} \mathrm{H}$ NMR spectrum of $p \mathrm{MesSt}$ polymer in CDCl_{3}.

Figure 3-S49. ${ }^{13} \mathrm{C}$ NMR spectrum of p MesSt polymer in CDCl_{3}.

Figure 3-S50. GPC-RI trace of p MesSt polymer; eluent: THF, $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$.

Figure 3-S51. ${ }^{1} \mathrm{H}$ NMR spectrum of o MesSt polymer in CDCl_{3}.

Figure 3-S52. GPC-UV trace of crude mixture for o MesSt polymerization; eluent: THF, 1 $\mathrm{mL} \mathrm{min}{ }^{-1}$ (peak at 136 Da corresponds to residual monomer).

Figure 3-S53. ${ }^{1} \mathrm{H}$ NMR spectrum of isolated $\mathrm{P} 4 \mathrm{~V}-\mathrm{NBMes}-\mathrm{co}-\mathrm{PS}$ in CDCl_{3}.

Figure 3-S54. GPC trace of isolated P4V-NBMes-co-PS; eluent: THF, $1 \mathrm{~mL} \mathrm{~min}^{-1}$.

Figure 3-S55. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{P} 5 \mathrm{~V}-\mathrm{NBMes}-\mathrm{co}-\mathrm{PS}$ polymer in CDCl_{3}.

Figure 3-S56. GPC trace of P5V-NBMes-co-PS; eluent: THF, $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$.

Figure 3-S57. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{P} 6 \mathrm{~V}-\mathrm{NBMes}-\mathrm{co}-\mathrm{PS}$ polymer in CDCl_{3}.

Figure 3-S58. GPC trace of P6V-NBMes-co-PS; eluent: THF, $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$.

Figure 3-S59. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{P} 4 \mathrm{~V}-\mathrm{NBMes}-\mathrm{co}-\mathrm{P} m \mathrm{MesSt}$ polymer in CDCl_{3}.

Figure 3-S60. GPC trace of P4V-NBMes-co-PmMesSt; eluent: THF, $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$.

Figure 3-S61. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{P} 5 \mathrm{~V}-\mathrm{NBMes}-\mathrm{co}-\mathrm{P} p$ MesSt polymer in CDCl_{3}.

Figure 3-S62. GPC trace of P5V-NBMes-co-PpMesSt; eluent: THF, $1 \mathrm{~mL} \mathrm{~min}^{-1}$.

Figure 3-S63. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{P} 6 \mathrm{~V}-\mathrm{NBMes}-\mathrm{co}-\mathrm{P} m \mathrm{MesSt}$ polymer in CDCl_{3}.

Figure 3-S64. GPC trace of P6V-NBMes-co-P m MesSt; eluent: THF, $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$.

Chapter 4 Ring Opening Metathesis Polymerization (ROMP) of the Dewar Isomer of a 1,2-Azaborinine

4.1 Introduction

Dewar benzene, first synthesized in 1963 by Tamelen via photoisomerization of cis-1,2dihydrophthalic anhydride followed by decarboxylation with lead tetraacetate, ${ }^{1}$ consists of two strained cyclobutene rings that are fused together. Due to the reversibility of the Dewar benzene formation, suitably substituted derivatives are promising as energy storage materials. For instance, in the hexamethyl benzene (HMB) - hexamethyl Dewar benzene (HMDB) pair, photoisomerization converts HMB to high-energy HMDB, which is sufficiently stable to release thermal energy only on demand. ${ }^{2}$ In materials science, Hawker, Stucky and coworkers applied Dewar benzene derivatives embedded into cross-linked polymeric materials for holographic 3D-information storage, taking advantage of quantumamplification effects of the photoisomerization. ${ }^{3}$ Recently, Dewar benzene has also been embedded into the main chain of polymers as a means to achieve new reconfigurable materials that undergo highly efficient main-chain structural transformations via valence isomerization. As demonstrated by Swager and coworkers, the free radical 1,4polymerization of Dewar-o-xylylene yields a poly(Dewar-o-xylylene) that is composed of Dewar benzene units stitched together by ethylene. ${ }^{4}$ Triggered by heat or a photoredox process this unique polymer can be quantitatively converted into poly(o-xylylene).

While the materials discussed above consist solely of carbon atoms in their backbone, heteroarenes with B-N units embedded in the aromatic framework provoke ever increasing
interest due to the extensive applications that are emerging in biochemistry and pharmacology, materials science, and catalysis. ${ }^{5}$ The isosteric replacement of $\mathrm{C}=\mathrm{C}$ for B N units in benzene to furnish 1,2-azaborinines has proved to be a particularly effective approach. Importantly, azaborinines exhibit significant differences in the aromatic delocalization from benzene. As a consequence, they present distinct reactivity at different ring positions that allows for selective functionalization. ${ }^{5}$ In a remarkable recent development, Bettinger and Liu discovered that 1,2-dihydro-1-tert-butyldimethylsilyl-2-mesityl-1,2-azaborinine (A) undergoes photoconversion into the corresponding Dewar valence isomer (B) upon irradiation with UV light (> 280 nm) (Scheme 4-1). The kinetically stable \mathbf{B} can be converted back to \mathbf{A} by a thermal electrocyclic ring-opening reaction that requires an activation energy of $(27.0 \pm 1.2) \mathrm{kcal} \mathrm{mol}^{-1}$. In the presence of the Wilkinson catalyst, the ring-opening occurs rapidly and exothermically at room temperature. ${ }^{6}$ Bettinger and Liu proposed that the energy that is reversibly stored in this Dewar valence isomer could be utilized in molecular solar-thermal system applications. Pursuing new synthetic pathways that take advantage of the facile formation of highly functional BN-Dewar benzene derivatives, Liu and coworkers also developed a new strategy to 1,2-substituted cyclobutane derivatives (E) via hydrogenation and subsequent ring-opening of the 4 -membered $\mathrm{B}-\mathrm{N}$ heterocycle. ${ }^{7}$

(a)

(b)

Scheme 4-1. (a) Photoisomerization of \mathbf{A} to the Dewar isomer \mathbf{B} (TBS $=\mathrm{t}$ butyldimethylsilyl, Mes = 2,4,6-trimethylphenyl). (b) Sequential isomerization/hydrogenation of \mathbf{C} to azaborabicyclohexane \mathbf{D} and subsequent ring opening to form aminoborylated cyclobutane \mathbf{E}.

Inspired by these results, we hypothesized that the presence of a strained cyclobutene ring system in BN Dewar isomers may provide an avenue to new classes of highly functionalized polyolefins via ring-opening metathesis polymerization (ROMP). The ROMP of strained cyclobutenes has been widely studied and is typically accomplished using Grubbs $2^{\text {nd }}$ (G2) and $3^{\text {rd }}(\mathrm{G} 3)$, or Hoveyda-Grubbs $2^{\text {nd }}$ (HG2) generation catalysts. For instance, Bielawski and coworkers reported the ROMP of a dibromo derivative of Dewar benzene, which upon elimination and rapid isomerization was converted into transpoly(acetylene) (Scheme 4-2). ${ }^{8}$ More recently, Xia and coworkers demonstrated the ROMP synthesis of poly(ladderene)s and poly(benzoladderene)s that could be mechanochemically transformed into polyacetylene derivatives.9, ${ }^{10}$ Different from these polymeric materials, in which rearrangements are triggered by ring-opening of cyclobutene or multiple fused cyclobutane rings, the ROMP of BN-Dewar isomers is expected to result in novel classes of polyolefins that contain both amine and borane moieties that potentially can be further
transformed into many other functional groups. Herein we report the first synthesis of poly(BN-Dewar benzene) via ROMP as a versatile new route to highly desirable functional polyolefins that contain both amine and alcohol functional groups separated by ethylene spacers. This unique class of polymers with amine and alcohol functional groups attached in regular sequence directly to the polymer backbone would be exceedingly difficult to access through any other synthetic routes.
Bielawski

Scheme 4-2. Selected examples of ROMP of strained cyclobutenes.

4.2 Results and Discussion

The Dewar isomer 1 was prepared as previously reported by photoisomerization of B-mesityl-N-(t-butyldimethylsilyl)azaborinine (A) as described in Scheme 4-1. ${ }^{6}$ We explored different generations of Grubbs and Hoveyda Grubbs catalysts for the ROMP of monomer 1 (Scheme 4-3). The monomer conversion was determined by ${ }^{1} \mathrm{H}$ NMR integration and the results are summarized in Table 4-1. Grubbs $3^{\text {rd }}$ generation catalyst (G3) is one of the most
widely used ruthenium initiators for ROMP. In comparison to $2^{\text {nd }}$ generation catalysts (G 2 , HG2), G3 exhibits very fast initiation rates, which typically enables the formation of polymers with very narrow dispersities and an excellent control over their molecular weights. ${ }^{11}$ However, G3 was found to be not very effective at converting Dewar isomer $\mathbf{1}$ to polymer 2. At 0.1 M monomer concentration, G3 gave only low monomer conversion even after very long reaction times at either room temperature or $0^{\circ} \mathrm{C}$ (Table 4-1, entry 1 , 2). This contrasts the successful controlled polymerization of other cyclobutene derivatives reported in the literature. ${ }^{8}$ A possible reason could be that the polymerization is slow due to steric effects of the bulky Mes and TBS groups or electronic effects ${ }^{12,13}$ of the electrondeficient borane group, which in combination with the relatively low stability of G3 may result in backbiting or early termination processes over the longer reaction times needed. Another possibility might be that the pyridine base liberated during the initiation step may interfere by binding to the boron centers. ${ }^{14}$ As such, we explored the ROMP of $\mathbf{1}$ with G2 and HG2, which do not contain unhindered basic pyridine ligands and are known to exhibit improved thermal stability, oxygen- and moisture-tolerance. ${ }^{15}$ Although G2 and HG2 are usually not suitable for living polymerization due to the slow initiation and small initiation/propagation rate ratio $\left(k_{i} / k_{\mathrm{p}}\right)$, they have been successfully applied to the polymerization of cyclobutenes when other catalysts gave poor results. ${ }^{14,16}$ Performing the ROMP of 1 at room temperature with either G2 or HG2 proved to be more effective, resulting in higher monomer conversion ($>90 \%$) over a shorter time period of 7-9 hours (Table 4-1, entry 3-4). As seen in entries 5 and 6, higher monomer concentration (0.3 M) promoted propagation, further shortening the reaction time to 4.5 h . HG2 consistently gave
slightly higher conversions, indicating a faster rate of polymerization. To explore the effect of raising the temperature on the ROMP of $\mathbf{1}$ polymerizations were attempted at $50{ }^{\circ} \mathrm{C}$ using G3, G2 and HG2 at 0.1 M initial monomer concentration. Under these conditions we found increased amounts of thermal ring opening of Dewar isomer 1 back to the parent 1,2-azaborinine. In addition, we carried out a polymerization with the cis-selective catalyst HGM2001 (Table 4-1, entry 7). ${ }^{1}$ H NMR data (Figure 4-S7) revealed sharper peaks at 5.70, 5.41, and 4.90 ppm , indicative of enhanced stereoselectivity of the polymerization. However, the conversion proved to be relatively low (33\%) even after an extended reaction time of 24 h .

Scheme 4-3. ROMP Synthesis of polymer 2.

Table 4-1. Ring-opening metathesis polymerization condition of Dewar isomer $\mathbf{1}$.

Entry	Catalyst	Feed ratio	$[\mathbf{1}]$ (M)	Solvent	T / t $\left({ }^{\circ} \mathrm{C} / \mathrm{h}\right)$	Conv $(\%)$	$M_{\mathrm{n}}{ }^{\mathrm{a}}$ (Da)	$M_{\mathrm{w}}{ }^{\mathrm{a}}$ (Da)	D^{a}	DP_{n} or DP_{w}
1^{b}	G 3	$50: 1$	0.1	$\mathrm{C}_{6} \mathrm{D}_{6}$	r.t. / 120	47%	4300	7500	1.74	14
2^{b}	G 3	$50: 1$	0.1	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	$0 / 48$	51%	5200	8700	1.67	17
3^{c}	G 2	$100: 1$	0.1	$\mathrm{C}_{6} \mathrm{H}_{6}$	r.t. $/ 9$	92%	8100	14400	1.76	26
								24100^{d}	1.74^{d}	77^{d}
4^{c}	HG 2	$100: 1$	0.1	$\mathrm{C}_{6} \mathrm{H}_{6}$	r.t. $/ 7$	$>99 \%$	6000	9200	1.54	19
								14600^{d}	1.44^{d}	47^{d}

5^{c}	G 2	$100: 1$	0.3	$\mathrm{C}_{6} \mathrm{H}_{6}$	r.t. $/ 4.5$	80%	9600	18000	1.88	31
								31300^{d}	1.41^{d}	100^{d}
6^{c}	HG 2	$100: 1$	0.3	$\mathrm{C}_{6} \mathrm{H}_{6}$	r.t. $/ 4.5$	93%	7600	15700	2.08	24
								28600^{d}	1.31^{d}	92^{d}
7^{c}	HGM2001	$100: 1$	0.1	$\mathrm{C}_{6} \mathrm{D}_{6}$	r.t. $/ 24$	33%	4200	6200	1.46	13

[a] Analyzed by gel permeation chromatography with refractive index (GPC-RI) detection relative to narrow polystyrene standards unless otherwise stated; $D=\mathrm{M}_{w} / \mathrm{M}_{n}$. [b] Conversion estimated for the crude product based on ${ }^{1} \mathrm{H}$ NMR integration of the t-butyl H NMR signal of the residual monomer relative to the t-butyl H signal of the polymer; GPC analysis of crude product in THF. [c] Conversion estimated for the crude product based on ${ }^{1} \mathrm{H}$ NMR integration of the olefinic signals of the residual monomer relative to anisole as a reference; GPC analysis of isolated product in THF. [d] Analyzed by gel permeation chromatography with right-angle light scattering (GPC-RALS) detection ($\mathrm{dn} / \mathrm{dc}=0.168$ mL / g).

The polymerizations were quenched with a large excess of vinyl carbonate, the volatiles removed in vacuo, and the polymers isolated by repeated precipitation from benzene into MeCN . The molecular weight distributions were analyzed by gel permeation chromatography (GPC) in tetrahydrofuran (THF) with a refractive index detector (GPCRI) relative to narrow polystyrene (PS) standards and/or using a right-angle light scattering detector (GPC-RALS). GPC-RI analysis for the polymer obtained with G2 (1 mol \%) at 0.1 M monomer concentration (entry 3) gave a monomodal molecular weight (MW) distribution with a number average molecular weight of $M_{\mathrm{n}}=8100 \mathrm{Da}$ and a dispersity $(Ð)$ of 1.76. A similar result was obtained for HG2 (entry 4), which gave $M_{\mathrm{n}}=6000 \mathrm{Da}$ and a dispersity $(Ð)$ of 1.54 . The theoretically predicted molecular weights are significantly higher (31100 at 100% conversion), suggesting that these data are likely underestimated because of the use of structurally different narrow PS standards. Indeed, molecular weights derived from RALS detection were consistently higher.

To further study the controlled nature of the ROMP of 1 with G2 and HG2 as catalysts we carried out detailed kinetic experiments at 0.3 M monomer concentration (Table 1, entries 5, 6 and Figure 4-S1). For both G2 and HG2, the monomer conversion reached $>80 \%$ in 4.5 hours at room temperature in benzene. The conversion of Dewar isomer $\mathbf{1}$ with G2 followed first-order kinetics, illustrated by a linear plot of $\ln \left(\left[\mathrm{M}_{0}\right] /[\mathrm{M}]\right)$ vs time with a calculated $k_{\mathrm{obs}, \mathrm{G} 2}=0.38 \mathrm{M}^{-1} \mathrm{~s}^{-1}$. Meanwhile, HG2 showed very fast conversion over the first 30 minutes, but then followed a similar first-order kinetics as seen for G 2 with $k_{\mathrm{obsd}, \mathrm{HG} 2}$ $=0.41 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ (Figure 4-1). This may suggest that HG2 more rapidly initiates polymerization than G 2 .

Figure 4-1. First order kinetic plot for ROMP of Dewar isomer 1 with G2/HG2. ROMP conditions: $\left[\mathrm{M}_{0}\right]=0.3 \mathrm{M}$; conversion determined by ${ }^{1} \mathrm{H}$ NMR integration.

GPC-RI analyses revealed monomodal distributions with slight low molecular weight shoulders for which average molecular weights of $M_{\mathrm{n}}=9600 \mathrm{Da}(D=1.88)$ for entry 5 and $M_{\mathrm{n}}=7600 \mathrm{Da}(\Xi=2.08)$ for entry 6 were estimated (Figure 4-2). The GPC-RALS analyses gave weight-average molecular weights of $M_{w}=31300 \mathrm{Da}$ (entry 5) and $\mathrm{M}_{\mathrm{w}}=28600 \mathrm{Da}$ (entry 6) that are close to the predicted molecular weight based on the monomer to initiator
ratio (31100 at complete conversion). The RALS analyses also indicated the presence of a very small amount of cross-linked high molecular weight polymers, which are not detected by using RI detection (Figure 4-S2). Overall, G2 shows better first-order kinetics behavior, thus we chose G2 as catalyst in our subsequent studies.

Figure 4-2. GPC-RI traces of polymers obtained with G2 (a) and HG2 (b); eluent: THF, 1 $\mathrm{mL} \min ^{-1}$.

The chemical structure of the new polymer was confirmed by ${ }^{1} \mathrm{H},{ }^{11} \mathrm{~B}$, and two-dimensional (2D) NMR spectroscopy. The disappearance of the olefinic group signals and pronounced peak broadening in the ${ }^{1} \mathrm{H}$ NMR spectra clearly indicate successful ROMP of the strained cyclobutene rings in Dewar isomer $\mathbf{1}$ with the formation of polymers that are presumed to be regiorandom (Figure 4-3a). In the ${ }^{11} \mathrm{~B}$ NMR spectra, a significant upfield shift from ca. 53 to 45 ppm and concomitant peak broadening provides further evidence for the successful polymerization (Figure 4-3b). A slight upfield shift is frequently observed upon polymerization of borane monomers as a result of shielding effects of the neighboring groups along the polymer chain. ${ }^{17,18}$ To further confirm the connectivity between the four-
membered BN-heterocycles and vinylene groups in the polymer main chain, heteronuclear single-quantum correlation (HSQC), heteronuclear multiple-quantum correlation (HMBC), and nuclear Overhauser effect spectroscopy (NOESY) NMR data were acquired. The HSQC and HMBC data show the expected cross peaks for the mesityl and tertbutyldimethylsilyl groups (Figure 4-S4, 4-S5).

Figure 4-3. (a) ${ }^{1} \mathrm{H}$ and (b) ${ }^{11} \mathrm{~B}$ NMR spectra of monomer (bottom) and polymer (top) in $\mathrm{C}_{6} \mathrm{D}_{6}$.

The strongly broadened backbone protons of the polymer in the range from 3.0-6.5 ppm are based on a NOESY NMR analysis (Figure 4-4 and Figure 4-S6). To gain insights into the relative distances between protons we used DFT methods to optimize the geometry of head-to-tail model dimers with vinyl as end groups, both cis-vinylene and trans-vinylene-
linked structures, with the nonaromatic methine protons H 1 and H 4 cis relative to one another as expected based on the geometry of the Dewar-azaborinine precursor. The calculated Gibbs free energy is $20.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ higher for the cis- than the trans-isomer, which indicates that the trans-isomer is significantly more favorable (Figure 4-S7; Tables 4-S1, 4-S2). The structure of the more favorable trans-isomer is displayed in Figure 4-4a, illustrating some of the closest intramolecular $\mathrm{H}^{\cdots} \mathrm{H}$ distances. The distances in this model dimer were then used to assign the NOE peaks in the NOESY spectrum of the polymer (Figure 4-4b). The allylic methine protons H 1 and H 4 are expected more upfield than H 2 and H3. The upfield signal at 3.4 ppm was assigned to H 1 as it shows the expected cross peak $3.4 / 5.8 \mathrm{ppm}$ due to its proximity to the boron-bound mesityl groups (H9). The orthomesityl protons (H9) are also in close proximity to H 2 resulting in another very dominant cross peak at $\delta=5.8 / 2.6 \mathrm{ppm}$. A third strong cross peak at $\delta=3.4 / 5.2 \mathrm{ppm}$ is attributed to the NOE between H 1 and H 4 which are in adjacent positions and share the same orientation. Finally, the assignment of H 3 at 6.0 ppm is based on a cross-peak with H 2 at $\delta=6.0 / 5.8$ ppm. The separation of H 2 and H 3 within a single trans-vinylene unit is large, but H 2 can come in close contact to H 3 in the next vinylene repeating unit and vice versa. We note that additional weaker broad ${ }^{1} \mathrm{H}$ NMR peaks may indicate the presence of a smaller extent of cis-vinylene linkage or possibly head-to-head arrangements of the BN four-membered heterocycles.

Figure 4-4. (a) Structure of head-to-tail trans-vinylene bridged model dimer (one isomer shown, multiple isomer possible due to chirality at C 1 and C 4). (b) Section of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum of polymer $\mathbf{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

The structural integrity of the four-membered BN-heterocycle was further verified by comparison of the FT-IR spectra of the monomer and the polymer (Figure 4-5). The IR bands for poly(1,2-azaborining) $\mathbf{2}$ were assigned based on comparisons with results from theoretical calculations (B3LYP/6-31g(d)) of Dewar isomer 1 and the trans-vinylenelinked head-to-tail model dimer (see Figure 4-4a and Table 4-2), as well as previous reported experimental data for $1 .{ }^{6,19}$ Strong BN stretching modes (ca. $1354 / 1361 \mathrm{~cm}^{-1}$) are observed in both the monomer and polymer spectra. The characteristic C-H bending
modes in the BN heterocycle of $\mathbf{1}$ (ca. 1179,1136 and $979 \mathrm{~cm}^{-1}$) as well as the $\mathrm{C}-\mathrm{B}$ stretching (ca. $1038 \mathrm{~cm}^{-1}$) and C-N stretching modes (ca. $1252 \mathrm{~cm}^{-1}$), are also seen in the poly(1,2-azaborinine) 2, with some peak broadening, further confirming the integrity of the BN -heterocycle. For the Dewar isomer 1, an additional set of strong bands is found at $1275,1228,1158,1120-1106$ and $941-883 \mathrm{~cm}^{-1}$ and assigned to $\mathrm{C}-\mathrm{H}$ bending modes in the cyclobutene ring. The disappearance of these bands in poly(1,2-azaborinine) $\mathbf{2}$ confirms the ring opening of the cyclobutene ring during polymerization. Collectively, these data strongly support the polymer structure with four-membered heterocycles embedded in the backbone (for the complete spectrum see Figure 2-S8 in the appendix).

Figure 4-5. FT-IR spectrum of Dewar isomer $\mathbf{1}$ and poly(1,2-azaborinine) 2.

Table 4-2. Comparison of vibrational frequencies and calculated absorptions for Dewar isomer $\mathbf{1}$ and poly(1,2-azaborinine) 2.

1	$\mathbf{1}_{\text {th }}$		Assign ment	$\frac{\mathbf{2}}{v_{\exp }\left[\mathrm{cm}^{-1}\right]}$	Model Dimer $_{\text {th }}$		Assign ment
$\begin{gathered} v_{\exp } \\ {\left[\mathrm{cm}^{-1}\right]} \\ \hline \end{gathered}$	$\begin{gathered} \omega_{\text {thoor }} \\ {\left[\mathrm{cm}^{-1}\right]} \end{gathered}$	Intensity			$\begin{gathered} \omega_{\text {theor }} \\ {\left[\mathrm{cm}^{-1}\right]} \end{gathered}$	Intensity	
2953.6	3092	365.3	$v(\mathrm{CH})$	2953.6-2855.7	3092	546.5	$v(\mathrm{CH})$
-	3116	295.0			3108	531.3	
2855.6	3164	129.0			3124	585.0	
1610.1	1668	65.8	$\begin{aligned} & v(\mathrm{CC} \text { in } \\ & \mathrm{Mes}) \end{aligned}$	1610.0	1668	168.8	$\begin{gathered} \mathrm{v}(\mathrm{CC} \\ \text { in } \\ \mathrm{Mes}) \end{gathered}$
1470.6	1492	129.5	$\begin{gathered} v(\mathrm{CC} \\ \text { in TBS }) \end{gathered}$	1470.6-1435.3	1492	378.6	$\begin{aligned} & \mathrm{v}(\mathrm{CC} \\ & \text { in } \\ & \mathrm{TBS}) \end{aligned}$
-							
1436.3							
1354.0	1388	983.9	$v(\mathrm{BN})$	1360.9	1388	1081.3	$v(\mathrm{BN})$
1275.2	1324	123.4	$\delta(\mathrm{CH}$ in CC ring inplane)		1268	289.4	
1251.6	1276	80.6	$\begin{aligned} & \mathrm{v}(\mathrm{CN}) \\ & \delta(\mathrm{BN} \\ & \text { ring }) \end{aligned}$	1249.6			$v(C N)$
							$\delta(\mathrm{BN}$
							ring)
		111.7	$\delta(\mathrm{CH}$ in CC ring inplane)				
1228.0	1268						
1228.0	1268						
1179.0	1212			1176.0			$\begin{gathered} \hline \delta(\mathrm{CH} \\ \text { in } \mathrm{BN} \\ \text { ring } \\ \text { in- } \\ \text { plane }) \\ \hline \end{gathered}$
		91.6	$\delta(\mathrm{CH}$ in BN ring inplane)		1212	259.1	
		69.3	$\delta(\mathrm{CH}$ in CC ring)				
1157.9	1180						
1136.1	1164	58.9	$\delta(\mathrm{CH}$ in BN ring out-ofplane)	1133.9	1164	483.5	$\delta(\mathrm{CH}$ in BN ring out-of- plane)
1120.4	1140		$\delta(\mathrm{CH}$ in CC ring)				
1120.4	1140	171.8					
1106.9	1132	71.56					
1037.5	1076	115.2	$v(C B)$	1041.4	1108	346.4	v(CB)

			$\begin{aligned} & \delta(\mathrm{BN} \\ & \text { ring }) \\ & \hline \end{aligned}$				$\begin{gathered} \delta(\mathrm{BN} \\ \text { ring }) \end{gathered}$
979.7	996	273.3	$\delta(\mathrm{CH}$ in BN ring inplane)	971.9	996	510.9	$\delta(\mathrm{CH}$ in BN ring inplane)
$\begin{aligned} & \hline 941.1 \\ & 906.3 \\ & 883.2 \end{aligned}$	$\begin{aligned} & 964 \\ & 932 \\ & 908 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 53.0 \\ & 51.4 \\ & 54.9 \\ & \hline \end{aligned}$	$\delta(\mathrm{CH}$ in CC ring)				
831.2	860	356.0	$\begin{gathered} \delta(\mathrm{CH} \text { in } \\ \text { BN } \\ \text { ring } \\ \text { out-of- } \\ \text { plane }) \end{gathered}$	833.1	852	802.6	$\delta(\mathrm{CH}$ in BN ring out-ofplane)

Finally, the thermal stability of the polymer was established by thermogravimetric analysis (TGA), revealing an onset of decomposition for 2 at $231^{\circ} \mathrm{C}$ (Figure 4-6).

Figure 4-6. TGA trace of poly(1,2-azaborinine) $\mathbf{2}$ acquired at a scan rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$.

4.3 Conclusion

In summary, we have successfully synthesized polymer $\mathbf{2}$ by ROMP of Dewar isomer $\mathbf{1}$ with Grubbs or Hoveya Grubbs $2^{\text {nd }}$ generation catalysts. The polymer features fourmembered BN-heterocycles alternating with vinylene groups in the main chain. The unique structure of 2 was verified by GPC analysis, 2-dimensional NMR, and FT-IR measurements. The presence of the $\mathrm{B}-\mathrm{N}$ four-membered rings may be exploited in the preparation of new functional polymers via chemoselective organoborane oxidation and/or hydrogenation of the double bonds in the backbone. This strategy may open up a new pathway to highly desirable functional polyolefins that contain both amine and alcohol groups separated by ethylene spacers. Such a polymer would be difficult to access through any other synthetic routes.

4.4 Experimental

General Method. All oxygen- and moisture-sensitive manipulations were carried out under an inert atmosphere using either standard Schlenk techniques or a glove box.

NMR data were acquired at $25{ }^{\circ} \mathrm{C} .499 .9 \mathrm{MHz}{ }^{1} \mathrm{H}$ and $160.4 \mathrm{MHz}{ }^{11} \mathrm{~B}$ NMR data were recorded on a 500 MHz Bruker AVANCE spectrometer, $500.2 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR data on a 500 MHz Bruker Auto AVANCE spectrometer, and $599.7 \mathrm{MHz}{ }^{1} \mathrm{H}, 150.8 \mathrm{MHz}{ }^{13} \mathrm{C}$ and 192.4 MHz ${ }^{11} \mathrm{~B}$ NMR data on a Varian INOVA 600 spectrometer. ${ }^{11} \mathrm{~B}$ NMR spectra were acquired with boron-free quartz NMR tubes either on the Varian INOVA 600 with a boronfree 5 mm dual broadband gradient probe (Nalorac, Varian Inc., Martinez, CA) or the 500 MHz Bruker Auto Avance with a 5mm PH SEX 500S1 11B-H/F-D probe. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were referenced internally to solvent signals $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$: 7.16 ppm for ${ }^{1} \mathrm{H}$ NMR, 128.06
ppm for ${ }^{13} \mathrm{C}$ NMR) and ${ }^{11} \mathrm{~B}$ NMR spectra externally to $\mathrm{SiMe}_{4}(0 \mathrm{ppm})$. The Fourier transform infrared (FTIR) spectra were collected on a Thermo Electron Corporation Nicolet 6700 FT-IR with 128 scans and spectral resolution of $8 \mathrm{~cm}^{-1}$; cells with CaF_{2} windows were used (pathway length 0.0164 mm).

GPC-RI analyses were performed in THF $\left(1.0 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}\right)$ using a Malvern Viscotek GPCmax with a VE 2001 GPC solvent/sample module, a 2600 UV-PDA detector, and a TDA 305 triple detector array. A set of two columns consisting of one PLgel 5 mm mixedD and one PLgel 5 mm mixed-C column was used for separation and ten polystyrene standards (580 Da - 364000 Da , Polymer Laboratories, Varian Inc.) for calibration. GPCRALS analyses were performed using the built-in right-angle light scattering detector. A $\mathrm{dn} / \mathrm{dc}$ value of $0.168 \mathrm{~mL} / \mathrm{g}$ for polymer $\mathbf{2}$ in THF was determined by assuming 100% mass elution from the columns.

Materials. All solvents and chemicals were purchased from commercial sources and used without further purification unless noted otherwise. $\mathrm{C}_{6} \mathrm{H}_{6}$ and $\mathrm{C}_{6} \mathrm{D}_{6}$ were distilled from Na / K alloy. $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, anisole and acetonitrile were distilled from CaH_{2}. Dewar isomer $\mathbf{1}$ was prepared according to previously reported procedures. ${ }^{6}$

General Procedure for ROMP of 1 using Grubbs or Hoveyda Grubbs Catalysts

 (Table 1, entries 1-4). In a typical polymerization, a 20 mL vial capped was charged with 1,2-dihydro-1-tert-butyldimethylsilyl-2-mesityl-1,2-azaborinine ($100 \mathrm{mg}, 0.32 \mathrm{mmol}$), 1.8 mL of anhydrous $\mathrm{C}_{6} \mathrm{H}_{6}$, and 0.1 mL of a 0.8 M of solution of anisole in benzene as internal standard. The mixture was stirred to ensure homogeneity, and a few drops of the solutionwere removed for NMR analysis to define the concentration of monomers present at $t=0$ relative to the anisole internal standard. Under stirring, the reaction was then initiated by the addition of 0.1 mL of a 0.032 M solution of Grubbs catalyst in benzene. The reaction mixture was kept stirring at room temperature for as predetermined time. The conversion of the monomer was determined by integration of the ${ }^{1} \mathrm{H}$ NMR peak at $4.18 \mathrm{ppm}(1 \mathrm{H})$ for the monomer in comparison to the anisole reference peak at $3.34 \mathrm{ppm}(3 \mathrm{H})$. The final reaction solution was quenched by addition of a large excess of vinyl carbonate $(0.1 \mathrm{~mL})$. The solutions were concentrated in vacuo. The polymer was then precipitated into 100 mL of dry MeCN and redissolved in benzene, precipitated in MeCN again, and freeze-dried in benzene. After drying in high vacuum, the polymer was obtained as an off-white powder. Yield: $64 \mathrm{mg}(64 \%)$.

Kinetic Studies (Table 1, entries 5 and 6). The reaction was set up in a manner similar to that described above. $50 \mu \mathrm{~L}$ aliquots of the polymerization solution were analyzed periodically by NMR (samples were injected into vials containing 0.05 mL vinylene carbonate and $0.4 \mathrm{~mL} \mathrm{C}_{6} \mathrm{D}_{6}$) until the conversion of the monomers exceeded 80%. The mixture was then quenched by addition of a large excess of vinyl carbonate (0.1 mL), stirred for one hour, and then concentrated to 1 mL . The polymer solution was precipitated into 100 mL of dry MeCN and the supernatant decanted from the polymer. The polymer was dried on a high-vacuum line at ambient temperature for at least 24 h to remove volatiles.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 499.9 \mathrm{MHz}\right): \delta 6.81$ (br, mesityl aromatic protons), $6.07,5.75,5.21,3.35$ (br, backbone protons), 2.59 (br, mesityl ortho-Me), 2.27 (br, mesityl para-Me), 1.01 (br,
$\mathrm{Si}-t-\mathrm{Bu}), 0.02$ (br, Si-Me). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 150.8 \mathrm{MHz}\right): \delta 138.7,137.3,27.1,23.1,21.4$, 18.8, 4.5. ${ }^{11} \mathrm{~B}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 160.4 \mathrm{MHz}\right): \delta 44 \mathrm{ppm}$.

4.5 References

1.van Tamelen, E. E.; Pappas, S. P., Bicyclo [2.2.0]hexa-2,5-diene. Journal of the American Chemical Society 1963, 85 (20), 3297-3298.
2.Schäfer, W.; Hellmann, H., Hexamethyl(Dewar Benzene) (Hexamethylbicyclo[2.2.0]hexa-2,5-diene). Angewandte Chemie International Edition in English 1967, 6 (6), 518-525.
3.Khan, A.; Stucky, G. D.; Hawker, C. J., High-Performance, Nondiffusive Crosslinked Polymers for Holographic Data Storage. Advanced Materials 2008, 20 (20), 3937-3941.
4.Zhu, R.; Swager, T. M., Polymer Valence Isomerism: Poly(Dewar-o-xylylene)s. Journal of the American Chemical Society 2018, 140 (15), 5211-5216.
5.Giustra, Z. X.; Liu, S.-Y., The State of the Art in Azaborine Chemistry: New Synthetic Methods and Applications. Journal of the American Chemical Society 2018, 140 (4), 11841194.
6.Edel, K.; Yang, X.; Ishibashi, J. S. A.; Lamm, A. N.; Maichle-Mössmer, C.; Giustra, Z. X.; Liu, S.-Y.; Bettinger, H. F., The Dewar Isomer of 1,2-Dihydro-1,2-azaborinines: Isolation, Fragmentation, and Energy Storage. Angew Chem.Int.Ed 2018, 57 (19), 52965300.
7.Giustra, Z. X.; Yang, X.; Chen, M.; Bettinger, H. F.; Liu, S.-Y., Accessing 1,2Substituted Cyclobutanes through 1,2-Azaborine Photoisomerization. Angew Chem.Int.Ed 2019, 58 (52), 18918-18922.
8.Seo, J.; Lee, S. Y.; Bielawski, C. W., Unveiling a Masked Polymer of Dewar Benzene Reveals trans-Poly(acetylene). Macromolecules 2019, 52 (8), 2923-2931.
9.Su, J. K.; Feist, J. D.; Yang, J.; Mercer, J. A. M.; Romaniuk, J. A. H.; Chen, Z.; Cegelski, L.; Burns, N. Z.; Xia, Y., Synthesis and Mechanochemical Activation of Ladderene-Norbornene Block Copolymers. Journal of the American Chemical Society 2018, 140 (39), 12388-12391.
10.Yang, J.; Horst, M.; Romaniuk, J. A. H.; Jin, Z.; Cegelski, L.; Xia, Y., Benzoladderene Mechanophores: Synthesis, Polymerization, and Mechanochemical Transformation. Journal of the American Chemical Society 2019, 141 (16), 6479-6483.
11.Walsh, D. J.; Lau, S. H.; Hyatt, M. G.; Guironnet, D., Kinetic Study of Living RingOpening Metathesis Polymerization with Third-Generation Grubbs Catalysts. Journal of the American Chemical Society 2017, 139 (39), 13644-13647.
12.Charvet, R.; Novak, B. M., New Functional Monomers for Well-Controlled ROMP Polymerizations. Macromolecules 2001, 34 (22), 7680-7685.
13.Leroux, F.; Pascual, S.; Montembault, V.; Fontaine, L., 1,4-Polybutadienes with Pendant Hydroxyl Functionalities by ROMP: Synthetic and Mechanistic Insights. Macromolecules 2015, 48 (12), 3843-3852.
14.Seo, J.; Lee, S. Y.; Bielawski, C. W., Dewar lactone as a modular platform to a new class of substituted poly(acetylene)s. Polymer Chemistry 2019, 10 (47), 6401-6412.
15.Vougioukalakis, G. C.; Grubbs, R. H., Ruthenium-Based Heterocyclic CarbeneCoordinated Olefin Metathesis Catalysts. Chemical Reviews 2010, 110 (3), 1746-1787.
16.Kim, K. O.; Shin, S.; Kim, J.; Choi, T.-L., Living Polymerization of Monomers Containing endo-Tricyclo[4.2.2.02,5]deca-3,9-diene Using Second Generation Grubbs and Hoveyda-Grubbs Catalysts: Approach to Synthesis of Well-Defined Star Polymers. Macromolecules 2014, 47 (4), 1351-1359.
17.Lin, H.; McConnell, C. R.; Jilus, B.; Liu, S.-Y.; Jäkle, F., Changing up BN-Polystyrene: Effect of Substitution Pattern on the Free-Radical Polymerization and Polymer Properties. Macromolecules 2019, 52 (12), 4500-4509.
18.Parab, K.; Venkatasubbaiah, K.; Jäkle, F., Luminescent Triarylborane-Functionalized Polystyrene: Synthesis, Photophysical Characterization, and Anion Binding Studies. J. Am. Chem. Soc. 2006, 128, 12879-12885.
19.Brough, S. A.; Lamm, A. N.; Liu, S.-Y.; Bettinger, H. F., Photoisomerization of 1,2-Dihydro-1,2-Azaborine: A Matrix Isolation Study. Angew Chem.Int.Ed 2012, 51 (43), 10880-10883.

4.6 Appendix

Figure. 4-S1. Figure 4-S1. Stacked ${ }^{1} \mathrm{H}$ NMR spectra at different time points during ROMP of Dewar isomer $1(0,0.5,1,1.5,2.5,3.5,4.5$ hours from bottom to top). "H4" represents the proton in 4-position of the monomer and the anisole reference standard is labeled with "A".

Figure. 4-S2. Overlay of GPC-RI and RALS traces for polymers obtained with G2 (a) and HG2 (b); eluent: THF, $1 \mathrm{~mL} \mathrm{~min}^{-1}$.

Figure. 4-S3. ${ }^{13} \mathrm{C}$ NMR spectrum of poly(1,2-azaborinine) in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure. 4-S4. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HSQC}$ NMR spectrum of poly(1,2-azaborinine) in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure. 4-S5. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ NMR spectrum of poly(1,2-azaborinine) in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure. 4-S6. Full NOESY NMR spectrum of poly(1,2-azaborinine) in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure. 4-S7. ${ }^{1} \mathrm{H}$ NMR spectrum of ROMP of 1 with the cis-selective catalyst HGM2001 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure. 4-S8. Optimized structures of (a) trans-dimer, (b) cis-dimer (Gaussian 16; rb3lyp/6$31 \mathrm{~g}(\mathrm{~d})$). C dark grey, B green, N blue, Si light blue-grey; only selected H atoms are shown.

Table 4-S1. Comparison of the ground state energies for head-to-tail trans- and cis-dimer, optimized at rb3lyp/6-31g(d) level of theory.

Compound	$\mathbf{S}_{\mathbf{0}}$ (Hartree)
trans-dimer	-2300.281945
cis-dimer	-2300.274024

Table 4-S2. Comparison of the distances between hydrogens (distances in \AA) in head-to-tail trans and cis-dimer obtained from DFT calculations (Gaussian 09; rb3lyp/6-31g(d))

	trans-dimer	cis-dimer
H1-H2	$\mathbf{3 . 0 9}$	$\mathbf{3 . 0 9}$
H1-H3	$2.43^{\text {a }}$	3.80
H1-H4	$\mathbf{2 . 3 6}$	$\mathbf{2 . 3 5}$
$\mathbf{H 2 - H 3}$	$\mathbf{2 . 4 3}$ (intra-unit)	$\mathbf{2 . 3 2}$ (inter-unit)
H2-H4	$2.33^{\text {a }}$	3.87
$\mathbf{H 3 - H 4}$	$\mathbf{3 . 0 9}$	$\mathbf{3 . 0 8}$
$\mathbf{H 1 - H 9}$	$\mathbf{2 . 7 0}$	$\mathbf{2 . 7 2}$
H2-H9	$\mathbf{2 . 7 4}$	$\mathbf{2 . 5 8}$
H3-H9	4.22	3.64
H4-H9	3.78	3.83

${ }^{a}$ Strong NOE peaks between $\mathrm{H} 1 / \mathrm{H} 3$ and $\mathrm{H} 2 / \mathrm{H} 4$ are not seen, but this could be due to conformational differences in solution relative to the computed structure. Considering the computational results, a trans-configuration is still more likely than a cis-configuration, although the latter cannot be fully ruled out.

Figure. 4-S9. Full FT-IR spectrum of Dewar isomer $\mathbf{1}$ and poly(1,2-azaborinine) 2.

Overall Conclusions

In this thesis, the applications of new polymeric triarylboranes in catalysis and luminescent materials have been investigated. We also explored new azaborine-substituted polymers to expand the diversity and functionality of polystyrenes via B-N for C-C substitution.

Two novel polymeric Lewis acids and their corresponding model compounds have been prepared. By introducing two ortho-methyl or a single ortho-chlorine substituent to boron moiety, we were able to tune Lewis acidity for efficient catalysis with an expanded substrate scope. We also discovered that all compounds display strong luminescence in solution and TADF due to the twisted intramolecular charge transfer state. This study presented the strong potential of structurally fine-tuned polymer-supported Lewis acids as catalysts in the hydrosilylation of $\mathrm{C}=\mathrm{X}$ bonds $(\mathrm{X}=\mathrm{O}, \mathrm{N})$ with excellent recyclability, whereas the intriguing emissive properties suggest potential utility as luminescent materials.

A variety of azaborinine-substituted polymers with $\mathrm{B}-\mathrm{N}$ units in different positions relative to the polymer backbone have been synthesized via free radical polymerization. The isomeric azaborinine monomers offer tunable reactivity as a result of the attachment of the vinyl groups to different carbon atoms in the heterocyclic framework. Computational studies offered insights into the subtle electronic effects that result in this differential reactivity. The azaborinine polymers exhibit favorable stability and high glass transition temperatures relative to PS. The absorptions for the BN polymers are red-shifted in relation to the CC compounds as a typical effect of $\mathrm{BN} / \mathrm{CC}$ isosterism. The new polymers described
herein add to a growing but still underdeveloped class of aromatic polymers, in which a C -C unit is replaced by an isoelectronic but polarized $\mathrm{B}-\mathrm{N}$ unit.

Finally, we succeeded in the synthesis of a new type of poly(Dewar-1,2-azaborinine) by ROMP with G2 and HG2 as catalysts. For both G2 and HG2, the polymerization followed first-order kinetics. The unique polymer structure, verified by GPC analysis, 2D NMR, and FT-IR, encompasses four-membered heterocycles embedded in the backbone. The presence of the B-N four-membered rings may be exploited in the preparation of new functional polymers via chemoselective organoborane oxidation and/or hydrogenation of the double bonds in the backbone.

All the work presented in this thesis has advanced our understanding of the unique properties of boron-containing polymers, and some of them have shown to be promising for future applications in catalysis and material chemistry.

[^0]: ${ }^{a}$ In DCM solution. ${ }^{b}$ Excitation data for maximum emission. ${ }^{c}$ Excited at the lowest energy absorption maxima. ${ }^{d}$ Excited with a nanoLED at 390 nm . ${ }^{e}$ Absolute quantum yield determined using an integrating sphere. ${ }^{f}$ Radiative $\left(k_{r}\right)$ and nonradiative ($k_{n r}$) decay rate constants are calculated using the equations $k_{r}=\Phi / \tau, k_{n r}=(1-\Phi) / \tau .{ }^{g}$ For triple-exponential fit: Mod2-BPf2: $\tau_{1}=6.7 \mathrm{~ns}, 64 \% ; \tau_{2}=11.2 \mathrm{~ns}, 22 \% ; \tau_{3}=1.2 \mathrm{~ns}, 14 \%\left(\chi^{2}=1.42\right)$.

[^1]: ${ }^{\text {a }}$ Lin, H.; McConnell, C. R.; Jilus, B.; Liu, S.-Y.; Jäkle, F., Macromolecules 2019, 52 (12), 4500-4509.

