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In the past decade, underwater communications have enabled a wide range of applications; there are,

however, novel applications and systems—such as coastal multimedia surveillance, oil pipe/bridge

inspection, water-quality/marine-pollution monitoring, video monitoring of geological/biological

processes from seafloor to air-sea interface, and Underwater Internet of Things (UW IoT)—that

require near-real-time multimedia acquisition, classification, and transmission.

Wireless acoustics is the typical physical-layer communication technology for underwater data

transmission for distances above a hundred meters; transmitting videos wirelessly underwater using

acoustic waves, however, is a very challenging task as the underwater acoustic channel suffers from

time-varying attenuation and fading, limited bandwidth, Doppler spreading, high propagation delay,

and high bit error rate. For these reasons, state-of-the-art acoustic communication solutions are still

mostly focusing on enabling delay-tolerant, low-bandwidth/low-data-rate scalar data transmission

or at best low-quality/low-resolution multimedia streaming in the order of few tens of kbps.

On the other hand, while conventional underwater acoustic modems with their fixed-hardware

designs hardly meet the data rate and flexibility needed to support video requirements for futuristic

multimedia and UW IoT-driven applications, novel algorithms and protocols can be implemented on

reconfigurable software-defined architectures so as to perform in-network analysis and/or to trans-

mit a high volume of data to a remote node depending on the environment and system specifications.
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For these reasons, the objectives of this research—which led to this doctoral dissertation—were

to propose solutions to overcome the limitations of existing acoustic communication techniques and

to support robust, reliable, and high-data-rate underwater multimedia transmission. In particular,

these objectives were achieved by:

• Developing a new physical-layer solution based on multiple-antenna arrays and Acoustic

Vector Sensors (AVSs) and by proposing an underwater acoustic Non-Contiguous Orthogo-

nal Frequency Division Multiplexing (NC-OFDM) technique, called Signal-Space-Frequency

Beamforming (SSFB), to boost the data rate for underwater acoustic transmission so as to

transfer high-resolution videos.

• Designing a probabilistic Medium Access Control (MAC) solution by introducing a novel un-

derwater Space Division Multiple Access (SDMA) method to share reliably the space among

the steered vehicles so as to reduce the acoustic interference in underwater sparse networks.

• Improving the reliability and the quality of multimedia delivery by designing a reliable closed-

loop hybrid Automatic Repeat Request (ARQ) coding specifically designed for the harsh un-

derwater environment, and by introducing an efficient and agile collaborative coding strategy

to allocate appropriate resources to the communication links based on their status.

• Enhancing the video quality via a cross-layer design for underwater scalable coded videos

that are channel compatible, and leveraging the multiplexing-diversity tradeoff in a Multiple

Input Multiple Output (MIMO) structure to adjust the video scalability by trading off in real

time transmission data rate and reliability according to the user Quality of Service (QoS).

• Presenting a protocol for underwater in-network imagery analysis and monitoring the ac-

cumulation of litter and plastic debris at the seafloor using partial information collected by

various vehicles around the scene, and using Scalable Video Coded (SVC) multicasting for

underwater real-time map reconstruction.

• Proposing a correlation-aware hybrid ARQ technique that leverages the redundancy in the

data arising from spatial and temporal correlations of the measured phenomenon; this novel

technique can be used in futuristic UW IoT applications with high-density deployed nodes in

shallow water.

iii



Acknowledgements

I would like to express my deepest appreciation and warmest gratitude to my Ph.D. advisor, Dr. Dario

Pompili, for his constant support, guidance, patience, and encouragement throughout my doctoral

studies. Also, I would like to extend my gratitude to Dr. Payman Arabshahi, University of Wash-

ington, as well as to Dr. Jingang Yi and Dr. Jorge Ortiz, Rutgers University, for accepting to serve

as committee members in my Ph.D. thesis proposal first, and then in the final dissertation defense.

I would like to thank all the Rutgers CPS Lab members and collaborators, Parul Pandey, Zhuo-

ran Qi, Vidyasagar Sadhu, Xueyuan Zhao, Abolfazl Hajisami, Parsa Hosseini, Tuyen Tran, and

Ayman Younis. My sincerest thanks go also to all the co-authors of my publications. I am also in

debt to the many Rutgers undergraduate and graduate students who helped me in my work, espe-

cially Mohammad Nadeem, Agam Modasiya, Karun Kanda, Archana Arjula, Wenjie Chen, Tomasz

Brzyzek, Adam Gurney, Seth Karten, and Prince Bose.

I would particularly like to thank the Rutgers Electrical and Computer Engineering (ECE) grad-

uate director, Dr. Zoran Gajic, the ECE graduate program coordinator, Christy Lafferty, and all the

other ECE staff for all the help and support throughout my journey at Rutgers.

I would like to thank Dr. Richard Lathrop from the Rutgers Department of Ecology, Evolution

& Natural Resources, Sara Malone from the Rutgers Raritan River Consortium (R3C), and Jeffrey

Zeszotarski, Rutgers aquatics coordinator, for their help and support during the many field experi-

ments aimed at collecting useful data to compile this thesis.

I am grateful for the financial support from the Rutgers Department of ECE and from the Na-

tional Science Foundation (NSF), under the awards 1054234, 1739315, and 1763964, which have

provided me with the necessary resources to carry on research and finish this dissertation.

Last, but not least, I would like to thank my family for all the love, support, understanding, and

encouragement throughout these years of study.

iv



Dedication

To my beloved wife and to my family

v



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Underwater Acoustic Communications: Key Requirements . . . . . . . . . . . . . 1

1.2. Video Transmission Using Semi-autonomous Underwater Vehicles . . . . . . . . . 5

1.3. Dissertation Contributions and Organization . . . . . . . . . . . . . . . . . . . . . 9

2. Signal-Space-Frequency Beamforming for Underwater Acoustic Video Transmission 12

2.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3. Proposed Architecture and Signaling Method . . . . . . . . . . . . . . . . . . . . 16

2.4. Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3. Probabilistic Spatially-Divided Multiple Access in Underwater Acoustic Networks . 33

3.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3. Proposed Probabilistic Solution in Sparse Networks . . . . . . . . . . . . . . . . . 38

3.4. Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vi



4. In-Network Collaboration for Reliable Underwater Acoustic Communications . . . 67

4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3. Proposed In-Network HARQ Solution . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4. Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5. Software Defined MIMO-Based Underwater Adaptive Video Transmission . . . . . 95

5.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3. Proposed Solution for Video Transmission . . . . . . . . . . . . . . . . . . . . . . 100

5.4. Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6. Scalable Video Coding Transmission for In-Network Underwater Imagery Analysis 126

6.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3. Proposed Solution for Video Sharing and Map Reconstruction . . . . . . . . . . . 130

6.4. Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7. Reliable Data Transmission in Underwater Internet of Things . . . . . . . . . . . . 146

7.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.3. Proposed Correlation Aware HARQ . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.4. Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8. Conclusion and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

vii



List of Tables

1.1. Typical Range and Bandwidth of Underwater Channels. . . . . . . . . . . . . . . . 4

3.1. Notations and Mathematical Terms: Coarse Estimation. . . . . . . . . . . . . . . . 40

3.2. Notations and Mathematical Terms: Fine Estimation. . . . . . . . . . . . . . . . . 48

3.3. Initial Angular Specifications of Vehicles. . . . . . . . . . . . . . . . . . . . . . . 59

4.1. Deployed CMRE Assets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1. Hardware Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2. SVC Encoder Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3. Different Transmission Schemes for Node R2 with 1/3 Channel Coding Rate. . . 125

5.4. Different Transmission Schemes for Node R2 with Spatial Scalability Layer 1. . . 125

ix



List of Figures

1.1. Bellhop ray tracing (right box) for a standard sound speed profile (left box) indicat-

ing how acoustic beams travel through the underwater acoustic channel when the

transmitter is at a depth of ∼ 0.9 km. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Example of underwater dominant man-made and natural acoustic noise sources such

as ships, undersea exploration and construction, and their effects on marine life [111]. 3

1.3. Power Spectral Density (PSD) of acoustic noise sources, as reported in [53] and

[119], shipping noise based on the traffic/activities, and on the Sea States (SS). . . 4

1.4. Experiments for testing vehicle coordination at Sonny Werblin Recreation Center,

Rutgers University, New Jersey. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5. An experiment conducted in (a) the Raritan Canal; (b) the Raritan River, New Jersey. 7

1.6. Videos of pollution in the Raritan River, New Jersey, when the water is murky and

the visibility is low, after a heavy rain or flood. . . . . . . . . . . . . . . . . . . . 8

2.1. Bellhop ray tracing (right) for a standard Sound-Speed Profile (SSP) (left) indicating

how acoustic beams travel through the channel [97]. Notice how the beams are

almost straight for short/medium ranges (less than 5 km). . . . . . . . . . . . . . . 16

2.2. System architecture and geometry in which the vehicle is equipped with an Acoustic

Vector Sensor (AVS) and a ring of beamforming transmitters, each one containing

a Uniform Circular Array (UCA), while the buoy is armed with AVS hydrophones. 17

2.3. Directivity Index (DI) for both Uniform Circular Array (UCA) and Uniform Linear

Array (ULA) at different frequencies. . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4. Protocol for vehicle steering and control message exchange. Interval estimation

is used at the buoy for Angle of Departure (AoD) and coarse estimation of the

uncertainty region (Fig. 2.2), while fine steering is performed via extra information,

i.e., Angle of Arrival (AoA) estimation, offered by AVS. . . . . . . . . . . . . . . 19

x



2.5. 3D spherical representation of angles in transmission from vehicle V to buoy B.

Both azimuth and elevation angles, φ and θ, are used for detection. The proposed

circular constellation on the vehicle contains two separate sets of k and l. . . . . . 22

2.6. (a) Transmitter signaling blocks for the proposed SSFB method. The designation

table shows how data bits are grouped. Each one of the N implemented antennae

in each set and in every transmission course exploits a portion of subcarriers in the

NC-OFDM; (b) Receiver block diagram in which the received frames are treated. . 25

2.7. (a) Delay profile; (b) Phase response of emulated KAM08 channel. . . . . . . . . 26

2.8. Bit Error Rate (BER) of the proposed system with different modulations in the pres-

ence of colored noise. Two sets of four transmitter antennae are considered. . . . . 27

2.9. Throughput of the proposed system (SSFB NC-OFDM) with different modulations. 27

2.10. BER in SISO- and MIMO-OFDM for different signaling methods. . . . . . . . . . 27

2.11. Average bits per symbol comparison between the proposed SSFB NC-OFDM and

SISO- and MIMO-OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.12. Comparing SSFB with conventional SM, MA-SM, and OFDM-IM in terms of num-

ber of bits transmitted in every transmitting course (bpt). Four transmitter antennae

with QPSK modulation are considered. . . . . . . . . . . . . . . . . . . . . . . . . 28

2.13. Throughput of the system with different antenna sets versus variable number of

subcarriers compared with OFDM-IM. . . . . . . . . . . . . . . . . . . . . . . . . 29

2.14. Effect of Doppler shift on the performance of proposed system compared to other

conventional techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.15. Transmission rate [bps] versus distance for SSFB with different modulations. . . . 29

2.16. Percentage of error in antenna decision as the result of vehicle drifting. . . . . . . . 30

2.17. (a) An Azimuth cut of the array response of the UCA on the vehicle; (b) Output

of the beamformer applied to the UCA; (c) Spatial spectrum of the AOA estimator

output on the buoy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.18. (a)-(b) Sample transmitted frames; (c)-(d) Received frames in the presence of noise;

(e)-(f) Received frames when AoA estimation and antenna decision are erroneous. . 31

xi



3.1. Bellhop ray tracing (right box) for a standard sound-speed profile (left box) indicat-

ing how acoustic beams travel through the underwater acoustic channel [97]. The

beams are almost straight for short/medium ranges (less than 5 km) when the trans-

mitter is at a depth of ∼ 0.9 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2. Framework depicting the interaction between different parts, called macro-states. . 40

3.3. Geometric configuration representing surface buoy-to-vehicle communications. Po-

sition uncertainty regions of vehicles j, i, and k are shown as cylinders. Angles θ(j)
U

and θ(j)
L stand for the upper and lower angles of the beam. . . . . . . . . . . . . . 41

3.4. MAC protocol decides on the next estimate of each vehicle when new samples are

acquired. Coarse estimation is updated via one of the cases, as in Statement 5. . . 47

3.5. Configuration of the system while vehicles j and i overlap. . . . . . . . . . . . . . 50

3.6. Timeline showing the interaction between the buoy and vehicles i and j in the trans-

mission range. Comparison between different incidents is shown in different trans-

mission rounds. In round (I), reliable transmission is ensured since the vehicles are

spatially separate; however, in rounds (II) and (III), the interference occurs. . . . 52

3.7. Timeline showing how MAC handles the transmission in the presence of possible

interference when the vehicles are within the buoy’s transmission range as presented

in round (IV ). If the vehicle falls out of the angular coverage, the buoy will be

notified by a timeout as presented in round (V ). . . . . . . . . . . . . . . . . . . 53

3.8. Possible situations that might happen when the data is missed, i.e., the vehicle is out

of the buoy’s antenna coverage but within the buoy’s transmission range. . . . . . . 55

3.9. (a) Delay profile; (b) Phase response of emulated KAM08 channel. . . . . . . . . 59

3.10. Trajectory of two vehicles in XZ plane for the simulated scenario. . . . . . . . . . 60

3.11. AOD and beam boundaries for two moving vehicles. . . . . . . . . . . . . . . . . 60

3.12. Probability of interference for moving vehicles, with and without optimization, for

different values of ρ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.13. Probability of miss for moving vehicles, after optimization, for different values of ρ. 61

3.14. Retransmission rate for moving vehicles, with and without optimization and for

different values of ρ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xii



3.15. Clustering scenario in T-SDMA including 5 clusters and an additional inter-clustering. 61

3.16. Comparison between probabilistic hybrid SDMA-TDMA and conventional TDMA

in terms of time slot usage ratio and efficiency. . . . . . . . . . . . . . . . . . . . . 62

3.17. T-SDMA and TDMA comparison in terms of SINR and data rate per user. . . . . . 62

3.18. Probability of interference for deterministic SDMA in comparison with the pro-

posed probabilistic SDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.19. Maximum achievable rate in downlink for probabilistic SDMA, in terms of link

distance, frequency and bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.20. Residual and its auto-correlation of UKF estimation. . . . . . . . . . . . . . . . . 63

3.21. 3D pattern of one of the buoy’s antenna arrays when steered towards a vehicle in a

sample location at maximum frequency 45 kHz. . . . . . . . . . . . . . . . . . . . 63

3.22. Elevation cut beampattern of one of the buoy’s antenna arrays when steered towards

a vehicle in a sample location at maximum frequency 45 kHz. . . . . . . . . . . . 64

3.23. Azimuth cut beampattern of one of the buoy’s antenna arrays when steered towards

a vehicle in a sample location at maximum frequency 45 kHz. . . . . . . . . . . . 64

4.1. Architecture showing transmitting nodes, Ti, in neighborhood m, when the channel

quality varies from one link to another. As an example, data from node T1 ∈ N1

fails to reach the receiver. CDMA is exploited and the nodes overhear and collabo-

rate in the HARQ procedure based on their communication links quality. . . . . . . 72

4.2. Proposed protocol for the interaction between the nodes. Without using this proto-

col (left side), node i would keep sending incremental redundancy and the packet

would drop after 4 rounds, while using our collaborative CDMA-based method

(right side), 2 rounds are sufficient for delivering the data. . . . . . . . . . . . . . 77

4.3. (I) Geographic configuration of the CMRE LOON testbed, in the Gulf of La Spezia,

Italy. M1-M4 are the modem tripods, C is the shore side container lab (control

station), TC is the thermistor chain, H is the hydrophone array, and A is an ADCP.

(II) Spectrum of a sample received signal from the LOON in two successive trans-

mission time slots while the spreading length and coding rate have changed. . . . . 79

xiii



4.4. Experiment results; (a) PSD of the transmitted and received passband signals; (b)

PSD of the baseband decoded received signal in comparison with transmitted sig-

nal; (c) SNR of the received signal per frequency; (d) Experienced channel profile;

(e) Constellation of the equalized baseband received signal. . . . . . . . . . . . . . 81

4.5. Experiment results; (a) PSD of the transmitted and received passband signals; (b)

PSD of the baseband decoded received signal in comparison with transmitted sig-

nal; (c) SNR of the received signal per frequency; (d) Experienced channel profile;

(e) Constellation of the equalized baseband received signal. . . . . . . . . . . . . . 82

4.6. SINR (simulation) when the number of transmitting nodes in the same neighbor-

hood is (a) One node; (b) Three nodes. . . . . . . . . . . . . . . . . . . . . . . . . 83

4.7. (a) Efficient rate of the neighborhood; (b) Effective rate per transmitting node when

channel impairment is detected. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.8. Long-term throughput in nats-per-channel-use (npcu) (a) For different number of

transmission rounds when no channel impairment occurs, with/without power con-

trol; (b) Comparing traditional HARQ with our collaborative method. . . . . . . . 84

4.9. (I) REP18 area of operations; (II) Trajectories of the nodes. . . . . . . . . . . . . . 84

4.10. Channel response while receiving the signal at (a) Gateway at time 20:00; (b) Gate-

way at time 21:00; (c) Carol at time 20:00. Manta node deployed from the Ship

was used as transmitter. The columns show (I) Power versus frequency and time;

(II) PSD of the received signals; (III) Phase variations versus frequency. . . . . . . 86

4.11. Single node transmission scenario; The Bit Error Rate (BER) for different spreading

lengths of the BPSK chaotic DS-CDMA signal. . . . . . . . . . . . . . . . . . . . 87

4.12. Single node transmission scenario; BER versus SNR shows the effect of coding

strength in the BPSK chaotic DS-CDMA signal. . . . . . . . . . . . . . . . . . . . 87

4.13. Single node transmission scenario; BER for a RS (15, 9) coded QPSK with different

spreading lengths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.14. BER in multiple-node transmission, scenario (a) in which all the channels have a

satisfactory quality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xiv



4.15. BER in multiple-node transmission, scenario (b) in which the signal which is trans-

mitted from Lisa does not experience a good channel . . . . . . . . . . . . . . . . 88

4.16. BER in multiple-node transmission, scenario (c) in which the signals coming from

both Lisa and Manta are impaired, but Gateway has an acceptable channel. . . . . . 88

4.17. Efficient rate when all three channels are reliable as described in scenario (a). . . . 89

4.18. Efficient rate comparison and collaboration in different scenarios (a) to (c). . . . . 89

4.19. Average number of transmissions in the proposed solution versus the conventional

HARQ. Two cases are compared; when Manta is impaired and Gateway collaborates

and when Lisa is impaired and Manta is involved in the collaboration. . . . . . . . 89

4.20. Maximum rate, for 100s, when Manta and Lisa are the transmitters. . . . . . . . . 90

4.21. Transmit power percentage, for 100s, when Manta and Lisa are two transmitters. . 90

4.22. Optimal CDMA spreading length, for 100s, when Manta and Lisa are two transmitters. 90

4.23. Maximum rate, for 100s, when Gateway and Lisa are two transmitters. . . . . . . . 91

4.24. Transmit power percentage, for 100s, when Gateway and Lisa are two transmitters. 91

4.25. Optimal CDMA spreading length, for 100s, when Gateway and Lisa transmit. . . . 91

4.26. Long-term throughput simulation for the feedback ACK/NACK under different as-

sumptions. The case in which the impaired node does not collaborate, i.e., the

conventional approach, is compared against the case in which collaboration occurs. 93

5.1. Proposed system for the MIMO-based software-defined acoustic transmission. Trans-

mission techniques that utilize diversity and spatial multiplexing are the modalities. 96

5.2. Simulated distortion (PSNR) versus SNR. . . . . . . . . . . . . . . . . . . . . . . 107

5.3. Simulated distortion (PSNR) versus link distance. . . . . . . . . . . . . . . . . . . 108

5.4. Simulated distortion (PSNR) for different video streaming rates when SNR = 5 dB. 108

5.5. (a) A frame from original video; (b) A frame of reconstructed video from base layer;

(c) A frame of reconstructed video from base and enhancement layers; (d)-(f) Show

the reconstructed frames of all the layers after experiencing a harsh error. . . . . . 110

5.6. Testbed in the pool experiments. The receivers near the bank and in the center are

named as R1 and R2, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.7. Applying SISO scheme, PSNR of the video received near the bank of the pool. . . 111

xv



5.8. Applying SISO scheme, PSNR of the video received in the center of the pool. . . . 111

5.9. Applying SISO scheme, PLT for the video with spatial scalability layer 1, which is

received in the center of the pool. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.10. PSNR of the video received near the bank of the pool with 1-by-2 SIMO . . . . . . 112

5.11. PSNR of the video received in the center of the pool with 1-by-2 SIMO . . . . . . 112

5.12. PLT for the video with spatial scalability layer 1 received in the center of the pool

with 1-by-2 SIMO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.13. PSNR of the video received near the bank of the pool with 2-by-1 Alamouti. . . . . 113

5.14. PSNR of the video received in the center of the pool with 2-by-1 Alamouti. . . . . 113

5.15. PLT for the video with spatial scalability layer 1 received in the center of the pool

with 2-by-1 Alamouti. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.16. PSNR of the video received near the bank of the pool with 2-by-2 STBC. . . . . . 114

5.17. PSNR of the video received in the center of the pool with 2-by-2 STBC. . . . . . . 114

5.18. PLT for the video with spatial scalability layer 1 received in the center of the pool

with 2-by-2 STBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.19. PSNR of the video received near the bank of the pool with 2-by-2 V-BLAST. . . . 115

5.20. PSNR of the video received in the center of the pool with 2-by-2 V-BLAST. . . . . 115

5.21. PLT for the video with spatial scalability layer 1 received in the center of the pool

with 2-by-2 V-BLAST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.22. SSIM of the video with different transmission scheme for SISO. . . . . . . . . . . 116

5.23. SSIM of the video with different transmission scheme for a 2-by-2 STBC. . . . . . 116

5.24. SSIM of the video with different transmission scheme for a 2-by-2 V-BLAST. . . . 117

5.25. MOS of the video with different transmission scheme for SISO. . . . . . . . . . . 117

5.26. MOS of the video with different transmission scheme for a 2-by-2 STBC. . . . . . 117

5.27. MOS of the video with different transmission scheme for a 2-by-2 V-BLAST. . . . 118

5.28. PSNR of the video with different error protection scheme for SISO. . . . . . . . . 118

5.29. PSNR of the video with different error protection scheme for 2-by-2 STBC. . . . . 118

5.30. PSNR of the video with different error protection scheme for 2-by-2 V-BLAST. . . 119

5.31. PLT of the video with different error protection scheme: SISO . . . . . . . . . . . 119

xvi



5.32. PLT of the video with different error protection scheme: 2-by-2 STBC. . . . . . . . 119

5.33. PLT of the video with different error protection scheme: 2-by-2 V-BLAST. . . . . 120

5.34. Channel response in the swimming pool: Phase of SISO. . . . . . . . . . . . . . . 123

5.35. Channel response in the swimming pool: Phase of 2-by-2 MIMO. . . . . . . . . . 123

5.36. Channel response in the swimming pool: Power spectrum of SISO. . . . . . . . . 124

5.37. Channel response in the swimming pool: Power spectrum of 2-by-2 MIMO. . . . . 124

6.1. System model of the proposed SVC-based video transmission among a team of

underwater vehicles, with the help of high-performance modified vehicles [1]. . . 128

6.2. Schematics of the potential overlap between the vehicles considering the uncertain-

ties in the location of vehicles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3. Map construction flowchart. Vehicles broadcast the base layer, while enhancement

layers are shared with vehicles with better acoustic channel quality. . . . . . . . . 138

6.4. (a) Software-defined testbed; (b) Water tank with TC4013 Teledyne transducers. . . 140

6.5. Channel response in the water tank shows (a) Power spectrum; (b) Phase. . . . . . 140

6.6. (a)-(c) Frames from original video; (d)-(f) Frames of video received/reconstructed

in a vehicle with a good channel; (g)-(i) Frames of video received/reconstructed at

a vehicle with an average to low channel quality. . . . . . . . . . . . . . . . . . . . 141

6.7. SVC layers for a selected frame; (a) Base layer of original video; (b)-(e) Base layer

and 1 − 4 enhancement layers of original video; (f) Base layer of received video;

(g)-(j) Base layer and enhancement layers of received video. . . . . . . . . . . . . 141

6.8. Optimal received rate at different vehicles, which are sorted based on their channel

quality for two power profiles when all vehicles are active. . . . . . . . . . . . . . 143

6.9. Optimal received rate at different vehicles which are sorted based on their channel

quality when the vehicle with the worst channel quality is shut down. . . . . . . . . 143

6.10. Optimal received rate at different vehicles which are sorted based on their channel

quality for two defined power profiles when two vehicles are shut down. . . . . . . 143

6.11. Optimal received rate which are sorted based on their channel quality for two power

profiles when the number of shut down vehicles changes. . . . . . . . . . . . . . . 144

6.12. Feature matching for different vehicles. . . . . . . . . . . . . . . . . . . . . . . . 144

xvii



6.13. (a) Tracked points; (b) Reconstructed map. . . . . . . . . . . . . . . . . . . . . . . 144

7.1. A novel sensing architecture for real-time, persistent water monitoring using analog

sensors as substrate above which lies a Wireless Sensor Network (WSN) consisting

of digital surface buoys communicating among themselves and occasionally to a

fusion center (e.g., drone) using correlation-aware HARQ technique. . . . . . . . . 147

7.2. State transition diagram for a buoy in a correlated set. In the active mode (I) −

(IV ), HARQ is initiated with the highest similarity. If a NACK is issued, the FEC

transmitter is chosen via (II) or it goes to (V ). If FEC fails, the data is dropped and

the next packet is transmitted via (IV ). If the correlation drops below a threshold,

it demotes to a collector via (V I), until the estimator is activated via (V III). . . . 151

7.3. Proposed protocol for data transmission to the drone via a correlated set of buoys—

shown with numbers 1, 2, .... Spatial and temporal correlations are considered in

decoding. Conservative and borderline approaches are compared in (a) and (b). . . 153

7.4. Proposed solution when the packets are corrupted. Case (c) leverages the temporal

correlation while case (d) uses spatial correlation via combined data and FEC. . . 155

7.5. (a) Random distribution of nodes (N). Drone (F) passes by each region (shown by

Roman numbers) to fuse the data; (b) Magnified view of region II with different

degrees of correlation. Different colors show how the buoys are correlated. . . . . 156

7.6. Mean communication error per traffic for buoys inside one region in low and high

multipath while three different spreadings for the chaotic code are considered. . . . 156

7.7. Reconstruction error × traffic for buoys inside a region while considering two dif-

ferent fading channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.8. Long-term throughput of correlated HARQ, in nats-per-channel-use (npcu), for dif-

ferent number of data transmitter buoys. . . . . . . . . . . . . . . . . . . . . . . . 157

7.9. Reconstruction error for different correlation thresholds and channel coding. . . . 157

7.10. Sensing error and communication error for different correlation thresholds, in low

and high multipath environments for chaotic code (SL = 100). . . . . . . . . . . . 158

7.11. Long-term throughput per normalized delay for correlated HARQ versus number of

rounds compared to the conventional HARQ. . . . . . . . . . . . . . . . . . . . . 158

xviii



1

Chapter 1

Introduction

This chapter provides an overview of the basic concepts, challenges, and applications that motivate

this dissertation and explains the objectives and contributions of this research. The key requirements

of underwater acoustic communications are discussed in Sect. 1.1. A brief review of the required

tools and underwater vehicles to capture and transmit the video are presented in Sect. 1.2. As an

application, the need for video capturing and transmission for marine pollution monitoring is intro-

duced in this section. The research objectives, dissertation contributions, and thesis organization are

explained in Sect. 1.3.

1.1 Underwater Acoustic Communications: Key Requirements

In the past decade, underwater communications and networked-vehicles have enabled a wide range

of applications such as oceanographic data collection, ocean pollution assessment, disaster/tsunami

prevention, and assisted navigation [95]. Traditionally, monitoring techniques deploy underwater

sensors for data recording during the mission which are neither real-time nor interactive (between

onshore control systems and the monitoring instruments), and therefore, easily could lead to the

complete failure of a monitoring mission [10]. There are, however, novel underwater monitoring

applications and systems based on human-robot dynamic interaction—such as coastal and tactical

multimedia surveillance, undersea/offshore exploration, oil pipe/bridge inspection, video monitor-

ing of geological/biological processes from the seafloor to the air-sea interface—that require real-

time (or near-real-time) multimedia acquisition and classification. These systems should be able to

capture multimedia data, store, process, and compress it while it is being transmitted. Underwater

multimedia transmission will need to provide support and variable service to these applications with

different Quality of Service (QoS) requirements ranging from delay sensitive to delay tolerant and

from loss sensitive to loss tolerant [95].
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Figure 1.1: Bellhop ray tracing (right box) for a standard sound speed profile (left box) indicating
how acoustic beams travel through the underwater acoustic channel when the transmitter is at a
depth of ∼ 0.9 km.

Efforts have been made at the physical layer to enable video transmission by boosting the data

rate and the reliability via wireless acoustic communication technology because of the high medium

absorption of Radio Frequency (RF) and of the scattering problem affecting optical wireless com-

munications underwater. However, reliable and high-quality video transmission via acoustic waves

is hard to accomplish underwater as the acoustic waves suffer from limited bandwidth, frequency-

dependent transmission loss, time variability, large Doppler spreading, high propagation delay, non-

Gaussian background noise, etc. [10]. Temperature, salinity, and pressure of the body of water

affect the sound speed and change it between 1450 m/s and 1540 m/s. Therefore, small changes in

speed lead to temporally and spatially variability of the acoustic channel and to significant changes

in the sound propagation in the ocean [20]. Moreover, sound reflection from the surface and bot-

tom and other objects in the water and also other minor effects (such as sound refraction) form a

multipath effect propagation which is the result of spatial variability of sound speed regarding depth

and location [136]. The multipath geometry relates to the channel configuration, therefore, vertical

channels are specified by little time dispersion, whereas horizontal channels may have extremely

long multipath spreads, regarding the water depth [10]. Fig. 1.1 shows a typical sound profile at

each certain depth for the deep water which was simulated using Bellhop [97]. As shown in the

left figure, the sound velocity becomes minimum at a certain depth due to temperature drop. As

the depth increases, the hydrostatic pressure dominates the temperature, and therefore, the sound

velocity increases. If the sound source is in the minimum speed depth (or in its vicinity), some parts

of the sound energy is trapped in the channel while propagating and do not reach the bottom or

surface. Therefore, underwater channel propagates the rays like a waveguide [20].

The underwater acoustic path loss can be modeled as A(`, f) = A0`
ka(f)` where A(`, f) is
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Figure 1.2: Example of underwater dominant man-made and natural acoustic noise sources such as
ships, undersea exploration and construction, and their effects on marine life [111].

the experienced path loss (attenuation) on a single path, A0 is a normalizing constant, ` [m] is

the distance, f [Hz] is a tone of frequency, k is the spreading factor whose value is normally 2,

and a(f) is the absorption coefficient [20, pp. 10-12], as 10 log a(f) = a′(f) = 0.11
f2

1 + f2
+

44
f2

4100 + f2
+ 2.75 × 10−4f2 + 0.003 [102, 134]. In this empirical formula, f is in [kHz] and

10 log a(f) is obtained in [dB/km]. a(f) in [m−1] is obtained as a(f) = 10a
′(f/1000)/10000 where f

is in [Hz]. Note that this definition of path loss does not consider the total power. When considering

multiple propagation paths, the signal at the receiver is the outcome of several delayed signals

of the original signal. The multipath effect (depends on the frequency and transmission range)

causes Inter Symbol Interference (ISI) in the underwater acoustic channel which can affect up to

hundred of symbols depending on the symbol rate. The mechanism of multipath differs in deep and

shallow environments. In shallow water, reflection from the surface and bottom (or other obstacles)

define the multipath, while in deep water, ray bending defines this effect based on the sound-speed

profile. Acoustic rays bend towards the region of lower acoustic speed which is called “laziness

law”. The bending effect can be observed at distances of a few kilometers; however, staying within

a short/medium range (less than 2 km), such bending is not notable. Underwater acoustic links can

be categorized according to their ranges as very long, long, medium, short, and very short [9], as

explained in table 1.1.

Recently, deep-sea audio recording by researchers in the National Oceanic and Atmospheric

Administration (NOAA) and their partners has revealed that the ocean is not a quiet place. Instead
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Figure 1.3: Power Spectral Density (PSD) of acoustic noise sources, as reported in [53] and [119],
shipping noise based on the traffic/activities, and on the Sea States (SS).

Table 1.1: Typical Range and Bandwidth of Underwater Channels.
Range (km) Bandwidth (kHz)

Very long 1000 < 1
Long 10− 100 2− 5
Medium 1− 10 ≈ 10
Short 0.1− 1 20− 50
Very short < 0.1 > 100

of finding silence, even the deepest part of the world’s ocean, at the bottom of the Mariana Trench1

with a depth of more than 36, 000 feet, is an incredibly noisy place [56]. Shallow water and coastal

regions are also not noise free and are occupied with several noise sources such as impulsive colored

noise created by large populaces of snapping shrimp inhabiting these regions Generally, two main

categories of noise sources can be recognized; natural anthropogenic sources, as shown in Fig. 1.2.

Natural noise is a phenomenon already present in the environment and marine animals are almost

adapted to it; however, its effect on marine mammals can be investigated [106]. Sources such as

seismic [47], wave, and rain are often high power and occupy the same frequency band as those

used by marine animals, as reported in Fig. 1.3.

Current state-of-the-art acoustic communication solutions are still mostly focusing on enabling

1The Mariana Trench is located in the western Pacific Ocean, to the east of the Mariana Islands.
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Figure 1.4: Experiments for testing vehicle coordination at Sonny Werblin Recreation Center, Rut-
gers University, New Jersey.

delay-tolerant, low-bandwidth/low-data-rate scalar data transmission or at best low-quality/low-

resolution multimedia streaming in the order of few tens of kbps. Multimedia transmission re-

quires super-effective compression and transmission techniques to reach the required criteria. While

traditional commercial acoustic modems with their fixed-hardware designs hardly meet the re-

quired data-rate, reliability, and flexibility to support multimedia transmission, other solutions based

on adaptive, open source, and reconfigurable architectures employing Software-Defined Acoustic

Modems (SDAM) should be utilized.

1.2 Video Transmission Using Semi-autonomous Underwater Vehicles

As it was mentioned in the previous section, many futuristic time-critical applications such as multi-

media coastal and tactical surveillance, offshore exploration, sea floor mapping, submarine volcan-

ism and hydrothermal vent studies require multimedia data to be retrieved and processed reliably in

real time while it is being transmitted for video acquisition and classification [95]. In most underwa-

ter missions, Remotely Operated Vehicles (ROVs) are key instruments to support such interactive

monitoring applications as they can be equipped with underwater cameras and capture multimedia

data from places where humans cannot easily/safely go; however, current underwater vehicles are

often tethered to the supporting ship by a cable or have to rise periodically to the surface to commu-

nicate with a remote station via RF waves. Tethering is a serious limitation in the development of

underwater systems for future applications involving multiple underwater vehicles as it constrains

the maneuverability and range of the vehicles engaged in the mission, which run the risk to get
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tangled and compromise the mission itself. Resurfacing periodically, as shown in Fig. 1.4, on the

other hand, does not guarantee interactivity—which is key in real-time applications—and leads to

energy/time inefficiencies. Recent research initiatives on human-robot interaction [79, 143] have

received considerable attention from both industry and academia in the past few years by develop-

ing, analyzing, and validating a proof-of-concept paradigm to maximize the system performance

and efficiency of semi-autonomous robots to collect underwater data. To this end, humans/domain

experts have used a console to issue low-level commands, where the set of commands is a queue of

actions that should be executed consecutively when a robot goes underwater. This approach, how-

ever, does not give any flexibility to the humans to refine or cancel the commands that were issued

in the beginning of the mission based on the live multimedia streaming from the vehicle. For these

reasons, efforts have been made at the physical layer to enable efficient video transmission solutions

via wireless acoustic communication technology because of the high medium absorption of RF and

of the scattering problem affecting optical wireless communications underwater.

We envision that, in many of the future interactive monitoring applications, humans will partic-

ipate dynamically in the fine tuning of the system in a closed-loop fashion based on the Quality of

Experience (QoE) of the received multimedia stream. Therefore, a dynamic interaction between a

human and robots will be essential in which the human/application expert is included in the loop to

take dynamic decisions regarding the mission based on the incoming multimedia stream and informs

the robots by issuing fresh commands. These commands can include instructions such as identifying

Regions of Interest (RoI) from the video feed, allocating underwater vehicles to different regions of

interest, changing physical-layer parameters to improve quality of video feed, performing specific

tasks, configuring themselves into a suitable mesh topology given the mission requirements, etc.

The efforts in this dissertation will revolve around the argument that shifting abruptly from a

ROV mode—where low-level commands are imparted to the vehicle—to an Autonomous Underwater

Vehicle (AUV) mode—where the vehicle(s) are fully intelligent and autonomous—is neither realistic

nor practical; rather, in light of the usual gradual evolution and deployment of new technology, we

envision a semi-autonomous mode where high-level/mission-oriented commands are imparted by a

human in the loop, who may take advantage of domain expertise for decision making. To enable this

vision, a software-defined underwater acoustic structure is needed including several mobile nodes

and a team of Hybrid Unmanned Air/Underwater Vehicles (HUA/UV).
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(a) (b)

Figure 1.5: An experiment conducted in (a) the Raritan Canal; (b) the Raritan River, New Jersey.

Pollution Monitoring as an Application of Underwater Video Transmission: Marine pollu-

tion such as litter and debris, both beached and floating objects/liquids, are one of the most serious

and fast growing environmental threats to the oceans and seafloors. The negative impacts of this pol-

lution on the environment and on human and marine life are unquestionable. Marine litter develops

from various sources and causes a wide range of environmental safety and health issues. The slow

degradation rate of marine litter items, combined with the growing quantity of debris collection, is

leading to ocean pollution. When the debris, such as plastic, degrades over time, it turns into micro-

and then nano-plastics, which is then consumed by fish and eventually by humans.

According to recent studies [37], around 640,000 tonnes of gear is lost in the ocean annually.

Lost nets create a huge threat to marine life as they trap and kill at least 136,000 seals, sea lions,

and whales. According to the survey conducted by the United Nations Educational, Scientific and

Cultural Organization (UNESCO) [147] over 80% of marine pollution comes from land-based ac-

tivities. From plastic bags to pesticides, most of the waste produced on land eventually reaches the

oceans. Rivers carry the litter with their currents to the seas and are one of the main sources of litter

entering the seas. There is litter spread widely throughout the seafloor, but its distribution is usually

patchy with densities from 1 up to around 200 items per each 10 m, as reported for the Messina

Strait’s channel—one of the geologically active areas of the Central Mediterranean Sea [93].

To address this issue, using only static sensors attached to fixed monitoring stations with prede-

fined configurations is not a real-time and efficient solution for data collection as the phenomenon

of interest may occur sporadically and propagate spatially through the water bodies. Deploying a

team of Autonomous and Semi-Autonomous Underwater Vehicles (AUVs)—which is capable of
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(a) (b)

Figure 1.6: Videos of pollution in the Raritan River, New Jersey, when the water is murky and the
visibility is low, after a heavy rain or flood.

chasing the phenomenon of interest instead of waiting for the pollution to reach the fixed stations—

equipped with cameras and other sensors, can help in detecting the pollution on the seafloor and

riverbed, as well as the surface, build a map of the pollution, and therefore, can issue early warnings

so to reduce the damage to human and aquatic life.

The Raritan River is a major river of central New Jersey and is a unique laboratory available

to Rutgers, i.e., a perfect case study. It is also the New Jersey’s largest contiguous wildlife corri-

dor offering refuge to numerous threatened and endangered species [41]. This river has experienced

pollution from industrial facilities toxic dumping for over 100 years. The watershed is also impacted

by contaminated sites and sewage treatment systems. Pollution from contaminated sites leaks into

the river and harms the environment and public health. According to the Environmental Protection

Agency (EPA) reports [46], over 16 noxious chemicals and solids were found infecting the section

of the Raritan River that borders New Brunswick, NJ. Three of those chemicals—arsenic, benzopy-

rene, and the pesticide heptachlor epoxide—have the potential to adversely affect the drinking water

supply. The watersheds should be monitored regularly to provide usable data about water quality

and the overall health of the Raritan watersheds. The Raritan Headwaters Association [4] holds a

specific stream monitoring program; based on visual assessment and on manual collection of water

samples at each site, they can classify coarsely the sites as excellent, good, fair, or poor. However,

more research should be performed to enable streamlined and improved monitoring of such an im-

portant area. As shown in Fig. 1.5, the vehicles are equipped with multiple on-board sensors and

are deployed in the Raritan River for gathering scientific data via collaborative strategies. Fig. 1.6

shows two frames of a captured videos from the bottom of the Raritan River.
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1.3 Dissertation Contributions and Organization

To overcome the mentioned challenges, the following objectives are proposed in this dissertation:

(1) To design novel communication solutions for robust, reliable, and high-data rate under-

water multimedia transmission in the order of hundreds of Kbps at the operating ranges of the

application of interest [110]. The solution exploits all the resources in the frequency/signal/space

domains, and relies on novel vehicle tracking methods, multiple-antenna structure/coding, and/or

Acoustic Vector Sensors (AVSs).2

(2) To design a novel Medium Access Control (MAC) based on a probabilistic Space Division

Multiple Access (SDMA) method for short/medium distances in order to achieve a reliable coor-

dination among underwater vehicles [108, 113]. The innovative probabilistic solution focuses on

cancelling or alleviating the inter-vehicle interference while the inherent position uncertainty of ve-

hicles is considered in a sparse underwater mobile network. Spatially separable and non-separable

scenarios are studied and the parameters are optimized to minimize the statistical interference.

(3) To design an efficient and agile collaborative strategy to allocate appropriate resources to

the communication links in order to achieve high throughput and reliable underwater acoustic

networks for transmitting distributed and large volume of data [107, 114]. The proposed method

adjusts the physical and link-layer parameters collaboratively for a Code Division Multiple Ac-

cess (CDMA)-based underwater network. An adaptive Hybrid Automatic Repeat Request (HARQ)

solution is employed to guarantee reliable communications against errors in poor links.

(4) To develop a reliable acoustic wireless video transmission technique in the extreme and

uncertain underwater environment while optimizing the received video quality and the user’s

experience [104,115]. The innovative method is an adaptive solution that is specifically designed for

Multi-Input Multi-Output (MIMO)-based Software-Defined Acoustic Modems (SDAMs). Cross-

layer techniques utilizing diversity-spatial multiplexing and Unequal Error Protection (UEP) are

implemented along with the scalable video compression at the application layer to keep the video

distortion under an acceptable threshold and to achieve a high physical-layer throughput.

2While a regular hydrophone can only measure the scalar acoustic pressure, an Acoustic Vector Sensor (AVS)—which
is formed by a hydrophone and three accelerometers—measures all the three components of the acoustic particle motion
(i.e., pressure, velocity vector, and direction) and can estimate the angle of arrival of the acoustic wave in addition to its
scalar pressure value. AVSs can be constructed using a variety of technologies from mechanically or optically based on
Micro-Electro-Mechanical Systems (MEMS).
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(5) To design a system for monitoring the accumulation of litter and plastic debris at the

bottom of rivers using a team of Autonomous Underwater Vehicles (AUVs) that exchange the

recorded video in order to reconstruct the map of regions of interest [112]. The solution focuses

on in-network scalable underwater video sharing between AUVs and develops a framework for un-

derwater imagery analysis using partial information collected by various vehicles around the scene.

This method maximizes Quality of Service (QoS) via an innovative multicasting scalable coded

video, while achieving the maximum Quality of Experience (QoE) for the scene reconstruction.

(6) To develop a reliable and persistent water monitoring technique in smart Underwater

Internet of Things (UW IoT) [116]. The solution realizes a reliable correlation-based HARQ to

transmit data between the buoys and the fusion center such as a drone. This method leverages the

correlation of the data to avoid costly retransmissions in a chaotic Direct Sequence Spread Spectrum

(DSSS) system that guarantees secure buoy-drone transmissions.

The solutions that will be proposed in this dissertation will impact several areas of research since

it has a strong multidisciplinary component that involves a nexus of ideas from sensor technology,

communications, coding, networking, algorithms, statistical inference, and dynamical systems. The

novel methods and algorithms will have a wide applicability in the areas of science and technol-

ogy that concern (i) real-time multimedia transmission of coordinated robots and (ii) the study of

dynamic interaction of such robots with their environment and the humans.

Dissertation Organization: This dissertation will be geared towards enabling our vision of re-

liable and high-speed underwater acoustic multimedia transmission towards dynamic human-robot

interaction. This rest of this dissertation is organized as follows.

Chapter 2 describes the work in physical layer by exploiting multiple-antenna arrays and AVSs.

A novel solution is proposed to boost the data rate for underwater acoustic transmission so as to

transfer high-resolution video underwater.

Chapter 3 follows a novel probabilistic approach to design an efficient MAC-layer solution to

share reliably the space among the steered vehicles so as to reduce the acoustic interference.

Chapter 4 discusses the data transmission reliability by applying a robust closed-loop hybrid

Automatic Repeat Request (ARQ) coding technique based on the structure of the nodes and the

possible collaboration between them in the field.

Chapter 5 proposes an adaptive cross-layer solution for transmitting underwater scalable-coded
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video using a MIMO-based reconfigurable Software-Defined Acoustic Modem (SDAM). Multiplex-

ing diversity tradeoff is navigated in order to balance the transmission data rate and the reliability.

Chapter 6 introduces a novel framework for underwater imagery analysis and multicasting

using scalable coded video and partial information collected by various vehicles around a scene in

order to reconstruct the map of environment.

Chapter 7 proposes a novel architecture for UW-IoT and a correlation-aware hybrid ARQ that

leverages the correlation in the data to avoid costly retransmissions and thereby enable timely re-

construction of the phenomenon.

Chapter 8 summarizes the main contributions of this dissertation and presents suggestions on

future research directions that will push the state-of-the-art in underwater video transmission.
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Chapter 2

Signal-Space-Frequency Beamforming for Underwater Acoustic Video
Transmission

In this chapter, a hybrid solution that is capable of transmitting at high data rates underwater via

acoustic waves at short/medium distances is proposed. This physical-layer signaling solution in-

troduces a novel method, called Signal-Space-Frequency Beamforming (SSFB), for a multiple-

hydrophone structure where each one consists of Uniform Circular Array (UCA) hydrophones

(mounted on an underwater vehicle) to steer the beam in both azimuth and elevation planes; then, an

array of Acoustic Vector Sensors (AVS)1 are mounted on the surface buoy. Detection is performed

based on the beam spatial separation and direction of arrival angles’ estimation. Simulation results

confirm that this solution outperforms state-of-the-art underwater acoustic transmission techniques,

whose data rates are limited only to few tens of kbps.

2.1 Overview

Underwater networks enable a wide range of applications such as oceanographic data gathering,

pollution monitoring, disaster prevention, and assisted navigation—just to name a few—in which

mostly scalar values are sensed from the environment and transmitted to an onshore or surface

station. However, many futuristic time-critical applications such as multimedia coastal and tactical

surveillance, offshore exploration, sea floor mapping, submarine volcanism and hydrothermal vent

studies require multimedia data to be retrieved and processed reliably in real time while it is being

transmitted for video acquisition and classification [95].

For many of these futuristic applications, transmitting reliably videos underwater is a challeng-

ing problem in the environment in which Radio-Frequency (RF) waves are absorbed for distances

1Acoustic Vector Sensors (AVS) are hydrophones that are able to capture the acoustic particle velocity/direction of
arrival in addition to measuring regular scalar pressure.
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above a few tens of meters, optical waves require narrow laser beams and suffer from scattering

and ocean wave motion, and acoustic waves—while being able to propagate up to several tens of

kilometers—lead to a communication channel that is very dynamic, prone to fading, spectrum lim-

ited with passband bandwidths of only a few tens of kHz due to high transmission loss at frequencies

above 50 kHz, and affected by a non-Gaussian noise [136].

In most cases, Autonomous/Remotely Operated Underwater Vehicles (AUVs/ROVs) are key

enabling instruments to support such futuristic applications as they can be equipped with cameras.

However, current underwater vehicles are often tethered to the supporting ship by a high-data-

rate fiber cable or have to surface periodically to communicate with a remote onshore station via

terrestrial RF waves. Tethering is a serious limitation for the development of underwater systems

for multimedia applications involving one or more underwater vehicles as it constrains severely the

maneuverability and range of the vehicles, which run the risk to get tangled and compromise their

mission. Resurfacing periodically, on the other hand, does not guarantee interactivity, which is key

in real-time applications, and leads to energy/time inefficiencies.

Challenges: Although acoustic communication is the typical physical-layer technology under-

water for distances above a hundred meters, yet, achieving high data rates for video transmission

through the acoustic channel is hard to accomplish as acoustic waves suffer from attenuation, lim-

ited bandwidth, Doppler spreading, high propagation delay, and time-varying propagation charac-

teristics [109, 136]. For these reasons, state-of-the-art acoustic communication solutions are still

mostly focusing on enabling delay-tolerant, low-bandwidth/low-data-rate transmission or at best

low-quality/low-resolution multimedia streaming in the order of few tens of kbps.

To achieve higher data rates in the bandwidth-limited underwater acoustic channel, several tech-

niques should be combined together. For example, signal beamforming along with multiple antenna

arrays [142] could achieve this goal; however, the main challenge is the position uncertainty of the

users, which leads to inaccuracies in the estimation of beam angles—a key piece of information

in beamforming—and therefore to overall performance degradation. The problem becomes even

worse over time if the vehicle remains underwater for long because of the accumulation of its po-

sition error, which leads to non-negligible drifts in the vehicle’s position estimation, as attested by

many works on underwater localization [27, 70, 141].

State of the Art: Over the past few years, researchers have come up with advancements in
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sensor technology that seem quite promising to overcome the limitations of traditional scalar hy-

drophones, which detect the acoustic pressure without any directional sensitivity. For example,

Acoustic Vector Sensor (AVS) array consists of hydrophones that are able to capture the acous-

tic particle velocity/angle of arrival [128] in addition to measuring regular scalar pressure. This

interesting characteristic can be used in determining the position of an acoustic source. Source lo-

calization using an array of AVSs is performed in [103] for multipath scenarios. This device can be

exploited in a broad range of environments and is constructed using a variety of mechanical, optical,

and Micro-Electro-Mechanical Systems (MEMS) technologies [33].

Contributions: In this research, we exploit the potential of this recent sensor technology and

present a novel AVS-based method to increase the effective data rate of underwater acoustic commu-

nications, i.e., to support reliable and high-data-rate video transmissions (in the order of hundreds

of Kbps at the operating ranges of the application of interest, i.e., up to a few kilometers). To

achieve this goal, we propose a novel signaling method, called Signal-Space-Frequency Beamform-

ing (SSFB), that makes use of multiple domains to leverage the benefits of AVS. A novel arrange-

ment for the vehicle’s antenna is presented, while the surface buoy (receiver) is equipped with AVS

hydrophones and detects the signal based on the estimated direction of arrival angles. In addition

to modulation, each antenna in a multiple antenna structure and also each subcarrier in Orthogonal

Frequency Division Multiplexing (OFDM) system participate in the data rate increase, while inter-

antenna-interference is avoided by a Non-Contiguous OFDM (NC-OFDM) technique specifically

designed for this system to support video transmission.

Chapter Outline: The rest of this chapter is organized as follows. In Sect. 2.2, a review on

the related research in the literature is presented. In Sect. 2.3, the proposal and its mathematical

framework are discussed. In Sect. 2.4, the performance results are presented, and finally, Sect. 2.5,

summarizes the chapter.

2.2 Related Work

The first image transmission via acoustic waves occurred in Japan, where the system [139] demon-

strated the transmission over a vertical path with a low frame rate. Low-bit-rate video compression

is another solution investigated in the literature to combat the limitations of underwater acoustic
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channels. The authors in [87] presented an algorithm based on the use of data compression/coding

implemented and tested over a 10 m vertical channel with 6090 kHz bandwidth. The feasibil-

ity of video transmission over short-length links was investigated in [118, 148], where MPEG-4

video compression and a wavelet-based transmission method were tested on coded OFDM. A joint

optical/acoustic solution was presented in [44], which integrates high-data-rate and low-latency ca-

pabilities of optical communications in short transmission ranges with long-distance traveling of

acoustics. Another acoustic/optical solution for video streaming was presented in [48], where the

acoustic mode is used as backup in case of optical channel failure. Notice that, while optical-based

techniques can support high data rates, all the optical solutions reported so far can only transmit

at distances below ∼ 50 m due to scattering and laser-pointing-related issues. A software-defined

underwater acoustic platform that supports higher data rates and provides flexibility and scalability

for future underwater applications was discussed in [34].

However, despite all these works, the problem of robust video transmission is still unsolved,

and achieving high video quality is still a challenge when we consider the limited available band-

width along with the harsh characteristics of the underwater acoustic channel, which calls for novel

high-spectral-efficiency methods. Recently, Non-Contiguous OFDM (NC-OFDM) has attracted the

attention of researchers [83] due to its dynamic spectrum access and effective use of spectrum as

a scares resource, which increases the spectral efficiency of conventional OFDM while avoiding

interference with other users, especially in cognitive radios and frequency-selective channels. The

authors in [16] have suggested Index Modulation (IM) as an effective technique for Fifth Genera-

tion (5G) wireless networks, in which the indices of the OFDM blocks convey additional informa-

tion bits. IM can be applied to several modulation schemes such as Spatial Modulation (SM) [78]

in order to achieve higher data rates.

Hydroflown sensor [33] is a MEMS-based hydrophone set that is able to measure particle veloc-

ity and Angle of Arrival (AoA) [17]. Several algorithms have been proposed for AoA estimation for

acoustic vector sensors. Maximum likelihood (ML), as a conventional method, maximizes the like-

lihood of the received signal from a particular angle. MUltiple SIgnal Classification (MUSIC) [122]

is an adaptive eigen-structure-based method that considers the noise subspace, while the signal sub-

space is considered in the Estimation of Signal Parameters via Rotational Invariance Technique (ES-

PRIT) [120], which assumes a displacement invariance for sensors. Matrix Pencil (MP) is similar to
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Figure 2.1: Bellhop ray tracing (right) for a standard Sound-Speed Profile (SSP) (left) indicating
how acoustic beams travel through the channel [97]. Notice how the beams are almost straight for
short/medium ranges (less than 5 km).

ESPRIT but, instead of estimating the correlation matrix, it exploits the spatial samples of the data

based on a snapshot-by-snapshot basis, and performs well in non-stationary environments [155].

Despite all these efforts, there are still open problems in signal processing and in the hardware

needed to support real-time processing. Considering the characteristics of the underwater acoustic

channel, direction-of-arrival estimation might be complicated since the position information of a

vehicle is not accurate underwater. Although a vehicle may surface periodically to synchronize

itself using Global Positioning System (GPS), which does not work underwater, self-inaccuracies in

position estimation increases over time; also, the effect of drifting in ocean currents on the vehicle

causes more uncertainties in the position, which leads to error in the angle-of-arrival estimation of

the vehicle. These errors will lead to distortion in the video quality at the receiver, which translates

to a low Quality of Service (QoS) for the user.

2.3 Proposed Architecture and Signaling Method

System Assumptions: Let us assume that the transmission occurs at short/medium ranges—up to a

few kilometers—and that the direct beams are dominant over the reflected ones from the ocean sur-

face/bottom, so that the receiver is not severely affected by multipath. For farther distances—above

a few kilometers—and based on the Sound Speed Profile (SSP), the acoustic rays bend towards

the region of lower acoustic speed (“laziness law”). This effect changes the Angles of Depar-

ture/Arrival (AoD/AoA) and their estimations. Using the Bellhop model [97] and considering a

typical deep-water case, Fig. 2.1 illustrates the SSP (left) and the acoustic ray tracing (right) in the

underwater channel for a sample source at a depth of 1 km and temperature of 39 F. The bending
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Figure 2.2: System architecture and geometry in which the vehicle is equipped with an Acous-
tic Vector Sensor (AVS) and a ring of beamforming transmitters, each one containing a Uniform
Circular Array (UCA), while the buoy is armed with AVS hydrophones.

effect can be observed by going above a few kilometers; however, staying within a short/medium

range, such bending is not notable, which explains the philosophy behind our signaling method

in which the vehicle is steered via beamforming. Moreover, propagation delays in acoustic links

are five orders of magnitude larger than in terrestrial RF links, so short/medium ranges are more

appropriate for video transmission applications.

Model Descriptions: As in Fig. 2.2, the model consists of an anchored buoy and a vehicle trav-

eling at a fairly smooth and constant horizontal speed ranging between 0.25 to 0.5 m/s to capture

data/video. Buoy and vehicle exchange control messages during the communication setup process.

To avoid any interference with the data exchange process, we establish a separate control channel

via Frequency Division Duplex (FDD); this will not have much impact on the overall data rate and

bandwidth of the system as only a few bits per message are used. In this chapter, downlink (BV ) de-

fines the direction of acoustic communications from the surface buoy, B, to the vehicle, V ; whereas

uplink (V B) represents data transmission in the opposite direction.

Several transducers are installed on a vertical bar at the buoy’s side starting from the depth of

hr with antenna spacing of dh—more than half of the wavelength to avoid spatial correlation. An

acoustic vector sensor array is embedded on the bar, which gives us the measured scalar pressure

and the beam’s direction of arrival, in both the azimuth and elevation planes. The scalar response of

the pressure sensor, which is omni-directional, is added to the responses of the vector sensors, which
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Figure 2.3: Directivity Index (DI) for both Uniform Circular Array (UCA) and Uniform Linear
Array (ULA) at different frequencies.

measure particle velocity and output the information about the beam’s direction of arrival. The sen-

sitivity, the Directivity Factor (Df ), and the Directivity Index (DI) of these sensors depend on both

the technology and the environment under study at a given range r, where DI = 10 logDf/Dref ,

in which Dref is the omni-directional reference intensity and Df (φ, θ) can be defined as the ra-

tio of the maximum acoustic intensity to the averaged intensity in all directions [74]. Plane wave

is represented by φ ∈ [−π, π] and θ ∈ [−π/2, π/2] as the azimuth and elevation angles, respec-

tively. The vehicle is equipped with one vector sensor for localization and control purposes in the

downlink, and with multiple transmit antennae for sending data via its circular arranged acoustic

transmitters capable of performing beamforming for the uplink communications. As a result, dif-

ferently from the conventional linear arrangement, beamforming and direction-of-arrival estimation

are performed in both azimuth and elevation planes.

As the array’s elements can be placed according to different shapes (linear, circular, or rect-

angular), Uniform Circular Array (UCA) [57, 150] is exploited to leverage its higher performance

compared with a Uniform Linear Array (ULA). Since the mobility of the vehicle might change the

estimation of angles and, as a result, decrease the reliability of the reception, in this chapter, as an

alternative configuration for the linear placement and linear array, a circular arrangement and UCA

with D > λ are proposed. D and λ represent the circle’s diameter and the acoustic wavelength,

respectively. Interestingly, the circular array can form the beam of 2π in azimuth plane and π in

elevation plane with little change in either the beamwidth or the sidelobe level [57].

In Fig. 2.3, DIs of UCA and ULA are compared, where DI accounts for the spatial gain in energy

as a result of using directive antenna to the same antenna without directivity [74]. It confirms that

UCA is a better choice to combat the channel attenuation, at higher acoustic frequencies.

Proposed Signaling Method: To take advantage of AVS, the vehicle’s exact location should be
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Figure 2.4: Protocol for vehicle steering and control message exchange. Interval estimation is used
at the buoy for Angle of Departure (AoD) and coarse estimation of the uncertainty region (Fig. 2.2),
while fine steering is performed via extra information, i.e., Angle of Arrival (AoA) estimation,
offered by AVS.

determined. If the ocean currents are assumed unknown, the vehicle’s drifting in the horizontal plane

is identically and independently distributed (i.i.d.) and follows a normal distribution, which makes

the horizontal projection of its confidence a circular region. Regarding the vehicle’s movement

along its trajectory, there is an uncertainty in the position of the vehicle. This uncertainty region

is shown to be a cylinder [27, 108], as in Fig. 2.2. First, in Sect. 2.3, in order to determine the

angles of departure/arrival, we study the uncertainty region and present the proposed protocol. We

create spatial pipes towards the vehicle via beamforming based on the uncertainty region and its

corresponding angles. Then, based on the estimated angles, the data will be transmitted via the

proposed uplink signaling, i.e., SSFB. Afterwards, the receiver design and the discussion on the

data rate compared with other methods are presented.

Vehicle Steering Protocol: The procedure is divided into six steps as shown in Fig. 2.4.

Steps 1 & 2—Vehicle’s Location Uncertainty Estimation: We aim at estimating the location

of vehicle given the inherent position uncertainty of objects underwater. The process starts by

the buoy’s request command and at the same time setting timer 1 until all the required location

samples are gathered. Upon receiving this message and every ∆t seconds, vehicle V samples its

current estimated location loc(V )
n , n = 1, ..., Ns via Dead reckoning, where Ns is the total number

of required samples. Timer 1 stops after τ1 ≈ Ns ∆t + tp + tt, where tp is the time due to

the propagation delays and tt stands for the distance-based transmission delays in short/medium
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ranges. There are internal- and external-uncertainties [27] in the trajectory and location estimation

of the vehicle, which are considered in the next step.

Step 3—Coarse Buoy’s AoD Estimation: Using Ns vehicle’s location samples gathered at the

buoy, locations are converted to steering angles θn and φn, n = 1, ..., Ns, in azimuth and elevation

plains to estimate the angular uncertainty region of the vehicle via the method introduced in [108].

Let us perform the analysis for one of the planes, i.e., random variable θ with mean value µ and

standard deviation σ. The estimation with mean value θ̄′ and standard deviation σ′θ can be derived

as, θ̄′ =
Ns∑
n=1

θn/Ns, and σ′θ =

[
1/(Ns−1)

Ns∑
n=1

(
θn − θ̄′

)2] 1
2

. The buoy’s beamwidth is chosen in

such a way that it is equal to the confidence interval [25] of θ̄′ [108], i.e.,

Pr(θ
(B)
L ≤ θ̄′ ≤ θ(B)

U ) ≥ 1− α, (2.1)

where Pr(.) represents the probability function, θ(B)
L and θ

(B)
U are the lower and upper angular

boundaries at buoy B pointing at the bottom and top of the uncertainty region, 1 − α is the confi-

dence degree [25]. The angles can be calculated by the following equations, given TNs−1,α/2 is the

student’s t-distribution critical value with Ns − 1 degrees of freedom.

θ
(B)
L = θ̄′ − TNs−1,α/2

σ′θ√
Ns

, (2.2a)

θ
(B)
U = θ̄′ + TNs−1,α/2

σ′θ√
Ns

. (2.2b)

The buoy forms its estimated Half Power Beam Width W̃ (BV )
θ , in the interval of±TNs−1,α/2

σ′θ√
Ns

around θ̄′, as W̃ (BV )
θ = θ

(B)
U − θ

(B)
L , while AoD from buoy towards vehicle is calculated as

Γ̃
(BV )
θ = θ̄′. Similarly, it can be concluded that W̃ (BV )

φ = φ
(B)
U − φ

(B)
L and Γ̃

(BV )
φ = φ̄′. If

this calculation takes t2 seconds, then timer 2 stops after τ2 ≈ t2 + 2tt + 2tp, when the estimation

is sent back to the buoy.

Step 4—Fine Steering Estimation Using AVS: The angular estimation extracted via the vehi-

cle’s vector sensor is fed to vehicle’s beamformers and is simultaneously reported to the buoy to

be used as reference in its tracker. Tuning the antenna from vehicle to buoy (i.e., W (V B)
θ , Γ

(V B)
θ ,

W
(V B)
φ , and Γ

(V B)
φ as depicted in Fig. 2.5) is performed via the angles measured at vehicle’s vec-

tor sensor, and is refined based on the prior coarse estimations, i.e., W̃ (BV )
θ , Γ̃

(BV )
θ , W̃ (BV )

φ , and
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Γ̃
(BV )
φ , and the trajectory vector. Several methods were suggested for AoA estimation in the liter-

ature, ranging from correlation [155] and ML [132] to MUSIC [122] and ESPRIT [120], based on

the assumptions and characteristics of the used elements. Generally, AoA estimation at the vehicle

can be written as follows,

y(V )(t) = A(V )
(
Ψ(V )

)
x′(BV )(t) + z(t), (2.3)

where y(V )(t) is the signal at the vehicle’s antenna, x′(BV )(t) is the channel affected vector of signals

from buoy to vehicle x(BV )(t), z(t) is the underwater noise vector with the covariance matrix Qz ,

and A(V ) is the steering vector at the vehicle as a function of unknown parameter Ψ(V ). In our

case, Ψ(V ) = [θ(V ), φ(V )], with unknown arriving angles and the estimated angles of θ̂(V ) and φ̂(V )

are geometrically proportional to θ̂(B)
op and φ̂(B)

op at the buoy. Regarding the coarse estimation, the

optimum angles can be bounded as,

−W̃ (BV )
θ /2 < θ̂(B)

op < W̃
(BV )
θ /2, (2.4a)

−W̃ (BV )
φ /2 < φ̂(B)

op < W̃
(BV )
φ /2. (2.4b)

The scanning range in (2.4) is now narrower by the half power beamwidth instead of the whole

angular range. Estimation variance is lower bounded by the Cramer-Rao Bound (CRB) and upper

bounded by the variance of the coarse estimation. We describe the equation for azimuth plane as,

J−1
jj < var(θ̂

(V )
j ) < (TNs−1,α/2

σ′θop√
Ns

)2, (2.5)

where var(.) shows the variance operation and J−1
jj is the jth diagonal entry of the inverse of the

Fisher information matrix J [63]. CRB determines the lower bound of estimation of θ̂(V ) and φ̂(V ).

The asymptotic error covariance of this estimation using ML is proposed in [71] in the presence

of colored noise. Given the values of this estimation, vehicle and buoy are now ready to send and

receive data while the buoy takes care of vehicle’s tracking, as described in Step 5.

Step 5—Tracking the Vehicle: This step focuses on the vehicle’s movement to ensure that it

follows the planned trajectory in the estimated uncertainty region, as discussed in Step 2. Assume
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Figure 2.5: 3D spherical representation of angles in transmission from vehicle V to buoy B. Both
azimuth and elevation angles, φ and θ, are used for detection. The proposed circular constellation
on the vehicle contains two separate sets of k and l.

the trajectory vector and the speed of the vehicle at the sampling time ∆t(n), n = 1, ..., Ns, is de-

fined as −→ρ (V )
(
∆t(n)

)
and −→ν (V )

(
∆t(n)

)
, respectively. The current trajectory vector, the previous

and its next point are shown with −→ρ (V )(t), −→ρ (V )(t−∆t), and −→ρ (V )(t+ ∆t) in Fig. 2.5. Every ∆t

seconds the vehicle broadcasts its velocity information, next turning points, and the destined loca-

tion. If the initial position loc(V )
n0 (e.g., initial deployment position on the surface) is known, then

the next location coordinates can be written as loc(V )
n0+∆t

= loc
(V )
n0 +−→ν (V )

(
∆t(n)

)
∆t. The average

distance of horizontal traveling in the cylinder equals its radius and so the upcoming location of

the vehicle should be inside the latest estimated cylinder [27]. While the vehicle is about to leave

the region, timer 3 pauses the current estimation and requests a new sample, it estimates the new

uncertainty region, and the process resumes its normal operation.

Step 6—Uplink Data Transmission: Assume the unit vector from transmitter set k to sensor

i(B) at time t is shown by u(V B)
ki

(
t, θ

(B)
ki , φ

(B)
ki

)
as,

[sin θ
(B)
ki cosφ

(B)
ki , sin θ

(B)
ki sinφ

(B)
ki , cos θ

(B)
ki ], (2.6)

in which φ
(B)
ki ∈ [−π, π] and θ

(B)
ki ∈ [−π/2, π/2] represent the azimuth and elevation angles,

respectively. Figure 2.5 depicts the 3D spherical coordinate of the transmitted/received beams. As

explained before, we place transmitter’s antennae on a circle because this arrangement increases

the degrees of freedom in both dimensions θ and φ. Let us consider two separate sets of antennae,
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k and l, to provide simultaneous transmission via separate and independent channels.

Let us assume that AoA is the output of the AVS, as shown in Fig. 2.5. Every received beam

can be distinguished with two parameters θ and φ, while the received beam at the i(B)−th element

of array can be expressed as,

y(B)
(
t, θ

(B)
i , φ

(B)
i

)
= r′(V B)

ki

(
t, θ

(B)
ki , φ

(B)
ki

)
+ z(t), (2.7)

where yB is the received signal as a function of AoA and r′ stands for the effect of underwater

acoustic channel on the signal r. The transmitted signal can be written as follows,

r(V B)
k

(
t, θ

(V B)
k , φ

(V B)
k

)
= sk(t)F(V B)

(
W

(V B)
θ,φ ,Γ

(V B)
θ,φ

)
. (2.8)

In (2.8), F(V B) stands for the beamforming vector determined by the array antenna. We utilize

UCA to steer the beam towards the desired antenna, so the $ − th element of the beamformer in

UCA with the angle of γ$ w.r.t. the x-axis is calculated via (2.9), as in [150],

exp
(
j

2π

λ

{
Da

2
sin(θ

(V B)
k ) cos(φ

(V B)
k − γ$)

})
, (2.9)

where λ is the wavelength of the signal and Da is the diameter of UCA. sk(t) is the transmitted

OFDM frame of the k − th antenna-set as follows.

sk(t) =
NC−1∑
ξ=0

X
(k)
ξ exp(j2πfξt), X

(k)
ξ ∈

{
δie

jβi , 0
}
. (2.10)

Total number of subcarriers is shown byNC while fξ = ξfs represents the subcarrier frequency.

Choosing fs = 1/(NCTs), where Ts is the sampling interval, leads to orthogonality among differ-

ent subcarriers in OFDM. Xξ can be either a data/pilot subcarrier or a null subcarrier. δi and βi

stand for the amplitude and the phase of the desired constellation point, respectively. Note that the

data/pilot subcarriers of each antenna are overlapped with the null subcarriers of other antennae,

so all the antennae can transmit simultaneously without any inter-antenna-interference. The sub-

carrier assignment strategy is shown in the block diagram of Fig. 2.6(a), which explains how the
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transmitted signal sk(t) is created. Data stream is made by the conventional block-oriented stan-

dard H.264/MPEG-4, while Scalable Video Coding (SVC) [123] is used as the video compression

technique. Since the system error rate is unpredictable and variable due to the vehicle’s drifting,

SVC encoder provides an adaptive quality video compression by partitioning the frames based on

the amount of error fed back by the previous round of transmission.

We assume that each block ofNc(log2N + log2M) bits consists of segments of n+m–bits; the

first n=log2N bits define the transmitting antenna in every set containingN antennae, while the last

m=log2M bits define the appropriate transmitted signal regarding the chosen modulation scheme

of order M . Designation table assigns the bits to the appropriate antenna and constellation point.

Frequency designation is performed via transmitting signals of different antennae on the orthogonal

subcarriers of N NC-OFDM frames. The ξ − th signal of the modulated stream is sent over the

ξ− th subcarrier of the corresponding antenna’s NC-OFDM frame and the other subcarriers in this

frame are switched off.

ξfs ←

Ξi, bi, i ∈ [(ξ + 1)n+ ξm+ 1 ... (ξ + 1)(n+m)],

0, otherwise.
(2.11)

Accordingly, every single antenna utilizes the unoccupied portions of the spectrum of other

antennae. Note that unlike conventional Spatial Modulation (SM) [78], in which each symbol is

sent via different antenna and so a very fast antenna switching is required, our proposed method

first forms a complete frame of desired subcarriers for each antenna and then sends it at once. This

feature is essential since fast switching signal transmission is not practical underwater because of

the long propagation delay of the acoustic channel. In our method, all N implemented antennae

are active and the subcarriers are being used efficiently; however, for each transmission, only one

antenna transmits in each subcarrier.

AVS-based Receiver and Rate Comparison: Fig. 2.6(b) describes the receiver of the system

at the buoy, while AVS gives us an estimate to decide on the desired antenna q from set k as follows,

q̃ = arg min
q∈{1,...,Nk}

∥∥∥[θ̃
(B)
ki , φ̃

(B)
ki ]− [θ̂(B)

op , φ̂
(B)
op ]q

∥∥∥2
, (2.12)
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Figure 2.6: (a) Transmitter signaling blocks for the proposed SSFB method. The designation table
shows how data bits are grouped. Each one of the N implemented antennae in each set and in every
transmission course exploits a portion of subcarriers in the NC-OFDM; (b) Receiver block diagram
in which the received frames are treated.

where [θ̃
(B)
ki , φ̃

(B)
ki ] is the vector of estimated angles at the buoy and [θ̂

(B)
op , φ̂

(B)
op ] stands for the ref-

erence angles vector including all the antennae in every previously estimated set. To describe how

AVS estimation error leads to the error in the detection, assume the angular decision on q is made

in the region of {[θ(B), φ(B)] : −π/Nk < [θ(B), φ(B)] < π/Nk}, with Probability Density Func-

tion (PDF) of Pθ,φ(θ, φ), the error probability, Pe, can be calculated as,

Pe = 1−
∫∫ π/Nk

−π/Nk
Pθ,φ(θ(B), φ(B))dθdφ, (2.13)

where Nk is the number of elements in antenna set k.

An OFDM frame consists of a preamble—for synchronization and Doppler estimation—and of

data blocks. Let us define ỹ(B)(t) as the estimated received signal after antenna decision. NC-

OFDM receiver performs Fast Fourier Transform (FFT) to detect data subcarriers.

Ỹ
(k)
ξ =

1

Ts

∫
Ts

ỹ(B)(t)e−j2πfξtdt, (2.14)

where Ỹ (k)
ξ is an estimate of the transmitted signal X(k)

ξ at the receiver. Following NC-OFDM

receiver block, data subcarrier extraction block makes an N × NC matrix of estimated frames in

which the q̃ − th antenna frame is placed in the q − th row. In the case of perfect frequency

synchronization, only one element in each column contains data above the noise level and the others

should be null. The non-zero data of row q and column ξ + 1, (i.e., Ξ̃q,ξ+1) is demodulated in the
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Figure 2.7: (a) Delay profile; (b) Phase response of emulated KAM08 channel.

next block and determines the output frame, using the designation table.

Ξ̃q,ξ+1 → bi, i ∈ [(ξ + 1)n+ ξm+ 1 ... (ξ + 1)(n+m)],

q → ai, i ∈ [ξ(n+m) + 1 ... (ξ + 1)n+ ξm].
(2.15)

Rate Comparison: While conventional SM transmits log2N + log2M bits per transmis-

sion (bpt), Multiple Active SM (MA-SM), transmits
⌊
log2

(
N
NA

)
+NA log2M

⌋
bpt fromNA active

antennae [16], where b·c rounds to the nearest lower integer.

OFDM-IM can transmit
⌊
| log2

(
NG
K

)
|+K log2M

⌋
G bpt, whereG×N = NG. Here,G stands

for the number of groups, and NG shows the number of subcarriers in each group. The number

of transmitted bits in each transmission course (for IB sets of antenna at the buoy as depicted in

Fig. 2.5) for our proposed system is calculated as,

R = IBNC(log2N + log2M). (2.16)

2.4 Performance Evaluation

Simulation Settings: We consider a short/medium range transmission (less than 2 km), in which

the anchored buoy has an attached bar with installed hydrophones and the vehicle can move with a

smooth and almost constant horizontal speed on the other side, as depicted in Fig. 2.2. Two sets of

circular antennae are on the vehicle, each one contains four UCAs while two separate vector sensors

are on the buoy. To avoid spatial correlation between antennae, we need to keep the minimum
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Figure 2.9: Throughput of the proposed system (SSFB NC-OFDM) with different modulations.
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Figure 2.12: Comparing SSFB with conventional SM, MA-SM, and OFDM-IM in terms of num-
ber of bits transmitted in every transmitting course (bpt). Four transmitter antennae with QPSK
modulation are considered.

distance between adjacent elements more than λ/2.

We assume a channel with a number of sparse and separable paths, in which the first path is

the strongest part of signal. To extract the channel characteristics for our simulations, the channel

was exploited from Kauai Acomms MURI (KAM08) experiment at the western coast of Kauai, HI,

USA [54] where an anchored vertical hydrophone array with 3.75 m inter–element spacing at the

depth of 96 m communicates with a source towed by a surface ship. The channel bandwidth is

25 kHz and the sampling rate is 50 kHz. Figs. 2.7(a)-(b) show the normalized delay profile and

the phase response of the channel, respectively. An Underwater colored ambient noise, leading to

a SNR ∈ [0, 30] dB, is considered as the background additive noise. Initially, we assume 512

subcarriers are present in every NC-OFDM frame. The proposed system contains an inherent zero
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Figure 2.16: Percentage of error in antenna decision as the result of vehicle drifting.

padding by nulling the other interfering antennae. The recorded video which will be sent during

the simulation is an MP4 RGB-24 video with the duration of 5.2 s and frame resolution 240× 320.

Transmission starts with an initial delay of (τ1 + τ2) seconds, as explained in Fig. 2.4.

Results and Discussions: Fig. 2.8 shows the performance of the proposed system with different

modulation orders whereas its BER in the lower SNRs is not satisfactory, regardless of the modu-

lation order. The reason is that null subcarriers are covered by the background noise and so their

energy level is comparable with the data subcarriers; therefore, the receiver fails in the process of

data subcarrier extraction. The throughput of the system is plotted in Fig. 2.9 in terms of number

of bits per transmission course (bpt). Considering these two figures and due to the throughput-BER

tradeoff, the most proper modulation scheme is chosen. Therefore, SVC adaptively changes the rate

for the next round of transmission. Fig. 2.10 compares the proposed solution, i.e., SSFB, with the

conventional OFDM-based methods. The proposed solution outperforms other techniques in terms

of bit error rate, especially in higher SNRs.

Fig. 2.11 confirms that the average Bits Per Symbol (BPS) of SSFB is higher than of SISO- and

MIMO-OFDM, when similar modulation order is used for all of them. Moreover, it is observed that

SSFB can result in the same BPS values as SISO- and MIMO-OFDM, by using a lower modulation

order with the lower error rate. Fig. 2.12 confirms that SSFB outperforms the conventional methods

in terms of throughput. Regarding conventional SM, SSFB has a considerable data rate, while it

covers the fast antenna switching problem of SM by forming the frames prior to transmission. SSFB

rate is around double in comparison with OFDM-IM. In Fig. 2.13, SSFB throughput is compared
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Figure 2.17: (a) An Azimuth cut of the array response of the UCA on the vehicle; (b) Output of the
beamformer applied to the UCA; (c) Spatial spectrum of the AOA estimator output on the buoy.

100 200 300

50

100

150

200

100 200 300

50

100

150

200

100 200 300

50

100

150

200

100 200 300

50

100

150

200

100 200 300

50

100

150

200

100 200 300

50

100

150

200

(a) (e)

(f)(d)(b)

(c)

Figure 2.18: (a)-(b) Sample transmitted frames; (c)-(d) Received frames in the presence of noise;
(e)-(f) Received frames when AoA estimation and antenna decision are erroneous.

with OFDM-IM for different number of subcarriers and antenna sets. The bpt of 4 antennae with

512 subcarriers equals using two antenna sets with 1024 subcarriers. Therefore, the later one is

preferred regarding its lower probability of antenna beam interference.

Fig. 2.14 shows that SSFB is less vulnerable to Doppler shift than SISO- and MIMO-OFDM,

especially in higher SNRs. Fig. 2.15 investigates the effect of horizontal buoy-vehicle distance on

the transmission rate. In Fig. 2.16, we study the situation in which antenna decision making at the

receiver is not successful due to the vehicle’s drifts. Under severe drifts, the receiver suffers from

error in AoA estimation and antenna decision, which leads to higher error rate. This error is fed back

to the SVC encoder to be considered while making decision on the SVC layer for the next round of

transmission. Meanwhile the angular calculation process is restarted, as explained in Fig. 2.4.

In Fig. 2.17(a), the array response of UCA is plotted. Fig. 2.17(b) shows the result of applying

the designed beamformer to the UCA. It demonstrates that it can follow the original signal while
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the energy is focused on a specific direction. Fig. 2.17(c) confirms that AoA estimator is successful

in separating two signals which are arrived at 30 and 65 degrees.

Simulated video transmissions through SSFB is shown for two frames in Figs. 2.18(a)-(b). In

the first scenario, we assume that the vehicle has the least drift. AoA estimation and the antenna

decision are performed successfully. This result is reflected in Figs. 2.18(c)-(d). Figs. 2.18(e)-(f)

represent the second scenario, in which vehicle experiences AoA estimation and antenna decision

error. Frames can not be recovered when the amount of AoA estimation error increases significantly.

In this case, the error is fed back and the encoder tunes the parameters for the next round.

2.5 Summary

An Acoustic Vector Sensor (AVS)-based solution was proposed, called Signal-Space-Frequency

Beamforming (SSFB), to transmit underwater videos at high data rates (in the order of hundreds

of Kbps at the operating ranges of the application of interest, i.e., up to a few kilometers). To

achieve this goal, the receiver (buoy) was equipped with AVS—hydrophones that measure acoustic

particle velocity in addition to scalar pressure—in a multiple-antenna-array configuration, while

the transmitter (vehicle) was equipped with a circular array of transducers. Data was modulated

and transmitted via NC-OFDM, and detected via beam’s angle of arrival at the receiver (buoy).

In order to determine the angles of departure/arrival, the position uncertainty regions were studies

and a protocol was presented. The vehicle utilized beamforming based on the uncertainty region

and the estimated angles and the data was transmitted via the proposed uplink signaling, i.e., SSFB.

Simulations showed that video transmission rates can enable applications such as coastal and tactical

surveillance, which require multimedia acquisition and classification.
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Chapter 3

Probabilistic Spatially-Divided Multiple Access in Underwater
Acoustic Networks

Deploying Autonomous Underwater Vehicles (AUVs) is a necessity to enable a range of civil-

ian/military underwater applications; yet, achieving a reliable coordination among the vehicles is a

challenging issue due to the time- and space-varying characteristics of the acoustic communication

channel. The design of a Medium Access Control (MAC) based on a probabilistic Space Division

Multiple Access (SDMA) method for short/medium distances (less than 2 km) is presented in this

chapter. This method considers the inherent vehicle position uncertainty due to the inaccuracies

in models and the drift of the vehicles. It minimizes the acoustic interference statistically by con-

sidering the angular position of neighboring vehicles via a two-step estimation and by keeping the

transmitter antenna’s beamwidth of each vehicle at an optimal value. Such value is chosen con-

sidering three contrasting goals, i.e.: (i) spreading the signal beam towards the vehicle to combat

position uncertainty using a coarse estimation; (ii) focusing the beam to reduce acoustic energy dis-

persion through a fine estimation; and (iii) minimizing interference to other vehicles. Simulation

results show that this approach mitigates interference, reduces the probability of retransmission, and

achieves higher data rates over conventional underwater MAC techniques.

3.1 Overview

Underwater wireless acoustic networks, which are composed of static sensors and mobile vehicles,

underpin the underwater world and are instrumental to support next-generation ocean-observation

systems, to enable both civilian and military applications, and to pave the way towards the futuristic

Underwater Internet of Things (UW IoTs) paradigm. Oceanographic data collection, ocean pol-

lution monitoring, offshore exploration, tsunami detection/disaster prevention, assisted navigation,

and tactical surveillance are examples of some of such applications [51, 111]; for most if not all of
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these applications achieving communication and coordination is key, which in turn calls for the abil-

ity to transmit reliably signals underwater. This problem is still challenging in the harsh underwater

environment in which Radio-Frequency (RF) waves are absorbed for distances above a few tens of

meters, optical waves require narrow laser beams and suffer from scattering as well as ocean wave

motion, communication through magnetic induction is only feasible up to a few meters, and acous-

tic waves lead to a communication channel that is very dynamic, prone to fading, spectrum limited

with passband bandwidths of only a few tens of kHz due to high transmission loss at frequencies

above 50 kHz, and affected by non-Gaussian noise [136]. In addition, while the acoustic waves can

propagate underwater up to several tens of kilometers—making the communication technologies

based on them the only possible for distances above a hundred meters—their speed is not constant

and depends on temperature, salinity, and pressure of the body of water traversed.

Motivation: One of the main challenges for the effective coordination of a team of autonomous

vehicles underwater is how to design a fair and efficient Medium Access Control (MAC) proto-

col tailored to the harsh underwater acoustic environment. Due to the unique characteristics of the

propagation of acoustic waves in the water, in fact, existing terrestrial MAC solutions are unsuitable

for this environment [51]. One promising yet unexplored MAC technique for sparse underwater

networks is Space Division Multiple Access (SDMA) which exploits the signal beam directivity

and the spatial separation of the vehicles. It makes use of the fact that vehicles/mobile users can

be served simultaneously when they are not located in the same area, so that the radiated energy

for each user can be separated in space [117]. Among the possible channelized MAC techniques,

SDMA is more efficient when the network is sparse—as in the underwater environment1—than

Frequency Division Multiple Access (FDMA), which has limited acoustic bandwidth per channel,

Time Division Multiple Access (TDMA), which requires long time guards and high signaling over-

head (especially when some of the users are mobile and/or the body of water is large [77]), and

Code Division Multiple Access (CDMA), which is affected by a low data rate [96, 109, 114].

Notwithstanding these considerations, there are strong arguments against a brute-force applica-

tion of terrestrial SDMA to the underwater acoustic environment. In such MAC scheme, in fact,

1The network sparsity assumption here—leading to a high likelihood of spatial separation between vehicles—comes
from the observation that the vehicle density in a body of water is often low due to cost and scalability.



35

the expected increase in the data rate is highly affected by the accuracy of the Channel State Infor-

mation (CSI) at the transmitter; therefore, a considerable amount of effort should be dedicated to

compensate for the partial information at the transmitter in a (possibly) rapidly changing underwater

channel. Furthermore, a dramatic reduction in the throughput is observed if the feedback is delayed,

since the CSI becomes outdated. Noticeably, in underwater acoustic channels, CSI is usually un-

known to both transmitter and receiver. Moreover, in the terrestrial SDMA, every user can provide

its own real-time position information, which is not feasible underwater as Global Positioning Sys-

tem (GPS) does not work and the position information is not readily available. Even if we had

the users’ locations, applying them would still not be feasible because achieving perfect pointing

between transmitter and receiver is challenging due to the position uncertainty of the vehicles and

the nature of acoustic wave propagation. Furthermore, considering the effect of ocean currents on

the vehicle, inaccuracies in position estimation increases the position uncertainty [27,108]; and this

uncertainty becomes worse over time when the vehicle stays longer underwater due to error propa-

gation, which leads to non-negligible drifts in the vehicle’s position and thus making conventional

concept of SDMA inapplicable for the underwater environment.

Contributions: Any channel access method that exploits a deterministic approach for interfer-

ence mitigation/cancellation would not be an efficient solution underwater as it ignores the inherent

position uncertainty of the vehicles caused by drifts, model errors, and unbounded errors, thus lead-

ing to performance degradation. For these reasons, we present a novel probabilistic and spatially-

divided MAC to cancel/alleviate the interference while the inherent position uncertainty of vehicles

is considered in a sparse underwater mobile network. An Angle of Departure (AOD)-based solution

forms separate spatial beams via a probabilistic approach towards the target vehicles. Since the ve-

hicles are mobile, a two-stage estimation scheme is required to calculate the beam parameters, i.e.,

(i) a coarse interval estimation and (ii) a fine estimation via unscented Kalman filtering to update

the beam parameters for each antenna. An optimization problem mitigates the statistical interfer-

ence between the expected overlapped vehicles by keeping the transmit beamwidth and direction

within a desirable range. In the case the vehicles are entirely overlapped in space, we propose a

hybrid probabilistic time and space MAC scheme, called T-SDMA, which takes time into account

besides space, and outperforms conventional TDMA methods in terms of rate efficiency.

Chapter Outline: The remainder of this chapter is organized as follows. In Sect. 3.2, we
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provide a discussion on the related work and papers. In Sect. 3.3, we introduce the proposed system

and provide solutions for probabilistic SDMA, where both spatially separable and non-separable

scenarios are considered. In Sect. 3.4, we present our simulation results and discuss the benefits of

our solution. Finally, in Sect. 3.5, we summarize the chapter.

3.2 Related Work

During the past few years, several MAC protocols have been proposed for underwater communica-

tions. Time sharing-based solutions are exploited in many real underwater scenarios. However, they

will not be very efficient if the long propagation delay of the channel is not considered [73,158]. Au-

thors in [140] proposed a distributed and energy-efficient MAC protocol called Tone Lohi (T-Lohi),

as an energy efficient tone-based contention algorithm. This technique shows low channel utiliza-

tion, when the number of nodes increases. A delay tolerant MAC protocol (DTMAC) was proposed

in [69], in which the solution applies short-packets traffic to combat the effect of long propagation

delay and mobility in sparse networks. A collision-free TDMA scheduling was discussed in [72]

to improve the throughput by considering large propagation delays. Recently, the collected data at

sea experiments confirms that there is no unique MAC solution for all the scenarios and configu-

rations under various conditions [92]. Other random- and controlled-access MAC protocols such

as Carrier-sense Multiple Access (CSMA) transmit multiple packets through the same underwater

channel, which might lead to packet collisions at the receiver. The other method, which has both the

carrier sensing and collision avoidance mechanisms, is Floor Acquisition Multiple Access (FAMA).

The objective of this protocol is to ensure that a single sender reserves the channel via an RTS (Re-

quest to Send)/CTS (Clear to Send) handshake before transmitting a packet.

In this section, we briefly review conventional space sharing MAC algorithms and their related

challenges, while keeping in mind that they cannot be directly used in underwater channels. Assum-

ing spatial separation of the users, sectorized antenna can be a primitive application of terrestrial

SDMA [117]. SDMA-based Smart antennae in mobile networks can improve the network capac-

ity. A robust and self-organizing terrestrial SDMA is proposed for mobile ad-hoc networks in [15],

where it is shown that the network bandwidth efficiency depends on the number of mobile users.

In [55], an opportunistic terrestrial-based SDMA with threshold feedback algorithm for enforcing
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Figure 3.1: Bellhop ray tracing (right box) for a standard sound-speed profile (left box) indicating
how acoustic beams travel through the underwater acoustic channel [97]. The beams are almost
straight for short/medium ranges (less than 5 km) when the transmitter is at a depth of ∼ 0.9 km.

the sum feedback rate constraint was proposed. All these approaches still need the channel infor-

mation to be fed back to the transmitter, which is not always feasible underwater due to the long

propagation delays. Authors in [65] proposed a zero-forcing precoding with partial CSI, which is

known at the transmitter in the terrestrial ad-hoc networks. In [101], beamforming was proposed

for multiuser multi-antenna SDMA downlink systems. In [152], the authors presented a hybrid

architecture for downlink beamforming with phased antenna arrays in indoor SDMA channels as

a new generation of broadband terrestrial personal and local area networks. Recently, multi-beam

smart antenna array system based on SDMA was presented, which is a promising candidate for next

generation of wireless communications as it enables the antennas to adapt and to steer the energy

towards a desired direction [6].

To implement any spatially-divided MAC protocol for the underwater channel, as we mentioned

earlier, one of the main challenges to face is the inaccuracy and uncertainty in localization models of

the underwater vehicles. Short Baseline (SBL) is one of the most common ways to localize vehicles

underwater, in which the position estimate is performed via external transponder arrays. Long

Baseline (LBL) system, similarly to SBL, also uses tethered external transponder arrays with fixed

locations [64] in farther distances. Dead-reckoning estimation of position is based on accumulated

measurement of the velocity compared to the surface. AUV Aided Localization (AAL) methods

were also introduced in the literature, in which the distances to the AUV is estimated by each node,

while the AUV is at different locations [42, 105]. In [27], an approach has been proposed to predict

vehicles’ position through statistical method. This method also estimates the position uncertainty

of the vehicles and designs a routing protocol based on the vehicles’ confidence region. Given the

randomness of underwater channel and its long propagation delay, interference distribution under
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various signal propagation models was discussed in [73]. However, our proposed solution aims at

mitigating the interference between the underwater vehicles caused by the position uncertainty in

the water via spatial and time division techniques.

3.3 Proposed Probabilistic Solution in Sparse Networks

Underwater Acoustics and the Requirements for Sparse Networks: While sound waves travel

through the underwater medium, part of the acoustic/elastic energy is absorbed; a well-known

expression that models the medium absorption coefficient as a function of frequency is a(f) =

(0.11f2)/(1 + f2) + (44f2)/(4100 + f2) + 2.75 × 10−4f2 + 0.003 [134]. In this empirical for-

mula, 10 log10 a(f) gives the channel attenuation in dB/km. Propagation loss can be modeled via

Pa = ςD$ea(f)D, in which ς , D, and $ stand for the scattering loss, distance, and spreading loss

parameters, respectively [157].

Let us assume that the transmission occurs at short/medium ranges and that the direct beams are

dominant over the reflected beams from the surface and the bottom of the sea so that the receiver

is not severely affected by multipath. For farther distances (above a few kilometers) and based

on the sound-speed profile, the acoustic rays bend towards the region of lower acoustic speed (the

so-called “laziness law”). This effect changes the Angles Of Departure/Arrival (AOD/AOA) and

their estimations. Using the Bellhop model [97] and considering a typical deep-water case, Fig. 3.1

illustrates the sound-speed profile (left) and the acoustic ray tracing (right) in the underwater channel

for a sample source at a depth of ∼ 0.9 km and a water temperature of 39◦F . The bending effect

can be observed at distances of a few kilometers, however, staying within a short/medium range

(less than 5 km), such bending is not notable, which explains the philosophy behind our signaling

method in which the vehicle is steered via beamforming.

To consider the time variability of an underwater acoustic channel, assume it varies after approx-

imately tc seconds (channel coherence time). This parameter can be defined by Clarkes model [117]

as tc =
√

9/(16πfd
2) ≈ 0.423/fd = 0.423/(αdfc), where fd is the Doppler shift, fc is the carrier

frequency, and αd represents the Doppler scaling factor. Let D be the distance between the buoy

and the vehicle, then the round trip delay time tD for the distance 2D should be less than tc. It is

easily shown that for an underwater channel with a specific sound profile and with fc = 20 kHz,
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αd = 3 × 10−5, and for distances greater than D ≈ 500 m, the time for receiving feedback CSI

signal could be larger than the coherence time of the channel [29]. It is worth mentioning that the

proposed technique in Sect. 3.3 is not channel dependent, so the information sent back to the trans-

mitter is usable for a longer time compared to channel variations. Furthermore, as discussed in [27],

by assuming that ocean currents are unknown, the vehicle’s drifting in the horizontal plane is iden-

tically and independently distributed (i.i.d.) and follows a normal distribution, which makes the

horizontal projection of its confidence a circular region. Regarding the vehicle’s movement along

its trajectory, the uncertainty region is concluded to be a cylinder [27].

There are multiple methods for underwater vehicles to be localized that can be generally catego-

rized as inertial dead reckoning, acoustic transponders and modems, and geophysical methods [85].

The selection of the localization method is dependent on the application, the environment and the

desired accuracy. In some regions, depth sensors can be implemented to provide information about

vertical position of the vehicles. In some applications, the receiver antenna arrays can be utilized to

estimate the AUV’s location. In [110], we utilized Acoustic Vector Sensors (AVS) to estimate the

angle of arrival. In this chapter, we follow [27] and choose dead reckoning as the initial localization

technique, although the localization technique does not directly impact our proposed solution. Dead

reckoning method is subject to cumulative errors, but as a classic location estimator and because of

its simplicity of implementation, it is still a widely-used solution in AUVs [85]. Each vehicle es-

timates its trajectory and position, using its own location estimates and considering the inherent

position uncertainty of objects underwater. Every ∆t seconds, each vehicle estimates its current lo-

cation by measuring its velocity and using the previous estimated locations. Vehicles adopt a polling

model, as will be explained in the algorithm, to send back the measured position samples through

a feedback channel. Notice that the type of vehicles that can benefit from this research depends on

the application, but it does not directly impact our proposed solution. Buoyancy-propelled gliders—

which follow a sawtooth-shaped glide path—move not as fast as conventional AUVs (a fraction of

a meter per second), however, they are extremely efficient in terms of power consumption making

them suitable for background monitoring missions, whereas propeller-driven AUVs are capable of

operating at higher speeds.

Proposed Probabilistic Solution: In this section, we present our solution and provide more
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Figure 3.2: Framework depicting the interaction between different parts, called macro-states.

Table 3.1: Notations and Mathematical Terms: Coarse Estimation.
Notation Description
a(f) Medium absorption coefficient
Pa Propagation loss at distance D
ς , $ Scattering and spreading loss parameters
tD Round trip delay
tc Coherence time
fd, αd Doppler shift and scaling factor
n, N Location sample index, total location samples
J Total number of vehicles
∆z, ∆x Vertical and horizontal location drift
(i), (j) Neighboring vehicles
Θ Vector of parameters
Tx Buoy’s antennae
m Antenna index
θ

(j)
n Angle in elevation plane
φ

(j)
n Angle in azimuth plane
hL, hU , R Cylinder’s lower and upper height, and radius
θ′(j) Transferred angle to the center
θ̄′(j) Centered AOD angle
z

(j)
m Vertical distance (depth) of (j) to antenna m
T Student’s t-distribution critical value
N Normal distribution
θ̄ Mean of N samples
µθ Distribution mean
σ2
θ Standard deviation
Sθ Standard deviation of samples
1− α Confidence degree
θ

(j)
L , θ(j)

U Lower and upper boundaries of vehicle (j)

W
(j)
θ HPBW towards vehicle (j)

Γ
(j)
θ AOD towards vehicle (j)

details for different parts of the system. Fig. 3.2 shows the system framework through the interac-

tion between its macro-states. We define the notion of macro-states to distinguish them from the

definition of states, which will be used later for beam’s parameters. First, we form separate spatial

beams probabilistically towards the target based on coarse and fine estimations, if we do not expect
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Figure 3.3: Geometric configuration representing surface buoy-to-vehicle communications. Posi-
tion uncertainty regions of vehicles j, i, and k are shown as cylinders. Angles θ(j)

U and θ(j)
L stand

for the upper and lower angles of the beam.

any severe interference; otherwise, the system transits to the next macro-state, which consists in the

statistical interference cancellation. If the probability of interference/miss trade-off is satisfactory,

then we shift to the transmit macro-state. In the case that the vehicles are non-spatially separable, a

hybrid probabilistic time and space MAC scheme, called T-SDMA, will be proposed. The details of

each macro-state will be discussed as follows. First, in Sect. 3.3, we introduce the initialization pro-

cedure and the coarse estimation for our probabilistic SDMA via interval estimation of the antenna’s

parameters. Then, we present a fine estimation technique which is required for antenna AOD and

beamwidth estimation via an unscented Kalman filtering. We propose a statistical interference can-

cellation via an optimization problem. All these discussions assume that the vehicles are separable

in space. Finally, in Sect. 3.3, the estimated values are applied to spatially overlapped non-separable

vehicles and a hybrid solution suitable for this scenario is presented. Table 3.1 summarizes the main

mathematical terms used in the coarse estimation section.

Coarse Confidence Interval Estimation: In this step, we explore how the estimated position of

the vehicles are used to achieve a coarse estimation of antenna parameters in a centralized fashion.

Fig. 3.3 shows the general configuration of the system including buoy’s antenna arrays, vehicles,

and their cylindrical position uncertainty regions. A second set of arrays, which is not depicted in

this figure, is implemented on the other side of buoy to cover the spherical space around it. Assume
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the neighboring vehicles i, j, and k follow different trajectories. To calculate the uncertainty region,

vehicle j broadcasts its nth location sample at time t as locn(t) = [x
(j)
n , y

(j)
n , z

(j)
n ]Nn=1. Assume the

initial AODs towards two separate vehicles i and j are identified as θ(i) and θ(j). Since the variation

of a vehicle’s position inside the uncertainty region can be defined as a random variable [27], it is

inferred that the variation of the angles at the buoy’s transmitter is also a random variable with un-

known mean and variance. We claim that each angle is a result of a drift in the nth location sample as

θ
(j)
n (t) = tan−1(z

(j)
n (t−tD/2)/x

(j)
n (t−tD/2)) where tD/2 shows the delay in transmission, as dis-

cussed before. For simplicity of notation, let us drop the superscript j in zn(t) = zn(t−tD/2)±∆z

and xn(t) = xn(t − tD/2) ±∆x, where ∆z and ∆x stand for the vertical and horizontal drifts in

the vehicle’s location after tD/2. For example, for a distance of D = 1000 m, the delay equals

tD/2 ≈ 0.66 s and the vehicle moves ∆x ≈ 0.16 m, which is negligible compared to the transmis-

sion distance considering a vehicle’s constant speed of 0.25–0.5 m/s [27]. Based on the Taylor’s

polynomial approximation, tan−1(zn/xn) ≈ zn/xn − 1/3(zn/xn)3 + 1/5(zn/xn)5 − ..., where

zn is the vehicle’s vertical drift due to its position uncertainty. This value is very small in com-

parison with xn, which is the horizontal distance between the vehicle and the buoy; consequently,

θn ≈ zn/xn. Besides, [76] provides approximations to demonstrate in practice that many of the

ratios of normal random variables are normally distributed if the denominator of z/x is positive

and its coefficient of variation is very small. Based on the numerical calculations in [49], we can

conclude that θn follows a normal distribution.

Definition 1. Let X = (X1, ..., Xn) be a random sample observation from a distribution with

parameter Θ, then a random variable V(X1, ..., Xn,Θ) is called a pivotal quantity if its distribution

is independent of all parameters Θ [25].

Definition 2. An interval estimate of a parameter Θ, for any random sample observation X , is

defined by the pair of LΘ(X) and UΘ(X), where LΘ(X) ≤ Θ ≤ UΘ(X). This interval, together

with the probability Pr
(
Θ ∈ [LΘ(X), UΘ(X)]

)
, is called confidence interval [25].

Statement 1. Since θn’s are random samples of a normal distribution with N(µθ, σ
2
θ), from the

statistical inference theorem [25] the mean θ̄ and the standard deviation of samples Sθ are also

independent random variables and θ̄ has a normal distribution, N(µθ, σ
2
θ/2). Besides,

θ̄ − µθ
Sθ/
√
N

has

a Student’s t-distribution with N − 1 degrees of freedom.

Statement 2. Considering definitions (1)-(2) and for a pivotal quantity V(X,Θ) and parameter Θ, a
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confidence interval is defined as Pr
(
LΘ(X) ≤ V(X,Θ) ≤ UΘ(X)

)
≥ 1− α, where 1− α shows

its amount of confidence degree.

Given the above statements, after {θn, φn}Nn=1 are derived from the vehicle’s location, the an-

gular uncertainty region of the vehicle will be calculated as follows. Let us perform the analysis

for θ plane with mean value µθ and standard deviation σθ. It can be inferred that
θ̄ − µθ
Sθ/
√
N

is a pivot

since the Student’s t-distribution does not depend on µθ and σθ. For vehicle j, it can be derived as,

Pr(θ
(j)
L ≤ µ

(j)
θ ≤ θ

(j)
U ) ≥ 1− α, (3.1)

where θ(j)
L and θ(j)

U are the interval boundaries and can be calculated from the following equations.

θ
(j)
L = θ̄(j) − TN−1,α/2

S
(j)
θ√
N
, (3.2a)

θ
(j)
U = θ̄(j) + TN−1,α/2

S
(j)
θ√
N
, (3.2b)

where TN−1,α/2 is the Student’s t-distribution critical value with N − 1 degrees of freedom. Fur-

thermore, mean and standard deviation can be estimated as,

θ̄(j) =
N∑
n=1

θ
(j)
n

N
, (3.3)

S
(j)
θ =

[
1

N − 1

N∑
n=1

(
θ(j)
n − θ̄(j)

)2
] 1

2

. (3.4)

In our solution, the transmitter adjusts its beam’s direction towards each vehicle and modifies its

beamwidth within a confident range to cover the desired user. Beam’s direction in the elevation and

azimuth planes are defined as θ̄(j) and φ̄(j), respectively, and the beamwidth is assumed homoge-

neous in both planes. For the elevation plane, the beamwidth is chosen in such a way that it is equal

to the confidence interval of θ̄(j). In other words, the transmitter forms the beam in an interval of

±TN−1,α/2S
(j)
θ /
√
N around θ̄(j), i.e.,

Γ
(j)
θ = θ̄(j), W

(j)
θ = θ

(j)
U − θ

(j)
L , (3.5)



44

where Γ
(j)
θ and W (j)

θ are the AOD towards vehicle j and the Half Power Beam Width (HPBW),

respectively. Similar calculations can be performed for Γ
(j)
φ and W (j)

φ . A reliable method to control

the beam’s direction is to use arrays of acoustic transducers. The required acoustic specifications,

such as the maximum source level, maximum acoustic power, directivity index and AOD, number

of steered beams, and beam widths define the number, geometrical arrangement, as well as the

relative amplitudes and phases of the array elements [22, 82]. The antenna array contains multiple

individual projectors to direct the acoustic power in the desired direction Γ(j) and beamwidth W (j)

for vehicle j in elevation or azimuth planes. Using more elements in the array leads to a higher

gain and, therefore, a narrower beamwidth. The main beam always points at the desired direction,

while the beamwidth depends on the effective aperture. Beamwidth can be controlled by changing

the relative amplitudes and phases of the transducers. Novel array designs will provide the required

narrow beams in the direction of interest [22]. A configurable software-defined platform, which

utilizes a broadband phased array transducer, can achieve the required goals in a single unit on the

fly, while the cost of having such multiple functions reduces [26].

Fine Estimation: As the vehicle moves, new measurements are acquired periodically and a fine

estimation is required on top of the coarse estimation to reduce the energy dispersion and to support

vehicle’s mobility as explained below. We propose a two-stage solution to handle the estimation

in a continuous manner when the vehicles move and take new location samples. The calculated

parameters and predictions by interval estimation should be updated by a Kalman Filtering in order

to track the vehicles. The following statements and theorems study the cases in details.

Statement 3. Let Ω be the space of infinite and countable states; the stochastic process {γn}n∈N ,

whose components are in Ω, is said to possess the Markov property if the probability follows

Pr[γn+1 = Cn+1 | {γ0 = C0, ..., γn−1 = Cn−1, γn = Cn}] = Pr[γn+1 = Cn+1 | γn = Cn].

Theorem 1. Given N samples {θn}n∈N , mean θ̄n and standard deviation Sθ,n are sequences of

random variables and possess the Markov Property, when the new sample θN+1 is accumulated in

the sequence of N + 1 samples.

Proof 1. While the accumulation is performed, we have N samples at state k and N + 1 samples

at state k + 1. For these states we can write θ̄k =
1

N

∑N
n=1 θn and θ̄k+1 =

1

N + 1

∑N+1
n=1 θn =

1

N + 1
(Nθ̄k + θN+1). Therefore, Pr[θ̄k+1 | {θ̄0, ..., θ̄k−1, θ̄k}] = Pr[θ̄k+1 | θ̄k]. Similarly, for
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the estimated standard deviation we can conclude that, Sθ,k+1 =

[
1

N + 1

N+1∑
n=1

(
θn − θ̄k+1

)2] 1
2

=[ 1

N + 1

( N∑
n=1

(
θn −

Nθ̄k + θN+1

N + 1

)2

+
(
θN+1 − θ̄k+1

)2 )] 1
2 =[ 1

N + 1

( N∑
n=1

(
θn −

(N + 1)θ̄k − θ̄k + θN+1

N + 1

)2

+
(
θN+1 − θ̄k+1

)2 )] 1
2 . If

N∑
n=1

(
θn − θ̄k

)2 is re-

placed by NSθ,k
2, then Sθ,k+1 =

[
1

N + 1

(
NSθ,k

2 + N

(
θN+1 − θ̄k
N + 1

)2

+ (θN+1 − θ̄k+1)
2 −

2(θN+1 − θ̄k)
N + 1

∑N
n=1(θn − θ̄k)

)] 1
2

. Since
N∑
n=1

θn = Nθ̄k, the above equation results in Sθ,k+1 =[
1

N + 1

(
NSθ,k

2 +N

(
θN+1 − θ̄k
N + 1

)2

+ (θN+1 − θ̄k+1)
2)] 1

2

.

Now, since Sθk+1
is a function of two variables (i.e., θ̄ and S(θ)), where θ̄k and θ̄k+1 are se-

quences of i.i.d. random variables, the Markov property holds by definition. Therefore, Pr[Sθ,k+1 |

{Sθ,0, ..., Sθ,k−1, Sθ,k}] = Pr[Sθ,k+1 | Sθ,k].

Theorem 2. Given N samples {θn}n∈N , mean θ̄n and standard deviation Sθ,n are sequences of

random variables and possess the Markov Property when the new sample θN+1 is considered in the

sequence of N samples n = 2, ..., N + 1.

Proof 2. There are N samples at states k and k + 1, if we use a fixed-size sliding window. There-

fore, θ̄k+1 =
1

N

∑N+1
n=2 θn =

1

N
(
∑N

n=1 θn + θN+1 − θ1) = θ̄k +
1

N
(θN+1 − θ1) and the

Markov property holds. Similar calculations can be written for state k + 1 of standard deviation as,

Sθ,k+1 =

[
1

N

N+1∑
n=2

(
θn − θ̄k+1

)2] 1
2

=
[ 1

N

( N∑
n=1

(
θn − θ̄k −

θN+1 − θ1

N

)2

+
(
θN+1 − θ̄k+1

)2 −(
θ1 − θ̄k+1

)2 )] 1
2 . By replacing

∑N
n=1

(
θn − θ̄k

)2 byNSθk
2, we conclude Sθ,k+1 =

[ 1

N

(
NSθk

2+(
θN+1 − θ̄k

)2
N

+
(
θN+1 − θ̄k+1

)2 − (θ1 − θ̄k+1

)2 − 2(θN+1 − θ̄k)
N

∑N
n=1(θn − θ̄k)

)] 1
2 . Since

the last term in this equation equals zero, we have Sθ,k+1 =
[ 1

N

(
NSθk

2 +

(
θN+1 − θ̄k

)2
N

+(
θN+1 − θ̄k+1

)2 − (θ1 − θ̄k+1

)2 )] 1
2 , which proves that Sθ also defines a Markov property.

Given the Markov property of beam parameters and the previous angle estimations for vehicle

j at state k, i.e., θ̄(j)
k and S(j)

θ,k, the new estimations are updated at state k + 1 as θ̄(j)
k+1 and S(j)

θ,k+1.

To stabilize the variations, we consider both the uncertainties in new samples and in the latest

estimation of the previous state until the current state. We assign a weight to them by using Kalman

Filtering. We update the current state of parameter vector Θ, which stands for the random variables
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[Γθ(θ̄),Wθ(Sθ)] for vehicle j as follows,

Θ
(j)
k+1 = F(Θ

(j)
k ) + Zk, (3.6a)

Y
(j)
k+1 = H(Θ

(j)
k+1) + Vk, (3.6b)

where Zk and Vk represent the process and measurement uncorrelated Gaussian noise (with covari-

ance QZ and QV ), respectively. Functions F and H are the state-transition models, which are gen-

erally nonlinear. Based on the observed angle, the interval estimation calculates an estimation given

C
(j)
k+1—which is defined as a Markov state—with transition probability Pr[Θ̂

(j)
k+1 = C

(j)
k+1|Θ

(j)
k =

C
(j)
k ]. The probability of possible state for time instant k + 1 equals to Pr[Θ̂

(j)
k+1 = C

(j)
k+1|Θ

(j)
k =

C
(j)
k ] Pr[Θ

(j)
k = C

(j)
k ], where {Θ(j)

k }k∈S takes its values from state space S. For vehicle j, transition

to the next state at time instant k + 1 could be done via one of these three cases: Case I (A)—

sample accumulation; Case II (S.W.)—fixed-size sliding window; or Case III (C.E.)—staying in

the current estimate.

Π
(j)
k+1|k =


Π

(j)
I , if{n}k+1 = {1, ..., N + 1},

Π
(j)
II , if{n}k+1 = {2, ..., N + 1},

Π
(j)
III , if{n}k+1 = {1, ..., N},

(3.7)

where Π
(j)
k+1|k ∈ [0, 1] is the transition probability for vehicle j and

∑III
s=I Π

(j)
s = 1. Based on the

following statement, two non-identical cases, Case II and Case III , are defined in (3.7).

Statement 4. Considering every observation θk+1 at time instant k + 1, the behavior of the up-

dated estimation (Y (j)
k+1) in terms of mean and standard deviation is in general time dependent if the

number of samples is not sufficiently large.

Statement 5. Let θk+1 be the observed angle sample at time instant k + 1. Our MAC protocol

decides on the next case as follows. Case I in (3.7) is superior when the updated estimations of

the mean and the standard deviation need to be more accurate. Sample accumulation offers a better

interval estimation for the beamwidth and AOD if the number of samples is bound to increase. This

leads to a narrower beam, which possibly decreases the probability of interference but increases

the probability of miss. On the other hand, keeping a constant number of samples, i.e., using a

fixed-size sliding window, as in Case II , shows the time-dependent nature of the estimation as the
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Figure 3.4: MAC protocol decides on the next estimate of each vehicle when new samples are
acquired. Coarse estimation is updated via one of the cases, as in Statement 5.

vehicles change their positions. This fixed-size beamwidth does not increase the probability of miss.

Case III is preferred to reduce the probability of miss, when the probability of interference is very

small, i.e., when the vehicles are separated in space.

Fig. 3.4 depicts how our MAC decides on the next case based on the new sample and also on the

separability of the vehicles. Transition from one case to another in each vehicle, as part of coarse

estimation, considers the given information of other neighbors so as to fulfill the separability of the

users. The transition probabilities were defined in (3.7) and the output of this process is applied to

the fine estimation, i.e., the Kalman Filtering.

Unscented Kalman Filtering (UKF) is applied to this problem as follows. Let Θ̃k and Q̃Θk be

the mean and covariance of parameter Θ with the initial value calculated from the interval estimation

output. To find the statistics of the random variable Y , we form 2λ + 1 sigma points ζ for vehicle

j—whose index is ignored in the following for the sake of notation simplicity—as follows,

ζi,k =


Θ̃k i = 0,

Θ̃k + (β

√
λQ̃Θk)

i
, i = 1, ..., λ,

Θ̃k − (β

√
λQ̃Θk)

i
, i = λ+ 1, ..., 2λ,

(3.8)

where β is a scaling parameter and (.)i stands for the ith column of the square root matrix. Sigma
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Table 3.2: Notations and Mathematical Terms: Fine Estimation.
Notation Description
Vk Measurement noise
Zk Process noise
QZ , QV Covariance of noise Zk and Vk
F, H State-transition models
Π

(j)
k+1|k Transition probability for vehicle (j)

Y
(j)
k+1 Observation estimation

Θ̃k Mean of the parameter Θ

Q̃Θk
Covariance of the parameter Θ

KG Kalman gain
ζi,k Sigma points for vehicle (j)
λ Number of the sigma points ζ
β Scaling parameter
P

(i,j)
I Interference of vehicles (i), (j)
µI , σI Mean and standard deviation of interference
Θ′ Vector of centered variables
Θ′
∗ Optimum parameters

W
(J)
θ0 Initial HPBW

Γ
(J)
θ0 Initial AOD
S

(J)
θ′0 Initial standard deviation
θ′

(i)
0L, θ′(j)0U Lower and upper boundaries

ρ Control parameter
D Constraints domain
(θ̄′)
∗, (Sθ′)

∗ Optimum mean and standard deviation
R

(j)
I Retransmission rate (interference)

R
(j)
m Retransmission rate (miss)

RTS Time slot usage ratio for T-SDMA
nc, c ∈ ĉ Total number of time slots, clusters
M1 Maximum number of vehicles in cluster
M2 Number of clusters in inter-clustered group
M3 Maximum vehicles per cluster in inter-clustered group
RT Time slot usage ratio
MT Total number of time slots
η Rate efficiency
R̃TS Data rate per vehicle per transmitting frame
Ts Time duration of a time slot
Np, Lp Number and length of packets
SW Number of attempts (retransmissions)

vectors go through the nonlinear function F, and the mean and covariance for χi,k+1|k are approxi-

mated via the following equations [149, 154],

χi,k+1|k = F(ζi,k), i = 1, ..., 2λ, (3.9)
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Θ̃k+1|k =
2λ∑
i=0

ηiχi,k+1|k, (3.10)

Q̃Θk+1|k =
2λ∑
i=0

ηi(χi,k+1|k − Θ̃k+1|k)(χi,k+1|k − Θ̃k+1|k)
T +QZ , (3.11)

where the transpose operation is shown by T and the weights are defined as η0 = 1 − 1/β2 and

ηi = 1/(2λβ2), for i = 1, ..., 2λ.

Yi,k+1|k = H(χi,k+1|k), i = 1, ..., 2λ, (3.12a)

Ỹk+1|k =

2λ∑
i=0

ηiYi,k+1|k, (3.12b)

Q̃Yk+1|k =
2λ∑
i=0

ηi(Yi,k+1|k − Ỹk+1|k)(Yi,k+1|k − Ỹk+1|k)
T +QV , (3.13)

Q̃ΘYk+1|k =
2λ∑
i=0

ηi(χi,k+1|k − Θ̃k+1|k)(Yi,k+1|k − Ỹk+1|k)
T . (3.14)

Now, the UKF gain KG is defined as KG = Q̃ΘYk+1|kQ̃
−1
Yk+1|k

.

The next state estimation and its covariance are applied to the antenna at state k + 1. The

corresponding estimations can be written as,

Θ̂k+1 = Θ̃k+1|k + KG(Yk+1 − Ỹk+1|k), (3.15a)

QΘk+1
= Q̃Θk+1|k −KGQ̃ΘYk+1|kKG

T , (3.15b)

while the error vectors can be written as εk+1 = Θk+1 − Θ̂k+1 and εk+1|k = Θk+1 − Θ̃k+1|k.

To quantify the real prediction error covariance matrix, the approximation method presented

in [154] can be used. The residual of the observation can be computed as,

υk+1 = Yk+1 −H(Ỹk+1|k), (3.16)

while the residual covariance matrix is Qυk+1|k = E[υk+1υk+1
T ].

If the vehicles are still overlapped, the next macro-state will be the statistical interference can-

cellation; otherwise, the system shifts to the transmit state, as explained in Fig. 3.2. Table 3.2
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Figure 3.5: Configuration of the system while vehicles j and i overlap.

summarizes the main mathematical terms used in the fine estimation and the rest of this chapter.

Statistical Interference Cancellation: Let J be the number of underwater vehicles deployed

in the body of water with J ≤ Tx, where Tx is the number of buoy’s antennae. Two vehicles j

and i (j, i ∈ J) probabilistically might overlap considering their uncertainty regions, as shown in

Fig. 3.5. If the AODs for each pair of vehicles are Γ
(j)
θ = θ̄(j) and Γ

(i)
θ = θ̄(i), they can be mapped

from the mth and (m + 1)th antennae, ∀m ∈ {1, ..., Tx} to their center point, where θ̄′(j) and

θ̄′(i) are the transferred angles corresponding to vehicles j and i in the θ’s plane. We can conclude

that tan(θ̄′(j)) = (1 + dm/z
(j)
m ) tan(θ̄(j)), where z(j)

m is the vertical distance between the depth

of vehicle j and antenna m, and dm is the distance between the center point and antenna m. As

z
(j)
m � dm, it can be concluded that θ̄′(j) ≈ θ̄(j).

As shown in Fig. 3.5 and given the probability distribution of the vehicles’ positions, interfer-

ence might occur if the upper boundary in the uncertainty region of vehicle i overpasses the lower

boundary in the uncertainty region of vehicle j; we call this situation statistical interference.

Statement 6. For random variables θ′(j) and θ′(i), with means of θ̄′(j) and θ̄′(i) and standard devi-

ations of S(j)
θ′ and S(i)

θ′ , we define the probabilistic separability as Pr
(
θ′(i) < θ′(j)

)
. If the inter-

ference occurs, the overlapping area of the distribution functions of θ′(j) and θ′(i), as specified in

Fig. 3.5, represents the statistical interference of two vehicles as P (i,j)
I = 1− Pr

(
θ′(i) < θ′(j)

)
.

Lemma 1. Interference is modeled by normal probability distribution function with the mean and

the standard deviation of µI = θ̄′
(i) − θ̄′(j) and σI =

√
(S

(j)
θ′ )

2
+ (S

(i)
θ′ )

2
, respectively.

Proof 3. P (i,j)
I = Pr

(
θ′(i) > θ′(j)

)
= Pr

(
θ′I > 0

)
, where θ′I = θ′(i) − θ′(j). Since θ′I is the
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weighted sum of two independent normal random variables, it has a normal distribution with mean

and standard deviation values as specified in Lemma 1.

We present a method that minimizes the acoustic beam interference by considering the updated

position of each vehicle. This method finds a focused beam for the overlapping vehicles so as to

reduce the interference, however, this may cause the vehicles to fall out of the coverage. There is

a trade-off between the probability of interference and the probability of miss; hence, an optimiza-

tion problem is required to find the beam parameters to minimize the interference while satisfying

coverage requirements. By keeping the transmitter antenna’s beamwidth at an optimal value, the

proposed method finds a desirable trade-off among three contrasting goals: (i) spreading the signal

beam towards the receiver to combat position uncertainty; (ii) focusing such beam to reduce acous-

tic energy dispersion; and (iii) minimizing interference to other vehicles in the surrounding. In the

case that there are more than two interfering vehicles, the interfering vehicles will be sorted from

high to low and interference cancellation will be performed for each pair of interfering vehicles.

Lemma 2. Minimizing the statistical interference is paramount to minimize

√
(S

(j)
θ′ )

2
+ (S

(i)
θ′ )

2

θ̄′(j) − θ̄′(i)
.

Proof 4. Starting from our definition of interference P (i,j)
I = Pr

(
θ′I > 0

)
, we have,

P
(i,j)
I =

∫ ∞
0

fI(θ
′
I)dθ

′
I =

1

σI
√

2π

∫ ∞
0

exp

{
−1

2

(
θ′I − µI
σI

)2
}
dθ′I . (3.17)

By defining the auxiliary variable x = (θ′I − µI)/σI , we obtain,

P
(i,j)
I =

1√
2π

∫ (µI/σI)

−∞
e−(x2/2)dx = Φ(

µI
σI

), (3.18)

where Φ(.) is the Cumulative Distribution Function (CDF) of the standard normal distribution.

P
(i,j)
I = Φ

− θ̄′(j) − θ̄′(i)√
(S

(j)
θ′ )

2
+ (S

(i)
θ′ )

2

 = 1− Φ

 θ̄′(j) − θ̄′(i)√
(S

(j)
θ′ )

2
+ (S

(i)
θ′ )

2

 , (3.19)

where the equality is concluded via the rotational symmetry characteristic of Φ(.). From (3.19), it

is inferred that,
θ̄′(j) − θ̄′(i)√

(S
(j)
θ′ )

2
+ (S

(i)
θ′ )

2
= Φ−1(1− P (i,j)

I ). (3.20)
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Figure 3.6: Timeline showing the interaction between the buoy and vehicles i and j in the trans-
mission range. Comparison between different incidents is shown in different transmission rounds.
In round (I), reliable transmission is ensured since the vehicles are spatially separate; however, in
rounds (II) and (III), the interference occurs.

Here, Φ−1(.) is the Probit function and Φ−1(1−P (i,j)
I )→∞ when (1−P (i,j)

I )→ 1. Therefor,

the left side of (3.20) approaches∞ when P (i,j)
I → 0. It proves that we can minimize the statistical

interference by minimizing

√
(S

(j)
θ′ )

2
+ (S

(i)
θ′ )

2

θ̄′(j) − θ̄′(i)
.

Let Θ′ = [θ̄′(j), S
(j)
θ′ , θ̄

′(i), S
(i)
θ′ ] be the vector of variables. An optimization problem with the

objective function introduced in Lemma 2 is cast as follows.

Given : W
(J)
θ0 ,Γ

(J)
θ0 , S

(J)
θ′0, θ

′(i)
0L , θ

′(j)
0U , ρ,N, α, J = i, j;

Find : (θ̄′(J))∗, (S
(J)
θ′ )∗

min
Θ′

Λ
(
Θ′
)

=

√
(S

(j)
θ′ )

2
+ (S

(i)
θ′ )

2

θ̄′(j) − θ̄′(i)
(3.21a)

s.t. 2(TN−1,α/2

S
(J)
θ′√
N

) ≤W (J)
θ0
, J = i, j, (3.21b)

θ̄′
(j)

+ (TN−1,α/2

S
(j)
θ′√
N

) ≤ θ′(j)0U , (3.21c)

θ̄′
(i) − (TN−1,α/2

S
(i)
θ′√
N

) ≥ θ′(i)0L , (3.21d)

θ̄′
(J)

+ (TN−1,α/2

S
(J)
θ′√
N

) ≥ θ̄′(J)
0 + ρ

S
(J)
θ′0

4
, (3.21e)

θ̄′
(J) − (TN−1,α/2

S
(J)
θ′√
N

) ≤ θ̄′(J)
0 − ρ

S
(J)
θ′0

4
. (3.21f)

This problem is a constrained multivariable fractional nonlinear programming as a ratio of cho-

sen real-valued functions from a set D of space R4. Both the numerator and denominator are positive
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Figure 3.7: Timeline showing how MAC handles the transmission in the presence of possible inter-
ference when the vehicles are within the buoy’s transmission range as presented in round (IV ). If
the vehicle falls out of the angular coverage, the buoy will be notified by a timeout as presented in
round (V ).

for all values of Θ′ which are defined by the constraints domain set D. The numerator is a norm

function which is convex [19], while maximizing the denominator minimizes the objective function.

Since θ̄′(j) > θ̄′(i), the maximum value of the denominator would be max(θ̄′(j)) −min(θ̄′(i)) over

the domain. However, the constraints optimize the mentioned value to satisfy the interference-miss

trade-off as much as possible.

The objective function in (5.10a) minimizes the interference area by maximizing the distance

between AODs of overlapping vehicles while their HPBWs in the numerator are minimized. More-

over, (3.21b) controls the beamwidth such that it does not exceed the initial estimated beamwidth.

While constraints (6.6b)-(3.21d) keep the new beam boundaries, i.e., θ′∗L and θ′∗U , inside the un-

certainty regions, we prevent the beams to become too narrow via constraints (3.21e) and (3.21f).

Through these constraints, the new boundaries are controlled so that the probability of miss does

not exceed the MAC specified value. The tunable control parameter 0 ≤ ρ < (
√

2TN−1,α/2)/
√
N

in (3.21e)-(3.21f) is defined according to the target interference-miss trade-off; small values of ρ

mean MAC prefers handling larger probability of miss than probability of interference. In order to

investigate the solution of the proposed fractional program, we use the parametric approach pre-

sented in [38, 121]. The set D is compact, and both numerator and denominator are continuous on

it, so we cast the equivalent parametric program of (5.10a) as,

L(ψ) = min{
√

(S
(j)
θ′ )

2
+ (S

(i)
θ′ )

2
− ψ

(
θ̄′(j) − θ̄′(i)

)
}, (3.22)

for Θ′ ∈ D. The optimal solution of this problem is also the optimal solution of the fractional pro-

gram. This iterative approach starts from an initial value for ψ and solves (3.22) until convergence
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is achieved for a specific threshold through the following steps.

Step 0—Initialization: ψ = 0.

Step 1—Solve (3.22) and find Θ′∗; if the value of L(0) does not satisfy the threshold, move to

the next step.

Step 2—ψ = Λ(Θ′∗).

Step 3—Solve (3.22) and update Θ′∗ with the new result; if L(ψ) fulfills the threshold, stop;

otherwise, repeat steps 2 and 3 until the threshold is satisfied. The optimum value is the one which

is associated with the most recent Θ′∗.

The solution of the presented program determines the optimum values of angles for minimum

probability of interference at a tolerable miss rate. We define the probabilistic retransmission rate

as a measure of probabilistic failure or disconnectivity, where the former is the result of interference

and the latter is the consequence of missing the vehicle. This metric is calculated as in (3.23) if it is

the result of interference, whereas it is computed using (3.24) in case of missing the coverage,

R
(j)
I =

P
(i,j)
I∫ θ′(j)U

θ′
(j)
L

fθ′(j)
(
θ′(j)

)
dθ′(j)

, (3.23)

R(j)
m =

∫ (θ̄′(j))∗−1/2(W (j))
∗

θ′
(j)
L

fθ′(j)
(
θ′(j)

)
dθ′(j)∫ θ′(j)U

θ′
(j)
L

fθ′(j)
(
θ′(j)

)
dθ′(j)

+

∫ θ′(j)U
(θ̄′(j))∗+1/2(W (j))

∗ fθ′(j)(θ
′(j))dθ′(j)∫ θ′(j)U

θ′
(j)
L

fθ′(j)
(
θ′(j)

)
dθ′(j)

. (3.24)

In both cases, the buoy retransmits the same data packets after re-tuning the transmit parameters.

Figs. 3.6 and 3.7 show the sequence of events that occur in multiple transmission rounds for

a downlink/uplink communication between the buoy, as the initiator, and vehicles i and j, when

vehicles are inside the buoy’s transmission range. We assume an asymmetric and separate spectrum

utilization for downlink and uplink channels; i.e., a larger bandwidth in downlink for data trans-

mission and a narrow-bandwidth uplink channel for acknowledgments and new vehicle’s locations.

Downlink exploits the proposed SDMA, while for the uplink, a polling technique, controlled by the

buoy, is used to determine which vehicle is eligible to use this feedback channel at a given time.

Each vehicle responds to the polling packet and sends back its new position information to the

buoy, which is used in the next round of MAC decision process and spatial parameters calculation,

as shown in Fig. 3.4. Returning ACK (acknowledgment) along with the position information to the
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Figure 3.8: Possible situations that might happen when the data is missed, i.e., the vehicle is out of
the buoy’s antenna coverage but within the buoy’s transmission range.

buoy confirms the reception, while a NACK signal (not acknowledgment) stands for an interference

with probability of PI . This probability is defined as Pr
(
(θ
′(j)
L )∗ < θ′ < (θ

′(i)
U )∗

)
and it means a

retransmission is required, as depicted in rounds (II)-(IV ) of Figs. 3.6 - 3.7. This ACK/NACK

message contains all the information on the received/discarded packets at the vehicle between two

successive polling packets. As explained in round (III), interference occurs when the vehicles are

spatially overlapped, so data is not recoverable. Hence, the vehicles send back their NACKs in re-

sponse to buoy’s polling, one at a time. If the vehicle is out of coverage, then the data will be missed

and other actions are required after a timeout. This incident is shown in transmission round (V ).

Fig. 3.8 sketches the possible situations after the data is missed. In round (V I), tuning the spatial

parameters solves the coverage problem, so the ACK signal is received. In round (V II), this tuning

causes an interference between the vehicles, so the retransmission fails. Buoy is notified of missing

the retransmission data by a timeout signal in round (V III). It is concluded that MAC has not

accomplished a successful retransmission, so it switches to hybrid SDMA macro-state, which is

discussed in the following section. Note that the proposed method makes two assumptions: (i) for

short/medium transmission range, in which the vehicle is within the transmission range D of buoy,

the above discussion works well; (ii) for farther distances, i.e., in the zone (D − R,D + R) and

above, data may be missed and timeouts occur due to vehicles going out of transmission range. This

scenario is covered in the algorithm.

Spatially Non-separable Probabilistic SDMA: Here, we discuss a solution for the situation

in which the vehicles are fully overlapped and the separation is not possible in space. Vehicles at

the same azimuth and elevation angles but different distances from buoy, are categorized as non-

separable vehicles. We propose a hybrid TDMA-SDMA method, called T-SDMA, that uses time as

the second domain and leads to an interference-free MAC solution for time-insensitive applications.
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Algorithm 1 Probabilistic SDMA
Initialization: Set Γθ0,Wθ0, ∀{n}N1 : ∀ vehicles

1: Buoy polls each vehicle and waits for event
(
locn

)
in uplink

2: θk+1⇐ locn(k) % ∀ vehicles at kth time instant
3: Find Γθ, Wθ, θU , θL % ∀ vehicles
4: Find neighbors J % J = (i, j) | θ̄′(j) > θ̄′(i)

5: Perform interval estimation and compute Y (J)
k+1

6: Perform UKF and find [Γ
(J)
θ (θ̄),W

(J)
θ (Sθ)]k+1|k

7: if the vehicles are spatially separate then
8: Set spatial parameters; Transmit data
9: else

10: SW ← 0; % number of attempts
11: while vehicles J are overlapped: θ′(i)U < θ′

(j)
L AND SW 6 10 do

12: Solve the optimization problem given ρ0

13: Find R
(J)
m and R

(J)
I % retransm. rate as in (3.23) and (3.24)

14: if it returns optimized values then
15: ∀J :Transmit with PI and poll % Prob. of interference
16: if ACK + locn received then
17: Stop
18: else if NACK + locn received then
19: Run steps 2-6 and 12-14 with 0 < ρSW < ρ0

20: SW← SW+1; Set spatial parameters; Retransmit
21: else if timeout then
22: if the range < D(transmission range) then
23: Run 11-13 with ρ0 < ρSW <

√
2/NTN−1,α/2

24: SW← SW+1; Set spatial parameters; Retransmit
25: else
26: Drop the vehicle due to out of the range scenario
27: end if
28: end if
29: end if
30: end while
31: end if
32: if SW = 10 then
33: Reset the spatial parameters % Non-separable scenario
34: Run Intra-cluster T-SDMA
35: if |ĉ| > Tx then
36: Run Inter-cluster T-SDMA
37: end if
38: end if

Synchronization between the vehicles is not required since the solution is presented for downlink—

buoy to vehicle—transmission. All data exchanges will be made through the buoy as the primary

controller of the links. However, we assume a separate feedback channel for the uplink; therefore,
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when two or more vehicles are in the same area a polling packet is exchanged between the buoy and

each vehicle separately to avoid any collision. Corresponding vehicle will be allowed to transmit

through the feedback channel.

Firstly, clusters of non-separable vehicles are formed; then time sharing is applied inside each

cluster. To compare this method with conventional TDMA, we define the time slot usage ratio as,

RTS =
nc

M2 ·max(M1,M3)
, (3.25)

where nc is the total number of time slots dedicated to each vehicle of cluster c ∈ ĉ in every M2

frame. If |ĉ| > Tx, an additional external clustering is required, which leads to an inter-cluster

time sharing defined by parameter M2. The denominator of (3.25) denotes the total number of time

slots: M1 is the maximum number of vehicles in the clusters that are communicating with separated

antennae, while M3 is the maximum number of vehicles per cluster in the group of inter-clusters.

By selecting max(M1,M3) as the number of time slots of each frame, we guaranty that at least one

time slot is dedicated to every vehicle within a cluster. The time slot usage ratio for conventional

TDMA is calculated as RT = 1/MT , whereMT is the total number of time slots, i.e., it is equivalent

to the number of vehicles. We define rate efficiency of the proposed T-SDMA technique over the

conventional TDMA as η = RTS/RT .

Effective data rate per user over the total transmission time is defined [153] as 1/NB log2(1 +

SNR), where N is the number of time slots, B is the bandwidth, and SNR is the Signal-to-Noise

Ratio. Effective data rate of a vehicle in one transmitting frame for T-SDMA can be written as,

R̃TS =
Np Lp nc/M2

max(M1,M3)Ts
=

1

max(M1,M3)
B log2(1 + SINRTS), (3.26)

where Np and Lp are the number and length of packets, respectively, and Ts is the time duration of

each time slot. The effective data rate of each vehicle in one transmitting frame for the conventional

TDMA follows R̃T = (NpLp)/(TMT ) = 1/MTB log2(1 + SINRT ). Therefore, the ratio of the

effective data rate in T-SDMA to TDMA can be formulated as,

R̃TS

R̃T
=

ncMT

max(M1,M3)M2
=

1/
(

max(M1,M3)
)
B log2(1 + SINRTS)

1/MTB log2(1 + SINRT )
. (3.27)
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From (3.27), the relation between SINR of T-SDMA and conventional TDMA is,

SINRTS ≈ (SINRT )

nc
M2 . (3.28)

Algorithm 1 reports the set of rules in pseudo-code under different circumstances. When the

new location sample is observed, the interval estimation is updated given the probabilities of pos-

sible cases, i.e., keeping the current AOD and beamwidth if the vehicles are far apart, updating

the AOD and beamwidth by sliding the estimation area of the samples, or switching to a new un-

certainty region by accumulating the samples. It will be applied to a Kalman estimator to decide

on the next upcoming state. While the neighboring vehicles overlap, the optimization problem is

solved. If it returns the optimized values, the vehicles are assumed separable and a similar proce-

dure as described for separate vehicles will be applied to them, however, MAC will decide on the

interference-miss trade-off. Since it is a probabilistic MAC, transmission is performed by taking

the risk of miss. If the ACK message gets back, then it will continue the transmission without any

interruption; otherwise, retransmission will be performed in the next round. Parameter SW is used

to count the attempts in order to get the optimal values. If it fails, then it triggers the algorithm to

apply the hybrid MAC solution, i.e., T-SDMA, to cover the problem of non-separable vehicles.

3.4 Performance Evaluation

We consider a short/medium range transmission (less than 2 km) with an anchored buoy and sev-

eral moving vehicles. Assume each vehicle can communicate with one of the buoy’s directional

hydrophone arrays. An underwater acoustic channel is simulated with a limited number of separa-

ble paths in which the first path is the strongest one (lowest transmission loss) and with the smallest

delay. The required specifications of the underwater acoustic channel for the simulation are ex-

tracted from the Kauai Acomms MURI (KAM08) experiment at the western coast of Kauai, HI,

USA [54]. The normalized delay profile and the phase response of the sample emulated channel

is depicted in Fig. 3.9, where an anchored vertical hydrophone array with 3.75 m inter-element

spacing at the depth of 96 m communicates with a source towed by a surface ship.

The other simulation parameters are listed as follows. The channel bandwidth is 5 − 25 kHz,

the sampling rate is 50 kHz, and an underwater ambient noise leads to an SNR ∈ [0, 20] dB.
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Figure 3.9: (a) Delay profile; (b) Phase response of emulated KAM08 channel.

Table 3.3: Initial Angular Specifications of Vehicles.
Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4

AOD (Γθ) -65.0325 -31.9734 17.9087 42.9319
HPBW (Wθ) 32.4749 20.6128 20.5878 32.4613
AOD (Γφ) 45.3425 10.0598 -20.0776 -60.0550
HPBW (Wφ) 53.9771 34.2830 34.2941 53.9718

We use the Gaussian noise model, introduced in [134], in which the overall power spectral density

of the ambient noise is assumed as N(f) = Nt(f) + Ns(f) + Nw(f) + Nth(f). Here, Nt, Ns,

Nw, andNth stand for the turbulence noise, shipping activity, wind-driven noise, and thermal noise,

respectively. The vehicles are randomly deployed at different depths from the surface [0, 500] m and

horizontal distances [100, 2000] m. After converting these initial locations to the required antenna

parameters at the buoy, Table 3.3 reports the initial state via an initial interval estimation. Vehicles

move with a constant speed of 0.5 m/s and transmit a new position information when the buoy polls

them, according to the explained procedure in the algorithm, every 10 s for the sampling interval of

50 minutes. Finally, we set the percentage of confidence, i.e., (1−α) in (3.1), to the common value

of 95%, which means that the true data is in the confidence interval with 95% confidence.

We explore a scenario where two vehicles start their mission from different locations with a

common target; therefore, their trajectories tend to converge to the same area. Fig. 3.10 shows the

simulation assumption on the trajectory of these vehicles which is used in performing the system

simulation. However, there are uncertainties in the estimation of the location. To handle these

uncertainties, we adopt the statistical approach to estimate the position of each vehicle. Based on

the procedure, explained in Fig. 3.4, MAC decides on the next estimate of each vehicle’s AOD and

beamwidth. In Fig. 3.11, the resultant AODs and beam boundaries are plotted for two vehicles
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Figure 3.10: Trajectory of two vehicles in XZ plane for the simulated scenario.
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Figure 3.11: AOD and beam boundaries for two moving vehicles.
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Figure 3.12: Probability of interference for moving vehicles, with and without optimization, for
different values of ρ.
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Figure 3.14: Retransmission rate for moving vehicles, with and without optimization and for differ-
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Figure 3.15: Clustering scenario in T-SDMA including 5 clusters and an additional inter-clustering.
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Figure 3.16: Comparison between probabilistic hybrid SDMA-TDMA and conventional TDMA in
terms of time slot usage ratio and efficiency.
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Figure 3.17: T-SDMA and TDMA comparison in terms of SINR and data rate per user.
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Figure 3.19: Maximum achievable rate in downlink for probabilistic SDMA, in terms of link dis-
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Figure 3.20: Residual and its auto-correlation of UKF estimation.

Figure 3.21: 3D pattern of one of the buoy’s antenna arrays when steered towards a vehicle in a
sample location at maximum frequency 45 kHz.
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Figure 3.22: Elevation cut beampattern of one of the buoy’s antenna arrays when steered towards a
vehicle in a sample location at maximum frequency 45 kHz.
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Figure 3.23: Azimuth cut beampattern of one of the buoy’s antenna arrays when steered towards a
vehicle in a sample location at maximum frequency 45 kHz.

versus time. The figure shows that after 15 minutes the corresponding beams penetrate each other,

and hence interference occurs.

Figs. 3.12, 3.13, and 3.14 evaluate the corresponding parameters after the interference occurs.

In particular, Fig. 3.12 shows the probability of interference as time passes and vehicles get closer to

each other; by updating the antennae’ beam direction and beamwidth via the optimization problem,

the probability of interference decreases. However, this outcome depends on the value of ρ, which is

defined by MAC to control the optimized beamwidth and to regulate the interference-miss trade-off.

Fig. 3.13 describes the decrease in the corresponding probability of miss by time and by increasing

ρ, which contradicts the interference trend. When the objective function of the optimization problem
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does not change in a feasible direction, the solver finds a local minimum that satisfies the constrains,

which may lead to a sudden change in the curves. In Fig. 3.14, the variation of retransmission rate

is studied as time passes and for different values of ρ. Since this parameter reflects the effect of

both interference and miss probabilities, it is an appropriate measure for MAC to choose a proper

value for ρ. As an example, ρ = 0.5 keeps the retransmission rate below 20% for almost 2/3 of the

transmission window, i.e., 20 min.

Based on the evaluation of retransmission rate, when its projected value surpasses a tolerable

quantity, MAC switches to T-SDMA mode and clusters the vehicles. As an example, in Fig. 3.14,

when retransmission rate crosses 50%, it seems more reliable to switch to T-SDMA. In order to

provide an example of the proposed hybrid T-SDMA, we investigate the scenario that is displayed

in Fig. 3.15. We assume 11 vehicles are categorized in 5 clusters, which communicate with 4

antennae at the buoy. MAC performs an additional inter-cluster time sharing for the last two clusters.

Figs. 3.16 and 3.17 compare the performance of the proposed hybrid T-SDMA method with the

conventional TDMA. Fig. 3.16 shows the time slot usage ratio and the rate efficiency and confirms

that T-SDMA outperforms the conventional TDMA. Fig. 3.17 compares these methods in terms

of SINR and effective data rate per vehicle. Appropriate clustering along with the beamforming

ensures we achieve a gain for maximum achievable data rate in T-SDMA compared to the traditional

TDMA, while there is no interference between the vehicles. In other words, we exploit space

in order to increase the rate compared to the traditional TDMA, which is directly related to the

maximum required SINR.

In Fig. 3.18, the probability of interference of the proposed probabilistic SDMA is compared

with the non-probabilistic SDMA. In the latter, we assume that the transmitter estimates the vehi-

cle’s location and steers the beam towards it with a constant beamwidth. In order to provide a fair

comparison, we suppose its beamwidth is equal to that of the probabilistic SDMA at the 15th minute

when interference begins. The figure confirms that the probability of interference of probabilistic

SDMA is less than the deterministic method, since our method updates the beam specifications by

statistical calculations. This superiority increases when probabilistic SDMA applies the optimiza-

tion to it. In Fig. 3.19, we investigate the effect of link distance, frequency, and bandwidth on

the maximum achievable data rate in downlink when all vehicles are spatially separable from the

other vehicles in the surrounding. As each vehicle moves and more samples are accumulated to
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make a better focused beam, the antenna gain and the directivity change. These variations lead to

a change in SINR which is reflected in the data rate variation. In Fig. 3.20, the validation of UKF

state estimation is verified by plotting the residual signals. The corresponding curves show that the

residual magnitudes are small, their mean values are zero, and the autocorrelation functions are zero

except at zero lag. Finally, in Figs. 3.21, 3.22, and 3.23, we provide the beampattern of one of the

buoy’s arrays while it is steered towards a vehicle at sample elevation and azimuth angels of 25◦ and

80◦, respectively. The figure shows the 3D pattern, elevation, and azimuth cut, when the frequency

equals to the maximum value of 45 kHz.

3.5 Summary

Achieving reliable communications and interference mitigation for an efficient MAC protocol is a

necessity for a team of AUVs in the time- and space-varying underwater environment. In this chap-

ter, a novel probabilistic MAC based on Space Division Multiple Access (SDMA) for short/medium

distances was proposed to leverage inherent position uncertainty of the moving vehicles. A two-

stage estimation technique was presented based on interval estimation and Unscented Kalman Fil-

tering (UKF) to estimate the position of the vehicle and focus the beam, respectively. Spatially

separable and non-separable scenarios were studied and an optimization problem was solved to

minimize the statistical interference. The method was extended to the scenario of non-separable ve-

hicles via a hybrid T-SDMA solution. Simulation results demonstrated that the proposed approach

could handle the interference, while the vehicles were moving, and so it could achieve a high data

rate and reliability. Note that the proposed method may be used in the uplink too if there is the

possibility of mounting a beamformer and an array of hydrophones at each vehicle; also, since cur-

rently the coordination is performed at the buoy in a centralized fashion, a distributed in-network

coordination among the vehicles in the uplink would be needed.
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Chapter 4

In-Network Collaboration for Reliable Underwater Acoustic
Communications

Achieving high throughput and reliability in underwater acoustic networks for transmitting dis-

tributed and large volume of data is a challenging task due to the bandwidth-limited and unpre-

dictable nature of the acoustic channel. In a multi-node network, such as in the Internet of Un-

derwater Things (IoUT), communication link efficiency varies dynamically: if the channel is not

in good condition, e.g., when in deep fade, channel coding techniques may fail to deliver the in-

formation even with multiple retransmissions. Hence, an efficient and agile collaborative strategy

is required to allocate appropriate resources to the communication links based on their status. The

proposed solution in this chapter adjusts the physical- and link-layer parameters collaboratively for

a Code Division Multiple Access (CDMA)-based underwater network. An adaptive Hybrid Auto-

matic Repeat Request (HARQ) solution is employed to guarantee reliable communications against

errors in poor links. Results were validated using data collected from the LOON testbed—hosted at

the NATO STO Centre for Maritime Research and Experimentation (CMRE) in La Spezia, Italy—

and from the REP18-Atlantic sea trial conducted in Sept’18 in Portuguese water.

4.1 Overview

Over the past decade, Underwater Acoustic Networks (UANs) have attracted the attention of re-

searchers, engineers, and practitioners, as they enable a wide range of applications such as oceano-

graphic data collection, offshore exploration, tactical surveillance, pollution and noise monitoring,

disaster prevention, and assisted navigation [111]. These networks face various challenges due to

the unique and harsh characteristics of the propagation of underwater acoustic waves [51, 94, 136].

In applications as the Internet of Underwater Things (IoUTs), data is usually distributed across a
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high number of nodes, while a single node (sink) is used for data collection, fusion, and process-

ing [89]. The efficiency of an IoUTs system in mission-critical applications relies on the robustness

of the communication algorithms and protocols that control the components of such a system. To

maximize the achievable throughput of such a network, one of the major challenges is the design of

a secure, robust, and scalable Medium Access Control (MAC) and an Error Control (EC) strategy.

These solutions need in fact to guarantee low channel access delay, low energy consumption, and

fairness among competing and/or collaborating nodes in the face of the harsh characteristics of the

underwater acoustic propagation medium [90, 92, 108, 124].

Motivation: Terrestrial and conventional MAC/link-layer communication techniques fail to

provide the required robustness and reliability for futuristic applications due to the characteristics of

the underwater acoustic channel [94,113]. Direct-Sequence Spread Spectrum Code Division Multi-

ple Access (DSSS-CDMA) is a promising physical-layer and multiple-access techniques for UANs

since i) it is inherently robust to frequency-selective fading, ii) it compensates for the effect of multi-

path at the receiver by using filters that can collect the transmitted energy spread over multiple paths,

and iii) it allows receivers to distinguish among signals simultaneously transmitted in the same fre-

quency band by multiple devices [96, 135, 146]. The use of an efficient CDMA scheme, supporting

an adaptive EC strategy such as Hybrid Automatic Repeat Request (HARQ), has the potential to

increase channel reuse and to reduce the number of packet retransmissions, thus increasing network

reliability and achievable throughput, while decreasing the network energy consumption. However,

since the number of retransmissions is limited in the practical truncated ARQ/HARQ error coding

strategies, the receiver might start dropping packets, thus significantly limiting the capability of

delivering data in the network.

Contribution: In this work, we extend the concept of point-to-point HARQ to an implicitly

collaborative scenario in combination with a DSSS-CDMA approach. A transmitting node with

low-quality communication links piggybacks on its neighboring nodes’ transmissions when pro-

tecting its data against errors, in order to increase the system throughput. We propose a solution

to achieve the following objectives: i) high network reliability and throughput by allocating an ap-

propriate share of system resources to different nodes; ii) latency problem alleviation caused by the

conventional HARQ retransmission strategy; iii) simultaneous transmission on the available band-

width via easily- and locally-generated CDMA chaotic codes using a secret seed with a flexible and
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large family size; and iv) low energy consumption via efficient output power allocation. Data col-

lected using the CMRE LOON testbed [11] were investigated to validate the proposed method. This

testbed is hosted in the Gulf of La Spezia, Italy, close to the CMRE premises and it is characterized

by shallow-water communications (occurring at a maximum depth of 15 m), which may be heavily

affected by multipath. Our solution was able to find dynamically the optimal trade-off among these

four objectives according to the application requirements. To evaluate the protocol performance

under different conditions, additional data was then collected in a deep-water scenario during the

REP18-Atlantic sea-trial. This trial was organized by CMRE, the Portuguese Navy (PRT-N), and

the Faculty of Engineering of the University of Porto (FEUP) in Portuguese water, between Sines

and Sesimbra, in Sept’18.

Chapter Outline: The remainder of this chapter is organized as follows. In Sect. 4.2, we present

a summary of prior work on different acoustic data transmission techniques in the underwater envi-

ronment, and CDMA is discussed as a candidate for the UANs. In Sect. 4.3, we define the required

parameters for the proposed solution, and then present the proposed collaborative hybrid ARQ tech-

nique to achieve reliable communications in underwater CDMA networks. Then, in Sect. 4.4, we

provide experimental and simulation results along with observations based on data collected via the

CMRE LOON testbed and during the REP18-Atlantic sea trial. The results confirm the efficiency

of the proposal. Finally, in Sect. 4.5, we summarize this chapter.

4.2 Related Work

Conventional ARQ, as a feedback-assistant EC technique, requests a retransmission for the erro-

neously received data packet. When the error is detectable, the packet is discarded until the same

packet is successfully received in the next round. Retransmission is an appropriate solution to

achieve a certain level of reliability in the underwater channel, specially when the Forward Error

Correction (FEC) schemes are not able to correct the burst errors alone. On the other hand, because

of the long propagation delay in underwater channels, the performance drops significantly since a

technique such as stop&wait and other similar ARQ techniques fail to provide a reasonable through-

put. Furthermore, having a feedback link might not be feasible in some practical systems or might

be erroneous if it is available. Therefore, to reduce the number of retransmissions and to increase
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the system reliability under poor channel conditions, a powerful FEC code should be used, which

makes the decoding hard to implement [31, ch.22].

In practical experiments—when usually the channel is error prone and therefore unreliable—

multiple rounds of retransmissions should be performed to deliver the intended data; consequently,

a huge amount of time is wasted given the long propagation delay in the underwater channel. There-

fore, a proper combination of the ARQ and FEC is required in an efficient scheme to overcome the

mentioned problems. This combination of ARQ and FEC leads to a Hybrid approach, i.e., HARQ,

which reduces the number of packet retransmissions and increases the system reliability, specially

under poor channel conditions. If the data is not decodable, the receiver sends back a Negative

Acknowledgement (NACK) to the transmitter and asks for additional/duplicated FEC, which even-

tually increases the probability of successful transmission [130]. However, if the channel is very

noisy, even using multiple retransmissions may not work. In the truncated ARQ/HARQ, the num-

ber of retransmissions is limited. Therefore, the receiver might drop the data, which detrimentally

affects the throughput of the network.

A type-I HARQ discards the erroneous received packet after a failed attempt to correct it, then

the transmitter repeats the same packet until the error is corrected. This method might be inefficient

in time-varying underwater acoustic channel. When the channel is in good condition, i.e., retrans-

mission is not required, FEC information is more than it requires and so the throughput drops. On

the other hand, if the channel is not in good condition, e.g., when in deep fade, the pre-defined FEC

might not be adequate and the throughput drops again because of multiple retransmissions [133].

A type-II HARQ requires a larger buffer size and has a higher complexity and efficiency com-

pared to type-I. It adapts itself with the channel in such a way that it first transmits the packet

along with the error detection bits—similar to one of the ARQ schemes—when the channel is good.

While the channel becomes worse and after detecting the erroneous packet, a NACK message is

sent back and—rather than retransmitting the same packet as type-I does—FEC is transmitted to

help decode the stored packet in the receiver’s buffer. If the error persists, the second NACK is

issued and the same FEC might be retransmitted or extra FEC might be added depending on the

coding strategy. Incremental Redundancy (IR) HARQ, which shows a higher throughput efficiency

in terrestrial time-varying channels, adds extra redundant information in each round of retransmis-

sion after receiving the NACK message [130]. Terrestrial standards such as in High Speed Packet
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Access (HSPA) and Long Term Evolution (LTE) have exploited HARQ synchronously for the up-

link, and asynchronously in the downlink direction. Authors in [86] discuss the requirements for

designing a user-centric and network-optimized HARQ for the fifth generation (5G) of mobile com-

munications. Given the necessity of supporting futuristic applications such as in IoUT, we believe

that a new design for HARQ is essential.

Using numerical simulations, authors in [8] used the random linear packet coding to control the

packet loss in a hierarchical definition of packets in the stop&wait ARQ protocol for the channels

with a long propagation delay. In [24], the authors applied fountain codes to HARQ in underwater

networks to reduce retransmissions and achieve optimal broadcasting policies. An adaptive coding

approach based on the IR-HARQ was proposed in [36] to improve the packet error rate in a time-

slotted underwater acoustic network. In [109], we proposed a scheme based on HARQ that exploits

the diversity gain offered by independent links of an underwater acoustic Multiple Input Multiple

Output (MIMO) channel. A large number of papers can be found in the literature that investigate

the efficiency of point-to-point HARQ, especially in the terrestrial environment.

Various works have been proposed addressing separately CDMA and HARQ for UANs. Au-

thors in [135] discuss DSSS CDMA as a candidate MAC for mobile UANs in which multiple nodes

connect to a central receiver. A distributed single-carrier CDMA underwater MAC was proposed

in [96], which aims at achieving high network throughput, low channel access delay, and low energy

consumption. Although Pseudo-Noise (PN) codes have been extensively employed in spread spec-

trum communication systems, considering their limitation in the number of different PN sequences

and their cross-correlation properties, [50] proposed using chaotic sequences in DSSS communica-

tions. These sequences can be generated through an uncomplicated deterministic map. Moreover,

since chaotic systems are extremely dependent on the initial conditions, they can produce an infinite

set of orthogonal uncorrelated sequences. One widely studied chaotic set that has been employed

for underwater communications [13] is generated based on the Logistic map. This map is able to

produce a variety of distinct sequences for different users, by just changing the initial states and/or

its bifurcation parameter. The proposed algorithm in [96] uses locally-generated chaotic codes to

spread transmitted signals on the available bandwidth, which guarantees secure protection against

eavesdropping (as packets can only be decoded with the proper chaotic code, which depends on the
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Figure 4.1: Architecture showing transmitting nodes, Ti, in neighborhood m, when the channel
quality varies from one link to another. As an example, data from node T1 ∈ N1 fails to reach the
receiver. CDMA is exploited and the nodes overhear and collaborate in the HARQ procedure based
on their communication links quality.

secret initial conditions/seed), transmitter-receiver self-synchronization, and good auto- and cross-

correlation properties [21].

4.3 Proposed In-Network HARQ Solution

While HARQ is a reliable EC solution based on packet retransmission, in practical scenarios and

in the truncated HARQ, the number of retransmissions is limited. Therefore, if the underwater

channel quality cannot be guaranteed, then multiple retransmissions may be not sufficient to cor-

rectly deliver the intended data, thus detrimentally affecting the reliability and the total throughput

of the network. The problem gets worse when the interference from other users is involved in the

performance. Therefore, a solution should be provided especially for multiuser UANs. CDMA is a

promising technique for UANs since it can provide the required robustness and security of low-data-

rate communications in multiuser scenarios in which all the nodes can overlap at the same time and

at the same frequency band—despite the limited bandwidth—without any interference. Although

M-sequences are popular in many CDMA systems, their cross-correlation shows some partial corre-

lation for larger length of sequences in the multipath channels [50]. Moreover, the number of users

that can be supported is limited by a sequence, which is a serious restriction for IoUT scenarios.
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Fig. 4.1 shows the case in which N transmitting nodes, Ti, i = 1, 2, ..., Nm, in neighborhood

areas m = 1, ...,M combine independently-sensed information, xi(r) (from independent nodes)

for data fusion at the receiver R (the sink) at different transmission rounds r = 1, 2, ..., rT . Nodes

in the same neighborhood can overhear other transmissions and collaborate to deliver the intended

data, similarly to what T2 is doing for T1 in Fig. 4.1.

We use chaotic sequences in CDMA to increase the security in the communications. Albeit

deterministic, chaotic codes look like noise, similarly to PN sequences; however, they are different

for every bit of transmitted data. Hence, it is much harder for an eavesdropper, i.e., an unauthorized

node outside of the neighborhood without the knowledge of the used codes (seed plus generating

map), to regenerate the sequences and extract the data. This property allows us to have authorized

nodes collaborating in a more secure way in the defined scenario and to also guarantee the service

to a large number of users. Nodes that need to exchange data have to share the same family/seed

of the code, with the chaotic codes generated in a deterministic way once the family/seed is known.

This concept of sharing the same family/seed of the code is similar to the sharing of an encryption

key in the context of symmetric cryptography. Before deploying the network, nodes are assigned a

key or set of keys to talk to the other nodes. Nodes sharing the same key can read each others data.

The use of more keys enables to create different cluster of nodes capable of sharing data. Different

keys can be also used for different nodes or type of messages, e.g., some message may have higher

priority or classification level and need to be shared with (or handled by) a reduced number of nodes

so a specific key has to be used. Not only chaotic sequences provide the security in the channel,

but they also show a considerable robustness against the multipath effect due to their good auto-and

cross-correlation functions. Yet, CDMA requires to optimize the transmit power and spreading code

length to limit the near-far problem and to maximize system throughout.

CDMA-based Collaborative HARQ: The proposed collaborative HARQ for data protection,

combined with a CDMA (using chaotic codes) for secure and interference-free transmissions, relies

on a closed-loop strategy based on measurements sent back by the receivers. This is to avoid re-

lying on the unrealistic symmetric-link assumption, which does not usually hold in the underwater

environment. Each receiver periodically collects information on the channel state. This information

is then provided to the neighbors by transmitting short ACK/NACK messages.
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For each neighborhood, the error probability on the decoded sequence x̃i for the transmit-

ted codeword xi from node Ti can be upper-bounded using the Bhattacharyya bound [100, 130]

as, Pe
(
xi, x̃i

)
6 Bh

i , where h is the Hamming distance and Bi is the Bhattacharyya Parame-

ter (BP) in a noisy channel. Here we assume that channel does not change during one trans-

mission round. This parameter is defined for every transmitted bit x and received bit y as B =∑
y∈Ω

√
Pr(y|x = 0) Pr(y|x = 1). Here, Ω stands for the output alphabet and Pr(y|x = 0) and

Pr(y|x = 1) are transition probabilities, ∀y ∈ Ω. This parameter is considered as a channel reliabil-

ity metric as it is an upper-bound on the probability of error in a typical Maximum-Likelihood (ML)

detection problem, where larger BP values suggest channel unreliability and viceversa. The union-

Bhattacharyya bound [130] can be calculated for each channel for node Ti as,

P ce i 6
n∑

h′=1

Ah′Bi
h′ , (4.1)

where P ce i denotes the codeword error probability of code c from family code C and Ah′ represents

the codewords with weight h′. Data is encoded using a pre-defined mother code. Data and the first

portion of parity bits are transmitted in the first round. If the receiver cannot decode the data, then a

NACK will trigger the transmitter to send the second portion of parity bits in the next round, so that

the receiver possibly can decode with the help of both portions. We transmit the coded data in (rT )

transmission rounds from the selected nodes based on Algo. 2, which will be discussed later.

For each round of transmission (r), the error probability of the transmitted packet from node Ti,

in a DSSS-CDMA system, is upper-bounded as [100],

Pei(r) 6 (2k − 1) ·Q

(
2

√
Pi
Ji
SLi Rci di

)
, (4.2)

where Pi is the transmitting power of Ti,Q
(
.
)

is the Q-function, Ji is the total interference and noise

experienced by Ti, Rci = k/n is the coding rate of a code c(n, k), di is the minimum hamming

distance (hi), and SLi is the length of CDMA spreading code. Note that (4.2) implies that the

transmitted power, amount of interference, rate, strength of channel coding, and the processing gain

of CDMA system, all affect the probability of error.

The maximum achievable spectral efficiency achieved by each node in a neighboring area m, at
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round r can be expressed as,

Ri(r) = log

(
1 +

αiPigi

N0W +
∑Nm

j=1,j 6=i αjPjgj + Jm

)
, (4.3)

where W is the channel bandwidth, N0 is the noise Power Spectral Density (PSD), and gi is the

channel gain. The transmit power is controlled by Pi and αi in each round of transmission. Jm is

the interference from other neighborhoods of m defined as,

Jm =

M∑
k=1,k 6=m

Nk∑
j=1

αjPjgj . (4.4)

Note that
∑Nm

j=1,j 6=i αjPjgj +J is the total interference that is undesirable from the CDMA perspec-

tive; however, we leverage the first term in our proposed HARQ to engage other nodes in the same

neighborhood to collaborate in the process.

The other promising metric is the long-term throughput, which is defined based on the renewal

reward theorem [159] as, η = E[X̃]/E[T̃ ]. Hence, E[.] defines the expectation of a random variable,

E[X̃] = X
(
1 − Prout

)
is the number of decoded information nats, i.e, natural information unit.

Prout can be defined as the probability that the data has not been decoded after (r) rounds. E[T̃ ]

is the number of attempts for channel use during a packet transmission period. We decrease Prout

via node collaboration and by adjusting the corresponding parameters so as to improve the network

long-term throughput. The probability of decoding in round (r) given that the data has not been

decoded in the previous (r− 1) rounds is equivalent to Pr
(
NACK1, ...,NACKr−1,ACKr

)
. In our

proposed method, when an impaired node gets its first NACK, we prevent getting more NACKs

via the help of the collaborating nodes. Therefore, the average number of transmissions after (rT )

rounds for an impaired node i can be calculated as,

(
1− Pei(r = 1)

)
+

rT∑
r=2

[
r(1− q)P r−1

ei (r)
(
1− Pei(r)

)
+ rqP r−1

eκ (r)
(
1− Peκ(r)

)]
, (4.5)

where q is the probability of collaboration and κ is the collaborating node.

Total Rate Maximization: In a multi-node system, in which nodes are influenced by each

others’ activities and are affected by the collaborators’ coding scheme, those—which are involved

in throughput and rate—should be selected in an optimal way. These parameters can be discussed
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under two major constraints, as follows.

Signal-to-Interference-Noise-Ratio (SINR) Constraint: To find the constraint for the multiuser

interference in a CDMA system, we should reassure that a minimum required SINR and so the

minimum error rate is satisfied at the receiver. This parameter—as a popular metric for the Quality

of Service (QoS)—is a factor of processing gain, coding gain, and the signal power to interference

ratio. Processing gain in CDMA represents the gain that is obtained by expanding the bandwidth of

the signal and is shown by the spreading length [100]. Performance of the channel coding is decided

by its coding gain and the minimum hamming distance.

Power Constraint: When we amplify the transmit power, the received SNR will be improved;

however, it causes more interference to the other nodes. We try to regulate the transmit power and

to reduce the interference to the other neighborhoods by a power control strategy. The peak trans-

mitting power of each node in every neighborhood should be bounded to a pre-defined maximum

power Pmax, i.e., Pi ∈ [0, Pmax]. As a result of the interference, SINR, and channel impairment, a

power-control coefficient αi is decided in each round that matches the HARQ procedure.

General Optimization Problem: To maximize the total rate and to satisfy the performance and

power constraints, we cast an optimization problem to find the optimum parameter vector Θ =

[θ1, ..., θNm ], where θi = [Pi, Rci, di, SLi, αi] and i = 1, ..., Nm.

max
Θ

F(r) =

Nm∑
i=1

RciRi(r) (4.6a)

s.t. SINR constraint :γi(r) =
(
2SLi

)
dB

+
(
Rcidi

)
dB

+
( αiPigi

Ji + Jm

)
dB
≥ γmin, (4.6b)

Power constraints :

Nm∑
i=1

αiPigi ≤ Pth, (4.6c)

Pi − Pmax ≤ 0, i = 1, 2, ..., Nm (4.6d)

Nm∑
i=1

αi ≤ Nm, αi ∈ {0, 1}, (4.6e)

where γi(r), in dB, is the received Signal-to-Interference-Noise-Ratio (SINR) from Ti at round

r, Ji = N0W +
∑Nm

j=1,j 6=i αjPjgj , and γmin is the minimum SINR, which is proportional to the

probability of error in HARQ and determines the level of performance. Pth guarantees that the total

received power in m does not affect other neighborhoods.



77

Figure 4.2: Proposed protocol for the interaction between the nodes. Without using this proto-
col (left side), node i would keep sending incremental redundancy and the packet would drop after
4 rounds, while using our collaborative CDMA-based method (right side), 2 rounds are sufficient
for delivering the data.

Let Ψ = [ψ1, ..., ψL] be the vector of Lagrange multipliers and L = 2Nm + 2 be the number of

constraints. We form the Lagrangian function as L(Θ,Ψ) = F−
∑L

l=1 ψl(gl(Θ)− bl), where each

gl(Θ) and bl are determined by each constraint such that gl(Θ) ≤ bl.

L(Θ,Ψ) = F −
Nm∑
l=1

ψl (Pl − Pmax)−
Nm∑
l=1

ψl+Nm (−γl + γmin)

−ψ2Nm+1 (

Nm∑
l=i

αiPigi − Pth)− ψ2Nm+2 (

Nm∑
i=1

αi −Nm).

(4.7)

To find the optimum values, using Kuhn-Tucker condition, 5ΘL(Θ,Ψ) = 0 should be solved.

There are L complementary equations that should be held as ψl
(
gl(Θ)− bl

)
= 0, l = 1, ..., L, such

that ψl ≥ 0. The feasible results of these equations determine the optimum parameter that results in

maximum spectral efficiency. A numerical solution is presented in Sect. 4.4 for this problem based

on the experimental data collection.

Fig. 4.2 visualizes the procedure for two sender nodes, one with an impaired channel (node i)

and the other with a good channel (node j), as an example. The HARQ protocol at node i decides

on the bits to send in each round. If a NACK is received, the next portion of redundant bits will

be transmitted. However, in our proposed algorithm, the impaired node is switched off after the

first NACK arrives in round 1. The collaborating neighbor j overhears the impaired node, stores its

data, and transmits it in round 2. Algorithm 2 reports the pseudo-code executed by sender nodes in
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Algorithm 2 Collaborative HARQ for nodes Ti ∈ Nm in the same neighborhood
1: ∀i = 1, ..., Nm : ri ← 1 as the index of transmission round; define rT
2: choose collaborators ĉ based on Eq. (4.1) and the neighbor discovery algorithm; share the chaotic map

with ĉ
3: if event

(
request to send for Ti ∈ Nm

)
then

4: while time-out codeword( ) do
5: ∀Ti: Make the packets considering Eq. (4.1); HARQ block formation
6: generate the chaotic code; solve problem in Eq. (6.6) considering Eq. (4.2)
7: puncture the codeword; HARQ transmission procedure ( )
8: event (wait for ACKi/NACKi)
9: while NACKi AND ri 6 rT do

10: ri ← ri + 1; construct the codeword with additional redundancy; rate and power selection
11: HARQ Retransmission procedure( )
12: end while
13: if ACKi then
14: goto end
15: else
16: for ∀ Tî(rT ) (impaired nodes) do
17: αî ← 0; revise the collaborators j ∈ ĉ based on Eq. (4.1) AND the received NACKî AND

ACKj6=̂i
18: for j = 1 : ĉ do
19: solve Eq. (6.6) for new Θ∗j for all ĉ
20: if arg max {Rj}j∈ĉ & j6=̂i > R̂i then
21: repeat steps 3-12 for combined data of j and î until ACKj OR rT % the new collabo-

ration
22: else if Rî <

∑
Rĉ then

23: update
∑
Rĉ with the next collaborator arg max {Rj}j∈ĉ & j6=ĉ(max)

24: repeat steps 3-12 for combined data of j and î until ACKj OR rT
25: else
26: packet drop
27: end if
28: end for
29: end for
30: end if
31: end while
32: end if

a neighborhood Nm. For the neighbor discovery algorithm, an approach similar to the one used by

the DIVE protocol [91] can be employed. DIVE has a built-in mechanism to cope with unreliable

channels. This approach can also be extended to share relevant link quality information when the

network is deployed, thus supporting the cooperative strategy. This information can then be updated

over time by piggybacking on regular data packets.

Data packets in the forward channel should be acknowledged successfully without error in the

feedback transmission. The assumption of error-free feedback reception is not unreasonable since

the length of this message is very short and therefore it can be protected by a strong channel coding

technique. However, in a situation in which the ACK/NACK is lost, the timer expires to setup
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Figure 4.3: (I) Geographic configuration of the CMRE LOON testbed, in the Gulf of La Spezia,
Italy. M1-M4 are the modem tripods, C is the shore side container lab (control station), TC is the
thermistor chain, H is the hydrophone array, and A is an ADCP. (II) Spectrum of a sample received
signal from the LOON in two successive transmission time slots while the spreading length and
coding rate have changed.

the retransmission process. In the conventional scheme, if Ti does not receive the ACK before a

timeout expires, it will keep transmitting extra information in the next packets under the HARQ

policy considering the previous channel state. However, in the proposed scheme, because of the

collaboration among the nodes (i.e., Tĉ), the probability of reception is increased by leveraging the

statistical independency of the channels (i.e., channel diversity).

4.4 Performance Evaluation

In this section, we provide the performance results when using data collected from the CMRE

LOON testbed and during the REP18-Atlantic sea-trial.

CMRE LOON Testbed: The geographic configuration of the CMRE LOON testbed is depicted

in Fig. 4.3(I) for underwater communications and networking. It consists of four bottom-mounted

tripods (M1-M4) installed at a depth of about 10 m. Each tripod is equipped with heterogeneous

communications technologies and sensors, and it is cabled to a shore control station (C) providing

data connection and power supply. The LOON tripods also support arbitrary waveform transmis-

sion/recording. Additionally, the LOON includes a high-definition acoustic data acquisition system

(at frequencies above 1 kHz) from an array of hydrophones (H), a thermistor chain (TC), sound

velocity sensors, an Acoustic Doppler Current Profiler (ADCP) with waves measurement (A), and a
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meteorological station. These sensors are used to correlate the characteristics of the acoustic channel

with the performance of the investigated protocols. The LOON provides therefore a comprehensive

data set of environmental, acoustic, and packet measurements to study the communication processes

at different communication layers.

Experiment Settings: A variety of scenarios can be considered in the shallow-water environ-

ment where the LOON is deployed to capture the system outputs. We considered a point-to-point

transmission from node M4 to H for modeling the link of several rounds of transmissions. Pack-

ets are transmitted using baseband Binary Phase Shift Keying (BPSK) and Quadrature Phase Shift

Keying (QPSK) modulations over the passband channel 4 − 19 kHz by exploiting Reed-Solomon

channel coding, (7, 3) or (15, 9). A logistic map is used to generate a chaotic spreading code with

various lengths, i.e., SL = [10, 40]. As an example, we have measured the average Signal-to-Noise

Ratio (SNR) equal to 32.68 dB for a QPSK transmitted signal with SL = 22, and an average Bit

Error Rate (BER) of approximately 4.6365× 10−4 is achieved.

Simulation Settings: We focus on the collaboration among transmitting nodes and assume

that ACK/NACK feedback links are free of errors. Algorithm 2 has however a mechanism with

a timer to retransmit the data if a feedback is not received within the expected time. Nodes in

the same neighborhood can overhear each other, while nodes in adjacent areas do not receive the

data since the chaotic CDMA sequence protects from unauthorized overhearing. Simulation are

conducted for a neighborhood of 3 nodes. We use the data collected using the LOON testbed

to model a multiuser scenario, then we optimize the parameters, as described in Sect. 4.3. The

computed values are passed through the channels extracted from the LOON in a close-loop manner.

We evaluate the system performance in MATLAB by considering the following metrics: SINR,

long-term throughput (η), neighborhood efficiency rate, and effective rate per node.

Results: Fig. 4.3(II) shows the frequency spectrum of a sample received signal from the LOON

while the spreading length and coding rate changes for two successive transmitted signals. In

Figs. 4.4(I) and 4.5(II), two experiments with different settings are shown (for BPSK and QPSK

scenarios, respectively). The PSD of the transmitted and received signals in passband and decoded

baseband are plotted for comparison. Received SNR versus bandwidth, channel profile for the du-

ration of the transmission, and scatter plot of the estimated symbols are provided. The transmitted

signal parameters, BER, and SNR are also included in the figure. In Fig. 4.6(I), the received SINR
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in a neighborhood of three nodes is presented to investigate the effect of multiuser interference.

Fig. 4.6(I-a) presents the case where only one node in the area is transmitting. In this case, without

interference, the received signal has a considerably better SINR. In Fig. 4.6(I-b), the data transmis-

sion in the area is performed by three nodes, so there is a multi-user interference. Fig. 4.7(II-a)

depicts the total efficient rate in a neighborhood of three nodes. The plot shows how the collabora-

tion strategy handles channel impairments and distributes the traffic load in the neighborhood. As

the result of collaboration, when there are fewer nodes to perform data transmission, multiuser inter-

ference drops and spectral efficiency improves. Fig. 4.7(II-b) presents the effective received rate per

node. The plot shows that in the case where an impairment occurs in T1 link, T2 collaborates in data

transmission. In Fig. 4.8(III), long-term throughput for the proposed collaborative method is inves-

tigated. In Fig. 4.8(III-a), η is plotted for different values of rT when none of the nodes experiences

channel impairment. The plot confirms that power control can improve the long-term throughput.
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Finally, in Fig. 4.8(III-b), collaborative HARQ is compared with the conventional method to con-

firm that collaboration improves long-term throughput under channel impairment. The figure also

shows the positive effect of power control.

Sea Experiment Setup: Sea experiments were conducted during the REP18-Atlantic (Rec-

ognize Environmental Picture) trial organized by CMRE, the Portuguese Navy (PRT-N), and the

Faculty of Engineering of the University of Porto (FEUP). The trial took place place from the 1st

to the 20th of September 2018, in the Atlantic Ocean off the coast of Portugal between Sines and

Sesimbra. The area of operations is depicted in Fig. 4.9(I). The scope of this exercise was to in-

vestigate, evaluate, and demonstrate novel technologies and solutions in the domain of underwater

communications and networking; as well as aerial, surface, and underwater robotic solutions and

autonomous strategies.

During the REP18 sea trial, dedicated tests were conducted to investigate the use CDMA signals
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for underwater acoustic networking. These tests were scheduled in the night between the 8th and

the 9th of September making use of four CMRE assets. In the area of the experiment a maximum

depth of ∼ 130 m was experienced. Table 4.1 details about the deployed assets, while Fig. 4.9(II)

displays about the nodes trajectories and distances during the conducted experiment. A source

level of 184 dB re µPa@1m was considered at the transmitter, which is in line with that of many

commercial acoustic modems currently available on the market.
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Table 4.1: Deployed CMRE Assets.

WaveGlider SV3 (x2): the wave glider is a self-propelled unmanned surface vehi-
cle which uses wave motion to navigate. The SV3 version is also equipped with
an auxiliary propeller. The wave glider enables long duration exploration and mon-
itoring operations. Two wave gliders (named Lisa and Carol) were deployed, both
equipped with an embedded board to run locally the required software and the capa-
bility to record acoustic signals using the iclisten smart hydrophone [81]. Lisa was
also equipped with the capability of transmitting arbitrary waveforms using the Nep-
tun T313 transducer [131]; On Lisa the acoustic payload was deployed at a depth of
∼ 40m, while for Carol the depth was ∼ 20m.

Moored gateway buoy (x1): Moored buoy equipped with dual radio connectivity
(Wi-Fi 2.4 GHz and Freewave 900 MHz), an embedded board to run locally the re-
quired software and the capability to transmit/receive arbitrary waveforms using the
Neptun T313 transducer and the iclisten smart hydrophone, respectively. The acoustic
payload was deployed at a depth of ∼ 80m.

Manta portable node (x1): this is a portable node including radio connectivity (Wi-Fi
2.4 GHz), an embedded board to run locally the required software, and the capability
to transmit/receive arbitrary waveforms using the ITC3013 [58] transducer and the
iclisten smart hydrophone, respectively. It was deployed from the NRP Almirante
Gago Coutinho ship during the conducted activities, with the acoustic payload at a
depth of ∼ 20m. The ship was left drifting during the experiment to avoid impacting
the data collection with the noise produced by the propellers.

Experiment Description: Two main scenarios were considered, i.e., single transmitter and

simultaneous synchronized transmitters. Four nodes were deployed, as depicted in Fig. 4.9(II).

One node, named Carol, was equipped with reception capability. The remaining three nodes (i.e.,

Gateway, Lisa and Manta/Ship) were instead provided with both transmission and reception ca-

pability. Multiple signals were transmitted and received during the conducted experiments. The

usable bandwidth was between 7− 16 kHz and the receivers were able to record the sound with the

rate of 64 kHz. The modulation methods were BPSK and QPSK. A chaotic DS-CDMA sequence

with Logistic and Bernoulli maps were created with the spreading lengths of 10, 30, 40. A Reed-

Solomon channel coding, generally shown as RS(n,k) with s-bit symbols, was used with different

coding strengths as (7, 3) (15, 9), (31, 19), (31, 21), (31, 23), (31, 25).

Results: Fig. 4.10 shows the channel response at two sample receivers, i.e., Gateway at time

20:00 and 21:00 and Carol at time 20:00, while the Manta/Ship node was used as transmitter. In
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Figure 4.10: Channel response while receiving the signal at (a) Gateway at time 20:00; (b) Gateway
at time 21:00; (c) Carol at time 20:00. Manta node deployed from the Ship was used as transmitter.
The columns show (I) Power versus frequency and time; (II) PSD of the received signals; (III) Phase
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Figure 4.20: Maximum rate, for 100s, when Manta and Lisa are the transmitters.
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Figure 4.21: Transmit power percentage, for 100s, when Manta and Lisa are two transmitters.
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Figure 4.22: Optimal CDMA spreading length, for 100s, when Manta and Lisa are two transmitters.
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Figure 4.23: Maximum rate, for 100s, when Gateway and Lisa are two transmitters.
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Figure 4.24: Transmit power percentage, for 100s, when Gateway and Lisa are two transmitters.
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Figure 4.25: Optimal CDMA spreading length, for 100s, when Gateway and Lisa transmit.
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these figures, column (I) shows the frequency spectrum of a sample received signals through dif-

ferent receivers for a specific duration. As shown in these figures, the received signals, which are

recorded at different receivers (and also at different times), experience various channels. The effect

of the amplitude response of the channel is reflected in the power spectral density of the received

signals, as shown in Figs. 4.10(II). Figures 4.10(III) present the phase variations with respect to the

frequency for these channels.

The experiments were performed for each setting with specific SNR. We scaled the data, applied

power control, and added extra ambient noise at different noise levels to be able to present the

performance in different SNRs for each experimented channel. Figs. 4.11, 4.12 and 4.13 refer to the

single node transmission scenario from the Gateway transmitter. In Fig. 4.11, the BER for different

spreading lengths for a BPSK signal is shown and confirmed that a higher spreading length leads to

a lower BER. In Fig. 4.12, the effect of coding rate on the performance was investigated. Changing

the coding strength can improve the performance in high SNRs as shown in this figure. Fig. 4.13

shows the BER for a QPSK signal with a (15, 9) coding and different spreading lengths.

Figs. 4.14, 4.15, and 4.16 show the BER in multiple-node transmission scenario, where all the

nodes (i.e., Gateway, Manta, and Lisa) were transmitting simultaneously different signals. Fig. 4.14

shows scenario (a) in which all three channels have a good quality and so there is no channel

impairment, while Fig. 4.15 represents a scenario (b) in which the signal coming from Lisa does

not experience a good channel; therefore, the network has one channel impairment. In this case,

conventional HARQ will fail to deliver the data from this channel even with multiple retransmis-

sions. The proposed collaborative solution will solve this problem, as discussed in Figs. 4.17, 4.18,

and 4.19. The other scenario, called (c), is reported in Fig. 4.16. This time two channel impair-

ments are considered, both Lisa and Manta fail to deliver the data in the presence of a good channel

from Gateway. Gateway will collaborate in our proposed solution to improve the total network

efficiency, as reported in Figs. 4.17, 4.18, and 4.19. Efficient rate is shown in Fig. 4.17 when all

three channels are reliable as described in the scenario (a). Fig. 4.18 compares the efficient rate

and the collaboration in the aforementioned scenarios. As an example, Gateway handles the Lisa’s

data in scenario (b) and the whole network’s data in scenario (c). Fig. 4.19 compares the average

number of transmissions in the collaborative HARQ with the conventional one for two cases: (i) the

receiver returns a NACK to Manta. Gateway then collaborates with Manta in transmitting the extra
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Figure 4.26: Long-term throughput simulation for the feedback ACK/NACK under different as-
sumptions. The case in which the impaired node does not collaborate, i.e., the conventional ap-
proach, is compared against the case in which collaboration occurs.

redundancy which leads to a reduction in the average number of retransmissions as a result of this

collaboration; (ii) Lisa is and Manta is involved in the collaboration. By comparing the cases, we

conclude that Gateway was a better collaborator in a comparable situation.

To verify the energy efficiency of the proposed solution, we investigate the trade-offs between

the maximum rate, power, and CDMA spreading length in Figs. 4.20- 4.25. We considered the

experimental data from the channel of Lisa and Manta transmitters for a period of 100 s and plotted

the offline results of the optimization for maximum rate, transmit power, and the optimal CDMA

spreading length, since the experiment was open loop. The goal is to maximize the neighborhood

data rate which is shown in Fig. 4.20. In Fig. 4.21, the required power for each transmitter to reach

this rate is plotted. This figure confirms the efficiency of power allocation since the transmitters

transmit with a fraction of the maximum power. Fig. 4.22 shows how the spreading length of these

two transmitters adapts with the channel situation.

Figs. 4.23, 4.24 and 4.25 show the case in which Lisa and Gateway are the transmitters. Here,

Gateway’s signal is dominant and the signal that comes from Lisa experiences a poor channel. Lisa

has to use its maximum power to defeat the interference coming from the strong signal of Gateway;

however, it conveys a very low data rate. On the other hand, Gateway keeps its transmitter at the

minimum power, while transmitting a great portion of data, as in Figs. 4.23 and 4.24. Our solution

here is to switch off the node related to the weaker link, as described in the previous section. The

other dominant node can handle the procedure with lower interference and better performance.
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To evaluate the effect of errors in the feedback channel, a two-round HARQ simulation was

investigated. Fig. 4.26 depicts the results in which two different assumptions were considered.

Firstly, we assumed that the quality of feedback channel to both the impaired and collaborating

nodes are similar in terms of probability of error. Secondly, we consider different probabilities of

errors for those two feedback channels and simulated the long-term throughput for both cases. It is

shown that the long-term throughput increases when the proposed algorithm is used.

4.5 Summary

In this chapter, a collaborative strategy for a CDMA-based underwater Hybrid ARQ was introduced

to increase the overall throughput of the network. The solution leveraged both chaotic CDMA and

HARQ properties to adjust the physical- and link-layer parameters and to compensate for the poor

underwater acoustic communication links. System performance improvement and power control

were considered, while the total throughput of the system was optimized. Experimental data was

first collected in a shallow-water configuration using the CMRE LOON testbed and processed to

extend the results to other nodes via simulation. Additional data was then collected in a deeper-water

scenario during the REP18-Atlantic sea-trial to achieve a meaningful comparison under different

conditions. This research has the potential to be implemented in larger underwater networks with

heterogeneous nodes with higher volume of data and to analyze the scalability of the solution.
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Chapter 5

Software Defined MIMO-Based Underwater Adaptive Video
Transmission

Achieving reliable acoustic wireless video transmission in the extreme and uncertain underwa-

ter environment is a challenge due to the limited bandwidth and the error-prone nature of the

channel. Aiming at optimizing the video quality and the user’s experience, an adaptive solution

for underwater video transmission is proposed that is specifically designed for Multi-Input Multi-

Output (MIMO)-based Software-Defined Acoustic Modems (SDAMs). To keep the video distortion

under an acceptable threshold and to increase the physical-layer throughput, cross-layer techniques

utilizing diversity-spatial multiplexing and Unequal Error Protection (UEP) are presented along

with the scalable video compression at the application layer. Specifically, the scalability of the

utilized SDAM with high processing capabilities is exploited in the proposed structure along with

the temporal, spatial, and quality scalabilities of the Scalable Video Coding (SVC) H.264/MPEG-

4 AVC compression standard. Experiment results at the Sonny Werblin Recreation Center, Rut-

gers University-NJ, are presented and several scenarios are experimentally considered for both the

known and unknown channel information at the transmitter and for both the video broadcasting

and multicasting. Hydrophones are placed in different locations in the pool to achieve the required

SVC-based video Quality of Service (QoS) and Quality of Experience (QoE) given the channel state

information and the robustness of different SVC scalability. The video quality level is determined

by the best communication link while the transmission scheme is decided based on the worst com-

munication link, which guarantees that each user is able to receive the video with an appropriate

data rate and quality.
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Figure 5.1: Proposed system for the MIMO-based software-defined acoustic transmission. Trans-
mission techniques that utilize diversity and spatial multiplexing are the modalities.

5.1 Overview

Video transmission enables a wide range of applications in the underwater environment such as

coastal and tactical multimedia surveillance, marine debris detection and monitoring, undersea and

offshore exploration, oil pipe/bridge inspection, monitoring of geological/biological processes from

the seafloor to the air-sea interface. In order to enable these applications, which all require real-

time or near-real-time video acquisition, processing, and transmission [107], and to pave the way

towards the futuristic Internet of Underwater Things (IoUTs) paradigm [116], achieving reliable

multimedia transmission is a necessity, especially from places where humans cannot easily/safely

go. Moreover, any communication solution aiming at enabling these applications should support

different Quality of Service (QoS) requirements ranging from delay sensitive to delay tolerant and

from loss sensitive to loss tolerant [95].

In practical scenarios, underwater Remotely Operated Vehicles (ROVs) are usually used, which

are tethered to the supporting ship by a high-speed cable. This constrains the mission as well as

the number of ROVs that can operate simultaneously in the same body of water. This is a serious

limitation in the (i) development of underwater systems for future applications; (ii) maneuverability

and range of the vehicles engaged in the mission; and (iii) coordination of multiple vehicles in the

mission. In other cases, when not tethered, the vehicles have to rise periodically to the surface to

communicate with a remote station via Radio-Frequency (RF) signals. Resurfacing periodically

does not guarantee interactivity as well and leads to considerable energy/time inefficiencies.
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Motivation: Having a reliable and high-speed wireless transmission underwater is a challenge

in such an environment in which RF waves are absorbed for distances above a few tens of meters,

optical waves suffer from scattering and ocean wave motion, and acoustic waves—while being able

to propagate up to several tens of kilometers—lead to a communication channel that is dynamic,

prone to fading, spectrum limited with the bandwidth of only a few tens of kHz due to high trans-

mission loss at frequencies above 50 kHz, and affected by the ambient non-white noise [111]. While

conventional underwater acoustic modems with their fixed-hardware designs [27] hardly meet the

required data-rate and flexibility to support video requirements for futuristic applications, recently

other solutions based on open-source and reconfigurable architectures employing software-defined

modems have been proposed. Using software-defined modems helps scientists explore different

protocols and techniques on a single hardware, perform in-network analysis, and transmit a high

volume of data to a remote node depending on environment and system specifications.

Approach: To adapt to the underwater channel with variable video qualities and also leverage

the benefits of using a software-defined modem, Scalable Video Coding (SVC) is proposed [123],

which provides scalability in the processing of video and adaptation to the preferences of end-users

as well as to the varying characteristics of the acoustic channel. Common types of scalability include

temporal (frame rate), spatial (frame size), and quality (fidelity), which can all be adaptively chosen

according to the channel conditions. An SVC video can be decoded with a high flexibility based on

the knowledge of the receiver’s channel. Also, thansk to the layering technique, an SVC video can

reach high error robustness and video quality even with limited bandwidth.

The limited capacity of the underwater acoustic channel leads to a low data-rate and a restrained

utilization of SVC video standard. To make full use of this channel, our approach consists in ex-

ploiting spatial diversity and multiplexing in a Multiple-Input Multiple-Output (MIMO) structure

in cooperation (i.e., in a cross-layer manner) with the SVC and Unequal Error Protection (UEP).

Given these limitations, the video should be reconstructed without much distortion notwithstanding

a limited data rate. An optimization is thus required to select the optimal video transmission scheme

in an adaptive manner. Our cross-layer (application, physical, and error control) algorithm is evalu-

ated via field experiments to verify the efficiency of video transmission, in terms of quality and data

rate, when the Signal-to-Noise Ratio (SNR) varies.
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Contributions: We propose an adaptive cross-layer solution for underwater video transmis-

sion using a MIMO-based reconfigurable Software-Defined Acoustic Modem (SDAM) given the

latest Universal Software Radio Peripheral (USRP) family product designed by the National Instru-

ment (NI) [5]. For the application layer, we apply videos with different types of SVC scalability,

which show different error robustness with varying levels of environment SNR. For the physical

layer, given the underwater channel-compatible scalable coded video with a user-defined tolerable

level of distortion, we navigate the multiplexing-diversity tradeoff with the MIMO structure to bal-

ance transmission data rate and reliability. Experiment results show that “multiplexing” improves

the data rate significantly at high SNRs, while “spatial diversity” enhances the video quality at low

SNRs. For the error-control layer, we apply Unequal Error Protection (UEP) to improve the sys-

tem robustness without scarifying the physical-layer throughput by encoding more important parts

of the data packet to achieve higher reliability so as to avoid error propagating to less important

parts. With this cross-layer solution, the channel capacity can be improved by joint work of MIMO

and UEP within the limited underwater acoustic channel, the video can reach the optimal data rate

within the channel capacity and video scalability, and video distortion can be reduced. While opti-

mizing the video quality, results show that the optimal QoS cannot stand for QoE completely, so we

consider both the objective and subjective metrics in our algorithm to make the optimization results

closer to the human experience. Several experiments have been conducted at the Sonny Werblin

Recreation Center at Rutgers University on a camera-equipped SDAM-based underwater vehicle,

and the results are presented in this chapter. The adaptivity of our system is discussed based on the

experimental results under various scenarios.

Chapter Outline: The remainder of the chapter is organized as follows. Sect. 5.2 presents

the relevant publications and related work. Sect. 5.3 discusses the framework and proposes the

solution. Sect. 5.4 presents the performance results based on the conducted experiments; finally,

Sect. 5.5 summarizes the chapter.

5.2 Related Work

Conventional video coding does not meet the underwater video transmission requirements for the fu-

turistic applications. This goal is even harder to achieve in distances above hundred meters through
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the acoustic channel, as acoustic waves suffer from attenuation, Doppler spreading, high propa-

gation delay, and time-varying propagation characteristics [95]. To achieve higher data rates in the

bandwidth-limited underwater acoustic channel, several techniques should be combined holistically.

In [109], a Hybrid Automatic Repeat Request (HARQ)-based solution is proposed that exploits the

diversity gain offered by independent links in an underwater acoustic MIMO system. An Orthog-

onal Frequency-Division Multiplexing (OFDM) modulated dynamic coded cooperation scheme is

proposed for the underwater relay network in [28]. Authors in [35] discuss the relationship be-

tween underwater acoustics and optics for long-range and short-range distances, respectively, to

determine the correlation between the properties and the reliability of the acoustic/optical links.

In [110], a signaling method for video transmission is proposed that makes use of multiple domains

to leverage the benefits of Acoustic Vector Sensors (AVS). Scalable Video Coding (SVC), as an

extension of H.264/MPEG-4 AVC, can be the solution for video delivery in harsh environments,

such as in underwater, by offering more flexibility via different modalities—temporal (frame rate),

spatial (frame size), and quality (fidelity or SNR)—to match the lossy video compression and er-

roneous transmission environments. It can also support the scalability in the complexity and in the

Region Of Interest (ROI) [123]. An adaptive mechanism based on Scalable High Efficiency Video

Coding (SHVC) is proposed for surveillance video coding [66], which achieves an enhancement of

bitrate compared with the traditional SHVC video coding benchmark. The effect of scalability in

SVC with the goal of providing guidelines for an adaptive strategy to select the optimal suggestion

for a given bandwidth is discussed in [68]. An automatic tool for measuring the subjective metric—

Mean Opinion Score (MOS)—of SVC video and improving the Quality of Experience (QoE) by

using a random neural network is introduced in [129]. Authors in [14] propose an algorithm to es-

timate the SVC video distortion by assessing an objective metric, the Structural Similarity (SSIM).

A public database for image and video quality evaluation with both the subjective and objective

metrics is introduced in [2].

The Centre for Maritime Research and Experimentation (CMRE) proposed a structure [98] to-

wards designing a Software-Defined Open-Architecture Modems (SDOAM) that is compatible with

the JANUS standard [99]. Authors in [34] proposed a networking platform for short-range acoustic

SDAMs, called SEANet. A survey on the past and current SDAMs was presented in [39], where the

joint project between The Netherlands Organization for Applied Scientific Research (TNO) and the
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Norwegian Defense Research Establishment (FFI) focusing on building a programmable modem,

called NILUS softmodem, was discussed. The other platform, presented in [144], adapts some of

the terrestrial radio and network development with the underwater acoustic environment. Based on

the investigation of Multi-Stream Frequency-Repetition Spread-Spectrum (MSFRSS) modulation,

authors in [18] examined the feasibility of underwater acoustic streaming of camera and sonar data

on the TNO’s testbed.

5.3 Proposed Solution for Video Transmission

In this section, we describe our system model, followed by the proposed cross-layer multimedia

communication approach that leverages the MIMO structure and scalability characteristic of the

compressed video to mitigate the overall distortion.

System Model: As illustrated in Fig. 5.1, a camera-equipped underwater robot initially records

and encodes the video in the pre-processing block using an SVC encoder. Data is protected against

the noisy channel with a proper channel coding technique, i.e., UEP, as well as an appropriate MIMO

scheme using either spatial diversity or spatial multiplexing. At the receiver side, post-processing

will be performed, and the human will participate dynamically in a closed-loop manner to tune the

system based on the video quality satisfaction and the reliability of service in the received video

stream. The decision is optimized, and the transmitter is notified accordingly.

We consider an SVC-based video bitstream, divided into chunks/segments, consisting of a base

layer plus L enhancement layers adopting different communication modalities. The chunk size

is determined by the base and enhancement layer Group of Pictures (GoP) of the SVC file. The

modality is being decided at the pre- and post-processing blocks, based on the Rate-Distortion (RD)

requirements of the system. For a compressed video [137],

De(Re) =
θ

Re −R0
+D0, (5.1)

where De represents the distortion of the encoded video and Re is the output rate of the encoder;

the other remaining variables, θ, R0, and D0, depend on the encoded video and on the model,

and are estimated empirically. To quantify and measure the video distortion over the underwater

acoustic channel, the Peak Signal-to-Noise Ratio (PSNR) is used as a metric for measuring the
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distortion De based on the overall Mean Square Error (MSE). Other metrics, such as Physical-

Layer Throughput (PLT), Structural Similarity (SSIM), and Mean Opinion Score (MOS) are also

used to predict the perceived quality of the video. To reduce the amount of distortion, SVC provides

hierarchical prediction structures for temporal scalability, inter-layer prediction of motion for spatial

and quality scalability, and key pictures definition for drift control in packet-based quality scalable

coding with hierarchical prediction structures [123]. Note that the total amount of distortion is

composed of the errors caused by the lossy compressionDe and the errors caused by the underwater

acoustic channel, which can be alleviated by choosing an appropriate scheme.

While sound travels through the underwater medium, part of the acoustic energy is absorbed.

An expression that models the medium absorption coefficient as a function of frequency f is,

a(f) = (0.11f2)/(1 + f2) + (44f2)/(4100 + f2) + 2.75× 10−4f2 + 0.003 [134]. In this empiri-

cal formula, 10 log10 a(f) represents the channel attenuation. Propagation loss can be modeled via

Pa = ς∆$ea(f)∆, in which ς , ∆, and $ stand for the scattering loss, distance, and spreading loss,

respectively [157]. When considering multiple propagation, in which the signal at the receiver is

the outcome of several delayed signals of the original signal, the Channel Transfer Function (CTF)

of each path p is Hp(f) = Λp/
√
Pa, where Λp is the cumulative reflection coefficient of surface

and bottom reflections for each path. The overall CTF is calculated as H(f) =
∑

pHp(f)ejθp(f),

in which θp(f) is the phase response characteristic for path p. Delay characteristic can be defined

as τp = − 1

2π

dθp(f)

df
, and it represents the propagation delay associated with path p. This delay

is highly related to the sound speed profile, which is a function that increases with the increase of

water pressure (i.e., depth), salinity, and temperature [111].

Diversity and Multiplexing Modalities: For an underwater acoustic MIMO system with m

transmit and n receive hydrophones, the received signal in a flat-fading channel can be represented

by y = Hx + N, where H is the n ×m channel matrix, x is the transmit signal, N is a zero-mean

Gaussian noise. We utilize Space-Time Coding (STC) and Spatial Multiplexing (SM) to achieve

spatial diversity and multiplexing gains, respectively, in order to adapt to the acoustic channel’s

conditions. Using SM, multiple data streams are transmitted simultaneously and the data rate is

improved without extra bandwidth occupation [62]. However, for a MIMO system with m trans-

mitters, each data stream interferes with the other m − 1 streams; hence, the receiver should be
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capable of eliminating this interference. Using spatial diversity, one single data stream is space-

time coded over multiple hydrophones. Thus, communication channels with different fading and

interference characteristics can be utilized to collect different versions of the received data so as

to improve the system’s reliability [7]. Given this fundamental tradeoff, the achievable diversity-

multiplexing equation can be written as, q(r) = (m − r)(n − r), where q(r) shows the diversity

gain and r ∈ Z represents the multiplexing gain, which can be defined as, r = 0, 1, ...,min(m,n).

As two special cases, we have qmax = mn and rmax = min{m,n}. The tradeoff curve confirms

that while the rate increases by r bps/Hz over an increase of 3 dB in SNR, the error rate is reduced

by order of 2−q(r).

This tradeoff is achieved only under ideal conditions, i.e., assuming that the SNR approaches

infinity for i.i.d. Rayleigh-fading channels. This asymptotic definition breaks if the SNR is limited,

as is the case in real scenarios [80]. The realistic diversity and multiplexing gains for a low SNR γ,

array gain g, spectral efficiency R, and outage probability Pout(r, γ), are calculated as follows,

r =
R

log2(1 + gγ)
, q(r, γ) = −∂ lnPout(r, γ)

∂ ln γ
, (5.2)

Pout(r, γ) = Pr [log2 det(In +
γ

m
H∗H) < R], (5.3)

where In represents the n × n identity matrix and superscript ∗ stands for the conjugate-transpose

operation. When STC is exploited to achieve diversity, the outage probability can be approximated

given the fading distribution of the channel. It was shown in [88] that for uncorrelated MIMO

channels, H can be represented by the variances of the power gains of channel as var ‖H‖2F =∑n
i=1

∑m
j=1 var |hij|2. These values can be obtained by estimating the mean powers of the channel

matrix in the experiment.

At the receiver, Zero Forcing (ZF) is utilized, where the demultiplexed signal is expressed as,

x̂ = (H∗H)−1H∗y, (5.4)

where (.)−1 represents the inverse transform, since (H∗H) is a non-singular square matrix. To

estimate the channel, pilot symbols Xp are inserted after every two data symbols and channel state

information is calculated by analyzing the received pilot X̂p. Therefore, the estimated channel H
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can be calculated as follows

Ĥ = (X∗pXp)
−1X∗pX̂p. (5.5)

In practical scenarios, in which the underwater channel is not known at the transmitter, we

estimate a lower bound for the outage probability given only the statistics of a statistically-equivalent

channel with the same distribution and with the eigenvalue set {ζi}m1 to initiate the process as,

Pout(r, γ) ∼ Pr [log2

m∏
i=1

(
1 +

γ

m
ζi
)
< R]. (5.6)

Some underwater acoustic channels show the behavior of a Rayleigh fading [136] or a Rician

channel, particularly in short distances (saturation condition due to heavy multipath). Therefore, a

lower bound on the outage probability for finite SNRs in a Rician fading channel with the equivalent

channel matrix Heq = (K/(K + 1))−0.5HLOS + (K + 1)−0.5Hw with line of sight (HLOS) and

non-line of sight (Hw) components, and with parameter K, can be estimated as in [80],

Pout(r, γ) >

m∏
i=1

Fi(ε), (5.7)

where Fi(x) is a Cumulative Distribution Function (CDF) with the following description while no

full Channel State Information (CSI) is assumed at the transmitter,

Fi(x) =

 Φi(x) i = 1, ...,m− 1

e−Knm
∑∞

j=0
(Knm)j

j! Φm+j/2(x) i = m.
(5.8)

Here, Φi(x) =
Γ̂
(
n−m+ 2i− 1, (K + 1)x

)
Γ(n−m+ 2i− 1)

, where ε ∝ (m, γ, g, ϑ). Furthermore, Γ(.)

and Γ̂(.) are gamma and incomplete gamma functions, respectively. In order to start the process,

diversity gain can be initially estimated as,

q(r, γ) =
m∑
i=1

F ′i (ε)

Fi(ε)

[
ε− mg

1 + gγ
(ϑ∗i (1 + gγ)ϑ

∗
i − ϑ∗i−1(1 + gγ)ϑ

∗
i−1
]
. (5.9)

Here (.)′ stands for the derivative operation, ϑ∗i is the value that maximizes the lower bound

of the outage probability in (5.7). Note that when the SNR is high, the diversity gain follows the

asymptotic diversity in (5.2) for both Rayleigh fading with a full-rank transmit covariance matrix
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and Rician fading channels [80]. The low SNR analysis is essential in MIMO systems in real-

istic propagation conditions. With SNR and diversity gain known, the estimated bit error rate at

the physical-layer and the corresponding video distortion with different scalable coded video layer

reconstructions can be calculated.

Pre-processing and Optimization: Let Re(c, l), with SVC layers {l = 1, ..., L+ 1}, denote

the rate for layer l of video chunk c. An appropriate data rateRi ≥ Re(c, l) for reliable communica-

tion should be assigned to layer l in order to maximize the total transmission rate, i.e., transmitting as

many video layers as possible without getting an outage or erroneous reception, given the bandwidth

limitations and the quality of the underwater channel as well as the maximum allowed distortion.

The following optimization problem justifies the aforementioned discussion,

max
αl

FR = Re(c, 1) +
L+1∑
l=2

αlαl−1Re(c, l) (5.10a)

s.t.
L+1∑
i=1

αiαi−1Ri ≤ Rmax, (5.10b)

α1 = 1, αi ∈ {0, 1}, ∀i ∈ {2, ..., L+ 1}. (5.10c)

The first problem is a knapsack program, which defines the enhancement layers of rate Re(c, l)

that could be transmitted over the underwater channel with maximum achievable communication

data rate Rmax. Coefficients {αi} determine the set of enhancement layers that can be passed

through the channel given the mentioned constraints. Selecting each layer depends on the presence

of the preceding layer. This optimization guarantees that the base and enhancement layers are

correctly transmitted (and received) given the limited capacity of the underwater acoustic channel.

As stated in (5.6) and (5.3), the MIMO transmission scheme takes full advantage of the channel,

leading to an improvement of Rmax.

Post-processing and Video Quality Decision: To ensure that the desired Quality is achieved,

an optimization problem finds the required parameters for the minimum possible distortion. Video

header packets hold the general information of the H.264/SVC file, parameter set packets define

the syntax structure of video, and slice data packets contain the detailed messages in the video.

We define the distortion vector as d = [de dc]
T , where de is the distortion imposed by the codec as

presented in (5.1) and dc is the distortion imposed by the channel (and is determined via experiments
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as it is related to the channel effective loss rate (λ)). If we assume that dh = [dh
e ,d

h
c ]T is the

distortion at the stream header and db = [db
e ,d

b
c ]T is the distortion at the stream body of the

transmitted video, then the total distortion can be written as,

de = De

(
L+1∑
l=1

αlRe(c, l)

)
. (5.11)

Hence, the total distortion is modeled as D = µT [dh db]ν, where µ = [µe µc]
T is a weighting

vector specifying the influence of the encoder distortion and channel distortion; and ν = [νh νb]
T

is a weighting vector specifying the influence of the distortion at the header and the body of video

stream. We can cast the following optimization problem,

min
Ri

µT [dh db]ν (5.12a)

s.t.
L+1∑
i=1

αiRi ≥ Rmin, (5.12b)

Ri ≥ Re(c, l), (5.12c)

D ≤ DT . (5.12d)

In the constraints, Rmin stands for the minimum required rate to avoid Pout, and DT represents

the acceptable end-user distortion threshold. The problem can be optimized through a piecewise

linear approximation method, which leads to a convex approximation function for (5.12a). The en-

coder distortion de is determined by the video codec and the channel distortion dc will be alleviated

by selecting an appropriate UEP scheme based on the weighting vector ν.

Unequal Error Protection (UEP): Given the structure of the video, if an error occurs in the

stream header packets, the video cannot be decoded. Similarly, if the error occurs in the parameter

set packets, the structure of the video will be damaged, which will lead to an extremely low-quality

video. However, if the error occurs in the slice data packets, the video can be decoded successfully

with a good quality. To achieve a high-quality video transmission, the received stream header with

a negligible bit error rate is required, or the transmission of the whole video stream will fail. Since

the video is much more sensitive to errors in the header and parameter set than those in the stream

body, i.e., νh � νb, we utilize the UEP scheme to improve the received video quality. Therefore,
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Algorithm 3 Adaptive video transmission.
1: Layers = scalableVideoCoder( ); % Decide video layers
2: Transmit(baseLayer); s← 1 % s is the number of trials
3: while t < Chunk Time do
4: Receive(feedback)
5: if channelState.rollingAverage > threshold.distortion then
6: transmitter.switchTo(’Multiplexing’)
7: else
8: transmitter.switchTo(’Space-Time Coding’)
9: end if

10: Estimate(diversityGain, outageProbability)
11: if MeanOpinionScore < threshold.opinionScore then
12: Decide(channelCoding)
13: Reconstruct(Layers); s← s+ 1
14: end if
15: Transmit(Layers)
16: channelState.update( )
17: if s =

∑
iαi % αi stands for the layer coefficient then

18: Goto 1 % Done Transmitting this chunk
19: end if
20: end while

by adding more redundancy in the header and parameter set, the receiver will have the capability to

recover the header and parameter set more accurately than the body [125].

Cross-layer Optimization: Algorithm 4 describes the procedure for transmitting the underwa-

ter video adaptively, where the transmitter decides on the channel coding scheme, MIMO scheme,

and type of video scalability. Given the objective and subjective metrics, our SDAM adaptively

self-reconfigures by solving the optimization problem so as to be able to switch between the two

MIMO transmission modes, i.e., diversity-based and multiplexing-based, and decides on the num-

ber of video layers to achieve the required goals. The base-layer stream, which contains the highest

priority information of the video, requires the highest reliability, while the enhancement layers re-

quire a higher data rate, Rmax. This fact, on the other hand, might result in more communication

errors if the channel condition is not good. In our algorithm, we consider objective and subjective

metrics jointly, given the fact that the QoE is more related to the user’s experience. Given similar

QoS but different scalability, the QoE might be different.

SVC-based Multicasting: With the SVC standardization, the low-quality video subset bit-

streams can be derived and decoded from a high-quality SVC video bitstream by dropping some

packets. Therefore, video bitstreams with different quality levels can be received by different users

which can decode video bitstreams adaptively according to their experienced acoustic channel.



107

0 5 10 15 20

SNR (dB)

35.5

36

36.5

37

37.5

38

P
S

N
R

 (
d

B
)

Base layer

Base layer and one enhancement layer

Figure 5.2: Simulated distortion (PSNR) versus SNR.

When the bit error rate is high, the low-quality video stream will be decoded; whereas when the

bit error rate is low, the high-quality video stream can be decoded. The video quality level will be

determined by the feedback from the best communication link, while the transmission scheme will

be determined by the feedback from the worst communication link, which guarantees that each user

is able to receive the video stream with an appropriate data rate.

Objective and Subjective Metrics: Some objective metrics are efficient to assess automatically

and are of low computational cost, including PSNR, Physical-Layer Throughput (PLT), and Struc-

tural Similarity (SSIM). PLT is a physical-layer performance metric that shows the actual amount

of transmitted data per second and is calculated as,

PLT =
MKFFTRchcRst
2LTLFTOFDM

(1− pc), (5.13)

where KFFT stands for the FFT-size of the Orthogonal Frequency Division Modulation (OFDM),

M represents the order of baseband modulation (M = 1 for BPSK), Rchc is the channel coding

rate, Rst is the number of streams transmitted simultaneously (Rst = 1 for SISO and 2-by-2 STBC,

Rst = 2 for 2-by-2 V-BLAST [30]), pc is the bit error rate of the received data stream, and TOFDM

represents the period of one OFDM symbol.

On the other hand, subjective metrics will correlate better with the human perception. The

SSIM measures the fidelity of the video and is calculated based on the similarity of the local area

luminance, local area contrast, and local patch structure. We apply Mean Opinion Score (MOS), as

an objective metric, which has a scale from 0, i.e., cannot play, to 100, i.e., fully satisfied.
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Figure 5.3: Simulated distortion (PSNR) versus link distance.
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Figure 5.4: Simulated distortion (PSNR) for different video streaming rates when SNR = 5 dB.

5.4 Performance Evaluation

Several rounds of experiments are conducted in the swimming pool as well as computer simulations

to validate the proposal. Both the objective and subjective assessments of the received video on the

application and physical-layer design are presented and the adaptivity of this solution is discussed

to balance MIMO transmission and channel coding as well as SVC video scalability.

Testbed Description: We modified an existing tethered Remotely Operated Vehicle (ROV),

called BlueRov2 [1], as shown in Fig. 5.1, to operate in the autonomous mode while capturing the

video with its 1080p camera. The video is passed through the acoustic modem and transducer to be

sent to the buoy on the other side of the link, as shown in Fig. 5.1. A high-performance and scalable

platform using a programmable Kintex-7 Field-Programmable Gate Array (FPGA), called X-300,

designed by Ettus Research Group with the National Instruments Corporation (NI) [5], is utilized in
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Table 5.1: Hardware Specifications.
Part Parameter Value
Transducer Frequency range 1–180 kHz (Omnidirectional)

Receiving sensitivity −211 dB± 3 dB re 1 V/µPa
Transmit sensitivity 130 dB± 3 dB re 1 V/µPa

Preamp. Frequency (Gain) 0.5–500 kHz (0–50 dB)
HP/LP filters 1 Hz–250 kHz/1 kHz–1 MHz

Power Amp. HP filters (Gain) 1 Hz–20 kHz (0–36 dB)
Modem Mainboard Kintex-7 FPGA

Frequency (Clock) 0–30 MHz (10 MHz/1 PPS)
ADC sample rate 2 yuchannels, 200 MS/s (14 bits)
DAC sample rate 2 channels, 800 MS/s (16 bits)

MIMO Uplink Structure Upto 2x2 MIMO
Feedback Structure 1X1 SISO (FDD Duplexing)

Camera Standard H.264 1080p (1X1.7 mm lens)
Tilt range & H. FOV ±90◦ & 110◦

this research. This platform contains a main-board that provides the basic functionalities of the mo-

dem and daughter-boards that take care of signal up/down conversions and other required bandpass

signal processing procedures. Teledyne Marine RESON TC4013 omnidirectional transducers [3]

with a frequency range of 170 kHz are used in our testbed. The specifications of the system are

summarized in Table 5.1.

Joint Scalable Video Model (JSVM) software is used as the reference package for implement-

ing SVC. Using the FixedQPEncoder program, test videos were down-sampled and encoded into

multiple layers of different qualities. Each layer has a target bit rate, and the Quantization Param-

eter (QP) can be varied in order to optimize the PSNR while staying under the target rate. As the

second decoder, OpenSVC is used for decoding due to its implementation of error concealment and

its integration with Mplayer for video streaming.

Simulations Results: Figs. 5.2-5.4 show the result of solving optimization problems (5.10a)

and (5.12a) in the pre- and post-processing blocks of the system. In these figures, the PSNR is

plotted as a measure of distortion given the decision of the transmitter on the structure of video, i.e.,

the base layer only, or base and enhancement layers. In Fig. 5.2, the effect of SNR—as a metric

of communication channel quality—on the distortion is investigated. Fig. 5.3 shows the decreasing

trend of PSNR when the link distance increases. Fig. 5.4 shows the distortion metric for different

video streaming rates. Given the promising results of these simulations, we conduct experiments in
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: (a) A frame from original video; (b) A frame of reconstructed video from base layer;
(c) A frame of reconstructed video from base and enhancement layers; (d)-(f) Show the recon-
structed frames of all the layers after experiencing a harsh error.

Figure 5.6: Testbed in the pool experiments. The receivers near the bank and in the center are named
as R1 and R2, respectively.

the pool, as explained in the following section.

Pool Experiments: For our extensive experiments, hydrophones are placed in a large pool. The

tests are repeated for variable distances and depths. The transmission is performed with the maxi-

mum data rate of 100 kBd and with H264/AVC codec JSVM signals, as shown in Fig. 5.5. We con-

sidered placing the hydrophones near the wall and also in the center of the swimming pool (Fig. 5.6),

which changes the results due to the multipath effect. The stream bits are modulated with Binary

Phase Shift Keying (BPSK) with different MIMO schemes. For the frame structure, the pilot sym-

bols are inserted after every two data symbols for channel estimation. Assume the coherent time is

3 ms with a transmission rate of 100 kbps; therefore, the interval time between two pilot symbols
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Figure 5.7: Applying SISO scheme, PSNR of the video received near the bank of the pool.
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Figure 5.8: Applying SISO scheme, PSNR of the video received in the center of the pool.

is 20 µs, which is far less than the coherence time of the channel. To mitigate the multipath effect

as well as to enhance the spectrum efficiency, the OFDM modulation is applied in the underwater

transmission. The OFDM FFT size is chosen to be 6144 with FFT duration of 61.44 ms. We choose

the cyclic prefix length to be 10.24 ms. With the OFDM system bandwidth to be 100 kHz, overall

the OFDM symbol length is 71.68 ms, and the subcarrier spacing is 16.28 Hz. The specifications

of the SVC encoder are summarized in Table 5.2.

Figs. 5.7-5.9 show the PSNR of different reconstructed videos with the SISO scheme with spatial

scalability, and also the PLT in the center of the pool with spatial scalability layer 1. We observe

that when the SNR is low, the video with layer 0 has a higher PSNR than that with layer 1. When
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Figure 5.9: Applying SISO scheme, PLT for the video with spatial scalability layer 1, which is
received in the center of the pool.
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Figure 5.10: PSNR of the video received near the bank of the pool with 1-by-2 SIMO
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Figure 5.11: PSNR of the video received in the center of the pool with 1-by-2 SIMO



113

0 1 2 3 4 5 6 7 8 9 10

SNR (dB)

0

5

10

15

20

25

30

35

40

45

Y
-P

S
N

R
 (

d
B

)
25.5

26

26.5

27

27.5

28

28.5

P
h
y
s
ic

a
l-
L

a
y
e

r 
T

h
ro

u
g

h
p
u

t 
(k

b
p
s
)

1-by-2 SIMO: Y-PSNR

1-by-2 SIMO: Physical-Layer Throughput

Figure 5.12: PLT for the video with spatial scalability layer 1 received in the center of the pool with
1-by-2 SIMO.
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Figure 5.13: PSNR of the video received near the bank of the pool with 2-by-1 Alamouti.
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Figure 5.14: PSNR of the video received in the center of the pool with 2-by-1 Alamouti.
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Figure 5.15: PLT for the video with spatial scalability layer 1 received in the center of the pool with
2-by-1 Alamouti.
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Figure 5.16: PSNR of the video received near the bank of the pool with 2-by-2 STBC.
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Figure 5.17: PSNR of the video received in the center of the pool with 2-by-2 STBC.
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Figure 5.18: PLT for the video with spatial scalability layer 1 received in the center of the pool with
2-by-2 STBC
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Figure 5.19: PSNR of the video received near the bank of the pool with 2-by-2 V-BLAST.
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Figure 5.20: PSNR of the video received in the center of the pool with 2-by-2 V-BLAST.
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Figure 5.21: PLT for the video with spatial scalability layer 1 received in the center of the pool with
2-by-2 V-BLAST.
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Figure 5.22: SSIM of the video with different transmission scheme for SISO.
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Figure 5.23: SSIM of the video with different transmission scheme for a 2-by-2 STBC.
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Figure 5.24: SSIM of the video with different transmission scheme for a 2-by-2 V-BLAST.
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Figure 5.25: MOS of the video with different transmission scheme for SISO.
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Figure 5.26: MOS of the video with different transmission scheme for a 2-by-2 STBC.



118

7 8 9 10 11 12 13 14

SNR (dB)

0

10

20

30

40

50

60

70

80

90

100

M
O

S

V-BLAST: Quality scalability layer 0

V-BLAST: Quality scalability layer 1

V-BLAST: Temporal scalability layer 0

V-BLAST: Temporal scalability layer 1

V-BLAST: Spatial scalability layer 0

V-BLAST: Spatial scalability layer 1

Figure 5.27: MOS of the video with different transmission scheme for a 2-by-2 V-BLAST.

4 4.5 5 5.5 6 6.5 7 7.5 8

SNR (dB)

0

5

10

15

20

25

30

35

40

45

Y
-P

S
N

R
 (

d
B

)

SISO: EEP code rate 1/2

SISO: EEP code rate 1/3

SISO: EEP code rate 1/4

SISO: UEP code rate 1/3 and 1/2

SISO: UEP code rate 1/4 and 1/2

SISO: UEP code rate 1/4 and 1/3

Figure 5.28: PSNR of the video with different error protection scheme for SISO.
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Figure 5.29: PSNR of the video with different error protection scheme for 2-by-2 STBC.
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Figure 5.30: PSNR of the video with different error protection scheme for 2-by-2 V-BLAST.
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Figure 5.31: PLT of the video with different error protection scheme: SISO
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Figure 5.32: PLT of the video with different error protection scheme: 2-by-2 STBC.
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Figure 5.33: PLT of the video with different error protection scheme: 2-by-2 V-BLAST.

Table 5.2: SVC Encoder Specifications.
Part Parameter Value
Base layer Frame rate 15 fps
(QP = 32) Spatial Resolution 640× 368

Quality enhancement layer Frame rate 15 fps
(QP = 30) Spatial Resolution 640× 368

Temporal enhancement layer Frame rate 30 fps
(QP = 32) Spatial Resolution 640× 368

Spatial enhancement layer Frame rate 15 fps
(QP = 32) Spatial Resolution 1280× 720

the SNR is high, the video with layer 1 has a higher PSNR than that with layer 0, so we apply

lower-quality video in bad channels and higher-quality videos in good channels. Specifically, the

effect of error correction varies with different enhancement layers. For example, when the SNR

is 5 dB, the video stream with spatial scalability performs better than that with quality scalability.

When the SNR is 5.5 dB, the video stream with temporal scalability layer 0 performs best. When

the SNR ranges in 6 − 7.5 dB, the stream with spatial scalability layer 0 performs best. When the

SNR is higher than 8.5 dB, the Bit Error Rate (BER) is 0, so the decoded streams with layer 0 reach

the equal PSNR. The stream with spatial scalability layer 1 reaches the highest PSNR.

Figs. 5.10-5.15 show the PSNR and PLT of the received video with 1-by-2 SIMO and 2-by-

1 multi-hydrophone Alamouti schemes [12]. Compared with SISO in Figs. 5.7-5.9, both SIMO and

Alamouti improve the robustness of the system for each receiver that gets the transmitted stream

with diversity order of 2. Compared with Alamouti, SIMO has an SNR gain of 2.5 dB for R1 (the

hydrophone in the center) and 1.5 dB for R2 (the hydrophone in the side). While the Alamouti

scheme is able to transmit two streams simultaneously, it suffers more distortion than SIMO.
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The redundancy we add into the video streams will improve the system robustness, but will

reduce the PLT. Figs. 5.16-5.21 show the PSNR and the PLT of the video received with 2-by-

2 STBC and 2-by-2 V-BLAST [30]. Compared with SISO in Figs. 5.7-5.9, we can observe that the

STBC improves the robustness significantly with an SNR gain of 4.5 dB for R1 and 5.5 dB for R2.

While the V-BLAST suffers more distortion than SISO, but it almost doubles the PLT. Hence, we

require the multiplexing-diversity tradeoff. We note that STBC is efficient when the SNR is low,

whereas V-BLAST is efficient when the SNR is high.

Figs. 5.22-5.27 present the SSIM and MOS of the received video with different transmission

schemes, where we can observe that the proposed cross-layer design improves the objective and

subjective metrics. It is shown that when the SNR is high, the SSIM with different SVC scalability is

almost the same, while the MOS performances are quite different. Moreover, the spatial scalability

with layer 1 has the highest MOS while the quality scalability with layer 0 has the lowest MOS,

even though the PSNR (Figs. 5.16-5.21) and SSIM (Figs. 5.22-5.27) performances are close to each

other. Similar to Figs. 5.16-5.21, STBC improves the video quality and system robustness in the

low-SNR environment, while V-BLAST can only work in the high-SNR environment but offers a

higher transmission data rate.

To enhance the quality of the video, performances of UEP and Equal Error Protection (EEP)

are compared. Figs. 5.28-5.30 show the PSNR of the received video in the center of the pool, using

all layers with spatial scalability. We observe that the EEP with 1/4 code rate performs the best;

however, the PLT is reduced significantly. In contrast, the UEP with 1/4 code rate for the header

and 1/3 code rate for the body also performs well. In Figs. 5.31-5.33, the UEP with 1/2 code rate

only for the body are almost overlapped with the EEP with 1/2 code rate. The UEP with 1/3 code

rate only for the body are almost overlapped with the EEP with 1/3 code rate. Even though we

add some redundancy in the header, the length of the header is far shorter than that of the body,

so the UEP reduces the PLT slightly but improves the PSNR greatly. In Fig. 5.28, we find that

when the SNR is low, the UEP with 1/4 code rate for the header and 1/2 code rate for the body

performs better than the EEP with 1/3 code rate, for its header is protected with higher robustness by

1/4 code rate. Figs. 5.34-5.37 represent the channel response with different transmission scheme

experienced in this testbed, containing the phase of the channel in Figs. 5.34-5.35 and its power

spectrum in Figs. 5.36-5.37. Due to the high transmission loss in high frequency band, the spectrum
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limited with passband bandwidths of only a few tens of kHz.

Adaptivity of Our Solution: With the cross-layer optimization algorithm described in Sect. 5.3,

we can jointly improve the data rate, the system robustness, and the video quality. Based on the

optimization process in Figs. 5.7-5.27, we can select the optimal video transmission scheme. As

shown in these figures, R2 performs better than R1 since it suffers from less multipath delay due to

the reflected signals from the bank. Given the PSNR threshold of 30 dB and the EEP initial channel

coding with Turbo coding rate of 1/3, when the SNR is 5.5 dB the optimal video transmission

scheme is SISO with temporal scalability layer 0 for R1 and R2, so the transmitter only needs to

transmit the video stream with temporal scalability layer 0. When the SNR is 1 dB, the optimal

scheme is 2-by-2 STBC with temporal scalability layer 0 for R1 and spatial scalability layer 0

for R2. With the STBC scheme, each receiver gets up to 4 versions of received signals, which

improves the reliability after gain combing. The transmit stream needs to contain both the temporal

and spatial enhancement layers. When the SNR is 10 dB, the optimal video transmission scheme

is 2-by-2 V-BLAST with spatial scalability layer 0 for R1 and R2, as the V-BLAST transmission

scheme enables the transmitter to transmit two different streams simultaneously and achieves the

highest transmission data rate. When the SNR is 9 dB, the channel coding will be switched to UEP

for the V-BLAST scheme based on Fig. 5.30. The UEP puts more redundancy in the stream header,

which sacrifices slightly the transmission rate but almost doubles the PLT compared with the STBC.

The detailed composition of different possible transmission schemes and the corresponding channel

coding schemes are reported in Tables 5.3 and 5.4.

5.5 Summary

In this chapter, a novel scheme was proposed to layerize and transmit a video underwater using

a Multi-Input Multi-Output (MIMO)-based Software-Defined Acoustic Modem (SDAM). The bal-

ance between data rate and reliability, i.e., the multiplexing-diversity tradeoff, as well as Scalable

Video Coding (SVC) were achieved to transmit a video with a defined level of distortion, which was

a result of the encoder and the error-prone underwater acoustic channel. The proposed optimiza-

tion provided the scalability in the video bitstream processing and Unequal Error Protection (UEP)

to adapt to the preference of end-users as well as to the varying characteristics of the network.
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Figure 5.34: Channel response in the swimming pool: Phase of SISO.
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Figure 5.35: Channel response in the swimming pool: Phase of 2-by-2 MIMO.

The adaptivity of the proposed system was discussed under different scenarios and both objective

and subjective metrics were considered to optimize the user Quality of Service (QoS) and Expe-

rience (QoE). Experimental results at Sonny Werblin Recreation Center, Rutgers University were

presented that corroborated the analysis and intuitions.
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Figure 5.36: Channel response in the swimming pool: Power spectrum of SISO.
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Table 5.3: Different Transmission Schemes for Node R2 with 1/3 Channel Coding Rate.

Scheme SNR (dB) PLT (kbps) PSNR (dB)
SISO 6− 9 28.57 30.13− 43.74
1-by-2 SIMO 2− 5 28.57 30.94− 43.74
2-by-1 Alamouti 4− 7 28.57 28.47− 43.74
2-by-2 STBC 1− 5 28.57 26.22− 43.74
2-by-2 V-BLAST 9− 15 57.14 28.28− 43.74

Table 5.4: Different Transmission Schemes for Node R2 with Spatial Scalability Layer 1.

Scheme Channel Coding SNR (dB) PSNR (dB)
SISO EEP 1/2 7.5− 8 31.30− 36.62

EEP 1/3 6.5− 8 30.45− 42.15
EEP 1/4 5.5− 8 34.06− 43.74
UEP 1/3− 1/2 7− 8 30.40− 36.97
UEP 1/4− 1/2 7− 8 30.94− 38.21
UEP 1/4− 1/3 5.5− 8 30.15− 43.74

2-by-2 STBC EEP 1/2 2− 4 32.39− 43.74
EEP 1/3 2− 4 39.34− 43.74
EEP 1/4 0− 4 34.93− 43.74
UEP 1/3− 1/2 2− 4 34.36− 43.74
UEP 1/4− 1/2 2− 4 36.93− 43.74
UEP 1/4− 1/3 1− 4 30.26− 43.74

2-by-2 V-BLAST EEP 1/2 11− 14 33.51− 38.14
EEP 1/3 10− 14 32.41− 38.85
EEP 1/4 8− 14 30.15− 43.74
UEP 1/3− 1/2 10− 14 30.79− 38.85
UEP 1/4− 1/2 10− 14 33.18− 40.23
UEP 1/4− 1/3 9− 14 30.27− 41.33
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Chapter 6

Scalable Video Coding Transmission for In-Network Underwater
Imagery Analysis

Underwater imagery has enabled numerous civilian applications in various domains, ranging from

academia to industry, and from industrial surveillance and maintenance to environmental protection

and behavior of marine creatures studies. The accumulation of litter and plastic debris at the seafloor

and the bottom of rivers are extremely harmful for the aquatic life. In this chapter, a solution is

proposed for monitoring this problem using a team of Autonomous Underwater Vehicles (AUVs)

to exchange the recorded video in order to reconstruct the map of regions of interest. However,

underwater video transmission is a challenge in the harsh environment in which radio-frequency

waves are absorbed for distances above a few tens of meters, optical waves require narrow laser

beams and suffer from scattering and ocean wave motion, and acoustic waves—while long range—

provide a very low bandwidth and unreliable channel for communication. In this solution, the

scalable coded video of each vehicle is shared in-network with a selected group of receiving vehicles

through the underwater acoustic channel. Presented evaluations, including both simulations and

experiments, confirm the efficiency, reconfigurability , and flexibility of the proposed solution using

acoustic software-defined modems.

6.1 Overview

Marine litter and debris, including both beached and floating objects, is one of the most serious

and fast growing environmental threats in the oceans and seafloors. The negative impacts of litter

accumulation on the aquatic life are unquestionable. Litter is spread widely throughout the seafloor,

but its distribution is usually patchy with densities from 1 item up to around 200 items per each

10 m, as reported for Messina Strait’s channels (one of geologically active areas of the Central

Mediterranean Sea) [93]. Rivers are one of the main sources of entering litter to the seas, since they
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carry the litter with their currents to the sea or ocean. Deploying a team of Autonomous Underwater

Vehicles (AUVs), equipped with down-looking cameras, can help in detecting these objects on the

seafloor and riverbed, build a map of the pollution, and therefore, can issue early warnings so to

reduce the damage to human and aquatic life. However, coordination among multiple AUVs is a

challenge [113], specially when video is the subject of data exchange. AUVs should be able to

encode the video, and to transmit it to other vehicles (generally to heterogeneous dynamic nodes)

efficiently [95]. There are still many open problems in real-time and near-real-time underwater

video processing and transmission.

To achieve these goals, novel efficient mechanisms and hardware should be utilized to make

the video transmission feasible for underwater scenarios. Boosting the data rate and system relia-

bility is possible if all the available domains are exploited in an efficient manner [110]. To stream

and transmit underwater video, reliable and robust techniques are required in an environment, in

which Radio Frequency (RF) waves are absorbed for distances above a few tens of meters, optical

waves require narrow laser beams and suffer from scattering and ocean wave motions, and acoustic

waves—while being able to propagate up to several tens of kilometers—lead to a communication

channel that is very dynamic, prone to fading, spectrum limited with passband bandwidths of only

a few tens of kHz due to high transmission loss at frequencies above 50 kHz, and affected by the

colored ambient noise.

Motivation: Traditional commercial acoustic modems with their fixed-hardware designs hardly

meet the required data-rate and flexibility to support the futuristic underwater multimedia applica-

tions. Over the past few years, novel solutions based on adaptive and reconfigurable architectures—

i.e., Software Defined Acoustic Radios (SDAR)—have been proposed. Using SDAR helps the sci-

entists and engineers to explore different protocols and techniques on a single hardware, perform in-

network analysis, and transmit the high-volume data, such as video, to a remote node depending on

environment and system specifications. This concept is changing the business model of commercial

acoustic modems in a near future since they are focusing more on efficient hardware/architectures

and proprietary high-performance algorithms [39].

Furthermore, using conventional video compression/encoding techniques will not meet the re-

quirements for these futuristic underwater video transmissions due to the need for higher data rate

and more reliability. Therefore, more reconfigurable and flexible techniques should be utilized to
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Figure 6.1: System model of the proposed SVC-based video transmission among a team of under-
water vehicles, with the help of high-performance modified vehicles [1].

address this problem. In practice and in many underwater imagery/streaming applications, since the

visual depth of the camera is limited in the water, the vehicle should get close enough to the target

to be able to detect it, therefore, usually a single vehicle/camera can not cover the whole scene (be-

cause of the limitation in the field of view and visual depth) and can not create the global map of

the environment. The coordination among the underwater vehicles is also addressed in this chapter.

A solution is proposed to encode and share the video among AUVs until the global informa-

tion/reconstruction of the region of interest is achieved. Scalable Video Coding (SVC) [123], as the

extension of H.264/MPEG-4 AVC, offers the required flexibility by encoding the chunks of video

into a base layer and multiple enhancement layers given the requirements of the underwater channel.

Fig. 6.1 shows our vision including multiple vehicles around a pile of objects. SVC base layer pro-

vides the minimum required quality, while enhancement layers offer a more enhanced quality based

on different modalities–temporal scalability (frame rate), spatial scalability (frame size), and quality

scalability (fidelity or SNR)–which makes this encoding a good choice for lossy video compression

and erroneous transmission environments such as underwater. Here, a group of independent frames

in the video structure is represented by a Group of Pictures (GOP) in the figure. Efficient video cod-

ing and reliable communications solutions are demanded for the coordination and communications

among the vehicles. The reconstructed map can be used for in-network decision among the vehicles

or can be transmitted to the buoy for further considerations.

Contributions: In many applications, more than one vehicle, due to the limited field of view and
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the visual depth of camera in the water, are needed to reconstruct the map of region of interest. We

focus on in-network scalable underwater video sharing between AUVs and offer these contributions:

• A framework for underwater imagery analysis using partial information collected by various

vehicles around the scene;

• An optimized solution to provide the maximum possible Quality of Service (QoS) via a pro-

posed multicasting scalable coded video, while achieving the maximum Quality of Experi-

ence (QoE) for the scene reconstruction;

• Performance evaluation of this system under different scenarios using real videos captured

from the Raritan river-New Jersey and through an SDAR testbed.

Chapter Outline: In Sect. 6.2, we go over the state of the art in underwater video transmission.

In Sect. 6.3, we present our solution and discuss scalable video coding and the required optimiza-

tions. In Sect. 6.4, we evaluate the solution via the experiments and simulations, and then scale the

results via simulations. Finally, in Sect. 6.5, we summarize the chapter.

6.2 Related Work

Underwater Video Transmission: There are several unique characteristics of underwater wire-

less networks that make Quality of Service (QoS) delivery of video content—ranging from delay

sensitive to delay tolerant, and from loss sensitive to loss tolerant—a challenging task due to under-

water acoustic frequency-dependent transmission loss, colored noise, multipath, Doppler frequency

spread, high propagation delay as discussed in [95, 134]. The multiview video transmission in un-

derwater acoustic path is discussed in [45] in which the authors propose time-shifted transmission

slots to the encoder and other nodes to exchange control and video packets. The feasibility of

transmitting video over short-length underwater links is investigated in [118, 148], where MPEG-4

video compression and a wavelet-based transmission method are tested on the coded Orthogonal

Frequency Division Multiplexing (OFDM). Despite all these works, the problem of robust video

transmission is still unsolved, and achieving high video quality is still a challenge when we con-

sider the limited available bandwidth along with the harsh characteristics of the underwater acoustic

channel, which calls for novel high-spectral-efficiency in-network collaborative methods. In the
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area of underwater video, [23] shows the feasibility of video streaming using currently commer-

cially available hardware defined modems. The reconstructed objects can be used in Simultaneous

Localization And Mapping (SLAM). SLAM is a widely used technique in ground robots, but less

feasible in underwater environment specially in high turbidity situations and in the absence of reli-

able static landmarks. Some underwater visual SLAM solutions, such as in [105], create a sparse

map for the navigation and localization in clear water.

Scalable Video Coding (SVC): SVC [123] outperforms the regular H.264 encoding when more

flexibility and adaptation to the channel’s condition are required [138]. In the area of SVC, previous

research have touched on video sharing/multicasting in terrestrial context. A method for adapting

the number of layers based on a fixed time allotment is proposed in [43]. This link-level method

does not explore a multicast scenario. The authors in [151] explore dynamic layer adjustment in a

content-delivery context where a direct-download system is paired with peer-to-peer. This sharing

is top-down content delivery, rather than a scheme for in-group video sharing where each consumer

is also a producer. A method for SVC video transmission is proposed in [61] using transmitter-side

distortion estimates based on the channel state information. However, none of these methods tackle

the unique challenges faced in an underwater acoustic channel. An adaptive distortion-rate tradeoff

for underwater video transmission using a Multi-input Multi-output (MIMO)-based SDAR system

is proposed in [104]. The scalability of the system is fulfilled using SVC compression standard.

In [110] a new signaling for SVC-encoded underwater videos is proposed based on using non-

contiguous OFDM and beamforming techniques with the help of Acoustic Vector Sensors (AVSs).

6.3 Proposed Solution for Video Sharing and Map Reconstruction

In this section, the solution for in-network video sharing and coordination among multiple AUVs

is presented. First, the construction of SVC-encoded video streams and the proposed strategy to

estimate the optimal parameters are discussed given underwater acoustic channel constraints as it

will be explained in the optimization problems. Afterwards, the SVC-based multicasting solution to

increase the overall quality of video is introduced. Finally, the proposed protocol will be presented

for an efficient map reconstruction while multiple vehicles are involved in the merging process.

Construction of SVC-encoded Video Streams: Encoding the original video into several layers
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using SVC discards the need for transcoding or re-encoding the video. However, an efficient strategy

is required to leverage the scalibiliteis of SVC and adapt the encoder to the receiver’s status as well

as the quality of acoustic channel.

Video Sharing Setup: Assume V vehicles are deployed around a scene, as shown in Fig. 6.1,

at time slot t and form a wireless network of (V,H), where H stands for the point to point link

between two vehicles, when vehicles are in the communications range of each other. Vehicles

encode the initial video using SVC, and make it ready for broadcasting. To facilitate the com-

munications, vehicles set up a basic Time Domain Multiple Access (TDMA) system and assign a

time slot to each vehicle since the network size is small in underwater scenarios and the nodes are

usually close together. The underwater acoustic channel presents problems for a coordinated and

synchronized system such as TDMA, but due to the severe bandwidth constraint, it is important to

use a Medium Access Control (MAC) that does not constrain vehicles to an even smaller slice of

bandwidth, such as FDMA. Authors in [72] show that even in the underwater acoustic environment,

and specially for multicast transmissions, TDMA can allow for efficient and collision-free com-

munications. Other random- and controlled-access MAC solutions such as Carrier-sense Multiple

Access (CSMA) transmit multiple packets through the same underwater channel, which might lead

to packet collisions at the receiver [113]. To address the synchronization problem in TDMA (as the

main weakness of using TDMA underwater), We use an unsynchronized MAC protocol, e.g., Tone

Lohi (T-Lohi) [140], especially in sparse networks with limited number of nodes. The vehicles start

contending any time they realize the channel is not occupied.

Base-layer Video Sharing: Assume each vehicle records the scene from its own angle and

possibly it has an overlapping coverage with other vehicles. SVC-based video is segmented into

C chunks in each vehicle j ∈ {1, ..., V } with a base layer bj (layer 0) with the rate R(bj) and

lj ∈ 1, 2, ..., Lj enhancement layers with rate R(lj). Each node broadcasts the chunks of its base

layer video through an acoustic channel. When a vehicle i receives the base layer data of chunk

c ∈ C in time slot t from transmitting vehicle j ∈ {1, ..., V } and j 6= i in the communication range,

the received signal can be expressed as yci (t) = hcij(τij ; t) ∗ bcj(t) + zi(t), where hcij(τ
c
ij ; t) stands

for the channel coefficient with delay τ cij between vehicles i and j, yci (t) represents the received

signal, ∗ stands for the convolution operation, and zi(t) shows the background underwater colored

noise. For a band-limited non-ideal underwater channel with the frequency response of Hc
ij(f) and
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a Gaussian noise with the power spectral density of Si(f), the capacity C of each channel can be

expressed as follows [100].

Ccij =
1

2

∫ ∞
−∞

log
(

1 +
P cj (f)| Hc

ij(f) |2

Si(f)

)
df. (6.1)

Here, P cj (f) stands for the power spectral density of bcj from transmitting vehicle j in chunk c.

We drop time index t for the sake of simplicity and present our analysis for the time length of chunk

c. Assume Channel State Information (CSI) is available at the transmitter and the channel is constant

during broadcasting of a video stream in chunk c and BW represents the channel bandwidth, which

is assumed to be the same for all the users. The base layer data rate Rij(bcj) can be expressed as

Rij(b
c
j) = BWCcij . We consider the tradeoff between the transmit power and data rate for a fixed

bandwidth BW in each vehicle j such that the outage does not occur. Since we assume each vehicle

j broadcasts its data to all other vehicles in its neighborhood through independent channels, the

broadcast data rateRj(bj)BC for all chunks can be bounded as follows.

Rj(bj)BC = {Rij(bcj) : R∗m,j(bj) < Rij(b
c
j) < E[Cij ]}. (6.2)

In this equation, E[.] represents the expectation operator, Rj(bj)BC stands for the practical

transmission rate for broadcasting, and R∗m,j(bj) ∈ R∗j (bj) = [R∗1j(bj), ..., R
∗
V−1j(bj)] shows the

minimum rate required in all fading situations [60] for V − 1 receiving vehicles to avoid an outage.

In practical scenarios, in which the CSI is not fully known at the transmitting vehicle and chan-

nel gains are not known in advance, we assume that the transmitting vehicle j statistically knows the

ordering of the other vehicles for each chunk c in time slot t in terms of their instantaneous channel

gains, i.e., | hc1j |<| hc2j |< ... <| hc3j |, for receiving vehicles 1, ..., V − 1, from weak to strong.

The broadcast channel can be considered as a multiple-component channel such that a weaker com-

ponent is a degraded version of the other component in a symmetric broadcast channel. It can be

proved that the vehicles have the same channel quality and hence could decode the broadcast data.

Here, the fading statistics are assumed to be symmetric. Considering the principle of ergodicity, if

an arbitrary user k can decode its data reliably, then we can conclude all the other users should be

able to decode the broadcast data in the same way. This assumption breaks in the asymmetric fading

case in which the users have different fading distributions. Therefore, sorting is not possible which
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leads to a non-degraded channel [145, Ch. 6].

We optimize the total rate for broadcasting from vehicle j to other vehicles as follows.

maximize
pj

E
[ V∑
i=1
i 6=j

αi log
(

1 +
pcj | hcij |

2

si

)]
, (6.3a)

s.t. pth ≤ pcj ≤ pmax, ∀j ∈ {1, ..., V } , (6.3b)

Rj(bj)BC � R
∗
j (bj)1, (6.3c)

Rj(bj)BC � E[Cj ]. (6.3d)

Here αi ∈ {0, 1} is the weighting factor, which is defined in the multicasting strategy, pth and

pmax show the minimum and maximum transmit power, respectively. 1 stands for an all-one vector,

i.e., a vector whose entries are all equal to one, � and � represent the component-wise inequality.

The capacity Cj stands for the vector of all capacities to the receiving vehicles.

The optimization problem presented in (6.3) is a convex problem, since the objective function

and the constraints are convex/concave; log(1 + pcj | hcij |
2/si) is concave because it is the composi-

tion of a concave function (log) with an affine mapping of pcj . Moreover, the non-negative weighted

sum preserves the convexity (concavity) and the expectation of a convex (concave) function is con-

vex (concave) [19]. Furthermore, the constraints are all affine.

In a broadcast scenario, each transmitting vehicle propagates its base layer video to all the

receiving vehicles, since decoding the base layer is independent of other enhancement layers. How-

ever, the optimized data rate, calculated in (6.3), might not be sufficient for a higher quality video

through the enhancement layers. Each enhancement layer lj with a defined encoding rate of R(lj)

can be decoded when firstly it is received reliably and secondly its lower layer lj − 1 is success-

fully decoded, i.e., in other words, unsuccessful decoding of the lower layers leads to a failure in

decoding the current layer.

Multicasting for Enhancement-layer Video Sharing: In a multicast scenario and due to het-

erogeneity of underwater nodes, we assume the nodes with poor channel quality are able to decode

the video with the base layer, while the nodes with a better communications channel quality can be

served by a scalable video with a higher quality, i.e., with more enhancement layers. To be able

to send the enhancement layers, a broadcasting strategy is proposed in which the vehicles with the
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Figure 6.2: Schematics of the potential overlap between the vehicles considering the uncertainties
in the location of vehicles.

worst channel are shut down in the broadcasting, i.e., αi = 0 in (6.6a), in order to increase the total

transmission data rate. Therefore, a pseudo-multicasting network is created. Apparently, the more

vehicles with impaired channels are shut down, the more enhancement layers can be transmitted to

the remaining vehicles and therefore video QoS increases.

On the other hand, since the vehicles are at different locations around the scene with different

viewpoints (as it is depicted in Fig. 6.2), shutting them down, leads to lack of observation and so

it results in losing some information while the map is reconstructed. Map reconstruction requires a

good amount of Fields of View (FoV) overlap among the vehicles. Assume the vehicles’ cameras

have some degrees of spatial correlation, as shown in Fig. 6.2, which is identified via the vehicles’

configuration, i.e., area of overlap between FoVs of two cameras [84]. The FoV of cameras is lim-

ited to the area they observe, therefore, the information they get is directly related to the directional

sensing and configuration of the vehicle. This overlap is used by the algorithm as a measure to

shutdown the redundant vehicles if there exists a sufficient overlap for map reconstruction.

Let the FoV model of vehicle i, after 3-D to 2-D projection and calibration, be described by

(loci, ri, ~Di, βi) as in [32], in which loci stands for the location of the vehicle, ri represents the

sensing radius of the camera, ~Di indicates the sensing direction (i.e., the center line of sight of the

camera’s FoV), and βi is the offset angle. A model for the spatial correlation can be derived based on

the above parameters as follows. Suppose vehicles i and j are two arbitrary vehicles that observe an

overlapped area of interest; their disparity function δ (complementary to the correlation coefficient η

as δ = 1−η) is defined as follows [32]: δ = 1
4

( ∣∣∣ d sin θ
d+cos θ

∣∣∣+∣∣∣ d sin θ
d−cos θ

∣∣∣+∣∣∣ d cos θ
d+sin θ − 1

∣∣∣+∣∣∣−d cos θ
d−sin θ + 1

∣∣∣ ),
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where d denotes the camera depth (here, the difference between the loci and the target’s location

assuming the camera sensing direction ~Di is headed to the target) and θ is the angle between the

sensing direction and the x-axis, so that the location loci can be expressed by (−d cos θ,−d sin θ)

after the 2-D projection. Specifically, for two vehicles i and j with parameters (di, ri, θi) and

(dj , rj , θj), respectively, the disparity between their images can be calculated as follows [32, 84],

δi,j =
1

4

( ∣∣∣∣−di sin θi − ri cos θi
di + cos θi

− −dj sin θj − rj cos θj
dj + cos θj

∣∣∣∣+∣∣∣∣di sin θi + ri cos θi
di − cos θi

− dj sin θj + rj cos θj
dj − cos θj

∣∣∣∣+
∣∣∣∣di cos θi − ri sin θi

di + sin θi
− dj cos θj − rj sin θj

dj + sin θj

∣∣∣∣+
∣∣∣−di cos θi + ri sin θi

di − sin θi
− −dj cos θj + rj sin θj

dj − sin θj

∣∣∣). (6.4)

However, finding the exact amount of correlation might not be feasible due to the position uncer-

tainty of the vehicles and the effect of currents on the vehicles due to vehicle’s drifting. Therefore,

inaccuracies in position estimation increases and it becomes worse over time when the vehicle stays

longer underwater, which leads to non-negligible drifts in the vehicle’s position and thus making

the camera overlap accurate calculations inapplicable.

In [113], an approach has been proposed to estimate vehicles’ position through a statistical

method based on the vehicles’ confidence region. Assume each vehicle i measures N random

samples of its location as {loc(n)
i }Nn=1. The measured locations are samples of a normal distribution

N(µi, σ
2
i ) with the mean and variance µi and σ2

i , respectively. The samples also follow a normal

distribution with mean µ′i and variance σ′2i . It can be inferred that
µ′i − µi
σ′2i /
√
N

is a pivot and it has

a student’s t-distribution with N − 1 degrees of freedom. The mean µ′i =
∑N

n=1 loc
(n)
i /N and

the variance can be estimated as σ′2i = 1/(N − 1)
∑N

n=1

(
loc

(n)
i − µ′i

)2
[113]. The uncertainty

region, i.e., confidence interval, of this vehicle can be derived as Pr(Li ≤ µ′i ≤ Ui) ≥ 1 − γ.

Here γ is the confidence degree, Pr(.) represents the probability function, and Li and Ui are the

interval boundaries of vehicle i and are estimated as Li = µ′i − T(N−1,α/2)σ
2/
√
N and Ui =

µ′i + T(N−1,α/2)σ
2
i /
√
N . Here, TN−1,α/2 is the t-distribution critical value with N − 1 degrees

of freedom. To estimate the amount of overlap between two vehicles i and j, the probability of

overlap is defined as Pr
(o)
i,j = Pr(ηi,j > 0) = Pr(δi,j < 1), we have, Pr

(o)
i,j =

∫∞
0 f(ηi,j)dηi,j =

1
σi,j
√

2π

∫∞
0 exp

{
−1

2

(
ηi,j−µi,j
σi,j

)2
}

dηi,j. By defining the auxiliary variable x = (ηi,j − µi,j)/σi,j ,
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we can conclude the following result.

Pr
(o)
i,j =

1√
2π

∫ (µi,j/σi,j)

−∞
e−(x2/2)dx = Φ(

µi,j

σi,j
), (6.5)

where Φ(.) is the Cumulative Distribution Function (CDF) of the standard normal distribution.

The following optimization problem in (6.6) justifies the discussion on the number of enhance-

ment layers that the transmitter can handle on the top of the encoded base layer video. This is a

knapsack program, which defines the enhancement layers of rate Rj(lj) that could be transmitted

over the underwater channel with maximum achievable communication data rate Rmax,

maximize
λk

L∑
l=1

λlλl−1Rj(lj), (6.6a)

s.t.
L∑
l=1

λlλl−1Rj(lj) ≤ Rmax, (6.6b)

λ0 = 1, λl ∈ {0, 1}, ∀l ∈ {1, ..., L}. (6.6c)

We determine the minimum number of vehicles to shut down such that we achieve the required

QoS in the received video with an acceptable Quality of Experience (QoE) in the reconstructed map

of environment based on a defined amount of spatial correlation. Vehicles are eligible to transmit

a video with higher enhancement layers while the layers bellow are successfully received/decoded.

In this case, the following optimization problem can be presented for every chunk c of the video,

given the optimal power Pj and the data rate Rj calculated from (6.3),

maximize
αi

V−1∑
i=1

αi (6.7a)

s.t. αi ∈ {0, 1}, (6.7b)

E
[ V∑
i=1
i 6=j

αi log
(

1 +
pcj | hcij |

2

si

)]
≥ QoSth(lj), (6.7c)

Di < Dth, (6.7d)

Pr
(o)
i,k ≥ Prth, ∀i, k ∈ {1, ...,V − 1} , (6.7e)
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where the objective function (6.7a) is the total number of vehicles. Maximizing the total number

of vehicles (i.e. minimizing the number of vehicles to shut down) ensures the QoE since more

vehicles from different angles are present in the map reconstruction. On the other hand, to satisfy

a threshold QoS, the proposed method will shut down the vehicles with the worst channel to keep

the average broadcasting rate over a minimum value, as shown in (6.7c). The other metric for

QOS is represented in constraint (6.7d) which is defined by the SVC encoder and depends on the

scalability and the number of enhancement layers that the encoder uses. For an encoded video,

we can write [137] Di = θ̂/(Rj −R0) + D0, where Di represents the distortion of the video at

the vehicle i at the time of reconstruction and Rj is the rate of the encoder at vehicle j; the other

remaining variables θ̂,R0, andD0 depend on the encoded video and on the model, and are estimated

empirically. The last constraint (6.7e) shuts down the vehicles which have a higher probability of

overlap with the neighboring vehicles to have the minimum reduction in the QoE.

In-network Marine Litter Map Reconstruction: As it was discussed in the previous sections

and due to the limited FoV of each single vehicle, a cooperation among the vehicles is required

so that the required map can be reconstructed. Different cooperation strategies can be proposed

based on the exchanged data, acoustic channel requirements, level of complexity (that the vehicles

can handle to process the data locally) and the QoS/QoE requirements as follows: (i) Vehicles

exchange their local maps after each partial map is created. This strategy requires the minimum

amount of data exchange since the merger creates the global map based on only a consensus on the

exchanged local maps. (ii) Vehicles exchange the SVC-based channel independent videos, i.e., base

layers. (iii) Vehicles exchange SVC adaptive channel dependent video, i.e., base and enhancement

layers. This is the most desirable strategy that is also adaptive with the channel quality. (iv) Vehicles

exchange the high quality video considering the acoustic channel bandwidth and the channel fading.

This strategy is usually not feasible underwater due to the bandwidth limitation and time-varying

nature of the underwater acoustic channel. Fig. 6.3 depicts the strategy shown in this chapter. After

sharing the base layer, as discussed in the previous sections, the vehicles with unreliable channels

are shut down to be able to reach the required rate for sending the enhancement layers. We lose

some part of the scene from those nodes which experience the shut down. Therefore, the vehicles

should reach a consensus to decide on the node who finally reconstructs the global map.

Local Map Reconstruction: With the base layer video received at each node, along with that
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Figure 6.3: Map construction flowchart. Vehicles broadcast the base layer, while enhancement
layers are shared with vehicles with better acoustic channel quality.

node’s own high quality 4K original video, each node can perform a quick attempt at the map

reconstruction. First, images are compared pairwise using SIFT/ORB to determine feature matches.

Some of these pairwise matches will be false, and will appear in some pairwise comparisons but not

in others that show similar perspectives on the scene. Because all nodes have some versions of the

video, from different angles, the quality of reconstruction (measured by number of feature matches)

should relate to two factors. Firstly, it depends on the amount of error-induced distortion in the base

layer videos received from the other nodes. Secondly, it depends on the utility the locally stored 4K

quality video on the reconstructing vehicle provides to the map reconstruction. Therefore, a vehicle

that makes many feature matches in the intermediate local reconstruction attempt is a good candidate

to share its recorded video at a higher quality in the next phase, because its video is a valuable part

of the reconstruction and easy to match with the other videos. The underwater environment poses

additional challenges in recording good video for the purposes of map reconstruction. While it can

be shown that water itself is not a barrier to getting a good reconstruction, there are serious problems

with lighting, scattering, turbidity, and clarity when taking underwater video.

Scoring and Sharing: Using the optimizations described in the previous sections, each trans-

mitting node decides on the set of nodes to shut down before broadcasts its higher quality layers,

i.e., enhancement layers. Therefore, some nodes miss some portions of video from some other

angles since they did not receive them. A Reconstruction Score (RS) is formed which is taken as

a metric for how successful this vehicle would be at performing the later final reconstruction, as

well as how valuable its local video is. This RS is shared in the following step to elect the Final
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Algorithm 4 SVC-based Map Reconstruction.
1: while reconstruction is NOT satisfactory do
2: Layers = ScalableVideoCoder(localVideo)
3: EstablishMACchedule()
4: τb← allotted time for base layer sharing
5: while t < τb do
6: Share(Layers.LayerIndex(0)) % broadcasting
7: Receive(ExternalVideo)
8: end while
9: receivedframes← extractframes(receivedVideos)

10: SIFT/ORBmatch(receivedframes)
11: Reconstruct(matchedframes)
12: RS← score(reconstruct)
13: random broadcast max(RS)
14: τl ← allotted time for enhancement layer sharing
15: while t < τl do
16: if v is not FRV then
17: Shut down the vehicles with the weakest channel
18: Share(Layers.LayerIndex(L)) % multicasting
19: Receive(ExternalVideo)
20: else
21: Reconstruct(Dataset)
22: end if
23: end while
24: end while

Reconstructing Vehicle (FRV). Each node will share its RS to the group, such that at the end of this

step all vehicles should have a list of each other vehicle’s RS. As the process continues, nodes will

become more aware of their position relative to other nodes. Since the RS is a very small amount of

data, each vehicle can also share in the packet a map of camera positions (past vehicle positions) it

has matched with. An average of these maps can be used to inform the vehicle’s navigation in the

time before the final reconstruction can be performed.

Consensus Algorithm on the Scores: To select the vehicle with the highest score for the fi-

nal reconstruction, vehicles form the communication primitive to their neighboring vehicles. In

particular, consensus is an iterative process where the nodes communicate with their neighbors to

exchange their scores for a fixed number of iterations or until convergence [84]. As the output of

this process, the best vehicle is selected for final reconstruction. Asynchronous broadcasting-based

consensus method proposed in [84] is to achieve the average value of the initial measurements.

However, we wish to sort the scores to find the maximum in each iteration of the process. Each
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(a) (b)

Figure 6.4: (a) Software-defined testbed; (b) Water tank with TC4013 Teledyne transducers.

-40 -20 0 20 40

Frequency (kHz)

-130

-125

-120

-115

-110

-105

P
o
w

e
r/

fr
e
q
u
e
n
c
y
 (

d
B

/H
z
)

0 10 20 30 40 50

-2160

-1800

-1440

-1080

-720

-360

0

P
h
a
s
e
 (

d
e
g
)

Frequency  (kHz)

(a) (b)

Figure 6.5: Channel response in the water tank shows (a) Power spectrum; (b) Phase.

node v broadcasts its own score to its Nv neighboring nodes within its communication range [59].

The neighbors, such as w, which received the data, update their data according to yw(tc + 1) =

max
(
yv(tc), yw(tc)

)
, ∀w ∈ Nv, where Nv stands for the neighborhood of transmitting node v.

The remaining nodes in the network update their values as yw(tc + 1) = yw(tc), ∀w /∈ Nv. This

algorithm keeps the maximum value and so does not show an undesirable behavior in terms of

convergence. After consensus, each vehicle should know the maximum RS among them and the

vehicle that has it. The vehicle who has the highest score will transmit a final packet indicating its

RS and intent to become the FRV. If there is no reply within the time limit, it is the FRV and the

SVC enhancement layer sharing will commence. Algorithm 4 represents the solution in a sequential

procedure for a specific coded video while the encoding and reconstruction is performed through

the mentioned steps. Vehicles share their encoded base-layer and enhancement layers videos (after

shutting down the vehicles with a low quality channel). After local reconstruction, matching and

ranking the scores, the node with the highest score will be elected to perform the reconstruction.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.6: (a)-(c) Frames from original video; (d)-(f) Frames of video received/reconstructed in
a vehicle with a good channel; (g)-(i) Frames of video received/reconstructed at a vehicle with an
average to low channel quality.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6.7: SVC layers for a selected frame; (a) Base layer of original video; (b)-(e) Base layer and
1− 4 enhancement layers of original video; (f) Base layer of received video; (g)-(j) Base layer and
enhancement layers of received video.
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6.4 Performance Evaluation

In this section, the experiments and simulation results are presented.

Testbed Setup: The proposed approach is evaluated by conducting preliminary field experi-

ments. A video feed, captured by our underwater vehicles in the Raritan river, New Jersey, is passed

to the SDAR and an acoustic transducer in a water tank. A high-performance and scalable platform

with a programmable Kintex-7 FPGA, called X-300 designed by Ettus Research Group [5], is ex-

ploited as SDAR in this research, as the testbed shown in Fig. 6.4(a). It contains a mainboard to pro-

vide basic functionalities of the modem, while the daughter-boards take care of up/down conversions

and of the other required bandpass signal processing procedures. Teledyne Marine TC4013 trans-

ducers [3] with a frequency range of 170 kHz are used in the proposed testbed, shown in Fig. 6.4(b).

Fig. 6.5 represents the channel response experienced in this testbed, containing the power spectrum

of the channel in 6.5(a) and its phase in 6.5(b). The video was collected from the bottom of the Rar-

itan river, New Jersey, using multiple cameras. The Joint Scalable Video Mode (JSVM) software

is used as the reference package for implementing SVC. Using the FixedQPEncoder program, test

videos were down-sampled and then encoded into multiple layers of different qualities. Each layer

has a target fixed bit rate, and the Quantization Parameter (QP) is varied in order to optimize the

Peak Signal-to-Noise Ratio (PSNR) metric while staying under the target bitrate.

Results: Fig. 6.6 shows the effect of the acoustic communication channel on the quality of the

received video. The passband channel bandwidth is 100 kHz with carrier frequency of 100 kHz and

the sampling rate is 200 kHz. In Figs. 6.6(a)-(c), the original successive frames are shown, while in

Figs. 6.6(d)-(f) the quality of the received signal through a good channel is compared to the quality

of the received signal through a low to average channel in Figs. 6.6(g)-(i).

Fig. 6.7 depicts different SVC layers of a selected frame from the captured video. Fig. 6.7(a)

shows the base layer and Fig. 6.7(b)-(e) represent the base and 1 to 4 enhancement layers of the

original captured video. The corresponding frame rates for these layers are 1.8750, 3.75, 7.5, 15, 30,

respectively with the minimum bit rates of 100.9, 179.4, 293.3, 415.3, 517.5 kbps. The correspond-

ing PSNR values are 45.1, 44.14, 43.31, 42.68 and 42.19 dB, respectively. Fig. 6.7(f)-(j) show the

associated base and enhancement layers of the same frame, when passed through our testbed. Note

that the difference between number of enhancement layers can be distinguished better in the video.
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Figure 6.8: Optimal received rate at different vehicles, which are sorted based on their channel
quality for two power profiles when all vehicles are active.
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Figure 6.9: Optimal received rate at different vehicles which are sorted based on their channel
quality when the vehicle with the worst channel quality is shut down.
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Figure 6.10: Optimal received rate at different vehicles which are sorted based on their channel
quality for two defined power profiles when two vehicles are shut down.
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Figure 6.11: Optimal received rate which are sorted based on their channel quality for two power
profiles when the number of shut down vehicles changes.

(a) (b) (c)

Figure 6.12: Feature matching for different vehicles.

(a) (b)

Figure 6.13: (a) Tracked points; (b) Reconstructed map.
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Figs. 6.8-6.10 demonstrate the optimal received rates at different vehicles as a result of solving

the proposed optimization problems. The vehicles are sorted based on their channel quality for

two different power profiles. In Fig. 6.8, all the vehicles which are able to receive the base layer

video are assumed in active mode. The vehicle which experiences a better channel receives the

video with a higher rate. Figs. 6.9-6.10 show the vehicles with the worst channel quality are shut

down (one vehicle and two vehicles in these two figures, respectively). Fig. 6.11 represents the

proposed solution for the broadcast rate when variable number of vehicles are shut down. Two

different power profiles are considered. By shutting down the vehicles with a low channel quality,

the average broadcast rate is improved as shown in this figure. However, QoE in the result decreases

since less vehicles are involved in the procedure, as explained in the solution.

Figs. 6.12(a)-(c) show the output of the feature matching and reconstruction based on the pro-

posed algorithm. Each vehicle observes the scene partially since there are serious problems with

lighting, scattering, turbidity, and clarity when taking underwater videos. In Figs. 6.12(a)-(b), the

vehicles detect three objects, while from other perspective, as shown in Fig. 6.12(c), six objects are

detected. Fig. 6.13 shows the final steps towards map reconstruction. Fig. 6.13(a) represents the

tracked features in the shared images and Fig. 6.13(b) is the reconstructed map of the region. The

map can be used as a QoE metric to evaluate how accurate the desired map should be.

6.5 Summary

In this chapter, a novel in-network coordination that employed Scalable Video Coding (SVC) was

introduced. Large amounts of data such as videos underwater is not easy to transmit due to the

error-prone underwater channel. This research investigated sharing SVC streams among AUVs in a

multicast manner in which the vehicles with different capabilities/channel can be served by a single

scalable stream to perform in-network map reconstruction. After sharing base layers, enhancement

layers are shared with the vehicles with a better acoustic channel quality (lower quality channels are

shut down). Final reconstruction is performed after a consensus on the highest-rank vehicle after

it receives a high-quality video with higher QoS and QoE from other eligible nodes. Performance

evaluation was presented based on experiments using video captured from the Raritan River, New

Jersey and transmitted through our software-defined acoustic testbed, in addition to simulation.
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Chapter 7

Reliable Data Transmission in Underwater Internet of Things

Achieving reliable and persistent environmental field estimation in Underwater Internet of Things

(UW IoT) is a challenging problem, due to its unexplored and unpredictable nature in addition to

the the limited-bandwidth and error-prone acoustic channel as well as the harsh and unpredictable

underwater environment. Given the need for high-resolution spatio-temporal sensing in such envi-

ronment, traditional digital sensors are not suitable due to their high cost, high power consumption,

and non-biodegradable nature. Further, reliable communication techniques that avoid retransmis-

sions are crucial for reconstructing the phenomenon in a timely manner at the fusion center such as a

drone. To address the above challenges, a novel architecture is proposed consisting of a substrate of

densely deployed underwater all-analog sensors that continuously transmit data to the surface digi-

tal buoys. Furthermore, a correlation-aware Hybrid Automatic Repeat Request (HARQ) technique

is presented to transmit data from the surface buoys to the fusion center. Such HARQ technique

leverages redundancy in the buoy data (arising from the correlation of the phenomenon at the ana-

log nodes) to avoid retransmissions, thus saving energy and time. The performance of the proposed

correlation-aware HARQ technique has been evaluated via simulations and shown to achieve the

desired behavior.

7.1 Overview

The Underwater Internet of Things (UW IoT) [40] is a novel class of IoTs enabling various prac-

tical applications in aqueous environments such as oceanographic data collection, pollution and

environmental monitoring, tsunami detection/disaster prevention, assisted navigation, and tactical

surveillance [110, 114]. A new design has to be envisioned for sensors/things in UW IoT as tra-

ditional digital sensors are expensive (cannot be deployed in high density), high-power consuming

(need to be put to sleep, thus losing temporal granularity), and finally pollute the environment.
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Figure 7.1: A novel sensing architecture for real-time, persistent water monitoring using analog
sensors as substrate above which lies a Wireless Sensor Network (WSN) consisting of digital surface
buoys communicating among themselves and occasionally to a fusion center (e.g., drone) using
correlation-aware HARQ technique.

Moreover, similarity/correlation can generally be observed both in the underwater phenomenon as

well as in the channel used for communication, which can be leveraged to improve efficiency.

Motivation: Firstly, for the UW IoTs to be a successful technology, the “things” or sensors

should be able to capture high temporal and spatial variations of multiple manifestations—such as

temperature, salinity, potential Hydrogen (pH)—of the phenomenon in the underwater environment.

This requires high-resolution (in both time and space) sensing. Traditional digital sensors may not

be the right candidates for such scenarios, as they: (i) Have high power consumption, because

of which they are put to sleep based on specific duty cycles; moreover, existing sensor-encoding

solutions use all-digital hardware, which demands high power and circuit complexity; as such,

when the phenomenon exhibits high temporal variation, their batteries drain fast. (ii) Are expensive,

making them a costly choice for high-density deployment, which is needed to track a phenomenon

with high spatial variation. (iii) May pollute when deployed in water bodies as the material used

in the manufacturing of such sensors is not biodegradable; currently, most electronics are typically

made with nondecomposable, nonbiocompatible, and sometimes even toxic materials, leading to

various ecological challenges.

Secondly, when the sensors are densely deployed, the recorded values may be spatially and/or

temporally correlated. Since communication of a large amount of measured data between the nodes

results in large overhead (in terms of energy, time, and bandwidth), conventional point-to-point

communication techniques at the physical and Multiple Access Control (MAC) layers generally
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fail to provide the required functionalities for such scenarios [113]. A reliable communication

technique that takes into account the spatial and temporal correlations of the phenomenon to avoid

costly retransmissions and thereby save energy and time resources is greatly needed.

To address the above challenges, we envision an architecture for the UW IoT system, as shown

in Fig. 7.1, where the analog nodes in the underwater biodegradable substrate transmit data contin-

uously to the digital surface buoys in the traditional Wireless Sensor Network (WSN), which ag-

gregate and transmit the data to the fusion center (e.g., a drone). The underwater analog biodegrad-

able substrate consists of wirelessly-transmitting all-analog sensors with Shannon-mapping [126]

capabilities, a low-complexity technique for Analog Joint Source-Channel Coding (AJSCC) [52].

The sensors employ Frequency Position Modulation and Multiplexing (FPMM) [156], which allo-

cates a specific frequency to a specific value of a specific node to communicate with the surface

buoys. Biodegradable Micro Electro-Mechanical Systems (MEMS)-based acoustic transceivers

with ranges of few meters are a perfect fit to our scenario. The digital surface buoys decode the

values received from the analog sensors, i.e., they perform the reverse operation of Shannon map-

ping. Since the data received at the surface buoys could be redundant (due to correlation in the

underlying phenomenon), as shown in Fig. 7.1, the digital buoys elect some of them to be “repre-

sentatives” of the other buoys. Only these representative buoys transmit data to the drone (indicated

in red as TX in Fig. 7.1). Further, the representative buoys employ a novel correlation-based closed-

loop Hybrid Automatic Repeat Request (HARQ) solution to transmit data to the drone. Such a

technique leverages the similarity and correlation of the data to avoid costly retransmissions and

thereby save energy, time, and bandwidth resources, thus enabling a timely reconstruction of the

phenomenon at the fusion center.

Contributions: The contributions of this work are as follows. A reliable correlation-based

HARQ is introduced to transmit data between the buoys and the drone that leverages the correlation

of the data to avoid costly retransmissions; chaotic Direct Sequence Spread Spectrum (DS-SS) is

adopted to guarantee secure buoy-drone transmissions. This saves the energy, bandwidth, and com-

munications overhead by defining the role of a representative (REP) for a group of correlated nodes

to report the data to the upper level in a self-configurable and scalable cluster-based architecture.

The proposed sensor-encoding and correlation-aware HARQ techniques are validated in terms of

functionality using simulations.
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Chapter Outline: In Sect. 7.2, we go over the state of the art and similar research in the

literature. In Sect. 7.3, we discuss the proposed solution including the novel correlation-aware

HARQ technique for IoT scenarios. In Sect. 7.4, we present the simulation results and discuss the

benefits of this solution. Finally, in Sect. 7.5, we summarize the chapter.

7.2 Related Work

This section positions our work with respect to state-of-the-art research in reliable UW and terres-

trial communication/channel coding techniques.

To improve the accuracy and efficiency of a system that exhibits spatial and temporal correla-

tions [67], an Error Control (EC) strategy with acknowledgment such as Hybrid Automatic Repeat

Request (HARQ) [31, 109] can be exploited. Hybrid ARQ (HARQ)—as a combination of ARQ

and Forward Error Correction (FEC)—reduces the retransmissions and increases the system reli-

ability in poor channel conditions [109]. A type-I HARQ discards the erroneous received packet

and repeats the same packet retransmission until the error is corrected. However, if the channel is

not in good condition, e.g., when in deep fade, the predefined FEC might not be adequate and the

throughput may drop again because of multiple retransmissions [133]. While more efficient than

type-I, a type-II HARQ requires a larger buffer size and has a higher complexity. It adapts itself

with the channel in such a way that it first transmits the packet along with the error detection bits

when the channel is good. When the channel becomes worse and after detecting the erroneous

packet, a NACK is sent back and—rather than retransmitting the same packet as type-I does—FEC

information is transmitted to help decode the stored packet in the receiver’s buffer. If the error

persists, a second NACK is issued and the same FEC might be retransmitted or extra FEC might

be added depending on the coding strategy. Incremental Redundancy (IR) HARQ, which shows

a higher throughput efficiency in terrestrial time-varying channels, adds extra redundant informa-

tion in each round of retransmission after receiving the NACK message [130]. Terrestrial standards

such as High Speed Packet Access (HSPA) and Long Term Evolution (LTE) have exploited HARQ

synchronously for the uplink, and asynchronously in the downlink direction. The requirements for

designing a network-optimized HARQ for the fifth generation (5G) of mobile communications is

discussed in [86]. Given the necessity of supporting futuristic applications such as UW IoT, we
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believe that a new design for HARQ that leverages the correlation in the data is essential.

7.3 Proposed Correlation Aware HARQ

In this section, The important constituents of the proposed architecture is explained, and the correlation-

aware HARQ technique that leverages the correlation in the buoy data to avoid retransmissions

between the buoys and the drone The communication technique, adopted by analog sensors, is de-

scribed and followed by decoding of the data at the buoy. The proposed architecture which enables

high-resolution (both in space and time) sensing of the phenomenon is shown in Fig. 7.1. Assume

a dense network of underwater nodes is randomly deployed in a large scale underwater region for a

time-dependent data acquisition from a phenomenon of interest which is characterized by its man-

ifestations. Nodes are equipped with sensors and transceivers for communications with limited

predefined sensing and communication range due to their low-power nature. A suggested architec-

ture for this system is shown in Fig. 7.1, in which heterogeneous underwater nodes can measure

noisy data of the physical phenomenon manifestations. A low-power and low complexity design

allows sensors to be deployed in high density (so as to enable high spatial resolution) and be on

continuously (i.e., enable high temporal resolution as they need to be put to sleep to save power).

The buoys transmit data (which was received from the analog sensors at the lower layer) to the

fusion center such as a naviator/drone. Since the data received at the buoys could be correlated, we

elect some of them to be a representative (REP) of the other buoys. We propose a novel correlation-

based closed-loop HARQ solution that leverages the similarity and correlation of the data to avoid

costly (in terms of energy and time) retransmissions. Here only these REP (instead of all) buoys

communicate with the fusion center, such as a drone or a base station, to help reconstruct the phe-

nomenon. The communications between the buoys and the fusion center is delay tolerant since the

latter may not be always available.

Spatial and Temporal Correlations: Let ni, {i = 1, ..., N} denote N subregions with the

location index Li ∈ L ⊂ R3, where L denotes the 3D environment’s space. The data is shown by

matrix P = [P1, ..., PN ]. The ith column of P, corresponding to subregion Li, consists of data from

the K manifestations, i.e., [P]i = Pi = [ψ
(1)
i (t), ..., ψ

(k)
i (t), ..., ψ

(K)
i (t)].

Definition 3. For the subset of interconnected subregions Li, {i = 1, ...,N} ⊂ L, let the spatial
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Figure 7.2: State transition diagram for a buoy in a correlated set. In the active mode (I) − (IV ),
HARQ is initiated with the highest similarity. If a NACK is issued, the FEC transmitter is chosen via
(II) or it goes to (V ). If FEC fails, the data is dropped and the next packet is transmitted via (IV ).
If the correlation drops below a threshold, it demotes to a collector via (V I), until the estimator is
activated via (V III).

correlation between two sampled values ψ(k)
i (t) and ψ(k)

j (t) with means ψ(k)
i

and ψ(k)
j

and standard

deviations σ(k)
i and σ(k)

j , at time t, be as

C
(k)
i,j =

E
[
(ψ

(k)
i − ψ

(k)
i

)(ψ
(k)
j − ψ

(k)
j

)
]

σ
(k)
i σ

(k)
j

, (7.1)

where E[.] represents the expectation value and the time notation is dropped for simplicity.

Definition 4. Let the spatial correlation be a function F(.) of the distance between two locations

Li and Lj as in E
[
(ψ

(k)
i − ψ(k)

i
)(ψ

(k)
j − ψ(k)

j
)
]

= F(Li − Lj). The subregions are correlated

when C(k)
i,j > C

(k)
th , where C(k)

th is the spatial correlation threshold. The correlation matrix for the

manifestation k is symmetric and is defined by [C(k)]i,j = C
(k)
i,j .

Definition 5. The measured data of a manifestation k in subregions i and j are said to be similar

if the normalized difference of their means is less than a threshold (1 − S(k)
th ), where S(k)

th is the

similarity threshold, i.e., 1− | ψ(k)
i
− ψ(k)

j
|
/
ψ(k)
j

> S
(k)
th .

Definition 6. Temporal correlation is defined as the degree of correlation for which two consecutive

sampled data at the buoy are correlated. In other words, the amount of correlation does not change

within the time τ < T kP , where T kP is the temporal correlation of the k-th manifestation. It can be

concluded that C(k)
i,j (t+ τ) = C

(k)
i,j (t) and so the expectation of the random variable ψi is constant.

Each buoy at a time has one of the roles of a data transmitter/FEC transmitter (active mode),

a collector, or an estimator. The transition among the roles is decided by the phenomenon’s corre-

lation/similarity and also the feedback command given by the drone as shown in the state diagram,
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Fig. 7.2. Data transmitter role is decided based on two factors: the highest similarity, arg max(Si,j),

and spatial correlation greater than a threshold Ci,j > Cth; the control command from the drone. If

the data transmission is not successful and the drone issues a NACK, the buoy’s state will change

from data transmitter to FEC transmitter as shown in (II). Drone could turn the buoy’s role to

a collector if it decides to not receive any data from the same buoy, as shown in (V ) and (V I).

An estimator is a collector that has started to evaluate whether its newly received data from analog

nodes is still correlated and similar to that of its data transmitter buoy or not. It changes its state

to become a data transmitter if there is a significant variation in the spatial distribution of its data

over time as shown in (X). The two main communications aspects, called intra-cluster communi-

cations (among the buoys) and inter-cluster (between the data/FEC transmitters and the drone), are

discussed in details in the following sections.

Intra-cluster Chaotic-based Spread Spectrum: Code Division Multiple Access (CDMA), as

both physical-layer and multiple-access techniques, can be beneficial to handle the destructive ef-

fect of frequency-selective fading, as well as the simultaneous reception from multiple transmitting

devices by using an appropriate spreading, especially in an IoT network. Furthermore, given the se-

curity dedicated in chaotic CDMA’s nature, the jamming attacks as a critical malicious threat can be

satisfied [114]. Although Pseudo-Noise (PN) sequences have been extensively employed in DS-SS,

considering their limitation in the number of sequences and their cross-correlation properties, [50]

proposed using chaotic sequences through an uncomplicated deterministic dynamic map such as in

Logsitic map [13]. Chaotic systems can produce an infinite set of uncorrelated sequences and can

provide secure communication. Similar to the PN sequences, they look like noise but unlike PN,

chaotic codes are not binary and are different for every bit of transmitted data which makes it much

harder for an eavesdropper to regenerate the sequence. The use of a distributed CDMA scheme,

supporting an adaptive EC strategy, can therefore increase the channel reuse and reduce packet re-

transmissions in scenarios with a large number of buoys, thus increasing network reliability while

decreasing the energy consumption. While conventional EC strategies consider only point-to-point

data protection, more efficient techniques are required in such applications in which (i) the buoys

have some sort of similarities and correlations in time or space in the measured data; (ii) the im-

portance of phenomenon monitoring is higher than protecting of each buoy alone; (iii) the com-

munications overhead is huge—since multiple buoys communicate with each other and with the



153

Figure 7.3: Proposed protocol for data transmission to the drone via a correlated set of buoys—
shown with numbers 1, 2, .... Spatial and temporal correlations are considered in decoding. Conser-
vative and borderline approaches are compared in (a) and (b).

drone—and so a scheduling is required. To support reconfigurable and flexible IoT applications in

which the number of simultaneous transmissions is not known in advance, chaotic sequences can

be a good candidate to support any number of transmitters. Chaotic sequences not only provide the

security in the channel, but also possess a considerable robustness against the multipath effect due

to their good auto-and cross-correlation properties.

Inter-cluster Correlation-based HARQ: The transmission process is conducted in an environ-

ment in which the phenomenon’s manifestations change from time to time as represented by tempo-

ral and spatial correlations of the phenomenon. Therefore, an appropriate multi-point EC strategy

should (i) take advantage of the defined correlations of data/FEC transmitter buoys versus collector

and estimator buoys for efficient decoding by increasing the probability of successful decoding in

each round; (ii) reduce the probability of retransmission and also the communications overhead

with a correlation-based coding, while the temporal correlation of the phenomenon is long enough;

(iii) pause the decoding process and go for the retransmission, while the temporal correlation of the

phenomenon can not be ignored.

As portrayed in Fig. 7.3, buoys are shown on the left with numbers 1, 2, ... while the drone

stands on the right side of the diagram. Each data transmitter buoy broadcasts its packets through

independent channels to the other buoys and to the drone (within a single-hop distance). As an

example, a conservative approach is taken in case (a), since no a-priori information is available

beforehand. Assume the decoder successfully decodes all the packets, except 3. Here—instead

of issuing a NACK as in the conventional HARQ—buoy 3’s data can be reconstructed using the

correlation among the other decoded data. The cost is the extra error in estimating the corrupted
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data; however, it can be ignored if buoys are highly correlated. In case (b), the borderline approach is

considered to avoid the excessive redundancy (communications overhead) of case (a) and to reduce

the interference by using only 1 and 2 as the data transmitter while 3 and 4 are changed to collector

and estimator, respectively. Assume the data from 1 is erroneous while 2 is still decodable. Again,

1 is reconstructed without any extra FEC with the cost of more reconstruction error.

Fig. 7.4 presents two cases (c) and (d) in which both the received data—such as those of 2 and

3—are erroneous. The corrupted data is recoverable, if the temporal correlation of the phenomenon

is valid at that time instant and available at the drone, as shown in case (c). If this condition does not

hold—which is the scenario in case (d)—since the overall information is not enough for making the

decision, 3 is notified to send the FEC information by switching to the FEC transmitter role. The

extra information in 2∗ and 3∗, combined with the data from 1 and 4, help the decoder to have both

the conventional HARQ and the spatial correlation properties. Therefore, the decision is made on 2

and 3 based on the tolerable amount of reconstruction error in 3. We define three different notions

of time in our coding scheme, as shown in Fig. 7.4. HARQ timer, THARQ, is used to show the

transmissions/FEC transmission time (for erroneous packets) for every round of communications.

Correl. timer, TCorr, represents the time within which data transmission/decoding can be done

consecutively based on the temporal correlation of the phenomenon. This time is less than or equal

to TP. If the data is not acknowledged in THARQ, but TCorr >> THARQ, then the data can be

recovered without retransmission as explained in case (c). Struc. timer, TStru, is the time in which

the structure is almost constant. Therefore, outside of this time period, the correlated sets should

be reconsidered, because of the analog node movement. In this case, the extra FEC or using the

correlation might not be helpful; therefore, the retransmission of the original/new data using new

set of buoys will be the solution for time t > TStru.

Data Reconstruction: Based on the renewal-reward theorem [159], let the HARQ long-term

throughput for buoy i be ηi = E[X̃i]/E[T̃i], where E[X̃i] and E[T̃i] represent the number of decoded

information nats and the number of attempts for channel use during a packet transmission period

for buoy i, respectively. E[X̃i] is defined as E[X̃i] = Xi(1− Pro(i)), in which Xi is the number of

information nats for a packet and Pro(i) denotes the probability that the data is not decodeable during

a packet transmission period. We consider an alternative packet which comes from a correlated

buoy j with the correlation coefficient Ci,j , and Pro(j) < Pro(i), i.e., the communication channel
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Figure 7.4: Proposed solution when the packets are corrupted. Case (c) leverages the temporal
correlation while case (d) uses spatial correlation via combined data and FEC.

that j experiences is better than i’s channel. We conclude that Rj < Ri, where R stands for the

maximum number of transmission rounds in the HARQ. The probability of decoding in round Ri

for buoy i given that the data has not been decoded in the previous Ri − 1 rounds is equivalent to

Pr
(
NACK1, ...,NACKRi−1,ACKRi

)
. Assume at every round r, for all the acknowledged buoys

in the same correlated set, there exists at least a buoy j, whereRj < Ri. j is chosen as arg max Ci,j.

Therefore, R′i = min[Ri,Rj] and so it is a function of the correlation between i and j. Then, E[T̃i]

can be defined as E[T̃i] =
∑R′i

r=1Xi r Pr
(
NACK1, ...,NACKr−1,ACKr

)
, where Xi r stands for

the part of HARQ data which is transmitted at round r from buoy i. E[T̃i] can be simplified in two

terms as E[T̃i] =
∑R′i−1

r=1 Xi r Pr
(
NACK1, ...,NACKr−1

)
+ Xj R′i

Pr
(
NACK1, ...,ACKR′i

)
[75].

Here, the total data transmission from buoy j up to the end of round R′i is shown with Xj R′i
=∑R′i

r=1Xj r. The content of Xj is correlated with Xi within the temporal correlation TP. Since their

data are not exactly equal, this leads to an uncertainty related to the amount of Ci,j with the benefit

of avoiding Ri −R′i rounds of HARQ retransmissions and having a better long-term throughput.

When the data is transmitted from buoy i to the drone, it is polluted with the noise and af-

fected by the fading and the interference. We assume the received signal X̂i at the drone fol-

lows an Autoregressive time series model of order one, i.e., AR(1). That is at time instant tm,

X̂i[tm] = µ + ρ(X̂i[tm − 1] − µ) + εi, where µ is the mean of X̂i, εi is a zero mean unit vari-

ance independent Gaussian process, and ρ is the autoregression parameter which is related to the

temporal correlation of the phenomenon. Assume we take µ = 0 for the sake of simplicity. For

−1 < ρ < 1 and for any discrete time lag t0, Cov(X̂i[tm + t0], X̂i[tm]) = ρt0/(1− ρ2) [127]. Here

X̂i[tm], X̂i[tm−1], ... form a Markov process given that channel coherence time (Tc) is greater than

the time window between two successive received samples tm and tm−1. Note that in addition to the

noisy measured data by analog nodes, other layers of error are added to the data when it is received
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Figure 7.5: (a) Random distribution of nodes (N). Drone (F) passes by each region (shown by Ro-
man numbers) to fuse the data; (b) Magnified view of region II with different degrees of correlation.
Different colors show how the buoys are correlated.
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Figure 7.6: Mean communication error per traffic for buoys inside one region in low and high
multipath while three different spreadings for the chaotic code are considered.

by the drone. Therefore, the difference between the measured value of the transmitter buoy and

other buoys in the same correlated set is not zero. The transmitted data from ith transmitter buoy

can be written as P+Es,i+Ec,i, where Es,i and Ec,i represent the sensing error and communications

error related to the transmitter buoy i, respectively. This signal is transmitted through channel hi

and is received at the drone as X̂i. The phenomenon can be estimated as P̂ = F
(∑R

i=1 X̂i + N
)
,

where F (.) represents a data extraction function, and N is the background AWGN noise present in

the environment. Therefore, the reconstruction error, Erec, is defined as Erec =
∣∣∣P− P̂

∣∣∣. Consid-

ering the number of buoys transmitting in each round of transmission, the goal is to increase the

performance by reducing the communications overhead and destructive effect of other buoys, i.e.,

to minimize
∥∥∥P̂− P

∥∥∥2
, using appropriate channel coding.
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7.4 Performance Evaluation

Buoy and Fusion Center: We consider an area of study with 100 randomly deployed buoys for

the simulation, as represented in Fig. 7.5(a). We divide this area into four regions of interest; each

of them shows a fusion center, the drone, passes by the region to communicate with the buoys

and to fuse the collected data. The buoys are grouped based on their similarity and correlation. A

magnified version of region II is displayed in Fig. 7.5(b). This figure also shows the various possible

sets of correlated buoys based on different correlation thresholds. Data transmission is performed

using Binary Phase Shift Keying (BPSK) modulation and Reed-Solomon coding (7, 3) or (15, 6)



159

and CDMA spreading sequence with logistic map. As a general rule, spreading sequences should

have minimal cross-correlation to minimize the interference between the buoys and a delta-function

shape autocorrelation to maximize the detection accuracy of the desired buoy.

Fig. 7.6 investigates the performance of our method in terms of the mean communication er-

ror normalized by total traffic for different number of transmitter buoys. It compares the effect of

changing the spreading length and presents the results when communication takes place in channels

with different multipath effects. For SL = 150 when the number of buoys are small, the error is

less than 10−6 (they are not depicted in the figure). The curves show communication error increases

when the number of buoys grows (as the result of multi-user interference); however codes with

larger SL are more successful in combating the multi-user interference. In Fig. 7.7, reconstruction

error is presented for total traffic of the transmitter buoys. It also compares the effect of transmitting

under slow and fast fading channels. Fig. 7.8 calculates the long-term throughput of the proposed

HARQ for different number of correlated buoys. The correlation threshold is a determinant factor

in evaluating the performance of the system. In Figs. 7.9- 7.10, we investigate the effect of different

correlation thresholds. In Fig. 7.9, reconstruction error is represented with HARQ channel coding

(7, 3) and (15, 6). Fig. 7.10 presents two components of reconstruction error (sensing and com-

munication errors). Fig. 7.11 shows the long-term throughput per normalized delay for correlated

HARQ compared to the conventional HARQ.

7.5 Summary

In this chapter, a novel architecture for UW IoT was proposed consisting of a substrate deployed

underwater in high-density and transmitting data continuously to digital surface buoys. A novel

multi-point correlation-aware hybrid ARQ technique was designed to transfer data from digital

surface buoys to the fusion center that leverages the correlation in the data to avoid costly retrans-

missions and thereby enable timely reconstruction of the phenomenon. The proposed techniques

have been evaluated via MATLAB simulations and shown to provide the desired performance. The

dynamic change in the structure and its effect on the proposed HARQ solution were also presented

and discussed in the protocol.
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Chapter 8

Conclusion and Future Directions

This chapter summarizes the main contributions of this dissertation and briefly explains the next

steps and future research directions that can be pursued as the outcome of this dissertation.

There are novel underwater applications that should be able to capture real-time, or near-real-

time, multimedia data and store/process/compress it while it is being transmitted. The terrestrial

and conventional communication techniques fail to provide the required robustness and reliability

for these futuristic underwater applications due to the characteristics of the underwater environ-

ment. Therefore, this dissertation discussed and introduced novel solutions in different layers (i.e.,

physical-, MAC-, and link-layer, and also cross-layer designs) to support robust, reliable, and high-

data rate underwater multimedia transmission. In particular, this dissertation focused more on the

following aspects:

(1) An Acoustic Vector Sensor (AVS)-based solution, called Signal-Space-Frequency Beam-

forming (SSFB), was designed to transmit underwater videos at high data rates using acoustic

waves for short/medium distances. Data was modulated and transmitted via NC-OFDM, and de-

tected via beam’s angle of arrival at the receiver side. The receiver (buoy) was equipped with

AVS—hydrophones that measures acoustic particle velocity in addition to scalar pressure—in a

multiple-antenna-array structure, while the transmitter (vehicle) was equipped with a circular array

of transducers. This method enables video transmission in applications such as coastal and tactical

surveillance, which require multimedia acquisition and classification.

(2) A novel probabilistic-based Medium Access Control (MAC) solution was proposed based

on Space Division Multiple Access (SDMA) to share reliably the space among the steered vehicles

so as to reduce the acoustic interference in sparse networks. This method leverages the inherent

position uncertainty of the moving vehicles. A two stage estimation technique was presented based

on interval estimation and Unscented Kalman Filtering (UKF) to estimate the position of the vehicle
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and focus the beam, respectively. An optimization problem was solved to minimize the statistical

interference. The method was extended to the scenario of non-separable vehicles via a hybrid T-

SDMA solution. Since the proposed approach could handle the interference while the vehicles were

moving, it could achieve a high data rate and reliability.

(3) The reliability and the quality of multimedia delivery were improved by proposing a robust

closed-loop hybrid Automatic Repeat Request (ARQ) technique that was specifically designed for

the harsh underwater environment. A collaborative strategy was introduced for a CDMA-based

underwater hybrid ARQ to increase the overall throughput of the network by adjusting physical-

and link-layer parameters and compensating for the poor underwater acoustic communication links.

The node with a low-quality communication link piggybacks on its neighboring nodes’ transmis-

sions when protecting its data against errors. The solution achieves higher network reliability and

throughput by allocating an appropriate share of system resources to different nodes and lower la-

tency caused by the conventional HARQ retransmission strategy.

(4) A framework was introduced based on Scalable Video Coding (SVC) H.264/MPEG-4 AVC

compression standard in which the coded underwater videos leveraged the multiplexing-diversity

tradeoff in an MIMO-based Software-Defined Acoustic Modem (SDAM) structure to balance the

transmission data rate and reliability. Multiple optimization problems were proposed that provided

the scalability in the video bitstream processing to adapt to the preference of end-users as well as

to the varying characteristics of the network. The video quality level was determined by the best

communication link while the transmission scheme was decided based on the worst communication

link, which guarantees an appropriate data rate and quality for each user.

(5) A framework and a protocol for underwater imagery analysis were proposed based on partial

information, collected by various vehicles around the scene, using Scalable Video Coded (SVC)

multicasting and in-network coordination. This contribution has many applications in underwater

imagery when more than one vehicle, due to the limited field of view and the visual depth of camera

in the water, are needed to merge the video from different angles so as to reconstruct the map of

region of interest. An optimized solution was presented to provide the maximum possible Quality of

Service (QoS) via a proposed scalable multicasting strategy, while achieving the maximum Quality

of Experience (QoE) for the scene reconstruction. The reconstructed map can be used for in-network

decision among the vehicles or can be transmitted to the buoy for further considerations.
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(6) A novel multi-point correlation-aware hybrid ARQ technique was designed to transfer data

between digital surface buoys and the fusion center in the futuristic applications such as Underwater

Internet of Things (UW IoT) with high-density deployed nodes in the shallow body of waters such

as in the lakes and rivers. Given the need for high-resolution spatio-temporal sensing in such en-

vironment, novel reliable communication techniques are required that avoid retransmissions while

reconstructing the phenomenon in a timely manner at the fusion center. The proposed solution lever-

aged the redundancy in the data arising from the spatial and temporal correlations of the measured

phenomenon, thus it saved the energy and time.

The key open directions for future research can be highlighted as follows.

Low-latency and High Quality Underwater Video Encoding and Transmission for Soft-

ware Defined Acoustic Transceivers: In the future, the proposed solutions in this dissertation can

be extended to other efficient encoding schemes such as High Efficiency Video Coding (HEVC)

and H.265. The goal could be to design a new encoder that maximizes the quality of video and

optimizes the compression rate, particularly for underwater videos. This goal should be pursued

given the limited bandwidth constraints in underwater from one hand, and latency in video encod-

ing/transmission, due to the inherent propagation delay in the underwater channel from the other

hand. Different tuning solutions can be generated to factor in the lighting, back scattering, and the

turbidity of the water and their effect on this video codec.

Communications and Coordination Among Multiple Heterogeneous Underwater Vehi-

cles: Due to the low bandwidth of the underwater acoustic channel—which leads to low data rate

transmissions—and the time overhead imposed by both the channel propagation delay and the pro-

cessing delay in the acoustic modems, novel strategies, algorithms and protocols are required for

coordination and communication between multiple heterogeneous vehicles from video processing

to decision making and to communications. Many robotics challenges need to be confronted and

new path planning, obstacle avoidance, and navigation algorithms should be generated towards de-

veloping futuristic autonomous underwater vehicles.



163

References

[1] BlueRobotics. http://www.bluerobotics.com/. Last time accessed: June 2020.

[2] Laboratory for image and video engineering - the university of Texas at Austin. http:
//live.ece.utexas.edu/research/Quality/. Last time accessed: April 2020.

[3] RESON TC4013 Hydrophone Product Information . http://www.teledynemarine.
com/reson-tc4013. Last time accessed: May 2020.

[4] Stream Monitoring Program, Raritan Headwaters. https://www.
raritanheadwaters.org/protect/stream-monitoring-program. Last
time accessed: October 2019.

[5] USRP X Series. https://www.ettus.com/. Last time accessed: April 2020.

[6] M. Agiwal, A. Roy, and N. Saxena. Next generation 5G wireless networks: A comprehensive
survey. IEEE Communications Surveys & Tutorials, 18(3):1617–1655, 2016.

[7] I. Ahamed and M. Vijay. Comparison of different diversity techniques in mimo antennas.
In Proceedings of Conference on Communication and Electronics Systems (ICCES), pages
47–50, October 2017.

[8] R. Ahmed and M. Stojanovic. Grouped packet coding: A method for reliable communication
over fading channels with long delays. IEEE Journal of Oceanic Engineering, (99):1–11,
2018.

[9] I. F Akyildiz, D. Pompili, and T. Melodia. Challenges for efficient communication in under-
water acoustic sensor networks. ACM Sigbed Review, 1(2):3–8, 2004.

[10] I. F. Akyildiz, D. Pompili, and T. Melodia. Underwater acoustic sensor networks: research
challenges. Ad Hoc Networks, 3(3):257–279, March 2005.

[11] J. Alves, J. Potter, P. Guerrini, G. Zappa, and K. Le Page. The LOON in 2014: Test bed
description. In Proceedings of Underwater Communications and Networking (UComms),
pages 1–4. IEEE, 2014.

[12] N. Amdouni, O. Ben Rhouma, and A. Bouallegue. Alamouti scheme’s generalization. In
Proceedings of Mediterranean Microwave Symposium (MMS), pages 169–172, 2011.

[13] S. Azou, G. Burel, and C. Pistre. A chaotic direct-sequence spread-spectrum system for
underwater communication. In Proceedings of Oceans Conference, volume 4, pages 2409–
2415. MTS/IEEE, 2002.

[14] F. Babich, M. Comisso, and R. Corrado. Fast distortion estimation based on structural sim-
ilarity for h.264/svc encoded videos. In Proceedings of Vehicular Technology Conference
(VTC Spring), pages 1–5. IEEE, 2015.

http://www.bluerobotics.com/
http://live.ece.utexas.edu/research/Quality/
http://live.ece.utexas.edu/research/Quality/
http://www.teledynemarine.com/reson-tc4013
http://www.teledynemarine.com/reson-tc4013
https://www.raritanheadwaters.org/protect/stream-monitoring-program.
https://www.raritanheadwaters.org/protect/stream-monitoring-program.
https://www.ettus.com/


164

[15] S. V. Bana and P. Varaiya. Space division multiple access (SDMA) for robust ad-hoc vehicle
communication networks. In Proceedings of IEEE Intelligent Transportation Systems, pages
962–967. IEEE, 2001.

[16] E. Basar. Index modulation techniques for 5g wireless networks. IEEE Communications
Magazine, 54(7):168–175, 2016.

[17] T. Basten, H. De Bree, W. Druyvesteyn, and J. Wind. Multiple Incoherent Sound Source
Localization Using a Single Vector Sensor. Auburn, AL: International Institute of Acoustics
and Vibration, 2009.

[18] B. Binnerts, I. Mulders, K. Blom, M. Colin, and H. Dol. Development and demonstration
of a live data streaming capability using an underwater acoustic communication link. In
Proceedings of MTS/IEEE OCEANS, pages 1–7, May 2018.

[19] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

[20] L. M. Brekhovskikh and I. P. Lysanov. Fundamentals of Ocean Acoustics. Springer Science
& Business Media, 2003.

[21] D.S. Broomhead, J.P. Huke, and M.R. Muldoon. Codes for spread spectrum applications
generated using chaotic dynamical systems. Dynamics and stability of systems, 14(1):95–
105, 1999.

[22] J. L. Butler and C. H. Sherman. Transducers and arrays for underwater sound. Springer,
2016.

[23] F. Campagnaro, R. Francescon, D. Tronchin, and M. Zorzi. On the feasibility of video
streaming through underwater acoustic links. In 2018 Fourth Underwater Communications
and Networking Conference (UComms), pages 1–5, Aug 2018.

[24] P. Casari, M. Rossi, and M. Zorzi. Towards optimal broadcasting policies for HARQ based
on fountain codes in underwater networks. In Proceedings of the Conference on Wireless on
Demand Network Systems and Services (WONS), pages 11–19. IEEE, 2008.

[25] G. Casella and R. L. Berger. Statistical inference, volume 70. Duxbury Press Belmont, CA,
2002.

[26] D. Caute, O. Axelsson, and K. Kenny. Multi-function broadband phased-array software
defined sonar system and method, 2018. US Patent App. 15/713,411.

[27] B. Chen, P. C. Hickey, and D. Pompili. Trajectory-aware communication solution for under-
water gliders using WHOI micro-modems. In Proceedings of IEEE Conference on Sensor
Mesh and Ad Hoc Communications and Networks (SECON), pages 511–519, 2010.

[28] Y. Chen, Z. Wang, L. Wan, H. Zhou, S. Zhou, and X. Xu. OFDM-modulated dynamic
coded cooperation in underwater acoustic channels. IEEE Journal of Oceanic Engineering,
40(1):159–168, 2015.

[29] X. Cheng, L. Yang, and X. Cheng. Cooperative OFDM underwater acoustic communica-
tions. Springer, 2016.



165

[30] J. H. Chong, C. K. Ng, N. K. Noordin, and B. M. Ali. A low computational complexity
V-BLAST/STBC detection mechanism in MIMO system. Human-centric Computing and
Information Sciences, 4(1):2, 2014.

[31] D. Costello and S. Lin. Error control coding: Fundamentals and Applications. Prentice
Hall, second edition, 2004.

[32] R. Dai and I. F. Akyildiz. A spatial correlation model for visual information in wireless
multimedia sensor networks. IEEE Transactions on Multimedia, 11(6):1148–1159, 2009.

[33] H. E. De Bree, E. Tijs, and T. Akal. The Hydroflown: MEMS-based Underwater Acoustical
Particle Velocoty Sensor, Results of lab tests and sea trials. In Proceedings of the European
Conference on Underwater Acoustics (ECUA), volume 2, pages 886–889, 2010.

[34] E. Demirors, J. Shi, R. Guida, and T. Melodia. SEANet G2: Toward a High-data-rate
Software-defined Underwater Acoustic Networking Platform. In Proceedings of the ACM
International Conference on Underwater Networks & Systems, page 12, 2016.

[35] R. Diamant, F. Campagnaro, M. D. F. De Grazia, P. Casari, A. Testolin, V. S. Calzado, and
M. Zorzi. On the relationship between the underwater acoustic and optical channels. IEEE
Transactions on Wireless Communications, 16:8037–8051, 2017.

[36] R. Diamant and L. Lampe. Adaptive error-correction coding scheme for underwater acoustic
communication networks. IEEE Journal of Oceanic Engineering, 40(1):104–114, 2015.

[37] S. Dimitropoulos. Going fishing for ghost gear: Scientists are developing tracking
tags to help catch lost fishing gear. https://www.hakaimagazine.com/news/
going-fishing-for-ghost-gear/. Last time accessed: August 2019.

[38] W. Dinkelbach. On nonlinear fractional programming. Management science, 13(7):492–
498, 1967.

[39] H. S. Dol, P. Casari, T. Van Der Zwan, and R. Otnes. Software-defined underwater acoustic
modems: Historical review and the nilus approach. IEEE Journal of Oceanic Engineering,
42(3):722–737, 2017.

[40] M. C. Domingo. An overview of the internet of underwater things. Journal of Network and
Computer Applications, 35(6):1879–1890, nov 2012.

[41] J. Edward. Sustainable raritan river initiative, Rutgers Edward J. Bloustein school of planning
and public policy. http://eac.rutgers.edu/srri. Last time accessed: September
2018.

[42] M. Erol, L. F. M. Vieira, and M. Gerla. AUV-aided localization for underwater sensor net-
works. In Proceedings of IEEE International Conference on Wireless Algorithms, Systems
and Applications (WASA), pages 44–54, 2007.

[43] Y. Pourmohammadi Fallah, H. Mansour, S. Khan, P. Nasiopoulos, and H. M. Alnuweiri.
A link adaptation scheme for efficient transmission of h.264 scalable video over multirate
wlans. IEEE Transactions on Circuits and Systems for Video Technology, 18(7):875–887,
July 2008.

https://www.hakaimagazine.com/news/going-fishing-for-ghost-gear/
https://www.hakaimagazine.com/news/going-fishing-for-ghost-gear/
http://eac.rutgers.edu/srri


166

[44] N. Farr, A. Bowen, J. Ware, C. Pontbriand, and M. Tivey. An Integrated, Underwater Opti-
cal/Acoustic Communications System. In Proceedings of IEEE/MTS OCEANS Conference,
pages 1–6, 2010.

[45] T. Fujihashi, S. Saruwatari, and T. Watanabe. Multi-view video transmission over underwater
acoustic path. IEEE Transactions on Multimedia, 2018.

[46] B. Gerling. Raritan river impaired by numerous toxins, 2014, May 21.

[47] J. Gordon, D. Gillespie, J. Potter, A. Frantzis, M. P Simmonds, R. Swift, and D. Thompson.
A review of the effects of seismic surveys on marine mammals. Marine Technology Society
Journal, 37(4):16–34, 2003.

[48] S. Han, R. Chen, Y. Noh, and M. Gerla. Real-time video streaming from mobile underwater
sensors. In Proceedings of the ACM International Conference on Underwater Networks &
Systems, pages 21–28, 2014.

[49] J. Hayya, D. Armstrong, and N. Gressis. A note on the ratio of two normally distributed
variables. Management Science, 21(11):1338–1341, 1975.

[50] G. Heidari-Bateni and C. D. McGillem. A chaotic direct-sequence spread-spectrum commu-
nication system. IEEE Transactions on communications, 42(234):1524–1527, 1994.

[51] J. Heidemann, M. Stojanovic, and M. Zorzi. Underwater sensor networks: Applications,
advances, and challenges. Royal Society, 370(1958):158–175, May 2012.

[52] F. Hekland, G.E. Oien, and T.A. Ramstad. Using 2:1 Shannon mapping for joint source-
channel coding. In Proceedings of Data Compression Conference (DCC), pages 223–232,
2005.

[53] R. P. Hodges. Underwater Acoustics: Analysis, Design, and Performance of Sonar. John
Wiley & Sons, 2011.

[54] W.S. Hodgkiss, HC Song, M Badiey, A Song, and M Siderius. Kauai acomms muri 2008
(kam08) experiment. Technical report, 2008.

[55] K. Huang, R. W. Heath Jr, and J. G. Andrews. Space division multiple access with a sum
feedback rate constraint. IEEE Transactions on Signal Processing, 55(7):3879–3891, 2007.

[56] J. Imam. Deepest part of the world’s ocean is incredibly noisy scientists say, cnn.
http://www.cnn.com/2016/03/05/world/deep-sea-audio-recording/
index.html/. Last time accessed: March 5, 2016.

[57] P. Ioannides and C. A. Balanis. Uniform Circular Arrays for Smart Antennas. IEEE Antennas
and propagation magazine, 47(4):192–206, 2005.

[58] ITC. ITC3013 transducer specifications. https://docs.wixstatic.com/ugd/
8aa48d_4185da8a232645a89ce4e94801432299.pdf. Last time accessed: De-
cember 2018.

[59] F. Iutzeler, P. Ciblat, and J. Jakubowicz. Analysis of max-consensus algorithms in wireless
channels. IEEE Transactions on Signal Processing, 60(11):6103–6107, 2012.

http://www.cnn.com/2016/03/05/world/deep-sea-audio-recording/index.html/
http://www.cnn.com/2016/03/05/world/deep-sea-audio-recording/index.html/
https://docs.wixstatic.com/ugd/8aa48d_4185da8a232645a89ce4e94801432299.pdf
https://docs.wixstatic.com/ugd/8aa48d_4185da8a232645a89ce4e94801432299.pdf


167

[60] N. Jindal and A. Goldsmith. Capacity and optimal power allocation for fading broadcast
channels with minimum rates. IEEE Transactions on Information Theory, 49(11):2895–
2909, 2003.

[61] M. K. Jubran, M. Bansal, and L. P. Kondi. Low-delay low-complexity bandwidth-constrained
wireless video transmission using svc over mimo systems. IEEE Transactions on Multime-
dia, 10(8):1698–1707, Dec 2008.

[62] A. A. Kalachikov and N. S. Shelkunov. Performance evaluation of the detection algorithms
for MIMO spatial multiplexing based on analytical wireless MIMO channel models. In Pro-
ceedings of International Scientific-Technical Conference on Actual Problems of Electronics
Instrument Engineering (APEIE), pages 180–183, October 2018.

[63] S. M. Kay. Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory.
1993.

[64] J. C. Kinsey, R. M. Eustice, and L. L. Whitcomb. A survey of underwater vehicle navigation:
Recent advances and new challenges. In Proceedings of IFAC Conference of Manoeuvering
and Control of Marine Craft, volume 88, pages 1–12, 2006.

[65] M. Kountouris and J. G. Andrews. Downlink SDMA with limited feedback in interference-
limited wireless networks. IEEE Transactions on Wireless Communications, 11(8):2730–
2741, 2012.

[66] T. H. Le Dao, P. V. Giap, and H. V. Xiem. Adaptive long-term reference selection for efficient
scalable surveillance video coding. In Proceedings of International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC), pages 69–73. IEEE, 2018.

[67] E. K. Lee, H. Viswanathan, and D. Pompili. Distributed data-centric adaptive sampling for
cyber-physical systems. ACM Transactions on Autonomous and Adaptive Systems (TAAS),
9(4):21, 2015.

[68] J-S. Lee, F. De Simone, and T. Ebrahimi. Subjective quality evaluation via paired compar-
ison: Application to scalable video coding. IEEE Transactions on Multimedia, 13(5):882–
893, 2011.

[69] C. Li, Y. Xu, C. Xu, Z. An, B. Diao, and X. Li. DTMAC: A delay tolerant MAC protocol for
underwater wireless sensor networks. IEEE Sensors Journal, 16(11):4137–4146, 2016.

[70] J. Li and P. Stoica. Robust Adaptive Beamforming. John Wiley & Sons, 2005.

[71] T. Li and A. Nehorai. Maximum likelihood direction finding in spatially colored noise fields
using sparse sensor arrays. IEEE Transactions on Signal Processing, 59(3):1048–1062,
2011.

[72] S. Lmai, M. Chitre, C. Laot, and S. Houcke. Throughput-efficient super-tdma mac trans-
mission schedules in ad hoc linear underwater acoustic networks. IEEE Journal of Oceanic
Engineering, 42(1):156–174, 2017.

[73] S. Lu, Z. Wang, Z. Wang, and S. Zhou. Throughput of underwater wireless ad hoc networks
with random access: A physical layer perspective. IEEE Transactions on Wireless Commu-
nications, 14(11):6257–6268, 2015.



168

[74] X. Lurton. An Introduction To Underwater Acoustics: Principles and Applications. Springer
Science & Business Media, 2002.

[75] B. Makki and T. Eriksson. On the Performance of MIMO-ARQ Systems with Channel
State Information at the Receiver. IEEE Transactions on Communications, 62(5):1588–1603,
2014.

[76] G. Marsaglia. Ratios of normal variables. Journal of Statistical Software, 16(4):1–10, 2006.

[77] T. Melodia, H. Kulhandjian, L.-Chung Kuo, and Emrecan Demirors. Advances in underwater
acoustic networking, volume 852, pages 804–852. John Wiley & Sons, Inc., 2013.

[78] R. Y. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn, and S. Yun. Spatial Modulation. IEEE
Transactions on Vehicular Technology, 57(4):2228–2241, 2008.

[79] R. R. Murphy, T. Nomura, A. Billard, and J. L. Burke. Human–robot interaction. IEEE
robotics & automation magazine, 17(2):85–89, 2010.

[80] R. Narasimhan. Finite-SNR diversity–multiplexing tradeoff for correlated rayleigh and rician
mimo channels. IEEE Transactions on Information Theory, 52(9):3965–3979, 2006.

[81] Oceansonics. Iclisten smart hydrophones. http://oceansonics.com/
iclisten-smart-hydrophones/. Last time accessed: December 2018.

[82] S. J. Orfanidis. Electromagnetic waves and antennas. Rutgers University, NJ, 2002.

[83] S Pagadarai, A Kliks, H Bogucka, and AM Wyglinski. Non-contiguous Multicarrier Wave-
forms in Practical Opportunistic Wireless Systems. IET radar, sonar & navigation, 5(6):674–
680, 2011.

[84] P. Pandey, M. Rahmati, D. Pompili, and W. U. Bajwa. Robust distributed dictionary learning
for in-network image compression. In Proceedings of International Conference on Auto-
nomic Computing (ICAC), pages 61–70. IEEE, 2018.

[85] L. Paull, S. Saeedi, M. Seto, and H. Li. AUV navigation and localization: A review. IEEE
Journal of Oceanic Engineering, 39(1):131–149, 2014.

[86] K. I. Pedersen, S. R. Khosravirad, G. Berardinelli, and F. Frederiksen. Rethink hybrid auto-
matic repeat request design for 5G: Five configurable enhancements. IEEE Wireless Com-
munications, 24(6):154–160, 2017.

[87] C. Pelekanakis, M. Stojanovic, and L. Freitag. High Rate Acoustic Link For Underwater
Video Transmission. In Proceedings of IEEE OCEANS Conference, volume 2, pages 1091–
1097, 2003.
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