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Tall fescue [Festuca arundinacea (Schreb.)] is a cool-season turfgrass species that 

has shown great potential for low-maintenance turfgrass applications. This dissertation 

sought to explore and demonstrate the applications of statistical models in the genetic 

analysis and cultivar development of tall fescue. Specific attention was placed on two 

low-maintenance traits that the Rutgers turfgrass breeding program has been focusing on, 

improvement of drought tolerance using the rainout shelter and resistance to red thread 

disease caused by Laetisaria fuciformis (Berk.) Burds.  

Rainout shelters have been widely used in the breeding of tall fescue for improved 

drought tolerance. Persistence of green coloration of leaves during drought is one of the 

crucial traits with noticeable variations for selection. In this project, we studied two 
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consecutive generations of tall fescue evaluated in rainout shelter trials with different 

experimental designs. Bayesian mixed linear models were applied to collected datasets. 

Variance components, narrow-sense heritability (ℎ2), and prediction accuracy of 

estimated breeding value (EBV) were estimated. The theoretical foundations of genetic 

analysis and application to the breeding of tall fescue were also discussed. We first 

reported ℎ2 for green persistence of tall fescue in rainout shelter selection. Mean 

heritability from parental generation was 0.18 with a 95% highest density interval (HDI) 

of (0.04,0.51), while that from progeny generation was 0.08 with a 95% HDI of 

(0.01,0.23). Though significantly greater than zero, both estimates were low, indicating a 

large proportion of non-genetic variance. Given the heritability estimate and experimental 

design in the progeny generation, the prediction accuracy for EBV with different 

selection methods was calculated. Selection methods ranked by mean prediction accuracy 

from the highest to the lowest are parental selection > family selection > mass selection. 

Given the heritability estimations, the theoretical prediction accuracy for these selection 

methods was also calculated. Extra attention was paid to stratified mass selection. Under 

the stratified mass selection method, our work demonstrated the application of best linear 

unbiased prediction(BLUP), A-BLUP, and G-BLUP in the breeding tall fescue, and 

illustrated how prediction accuracy could be further improved by increasing the number 

of blocks or/and the implementation of A-BLUP and G-BLUP.   

Data analysis in the studies has so far focused on continuous data. However, it is 

not uncommon to see discrete data in the breeding of tall fescue. The last chapter of this 

dissertation provided an example of an analysis of binary disease incidence data. The 

study investigated binary red thread disease incidence in tall fescue populations evaluated 
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in two locations over multiple years, highlighted the importance of specific selection 

effort against red thread disease in tall fescue, and estimated heritability of disease 

incidence with two different experimental designs. Narrow-sense heritability (0.52,0.74 

and 0.48) estimated from different experimental designs are all in the range of moderate 

to high, supporting the idea that additive genetic variance accounts for large phenotypic 

variance in red thread incidence in tall fescue populations. Hence, disease incidence of 

red thread in tall fescue can be effectively reduced through selection and breeding. This is 

also the first report documenting the efficacy of family selection in reducing red thread 

incidence in tall fescue.  
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1. INTRODUCTION 

1.1. Brief history of turf-type tall fescue in the United States  

Tall fescue [Festuca arundinacea (Schreb.)] is an allohexaploid (2n=6x = 42) 

with the genomic constitution of 𝐏𝐏𝐆𝟏𝐆𝟏𝐆𝟐𝐆𝟐. The 𝐏 genome appears to have come 

from meadow fescue (2n=2x=14, Festuca pratensis [Huds.] Darbysh.), while the two 𝐆 

genomes come from the tetraploid fescue (Festuca arundinacea var. glaucescens 

Boss)(Sleper & West, 1996). It is widely adopted as a turfgrass in many areas of the 

world, including many parts of North America, South America, Europe, and the cooler 

parts of Asia, Africa, Australia, and New Zealand(Meyer & Watkins, 2003). Tall fescue 

was introduced from Europe to the United States before the 1850s by early settlers. Since 

the 1940s, it has been used for lawns, roadsides, pasture and soil conservation purposes. 

The rapid and extensive acceptance of tall fescue was primarily due to its valuable 

qualities as a pasture grass. It is better adapted to disease, insects, heat, and drought,  

compared with other cool-season grasses. However, most of these pasture type tall fescue 

cultivars have a coarse texture, lighter color, and clumping growth habits, which are not 

desirable for turf situations. Before 1979, only cultivars like Kentucky 31 and ALTA 

were considered for turf situations (Cowan, 1956). Thanks to a low seed price, they are 

still in demand nowadays. Over 50 million kg of Kentucky 31 seeds are produced each 

year, mainly in Missouri (Meyer & Watkins, 2003).  The era of turf-type tall fescue was 

initiated by the release of Rebel tall fescue in 1979 by Dr. C. Reed Funk at the New 

Jersey Agricultural Experiment Station, and for the first time, a tall fescue cultivar could 

produce turf which was heat and drought tolerant, attractive in color and texture, and 

persistent without the clumping growth habit (Funk, Engel, Dickson, & Hurley, 1981). 
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Almost complete self-incompatibility of tall fescue results in cross-pollination. Current 

breeding efforts of tall fescue generally focus on creating superior synthetic cultivars with 

improved turf quality and low maintenance requirements, such as better drought tolerance 

and enhanced disease resistance.  

1.2. Selection of tall fescue for drought tolerance 

Global climate change presents a significant challenge for turfgrass research. The 

predicted rise in global temperature is expected to intensify both the frequency and 

severity of drought (Jacob et al., 2014; Min, Zhang, Zwiers, & Hegerl, 2011). Facing this 

challenge, the development of turfgrass cultivars that can thrive under drought stress 

remains one of the most important research objectives. Previous studies have shown that 

tall fescue responds to drought stress with various mechanisms, including escape, 

avoidance, and tolerance (Huang & Gao, 1999; Pirnajmedin, Majidi, & Gheysari, 2015). 

Drought escape refers to the rapid phenological development of plants to complete life 

cycle, followed by dormancy during severe drought stress(Wang, Bughrara, & Nelson, 

2008), while the latter two mechanisms serve to improve water uptake, minimize water 

loss and avoid dormancy(Pirnajmedin et al., 2015). Although escaping drought stress by 

dormancy may aid in the long-term survival of tall fescue, most turfgrass managers prefer 

to maintain a dense green surface for aesthetics, playability, and safety (Cross, Bonos, 

Huang, & Meyer, 2013; Karcher, Richardson, Hignight, & Rush, 2008). 

Recent years have seen increasing applications of rainout shelter (ROS) in the 

selection and evaluation of turfgrass and forage cultivars (Hatier et al.,2014; Lootens et 

al., 2016; Schwartz et al., 2018; Steinke et al., 2010; Zhou et al., 2009). ROS allows 

precise control and alteration of water availability on outdoor field research plots, 
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creating relative uniform selection environments (Fay, Carlisle, Knapp, Blair, & Collins, 

2000). There are many selection methods in the breeding of tall fescue, among which 

mass selection, parental selection, family selection, and stratified mass selection are most 

commonly used. In this study, we sought to compare these methods in ROS selection of 

tall fescue populations.  

Green persistence of leaves during drought is one of the crucial traits with 

noticeable phenotypic variations upon which to base selection. With the increasing 

demand in high-throughput phenotyping technologies, normalized difference vegetation 

index (NDVI) was adopted to capture and document plant greenness under drought stress 

in this study. NDVI is an effective indicator of vegetation response to drought stress, with 

high potential applications for determining vegetation health and density in a high-

throughput manner in plant breeding (Condorelli et al., 2018; Karnieli et al., 2010; 

Khosravi, Haydari, Shekoohizadegan, & Zareie, 2017; Zhang et al., 2019). It is calculated 

by standardizing the difference between the reflection of radiation in the near-infrared 

and that in the red spectral region. The underlying principle of this calculation is that 

radiation from the red region is poorly reflected due to the absorption by chlorophyll in 

green plants, while radiation from the near-infrared region is strongly reflected by the 

spongy mesophyll structure (Tucker, 1979). 

The traditional approach to analyze phenotypic data is the partitioning of variances 

using the one-way analysis of variance (ANOVA). Given a half-sib design, ANOVA 

provides a logical connection from observed variance components estimated from the 

data to the underlying genetic components, allowing the estimation of additive genetic 

variance hence narrow-sense heritability (ℎ2). These parameters of interest are essential 
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for the prediction of response to selection and prediction accuracy of estimated breeding 

value (EBV), contributing to a better understanding of the underlying genetic mechanism 

(Nguyen & Sleper, 1983). ANOVA was initially designed for analysis of balanced data, 

which is often approachable in laboratory or greenhouse studies. However, field research 

often challenges investigators with highly unbalanced datasets. Alternative approaches 

using mixed models either under frequentist or Bayesian framework have been developed 

for estimation of variance components, and quickly gained popularity in the field of 

quantitative genetics.  

In this study, two consecutive generations of tall fescue half-sib populations were 

evaluated in multiple ROS trials, with green persistence data documented using NDVI. 

Bayesian mixed linear models were then applied to collected NDVI data for estimation 

breeding values, variance components, and heritability. Given the heritability estimation 

and the specific experimental design in the progeny generation, the prediction accuracy 

for different selection methods was estimated. The theoretical foundation of genetic 

analysis and its application to the breeding of tall fescue was also reviewed and 

discussed. Through genetic analysis, we sought to gain a better understanding of the 

inheritance of green persistence of tall fescue under drought stress and to optimize the 

breeding process. 

1.3. Selection of tall fescue for improved red thread disease resistance 

 Another low-maintenance trait studied was the resistance to red thread disease, 

caused by Laetisaria fuciformis (Berk.) Burds. It is a common disease on many cool-

season and some warm-season grasses throughout the world (Bonos, Wilson, Meyer, & 

Funk, 2005; Raikes, Lepp, & Canaway, 1996; Zhang et al., 2015). Symptoms of red 
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thread disease on turf stands are characterized by circular or irregularly shaped, small to 

large patches ranging from 5 to 60 cm, with the presence of red, thread-like sclerotia, 

hence the name. In addition to the “red thread” outgrowth, small cream, or pink-colored 

mycelial mats and flocks of arthroconidia are often observed (Smiley, Dernoeden, & 

Clarke, 2005). The sclerotia can survive adverse environmental conditions and stay 

viable for some time. When conditions permit, the sclerotia germinate and start a new 

cycle of infection. Sclerotia and arthroconidia can be disseminated by water, mowing 

equipment, or foot traffic to initiate secondary inoculation (Stalpers & Loerakker, 1982). 

Outbreaks of red thread disease usually occur during cloudy and rainy conditions in low 

maintenance turf stands such as residential lawns, parks, golf course rough areas, and low 

budget athletic fields. Damage may be more severe on infrequently moved areas, or when 

low temperature or fertility slows the growth of turfgrasses. Applications of nitrogen 

fertilizer not only encourage faster recovery but also reduce disease incidence. Other 

control methods include enhanced light intensity or light penetration (when in shade), 

increased ventilation, clipping removal during major infection, and use of resistant 

cultivars (Raikes et al., 1996; Smiley et al., 2005; Tani & Beard, 1997). Traditionally, red 

thread has been a disease on perennial ryegrass (Lolium perenne L.), especially when it is 

under fertility stress (Qu et al., 2005). Red thread epidemics in tall fescue have increased 

as the use of tall fescue gained popularity. Selection of turfgrass species for resistance to 

red thread has not progressed as much, compared to other major diseases of turfgrasses, 

such as dollar spot caused by Clarireedia jacksonii C. Salgado, L.A. Beirn, B.B. Clarke, 

& J.A. Crouch (Bonos, 2006),  or gray leaf spot caused by Pyricularia oryzae Cavara 

(Bonos, Kubik, Clarke, & Meyer, 2004; Han, Bonos, Clarke, Meyer, 2006). Additionally, 
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genetic studies have not been conducted for red thread resistance in any turfgrass species; 

this is primarily due to the low reproducibility of experiments carried out under natural 

infection and variable success with artificial inoculations (Berestetski, Ehrig, & Kastirr 

2002).  

This study was initiated by investigating red thread disease incidence in a 

collection of tall fescue maternal half-sib populations and commercial synthetics in two 

disease outbreaks in 2016 and 2017 induced by artificial inoculation. We then proceed to 

estimate disease incidence rate in different populations and the narrow-sense heritability 

of red thread incidence in tall fescue using a maternal half-sib design. Based on estimated 

heritability and disease incidence, family selection was applied to identify resistant and 

susceptible genotypes. Diallelic crosses were subsequently conducted to evaluate the 

efficacy of family selection and to confirm the repeatability of estimated genetic 

parameters.    
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2. GENETIC ANALYSIS OF TALL FESCUE HALF-SIB POPULATIONS IN 

RAINOUT SHELTER SELECTION 

Abstract 

Rainout shelters have been widely used as a tool in the breeding of tall fescue for 

improved drought tolerance. Green persistence of leaves during drought is one of the 

crucial traits with noticeable quantitative variations for selection. In this study, we studied 

two consecutive generations of tall fescue evaluated in rainout shelter trials with half-sib 

designs. Bayesian mixed linear models were applied to collected datasets. Variance 

components, narrow-sense heritability (ℎ2), and prediction accuracy of estimated 

breeding value (EBV) were estimated. The theoretical foundations of genetic analysis 

using half-sib designs and application to the breeding of tall fescue were also discussed. 

We first reported ℎ2 for green persistence of tall fescue in rainout shelter selection. Mean 

heritability from parental generation was 0.18 with a 95% highest density interval (HDI) 

of (0.04,0.51), while that from progeny generation was 0.08 with a 95% HDI of 

(0.01,0.23). Though significantly greater than zero, both estimates were low, indicating a 

large proportion of non-genetic variance. Given the heritability estimate and experimental 

design in the progeny generation, the prediction accuracy for EBV with different 

selection methods was calculated. Selection methods ranked by mean prediction accuracy 

from the highest to the lowest are parental selection > family selection > mass selection.  

Keywords: Mixed linear models, variance components, heritability, estimated breeding 

value, prediction accuracy.  
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2.1. Introduction 

The scarcity of water is one of the most significant environmental constraints to the 

survival and growth of plants in agriculture worldwide (Cattivelli et al., 2008; Farooq, 

Wahid, Kobayashi, Fujita, & Basra, 2009). Selection of turfgrass species and cultivars 

with improved drought tolerance has become a focus of breeding to provide more options 

for climates and locations that most commonly encounter warter scarcity. Tall fescue is a 

cool-season turfgrass species that has shown significant potential for drought tolerance 

because of its deep root system as well as other physiological characteristics (Cross et al., 

2013; Fu, Fry, & Huang, 2007; Jiang & Huang, 2001). Tall fescue is a cross-pollinated, 

self-incompatible, sexual perennial grass, and the general breeding aim has so far been to 

develop improved synthetic populations (Meyer & Watkins, 2003; Nguyen & Sleper, 

1983). Allowing a relatively large number of superior genotypes to inter-cross creates a 

diverse genetic combination in the progeny. These progenies are then maintained as half-

sib populations for further evaluation, as well as base populations from which superior 

genotypes for production of next generation are selected. For efficient identification of 

superior genotypes, experimental approaches to creating uniform drought conditions are 

often desired. The application of rainout shelter (ROS) allows precise control and 

alteration of water availability on outdoor research plots (Fay et al., 2000).  

Turfgrass breeders use different selection methods depending on the mode of 

reproduction of a species. When evaluating half-sib populations of tall fescue, the most 

widely used methods include mass selection, family selection, and parental selection. The 

differences among these methods lie in the predictors for estimated breeding value 

(EBV), choice of recombination units, and length of selection cycle.  In mass selection, 
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EBVs are predicted based on the phenotypic performance of evaluated clones, while in 

parental selection, the selection is performed on shared parental clones based on the mean 

phenotypic performance of evaluated progenies. Family selection combines parental 

selection and mass selection, wherein elite families are first identified using the mean 

phenotypic performance of evaluated progenies, followed by a mass selection of elite 

genotype(s) within identified families. The length of selection cycles is another difference 

among these methods.  Mass selection does not require the production and evaluation of 

progenies but will suffer low prediction accuracy for EBV on traits with low heritability.  

Parental selection and family selection yield better prediction accuracy at the cost of the 

additional season and effort for production and evaluation of progenies. In this study, we 

sought to compare these methods in ROS selection of tall fescue populations.  

Green persistence of leaves during drought is one of the crucial traits with 

noticeable phenotypic variations upon which to base selection. With the increasing 

demand in high-throughput phenotyping technologies, normalized difference vegetation 

index (NDVI) was adopted to capture and document plant greenness under drought stress 

in this study. NDVI is an effective indicator of vegetation response to drought stress, with 

high potential applications for determining vegetation health and density in a high-

throughput manner in plant breeding (Condorelli et al., 2018; Karnieli et al., 2010; 

Khosravi et al., 2017; Zhang et al., 2019). It is calculated by standardizing the difference 

between the reflection of radiation in the near-infrared and that in the red spectral region. 

The underlying principle of this calculation is that radiation from the red region is poorly 

reflected due to the absorption by chlorophyll in green plants, while radiation from the 
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near-infrared region is strongly reflected by the spongy mesophyll structure (Tucker, 

1979). 

The traditional approach to analyze collected phenotypic data is partitioning of 

variances using the one-way analysis of variance (ANOVA). Given a half-sib design, 

ANOVA provides a logical connection from observed variance components estimated 

from the data to the underlying genetic components, allowing the estimation of additive 

genetic variance hence narrow-sense heritability (ℎ2). These parameters of interest are 

essential for the prediction of response to selection and prediction accuracy of EBV, 

contributing to a better understanding of the underlying genetic mechanism (Nguyen & 

Sleper, 1983). ANOVA was initially designed for analysis of balanced data (i.e., equal 

numbers of progenies in different half-sib populations), which is often approachable in 

laboratory or greenhouse studies. However, field researches often challenge the 

investigators with highly unbalanced datasets. Alternative approaches using mixed 

models either under frequentist or Bayesian framework have been developed for 

estimation of variance components, and quickly gained popularity in the field of 

quantitative genetics.  

In this study, two consecutive generations of tall fescue half-sib populations were 

evaluated in multiple ROS trials, with green persistence data documented using NDVI. 

Bayesian mixed linear models were then applied to collected NDVI data for estimation 

breeding values, variance components, and heritability. Given the heritability estimation 

and the specific experimental design in the progeny generation, the prediction accuracy 

for three different selection methods, namely, mass selection, family selection, and 

parental selection, was estimated. The theoretical foundation of genetic analysis using 
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half-sib designs and its application to the breeding of tall fescue was also reviewed and 

discussed. Using a thorough genetic analysis, we sought to gain a better understanding of 

the inheritance of green persistence of tall fescue under drought stress and to optimize 

this breeding process.  

2.2. Material and methods 

2.2.1. Experiment design and data collection 

The experiments were conducted during the summer of 2017 and 2019 in two 

Rain-out Shelters (ROS) at the Rutgers Plant Biology Research and Extension Farm, 

Freehold, NJ. ROS1 is an automated double-layered canopy that is signaled to protect the 

trial area from precipitations by air moisture sensors, while ROS2 is a stationary 

greenhouse that covers the trial area during the entire period of drought treatment. The 

soil in both shelters is categorized as sandy loam, with a slight acidity. Mechanical 

analysis indicates soil from ROS1 consists of 56% sand, 26% silt, and 18% clay, while 

that from ROS2 consists of 70% sand, 15% silt, and 16% clay. During the summer of 

2017, 620 clones randomly selected from 20 maternal populations in the parental 

generation were evaluated for green persistence under drought stress for 62 days. Ninety-

six clones were subsequently selected from all 20 maternal populations by visual 

inspection.  After matching the maturity in the spring of 2018, the progeny generation 

was created by poly-crossing 38 out of the 96 selected clones. Maternal membership of 

these 38 clones was shown in Table 2.1 Maternal effects of selected tall fescue clones and 

corresponding maternal plots evaluated in rainout shelter trials at Freehold, NJ.. A 

random selection of 380 clones from 38 maternal populations in the progeny generation 

and 360 clones from the 20 maternal populations in the parental generation were 
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evaluated in the summer of 2019 in ROS1 and replicated in ROS2(Maternal populations 

were replicated, and the clones are not. Detailed entry information was presented in  

Table 2.2 Entry information experimental maternal half-sibs evaluated in rainout 

shelter trials at Freehold, NJ.). All trials were planted in the fall of prior years and 

organized as spaced plant with 30.5cm spacing between each clone. Once established, 

clones were mowed weekly at 7.62cm during growing seasons. NDVI was measured for 

each clone with a FieldScout TCM 500 NDVI Turf Color Meter (Item#:2975NDVI, 

Spectrum Technologies, 3600 Thayer Court, Aurora, IL) every week from initiation to 

termination of a drought treatment. Segregation of parental populations in different trials 

was monitored using the standard deviation of all clones. For the two trials in 2019, 

drought treatment was terminated once the evaluated populations segregated to the same 

level as in the 2017-ROS1 trial ( 

Figure 2.1 Standard deviation of tested populations in the rainout shelter trials.). 

The last datasets collected before termination of trials were scaled, analyzed, and 

presented in the following sections. 

2.2.2. Statistical model and theoretical foundation 

The following model was fitted separately to the parental and progeny generation. 

In each generation, let 𝑌𝑖𝑗𝑘 denote the scaled NDVI value of the 𝑘th progeny of dam 𝑖 in 

environment 𝑗, and the model is then 

𝑌𝑖𝑗𝑘 = 𝛽𝑗 + 𝑢𝑖 + 𝑒𝑖𝑗𝑘                                        Equation 2.1 

In matrix notation, let 𝐲 denote the vector of all scaled NDVI values. For  𝛃 = {𝛽𝑗}𝑗=1
𝐽

,  

𝐮 = {𝑢𝑖}𝑖=1
𝐼  and 𝐞 = {{{𝑒𝑖𝑗𝑘}𝑖=1

𝐼 }𝑗=1
𝐽 }𝑘=1

𝐾 , the model can also be expressed by the 

following equation, 
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𝐲 = 𝐗𝛃 + 𝐙𝐮 + 𝐞                                           Equation 2.2 

where 𝛃, 𝐮, and 𝐞 denote the environmental effect, maternal effect, and unexplained 

residual effect respectively, 𝐗 and 𝐙  are the corresponding design matrices for 

environmental and maternal effect. Under the Bayesian framework, all effects are 

assumed to be random. We further assumed that they all followed independent 

normal distributions. Specifically, 

𝛃 ∼ MVN(𝟎, 𝐈𝝈𝜷
𝟐 )

𝐮 ∼ MVN(𝟎, 𝐈𝝈𝒖
𝟐)

𝐞 ∼ MVN(𝟎, 𝐈𝝈𝒆
𝟐)

                                       Equation 2.3                                                           

where 𝐈 is the identity matrix; 𝜎𝛽
2, 𝜎𝑢

2, and 𝜎𝑒
2 are the variance components ascribed to 

environmental effect, maternal effect, and unexplained residual effect respectively. The 

model also assumes that all variance components follow an inverse-gamma distribution 

with shape and scale parameter values of 0.001. 

Assuming that epistasis is of minor importance, the variance of maternal effect 

provides an approximation of one-quarter of the additive genetic variance in half-sib 

designs, i.e. 𝜎𝑢
2 =

1

4
𝜎𝐴

2(Lynch & Walsh, 1998). Therefore, the additive genetic variance 

can be estimated by 4𝜎𝑢
2. The total phenotypic variance, 𝜎𝑃

2, can be expressed by the 

following equation. 

𝜎𝑃
2 = 𝜎𝛽

2 + 𝜎𝑢
2 + 𝜎𝑒

2                                             Equation 2.4 

Hence the narrow-sense heritability is 

ℎ2 =
𝜎𝐴

2

𝜎𝑃
2 =

4𝜎𝑢
2

𝜎𝛽
2+𝜎𝑢

2+𝜎𝑒
2                                            Equation 2.5 

Given the same level of selection intensity and a defined population, the expected 

response is determined by the accuracy of predicting breeding value, 𝜌, which measures 
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the correlation between true breeding values (TBVs) and EBVs.  In mass selection, 𝜌 

equals the square root of the narrow-sense heritability estimate, ℎ. In parental selection 

with half-sibs, the prediction accuracy is given by 

𝜌  = √
𝑛ℎ2

4+(𝑛−1)ℎ2                                                Equation 2.6 

in which 𝑛 is the number of half-sibs (Walsh & Lynch, 2018). In family selection with 

half-sib, wherein measured half-sibs from each family are used to create the next 

generation, the prediction accuracy takes the correlation between half-sibs into account, 

𝜌 =
𝑛+3

2
√

ℎ2

4𝑛+𝑛(𝑛−1)ℎ2                                           Equation 2.7 

as described by Lush (1947). Similarly, 𝑛 is the number of half-sibs.  

The infinitesimal model is robust and straightforward for the inheritance of 

quantitative traits, in which total phenotypic variance is partitioned into a genetic and a 

non-genetic(environmental) components, and the genetic component of progeny traits 

follows a normal distribution around the mean of the parents; variance of this distribution 

is independent of the parental trait values and decreases due to selection and 

inbreeding(Barton, Etheridge, & Véber, 2017; Fisher, 1918). Under half-sib designs, the 

variance component was partitioned into environmental variance, maternal variance, and 

unexplained residual variance. The genetic component, specifically additive genetic 

component, can be subsequently estimated from the maternal variance. The genotypic 

covariance of maternal half-sibs plays a pivotal role in this estimation process. On the 

one hand, the genotype of 𝑘th progeny of 𝑖th dam in 𝑌𝑖𝑗𝑘=𝛽𝑗 + 𝑢𝑖 +

𝑒𝑖𝑗𝑘                                        Equation 2.1 can be expressed as follows. 
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𝐺𝑖𝑘 = 𝑌𝑖𝑗𝑘 − 𝛽𝑗 = 𝑢𝑖 + 𝑒𝑖𝑗𝑘                              Equation 2.8 

Given the genotypic values of two maternal half-sibs,𝐺𝑖𝑘 and 𝐺𝑖𝑙, the genotypic 

covariance of the two equals the variance of maternal effect, that is, 

𝐶𝑜𝑣(𝐺𝑖𝑘, 𝐺𝑖𝑙) =  𝐶𝑜𝑣[(𝑢𝑖 + 𝑒𝑖𝑗𝑘), (𝑢𝑖 + 𝑒𝑖𝑗𝑙)]

=  𝐶𝑜𝑣(𝑢𝑖 , 𝑢𝑖) + 𝐶𝑜𝑣(𝑢𝑖 , 𝑒𝑖𝑗𝑙) + 𝐶𝑜𝑣(𝑒𝑖𝑗𝑘, 𝑢𝑖) + 𝐶𝑜𝑣(𝑒𝑖𝑗𝑘, 𝑒𝑖𝑗𝑙)

=  𝜎𝑢
2

 

                                                                                                                           Equation 2.9 

On the other hand, for two genetically related diploid clones, 𝑈 and 𝑉, their genotypic 

covariance can be partitioned into additive genetic variance and dominance genetic 

variance, assuming no epistasis. We have that, 

Cov(𝐺𝑈 , 𝐺𝑉) = 𝛾𝜎𝐴
2 + 𝜃𝜎𝐷

2                                 Equation 2.10 

where 𝐺𝑈 and 𝐺𝑉 are the genotype values of 𝑈 and 𝑉, 𝛾 is the probability alleles drawn 

randomly from 𝑈 and 𝑉 are identical-by-descent (IBD), 𝜃 is the probability that 𝑈 and 𝑉 

share two alleles IBD, 𝜎𝐴
2 and 𝜎𝐷

2 are additive genetic variance and dominance genetic 

effect, respectively(Jacquard, 1974; Wright,  1966). With the previous example of the 

genotypic values of two maternal half-sibs, 𝐺𝑖𝑘 and 𝐺𝑖𝑙 , 𝛾 and 𝜃  take on values 
1

4
  and 0 

respectively, it follows, 

Cov(𝐺𝑖𝑘 , 𝐺𝑖𝑙) =
1

4
𝜎𝐴

2                             Equation 2.11 

which provides a logical connection between observed variance components that have 

been estimated from the data and the underlying genetic components.  

 

4𝜎𝑢
2 = 4Cov(𝐺𝑖𝑘, 𝐺𝑖𝑙) = 𝜎𝐴

2                     Equation 2.12                                                          
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When it comes to the application to polyploid species like tall fescue, dominance genetic 

variance must be considered. Under similar assumptions, for two autohexaploid half-sibs, 

again 𝑈 and 𝑉, it can be shown mathematically that 

Cov(𝐺𝑈 , 𝐺𝑉) =
1

4
𝜎𝐴

2 +
1

25
𝛥𝑈𝑉

(2)
𝜎𝐷2

2 +
1

400
𝛥𝑈𝑉

(3)
𝜎𝐷3

2                     Equation 2.13 

where 𝛥𝑈𝑉
(𝑡)

 is the probability that all members of random 𝑡-allelic sets from 𝑈 and 𝑉 are 

IBD and 𝜎𝐷𝑡

2  is the dominance genetic variance resulting from 𝑡-allelic interaction. 

Hence,  

4𝜎𝑢
2 = 4𝜎𝑢

2Cov(𝐺𝑈 , 𝐺𝑉) = 𝜎𝐴
2 +

4

25
𝛥𝑈𝑉

(2)
𝜎𝐷2

2 +
1

100
𝛥𝑈𝑉

(3)
𝜎𝐷3

2                   Equation 2.14                      

The tall fescue studied in this project is allohexaploid exhibited disomic inheritance, 

whose genome is designated by 𝐏𝐏𝐆𝟏𝐆𝟏𝐆𝟐𝐆𝟐(Meyer and Watkins, 2003; Pedersen & 

Sleper 1993). The value of  4𝜎𝑢
2 most likely provided an estimate between the two 

extreme situations expressed in 4𝜎𝑢2=4Cov(𝐺𝑖𝑘, 𝐺𝑖𝑙) = 𝜎𝐴
2                     Equation 2.12  and 

4𝜎𝑢2=4𝜎𝑢2Cov(𝐺𝑈 , 𝐺𝑉) = 𝜎𝐴
2 +

4

25
𝛥𝑈𝑉

(2)
𝜎𝐷2

2 +
1

100
𝛥𝑈𝑉

(3)
𝜎𝐷3

2                   Equation 2.14. When 

using 4𝜎𝑢
2 as an estimate for the additive genetic effect of tall fescue population, it 

inevitably took a proportion of dominance genetic variance into account, leading to 

inflated results (Lynch & Walsh, 1998). Unfortunately, there has been no remedy to this 

problem yet to our knowledge. 

2.2.3. Model implementation 

Posterior distributions of parameters in the model were sampled in R 3.5.3(R Core 

Team, 2019) environment with package ‘R2jags’ (Su & Yajima, 2015). Codes of model 

implementation were presented as supporting information. The Gibbs sampler was 
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implemented with 5 Markov chain Monte Carlo chains, each with 50,000 iterations. The 

first 10,000 iterations were discarded to minimize the effect of initial values, and the rest 

iterations were thinned by taking every 10th to reduce sample autocorrelation. The 

convergence of chains was confirmed via visual inspection. Analysis of results was 

visualized using package ‘tidyverse’ (Wickham et al., 2019). 

For comparison of parameter estimates from two generations, distributions of the 

differences were simulated by randomly drawing 4000 samples (2,000 for each 

generation) from the posterior samples with replacement. 

2.3. Results 

The posterior estimates of variance components (𝜎𝑢
2,𝜎𝐴

2,𝜎𝑒
2 and 𝜎𝛽

2 ) from both 

generations were presented in  

Figure 2.2 Boxplot for posterior estimates of variance components from parental 

and progeny generation of tall fescue maternal half-sibs evaluated in rainout shelter trials 

in the summer of 2017 and 2019 at Freehold, NJ.. Variance components from two 

generations showed a similar pattern. The largest variance component is environmental 

variance, accounting for 59.41% of total phenotypic variance in the parental generation 

and 92.33% of that in the progeny generation. The unexplained residual variance is the 

second-largest component, constituting 20.75% of the total phenotypic variance in the 

parental generation and 7.22% of that in the progeny generation, suggesting a better 

model fitting to data collected from progeny generation. The smallest variance 

component is the variance of maternal effect, which leads to low estimates of additive 

genetic variance. Reduction in mean additive genetic variance and phenotypic variance 

were observed from parental to progeny generation ( 

Figure 2.2 Boxplot for posterior estimates of variance components from parental 

and progeny generation of tall fescue maternal half-sibs evaluated in rainout shelter trials 

in the summer of 2017 and 2019 at Freehold, NJ.). Given an 𝛼 level of 0.05, maternal 

variance, additive genetic variance, and residual variance estimated from paternal 

generation were significantly higher than those estimated from the progeny population. 

The posterior distribution for heritability estimate from parental generation has a mean of 

0.18, a mode of 0.09, and a 95% HDI of (0.04,0.51), while that from progeny generation 
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has a mean of 0.08, a mode of 0.02, and a 95% HDI of (0.01,0.23). Though significantly 

greater than zero, both estimates were quite low, indicating most of the phenotypic 

variance is not genetic. The difference between the mean heritability estimates was 

estimated to be 0.11 with a 95% HDI of (-0.11, 0.45), suggesting no significant 

differences between heritability estimates between the two generations. The difference in 

population means of the two generations in trial 2019-ROS1 is 0.03 with a 95% HDI of (-

0.15, 0.18), and that in trial 2019-ROS2 is 0.00 with a 95% HDI of (-0.19, 0.18), showing 

no significant differences in either trial (Figure 2.3 Population distributions of parental 

and progeny generation of tall fescue maternal half-sibs evaluated in rainout shelter trials 

in the summer of 2019 at Freehold, NJ.).  

The 

To 

2.4. Discussion 

Development of tall fescue cultivars with improved drought tolerance is hindered 

by poor understanding of mechanisms of drought responding and by inadequate selection 

techniques. A large volume of studies have been devoted to the physiological strategies 

of tall fescue under drought stress. These strategies include escape, avoidance, and 

tolerance to overcome drought stress (Huang & Gao, 1999; Pirnajmedin, Majidi, & 

Gheysari, 2016; Tuberosa, 2012; Wang, Bughrara, & Nelson 2008). However, 

information on the underlying genetics is still limited. In this project, we sought to 

investigate the selection process using ROS by estimating genetic variance components 

and their functions given that drought tolerance is characterized as a quantitative trait in 

grass species (Jiang et al., 2017; Merewitz, Belanger, Warnke, Huang, & Bonos, 2014). 
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Turfgrass breeders have paid particular attention to additive genetic variance, as the most 

commonly used cool-season turfgrasses are cross-pollinated (Bonos, Clarke, & Meyer, 

2006; Chen, Wang, Waltz, & Raymer, 2009), and only additive genetic effects can stably 

pass on from parent to offspring in long term selection (Nyquist & Baker, 1991). It is a 

common practice in cool-season turfgrass breeding to maintain maternal populations for 

selection. The half-sib design is, therefore, a convenient way to estimate the maternal 

breeding value and to conduct genetic experiments (Aastveit & Aastveit, 1990). Although 

it allows the evaluation of a broad spectrum of germplasms, half-sib design provides no 

estimation for dominance variance. The situation is more complicated given that tall 

fescue is an allohexaploid species, as pointed out in 4𝜎𝑢2=4𝜎𝑢2Cov(𝐺𝑈 , 𝐺𝑉) = 𝜎𝐴
2 +

4

25
𝛥𝑈𝑉

(2)
𝜎𝐷2

2 +
1

100
𝛥𝑈𝑉

(3)
𝜎𝐷3

2                   Equation 2.14.  Other experimental designs, e.g., nested 

full-sib design, diallelic design, might provide estimations for dominance variance and 

additive genetic variance so long as estimated variance components can be translated into 

covariances of relatives.  It is also worth noting that Cov(𝐺𝑈 , 𝐺𝑉) =
1

4
𝜎𝐴

2 +
1

25
𝛥𝑈𝑉

(2)
𝜎𝐷2

2 +

1

400
𝛥𝑈𝑉

(3)
𝜎𝐷3

2                     Equation 2.13 points out an interesting consequence of polyploidy 

that the covariance of half-sibs can be influenced by dominance effect because parents 

pass more than one allele on to the progeny. In short term selection, breeders can take 

advantage of such dominance effect for higher response to selection. However, in long 

term recurrent selection breeding programs, dominance effect may vanish due to the 

segregation of alleles.  

The posterior mean for ℎ2 estimates in this study were 0.18  for parental and  

0.08 for progeny generation, suggesting a small proportion of genetic component in total 

phenotypic variance. In summary, environmental effects have significant impacts on the 
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performance of tall fescue populations during selection process using ROS. Despite being 

low, the heritability estimates were still significantly greater than zero, leading to a 

significantly positive correlation in EBVs of the two generations (Figure 2.6 Correlation 

of maternal effects estimated from parental and progeny generation of tall fescue 

maternal half-sibs evaluated in rainout shelter trials in the summer of 2017 and 2019 at 

Freehold, NJ.). Under Fisher’s (1918) infinitesimal model, in the absence of any epistatic 

variance or genotype by environment interaction, directional truncation selection 

generates the same amount of negative disequilibrium contribution to additive genetic 

variance and phenotypic variance (Walsh & Lynch, 2018). That is to subtract the same 

amount of disequilibrium contribution from both the nominator and denominator in ℎ2 =

𝜎𝐴
2

𝜎𝑃
2 =

4𝜎𝑢
2

𝜎𝛽
2+𝜎𝑢

2+𝜎𝑒
2                                            Equation 2.5, leading to a smaller heritability 

estimate in the progeny generation. We did not see a significant reduction in heritability 

or phenotypic variance from the parental generation to progeny generation, which is 

presumably due to large variances of parameters. However, additive genetic variance 

estimated from progeny generation was significantly lower than that estimated from 

parental generation, following Fisher’s infinitesimal model. This study is the first to 

document the low heritability of green persistence of tall fescue in directional selection 

using ROS. Heritability estimates for tall fescue or any other turfgrass species for green 

persistence under drought stress have not been reported. However, decreased heritability 

of agronomic traits under drought stress has been documented for other crops. In maize 

(Zea mays), selection under drought conditions has often been considered less efficient 

comparing with non-stressed conditions due to a reduction in heritability for grain yield 

under stress (Bolaños & Edmeades, 1996; Rosielle & Hamblin, 1981). Similar 
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phenomena were also found in the breeding of wheat. Mathew et al. (2018) evaluated 99 

genotypes of wheat (Triticum aestivum L.) and one triticale (X Triticosecale Wittmack) 

under drought-stressed and non-stressed conditions in both field and greenhouse 

environments.  Drought stress decreased broad-sense heritability of root to shoot ratio 

from 0.47 to 0.28 and grain yield from 0.55 to 0.17. Caution must be exercised for such 

comparisons, as trait heritability varies greatly depending on the genetic makeup of the 

materials studied, environmental conditions under which materials are evaluated, the 

accuracy of phenotypic data, and even model specification. It is essential to state clearly 

the model structure and formula for heritability estimation. In linear mixed models under 

the frequentist framework, it is common that spatial and temporal factors (e.g., year 

effect, location effect) are treated as fixed effects and genetic factors as random effects 

(Smith, Cullis, & Thompson, 2005). In such a setting, the total phenotypic variance is 

estimated only by the variances of random effects and unexplained residuals. While 

under the Bayesian framework, all factors are random variables, environmental variances 

must be included in the estimation of total phenotypic variance. The concepts of 

heritability and variance components are features that describe the properties of 

populations. They may not be transferable from one population or environment to 

another.  

Heritability measures the efficiency of response to selection. In mass selection, 

low heritability leads to poor prediction accuracy. In the selection of tall fescue under 

ROS, the phenotypic value of a tall fescue clone is not a good predictor of its breeding 

value due to the low heritability estimation. The significance of this finding is that 

minimal differences were reported between parental and progeny generation (Figure 2.3 
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Population distributions of parental and progeny generation of tall fescue maternal half-

sibs evaluated in rainout shelter trials in the summer of 2019 at Freehold, NJ.). Selection 

in stress-managed environments, like ROS, assumes the site is not affected from 

additional factors, such as weeds, diseases, salinity, etc. In the breeding of turfgrasses, it 

is not uncommon to evaluate materials selected from ROS to additional screening 

improved overall turf quality. Breeders may adopt selection criteria for traits that may not 

be compatible with what is necessary for improvement of drought tolerance. Several 

previous studies have reported that Ky-31, with poor turf qualities, exhibits enhanced 

drought tolerance as compared to some of the advanced generation, dwarf-type tall fescue 

cultivars (Carrow & Duncan, 2003; Fu & Huang, 2004; Huang & Gao, 1999). Our study 

may offer some insight into this relationship from a genetic perspective. 

In plant breeding, traits of low heritability can still be selected for successfully as 

long as appropriate selection methods are adopted. This study demonstrated that family 

selection and parental selection could both increase the prediction accuracy of EBV, 

compared with mass selection. It should be noted that, though similar, Figure 2.6 

Correlation of maternal effects estimated from parental and progeny generation of tall 

fescue maternal half-sibs evaluated in rainout shelter trials in the summer of 2017 and 

2019 at Freehold, NJ.was not a parent-offspring regression. Instead, it demonstrated the 

low correlation of EBVs estimated from two consecutive generations, which is also a 

manifestation of the low heritability for green persistence under drought stress. This 

correlation provides the theoretical foundation for the efficiency of family selection, 

which has played an important role in the selection of cool-season turfgrasses. Due to the 

low correlation, the mean prediction accuracy with family selection was only slightly 



23 

 

 

 

higher than that of mass selection. Parental selection yielded the highest prediction 

accuracy; however, it came with the price that fewer genotypes were evaluated. 

Compared with mass selection, both parental selection and family selection also require 

the production and evaluation of progenies, leading to longer selection cycles.   

In summary, we have reviewed the theoretical foundations of genetic analysis in 

half-sib design under Fisher’s infinitesimal model. Under this hypothesis, Bayesian linear 

mixed models were applied to the analysis of two consecutive generations of tall fescue 

populations tested in the ROS, and variance components and genetic parameters were 

estimated for this process. We first reported the heritability estimate for green persistence 

measured by NDVI of tall fescue in ROS selection.  Mean heritability estimate from 

parental generation was 0.18, with a 95% credit interval of (0.04,0.51), while that from 

progeny generation was 0.08 with a 95% credit interval of (0.01,0.23). Given the 

heritability estimates and experimental design in the progeny generation, we then 

estimated the prediction accuracy with different selection methods. Selection methods 

ranked by mean prediction accuracy from the highest to the lowest are parental selection, 

family selection, and mass selection.  

Table 2.1 Maternal effects of selected tall fescue clones and corresponding maternal plots 

evaluated in rainout shelter trials at Freehold, NJ. 

Selected clones Maternal plots Maternal effect of  

selected clones 

Maternal effect of 

maternal plots 

mean 95% HDIa mean 95% HDIa 

ROS16-68 A15-509  0.09 (-0.11,0.29) 
0.38 ( 0.15,0.62) 

ROS16-69 A15-509 -0.07 (-0.27,0.12) 

ROS16-91 A15-513  0.14 (-0.05,0.35) 
0.37 ( 0.13,0.62) 

ROS16-92 A15-513  0.11 (-0.09,0.32) 

ROS16-80 A15-505 -0.07 (-0.27,0.13) 0.29 ( 0.04,0.53) 

ROS16-34 A15-436 -0.04 (-0.25,0.17) 
0.20 ( 0.01,0.39) 

ROS16-36 A15-436  0.04 (-0.16,0.25) 
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ROS16-37 A15-436 -0.02 (-0.22,0.18) 

ROS16-39 A15-436  0.08 (-0.11,0.28) 

ROS16-02 A15-311  0.16 (-0.04,0.39) 
0.17 (-0.03,0.37) 

ROS16-03 A15-311  0.21 ( 0.00,0.44) 

ROS16-26 A15-341  0.03 (-0.17,0.23) 

0.16 (-0.04,0.36) ROS16-30 A15-341  0.06 (-0.14,0.26) 

ROS16-32 A15-341  0.17 (-0.03,0.38) 

ROS16-85 A15-725 -0.10 (-0.32,0.10) 
0.16 (-0.09,0.40) 

ROS16-86 A15-725  0.03 (-0.16,0.23) 

ROS16-89 A15-675 -0.14 (-0.36,0.06) 0.15 (-0.09,0.39) 

ROS16-72 A15-677  0.07 (-0.12,0.27) 0.13 (-0.10,0.37) 

ROS16-40 A15-463 -0.02 (-0.23,0.17) 
0.10 (-0.10,0.29) 

ROS16-94 A15-463  0.00 (-0.20,0.19) 

ROS16-20 A15-316 -0.02 (-0.22,0.18) 
0.08 (-0.11,0.28) 

ROS16-21 A15-316  0.10 (-0.09,0.32) 

ROS16-54 A15-451  0.03 (-0.17,0.23) 

-0.03 (-0.22,0.17) ROS16-55 A15-451 -0.20 (-0.43,0.00) 

ROS16-56 A15-451 -0.09 (-0.30,0.11) 

ROS16-45 A15-708 -0.07 (-0.27,0.12) 

-0.06 (-0.26,0.14) ROS16-46 A15-708  0.06 (-0.13,0.26) 

ROS16-48 A15-708 -0.09 (-0.30,0.11) 

ROS16-78 A15-489 -0.05 (-0.25,0.15) -0.07 (-0.31,0.17) 

ROS16-13 A15-668 -0.02 (-0.22,0.17) -0.12 (-0.32,0.07) 

ROS16-08 A15-511 -0.18 (-0.40,0.02) 
-0.15 (-0.34,0.05) 

ROS16-10 A15-511 0.07 (-0.12,0.28) 

ROS16-04 A15-682 -0.17 (-0.39,0.02) 

-0.39 (-0.58, -0.19) ROS16-50 A15-711 -0.10 (-0.31,0.10) 

ROS16-51 A15-711 0.14 (-0.06,0.36) 

ROS16-53 A15-021 0.04 (-0.15,0.24) 
-0.45 (-0.65, -0.25) 

ROS16-14 A15-021 0.04 (-0.16,0.25) 

ROS16-16 A15-515 -0.20 (-0.43,0.00) -0.47 (-0.67, -0.28) 
a Highest density interval 
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Table 2.2 Entry information experimental maternal half-sibs evaluated in rainout shelter 

trials at Freehold, NJ. 

Maternal 

population 

Year-

Location 

Date of 

Data 

Collection 

Days of 

Drought 

Generation Number of 

clones 

A15-021 2019-ROS1 2019-08-07 63 Parental 40 

A15-021 2019-ROS2 2019-07-17 42 Parental 40 

A15-311 2017-ROS1 2017-08-01 62 Parental 40 

A15-311 2019-ROS1 2019-08-07 63 Parental 22 

A15-311 2019-ROS2 2019-07-17 42 Parental 22 

A15-316 2017-ROS1 2017-08-01 62 Parental 40 

A15-316 2019-ROS1 2019-08-07 63 Parental 22 

A15-316 2019-ROS2 2019-07-17 42 Parental 22 

A15-341 2017-ROS1 2017-08-01 62 Parental 40 
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A15-341 2019-ROS1 2019-08-07 63 Parental 22 

A15-341 2019-ROS2 2019-07-17 42 Parental 22 

A15-436 2017-ROS1 2017-08-01 62 Parental 40 

A15-436 2019-ROS1 2019-08-07 63 Parental 22 

A15-436 2019-ROS2 2019-07-17 42 Parental 22 

A15-451 2017-ROS1 2017-08-01 62 Parental 40 

A15-451 2019-ROS1 2019-08-07 63 Parental 22 

A15-451 2019-ROS2 2019-07-17 42 Parental 22 

A15-463 2017-ROS1 2017-08-01 62 Parental 40 

A15-463 2019-ROS1 2019-08-07 63 Parental 20 

A15-463 2019-ROS2 2019-07-17 42 Parental 20 

A15-489 2017-ROS1 2017-08-01 62 Parental 20 

A15-489 2019-ROS1 2019-08-07 63 Parental 10 

A15-489 2019-ROS2 2019-07-17 42 Parental 10 

A15-505 2017-ROS1 2017-08-01 62 Parental 20 

A15-505 2019-ROS1 2019-08-07 63 Parental 10 

A15-505 2019-ROS2 2019-07-17 42 Parental 10 

A15-509 2017-ROS1 2017-08-01 62 Parental 20 

A15-509 2019-ROS1 2019-08-07 63 Parental 10 

A15-509 2019-ROS2 2019-07-17 42 Parental 10 

A15-511 2017-ROS1 2017-08-01 62 Parental 40 

A15-511 2019-ROS1 2019-08-07 63 Parental 20 

A15-511 2019-ROS2 2019-07-17 42 Parental 20 

A15-513 2017-ROS1 2017-08-01 62 Parental 20 

A15-513 2019-ROS1 2019-08-07 63 Parental 10 

A15-513 2019-ROS2 2019-07-17 42 Parental 10 

A15-515 2017-ROS1 2017-08-01 62 Parental 40 

A15-515 2019-ROS1 2019-08-07 63 Parental 20 

A15-515 2019-ROS2 2019-07-17 42 Parental 20 

A15-668 2017-ROS1 2017-08-01 62 Parental 40 

A15-668 2019-ROS1 2019-08-07 63 Parental 20 

A15-668 2019-ROS2 2019-07-17 42 Parental 20 

A15-675 2017-ROS1 2017-08-01 62 Parental 20 

A15-675 2019-ROS1 2019-08-07 63 Parental 10 

A15-675 2019-ROS2 2019-07-17 42 Parental 10 

A15-677 2017-ROS1 2017-08-01 62 Parental 20 
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A15-677 2019-ROS1 2019-08-07 63 Parental 10 

A15-677 2019-ROS2 2019-07-17 42 Parental 10 

A15-682 2017-ROS1 2017-08-01 62 Parental 40 

A15-682 2019-ROS1 2019-08-07 63 Parental 20 

A15-682 2019-ROS2 2019-07-17 42 Parental 20 

A15-708 2017-ROS1 2017-08-01 62 Parental 40 

A15-708 2019-ROS1 2019-08-07 63 Parental 20 

A15-708 2019-ROS2 2019-07-17 42 Parental 20 

A15-711 2017-ROS1 2017-08-01 62 Parental 40 

A15-711 2019-ROS1 2019-08-07 63 Parental 20 

A15-711 2019-ROS2 2019-07-17 42 Parental 20 

A15-725 2017-ROS1 2017-08-01 62 Parental 20 

A15-725 2019-ROS1 2019-08-07 63 Parental 10 

A15-725 2019-ROS2 2019-07-17 42 Parental 10 

ROS16-02 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-02 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-03 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-03 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-04 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-04 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-08 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-08 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-10 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-10 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-13 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-13 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-14 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-14 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-16 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-16 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-20 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-20 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-21 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-21 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-26 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-26 2019-ROS2 2019-07-17 42 Progeny 10 
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ROS16-30 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-30 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-32 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-32 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-34 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-34 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-36 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-36 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-37 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-37 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-39 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-39 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-40 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-40 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-45 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-45 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-46 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-46 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-48 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-48 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-50 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-50 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-51 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-51 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-53 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-53 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-54 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-54 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-55 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-55 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-56 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-56 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-68 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-68 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-69 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-69 2019-ROS2 2019-07-17 42 Progeny 10 
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ROS16-72 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-72 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-78 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-78 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-80 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-80 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-85 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-85 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-86 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-86 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-89 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-89 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-91 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-91 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-92 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-92 2019-ROS2 2019-07-17 42 Progeny 10 

ROS16-94 2019-ROS1 2019-08-10 66 Progeny 10 

ROS16-94 2019-ROS2 2019-07-17 42 Progeny 10 
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Figure 2.1 Standard deviation of tested populations in the rainout shelter trials. 
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Note:  

𝜎𝑢
2 : variance of maternal effect 

𝜎𝐴
2 : additive genetic variance 

𝜎𝑒
2 : unexplained residual variance  

𝜎𝛽
2 : variance of year effect  

Figure 2.2 Boxplot for posterior estimates of variance components from parental and 

progeny generation of tall fescue maternal half-sibs evaluated in rainout shelter trials in 

the summer of 2017 and 2019 at Freehold, NJ. 
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Figure 2.3 Population distributions of parental and progeny generation of tall fescue 

maternal half-sibs evaluated in rainout shelter trials in the summer of 2019 at Freehold, 

NJ. 
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Note: Plots with positive mean maternal effects were depicted in red, while those with 

negative mean maternal effects in green.  

Figure 2.4 Boxplot for posterior estimates of maternal effects of tall fescue parental 

generation evaluated in rainout shelter trials in the summer of 2017 and 2019 at Freehold, 

NJ 
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Note: Clones with positive mean maternal effects were depicted in red, while those with 

negative mean maternal effects in green.   

Figure 2.5 Boxplot for posterior estimates of maternal effects of tall fescue progeny 

generation evaluated in rainout shelter trials in the summer of 2019 at Freehold, NJ. 
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Figure 2.6 Correlation of maternal effects estimated from parental and progeny 

generation of tall fescue maternal half-sibs evaluated in rainout shelter trials in the 

summer of 2017 and 2019 at Freehold, NJ. 
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3. ANALYSIS AND OPTIMIZATION OF STRATIFIED MASS SELECTION 

METHOD IN RAINOUT SHELTER SELECTION OF TALL FESCUE  

Abstract 

The choice of selection method has significant implications for selection gain in a 

tall fescue breeding program.  In this study, 96 selected tall fescue genotypes were 

evaluated in a series of outdoor rain-out shelter trials carried out in the summer of 2017, 

2018, and 2019 using a ten-block stratified mass selection design. Data on the green 

persistence under drought was fitted using mixed linear models under the Bayesian 

framework for the partition of total phenotypic variance and prediction of breeding value. 

The study first estimated the heritability of green persistence of tall fescue under drought. 

The mean heritability estimation was 0.07. Given this heritability estimation, the 

theoretical prediction accuracy for parental selection, family selection, stratified mass 

selection, and the mass selection was calculated. The parental selection was found to 

have the highest mean prediction accuracy, surpassing the prediction accuracy of 

stratified mass selection, family selection, and mass selection. Extra attention was paid to 

stratified mass selection. Under the stratified mass selection method, our work 

demonstrated the application of different variations of best linear unbiased prediction 

methods (BLUP, A-BLUP, and G-BLUP) in the breeding tall fescue, and illustrated how 

prediction accuracy could be further improved by increasing the number of blocks or/and 

the implementation of A-BLUP and G-BLUP.   

Keywords: BLUP, ABLUP, GBLUP, PBV, heritability, prediction accuracy.  
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3.1. Introduction 

Global climate change presents a significant challenge for turfgrass research. The 

predicted rise in global temperature is expected to intensify both the frequency and 

severity of drought (Jacob et al., 2014; Min et al., 2011). Facing this challenge, the 

development of cool-season turfgrass cultivars that can thrive under drought stress 

remains one of the most important research objectives. Tall fescue is a predominant cool-

season perennial grass in the United States. Previous studies have shown that tall fescue 

responds to drought stress with various mechanisms, including escape, avoidance, and 

tolerance (Huang & Gao, 1999; Pirnajmedin et al., 2015). Drought escape refers to the 

rapid phenological development of plants to complete life cycle, followed by dormancy 

during severe drought stress (Wang et al., 2008), while the latter two mechanisms serve 

to improve water uptake, minimize water loss and avoid dormancy (Pirnajmedin et al., 

2015). Although escaping drought stress by dormancy may aid in the long-term survival 

of tall fescue, most turfgrass managers prefer to maintain a dense green surface for 

aesthetics, playability, and safety (Cross et al., 2013; Karcher et al., 2008). 

Recent years have seen increasing applications of rainout shelter (ROS) in the 

selection and evaluation of turfgrass and forage cultivars (Hatier et al.,2014; Lootens et 

al., 2016; Schwartz et al., 2018; Steinke et al., 2010; Zhou et al., 2009). ROS allows 

precise control and alteration of water availability on outdoor field research plots, 

creating uniform selection environments (Fay et al., 2000). There are many selection 

methods in the breeding of tall fescue, among which mass selection, parental selection, 

family selection, and stratified mass selection are most commonly used. Given the low 

heritability of green leaf persistence under drought, parental selection is preferred over 
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mass selection and family selection concerning prediction accuracy for breeding values. 

However, high prediction accuracy in the family selection and parental selection comes at 

the cost of additional effort on production and evaluation of progenies.  Stratified mass 

selection provides the opportunity to maintain a sensible prediction accuracy by 

increasing sample size and control of environmental variance while shortening the 

breeding cycle at the same time (Gardner, 1961; Pedersen & Sleper, 1993; Walsh & 

Lynch, 2018). The appropriate sample size for a study is a fundamental question in 

quantitative studies. In turfgrass breeding, the sample size for an experiment can be 

increased directly by asexual propagation of the same genotype in multi-environmental 

trials. The genotypic values of evaluated clones can then be estimated using the best 

linear unbiased prediction (BLUP) method (Henderson, 1950).  The correlation of related 

genotypes can be taken into account to increase the sample size further. The presumption 

is that the correlation between two phenotypic values depends on the relatedness of two 

individuals and the heritability of trait of interest (Raffa & Thompson, 2016). The 

relatedness among individuals can be described by relationship matrices. Traditionally, 

the relationship matrices are inferred from the pedigree structure, i.e., A matrix, and the 

genetic merit of evaluated genotypes can be subsequently estimated using the best linear 

unbiased prediction method based on pedigree, i.e., A- BLUP (Falconer & Mackay 1996; 

Henderson, 1975). However, the open-pollination nature of most cool-season turfgrasses 

and polycross practice in cultivar development inevitably lead to incomplete pedigree, 

adding obstacles to the implementation of A-BLUP. More recently, marker-based 

methods have been used to construct genomic relationship matrices for estimation of 

breeding values, i.e., G matrix and G-BLUP (Gianola, Cecchinato, Naya, & Schön, 
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2018). The idea of genomic prediction has been proposed for the breeding of cool-season 

perennial grass by Talukder and Saha (2017), but few applications have been reported. 

Potential impediments to the widespread use of genomic prediction include marker 

calling in polyploidy species, calculation of unbiased relatedness matrix using low 

coverage sequencing, and non-Mendelian inheritance of genomic markers (Dodds et al., 

2015). 

In this project, 96 selected tall fescue genotypes were evaluated during the 

summer of 2017, 2018, and 2019, in a stratified mass selection design with ten blocks. 

Green persistence of each tall fescue genotype was documented using normalized 

difference vegetation index (NDVI). Relationship matrices were constructed based on 

maternal pedigree and single-nucleotide polymorphism markers (SNPs) from de-novo 

assembly of next-generation sequencing data. Collected NDVI data in combination with 

different relationship matrices were fitted with Bayesian mixed linear models for genetic 

analysis. The objectives of this project is 1) to estimate the heritability of green 

persistence of leaf tissue measured by NDVI in tall fescue, 2) to determine and compare 

theoretical prediction accuracy when using different selection methods, 3)to predict 

breeding values of evaluated genotypes using BLUP, A-BLUP and G-BLUP 

implemented under Bayesian framework, 4) and to compare the prediction accuracy of 

BLUP, A-BLUP, and G-BLUP. 
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3.2. Material and methods 

3.2.1. Experiment design and data collection 

The experiments were conducted at the Rutgers Plant Biology Research and 

Extension Farm during the summer of 2017, 2018 and 2019 in two outdoor rain-out 

shelters at Freehold, NJ. ROS1 is an automated double-layered canopy signaled to cover 

the trial area from precipitations by air moisture sensors, and ROS2 is a stationary 

greenhouse that protects the trial area for the entire duration of drought treatment. The 

soil type in both shelters is categorized as sandy loam, with a slight acidity. Mechanical 

analysis indicates soil from ROS1 consists of 56% sand, 26% silt, and 18% clay, while 

that from ROS2 consists of 70% sand, 15% silt, and 16% clay. A total number of 96 tall 

fescue genotypes were evaluated under drought stress in stratified mass selection design 

with ten blocks. All blocks were planted in the fall of the prior year and organized as 

spaced-plant with 30.5cm spacing between each plant. After establishment, plants were 

mowed weekly at 7.62cm during growing seasons. NDVI data were collected from each 

plant with a FieldScout TCM 500 NDVI Turf Color Meter (Item#:2975NDVI, Spectrum 

Technologies, 3600 Thayer Court, Aurora, IL) every week from activation to termination 

of drought treatment. Segregation of all plants evaluated in the same trial was monitored 

using the standard deviation of collected NDVI data. Once the standard deviation of the 

evaluated population reached the same level as in the 2017-ROS1 trial ( 

Figure 2.1 Standard deviation of tested populations in the rainout shelter trials.), 

drought stress was terminated, and the last datasets collected before termination of trials 

were scaled, analyzed and presented in the following section. 
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3.2.2.  Construction and Sequencing of ddRADseq libraries 

Young leaf tissue of all 96 genotypes was collected and ground under liquid 

nitrogen. Genomic DNA (gDNA) was extracted following the manufacture’s 

recommendation for the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany). 

Construction of ddRADseq libraries followed the method outlined by Poland and Rife 

(2012). Briefly, gDNA was double digested with the common-cutting MspI (New 

England Biolabs, Ipwich, MA, USA) and the rare-cutting PstI-HF (New England 

Biolabs, Ipwich, MA, USA) restriction enzymes. After ligation with MspI adapter and 

double-stranded barcode adapter, restricted fragments were purified with the AMPure XP 

PCR purification kit (Agencourt Bioscience, Beverly, MA, USA) as instructed by the 

manufacturer. Purified samples were amplified, normalized, and pooled into two 48-plex 

sequencing samples. The resulting sequencing samples were submitted to GeneWiz 

(GeneWiz, South Plainfield, NJ, USA) for sequencing via the Illumina HiSeq 2500 

sequencing platform (Illumina, San Diego, CA, USA). 

3.2.3. SNP calling and construction of relationship matrices from SNPs 

The identification of SNP markers was performed using the Stacks v.1.47 pipeline 

(Catchen, Amores, Hohenlohe, Cresko, & Postlethwait, 2011). A total number of 37,142 

SNPs were identified. After imposing a linkage disequilibrium threshold of 0.2 and a 

minor allele frequency of 0.01, the number of SNPs was pruned to 970. Two SNP-based 

relationship matrices (unfiltered and filtered) were thereby calculated using the maximum 

likelihood method in R/Bioconductor Package ‘SNPRelate’ (Zheng et al, 2012). 
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3.2.4. Construction of relationship matrix from maternal pedigree 

An incomplete pedigree of selected 96 tall fescue clones was available in the 

breeding program. Most of the sire information was missing, due to the polycross 

practice in cultivar development. Pedigree chart (Figure 3.1 Pedigree chart of 96 tall 

fescue clones evaluated under drought stress in summer of 2017, 2018 and 2019 at 

Freehold, NJ.) and A matrix were constructed using R package ‘optiSel’ (Wellmann, 

2017), assuming the missing sires are random, independent genotypes that are not related 

to any other genotypes in the pedigree chart. 

3.2.5. Statistical models and model implementation 

Let 𝑦𝑖𝑗 denotes the scaled NDVI of the 𝑗th plant from block 𝑖(𝑖 = 1,2, … , 𝑛; 𝑗 =

1,2, … , 𝑛𝑗). 𝑦𝑖𝑗 can be expressed as the sum of an environmental value consisting of a 

block effect, 𝛽𝑖, its genotypic value, 𝑢𝑖𝑗, and the residual environmental value, 𝑒𝑖𝑗, that is  

𝑦𝑖𝑗 = 𝛽𝑖 + 𝑢𝑖𝑗 + 𝑒𝑖𝑗              

In matrix notation,  

𝐲 = 𝐗𝛃 + 𝐙𝐮 + 𝐞                                                Equation 3.1 

where 𝐗 and 𝐙 are the corresponding design matrix for block effect and genotype effect. 

Under the Bayesian framework, all effects were assumed to follow independent normal 

distributions. Specifically,  
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𝛃 ∼ MVN(𝟎, 𝐈𝜎𝛽
2)

𝐮 ∼ MVN(𝟎, 𝐊𝜎𝑢
2)                                                 

𝐞 ∼ MVN(𝟎, 𝐈𝜎𝑒
2)

Equation 3.2 

where 𝐈 is the identity matrix, 𝐊 is the causal relationship matrix; 𝜎𝛽
2, 𝜎𝑢

2, and 𝜎𝑒
2 are the 

variance components ascribed to block effect, genotype effect, and residual effect, 

respectively. The model also assumed that all variance components followed an inverse-

gamma distribution with shape and scale parameter values of 0.001. Therefore, the total 

phenotypic variance, 𝜎𝑃
2 , can be expressed by the following equation. 

𝜎𝑃
2 = 𝜎𝛽

2 + 𝜎𝑢
2 + 𝜎𝑒

2 

The heritability is 

ℎ2 =
𝜎𝑢

2

𝜎𝑃
2 =

𝜎𝑢
2

𝜎𝛽
2+𝜎𝑢

2+𝜎𝑒
2                                               Equation 3.3 

Four different relationship matrices were adopted to approximate the causal relationship 

matrix, 𝐊, in the analysis of this study. The first was I, which assumes all the clones are 

unrelated, leading to the BLUP of genotypic values. The second was A matrix inferred 

from maternal pedigree, which assumes random, unrelated paternal clones in matrix 

construction, providing the A-BLUP of genotypic values. The last two were G matrices 

constructed from unfiltered and filtered SNP markers respectively, providing two 

different estimations for G-BLUP of genotypic values.  

The resampling method was applied to simulate the process of data collection 

given different numbers of blocks, 𝑛 . Specifically, for 𝑛 = 1,2,3, … ,10, a sample dataset 

was created by randomly selecting 𝑛 blocks of data from the total ten blocks of collected 

data. The sample dataset was then fitted with the models given in (1) in combination with 
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four genomic relationship matrices for estimation of predicted breeding value (PBV), 

heritability, and the prediction accuracy.  This process was repeated 20 times to access 

the variance of estimated values.   

Theoretical prediction accuracy for PBV, 𝜌, in stratified mass selection, was 

approximated by the correlation between within-block deviation and the true breeding 

value (TBV, Walsh & Lynch, 2018),  

𝜌 = 𝜌(𝑦𝑖𝑗 − 𝑦𝑖 , 𝐴𝑖𝑗) ≈ (1 −
1

𝑛
)√

𝜎𝑢
2

𝜎𝑢
2+𝜎𝑒

2                          Equation 3.4 

where 𝑦𝑖 is the mean of block 𝑖, 𝐴𝑖𝑗 is the TBV of 𝑗th clone from block 𝑖. For comparison 

with mass selection, family selection and parental selection, the corresponding theoretical 

prediction accuracy for PBV was quantified based on posterior samples of ℎ2 estimated 

using the identity matrix and all ten blocks of collected data under a postulated family 

size of 20 maternal half-sibs following the experimental design in the previous chapter. In 

mass selection, 𝜌 is the square root of ℎ2 by definition. In parental selection and family 

selection, 𝜌  is a function of family size, 𝑚 , and ℎ2 . Specifically, in parental selection 

with half-sibs, 

 𝜌  = √
𝑚ℎ2

4+(𝑚−1)ℎ2                                               Equation 3.5  

as described by Walsh and Lynch (2018). In family selection with half-sib, 𝜌 takes the 

correlation between half-sibs into account, 

𝜌 =
𝑚+3

2
√

ℎ2

4𝑚+𝑚(𝑚−1)ℎ2                                          Equation 3.6 

as described by Lush (1947).   

For comparison of analytical results using different relationship matrices, realized 

prediction accuracy was accessed using Pearson’s correlation coefficient, which measures 

the linear correlation between PBVs and estimations of TBVs. Estimations of TBVs from 

38 out of 96 selected genotypes were provided in the previous chapter. 
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Posterior distributions of parameters in the model were sampled in R (R Core 

Team, 2019) environment with package ‘R2jags’ (Su & Yajima, 2015). In each model, a 

total number of 5 Markov chain Monte Carlo chains each with 20,000 iterations were 

implemented, with the first 10,000 iterations were discarded. The rest iterations were 

thinned by taking every 5th to reduce sample autocorrelation. The convergence of chains 

was visually confirmed. Visualization of analysis results was achieved using package 

‘tidyverse’ (Wickham et al., 2019).  

3.3. Results 

3.3.1. Genetic parameters and predicted breeding values (PBVs) 

The 96 clones evaluated in this study traced back to 8 founders (Figure 3.1 

Pedigree chart of 96 tall fescue clones evaluated under drought stress in summer of 

2017, 2018 and 2019 at Freehold, NJ.). For demonstration and comparison purposes, I 

together with A matrix, unfiltered G matrix, and filtered G matrix was visualized in 

Figure 3.2 Visualization of different relationship matrices for 96 selected tall fescue 

clones evaluated under drought stress in summer of 2017, 2018 and 2019 at Freehold, 

NJ.. The A matrix and filtered G matrix showed a similar pattern, which can also be 

vaguely recognized in the filtered G matrix.  Compared with I, more information was 

filled in the off-diagonal areas in the other relationship matrices, indicating the 

correlations of random effect 𝐮. Similar relationship matrices lead to close results in the 

estimation of variance components. The largest variance component with all four 

matrices is environmental variance, accounting for about 63% of the total phenotypical 

variance on average. The residual variance is the second-largest component, constituting 
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43% of the total phenotypical variance. The smallest variance component is the variance 

of the genotypic effect, leading to low estimates of heritability (Table 3.1 Summary 

statistics for variance components and heritability estimated from NDVI data collected 

from 96 selected tall fescue genotypes evaluated in rainout shelter trials in summer of 

2017, 2018, and 2019 at Freehold, NJ). The mean posterior heritability estimates using I, 

A matrix, unfiltered G matrix, and filtered G from ten blocks of tall fescue clones were 

0.072, 0.074, 0.069 and 0.023 respectively. PBVs estimated using four matrices were 

shown in Figure 3.3 Posterior mean and 95% highest density interval for predicted 

breeding values of 96 selected tall fescue genotypes evaluated under drought stress in 

the summer of 2017, 2018, and 2019 at Freehold, NJ..  Genotypes with high PBVs 

included ROS16-079, ROS16-022, ROS16-002, ROS16-047, ROS-092, etc., while those 

with low PBVs were ROS16-093, ROS16-095, ROS16-098, ROS-090, ROS-096, etc.  

3.3.2. Theoretical and realized prediction accuracy 

The boxplot of theoretical prediction accuracy of stratified mass selection 

estimated from random subsamples of collected data in combination with different 

relationship matrices was presented in Figure 3.4 Boxplot for theoretical prediction 

accuracy from random subsamples of the 10 blocks of 96 selected tall fescue clones 

evaluated under drought stress in the summer of 2017, 2018 and 2019 at Freehold, NJ., 

overlaid by the mean and 95% highest density interval(HDI) of theoretical prediction 

accuracy in the mass selection, parental selection and family selection given previously 

defined settings.  Parental selection yielded the highest mean theoretical prediction 

accuracy, with a mean of 0.509, and a 95% HDI of (0.369, 0.626), followed by family 
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selection, with a mean theoretical prediction accuracy of 0.293 and a 95% HDI of (0.212, 

0.360). The mass selection was the lowest in mean theoretical prediction accuracy, with a 

value of 0.265 and a 95% HDI of (0.177, 0.354).   

With the increase of the number of blocks, the variance of theoretical prediction 

accuracy in stratified mass selection estimated using all four relationship matrices 

decreased while the mean increased. The mean theoretical prediction accuracy in the 

stratified mass selection, in general, lay between that of parental selection and family 

selection, except for the prediction accuracy estimated using unfiltered G matrix.  The 

highest mean theoretical prediction accuracy with the smallest variance was obtained 

when all ten blocks of data taken into account. The mean theoretical prediction accuracy 

and corresponding 95% HDI estimated using I, A matrix, filtered G matrix, and 

unfiltered G matrix was 0.392 (0.233, 0.509), 0.399(0.247, 0.519), 0.230(0.133, 0.314), 

and 0.384(0.232, 0.511) respectively.   

 To further investigate the differences in analytical results when using BLUP, A-

BLUP and G-BLUP under a stratified mass selection design, realized prediction accuracy 

for PBVs was estimated and visualized in Figure 3.5 Estimates for realized prediction 

accuracy and 95% highest density interval from random subsamples of the 10 blocks of 

96 selected tall fescue clones evaluated under drought stress in the summer of 2017, 

2018 and 2019 at Freehold, NJ.. Given different numbers of blocks, the mean realized 

prediction accuracy for PBVs using all four relationship matrices fell within the range of 

0.12 to 0.33, consistent with the theoretical prediction accuracy estimated using filtered 

G matrix. Similarly, realized prediction accuracy increased with the numbers of blocks 

and seemed to plateau after seven blocks.  The adoption of maternal pedigree and 
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genomic relationship matrices consistently increased realized prediction accuracy. 

Specifically, in seven out of ten simulations, realized prediction accuracy estimated using 

the filtered G matrix yielded the highest value, compared with the values estimated using 

the other three matrices. Realized prediction accuracy estimated using A matrix and 

unfiltered G relationship matrix was, for the most part, identical, and higher than that 

estimated from the identity matrix.  

3.4. Discussion 

In Chapter 2, variance components and heritability of green persistence of tall 

fescue in rain-out shelter trials with half-sib designs were estimated using the genetic 

covariance between half-sibs. The model assumed that scaled phenotypic observations, 𝐲, 

follows a multivariate normal distribution: 

𝐲 ∼ MVN(𝟎, 𝐈𝜎𝛽
2 + 𝐊𝜎𝑢

2 + 𝐈𝜎𝑒
2)                                          Equation 3.7 

The heritability, fraction of the variance of 𝐲 due to the genetic component, can then be 

estimated using ℎ2 =
𝜎𝑢

2

𝜎𝑃
2 =

𝜎𝑢
2

𝜎𝛽
2+𝜎𝑢

2+𝜎𝑒
2                                               Equation 3.3.  However, 

the causal genetic variants were unknown in practice. Four different approximations of 

𝐊 were chosen in this study.  The first approximation was I, which assumed all 

evaluated genotypes were mutually independent without any correlation imposed by 

relatedness. This model captured not only the additive genetic effect but also epistasis 

and dominance effect, providing an estimation of broad-sense heritability and BLUPs 

for 𝐮. The second approximation utilizes the A matrix, which assumes constant and 

categorical covariance between related individuals. For example, full-sibs are expected 



49 

 

 

 

to share 50% of alleles that are identical-by-descent (IBD), while half-sibs are expected 

to share 25% of alleles that are IBD (Falconer & Mackay, 1996). First proposed by 

Henderson (1975), the A-BLUP method has been widely used to estimate the genetic 

merit of individuals in both animal and plant breeding programs. However, the 

relationship matrix derived from pedigree estimates the expected proportion of the 

genome that is IBD, ignoring the random sampling of the two possible alleles from each 

parent at each locus during meiosis, i.e., the Mendelian sampling term(Avendaño, 

Woolliams, & Villanueva, 2005; Zapata-Valenzuela, Whetten, Neale, McKeand, & Isik, 

2013). Given this reason, two G matrices were also adopted to approximate K. 

Compared with the A matrix, G matrices indicate the realized and more accurate 

estimates of genetic covariances among relatives, constituting the core concept of G-

BLUP. With the previous examples, the genomic covariance of the same full sibs can 

vary around a mean of 0.5, while that of the same half-sibs can vary around a mean of 

0.25. As the number of markers used to construct the relationship matrix increases, the 

G matrix is expected to converge to the A matrix.  Indeed, a similar pattern was 

observed in the A matrix and the unfiltered G matrix in Figure 3.2 Visualization of 

different relationship matrices for 96 selected tall fescue clones evaluated under 

drought stress in summer of 2017, 2018 and 2019 at Freehold, NJ.. Marker filtering is 

an essential step to reduce the number of collinear or false-positive SNPs and remains to 

be an active field of research.  Typically applied filters check for linkage disequilibrium 

(LD), allele frequency, minimum and maximum read depth. (Altman et al. 2012).  The 

mean heritability estimated from I, A matrix, and unfiltered G matrix was around 0.070, 

close to the estimation in the previous chapter.  However, the mean heritability 



50 

 

 

 

estimated using the filtered G matrix was only 0.023. This discrepancy has been termed 

missing heritability (Zuk, Hechter, Sunyaev, & Lander, 2012), indicating that additional 

causal variants remain to be discovered.  The low heritability subsequently leads to low 

theoretical prediction accuracy when using the filtered G matrix to estimate PBVs 

(Figure 3.4 Boxplot for theoretical prediction accuracy from random subsamples of the 

10 blocks of 96 selected tall fescue clones evaluated under drought stress in the 

summer of 2017, 2018 and 2019 at Freehold, NJ.). However, in terms of the realized 

prediction accuracy obtained (Figure 3.5 Estimates for realized prediction accuracy and 

95% highest density interval from random subsamples of the 10 blocks of 96 selected 

tall fescue clones evaluated under drought stress in the summer of 2017, 2018 and 

2019 at Freehold, NJ.), it was clear that both G-BLUP and A-BLUP increased 

prediction accuracy compared with BLUP. It is also worth noting that the A-BLUP 

method was implemented with the maternal pedigree. When genomic data is not 

available, breeders can improve the prediction accuracy of BLUP by incorporating 

partial pedigree information. 

 To determine the prediction accuracy of stratified mass selection relative to mass 

selection, parental selection, and family selection, we also calculated the theoretical 

prediction accuracy based on estimated heritability values in the rain-out shelter selection 

process.  Stratified mass selection with more than five blocks yield mean prediction 

accuracy higher than that in family selection with 20 maternal half-sibs but still lower the 

prediction accuracy than paternal selection.  However, stratified mass selection may save 

breeders time and effort in progeny production and evaluation, which could potentially be 

more efficient in the long run. The mean theoretical prediction accuracy in stratified mass 
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selection showed relatively considerable variation when the number of blocks is within 

the range of one to four and started to plateau after five blocks. When studying the 

realized prediction accuracy, we find it did not reach a plateaued level until seven blocks.  

Hence, taking both prediction accuracy and parsimony into consideration, a seven-block 

stratified mass selection design combined with G-BLUP or A-BLUP method in selection 

is recommended in the rain-out shelter selection of tall fescue.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1 Summary statistics for variance components and heritability estimated from 

NDVI data collected from 96 selected tall fescue genotypes evaluated in rainout shelter 

trials in summer of 2017, 2018, and 2019 at Freehold, NJ. 

Parameter  Matrix Mean Median Mode 95%HDIa 

Heritability (𝒉𝟐) Identity 0.072 0.071 0.074 (0.031,0.125) 

Pedigree-based 0.074 0.071 0.062 (0.034,0.130) 

SNP-based (filtered) 0.023 0.022 0.020 (0.010,0.041) 

SNP-based (unfiltered) 0.069 0.067 0.068 (0.031,0.124) 
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Variance of block 

effect (𝝈𝜷
𝟐) 

Identity 0.075 0.073 0.069 (0.045,0.115) 

Pedigree-based 0.078 0.075 0.070 (0.048,0.117) 

SNP-based (filtered) 0.023 0.023 0.022 (0.014,0.036) 

SNP-based (unfiltered) 0.074 0.072 0.068 (0.042,0.116) 

Variance of 

genotype effect 

(𝝈𝒖
𝟐) 

Identity 0.623 0.511 0.440 (0.202,1.720) 

Pedigree-based 0.632 0.543 0.485 (0.217,1.532) 

SNP-based (filtered) 0.634 0.551 0.437 (0.220,1.496) 

SNP-based (unfiltered) 0.641 0.554 0.432 (0.206,1.541) 

Variance of 

residual effect 

(𝝈𝒆
𝟐) 

Identity 0.428 0.427 0.423 (0.387,0.472) 

Pedigree-based 0.427 0.426 0.427 (0.389,0.470) 

SNP-based (filtered) 0.428 0.428 0.426 (0.389,0.470) 

SNP-based (unfiltered) 0.430 0.430 0.431 (0.389,0.472) 

Note: a Highest density interval 
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Figure 3.1 Pedigree chart of 96 tall fescue clones evaluated under drought stress in summer 

of 2017, 2018 and 2019 at Freehold, NJ. 
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Figure 3.2 Visualization of different relationship matrices for 96 selected tall fescue 

clones evaluated under drought stress in summer of 2017, 2018 and 2019 at Freehold, NJ. 
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Figure 3.3 Posterior mean and 95% highest density interval for predicted breeding values 

of 96 selected tall fescue genotypes evaluated under drought stress in the summer of 

2017, 2018, and 2019 at Freehold, NJ. 
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Note: a Highest density interval 

Figure 3.4 Boxplot for theoretical prediction accuracy from random subsamples of the 10 

blocks of 96 selected tall fescue clones evaluated under drought stress in the summer of 

2017, 2018 and 2019 at Freehold, NJ. 
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Note: EBV, estimated breeding value.  

Figure 3.5 Estimates for realized prediction accuracy and 95% highest density interval 

from random subsamples of the 10 blocks of 96 selected tall fescue clones evaluated 

under drought stress in the summer of 2017, 2018 and 2019 at Freehold, NJ. 
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4. EVALUATION AND GENETIC ANALYSIS OF RED THREAD [Laetisaria 

fuciformis (Berk.) Burds. ]DISEASE INCIDENCE IN TALL FESCUE (Festuca 

arundinacea Schreb.) 

Abstract 

Red thread, caused by [Laetisaria fuciformis (Berk.) Burds.], is a common disease 

on many cool-season and some warm-season grasses throughout the world. Low 

reproducibility of experiments under both natural and artificial infection and inadequate 

understanding of the underlying genetics have limited the selection of turfgrass for 

resistance to red thread. This study investigated red thread disease incidence of tall fescue 

(Festuca arundinacea Schreb.) populations in two locations over multiple years, 

estimated disease incidence in a broad collection of tall fescue populations, and 

calculated heritability of disease incidence with two different experimental designs. 

Collections from Albania and Romania, as well as those that were recently backcrossed 

to adapted germplasm, were more susceptible to red thread compared with the rest of the 

populations, highlighting the importance of selection efforts against red thread disease in 

tall fescue. Narrow-sense heritability (0.52,0.74 and 0.48) estimated from different 

experimental designs were all in the range of moderate to high, indicating a large 

proportion of additive genetic variance in red thread incidence among tall fescue 

populations. Hence, disease incidence of red thread in tall fescue can be effectively 

reduced through selection and breeding. This is also the first report documenting the 

efficacy of family selection in reducing red thread incidence in tall fescue.  

Keywords: half-sib populations; diallelic cross; variance component; heritability 

estimation; red thread; disease incidence; logistic regression 
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4.1. Introduction 

Red thread, caused by Laetisaria fuciformis (Berk.) Burds., is a common disease 

on many cool-season and some warm-season grasses throughout the world (Bonos, 

Wilson, Meyer, & Funk, 2005; Raikes, Lepp, & Canaway, 1996; Zhang et al., 2015). 

Symptoms of red thread disease on turf stands are circular or irregularly shaped patches 

ranging from 5 to 60cm, with the presence of red, thread-like sclerotia, hence the name. 

In addition to the “red thread” outgrowth, small cream or pink-colored mycelial mats and 

flocks of arthroconidia may be produced. The sclerotia can survive adverse 

environmental conditions and stay viable for up to two years (Smiley, Dernoeden, & 

Clarke, 2005). Once conditions permit, the sclerotia germinate and start a new cycle of 

infection. Sclerotia and arthroconidia can be disseminated by water, mowing equipment, 

or foot traffic to initiate secondary inoculation (Stalpers & Loerakker, 1982). Outbreaks 

of red thread disease usually occur during cloudy and rainy conditions in low 

maintenance turf stands such as residential lawns, parks, golf course rough areas, and low 

budget athletic fields. Damage may be more severe on infrequently moved areas, or when 

low temperature or fertility slows the growth of turfgrasses. Applications of nitrogen 

fertilizer not only encourage faster recovery but also reduce disease incidence (Smiley et 

al., 2005). Other control methods include higher light intensity or light penetration (if 

shaded), increased ventilation, clipping removal during major infection, and use of 

resistant cultivars (Raikes et al., 1996; Tani & Beard, 1997). Traditionally, red thread is 

most common in perennial ryegrass (Lolium perenne L.), especially when under fertilized 

(Qu et al., 2005). As the popularity of tall fescue (Festuca arundinacea Schreb.) rapidly 



60 

 

 

 

expanded in the United States from 39,500 acres in 1940 to 37.1 million acres in 2013, 

red thread epidemics in this species have increased (Rogers & Locke, 2013). Selection of 

turfgrass species for resistance to red thread has not progressed as much, compared to 

that against other major diseases of turfgrasses, such as dollar spot caused by Clarireedia 

jacksonii C. Salgado, L.A. Beirn, B.B. Clarke, & J.A. Crouch (Bonos, 2006),  or gray leaf 

spot caused by Pyricularia oryzae Cavara (Bonos, Kubik, Clarke, & Meyer, 2004; Han, 

Bonos, Clarke, Meyer, 2006). Additionally, genetic studies have not been conducted for 

red thread resistance in any turfgrass species; this is primarily due to the low 

reproducibility of experiments carried out under natural infection and variable success 

with artificial inoculations (Berestetski, Ehrig, & Kastirr 2002).  

One of the crucial tasks in studying disease resistance in selection experiments is 

to obtain reliable estimates of genetic parameters, such as genetic variances and their 

functions. Plant breeders have paid particular attention to additive genetic variance and 

its proportion in total phenotypic variance (i.e., narrow-sense heritability, denoted by ℎ2), 

as they determine the rate at which a trait of interest responds to selection. When genomic 

data are not available, researchers can estimate the genetic parameters from variance 

components given a specific mating design. The connection between variance 

components in a given mating design and targeted genetic parameters is the covariance of 

relatives (Zhu & Weir, 1996). Statistically, the covariance of relatives can be obtained 

from partitioning observed phenotypic variance; genetically, it can be interpreted in terms 

of genetic and environmental components. Hence, the estimators of genetic parameters 

can be derived. The study was initiated by investigating red thread disease incidence in a 

collection of tall fescue maternal half-sib populations and commercial synthetics during 
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two disease outbreaks in 2016 and 2017 induced by artificial inoculation. We then 

proceed to estimate disease incidence in different populations and the narrow-sense 

heritability of red thread incidence in tall fescue under maternal half-sib design. Based on 

estimated heritability and disease incidence, family selection was applied to identify 

resistant and susceptible genotypes. Diallelic crosses were subsequently conducted to 

evaluate the efficacy of family selection and to confirm the repeatability of estimated 

genetic parameters.     

4.2. Materials and Methods 

   The first part of the study was conducted at the Rutgers Turfgrass Research 

Facility at Horticultural Farm #2 in North Brunswick, NJ. A total of 4716 tall fescue 

clones were arbitrarily selected from 48 experimental maternal half-sib populations 

(Table 4.1) and 8 commercial synthetic populations (Table 4.2). Selected tall fescue 

clones were subsequently planted 30.5cm apart in a spaced-plant trial in October of 2013. 

All populations were replicated at least three times, with the fourth replication being 

incomplete (i.e., the fourth replication did not include all populations). Once matured, the 

trial was mowed weekly at 7.62cm during the growing season, maintained with 16-0-8 

granular N-P-K fertilizer at a nitrogen rate of 4.9 g · m−2 every year. In 2013, 24 isolates 

of L. fuciformis were collected from tall fescue plants exhibiting symptoms of red thread; 

12 from Horticultural Farm #2 in North Brunswick, NJ and 12 from the Adelphia Farm in 

Freehold, NJ. Inoculum was prepared by growing isolates of L. fuciformis on sterilized 

Kentucky bluegrass (Poa pratensis L.) seed following the method described by Bonos, 

Casler, & Meyer (2003). Inoculations were repeated five times, each at a rate of 9.7 

g · m−2 infested seed, until disease outbreaks were observed in the spring of 2016 and 
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2017. In the first three inoculation attempts, a composite of all 24 isolates were used for 

inoculation but with limited infections (less than 5% plants infected). In 2015, 24 strains 

of L. fuciformis were re-isolated from tall fescue clones at Horticultural Farm #2 that had 

been previously inoculated, and a fast-growing isolate (RTHF-C3) was selected for 

inoculum preparation. This led to successful inoculations in the fourth and fifth attempts 

(greater than 60% plant infected). Between disease outbreaks, all plants were fertilized to 

encourage complete recovery from the disease. Disease occurrence was recorded on 

individual clones when the proportion of diseased to non-diseased plants was the highest, 

using a binary scale, where 0 indicated a healthy clone, and 1 indicated a clone with red 

thread infection. 

To confirm the heritability estimated from the maternal half-sibs design and to 

further investigate the underlying genetics of red thread disease incidence in tall fescue, 

genetic parameters were estimated using a diallelic cross design. A resistant genotype 

was defined as the clone with the least amount of disease in a maternal half-sib 

population with a low disease incidence, and a susceptible genotype as the one with the 

most amount of disease in a maternal half-sib population with a high disease incidence. 

Based on this family selection criterion, three resistant genotypes (R1, R2, and R3) were 

selected from U41-37, TA3-38, and TA3-15, respectively, and three susceptible 

genotypes (S1, S2, and S3) were selected from TA1-64, TA1-15, and TA2-27. Controlled 

diallelic crosses between these genotypes were carried out in the spring of 2017. All 

genotypes were used as both male and female parents to develop full-sib progenies, with 

seeds harvested, dried, and threshed separately. Cleaned seeds were treated with 0.2% 

KNO3 to induce germination. Once germinated, seedlings were replicated and maintained 
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in seeding flats before transplanted to mowed space-plant field trials. In the fall of 2017, 

two replicated field trials were established at Horticultural Farm #2 in North Brunswick, 

NJ, and Adelphia Farm in Freehold, NJ. Both trials were arranged in a randomized 

complete block design with four replications. Each replication consisted of 12 progenies 

from each of the 30 cross combinations as well as six vegetative clones of the six selected 

parental genotypes used in the diallelic cross.  Similarly, established trials were mowed 

weekly at 7.62cm during the growing season, maintained at an annual nitrogen rate of 

4.9g · m−2.  Both trials were inoculated at a rate of 9.7 g · m−2 following the same 

method using RTHF-C3 on April 20th of 2018. Red thread symptoms appeared three 

weeks after inoculation, and binary disease occurrence data were collected.    

4.3. Statistical Model 

4.3.1. Estimation of Disease Incidence 

    Disease incidence of different populations, including maternal populations, 

commercial synthetics, and populations of replicated clones, were estimated using the 

Beta-Binomial model. For 𝑛 independent Bernoulli data point (𝑌 = 0 or 1) in a given 

population, the number of plants infected, 𝑦, follows a binomial distribution with 

parameter 𝜋 on [0,1]. We have 

𝑦|𝜋 ∼ Bin(𝑛, 𝜋) 

For comparison of different tall fescue populations, we first assume a beta distribution for 

𝜋 as the prior distribution, i.e. 

𝜋 ∼ beta(1,1) 
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Based on Bayes’ theorem, the posterior distribution for 𝜋 is a beta distribution as well, 

i.e. 

𝜋|𝑦 ∼ beta(𝑦 + 1, 𝑛 − 𝑦 + 1) 

Posterior mean and standard deviation for 𝜋 are, 

𝜇(𝜋|𝑦) =
𝑦 + 1

𝑛 + 2
 

𝑠(𝜋|𝑦) = √
(𝑦 + 1)(𝑛 − 𝑦 + 1)

(𝑛 + 2)2(𝑛 + 3)

 

4.3.2. Genetic Analysis 

 A logistic regression model was fitted to collected data for the estimation of 

genetic parameters. The following analysis focused on half-sib populations, excluding 

commercial synthetics and replicated clones. In general, for a binary vector 𝐘 = {𝑌𝑖}𝑖=1
𝑁 , 

let 𝛑 = {𝜋𝑖}𝑖=1
𝑁 denote the probability of red thread infection. The logit transformation of 

𝛑 can be expressed by the following model. 

logit𝛑 = 𝐗𝐛 + 𝐙𝐮 + 𝐞 

where 𝑁 is the total number of observations, 𝐛, 𝐮, and 𝐞 denote the effect of 

environmental component, genetic component, and unexplained residuals respectively, 𝐗 

and 𝐙 are the design matrices for the corresponding effects. Distributions for 𝐛, 𝐮 and 𝐞 

are assumed to be normal, 
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𝐛 ∼ MVN(𝟎, 𝐈𝜎𝑏
2)

𝐮 ∼ MVN(𝟎, 𝐈𝜎𝑢
2)

𝐞 ∼ MVN(𝟎, 𝐈𝜎𝑒
2)

 

in which 𝐈 is the identity matrix,  𝜎𝑏
2, 𝜎𝑢

2, and 𝜎𝑒
2 are the variance components ascribed to 

the environmental component, genetic component, and unexplained residuals 

respectively. We further assume that all variance components follow an inverse-gamma 

distribution with 𝛼 = 𝛽 = 0.001.   

Under the maternal half-sib design, the environmental effects were further 

partitioned into year effect and replication effect, the genetic effect was mainly the 

maternal effect. Hence,   

logit𝛑 = 𝐗𝐭𝐛𝐭 + 𝐗𝐫𝐛𝐫 + 𝐙𝐦𝐮𝐦 + 𝐞 

where 𝐛𝐭, 𝐛𝐫, 𝐮𝐦 and 𝐞 denote year, replication, and maternal effect respectively. 𝐗𝐭, 𝐗𝐫, 

and 𝐙𝐦 are the design matrices for the corresponding effects. Assuming epistasis is of 

minor importance, the variance of maternal effect provides an estimation of a quarter of 

additive genetic variance in half-sib designs, i.e. 𝜎𝑚
2 =

1

4
𝜎𝐴

2 (Lynch & Walsh, 1998). 

Therefore, the additive genetic variance, 𝜎𝐴
2 , for red thread incidence in tall fescue was 

estimated as 4𝜎𝑚
2 .  And the narrow-sense heritability estimated from maternal half-sibs 

was 

ℎ𝑚
2 =

4𝜎𝑚
2

𝜎𝑡
2 + 𝜎𝑟

2 + 𝜎𝑚
2 + 𝜎𝑒

2
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Under the diallelic cross design, the environmental effects considered were location 

effect and replication effect, and genetic effects included maternal effect, paternal effect 

as well as their interactions. Hence, 

logit𝛑 = 𝐗𝐥𝐛𝐥 + 𝐗𝐫𝐛𝐫 + 𝐙𝐦𝐮𝐦 + 𝐙𝐩𝐮𝐩 + 𝐙𝐦𝐩𝐮𝐦𝐩 + 𝐞 

where 𝐛𝐥, 𝐛𝐫, 𝐮𝐦, 𝐮𝐩, and 𝐮𝐦𝐩 denote location, replication, maternal effect, paternal 

effect, and maternal × paternal interaction respectively. 𝐗𝐥, 𝐗𝐫 𝐙𝐦, 𝐙𝐩, and 𝐙𝐦𝐩 are the 

corresponding design matrices. Additive genetic variance can be estimated likewise, 

either from maternal half-sibs or paternal half-sib, i.e. 𝜎𝐴
2 = 4𝜎𝑚

2    or 𝜎𝐴
2 = 4𝜎𝑝

2, and 

dominant genetic variance can be derived from the variance of maternal × paternal 

interaction by 𝜎𝐷
2 = 4𝜎𝑚𝑝

2  (Zhu and Weir 1996). Hence, heritability estimated from 

maternal half-sibs was 

ℎ𝑚
2 =

4𝜎𝑚
2

𝜎𝑙
2 + 𝜎𝑟

2 + 𝜎𝑚
2 + 𝜎𝑒

2
 

Heritability estimated from paternal half-sibs was  

ℎ𝑝
2 =

4𝜎𝑝
2

𝜎𝑙
2 + 𝜎𝑟

2 + 𝜎𝑝
2 + 𝜎𝑒

2
 

4.3.3. Model Implementation 

All models were fitted in R (R Core Team, 2019). Posterior distributions of 

parameters in the models of genetic analysis were sampled with package “R2jags” (Su & 

Yajima, 2015). The Gibbs sampler was implemented with 5 Markov chain Monte Carlo 

chains, each with 15000 iterations. The first 5000 iterations were discarded to minimize 
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the effect of initial values, and the rest of the iterations were thinned by taking every 10th 

to reduce sample autocorrelation. Convergence of chains was confirmed via visual 

inspection. Analysis results were visualized using the package “tidyverse” (Wickham et 

al., 2019). 

4.4. Results  

4.4.1. Evaluation of red thread incidence 

Mean red thread incidence ranged from 38% to 86% in 2016 and from 31% to 

100% in 2017(Figure 4.1). Despite some rank differences, data collected from both years 

showed a positive (Pearson’s r = 0.73) and significant (p-value = 1.47e-10) correlation, 

suggesting a potentially sizeable genetic effect. For commercial synthetics, older 

cultivars, such as “Kentucky-31”, “Faith”, and “Rembrandt”, had higher disease 

incidence, while “Regenerate”, a newer cultivar, had a lower incidence over both years 

(see Table 4.2 for the longevity of cultivars in the National Turfgrass Evaluation 

Program). Such improvement is due to the generic selection effort of turf breeders for 

overall turf quality and stress tolerance throughout the years. However, substantial 

differences were seen among cultivars that were released in the same year, indicating 

differentiated selection efforts against the disease. Comparing with commercial synthetic 

populations, tested maternal populations exhibited a more extensive spread in mean 

disease incidence. Specifically, Albanian and Romanian collections (i.e., 55426-13 and 

55609-13) and those that were recently backcrossed to adapted germplasm (i.e., MOR-4, 

MOR-8, and MOR-22) were more susceptible to red thread when compared to the rest of 

the maternal populations. Top-performing populations included TA3-15, TA3-38, TA2-1, 
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U41-37, and U41-36, while TA1-43, TA1-64, TA1-15, TA2-27and TA3-21 had red 

thread incidence rate greater than 70% in both years (Figure 4.1).  

Disease incidence in replications of selected genotypes evaluated in 2018 at 

Horticulture Farm #2 and Adelphia Farm indicated the success of family selection. 

Significant differences were observed between resistant and susceptible genotypes. R1, 

R2, and R3 exhibited disease incidence lower than 50%, while S1, S2, and S3 showed 

disease incidence higher than 70% in both locations (Figure 4.2).  

4.4.2. Genetic analysis 

In both mating designs, large additive genetic variance was observed, which lead 

to moderate and large heritability values for red thread disease incidence in tall fescue 

populations. The model also provided posterior estimations of red thread incidence in the 

progeny populations by incorporating data collected from 2016 and 2017. Mean disease 

incidence demonstrated a similar trend as obtained from the Beta-binomial model. 

Additionally, an increase in variance was observed as disease incidence increased. 

Similarly, collections from Albania and Romania, as well as recently backcrossed 

germplasm, had the highest disease incidence (Figure 4.3). The smaller variation 

observed in these populations presumably resulted from the smaller numbers of progenies 

evaluated.   

Progeny populations from Resistant × Resistant crosses showed lowest red thread 

incidence, ranging from 7% to 26%, while those from Susceptible × Susceptible crosses 

exhibited the highest red thread incidence, ranging from 70% to 90%. Disease incidence 

of progeny populations derived from Resistant × Susceptible and Susceptible× Resistant 
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crosses varied from 23% to 87%, showing a broad spread (Figure 4.4). This provided a 

clear example of the association in red thread incidence between selected parental 

genotypes and their progenies. When comparing reciprocal crosses, the cross matrix was, 

for the most part, symmetric with respect to the diagonal line (Figure 4.4). Significant 

interactions were detected in R2 × S2 and its reciprocal cross, which happen to have the 

highest and the lowest breeding value, as shown in Figure 5. Consequently, a small 

quantity of dominance variance was seen, accounting for 6% of the total phenotypic 

variance on average. Maternal and paternal effects estimated from progeny populations 

(Figure 4.5) provided a measurement for breeding values of selected parental clones, 

showing a high correlation with disease incidence observed from parental genotypes 

(Figure 4.2). 

4.5. Discussion  

To evaluate the efficacy and efficiency of selection, genetic studies on traits of 

interest are of great importance in plant breeding.  Due to the allogamy of most cool-

season turfgrass species and the practice of polycross in cultivar development, maternal 

half-sib populations are commonly evaluated in the form of turf plots and maintained as 

sources of elite genotypes. Hence, maternal half-sib design is a convenient way to 

conduct population genetic studies in cool-season turfgrass. In this study, disease 

incidence of red thread was evaluated on a broad collection of tall fescue populations 

using a half-sib design. By partitioning the phenotypic variance, a large additive genetic 

variance was estimated, leading to moderate heritability. Heritability was estimated to 

have a mean of 0.52 and a 95% highest density interval of (0.11, 0.89). Given this 

relatively high heritability estimation, the family selection method was adopted to 
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identify resistant and susceptible genotypes, which subsequently served as parental 

genotypes in the diallelic cross. Evaluation of replicated parental genotypes and their 

progenies in 2018 confirmed the success of family selection. Heritability estimation from 

maternal half-sibs and paternal half-sibs had a mean of 0.74 and 0.48, respectively, 

showing consistency with the previous estimation.  Other evidence supporting high 

heritability of disease incidence in tall fescue include the high correlation of red thread 

incidence in evaluated populations in 2016 and 2017, and consistency between estimated 

breeding value (Figure 4.5) and observed phenotypic value of selected parental genotypes 

(Figure 4.2). 

For disease incidence of red thread, there is no published estimate of ℎ2 for tall 

fescue nor any other turfgrass species. Other researchers have reported high heritability 

estimations associated with diseases on cool-season turfgrass species. Bonos (2006) 

reported narrow-sense heritability estimates of 0.79 (±0.18) in a two-year study on dollar 

spot of creeping bentgrass (Agrostis stolonifera L.). Han et al. (2006) estimated narrow-

sense heritability of resistance to gray leaf spot in perennial ryegrass with multiple 

growth chamber studies; those values ranged from 0.57 to 0.76. Bokeyer, Bonos, and 

Meyer (2009) investigated the inheritance of brown patch resistance in tall fescue using a 

diallelic cross design and obtained heritability estimates of 0.62 and 0.57 for two 

different years.  Compared with these values, our estimate of ℎ2 for red thread incidence 

is in the moderate to high range, indicating that additive genetic effects are prevalent in 

red thread disease incidence in tall fescue. However, caution must be exercised for such 

comparison, as the reported heritability estimations in this study are specific for the tall 

fescue population and the environments studied. The classical definition of narrow-sense 
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heritability is the proportion of additive genetic variance in total phenotypic variance, 

which measures the efficiency of response to selection (Lynch & Walsh, 1998). Given 

the estimated heritability in this study, disease incidence of red thread in tall fescue can 

be effectively reduced through selection and breeding. Prabhakaran and Jain (1987) 

evaluated the probabilities of inadmissible estimates of heritability (i.e.Pr(ℎ2 < 0) and 

Pr(ℎ2 > 1)) in half-sib analysis using linear regression under the frequentist framework, 

and pointed out that with the true value of ℎ2 around 0.5, Pr(ℎ2 > 1) is invariably higher 

than Pr(ℎ2 < 0) for total numbers of half-sibs being greater and equal to 100. In the 

genetic model presented earlier, all variance components were assumed to follow Gamma 

distributions; hence, the probability of negative heritability is 0. But we did observe 

0.68% in the half-sib design and 1.24% in the diallelic cross of posterior heritability 

samples with values greater than 1. This observation could potentially relate to the 

inbreeding and controlled crossing of studied populations. All adapted germplasm from 

crossing blocks has at least undergone ten cycles of selection for improved turf quality, 

leading to an increased amount of inbreeding. Another potential explanation could be 

provided from the perspective of the ploidy level. The population genetic models adopted 

in this study were derived from Fisher’s infinitesimal model, which assuming the species 

of study is diploid (Jacquard, 1974; Wright, 1966). However, tall fescue is allohexaploid, 

whose genome is designated by 𝐏𝐏𝐆𝟏𝐆𝟏𝐆𝟐𝐆𝟐 (Meyer & Watkins, 2003), which could 

potentially inflate heritability estimation.  

Although a large number of tall fescue populations were evaluated in this study, 

only a single isolate of L. fuciformis was used for the fourth and fifth inoculations in the 

half-sibs design and all inoculations in diallelic design. This may limit how broadly our 
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results can be applied to other selection processes on tall fescue against red thread 

disease, since one isolate does not reflect the full range of virulence among L. fuciformis 

populations. In case of quantitative disease resistance (e.g., resistance to red thread), the 

main objective is to improve populations utilizing additive genetic variance. This process 

is achieved by repetitively selecting against susceptible genotypes using virulent strains 

of the pathogen. In other words, strains with less virulence are less of a concern when it 

comes to selection experiments. While the current study clearly shows that incidence of 

red thread in tall fescue can be effectively reduced through selection, it would be 

informative to evaluate other more virulent isolates in the future to determine how tall 

fescue populations might perform over a range of virulence.  

In summary, this study investigated red thread disease incidence in tall fescue 

populations, highlighting the importance of specific selection effort against red thread 

disease in tall fescue. We also estimated the heritability of disease incidence with two 

different experimental designs. Estimated results from two experimental designs are 

consistent, supporting the idea that additive genetic variance accounts for large 

phenotypic variance in red thread incidence in tall fescue populations. This is the first 

report documenting the efficacy of family selection in reducing red thread incidence in 

tall fescue.  
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Table 4.1 Information on Experimental Maternal Tall Fescue Populations Evaluated for 

Red Thread Disease Resistance in 2016 and 2017 at New Brunswick, NJ. 

Maternal 

clone 
Na Note 

Materna

l clone 
Na Note 

55426-13 48 Albanian collections TA2-31 96 

Adapted germplasm from 

crossing blocks created in 2013 

55609-13 48 Romanian collections TA2-34 96 

MOR-22 48 Collections from 

Morocco that were 

recently backcrossed to 

adapted germplasm 

TA2-36 72 

MOR-4 48 TA2-37 96 

MOR-8 48 TA2-40 96 

TA1-3 96 

Adapted germplasm from 

crossing blocks created 

in 2013 

TA2-42 96 

TA1-4 96 TA2-5A 96 

TA1-15 96 TA3-12 96 

TA1-21 96 TA3-15 96 

TA1-42 96 TA3-21 96 

TA1-43 96 TA3-38 96 

TA1-50 96 TA3-43 96 

TA1-54 96 U41-11 96 

Adapted germplasm from 

crossing blocks created in 2009 

TA1-57A 96 U41-12 96 

TA1-64 96 U41-14 96 

TA1-68 96 U41-19 96 

TA1-72 96 U41-36 96 

TA2-1 96 U41-37 96 

TA2-23 96 U43-14 96 

TA2-25 96 U43-24 84 

TA2-26 96 U44-6 96 

TA2-27 96 W41-34 96 

TA2-28 96 W41-35 96 

TA2-29 96 W45-48 96 

 a Number of progenies evaluated in each population. 
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Table 4.2 Information on commercial synthetic tall fescue populations evaluated for red 

thread disease resistance in 2016 and 2017 at New Brunswick, NJ. 

Commercials a Number of clones evaluated Sponsorb Yearc 

Kentucky-31 48 University of Kentucky 1983 

Rembrandt 48 Lebanon Turf Products, Inc. 1996 

Falcon IV 48 ProSeeds Marketing, Inc. 2001 

Van Gogh 48 Lebanon Seaboard Corp. 2006 

Mustang 4 48 Pickseed 2006 

Faith 48 The Scotts Company 2006 

Falcon V 48 ProSeeds Marketing 2006 

Regenerate 48 Landmark Turf& Native Seed 2012 

a all information in the table was collected from National Turfgrass Evaluation Program 

(NTEP; www.ntep.org) 

b Sponsor of the commercial cultivar when first appeared in the NTEP. 

c Year of first appearance in the NTEP. 
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Table 4.3 Variance components and heritability values estimated from tall fescue 

populations evaluated for red thread disease resistance in 2016, 2017 and 2018 at New 

Brunswick, NJ and Freehold, NJ under maternal half-sib design and diallelic cross. 

Mating design variance component mean median mode 95%HDIa 

Half-sib 

design 
year effect (σt

2) 523.91 29.18 9.23 (0.03,957.70) 

replication effect (σr
2) 113.23 38.51 11.84 (0.29,408.27) 

maternal effect (σm
2 ) 67.14 50.56 19.46 (1.69,184.59) 

residual (σe
2) 274.72 219.85 79.53 (6.94,717.14) 

additive genetic 

variance 
268.54 202.26 77.85 (6.77,738.34) 

total phenotypic 

variance 
979.00 420.84 442.14 (12.03,2189.21) 

Heritability estimated 

from maternal half-

sibs (ℎ𝑚
2 ) 

0.52 0.53 0.55 (0.11, 0.89) 

Diallelic cross location effect (σl
2) 51.91 17.11 10.22 (0.23,168.98) 

replication effect (σr
2) 82.71 4.69 4.41 (0.01,133.74) 

residual (σe
2) 120.52 89.67 33.41 (5.04,360.09) 

maternal effect (σm
2 ) 50.75 30.25 14.56 (1.72,160.96) 

paternal effect (σp
2) 32.03 19.19 8.92 (0.64,99.19) 

maternal × paternal 

interaction (σmp
2 ) 

4.25 2.73 1.11 (0.07,13.27) 

additive genetic 

variance estimated 

from maternal half-

sibs 

203.01 121.01 58.23 (6.89,643.83) 

additive genetic 

variance estimated 

from paternal half-

sibs 

128.11 76.78 35.69 (2.54,396.72) 

dominance genetic 

variance 
17.00 10.92 4.42 (0.29,53.06) 

total phenotypic 

variance 
342.17 207.00 150.16 (14.43,878.38) 

 Heritability estimated 

from maternal half-

sibs (ℎ𝑚
2 ) 

0.74 0.63 0.46 (0.16, 1.18) 

 Heritability estimated 

from paternal half-

sibs 

(ℎ𝑝
2) 

0.48 0.40 0.27 (0.11, 1.13) 

Note:  

a Highest density interval.  



76 

 

 

 

 

Note: error bars represent standard deviation of population red thread incidence 

Figure 4.1 Red thread incidence of 48 maternal populations and 8 synthetic cultivars of 

tall fescue evaluated in 2016 and 2017 at New Brunswick, NJ after artificial inoculation 

with Laetiseria fuciformis. 
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Note: error bars represent standard deviation of red thread incidence 

Figure 4.2 Red thread disease incidence among selected parental clones evaluated in 

2018 in two field trials at New Brunswick, NJ and Freehold, NJ, after artificial 

inoculation with Laetiseria fuciformis. 
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Note:  

Green color indicates reduced red thread incidence in progeny populations while red 

color indicates elevated red thread incidence in progeny populations.  

Figure 4.3 Estimated red thread incidence in 48 maternal populations evaluated in 2016 

and 2017 at Horticultural Farm #2 in North Brunswick, NJ after artificial inoculation with 

Laetiseria fuciforms. 
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Note:  

Colored blocks represent cross events with the color indicating red thread disease 

incidence in the progeny population of that specific cross.  

R1, R2, R3 were the resistant genotypes, selected from U41-37, TA3-38, and TA3-15 

respectively; S1, S2, S3 were the susceptible genotypes, selected from TA1-64, TA1-15, 

and TA2-27, respectively.  

 

Figure 4.4 Disease incidence of progeny populations created from diallelic cross 

evaluated in 2018 in two field trials at New Brunswick, NJ and Freehold, NJ after 

artificial inoculation with Laetiseria fuciformis. 
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Note:  

Error bars represent standard deviation of red thread incidence. 

R1, R2, R3 were the resistant genotypes, selected from U41-37, TA3-38, and TA3-15 

respectively; S1, S2, S3 were the susceptible genotypes, selected from TA1-64, TA1-15, 

and TA2-27, respectively.  

 

Figure 4.5 Maternal and paternal effects of selected parental clones on red thread disease 

incidence estimated from diallelic cross progenies evaluated in 2018 in two field trials at 

New Brunswick, NJ and Freehold, NJ after artificial inoculation with Laetiseria 

fuciformis. 
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