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ABSTRACT OF THE DISSERTATION 

Boolean Networks in Systems Biology 

By Matthew Putnins 

Dissertation Director: 

Ioannis P. Androulakis 

 

Physiological functions are driven by the emergent behaviors of many individual 

components, whether they are gene, protein, or metabolic interactions. These interactions 

form biochemical pathways and interaction networks which then lead to more complex 

cellular or organismal level behaviors that are not knowable from the characteristics of an 

individual component of that system. Knowing whether a gene is being expressed or 

knowing the structure of a protein does not necessarily imply the physiological function 

of either, but within the context of a meaningful biological system, we can infer more 

complex behaviors. In the enclosed dissertation we present multiple approaches to 

contextualize biological components into more complex systems. These methods include 

utilizing Boolean networks to model interactions in a qualitative manner, as well as 

analyzing expression data in the context of biochemical pathways. We use two distinct 

approaches for understanding biological systems: We utilize evolutionary algorithms to 

understand the origin and development of complex systems. This evolutionary 

framework enables a better understanding of complex network structures as well as 

evolutionary strategies used in the development of complex biological systems. 

We additionally propose a data-driven approach for interrogating gene expression within 

the context of biochemical pathways. We utilize a novel method for detecting circadian 

genes and map these genes onto physiologically functional pathways. We utilize this data 
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to validate methods for constructing a Boolean network to infer the causal relationships 

which exist within gene pathways. This analysis will improve the applications of high 

throughput data analysis for the purpose of identifying critical components of complex 

biological systems. 
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 Background and Motivation 

1.1 Systems biology and biological networks 

Systems biology represents a philosophy of approaching complex biological problems, 

often consisting of many different components, from a holistic view. A reductionist view, 

the opposite philosophical approach, sees a system as being described by the individual 

behaviors of its components. This includes structural biological approaches, such as 

designing drug therapies based on protein structure. Deriving pharmaceutical therapies 

directly from protein structures has proven challenging, however (Van Regenmortel 

2001). This limited view of drug development can be overcome by utilizing more 

systems based methodologies to understand the complex behaviors of biochemical 

pathways(Regenmortel 2004; Materi and Wishart 2007; Kitano 2002). 

Systems biology approaches are often applied to biochemical pathways or genetic and 

metabolic systems, but may be applicable to more complex population-level dynamics as 

well(Friedman and Gore 2017; Kitano 2002). The primary focus is on the emergent 

behaviors of the complex system, rather than the specific properties or behaviors of 

individual components(Kauffman 2007). In this sense, the behavior of specific 

components is assumed to not be descriptive of the system as a whole, such as the case of 

pharmaceuticals designed based on the peptide structure of a protein, and it is more 

important to understand the relationships and interactions between these components.  

The relationships between these components and their emergent properties and behaviors 

can be studied at various levels of detail. This can be studying discrete time points and 

qualitative values, such as defining components as active or inactive or using more 
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refined continuous value models, using a variety of computational techniques which can 

range from systems of ordinary differential equations to more qualitative, coarse-grained 

models based on  Petri nets, cellular automata, or Boolean networks(Materi and Wishart 

2007).  

1.2 Boolean Networks 

Boolean Networks are simple switching models in which variables are qualitatively 

defined as being “active” or “inactive”, using Boolean logic to relate individual 

components. The accuracy of these qualitative descriptors compared to continuous 

biochemical models has been discussed since Boolean models have been introduced 

(Kauffman 1969). Kauffman and Glass used continuous models to study biochemical 

networks based on the activation, inhibition, and decay of molecular species. Within 

these models, individual species would tend to transition between low and high values 

and saw these oscillations as a switching behavior that could be described in a binary 

manner by fitting (Glass and Kauffman 1972). Based on this binary behavior, discrete 

logical homologs of these models were developed in a way that was representative of the 

biochemical pathway’s behavior (Glass and Kauffman 1973). Classic, discrete Boolean 

models have a series of variables that represent nodes N defined by a state X, each with k 

incoming edges. Although some models restrict k to specific values, they do not 

necessarily have to be the same for each node of the network. Each variable’s value is 

defined by a Boolean function (b) as shown in Equation 1. Different models may allow or 

restrict which Boolean functions are used, depending on what the model will represent. 

For example, b could be represented by any arbitrary truth table, or it could be limited to 
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and/or/not gates in order to represent relationships observed in biological regulatory 

networks(Terfve et al. 2012). 

𝑋𝑖(𝑡) = 𝐵𝑖(𝑋1𝑖(𝑡 − 1), 𝑋2𝑖(𝑡 − 1) … 𝑋𝑘𝑖(𝑡 − 1)) 

Eq. 1 

In this case, the state of Ni is determined by the Boolean function Bi which relates all the 

inputs to the node. In this case, the state Xi can either take on a value of 1 or 0 depending 

on the output of its relevant Boolean function. 

1.3 Identifying critical components of Boolean networks 

One of the advantages of Boolean networks is the qualitative nature which allows for 

flexible structural and functional assessments of the networks. Structural analysis often 

consists of reducing or removing relatively simple components, such as nodes with a 

single input and output (Veliz-Cuba 2011). These types of reductions can reduce the 

amount of data necessary for more detailed models, as well as identify the core functional 

components of the network. The result of this structural reduction can be used to 

synthesize a smaller logic network whose function is still reflective of the original 

complete network(Chudasama et al. 2015). This can allow for complex regulatory 

pathways to be reduced to a smaller size which is far easier to understand from a  

qualitative viewpoint and can either be used to produce more detailed networks of the 

important components or to directly identify potential drug targets.  

However, this view of reducing networks through primarily structural means is highly 

limited, because perturbations to the networks may create unexpected changes in larger, 

more complex networks. Feedback loops, feedforward loops, and other complex network 

structures may enhance or diminish small perturbations and may lead to greater or 
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smaller changes in distant parts of a larger network. Because of this, structural reductions, 

such as that described above, may hide functionally important network motifs. 

Perturbation studies of Boolean networks are often important for identifying drug targets, 

which is often overlooked in structural based, steady-state reduction described 

above(Azuaje, Devaux, and Wagner 2010). Even structural reduction methods that are 

designed to preserve network dynamics may have issues with different network states 

being reachable based on perturbations, which may have been possible in the unreduced 

model(Naldi et al. 2009). 

1.4 Evolution of biological networks 

The complex genetic, regulatory, and metabolic networks which are ubiquitous 

throughout all domains of life have evolved over time. The evolution of organisms, and 

their genetic networks, is controlled by a variety of factors which are fundamentally 

broken into adaptive forces, such as natural selection, and non-adaptive forces, such as 

random mutation and genetic drift. The interactions between these forces have led to the 

emergence of complex genetic and protein interaction networks across in all domains of 

life. Network motifs and small-world network features have been found in many of these 

pathways (Wuchty, Oltvai, and Barabasi 2003; Dwight Kuo, Banzhaf, and Leier 2006; 

Alon 2007; Luscombe et al. 2004; Shen-Orr et al. 2002; Van Noort, Snel, and Huynen 

2004). These features are found across domains of life, from yeast to bacteria to more 

complex organisms such as plants and animals (Defoort, Van de Peer, and Vermeirssen 

2018; Shen-Orr et al. 2002; Van Noort, Snel, and Huynen 2004). 
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All forces of evolution, from selective pressure to neutral mutations to genetic drift, 

influence to formations and differentiation of species(Raeymaekers et al. 2017). Even in 

the absence of adaptive forces such as natural selection non-adaptive forces of random 

mutation and genetic drift lead to new species(Lynch 2007; Yu and Miller 2001). 

Both natural selection, as well as neutral mutations and network growth, influence the 

structure and performance of a regulatory network. However, the effect of neutral 

mutations on network structure depends on the rate that mutations occur, as well as the 

size or rate of change of the size of the genome of an organism(Bhan, Galas, and Dewey 

2002; Van Noort, Snel, and Huynen 2004).  

The genome size and mutation rates vary widely between species (Zhang 2003; Gao and 

Innan 2004; Gu et al. 2002; Drake 1991; Lynch 2010), though there appears to be a 

relationship between genome size and base-pair mutation rate(Lynch 2010). This base-

pair mutation rate is not static, however, and in the presence of lethal stressors it may 

rapidly change even while the genome size remains relatively static(Swings et al. 2017). 

Computational models of evolution often are limited in terms of not including the 

evolution of functional networks (Van Noort, Snel, and Huynen 2004; Chung et al. 2003; 

Bhan, Galas, and Dewey 2002; Eisenberg and Levanon 2003) or artificially limit the non-

adaptive forces on networks by using fixed mutation rates(Alon 2007; Kashtan and Alon 

2005; Wilke et al. 2001) or fixed network size(Knabe, Nehaniv, and Schilstra 2008). 

Because of this, we propose an evolutionary model that incorporates both adaptive and 

non-adaptive forces and allows natural and emergent interactions between the two 

(Chapter 2). This model allows us to differentiate between the adaptive and non-adaptive 

forces of evolution and allows us to understand how these two distinct forces act in a co-
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operative way to drive change within a population. We hypothesize that the non-adaptive 

forces, such as the mutation rate within a population, are driven by selective pressure 

much the same way that a phenotype with fitness advantages or disadvantages is driven. 

1.5 Genetic pathways and networks in mouse 

Evolutionary algorithms and models help us understand the origin of biological networks; 

however, they need to be compared to the networks and pathways of living organisms to 

validate the types of network structures we see. We utilize high throughput data 

microarray expression data to understand how real biological components may interact 

with each other and interrogate possible relationships between physiological systems. 

While learning how complex networks evolve over time may provide insight into the 

evolutionary origins of certain features, expression data allows us to identify those 

networks which are important in understanding the effects of these emergent interactions 

in a physiological context.  The concept of systems biology includes contextualizing 

individual components into functionally related groups, something which is lacking in 

high throughput data studies (García-Campos, Espinal-Enríquez, and Hernández-Lemus). 

Physiological functions are not produced by individual components but from the 

emergent behavior of complex interaction networks of genetic, metabolic, and proteomic 

molecules. These networks are called pathways and are composed of genetic components 

that are coordinated in a way to produce a single physiological function. The individual 

genetic components may belong to multiple networks, but contextualizing them within a 

single pathway can still be a useful tool for understanding micro-array data in a way 

which allows us to determine how different genes may be related to one another through 
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both a functional and mechanistic way (García-Campos, Espinal-Enríquez, and 

Hernández-Lemus ; Jin et al. ; Amadoz et al.).  

We make use of whole-genome, whole-organism mouse data (Dyar et al. 2018) within 

the context of genes and pathways identified within the KEGG database (Kanehisa and 

Goto 2000) in order to interrogate how different tissues may perform different or related 

physiological functions and to identify how functional pathways are expressed across 

different tissue types within an organism. We emphasize identifying genes that have a 

circadian expression pattern, because of the known link between circadian rhythms, 

health and disease(Bishehsari et al. 2016; Cutolo and Masi 2005; Doherty 2018; 

Kaczmarek, Thompson, and Holscher 2017; Lee and Edery 2008). We propose a novel 

approach to identifying circadian genes (Chapter 3) and use this to identify differentially 

expressed genes within functional pathways. We further identify and use a set of methods 

for identifying core pathways components using data from multiple tissues (Chapter 4). 

1.6 Outline of the Dissertation 

Understanding the context of biological components within a larger system is critical to 

understanding more complex, emergent properties of biological systems. It is important 

to understand data within the context of a complex network, but also to be able to 

interpret potential relationships between components from otherwise decontextualized 

data. In the following chapters, we propose three unique approaches to understanding 

complex biological networks. We present a model of the origins and evolution of 

biological regulatory systems, especially within to context of oscillatory networks 

(chapter 2). We also approach biological networks from a data-driven approach. Utilizing 

high throughput omics, we propose a method of detecting oscillatory genes within a large 
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dataset (chapter 3). Subsequently, we demonstrate methods for utilizing large data sets 

for the purpose of constructing Boolean models to simulate and study-specific pathways 

(chapter 4). This is particularly important because omics-level data may not have ideal 

data for the construction of such data but may be able to lay the framework of causal 

relationships between components. Our final chapter discusses the implications of larger 

data sets for the purpose of contextualizing information within the framework of 

pathways, models, and networks. 
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 An evolutionary model of learning networks 

2.1 Background 

Regulatory networks and signal transduction pathways are composed of series of 

biochemical interactions in order to interpret environmental factors and produce a 

response: When an organism eats, its body needs to produce insulin in order to regulate 

its blood sugar(Ohneda, Ee, and German 2000). This response is the result of complex 

networks that have evolved over time, either conserving components that have proven 

beneficial or mutating aspects which are detrimental or unnecessary as the environment 

in which the organism exists no longer requires it. Changes to these networks occur 

incrementally over many generations. Due to a lack of perfect fidelity when DNA is 

replicated, each generation will have a slightly different genetic makeup than their 

parents. This change in genetics is caused by random changes, such as point mutations, 

gene duplication or recombination (Lynch 2007; Knabe, Nehaniv, and Schilstra 2008; 

Ingram, Stumpf, and Stark 2006; Parter, Kashtan, and Alon 2008; Stelling et al. 2002; 

Bhan, Galas, and Dewey 2002).  These random genetic changes may be neutral, 

deleterious, or beneficial and are referred to as a non-adaptive force because these 

changes occur regardless of whether they assist an individual to adapt to their 

environment. These changes affect the makeup of the regulatory networks within an 

individual influencing how signals are interpreted or how the network responds to 

stimuli. Individuals who receive beneficial mutations are more likely to produce 

offspring, while those with deleterious mutations are less likely to survive and reproduce. 

This bias in reproduction is referred to as an adaptive force, representing a population’s 

adaption to its environment (Alon 2007; Kashtan and Alon 2005). These two forces, 
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important for evolution and speciation(Ghalambor et al. 2015; Ghalambor et al. 2007; 

Raeymaekers et al. 2017), are intrinsically linked: non-adaptive changes create the 

random variation which can then be selected for through adaptive forces, while adaptive 

selection may choose individuals with higher or lower mutation rates. Changes in the 

non-adaptive processes are seen as critical to overcoming stressors (Lavergne, Muenke, 

and Molofsky 2010; Swings et al. 2017; Komp Lindgren, Karlsson, and Hughes 2003). 

The flexibility of these non-random processes are also seen as important: bacteria with 

high mutation rates do not have better rates of survival in response to environmental 

stressors(Sprouffske et al. 2018), but when wild type bacteria are exposed to 

environmental stressors their mutation rates will rapidly increase(Komp Lindgren, 

Karlsson, and Hughes 2003; Lynch 2010; Swings et al. 2017). 

Non-adaptive forces, such as the mutation rate, need to be accounted for when studying 

the effects of evolution. We propose that factors such as mutation rate may not directly 

affect an individual’s fitness (and therefore cannot be directly selected for by 

environmental pressure), but are indirectly selected for as high mutation rate individuals 

may be able to overcome stressors and low mutation rate individuals may be less likely to 

pass on deleterious mutations to their offspring. These factors are not generally included 

in computational evolution studies of genetic networks. 

Models that study the evolution of genetic networks exist in many forms. The simplest 

form is a model in which the network is evolved without any evolutionary pressure (i.e. 

no selection or fitness function) and with the network not having any function (Van 

Noort, Snel, and Huynen 2004; Chung et al. 2003; Bhan, Galas, and Dewey 2002; 

Eisenberg and Levanon 2003). These models assert a null hypothesis: The structure of 
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regulatory networks exists because of the rules that create them, not because of the 

selection of specific functions. These models are proposed as explanations for types of 

structures found universally within gene networks, such as the scale-free nature of some 

biological networks(Van Noort, Snel, and Huynen 2004). However, other evidence 

suggests that biological networks may not be scale-free (Stumpf, Wiuf, and May 2005; 

Han et al. 2004) and may not have small-world properties(Arita 2004), which indicates 

that these null-models are not universally applicable. 

More advanced models look at functionalized networks, using search algorithms to 

identify networks that satisfy networks that perform a specific task. Functional network 

types vary widely and can include electronic logic circuits(Parter, Kashtan, and Alon 

2008), neural networks(Kashtan and Alon 2005), and networks that exhibit oscillatory 

behavior(Knabe, Nehaniv, and Schilstra 2008; Burda et al. 2011). Most of these types of 

networks can create many topologies which perform the same function, and therefore 

limitations are set on the search space, which can include limiting the in-degree of 

nodes(Parter, Kashtan, and Alon 2008), network size (Kashtan and Alon 2005; Knabe, 

Nehaniv, and Schilstra 2008; Burda et al. 2011). In addition to the types of networks 

being used, the search algorithms used within these models can vary widely as well. 

These algorithms are not always evolutionary algorithms, and those which are suffer 

shortfalls by evolving networks using fixed mutation rates(Alon 2007; Kashtan and Alon 

2005; Wilke et al. 2001) or fixed network size(Knabe, Nehaniv, and Schilstra 2008).  

Based on our knowledge of biology, these artificial limitations may mask critical 

evolutionary events. Adaptions to genome size and mutation rates are seen in both plant 

and bacterial species during stressor events(Lavergne, Muenke, and Molofsky 2010; 
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Swings et al. 2017). Fixing these rates may miss how a dynamic network size or mutation 

rate affects the synthesis of a regulatory network or how the conservation of key 

functional components overrides the otherwise random evolutionary moves.  

The primary focus of many of these network models, whether a proposed null model or a 

functionalized network model, is to identify the origin of regulatory networks motifs, 

such as feedback or feed-forward loops(Burda et al. 2011; Ingram, Stumpf, and Stark 

2006; Knabe, Nehaniv, and Schilstra 2008; Milo et al. 2002). Biological studies cast 

doubt on the value of motifs. The regulatory network of the yeast S. cerevisiae, for 

example, has over-represented network motifs, but these motifs are limited to recently 

evolved genes(Meshi, Shlomi, and Ruppin 2007).  The study found that these motifs did 

not correlate with functional enrichment within the network and that they were not 

evolutionarily conserved. This leads to the conclusion that even if the evolutionary moves 

which create a regulatory network have some structural bias, selective pressure tends to 

remove that bias, which underscores the importance of including both the underlying 

evolutionary mechanics (the non-adaptive steps of evolution) as well as functional 

selection when studying how biological networks evolve. 

We propose a computational evolution model that utilizes Boolean networks to mimic 

environmental signal transduction, which includes both aspects. We attach mutation rates 

to individuals, rather than using fixed rates or population-wide-rates allowing for 

populations to self-select for greater or smaller rates of mutation. Herein we demonstrate 

the ability of evolution to select for non-adaptive traits, showing that the mutation rate of 

individuals within a population is tightly linked to the fitness of that population. We 

further demonstrate the emergence of structurally unique functional networks, indicating 



13 

 

 

 

that the structures which are conserved for being functionally important tend to have 

unique architecture 

2.2 Approach 

Herein we utilize a novel evolutionary model that captures the adaptive and non-adaptive 

forces on genetic regulatory networks in changing environmental conditions as seen in 

Figure 1. This evolution was done using a population of individuals, where each 

individual has its genetic regulatory network represented by a logic network. To more 

fully capture the non-adaptive forces, each individual has an additional mutation and 

duplication/deletion rate, allowing for different members of the population to mutate at 

different rates, representing mutations of the DNA replicase within an individual. 

 

 

Figure 1: Representation of the evolutionary modell: After the population is initialized, individuals are consistently 

assessed for fitness before undergoing crossover and mutation. In addition, a duplication/deletion event occurs which 

allows for the introduction or removal of nodes from the network and then the mutation rate and duplication/deletion 

rate are modified randomly before the fitness of each individual is assessed again. 
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Every individual within the population receives an environmental signal, processes this 

signal within the gene regulatory network, and produces an output signal, as seen in 

Figure 2. This network is composed of a series of nodes that represent the environmental 

input, the network’s output signal, and the regulatory components within the signaling 

network. Each edge represents a regulatory relationship between components of the 

network. Our evolutionary strategy is based on the basic principles of Genetic Algorithms 

(Holland 1975; Goldberg 1989) which encompass computational evolutionary strategies 

that have been extensively adapted for the evolution of regulatory networks (Noman et al. 

2015; Knabe et al. 2010). 

 

 

Figure 2: General overview of how an individual network is processed. Each individual receives an environmental 

signal. This signal is propagated through the signal processing section of the network and produces an output signal. 

The network output is used to assess the fitness of the individual. This process is repeated for each environmental 

signal, in our specific case, there are 3 unique environmental signals per network. The sum of the fitness for each input 

is used as the individual network’s fitness. An adjacency matrix expressed the information describing a network. Each 

row corresponds to a node and each column represents the corresponding connection of that node. The first network 

describes logic representation. The second network assumed the duplication of node “3” which results in augmenting 

the logic driving the activity of node “2”. The same node’s logic is mutated in the third network. 
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Each individual is made up of the regulatory network itself, a mutation rate, and a 

duplication/deletion rate. These rates of change are associated with individuals, rather 

than with the population, which coarsely model the genetic systems which control gene 

replication during reproduction. The Boolean network is evolved to perform a specific 

task that determines the fitness of the individual. The mutation rate and duplication rate 

affect the rate at which components of the network are changed (mutated) or 

added/removed (duplication/deletion), but do not directly affect the fitness of the 

individual. By having the mutation rate as an individual trait, we are able to study how 

selection for functional individuals may affect the selection of higher or lower mutation 

rate individuals. This enables us to study how adaptive and non-adaptive forces interact. 

The fitness function of the evolution as based around periodic patterns, which have been 

used historically as target functions(Knabe, Nehaniv, and Schilstra 2008; Burda et al. 

2011) as well as having biological significance(Zhang et al. 2014; Papagiannakopoulos et 

al. 2016; Baggs et al. 2009). The number of populations used (>100) for each condition 

was also on par with previous simulations(Kashtan and Alon 2005; Knabe, Nehaniv, and 

Schilstra 2008). For our specific examples, all networks were evolved to have 3 periods 

depending on the activity of the input node (i.e., environment) with a regular pattern of 

[𝜏, 2 ∗ 𝜏, 4 ∗ 𝜏]. For example if 𝜏 =3 then the population would have three target outputs 

of a period 3, period 6, and period 12. This allowed for some control over the complexity 

of the evolved function in a controlled manner: Boolean networks that produce larger 

oscillatory periods require more nodes and therefore more Boolean functions. As 𝜏 

increases, so does the complexity of the network necessary to produce the target outputs.  
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2.2.1 Boolean network 

Each individual regulatory network is modeled using a Boolean network, Figure 2, which 

consists of an environmental input, an output, and a series of functional genes. The 

environmental input is represented by a node which has a defined value, this node has no 

inputs from the rest of the network. The output is used to measure the fitness of the 

network, and the node representing the output of the network cannot have an output to 

any other node within the network. This Boolean network is represented by a modified 

adjacency matrix which determines both the existence of connections between nodes, as 

well as the logic relationships that determine how multiple inputs into a node are 

controlled. Each row of the matrix represents a node’s outputs and each column 

represents the node’s inputs. For our specific experiments, the first row/column 

represents the input node and the second row/column represents the output node of the 

network. If a node has multiple inputs, the logic gate controlling those inputs is 

determined by the numeric values within the adjacency matrix. Each index on the 

adjacency matrix can have a value of 0, which represents there is no edge present or a 

positive or negative integer. The value represents a logical function associated with the 

connection: All incoming edges with a functional value of 1 are combined using an OR 

function, while all incoming edges with a functional value of 2 are combined using an 

AND function. Complex functions, consisting of combinations of AND/OR gates, are 

then defined by combining multiple functional groups. In the example of Figure 2, the 4th 

column represents the inputs to Node 4. The presence of 2 inputs each with a value of “2” 

represents that these inputs will be processed by an AND function. 
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2.2.2 Selection 

Each network within a population is assessed for fitness by comparing the output of the 

network in response to environmental inputs shown in Figure 2.  The fitness is defined as 

the ability for the output node to produce a specific signal (either constant or oscillatory) 

for a given environmental input. Each network is given k input signals, and each input 

signal is repeated with p permutations of the network, where different functional nodes 

will be in the active or inactive state at the start of the simulation. Once the network 

reaches a limit cycle, the period of the output node is measured as a set of actual output 

periods[𝑂𝑎1 ; 𝑂𝑎2 …𝑂𝑎𝑘] this set represents a 1:1 comparison of environmental stimuli to 

the network’s response. The output oscillation is assessed only on the period of the 

signal, regardless of the specific pattern. These actual inputs are compared against the set 

of target periods [𝑂𝑡1 ; 𝑂𝑡2 …𝑂𝑡𝑘]. The fitness of the network is then determined by the 

difference between the set of actual outputs and the target outputs. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  ∑ ∑ 𝑂𝑡𝑖 − |𝑂𝑎𝑖 −  𝑂𝑡𝑖|

𝑝

1

𝑘

1

 

 For each environmental input signal, the initial values of each non-input/output node are 

randomized. The signal is allowed to propagate as before until the network reaches a 

limit cycle. Once the limit cycle is reached, the period of the output node is recorded. The 

process of randomizing the values of the network is repeated p times, to ensure that the 

network can process the input signal even when the network is perturbed to different 

initial values. The fitness is then calculated by summing the distance of the actual signal 

from the target signal. For our experiments k was set to 3 and p was set to 32. The value 

of k=3 was used so that we could have two constant (nonoscillatory) environmental 
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signals and one oscillating environmental signal. This allowed for measuring the ability 

of the networks to create a response for constant and dynamics inputs. The target outputs 

of the system were set to be different than the input signals in order to remove the 

possibility of trivial solutions. The value of p=32 was selected as that is the number of 

possible starting positions of 5 boolean variables, which are the starting number of 

variables in our model (3 internal nodes, 1 input, 1 output). These values were selected 

because they were sufficient to prevent the evolution of trivial solutions, in this way the 

input signals are not a zeitgeber which sets the period of the input but an arbitrary 

environmental condition. 

After the fitness of each individual is determined, parental pairs are created with each 

parental pair creating two offspring. Tournament selection is used to determine both 

members of each parental pair 

2.2.3 Evolutionary moves: Crossover and mutation 

After parental pairs are selected, a crossover is used to create two offspring. Crossover is 

performed by creating a new adjacency matrix, each row of the new matrix is filled in 

using a row from one of the parental networks. Mutation occurs based on the mutation 

rate of the parent networks. The mutation rate is the probability that any given index of 

the adjacency matrix is altered. Each index in the adjacency matrix has a probability of 

being mutated with a probability equal to the mutation rate of one of its parental 

networks. This mutation sets the value of the index to either 0, or to a positive or negative 

value of a functional group. This allows for each edge to be added, deleted, or 

functionally modified in the same mutation step. 
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2.2.4 Evolutionary moves: Gene duplication/deletion 

After offspring networks were created using crossover and mutation, they undergo 

duplication/deletion which allows for networks to select their own size. Each individual 

has a duplication/deletion rate associated with it, which represented the probability that a 

gene may be duplicated or deleted during the mutation step of the genetic algorithm. For 

each node, a random number is generated, if it is equal or less than the 

duplication/deletion rate, the node is selected for a “duplication/deletion” event. There is 

a 50%probability that the selected node is duplicated, which creates a new node is added 

to the network, with all incoming and outgoing edges of the node being identical to the 

duplicated node. Figure 2(Top) shows a network prior to duplication/deletion or 

mutation, and Figure 2(Middle) shows the network following a duplication event. 

Duplicated nodes are capable of gaining novel function by mutation, such as the mutation 

shown in Figure 2(Bottom) where a change from a positive to negative value changes an 

input into a “NOT” gate signified by a red edge between the nodes. If the selected node 

was not duplicated, then it is deleted by removing the node and all associated incoming 

and outgoing edges. 

2.2.5 Evolutionary moves: Mutation and duplication/deletion rate 

The mutation and duplication/deletion rates are handled in an identical manner. Each new 

“offspring” will inherit their mutation and duplication/deletion rate from one of the parent 

networks. These rates are then mutated in a random manner. This allows for the self-

selection of mutation and duplication/deletion rates: They do not directly impact fitness 

and therefore there is no direct selective pressure to select for a specific rate. Rather, 

there is an indirect pressure to increase the mutation rate if it is beneficial to the 
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evolutionary process or decrease the mutation rate if it is hindering the evolutionary 

process as a whole, rather than being directly tied to the fitness of the individual or the 

time course of the evolution in a determinant manner. Each individual’s rate of mutation 

and duplication/deletion is adjusted by the following formula, where RAN is a random 

number from 90 to 110 and 𝑅𝑎𝑡𝑒𝑔 represents the mutation or duplication/deletion rate for 

the current generation:  

𝑅𝑎𝑡𝑒𝑔+1 = 𝑅𝑎𝑡𝑒𝑔 ∗ (
100

𝑅𝐴𝑁
) 

This rate is bounded between 0 and 1. This multiplicative random walk was used to 

represent the genetic basis of gene fidelity during reproduction: if an individual has a 

lower mutation rate there is a lower likelihood the DNA replication machinery mutates. 

Because of the bounds and the multiplication used, this produces a random walk which 

averages close to 0.5. This was used in favor of a more standard additive random walk 

which would have a constant rate of change in the mutation rate, regardless of what the 

current mutation rate was. 

2.2.6 Identification and structural analysis of core networks 

The core network is the set of nodes that are necessary and sufficient for performing the 

overall function of the network. A series of attacks on the network was used to identify 

this set of nodes. To do this, a baseline for the network is established. Each Input signal 𝐼𝑖 

is applied to the input node of the network. The resulting output signal 𝑂𝑖 is then taken 

from the output node.  

Two different stuck-at-fault attacks are then applied to each non-input/output node in the 

network. An attack is then performed by setting a node 𝐺𝑛 to a value of either 1 or 0, 

creating 2 possible attacks per node. This value was then fixed, overriding the existing 
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logic of the node. Our regular assessment of the network was performed: each potential 

input was given to the input node, and the resulting output from the output node was 

measured. If the resulting output does not equal 𝑂𝑖 , the attack is then considered lethal, 

regardless of how close the output may be. If an attack is lethal for any target output, 

regardless of the input signal, that node is flagged as being part of the core network. 

2.2.7 Measure of Population Structural Homogeneity 

To assess how homogenous a population of networks is, we developed a measure of 

“evolutionary distance”. This distance score was based on the concept of “edit distance” 

from graph theory(Gao et al. 2009). We can define the “Evolutionary distance” between 

two graphs G and G’’ similarly to how the graph edit distance can be defined (Serratosa 

2019): 

𝐸𝐸𝐷(𝐺, 𝐺′) = min
∀(𝑒1,𝑒2…𝑒𝑘)∈𝐸(𝐺,𝐺′)

{𝐶𝐸𝐷(𝐺, 𝐺′)
(𝑒1,𝑒2…𝑒𝑘)

} 

Where CED represents the edit cost for each edit path ei which would convert the graph 

G to G’. Unlike the graphical moves normally used(Bunke and Allermann 1983), we only 

allow for “evolutionary” moves, which include node duplication, deletion, and edge 

mutation. Each of these functions is assigned the same edit cost. Because node 

duplication and deletion may have different amounts of change in information, we can 

assume 𝐸𝐸𝐷(𝐺, 𝐺′) ≠ 𝐸𝐸𝐺(𝐺′, 𝐺) when both graphs have different sizes. To control for 

this, we measure the EED from the smaller to the larger network only. The edit distance 

was then calculated by identifying the node-to-node bijection which had the smallest edit 

distance, where node substitutions could be performed by deleting one node and 

duplicating another. In the case of size differences, additional nodes were introduced by 

duplication rather than introducing null nodes. This allows us to determine how related 
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two networks are together using only the moves allowed under our evolutionary 

algorithms. A standard graph edit distance may fall short in identifying similarities 

between networks because of the amount of information that can be added or removed 

from gene duplication and deletion events. 

2.2.8 Simulations and computations 

To study the evolution of regulatory networks we performed two general types of 

simulations: The first simulation modeled the growth of a non-functional network into a 

functional regulatory system. This was done by using a naïve network, which is made up 

of nodes that have no edges or logical relationships between them. In this way, there is no 

inherent bias within the network which may influence the structure used or performance 

of the network over time. The second simulation modeled environmental stressors by 

changing the target output function of the population partway through its evolution. This 

forced an already adapted network to re-adapt to a new function.  In all cases, the fitness 

of each individual network was dependent on the period of the output node, regardless of 

the pattern produced by either the output node itself or any other member of the network. 

Simulations and calculations were performed on the Amarel high performance computing 

cluster at Rutgers University. Each population was evolved for a predefined number of 

generations (3500 for single target evolution, or 3000, 5000, or 8000 generations for two 

target simulations). These predefined generations were selected based on how well a 

population could reach its goal. We considered a population to be converged if half or 

more of its individuals had achieved maximum fitness. For 𝜏 = 3 50% of populations had 

converged by generation 1000, 62% at generation 3000, and 71% at generation 6000, and 

89%  at generation 10,000. Based on this, a time limit of 3500 generations was selected 



23 

 

 

 

as a non-trivial time limit for our single target experiments. For the most complex single 

target function used (𝜏 = 9) 35% of populations converged by 3500.  

For the switch experiments, the populations were evolved for a set amount of time with a 

target function of 𝜏 = 3 , however, during the final 2000 generations, the target function 

would be changed to 𝜏 = 6. For example, if the switch experiment lasted for 5000 

generations, then the first 3000 generations would have 𝜏 = 3  as a target function and 

the final 2000 would have 𝜏 = 6 as a target function.  Approximately 1/3 of simulations 

reached the original and second target regardless if the switch occurred at generation 

1000 (29%), generation 3000 (34%), or generation 6000 (30%). The highest fitness 

individuals of converged populations would be used for calculating the evolutionary 

distance within and between populations, while individuals which were maladapted 

within the population would not be considered for structural analysis. 

For each condition, 500 simulations were completed to ensure at least 100 populations 

converged within the time limit, regardless of how complex the target function was. This 

provided a sufficient number of populations that achieved the proper target in order to 

study how networks evolve, especially in non-trivial conditions. 

Importantly, the random seeds for each condition are identical. This means that for the 

switch experiments, where the initial target is 𝜏 = 3, at generation 1000 all three switch 

conditions have identical populations. This is important for comparisons because it means 

that we can make a direct comparison between the populations that have changed targets 

and have an environmental disruption and an identical set of populations evolving 

without an environmental disruption. 
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2.3 Evolved oscillating systems 

2.3.1 Single target evolution 

Our first set of experiments were designed to study the evolution of naïve networks 

toward a single target function. In this case, the naïve networks were initialized with no 

logic function relating to any of the nodes. During the initial stages of evolution, the 

naïve networks show a small increase in mutation rate and a rapid increase in network 

size, on average. The initial mutation rate was set to 0.01, and the initial network size was 

5 where there was an input node, output node, and 3 signal transduction nodes. For τ=3, 

the mutation rate had dropped to 4.97𝑒−4 by generation 1000, a decrease of 95%, while 

the average number of nodes in each network increased 5-fold. (Figure 3 top and middle). 

The population’s performance is measured by comparing the oscillatory period of the 

output node O for each of 3 different inputs (Where the input node I is set to I = [1]  I = 

[0]  and I = [0 1] where it will oscillate between active and inactive at each time point) 

(Figure 3 bottom). Other values of 𝜏 produced networks with slightly different values 

(larger network sizes and smaller mutation rates) but had the same general characteristics. 
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Figure 3: Population-level statistics of the mutation rate, network size, and network output. Top: The 

median mutation rate over time. The initial mutation rate starts as a fixed value and then is allowed to 

adapt over time. Initially, the population selected for a higher mutation rate, followed by depression the 

mutation rate much lower than the initial rate. Middle: The median network size over time for populations 

with a target function of 𝜏 = 3. Initially, there is a high network growth, with most of the network growth 

being done within the first 500-1000 generations. After this, the median size grows at a slower rate. Both 

graphs show the phasic nature of these traits: early in the evolutionary history of the population, there is a 

rapid change in mutation rate and size. As the populations converge to a single function, changes in these 

traits slow. Bottom: The median period for each of the three inputs. This population has a target of [3 6 12] 

for inputs of a constant 0, constant 1, and an oscillating signal. Here we can see that the mean value of the 

outputs approaches the target function within the first several hundred generations. 

The tendency of the network size and mutation rate (and hence the number of mutations 

per generation) to increase initially existed regardless of the target function of the 

population (τ value), although larger values of τ tended to have larger final network sizes 

and smaller final mutation rates. We hypothesize that the mutation rate decreased to a 

lower value in these more complex tasks because these larger networks are more 

vulnerable to being disrupted by changing the connections between components and 

further that the lower mutation rate is a response to the larger network size to decrease the 

number of mutations per generation. The number of mutations that occur is dependent on 
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the size of the network and the mutation rate, in order to account for variations in these 

we calculated the average number of mutations per generation. This provides insight into 

the overall net change of information in the network. Overall, once the target function is 

found the number of mutations each generation will approach 0, regardless of τ (Figure 

4). The peak average number of mutations per generation is   404% when τ=9, 357% 

when τ=6, and 302% when τ=3 of the starting number of mutations per generation. By 

generation 1000 these drop 58%(τ=9), 59%(τ=6), and 54% (τ=3) of the starting mutations 

per generation. 

 

Figure 4: The average number of mutations per generation, which is a function of the network size and the mutation 

rate, follows the same qualitative evolution regardless of function complexity. A 95% confidence interval is shown in 

gray around the lines. The more complex the function, the more mutations occur at the maximum, but after the number 

of mutations peaks there will be a trend to minimize the number 
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The most striking result from the naïve networks is the suppression of the mutation rate 

as well as the rapid initial growth of the network size. For τ=3 there is a 22% increase in 

average per-edge mutation rate. By generation 1000 the average per-edge mutation rate 

has decreased 95% from its starting value (Figure 3, top). The mutation rate of individual 

networks has no direct impact on the fitness function, but every population saw a 

decrease in mutation rate over time. 

The overall rate of change within a network is not controlled only by the per-edge 

mutation rate. The size of the network determines how many edges exist, and therefore 

larger networks will have a higher number of mutations within a single generation for the 

same mutation rate. Network size rapidly increases, but there appears to creep upward 

regardless of the fitness of the population (Figure 3, middle). When we account for 

network size to determine the overall rate of change of the network, rather than the per-

edge mutation rate, we find this decreased rate of change still exists. Regardless of the 

target period, every population had a decreasing mutation rate over time when there was 

a single target function. At generation 1000, the average number of mutations per 

generation was 58%(τ=9) 59%(τ=6), and 54% (τ=3) (Figure 4).   
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Figure 5: The average number of mutations in the mal-adapted populations over the first thousand generations (black 

line) and the 95% confidence interval (gray area). The average never increases as high as quickly adapting population, 

but there is a downward trend in the average number of mutations regardless. If there was no fitness function, the 

average number of mutations would be expected to increase as the size and mutation rate are both expected to 

increase.    

The early peak mutation rate followed by a decreasing mutation rate over time appears to 

be independent of whether an individual population finds a maximum fitness network 

early. This was even true for populations that did not achieve maximum fitness. Mal-

adapted populations would still decrease their mutations rates to be protective of the 

fitness they did gain (Figure 5). These mal-adapted populations had an average decrease 

of 70% from the start of the simulation through generation 1000, much greater than the 

decrease of any on-target population. This decreasing mutation rate is a protective 

mechanism that allows a population to maintain the fitness gains it has made, and so 

populations which have found second or third best solutions would often see the decrease 

in mutation rate as well until a better solution was found. The maladapted populations 

have a larger decrease in the number of mutations compared to the populations which 

reach their target function within the time limit (70% decrease compared to a 58% 
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decrease). This may indicate that the maladaption is related to an over the protection of 

the population where higher mutation rates are overly selected against which slows the 

ability of the population to improve. 

 

2.3.2 Effect of environmental stressor 

The second set of simulations was used to measure how an evolved or evolving network 

would change in response to a new environmental stressor. These simulations evolved 

with a target function of τ=3 for 1000, 3000, and 6000 generations before changing the 

target function to τ=6. At generation 0 the populations were initialized as previously 

described: a mutation rate of 0.01 and a network size of 5. During the first 1000, 3000, 

and 6000 generations the simulations proceeded as if they were a single target evolution. 

After this initial period was complete the fitness function was changed to the new target 

and populations were given an additional 2000 generations to re-adapt to the new 

function to standardize the amount of time a population would have to re-adapt, 

regardless of its starting point. Similar to before, the fitness of individual networks was 

based entirely on the period of the output node, and not on a specific pattern.  
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Figure 6: Population-level statistics for the re-adaption of networks after the target function has been 

changed. Top: The median period of a population with an initial target of τ = 3. At generation 1000 the 

target is changed to τ = 6. All three input/output functions change within a few hundred generations of the 

change in function (left). The right axis shows the median mutation rate for the same populations. Here we 

can see that the mutation rate peaks shortly after the populations have adapted to their new functions. 

Bottom left axis: The dotted black line shows the median mutation rate of populations which found the new 

target, compared to populations that did not find the new target within the time limit (blue line). Right axis: 

The fraction of individuals selected for populations that successfully transition within the time frame (green 

line) and those which don’t (red line) both have an apparent “selection event” where the number of 

individuals selected for reproduction decreases drastically. 

We compared the populations which had evolved to have both the initial target τ as well 

as the second target τ to populations which only converged to the initial target but failed 

to adapt not the second target. The major difference found between re-adapted 

populations and populations which failed to re-adapt within 2000 generations was the 

recovery of mutation rate (Figure 6, Top). We believe that this is due to a smaller, higher 

mutation rate subpopulation being selected only after that sub-population has found a 

higher fitness solution. This is affirmed by the decrease in the number of networks 

selected for the median number of networks selected for decreased following the switch 
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to the new function (Figure 6, bottom). The average fraction of individuals selected for 

the next generation, for the switch occurring at generation 1000, reaches a minimum of 

56%. We can see this sub-population selection clearly by studying the change in the 

number of mutations compared to the average fitness of the population. Figure 7 A shows 

the evolution of a naïve network, and the fitness sharply increased preceding an increase 

in the mutation rate. Figure 7 B and C show the functional switch and generation 3000 

and 6000, and the fitness recovers sharply at the same time as the change in the number 

of mutations. The populations do not start to suppress the number of mutations until after 

the fitness has begun to approach an asymptote, indicating that the population has 

reached a relatively stable state. 

 

Figure 7: The average population fitness compared to the average number of mutations during naïve evolution (A) and 

during evolution between two targets at generation 3000 (B) and 6000 (C) in all cases, the slope of the fitness function 

is steeper initially than the slope of the number of mutations, and the number of mutations does not decrease until after 

the average fitness has begun to reach an asymptote. 

During the simulations in which the target function switches, we do see the per-edge 

mutation rate, and the number of mutations per generation both increases, like the small 

peak seen with the naïve networks from the single target simulations. This raises an 

interesting question of whether the mutation rate increases as a strategy to find a new 

target function, which would be the obvious conclusion. If this were the case, we would 

see the mutation rate increase first, and then the fitness of the population increases 

second. However, our data seems to indicate that the increase in mutation rate is driven 
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primarily by a selection of a small sub-population of high mutation rate individuals 

achieving a higher fitness and out-competing the lower mutation rate individuals, as seen 

by the “selection event” associated with changes in target function, where the average 

fraction decreases from 63% of networks to about 56% of networks for several 

generations (Figure 6, Bottom). This causes an indirect adaptive response: The higher 

mutation rate poses a risk to the population and needs to be decreased, which is why we 

see peaks and decreases in the mutation rate in our simulations. Because the populations 

do not know what their maximum fitness is, we would expect this decrease in mutation 

rate even before all members of the population have achieved maximum fitness.  

Further evidence that the change in mutation rate is not being utilized as a population-

wide search strategy is how the increase in fitness precedes the increase in the number of 

mutations per generation (Figure 7). Given that the population-wide mutation rate 

increases after, rather than before, the fitness of the population increases it is unclear how 

different factors may affect a population’s ability to re-adapt to a new environmental 

stressor. Factors such as network size and mutation rate play critical roles in what 

functions a population may be able to achieve quickly, however, our results demonstrate 

that no specific feature of the networks affected the ability of a population to adapt to a 

second target τ: Network size, mutation rate, and structural homogeneity all did not 

correlate with how quickly a population re-adapted to its new function (Figure 8). 

Coupled with the fact that the mutation rate tends to peak after the fitness of a population 

has greatly recovered demonstrates that population-wide changes in adaptive processes 

proceed non-adaptive changes.  
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Figure 8: The number of generations it takes for populations to re-adapt do not correlate with either the size or 

mutation rate of the population as a whole. Top: Scatter plot of the average mutation rate of a population vs the 

number of generations it took for that population to switch from τ = 3  to τ = 6 Bottom: Scatter plot of the median 

network size of populations compared to the number of generations it took for a population to switch from τ = 3 to τ = 

6. No population-wide statistic is correlated with the number of generations it took for a population to recover, 

indicating that transitioning between two functions was not caused by a population-wide process but the expansion of a 

subpopulation. 

The mutation rate, and the number of mutations per generation, are a secondary 

characteristic of each individual: they do not directly affect the fitness of that individual 

or affect its ability to be selected for the next generation. Rather, these characteristics 

may affect their offspring: A higher mutation rate may increase the probability of a 

deleterious mutation, or a network structure may be more robust against mutations. These 

secondary characteristics, such as mutation rate and network structure, represent the non-

adaptive forces of evolution because they do not affect the phenotype of the current 

generation. 

. These two ideas (that population-wide non-adaptive processes do not improve the 

adaptability of a population, and that mutation rate will rise after the fitness of a 

population improves rather than before) fit into a broader biological picture as well. 
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Mutation rate provides no inherent benefit for an organism during stable conditions, but 

provides an inherent risk: it is possible for a good regulatory network to have a 

deleterious mutation which results in a loss of function, but it is unlikely for a mutation to 

be beneficial to an organism if it is already well evolved to survive in a stable ecological 

niche. Even if there is an environmental stressor or toxin, the probability of mutation 

making an organism more fit for overcoming the stressor is unlikely.  

 

2.3.3 Evolution of network structure 

Rather than study the structure of evolved networks through the use of motifs, we used 

our evolutionary edit distance metric, which was based on a modified graph edit distance. 

The evolutionary edit distance calculates the number of moves necessary to transition 

from one network to another using the moves allowed by our evolutionary algorithm. 

Understanding that our evolved networks, much like real-world genetic and metabolic 

interaction networks, have some components which are critical to the function of the 

network and other components which are not we did not calculate this edit distance for 

the whole network, but rather the distance was calculated for the core network, which 

consists of the nodes necessary and sufficient for the function of each network. These 

cores represent the functional and evolutionarily conserved components of each 

individual, where mutations or alterations may have a significant impact on the overall 

fitness. Nodes outside of this core do not influence the output of the network, and any 

attacks on these nodes will not affect the overall output of the network. Figure 9 top 

shows the number of cores in a population with a target function of τ=3 at generation 

1000. In this case, half of all populations have 90% or more of their individuals 
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represented by 4 or fewer core networks, and half of all populations had 100% of their 

individuals represented by 10 or fewer core networks. 

 

Figure 9: Structure of populations.Top: The distribution of the fraction of individuals whose function is explained by a 

certain number of cores for τ = 3 at generation 1000. For each box plot, the fraction of individuals within a population 

who have that number of the most common cores are plotted. At 1 on the x-axis, the number of individuals within a 

population who share the most common core are plotted, at 5 the fraction of individuals who have the 5 most common 

cores are plotted. Over half of all populations have 90% or more of their networks represented by only 4 cores. While 

having a small number of cores is not a unique strategy, it is far more common than having a unique structure for each 

individual. Bottom: A histogram showing the distribution of evolutionary distances between individuals within the same 

population (red) and individuals from other populations (blue). We can see here that networks within the same 

populations are generally highly related, generally requiring 5 or fewer evolutionary moves to convert between the two 

individuals. In contrast, individuals from different populations have more differences. This implies that while there is a 

purifying selection within a population for highly related structures, different populations have not converged toward 

the same structure. The distributions were compared using a Kolmogorov–Smirnov test and determined to be different 

with a p-value < 0.01. 

Once the core networks are identified, we used the evolutionary distance to calculate how 

similar the core networks were within a population (the intra-population distance). This 

was compared to the evolutionary distance between the core networks within a popular 

compared to the core networks of other populations (the inter-population distance). We 
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used this to measure the evolutionary distance of cores within the same population to 

cores from other populations and found that populations were more consistent with 

themselves than they were with other populations with the same target τ (Figure 9 

bottom). This data only consists of the distance calculated between different structures, so 

if there were several copies of the same network within a population, this does not 

contribute to the intra-population distance. There were zero instances of an identical core 

structure being found in two different populations, regardless of τ or generation. 

Populations from both types of simulations (those with a single target, and those which 

have a first target and a second target τ) were compared for their diversity. Over time the 

number of core functions that exist within a population decreased if there was only a 

single target. Populations that changed target functions maintained their population 

diversity of network structure, with an average of 53% of all networks sharing the same 

functional structure (Figure 10 top). However, if the target function remains the same, the 

number of unique structures drastically decreases, with an average of 67% of all networks 

sharing the same core structure (Figure 10 bottom). 
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Figure 10:Comparison of population diversity depending on whether an environmental stressor is introduced.   Top:  

The distribution of the fraction of individuals whose function is explained by a certain number of cores for τ = 6 at 

generation 3000, after the target function was changed from τ = 3 at generation 1000. This is comparable to the 

distribution in Figure 7 Top. The distribution is very similar, and overall diversity is maintained, with half of all 

networks having 9 or fewer core functions. Bottom: The distribution of the fraction of individuals whose function is 

explained by a certain number of cores for τ = 3 at generation 3000. This can be compared to Figure 7 Top, where the 

overall diversity has decreased. Half of all populations had 5 or fewer unique cores. 

Another factor may be related to the diversity of structures within a population. Different 

structures existed within the same population, as well as different populations finding 

different sets of solutions. The cause of the inter- and intra-population differences lies 

with adaptive processes and non-adaptive processes. Each population adapts a small 

number of strategies that fulfill the target function, and the selection of these strategies 

varies from population to population. For τ=3 at generations 1000 there was an average 

of 53% of networks sharing the same identical core structure, and 50% of populations 
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having 10 or fewer unique core structures (Figure 9 top). These structures appear to be 

divergent between populations. Within a single population, each core network has a 

median evolutionary distance of 6, while between populations there is a median 

evolutionary distance of 15 (Figure 9 bottom). This divergence is strengthened over time 

as purifying selection and decreasing mutation rates limits the ability of conserved 

components to easily shift from one strategy to another. We can utilize the switched 

evolution simulations to see how time affects the diversity of structures in a population. 

Comparing the structure of the networks before switching at generation 1000 to the 

structures of networks before switching at generation 3000 allows us to see this purifying 

selection in action. Over the course of 2000 generations, the percentage of the population 

which shared the identical functional network rose from 53% to 67% for τ=3. The median 

number of unique core networks within an average population also decreased from 10 to 

5, representing a nearly 50% decrease in the diversity of the populations. This highlights 

the importance of environmental stressors and competition in maintaining the diversity of 

a population. For the populations whose target switched from τ=3 to τ=6, there was no 

significant change in the fraction of networks with a single core network (53%), and 50% 

of networks had a median of 9 unique structures or fewer (Figure 10). 

The decreasing mutation rate creates a freeze, which prevents novel structures from 

forming. Simultaneously, there is a natural bias of selection leading to a single structure. 

In this way, the structure and diversity of a population are related to both the adaptive and 

non-adaptive pressure, which is in turn determined by adaptive pressure as well. 

However, our data shows that there is no overlap in core networks between populations 

and that there is a relatively large difference between the structures of individuals within 
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different populations. This shows that despite the ability for evolutionary conservation to 

control the network structure, this does not lead to convergent evolution. Due to this, we 

believe that non-adaptive forces are not responsible for the structure of regulatory 

networks, but neither is the structure of a regulatory network defined by its function. 

2.3.4 Biological implications 

Biologically, it appears that some eukaryotes have evolved mechanisms to reduce the 

randomness of the non-adaptive processes. These mechanisms create different genetic 

regions, which have different mutation rates, even within the same organism(Chuang and 

Li 2004).  Further work is necessary to understand how these traits interact with a 

dynamic environment, including different biomes and interactions between different 

species. Between the evolution and spread of antibiotic-resistant bacteria to changing 

climate affecting both beneficial and pest species understanding how adaption to new 

environments may play a critical role in understanding the behavior of these species in 

the future. We already see the impact of climate change, with certain species thriving due 

to environmental changes, and many others dying off as changing conditions are not 

suitable to their survival(Ceballos et al. 2015; De Vos et al. 2015; Bradshaw and 

Holzapfel 2008; Gienapp et al. 2008; Sirisena and Noordeen 2014). We hope to expand 

this work to better understand not only how species adapt to stressors, but how multiple 

species and populations may interact and adapt to one another under stressful conditions. 

Our model demonstrates the emergence of several unique, evolutionary events that align 

with observations from field and laboratory studies. Here we see selection against higher 

mutation rates at the population level, leading to decreased change over time and overall 

decreasing diversity within a stable environment. We see a recovery of the population-



40 

 

 

 

wide mutation rate after an external stressor is applied. This indicates that many 

populations survive environmental stressors by amplifying a subpopulation which has 

both a higher fitness and mutation rate, rather than a slow, homogenous change to reach a 

new functional phenotype. The rapid expansion and adoption of new sub-populations 

seem to agree with the idea of punctuated equilibrium: if there is sufficient disruption to 

an environment there will be a rapid period of evolution rather than slow adoption of new 

traits. Although not all populations reach the target function quickly, there seems to be a 

large initial set of populations that can achieve their function and a long tail of 

populations that achieve the target despite the decreasing mutation rate. 

These results demonstrate that the mutation rate and adaptability of a population are 

highly dependent on individuals and subpopulations. The presence of competition and 

environmental changes are essential to maintaining biological diversity, while 

populations seem to stagnate under constant conditions. 

The presence of unique functional components within each population also indicates that 

the convergent evolution of regulatory structures is unlikely. Even if certain motifs or 

structures are created more likely through random processes, the selective pressure for 

functional networks and conservation of those components overrides the random 

evolutionary steps which take place. Including the interactions between non-adaptive and 

adaptive forces plays an important role in the development of regulatory networks and 

should be considered for models that seek to understand the development and evolution 

of biological networks. 
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 A framework of identifying and contextualizing 

circadian genes 

3.1 Background 

Circadian patterns are seen throughout almost all domains of life and are seen as critical 

to many physiological and metabolic functions (Feillet, Albrecht, and Challet 2006) and 

are seen as creating important activity cycles which improve survival as an adaptive 

advantage (Silver et al. 2012; Edery 2000; Getz 2009). Within mammals, these circadian 

rhythms are entrained to the light/dark cycle and control the physiological functions of 

the organism which is regulated and primarily driven by a master clock located in the 

suprachiasmatic nuclei (SCN) (Cardone et al. 2005; Cassone 1990; Feillet, Albrecht, and 

Challet 2006; Albrecht 2012). This master clock synchronizes peripheral clocks 

throughout an organism, creating an interconnected network of clocks which coordinates 

temporal variation(Buijs et al. 2003; Dibner, Schibler, and Albrecht 2010) and 

coordinates interactions between organism-wide physiological systems (Cutolo and Masi 

2005). This integrated, synchronized networks of clocks exert control over many 

physiological functions necessary for health and wellbeing, and their disruption often 

results or exacerbates pathological conditions (Bae and Androulakis 2019; Rao and 

Androulakis 2019; Scherholz, Schlesinger, and Androulakis 2019; Rao, Scherholz, and 

Androulakis 2018; Bae and Androulakis 2018; Mavroudis et al. 2013). Conversely, 

targeting these same circadian pathways during the progress of pathological conditions 

may improve the response of patients suffering from these conditions and may provide 

novel therapies or improve the efficacy of existing ones(Cunningham et al. 2016; Fang et 
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al. 2015; Paladino et al. 2010; Nakamura et al. 2016; Zaki et al. 2018; Khaper et al. 

2018). 

These implications become more interesting as genome and organism-wide data are 

studied further. A set of core circadian genes and transcription factors have been found to 

be expressed consistently and coherently across all tissues(Buhr and Takahashi 2013). 

This core clock interacts with all tissues, and results in broad genetic (Mavroudis et al. 

2018; Mure et al. 2018; Zhang et al. 2014) and metabolic (Dyar et al. 2018) circadian 

patterns throughout organisms. However, many of these studies have found that there are 

tissue-specific effects: either genes are not consistently expressed across tissues or 

they’re expressed with different patterns in different parts of the body (Mavroudis et al. 

2018; Mure et al. 2018; Zhang et al. 2014). 

In this work, we establish a computational pipeline for the identification of circadian 

genes within the context of functional pathways. Without loss of generality, we utilized 

pathways defined within the KEGG database (Kanehisa and Goto 2000; Aoki and 

Kanehisa ; Kanehisa et al.). Using these pathways, we seek to contextualize rhythmic 

patterns within physiologically meaningful pathways. Further, we capitalize on the 

intensive work in creating these pathways by identifying functional nodes within the 

defined pathways, which are represented by genetically and functionally related genes. In 

this way, we can identify not only identical gene behavior across multiple tissues but how 

similarly functional genes may be expressed in tissues that do not otherwise appear to 

share gene expression. 
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3.2 Approach 

A novel pipeline for the detection of rhythmic genes expression for the purpose of 

identifying commonalities between tissues was developed utilizing existing and novel 

techniques applied to the analysis of gene expression profiles (Figure 11). This pipeline 

uses statistical tests to detect rhythmic patterns in gene expression and then correlate 

them in a pairwise manner across multiple tissues, using transcriptomic microarray data 

from mouse tissue. 

 

Figure 11:Overview of data processing of the raw microarray data. Data is either visualized and processed as 

individual genes in the context of pathways, or mapped into functional nodes within those pathways. 

3.2.1 Microarray data 

Zhang et al. measured timecourse transcriptomic data in 12 organs in mice to characterize 

circadian gene expression (Zhang et al. 2014). An impressive compendium of protein-

coding genes from 6-week-old male C57/BL6 mice was quantified in aorta, adrenal 

gland, brainstem, brown fat, cerebellum, heart, hypothalamus, kidney, liver, lung, skeletal 
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muscle, and white fat tissue. The mice were entrained with 12 hours of light, 12 hours of 

dark for 1 week before being kept in darkness for 48 hours. Three mice were sacrificed 

every 2 hours during a 48-hour period to collect the tissue specimens at CT0, 2, 4, 6, 8, 

10, 12, 14, 16, 18, 20, and 22. Tissue samples were homogenized, and RNA was 

extracted as previously described in (Hughes et al. 2009). This darkness was meant to 

reduce outside noise and was short enough that the mice should retain their entrained 

circadian rhythms. The RNA from all 3 mice sacrificed at each time point was pooled to 

average out biological as well as technical variations. The RNA abundances were then 

quantified using Affymetrix Mouse Gene 1.0 ST arrays. 

3.2.2 Data pre-processing 

The 48-hour data collected from the mouse tissue was divided into two circadian periods, 

each 24 hours long. Each circadian profile was then z-scored with respect to the mean 

and standard deviation of that profile. These z-scored profiles are then used for all further 

analyses. If either period is found to be differentially expressed from the runs test 

described below, then that probe is considered to be differentially expressed. 

3.2.3 Gene-pathway mapping 

Genes identified by the Wald-Wolfowitz runs test as being differentially expressed are 

mapped into pathways. These pathways represent a group of functionally and 

mechanistically linked genetic components that are expressed in a coordinated manner to 

produce a signaling or biochemical function. These pathways are defined in databases 

such as Kyoto Encyclopedia of Genes and Genomes (KEGG) (Aoki and Kanehisa 2005; 

Kanehisa and Goto 2000) and Reactome (Fabregat et al. 2018). The present analysis is 

based on pathways found in KEGG, without loss of generality. Pathways that are disease-
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specific (such as cancer pathways) were dropped from the analysis. Certain organ-

specific functional pathways (such as digestive specific pathways related to bile 

production) were dropped from the analysis due to them not being physiologically 

relevant in all tissue types. We expect the remaining pathway to have genes expressed in 

multiple pathways, and hope that the comparison of which genes are expressed in a 

circadian manner or what phases they are expressed in may help relate to different tissue 

functions. Transcriptomic data from all tissues are mapped onto pathways by converting 

the Affymetrix probe identifiers within the microarray template are translated into their 

NCBI Entrez IDs and Gene Symbols using the Affymetrix Mouse Gene 1.0 probe 

annotation data and converted into KEGG IDs to be sorted into the identified pathways. 

Affymetrix probe identifiers. This mapping process has previously been described in 

detail (Acevedo et al. 2019).  

3.2.4 Runs test 

Rhythmic genes are detected using a one-tailed Wald–Wolfowitz runs test (Wald and 

Wolfowitz 1940)using binarized transcriptomic data, such that all time points which are 

equal to or above the mean of the profile are set to a value of “1” and all other time points 

are set to a value of “0”. The runs test provides a unique method for detecting patterns 

within gene expression data which is not based on overall expression levels of a 

gene(Love, Anders, and Huber 2014) or based on curve-fitting or predefined patterns 

(Straume 2004; Hughes, Hogenesch, and Kornacker 2010). This test is performed by 

comparing the number of runs in data compared to the expected number of runs to 

determine if each member of a sequence is drawn from a distribution independent from 

the member before or after it. For a sequence, V, a subsequence, v, is defined as a run if 
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vs+1= vs+2=…=vs+r and vs ≠vs+1 and vs+r ≠vs+r+1 while s+r<N where N is the number of 

elements in V. If each member of the data is drawn independently from the same 

distribution then the expected number of runs, E, would be: 

𝐸 =
2𝑚𝑛

𝑚 + 𝑛
+ 1 

Where m is the number of members of the sequence with a value of “1” and n is the 

number of members of the sequence with a value of “0”. The variance of the expected 

number of runs would be: 

𝜎2 =  
(𝜇 − 1)(𝜇 − 2)

𝑚 + 𝑛 − 1
 

One challenge with implementing the runs test is that the data represents a repeating 24-

hour period. If a run begins at the end of a period and continues from the start of the next 

period, then that run will be split into two runs in our data. To control for this, we will 

need to time-shift the data sequence V with a length k such that V1 ≠Vk. This will ensure 

that no runs are interrupted by the arbitrary start and end time of the data collection. The 

runs test was compared to other methods of detecting circadian genes(Table 1). When 

tested with a P-value of 0.01 there was a 0.0% false-negative rate. The false-positive rate 

was 0.9%, which was higher than the other methods described for this purpose. The two 

primary advantages of the runs test are that each gene is tested independently: there is no 

reliance on comparing the runs test to a population-wide statistic. The second advantage 

is that the runs test is wave-form independent. Regardless of the period or waveform, the 

runs test can detect periodic functions. Due to the data being divided into 24-hour 

periods, our analysis is useful for detecting circadian rhythms that are close to this period. 
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If there is significant variation in the periodic signal, the runs test is still capable of 

detecting those signals but the method of dividing the data into 24 hour periods would be 

inappropriate. Because of this, we focus our discussion on circadian rhythms. 

Table 1: The false positive and negative rates of the Wald Wolfowitz Runs test in detecting circadian genes from 

synthetic data. Data was produced based on previous literature, comprising of 48 hours of data, with data taken once 

per hour(Hughes, Hogenesch, and Kornacker 2010). The Wald Wolfowitz test was applied as per the methodology 

described within this manuscript is compared to the literature values of the false positive and negative rates of each 

other test compared to similar synthetic data. 

 False Positive False Negative 

Wald Wolfowitz Runs Test 0.9% 0.0% 

JTK Cycle 0.4% 1.8% 

Cosopt 0% 29.6% 

Fisher’s G 0.2% 30.5% 

 

3.2.5 Identifying synchronous pathway expression across tissues 

Because each tissue has a different number of genes that are rhythmically expressed in 

each pathway, this means that if 100% of genes expressed in one tissue are coherently 

expressed in a different tissue this could represent a relatively small fraction of the total. 

Comparisons between the number of genes that are coherently expressed in two tissues to 

the number of genes expressed rhythmically in those tissues results in a relative distance, 

which scales poorly for comparing multiple tissues. We require an absolute distance 

measurement which will be the same regardless of how many genes are expressed in the 

tissues being compared. We define the absolute distance between two tissues as the 

difference between the total number of genes within the KEGG database and the number 

of genes that have coherent expression within both tissues. Agglomerative hierarchal 

clustering is then performed based on the unweighted average distance between tissues to 

identify how closely related the expression of a pathway is across multiple tissues. 
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3.2.6 Functional nodes 

Multiple genes within the KEGG database are either orthologs or otherwise functionally 

related to one another. KEGG provides pathway maps that indicate mechanistic and 

functional relationships between different components. Many nodes within these 

pathways contain orthologs (such as AKT1, AKT2, and AKT3), however other nodes 

contain functionally related components (such as Clock and Npas2). Each pathway file is 

parsed for functional nodes to identify which nodes are activated by which tissue. 

Fisher’s Exact Test was used for each pathway to determine if the number of functional 

nodes was greater than the expected value. In order to calculate this, we determined the 

number of unique functional nodes listed in the KEGG database as well as the number of 

functional nodes in which at least 1 gene was expressed for each tissue. The fraction of 

functional nodes active in a circadian manner within one pathway was compared to the 

fraction of functional nodes identified in all pathways, with respect to each individual 

tissue type. 

3.3 Identification of non-random genes 

Of the 20,310 genes identified through the KEGG database, 13,512 were found to be 

circadian in at least 1 tissue type. Although 67% of the genes are expressed somewhere in 

the body in a circadian manner, the majority of these genes are not expressed throughout 

the body. Only 8 genes were identified to be circadian in all 12 tissue types: Npas2, 

Fmo2, Nr1d1, Nr1d2, Per3, Dbp, Arnt1, Tspan4. Of these genes, 4 of them belong to the 

Clock pathway, as defined by KEGG (Npas2, Nr1d1, Per3, Arnt1). Two others, dbp, and 

Nr1d2, may be part of the core Clock pathway but isn’t part of the pathway on 

KEGG(Yamaguchi et al. 2000; Takahashi 2017).  
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Table 2:The number of circadian genes identified in each type of tissue. The number of genes in each tissue varies 

widely, and the fraction of unique. A larger number of gens being expressed in a circadian manner implies that the 

tissue performs a greater number of functions 

Tissue type Number of circadian genes Number of unique genes 

Brown Fat 2465 508 (21%) 

Muscle 1943 462 (24%) 

Liver 3484 967 (28%) 

Lung 3703 1105 (30%) 

Aorta 1603 316 (20%) 

Adrenal 1742 327 (19%) 

Brainstem 1344 283 (21%) 

Cerebellum 1531 397 (26%) 

Heart 2229 464 (21%) 

Hypothalamus 2186 605 (28%) 

Kidney 3041 705 (23%) 

White Fat 1519 320 (21%) 

 

The number of circadian genes varied widely between tissues, but many of these genes 

are not uniquely expressed within a single tissue. Anywhere from 19% to 30% of genes 

in each tissue are found to be circadian only in that tissue (Table 2). The fraction of 

unique genes does not strongly correspond to the number of circadian genes expressed. 

Liver and lung tissue are both highly expressive overall and have a high fraction of their 

genes uniquely expressed within the tissue. In comparison, cerebellum tissue is the 

second least expressive tissue, but over a quarter of the genes are unique to the 

cerebellum.  

All identified genes had clear circadian patterns. Figure 12 represents a heatmap of all the 

genes identified in each of the 12 tissue types used. For each gene, there is a clear active 

(red) and inactive (green) period. Each tissue has its own circadian patterns as well, 

whether this is represented by a cascade of activity (such as in lung tissue) or more 

distinct tissue-wide active and inactive periods (such as identified in kidney tissue). This 

demonstrates that the Wald-Wolfowitz test used clearly returns circadian genes, without 
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relying on using population-level statistics or fitting individual traces to previously 

defined traces. 

 

Figure 12: Heatmap of all non-randomly expressed genes in each of the 12 tissue types. All identified genes have clear 

circadian patterns with clearly identifiable on (red) and off (green) periods. This data is produced in wild type mice. 

While most genes are not expressed in many tissues, the majority of the circadian genes 

expressed in each tissue are not unique to that tissue. One issue with comparing the 

expression of different tissues is that each tissue has different levels of expression: 391 

genes are expressed in both white and brown adipose tissue, which represents over a 

quarter of the genes in white adipose, but only 16% of the genes in brown adipose. To 

compensate for this, we analyzed the absolute number of genes being expressed and 

compared it to the number of genes expressed in the genome as a whole, rather than 

comparing the shared fraction to the number of genes expressed in either tissue. Figure 

13 shows the hierarchal clustering of tissues based on how many genes are expressed in 
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common, regardless of their function or presence on specific pathways. The three tissues 

with the most expressed genes (Lung, liver, and kidney) are closely clustered relative to 

the rest of the tissue types. These tissues also make up the 3 tissues with the largest 

number of unique genes. 

 

Figure 13: Hierarchal clustering based on the number of genes in common between the various tissue types. The liver 

and Kidney are the second and third most expressive tissues and have the greatest number of genes in common with 

one another. 

 

The number of circadian genes each tissue pair have in common corresponds with which 

tissues are overall highly expressive (Table 3). The overlap between liver, lung, kidney, 

and brown fat tissue with one another are all high, but the overlap between these tissues 

and other tissues is high as well because of how expressive they are overall. Muscle and 

heart tissue has the most overlap outside of those 4 tissues with 392 genes being shared 

and 1943 and 2229 genes expressed in each tissue. Not all developmentally related 
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tissues have high overlap: brainstem and cerebellum share 14% of their circadian genes 

in common. 

Table 3: Number of circadian genes expressed in each pair of tissues.  

 

Genes that are common between different tissues do not necessarily share the same 

periodic signal. Primarily tissues that are developmentally similar tend to be highly 

correlated. Tissues which do not appear to be related are not always dissimilar, but those 

are the tissues where more dissimilarities arise. Figure 14 shows the correlation of shared 

genes in four tissue types: liver, kidney, brainstem, and cerebellum. A high correlation 

indicates that the genes have a similar phase, while a negative correlation indicates that 

the signals are out of phase or even in anti-phase with each other. 

While the genes which are expressed in both liver and kidney or both brainstem and 

cerebellum tend to be highly correlated, the genes which are shared by liver and 

brainstem tissue do not correlate as well and a larger share of them are close to 

anticorrelated with each other. This does not seem to correspond to the number of genes 

shared in common between tissue pairs: hypothalamus and liver tissue have more genes 
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Brown Fat 380 600 637 514 414 250 289 478 314 603 390 

Muscle  427 464 276 228 187 196 392 254 418 236 

Liver   737 404 508 303 317 549 466 832 376 

Lung    444 467 313 361 578 476 728 412 

Aorta     290 168 186 337 214 408 279 

Adrenal      191 210 336 259 465 247 

Brainstem       188 232 266 319 163 

Cerebellum        260 254 343 177 

Heart         299 530 284 

Hypothalamus          437 193 

Kidney           336 
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in common but have a tendency to be less correlated than brainstem and liver tissue. 

Despite the presence of tissue pairs like hypothalamus and liver tissue, which do not have 

a positive correlation bias, there are no tissue pairs that tend to have more anti-correlated 

than correlated behavior for their shared genes (Appendix). 

 

Figure 14: Correlation of shared genes between different tissues. A) Correlation between shared genes in liver and 

kidney tissues. B) Shared genes between brainstem and cerebellum C) Shared genes between liver and brain stem D) 

Shared genes in liver and hypothalamus. Even though there may be more genes in common between brainstem and 

liver tissue, these genes are not well synchronized with each other. 

 

 

 

 

 

 



54 

 

 

 

3.4 Pathway level circadian patterns 

By placing circadian genes in the context of pathways we can see the time-dependent 

activity of pathways. Figure 15 shows heat maps of the core circadian rhythm pathway in 

all 12 tissue types. In brainstem tissue, four of the five genes present in the KEGG 

pathway are present in all other tissues. We can expect two major types of events within 

the pathway activity: cascade events where genes are activated consecutively resulting in 

a similar number of genes being active at all points of the day. 



55 

 

 

 

 

Figure 15:Heat map of circadian genes of the core clock pathways expressed in all 12 tissue types. The number of 

genes expressed varies broadly, with only 5 genes being expressed significantly in brainstem tissue. Interestingly, 4 of 

the 5 genes expressed in brainstem tissue are also expressed in a circadian manner in all other tissue types. In each 

tissue a clear cascade pattern is present. 
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Figure 15 continued 
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Pathways other than the core circadian rhythm pathway also express largely oscillatory 

behaviors. These behaviors can be more diverse between tissue types, in terms of the 

number of genes expressed, how they are expressed, and which genes are expressed. We 

use VEGF as an example of the diversity commonly found within pathways. Figure 16 

shows how the VEGF signaling pathway has a different number of circadian genes 

expressed in different tissue types, as well as different types of expression patterns in 

these tissues. These different patterns include qualitative behaviors such as cascade and 

rush hour type events as well as genes that have different phases in different tissues. 

Brainstem tissue has only 3 genes expressed in a circadian manner, compared to 16 genes 

expressed in the heart tissue. Even in highly expressed tissues, there are different 

qualitative behaviors such as cascades (liver and lung) and rush hour expression 

(muscle).  These qualitative behaviors do not necessarily reflect the overall tissue wide 

behavior present in Figure 12. 

Many of the genes expressed in each tissue are not expressed in all tissue types, which 

leads to tissue-specific behavior and expression. Even in the case of liver and lung in the 

VEGF pathway, there are only 2 genes in common despite a similar qualitative behavior: 

Pik3r1 and Hspb1. However, we find that not all genes expressed in different tissues 

appear unrelated. We can see that at least one form of AKT (Akt1, Akt2, Akt3) is 

expressed in 10 of the 12 tissue types, with Akt2 and Akt3 being expressed in liver and 

lung tissue, respectively.  
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Figure 16: Heat map of circadian genes of the VEGF pathways expressed in all 12 tissue types. Pathways present 

several qualitative behaviors, including clear, steady cascades (liver and lung) as well as clear rush hour behavior 

where most of the pathway is active at the same time (muscle).   
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Figure 16 continued 
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Many genes within a pathway belong to functionally related groups, some of which are 

made up of orthologs (such as Akt1, Akt2, Akt3), although some functional groups 

contain genes that are not genetically related to each other (Such as Npas2 and Clock in 

the circadian pathway).  

Figure 17 shows the calcium signaling pathway in both brown fat and lung. The top 

shows the heat maps of both tissues: There is a clear, circadian cascade in the genes 

expressed in both tissues. Despite 30 genes being expressed in brown fat, only 20 

functional nodes are active.  

 

Figure 17:Calcium signaling pathway expressed in both brown fat and lung. Although many genes are different, many 

of the same "nodes" are occupied within the pathway. Additionally, despite many genes being represented in each 

tissue, only about 20 functional groups are active in either tissue. 

 

In the case of the calcium signaling pathway, there are only 10 genes in common between 

brown fat and lung, but there are 13 functional nodes in common. In the previous VEGF 

example, there are 5 functional nodes in common between the liver and lung compared to 
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2 genes. Our future work will focus on understanding tissue relationships comparing 

functional nodes to detect tissue-specific function within different pathways in a more 

accurate manner. This will include measuring the phase relationships between tissues 

with similar functional groups. We will also seek to understand the number and function 

of overlapping functional groups between different tissues to trace relationships more 

accurately between tissue types. 

3.5 Pathway type expression 

There are 6 broad categories of pathway categorization for each KEGG pathway. 

Metabolic, genetic, environmental signaling, cellular regulation, organismal systems, and 

human disease. Two of these categories (organismal systems and human disease) contain 

tissue or disease-specific pathways. For that reason, those categories were dropped from 

the analysis, however, we retained the “endocrine” pathways which fall under organismal 

systems but were included in this analysis as well because they are less tissue-specific 

than other organismal pathways, which include subcategories such as digestive, nervous, 

and circulatory related pathways. 

The number of pathways of each type varies widely. There are 91 metabolic pathways, 22 

genetic processing pathways, 32 environmental signaling pathways, and 20 cellular 

process pathways. The endocrine pathways, consisting of 23 pathways. Relatively more 

endocrine ad environmental signaling pathways were expressed than any other type of 

pathway. 45% or more of the endocrine pathways are expressed in 10 of the tissue types 

and 46% or more of all environmental signaling pathways were expressed in 9 tissue 

types. In the cellular processes, 7 tissues had 40% or more of the pathways expressed. In 

comparison, only 1 tissue type had more than 20% of the metabolic pathways 
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significantly expressed (liver), and 2 tissues have 20% or more of the genetic information 

processing significantly expressed. 

 

Figure 18:Overview of tissue-level expression of the 4 major categories of KEGG pathways which do not contain 

tissue-specific or disease-specific pathways. 

Many tissues had a few pathways that were uniquely expressed in only that tissue. Most 

prominently this is found in liver tissue. Within metabolic pathways, liver tissue has far 

more pathways than any other tissue type. Liver tissue expresses 8 different lipid 

metabolic pathways, out of 15 pathways defined by KEGG, and expresses 5 different 

amino acid pathways out of 13 defined by KEGG. 

Out of the 12 tissues studied, 8 expressed at least one unique pathway, although only 

liver tissue had more than 3 pathways uniquely expressed in it:  

• Liver tissue significantly expressed 7 pathways that were not found in any other 

tissue types, 5 of which are metabolic: Autophagy – other, Citrate Cycle, Steroid 

hormone biosynthesis, Pyrimidine metabolism, Glycine, serine and threonine 

metabolism,  Cysteine and methionine metabolism,  DNA replication.  
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• Muscle tissue expressed 2 pathways not found in other tissues (Both were 

environmental signaling pathways): Cytokine-cytokine receptor interaction and 

NF-kappa B signaling pathways. 

• Lung tissue was also dominated by signal processing pathways. Lung had 3 

unique pathways not expressed in other tissue types: Hedgehog signaling, fructose 

and mannose metabolism, and RNA polymerase. 

• Aorta tissue had 2 unique pathways expressed: Butanoate metabolism and the 

renin-angiotensin system. The renin-angiotensin system is an endocrine pathway 

responsible for blood pressure. 

• Adrenal tissue uniquely expressed 3 pathways: beta-alanine metabolism, linoleic 

acid metabolism and ABC transporter pathways.  

• Heart tissue has 3 unique pathways expressed: Tyrosine metabolism, other types 

of O-glycan biosynthesis, and aminoacyl-tRNA biosynthesis. 

• Hypothalamus tissue has a single unique pathway: Oxidative phosphorylation. 

• Brown fat, brainstem, cerebellum, and white fat tissue had no unique pathways 

associated with them. 

Although there are only a few unique pathways expressed in each tissue, the functionality 

of many of these pathways is apparent. Liver tissue has an overexpression of metabolic 

pathways, and aorta tissue has an overexpression of the renin-angiotensin system. Within 

lung two odd pathways stand out: Hedgehog signaling and fructose metabolism, however 

both hedgehog signaling pathways and fructose have been identified for healthy lung 

function(Das, Neogi, and Steinberg 1984; Peng et al. 2015). Future research will focus on 

how different tissue types express the same functional groups within pathways and 
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explore the synchronicity of different tissue types, as well as possible tissue-specific 

expression patterns of functional groups. Because the functional grouping correctly 

identifies pathways relevant to tissue function, we hypothesize it will help more strongly 

identify functional relationships between tissue types. 
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 Inference of Boolean models 

4.1 Background 

Novel drugs or therapies which are developed at the bench-top levels often do not have 

the desired effect in the clinical setting. This has given way to a great interest in 

translational medicine: the ability to use basic research to develop clinically relevant 

treatments and move those treatments into clinical practice(Woolf 2008). Conventional 

drug development platforms are often focused on targeting single biomarkers or a single 

metabolic pathway, which is often hampered by the complex interactions between 

signaling networks, with interactions and cross-talk existing between many metabolic and 

genetic control pathways(Pietras et al. 1994). Even promising drug candidates run into 

toxicity or efficacy issues: Across big pharma, biological reasons lead to 43% of Phase II 

trials being canceled, while issues of safety, efficacy, or bioavailability lead to the 

cancellation of 50% of Phase I and 61% of phase II trials. (Morgan et al. 2012; Waring et 

al. 2015). 

Metabolic and biochemical pathways often have complex interactions, with deregulation 

of one pathway often disrupting others. The resulting emergent behaviors of these 

interconnected networks are difficult to predict from studying the properties of individual 

genes or proteins. With these emergent properties in mind, one key component of 

translational medicine is to understand the influence local perturbations may have on the 

system as a whole(Huber et al. 2013).  

Quantitative systems pharmacology (QSP) uses computational models to characterize and 

simulate these complex biological systems, as well as how these systems behave under 
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the effects of a disease or drug therapy(Rao et al. 2017; Androulakis 2016, 2015). QSP 

can help bridge the gap between early research and the clinical setting by providing 

simulating metabolic pathway deregulations, providing insights into the emergent 

properties of complex diseases, and predicting novel drug targets (Saez-Rodriguez, 

MacNamara, and Cook 2015). These models can help researchers develop hypotheses, 

predict emergency behaviors and can reduce the attrition rate associated with drug 

development(Leil and Bertz 2014). 

Systems of ordinary differential equations (ODEs) are the most common way that QSP 

models are constructed. Each chemical or biological species (i.e. mRNA, protein, or 

pharmaceutical) is represented by a variable in the ODEs while the behaviors of these 

species, such as binding and dissociation rates, chemical kinetics, or transport rates across 

are defined by the equations which make up the model(Geerts et al. 2013). The 

mechanism of action for each interaction is taken into account and determines the form of 

each ODE, although this mechanism of action is often unknown in preliminary research. 

This problem can be compounded by sparse data in preliminary research, making it 

difficult to optimize the parameters of these equations. 

Because of the amount of data required for ODE models, alternative approaches, and 

methods for reducing the data needed for a QSP model have been pursued. An alternative 

approach to ODE models is logic-based models, which can usually be constructed using 

sparse or qualitative data. These models do not necessarily require knowing the 

mechanism of reactions, which allows them to be rapidly developed and conceptually 

easier to interpret than their ODE counterparts. Logic-based network models can be 

inferred directly from empirical data, developed from a priori knowledge, or use a 
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combination of the two(Birtwistle, Mager, and Gallo 2013; Zhao, Serpedin, and 

Dougherty 2006; Chudasama et al. 2015). 

Logic models rely on qualitative rules (such as Boolean logic equations) to define the 

interactions between different components, rather than using ODEs fit to data. The 

simplest version of a logic model would be a Boolean model, where the variables are 

limited to either a value of 0 or 1, and the relationship between these variables are 

described using Boolean logic (AND, OR, NOR). These models create a simplified 

version of complex networks, when compared to more detailed ODE models, but can 

provide insights into key regulatory mechanisms or potential drug targets, which allows 

researchers to gain insights and form hypothesis which can guide research(Le Novere 

2015; Chudasama et al. 2015; Lu et al. 2015; Morris et al. 2010). The primary goal of 

many logic models is to understand potential regulatory mechanisms, identify novel drug 

targets, or to be used as tools for developing more detailed models, lending themselves to 

be used earlier in research than ODE models, but they do not provide continuous values 

of different biological species and may be limited in providing insight about dosing or 

timing of events. 

Boolean models have a long history of being used as tools for simulating complex 

biological systems. Kauffman first envisioned Boolean network models in 1969 as a way 

of modeling homeostasis and gene regulation(Kauffman 1969). Boolean models were 

used to simulate the interactions between multiple components of a system without 

knowing the mechanistic nature of each component and could be used to study the 

emergent properties of complex or large networks(Kauffman 1984). Current Boolean 

models are used in a wide range of fields, with research on advancing the use of logical 
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modeling coming from all over the globe and organizations such as the CoLoMoTo 

consortium bringing together research groups with similar interests in the field.  

Although Boolean models and ODE models contrast in their level of detail, Boolean 

models are useful in studying systems holistically while requiring less data to develop 

than a corresponding ODE model. Boolean models are created by using a series of 

Boolean algebra equations, similar to how more detailed models are created using a series 

of ODEs. Boolean algebra allows us to model qualitative information that we may be 

unable to use to create more detailed models from, by utilizing a number of logical 

operators (AND, OR, NOT, EXCLUSIVE OR).  These logical operators are easily 

understandable, and potentially inferred from qualitative statements: 

1) Glucose is formed in the presence of maltose AND glucosidase 

2) Apoptosis occurs if TNF-α OR FasL are present 

3) HMG-COA reductase converts HMG-CoA into mevalonic acid as long as Statins 

are NOT present 

Because of the ease and flexibility of these logical statements, it is possible to construct 

Boolean relationships and models without significant amounts of quantitative data: 

simply knowing the qualitative relationships between components may be sufficient for 

creating rudimentary models. 

Mathematically, each Boolean function has an output of 1 or 0 (True or false), depending 

on the input. For example, (A and B) would be equal to 1 if and only if both A and B 

were equal to 1. In contrast, (A or B) would be equal to 1 if either A or B, or both A and 

B, were equal to 1.  
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When these equations are used in a biological context, the values of 0 and 1 are decided 

in a somewhat arbitrary manner. 0 represents a “low” value of the component, while 1 

represents a “high” value of that component.  

Boolean networks consist of a series of variables that represent biological components, 

similar to ODE models. Boolean models utilize discrete time points, which represent 

events rather than absolute time points, and each variable has a discrete value usually 

represented as a 0 or 1. A Boolean network consists of N nodes, and each node is defined 

as a variable Xi. Each variable in the network is updated using the Boolean function, Bi : 

𝑋𝑖(𝑡) = 𝐵𝑖(𝑋1(𝑡 − 1), 𝑋2(𝑡 − 1) … 𝑋𝑛(𝑡 − 1)) 

Where Bi represents a Boolean function, that defines Xi (t) based on the state of the 

network at the time point (t-1). Several methods have been developed for interpreting the 

Boolean network, each using the same starting definition of a node.  

Synchronous Boolean networks are deterministic state functions: The next state of the 

network depends solely on the current state of the network. the state of the network. 

Under a synchronous updating scheme, every variable is updated depending on its 

relevant functions. Because a Boolean network has a finite number of states, and because 

the next state of the network depends only on the current state of the network it will 

eventually reach a steady-state behavior. If the network repeats the same path multiple 

times, it can be described as a limit cycle, and if the network reaches a single point then 

this can be described as a fixed point. Other updating schemes, such as asynchronous 

Boolean networks, may exhibit more complex attractor behaviors. 

4.2 Approach 
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In order to construct Boolean models from micro-array data, we utilize a series of 

statistical tests that determine genes that are differentially expressed in different 

conditions and cluster genes that have organism-wide similar expression patterns (inter-

gene similarities). Clusters that are not coherently expressed across tissues (intra-gene, 

inter tissue comparison) are removed on the basis that we cannot differentiate between 

vastly different tissue-specific expression and noise with limited data. Coherent 

expression requires the genes which are being clustered to correlate with each other, 

which should indicate they have similar circadian amplitude and phase. Each remaining 

cluster has its expression profiles averaged, binarized, and is used to infer a Boolean 

network. This result will construct a core network structure that is widely representative 

of the gene network across multiple conditions and can be used as a basis for more 

specific model construction. The result of this pipeline will allow for the direct 

identification of these relationships, which may help identify where data is too sparse to 

determine mechanistic relationships (such as where many functionally unrelated genes 

have similar expression profiles), or may be used to determine which genes are sensitive 

to attacks. This sensitivity analysis is capable of being used to identify potential drug 

targets or to reduce the number of variables in the system prior to collecting data for more 

detailed ODE models. 
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Figure 19: Overview of network construction. Differentially expressed genes are 

analyzed in the context of multiple conditions to determine which genes are the primary, 

universal drivers of network activity. 

4.2.1 Differential expression 

Differential expression is performed in order to determine which genes are differentially 

expressed in at least 1 condition. This is to ensure that all genes being considered are 

expressive on some minimal level. This serves primarily as a filtering step, and any genes 

rejected by differential expression should be rejected by the coherency test as well. 

Differential expression was done using the Wald-Wolfowitz Runs test, as described in 

Chapter 3, with the exception that if a gene was detected in any tissue type it was 

included in further analysis. The primary advantage of the runs test is that since it is 

wave-form agnostic and does not depend on variation from a population level average, it 

can be performed on any number of genes.  

4.2.2 Clustering 

Genes with highly similar expression profiles will become indistinguishable after 

binarization. This will lead to an increase in the uncertainty of the final model, and any 

small differences in the profiles of co-expressed genes may result in networks that show 



72 

 

 

 

the possible relationships of one but not both genes. Clustering allows for multiple genes 

to be grouped together based on their expression profiles, which will reduce the number 

of variables in the final model and allow for a clearer understanding of the underlying 

relationships within the network. 

Clustering has been used as a method for identifying similar gene expression profiles, as 

well as specifically used as a method of variable reduction in Boolean model 

reconstruction(Martin et al. 2007; Bonneau et al. 2006; Guthke et al. 2006; van Someren, 

Wessels, and Reinders 2000). A k-means clustering technique is used to group genes 

together by their expression profiles. In order to capture similarities across all conditions, 

the expression vectors for each condition are stacked. For example, if a gene has an 

expression profile with a length of T and has data from 12 different conditions, the gene 

will use a vector of length 12T in the k-means clustering. 

The resulting clusters are then tested for internal consistency, both between genes within 

the cluster but between each condition for each gene. 

 

Figure 20:Clustering of multiple genes into a single node. Left shows a functional node, identified in KEGG. Right 

shows the 48-hour trace of all 3 genes in the node across all 12 tissues. Although some time points do have significant 

noise, overall, there is significant agreement across all 12 tissues for all 3 genes. Given the limited data available, 

these 3 genes are indistinguishable from each other. 
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4.2.3 Coherency 

After inter-gene co-expression is used for variable reduction, an intra-cluster (and intra-

gene) approach is used. Each expression profile within a cluster is correlated with each 

other member of that cluster to calculate a distribution of pair-wise Pearson correlation 

coefficients. This correlation is done not only between genes but between the number of 

conditions for each gene (for example, CLOCK expression in the liver is correlated to 

CLOCK expression in the lung).  A background set of data is created by scrambling the 

clusters which were previously identified, and each cluster’s distribution is compared to 

the scrambled dataset using Tukey’s Honest Significant Difference test(Tukey 1949). If a 

cluster is found to be statistically similar to the scrambled data then the variance between 

conditions may either be due to noise or by local factors, but that cluster is not part of the 

core network structure of the pathway and is removed from the analysis. 

4.2.4 Constructing a Boolean model 

The classical Boolean network is a synchronous, deterministic model: All variables are 

updated at every time point. This means that at each time point it is known what variables 

are being updated, and at each time point, all variables are updated. 

There are two ways this can be modified: a model can be made asynchronous by having 

different variables updated at each time point. It can also be made non-deterministic, 

where the variable or variables updated at a time point are not known (i.e. they are 

selected randomly at each time point). 

A deterministic, asynchronous network will have each node updated in a specific, known 

order(Greil, Drossel, and Sattler 2007). In this way, not every node is updated at the same 

time, but the model output is the same every time the model is run. 
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There are multiple non-deterministic, asynchronous update schemes for Boolean 

networks. The most common are the random asynchronous method, wherein all nodes are 

updated in random order, and the general asynchronous method where a single node is 

randomly selected at each time step(Harvey and Bossomaier 1997). 

Other modifications to the update scheme can be made to accommodate biological 

realities. One of the most common is time delays, such as having a node’s value depend 

on the state of its regulating node from more than 1-time step previously(Klemm and 

Bornholdt 2003). 

Boolean networks can be developed using qualitative or quantitative knowledge. 

Relationships between biological components can be determined through literature-text 

searches, qualitative data, bioinformatics sources, or high-throughput assays. While 

literature searches may be labor-intensive, pathway databases such as KEGG or 

WikiPathways can provide the framework of a model very quickly(Kutmon et al. 2015; 

Kanehisa and Goto 2000). 

Whether it comes from literature or pathway databases, a qualitative understanding of a 

system can be interpreted as an interaction graph: a simple network of positive and 

negative connections between variables. The qualitative prior knowledge network (PKN) 

can then be systemically converted into a Boolean network, either following a simple 

algorithm or based on the modeler’s understanding of specific mechanisms. The most 

common rules for biological systems assume that all activators are related by OR 

functions and that any single inhibitor is sufficient to turn a node off (Krumsiek et al. 

2010; Flobak et al. 2015). These types of canalizing functions have been used to develop 

genetic regulatory pathway models, and are based on biological feasibility(Harris et al. 
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2002). Many researchers may rely on applying these rules to the PKN themselves, rather 

than relying on algorithms to develop the Boolean network based on the qualitative 

data(Lu et al. 2015; Chudasama et al. 2015). This may introduce some bias in the 

development of the network, especially if the relationships between genes appear 

complex or difficult to reduce to an AND or OR gate. 

Quantitative biological data needs to be processed before it can be used to develop a logic 

model. The first process is called binarization, where the protein or mRNA 

concentrations are normalized between 0 and 1. The concentration data is broken into two 

clusters, with the higher-valued cluster having a value of “1” and the lower value having 

a value of “0”. Methods for clustering data in this manner are well established(MacQueen 

1967). The largest drawback of these methods is the loss of continuous data and 

information and non-deterministic binarization methods producing different results from 

the same data set (Mircean, Tabus, and Astola 2002). Most Boolean models assume a 

step function between two variable states represented as a 0 and 1. If a species has more 

than 2 steady-state values, or the transitions between these two values are not rapid 

information about how a variable transitions from one state to the other may be lost 

during binarization. 

The second step of data processing involves removing redundant data points. If time 

course data is used, the kinetics of certain reactions may be slow enough that consecutive 

time points have the same value after binarization. In a Boolean network, if two 

consecutive time points are identical then the system has reached a steady-state. Because 

of this, time points that have the same values after binarization, but do not represent the 
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steady-state condition of the biological system, need to be removed(Erkkila, Korpelainen, 

and Yli-Harja 2007).  

4.2.5 Binarization 

After the gene groups to be used for model construction have been determined, each 

cluster is averaged. Values below the average are assigned a value of “0” and values 

above the average are assigned a value of “1”, creating a threshold value for each cluster 

based on its mean(Martin et al. 2007). Various methods for binarization exist for 

grouping data into “high” and “low” values. Thresholds can be determined in a number 

of ways, such as by determining an arbitrary fold change in expression levels(Serra et al. 

2007) or by observing discontinuities in step sizes between time points(Hopfensitz et al. 

2011). We utilized thresholding based on the z-scored data of each profile. Values that 

were above the mean were assigned a value of “high” and those below the mean were 

assigned a value of “low” (Figure 21). 

 

Figure 21: Example of thresholding binarization. The CLOCK gene expression data is binarized based on a threshold 

determined by the average expression of the gene. 
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4.2.6 Network inference 

The final Boolean model is constructed using the Best-Fit Extension algorithm(Boros, 

Ibaraki, and Makino 1998; Shmulevich et al. 2001). For the application of this algorithm, 

redundant time steps are removed before the network inference. A time step is considered 

redundant if X(t)=X(t+1) for all variable values. In this case, the time step t+1 is 

removed. Methods exist to predict how many bits should change before a transition is 

considered “significant”, however for our purposes, we only removed identical 

values(Erkkila, Korpelainen, and Yli-Harja 2007).  

The Best-Fit Extension was used because of its ability to learn networks even with 

insufficient or noisy data, while other algorithms (such as REVEAL(Liang, Fuhrman, and 

Somogyi 1998)) are only able to learn a network if it is error-free. The Best-Fit Extension 

has similar dynamic and topological accuracy compared to more recent algorithms 

developed(Ruz, Zúñiga, and Goles 2018; Simak, Yeang, and Lu 2017). These other 

algorithms can include neural networks, where each edge is given a weight and the 

weight of each relationship is learned over time(Ruz, Zúñiga, and Goles 2018), or by 

testing each gene connection individually in order to determine the likelihood of a direct 

or indirect relationship between genes 

For Best Fit, a maximum number of regulators (K) is selected to limit the computation 

time as well as limit the number of candidate equations which have the same error. For 

each variable XI a selection of regulators X’= (X1…Xn) where n≤K. A partially defined 

Boolean function pdBf(T, F) where T is the set of unique states of the set X’ at t when the 

variable Xi(t+1) is True, and F is set of unique states of the set X’ at t when the variable 

Xi(t+1) is False. The error associated with a set X’ is the number of inconsistencies within 
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the pdBf. The error is equal to the sum of the number of sets of values of the selected 

regulators X’ which do not properly define XI according to the data set available. The 

algorithm returns the smallest set X’ which has the smallest error, discarding larger sets.  

Figure 22 shows how the data is sliced into discrete time points. These slices are then 

used in the Best-Fit-Extension algorithm to infer potential Boolean relationships for each 

variable. In the case of Npas2, 6 unique Boolean equations are inferred. Several 

relationships may be qualitatively apparent (such Bhlhe41 being present in every 

potential function), and the equations may be used in a probabilistic model. However, 

clustering and inclusion of multiple data sources will reduce this number as discussed 

later. 

 

Figure 22: The raw expression data is sliced into transitions which are then used to infer Boolean equations 

(highlighted on the left). Based on these sliced transitions an exhaustive search finds the “best fit” Boolean equation 

which requires the fewest possible set of inputs. There may be equally likely possible equations (right), each of which is 

interchangeable with each other. This does not produce a single model, but rather a set of possible models. 

4.2.7 Sensitivity analysis 

The identification of components of a Boolean network which are both necessary and 

sufficient to describe the qualitative behavior of the network, such as oscillations or 

response to environmental factors, has previously been discussed in the literature. We can 

consider the subnetwork which is descriptive of the overall behavior of the model as the 
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“core” network, while nodes outside of this subnetwork can easily be reduced out of the 

model. Various structural methods to reduce networks without performing sensitivity 

analysis to the networks have been proposed, but generally are insufficient in preserving 

components of the network which may be affected by transient perturbations 

(Shmulevich and Kauffman 2004; Naldi et al. 2009; Saadatpour, Albert, and Reluga 

2013; Veliz-Cuba 2011; Chudasama et al. 2015). More traditional sensitivity analysis of 

Boolean networks generally involves perturbing the network and studying how many 

nodes are affected by the perturbation or how long it takes for the network to return to its 

attractor(Shmulevich and Kauffman 2004). One of the issues of these techniques is that 

not all nodes within a biological network are equally important(del Rio, Koschützki, and 

Coello 2009).  

Similar to the stuck-at-fault mutations in Chapter 2, sensitivity analysis is done by fixing 

the value of a single node. If this stuck at fault attack affects the value of any other node 

in the system, then that node is considered removable. After the node is removed, the 

attacks are performed again. In this way, nodes can be removed sequentially, so that a 

chain of nodes which have no impact on the network at large can be removed. Unlike 

Chapter 2, we do not know what nodes are physiologically important to the function of 

the network and therefore must assess the change in the output of each node within the 

network rather than only focus on the output node. 

4.3 Boolean Network of the Circadian system 

It is possible to infer networks from a single data set from a single tissue, but this presents 

numerous challenges. Figure 23 shows the result of the network inference, representing a 

single candidate network identified through the network inference. 
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Figure 23: One candidate Boolean network inferred from data from the liver tissue only, demonstrating the discovery 

of connected feedback loops from the processed data. Although there is a multitude of theoretical networks discovered, 

the presence of interconnected feedback loops is present in many of them. 

 

 

Overall, multiple genes had nearly identical expressions, and other molecules were noisy 

and inconsistent. This led to a total possible 10^16 candidate networks. It is possible to 

use these candidate networks as a single, probabilistic Boolean network, however, due to 

the noise present in some of the gene data within a single tissue it becomes unreliable to 

use all genes with only a single data set. Some of the relationships identified can be 

confirmed in previous literature (Blhe41 promotes Per1 and Per3), other relationships are 

either indirectly known (Rorc interacts with Clock which interacts with Blhe41, Rorc 

does not directly act on Blhe41) or unknown altogether. Interestingly, the candidate 

networks consistently return nested feedback loops, despite the multiple possible 

solutions based on the data. 

To improve accuracy and reduce noise within individual variables, multiple genes are 

clustered into gene groups. The data from genes grouped in this way are highly 
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correlated, although the genes are not necessarily functionally related. However, often 

these grouped genes do relate to one another. 

 

Figure 24: Network inferred from a single tissue, with clustering 

By grouping similar genes together, we limit the ability for noise to change 1 or 2 bits 

within our data, which may upset the inferred model or create uncertainty. After 

clustering the genes and inferring a network, there are 32 potential candidate networks. 

However, all 32 candidate networks reduce to the same, identical network seen in Figure 

24. Many identified clusters have known, functionally related genes (Clock, Npas2, and 

Arnt1) 

Incorporating multiple tissues require all or most of those data sources to have an 

expression of the genes being modeled.  
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Figure 25:Expression of the clock gene in multiple tissues 

 

 

 

Although there is a clear, consistent signal across all 12 tissue types, there are still “hot 

spots” of noise where a value of 1 may be changed to 0 or vice versa during binarization 

(Figure 25). As more relevant data sources are averaged together, the probability of noise 

being an influence on the output model decreases. 
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Figure 26: 12 clusters of genes are identified. Only 4 clusters have a positive correlation, indicating that the remaining 

clusters are either tissue-specific or too noisy to be considered for model development. 

Clustering was used to group multiple genes across all 12 tissues. The correlation of the 

genes in the cluster was then determined, with the distribution of pairwise correlation 

coefficients of each trace being considered how coherent the cluster is. If a cluster 

consists of a single gene it will have 12 traces, one from each tissue. If a cluster consists 

of two genes it will contain 24 traces: one from each tissue per gene grouped together. In 

this way, if only a single gene is contained in a cluster it may still not be coherent if that 

gene is expressed inconsistently across the 12 tissues. Our clustering analysis identified 

12 potential clusters, however most of these clusters were dominated by noise. Although 

some individual profiles within each cluster may have been circadian, overall genes 

within those clusters did not correlate with themselves across tissue types or with the 

other grouped genes. Of the 12 identified clusters, 4 of them show clear circadian patterns 

(Figure 26). 
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Figure 27: Pairwise correlate of each identified cluster. . Clusters D, I, K, and L are all identified as having a positive 

pairwise correlation with each identified trace. Cluster C appears qualitatively coordinated, however many traces were 

found to not correlate with each other. 

The pairwise correlations of each cluster tend to show an average correlation of close to 0 

(Figure 27). Clusters D, I, K, and L all have distributions of pair-wise correlation 

coefficients which have a greater median than the other distributions. This median 

correlation coefficient is compared using a Tukey’s Honest Statistical Difference test to 

detect which distributions have a higher correlation, which corresponds to a higher 

internal consistency of the cluster identified. 

 𝐶1(𝑡) = 𝐶4(𝑡 − 1) Equation 1 
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 𝐶2(𝑡) = 𝐶3(𝑡 − 1) Equation 2 

 𝐶3(𝑡) = 𝐶2(𝑡 − 1) Equation 3 

 𝐶4(𝑡) = 𝐶1(𝑡 − 1) ∨ 𝐶2(𝑡 − 1) ∨ 𝐶3(𝑡 − 1) Equation 4 

 

These 4 clusters were then used to construct a final model, which consists of Equations 1-

4. These equations form the network identified in Figure 28. One of the important factors 

concerning the model is its accuracy and proper representation of the system. All 

interactions between clusters are accurate when compared to the KEGG pathway, 

although some relationships are missing. 

 

Figure 28:Final inferred Circadian model constructed from multiple tissues. All green arrows represent causal 

relationships, and all identified relationships are biologically known. 

 

Certain interactions are well established, such as the functional link between Per1 and Per 

3, as well as the connection between Per and Cry genes. The identification of multiple, 

linked feedback loops within the circadian system is notable, and reflective of the known 

behavior of the circadian rhythm pathway. The relative importance of internal regulation 

of the clusters (such as any regulation between Dec1/2 and Per1/3) is missing. The 
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utilization of multiple data sources enabled the elimination of noise, however, given the 

limited diversity in expression within the pathway this resulted in an accurate, but small, 

model. Many of the groupings identified are also identified as functional groupings from 

Chapter 3: Dec1/2, Per1/Per3, Clock/Npas2. Cry2 and Cry1 were identified as being 

grouped separately, though, and our future work on exploring functional groups will 

emphasize exploring the phase relationships within groupings, both within tissues and 

between tissues. Future research for the model building will focus on exploring the use of 

knock out data sets to improve the detail within the model making process. Knock out 

experiments would be able to improve the detail within the model by changing the 

number of state transitions that exist for each node, improving the amount of data 

available. Knocks out experiments would also allow for mathematically identical genes to 

be assessed individually: If Per1 was knocked out and there was a change in expression 

in one gene in the Clock/Arn1/Npas2 cluster, then the function of Per1 may be separated 

from the function of Per3 and the rest of the cluster. Being able to quickly construct a 

model in this manner can be utilized in two primary ways. The model can be utilized 

directly, allowing for the identification of drug targets or combinations of drugs which 

may lead to novel emergent responses from the system(Lu et al. 2015). This is achieved 

by perturbing nodes within the network and identifying how the other species in the 

model react. If a perturbation leads to the activation or inhibition of a gene or protein 

critical to the progress of a disease then the perturbed node may be a valid drug target and 

can be explored in more depth. Alternatively, these networks can be used in a larger 

model building pipeline: being able to determine which species need additional data, or 

being able to perform sensitivity analysis to reduce the number of species in the model 
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before constructing more detailed ODE models may help guide the construction of those 

networks(Chudasama et al. 2015). 
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 Conclusions 

Herein we have presented three perspectives to identifying the relational structure of 

biological networks. Our evolutionary algorithm shows the origin of biological network 

formation, and how different factors lead to many disparate components forming a 

coordinated pathway (Chapter 2).  Our results have key biological implications in the 

study of evolution and how selective pressure for phenotypic behavior interacts with the 

more random mutations and non-adaptive forces which lead to generation to generation 

changes. Our study on health mouse transcriptomic data reveals a greater understanding 

of circadian and oscillatory signals within mammals (Chapter 3). There are clear tissue 

and organ-specific effects, with different genes and pathways being expressed in a 

circadian manner in different tissue types The presence of highly correlate as well as anti-

correlated genes within different tissues indicate that although many genes are not 

universal, there is still some level of shared expression within tissues. Most interesting is 

the view of functionally related genes still being expressed in different tissues within the 

same pathway, even when there appears to be a low overlap of specific genes. We were 

able to identify pathways within certain tissue types that were strongly tied with the 

physiological function of each tissue they were found in. This understanding of 

functional groups was extended into the creation of a model of the pathway, using the 

circadian rhythm pathway as an example. This highlighted the difficulty of using in-vivo 

data, as there was consistently high noise throughout the data set which brought unique 

challenges to inferring a Boolean model from the data (Chapter 4). Utilizing multiple data 

sources, as well as using variable reduction techniques can remove false relationships that 

were identified when the model was created from a data source. Further research into 
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using knock out data and potentially creating tissue-specific models will be done to help 

understand how different pathways are regulated and how circadian patterns result in 

different behaviors throughout the same organism. Understanding the circadian networks 

within complex metabolic and signaling pathways can be used to identify potential drug 

targets or for the purpose of building more detailed models of those systems by 

establishing a framework and identifying potentially unknown relationships that must be 

identified.  
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Appendix 

 

All pairwise correlations of shared genes 

Nearly all genes which are expressed in two or more tissues have similar signaling 

patterns across each tissue. This can be confirmed by measuring the correlation of shared 

genes between each tissue pair. If the signal of each shared gene was identical, then we 

would expect that there would be a single spike at “1”. We find that there is a tendency 

for the distribution of correlations to be positive, but there are some notable exceptions. 

Some tissue pairs have a bimodal distribution: a large peak close to 1 and a smaller peak 

closer to -1. Other tissue pairs have a nearly uniform or normal distribution about 0. 

These are unique because they indicate that although the tissues have some genes in 

common, those genes are not expressed in the same manner. This seems to be most 

common for developmentally distant tissue types (lung and muscle, liver and 

hypothalamus, liver, and lung). 

 

Figure 29: All tissue-to-tissue correlation comparisons of shared genes 
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Figure 29 continued 
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Figure 29 continued 


