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ABSTRACT OF THE DISSERTATION 

 

 

Speech-Based Activity Recognition for Medical Teamwork 

by Jalal Nazar Abdulbaqi 

Dissertation Director: Ivan Marsic 

 

Activity recognition is the process by which one or more people's actions and their 

environment are observed and analyzed to infer their activities. The activity recognition 

task includes recognizing the activity type and estimates its progression stage, from 

planning, through performance, to evaluation. This task is usually achieved by using 

different types of sensor modalities such as video, radio frequency identification (RFID), 

and medical device signals. To our knowledge, the speech data representing the verbal 

communication between individuals has not been used for activity recognition. In medical 

teamwork, some activities are conducted through verbal communication between the 

medical team. Consequently, for these activities, speech data can provide better 

information than video or other sensors. On the other hand, speech data present challenges 

that include fast and concurrent talking (known as “cocktail party problem”), as well as the 

ambient noise. Therefore, achieving speech-based activity recognition requires dealing 

with these challenges as well as finding the optimal model architecture for activity 

recognition. In this research, we develop deep neural networks that use and enhance the 

utterance-level speech stream to predict medical activity type. 

Our speech-based approach to recognize team activities is developed in the context of 

trauma resuscitation. We first analyzed the audio recordings of trauma resuscitations in 
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terms of activity frequency, noise-level, and activity-related keyword frequency to 

determine the dataset characteristics. We next evaluated different audio-preprocessing 

parameters (spectral feature types and audio channels) to find the optimal configuration. 

We then introduced a novel neural network to recognize the trauma activities using a 

modified VGG network that extracts features from the audio input. The output of the 

modified VGG network is combined with the output of a network that takes keyword text 

as input, and the combination is used to generate activity labels. We compared our system 

with several baselines and performed a detailed analysis of the performance results for 

specific activities. Our results show that our proposed architecture that uses Mel-spectrum 

spectral coefficients features with a stereo channel and activity-specific frequent keywords 

achieve the highest accuracy and average F1-score. 

We further propose an extensive analysis of keyword labeling. We investigated two 

approaches to create the keyword list: by the number of their existence in the dataset and 

by computing the keyword sensitivity for each activity. Besides, we examine using a 

different number of keywords per activity to find the optimum number. Also, we categorize 

the keywords based on their relationship to the medical activities to find a nonvaluable 

keyword to remove. This analysis assists us to increase the performance significantly. 

We present a broad analysis of the multimodal network for trauma activity recognition. 

That includes the audio, keyword, and fusion modules. We design and evaluate different 

networks and learning approaches for audio, keyword, and fusion modules. For the audio 

network, we design and examine two networks: the first network uses a convolutional 

neural network (CNN), while the second network, we replace several frontend CNN layers 

with two recurrent neural networks (RNN) to track the temporal information in the 
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sequential speech recordings. For the keyword network, we propose five networks for 

evaluation to extract the features from the transcript keyword input. For the fusion, we 

applied and examine two fusions approaches early fusion and late fusion. Evaluation results 

show substantial improvement in the accuracy and the f1-score over the baseline 

An important challenge that affects the performance introduced speech-based activity 

recognition approach, is the speech quality in general and the non-stationary noise in 

particular. An efficient speech enhancement system is required to address this issue. Most 

current speech enhancement models use spectrogram features that require an expensive 

transformation and result in phase information loss. Previous work has overcome these 

issues by using convolutional networks to learn the temporal correlations across high-

resolution waveforms. These models, however, are limited by memory-intensive dilated 

convolution and aliasing artifacts from upsampling. We introduce an end-to-end, fully 

recurrent neural network for single-channel speech enhancement. Our network is structured 

as an hourglass-shape that can efficiently capture long-range temporal dependencies by 

reducing the feature resolution without information loss. Also, we used residual 

connections to prevent gradient decay over layers and improve the model generalization. 

Experimental results show that our model outperforms state-of-the-art approaches in six 

quantitative evaluation metrics. 
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CHAPTER 1 

1. INTRODUCTION 

1.1 Overview 

Activity recognition is the process by which one or more people's actions and their 

environment are observed and analyzed to infer their activities. Activity recognition plays 

an important role in medical setups such as trauma resuscitation to reduce medical errors. 

Predicting the activities from different visual, audio, and sensory data resources assist the 

medical team to minimize the miscommunication and medical mistakes. However, activity 

recognition of a dynamic medical scheme is challenging owing to fast and concurrent 

events as well as noisy environments. Current research relies on video radio frequency 

identification (RFID), and signals from devices to identify the medical activity and its 

phase [1]–[3]. Visual and RFID resources provide free-hand, cheap, and high accuracy 

predictions for certain activities. However, these data resources have their limitations. 

Visual data resource occasionally relies on RBG camera, which can violate patient privacy. 

Also, several activities cannot be predicted because either there are no visual actions that 

can be observed or the activity is not related to a specific medical device that can be tagged 

with RFID. The verbal communication among the medical team is a valuable source of 

data for activity recognition for different reasons: first, certain activities are verbal-reliant, 

which can be predicated only by observing the speech data. Second, previous studies 

showed that fusing the speech with the video, RFID or transcripts increases activity 

recognition accuracy [5], [6]. Finally, a study [4] found that medical experts can predict 

resuscitation activities with 87% accuracy using only the verbal communication 
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transcripts. However, speech-based activity recognition facing certain challenges such as 

rapid and simultaneous speaking along with the noisy environment. 

 Hypothetically, predicting the activities from the speech dataset can be implemented 

using two approaches: direct recognition and using automatic speech recognition (ASR). 

Direct recognition is implemented by feeding acoustic features directly into the model to 

predict the activities. We employ this approach using our baseline model described in 

chapter two. Our evaluation results indicate poor performance with 30.8% accuracy and 

0.231 in average F1-Score. The second approach is implemented in two stages by 

recognizing the speech utterances transcripts using the ASR, then feeding this transcript 

into another model to predict the activities. Although, the study [4] shows that activity 

recognition from the transcripts achieves 69.1 accuracy and 0.67 average F1-Score, our 

ASR evaluation outcomes on the resuscitation dataset using two different architectures: 

attention-based seq2seq [5] and N-gram [6] achieved a high word error rate (WER) with 

100.3 and 75.8 WER, respectively. Therefore, we propose a new approach by introducing 

the keywords as an additional input. 

 In this work, we introduce the keyword approach as a replacement for the previously 

described methods. Our method relies on using one chosen word from the utterance as an 

additional input to the acoustic feature to predict the activities. We think that recognizing 

one word from the transcript is much simple than predicting the whole utterance. 

Developing this approach passes through three stages. Dataset preprocessing and features 

representation format, baseline model design and evaluation, and improving the 

architecture modules and keyword labeling. 
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 In the first, we analyze the trauma resuscitations dataset in terms of activity frequency, 

noise-level, and activity-related keyword frequency. We count 30 high-level activities, 

which are not distributed uniformly in the dataset. For example, there are 836 utterances 

labeled with extremity (E), while there are only 13 utterances labeled with relieve 

obstruction (RO). Therefore, we choose the first five high frequent activities and we label 

all other activities with the “OTHERS” label. Then, we evaluate the noise-level 

subjectively by listening to each trauma case individually to determine the clarity of 

medical team speech especially when they report the patient status, which indicates the 

activities. Finally, we analyze the keywords list that can assist the prediction of each 

activity. In this stage, we present the most-frequent keywords per activity approach to 

creating the keyword list, but later in the third stage, we create the keyword list by 

calculating the sensitivity for each keyword per activity. Next, we evaluated two audio 

features preprocessing parameters: spectral feature types and audio channels. We present 

an evaluation comparison between two acoustic feature spectrogram representation: Mel-

frequency cepstral coefficients (MFCC) and Mel-frequency spectral coefficients (MFSC). 

Our results show that MFSC performance is leading over MFSC with and without using 

the temporal derivatives (deltas). Our audio dataset is recorded using two microphones. 

This provides us the possibility to examine five different input channels configurations. 

Assessment findings indicate that combining the two channels always better than using one 

channel alone. Also, feeding the two channels into the model deliver better performance 

than getting the average of them. 

We then introduced a novel neural network to recognize the trauma activities using a 

modified VGG network that extracts features from the audio input. The output of the 
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modified VGG network is combined with the output of a network that takes keyword text 

as input, and the combination is used to predict activities. We provide an evaluation 

comparison between our audio module and several the-state-of-art classification models in 

which our model outperforms other models. 

In the next stage, we propose a wide analysis of keyword labeling. We investigated two 

approaches to create the keyword list: the current approach by the number of their existence in the 

dataset and the new approach by computing the keyword sensitivity for each activity. The new 

sensitivity approach outperforms the current keyword frequency in the evaluation results. Also, we 

examine using a different number of keywords per activity to find the optimum number. The 

evaluation results show that between 30 to 40 keywords per activity have higher accuracy 

concerning less than 30 or more than 40 keywords per activity. Also, filter the created keyword list 

based on their relationship to the medical activities by removing the nonrelated keywords., which 

assists us to increase the performance significantly. 

In addition to the keyword analysis, we present a broad analysis for the activity recognition 

multimodal network modules for the trauma resuscitation, which include audio, keyword, and 

fusion modules. We design and evaluate different networks and learning approaches for audio, 

keyword, and fusion modules. For the audio network, we design and examine two networks: the 

first network uses a convolutional neural network (CNN), while the second network, we replace 

several frontend CNN layers with two recurrent neural networks (RNN) to track the temporal 

information in the sequential speech recordings. The new RNN-CNN network surpasses the 

previous CNN network in the evaluation outcomes. For the keyword network, we propose five 

different networks for evaluation to extract the features from the transcript keyword input. Two 

models used fully connected networks (FCN); two models used CNN, and the last one used RNN. 

The difference between the two versions of the FCN and the two of CNN is in the network depth. 

The evaluation results showed that, in general, fully connected network networks outperformed 
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both RNN and CNN networks and the deeper FCN achieved the highest accuracy and the F1-Score. 

For the fusion, we applied and examine two fusions approaches early fusion and late fusion. Late 

fusion good improvement over the early fusion in the evaluation results in terms of accuracy and 

F1-Score. 

Ambient noise is one of the main factors that degrade the speech-based activity 

recognition performance. Therefore, we introduce a novel speech enhancement system to 

determine this challenge. Most current speech enhancement models use spectrogram 

features that require an expensive transformation and result in phase information loss. 

Previous work has overcome these issues by using convolutional networks to learn the 

temporal correlations across high-resolution waveforms. These models, however, are 

limited by memory-intensive dilated convolution and aliasing artifacts from upsampling. 

We introduce an end-to-end, fully recurrent neural network for single-channel speech 

enhancement. Our network is structured as an hourglass-shape that can efficiently capture 

long-range temporal dependencies by reducing the feature resolution without information 

loss. Also, we used residual connections to prevent gradient decay over layers and improve 

the model generalization. Experimental results show that our model outperforms state-of-

the-art approaches in six quantitative evaluation metrics. 

1.2 Organization 

These consist of three chapters. In chapter two, we introduce an extensive analysis of 

the dataset and feature preprocessing. We examine and evaluate different input 

preprocessing setup. Also, we present the first design for speech-based activity recognition, 

which we introduce the new keyword approach.  In chapter three, we provide deeper 

analysis for keyword labeling algorithm and multimodal architecture.  In chapter four, we 
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present the speech enhancement model for non-stationary noises. We provide a literature 

comparison between the previous research. Finally, a conclusion chapter that summarizes 

the thesis. 

1.3 Contribution 

Our contribution in this research can be concluded as follows: 

1 An analysis of real medical teamwork (trauma resuscitation) dataset characteristics to 

determine the constraints related to speech-based activity recognition. 

2 Audio preprocessing analysis to find the optimal parameters for designing the 

network. 

3 Design of an audio classification network and comparison of its performance to the 

state-of-the-art classification models using a trauma resuscitation audio dataset. 

4 Present a new keyword-based network approach for activity recognition that 

combines the audio stream and the most frequent words from the input transcript. 

5 An end-to-end multimodal architecture that uses speech utterances and related 

keywords to recognize trauma resuscitation activities. 

6 A keywords analysis to estimate each keyword weight for activity prediction. 

7 An analysis for each multimodal module: audio, keyword, and fusion networks. 

8 Introducing a new speech enhancement for non-stationary noises to improve the 

quality of the medical audio recordings.
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CHAPTER 2 

2. DATA ANALYSIS AND MODEL ARCHITECTURE 

2.1 Overview 

Activity recognition of a dynamic medical process such as trauma resuscitation is 

challenging because of fast and concurrent work as well as a noisy environment. Several 

current research approaches rely on video, RFID, and signals from medical devices to 

identify the medical activity type and its stages [1]–[3]. However, to our knowledge, there 

have been no approaches that rely on the speech from verbal communication of the team. 

Video and RFID data cannot provide information to recognize certain activities. For 

instance, in the trauma resuscitation, Glasgow coma score calculation (GCS) and airway 

assessment (AA) activities rely on visual examination or talking to the patient and can be 

recognized only based on verbal communication. We asked three medical experts to rate 

different modalities (speech, video, and RFID-tagged objects) as the best source for 

recognizing different ongoing resuscitation activities. In Table 2.1, we averaged their 

ratings for four activities for which speech was rated the highest as a prediction source had 

they been asked to do activity recognition. Besides, a study [7] found that medical experts 

can predict resuscitation activities with 87% accuracy using only the verbal communication 

transcripts. Furthermore, previous studies showed that fusing the speech with the video, 

RFID or transcripts increases activity recognition accuracy [4], [8]. 

Activity Audio (%) Video (%) RFID tag 

GCS Calculation 80 7.5 Non 

Airway Assessment 80 20 Non 

Medications 80 20 Partial 

CPR 65 45 Partial 

Table 2.1: Activities for which the medical expert rated highest speech as the modality 

for activity recognition. 
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We present a speech-based activity recognition design for dynamic medical teamwork 

and empirical evaluation. Our approach is based on using one representative keyword from 

the input utterance to the activity recognition network, in addition to the audio stream. This 

keyword belongs to the most frequent words list that has been calculated for each activity 

type. Besides, to determine the challenges related to system design and dataset limitations, 

we determined the dataset characteristics related to the activities (e.g. activity frequency, 

noise-level, and word frequency for each activity). Then, we analyzed different audio 

preprocessing parameters, such as feature types and input channels to find the best input 

feature setup. Using these findings, we designed an audio classification network based on 

the VGG model [9]. We evaluated our audio network and compared its performance with 

several state-of-the-art classification networks using the trauma resuscitation dataset. 

Finally, we evaluated our keyword-based network design using different settings for the 

network layers. We found that a keyword-based approach to activity recognition performed 

better than relying on manually-generated transcripts. The results show that our new 

keyword-based design increased the accuracy and the average F1-score by 3.6% and 0.184 

respectively compared to our audio network alone. 

2.2 Related Work 

In recent years, activity recognition for clinical purposes has been grown quickly. Most 

of the current research relies on the sensors and visual modalities such as passive RFID 

and the videos, respectively. While there are a few kinds of research works on audio and 

verbal information. 

RFID-based activity recognition considered an object-use detection problem. Early 

work compares different machine learning approaches as a binary classifier to predict the 
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medical object motion that related to certain activities [10]. A different strategy to place 

the RFID tags shows an improvement in the activity recognition accuracy [11], [12]. 

Recently, employing a convolutional neural network (CNN) as a multi-class classifier 

outperform the previous approaches [2]. Although, RFID has many advantages such as its 

small, cheap, and battery-free, the devices' radio noise and the limited number of activities 

that can be predicted to limit its accuracy and scalability. 

Visual-based activity recognition exploits the visual data from RGB or depth camera 

to map the medical team movement and actions into activities. Early research uses a single 

camera video recording with the Markov Logic Network model to predict the activities [1]. 

Recently, deep learning has been applied to visual-based activity recognition. The 

convolutional neural network has been applied for video classification using time-stacked 

frames with a slow fusion network to process the short-range temporal association of 

activities [13]. To address the short-range temporal limitation, a long short term memory 

network (LSTM) has been integrated with the VGG network with a region-based technique 

to generate an activity mask [14]. Despite the decent progress in utilizing virtual data, it 

has several limitations. The RBG camera can violate patient privacy and as in the RFID, 

not all activities can be predicted by tracking the medical team movement and actions. 

Text-based activity recognition employs the transcript of the verbal communication 

between the medical team to predict the activity type. Recent research applies a multi-head 

attention architecture [15] to predict a speech-reliant activity from the transcripts and the 

environmental sound [4]. The drawback of this approach is that the text modality is not 

available automatically, which required additional automatic speech recognition (ASR) to 

provide the transcripts. 
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The audio modality was used as an auxiliary to other modalities in works [4], [8]. These 

papers analyzed the audio ability to improve the accuracy of the activity recognition. In 

[8], the authors built a multimodal system to recognize concurrent activities by using 

multiple data modalities: depth camera video, RFID sensors, and audio recordings. Each 

modality processed and the features extracted by a separate convolutional neural network 

(CNN), and then all of them fused using Long Short-Term Memory (LSTM) network to 

the final decision layer. They did not provide quantitative analysis to distinguish the 

difference between each modality performance. In [4], the authors created a multimodal 

transformer network to process the transcribed spoken language and the environmental 

sound to predict the trauma activities. The quantitative analysis showed an average 

accuracy of 36.4 when using only audio, and the accuracy increased to 71.8 when using 

both modalities. 

2.3 Dataset Collection and Characteristics 

 The dataset was collected during 86 trauma resuscitations in the emergency room at a 

pediatric teaching hospital in the U.S. Mid-Atlantic region between December 2016 – May 

2017. We obtained approvals from the hospital’s Institutional Review Board (IRB) before 

the study. All data generated during the study were kept confidential and secure following 

IRB policies and Health Insurance Portability and Accountability Act (HIPAA). The audio 

data was recorded using two fixed NTG2 Phantom Powered Condenser shotgun 

microphones. These microphones pointed in two locations where the key members of a 

trauma team normally stand. The recordings were manually transcribed and each sentence 

was assigned the activity label by trauma experts. In this section, we present an analysis of 
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the following three characteristics of the dataset that can affect the activity recognition 

outcome: activity frequency, noise level, and word frequency for each activity.   

The fine-grained activities have been grouped into 30 high-level categories. Different 

categories occurred with different frequencies, which is the total number of utterances that 

include a given activity category for the 86 resuscitations cases (Table 2.2). As seen, the 

activities are not distributed uniformly over the dataset utterances. Some activities occurred 

# Activity Code Utterances 

1 Extremity E 836 

2 Back BK 701 

3 GCS Calculation GCS 610 

4 Face F 514 

5 Circulation Control CC 407 

6 Log Roll LOG 389 

7 C-Spine CS 380 

8 Medications MEDS 358 

9 Pulse Check PC 289 

10 Blood Pressure BP 256 

11 Ear Assessment EAR 246 

12 Eye Assessment EY 246 

13 Exposure Control EC 220 

14 Abdomen Assessment A 208 

15 Breathing Assessment BA 206 

16 Airway Assessment AA 197 

17 Head H 175 

18 Exposure Assessment EA 174 

19 CPR CPR 160 

20 Chest Palpation CP 150 

21 Breathing Control BC 137 

22 Pelvis Assessment PE 122 

23 LEADS LEADS 116 

24 Endotracheal Tube Endorsement ET 109 

25 Neck Assessment NECK 96 

26 Intubation I 50 

27 Genital Assessment G 44 

28 NGT NGT 30 

29 Bolus B 18 

30 Relieve Obstruction RO 13 

 Total activity-labeled utterances  7457 

Table 2.2: Resuscitation activities with most utterances. 
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very frequently, while others were rare. There are several reasons for this variation. First, 

the length of conversation between the medical team is different for each activity. Some 

activities require several inquiries and reports, while other activities may have s single 

sentence to report the patient's status. Second, each patient required different evaluation 

and management activities based on the patient's injury, demographics, and medical 

situation.  

Finally, as mentioned above, the activity categories are a high-level group that 

sometimes includes several low-level activities (Table 2.3). Hence, when an activity group 

(e.g. Extremity Assessment) has several low-level activities, this tends to correspond to 

more verbal communication among the medical team. As a result of this non-uniform 

activity distribution, it is hard to train a neural network model for the activities that had 

associated least-frequent utterances even for activities that cannot be recognized from other 

modalities (e.g. Airway Assessment) because of insufficient data to train and evaluate the 

model. Therefore, we choose the top five activities that had associated most-frequent 

High-Level Activity Low-level Activity 

GCS Calculation 

Verbalized 

Motor Assess 

Verbal Assess 

Eye Assess 

Extremity Assessment 

Right Upper 

Left Upper 

Right Lower 

Left Lower 

Medications Medications 

Airway Assessment Airway Assessment 

CPR 

Chest comp 

Shock 

Defib pads 

ID 

Table 2.3: Four high-level activities and their related low-level activities. 
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utterances from Table 2.2 for our experiments: Extremity, Back, GCS Calculation, Face, 

and Circulation Control. All other utterances that do not belong to these activity categories 

are assigned to the “OTHER” category. 

The second important dataset parameter that can influence the recognition network 

performance is the ambient noise. The resuscitation environment presents several 

challenges to speech-based activity recognition. Concurrent speakers (“cocktail party” 

problem), rapid speech and ambient noise adversely affect the speech quality and reduce 

activity recognition accuracy. To estimate the clarity of the medical team speech, we 

performed a subjective evaluation of the trauma resuscitation dataset. In this evaluation, 

we categorized the noisiness of audio recordings into three levels based on the human 

ability to understand the reports of patient vital signs and examination results. Three 

medical experts worked on this assessment listening to the 86 resuscitation cases. Each 

case had been labeled with one of the three noise categories (low, medium, and high) and 

the average is shown in Table 2.4. As seen, about 65% of cases were labeled as low-noise, 

while about 19% and 16% were labeled as a medium- and high-level, respectively. Thus, 

about 35% in our dataset are either unintelligible or it is hard to understand what the 

medical team said during the resuscitation, which is challenging for the neural network 

performance. To study the effect of the ambient noise on the recognition of our selected 

activities, we calculated the number of noisy cases for each chosen activity (Figure 2.1). 

Noise Level Number of Cases 

High 14 

Medium 16 

Low 56 

Total 86 

Table 2.4:  A subjective evaluation of noise for all 86 resuscitation cases by three 

raters. 
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Figure 2.1 shows the fraction of the resuscitation cases by their noise level for each activity. 

As seen, the noise is distributed almost uniformly among the activities in our experiment. 

Therefore, it is not expected to affect some activities more than others in terms of prediction 

accuracy. 

The patient medical status keywords are the most important information of the medical 

team verbal communication in the trauma resuscitation, which sometimes indicates the 

activity explicitly (e.g. GCS in Figure 2.2). To find the priority of the keywords concerning 

the related activities, first, we filtered most of the stop words then, we calculate the most-

frequent words for each activity (Figure 2.2). As seen, most of the shown keywords either 

have a direct relationship with the activity (e.g. “spine” for BACK) or have indirect 

meaning such as the body position (e.g. right or left for extremity). Also, we can see that 

 

Figure 2.1:  Cases noise-level distribution for each activity. 

E BK GCS F CC

High Medium Low

 

Figure 2.2:  The most frequent unique words for each activity. 
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several words have no relationship with the activities, but they are repeated many times as 

a part of the inquiry response (e.g. “okay”) or just part of a repeated sentence (e.g. “get”). 

However, our intuition is that as long as these words are repeated frequently for certain 

activity then these words are valuable for the neural network to predict the correct activity. 

Hence, we hypothesize that these keywords can be combined with the audio stream and 

fed into the proposed network to increase the activity recognition accuracy. Extracting 

these keywords can be done automatically using a word-spotting model. We believe that 

extracting such keywords is easier and more efficient than recognize the whole utterance 

transcripts using an ASR system. In this work, we evaluated the concept of combining 

keywords and the audio stream to improve activity recognition performance. Although 

evaluating a word-spotting model is not part of this work, we will consider that in our future 

research. 

2.4 Data Preprocessing and Configuration 

The main input data is the utterance-level audio stream. Also, we consider using one 

keyword from the most frequent words list as an additional input. The keyword input is 

encoded as a one-hot one-dimension vector. Whereas, the audio stream is converted into a 

spectrogram. Spectrogram representation reduces the dimension of the data and provides 

better information representation [16]. In this section, we present a description for the data 

preprocessing and an investigation for two parameters variation effect on the activity 

recognition outcomes: feature type and input channels. 

The keyword feature represented as a one-hot vector of size 78 to represent the total 60 

words list (10 keywords per activity). The one-hot vector size had been incremented by 0.3 

to reduce the one-hot hash function collision probability. The audio recordings were 
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sampled at 16MHz. We used 40 filter banks for the short-time Fourier transform with a 

2048 window, 25% overlap, and Hann window type. The audio stream utterances had 

different time lengths (Figure 2.3). The average utterance time duration was 2.42 seconds 

with a standard deviation of 2.28. Our neural network required a fixed input length, which 

can be implemented in several ways. First, we could choose a small input size that most of 

the utterances have such as 1-2 sec or 2-3 sec, but this would reduce the total number of 

samples. Second, we could specify a fixed length such as the average value and then 

truncate all the longer utterances, but our experiments showed that the lost information 

would significantly reduce the performance. Therefore, we resized all the utterance lengths 

to be 20 seconds by zero-padding the beginning and end of each utterance. The final feature 

map length was 600. Following the work [4], we segmented the input feature map into 10 

frame sub-maps to avoid processing distant audio frames. The input sample shape for every 

single channel was (60, 40, 10). 

 
Figure 2.3:  Utterance-level audio length distribution. 
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We examine two types of audio spectrogram feature: Mel-frequency cepstral 

coefficients (MFCC) and Mel-frequency spectral coefficients (MFSC). MFCC feature 

extraction has been successfully applied in speech recognition [17] and audio classification 

[18]. However, MFCC includes the discrete cosine transform (DCT), which can flaw the 

locality especially for the convolutional neural network (CNN) [19]. Therefore, several 

audio classification types of research use MFSC instead [20]. Furthermore, we inspect the 

effect of adding the dynamic features: first and second temporal derivative (delta and the 

delta-delta coefficients respectively). Adding the dynamic features coefficients can 

increase the accuracy and the robustness of speech recognition [21]. Table 2.5 shows the 

evaluation results for both feature types and their derivatives. Results show that MFSC 

features dominance over the MFCC with and without their derivative. The reason for that 

is the locality issue produced by DCT of MFCC transform that we discussed above. Also, 

we notice that adding the derivatives to the MFCC feature type increases the accuracy 

slightly. While adding the derivatives for the MFSC decades the accuracy. Therefore, we 

conclude that static MFSC is the best feature type for our dataset and architecture, which 

we will consider it for the next experiments. 

As mentioned in section 2.3 Dataset Collection and Characteristics, our audio data is 

recorded using two microphones. Consequently, each audio recording includes two 

channels. We used the two channels to design five different configurations (Table 2.6). In 

Feature type Accuracy Average F1-score 

MFCC  
Static 26.0 0.162 

Dynamic (∆, ∆∆) 27.7 0.200 

MFSC  
Static 30.8 0.231 

Dynamic (∆, ∆∆) 30.0 0.210 

Table 2.5: The accuracy and average F1-Score for different features types. 
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the first and second setups, we include either channel one or two separately. In the third 

setup, we double the dataset by feeding both channels as a distinct sample. In the fourth 

and fifth setups, we use both channels together either by sum and average them into a single 

channel or feed them both as a two-channels. Table 2.7 shows the accuracy and the average 

F1-score for each one of these five input setups. From the results, we notice that the last 

two setups, when the two channels are combined, the accuracy is better than the first three 

setups when the input is one channel only. The reason is that labels transcribed using both 

channels, so when we omit one of input channels some utterances may have wrong labels, 

and consequently the neural network fails to predict the activity on the evaluation dataset. 

While combining the two-channels have higher accuracy. However, average the two 

channels have slightly lower accuracy than including both channels. Thus, in the next 

evaluation experiments, we consider the configuration that using the static MFSC feature 

type and feeding the network with both channels. 

Input Configuration Number of Samples Input Dimension 

CH1 only 3557 (60, 40, 10) 

CH2 only 3557 (60, 40, 10) 

Unite CH1 with CH2 3557×2 (60, 40, 10) 

(CH1 + CH2)/2 3557 (60, 40, 10) 

Combine CH1 & CH2 3557 (60, 40, 20) 

Table 2.6: Input channel configuration. 

Input channels Accuracy Average F1-score 

CH1 only 22.2 0.106 

CH2 only 22.9 0.121 

Unite CH1 with CH2 22.6 0.115 

(CH1 + CH2)/2 30.2 0.217 

Combine CH1 & CH2 30.8 0.231 

Table 2.7: The accuracy and average F1-score for different input channels 

configurations. 
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2.5 Model Architectures 

We consider the speech-based activity recognition as a multi-class classification 

problem. In this section, we first present a modified VGG [9] network for the audio branch, 

which we used to evaluate various configurations discussed in section 2.3. Then, we 

introduce the new architecture that fuses the output of the proposed audio network with the 

keyword network to predict the activities. 

2.5.1 The Audio Network 

Previous neural network architectures designed for image processing have been 

adjusted successfully to work on audio processing [20], [22] such as VGG [9], ResNet [23], 

and DenseNet [24]. The VGG network shows a better performance compared with other 

architectures for audio classification applications [20], [25]. Because deeper CNN 

networks are easily overfitting on small size datasets. We adapted the VGG network based 

on the trauma dataset (Figure 2.4). Our modification includes adding a batch normalization 

[26] to the convolutional neural networks (CNN) to speed up the training operation and 

assist the regularization. We also use the dropout [27] and Gaussian noise to prevent 

overfitting and increase generalization. For the activation function, we use rectified linear 

units (ReLUs) and the last classification layer includes the global average pooling followed 

by a softmax activation function to calculate the prediction probabilities. 

2.5.2 Keyword and Fusion Networks 

As shown in Figure 2.5, we designed an architecture that consists of a keyword 

network, an audio network, and a fusion network. We used a fully connected network 

(FCN) layer with the ReLU activation function to generate the keyword feature 

representation. We empirically evaluated different sizes and the number of layers to find 
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the optimal network configuration (Table 2.8). The results show that using a single FCN 

layer with size 128 achieved the best performance. Increased number of FCN layers 

(deeper) or the number of FCN layer units (wider) decreased the performance. The fusion 

network concatenated the audio network output features (a) and the keyword module 

outputted features (w) into one vector (y): 

 
y = γ(concat((w), (a))) (2.1) 

Input 60 × 40 × 20 

5 × 5 CNN(128) + BN + ReLU 

3 × 3 CNN(128) + BN + ReLU 

2 × 2 Max-Pooling 

Gaussian-Noise(1.0) 

3 × 3 CNN(256) + BN + ReLU 

3 × 3 CNN(256) + BN + ReLU 

2 × 2 Max-Pooling 

Gaussian-Noise(0.75) 

3 × 3 CNN(512) + BN + ReLU 

Dropout(0.3) 

3 × 3 CNN(512) + BN + ReLU 

Dropout(0.3) 

3 × 3 CNN(512) + BN + ReLU 

Dropout(0.3) 

3 × 3 CNN(512) + BN + ReLU 

Dropout(0.3) 

2 × 2 Max-Pooling 

Gaussian-Noise(0.75) 

3 × 3 CNN(1024) + BN + ReLU 

Dropout(0.5) 

1 × 1 CNN(1024) + BN + ReLU 

Dropout(0.5) 

1 × 1 CNN(6) + BN + ReLU 

Gaussian-Noise(1.0) 

Global-Average-Pooling 

6-way Softmax 

Figure 2.4: Our audio network architecture. BN: Batch Normalization, ReLU: Rectified 

Linear Unit. 
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Where ,  and γ are the fully connected networks layer (FCN), and y is the output of 

the fusion, which includes another FCN and ReLU activation function to generate the high-

level feature representation for the final softmax layer classification (Figure 2.5). We 

compared different fusion methods such as attention, but it did not perform well due to 

audio and keyword miss-alignment issues. This issue will be addressed in our future work. 

FCN (128)+ReLU

Concatenate

FCN (128)+ReLU

FCN (32)+ReLU

Softmax

FCN (6)

Audio 

Spectrogram

Keyword list 

(word-spotting)
Audio Network

Fusion

Audiokeyword

 

Figure 2.5: Final model archetecture after adding the keyword features. FCN: Fully 

connected Network, ReLU: Rectified Linear Unit. 

Audio + Keyword Accuracy %  Average F1-Score  
(1-layer, 64) 44.9 0.412 

Deeper (2-layers, 64) 44.9 0.409 

Deeper (2-layers, 128) 44.8 0.409 

Wider (1layer, 256) 44.7 0.409 

(1-layer, 128) 45.4 0.415 

Table 2.8: Results comparison between different keyword and fusion modules layer 

structure. 
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2.6 Experiments Setup and Results 

We trained and evaluated the proposed model on the trauma resuscitation dataset. We 

used the utterances from the five most frequent activities and the total number of utterances 

was 3549. The dataset was randomly shuffled and split into 80% and 20% as a training set 

and a testing set, respectively. Each sample was considered independently, which contains 

an utterance-level audio stream, the related one keyword, and the correspondence activity 

label assigned by the trauma experts. Due to the small data size, we applied the fivefold 

cross-validation. We trained all networks together as end-to-end using the early fusion 

approach. We use Adam [28] optimization with 0.001 as the learning rate and categorical 

cross-entropy loss function. Each experiment took about two hours. We implemented all 

the experiments using Keras API of the TensorFlow library [29] with two Nvidia GTX 

1080 GPUs.   

Figure 2.6 shows the hypothetical architectures diagrams for speech-based activity 

recognition. The first design (Figure 2.6 (a)) integrates an automatic speech recognition 

Automatic Speech 

Recognition (ASR)

Text-Based 

Activity Recognition

Audio Stream

Activity Type

Speech-Based 

Activity Recognition

Audio Stream

Activity Type

Speech-Based 

Activity Recognition

Audio Stream

Activity Type

Keyword list 

(word-spotting)

a. b. c.  

Figure 2.6: Speech-based activity recognition proposed architectures. a. an activity 

recognition that uses the predicted transcripts from automatic speech recognition. b. 

activity recognition that predict the activity type directly from the audio. c. same as in (b) 

with an additional one keyword input comes from word-spotting. 
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(ASR) module with a text-based activity recognition (TAR) module. The overall 

performance of this design highly depends on both modules. Although the previous TAR 

model [4] achieves 69.1% accuracy and 0.67 average F1-Score on a resuscitation dataset. 

Their model used the human transcripts and assumed the ASR system can achieve human 

parity. Unfortunately, our ASR experiment results show a high word error rate (WER) on 

the resuscitation dataset using two different architectures: attention-based seq2seq [5] and 

N-gram [6], which achieved 100.3 and 75.8 WER, respectively. We believe the bad audio 

quality caused by the distant-talking, trauma noise, fast speaking rate, and concurrent 

speakers damaged the overall activity recognition performance, which makes the model 

infeasible. The second architecture predicts the activity type directly from the audio (Figure 

2.6 (b)). Our evaluation result shows that the model achieves 30.8% accuracy and 0.231 in 

average F1-Score. Compared with the above two architectures, the proposed model (shown 

in Figure 2.6 (c)) achieves 45.4% accuracy and 0.415 in F1-score, which outperforms the 

previous approaches that using the audio directly or recognizing the full utterance 

transcript. The comparison result demonstrates the effective and efficiency of using the 

keyword as an additional feature to the speech-based activity recognition architecture. 

We further compare our audio network with other state-of-the-art classification 

architectures implementations such as VGG16-19 [9], DenseNet [24], ResNet [23] and 

NASNetMobile [30] (Table 2.9). The result shows that our audio network outperforms 

others in terms of accuracy and the average F1-score by a range of 1.3% – 8.9% and 0.02 

– 0.129, respectively. This is because the general deep architectures usually suffer from 

overfitting when applied to audio processing [20]. 
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We made a quantitative analysis by comparing the performance of three different 

models using different inputs: audio-only, keyword only, and both audio and keyword 

(Table 2.10). The result shows that using both audio and keyword features outperforms 

using audio-only and keyword only, which proves our hypothesis that the keyword can 

boost the performance of the audio-only model, but not enough to replace it.  

Table 2.11 shows the F1-Score for each activity by different modalities. We notice that 

the audio network has better performance on Extremity and Back activity than GCS, Face, 

and Circulation Control. Different factors can cause these variations: imbalanced dataset 

and the noise level. As seen in Table 2.2, the number of utterances that include each activity 

decreased by 100 from Extremity to Circulation Control exhibits an unequal distribution 

between the activities. This imbalance pushes the neural network classifiers to get biased 

towards the high-frequent activities more than low-frequent activities. For the noise level, 

Fig. 2.1 shows GCS and Face have relatively higher noise than other activities, which may 

impact the prediction performance. The third column of Table 2.11 shows the F1-Scores 

Classification Models Accuracy % Average F1-score 

NASNetMobile [24] 21.9 0.102 

VGG19 [14] 27.7 0.182 

DensNet [17] 28.2 0.190 

ResNet [16] 28.0 0.196 

VGG16 [14] 29.5 0.211 

Our Network 30.8 0.231 

Table 2.9: Results comparison between our network and other classification models. 

Modality Type Accuracy %  Average F1-score  
Audio only 30.8 0.231 

Keyword only 38.3 0.344 

Audio + Keyword 45.4 0.415 

Table 2.10: Results comparison between keyword and audio models. 
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for each activity for the final model that fuses both the audio stream and the keyword. We 

can see that the scores are boosted almost for all activities. 

2.7 Summary 

In this chapter, we introduce a new model for the speech-based activity recognition and 

an empirical assessment on a trauma resuscitation dataset. In our design, we extend the 

input features to integrate a keyword, a one-word from the most frequent words list that 

included in the utterance, to the audio stream. The new structure shows a substantial 

increment in the accuracy and the average F1-score 3.6% and 0.184 respectively over the 

audio network alone. Due to the high word error rate of the ASR output caused by the fast 

speaking rate, concurrent speakers, and high noise in trauma resuscitation, our approach 

relies on an additional one keyword instead of the entire ASR generated utterance is more 

efficient.  Also, we examine the trauma resuscitation audio constraints such as activity 

recurring, noise level, and most frequent words. In the evaluation results, we found out that 

the imbalance of the activities in the trauma resuscitation, as well as the noise, reduced the 

audio network accuracy. Also, we explore audio stream preprocessing factors such as audio 

channels setup and features type. We found that the static MFSC feature and stereo channel 

configuration has the best performance. We introduce a new audio network based on the 

Activity 
F1-score  

Audio Keyword Audio + Keyword 

Extremity 0.366 0.532 0.524 

Back 0.448 0.375 0.582 

GCS Calculation 0.124 0.314 0.313 

Face 0.054 0.389 0.385 

Circulation Control 0.045 0.242 0.255 

OTHER 0.351 0.212 0.429 

Table 2.11: The F1-Score for each activity for different modalities. 
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VGG model and provide an evaluation comparison with various classification 

architectures. Although our model has relatively fewer layers concerning other classifiers, 

it overperforms these models. Introducing the keyword features is promising, but we still 

need further experiments on integrating the word-spotting models with the current 

architecture to have a more accurate evaluation. Also, we will examine more architectures 

for the fusion and keyword modules. 
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CHAPTER 3 

 

3. KEYWORD ANALYSIS AND MULTIMODAL NETWORK TUNING 

3.1  Overview 

Automatic activity recognition during medical teamwork can help reduce medical 

errors and miscommunication during patient care. Activity recognition in settings such as 

trauma resuscitation is challenging for several reasons, including crowded and noisy 

workspace, concurrent and fast-paced activities. Speech signals include concurrent speech 

and loud ambient noise and patient discomfort. Current research on activity recognition 

mostly relies on visual and sensory data resources to predict human activities [1]–[3]. 

However, these sources do not apply to the activities that produce no distinct visual cues 

or do not require medical devices. Examples include the activities where the providers rely 

on the conversation among them. In these cases, verbal communication associated with 

these activities can serve as a valuable source of data for activity recognition. Recently, 

research on predicting activities from speech transcripts [7] and audio recordings [4] 

showed promising results, although the ambient noise and concurrent speech impaired the 

system performance. Instead of relying on whole transcripts as input text modality, we 

pursued an alternative approach that uses only one keyword per utterance. These keywords 

are used together with the speech signal as inputs to our utterance-level activity recognition 

system. 

Our multimodal network consists of three modules: the audio network, keyword 

network, and the fusion network. For the audio network, we designed and assessed two 

approaches to extracting the features from the speech signal. The first design employed a 

convolutional neural network (CNN) using the VGG [9] design. Our second design 
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replaced several frontend CNN layers with two recurrent neural networks (RNN) to track 

the temporal information in the speech recordings. For the keyword network, we evaluated 

five configurations for extracting the features from the keyword input obtained from a 

manually-generated transcript. We compared two fusions approaches early fusion and late 

fusion. In addition to the modeling, we performed an extensive analysis of our transcript 

dataset for keyword selection. The transcripts of verbal communication during 86 

resuscitations had each utterance labeled with one or more resuscitation activities. We 

investigated two approaches to create the candidate keyword lists for different activities. 

The first approach was based on the frequency of occurrence of words in utterances labeled 

with the given activity. The second approach relied on computing the sensitivity score of 

each keyword relative to a given activity. Also, we explored using a different number of 

keywords per activity to find the optimum number. During the final step, a researcher 

familiar with trauma resuscitation evaluated the candidate keywords based on their 

perceived relevance to the given medical activity and removed the low-value keywords. 

This exploration yielded a significant increase in activity-recognition performance.  

3.2   Related Work: 

Recently, recognizing human activities using different modalities, such as video or still 

images, has become an active research area. Most of the current approaches rely on visual 

features or wearable sensors. Visual sensors, such as an RGB camera or depth camera, 

provide a powerful source of data that captures people’s actions without obstructing their 

work. Li et al. [14] developed a method to detect the object location from video frames to 

assist the activity recognition. In [31], a multimodal network was developed to detect the 

workflow phase during trauma resuscitation process. Vision-base approaches introduce 
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privacy-related issues, and many medical activities do not have a distinct visual 

appearance. Passive RFID is another common approach relies on tagging certain medical 

devices and tracking their movement for recognition of the associated activities [2], [12]. 

The limitations of passive RFID include the limited types of activities that use taggable 

devices and the need for continuous tagging of disposable objects. Speech and language 

have been used as additional sources of data for activity recognition. In [8], the authors 

built a multimodal system to recognize concurrent activities by using multiple data 

modalities: depth camera video, RFID sensors, and audio recordings. A separate 

convolutional neural network (CNN) was used to extract features for each modality, and 

the features were fused using Long Short-Term Memory (LSTM) network in the final 

decision layer. This research did not quantify the differences between the performance of 

different modalities. In [4], the authors created a multimodal transformer network to 

process manually-transcribed spoken language and the audio sound to predict trauma 

resuscitation activities. Their quantitative analysis showed average accuracy of 36.4% 

when using only audio. The accuracy increased to 71.8% when using both modalities. The 

main drawback of this work is that it was relied on manually-generated transcripts, which 

is not feasible for contemporaneous use of the activity recognition system to detect human 

errors and provide alerts. Although our system currently also relies on manually extracted 

keywords, we believe that keyword spotting is a significantly simpler problem than 

automatic speech recognition, and we are currently working on automatic keyword 

spotting. 
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3.3   Dataset Preprocessing 

3.3.1   Dataset Collection and Analysis 

The dataset was recorded during 86 trauma resuscitations in the emergency room at a 

pediatric teaching hospital (Children's National Medical Center)) between December 2016 

– May 2017. We obtained approvals from the hospital’s institutional review board (IRB) 

before the study. All data generated during the study were kept confidential and secure 

following IRB policies and health insurance portability and accountability act (HIPAA). 

The audio data was recorded using two fixed NTG2 Phantom Powered Condenser shotgun 

microphones. These microphones pointed in two locations where the key members of a 

trauma team normally stand. The recordings were manually transcribed, and each utterance 

transcript was labeled by its related activity by trauma experts. For this research, we choose 

five activities that had associated most-frequent utterances in the dataset: Extremity (E), 

Back (B), Glasgow Coma Scale Calculation (GCS), Face (F), and Circulation Control 

(CC). All other utterances that do not belong to these activity categories are assigned to the 

“OTHER” category (Table 3.1).  

Our input data is the utterance-level audio stream and one text keyword selected from 

the keyword list. The audio stream is converted into a spectrogram. Spectrogram 

representation reduces the dimension of the data and provides better information 

# Activity Code Utterances 

1 Extremity E 836 

2 Back BK 701 

3 GCS Calculation GCS 610 

4 Face F 514 

5 Circulation Control CC 407 

6 Others OTHERS 4389 

Table 3.1: Resuscitation activities with most utterances. 
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representation [16]. The audio recordings were sampled at 16MHz. We used 40 filter banks 

for the short-time Fourier transform with a 2048 window, 25% overlap, and Hann window 

type. Our neural network required a fixed input length and since 99% of the utterance has 

a length equal or less than 20 seconds, we resized all the utterance lengths to be 20 seconds 

by zero-padding the beginning and end of each utterance. However, we empirically test 

several input lengths and 20 seconds showed the best performance. The final feature map 

length was 600. Following the work [4], we segmented the input feature map into 10 frame 

sub-maps to avoid processing distant audio frames. The input sample shape for every single 

channel was (60, 40, 10). We use the Mel-frequency cepstral coefficients (MFCC) without 

their temporal derivatives (deltas coefficients) because our empirical experiments show 

that this representation has the best performance. 

The keyword input is encoded as a one-dimensional one-hot vector. The keyword one-

hot vector size depends on the total number of keywords in the list. Also, the input vector 

size is incremented by 0.3 to reduce the one-hot hash function collision probability.  For 

example, the vector size of 234 represents a 180 keywords list (30 keywords per activity).  

3.3.2   Keyword Labelling 

Keyword labeling involved selecting a word from each utterance as a second input, in 

addition to the audio sound, to improve the activity prediction. We did keyword labeling 

in two stages: creating the keyword list and specifying the keyword from the utterance. 

A keyword list is a group of words chosen for each activity type to increase activity 

recognition accuracy. To create the optimum keyword list for given activity recognition, 

we needed to decide on two factors: (1) the keyword selection method, and (2) the number 

of keywords in the list associated with each activity type. For keyword selection, we 
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experimented with two methods (Table 3.2). The first method selected the most-frequent 

keywords (MFKW), based on ranking all the words in the dataset by their frequency of 

appearance across all the transcripts concerning each activity. The second method was 

based on keyword sensitivity (KWSN), calculated for each word that appeared in all the 

utterances associated with a given activity type. The keyword sensitivity represents the 

prediction score of the activity if the keyword was present, computed as:  

 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝐴

𝐶
 (3.1) 

where A denotes the number of all utterances in the dataset related to the given activity 

that contained the given keyword, and C denotes the number of all utterances related to the 

given activity. Table 3.3 shows a sample of keywords and their sensitivity values for six 

activities. We created the sensitivity-based keywords list for each activity by ranking the 

keywords based on their sensitivity value. The KWSN columns in Table 3.2 show the ten 

keywords with the highest sensitivity values for the six activities. Our system described in 

Section Error! Reference source not found. performed significantly better using the 

keywords selected based on sensitivity, rather than based on word frequency (Figure 3.1). 

# 
Extremity Face Back 

GCS 

Calculation 

Circulation 

Control 
OTHER 

MFKW KWSN MFKW KWSN MFKW KWSN MFKW KWSN MFKW KWSN MFKW KWSN 

1 right right blood blood pain spine gcs gcs iv iv okay hi 

2 left left mouth right spine ok eyes eye io cc right ok 

3 okay ok right mouth okay step uh hi access io gonna go 

4 leg leg uh head yes pain squeeze yes right access get right 

5 lower go left nare back ye okay eyes get go alright us 

6 knee okay nares ear step offs open open left get roll okay 

7 upper hurt stable us hurt okay opening us okay right look get 

8 extremity lower head left offs hurt hand go got ok left lateral 

9 hurt upper clear abrasion right right verbal ok line left let pulse 

10 arm arm okay nares tenderness back right right gonna line take ear 

Table 3.2: Two lists of ten keywords for six activity types (top row). In the MFKW 

column of each activity, keywords are ranked by their frequency in the activity-related 

utterances. In the KWSN column, keywords ranked based on the calculated sensitivity 

value. 
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The second factor for the keyword list is the effective number of keywords per activity. 

We determined the number of keywords per activity empirically, by using different lengths 

of the keyword lists and evaluating the accuracy of the model. The results showed that the 

best performance was reached using 30 or 40 keywords per activity (Figure 3.2). A larger 

or smaller number of keywords showed reduced performance. We selected 30 keywords 

as the optimum list length. 

We observed that the keyword lists generated with either MFKW or KWSN contained 

ineffective words, such as stop-words (e.g., “the,” “is,” “at,” …), or words unrelated to 

trauma activities. Stop-words are easy to detect and filter out automatically but to remove 

the unrelated words we needed to manually analyze all the keyword lists. We categorized 

Keyword Extremity Face Back 
GCS 

Calculation 

Circulation 

Control 
OTHERS 

blood 0.0051 0.0248 0.0033 0.1548 0.0179 0.03 

pulses 0.0025 0 0 0 0.0026 0.0267 

spine 0.0013 0.1314 0 0.002 0 0.0267 

pupils 0 0 0.01 0.0041 0 0.0267 

collar 0 0.0058 0 0 0 0.025 

neck 0 0.0248 0 0.0061 0 0.0217 

back 0.0089 0.0934 0.005 0.0122 0.0102 0.0233 

abdomen 0 0 0 0.002 0 0.02 

arm 0.0786 0.0015 0.0067 0 0.0153 0.01 

Table 3.3: Sensitivity values for samples of words for each activity. 

   
Figure 3.1: Performance comparison of our system for activity recognition using the 

most-frequent keyword list versus sensitivity-based keyword list. 
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all the words in dataset transcripts into eleven types based on their relationship to trauma 

resuscitation activities: acknowledgment, activity, body, body location, equipment, 

medical term, number, report/request, result, time, and unrelated words. This classification 

helped us to separate effective words to keep from ineffective words to remove. We found 

549 words that did not have a relationship to the trauma resuscitation activity workflow 

(e.g., “hello,” “something,” and “sorry”). The removal of these unrelated words from the 

activity-keyword lists increased the system accuracy and the F1-Score by 2.05 and 0.015, 

respectively, using the 30-keyword list (Figure 3.3). 

  
Figure 3.2: Performance comparison results from using different number of keywords 

per activity. 
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Figure 3.3: Performance comparison between filtered keyword list and non-filtered list. 
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The second step of keyword labeling is finding the keyword in any given utterance. 

Based on the generated keyword lists, the utterances can be grouped into three types (Table 

3.4): 

1. Utterances that do not contain any keyword from the list corresponding to their activity 

label. 

2. Utterances that include a single keyword from the list corresponding to their activity 

label. 

3. Utterances that include more than one keyword from the list corresponding to their 

activity label. 

For the first two types of utterances, we simply selected the keyword “NONE” or the 

unique keyword, respectively. For the third type of utterances that had multiple keywords 

from the list, we used the following algorithm (Table 3.5). In the outer loop, we scanned 

the corresponding keyword list from the highest- to the lowest-ranked keyword. In the 

inner loop, we scanned the utterance from left to right to search for the current keyword. If 

we found a matching word, we selected it as the keyword for this utterance. The algorithm 

stopped when the first keyword was found. 

 3.4   Model Architecture 

We introduced a multimodal neural network for recognition of trauma resuscitation 

activities from utterance-level audio recording and the selected keyword (Figure 3.4). The 

model consists of three modules: audio, keyword, and fusion networks. We first 

Utterance Type Number of Utterances 

No keywords 1130 

Single keyword 1131 

Multi keywords 1288 

Total 3549 

Table 3.4: The number of utterances for each its type. 
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preprocessed the utterance-level speech recording to obtain the spectrogram features. This 

preprocessing included the algorithms for keyword selection from the corresponding 

transcript, and for reformatting the keywords into a one-hot representation. Next, audio and 

keyword networks extracted the features from the corresponding input representations. The 

fusion network fused the extracted features or decision vectors and made the final 

prediction from the shared representation.  

3.4.1   Audio Network 

We experimented with two neural network architectures for acoustic feature extraction 

(Figure 3.5). Initially, we used a convolutional neural network (CNN), and later replaced 
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Figure 3.4: Multimodal architecture diagram. The first softmax layers (outlined in a red-

dashed box) are included only for late fusion at the decision stage of each network, 

instead of merging the features directly in the early fusion. 

Utterance Keyword Activity 

right upper extremity no obvious deformities noted, same with 

the left 
right BK 

I mean left axilla, left flank, left upper extremity left GCS 

Table 3.5: Two example utterances illustrating the keyword selection algorithm for 

utterances with multiple candidate keywords, by scanning down the keyword list and 

scanning the utterance from left to right. Bold words the matching keywords from our 

list, while the underline denotes the choosing words. 
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the frontend CNN with a recurrent neural network (RNN). The CNN-based model (Figure 

3.5, left side) was evolved from the current audio classification research [20], [22], [25]. 

Our design relied on the VGG network-style [9] because it outperformed other state-of-

the-art neural networks on audio classification [20]. The speech signal was represented in 

a spectrogram format, which converted the time sequence audio into two frequency-time 

dimensions. This format allowed CNN to process the speech signal similar to images. CNN 

has a good ability to capture the spatial dependencies between the features from adjacent 

frames. However, in addition to the frequency domain, the spectrogram represents a time 

sequence characteristic, which CNN cannot track the sequential information. Instead, 

RNNs are used to capture the long-range temporal information in sequential data [32]. 

Therefore, in our second model (Figure 3.5, right side), we replaced the first eight CNN 

layers with two bi-directional Gated Recurrent Units (Bi-GRUs). The evaluation results 

showed that RNN-CNN outperforms the CNN model in the accuracy and F1-Score by 

CNN network structure RNN-CNN network structure 

Input 60 × 40 × 20 Input 60 × 40 × 20 

5 × 5 CNN(128) + BN + ReLU Bi-GRU(128) + BN + ReLU 
3 × 3 CNN(128) + BN + ReLU Bi-GRU(128) + BN + ReLU 

2 × 2 Max-Pooling 3 CNN(512) + BN + ReLU 

Gaussian-Noise(1.0) Dropout(0.5) 
3 × 3 CNN(256) + BN + ReLU 3 CNN(512) + BN + ReLU 

3 × 3 CNN(256) + BN + ReLU 1 × 1 CNN(6) + BN + ReLU 

2 × 2 Max-Pooling Dropout(0.5) 
Gaussian-Noise(0.75) Gaussian-Noise(1.0) 

3 × 3 CNN(512) + BN + ReLU Global-Average-Pooling 

Dropout(0.3)  
3 × 3 CNN(512) + BN + ReLU  

Dropout(0.3)  

3 × 3 CNN(512) + BN + ReLU  
Dropout(0.3)  

3 × 3 CNN(512) + BN + ReLU  

Dropout(0.3)  
2 × 2 Max-Pooling  

Gaussian-Noise(0.75)  

3 × 3 CNN(1024) + BN + ReLU  
Dropout(0.5)  

1 × 1 CNN(1024) + BN + ReLU  

Dropout(0.5)  
1 × 1 CNN(6) + BN + ReLU  

Gaussian-Noise(1.0)  

Global-Average-Pooling  

Figure 3.5: The structure of the audio network. Our initial CNN model (left) was 

replaced with an RNN-CNN (right). 
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1.5% and 0.021, respectively (Figure 3.6). The reason is that the two frontend RNN layers 

assisted the model to track the temporal dependencies among the sequential speech 

samples. 

3.4.2   Keyword Network 

The input of the keyword network is encoded as one-hot representation where the coded 

position for that spotted keyword is (1) and the rest of them are (0) one word per utterance. 

We designed and evaluated five different neural networks to determine the best keyword 

feature extraction (Figure 3.7). We used different types of layers to build our networks: 

two models used fully connected networks (FCN); two models used CNN, and the last one 

used an RNN. The difference between the two versions of FCN and the two of CNN was 

in the network depth (Figure 3.7, first four columns). The evaluation results showed that, 

in general, fully connected network networks outperformed both RNN and CNN networks 

(Figure 3.8). The deeper FCN II achieved the highest accuracy and F1-Score. The reason 

is that the input information had no sequential or spatial dependency to be tracked, which 

limited the performance of RNN and CNN networks.  

   

Figure 3.6: Comparison between CNN and RNN audio networks. 
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3.4.3   Fusion Network 

In our architecture, the fusion stage is to project different modalities (audio, keyword) 

into a shared representation space for final decision-making. Fusion had been applied in 

several applications that used multiple modalities. Multimodal fusion provides additional 

FCN I FCN II CNN I CNN II RNN 

Input (180, 1) Input (180, 1) Input (180, 1) Input (180, 1) Input (180, 1) 

FCN (128)+ReLU FCN (1024)+ReLU 3×3CNN(256)+BN+ReLU 3×3CNN(128)+BN+ReLU Bi-GRU(128) 

FCN (64)+ReLU FCN (512)+ReLU 3×3CNN(128)+BN+ReLU 3×3CNN(128)+BN+ReLU Bi-GRU(128) 

FCN (32)+ReLU Dropout(0.3) 3×3 CNN(64)+BN+ReLU Gaussian-Noise(1.0) Faltter () 

FCN (6) FCN (256)+ReLU Global-Average-Pooling 3×3CNN(256)+BN+ReLU FCN(64)+ReLU 

 Dropout(0.3) FCN (32)+ReLU 3×3CNN(256)+BN+ReLU FCN(64)+ReLU 

 FCN (128)+ReLU FCN (6) Gaussian-Noise(0.75) FCN(64)+ReLU 

 FCN (64)+ReLU  3×3CNN(512)+BN+ReLU FCN(6) 

 FCN (32)+ReLU  Dropout(0.3)  

 FCN (6)  3×3CNN(1024)+BN+ReLU  

   Dropout(0.3)  

   3×3CNN(1024)+BN+ReLU  

   Dropout(0.3)  

   3×3 CNN(256)+BN+ReLU  

   Gaussian-Noise(0.75)  

   3×3 CNN(128)+BN+ReLU  

   Dropout(0.5)  

   1× CNN(64)+BN+ReLU  

   Dropout(0.5)  

   1×1 CNN(6)+BN  

   Gaussian-Noise(0.3)  

   Global-Average-Pooling  

   FCN (6)  

Figure 3.7: Keyword networks: FCN I = fully connected network shallow model; FCN II 

= fully connected network deep model; CNN I = convolutional neural network shallow 

model; CNN II = convolutional neural network deep model; RNN = recurrent neural 

network model. 

 
Figure 3.8: Comparison between five different keyword networks. 
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information that increases decision-making accuracy [31]. According to previous research, 

there are two widely used fusion: early fusion and late fusion. 

Early fusion (or feature-level fusion) merges the features extracted from various 

modalities such as visual features, text features, and audio features, into an integrated 

feature vector before feeding it into the classifier. The correlation between different 

features at an early phase can increase task performance. However, weak synchronization 

between temporal features in different modalities can degrade the analysis results. Figure 

3.4 shows the multimodal design for both early and late fusion approaches. If we exclude 

the dotted decision box then the diagram characterizes the early fusion approach, where 

the horizontal concatenation layer used to include both features that come from audio and 

keyword modules.  

Unlike early fusion, late fusion (or decision-level fusion) merges the decisions that 

produced from different modality networks and then generates cross-modal interactions for 

prediction. In late fusion, processing the fusion vector is easier than in the early fusion, 

because the merged decisions have a similar format. However, late fusion requires more 

computation and can lose the correlation between different features. Including the dotted 

decision box, Figure 3.4 characterizes multimodal design using the late fusion approach, 

where the horizontal concatenation layer used to include decision outcomes from audio 

and keyword modules. In this approach, we first trained the audio and keyword networks. 

We then used these trained models to predict both the training and the testing datasets. The 

predicted results of the training dataset of both networks were combined using the 

horizontal concatenation layer to train the fusion network. Finally, the predicted outcome 

from the testing dataset was fed to the fusion network, and its predicted output was used to 
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evaluate the model performance. We found that the late fusion approach outperformed the 

early fusion approach (Figure 3.9). Late fusion outperformed early fusion by 0.26 and 

0.005 for accuracy and F1-Score, respectively. The reason is that there is no 

synchronization between the temporal speech features and the non-temporal keywords 

features. Therefore, in our case, merging the decisions is better than merging the features. 

3.5   Experiments Setup and Results 

3.5.1   Experiments Setup 

We trained and evaluated the proposed model on the trauma resuscitation dataset 

containing 86 transcripts. We used the utterances from the five most frequent activities and 

part of the “OTHERS”, for which the total number of utterances is 3549 (Table 3.4). Due 

to the small dataset size, we applied five-fold cross-validation. We also randomly shuffled 

the dataset and split it into 80% and 20% as a training set and a testing set, respectively. 

Each data sample contained an utterance-level audio stream, a single selected keyword, 

and the manually assigned ground-truth activity label. We used Adam optimization [28] 

with 0.001 as the learning rate and the categorical cross-entropy loss function. We 

  
Figure 3.9: Comparison between early and late fusion methods. 
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implemented all the experiments using Keras API of the TensorFlow library [29] with two 

Nvidia GTX 1080 GPUs. The runtime for each experiment was about two hours. 

3.5.2   Results and Discussion 

We first compare the model performance for different types of utterances, grouped by 

the number of keywords (Figure 3.10). This comparison illustrates the importance of the 

keyword module on performance because the predication relies only on the audio module 

when the utterance had no keyword. As seen in Error! Reference source not found., the 

accuracy and the F1-Score for the utterances that contain keyword have almost double the 

performance for the utterances without any keywords.  

We also provide the confusion matrix of the average of the five-fold training-testing 

experiments. Values in the matrix cells represent the number of observations for each 

activity (Figure 3.11). The y-axis represents the true activities, while the x-axis represents 

the predicted activities. As seen, the true positive values, when the predicted activity is 

equal to the ground truth (the dark diagonal) signify most of the outcomes. While, in 

general, the false observation whether it is positive or negative have relatively small values. 

We notice that the “OTHERS” activity has higher false-positive values concerning other 

 
Figure 3.10: Performance comparison between utterances types. 
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activities and that is because its utterances belong to several activities, which is expected 

to be harder for the model to distinguish. 

We further show the F1-Score for each activity to disclose the performance for each 

activity individually (Figure 3.12).  As seen, the F1-Score of the Back (BK) and Extremity 

(E) is the highest at 0.664% and 0.63, respectively. While the least F1-Score is for the 

“OTHERS” activity with 0.527. Finally, we demonstrate the performance improvement 

 

Figure 3.11: The confusion matrix for the activities. X-axis represent the true activities 

labels, while the y-axis represent the predicted activities. Each value represents the 

average number of observations for the five-fold training/testing sets, whereas the values 

inside the parentheses represent the standard deviation. 

  

 

 
Figure 3.12: Comparison between activities F1-Score. 
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over our model evolvement (Figure 3.13 and Figure 3.14). The comparison includes seven 

different model designs that developed cumulatively from the baseline using the audio 

modality only with the CNN network with 30.8 and 0.231 accuracy and F1-Score, 

respectively. The final best model involves using keywords in addition to the audio with 

the best perform keyword list, modality network, and fusion approach. This model has 

60.73% and 0.602 accuracy and F1-Score, respectively that is an increment over the 

baseline model by 29.93% and 0.371 accuracy and F1-Score, respectively. 

 
Figure 3.13: The F1-Score improvement over the architecture evolvement. 
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Figure 3.14: The accuracy improvement over the architecture evolvement. 
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3.6   Summary 

We introduced a multimodal neural network that uses the audio recording and the 

related text keyword to predict the trauma activity associated with each utterance. Our 

model includes three neural-network modules: audio, keyword, and fusion networks, to 

process the audio signal spectrogram representation, the one-hot keyword encoding, and 

the combined output of the audio and keyword networks, respectively. We evaluated 

different network types for the network modules and keyword selection approaches. A 

combination of RNN-CNN, deep FCN, and late fusion approaches showed the best 

performance for the audio, keyword, and fusion networks, respectively. Using the keyword 

list based on the sensitivity value, followed by manual filtering of keywords, showed the 

best performance. The final model that evolved by network tuning and the analysis of 

keyword selection increased the activity prediction performance by 29.93 and 0.371 in 

terms of the accuracy and F1-Score, respectively. 
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CHAPTER 4 

 

4. SPEECH ENHANCEMENT ARCHITECTURE1 

4.1 Overview 

Speech enhancement has important applications in voice communication, hearing aids, 

and automatic speech recognition. Speech enhancement removes background noise from 

noisy speech signals, increasing speech quality, and intelligibility [33], [34].  Early 

research used non-trainable statistical approaches on spectrograms, such as spectral 

subtraction [35], Wiener filter [36], statistical model-based methods [37], the subspace 

method [38], minimum mean-square error estimator, and optimally-modified log-spectral 

amplitude [39], [40]. These methods showed limited performance on speech with non-

stationary noise, which is common in real-life environments. Non-negative matrix 

factorization has later been widely used for speech separation and enhancement [41], [42].  

Recently, deep neural networks have been employed to overcome the non-stationary 

condition and have improved speech quality and intelligibility. Early models used 

mapping-based methods, where the enhanced signal is directly predicted from the noisy 

one. Several such deep learning models have been developed, including denoising 

autoencoders [43] (using fully-connected layers), recurrent neural networks (RNN) [44], 

and convolutional neural networks (CNN). Later, a masking-based method was introduced 

to enhance the signal by applying the noisy signal to the predicted mask [45]–[48]. 

 
1 This chapter is based on a published paper: J. Abdulbaqi, Y. Gu, S. Chen and I. Marsic, "Residual 

Recurrent Neural Network for Speech Enhancement," in ICASSP 2020 - 2020 IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020. 
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Most of these methods use time-frequency (T-F) spectrogram features instead of time-

domain waveform since T-F has a reduced resolution. Spectrogram features, however, have 

certain limitations. First, the pre- and post-processing operations such as discrete Fourier 

transform and its inverse are computationally expensive and cause artifacts in the output 

signal [33], [34]. Second, these approaches usually only estimate the magnitude and use 

the noisy phase to produce the enhanced speech. Research has shown that the phase can 

enhance speech quality [49]. Recent research has considered predicting the phase and the 

magnitude at the cost of model complexity, such as adding a special model for phase 

component [50]. 

Recently, several studies proposed overcoming previous limitations by working 

directly on the waveform. Fu et al. [51] compared fully-convolutional networks with fully-

connected networks. Pascual et al. [52] implemented a generative adversarial network for 

speech enhancement (SEGAN), using strided convolutions, residual connections, and an 

encoder-decoder architecture. Later, a text-to-speech model called Wavenet [53] directly 

synthesized raw waveforms. Qian et al. [54] and Rethage et al. [55] presented a modified 

version of WaveNet for speech denoising. The former integrated a Bayesian framework 

WaveNet, while the latter used a non-causal dilated convolution with residual connections. 

Germain et al. [56] presented dilated convolutions combined with a feature loss network. 

Stroller et al. [57] adapted the U-Net [58] model for source separation using dilated 

convolutions and linear interpolation instead of transposed convolution for upsampling. 

All these methods used convolutional neural networks due to their ability to capture the 

samples’ dependencies better than fully connected networks. Because waveform is a 

sequential data type, it requires a temporal context as well. Recurrent neural networks are 
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known to capture the long-range temporal sequence information [32] and are used in many 

sequential applications such as speech recognition, neural machine translation, and 

spectrogram-based speech enhancement. To our knowledge, only [59] and [60] have 

applied RNN to process waveform signals. The first one used RNN to denoise a non-speech 

waveform, while the latter used RNN for speech bandwidth extension, but no one has used 

it for waveform-based speech enhancement. The reason is that the high resolution of 

waveforms requires more expensive, deeper, and wider networks. It is difficult to build a 

deep RNN because of saturating activation function, which causes gradient decay over 

layers. Also, we found empirically that RNNs sufficiently wide to process the high-

resolution waveforms exceeded the available memory capacity. Therefore, we introduce 

our residual hourglass recurrent neural network for waveform-based single-channel speech 

enhancement. Our model overcomes the RNN limitations by introducing two techniques. 

First, the network architecture has an hourglass shape; the layers in the lower pyramid 

reduce the number of time-steps and increases the number of units (width), while the upper 

pyramid does the reverse. This architecture allows the RNN to handle high-resolution 

waveform features without memory overflow. Second, using residual connections between 

the same-shaped layers from the lower pyramid to the upper one prevents gradient decay 

over layers and improves the model generalization. 

4.2 Model Architecture 

Our model includes seven GRU layers with two residual connections. The first six 

layers are bidirectional and the last one is a single GRU (Figure 4.1). The goal of our speech 

enhancement network is to learn non-linear relationships, so that noisy speech 𝑥(𝑡) can be 

translated into clean speech 𝑦(𝑡): 
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 𝑦(𝑡) = 𝑓(𝑥(𝑡)) (4.1) 

The input vector 𝑋 = (𝑥1, … , 𝑥𝑇) represents a T-seconds wide segment from a noisy 

audio waveform signal. 

RNNs can efficiently realize temporal features in sequential data, so they have been 

used widely to process speech data either for speech recognition or enhancement. We chose 

gated recurrent units (GRU) instead of long short-term memory units (LSTM) or vanilla 

RNN. Both GRU and LSTM outperform vanilla RNN [28], but GRUs have a simpler 

structure and train faster than LSTMs. Besides, we chose bidirectional RNNs since in 
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Figure 4.1: Our proposed RNN architecture. Seven stacked RNN layers with the numbers 

on the left representing the number of time steps and the number of units in each layer. 

Wider layers have fewer units and vice versa. The two bold arrows on the right represent 

the residual connections. 
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speech enhancement each predicted sample can depend on the future as well as past noisy 

samples. The stacked GRU increases the capacity of the network by sharing the hidden 

states not only from the same layer but also from the lower layers as well. The stacked 

bidirectional RNNs share their hidden states so that the hidden state (ℎ𝑡
𝑙 ) of a bi-GRU unit 

in layer l at time t is obtained by concatenating its forward (ℎ𝑡
𝑙⃗⃗  ⃗) and backward (ℎ𝑡

𝑙⃖⃗ ⃗⃗ ) hidden 

states, which depend on the lower layer l–1 at time t and this layer at time t–1: 

 ℎ𝑡
𝑙⃗⃗  ⃗ = 𝐺𝑅𝑈⃗⃗⃗⃗⃗⃗⃗⃗  ⃗ (ℎ𝑡

𝑙−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , ℎ𝑡−1
𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) (4.2) 

 ℎ𝑡
𝑙⃖⃗ ⃗⃗ = 𝐺𝑅𝑈⃖⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ (ℎ𝑡

𝑙−1⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, ℎ𝑡−1
𝑙⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) (4.3) 

 ℎ𝑡
𝑙 = 𝑐𝑜𝑛𝑐(ℎ𝑡

𝑙⃗⃗  ⃗, ℎ𝑡
𝑙⃖⃗ ⃗⃗ ) (4.4) 

The two pyramids of our hourglass architecture keep the number of trainable 

parameters within the memory constraints. the bottom pyramid decreases the number of 

time steps while increasing the number of GRU units per layer, and the top pyramid does 

the reverse. this approach allows for deeper networks. we did not use upsampling 

techniques, such as linear interpolation, because the information can be lost. instead, we 

reshape the RNN output to the desired fewer time steps. reshaping the layer output to 

Upper Bi-GRU (6th and 5th layers)

Lower Bi-GRU (2nd and 3rd layers)

...
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ht
u– 
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Figure 4.2: A high-level view highlighting the residual connections in our proposed 

model from Figure 4.1. 
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decrease and increase the time steps prevents losing data and allows the RNN to have a 

sufficient size of units. however, while stacking RNNs can increase the capacity of the 

network, deeper RNNs usually have gradient decay issues due to their saturating activation 

functions. to address this issue, we used residual connections between the lower and upper 

layers (Figure 4.1 and Figure 4.2). the residual connections facilitate training the deep RNN 

and provide better generalization by combining the low-level features with the high-level 

ones in the upper layers. in Figure 4.2, the hidden states of the lower layer (𝒉𝒕
𝒍) and those 

of the upper layer before the residual connection (𝒉𝒕
𝒖−) are combined to produce the 

residual output: 

 𝑜𝑡
𝑢+ = 𝑃𝑅𝑒𝐿𝑈(ℎ𝑡

𝑙 + ℎ𝑡
𝑢−) (4.5) 

𝑃𝑅𝑒𝐿𝑈 is the parametric rectified linear unit activation function. Finally, we use a 

single forward GRU to output the enhanced speech with the same size of the input vector: 

 ℎ𝑡
𝑙⃗⃗  ⃗ = 𝐺𝑅𝑈⃗⃗⃗⃗⃗⃗⃗⃗  ⃗ (ℎ𝑡

𝑙−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , ℎ𝑡−1
𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) (4.6) 

Therefore, the output will be created by combining the hidden states for each input 

segment: 

 𝑌 = (ℎ1
7⃗⃗⃗⃗ , … , ℎ𝑇

7⃗⃗ ⃗⃗ ) (4.7) 

where 𝑌 denotes the enhanced signal output and ℎ1
7⃗⃗⃗⃗  denotes the hidden state of the last 

(seventh) layer. 

4.3 Dataset and Preprocessing 

The dataset used for training and evaluating our model has been set up in [61]. We 

chose this dataset because it is large, has different types of non-stationary noise, and is 

public so that we can compare our results with other published work. This dataset is an 
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excerpt from the Voice Bank corpus [62] with 28 speakers (14 male and 14 female) of the 

same accent region (England) and another 56 speakers (28 male and 28 female) of other 

accent regions (Scotland and United States). 

The noisy data used for training are two artificially generated (speech shaped noise and 

babble) and eight real noise recordings from the Demand database [63]. The noises are 

from different environments such as kitchens, offices, public spaces, transportation 

stations, and streets. The training set includes 11,572 utterances with four signal-to-noise 

(SNR) values: 15 dB, 10 dB, 5 dB, and 0 dB. 

The noisy data used for testing include two other speakers of the same corpus from 

England (a male and a female) and five other noises from the Demand database. The chosen 

noises include a living room, an office, a bus, and street noise. The testing set includes 824 

utterances with four SNR: 17.5 dB, 12.5 dB, 7.5 dB, and 2.5 dB. We downsampled the 

audio signals to 16kHz, getting a reasonable dataset size for recognizing speech. Our 

preprocessing included slicing both noisy and clean speech signals into 1024 samples (~64 

ms) with a 25% overlap during training and without overlap during the evaluation. We did 

not use any other preprocessing, such as pre-emphasis. 

4.4 Experiment Setup and Results 

Our architecture uses seven GRU layers. The first six are bi-directional, while the last 

one is single-directional to produce the enhanced signal (Figure 4.1). The number of units 

per layer is 2, 128, 256, 512, 256, 128, and 1; the size of the time steps per layer are 1024, 

512, 256, 128, 256, 512, and 1024. Two residual connections link the second and third 

layers with the sixth and fifth, respectively. The PReLU activation function is used with 

residual connections, as it does not saturate the negative values compared to Leaky-ReLU 
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and has been shown to improve model fitting [64]. The model has 2 million trainable 

parameters, which is small concerning Wavenet which has 6.3 million. We use the Xavier 

normal initializer [65] for the kernel weights, with zero-initialized biases. Xavier's 

initialization keeps the values of the weights in a reasonable range, preventing the inputs 

from shrinking or growing more than needed through the layers. It determines the 

initialization values concerning the number of input and output neurons. The initializer for 

the recurrent states is a random orthogonal matrix [66], which helps the RNN stabilize by 

avoiding vanishing or exploding gradients. The stability occurs because the orthogonal 

matrix has an absolute eigenvalue of one, which avoids the gradients from exploding or 

vanishing due to repeated matrix multiplication. 

We use the log-cosh loss function, a regression loss function that takes on the behavior 

of squared-loss when the loss is small, and absolute loss when the loss is large; this reduces 

the influence of wrong predictions. The optimization algorithm used is RMSprop [67], 

which helps the training of large neural networks on large redundant datasets. Also, Keras 

[68] documentation recommends using this algorithm with RNN. We trained the model 

until the validation loss converged with a batch size of 512, using two NVIDIA GTX-1080 

GPUs. We used different learning rates during training, starting at 10-4 and gradually 

decreasing to 10-8. The library used to implement this work was Keras with TensorFlow 

[29] as a backend. The training process took about 20 hours for 50 epochs. To evaluate our 

model, we computed six objective metrics using an open-source implementation2,3:  

 
2https://www.crcpress.com/downloads/K14513/K14513_CD_Files.zip 
3 http://ceestaal.nl/stoi.zip 
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• Segmental signal-to-noise ratio (SSNR) [33]: computed by dividing the clean and 

enhanced signals into segments and computing the segment energies and SNRs, 

and then returning the mean segmental SNR (dB). The values range from -10 to 35.  

• Perceptual evaluation of speech quality (PESQ) [33]: a more complex metric to 

capture a wider range of distortions. PESQ is the most common metric to evaluate 

the speech quality, calculated by comparing the enhanced and clean speech. The 

values range -0.5 to 4.5. 

• Short-time objective intelligibility (STOI) [69]: reflects the improvement in speech 

intelligibility with a score range from 0 to 1. 

• Three objective versions of mean opinion scores (MOSs): CSIG for signal 

distortion evaluation, CBAK for noise distortion evaluation, and COVL for overall 

quality evaluation. We used their mathematical representations, and their scores 

range from 1 to 5 [33].  

For all these metrics, higher values mean better performance. Two speech test samples 

(small segment 50 ms) are illustrated in Figure 4.3. Both samples include non-stationary 

noise with people talking in background (“cocktail party”) and music playing. For each 

segment, the foreground speaker talks (high frequency) in the first half, while the 

foreground speaker stops talking (low frequency) in the second half. The enhanced speech 

signal tracks the clean in both cases, which shows the model's ability to capture the clean 

speech in all speaker events.  
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Table 4.1 shows the metrics score for our model concerning the other architectures. 

The comparison results with several current architectures such as SEGAN [52], Mask-

based GAN model (CNN-GAN) [46], wavenet model for denoising [55], another masking-

based GAN model [48] and finally the speech denoising with deep feature losses (DFL) 

[57]. All these architectures use the same dataset and the metrics that we used to train and 

evaluate our model. Therefore, their results are taken directly from their above work. In 

this results, our model decreases the speech degradation (CSIG) by 13.2% and decrease the 

background noise intrusiveness (CBAK) by 20.7%, and increase the overall signal quality 

(COVL) by 18.6% concerning the best previous architecture DFL [56]. Also, the speech 

quality is increased by 26.5% concerning the masking-based GAN model [48]. 

 

Model Features type SSNR PESQ STOI CSIG CBAK COVL 

No Enhancement (Noisy) - 1.68 1.97 0.820 3.35 2.44 2.63 

SEGAN, 2017 [20] waveform 7.73 2.16 0.93 3.48 2.94 2.80 

CNN-GAN, 2018 [14] spectrogram - 2.34 0.93 3.55 2.95 2.92 

Wavenet, 2018 [23] waveform - - - 3.62 3.23 2.98 

MMSE-GAN, 2018 [16] spectrogram - 2.53 - 3.80 3.12 3.14 

DFL, 2019 [24] waveform - - - 3.86 3.33 3.22 

Our model waveform 14.71 3.20 0.98 4.37 4.02 3.82 

Table 4.1: Evaluation results of our proposed model compared with other state-of-the-art 

research work using six objective metrics on the same dataset [61]. Higher scores are 

better, and the highest scores are boldfaced. 
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4.5 Summary 

We introduced a novel end-to-end fully recurrent neural network for single-channel 

speech enhancement. Our recurrent layers are designed in an hourglass shape to reduce the 

speech signal dimension and assist recognition of the long-term dependencies. The results 

show that our simple and efficient model outperforms most of the current approaches with 

more complex architectures. We will evaluate this model with other datasets and apply 

them to other sequential applications. 

 

 

 

 

  

(a) 

 

(b) 

  

Figure 4.3: An illustration of speech enhancement using our model using speech samples 

with SNR = 2.5 dB and duration of 50 msec. from the test dataset. (a) The sample 

number 232_052. The blue lines represent the clean speech and the red lines represent 

the noisy speech. (b) The corresponding enhanced speech (red line) compared with the 

clean input speech (blue line). 
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CHAPTER 5 

 

5. CONCLUSION 

 

We introduce a new model for the speech-based activity recognition and an empirical 

assessment on a trauma resuscitation dataset. In our design, we extend the input features to 

integrate a keyword, a one-word from the most frequent words list that included in the 

utterance, to the audio stream. The new structure shows a substantial increment in the 

accuracy and the average F1-score 3.6% and 0.184 respectively over the audio network 

alone. Due to the high word error rate of the ASR output caused by the fast speaking rate, 

concurrent speakers, and high noise in trauma resuscitation, our approach relies on an 

additional one keyword instead of the entire ASR generated utterance is more efficient.  

Also, we examine the trauma resuscitation audio constraints such as activity recurring, 

noise level, and most frequent words. In the evaluation results, we found out that the 

imbalance of the activities in the trauma resuscitation, as well as the noise, reduced the 

audio network accuracy. Also, we explore audio stream preprocessing factors such as audio 

channels setup and features type. We found that the static MFSC feature and stereo channel 

configuration has the best performance. We introduce a new audio network based on the 

VGG model and provide an evaluation comparison with various classification 

architectures. Our model, that has relatively fewer layers concerning other classifiers 

overperforms them. Introducing the keyword features is promising, but we still need further 

experiments on integrating the word-spotting models with the current architecture to have 

a more accurate evaluation. Also, we will examine more architectures for the fusion and 

keyword modules. 
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In this work, we present a multimodal neural network that processes the audio 

recording and their related text keywords to predict the trauma activities. Our model 

includes three modules: Audio, keyword, and fusion networks to process the audio signal 

spectrogram representation, the one-hot keyword encoding, and the combined output of the 

networks, respectively. For the audio network, we design and evaluate two neural 

networks. The first one is structured with a convolutional neural network. While in the 

second, we replace the front-end layers by two bi-directional recurrent neural networks to 

track the temporal dependency of the sequential audio data, which shows a better 

performance in the evaluation results. For the keyword network, we design and evaluate 

five networks using different layers types. 

We introduced a novel end-to-end fully recurrent neural network for single-channel 

speech enhancement. Our recurrent layers are designed in an hourglass shape to reduce the 

speech signal dimension and assist recognition of the long-term dependencies. The results 

show that our simple and efficient model outperforms most of the current approaches with 

more complex architectures. We will evaluate this model with other datasets and apply 

them to other sequential applications. 
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