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Quality and reliability of additively manufactured (AM) parts using the Laser Powder 

Bed Fusion (LPBF) process are greatly affected by the thermal history during the 

manufacturing process. Prediction of thermal history, residual stresses, and distortions of 

a part during the LPBF process is critical to understand how the process parameters 

influence the process stability and mechanical properties of the part. Finite element 

modeling of the LPBF process at part-scale is challenging and requires massive 

computational time and resources. These models are computationally infeasible if they are 

not associated with simplifications in the mesh configuration and the heat source model, or 

with the reduced domain size. Due to the complexity of the computational model itself, 

uncertainties during the LPBF process are not systematically studied, and their effects on 

quality and reliability of the parts are not characterized.    

The dissertation overcomes the computational expensiveness associated with modeling 

of the LPBF process on a part-scale level. It presents the use of different adaptive 
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remeshing techniques that enable the thermal and thermomechanical simulations at the 

part-scale level without the sacrifice in accuracy. As a result, part-scale thermal and 

thermomechanical finite element modeling are computationally feasible. This is the first 

work where an adaptive remeshing framework was developed for the LPBF process, based 

on an existing general-purpose implicit solver and the tetrahedral mesh. In particular, the 

tetrahedral mesh can represent parts with complex structures using less elements than the 

existing remeshing technique. The thermal process modeling presents models for relatively 

large parts considering different process parameters, and the models can predict location-

dependent melt pool size and the lack-of-fusion porosity. The thermomechanical process 

modeling predicts the thermally induced residual stresses, strains, and distortions for 

different parts. The model predictions find similar trends with the experimental results from 

the literature along with achieving a significant reduction in the computational time 

compared to the state-of-the-art models without using the adaptive remeshing. 

Furthermore, a general calibration and validation framework for the LPBF process was 

developed based on multi-fidelity models and limited experimental data. The framework 

enables the development of highly efficient and accurate models for melt pool predictions 

under various sets of process parameters through the seamless integration of finite element 

modeling, machine learning methods, and the model calibration and validation methods. 

Effectiveness of the framework is demonstrated by experimental data under different sets 

of process parameters available in the literature. 
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1. Introduction 

 

1.1. Laser Powder Bed Fusion Process 

Laser Powder Bed Fusion (LPBF) is an additive manufacturing (AM) process that falls 

under the category of Powder Bed Fusion (PBF). LPBF enables the production of metallic 

parts that have complex geometry without the need for the special tooling and multiple 

processes that traditional manufacturing techniques require, Figure 1.1. Furthermore, 

LPBF enables manufacturing parts from difficult-to-machine materials, such as Inconel-

based [1], titanium and tungsten alloys [2].  

The process starts by slicing the 3D CAD geometry file of the parts into multiple layers 

and a G-code that includes the laser beam movement for the entire build is generated. The 

G-code includes information about the process parameters such as the laser power and 

scanning speed and generated based on the layer thickness, hatch spacing, and scanning 

strategies. During the process, the laser beam moves over the powder bed where the powder 

particles absorb the laser energy and start to melt forming a melt pool. For perfect bonding, 

the melt pool depth should always be larger than the layer thickness and its width should 

be larger than the hatch spacing. After the layer scanning is complete, a new powder layer 

is added using a recoater. Even though LPBF can work with different metals, a process 

window for each metal should be determined since their thermal conductivity, melting 

point, surface tension, and liquid-state viscosity differ [3].  
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Figure 1. 1. Schematic of LPBF process and the melt pool. 

The LPBF process parameters include: (1) laser related parameters: laser beam spot 

diameter Dspot (µm), and laser power P (Watt), (2) scan-related parameters: laser scanning 

speed Vc (mm/s), and hatch spacing h (mm), (3) powder-related parameters: particle shape, 

size, and distribution, (4) temperature related parameter: powder preheat temperature, and 

(5) other parameters that include layer thickness, scanning strategy, Figure 1.2 , and part’s 

build orientation [5]. It had been reported that over 130 parameters influence the quality of 

the final part [6]. There are interactions among these parameters and they significantly 

affect the process behavior and part quality.  

 

Figure 1. 2. Different scanning strategies used for LPBF 
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1.2. Manufactured Part Quality 

1.2.1. Porosity 

Porosity is one of the important factors that greatly affect the part’s mechanical properties. 

In several studies, the porosity was found to have a great influence on the parts reliability 

and material fatigue strength since the pores are potential crack initiation points [7, 8]. 

There are two formation mechanisms of the pores inside the manufactured part. The first 

formation mechanism takes place when an excessive energy is applied to the powder, 

causing vaporization of the low evaporating temperature alloy constituents. This 

vaporization creates a gas bubble inside the melt pool that remains inside the produced 

part, Figure 1.3. Because of the high solidification rate of the melt pool, the time is not 

sufficient for this bubble to escape from the melt pool, forming a keyhole [9]. Another pore 

formation mechanism, called lack of fusion porosity, takes place due to the incomplete 

melting of the powder due to insufficient energy input [9], or large scan spacing [4]. This 

porosity type leads to a significant reduction in parts’ fatigue and tensile strength since the 

unmolten powder particles are large and they exist at the interlayer connections. Measuring 

porosity can be done using the simple Archimedes method as in [4, 7, 10], or by using 

computed tomography (CT) systems as in [8, 11]. The CT system can show the pores size 

and their distribution, however, the minimum pore size that can be detected is limited by 

the minimum voxel size. Reducing the minimum voxel time makes this measurement 

process expensive.  
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Figure 1. 3. Pores due to excessive energy density [9] 

 

Figure 1. 4. Effect of scan speed and power on the porosity at laser spot 100 µm, and 

layer thickness 0.03 µm (Reproduced from [4]) 

 
 

a) P=160 W, V=360 mm/s b) P=160 W, V=1440 mm/s 

Figure 1. 5. SEM images showing the effect of scanning speed on the porosity [4] 
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Figure 1.4 clearly shows the interaction between the laser power and scan speed and their 

effect on the porosity. The trend of the porosity is firstly decreasing, where the keyhole 

pores are formed, then constant where parts are fully dense, and finally increasing with 

more lack-of-fusion porosity. The high energy density caused at high power levels 160 W 

and 120W and low scanning speed results in higher porosity and reduced density. That 

clearly indicates that this type of porosity was created due to the excessive energy given to 

the powder (red markers).  At high scanning speeds, energy density is reduced, leading to 

incomplete melting of the particles forming lack of fusion porosity (blue markers). The 

lack of fusion porosity becomes much higher at reduced laser power (40W). Figure 1.5 

shows the differences between the two porosity formation mechanisms.  

Porosity can also be influenced by the scanning strategies. The effect of uni-directional and 

bi-directional scanning strategies was investigated in [10]. Porosity results from 

bidirectional scanning strategies could be slightly reduced from 0.65% to 0.4% compared 

to unidirectional scanning strategies. Residual heat effect due to the insufficient cooling 

time between every two consecutive scanning tracks could be the reason. A further 

reduction to 0.1% could be achieved by alternating the scanning tracks angle alternation 

by 90o.  

Table 1.1 shows the porosity results from other studies where the chess-board scanning 

strategies were investigated. It was also found that bidirectional scanning strategy with 90o 

alternation is the optimum in terms of porosity. These findings were also observed in [10, 

12]. The cases involving alternating angle of 45o between layers result in higher porosity 

than 90o, but less than that of 0o. The effect that the scanning length on the porosity is 
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obvious; there is a decreasing trend in the porosity as the scanning length increases (cases 

3, 4, 5, and 2 in Table 1.1). This increase could be due to the keyholing porosity caused by 

residual heat effect. The results of the in-layer alternating angle of the chessboard scanning 

strategies show that the 45o alternating angle does not reduce porosity. These findings were 

justified by the residual heat effect which was high for 45o cases due to the shorter scanning 

length at blocks corners. However, the authors did not show how pores are distributed 

which can support the hypothesis. Even though the 45o alternating angle looks unfavorable 

for porosity, this scanning strategy may have a positive effect on the residual stresses.  

Table 1. 1 : Effect of chessboard scanning strategy on the porosity [14] 

Case 

In-layer strategy Angle 

Scan length  

(mm) 

Porosity 

%  

1 Bi-directional 45 30 0.3 

2 Bi-directional 90 30 0.1 

3 Chess-board (0) 90 2 0.9 

4 Chess-board (0) 90 3 0.3 

5 Chess-board (0) 90 5 0.2 

6 Chess-board (45) 90 5 0.3 

7 Chess-board (90) 90 5 0.1 

For certain cases, high porosity up to 50% is considered favorable. These cases include 

porous implants where pores are needed for implants to integrate with the human cells, and 

when the part weight needs to be minimized. In such cases, the hatch spacing plays an 

important role in defining the material porosity. The minimum pore size must be larger 

than particles size. According to Zhang et al. [13], a pore size of 400 µm could be achieved 

with a scan line spacing of 700 µm, with a laser that has a power of 130 W and spot 
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diameter of 150 µm. The effect that porosity has on mechanical strength and post 

processing methods that reduce porosity will be discussed in later sections.  

1.2.2. Microstructural evolution  

Investigating the microstructural evolution during LPBF is crucial since it offered a good 

understanding between LPBF process parameters and manufactured part quality, 

mechanical properties, and strength [10]. The size, fraction, and arrangement of the 

microstructure control the elastic modulus, tensile and fatigue strength, ductility, and 

oxidation resistance for manufactured part [14] 

For instance, Ti-6Al-4V is a two-phase α+β alloy, with 6% aluminum and 4% vanadium, 

where the aluminum acts as α phase stabilizer, and the vanadium acts as β phase stabilizer. 

This alloy microstructure is controlled by the part thermomechanical history, and heat 

treatment operations. The effect of the microstructure arrangement, and size on the material 

properties is explained in [14]. In addition to that, the microstructure arrangement can result 

in anisotropy in the manufactured parts [15].  

Thijs et al. [10] investigated the scan speed, hatch spacing, and scanning strategies on the 

manufactured part microstructure. Because of the high temperature gradients during the 

LPBF process, a fine micro-structure consisting of martensitic primary α phase formed 

within prior β grains. The grains in most cases are aligned or tilted with the building 

direction following the maximum heat flux direction coming from the melt pool.  

The top view of the micro-structure from the bi-directional scanning strategy is shown in 

Figure 1.6. Bi-directional scanning strategy results in individual tracks that are tilted with 
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opposite angles, each track width equals to the hatch spacing (75 µm). The dependence 

between the grain inclination angle and scan vector direction is due to heat conduction 

direction.  

The effect of scanning speed on micro-structure is also shown in Figure 1.6: a, b, and c. 

Reducing scanning speed results in porosity due to excessive energy input. Furthermore, 

scanning at low scanning speeds may result in melt pool instabilities that lead wider track 

width varying between 62 µm and 232 µm. Reducing hatch distance results in higher 

energy density. Therefore, more porosity and smaller melt pool width are achieved. Figure 

1.6-d shows the existence of pores compared to larger hatch distance, Figure 1.6: a and e. 

Furthermore, individual track width also depends on hatch distance. Thus, the hatch 

distance can be used to control the individual grain width in the top view. The effect of 

hatch distance on the grain direction in the side view was not significant.  

The effect of the scanning strategies is shown in Figures 1.6 and 1.7. The tilting angle of 

the grains in the top view is consistent for the unidirectional scanning strategy, Figure 1.6-

f, compared to the bidirectional scanning strategy, Figure 1.6-a. Furthermore, alternating 

the scanning vectors from a layer to layer by 90o results in equiaxed microstructure leading 

to more isotropic mechanical properties. Scanning strategies also influence grain direction 

with respect to building direction, Figure 1.7. For non-alternating scanning strategies, grain 

direction is slightly tilted with the building direction. This tilting angle increases as the 

scanning speed increases. For alternating strategies, two grain directions exist in the 

building direction, each is parallel to the building direction in one view and tilted in the 

other view. Since the grain direction follows the melt pool, parts produced by LPBF are 
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anisotropic. Therefore, grain direction and part building orientation play a significant role 

on parts mechanical properties. Such behavior was observed in [16] where it was found 

that the yield strength, young’s modulus, ductility, and ultimate strength change 

significantly with the building orientation for a porous structure of Ti-6Al-4V alloy.  

 

    

 a) V=200 mm/s, 

h=75 µm 

bi-directional 

b) V=100 mm/s, h=75 

µm 

bi-directional 

c) V=50 mm/s, h=75 

µm 

bi-directional 

    

d) V=200 mm/s, h=50 

µm 

bi-directional 

e) V=200 mm/s, 

h=100 µm 

bi-directional 

f) V=200 mm/s, h=75 

µm 

unidirectional 

g) V=200 mm/s, h=75 

µm 

bi-directional & 

alternating 
 

Figure 1. 6. Top view of samples [10]. 

 

   

a) bi-directional b) unidirectional c) 90 alternating bi-

directional  

Figure 1. 7. Side view V=200 mm/s, and h=75 µm [10] 
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1.2.3. Mechanical Properties  

As mentioned earlier, the microstructure for parts manufactured by LPBF is a very fine 

martensitic primary α phase, therefore, the Ti-6Al-4V parts manufactured by LPBF have 

low ductility and tend to be brittle  [10, 17]. Compared to wrought Ti-6Al-4V that has 16% 

elongation [14], the maximum elongation for as-built Ti-6Al-4V parts was about 9% [7]. 

Furthermore, because of the high α fraction, parts produced by LPBF have higher yield and 

ultimate strength than wrought Ti-6Al-4V parts [7, 10, 20-21], and different elasticity 

modulus, Figure 1.8. Since the microstructure also depends on process parameters, the 

material ductility changes as the process parameters vary. It was observed that the ductility 

changes with the scanning speed in [7], and with part orientation in [16, 17]. In Figure 1.8, 

the high reduction in the material ductility and strength when the scanning speed is high 

(V=1500 mm/s) suggests that the effect of large lack-of-fusion porosity becomes dominant 

along with material brittleness. Tensile test showed that the fracture type at this case was 

brittle and initiated from the pore [7].  

The fatigue performance was also investigated. The effect of parts building orientation on 

its life was investigated in [19, 20]. Per their findings, building orientation significantly 

affects the fatigue strength and part life. As mentioned earlier, the residual stresses and 

microstructure change as the part building orientation changes. Figure 1.10 shows the 

results from a AlSi12Mg parts fatigue experiments where the part fractured because of a 

large pore at the surface [20]. The S-N curves, Figure 1.9, for parts produced by different 

scanning speeds were studied in [7]. It is obvious that parts manufactured by LPBF at low 

scanning speed have a high fatigue strength than parts manufactured at high scanning 
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speeds. The main reason for this is that at low scanning speeds, pores size is smaller. This 

clearly shows how significant the scanning speed and resulting porosity are for the part life 

and fatigue strength.  

 

 

(a) Elasticity modulus 

 

(b) Stress-strain curves 

Figure 1. 8. Effect of scanning speed on the elasticity modulus and ultimate strength 
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Figure 1. 9. Effect of scanning speed on fatigue strength [10] 

 

 

Figure 1. 10. Specimen fracture surface: (a) fracture surface and crack initiation point 

(arrow), and (b) crack initiation point [20] 
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1.3. Post processing 

Even though post processing steps are costly, they are important to improve the part quality 

in terms of porosity, residual stresses, and microstructure. Various post processing 

techniques presented in the literature are discussed in this section.  

Machining can be used as a post processing step. Edwards [19] conducted fatigue 

experiments for as-built and machined specimens to quantify the effect of the as-built 

surface roughness. It was found that at the same applied stress and two different building 

orientations, machined specimens lasted longer than as-built parts, Figure 1.11. The rough 

surface in as-built parts plays a dominant role in crack initiation resistance. In addition, 

machining can also introduce compressive residual stresses that improve crack propagation 

resistance. Polishing also was found to improve the surface roughness, and the fatigue 

strength. Polished specimens were also found to have higher fatigue strength (endurance 

limit was improved from 210 MPa for as-built part, to 500 MPa for polished part) [21]. 

Machining and polishing methods are limited to simple geometries or external features, 

and they cannot improve porosity.  
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Figure 1. 11. S-N curved for as-built and machined specimens (Reproduced from [18]) 

 

Hot isostatic pressing (HIP) was found to be beneficial for parts produced by SLM. When 

parts are heated at high temperature (920o C) and pressure (1000 bar), pores size, residual 

stresses, and material ductility are improved. In Leuders’ study [8], due to the 

microstructural fraction and size changes, Figure 1.12(c), the HIP was found to improve 

the material ductility (from 1.6% elongation for as-built part to 8.3% elongation for HIPed 

part). However, this improvement is associated with a slight reduction in the part ultimate 

and yield strengths (σy reduced from 1008 MPa to 912 MPa). The ductility improvement 

led to longer life (up to 2 million cycles), compared to the as-built part which did not last 

for more than 27000 cycles. In addition, the pores size can be significantly reduced using 

HIP, Figure 1.13. The pores size could be reduced to undetectable range (less than 22 µm).  

Heat treatment was also found to improve the part quality. The heat treatment can be done 

below or above the β transus temperature, which is 980o C [14]. Heat treating the as-built 
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parts at temperature of 800o C, which is below the transus temperature, for 2 hours 

significantly reduces the residual stresses (from about 235 MPa to -5 MPa) and improves 

the fatigue strength and life from 27000 cycles for the as-built part to 93000 cycles, without 

a significant effect on the microstructure and material strength, Figure 1.12 (b).  Heat 

treating at 1050o C for 2 hours improves material ductility, fatigue strength, and part life 

(93000 cycles), associated with a reduction in the material strength. These changes are due 

to the microstructure evolution, increased α grains size, β formation during the heat 

treatment shown in Figure 1.12 (d).  

 

Figure 1. 12. Microstructure of: (a) as built, (b) Heat treated at 800 C, (c) HIPed, and (d) 

Heat treated at 1050 C. [8] 
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Figure 1. 13. CT images for porosity for (a) as-built part, and (b) HIPed part. [8] 
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2. Thermal Modeling of LPBF Process 

2.1. Literature Review 

Predicating the thermal history parts experience during the build process is crucial; such 

predictions can help delivering critical insights to analysts and operators to avoid the high 

costs associated with failed or distorted parts during the building process or after becoming 

in service. The LPBF process parameters can be changed to avoid these failures, especially 

for parts with complex features or thin walls. Although, analytical methods were developed 

to predict temperature distributions, they are always associated with simplifications such 

temperature-independent material properties and may not be able to capture the complexity 

of the process physics. Numerical methods, where the domain can be discretized into grid, 

such as finite difference, finite volume, or finite element provide helpful tools to predict 

thermal history considering material properties temperature dependency and scanning 

strategies. With complete understanding of the part thermal history, decision could be made 

to improve the parts porosity, residual stresses, and microstructure.  

Thermal modeling of the LPBF process using finite element modeling (FEM) is 

challenging for many reasons. Firstly, the heat source model should represent a laser beam 

with a diameter ranges between 50 µm to 250 µm, therefore, a fine mesh is needed to 

accurately represent this Gaussian profile of the heat source, which makes the problem 

computationally expensive. Secondly, the phase changes associated with that problem adds 

high nonlinearity to the problem, which encounter convergence difficulties and require 

using iterative procedure.  
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Single track simulations that consider powder particle distribution were helpful to 

understand physics and defects that take place during the process and validate the 

computational model. Khairallah et al. [22] investigated the fluid flow and elastic-plastic 

material response during LPBF process using mesoscopic simulation model. In a later 

study, Khairallah et al. [23] investigated the pore formation mechanisms. In the two studies, 

the authors developed a finite element model using Arbitrary Lagrangian Eulerian (ALE) 

approach considering a stainless-steel powder bed with particle size measured 

experimentally. Mindt et al. [24] also developed a micromodel which considers the powder 

particle, and predicts porosity, surface roughness, and melt pool characteristics.  Although 

models addressed by this approach help in understanding the thermal cycles, material 

consolidation quality, and identifying process window for each material, they are 

computationally expensive since each powder particle is represented by set of elements. 

Thus, utilizing such approach for multiple scanning vectors and part-scale levels is 

computationally infeasible.  

Macroscale models, where the element cannot represent the powder particles distribution, 

were also used to determine the melt pool characteristics and to predict the influence of 

process parameters and scanning strategies on the temperature distribution and induced 

residual stresses. Though several research studies where well-developed finite element 

methods were used to study and investigate the LPBF process, part-scale simulations were 

not well addressed. Some of these studies were simplified so that they limited to: (1) single 

layer analysis  [25]–[29],(2) coarse mesh [26], (3) bulk layer assumption (scaling up the 

build layer thickness)[30], and (4) even simplifying the heat source model to Gaussian line 
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heat source [31] or uniform heat source over the entire layer. These simplifications could 

make the problems computationally feasible, however, they are always associated by a 

sacrifice in accuracy. For example, using bulk layer or simplifying the heat source model 

result in inaccurate temperature history for the part. In addition, using coarse mesh results 

in large discretization error, which may make the results unreliable.  Therefore, there is a 

challenge to keep the problem size feasible without a significant loss in accuracy.  

The element birth and death approach was found to be useful to simulate the addition of 

new layers [32]. It is currently adopted in the AM commercial packages simulations 

(ANSYS Additive, Simufact Additive, etc.). This technique works by dividing the part 

geometry into layers, generating the mesh for all layers once, and mathematically killing 

or deactivating the elements that are above the build layer by multiplying its thermal 

conductivity by low number (10-6). Once the current build layer simulation is complete, 

the following layer elements are activated, and simulation is solved for the new layer. The 

disadvantages of this approach are: (1) though the elements are deactivated, they still exist 

in the stiffness matrix and the problem size is similar for any build layer, and (2) the 

elements size is restricted by the layer thickness. Thus, the computational time using this 

approach is still expensive. Although the commercial software simplify the problem by 

assuming a bulk layer or mechanical equivalent layer and uniform heat source that is 

applied once throughout the build layer, the element birth and death approach is still 

expensive for large parts.  

Another approach based on super-position was found to be helpful reducing the 

computational time from 33 years to 3 months for 5 mm x 5 mm x 2 mm part [33]. 
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However, the approach was helpful only when linear heat equation is considered, and the 

thermal conductivity and specific heat are assumed temperature independent.  

Adaptive remeshing provides a solution to overcome the high computational time and 

resources needed to simulate LPBF problems. The mesh is continuously changing during 

the solution so that fine mesh always exists where the temperature gradient is high, and 

coarse mesh elsewhere. Pal et al. [25] and Patil et al. [34] developed adaptive remeshing 

framework for a single layer where there is a moving refined mesh area that shares its 

boundary nodes with the part coarse mesh, Figure 2.1 (a). A similar technique was adopted 

to simulate part-scale build process [35], Figure 2.2. A layer-wise adaptive remeshing 

approach is currently developed in the commercial AM software NetFabb for small scale 

parts, Figure 2.1 (b). Although these approaches were helpful improving model fidelity 

with reduced computational time, it is limited to hexahedron elements and uniform mesh. 

In addition, meshing using hexahedron elements can be very time consuming for complex 

parts that are easier to mesh with tetrahedron mesh. Thus, remeshing with hexahedral 

elements is more suitable for very simple parts that do not include curvatures since 

remeshing with this element shape considering keeping all part curvatures for complex 

parts might be very expensive. Another problem is that the current commercial packages 

do not have the capability of having customized remeshing techniques, therefore, the 

authors had to develop their own thermal solvers which might not be as accurate as the 

existing and well-developed commercial solvers.  
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Pan Computing (Now NetFabb) [36] 

 

3DSIM mesh Configuration (Now ANSYS 

Additive) [34] 

Figure 2.1: LPBF thermal simulations with adaptive remeshing (Available in 

commercial packages) 

 

 

Figure 2.2: Mesh configuration for simulation with adaptive remeshing [35] 

2.2. Research Motivation 

As previously mentioned, thermal modeling for part-scale using the traditional method is 

computationally infeasible unless there are assumptions by which the problem could be 
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simplified. The reason is that the laser spot size is too small compared to the part, and 

having fine mesh everywhere is computationally expensive.  

The motivation of this dissertation is to reduce the computational time for thermal 

modeling of LPBF process and to make these simulations feasible on modest 

computational resources. This motivation was driven by the need to run many simulations 

for the uncertainty analysis. Therefore, an adaptive remeshing framework was developed 

with the aim of reducing the size of the stiffness matrix. The previously aforementioned 

published adaptive remeshing techniques rely on the use of hexahedron mesh or voxels, 

which are not able to capture the features that complex parts have. Unlike previously 

published studies, this work is the first study where an adaptive remeshing framework 

utilizing a commercial solver is developed. Every single step of the framework was 

computationally optimized, and minimum computational time was achieved. In addition, 

the use of tetrahedral mesh was introduced for the first time, which is more advantageous 

representing complex parts with high element growth rate. Thus, less elements and nodes 

are needed.   

2.3. Model Description 

2.3.1. The Adaptive Remeshing Framework 

In this dissertation, adaptive remeshing is applied in two ways: layer-wise and scan-wise 

adaptive remeshing. The layer-wise adaptive remeshing is more efficient for smaller parts 

as a new mesh is generated for each newly added layer. When the part is large, the number 

of steps and nodes become large, therefore, there is a need to utilize a scan-wise adaptive 
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remeshing technique. In both approaches, since there is a mesh change, a framework where 

results are transferred from the old mesh to the new mesh is developed. Although this 

remapping framework may add to the total computational time, the reduction is the total 

computational time is much more significant.  

2.3.1.1. Single Track with Adaptive Remeshing 

The purpose of the single-track model is to validate the numerical model and to understand 

how the process parameters and their variation affect the melt pool size. This model 

captures the powder layer properties with 10µm element size, Figure 2.3. Thus, adaptive 

remeshing for this model is essential to save computational time. For minimal 

computational time, all the mesh configurations and temperature remapping equations for 

this model were generated in advance so that no remeshing or temperature remapping will 

take place during the solution, Figure 2.4. The run time for each single case using this 

model is approximately 15 minutes.  
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Figure 2.3: Mesh Configuration for Single Track Simulation 

  

Mesh 4 Mesh 5 

Figure 2.4: Mesh configuration for two consecutive simulation tasks 

2.3.1.2.  Layer-wise Adaptive Remeshing 

The layer-wise adaptive remeshing is used for the layer-by-layer build, where the mesh is 

always kept fine at the powder layer and high temperature gradient region, and coarse 

elsewhere, Figures 2.5. A typical element size at the powder layer using this approach is 

set to the layer thickness, e.g. 30 µm. This adaptive remeshing approach is suitable for 

small parts and when lack-of-fusion porosity predictions is needed. Considering this 

approach, accounting for the powder-to-solid transition and assigning powder material 

properties to layer elements is feasible, Figure 2.6. The framework for the analysis with 

layerwise adaptive remeshing is simple. After solving the thermal problem for the first 

layer, a new mesh is generated for the second layer and the temperature solution is mapped 

from the old mesh to the new mesh. This process continuous until all layers are complete. 

During the solving, the temperature history of elements is checked, and if all the element’s 

nodes exceed the material melting temperature, the material assignment of the element is 
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changed to solid material, Figure 2.7. After the completion of solving each layer, a new 

mesh with the new powder layer is generated. By the end of each layer analysis, the 

remaining powder elements are considered lack-of-fusion pores since the powder particles 

melting is incomplete. The drawback of this approach is that partial melting of powder 

particles is ignored and predicted lack-of-fusion porosity will always be higher than 

experimentally measured values.  

Figure 2.8 shows the significant reduction in the number of nodes when layerwise adaptive 

remeshing is used compared to the case without adaptive remeshing. The 90% reduction 

in the number of nodes leads to a much smaller stiffness matrix that is much faster to solve. 

In addition, the number of nodes when this layer adaptive remeshing technique with 

tetrahedral mesh is used is much less than required when using the voxels-based approach, 

Figure 2.9. For complex geometries that include curvatures and thin walls, having voxels 

that keep part’s complex feature is computationally.  

 

Figure 2.5: Build part including powder layer on a base plate 
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Figure 2.6: Layer-wise adaptive remeshing configuration for: (a) Layer 49 at the 

beginning, (b) Layer 49 after entire layer is scanned, and (c) Layer 50, after addition of 

one powder layer 

 

Figure 2.7: Element material change once the element nodes temperature exceeds the 

melting temperature 



27 

 

 

 

 

Figure 2.8: Comparison between the stiffness matrix size for model includes remeshing, 

and birth and death approach 

 

 

Figure 2.9: Mesh configuration for complex geometry considering both cubic-shape and 

tetrahedral elements with layer element size 1 mm. 
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2.3.1.3. Scan-wise Adaptive Remeshing 

The second remeshing approach was based on the continuous mesh refinement and 

coarsening based on the location of laser beam. This approach relies on the remeshing tool 

that ANSYS software is using for the Nonlinear Adaptivity (NLAD) features. The NLAD 

framework works for high deformation problems where elements are distorted, they are 

sent to the remeshing tool for remeshing or refining. This remeshing task is essential to 

have a convergent analysis. Similarly, in the thermal problem, the coarse elements, where 

high temperature gradient is expected, are sent to the remeshing tool for refinement. This 

refinement is essential to capture the high temperature gradient region and to accurately 

represent the heat source, Figure 2.10. With this approach, the refinement is mainly 

controlled by the refinement length, Figure 2.11. A long refinement length results in large 

number of nodes, but less remeshing and remapping tasks. A short refinement length results 

in lower number of nodes, but more remeshing and remapping tasks. In addition, there is a 

fixed time associated with launching the solver and reading the input files. Therefore, the 

optimal remeshing length cannot be easily determined, and it may vary from a case to 

another. Compared to the layer-wise remeshing approach, this approach requires more 

remeshing and remapping tasks, but more suitable for large parts. However, a drawback of 

this approach is that powder-to-solid transition cannot be considered since adding such 

constraint to the remeshing problem will make it computationally expensive. When using 

this approach, it is always essential to make sure that the element edge length is small 

enough so that multiple nodes can represent the heat source. A histogram of the refined 

elements’ edge size is shown in Figure 2.12. The framework for the thermal analysis with 

scan wise adaptive remeshing is shown in Figure 2.13.  
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Figure 2.10: Mesh configuration for the scan-wise adaptive remeshing approach 

 

Figure 2.11: Effect of the refinement length on mesh density 

 

Figure 2. 12. Element size distribution at the refined area 
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Figure 2.13: Framework for the Thermal simulation with scan-wise adaptive 

remeshing 

2.3.2. Temperature Remapping 

When using adaptive remeshing, remapping procedure must be used to transfer the 

temperature results from the previous mesh before remeshing to the newly generated mesh. 

In addition, the remapping framework enables tracking the thermal history at any location 
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of interest even if no nodes exist at that location. In the current work, two remapping 

algorithms were considered: 

 2.3.2.1. Distance-based remapping 

With this approach, the new mesh nodes’ temperature is calculated from the old mesh 

nodes based on the nearest K nodes. In addition, a simplification can be made such that if 

the old node is too close, the temperature results are just transferred. Therefore, the 

temperature of a node i in the new mesh can be calculated as  

𝑇𝑖(𝑡) =

{
 
 

 
 

𝑇𝑗 𝑑𝑖𝑗 ≤ 2.5 µ𝑚

∑
𝑇𝑗(𝑡)

𝑑𝑖𝑗
 𝑗∈𝑁

∑
1

𝑑𝑖𝑘
 𝑘∈𝑁

𝑑𝑖𝑗 > 2.5 µ𝑚

  Eq 2. 1 

Where 𝑇𝑖 is the temperature of the new node i,  𝑇𝑗 is the temperature of the old node j, 𝑑𝑖𝑗 

is the distance between the new node i and old node j, and N is the set of nearest K nodes. 

This approach is too fast and easily to implement, however, it is not suitable when coarse 

elements are also changed since it will be associated by a significant loss of data.  

 2.3.2.2. Shape function-based remapping 

The shape function is the function by which the solution at any point inside the element  

can be interpolated from discrete values obtained at the element nodes. The shape function 

for the 4-nodes (SOLID70) and 10-nodes (SOLID87) tetrahedral elements, Figure 2.14, 

are shown in Equations 2.2 and 2.3, respectively.  
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                                   SOLID70 SOLID87 

Figure 2.14: 3D Thermal Elements used for the thermal simulation 

 

𝑇 = 𝑁1𝑇𝐼 + 𝑁2𝑇𝐽 + 𝑁3𝑇𝐾 + 𝑁4𝑇𝑀       Eq 2. 2 

𝑇 = 𝑁1(2𝑁1 − 1)𝑇𝐼 + 𝑁2(2𝑁2 − 1)𝑇𝐽 + 𝑁3(2𝑁3 − 1)𝑇𝐾 + 𝑁4(2𝑁4 − 1)𝑇𝐿 +

4𝑁1𝑁2𝑇𝑀 + 4𝑁2𝑁3𝑇𝑁 + 4𝑁1𝑁3𝑇𝑂 + 4𝑁1𝑁4𝑇𝑃 + 4𝑁2𝑁4𝑇𝑄 + 4𝑁3𝑁4𝑇𝑅  Eq 2. 3 

Where 𝑁𝑖 is the shape function value for node i, and 𝑇𝑖 is its temperatures. The shape 

function can be calculated as: 

𝑁𝑖 =
𝛼𝑖+𝛽𝑖𝑥+𝛾𝑖𝑦+𝛿𝑖𝑧

6𝑉
         Eq 2. 4 

Where V is the element volume and can be obtained as: 

𝑉 =
1

6
|

1 𝑥1 𝑦1 𝑧1
1 𝑥2 𝑦2 𝑧2
1 𝑥3 𝑦3 𝑧3
1 𝑥4 𝑦4 𝑧4

|        Eq 2. 5 

And the coefficients 𝛼𝑖, 𝛽𝑖, 𝛾𝑖, and 𝛿𝑖 are given by 

𝛼1 = |

𝑥2 𝑦2 𝑧2
𝑥3 𝑦3 𝑧3
𝑥4 𝑦4 𝑧4

|, 𝛽1 = − |

1 𝑦2 𝑧2
1 𝑦3 𝑧3
1 𝑦4 𝑧4

|, 𝛾1 = |

1 𝑥2 𝑧2
1 𝑥3 𝑧3
1 𝑥4 𝑧4

|, 𝛿1 = − |

1 𝑥2 𝑦2
1 𝑥3 𝑦3
1 𝑥4 𝑦4

| 

 Eq 2. 6 

𝛼2 = − |

𝑥1 𝑦1 𝑧1
𝑥3 𝑦3 𝑧3
𝑥4 𝑦4 𝑧4

|, 𝛽2 = |

1 𝑦1 𝑧1
1 𝑦3 𝑧3
1 𝑦4 𝑧4

|, 𝛾2 = − |
1 𝑥1 𝑧1
1 𝑥3 𝑧3
1 𝑥4 𝑧4

|, 𝛿2 = |

1 𝑥1 𝑦1
1 𝑥3 𝑦3
1 𝑥4 𝑦4

| 

 Eq 2. 7 
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𝛼3 = |

𝑥1 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2
𝑥4 𝑦4 𝑧4

|, 𝛽3 = − |

1 𝑦1 𝑧1
1 𝑦2 𝑧2
1 𝑦4 𝑧4

|, 𝛾3 = |
1 𝑥1 𝑧1
1 𝑥2 𝑧2
1 𝑥4 𝑧4

|, 𝛿3 = − |

1 𝑥1 𝑦1
1 𝑥2 𝑦2
1 𝑥4 𝑦4

| 

 Eq 2. 8 

𝛼4 = − |

𝑥1 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2
𝑥3 𝑦3 𝑧3

|, 𝛽4 = |

1 𝑦1 𝑧1
1 𝑦2 𝑧2
1 𝑦3 𝑧3

|, 𝛾4 = − |
1 𝑥1 𝑧1
1 𝑥2 𝑧2
1 𝑥3 𝑧3

|, 𝛿4 = |

1 𝑥1 𝑦1
1 𝑥2 𝑦2
1 𝑥3 𝑦3

| 

 Eq 2. 9 

In order to use this approach, it is important to know in which old element the new node 

exists. So, firstly, a search algorithm where all nodes from the new mesh are assigned to 

elements from the old mesh. A node is assigned to an element only if it falls within that 

element domain such that: 

∑ 𝐼𝑖𝑛
𝑛𝐹
𝑛=1 = {

4 𝑖𝑓 𝑛𝐹 = 4 (𝑆𝑂𝐿𝐼𝐷70)
16 𝑖𝑓 𝑛𝐹 = 10  (𝑆𝑂𝐿𝐼𝐷87)

  Eq 2. 10 

where nF is the number of element’s faces, and 𝐼𝑖𝑛 is an indicator function that is equal 1 

if the node is in appropriate location from the element face. It can be obtained as: 

𝐼𝑖𝑛 = {
1 [𝐴𝑛][𝑋𝑖] ≤ 1

0 [𝐴𝑛][𝑋𝑖] > 1
       Eq 2. 11 

[𝐴𝑛] = [𝑎𝑛   𝑏𝑛   𝑐𝑛]        Eq 2. 12 

[𝑋𝑖] = [

𝑥𝑖
𝑦𝑖
𝑧𝑖
]         Eq 2.13 

𝑎𝑛, 𝑏𝑛, 𝑐𝑛 are obtained from the element’s face plane equation and represent the 

coefficients of x, y, and z of the plane equation, [𝑋𝑖] represent the new node locations. 

After the old element is determined, the new node temperature can be calculated as 

previously shown in Equations 2.1 and 2.2 depending on the element type. This approach 

is more accurate than the distance-based remapping approach. However, having curved 

surfaces, it might be possible that a new node cannot be located in any old element. The 
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temperature for these specific nodes can be calculated using the distance-based approach. 

A result from the shape-function based remapping approach is shown in Figure 2.15. 

 

Figure 2.15: Temperature distribution before and after remeshing 

2.3.2.3. Remapping Time optimization 

The time spend in remapping constitutes a large portion of the total computational time 

during modeling this problem with adaptive remeshing. In general, the idea of remeshing 

is used to improve the quality of distorted elements during the solution in large deformation 

models. In this case, remeshing and improving the mesh quality is a must for convergent 

analysis and it does not take place before mesh is distorted. However, for the thermal 

problem, there is no mesh distortion during solution and all remeshing configurations, 

which are controlled by the laser beam movement, are known in advance. In other words, 

for the thermal problem, we can generate all the mesh configurations before knowing any 

thermal solution. Similarly, remapping can be done even if the thermal solution is 

unknown, by just finding the coefficients of 𝑇𝑖 in equations 2.1 and 2.2. This approach was 

utilized and was found significantly reducing the computational time. For further 

significant reduction in the computational time, the part is divided into smaller subdomains 
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and remapping was performed for each subdomain individually, Figure 2.16. With running 

parallel remapping tasks, over 90% of the remapping time could be reduced compared to a 

single task for the entire part, Figure 2.17. 

 

Figure 2.16: Schematic drawing showing the domain division into 9 subdomains 

(Number of divisions=3) 

 

Figure 2.17: Effect of remapping number of divisions on the remapping time.  
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2.3.3. Boundary Conditions 

Modeling the heat source is crucial for accurate melt pool size predictions. The Gaussian 

heat source model, shown in equation 2.14, was widely used in LPBF numerical models 

[37]. The heat flux as a function of time for any node i with coordinates (xi ,yi) was 

simplified to be calculated as: 

𝑄𝑖(𝑡) = {
2𝑎𝑃

𝜋𝑟𝑠𝑝𝑜𝑡
2 𝑒

−2 (
𝑟𝑖(𝑡)

𝑟𝑠𝑝𝑜𝑡
)
2

𝑖𝑓 𝑟𝑖(𝑡) < 𝑟𝑠𝑝𝑜𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    Eq 2. 14  

𝑟𝑖(𝑡) = √(𝑥𝑖 − 𝑉𝑥𝑡)2 + (𝑦𝑖 − 𝑉𝑦𝑡)
2
      Eq 2. 15 

where ri(t) is the Euclidean distance between node i and laser beam center at time t, a is 

absorptivity, P is the laser power, rspot is the laser spot radius, and Vx and Vy are the scanning 

speed components in x and y directions. With this heat source model, it is assumed that 

only nodes on the surface are exposed to the laser beam. This assumption may not well 

represent the real case due to the variation in the powder particles size and the laser beam 

scatter between the powder particles [38]. In addition, as will be discussed later, the model 

includes some uncertain parameters like the absorptivity, and the laser spot diameter. 

Another model based on Gaussian heat source considering the laser penetration depth, Eq. 

2.16, was used for EBM and LPBF simulations in [39]. 

𝑄𝑖(𝑡) = {
6√3𝑎𝑃

𝑟𝑠𝑝𝑜𝑡
2  𝑐 𝜋√𝜋

𝑒
−3 (

(𝑥𝑖−𝑉𝑥𝑡)
2
+(𝑦𝑖−𝑉𝑦𝑡)

2

𝑟𝑠𝑝𝑜𝑡
2 +(

𝑧𝑠𝑢𝑟𝑓𝑎𝑐𝑒−𝑧𝑖

𝑐
)
2
)

𝑖𝑓 𝑟𝑖(𝑡) < 𝑟𝑠𝑝𝑜𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Eq 2. 16 

where 𝑧𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is the current build layer height, and c is the laser beam penetration depth. 

This model is more accurate since it can predict deeper melt pool. However, this model 
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adds another uncertain parameter, which is the penetration depth (c). In addition, it requires 

finer mesh at the spot region so that volumetric heat source be captured. Other 

simplifications to the heat source include simplifying the heat source from to line as in 

[31], or uniform across the layer as in [30]. These simplifications are basically used to 

reduce the number of simulation steps.   

2.3.4. Material Properties 

Since both powder and solid material are included in the single-track model and layer-wise 

remeshing approach, two material models were assigned to the build part. The material 

thermal properties were assumed temperature dependent, where the phase changes are 

included by considering the material latent heat. With the inclusion of the phase changes, 

the maximum temperature values become more realistic, however, the problem becomes 

highly nonlinear and Newton-Raphson procedure use is a must for better convergence 

behavior. In most simulations, Ti-6Al-4V was considered, since this material is used in 

many applications where reliability is required. For the solid material, the temperature 

dependent specific heat and density were taken from [40]. The specific heat was calculated 

with the assumption of powder porosity value of 0.4, although this parameter is also 

uncertain and may change based on location. The thermal conductivity of Ti-6Al-4V 

powder adopted were measured experimentally in [41]. It is assumed that the thermal 

conductivity of both powder particles and solid material behave similarly beyond the 

melting temperature. The thermal properties curves are shown in Figure 2.18.  

It is worth mentioning that material model itself not only controls solution accuracy, but 

also the convergence behavior. The increase of the heat capacity (latent heat of fusion and 
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vaporization) was smoothened by the inclusion of multiple points to improve line searching 

during solution for better convergence behavior. Although the temperature may exceed the 

boiling temperature during the simulation, which may be considered as unrealistic, this is 

mainly because of the gradual increase of the volumetric heat capacity curve beyond the 

boiling temperature. Otherwise, the solution may not converge. 

 

(a) Volumetric heat capacity 

 

(b) Thermal conductivity 

Figure 2.18: Temperature dependent thermal properties 
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2.4. Single Track Thermal Modeling 

The single-track model is used to validate the numerical model assumptions by comparing 

the melt pool prediction to the experimental results. Figure 2.19 shows the predicted melt 

pool width and depth by the finite element model compared to previously measured values 

in [42], where the absorptivity value was assumed 0.6 considering the heat source model 

in equation 2.14. Results show that the numerical model can predict the effect of the laser 

scanning speed and power. As the scanning speed increases, the melt pool size become 

smaller. As the laser power increases, the melt pool size becomes larger. However, there is 

a considerable difference between the predicted and measured values due to different 

reasons. Firstly, the actual process parameters in experiments may deviate from the 

nominal values, which is related to the experiment error. Previous measurements showed 

that actual process parameters may vary during the process [43, 44]. Secondly, the assumed 

absorptivity and surface heat flux may not represent the actual situations. Lastly, the 

simplifications which lead to inherent model inadequacy for representing the real physical 

systems. In addition, the finite element model may not be able to capture other physical 

phenomena such as the keyholing that takes place at high energy density and results in 

deeper melt pool [9]. Also, at some process parameters, the proposed numerical model is 

not capable of predicting the keyholing which takes place at high energy densities. As will 

be discussed later, the single track model is also used to calculate the heating time and 

maximum temperature to be applied as boundary conditions to the structural problem [45]. 
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Figure 2.19: Melt pool size predicted by FEM compared to the experimental results in 

[42] 

2.5. Part-scale Thermal Modeling 

Thermal modeling of parts manufactured by LPBF is helpful to understand the effect of 

process parameters on the thermal history, lack of fusion porosity, and melt pool size 

variation over the powder bed. As previously mentioned, part-scale modeling of LPBF 

without adaptive remeshing is massively computational expensive. Thus, both layer-wise 

and scan-wise adaptive remeshing were utilized to make the modeling computationally 

feasible and to understand how the these adaptive remeshing techniques affect the 

computational time. To investigate these, two different geometries were considered for 

part-scale modeling; a cube of different edge sizes (2 mm and 5 mm) as in Fig 2.11, and 

the cantilever structure shown in Fig 2.20.  

 

 



41 

 

 

 

 

(a) Mesh configuration 

 

(b) Thermal solution 

Figure 2.20: Thermal Simulation of part-scale models 
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2.5.1. Melt Pool Size 

Figure 2.21 shows the melt pool size close to the part center at four levels of different 

processing parameters (laser power and scanning speed) predicted for 2x2 mm2 layer area 

with layer-wise adaptive remeshing. It is obvious that the melt pool is slightly wider and 

also deeper at the lower level of scanning speed 500 mm/s when compared to the 750 mm/s 

case. The power effect on the melt pool size finds an opposite trend where the melt pool 

was found to be larger at the higher power level. These predicted results can find an 

agreement with the experimental results in [42]. The melt pool dimensions statistics is 

shown in Fig 2.22 where the melt pool width is overestimated and depth is underestimated 

from the experimentally measured values in [42]. The melt pool size in Fig 2.21 at part 

scale is larger than that predicted by single-track model shown in Fig 2.19 because, firstly, 

the melt pool size is affected by the previous scanning track which contributed to higher 

part temperature and residual heat effect. Secondly, the melt pool size continuously 

changes based on location and tend to be larger and deeper closer to the edges. The effect 

of the process parameters on the heat affected zone (HAZ), where the microstructural 

changes and induced residual stresses take place, behaves similarly as the melt pool, Figure 

2.21. A larger HAZ region takes place with increased power level and/or reduced scanning 

speed. 
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(a) P=100 W, V=500 mm/s (b) P=100 W, V=750 mm/s  

  

 

(c) P=150 W, V=500 mm/s (d) P=150 W, V=750 mm/s  

Figure 2.21: Temperature distribution during LPBF simulation with different process 

parameters 
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(a) Melt pool width 

 

(b) Melt pool depth 

Figure 2.22: Melt pool dimensions for different process parameters 

Knowing the melt pool size location dependency is very advantageous since it delivers 

insights on identifying critical locations and understanding how parts’ design or process 

parameters can be changed to avoid manufacturing defects. For instance, the large melt 

pool can be an indication of possible keyholing, while a small melt pool can represent 

potential lack-of-fusion porosity location. Although process monitoring techniques can be 

helpful observing melt pool length and width, the depth cannot be easily observed with 
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etching parts after manufacturing. Predicting location-dependent melt pool size for large 

parts is feasible without massive computational resources with the scan-wise adaptive 

remeshing approach.  Figure 2.23 describes the methodology by which the melt pool size 

at any location can be measured. Multiple lines that are colinear and perpendicular to the 

scanning track across the depth, width, and length are generated. Each line includes equally 

spaced 250 points at which temperature results are mapped, where the melt pool size can 

be measured by the number of points exceeding the melting temperature. An example of 

the mapped temperatures and melt pool dimensions are shown in Figure 2.24. The main 

reason why multiple lines are used is to capture the maximum width and depth which are 

not always at the laser spot center.  

   

 

Figure 2.23: Melt pool measurement lines 
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Length line Depth line Width line 

Figure 2.24: Melt pool measurement method 

To demonstrate the ability to handle large parts, a single layer of a relatively larger 

cantilever with support structure was considered. The layer 105 at height 3.15 mm was 

considered (overhang at 3 mm). The main reason why this specific layer was selected is to 

understand how the melt pool size is affected at overhangs. It is assumed that the last 

temperature after the interlayer cooling is uniform and equal to 100 oC to avoid simulating 

the entire part. This assumption is valid if the part can easily lose the heat within the dwell 

time. Three different scanning angles for running this analysis were considered (67, 0, and 

90). The location dependent melt pool size considering these different configurations is 

shown in Figures 2.25, 2.26, and 2.27, where the melt pool size is greatly affected at the 

overhangs for some scanning strategies. The variation in the melt pool size at different 

scanning strategies is due to the residual heat effect when the cooling time between two 

consecutive scanning tracks is insufficient. Figs 2.25 and 2.26 show that melt pool size 

variation is larger when the scanning tracks are short. However, that high variation is not 

the case when the long scanning tracks at scanning angle 0o. The sudden and high variation 

shown in Figure 2.27 at the center is due to the mesh change. Thus, the effect of overhangs 

and layers underneath becomes more significant when the cooling time is insufficient.  
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Figure 2.25: Melt pool size distribution for configuration 1 [46] 
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Figure 2.26: Melt pool size distribution for configuration 2 [46] 
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Figure 2.27: Melt pool size distribution for configuration 3 [46]  

2.5.2. Lack of Fusion Porosity 

As previously mentioned, lack of fusion porosity takes place due to insufficient energy 

density or large hatch spacing value causing incomplete melting of the powder particles. 

To predict lack of fusion porosity, only three consecutive layers were considered where the 

element size used for each layer that represents prediction accuracy is 10 µm, Figure 2.28. 
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The element material assignment is changed from powder to solid if all its nodes exceeded 

the melting temperature, even at different times. This could be an overestimation of 

porosity since it ignores the case of partial melting. Figure 2.29 shows the unmolten powder 

elements at different hatch spacing values. The fraction of these elements volume to the 

entire layers volume represents the porosity percentage.  

 

Figure 2.28: Mesh scheme for porosity prediction model 

The effect of hatch spacing on the porosity is shown in Figure 2.30 (a). At large hatch 

spacing value, the melt pool overlap is insufficient to keep fully dense parts, and 

consequently, large pores due to un-molten particles take place. This observation finds an 

agreement with the experimental observations in [4]. The percent porosity values at 

different process parameters are shown in Figure 2.30 (b). At high power levels (P=150 W 

and P=195 W), parts were found fully dense. When the energy density is decreased by 

lowering power values, lack of fusion porosity takes place. It is obvious from the figure 

that at reduced power levels, or increased scanning speed, porosity is higher. These trends 

find an agreement with the experimental measurements in [7, 42]. 
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h=0.08 mm 

 

h=0.1 mm 

 

h=0.12 mm 

Figure 2.29: Unmolten powder elements at different hatch spacing (h) value (P=50 W 

and V=500 mm/s) 
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Effect of hatch spacing 

 

Effect of scanning speed 

Figure 2.30: Lack of fusion porosity at different process parameters 

2.5.3. Thermal History and hotspots identification 

Tracking the thermal history is crucial to ensure all powder particles were melted and 

exceeded the melting temperature, understand the heating and cooling cycles, and to 

predict the microstructural evolution throughout the process. Figure 2.31 shows the 

temperature history at the center of layer 15 during the build of three consecutive layers 
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(layers 15 to 17). The effect of process parameters on the maximum temperature and 

melting cycles is significant. The maximum temperature is higher and could be close to the 

boiling point at increased power level and reduced scanning speed due to the higher energy 

density. This high temperature could be an identification of material vaporization and 

keyhole formation as was observed in [9, 42]. 

The effect of scanning the subsequent layers on the heating cycles are shown in Figure 2.31 

b and c. If the melt pool is deeper than the powder layer, the material at any given point 

would be re-melted during scanning the following layers making a strong bond across 

consecutive layers. At the point of interest, the material was re-melted at the scanning layer 

#16 at all process parameters shown in Figure 2.31 b, and was again re-melted at the layer 

#17 for P=150 W and V=500 mm/s.  
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(a) Layer 15 

 

(b) Layer 16 

 

(c) Layer 17 

Figure 2.31: Temperature history of a center point located at layer #15 in the scanning 

process of three consecutive layers (i.e., layer 15, 16 and 17) considering four set of 

process parameters 
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2.5.4. Effect of Adaptive Remeshing on Computational Time and Results 

The effect of different adaptive remeshing approaches on the computational time was 

studied. The layer-wise and scan-wise adaptive remeshing techniques were investigated 

considering a simple cube with different layer areas. Figure 2.32 shows the computational 

time comparison between the uniform mesh case and adaptive remeshing with layer-wise 

adaptive remeshing. It is obvious that the computational time increases exponentially with 

layer area increase when uniform mesh is used. The reduction in the computational time 

when layer-wise adaptive remeshing is evident especially when the layer area is large. 

Considering a cube with layer area of 4 mm2, the computational time per step and average 

number of nodes for the uniform mesh, layer-wise adaptive remeshing, and scan-wise 

adaptive remeshing is shown in Figure 2.33. The high reduction in the number of nodes 

when scan-wise adaptive remeshing is used reduced the stiffness matrix size and is the 

main reason why solver time per step is much lower than other cases.  

 

Figure 2.32: Computational time comparison between layerwise adaptive remeshing and 

uniform mesh 
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Figure 2.33: Computational time comparisons for 2x2 mm2 

Scan-wise adaptive remeshing is the most efficient solution when thermal history and melt 

pool size predictions are the objectives. However, as mentioned earlier, scan-wise adaptive 

remeshing itself requires optimization to determine the optimal refinement length value at 

which computational time is minimized. Thus, the effect of the refinement region length 

on the computational time was also studied at different layer areas (4 mm2 with 3 layers, 

25 mm2 with a single layer). Figure 2.34 shows the total time spent in remeshing and 

remapping, and solver time for different refinement region length values. It was found that 

the total time spent in remapping and remeshing significantly reduces as the refinement 

region length increases due to the reduced number of tasks. From the solver side, reducing 

the refinement region length does not necessarily mean that the solver time will reduce 

since there is a fixed time associated with launching the solver and reading input files, 

Figure 2.34. A high solver time was associated with the minimum refinement region length 

since the solver was launched more times. As the refinement region length increases, the 
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solver time reduces until reaching an optimal refinement region length, which is 1 mm for 

the two cases. As refinement region length value increases, the solver time starts increasing 

again. Since remapping and remeshing, and solving are executed in parallel, the total of the 

computational time is considered the maximum of each. Figure 2.35 shows how the 

refinement region length affects the number of nodes and solver time per step. Both the 

number of nodes and solution time per step increase as the refinement region length 

increase, which can justify the behavior shown in Figure 2.34. 

 

4 mm2 (3 layers) 

 

25 mm2 (1 layer) 

Figure 2.34: Effect of refinement region length on computational time. 
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Figure 2.35: The effect of refinement length on the number of nodes and solver time per 

step for 25 mm2 area 
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3. Thermomechanical Modeling of LPBF 

3.1. Introduction 

Residual stresses can be classified into three types [47]. Type I residual stresses are 

macroscopic stresses and act on part scale. Type II residual stresses are called intergranular 

stresses and take place due to the microstructural effects. Type III residual stresses form at 

the atom scale due to the vacancies. The focus in this chapter and in literature was given to 

type I residual stresses as this type has the most significant influence on the mechanical 

properties. Residual stresses can be measured by nondestructive diffraction methods such 

as neutron diffraction, X-ray diffraction, and the contour methods [48]. 

Parts manufactured by LPBF exhibit high residual stresses due to the expansion and 

shrinkage cycles caused by melting and solidification during the process. These residual 

stresses can significantly cause parts failure or distortion during manufacturing or reduce 

the parts’ fatigue strength. Thus, understanding the residual stresses formation mechanisms 

is crucial since it can help towards improved quality and successful builds and avoid 

recoater damage.  In general, parts manufacturing by LPBF are associated with high tensile 

residual stresses at the part surfaces and compressive residual stresses closer to the center. 

The high tensile residual stresses can cause parts distortions during supports removal or 

removing the part from the build plate and reduce fracture toughness causing quality and 

reliability issues. Although post-processing techniques such as heat treatment, HIP, and 

machining can reduce the residual stresses, optimizing the process to reduce residual 

stresses is still crucial to minimize the product cycle time. 
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The thermally induced residual stresses change from a location to another and are affected 

by the parts’ features, material thermomechanical behavior, LPBF process parameters, base 

plate temperature, preheat temperature, and dwell time (time between scanning two 

consecutive layers). For example, the material properties were proven to have a significant 

effect on the residual stresses. The average residual stresses decreases as the thermal 

diffusivity (D) and thermal conductivity (k) increase [47, 49]. Higher material yield 

strength and ultimate strength increase also leads to higher residual stresses. Gu et al. [50] 

also reported that the thermal expansion coefficient (α) and Young’s modulus (E) have a 

significant effect on the residual stresses as they lead to high thermal strain values. The 

residual stresses also depend on the process parameters including the laser power, scanning 

speed, hatch spacing, scanning strategy. It was reported that increasing the power level or 

reducing the scanning speeds contributes to higher residual stresses for different materials 

[51]. In addition, increasing the powder preheat temperature can significantly lead to 

reduced distortions and residual stresses [52]. 

3.2. Predictive Modeling Approaches 

3.2.1. Analytical Solution 

Analytical solutions might provide a fast and efficient methods to calculate residual 

stresses and distortions in LPBF. Since the residual stresses are induced by the temperature 

gradient, the temperature solution must be obtained in advance. In an attempt to calculate 

the residual stresses and distortion solution during LPBF, Ning et al [53] developed a fast 

analytical model to calculate distortions for Ti6Al4V cantilever.   Firstly, the temperature 

solution is obtained from analytical thermal model for single track which assumes heat 
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input from moving laser and heat loss due to convection and radiation. The resulted 

temperature solution is then added to the part through superposition method. Secondly, the 

temperature distribution is used to calculate the thermal stresses from which residual 

stresses and distortions can be calculated [54]. The predicted distortions were almost 

identical to the experimentally measured value and could be calculated in less than 10 

seconds. The yield strength, one of the most important parameters when calculating 

distortions, was, however, not mentioned.  

Although analytical methods are fast and efficient, they must be associated with multiple 

assumptions that keep accuracy questionable. For example, it is assumed that the material 

properties used in both the analytical thermal and stress models are constant, and 

temperature independent. With this assumption, the material behavior at high temperature 

will be misrepresented. Another assumption that was made in the analytical model is the 

2D plane strain model. While this can work with some simple parts, complex parts will 

require the development of the 3D analytical models that are more complex to solve. Thus, 

relying on analytical models is not enough and the use of 3D/2D FEM is still advantages.  

3.2.2. Numerical Solutions 

Finite element models have been widely used to predict the induced residual stresses and 

distortions during the LPBF process. Unlike the thermal problem where there is only one 

degree of freedom at each node, the structural problem is more expensive since each node 

has three degrees of freedom. Thus, the stiffness matrix is three times larger and running 

simulations with the spot heat source is infeasible for large parts even with adaptive 

remeshing.  
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The multi-physics governing the Laser Powder Bed Fusion (LPBF) are sophisticated. 

Mesoscale finite element models that were able to represent the powder particles size and 

distribution randomness have been developed in [22, 23] to investigate the fluid flow, 

elastoplastic response and pore formation mechanisms during the LPBF. These 

sophisticated models were helpful to understand the complex physics behind the process 

but were computationally expensive. Thus, such approach for part-scale is infeasible. 

Macroscale single-track finite element models could also help understanding the 

accumulation of residual stresses during the layer-by-layer build process [49].  Such 

modeling methodology for part-scale is, however, infeasible because of the high number 

of simulations steps associated with simulating the 100µm laser beam movement along 

with having fine mesh representing the 30µm layer thickness. Therefore, without 

simplifications like the mechanical layer equivalent, where multiple true layers are merged 

into one layer for the structural simulation, and assumption of uniform heat source that is 

applied once and uniformly to the entire layer.  

Unlike the thermal problem, the use of element birth and death in the thermomechanical 

problem is essential. The element birth and death technique was widely used to simulate 

the addition of new layers [32, 36, 45, 54–56]. Initially, a finite element mesh that divides 

the build part into multiple layers based on the assumed layer thickness is generated where 

all elements are deactivated. The build process is simulated by activating the layer’s 

element layer by layer with applying the appropriate boundary condition until all layers are 

complete, Figure 3.1. Deactivating the elements mathematically works by multiplying each 

element material property by a very small number (10-6 e.g.) [57]. As the layer is being 
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activated, its elements’ stiffness matrix is restored to the original value based on the parts 

mechanical and thermal properties. It is worth mentioning that the global stiffness matrix 

includes the nodes of both active and deactivated elements. In other words, the stiffness 

matrix size does not change as the layers being activated.  

 

Figure 3. 1. Mesh configuration for thermomechanical modeling  

Two approaches are widely used to simulate the structural problem for the LPBF build 

process. The first approach is the inherent strain (assumed strain), where there is a uniform 

strain value is applied to each layer as it is being activated [56, 58, 59]. This approach 

requires obtaining the assumed strain value through calibration against experiment solution 

[60], or calculation from detailed and expensive thermomechanical modeling [56]. 

Calculating the inherent strain from detailed thermomechanical models with a moving laser 

beam was proven to have poor accuracy as it is associated with some uncertainties and 

ignores the effect of the fluid dynamics [60]. The calibration-based approach was proven 

to be efficient when applied for the same geometry at which strain is calibrated. However, 

it fails to predict deformation and residual stresses when applied to different 

geometries[60]. In addition, the author believes that the inherent strain calibration 

framework should also include residual stresses.  
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The other approach relies on the thermo-mechanical simulation approach, where the 

thermal problem is solved first, and then the temperature history is imported to the 

structural problem as boundary conditions. This approach requires more time than the 

assumed strain approach since more time is needed to solve the thermal problem.  

There was significant number of research studies where the residual stresses during LPBF 

were studied. Hussein et al [26] developed a small-scale model where a single layer with 

multiple scan-tracks were simulated for SS316L. It was observed that stresses exhibit 

cyclic behavior, where tensile stresses are induced during heating, and compressive during 

cooling due to the shrinkage.  Li et al. [55] developed a framework for the thermo-

mechanical simulation using ABAQUS and hexahedral elements to predict distortions and 

residual stresses and distortions for part-scale. Firstly, a single-track thermal simulation is 

used to calculate the heating time. Secondly, the layer-by-layer part-level thermal 

simulation with body heat flux boundary condition that lasts for the period of the heating 

time is solved. Finally, the temperature history is imported to the structural problem as a 

body force. The framework was validated by AlSi10Mg cantilever example where the 

distortions and residual stresses were validated against experimental solution. As per their 

finding, the distortion solution after cutting the support structure follows a similar trend of 

experimentally measured values. However, the distortion solution was underestimated 

compared to the experimental solution by 28%. In a later study, they developed models for 

different parts including bridge structural and L-shaped bar to investigate the effect of the 

heat flux when in patterns that are like the scanning strategy and  [45]. As per their findings, 

slight differences in the distortion solutions were obtained. The predicted residual stresses 
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for the L-shaped bar, and curling angle for the bridge structure could found an agreement 

with the experimental solution. In addition, as the number of layers representing parts 

increases from 5 to 20 layers, solution becomes closer to the experimental solution. It is 

believed that the authors were unable to investigate with larger number of layers due to the 

computational expensiveness of this problem.  Ganeriwala et al. [61] developed a finite 

element model to predict part distortions and residual stresses using the Multiphysics code 

Diablo developed at Lawrence Livermore National Laboratory considering the strain rate 

effects. The predicted strain components distributions could find acceptable agreement 

with the experimental solution. Furthermore, the consideration of strain rate sensitivity was 

found to be insignificant on the solution.  

Thermomechanical modeling with the assumptions of uniform heat source along with 

mechanical equivalent layers was proven to be efficient predicting residual stresses and 

distortions. However, the computational expensiveness of this problem remains a 

challenge. Although it was reported that having a large number of layers representing parts 

improves models accuracy in [45], having large number of layers might be infeasible for 

large parts as it will result in a greater number of nodes, larger stiffness matrix size, and 

number of solution steps. Thus, there is an optimal layer thickness by which a compromise 

between accuracy and efficiency can be achieved.  

Layer-wise adaptive remeshing in LPBF thermomechanical modeling could help reducing 

the computational time by coarsening the mesh where the temperature and strain gradients 

are low and keeping fine mesh at the build layers where high temperature and strain 

gradients are expected. Previous framework where adaptive remeshing was used for the 
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LPBF thermomechanical problem was discussed by Gouge et al. in [36] and currently 

available in Autodesk NetFabb. Their proposed mesh coarsening approach relies on the 

use of voxels and octrees adaptivity by which every 8 voxels are merged into one coarser 

voxel and their averaged solution is mapped to the new voxel. The first limitation of the 

software is that only cubic shaped elements are used. Thus, parts’ curvatures and complex 

features are not well represented using coarse mesh, and fine elements are needed to 

maintain geometrical complexity, Figure 3. 2. Secondly, the adaptive meshing framework 

is associated with a simplification in the element formation as there is no mesh connectivity 

at the coarse element mid-side node. In addition to that, the software utilizes a multi-scale 

modeling approach in which a small-scale model is used to calculate basic variables such 

as temperature, strains, and stresses and then results are mapped to the large-scale model. 

What is being mapped and how the framework works remain proprietary.  

 

Figure 3. 2. Autodesk NetFabb Adaptive Meshing with 2 levels of mesh adaptivity 

[36] 
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3.3. Research Motivation and Contribution 

Although there had been some research studies where well-developed finite element 

models were described, the computational time for this problem is still a challenge. Since 

the model accuracy improves as the assumed mechanical equivalent layer thickness 

becomes closer to the true layer thickness [45], a compromise between accuracy and 

computational time must be achieved. Like the thermal problem, the use of adaptive 

remeshing in the thermomechanical problem can make this problem more efficient and 

feasible on modest computational resources. Applying adaptive remeshing in the structural 

problem is however difficult and effortful as more iterations are needed to reach 

equilibrium state after each remeshing task.  

The motivation in this chapter is develop an understanding of the induced residual stresses 

and distortions during LPBF and to develop a complete framework where adaptive 

remeshing can be applied to the thermomechanical problem utilizing existing well-

developed general-purpose solver, like ANSYS, and with using tetrahedral mesh that can 

represent parts complex features with less number of nodes compared to the previously 

developed framework using voxels [36]. The adaptive remeshing technique utilized in this 

work is similar to the nonlinear adaptivity (NLAD) framework developed by ANSYS [62] 

and also adopted in machining and forming simulations [63] to tackle large deformations. 

The use of adaptive remeshing in NLAD and large deformation applications has however 

different objective. In large deformation applications, the adaptive remeshing is needed to 

replace the old deformed and distorted mesh with a new mesh with acceptable element 

shape. For such applications, adaptive remeshing criteria is controlled by different 
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measures like elements shape, energy, etc. The objective of using adaptive remeshing in 

AM simulation is different as AM or LPBF simulations are not involved with large 

deformations like machining or forming. It can however help keeping fine mesh at the high 

stress and strain gradients regions, and coarse elsewhere achieving a significant reduction 

in the stiffness matrix size and computational time as will be discussed later in this chapter.  

The developed adaptive remeshing framework for the structural problems contributes to 

the literature by being the first where a complete framework to efficiently solve the 

thermomechanical problem is developed utilizing general-purpose ANSYS solver. The 

framework makes use of the higher-order quadratic tetrahedral elements (SOLID187) that 

can help avoiding the drawbacks of the voxels-based adaptive remeshing by representing 

all parts’ curvatures and thin features with a smaller number of nodes.  

The thermomechanical modeling of LPBF using finite element is validated using multiple 

3D models from different materials (Ti6Al4V bridge, IN718 canonical, and IN625 NIST 

AMB2018-01 cantilever parts).  

3.4. Thermomechanical Modeling Description 

3.4.1. Boundary Conditions 

As mentioned earlier, unlike the thermal problem, the addition of new layers in the 

thermomechanical is represented by the element birth and death. The powder material 

properties are applied to all part’s layer before building any layer. A schematic about the 

boundary conditions used in the thermomechanical modeling is shown in Figure 3.3. The 

material melting temperature is used as a temperature boundary condition for each new 
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layer at the same step of activation. During this step, the layer slightly expands due to the 

assumed low thermal expansion coefficient of the powder. This heating step is followed by 

a cooling step where the layer material assignment changes from powder to solid and heat 

loss is allowed by convection (h=10 W/m2K and T=25 oC) at the build layer. During this 

cooling step, the shrinkage due to the reduced temperature results in accumulating residual 

stresses that may remain until the build is complete.  It is worth mentioning that build part 

is bonded to the build plate by a Multi Point Constraint (MPC) contact formulation where 

heat transfer by conduction is also allowed. 

 

Figure 3. 3. Boundary Conditions for LPBF process thermomechanical modeling 

3.4.2. Adaptive Remeshing Framework 

The thermal part of the thermomechanical problem is very similar to what was previously 

discussed in chapter 2. The adaptive remeshing mechanisms are however different. In the 

layerwise adaptive remeshing, a new mesh was being generated for each new layer. For 

the structural problem, generating a new mesh every layer is computationally expensive as 

mapping the structural problem solution (e.g. stresses, strains, etc.) requires performing 

iterations until equilibrium state is achieved. Thus, the adaptive remeshing in the 
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thermomechanical model is set to be less frequent and controlled by the number of layers 

being solved before remeshing takes place (N). Like the thermal problem, the Ansys 

remeshing engine was utilized to handle all remeshing tasks.  

The Ansys rezoning feature was used to map the solution at the changed mesh region. The 

rezoning feature current limitation is that it does not run in distributed mode. Thus, 

structural problem remapping computational time is longer than that that of the thermal 

problem discussed in section. 

The mesh configuration adopted in this analysis relies on the use of tetrahedral elements 

available in Ansys (Solid87 for the thermal problem, and Solid187 for the structural 

problem). These tetrahedral elements are nonlinear and high-order which have ten nodes 

and are supported by the advanced Ansys remeshing engine and rezoning features. As 

mentioned earlier, the use of this tetrahedral element is advantageous as it allows having 

high mesh growth rate and representing curvatures with less elements compared to the 

voxel-based remeshing approach. During simulation, each part being built is divided into 

three regions: 1) N layers being solved, 2) previously solved layers, and 3) future layers to 

be solved. The mesh must be kept fine at the layers being solved, and coarse at both the 

previously solved and future layers to reduce the size of the stiffness matrix. An example 

of the initial mesh configuration where all part elements are deactivated considering N=10 

is shown in Figure 3.4. After activating and solving each N layers, mesh is coarsened at 

these layers and refined at the following N layers, Figure 3.5.  
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Figure 3. 4. Mesh and adaptive remeshing configuration for NIST cantilever 

 

 
(a) Before remeshing 

 
(b) After remeshing 

Figure 3. 5. Mesh configuration with N=10 and C=3.5 

The value of N controls the remeshing frequency and significantly affects the 

computational time. A large N value would keep high number of nodes throughout the 

simulation and results in longer solver computational time but shorted remapping and 

remeshing time. Small N values result in higher remeshing and remapping time, but shorter 



72 

 

 

 

solver time. Thus, there is an optimal N for each part at which the computational time can 

be optimized.  

Another controllable parameter during adaptive remeshing is the level of mesh coarsening 

(C). The value of C controls number of nodes and stiffness matrix size after remeshing 

takes place. However, it is worth mentioning that mapping solution during adaptive 

remeshing could be associated with significant loss of data if the new mesh is coarser. 

Therefore, the C value should be chosen to accuracy is maintained while computational 

time could be minimized.  An example of how two mesh coarsening levels control mesh 

size is shown in Figure 3.6. A large C value can significantly reduce the number of nodes. 

However, temperature, stress, and strain distributions after remapping might not be close 

to those of previous mesh. Therefore, the mesh coarsening level is constrained to ensure 

accurate remapping and keep the fine details at high strain gradient regions. The effect of 

N and C values is investigated in this study.  

  
(a) C= 3.5 (b) C=1.75 

Figure 3. 6. Mesh configuration for two different coarsening levels 
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The fully automated framework for the thermomechanical problem with adaptive 

remeshing, developed in Python, is shown in Figure 3.7, where the three main inputs 

include CAD file for build part, value of assumed layer thickness, and remeshing related 

parameters (N and C values). The initial generated mesh, Figure 3.4, includes a fine mesh 

at the first N layers and coarse mesh at all future layers (deactivated elements). A developed 

Python code reads the mesh information and generates the input files for the thermal and 

structural problem accordingly. Solving the thermomechanical problem works by solving 

the thermal problem first and use the thermal solution as a boundary condition to the 

structural problem where the thermal stresses are calculated. Once the first N layers are 

solved, this fine mesh is coarsened using the remeshing engine, and the next set N+1 to 2N 

layers are refined. Changing the mesh during solving is being performed under the rezoning 

framework, and the solver proceeds with the new mesh.  

The process continues until all layers are built. The main adaptive remeshing parameters 

introduced in this work are: i) the number of layers being solved between remeshings (N), 

and ii) the adaptive remeshing coarsening level (C). These parameters are controllable and 

significantly affect the computational time. Three case studies were considered for this 

framework validation: (1) IN718 canonical part, Figure 3.8, (2) IN625 NIST AMB2018-

01 cantilever [64], Figure 3.4, and (3) Ti6Al4V bridge part. Distortion for the canonical 

part takes place during manufacturing, while for the NIST cantilever and bridge, it takes 

place due to the spring back effect after cutting the support structure. The canonical part 

was primarily used to show the advantages of the proposed tetrahedral mesh-based 

adaptive remeshing technique compared to the adaptive remeshing technique, based on 
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voxels with octree H-adaptivity layerwise remeshing, proposed in [36, 65]. The assumed 

layer thickness value was assumed 0.25 mm for the NIST cantilever and bridge parts and 

0.5 mm for the canonical part. The simulations were run on modest computational 

resources and only a single core (processor i7-7700) is used for each run. 

 

Figure 3. 7. Framework for the thermomechanical problem with adaptive remeshing 

 

 



75 

 

 

 

 
 

(a) Initial mesh configuration (b) Part thin walls 

Figure 3. 8. IN718 square canonical part 

 

3.4.3. Thermomechanical Material Modeling 

Parts manufactured by the LPBF were reported to have different mechanical properties 

from parts manufactured from wrought materials. The differences could be due to the 

porosity that have a significant effect on the properties and microstructure. In 

thermomechanical modeling of LPBF process, material properties from experimental 

measurements of additively manufactured parts were used. One challenge is that 

mechanical properties for additively manufactured parts by the same machine exhibit high 

variability compared to other manufacturing techniques [66]. This variation can have a 

significant effect on solution accuracy. For instance, the parts’ induced residual elastic 

strain during the process is linearly proportional to the yield strength value. Thus, the 

material parameters assumption is critical as they affect model accuracy. 
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Three materials were validated and used in the current framework: (1) IN625, (2) IN718, 

and (3) Ti6Al4V. The yield strength, Young’s modulus and thermal expansion coefficient 

were taken from the manufacturer datasheet [67]–[69], Table 3.1. The plasticity curves at 

the room temperature were obtained from [70]–[72], and calculated from the thermal 

softening coefficient at high temperature [72]–[74], Figure 3.9, such that: 

𝜎 = (𝐴 + 𝐵휀𝑛) (1 − (
𝑇−𝑇0

𝑇𝑚−𝑇0
)
𝑚

)  Eq. 3. 1 

Where A, B, n, and m are material constants. A represents the initial yield strength, B and 

n represent the strain hardening effect, m is the softening coefficient that represents the 

temperature dependency, T is the temperature, Tm is the melting temperature, and T0 is the 

reference temperature. Eq. 3.1 was obtained from Johnson-Cook equation that can 

represent the material behavior at high temperatures after eliminating the strain rate 

sensitivity effects [75].  

Table 3. 1. Mechanical and thermal properties for IN625, IN718, and Ti6Al4V 

  IN625 IN718 Ti6Al4V 

Elasticity 

modulus E(T) 

[GPa] 170-0.1146*T 170-0.0615*T 107-0.0229*T 

Poisson’s ratio  0.3 0.3 0.3 

Thermal 

conductivity 

K(T) 

[W/m.K] 9.5+0.0119*T 9.5+0.0078*T 5.8+0.015*T 

Specific heat 

Cp(T) 

[KJ/Kg.K] 429+0.1*T 429+0.127*T 542+0.17*T 

Density  [Kg/m3] 8440  8150  4405 

Melting 

Temperature  

[oC] 1300 1300 1630 
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Figure 3. 9. Stress strain curves for IN718, IN625, and Ti6Al4V 
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It was assumed that the material properties reference temperature is the melting 

temperature. In other words, when the layer is heated to the melting temperature, the 

material does not thermally expand. However, the layer shrinkage during the cooling steps 

results in thermal stresses that are the main cause of the induced residual stresses and 

distortions. The thermal strain caused by the shrinkage can be calculated as 

 휀𝑡ℎ = 𝛼(𝑇)(𝑇 − 𝑇𝑟𝑒𝑓)   Eq. 3. 2 

where α(T) is the temperature dependent thermal expansion coefficient, T is the applied 

temperature, and Tref is the material reference temperature. Also, it is mentionable that the 

material properties may change as the process parameters change or from one location to 

another based on the part features. These effects will be investigated in future studies.  

3.5. 3D Thermomechanical Modeling: Model Validation 

3.5.1. NIST Cantilever 

The geometrical details for the IN625 NIST AMB2018-01 are shown in Figure 3.10. The 

predictions of the thermomechanical modeling of the cantilever are validated by the 

residual elastic strain and stresses and distortion solution which were published on NIST 

website [76] and also available in [64]. For model validation purposes, the problem was 

initially run at N=10 and C=7 assuming layer thickness of 0.25 mm, where the total number 

of mechanical equivalent layers was 50 layers.   
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Figure 3. 10. Top and elevation views of the NIST AMB2018-01 bridge structure 

geometry. (Source: NIST [77]) 

The elastic residual strain results before and after cutting supports at the cantilever center 

plane are shown in Figure 3.11. The residual elastic strains in x direction before cutting the 

supports are tensile at the overhangs where the maximum value is at the top of the 

cantilever, Figure 3.11 (a). The residual elastic strains in z direction (build direction) were 

mainly highly compressive close to the build plate and moderately compressive at the 

overhangs, but highly tensile close to the edges, Figure 3.11 (b).  These predicted results 

can find a good agreement with the experimentally measured strains by X-ray diffraction 

in [64], previous finite element predictions results for this cantilever in [78], and also 

previous cantilever studies in [55, 59]. Cutting supports was simulated by deactivating the 

base elements under the support structure. It is obvious that cutting the support structure 

contributed to reducing the residual elastic x strains at the overhangs, except for the points 

close to the edges and above the cantilever base. The residual elastic z strains, however, 
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were not significantly affected by cutting the supports except for the points close to the 

edges.  

 

 

 
(a) X direction 

 
(b) Z direction 

Figure 3. 11. Elastic strains before and after cutting supports (N=10) 
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The detailed elastic strain history during the process simulation and supports cutting is 

shown in Figure 3.12. Eighteen points at three different z levels were chosen to demonstrate 

the elastic strain evolution, Figure 3.12 a. Firstly, the fluctuations in the elastic strain results 

during the solution due to the heating and cooling cycles can be seen in Figure 3.12 b, c 

and d. The elastic strains at all points are affected by the build of the consecutive layers, 

except for the last two layers as they represent the small displacement measurement tabs 

and do not influence results. Secondly, as mentioned earlier, before cutting the supports, 

the elastic strains stabilities at high tensile values in x direction, and compressive in z 

direction, except for points close to the edges that exhibit different behavior (A1, B1, C1, 

A6, B6, and C6). This spatial correlation was previously shown in Figure 3.11. After 

cutting the supports, a sudden decrease in the elastic strains takes place. Thirdly, elastic 

strains history does not show significant errors caused by the remeshing steps. The smooth 

evolution of elastic strains also indicates that high remapping accuracy is evident.  

The remapping accuracy is further demonstrated by evaluating the residual elastic strains 

in x direction just before and after remapping, and after solving 40 layers, Figure 3.13. 

Although high C value was used, high remapping accuracy even at the high strain gradient 

regions is obvious. The reasons behind this accuracy is the efficient and accurate 

remapping algorithm that ANSYS has, and the use of high order elements with four 

integration points at which solution is mapped. 
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(a) Measurement location 

 
(b) Points A1 to A6 (z=5 mm) 

 
(c) Points B1 to B6 (z=7.5 mm) 

 
(d) Points C1 to C6 (z=10 mm) 

Figure 3. 12. Elastic and total strain history at multiple locations 
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Figure 3. 13. Elastic strains distribution before and after remapping (C=3.5) 

The predicted residual stresses in x direction before cutting supports find good agreement 

with the experimentally measured using the contour method at one of the cantilever legs 

[64], Figure 3.14. The stresses are compressive near the build plate and leg center. 

However, residual stresses turn tensile at the overhang reaching its maximum value at the 

top.  

The release of the elastic strains by cutting supports was the main reason for parts’ 

distortion through the spring back effect, Figure 3.11. The distorted NIST cantilever is 

shown in Figure 3.15, where the predicted maximum vertical displacement at the 

measurement tab was 0.9433 mm. The predicted maximum displacement is underestimated 

compared to the reported experimentally measured value of 1.276 mm. This deviation 

could be due to the simplifications of the heat source model and the assumption of uniform 

material properties throughout the cantilever. However, the predicted distortion result can 
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be further improved by utilizing the inherent strain approach as in [59] or scaling the yield 

strength value up to allow more tensile elastic strains. This is, however, out of the scope of 

this paper as this solution was also obtained without adaptive remeshing.  

 

 

 

Figure 3. 14. X stresses at X=31mm 

 

Figure 3. 15. Displacement results [79] 
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3.5.2. Bridge Structure 

The case of bridge structure was also investigated. The dimensions of the bridge structure 

are shown in Figure 3.16. The build of the bridge structure was simulated considering a 

layer thickness of 0.25 mm, where the total number of layers was 32 layers. Like the 

cantilever case, high tensile residual elastic strains in x directions were observed at the top 

surface, Figure 3.17 a. After the left leg was released by deactivating the build plate 

elements under the bridge left leg, the tensile elastic residual strains were released, Figure 

3.17 b, resulting in the bridge structure deformation.  These observations find an agreement 

with the residual stresses results predicted finite element modeling in [45]. The final 

deformation after the release from the build plate is shown in Figure 3.18. This deformation 

behavior finds an agreement with the experimental solution for the same structure in [80] 

and finite element predictions in [45]. The curling angle in this model, which was found to 

be 4.23o. This value is overestimated by 50% when compared to the experimentally 

measured value of 2.8o.  

 

Figure 3. 16. Bridge structure dimensions 
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(a) Before cutting left leg 

 

(b) After cutting left leg 

Figure 3. 17. Residual elastic strain in x direction before and after removing from 

build plate. 
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(a) Vertical displacement (mm) 

 

(b) Curling angle calculated from bridge bottom nodes 

Figure 3. 18. Bridge structure deformation after cutting the bridge left leg 

3.5.3. Canonical Part 

The build of the square canonical part was simulated assuming a layer thickness of 0.5 mm, 

where the total number of layers is 50. Figure 3.19 shows the predicted elastic strains for 

the square canonical models with and without adaptive remeshing after the build is 

complete. The comparisons show some differences in the elastic x strain distribution at the 

center of each side. This can be due to mesh coarsening at thin walls, Figure 3.20. Although 

the high-order element adopted in the analysis can capture the strain gradient, using one 

element to represent thin walls might be associated with some mapping errors and different 

history. Thus, a compromise between accuracy and computational time must be achieved.  
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For parts including thin features like this part, distortions take place during the process. 

The current ANSYS features do not map the displacement solution after remeshing, and 

the final displacement solution could be obtained by comparing the final deformed mesh 

to the initial mesh. Thus, final displacement values were calculated only at final nodes 

location. The horizontal displacement at the square canonical face center is shown in Figure 

3.21. This displacement behavior finds an agreement with  the experimental solution in 

[36], though the maximum displacement value is underestimated by 25%. In addition, the 

predicted distortions show slight differences compared to the case without adaptive 

remeshing. In other words, the coarse mesh at the thin walls did not significantly affect 

solution accuracy.  As mentioned earlier, predictions accuracy can always be improved by 

changing the material properties as microstructure and mechanical properties for thin walls 

could be different.  

A comparison between the proposed approach and the NetFabb adaptive remeshing 

approach discussed in [36] is shown in Table 3.2. The proposed approach could help 

achieving reduced number of nodes and elements. With using only one core, the average 

computational time per step using the current approach is 1.68 min/step, which is four times 

higher than that reported by NetFabb when using 26 cores. The current limitation of the 

proposed approach is that the ANSYS rezoning feature which is responsible for remapping 

does not support distributed computing mode.  
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Figure 3. 19. Elastic strain in x direction wish and without adaptive remeshing 

 

Figure 3. 20. Final mesh for canonical part (N=9) 
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Figure 3. 21. Distortions for the canonical part 

 

Table 3. 2. Comparison between the proposed approach and NetFabb [36] for the square 

canonical part. 

  NetFabb (Gouge et 

al. [36]) 

Proposed approach 

Model Number of nodes (Last 

layer) 

357,162 (4 adaptivity 

levels) 

152,604 (N=10) 

Number of elements 

(Last layer) 

194,066 91,764 (N=10) 

Number of structural 

simulation steps  

32 100 

Solution Maximum 

displacement  

0.19 mm (13% error) 0.165 mm (25% 

error) 

Computational 

resources 

Number of cores 24 (2.2 GHz) 1 (3.6 GHz) 

RAM (Available, not 

used) 

192 GB 24 GB (only 7 GB 

were used) 

Total computational 

time  

13 min 49 s (2.6% of 

build time) 

2.8 hr (32% of 

build time) 

Time per step 0.43 min 1.68 min 
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3.6. Effect of Adaptive Remeshing 

3.6.1. Effect of adaptive remeshing on computational efficiency 

The effect of the number of layers between remeshing (N) on the computational time for 

the NIST cantilever with C=1.75 is shown in Figure 3.22. The total computational time 

includes the solver time (spent on solving the thermal and structural problems), remeshing 

time, and remapping time. Overall, the total computational time reduction is significant 

and could reach up to 50% when the proposed adaptive remeshing framework is utilized. 

In addition, the N value affects the computational efficiency. When N is small (N=5), less 

time was spent in solving but more time was spent in remeshing and remapping. As N value 

increases, the total computational time is being decreased until reaching the minimum at 

an optimal N value, after which the computational time starts to increase again. The optimal 

N for the NIST cantilever with assumed layer thickness of 0.25 mm and C=1.75 was found 

to be 9 layers. This optimal N value will change from one part to another and also based 

on the mesh configuration. This can be explained further by Figures 3.23 and 3.24 where 

the RAM usage and number of nodes throughout the simulation steps are shown. The 

reduction in RAM usage and number of nodes is positively proportional to the N value. A 

reduction of 80% in RAM usage and 50% in the number of nodes could be achieved with 

N=5. Thus, low N values can always be the solution when the computational resources are 

limited.  
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Figure 3. 22. Effect of number of layers per task on computational time for NIST 

Cantilever (C=1.75)  

 

 

Figure 3. 23. Effect of the number of layers per task on RAM 
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Figure 3. 24. Effect of the number of layers per task on RAM number of nodes during 

solution 

The effect of the mesh coarsening level (C) on the computational time and solution was 

also investigated. Two C levels were used; 1.75 and 3.5. The effect of C value on the total 

computational time at different N values is shown in Figure 3.25. As shown, a higher 

reduction (up to 70%) in the computational time could be achieved at higher mesh 

coarsening value. This could be justified by the reduced number of nodes and RAM usage 

compared to those with low C values, Figures 3.26 and 3.27.  
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Figure 3. 25. Effect of coarsening level on the total computational time for different N 

values 

 

 

Figure 3. 26. Effect of coarsening level on the RAM utilization at N=5 
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Figure 3. 27. Effect of coarsening level on the number of nodes at N=5 

3.6.2. Effect of adaptive remeshing on solution 

The effect of N and C on the results was also investigated. As previously mentioned, high 

C values can, however, result in significant loss in accuracy. The new mesh must be 

acceptable for accurate stresses, strains, and temperature remapping. If the mesh size is 

large, the high strain and temperature gradients near edges and features cannot be well 

captured within few elements, and solution accuracy will be questionable. The effect of C 

value on the residual elastic stain results is shown in Figure 3.28. It can be seen, even with 

some slight differences, elastic strain results are almost identical. The solution with C=1.75 

could keep the highlighted details that could not captured with C=3.5. Solution differences, 

however, would be much larger at higher C values. Thus, depending on parts’ feature, an 

appropriate C values must be chosen. Low C values are more appropriate for parts that 

include complex features and thin walls. 
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The adaptive remeshing parameters effect on solution are further demonstrated by the final 

displacement solution. Figures 3.29 and 3.30 show the differences between the predicted 

cantilever distortions and experimental results. It is obvious all predictions are 

underestimated from the experimental solution, and the deviation within the predicted 

results at different N and C combinations can hardly be observed. The solution, however, 

may significantly change at higher C values.   

 

 

Figure 3. 28. Effect of coarsening level on final elastic strains in x direction before 

cutting supports. 
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Figure 3. 29. Displacement results at different levels of N compared to the 

experimental measurement in [64] 

 

Figure 3. 30. Displacement results at different levels of N and C 
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4. Model validation framework for the LPBF 

process 

4.1. Literature Review 

The accuracy of the computational models depends on the included physics of the process. 

In Finite element based thermal models, in addition to the several assumptions being made, 

the melt pool fluid dynamics are ignored. These assumptions may include the material 

behavior modeling, process parameters value assumptions, and heat source modeling. 

Process parameters are associated with uncertainties since a precise measurement of each 

parameters is not always possible. In addition, the process parameters such as laser power, 

scan speed, and even powder particles randomness cause fluctuations that reduce the 

predictive model capability.  

The laser power is a critical controllable parameter that greatly affects the final part quality. 

During the process the laser power may change due to a drift in the galvanometer control 

system and heating of optics causing loss and fluctuation of laser power that result in 

nonuniform melt pool dimensions. It had been reported that experimentally measured 

power value is 14% less than machine input value [43]. The value of powder layer 

thickness, one of the main controlled parameters, depends on the motion and position of 

the build platform and recoater arm. The effective layer thickness is different from the 

nominal value due to the uncertainties related to the build platform motion, powder bed 

density, and the motion of recoater arm [44].  
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The heat source model is also associated with some assumptions that have a great effect on 

the predictive model accuracy, such as absorptivity, and laser beam diameter. Absorptivity 

mainly depends on the powder particles shape, size, and distribution. Previous finite 

element simulations were always associated with uncertain absorptivity value, where is it 

assumed that the Ti-6Al-4V powder particles absorptivity is like bulk material [32], 0.35 

in [81], or 0.7 in [28]. In addition, it was also found that absorptivity is temperature 

dependent [23]. Direct measurement of absorptivity during the experiments is difficult. 

Another factor included in the heat source model is the laser beam diameter. Although laser 

beam diameter can be measured experimentally, it changes during the process due to the 

fact when the lens slightly deforms as they heat up. This causes a change of the laser beam 

diameter during the process. Therefore, both absorptivity and beam diameter add to the 

predictive model uncertain parameters.   

4.2. Research Motivation 

The author’s objective in this chapter is to develop a general framework that can be used 

for calibration and validation in the application of LPBF considering limited experimental 

data. A systematical calibration and validation framework for the LPBF process based on 

multi-fidelity models (i.e., the finite element models and meta-models) and limited 

experimental data is needed. The objective is to validate the highly efficient meta-models 

so that uncertainty quantification of the LPBF process performance of interest (e.g., melt 

pool, residual stress, porosity, etc.) can be conducted effectively and, furthermore, 

reliability and quality analysis based on the meta-model could be trustworthy. Compared 

with the pure data-driven approach using machine learning methods and abundant 
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experimental data, the proposed method requires only limited experimental data to build 

an accurate meta-model because of the incorporation of the physics knowledge from the 

finite element model. Compared with the physics-based finite element modeling, the 

proposed method dramatically improves the model prediction efficiency using the machine 

learning methods. In addition, the framework is to be utilized to calibrate the parameters 

associated with high uncertainty such as the absorptivity.  

4.3. Calibration and validation framework for the LPBF process 

Development of FEM for the LPBF process is a critical step in the proposed calibration 

and validation framework because it provides a solid foundation for predicting different 

parts thermal behaviors with various parameter settings. Data-driven modeling based on 

experiments using different DOE techniques, on the other hand, requires many experiments 

covering the whole operation domain, hence is very expensive and time consuming. In 

addition, such training model only works for one part and must be trained again and again 

for different parts. With physics-based modeling, i.e., the FEM of the LPBF process, 

thermal behaviors of any new part structure can be predicted. If the model prediction can 

be validated with the aid of a few experiments, the model can serve as a design tool to 

identify the optimal process parameters for the LPBF process or could be used for online 

quality control of the parts. The technical challenge is that the FEM of the LPBF process 

is still computational expensive which make it not suitable for design purpose. This section 

hence proposes a multi-fidelity modeling approach for the LPBF process with the aid of a 

few experiment data. Basically, a meta-model, with high computational efficiency, will be 

constructed based on the FEM, then this meta-model will be validated based on limited 
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experiment data. Due to the integration of the meta-model with the physics-based FEM, 

such meta-model can be easily constructed for any new part structure without requiring 

many new experiment data.   

4.3.1. Overall framework 

The proposed overall calibration and validation framework is shown in Figure 4.7. Based 

on the physics-based LPBF model, melt pool prediction, e.g., width and depth, can be 

obtained at any set of process parameters. For the purpose of building a meta-model, DOE 

technique can be employed to run the physical model at predetermined parameter settings 

which may include laser power, spot diameter, scanning speed, and absorptivity. To build 

a meta-model with a given set of inputs and outputs, any machine learning models can be 

employed. This paper employs the Gaussian process (GP) regression model due to its 

proved accuracy for many engineering applications [82]–[84]. With such a meta-model, 

the important step is to improve its accuracy while maintaining the high efficiency based 

on available experiment data. Researches in model calibration and validation [51–55] can 

thus be employed in this study with the main purpose of characterizing model bias of the 

meta-model and identifying the inherent randomness of some model parameters, e.g., 

absorptivity and spot diameter. Integrating the meta-model with its bias function and 

calibrated model parameters, a corrected meta-model can be achieved to further validate 

its accuracy with the aid of validation experiment data. If there is no evidence that the 

corrected meta-model is inaccurate, the calibration and validation process is completed, 

and the corrected model can be used for various purposes. Otherwise, the process should 
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be updated by adding some new experiment data for bias characterization and parameter 

uncertainty quantification.   

4.3.2. Problem formulation 

Let Ym (•) indicates the meta-model prediction of the melt pool, e.g., melt pool width or 

depth. Model parameters could include laser power, scanning speed, spot diameter, powder 

absorptivity, etc. Among them, some parameters, such as laser power and scanning speed, 

are controllable, measurable, and their randomness may be ignored. Other parameters, such 

as spot diameter and powder absorptivity, are noncontrollable and contain inherent 

randomness during the process, and their realizations in real experiment cannot be easily 

measured. If x and θ are used to denote the controllable and noncontrollable parameters, 

respectively, meta-model prediction is represented as Ym(x, θ), where the bolded symbol 

means a set of parameters. For both physics-based LPBF model and the learned meta-

model, model prediction demands the explicit input of x and θ. In addition, it is assumed 

that the randomness of θ does not change when x changes.  
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Figure 4. 1. Proposed calibration and validation framework for the LPBF process based 

on multi-fidelity models 

Let Yt(•) stands for the melt poor measurement in experiment. Controllable parameters, 

i.e., x, are known during the experiment, but the realization of uncontrollable parameter θ 

is unknown. Hence, the melt pool measurement from experiment can be represented as Yt 

(x, θ*), where θ* indicates the realization of the parameter θ during the measurement. The 

challenge is that the true value of θ* is unknown in experiment. As such, it is impossible to 

obtain one unique meta-model prediction under the exact same condition as experiments. 

Acknowledging that the meta-model has inherent model inadequacy for representing the 

real physical system and assuming that the difference between meta-model prediction and 
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experiment can be modeled by a bias function δ(•), then the functional form can be 

formulated with respect to the controllable parameter, i.e., δ(x), but with inherent 

uncertainty due to the unknown parameter θ. It is worth noting that θ is not included in the 

bias function because it is not measurable in experiment and hence an explicit bias function 

with respect to θ cannot be obtained [89].  

As a summary, Eq. 4.1 formulates the relationship for the meta-model prediction, bias 

function, and the experiment measurement, by assuming that experiment and measurement 

error can be ignored.  

 𝑌𝑚(𝐱, 𝛉) + 𝛿(𝐱) = 𝑌𝑡(𝐱, 𝛉
∗)    Eq. 4. 1 

The objective in this section is to characterize the bias function δ(x) and the randomness of 

parameter θ such that any experiment measurement at any new operation conditions, i.e., 

right side of Eq. 4.1, can be accurately predicted from the corrected meta-model, i.e., left 

side of Eq. 4.1. Due to limited number of experiment data, e.g., only one melt pool 

measurement at given x, accurate prediction from the corrected meta-model means that 

there would be no statistical evidence to reject that the corrected meta-model is valid.     

4.3.3. Bias calibration 

To determine the bias function δ(x) and the randomness of parameter θ, the calibration 

framework proposed in [90] is followed with some modifications. The first step is to 

determine the bias function δ(x) at different controllable parameter x, given some limited 

experiment data and an assumed prior distribution of θ. The second step is to calibrate the 

randomness of θ given the predetermined bias function δ(x). Such decoupling process was 
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employed in [90] and is reasonable because the randomness of θ mainly changes the 

uncertainty bound at the left side of Eq. 4.1  and the bias function δ(x) mainly affects the 

bias magnitude at different controllable settings. In this paper, a set of bias training data 

can be obtained as   

 𝛿(𝐱) = 𝔼[𝑌𝑡(𝐱, 𝛉
∗)] − 𝔼[𝑌𝑚(𝐱, 𝛉)]   Eq. 4. 2 

where 𝔼[∗] is the expectation of a function under given randomness of parameter θ. If there 

were enough experiment measurement at different controllable parameter x, the 

realizations of θ* would truly represent the distribution of θ. As such, the expectation would 

be certain and there is no epistemic uncertainty for the bias function δ(x). In reality, the 

number of measurements is always limited, e.g., only one measurement at given x. Hence, 

epistemic uncertainty would be presented when constructing the bias function after 

obtaining a set of training data using Eq. 4.2. For bias prediction at new parameter x, the 

GP regression model is employed which is formulated as 

 𝛿(𝐱∗) = 𝐾(𝐱∗, 𝐱)[𝐾(𝐱, 𝐱) + 𝜎𝑛
2𝐼]−1𝛿(𝐱)  Eq. 4. 3 

where K(x,x) stands for nn covariance matrix calculated at all pairs of training and 

prediction points; n and n are the number of training and prediction points, respectively; 

K(x,x) is the nn covariance matrix at all training points; σn is the standard deviation of 

noisy observation of the bias function due to the epistemic uncertainty; and I is the identity 

matrix. For each element in the covariance matrix, a commonly used squared-exponential 

covariance function is selected with the following form as 

 𝑘(𝐱, 𝐱′) = 𝜎𝛿
2exp [−

(𝐱−𝐱′)(𝐱−𝐱′)𝑇

2𝑙2
]   Eq. 4. 4 
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where x’ is the dummy variable of x; σδ
2 and l represent the bias variance and the 

characteristic length scale, respectively. Optimal parameters of the GP regression model, 

i.e., σδ, l, and σn, can be determined based on the training data with the maximum likelihood 

estimation [91].     

4.3.4. Parameter uncertainty calibration 

With predetermined bias function and available experiment data for melt pool prediction, 

the objective of this section is to calibrate parameter uncertainty of θ e.g., powder 

absorptivity and spot diameter, such that the corrected model prediction in Eq. 4.1 could 

reach the best agreement with experiment data under unknown realization of θ*. To 

quantify the degree of agreement between model prediction under uncertainty of θ and 

several experiment data at different configurations, u-pooling metric [92] is adopted since 

it can pool experiment data at different configurations to form an accuracy measurement 

of the simulation model. In particular, the calibration problem can be formulated as 

 min𝑈[𝑌𝑚(𝐱, 𝛉) + 𝛿(𝐱), 𝑌𝑡(𝐱, 𝛉
∗)]   Eq. 4. 5 

where U[•,•] is the u-pooling metric measuring the degree of agreement between the 

corrected model prediction and available experiment data, and the smaller u-pooling value 

the better with the range from 0 to 0.5. The optimization in Eq. 4.5 is to adjust the 

distribution of θ such that the metric is minimized. If arbitrary distribution would be used, 

then the first four statistical moments of θ, i.e., mean, standard deviation, skewness and 

kurtosis, can be used as optimization parameters combining with any probability estimation 

methods such as the Pearson system, Johnson system, saddle-point approximation, 
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etc.[93]. For simplicity, Normal distribution could be assumed by calibrating only the mean 

and standard deviation of the parameter θ.        

The u-pooling metric is dependent on the number of experiment data. Assuming that there 

are total n experiment data under n different configurations defined by parameter x, i.e., 

one experiment datum at each configuration, the cumulative distribution function (CDF) 

value realization of such experiment datum at corresponding model prediction can be 

calculated by quantifying the CDF of the corrected model prediction under given θ, i.e., ui 

= FYm+δ (Yti) where FYm+δ (•) is the CDF from the corrected model prediction; Yti is the ith 

experiment datum; and i = 1, 2, …, n. According to u-pooling metric, the empirical CDF 

formed by ui should follow the standard uniform distribution if experiment data were truly 

random realizations from the model prediction. Otherwise, such empirical CDF would 

deviate greatly from the standard uniform distribution. As such, the area difference 

between the empirical CDF and the standard uniform distribution is defined as the u-

pooling metric. Since the empirical CDF is employed, evaluation of the model accuracy 

using the u-pooling metric should not only check the absolute metric value but also the 

total number of experiment data.   

4.3.5. Validation hypothesis test based on the u-pooling metric 

Since u-pooling is used to quantify the degree of agreement of model prediction versus 

experiment data at different configurations, validation hypothesis test based on a set of new 

experiment data can also be conducted based on the u-pooling metric. The statistic 

inference developed earlier in [86] is adopted to include the effects from different number 

of experiment data. The general procedure is presented as follows.  
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Step 1: Generate n number of random samples from a standard Normal distribution, where 

n corresponds to the number of experiment data for validation; 

Step 2: Calculate the CDF value of those n samples; 

Step 3: Calculate the u-pooling metric; 

Step 4: Repeat Steps 1 to 3 sufficient times, e.g., 100,000, to obtain the u-pooling metric 

distribution given n samples; 

Step 5: Obtain one-side confidence level, e.g., 95%, for the u-pooling metric given n 

samples.  

For validation hypothesis testing with n experiment data, if the calculated u-pooling metric 

is located outside predefined confidence level, e.g., 95%, then the null hypothesis should 

be rejected.  

 

 

 

 



109 

 

 

 

 

a) u-pooling metric = 0.2048 

 

b) u-pooling metric = 0.095 

 

c) u-pooling metric distribution with 7 

experiment data 

 

d) 95% confidence level of the u-

pooling metric with different 

number of experiment data 

Figure 4. 2. u-pooling metric calculation, distribution, and 95% confidence levels 
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Figure 4.8 a-c shows such an example with assumed 7 experiment data for validation. Due 

to limited number of experiment data and their random realizations, u-pooling metric could 

be different as shown in Figure 4.8 a-b even though experiment data are generated from 

the simulation distribution. As such, if sufficient such calculations are repeated, the u-

pooling metric distribution can be obtained as shown in Figure 3.8 c, which forms the 

foundation for hypothesis test based on the u-pooling metric. Since u-pooling is the smaller 

the better case, one side confidence level should be used, which is identified as 0.2356 with 

95% confidence level for 7 experiment data. Similar study can be conducted for different 

number of experiment data and the results are shown in Figure 4.8 d when experiment data 

range from 2 to 8.  

4.4. Meta-modeling using the GP regression model 

It is not suitable to determine the optimal parameter setting for the LPBF process based on 

the FEM especially when parameter uncertainties should be considered as well. Based on 

the FEM, however, a low-fidelity model can be constructed using machine learning 

methods. In particular, the GP regression model was employed in this paper. Latin 

hypercube sampling was adopted and a total of 94 finite element (FE) simulations were run 

at different levels of four process parameters, i.e., laser power, scanning speed, powder 

absorptivity, and laser spot diameter. Since FE simulation contains numerical errors as 

shown in Figures 4.1 to 4.3, the mean of the melt pool width and depth was used as 

deterministic outputs for the meta-model construction. Figure 4.9 shows the melt pool 

prediction results based on the GP regression model. For visualization, the results are 

shown with respect to the change of each variable while fixing the other variables at the 
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fixed level, i.e., power = 123 W, speed = 833 mm/s, absorptivity = 0.57, and diameter = 85 

µm. The results make sense because both melt-pool width and depth increase with 

increased laser power, or reduced scanning speed, or increased powder absorptivity. Only 

the laser spot diameter shows nonmonotonic behaviors while fixing the other process 

parameters.  

It is worth noting a few important things of the meta-model. Firstly, the meta-model is 

certainly extremely efficient compared to the FE simulations. Hence, it can ideally be used 

for various purposes such as design considering uncertainty or tools for online quality 

control for the LPBF process. Secondly, the meta-model contains model bias compared to 

the FE simulations in the whole parameter domain as shown in Figure 4.9. The degree of 

bias is determined by the amount of training data generated from the FE simulations. This 

chapter treats the meta-model as a baseline model for model calibration and validation, 

hence, the bias between the meta-model and FE simulations is not studied. If the meta-

model is not accurate, more experiment data would be required for calibration and 

validation because the bias between the meta-model and experiments could be significant; 

otherwise, less experiment data may be needed. As such, FEM and corresponding meta-

model should be reasonably accurate to alleviate the need of many experiment data for 

model calibration and validation.  
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Melt pool size with respect to laser power 

 

Melt pool size with respect to laser 

scanning speed 

 

Melt pool size with respect to powder 

absorptivity 

 

Melt pool size with respect to laser spot 

diameter 

Figure 4. 3. Melt pool width and depth with respect to four process parameters based on 

the GP regression model 

4.4.1. Experimental data for bias and parameter calibration  

Experiment data in [42] were used for model calibration and validation for the LPBF 

process. Table 4.1 shows a set of training configurations, where the melt pool width and 

depth were measured at different power and speed levels. Powder absorptivity and laser 
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spot diameter were not measured and hence are treated as unknown random parameters 

which need to be calibrated. The objective is to calibrate the randomness of unknown 

model parameters along with the bias calibration based on the training data shown in Table 

4.1.   

With prior assumption for randomness of powder absorptivity and spot diameter, i.e., 

absorptivity ~ Normal(0.55, 0.052) and spot diameter ~ Normal(85, 52), Monte Carlo 

simulation (MCS) were employed to quantify the melt pool size uncertainty at nine training 

configurations based on the meta-model learned in Section 4.1. The results are shown in 

Figure 4.10 where the box plots indicate the uncertainty distribution from the meta-model 

and the star symbol is one experiment datum at each training configuration. It is observed 

that the meta-model prediction has noticeable magnitude difference compared to the 

experiment data, although the overall trend is consistent with the experiment results. For 

example, both melt pool width and depth decrease with increased scanning speed at fixed 

power levels, which are both reflected from simulation and experiment data.    

Table 4. 1 : Training data for bias and parameter calibration 

Training ID Power [Watt] Speed [mm/s] Width (µm) Depth (µm) 

#1 50 500 67.0 17.5 

#2 50 1000 45.0 10.0 

#3 100 500 118.1 43.6 

#4 100 1200 72.2 22.1 

#5 150 500 145.2 101.2 

#6 150 750 135.0 71.7 

#7 150 1200 108.3 48.9 

#8 195 750 161.2 110.0 

#9 195 1200 122.5 64.6 



114 

 

 

 

 

 

a) Melt pool width comparison 

 

b) Melt pool depth comparison 

Figure 4. 4. Melt pool estimation vs. experiment data before bias calibration at nine 

training configurations 
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After bias calibration based on Eqs. 3.2 and 3.3, bias of the meta-model was characterized 

by two GP regression models for melt pool width and depth, respectively. It should be 

noted that the expected model bias at nine training configurations contains epistemic 

uncertainties since there is only one experiment datum at each configuration. 

Consequently, the noisy parameter in the GP regression model should be estimated together 

with the two parameters in the covariance function. By considering such bias models as a 

function of laser power and scanning speed, accuracy of the corrected meta-model at nine 

training configurations would be dramatically improved. Figure 4.11 shows the corrected 

model prediction after incorporating the calibrated model bias, where all experiment data 

are located inside certain confidence intervals from the model prediction. It is worth noting 

that experiment data should not be at the median or mean value of the model prediction for 

all nine training configurations, which is extremely unlikely because of the random 

realization of two unknown model parameters, i.e., absorptivity and spot diameter. As such, 

u-pooling is an ideal metric to quantify such degree of agreement at different 

configurations. Figure 4.12 shows u-pooling metric for both responses, where reasonable 

degree of agreement is observed for both melt pool width and depth predictions.      
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a) Melt pool width comparison 

 

b) Melt pool depth comparison 

Figure 4. 5. Melt pool estimation vs. experiment data after bias calibration at nine 

training configurations 
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With predetermined model bias, the degree of agreement can be further improved through 

the calibration of unknown random parameters, i.e., powder absorptivity and spot 

diameters, based on Eq. 4.5. Since there are two model responses under the same random 

realizations, the objective was defined to minimize the u-pooling summation for both melt 

pool width and depth. In addition, both parameters were assumed to follow Normal 

distributions. The u-pooling results are shown in Figure 4.13 at the optimal parameter 

distributions, i.e., absorptivity ~ Normal (0.56, 0.052) and spot diameter ~ Normal (81.3, 

1.82). Before and after the parameter calibration, the u-pooling summation, i.e., the 

objective function, was reduced from 0.2148 to 0.1846, indicating better overall degree of 

agreement with 14.06% u-pooling reduction.   

 

a) U-pooling metric: U = 0.1100 

 

b) U-pooling metric: U = 0.1048 

Figure 4. 6. u-pooling quantification of the melt pool estimation vs. experiment data after 

bias calibration at nine training configurations 



118 

 

 

 

 

a) U-pooling metric: U = 0.0665 

 

b) U-pooling metric: U = 0.1181 

Figure 4. 7. u-pooling quantification of the melt pool estimation vs. experiment data after 

bias and parameter calibration at nine training configurations 

4.4.2. Validation of the corrected meta-model 

The objective of this section is to validate the corrected meta-model by employing new 

experiment data under new printing configurations. Instead of observing the comparison 

one by one at each configuration, validation hypothesis test was used based on the u-

pooling metric for a set of new configurations. In particular, validation configurations and 

melt pool measurements are shown in Table 4.2, which is a subset of the experiment results 

in [42].    

Melt pool prediction at five new configurations was obtained based on the corrected meta-

model using the MCS and their comparison with experiment data is shown in Figure 4.14 

a-b for the melt pool width and depth, respectively. For each configuration, experiment 

datum is located inside certain confidence intervals from the model prediction, where the 
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melt pool uncertainty is due to the randomness of powder absorptivity and spot diameter 

which has been calibrated based on the training data. Considering all five validation 

configurations, u-pooling metric was calculated and results are shown in Figure 4.14 c-d. 

In particular, u-pooling metric is 0.2107 and 0.2923 for melt pool width and depth, 

respectively. According to the u-pooling metric with 95% confidence interval in Figure 

4.14 d, the threshold to reject the model is 0.2867 with five experiment data. Hence, melt 

pool depth prediction should be further improved by adding new experiment data for bias 

and parameter calibration, and there is no statistical evidence to reject the corrected meta-

model for melt pool width prediction.  

Table 4. 2. Experiment data for model validation at five new configurations 

Validation 

ID 
Power [Watt] Speed [mm/s] Width (µm) Depth (µm) 

#1 50 750 50.0 12.0 

#2 100 750 98.4 31.9 

#3 100 1000 75.3 23.9 

#4 150 1000 116.1 52.6 

#5 195 1000 130.4 81.3 

 

Firstly, whether the model is valid or not depends on the validation data, e.g., the number 

and their specific configurations. In Table 4.2, validation configurations include power 

ranging from 50 W to 195 W and speed as 750 mm/s and 1000 mm/s. Hence, the 

interpretation of a valid model should not be beyond the calibration and validation range, 

i.e., the parameter range shown in Table 4.1 and Table 4.2. If more validation data could 

be collected, e.g., melt pool measurement at other power and speed levels, the conclusion 
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would be more certain. On the other hand, even if model may not be valid considering all 

validation configurations, the model could be valid at certain reduced parameter range. As 

such, the model may be partially trustable for design purpose.  

 

a) Melt pool width comparison 

 

b) Melt pool depth comparison 

 

c) Width u-pooling metric:  

U = 0.2107 

 

d) Depth u-pooling metric:  

U = 0.2923 

Figure 4. 8. Melt pool size estimation, comparison, and accuracy quantification of the 

corrected meta-model after bias and parameter calibration 
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Secondly, selection of representative training data is critical for bias and parameter 

calibration. Ideally, training data should include the interested operation domain of the 

LPBF process. For example, training data in Table 4.1 cover power from 50 W to 195 W 

and speed from 500 mm/s to 1200 mm/s. Under such conditions, the amount of training 

data would be critical. Generally, more training data indicate more accurate bias modeling 

and parameter uncertainty quantification over the whole operation domain. Otherwise, the 

bias model could either be overfitted or contain too much uncertainties, depending on 

specific modeling technique, due to the lack of information. For example, if training 

configurations #2 and #7 in Table 4.1 were removed and included as validation data, the 

corrected meta-model would not be valid for both melt pool width and depth predictions.      

Thirdly, GP regression model was employed for bias modeling and only the mean function 

was used for bias estimation at validation configurations. Such bias estimation contains 

epistemic uncertainties due to: i) limited training data, and ii) inaccurate bias estimation 

because of only one experiment observation at each training configuration. By 

incorporating the bias uncertainty, e.g., variance of the bias estimation in the GP model, 

uncertainty range in Figure 4.14 a-b would be increased, which would further affect the u-

pooling metric in Figure 4.14 c-d. Typically, it would be less likely to reject the model with 

larger uncertain range. However, the model prediction would also be less practically useful 

due to too wide uncertain range. As such, balance should be made to reduce the epistemic 

uncertainty in bias modeling with reasonable amount of training data.  
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5. Contribution and Future Work 

5.1. Contribution 

The dissertation focuses on developing efficient and accurate physics-based modeling for 

Laser Powder Bed Fusion (LPBF) process. The first chapter highlights the quality issues 

and mechanical properties variation for parts manufactured by LPBF as the process 

parameters change, and the importance of understanding the process behavior and 

postprocessing techniques towards manufacturing reliable and high-quality parts.  

In the second chapter, the thermal modeling of LPBF was investigated. The developed 

models using finite element method with adaptive remeshing were used to predict melt 

pool size and its location dependency, lack of fusion porosity, and thermal history during 

manufacturing parts from Ti-6Al-4V alloys. The finite element model predictions were 

validated against experimental results from the literature. In addition, the thermal modeling 

with adaptive remeshing was proven to be much more computationally efficient compared 

to models without adaptive remeshing where over 85% of the computational time could be 

reduced.  

In the third chapter, the thermally induced residual stresses and strains and distortions were 

investigated during the build of different parts (NIST AMB-2018-01 cantilever, bridge and 

square canonical parts) using thermomechanical finite element modeling with adaptive 

remeshing. The residual stresses and strains, and distortion solution was validated by the 

experimental results published by NIST and other studies.  
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The results were validated against the experimental results published by NIST and other 

studies. In addition, different configurations of adaptive remeshing were investigated 

where the computational time and RAM utilization could be reduced by up to 80%.  

In the fourth chapter, a general calibration and validation framework for the LPBF process 

based on physics-based multi-fidelity models was proposed. The framework effectively 

integrates finite element modeling of the LPBF process, meta-modeling using the Gaussian 

Process regression, and model calibration and validation techniques to develop an 

extremely efficient and accurate meta-model for melt pool size predictions under intended 

process parameters configurations. The effectiveness of the proposed work has been 

demonstrated with the aid of experiment data for both melt pool width and depth 

measurements under 14 process parameters configurations. With reasonable accuracy of 

the finite element model, the meta-model learned from the finite element model, and a few 

selected training data for model bias and parameter calibration, the corrected meta-model 

can estimate the melt pool size accurately under different printing configurations. Unlike 

direct machining learning methods relying on abundant experiment data, the proposed 

framework relies on only limited experiment data for model calibration and validation. 

Furthermore, due to physics-based modeling using the finite element analysis, the 

modeling mechanism can be easily extended to different additive manufacturing structures 

without repeatedly requiring a large amount of experiment data.  
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5.2. Future work 

The modeling work in this dissertation is one step towards developing an understanding of 

how part quality could be improved during LPBF. In the modeling direction, improving 

and making the numerical modeling much faster (e.g. by developing reduced-order models) 

will be of a great importance. Such fast finite element thermal modeling will be helpful 

optimizing the process parameters, controlling porosity and microstructure, and eventually 

have high reliable parts that may not require postprocessing heat treatment processes.  

In addition, the thermomechanical modeling part can be very beneficial in designing parts. 

A closed-loop design optimization can be developed to reduce residual stresses and parts 

distortions utilizing the fast-thermomechanical finite element modeling approach proposed 

in this work. Such framework will be very beneficial for the design community to reduce 

design cycles time. In addition, the modeling with adaptive remeshing could be extended 

for the use in the other additive manufacturing processes including Directed Energy 

Deposition, etc. 

Future work on the model calibration can address improving the predictive model 

capability to accurately predict the distortion and residual stresses distributions. The 

material properties reported by the manufacturer datasheet and assumed in this work may 

change if there is a change in the part size, build orientation, or process parameters. In 

addition, the material properties may change within the same part from a location to another 

as heating and cooling rates are different. In this regard, a calibration model in which 

material properties (such as the yield strength) are calibrated at different sets of build 

conditions would be of a great interest.  



125 

 

 

 

6. References 

[1] K. N. Amato et al., “Microstructures and mechanical behavior of Inconel 718 

fabricated by selective laser melting,” Acta Mater., vol. 60, no. 5, pp. 2229–2239, 

2012, doi: 10.1016/j.actamat.2011.12.032. 

[2] A. Iveković et al., “Selective laser melting of tungsten and tungsten alloys,” Int. J. 

Refract. Met. Hard Mater., vol. 72, no. December 2017, pp. 27–32, 2018, doi: 

10.1016/j.ijrmhm.2017.12.005. 

[3] J. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen, and M. Rombouts, “Binding 

mechanisms in selective laser sintering and selective laser melting,” Rapid 

Prototyp. J., vol. 11, no. 1, pp. 26–36, Feb. 2005, doi: 

10.1108/13552540510573365. 

[4] H. Gong, K. Rafi, H. Gu, T. Starr, and B. Stucker, “Analysis of defect generation 

in Ti–6Al–4V parts made using powder bed fusion additive manufacturing 

processes,” Addit. Manuf., vol. 1–4, pp. 87–98, Oct. 2014, doi: 

10.1016/j.addma.2014.08.002. 

[5] I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies. 2015. 

[6] I. Yadroitsev, Selective laser melting: Direct manufacturing of 3D-objects by 

selective laser melting of metal powders. LAP Lambert Academic Publishing, 

2009. 

[7] H. Gong, K. Rafi, H. Gu, G. D. Janaki Ram, T. Starr, and B. Stucker, “Influence of 

defects on mechanical properties of Ti–6Al–4V components produced by selective 

laser melting and electron beam melting,” Mater. Des., vol. 86, pp. 545–554, Dec. 

2015, doi: 10.1016/j.matdes.2015.07.147. 

[8] S. Leuders et al., “On the mechanical behaviour of titanium alloy TiAl6V4 

manufactured by selective laser melting: Fatigue resistance and crack growth 

performance,” Int. J. Fatigue, vol. 48, pp. 300–307, Mar. 2013, doi: 

10.1016/j.ijfatigue.2012.11.011. 

[9] H. Gong et al., “Melt pool characterization for selective laser melting of Ti-6Al-

4V pre-alloyed powder,” Solid Free. Fabr. Symp. Proc., pp. 256–267, 2014. 



126 

 

 

 

[10] L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J.-P. Kruth, “A study of 

the microstructural evolution during selective laser melting of Ti–6Al–4V,” Acta 

Mater., vol. 58, no. 9, pp. 3303–3312, May 2010, doi: 

10.1016/j.actamat.2010.02.004. 

[11] H. Ali, H. Ghadbeigi, and K. Mumtaz, “Effect of scanning strategies on residual 

stress and mechanical properties of Selective Laser Melted Ti6Al4V,” Mater. Sci. 

Eng. A, vol. 712, pp. 175–187, Jan. 2018, doi: 10.1016/j.msea.2017.11.103. 

[12] J. Kruth, M. Badrossamay, E. Yasa, J. Deckers, L. Thijs, and J. Van Humbeeck, 

“Part and material properties in selective laser melting of metals,” 16th Int. Symp. 

Electromachining, pp. 1–12, 2010. 

[13] S. Zhang, Q. Wei, L. Cheng, S. Li, and Y. Shi, “Effects of scan line spacing on 

pore characteristics and mechanical properties of porous Ti6Al4V implants 

fabricated by selective laser melting,” Mater. Des., vol. 63, pp. 185–193, Nov. 

2014, doi: 10.1016/j.matdes.2014.05.021. 

[14] C. Leyens and M. Peters, Titanium an Titanium Alloys. 2003. 

[15] B. E. Carroll, T. A. Palmer, and A. M. Beese, “Anisotropic tensile behavior of Ti-

6Al-4V components fabricated with directed energy deposition additive 

manufacturing,” Acta Mater., vol. 87, pp. 309–320, 2015, doi: 

10.1016/j.actamat.2014.12.054. 

[16] R. Wauthle et al., “Effects of build orientation and heat treatment on the 

microstructure and mechanical properties of selective laser melted Ti6Al4V lattice 

structures,” Addit. Manuf., vol. 5, pp. 77–84, 2015, doi: 

10.1016/j.addma.2014.12.008. 

[17] X. Zhao et al., “Comparison of the microstructures and mechanical properties of 

Ti–6Al–4V fabricated by selective laser melting and electron beam melting,” 

Mater. Des., vol. 95, pp. 21–31, Apr. 2016, doi: 10.1016/j.matdes.2015.12.135. 

[18] M. Shunmugavel, A. Polishetty, and G. Littlefair, “Microstructure and Mechanical 

Properties of Wrought and Additive Manufactured Ti-6Al-4V Cylindrical Bars,” 

Procedia Technol., vol. 20, no. July, pp. 231–236, 2015, doi: 

10.1016/j.protcy.2015.07.037. 



127 

 

 

 

[19] P. Edwards and M. Ramulu, “Fatigue performance evaluation of selective laser 

melted Ti-6Al-4V,” Mater. Sci. Eng. A, vol. 598, pp. 327–337, 2014, doi: 

10.1016/j.msea.2014.01.041. 

[20] J. Zhao, M. Easton, M. Qian, M. Leary, and M. Brandt, “Effect of building 

direction on porosity and fatigue life of selective laser melted AlSi12Mg alloy,” 

Mater. Sci. Eng. A, vol. 729, pp. 76–85, Jun. 2018, doi: 

10.1016/j.msea.2018.05.040. 

[21] E. Wycisk, A. Solbach, S. Siddique, D. Herzog, F. Walther, and C. Emmelmann, 

“Effects of Defects in Laser Additive Manufactured Ti-6Al-4V on Fatigue 

Properties,” Phys. Procedia, vol. 56, pp. 371–378, 2014, doi: 

10.1016/j.phpro.2014.08.120. 

[22] S. A. Khairallah and A. Anderson, “Mesoscopic simulation model of selective 

laser melting of stainless steel powder,” J. Mater. Process. Technol., vol. 214, no. 

11, pp. 2627–2636, 2014, doi: 10.1016/j.jmatprotec.2014.06.001. 

[23] S. A. Khairallah, A. T. Anderson, A. Rubenchik, and W. E. King, “Laser powder-

bed fusion additive manufacturing: Physics of complex melt flow and formation 

mechanisms of pores, spatter, and denudation zones,” Acta Mater., vol. 108, pp. 

36–45, Apr. 2016, doi: 10.1016/j.actamat.2016.02.014. 

[24] H. W. Mindt, O. Desmaison, M. Megahed, A. Peralta, and J. Neumann, “Modeling 

of Powder Bed Manufacturing Defects,” J. Mater. Eng. Perform., vol. 27, no. 1, 

pp. 32–43, 2018, doi: 10.1007/s11665-017-2874-5. 

[25] D. Pal et al., “A Generalized Feed-Forward Dynamic Adaptive Mesh Refinement 

and Derefinement Finite-Element Framework for Metal Laser Sintering—Part II: 

Nonlinear Thermal Simulations and Validations 2,” J. Manuf. Sci. Eng., vol. 138, 

no. 6, p. 061003, 2016, doi: 10.1115/1.4032078. 

[26] A. Hussein, L. Hao, C. Yan, and R. Everson, “Finite element simulation of the 

temperature and stress fields in single layers built without-support in selective 

laser melting,” Mater. Des., vol. 52, pp. 638–647, Dec. 2013, doi: 

10.1016/j.matdes.2013.05.070. 

[27] S. Roy, M. Juha, M. S. Shephard, and A. M. Maniatty, “Heat transfer model and 



128 

 

 

 

finite element formulation for simulation of selective laser melting,” Comput. 

Mech., vol. 62, no. 3, pp. 273–284, 2018, doi: 10.1007/s00466-017-1496-y. 

[28] K. Karayagiz et al., “Numerical and experimental analysis of heat distribution in 

the laser powder bed fusion of Ti-6Al-4V,” IISE Trans., pp. 1–17, Apr. 2018, doi: 

10.1080/24725854.2018.1461964. 

[29] A. K. Mishra and A. Kumar, “Numerical and experimental analysis of the effect of 

volumetric energy absorption in powder layer on thermal-fluidic transport in 

selective laser melting of Ti6Al4V,” Opt. Laser Technol., vol. 111, pp. 227–239, 

Apr. 2019, doi: 10.1016/j.optlastec.2018.09.054. 

[30] C. H. Fu and Y. B. Guo, “Three-Dimensional Temperature Gradient Mechanism in 

Selective Laser Melting of Ti-6Al-4V,” J. Manuf. Sci. Eng., vol. 136, no. 6, p. 

061004, 2014, doi: 10.1115/1.4028539. 

[31] J. Irwin and P. Michaleris, “A Line Heat Input Model for Additive 

Manufacturing,” J. Manuf. Sci. Eng., vol. 138, no. 11, p. 111004, Jun. 2016, doi: 

10.1115/1.4033662. 

[32] I. A. Roberts, C. J. Wang, R. Esterlein, M. Stanford, and D. J. Mynors, “A three-

dimensional finite element analysis of the temperature field during laser melting of 

metal powders in additive layer manufacturing,” Int. J. Mach. Tools Manuf., vol. 

49, no. 12–13, pp. 916–923, 2009, doi: 10.1016/j.ijmachtools.2009.07.004. 

[33] T. P. Moran, P. Li, D. H. Warner, and N. Phan, “Utility of superposition-based 

finite element approach for part-scale thermal simulation in additive 

manufacturing,” Addit. Manuf., vol. 21, no. March, pp. 215–219, 2018, doi: 

10.1016/j.addma.2018.02.015. 

[34] N. Patil et al., “A Generalized Feed Forward Dynamic Adaptive Mesh Refinement 

and Derefinement Finite Element Framework for Metal Laser Sintering—Part I: 

Formulation and Algorithm Development,” J. Manuf. Sci. Eng., vol. 137, no. 4, p. 

041001, Aug. 2015, doi: 10.1115/1.4030059. 

[35] Z. Luo and Y. Zhao, “Numerical simulation of part-level temperature fields during 

selective laser melting of stainless steel 316L,” Int. J. Adv. Manuf. Technol., vol. 

104, no. 5–8, pp. 1615–1635, Oct. 2019, doi: 10.1007/s00170-019-03947-0. 



129 

 

 

 

[36] M. Gouge, E. Denlinger, J. Irwin, C. Li, and P. Michaleris, “Experimental 

validation of thermo-mechanical part-scale modeling for laser powder bed fusion 

processes,” Addit. Manuf., vol. 29, no. June, p. 100771, 2019, doi: 

10.1016/j.addma.2019.06.022. 

[37] Z. Luo and Y. Zhao, “A survey of finite element analysis of temperature and 

thermal stress fields in powder bed fusion Additive Manufacturing,” Addit. 

Manuf., vol. 21, no. March 2017, pp. 318–332, 2018, doi: 

10.1016/j.addma.2018.03.022. 

[38] B. Song, S. Dong, B. Zhang, H. Liao, and C. Coddet, “Effects of processing 

parameters on microstructure and mechanical property of selective laser melted 

Ti6Al4V,” Mater. Des., vol. 35, pp. 120–125, Mar. 2012, doi: 

10.1016/j.matdes.2011.09.051. 

[39] E. R. Denlinger, J. C. Heigel, and P. Michaleris, “Residual stress and distortion 

modeling of electron beam direct manufacturing Ti-6Al-4V,” Proc. Inst. Mech. 

Eng. Part B J. Eng. Manuf., vol. 229, no. 10, pp. 1803–1813, Oct. 2015, doi: 

10.1177/0954405414539494. 

[40] M. Boivineau et al., “Thermophysical properties of solid and liquid Ti-6Al-4V 

(TA6V) alloy,” Int. J. Thermophys., vol. 27, no. 2, pp. 507–529, 2006, doi: 

10.1007/PL00021868. 

[41] L. C. Wei, L. E. Ehrlich, M. J. Powell-Palm, C. Montgomery, J. Beuth, and J. A. 

Malen, “Thermal conductivity of metal powders for powder bed additive 

manufacturing,” Addit. Manuf., vol. 21, pp. 201–208, 2018, doi: 

10.1016/j.addma.2018.02.002. 

[42] J. J. S. Dilip et al., “Influence of processing parameters on the evolution of melt 

pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective 

laser melting,” Prog. Addit. Manuf., vol. 2, no. 3, pp. 157–167, Sep. 2017, doi: 

10.1007/s40964-017-0030-2. 

[43] W. E. King et al., “Observation of keyhole-mode laser melting in laser powder-bed 

fusion additive manufacturing,” J. Mater. Process. Tech., vol. 214, no. 12, pp. 

2915–2925, 2014, doi: 10.1016/j.jmatprotec.2014.06.005. 



130 

 

 

 

[44] T. Moges, G. Ameta, and P. Witherell, “A Review of Model Inaccuracy and 

Parameter Uncertainty in Laser Powder Bed Fusion Models and Simulations,” J. 

Manuf. Sci. Eng., vol. 141, no. 4, Apr. 2019, doi: 10.1115/1.4042789. 

[45] C. Li, Z. Y. Liu, X. Y. Fang, and Y. B. Guo, “On the Simulation Scalability of 

Predicting Residual Stress and Distortion in Selective Laser Melting,” J. Manuf. 

Sci. Eng., vol. 140, no. 4, Apr. 2018, doi: 10.1115/1.4038893. 

[46] A. Olleak and Z. Xi, “A scan-wise adaptive remeshing framework for thermal 

simulation of the selective laser melting process,” Int. J. Adv. Manuf. Technol., 

vol. 107, no. 1–2, pp. 573–584, Mar. 2020, doi: 10.1007/s00170-020-04995-7. 

[47] J. L. Bartlett and X. Li, “An overview of residual stresses in metal powder bed 

fusion,” Addit. Manuf., vol. 27, pp. 131–149, May 2019, doi: 

10.1016/j.addma.2019.02.020. 

[48] T. Q. Phan et al., “Elastic Residual Strain and Stress Measurements and 

Corresponding Part Deflections of 3D Additive Manufacturing Builds of IN625 

AM-Bench Artifacts Using Neutron Diffraction, Synchrotron X-Ray Diffraction, 

and Contour Method,” Integr. Mater. Manuf. Innov., vol. 8, no. 3, pp. 318–334, 

Sep. 2019, doi: 10.1007/s40192-019-00149-0. 

[49] T. Mukherjee, J. S. Zuback, W. Zhang, and T. DebRoy, “Residual stresses and 

distortion in additively manufactured compositionally graded and dissimilar 

joints,” Comput. Mater. Sci., vol. 143, pp. 325–337, Feb. 2018, doi: 

10.1016/j.commatsci.2017.11.026. 

[50] D. D. Gu et al., “components : materials , processes and mechanisms Laser 

additive manufacturing of metallic components : materials , processes and 

mechanisms,” vol. 6608, 2013, doi: 10.1179/1743280411Y.0000000014. 

[51] T. Mukherjee, V. Manvatkar, and T. Debroy, “Scripta Materialia Mitigation of 

thermal distortion during additive manufacturing,” vol. 127, pp. 79–83, 2017, doi: 

10.1016/j.scriptamat.2016.09.001. 

[52] D. Buchbinder, W. Meiners, N. Pirch, K. Wissenbach, and J. Schrage, 

“Investigation on reducing distortion by preheating during manufacture of 

aluminum components using selective laser melting,” J. Laser Appl., vol. 26, no. 1, 



131 

 

 

 

p. 012004, Feb. 2014, doi: 10.2351/1.4828755. 

[53] J. Ning, D. E. Sievers, H. Garmestani, and S. Y. Liang, “Analytical modeling of 

transient temperature in powder feed metal additive manufacturing during heating 

and cooling stages,” Appl. Phys. A Mater. Sci. Process., vol. 125, no. 8, pp. 1–11, 

2019, doi: 10.1007/s00339-019-2782-7. 

[54] C. Li, C. H. Fu, Y. B. Guo, and F. Z. Fang, “A multiscale modeling approach for 

fast prediction of part distortion in selective laser melting,” J. Mater. Process. 

Technol., vol. 229, pp. 703–712, Mar. 2016, doi: 

10.1016/j.jmatprotec.2015.10.022. 

[55] C. Li, J. F. Liu, X. Y. Fang, and Y. B. Guo, “Efficient predictive model of part 

distortion and residual stress in selective laser melting,” Addit. Manuf., vol. 17, pp. 

157–168, Oct. 2017, doi: 10.1016/j.addma.2017.08.014. 

[56] X. Liang, L. Cheng, Q. Chen, Q. Yang, and A. C. To, “A modified method for 

estimating inherent strains from detailed process simulation for fast residual 

distortion prediction of single-walled structures fabricated by directed energy 

deposition,” Addit. Manuf., vol. 23, pp. 471–486, Oct. 2018, doi: 

10.1016/j.addma.2018.08.029. 

[57] Mechanical APDL 2019 R2, “Advanced Analysis Guide,” in ANSYS® Academic 

Research Mechanical, 2019. 

[58] N. Keller and V. Ploshikhin, “New Method for Fast Predictions of Residual Stress 

and Distortion of AM Parts,” in Proceeding of the 25th Solid Freeform 

Fabrication Symposium, 2014, p. 1229. 

[59] Q. Chen et al., “An inherent strain based multiscale modeling framework for 

simulating part-scale residual deformation for direct metal laser sintering,” Addit. 

Manuf., vol. 28, pp. 406–418, Aug. 2019, doi: 10.1016/j.addma.2019.05.021. 

[60] M. Bugatti and Q. Semeraro, “Limitations of the inherent strain method in 

simulating powder bed fusion processes,” Addit. Manuf., vol. 23, pp. 329–346, 

Oct. 2018, doi: 10.1016/j.addma.2018.05.041. 

[61] R. K. Ganeriwala et al., “Evaluation of a thermomechanical model for prediction 

of residual stress during laser powder bed fusion of Ti-6Al-4V,” Addit. Manuf., 



132 

 

 

 

vol. 27, pp. 489–502, May 2019, doi: 10.1016/j.addma.2019.03.034. 

[62] V. Premkumar, “Adapting Large Deflection Simulations Confidently with 

Nonlinear Adaptivity (NLAD).” 

[63] D. Umbrello, R. M’Saoubi, and J. C. Outeiro, “The influence of Johnson–Cook 

material constants on finite element simulation of machining of AISI 316L steel,” 

Int. J. Mach. Tools Manuf., vol. 47, no. 3–4, pp. 462–470, Mar. 2007, doi: 

10.1016/j.ijmachtools.2006.06.006. 

[64] T. Q. Phan et al., “Elastic Residual Strain and Stress Measurements and 

Corresponding Part Deflections of 3D Additive Manufacturing Builds of IN625 

AM-Bench Artifacts Using Neutron Diffraction, Synchrotron X-Ray Diffraction, 

and Contour Method,” Integr. Mater. Manuf. Innov., vol. 8, no. 3, pp. 318–334, 

Sep. 2019, doi: 10.1007/s40192-019-00149-0. 

[65] C. Li, E. R. Denlinger, M. F. Gouge, J. E. Irwin, and P. Michaleris, “Numerical 

verification of an octree mesh coarsening strategy for simulating additive 

manufacturing processes,” Addit. Manuf., p. 100903, Oct. 2019, doi: 

10.1016/j.addma.2019.100903. 

[66] L. Dowling, J. Kennedy, S. O’Shaughnessy, and D. Trimble, “A review of critical 

repeatability and reproducibility issues in powder bed fusion,” Mater. Des., vol. 

186, p. 108346, Jan. 2020, doi: 10.1016/j.matdes.2019.108346. 

[67] EOS and EOS GmbH - Electro Optical Systems, “Material data sheet - EOS 

Nickel Alloy IN625,” vol. 49, no. 0, pp. 1–5, 2011. 

[68] E. O. S. Nickelalloy, E. O. S. Nickelalloy, P. Set, and P. Set, “Material Datasheet: 

EOS Nickel IN718,” EOS GmbH Electro Opt. Syst. Tech. Rep., 2015. [Online]. 

Available http//www.eos.info/material-m, vol. 49, no. 0, pp. 1–7, 2015. 

[69] EOS GmbH, “Material Data Sheet for EOS Titanium Ti64,” vol. 49, no. 9011, pp. 

1–4, 2007. 

[70] I. Yadroitsev, L. Thivillon, P. Bertrand, and I. Smurov, “Strategy of manufacturing 

components with designed internal structure by selective laser melting of metallic 

powder,” Appl. Surf. Sci., vol. 254, no. 4, pp. 980–983, 2007, doi: 

10.1016/j.apsusc.2007.08.046. 



133 

 

 

 

[71] D. Zhang, W. Niu, X. Cao, and Z. Liu, “Effect of standard heat treatment on the 

microstructure and mechanical properties of selective laser melting manufactured 

Inconel 718 superalloy,” Mater. Sci. Eng. A, vol. 644, pp. 32–40, Sep. 2015, doi: 

10.1016/j.msea.2015.06.021. 

[72] A. Roguev et al., “Epistasis Map in Fission Yeast,” October, vol. 405, no. 2008, 

pp. 127–136, 2009, doi: 10.1016/S0924-0136(97)00302-6. 

[73] H. K. Farahani, M. Ketabchi, and S. Zangeneh, “Determination of Johnson–Cook 

Plasticity Model Parameters for Inconel718,” J. Mater. Eng. Perform., vol. 26, no. 

11, pp. 5284–5293, Nov. 2017, doi: 10.1007/s11665-017-2990-2. 

[74] H. R. Abedi, A. Z. Hanzaki, M. Azami, M. Kahnooji, and D. Rahmatabadi, “The 

high temperature flow behavior of additively manufactured Inconel 625 

superalloy,” Mater. Res. Express, vol. 6, no. 11, 2019, doi: 10.1088/2053-

1591/ab44f6. 

[75] G. R. Johnson and W. H. Cook, “A Computational Constitutive Model and Data 

for Metals Subjected to Large Strain, High Strain Rates and High Pressures,” 

Seventh Int. Symp. Ballist., pp. 541–547, 1983. 

[76] NIST, “ADDITIVE MANUFACTURING BENCHMARK TEST SERIES (AM-

BENCH).” [Online]. Available: https://www.nist.gov/ambench. 

[77] NIST, “AMB2018-01 Description.” [Online]. Available: 

https://www.nist.gov/ambench/amb2018-01-description. 

[78] Y. Yang, M. Allen, T. London, and V. Oancea, “Residual Strain Predictions for a 

Powder Bed Fusion Inconel 625 Single Cantilever Part,” Integr. Mater. Manuf. 

Innov., vol. 8, no. 3, pp. 294–304, 2019, doi: 10.1007/s40192-019-00144-5. 

[79] A. Olleak and Z. Xi, “Efficient LPBF process simulation using finite element 

modeling with adaptive remeshing for distortions and residual stresses prediction,” 

Manuf. Lett., vol. 24, pp. 140–144, Apr. 2020, doi: 10.1016/j.mfglet.2020.05.002. 

[80] J.-P. Kruth, J. Deckers, E. Yasa, and R. Wauthlé, “Assessing and comparing 

influencing factors of residual stresses in selective laser melting using a novel 

analysis method,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 226, no. 6, 

pp. 980–991, Jun. 2012, doi: 10.1177/0954405412437085. 



134 

 

 

 

[81] K. Zeng, D. Pal, and B. Stucker, “A review of thermal analysis methods in Laser 

Sintering and Selective Laser Melting,” Solid Free. Fabr. Symp., pp. 796–814, 

2012, doi: 10.1109/OCEANSSYD.2010.5603594. 

[82] J. Hensman, R. Mills, S. G. Pierce, K. Worden, and M. Eaton, “Locating acoustic 

emission sources in complex structures using Gaussian processes,” Mech. Syst. 

Signal Process., vol. 24, no. 1, pp. 211–223, Jan. 2010, doi: 

10.1016/j.ymssp.2009.05.018. 

[83] J. Yu, “State of health prediction of lithium-ion batteries: Multiscale logic 

regression and Gaussian process regression ensemble,” Reliab. Eng. Syst. Saf., vol. 

174, pp. 82–95, Jun. 2018, doi: 10.1016/j.ress.2018.02.022. 

[84] Y. Wang, W. Zhao, G. Zhou, Q. Gao, and C. Wang, “Optimization of an auxetic 

jounce bumper based on Gaussian process metamodel and series hybrid GA-SQP 

algorithm,” Struct. Multidiscip. Optim., vol. 57, no. 6, pp. 2515–2525, Jun. 2018, 

doi: 10.1007/s00158-017-1869-z. 

[85] Y. Xiong, W. Chen, K.-L. Tsui, and D. W. Apley, “A better understanding of 

model updating strategies in validating engineering models,” Comput. Methods 

Appl. Mech. Eng., vol. 198, no. 15–16, pp. 1327–1337, Mar. 2009, doi: 

10.1016/j.cma.2008.11.023. 

[86] B. C. Jung, J. Park, H. Oh, J. Kim, and B. D. Youn, “A framework of model 

validation and virtual product qualification with limited experimental data based 

on statistical inference,” Struct. Multidiscip. Optim., vol. 51, no. 3, pp. 573–583, 

Mar. 2015, doi: 10.1007/s00158-014-1155-2. 

[87] Z. Xi, H. Pan, and R.-J. Yang, “Time dependent model bias correction for model 

based reliability analysis,” Struct. Saf., vol. 66, pp. 74–83, May 2017, doi: 

10.1016/j.strusafe.2017.02.001. 

[88] S. Bae, N. H. Kim, and S. Jang, “Reliability-based design optimization under 

sampling uncertainty: shifting design versus shaping uncertainty,” Struct. 

Multidiscip. Optim., vol. 57, no. 5, pp. 1845–1855, May 2018, doi: 

10.1007/s00158-018-1936-0. 

[89] Z. Xi, “Model-Based Reliability Analysis With Both Model Uncertainty and 



135 

 

 

 

Parameter Uncertainty,” J. Mech. Des., vol. 141, no. 5, May 2019, doi: 

10.1115/1.4041946. 

[90] M. C. Kennedy and A. O’Hagan, “Bayesian calibration of computer models,” J. R. 

Stat. Soc. Ser. B (Statistical Methodol., vol. 63, no. 3, pp. 425–464, Aug. 2001, 

doi: 10.1111/1467-9868.00294. 

[91] J. Quiñonero-Candela and C. E. Rasmussen, “A Unifying View of Sparse 

Approximate Gaussian Process Regressio,” J. Mach. Learn. Res., vol. 6, pp. 1939–

1959, 2005. 

[92] S. Ferson, W. L. Oberkampf, and L. Ginzburg, “Model validation and predictive 

capability for the thermal challenge problem,” Comput. Methods Appl. Mech. Eng., 

vol. 197, no. 29–32, pp. 2408–2430, May 2008, doi: 10.1016/j.cma.2007.07.030. 

[93] Z. Xi, C. Hu, and B. D. Youn, “A comparative study of probability estimation 

methods for reliability analysis,” Struct. Multidiscip. Optim., vol. 45, no. 1, pp. 33–

52, Jan. 2012, doi: 10.1007/s00158-011-0656-5. 

 


