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Dissertation Director: Dr. Meenakshi Dutt 

 

 

 

 

Harnessing the self-assembly of peptide sequences has demonstrated great promise in the 

domain of creating high precision shape-tunable biological materials. The unique 

properties of peptides allow for a building blocks approach to materials design. In this 

proposal, self-assembly of mixed systems encompassing two peptide sequences with 

identical hydrophobic regions and distinct polar segments is investigated. The two peptide 

sequences are diphenylalanine and phenylalanine-asparagine-phenylalanine. The 

dissertation aims to examine the impact of molecular composition (i.e, the total peptide 

concentration and the relative tripeptide concentration) on the morphology of the self-

assembled hybrid biological material. We report a rich polymorphism in the assemblies of 

these peptides and explain the relationship between peptide sequence, concentration and 

the morphology of the supramolecular assembly. We discuss three techniques to explore 

the phase space of this morphological diversity: Classical Coarse Grained Molecular 
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Dynamics (CGMD), Replica Exchange Molecular Dynamics (REMD), and a hybrid 

Workflows/Machine Learning framework for Targeted Design of Supramolecular 

Assemblies, which we have called PACE: Pipelines for Automation of Compliance-based 

Elimination. Classical CGMD establishes the polymorphism in the phase space, REMD 

sheds light on the thermodynamics of assembly and helps determine the most likely 

thermodynamic states, and the PACE framework provides a workflow to automate the 

simulation, detection and screening of configurations that can target specific morphologies.   
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Chapter I: Introduction and Objectives 

Recent advances in novel biological materials via peptide self-assembly has been 

driven by their potential use in a wide range of applications, such as neurodegenerative 

disease treatment 1-6, therapeutics6-11, peptide-based electronics12-15 and 

nanobiomaterials16-24. Earlier studies have reported peptides to assemble into nanofibers25-

29, nanotubes30-37, vesicles38-42 and nanosheets41, 43. Peptides are composed of a 

combination of any number of the 20 amino acids. This allows for a unique building blocks 

approach to biological materials design, providing a high degree of control over the 

morphology of supramolecular peptide assemblies.  

 

Among the various peptide sequences employed for creating biological materials, 

diphenylalanine has been extensively studied using experimental approaches30, 32, 37, 44-49  

and computational techniques48, 50, 51 . It is a small and stable peptide that has been reported 

to form supramolecular assemblies including vesicles and nanotubes50-53 . More recently, 

diphenylalanine derivatives such as triphenylalanine (FFF) and diphenylalanine-

fluorenylmethyloxycarbonyl chloride (FF-Fmoc) have been explored for their potential to 

self-assemble into nanostructures. These efforts have found a large diversity of assemblies 

including nanowires, ribbons and nanofibers54.  

 

The creation of nanostructures with specific control on their material characteristics 

can be fulfilled by using a variety of peptide sequences. The contribution of each sequence 

and the synergistic interplay between their molecular characteristics can generate materials 

with specific sequence-property relations. An earlier computational study reported 

mixtures of diphenylalanine and triphenylalanine to generate toroidal structures54, which 
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were verified experimentally. Yet, there is a dearth in the understanding of sequence-

property relations of biological materials encompassing distinct peptide sequences. In 

addition, very little is known about the mechanics of the assembly of distinct peptide 

sequences to form a hybrid biological material with a target property. 

 

In this dissertation, we examine the impact of molecular composition on the 

properties (specifically, morphology) of self-assembled hybrid biological materials. For 

simplicity, we focus on diphenylalanine (FF) and its derivative phenylalanine-asparagine-

phenylalanine (FNF). The derivative changes the sequence of diphenylalanine by the 

addition of asparagine between the two phenylalanine groups. In addition, these two 

sequences allow us to examine the impact of differences in the polar groups of the peptide 

species on the self-assembled hybrid material morphology. In Chapter 2: Phase Space 

Exploration via Coarse Grained Molecular Dynamics, we employ Coarse Grained 

Molecular Dynamics simulations to vary the molecular composition through the total 

concentration of the peptides and the relative concentration of the tripeptide (FNF). We 

find that the total concentration of the peptides along with the relative concentration of the 

tripeptides can control the morphology of the hybrid assemblies. Next, in Chapter 3: 

Approaching Aggregation Polymorphism with Replica Exchange Molecular 

Dynamics, we explore the applicability of Replica Exchange to predict the correct 

morphology for a given region of the phase space. Replica Exchange is an ensemble 

method that was first devised as an extension of Monte Carlo simulations of chemical 

systems, but quickly found use in MD simulations as well.  Multicomponent systems are 

prone to kinetic traps due to the complexity in the inter-component interactions, making 
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them particularly well suited to study via ensemble-based approaches such as Replica 

Exchange. The method provides these systems with opportunities to overcome these 

kinetic traps by performing Monte Carlo moves between copies of the same molecular 

systems that have already escaped those specific traps. In Chapter 4: Targeted design of 

supramolecular peptide assemblies, we explore the use of a hybrid workflows/Machine 

Learning approach to target the desired morphologies by automating and concurrently 

executing multiple simulation-analysis pipelines.  Machine Learning (ML) is a family of 

rapidly evolving techniques that utilizes “neural networks”, a family of algorithms that 

vaguely mimic the human brain to perform pattern recognition.  ML approaches combined 

with workflows are an extremely powerful approach for continuous, automated analyses 

of systems.  In Chapter 5: Conclusions and Future Directions, we summarize our results 

and  discuss ongoing work and immediate future plans primarily pertaining to the extension 

and further development of the framework discussed in Chapter 4.  
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CHAPTER II: Phase Space Exploration via Coarse Grained Molecular Dynamics 

 

Methods 

 

The assembly of diphenylalanine (FF) and phenylalanine-asparagine- 

phenylalanine (FNF) is promoted by the hydrophobic effect. We used the Molecular 

Dynamics (MD) simulation technique to capture the dynamics of the aggregation process 

along with the structure and morphology of the hybrid peptide materials. This required 

simulating the aggregation of several hundreds of molecules that were dispersed in an 

aqueous environment. An all-atom representation of the molecules would have been too 

demanding in terms of computational resources in resolving the temporal scales associated 

with the assembly process along with capturing the multiscale structural characteristics of 

the self-assembled material. To circumvent this difficulty, we employed coarse-grained 

representations of the peptides. 

 

 

Figure 1: Coarse Grained representations of the two peptide sequences used. Left: Diphenylalanine 

(FF), right: Phenylalanine-Asparagine-Phenylalanine. 



5 
 

 
 

  

 

For this study, we used the Martini v2.2 coarse-grained (CG) force field55 for 

biomolecules56, 57, an established, generalizable force field that has been demonstrated to 

capture the behavior of a wide range of biomolecules. Atoms of the peptides were mapped 

using the Martini CG model57 Figure 1 shows the coarse grained representations of both 

peptide sequences used.  Particle type P5 was used for the backbone of each residue, as 

well as for the sidechain of asparagine.  Three SC5 particles were used to represent the 

aromatic sidechain of phenylalanine. Since the peptides are assumed to be in a zwitterionic 

state, charges of +1e and -1e were assigned to the N and C termini respectively. The CG 

mapping details are represented graphically in Figure 2. Van der Waals forces were 

represented by a 12-6 Lennard-Jones approximation, while electrostatics were calculated 

using a shifted Coulomb potential. All cutoffs were maintained at 1.2nm in accordance 

with the Martini CG model.  

 

 



6 
 

 
 

 

Figure 2: Coarse-grained mapping details for (a) diphenylalanine (FF) and (b) phenylalanine-

asparagine-phenylalanine (FNF). Coarse-grained representations of the peptides in the Molecular 

Dynamics simulations shown on the right side. Copyright, Org. Biomol. Chem., 2018, 16, 2499. 

DOI: 10.1039/C8OB00130H 

 

 

 Simulations were performed using the GROMACS package (v5.2.1)58-62 .  The 

simulations were set up by using the inbuilt GROMACS functions to insert the FF and FNF 

molecules into the simulation box and solvate them. Since the system is charge neutral, no 

counterions are required. To prevent physically unrealistic freezing of the Martini water55, 

a 0.1 mole fraction of antifreeze particles was maintained.  The system was then energy 

minimized by the steepest descent integrator to remove any overlaps between particles. 

This was followed with a 500 ps (effective time) equilibration followed by a production 

simulation for 4 µs (effective time). The duration of the production simulation was selected 

so as to generate a single, stable self-assembled nanostructure. 
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All simulations were carried out in the isothermal-isobaric ensemble. The 

temperature was maintained at 310K50, 54 using velocity rescaling with a stochastic term to 

ensure correct sampling63, 64. Pressure was maintained at 1 bar using the Parrinello-Rahman 

barostat65-67. The timestep was maintained at 25 fs and all simulations were run for an 

effective time of 4 μs. The neighbor lists were updated every 0.25 ps with a 1.2 nm cutoff.  

The particle trajectories were sampled every 0.25 ns for analysis and visualization. The 

LINCS algorithm was employed to constrain bond lengths in the aromatic phenylalanine 

sidechains.  

 

All the simulations were carried out using systems encompassing a total of 500 

peptide molecules. The peptide molecules were assumed to exist in a zwitterionic state. 

The total peptide concentration was controlled via pre-selecting the box size and 

appropriately populating the box with solvent beads. The relative tripeptide concentrations 

were implemented by varying the ratio of dipeptides (FF) to tripeptides (FNF), while still 

maintaining the total number of peptide molecules to 500.  

 

We examined 5 total peptide concentrations (0.1, 0.15, 0.2, 0.25 and 0.3 

peptides/nm3) and 11 relative tripeptide concentrations (ranging from 0% to 100%). The 

results for each system was based upon 10 independent particle trajectories. Hence, the 

study is based upon a total of 550 simulations. While interpreting timescales in simulations 

that use the Martini coarse-graining scheme, a four-fold speedup is assumed in the 

diffusion dynamics as compared to real systems, since due to the Martini force field’s 

reduced frictional component from the removal of atomistic degrees of freedom leads to a 
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smoother energy landscape55. Therefore, unless explicitly stated, we used an “effective” 

time instead of the simulation time for the remainder of this discussion.  

 

Simulation Results 

 

All molecular compositions explored are observed to spontaneously assemble into 

nanostructures encompassing bilayers. The assembly is driven by the hydrophobic effect, 

wherein the hydrophobic aromatic rings of the phenylalanine side chains minimize their 

interface with the solvent by preferentially interacting with other aromatic side chains. In 

addition, the hydrophilic backbones and asparagine side chains preferentially interact with 

the solvent particles. These simultaneous processes drive peptide aggregation, which 

continues until a single, stable aggregate forms for the duration of the simulation50, 54, 68-72.  

 

The morphology of the hybrid nanostructures can be classified into three categories 

by their relationship in the three spatial dimensions. We classify a structure as “open” in a 

given spatial direction if one of the following criteria are met: (i) it extends infinitely 

(through periodic walls) along that direction, or (ii) if it does not extend infinitely in a given 

direction, two edges of the bilayer perpendicular to that direction are exposed to the 

solvent. Therefore, if the bilayer of the nanostructure is open in two dimensions, it is 

classified as a lamella, it may extend infinitely along two axes, or along one axis but have 

edges exposed to the solvent. If the bilayer of the nanostructure is closed in all three spatial 

dimensions (i.e. does not extend infinitely through periodic walls), it is classified as a 
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vesicle. In the event that the bilayer of the nanostructure is closed in two dimensions but 

extends infinitely in the third dimension, it is classified as a nanotube.  

 

 

 

Figure 3: Self-assembled hybrid nanostructures: (a) diametrical cross-sectional view of a vesicle, 

(b) cylindrical axis cross-sectional view of a nanotube, and (c) lamellar bilayer. Copyright, Org. 

Biomol. Chem., 2018, 16, 2499. DOI: 10.1039/C8OB00130H 

 

Representatives of these assemblies are shown in Figure 3a-c. The cross-sectional 

views of the vesicle (Figure 3a) and the nanotube (Figure 3b) indicate the presence of an 

internal cavity in the nanostructures. The internal cavity is stabilized by the interface 

between the solvent and the hydrophilic backbones and asparagine side chains.  

 

There is a fourth category of self-assembled nanostructures, which is not 

representative of an organized morphology. These nanostructures are classified as 

“disordered” assemblies. Whereas the peptide species in these nanostructures are organized 
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into bilayers at a local scale, their morphology cannot be classified as either vesicles, 

nanotubes or lamellae. Disordered assemblies are handled separately at the end of this 

chapter. The morphologies of the ordered nanostructures for different molecular 

compositions are summarized in Table 1. 

 

The phase space of the morphology of the nanostructures as a function of the total 

concentration of the peptides and the relative concentration of the tripeptides in Table 1 is 

further decomposed into four histograms, shown in Figures 4, 5 and 6. Each histogram 

summarizes the statistics for a given morphology of the hybrid nanostructure. Figure 4 

shows the frequency of occurrence of vesicles in the ten independent trajectories for every 

molecular composition examined in this study. The molecular composition constitutes the 

total concentration of peptides and the relative concentration of the tripeptides.  Vesicles 

are consistently observed for the lower total concentrations of the peptides (0.1-0.15 

peptides/nm3).  
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As the total concentration of the peptides increase, the propensity of the peptides to 

form vesicles decreases. This trend is consistent across all relative tripeptide 

concentrations, ranging from 0% (a pure FF system) to 100% (a pure FNF system). 

Increasing the total concentration of peptides, however, increases the propensity of the 

peptides to form lamellar bilayers. This effect is particularly pronounced at 0.25 and 0.3 

peptides/nm3, as shown in Figure 5. Lamellae are also observed at medium values of the 

total concentration of the peptides (0.2 peptides/nm3) but only for high relative tripeptide 

concentrations (70% - 100%).  

 

Nanotubes are a relatively infrequent occurrence, but can be observed for higher 

values of the total concentration of peptides (0.2-0.3 peptides/nm3) and low-to-medium 

relative tripeptide concentrations (20%-50%), as demonstrated in Figure 6. Nanotubes are 

also observed when the net peptide concentrations are low and the relative tripeptide 

concentrations are high. For example, at 100% tripeptide with total concentrations of 0.1, 

0.2, 0.25 and 0.3 peptides/nm3. However, these are relatively rare occurrences. 
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Figure 4: Histogram of the occurrence of vesicles in mixtures of FF and FNF for different 

molecular composition (that is, the values of the total peptide concentration and relative tripeptide 

concentration). These measurements used 10 independent particle trajectories for each molecular 

composition. Copyright, Org. Biomol. Chem., 2018, 16, 2499. DOI: 10.1039/C8OB00130H 

 

 

The assembly pathways are observed to depend upon the relative concentration of 

tripeptides in the system. For FF alone, it has been shown experimentally and with 

exhaustive Monte Carlo simulations on discrete lattices that the peptide forms 

nanostructures in a concentration dependent fashion, from vesicles to nanotubes to 

lamella73.   
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Figure 5: Histogram of the occurrence of lamellar bilayers in mixtures of FF and FNF for different 

molecular composition (that is, the values of the total peptide concentration and relative tripeptide 

concentration). These measurements used 10 independent particle trajectories for each molecular 

composition. Copyright, Org. Biomol. Chem., 2018, 16, 2499. DOI: 10.1039/C8OB00130H 
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Figure 6: Histogram of the occurrence of nanotubes in mixtures of FF and FNF for different 

molecular composition (that is, the values of the total peptide concentration and relative tripeptide 

concentration). These measurements used 10 independent particle trajectories for each molecular 

composition. Copyright, Org. Biomol. Chem., 2018, 16, 2499. DOI: 10.1039/C8OB00130H 

 

We observe the same transitions in other trajectories at similar dipeptide 

concentrations, supporting the hypothesis that these calculations are approaching 

equilibrium.  Similarly, Guo et al50 reported assembly pathways that included the fusion of 

smaller sized vesicles for pure FF systems with low concentration of peptides and the 

folding of bilayers into nanotubes for high concentration of peptides. This is thought to 

occur through a mechanism where, at low values of the total concentration of peptides (0.1-

0.15 peptides/nm3) (Figure 7),  small vesicles are observed to diffuse in solution until they 

encounter other small vesicles and coalesce to form larger sized vesicles. At higher values 

of the relative tripeptide concentrations however, the peptides tend to assemble into a 
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bilayer that then either stabilizes itself via periodic boundary interactions, or bends and 

closes its free edges to form a vesicle or a nanotube.  

 

 

 

 

Figure 7: Assembly Pathways: (a) At low concentrations of both the total peptide as well as the 

relative tripeptide, smaller vesicles first form and then fuse into a larger vesicle. (b) At higher 

concentrations, Copyright, Org. Biomol. Chem., 2018, 16, 2499. DOI: 

10.1039/C8OB00130Hbilayer like structures first form and then fuse their free edges into 

nanotubes or vesicles (nanotube shown here).  

 

Morphology also depends on the relative concentrations of di- and tri-peptides.  For 

all peptide ratios, we found a preference for vesicles at the lowest total peptide 

concentration, and lamellar bilayers at the highest total concentrations. In addition, we have 

identified an additional degree of freedom, i.e. the relative tripeptide concentration. From 

the statistics gathered from our simulations, we have constructed a molecular-composition 

phase-space diagram (presented in Figure 7) that shows distinct molecular composition 
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parameters promoting the formation of vesicles, lamellar bilayers and nanotubes. At the 

bottom of the phase space (representing low total peptide concentrations), we find that the 

system is in the vesicle regime. We attribute this result to the fact that low total peptide 

concentrations do not form structures large enough to interact through periodic boundaries. 

Therefore, the most favorable configuration is a fully closed vesicle, as this morphology 

would minimize any interactions of the hydrophobic aromatic side chains with the water 

particles. 

 

At higher total concentrations of peptides, as the size of the aggregates increase, the 

nanostructures in the systems have a higher tendency to interact through periodic walls and 

thereby, stabilizing themselves. The morphology of such nanostructures can be categorized 

by the number of period walls they interact through. Vesicles do not extend infinitely 

interact with themselves through periodic walls, nanotubes interact with themselves do so 

through two opposite periodic walls, and lamellar bilayers, interact through four periodic 

walls. To the upper left portion of the molecular composition phase space (shown in Figure 

8), there is an overlap between the nanotube and bilayer regimes.  This regime overlap is 

attributed to two competing effects: the tendency of the peptides to form bilayers at high 

concentrations, and the curvature-inducing effect of the tripeptides in low-to-medium 

relative tripeptide concentrations. 
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Figure 8: Phase space map showing regimes of Vesicles, Nanotubes and Lamellae. Of the ten 

trajectories, the most representative is shown here. In the cases where two or more structures are 

listed, it is because there were close to equal representations. Copyright, Org. Biomol. Chem., 2018, 

16, 2499. DOI: 10.1039/C8OB00130H 

 

Figure 9: Tripeptide in a bilayer: yellow arrows represent hydrophobic attraction between aromatic 

side chains. Red arrows represent hydrophilic interactions between amino acid backbones and the 

asparagine side chains and water particles. Purple arrows indicate electrostatic attraction between 
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the C and N termini. The resultant force differential tends to induce curvature in a FF-FNF bilayer.   

Copyright, Org. Biomol. Chem., 2018, 16, 2499. DOI: 10.1039/C8OB00130H 

 

Figure 9 shows the competing forces acting on a FNF tripeptide molecule that is 

embedded in a bilayer. The competing forces include the electrostatic attraction between 

adjacent C and N termini of the peptides, favorable hydrophilic interactions between the 

backbones and the asparagine side chain and the solvent particles, and favorable 

hydrophobic interactions between the aromatic phenylalanine side chains. These various 

forces create a force differential, which coupled to the hinge-like structure of the tripeptide, 

due to the presence of asparagine in the middle, makes this force differential manifest as a 

“pinching” effect that induces curvature. To quantify this effect, the average angle made 

by the FNF backbone was measured (see Figure 10).  

 

Figure 10: Distribution of the angle (theta) of the tripeptide (FNF). The average angle is 112.9˚, 

compared to the equilibrium angle of a single solvated FNF peptide pf 107.4˚.  Copyright, Org. 

Biomol. Chem., 2018, 16, 2499. DOI: 10.1039/C8OB00130H 
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The angle between the backbone beads (~113˚) is significantly distorted as compared to 

the equilibrium angle (107˚). This indicates that the tripeptide stretches laterally while the 

asparagine side chain experiences an attractive force, pulling it into the solvent and keeping 

the hinge correctly aligned, thereby inducing a local curvature in the bilayer.     

 

Figure 11: Population density of FNF tripeptides plotted against the Z axis coordinate for Total 

Peptide Concentration = 0.3 peptides/nm3  and relative tripeptide concentration of 50%. Two 

closely spaced peaks show that the tripeptide distributes itself relatively evenly on both sides of the 

bilayer, leading to the lamella lacking a preference to fold in any specific direction Copyright, Org. 

Biomol. Chem., 2018, 16, 2499. DOI: 10.1039/C8OB00130H 

 

To the upper right of the phase map (see Figure 8), the lamellar bilayers are 

observed to dominate the molecular composition phase space. We attribute this result to 

the fact that in addition to the high overall peptide concentration, the high tripeptide 

concentration makes it far more likely that the tripeptides distributed uniformly on either 

side of the bilayer. This uniform distribution negates any preference to induce local 

curvature in a specific direction. A representative example of the bilayer tripeptide spatial 
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distribution is measured and shown in Figure 11. At lower tripeptide concentrations, a 

difference can be observed in the distribution of peptides on either side of the bilayer for 

different morphologies. This is demonstrated in Table 2.  

 

 

Table 2: Distribution of tripeptides on either side of the bilayer for different morphologies. 

Total peptide concentration is 0.25 peptides/nm3 at 10% tripeptide concentration. A 

representative system for each morphology was chosen and the number of peptides on 

either side of the bilayer were counted.   

 

At high relative tripeptide concentrations (90%-100%), a small number of irregular 

or disordered nanostructures are observed (see Figure 12). This suggests that an 

overabundance of tripeptide “hinges” in the bilayer decreases its ability to attain a stable 

morphology.  Additionally, overlaps are observed in the domains of the three main 

morphologies (that is, vesicles, nanotubes and lamellae). This indicates a transition 

between morphologies for specific values of the total concentration of peptides and relative 

concentrations of the tripeptides. It is important to note that nanotubes do not have an 

exclusive molecular composition parameter space like lamellae or vesicles. 



22 
 

 
 

 

Figure 12: Disordered assembly occurring at 0.3 peptides/nm3 and (a) 90% tripeptide, (b) 50% 

tripeptide. Copyright, Org. Biomol. Chem., 2018, 16, 2499. DOI: 10.1039/C8OB00130H 

 

CHAPTER III: Approaching Aggregation Polymorphism with REMD 

 

 The phase space reported in Chapter 1 (Table 1 and Figure 8) has mostly well 

defined phase boundaries between the vesicular and lamellar regions.  However, the 

vesicular/nanotube transition is less defined. This is particularly the case in the region of 

the phase diagram that corresponds to high total peptide concentrations and low relative 

tripeptide concentrations. In these regions, we find sizable frequency distributions of 

multiple morphologies, mainly vesicles and nanotubes. The predominance of curved 

structures can be explained by the mechanics of local tripeptide-rich zones. However, this 

strongly suggests the presence of a local minimum on the energy landscape, and does not 

sufficiently address which morphology corresponds to the local or the global 

thermodynamic minimum. This local minimum becomes a kinetic trap for the system that 

it cannot escape on its own.74,75 To aid the system from escaping from said trap, a range of 
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enhanced sampling techniques can be applied, such as metadynamics, replica exchange, 

Gibbs Sampling, Expanded Ensemble methods, etc.   

 

 To this end, we apply the Replica-Exchange (RE) method: a family of simulation 

techniques used to enhance sampling and more thoroughly explore phase space of 

simulations. RE simulations involve the concurrent execution of independent simulations 

which interact and exchange information.  

 

RE methods were devised as early as 1986 by Swendsen et. al.76 in the domain of 

Monte Carlo simulations. Replica Exchange Molecular Dynamics (REMD) was first 

formulated in 1999 by Sugita and Okamoto77. Initially REMD was used to perform 

exchanges of temperatures, but was later extended to perform Hamiltonian Exchange78, pH 

Exchange79 and other exchange types. REMD can also be performed in two 

synchronization modalities: Synchronous and Asynchronous (discussed later). Over the 

years, REMD has been adopted by many scientific disciplines including chemistry, 

physics, biology and materials science, such as protein folding, self assembly and force 

field parameterization.   

 

Theory 

 

 Replica Exchange is performed by concurrently executing MD timesteps on 

multiple “replicas”, i.e. copies of a molecular system, and periodically exchanging 

conformational information between them. This may be done across a wide range of 
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parameters as discussed before, such as temperature, pH, a Hamiltonian or restrained states 

(such as in Umbrella sampling).  The exchange occurs by data movement across replica 

sandboxes (i.e. locations on disk where replica information resides) in case an exchange is 

accepted.  

 

 The criterion used to determine acceptance or rejection of an exchange of 

configurations between replicas is the Metropolis Criterion, the mathematical formalism 

for which is below: 

 

  

 

In the equation above, the Acceptance Ratio A  between two states x’ and x. The probability 

terms are the transition probabilities between the two states: g(x|x’) and g(x’|x) are the 

distributions of probabilities of transitioning between the states x  and x’ and P(x) and P(x’) 

are transition probabilities to those states drawn from the distributions. This is 

fundamentally a Monte Carlo move:  the acceptance probability becomes  

 

A = min [1, P(x’)/P(x)] 

 

 Since g(x|x’) = g(x’|x), i.e. the probability of transitioning from state x to x’ is the 

same as the probability of transitioning in the reverse direction.  
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In our case, we apply Temperature REMD, as formulated by Shirts and Chodera. 

Typically, REMD is performed over a temperature ladder where the replica of interest is 

the lowest. Replicas concurrently execute a fixed number MD steps equivalent to a defined 

simulation time, say, 500ps, and wait for all other replicas to reach the same state. The 

replicas then enter an exchange phase, where a random replica pair is chosen and an 

exchange of configurations is attempted between them via the application of the Metropolis 

criterion. Once the exchange is accepted or rejected, the replicas enter the next MD phase. 

This sequence of one MD phase followed by one Exchange Attempt is termed a ”cycle”. 

While this technique is useful, only one exchange is attempted every cycle, and this 

severely limits replica mobility across the temperature ladder. To address this, Chodera et 

al.80 formulated Replica Exchange as a special case of Gibbs Sampling (also referred to as 

Independence Sampling80,81). This method applies the Infinite Swapping approach80 to 

Replica Exchange: as replicas enter the exchange phase, a “swap matrix” is instantiated 

and populated with all i-j exchange probabilities (Figure 13). This matrix is effectively one 

Metropolis criterion, and allows for multiple swaps to be attempted in a single cycle, 

dramatically increasing replica mobility[80].   
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Figure 13: Swap Matrix of a system of K replicas. The matrix has K2  elements. Element (i,j) 

corresponds to a unique exchange probability between replica i and replica j. 

  

The exchanges may be performed synchronously or asynchronously, by defining a 

“Synchronicity Factor” as the ratio of replicas that must wait to perform an exchange to 

the total number of replicas. If this factor is 1, then all replicas must wait for all other 

replicas, making synchronous exchange a special case of asynchronous exchange.  

 

All simulations were performed using RepEx, a scalable, flexible and user-

extensible Replica Exchange Framework developed collaboratively between the 

Computational Hybrid Soft Materials Laboratory 

(http://sol.rutgers.edu/~md860/dutt.html) and the RADICAL group 

(https://radical.rutgers.edu/) at Rutgers. RepEx is a lightweight layer built on top of 

Ensemble Toolkit (RADICAL-EnTK), a workflows-management/runtime system. A 

detailed discussion of these packages is omitted here since the core focus of this document 



27 
 

 
 

is molecular science, rather than the software: that discussion will be handled in a separate 

manuscript (In Preparation).  

 

 

Replica Exchange Setup  

 

 

Typically, temperature ranges in REMD simulations (hence forth referred to as a 

“temperature ladder”) are set up with the following considerations in mind: (i) high 

sampling rate in the temperature range of interest, (ii) minimizing sampling in temperature 

ranges that do not provide additional benefits. Secondly, combining REMD with coarse 

graining comes with its own challenges: coarse graining provides a very smooth energy 

landscape for individual replicas to reside in, making hops between adjacent temperatures 

less likely to occur due to the relative local stability. Nagai et al. and Stelter et. al. study 

phase transitions in lipid bilayers using REMD in conjunction with the coarse grained 

MARTINI model. While Nagai et al. employ the standard “wet” (i.e. explicitly represented 

solvent particles) model82, Stelter et al. employ an implicit solvent “dry” MARTINI 

model83. Both studies successfully observe phase transition and reproduce the phase 

transition temperatures. Chebaro et al.84 employ the coarse grained OPEP (Optimized 

Potential for Efficient protein structure Prediction) model with REMD to study protein 

systems in an implicit solvent.    

 

Temperature selection 

 

Temperature selection for replica exchange is a critical parametric consideration. 

Replicas with poorly selected temperatures may result in no exchanges occurring, or 
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inefficient resource utilization due to unnecessarily high sampling rates that are not 

necessarily beneficial. As pointed out above, combining REMD with CGMD is not always 

trivial: the CG force field is typically one which provides a very smooth energy landscape, 

making exchanges less likely due to the thermodynamic detail balance for exchange 

becoming very hard to satisfy. We address this by spacing replicas closer together (as 

demonstrated by Nagai and Okamoto82). To compute an appropriate ΔT value, simulations 

were set up as follows: 100-replica ensembles were set up to perform exactly one exchange, 

with the ΔT being varied from 10K down to less than 1K. All replicas performed 20000 

MD timesteps before they attempted an exchange. Table 3 below lists the various ΔT values 

between adjacent replicas tested and the computed Exchange Acceptance Ratios (EAR).  

 

ΔT(K) Computed EAR 

10 0.01 

5 0.00 

1.25 0.11 

1 0.25 

0.9 0.31 

0.8 0.37 

0.75 0.41 

Table 3: Table showing the temperature differential between adjacent replicas and the computed 

exchange acceptance ratio (EAR). 

 

We find that a 0.8-0.9K difference between adjacent replicas results in a good 

acceptance rate.  This is, as described in Okamoto et al., dependent on potential energy 
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overlaps between replicas. Figure 14 shows the potential energy overlap for a 16 replica 

system.  Each bell curve represents the energy states accessed by one replica. Therefore, 

the overlaps between curves represent the states accessible by more than one replica. The 

larger the overlap between two replicas, the greater the probability for the acceptance of an 

attempted exchange.    

 
Figure 14: Potential energy overlaps between replicas. Each bell curve represents the energy 

states accessed by one replica. The larger the overlap between two replicas, the greater the 

probability for the acceptance of an attempted exchange. 

 

 

However, replicas that are too high in temperature need not be sampled as 

frequently: They just serve as “helper” replicas that allow lower temperature replicas to 

overcome any kinetic barriers. TMax is the temperature of the highest temperature replica 

in the ensemble. This must be chosen carefully, since if the maximum temperature is not 

high enough, the replicas of interest may not have access to higher energy states, but if it 

is too high, precious compute resource time is wasted on sampling energy states that do 

not add any additional information to the systems being studied. Further, having a high 

density of replicas at higher temperatures results in a compounding of this problem. 



30 
 

 
 

Therefore, in addition to carefully selecting the maximum thermostat, the distribution must 

not be linear: there need not be as many replicas at higher temperatures as there are near 

the temperature of interest. Another important consideration is the relative mobility of 

replica configurations up and down the temperature ladder. The downward mobility of 

configurations from higher temperatures is more desirable than the reverse: the target 

temperature (i.e. 310K in this case) is interested in sampling from temperatures higher than 

itself, whereas the higher temperatures, as discussed earlier, only exist as auxiliary “helper” 

replicas that aid the target replica in sampling a larger conformational space. For this 

reason, an exponential temperature distribution is chosen.  This is in general agreement 

with conventional replica exchange simulations. The final temperature ladder selected is 

shown in Table 4 below. 
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T(K) ΔT(K) 

310.0 0 

310.3099644507333 0.3099644507332755 

310.7160068621849 0.40604241145160813 

311.24790798667647 0.5319011244915828 

311.9446795510655 0.6967715643890529 

312.85742553069696 0.9127459796314383 

314.05309031656384 1.1956647858668816 

315.61936868104306 1.566278364479217 

317.67113765846346 2.0517689774204086 

320.3588820800015 2.6877444215380137 

323.87973172487284 3.5208496448713618 

328.4919195960311 4.612187871158255 

334.53372174735154 6.041802151320439 

342.4482677839449 7.914546036593379 

352.81604173557395 10.367773951629033 

366.3974570454462 13.581415309872227 

 

Table 4: Final temperature ladder. An exponential distribution was chosen for the REMD 

simulations.  

 

 

Results 

 

We performed Temperature-Independence Sampling REMD (T-REMD-IS) on the 

FF-FNF system with a total peptide concentration of 0.25 peptides/cu.nm and a 20% 

relative tripeptide concentration. At these parameters, there are comparable counts for the 
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occurrences of nanotubes, lamellae and vesicles. This is due to the presence of kinetic traps, 

i.e. local minima, that the simulation is unable to escape. When these local minima are deep 

enough, the system collapses into these “final” states. To escape these local minima we 

must ensure that the replica has sampled from sufficiently high energy states. Therefore, 

we trace the path of a configuration that originates in the highest temperature replica to 

ensure that it has diffused to the target replica R0 at 310K. The trace of replica R15 is 

shown in Figure 15: we see that replica R15 has diffused its configurations all the way 

down to replica R0: ergo, R0 has “seen” the full temperature space up until ~367K.   

 
Figure 15: Trace of the highest temperature replica R15 diffusing through the Temperature 

ladder. R15 diffuses all the way to R0, the target replica at 310K.  

 

 

We also compute the aggregate acceptance ratio.  The exchanges maintain an average 

aggregate acceptance ratio of ~33.364%. This is shown in Figure 16. 
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Figure 16: Aggregate exchange acceptance ratio vs Cycles. The EAR fluctuates about an average 

value of ~33.364%.  

 

We validate our REMD simulation by generating a free energy plot (FEP). The plot 

is then compared with the FEP of a coarse grained brute force MD simulation (discussed 

in Chapter 1) of the same system that produced the same result. The FEP was generated by 

binned state histogramming over two reaction coordinates (Radius of Gyration and Solvent 

Accessible Surface Area) and computing Free Energy (FE) as: 

 

FE = -RT logP(x,y)   

 

Where P(x,y) is the joint probability density of the system existing in state (x,y), R 

is the universal gas constant in kJ/mol, and T is the temperature of R0 in K (i.e. 310K).  

Figure 17 shows the FEP’s for the REMD run and the classical MD run respectively. 
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Figure 17: FEP’s for the REMD run (top) and classical MD run (bottom). Our results indicate that 

the primary basin (i.e. lowest free energy region) lies around a SASA of ~1100-1300 sq. nm and 

an Rg of ~3.6nm. These results are in agreement with Guo et al.50 The basin at (x,y)=(700 sq.nm 

and 3.6nm) in the top figure is an artifact of a transition state where peptides collapse into a non-

hollow spherical structure with a lower SASA before stabilizing into a vesicle. The basin at 

(x,y)=(1550 sq.nm and 3.6nm) is a result of the classical MD simulation reporting states with high 

degrees of dispersion (and therefore, high Rg for the peptide component of the simulation box).    

The inset shows the vesicular configuration at the FE basins.  
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Replica exchange predicts that the preferred morphology at this concentration is 

vesicles, as shown in Figure 18. This system maintained an aggregate exchange acceptance 

rate of ~33%. 

   

Figure 18: REMD simulation (final frame) of an FF-FNF system with a total peptide concentration 

of 0.25 peptides/cu.nm and a 20% relative tripeptide concentration. 

 

 Finally, we apply the same protocol for other regions of the phase space discussed 

in chapter 1 and shown in Figure 8. The partially REMD corrected phase diagram is shown 

in Figure 19. 

 
Figure 19: Partially corrected phase map of the mixed peptide phase space. The yellow block at 

30% Relative Tripeptide Concentration and 0.25 peptides/cu.nm represents the part of the phase 

space that classical MD was unable to predict a clear most-likely-conformation between vesicles, 
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nanotubes and lamellae, but REMD predicts a Vesicle. The red block at 60% Relative Tripeptide 

Concentration and 0.20 peptides/cu.nm represents the part of the phase space that classical MD was 

unable to predict a clear most-likely-conformation between vesicles and lamellae, but REMD 

predicts a Vesicle. 
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CHAPTER IV: Targeted design of supramolecular peptide assemblies 

 

 

 

The PACE Framework 

 

As we see from Chapter 1, the morphological diversity of a single system with two 

components is vast: but there are 20 possible amino acid residues. Therefore there are 

millions of possible combinations of peptide sequences, providing the possibility of a vast 

range of supramolecular assemblies and nanomaterials. This chapter proposes a high 

throughput computational framework for a screening protocol for targeting specific 

morphologies. The computational framework will encompass a Simulation-Analysis 

pipeline. 

The notion of a Simulation-Analysis pipeline is straightforward: A pipeline carries 

temporally separated simulation and analysis tasks, and a control flow decision is made 

based on the signal received from the analysis task. In other words, the first MD simulation 

runs to completion for a fixed number of timesteps and triggers an analysis task. The 

analysis task evaluates the resultant MD trajectory for a specific criterion. Compliant MD 

simulations are allowed to continue to the next MD phase with a high sample rate to allow 

further, detailed analysis. Non-compliant ones are terminated, and their computational 

resources are either allocated elsewhere or released: a consideration that is especially 

important due to the limited availability of high-performance computing resources. The 

pipeline can be replicated for concurrent processing of multiple candidates simultaneously.  

This setup may be written in the form of shell scripts that explicitly assigns 

resources to all the simulations in question and resolves the necessary dependencies. While 

possible, this approach may prove to become extremely cumbersome, especially over large 
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candidate pools. A large candidate pool requires the explicit specification of command 

lines referring to each system. Further, the expression of the adaptivity required in a 

workflow such as this is extremely limited when done via shell scripting, underscoring the 

requirement of a framework that uses an API that allows for scalable and flexible 

expression of adaptive workflows.  This framework, therefore, is written using the 

RADICAL-EnTK API85. As before, a detailed discussion of EnTK will be handled in a 

separate manuscript (in preparation). 

 

  

Figure 20: Screening Framework for peptide materials. Candidate systems set up a priori are 

drawn sequentially from a candidate pool and simulated in concurrent pipelines. Each pipeline 

performs an MD phase (blue) followed by screening. If the screening task returns a “compliant” 

signal (green), the pipeline propagates into an additional MD phase. A “non compliant” signal 

terminates the pipeline and spawns a new pipeline with the next candidate system.  

 

 

We therefore propose PACE: Pipeline for Automating Compliance-based 

Elimination. PACE is a workflows approach to simulating and studying biomolecular 

systems. A predefined number of “candidate” systems, such as various peptide sequences, 

peptide combinations, or even systems running at different physical conditions 



39 
 

 
 

(temperatures, concentrations, etc.) are prepared and set up in a Candidate Pool, a sandbox 

that contains all the necessary input files. As many pipelines as desired are instantiated 

(based on available resources: a single pipeline per node of an HPC platform is typical), 

say, k in number, and simultaneously spawn MD simulations of the first k candidate 

systems. These systems are then screened for the desired characteristics, and either allowed 

to propagate to the high resolution MD phase or terminated based on the screening analysis 

signal. This entire set of pipelines may then be replicated for statistical significance.  

 

Figure 20 shows a schematic representation of the proposed PACE protocol. The 

blue blocks represent MD runs of candidates, whereas the green and red blocks show the 

analysis stage: green blocks represent an analysis stage that has returned a positive 

(Boolean “1”) signal, and red blocks, a negative (Boolean “0”).  The Analysis stage can in 

principle be anything: from an explicit determination of simulation parameters to using 

statistical analytical models to make decisions.  For this project, we use a Machine 

Learning (ML) driven approach, discussed in the next section. 

 

Background: Convolutional Neural Networks 

 

For discriminating between the three possible nanostructures we employ a 

convolutional neural network (CNN)86, 87 driven image recognition kernel. In this section, 

a cursory discussion of CNN’s is provided for the sake of context and background. A 

detailed discussion of Neural Nets and Deep Learning is beyond the scope of this thesis.  
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A CNN is a “network” that vaguely mimics the connections in a human brain. They 

are designed for pattern recognition, much like their biological counterpart.  It is composed 

of layers (or “nodes”) of units called “neurons”, which are basically switches that (i) assign 

weights to each input, (ii) combine the inputs into one signal, and (iii) apply an “activation 

function” to compute the signal to be propagated forward to the next layer and error to be 

propagated back to the previous layer.86,87 Figure 21 shows a schematic of a hypothetical 

4 layer Neural Network. There are 6 neurons in the input layer (i.e. it accepts six inputs), 

the two hidden layers have four neurons each, and the output layer has two neurons, i.e. it 

gives two outputs. In the context of image recognition, each input neuron corresponds to 

one pixel in the image being processed. The hidden convolutional layers do not follow a 

prescription for neuron count, as this depends on the requirements of the case in question. 

Image recognition CNN’s use a technique called “feature extraction”, and typically, the 

number of neurons in the hidden layers depends on the number of “features” to be 

extracted. Feature extraction is discussed in the section ahead.  
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Figure 21: Schematic representation of a four layer CNN. The input layer has six input neurons, 

the hidden (convolution) layers have four neurons each, and the output layer has two output 

neurons. 

 

The 4 layers interact by passing signals between each other. Each layer accepts inputs from 

the previous layer, computes the signal, and sends this signal to the next layer. This is 

known as “forward propagation”. Simultaneously, each layer also computes the error from 

the expected result and communicates it with the previous layer. This is known as “back 

propagation” and is used to refine the model weights in a manner that minimizes said 

error.87  

 

 When the complete training data set completes one full pass of forward as well as 

back propagation through the entire depth of the neural network, it is termed as an “epoch.” 

Figure 22 shows a schematic of the forward and back propagation steps between the 

various layers. 
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Figure 22: Back and Forward propagation through the CNN. A full pass of all training data through 

all four layers is termed as an “epoch”. 

Feature Extraction 

 

 “Feature extraction” refers to the process of recognizing the patterns in a set of 

images and reducing them to a set of “features” to allow for faster processing88. An image, 

fundamentally, is a matrix consisting of RGB (Red, Blue, Green) values. This makes 

images extremely amenable to be processed via matrix operations. Convolution and 

Pooling are the two primary operations we will be considering here. Convolution refers to 

the process of “filtering” a given image for features. These features are then “accumulated” 

through a process of Pooling. 

 

Convolution is a method of “feature filtering” involving replacing a target group of 

pixels from the source image with a single matrix element in a “target matrix”. This is done 

by reading the RGB values of the pixel at the center of the target group, computing the 
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weighted sum of the target pixel and all the neighboring pixels, and returning this value to 

the target matrix. This is then repeated over all the pixels in the image. Therefore, the 

convolution layer acts as a “sliding window” on the image.   

 

The MaxPool() operation is a method of “accumulating” these filtered features by 

essentially picking a sub-matrix from the matrix generated by the Convolution step and 

choosing the maximum value in that sub matrix (i.e. picking the “most prominent feature”). 

 

These processes put together comprise the “feature extraction” process.  

 

Model and Training 

 

The Image recognition kernel was set up with a converter script to generate .png 

image files 480 by 640 pixels in size from GROMACS output .gro files. This was done by 

simply plotting the x, y and z coordinates of the output coordinate file by fixing the 

perspective using Python’s matplotlib library. This image was then passed on to the CNN. 

Figure 23 shows the images that were fed to the CNN. 

 

 
Figure 23: Images of Vesicle, Lamellae and Nanotubes (Left to Right) generated by the Pre-

Processing module of the Neural Network. 
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The images generated by the matplotlib driven preprocessing module were then 

passed to the Neural network. In the case of training, a pre-generated set of images were 

supplied to the network, but for in-pipeline prediction within PACE, images were 

generated on the fly, as candidates completed their MD runs. Figure 24 shows the scheme 

for data flow from the MD step to the ML step until the shape of the structure is 

characterized.  

 

 

 

Figure 24: Setup of the CNN kernel. A GROMACS .gro file is first used to generate an image that 

is then fed to the CNN, which generates an output string and writes it to a file.  

 

Our model was configured as a 4 layer CNN with one input layer, one output layer 

and two hidden layers. The input layer has 921600 Neurons, three for each pixel of the 

image (three to correctly parse the RGB values). This is followed by Convolve() and 

MaxPool() operations. The Convolution layers have a 3 by 3 convolution layer, therefore, 

the two convolution layers have 9 neurons each. Max pooling is performed by a 2 by 2 

kernel, i.e. the sub-matrices picked from the input matrix are 2 by 2. These operations (the 

“layer”) are then repeated for further filtering and extraction of features. The output is a 
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single string, that reports if the image initially fed to the network was a nanotube, vesicle 

or lamella. 

 

The Model was trained using 300 images each of vesicles, lamellae and nanotubes, 

and validated using 100 images of each. Figure 25 shows the validation plot of the trained 

model. We found that after 7 epochs, the accuracy of prediction in the validation sets goes 

to ~1 in five independent training runs. Therefore, we concluded that 10 epochs is 

reasonable for good feature extraction.  

 

Figure 25: Training/validation of the model. The training set consisted of 300 images each of the 

three nanostructures. The remaining 100 images were used to validate the model after each epoch. 

Five independent training runs were performed. All runs converged to a ~1.0 accuracy after 7 

epochs. 
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Results 
 

 

 The trained model was then employed to run as the Analysis Stage of PACE. The 

model was loaded onto the working directory of an XSEDE HPC Platform (SDSC Comet) 

and hooks were set up so that the analysis kernels as shown in Figure 20 pointed towards 

this model.  A system was set up as shown in Table 5: 

 

System Seeds Total Peptide 

Concentration 

Total Peptide 

Count 

Di-Tripeptide 

Ratio 

FF-FNF 10 0.2 peptides/cu.nm 500 4:1 

 

Table 5: 10 seeds of the FF/FNF system were set up and run in PACE.  

 

PACE was set up to generate statistics in order to compute the frequencies of each 

nanostructure generated. PACE reported the formation of a lamella in 1 seed out of the 10, 

nanotubes in 2 and vesicles in 7. These results are shown in Figure 26. In Chapter 1, we 

discussed the statistics generated by brute force MD followed by visual inspection (results 

tabulated in Table 1). The results generated by PACE are in excellent agreement with those 

results.  
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Figure 26: Statistics generated by PACE. PACE reports the formation of vesicles in 7 out of 10 

seeds, nanotubes in 2, and a lamella in 1. This is in excellent agreement with results reported in 

Chapter 1, Table 1.  
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Chapter V: Conclusions and Future Directions 

 

This dissertation covers a range of approaches to studying peptide polymorphism. 

We start with the use of Coarse Grained Molecular Dynamics simulations of a phase space 

consisting of varying mixed peptide systems. In Chapter II, We report rich polymorphism 

in these systems comprising two ultrashort peptides: Diphenylalanine (FF) and 

Phenylalanine-Asparagine-Phenylalanine (FNF). These peptide mixtures exhibit the 

formation of spherical and nonsperical vesicles, nanotubes and flat lamellar bilayers. We 

find that the structure of the supramolecular assemblies reported closely correlates with the 

molecular composition of the systems in question. The presence of tripeptides in the system 

biases the structure towards forming assemblies that have curvature, but there is a critical 

ratio beyond which the curvature begins to flatten out again. We establish this using 

measurements of bond angles in the peptides and looking at the intermolecular packing of 

the structures. Further, we find that the phase space has, for the most part, clear boundaries 

between the vesicle, lamellar and nanotube phases. However these boundaries in some 

instances are not entirely clear. We proceed to study this in Chapter III via Independence 

Sampling Replica Exchange (isREMD), and find that the method allows fast convergence 

to the thermodynamic minimum by allowing the system to escape kinetic traps. We 

thoroughly validate the results of these simulations by (i) ensuring that the target replica at 

310K has traversed and sampled configurations spanning the entire temperature ladder via 

tracing the pseudotrajectory of the highest temperature replica, and (ii) ensuring that the 

free energy profile (FEP) derived from the REMD simulations agrees with both the FEP 

of a classical CGMD simulation that gives the same end state as well as FEP’s of similar 
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structures from the literature.  Finally, in Chapter IV, we propose, design and test a 

Machine Learning driven workflows approach to studying biomolecular systems to 

reproduce a part of the phase space discussed in Chapter II, which we have dubbed PACE. 

We train and apply a Convolutional Neural Network to determine the morphology of 

simulations, collect statistics and make adaptive decisions to either extend the workflow 

for further analysis or terminate the simulations that do not show promise. The code for 

these workflows are on Github, access will be available after publication of relevant 

research papers. Manuscripts are in preparation for the Replica Exchange and PACE 

components of this dissertation.  

 

In the immediate future, we plan to explore the full phase space of the FF-FNF 

system by using both Replica Exchange as well as PACE: Replica Exchange to determine 

the thermodynamic minima of all regions of the phase space where phase boundaries are 

not clear, and PACE to (i) reproduce the full phase space by utilizing the Machine Learning 

approach and (ii) extend PACE to allow it to execute adaptive workflows with fully 

customizable analysis routines in addition to being able to extend, terminate or adapt 

molecular simulation-analysis pipelines based on the determinations of the Machine 

Learning kernel. This work will be carried out jointly with Akash Banerjee (PhD student) 

and Ethan Zang (Undergraduate Student).  We will be handling generalizing the framework 

to adapt to a wide range of biomolecular simulation applications. Ethan Zang will be 

contributing to the development of further ML based algorithms and approaches for 

analysis and characterization of biomolecular simulations. 
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In conclusion, this dissertation has established the rich diversity of supramolecular 

assemblies in the peptide space, and has discussed three approaches to studying them. 

These approaches have tremendous potential to be expanded upon in order to glean new 

insights regarding biomolecular behavior and can have impacts on a wide range of fields 

including nanomaterials, biomaterials, nano/biomedical science, and bioelectronics.  
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