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Despite all important advances in the treatment of cancer over the last decades, pre-

venting disease recurrence remains a challenge. Resistance of tumors to chemotherapy can

be caused not only by selection of drug-resistant clones over the course of treatment, but

also by the presence of tumor foci that are in a dormant state and are not targeted/killed

by DNA-damaging agents. Such dormant tumor foci can eventually transition to a state of

active growth, causing disease recurrence. In this thesis, we propose a stochastic model to

describe recurrence of generic tumors, in which tumor foci can transition between a chemore-

sistant dormant state and a chemosensitive state of active growth. We develop a framework

to determine the time-dependent probability that an undetectable residual tumor will be-

come large enough to be detectable, and model the effect of chemotherapy on recurrence by

switching the death rate of active tumor foci at the treatment time cap. We fit our model

to data from a clinical trial for maintenance chemotherapy with the poly(ADP-ribose) poly-

merase (PARP) inhibitor olaparib in ovarian cancer, and use parameters from the fits to

predict recurrence-free survival when chemotherapy dosage or duration are increased. In
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this context, we also investigate how recurrence and cure are affected by transition rates

between dormant and active states within the tumor, and predict how the effectiveness of in-

creasing chemotherapy dosage or duration for improving long-term recurrence-free survival

depends on these rates. Our results should be useful in planning optimized chemotherapy

dosage and duration for cancer treatment, especially in cancer types for which no targeted

therapy is available.
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Chapter 1

Introduction

1.1 Overview

Complex multicellular organisms have evolved to control cell proliferation using sophisti-

cated mechanisms that determine the fate of a cell, stasis, replication or death. These

mechanisms are critical in maintaining order and function in complex body tissues. In can-

cer, some of these mechanisms fail because of abnormalities in genes that regulate them,

causing the defective cells to proliferate uncontrollably, sometimes leading to dysregulated

growth, which is a hallmark of cancer [2, 3].

Cell replication or death are controlled by two types of genes, oncogenes and tumor

suppressor genes. Oncogenes are responsible for promoting cell proliferation, regulating

blood supply, building tissue etc, whereas tumor suppressor genes act as a brake on these

processes, regulating them to ensure cell and tissue homeostasis by controlling a variety

of cellular signaling pathways. It is the equilibrium between these two forces, as they

respond to both internal and external stimuli, that keeps cell proliferation under control,

and preserves the integrity of normal cellular functions encoded in the genome. Cancer is

essentially the result of the disruption of this equilibrium caused by genetic abnormalities.

In addition to internal cell-cycle control, there are a number of pathways that guard

against internal or external effects that damage the DNA. These mechanisms that repair

or protect the DNA are vital to preserve genomic integrity and maintain normal cellular

function. Some examples of these mechanisms, established by billions of years of evolution,

are cell-cycle arrest, the DNA proofreading and repair machinery, apoptosis (programmed
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cell death) and senescence. These mechanisms destroy or inactivate cells that have accu-

mulated DNA damage beyond the possibility of repair. The genes that control DNA repair

sometimes lose their function due to mutations or epigenetic silencing, which leads to ge-

nomic instability and accumulation of DNA damage [4]. Tumors originate when cells with

such abnormalities are permitted to survive or replicate, as a result of mutations in apop-

tosis pathways, DNA-damage checkpoints, DNA-repair checkpoints or mitotic checkpoint

pathways [5, 6].

Carcinogenesis is a multistep process, typically requiring the acquisition of several mu-

tations for cancer initiation, growth and metastasis [7]. There are several factors that can

cause or increase the risk of developing cancer, the most common being exposure to chem-

icals or radiation that cause DNA damage, inherited genetic defects, and infection with

certain viruses. Regardless of the primary cause of the cancer, all tumors acquire certain

biological capabilities as they develop, which allow them to sustain their growth and pro-

liferate. Hanahan and Weinberg have proposed at least six such capabilities that a tumor

must acquire: sustained proliferative signaling, evasion of growth suppressors, resistance to

programmed cell death, replicative immortality, induction of angiogenesis (the process by

which new blood vessels are formed), and activation of invasion and metastasis pathways

[3]. These evasion mechanisms in tumors are often the result of increased mutation rates,

resulting in chromosomal abnormalities, which create an altered karyotype, leading to al-

tereted pathways and tumor heterogeneity, thereby creating multiple ways in which tumors

can survive immune surveillance and therapy.

A large number of genes associated with cancer development and progression have been

identified, and their roles in specific pathways have been established [8]. The enormous

variety of molecular types of cancer results from the large number of possible combinations

of defective oncogenes and tumor suppressor genes that contribute to the neoplastic state [9].

A key tumor suppressor gene, which is the most frequently mutated (and most frequently

cited) gene in human cancers, is the transcription factor p53, also known as the “Guardian
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of the Genome” [10–12]. As the name suggests, it plays an important role in preventing

cancer, by identifying damaged cells, pausing progression of the cell cycle from G1 phase

into S phase or from G2 phase into M phase, giving the cell time to effect appropriate repair.

When repair fails, p53 induces apoptosis or regulated death of the cell, and therefore acts

as a tumor suppressor [13]. Most cancers find it necessary to inactivate p53 using a variety

of strategies, and to eliminate the barrier imposed on cell replication by its surveillance of

the cellular state, which then allows the tumor to proliferate and invade distant tissues [14].

In the next sections, a few major mechanisms in the development of cancer are reviewed,

especially those pertaining to mitogenic signaling, cell-cycle control and apoptosis, and the

roles of key genes are described. A brief summary of important discoveries relevant to the

molecular biology of cancer is given along with appropriate references, which may serve as

an introductory guide to the subject.

1.2 Tumor viruses and the discovery of oncogenes

The discovery that normal chicken embryo fibroblasts can be transformed into tumor cells

by infection with the Rous sarcoma virus (RSV) paved the way for major discoveries in

cancer biology. It lead to the realization that certain RNA viruses, known as retroviruses,

make DNA strands from their own RNA templates (reverse transcription) and insert them

into the genome of the host cell during their replication cycle. The answer to the puzzle

of how RSV could transform a normal cell into a tumor cell was the presence of a gene in

the viral genome (the v-src oncogene) that caused the transformation [15]. The sequence

of the v-src gene was later discovered to be closely related to the DNA sequence of a gene

present in normal avian DNA, c-src, making it the first oncogene to be identified [16].

Tumor retroviruses can sometimes transform cells even in the absence of an oncogene of

cellular origin in its genome. However, cells infected with such viruses take a significantly

longer time to develop a tumor than those infected with oncogene-carrying viruses such as

RSV. An investigation of lymphomas induced by the avian leukosis virus (ALV) revealed
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that the cellular transformation could be explained by insertion of the retroviral genome

adjacent to the c-myc proto-oncogene, causing it to be activated through the viral promoter

[17]. Although integration of the ALV retroviral genome occurs at random locations of the

host cell’s genome, on rare occasions, this insertion happens to be adjacent to the c-myc

gene. Since these early studies, both types of tumor retroviruses (carrying or not carrying

an oncogene in their genome) have allowed researchers to identify many oncogenes [18].

The key discovery that oncogenes carried by transforming retroviruses can also be found

in cell lines transformed by DNA transfection provided further evidence to the idea that

the same oncogenes can be activated by different mechanisms, such as retroviruses and

the action of mutagens. Moreover, a number of experiments have revealed that oncogene

activation can occur in a variety of ways, such as structural changes in the protein due

to mutations, overexpression of the oncogene due to copy-number alterations or chromoso-

mal translocations, or changes in related regulatory pathways (e.g. suppression of tumor

suppressor genes that control the oncogene) [2].

1.3 Mitogenic signaling and cancer

The maintenance of tissue architecture in Metazoa relies on coordinated cellular signaling,

through which cells can send mitogenic stimuli to other cells, thus promoting growth in a

tightly controlled manner. Such signaling is usually achieved through the activation of cell-

membrane receptors by ligands known as growth factors. Such receptors, once activated,

emit signals to downstream proteins of the mitotic signaling circuitry. These signaling

mechanisms are highly conserved across the metazoan genomes, and their study has allowed

scientists to unveil the biochemical machinery underlying these processes in humans via the

study of model organisms such as flies, worms and mice [2].

Many oncogenes found to be drivers of human cancers have been shown to induce mitotic

activity by modification of growth signaling. The non-receptor tyrosine kinase src, which

was the first proto-oncogene to be discovered in vertebrates (following the discovery of its



5

retroviral counterpart, v-src, the first viral oncogene to be discovered), provided hints to how

a single oncogene can transform a cell and create a variety of cancer phenotypes. A number

of experiments revealed that src acts as a kinase that phosphorylates tyrosine amino-acid

residues in multiple downstream proteins involved in mitotic pathways, thus having a key

role in mitogenic signaling [15].

Other proteins were discovered to function as signal transducers located at the cell

membrane, receiving growth signals from outside the cell and communicating them to other

proteins in the cytoplasm or directly relocating to the nucleus to activate specific pathways.

The first such protein to be discovered was EGF-R, the receptor protein for the Epidermal

Growth Factor (EGF) protein [19]. It was found that EGF-R receptors contain an extra-

cellular domain that binds to its ligand EGF, and a cytoplasmic domain that is similar to

the src gene product, which acts as a tyrosine kinase (for this reason, EGF-R is part of the

so-called RTK class of proteins, standing for tyrosine kinase receptor).

The EGF receptors at a cell membrane are an interface through which the cell senses

mitogenic stimuli, representing the input layer of the EGF network (or the Her network

in humans). The signals received from growth factors are processed by complex signaling

cascades that communicate with the cellular nucleus, where proteins at the output layer of

mitogenic cascades function as transcription factors, which bind to DNA promoter sites of

key genes involved in such processes as apoptosis, migration, growth, adhesion and differ-

entiation [2].

Genomic sequence analysis of EGF-R revealed its similarity to v-erb-B, an oncogene

originally discovered in the genome of the avian erythroblastosis virus (AEV), a retrovirus

known for its ability to transform normal cells into tumor cells [20]. More specifically, it was

discovered that the viral gene v-erb-B clearly inherited (over the course of its evolution)

the genomic sequence of an EGF-R lacking the EGF-binding extracellular domain. The

resulting protein product of the viral gene acts as malfunctioning receptor that is constitu-

tively activated, transducing continuous signals telling the cell to proliferate even without
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external stimulus.

Many cancer types are associated with overexpression or mutations of EGF-R or other

proteins of the cellular erb-B family (also known as Her in humans). One such example

is the Her2 /Neu protein in Her2 + breast cancer. The biochemical mechanism that favors

malignancies in mutant or overexpressed erb-B receptors can be understood by a dimeriza-

tion model [21]. Each receptor is composed of two protein subunits, each of which is free to

move laterally on the two-dimensional surface of the cell membrane. When a growth factor

binds to one of the subunits, the latter moves randomly over the membrane until it finds its

complementary subunit, thus activating the receptor by forming a dimer. When receptor

proteins are overexpressed, dimer formation becomes more likely. The dimer model also

explains how mutations in the erb-B family of genes can cause receptors to fire even in the

absence of growth-factor ligands, since dimer formation (and thus activation of cytoplas-

mic signaling) is favored by certain mutations of the subunit proteins. The discovery of

erb-B receptors and their role in cancer formation has lead to the development of targeted

long-term therapies (e.g. Herceptin for Her2 + breast cancer) that suppress receptor sig-

naling either by blocking their extracellular growth-factor binding domain (i.e., by acting

as growth-factor antagonists), or by inhibiting kinase activity of their cytoplasmic RTK

domain.

After the discovery of EGF, which mainly acts on certain epithelial cells, several other

growth factors that act on a variety of tissues were discovered, and their roles in the patho-

genesis of many cancers were characterized [22]. Likewise, a variety of transmembrane

surface receptors other than RTKs were discovered to be associated with human cancers

such as, for example, integrins [23], which function as sensors that cells use to control their

adherence to the extracellular matrix (this is particularly important in the process of tumor

metastasis).

Increased mitogenic signaling in cancers can also be caused by the response of a cell

to its own overexpressed growth factors. This occurs, for example, in cells transformed by
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the Simian sarcoma virus. An oncogene present in this retrovirus, v-sis, was discovered

to be sequentially related to the Platelet-Derived Growth Factor (PDGF) found in serum.

Infected cells express the v-sis gene at high levels, increasing firing of the cell’s own PDGF

receptors to induce mitogenic activity [24, 25].

A key family of proteins that lie downstream of RTK receptors in mitogenic signaling

networks is Ras, originally discovered as an oncogene of the rat sarcoma viruses. These

proteins are GTPases, acting as molecular switches that have a central role in mediating

signal transduction from the cell membrane to several downstream signaling cascades ending

in the nucleus [26]. When a Ras protein is bound to guanosine diphosphate (GDP) it is

“off”, meaning that it has low affinity to its downstream effectors, whereas it is turned “on”

when the bound GDP gets replaced by a guanosine triphosphate (GTP), meaning that

it binds to its downstream effectors (mainly Raf, Ral-GEF and PI3K) with high affinity.

Mediating between RTK receptors and Ras is a guanine nucleotide exchange factor known

as Sos, which binds to adapter proteins (Shc, Grb2 ) that attach to transphosphorylated

(active) RTK cytoplasmic tails and induces the release of GDP bound to Ras, allowing

binding of GTP. In other words, Sos has the ability to turn the Ras switch “on” when an

RTK receptor at the cell membrane fires. An activated wild-type Ras protein shuts itself

off through its own intrinsic GTPase activity, hydrolizing GTP into GDP, especially in the

presence of GTPase-activating proteins (GAPs), thus forming an activation/deactivation

cycle. This feature of the Ras protein acts as a negative feedback loop that tightly controls

signal transduction to downstream cascades. Mutated Ras proteins can become oncogenic

when they lose their ability to shut off due to aminoacid substitutions in their GTPase

domain.

1.4 Tumor suppressor genes

An important group of genes in cancer formation are the tumor suppressor genes (TSGs),

which act either as “gatekeepers”, preventing progression into the cell cycle or inducing
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apoptosis, or as “caretakers”, maintaining genomic integrity [2]. Loss of functional TSGs

removes barriers preventing cell proliferation and survival, which can lead to malignant

transformation.

In 1971, Alfred G. Knudson proposed that the loss of function of a single TSG observed

frequently in retinoblastoma patients (the Rb1 gene) only occurs when both alleles of the

gene are inactivated [27]. This lead to the realization that inactive TSGs are generally

recessive, an idea that came to be known as the “two-hit hypothesis”. If one of the TSG

alleles is inactive due to germ line or somatic mutations, the second allele can be inactivated

if it is hit by mutations or epigenetic silencing due to methylation of the gene promoter, or if

it is lost due to a loss of heterozygozity (LOH) event. Exceptions to this genetic mechanism

have been observed in TSGs that are haploinsufficient, i.e., when the functional loss of only

one allele is advantageous for the development of the tumor [28] (a notable example is the

the TP53 gene encoding the p53 protein, although tumors with one mutated TP53 allele

usually end up deleting the wild-type copy to completely eliminate any residual tumor-

suppressive function). The recessive nature of most TSGs helps their identification by the

frequent LOH occurrences found in tumors (especially in familial cancers). A common

scenario is a mutated allele of a TSG and the loss of the second allele due to a deletion

in the homologous chromosome. Genomic analysis of tumors can identify candidate TSGs,

which can then be “knocked out” in the germ line of mouse models to validate them as

TSGs.

Because of its recessive nature, a TSG allele with an inactivating mutation can be

inherited in the germ line, unlike mutant oncogenes, which are usually incompatible with

normal embryonic development. This means that familial cancers are usually linked to the

presence of a defective TSG allele, which increases the likelihood of cancer development due

to LOH or other mechanisms that inactivate the wild-type TSG allele.

Besides coding for proteins involved in key cellular processes such as cell-cycle control,

detection/repair of DNA damage, negative regulation of mitogenic signal transduction, cell
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differentiation and migration, among others, some TSGs have also been found that produce

micro RNAs (miRNAs) instead of coding for proteins. Such miRNAs are responsible for

post-transcriptional regulation of many genes, with implications for cancer development

and progression [29].

The next two sections will be mainly focused on the roles of the two most important

tumor suppressor proteins in cancer: the pRb protein, which plays a central role in cell-

cycle control through repression of DNA replication, and the p53 protein, a transcription

factor that protects the genome by triggering DNA repair, cell-cycle arrest, apoptosis or

senescence.

1.5 Cell cycle clock and G1 checkpoint control

All metazoans share essentially the same regulatory machinery that controls their cell cycle,

which likely appeared in a common ancestor hundreds of millions of years ago. The cell

cycle is an organized and regulated process, which proceeds through a sequence of phases,

during which the cell prepares proteins necessary for the complex process of cell division,

makes critical decisions to proceed to the next phase, pause to repair damaged DNA, or

undergo apoptosis. During the first or G1 phase, the cell grows and prepares proteins

for the S (“synthesis”) phase, during which a major step in the process of division takes

place, viz, the replication of DNA. The decision of whether a cell enters the S phase is

controlled by the G1 checkpoint (restriction point), before the end of the G1 phase. This

decision depends on both external and internal factors, such as mitogenic signaling and

DNA integrity, respectively. After DNA replication (S phase), the cell enters another phase

of growth known as G2, during which it encounters a second checkpoint (G2), at which the

cell cycle program checks the integrity of the replicated DNA, before it decides whether

to enter the M phase (mitosis) or to halt the process and repair damaged DNA. Finally,

during mitosis (M phase), the cell undergoes a series of events that allow it to divide into

two identical daughter cells. During the so-called metaphase of mitosis, a third checkpoint
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(spindle assembly checkpoint) restrains the separation of sister chromatids until they are

properly attached to the spindle apparatus, to ensure that each daughter cell gets exactly

one copy of each chromosome. In addition to the G1, S, G2 and M phases, cells can also

enter a quiescent (i.e., dormant) state known as G0 (classic examples are nerve and heart

cells, which are permanently arrested in G0 after differentiation), or exit it and reenter

G1 when sufficiently stimulated by extracellular mitogenic signals (in tumor cells, this no

longer required due to self-sustained mitogenic signaling and absence of barriers against

proliferation, so that G0/G1 transitions become dysregulated).

Mitogenic signals transduced from cell surface receptors to the nucleus through signaling

cascades (see Section 1.3) end up with activation of transcription factors that promote

transcription of key proteins of the cell cycle circuit known as D cyclins, which are part of a

family of four different types of proteins (D, E, A and B cyclins) present in the checkpoint

control circuit, whose function is to activate partner proteins known as cyclin-dependent

kinases (CDKs). Yet another set of proteins negatively regulate CDKs, as expected for a

cyclic process. Essentially, progression through the cell cycle and the correct sequence of

events are determined by changes in the levels of D, E, A and B cyclins during the different

phases of the cycle [2, 30].

The most critical decision during the cell cycle occurs at the G1 checkpoint, where the

cell cycle clock checks if all prerequisites are met before allowing the cell to replicate its

DNA [6, 31]. At the core of the G1 checkpoint control circuit is the pRb protein, encoded

in the Rb tumor suppressor gene [11]. Essentially, this protein represses DNA replication,

unless it is hyperphosphorylated.

While it is unphosphorylated or hypophosphorylated, the pRb protein binds to a tran-

scription factor of the E2F family, preventing it from promoting expression of genes involved

in DNA replication. The production of D-type cyclins in response to extracellular signals

(which become autocrine in tumor cells) activates their partner CDKs (either CDK4 or

CDK6) by forming D-CDK4/6 complexes, which in turn phosphorylate pRb proteins. This
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phosphorylation inactivates the repressor state of pRb, which releases the previously bound

E2F transcription factors, thus activating transcription of late G1 genes. This is the mech-

anism by which the G1 checkpoint gate is opened, allowing the cell to enter the S phase

[11]. Once the cell proceeds beyond the G1 checkpoint, it follows an automatic program

regulated by other cyclins (E, A and B) and CDKs (CDK2 and CDC2), which unlike the

D-cyclin program, does not depend on extracellular signals [2]. Among the genes whose

transcription is promoted by active E2Fs are the gene encoding cyclin E and also the E2F1

gene (which is one of the transcription factors of the E2F family itself). Cyclin E binds

to CDK2, forming an E-CDK2 complex that drives hyperphosphorylation of pRb, further

increasing the levels of cyclin E and activated E2F1 and creating a feed-forward loop that

ensures a rapid and irreversible transition into the S phase.

Mutations in the Rb gene are very common in cancer, and the role of inactivated pRb

proteins in the development and survival of tumors is quite obvious: a defective pRb protein

never binds to the transcription factor E2F regardless of its phosphorylation state, thus

removing the barrier that prevents the cell from proceeding to the S phase. Loss of function

of the pRb protein can also occur by the presence of viral oncoproteins that block it from

binding to E2F, by the action of oncogenes that lead to increased production of D cyclins,

or by oncogenes that deregulate pRb phosphorylation [2].

1.6 The p53 protein

A hallmark of tumor cells is their ability to evade both apoptosis (programmed cell death)

and permanent exit from the cell cycle, which occur in normal cells as they respond to

extreme internal or external stresses that jeopardize normal cellular function [3]. In order

to preserve the integrity of the tissues where they belong, the cells of complex organisms

were designed by evolution to halt their progression in the cell cycle to allow repair of

damaged DNA, to permanently stop proliferating or to undergo apoptosis when they face

physiologic stress [32]. Tumor survival depends on bypassing the mechanisms that control
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these processes, which depend on the orchestrated action of a complex regulatory network

within the cell. The p53 protein is the key gatekeeper at the center of this molecular network

and, not surprisingly, it is a major target of tumorigenesis [33].

As was the case of many important breakthroughs in the molecular biology of cancer,

p53 was originally discovered in connection with tumor viruses. The protein was first

detected in the 1970s using cell lines that had been transformed by the SV40 tumor virus

and subsequently injected into mice. The immune response against the transformed cells

produced antibodies that reacted with a viral protein (“large T”) capable of binding to

(and by doing so, inactivating) a cellular protein that came to be identified as the tumor

suppressor protein p53 [34, 35].

The p53 protein is a transcription factor that receives signals from a variety of sensors

and surveillance systems in the cell, which detect physiologic stresses such as DNA dam-

age (caused by radiation or chemicals), hypoxia, dysregulated growth signaling pathways,

blockage of DNA transcription or replication, etc. Such signals trigger the p53 alarm by

increasing the levels of the p53 protein, which then takes action by activating transcription

of a variety of genes involved in cell-cycle arrest, DNA repair, senescence or apoptosis [2].

Under healthy conditions, a normal cell keeps its levels of p53 very low, by requiring

a high turnover rate of the protein. In some sense, p53 regulation is done by having it

produced all the time and degraded quickly, like pressing both the accelerator and the

brake of a car. This allows rapid action when necessary. If the break is released, the car

immediately accelerates, and if the accelerator is released, the car immediately stops. In

the case of p53, when the surveillance systems of the cell detect signs of physiologic stress,

the levels of p53 rise rapidly to effect a response. This rapid increase in p53 levels is made

possible by regulatory proteins such as Mdm2 and ARF [36]. The Mdm2 protein, which

is actually a product of one of the genes activated by p53, works as a negative regulator

by binding to the p53 tetramer and ubiquitinating it, thus tagging it for degradation by

proteasomes. The ARF protein upregulates p53 by preventing Mdm2 from marking it for
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degradation. Critically high levels of E2Fs caused by deregulation of the G1 checkpoint

control activate ARF, leading to an increase in p53 levels, which triggers tumor-suppressive

response.

Cell-cycle arrest can be triggered by p53 through the activation of a number of proteins,

the most important of which is the CDK inhibitor p21Cip1. This protein plays an important

role in halting cell cycle progression by inhibiting CDK2 or other cyclins, thereby inhibiting

phosphorilation of pRb (and consequently the expression of genes regulated by E2F), firing

of replication origins and DNA-synthesis proteins [37]. At the same time, p21Cip1 protects

cells from apoptosis and halts DNA replication by binding to PCNA (proliferating cell

nuclear antigen), thus allowing DNA repair.

Apoptosis is triggered by p53 when upstream surveillance proteins detect extensive DNA

damage that cannot be repaired or substantially high mitogenic signaling within the cell.

There are two distinct mechanisms to induce apoptosis: the intrinsic (mitochondria depen-

dent) and the extrinsic (death receptor dependent) apoptotic programs, both of which even-

tually converge to the same downstream executioner caspases [38]. The intrinsic pathway

starts with p53 activating proteins such as Bax, which induce mitochondrial outer mem-

brane permeabilization (MOMP), releasing pro-apoptotic proteins such as Cytochrome c

from the mitochondrial intermembrane space into the cytosol. This initiates an apoptotic

caspase cascade, ending with the activation of executioner caspases, which cleave a range of

substrates, such as downstream caspases, nuclear proteins, plasma membrane proteins and

mitochondrial proteins, ultimately leading to cell death. Although p53 primarily triggers

apoptosis by the intrinsic program, it also regulates expression of certain death receptors

(such as Fas) that initiate the extrinsic program when their cognate ligands FasL bind to

them. These activated death receptors then bind to/activate the Fas-associated proteins

with death domain (FADD), forming the death-inducing signaling complex (DISC), which

in turn initiates a caspase cascade ending up at the same executioner caspases as those in

the intrinsic program.
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Because p53 is a highly connected node in a vast network of proteins, and because of the

critical role of this protein for such a variety of cellular responses against tumorigenesis, the

inactivation of p53 is often a priority in early evolving tumors, which take advantage of this

weakness to grow and survive. The loss of p53 function is advantageous at multiple levels,

allowing tumors to evade cell-cycle arrest and apoptosis in spite of dysregulated mitogenic

signaling, while also acquiring an increased tolerance to mutations, thereby activating new

oncogenes and inactivating new tumor suppressor genes throughout the process [2, 3, 33].

1.7 A few remarks on the influence of tumor cell cycling dynamics on

response to chemotherapy

The advent of the first chemotherapeutic drugs for leukemia and lymphoma in the 1940s

was an important milestone in the history of cancer treatment and research [39]. Since then,

a large number of cytotoxic drugs with anti-cancer properties have been discovered, and

targeted therapies developed for specific cancers, such as hormonal therapy with tamoxifen

for ER+ breast cancer. For cancers such as serous ovarian cancer and triple negative (ER-

/HER2-/PR-) breast cancer, where such adjuvant (post-surgery) targeted therapies are not

available, chemotherapy with DNA-damaging agents remains the sole option after surgery

and radiation [40]. By targeting rapidly cycling cells, which are often already at the limit of

their stability and unable to repair additional DNA damage, chemotherapy with cytotoxic

drugs systemically attacks growing tumors. Side effects on other tissues, especially on cells

with a high turnover rate, such as skin and the intestinal epithelium, can be moderate to

severe, depending on the duration and intensity of treatment.

A large number of mathematical models have been proposed to predict optimal regi-

mens of adjuvant chemotherapy to specify duration, dosage levels or dosing protocols, with

the goal of reducing tumor recurrence or limiting metastasis. These models may be clas-

sified by their mathematical approach, which can be either stochastic or deterministic and

linear or nonlinear, and to the nature of the biological assumptions underlying them (see
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[41] for a review). Examples of such models include optimal-control-theory models [42],

game-theoretical models [43, 44], as well as models of drug resistance and/or chemotherapy

scheduling, which can be either stochastic [45–49] or deterministic [50–53]. Many of these

models focus on optimization of chemotherapy dosing strategies, especially when tumors

are treated with a combination of drugs, and the multiple types of clones in the tumor are

resistant to different drugs in the combination.

In current clinical practice, chemotherapy is usually given at maximum tolerated dose

for the minimum possible duration, which is usually 3-6 months, with the assumption that

this strategy maximizes the benefit to the patients while decreasing the duration of possible

side effects [54]. This strategy is based on modeling tumor cells as continuously dividing

at some fixed deterministic rate [55]. Norton and Simon [56] proposed that tumor growth

follows a type of sigmoid curve known in the literature as the Gompertzian function, and

also proposed the tumor-regression hypothesis, that cell kill is proportional to the growth

rate of the untreated tumor [57, 58]. Since the Gompertzian growth rate decreases as the

tumor grows, they concluded that it becomes increasingly more difficult to kill the tumor

as its size increases. This model provides the rationale for administrating the “maximum

tolerated dose” and maximizing dose density, the goal being to efficiently kill the tumor

when it is small and growing rapidly. However, the effectiveness of this treatment paradigm

is unclear and not entirely consistent with some clinical and experimental data [59, 60] (see

also Ref. [58] for a detailed literature review).

It is known that the stage of a cancer, which is related to the tumor size and degree

of lymph node involvement, is an excellent predictor of prognosis, independently of cancer

type or therapy. The larger the tumor, the more difficult it is to effect a cure. Likewise,

tumor grade, which is a measure of tumor aggressiveness, is also a good predictor of outcome.

However, it has been suggested that the fractional impact of treatment on improved survival

is higher for patients with late-stage or high-grade tumors than for patients with early-stage

or low-grade tumors (see, for example, the studies [61] and [62]). This observation suggests
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that unlike Norton and Simon proposed in their deterministic Gompertzian growth model,

tumor cells may not all be in continuous growth, and that actively growing tumors tend to

be more responsive to cytotoxic drugs than those that are mostly in a dormant or resting

state [63].

In [64], a stochastic alternative to Norton and Simon’s deterministic Gompertzian model

is proposed for breast cancer, where tumors are not in continuous growth, but can be either

in a dormant state or in an active-growth state. It has been suggested that a major cause

of resistance to chemotherapy is the presence of large numbers of dormant tumor foci in G0

phase, where they can repair damage induced by chemotherapy, and can then transition

in a stochastic manner to a state of active growth [60, 64, 65]. In the presence of such

dormant tumor foci, it is clear that the effect of chemotherapy on recurrence rates does

not last for a long time after chemotherapy ends. Several clinical trials [66–68] have shown

that improved recurrence rates for patients receiving chemotherapy revert to rates for the

control group (who received no chemotherapy) in a relatively short time after termination of

treatment, suggesting the presence of residual dormant tumor foci that survived treatment

and regenerated the cancer. These data also suggest that short-duration chemotherapy

only targets the tumor foci that are actively cycling during chemotherapy. Tumor foci that

are mostly dormant during chemotherapy evade treatment and can cause recurrence when

they transition to a state of active growth. This suggests that chemotherapy may be more

effective if its duration is optimized according to the rate at which dormant tumor foci

transition to active growth.

These observations suggest the following two hypotheses: 1) For a given cancer type,

there is a characteristic time for dormant tumor foci to transition to active growth; 2) Dor-

mant tumor foci are often resistant to chemotherapeutic agents that induce DNA damage,

while active tumor foci are relatively more sensitive. Based on these hypotheses, we de-

velop a mathematical model and framework to study the impact of variation in dosage and
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duration of chemotherapy on recurrence rates, and the influence of transitions between dor-

mant and active-growth states on chemotherapy effectiveness (Chapters 2 and 3). We apply

our model to data from a phase 3 ovarian cancer clinical trial with the poly(ADP-ribose)

polymerase (PARP) inhibitor olaparib, and make predictions for long-term progression-free

survival of the patients in different scenarios (Chapters 4 and 5). If data is available, our

model can be adapted to optimize dosage and duration in tumors other than serous ovarian

cancer, in the hope that it may serve as a guide for the design of experiments and clinical

trials that may eventually lead to better, more optimized chemotherapy regimens.
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Chapter 2

A Quasi-Birth-and-Death Model for Tumor Recurrence

The tumor model described in this chapter was inspired by previous work on the effect of

quiescence (i.e., the presence of dormant tumor foci) on tumor growth, such as the work

of Komarova and Wodarz [46], which inspired the stochastic model described below, or to

earlier deterministic versions of their model, proposed in Refs. [50], [51], or [52]. However,

in contrast to these earlier studies, our focus is on predicting recurrence-free survival for a

given treatment regimen, especially the long-term recurrence-free fraction and the time to

recurrence. To this end, we propose special boundary conditions that will be described in

Sections 2.2 and 2.3, which to the best of my knowledge, are a novel contribution to tumor

modeling. Such boundary conditions are the key idea to make the connection between

the model and clinical data for disease recurrence of generic tumors. For simplicity and

as a first exercise, we will explore treatment regimens controlled by a single parameter

µA, the death rate of actively-dividing tumor foci. Later on, we will add new parameters

representing chemotherapy duration and dosing, which will be important in the application

of the model to clinical data (Chapters 4 and 5). Also, unlike previous work, we will

only model transitory chemoresistance resulting from dormancy, without discussing the

important but more difficult stochastic issue of resistance from acquired mutations. The

work described in this chapter and in Chapter 3 is published in [1]: Leonardo M. Santana,

Shridar Ganesan, and Gyan Bhanot, A quasi birth-and-death model for tumor recurrence,

J. Theor. Biol., 480: 175–191, Copyright Elsevier (2019).
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2.1 Overview of the discrete-state model

After surgery and radiation therapy, we assume that cancer patients retain a number of

residual, undetectable tumor foci that may eventually grow and create a detectable tumor

(recurrence). The foci can transition from a dormant (non-dividing, chemoresistant) state

to an active (dividing, chemosensitive) state and vice versa with rates η and ξ respectively.

Chemotherapy affects only active foci, which can either double or die, with rates λ and µA

respectively. The dynamics of this process is modeled as a Quasi Birth-and-Death (QBD)

process (for an introduction to this topic, see [69, 70]) that describes the stochastic time

evolution of the number of active and dormant tumor foci in a patient, resulting in either

tumor recurrence (when the number of foci is large enough to be detected) or remission

(when there are no foci left).

To describe our model, it is simplest to use standard notations borrowed from Quantum

Mechanics. Denoting by |m,n〉 the state with m dormant (D) tumor foci and n active (A)

foci, the goal is to predict the time evolution of the joint probability distribution pmn(t),

given the initial condition pmn(0). Without loss of generality, we can choose pmn(0) =

δm,m0δn,n0 , where m0 and n0 are respectively initial counts of dormant and active foci.

This is so because the latter initial condition defines a Green’s function, from which the

solution for any arbitrary initial condition can be constructed as a convolution of transition

probabilities, as a result of linearity.

Our QBD model for tumor recurrence is a Markov process on the two-dimensional lattice

of all possible Fock states |m,n〉 with the following transition rules:

• At any given time, an active (A) tumor focus may either double or die at rates λ and

µA, respectively. During chemotherapy (between time t = 0 and time t = tchemo > 0),

the death rate is µA = µchemo and after treatment (beyond time t = tchemo), it

decreases to a lower baseline rate µA = µ0.

• By definition, a dormant (D) tumor focus cannot double, but it could in principle
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(a) Possible transitions on the lattice of states
(m,n), where m is the number of dormant (D)
tumor foci and n is the number of active (A) foci.

(b) Boundaries of the state space D ⊗ A.
The boundary conditions are absorbing at
the cure state (0, 0) and also at the recur-
rence line m+ n = N .

Figure 2.1: Structure of the Fock-like state space of the QBD model for tumor recurrence.
Figures reproduced from [1].

die at some rate µD. For simplicity, we will eventually set µD = 0. This is because

dormant foci can repair chemotherapy damage as we argued above, i.e., they are

chemoresistant.

• An active (A) tumor focus may transition to dormancy (D) at rate ξ and a dormant

tumor focus may become active at rate η.

• Let T̄D and T̄A be the respective times that a tumor focus spends, on average, in

the dormant and active states within its life cycle (defined in our context as the time

between the birth of the tumor focus and its doubling). It then follows that the

D → A and A → D hopping rates are given by η = 1/T̄D and ξ = 1/T̄A, respectively,

so the doubling rate is given by λ = 1/(T̄A + T̄D). Hence, the rates η, ξ and λ are

related by the equation

1

λ
=

1

η
+

1

ξ
. (2.1)

This constraint reduces the number of parameters in the model by one and allows us
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to parametrize the rates η, ξ by their ratio ν ≡ ξ/η as follows:

ξ = λ(1 + ν) , η = λ(1 + 1/ν) (ν > 0). (2.2)

• All the tumor foci within the dormant (D) or the active (A) sub-population are equally

likely to undergo a transition independently. This means that each transition proba-

bility on the two-dimensional lattice of states is proportional to either the population

of dormant foci (m) or the population of active foci (n). The transition probabilities

of any transitions to states beyond nearest-neighbor states are assumed to be second

order in infinitesimal time, so the model is “skip free”. The transition probabilities

to neighboring states are then given by

Pr{m− 1, n; t+ ∆t|m,n; t} = µDm∆t+O(∆t2)

Pr{m,n− 1; t+ ∆t|m,n; t} = µAn∆t+O(∆t2)

Pr{m,n+ 1; t+ ∆t|m,n; t} = λn∆t+O(∆t2) (2.3)

Pr{m− 1, n+ 1; t+ ∆t|m,n; t} = ηm∆t+O(∆t2)

Pr{m+ 1, n− 1; t+ ∆t|m,n; t} = ξn∆t+O(∆t2)

For transitions to states beyond nearest-neighbors, i.e., for |m−m′| > 1 or |n−n′| > 1,

we assume

Pr{m′, n′; t+ ∆t|m,n; t} = O(∆t2). (2.4)

A diagram of the state space showing the transitions above is given in Fig. 2.1.

• If the total number of tumor foci m + n reaches a sufficiently large number N , the

tumor becomes detectable and no further transitions are allowed, i.e., the disease

recurrence is defined by means of absorbing boundary conditions at the recurrence

boundary m+n = N . The absorbing boundary condition at the extinction state (0, 0)

(remission or cure) is automatically satisfied, since the transition rates are proportional

to either m or n.
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2.2 Master equation for discrete-state transition probabilities

From the transition rules described in Section 2.1, it follows that the time evolution of the

state probabilities pmn(t) is given by the master equation

d |p(t)〉
dt

= Q̂ |p(t)〉 , (2.5)

where |p(t)〉 is the probability vector, whose components are the state probabilities pmn(t),

i.e., |p(t)〉 =
∑
mn

pmn(t) |m,n〉. The infinitesimal transition operator Q̂ = Q̂bulk + Q̂edge

consists of a “bulk” part Q̂bulk and an edge correction Q̂edge that imposes the absorbing

boundary conditions at the recurrence line m+ n = N . In second-quantized language, the

bulk part is given by

Q̂bulk = (λ â+ + µA â− + ξ d̂+ â− − λ− µA − ξ) n̂+

+ (µD d̂− + η d̂− â+ − µD − η) m̂ (2.6)

and the edge correction is given by

Q̂edge =
∑N

m=0 [ −µDm |m− 1, N −m〉〈m,N −m|

−µA(N −m) |m,N −m− 1〉〈m,N −m|

−ξ(N −m+ 1) |m,N −m〉〈m− 1, N −m+ 1|

+(λ+ µA + ξ)(N −m) |m,N −m〉〈m,N −m|

−η (m+ 1) |m,N −m〉〈m+ 1, N −m− 1|

+ (µD + η)m |m,N −m〉〈m,N −m| ] .

(2.7)

In Eq. (2.7), d̂+ and d̂− are respectively creation and annihilation operators for dormant

tumor foci and â+ and â− are those for the active foci. These operators are defined as:

d̂± |m,n〉 = |m± 1, n〉 ,

â± |m,n〉 = |m,n± 1〉 . (2.8)
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The number operators m̂ and n̂ are defined in the usual fashion:

m̂ |m,n〉 = m |m,n〉 ,

n̂ |m,n〉 = n |m,n〉 . (2.9)

The structure of the matrix Q̂ is block-tridiagonal in the linear space D⊗A, with block

indices (m,m′) that run across the Fock states of D, and with indices (n, n′) within each

nonzero block that run across the Fock states of A. The N+1 blocks along the diagonal are

themselves tridiagonal and decrease in size as the D-space index n increases. The structure

of Q̂, as described in Appendix A, is sufficiently complicated that explicit analytical solu-

tions are not straightforward, although analytical formulas are available for the inversion of

general tridiagonal and even certain types of block-tridiagonal matrices [71, 72]. Analytical

and even stable numerical methods for general level-dependent QBD processes, i.e., QBD

models with a block-tridiagonal matrix structure where the blocks are not constant along

the diagonals [73], are scarce in the literature. Although a matrix-analytic method has been

developed for these models in [74], it still relies on the ability to solve non-trivial matrix

equations. Numerical methods have been developed for finding stationary distributions in

level-dependent QBD models [75], but generally applicable numerical methods for finding

transient solutions (other than the expensive matrix exponentiation) have yet to be devel-

oped [76]. For a special class of level-dependent QBD models with applications in biology

and epidemiology, a method based on a continuous-fraction representation of the Laplace-

transformed transition probabilities has recently been developed [76]. However, it is not

applicable to the model defined by Eqs. (2.5), (2.6) and (2.7), where all the transition and

birth/death rates can be nonzero.

For the moment, we will disregard constraints on the parameters (Eq. (2.1)) and consider

the special case η = ξ = µD = 0. In this limit, the system reduces to a continuous-time

birth-and-death process with transition rates λn and µAn (otherwise known in queuing

theory as the M/M/1/N queue [69]) and with absorbing boundary states. The version
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of this model when N → ∞ (i.e., semi-infinite Markov chain) and reflecting boundary

conditions has been studied extensively and analytical solutions have been obtained for

its transient analysis using several techniques [77–81]. A version of the M/M/1/N queuing

model that is more relevant to our analysis is the one with finite N and absorbing boundary

states, which is solved analytically in [82], where the transient solution is obtained and a

simple expression is given for the large-time probability πrec of absorption at the state n = N

(corresponding to recurrence in our model), under the initial condition pn(0) = δn,n0 :

πrec =
1− (µA/λ)n0

1− (µA/λ)N
(2.10)

The probability of absorption at the zero-particle state n = 0 (corresponding to remission

or cure) is then πcure = 1− πrec. In the limit N →∞, we note that this model has a phase

transition at µA/λ = 1:

πrec =

1− (µA/λ)n0 if µA/λ ≤ 1

0 otherwise

(2.11)

More details on the solution of the M/M/1/N queuing model with absorbing boundary

states can be found in Appendix B. In Section 3.1, it will be shown that a similar stationary

solution also occurs in general in the QBD model defined by Eqs. (2.5), (2.6) and (2.7). We

will show this both analytically in the continuum limit and in simulations of the discrete-

state stochastic process.

2.3 Continuum limit of the discrete-state QBD model

A simple approach that is suitable for our tumor recurrence model is to take the continuum

limit of the master equation (2.5), i.e., take the large N limit. Since the reciprocal of

the detectable tumor size (1/N) is a natural small parameter in the model, the master

equation can be expanded in powers of 1/N and transformed into a continuum equation.

The resulting partial differential equation may then be solved using well-developed methods

[83].
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There are two alternative ways to represent the time evolution of the stochastic process at

hand [83–87], namely the forward master equation (2.5) and the backward master equation

d

dt
〈P (m,n; t)| = 〈P (m,n; t)| Q̂†, (2.12)

where Q̂† is the adjoint of the operator Q̂ defined in Eqs. (2.6), (2.7) and the state vector

〈P (m,n; t)| is defined as the probability to end up at a particular state 〈m,n| at time t,

starting from any state 〈m0, n0| at time t = 0, i.e.,

〈P (m,n; t)| ≡
∑
m0,n0

〈m0, n0|Pr{m,n; t|m0, n0; 0}. (2.13)

When either Eq. (2.5) or Eq. (2.12) is used in the large-N expansion, we get respectively

the forward or the backward Kolmogorov equation in the continuum limit 1/N � 1 by

truncating the expansion after the second term, as discussed further below.

2.3.1 Forward Kolmogorov approach

We can define a continuum limit of the state space Ω = {(m,n)|m ≥ 0;n ≥ 0;m+ n ≤ N}

by defining continuous variables x = m/N and y = n/N , which represent the dormant

and active foci sub-populations as a fraction of the detectable tumor size N , respectively.

We define a “tumor focus” as the resolution scale of our model: for example, we can

define a focus as 1/1000 of a detectable tumor, in which case N = 1000 is a natural

definition of recurrence (detectable tumor size). When N � 1, the lattice of discrete

states (m,n) becomes a continuum as the spacings δx = δy = 1/N decrease to zero.

The discrete probabilities pmn(t) can then be replaced by a smooth probability density

ρ(~x, t) = N2pmn(t), where ~x = (x, y) is an arbitrary point in the bounded region Ω =

{(x, y)|x ≥ 0; y ≥ 0;x+ y ≤ 1}.

We proceed to take the continuum limit of the master equation by first replacing the

raising/lowering operators (see Eqs. (2.5), (2.6) and (2.8)) by the corresponding translation
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operators in the continuum, i.e.,

d̂± → e∓δx ∂/∂x ,

â± → e∓δy ∂/∂y , (2.14)

where δx = δy = 1/N .

To see that the operators (2.14) are indeed the correct continuum versions of d̂± and

â±, let us apply (for example) the operator â± to an arbitrary state vector |ρ〉:

â± |ρ〉 =

ˆ
ρ(~x) â± |~x〉 d2x

=

ˆ
ρ(~x) |x, y ± δy〉 d2x

=

ˆ
ρ(x′, y′ ∓ δy)

∣∣~x ′〉 d2x′

=

ˆ
e∓δy ∂/∂y

′
ρ(~x ′)

∣∣~x ′〉 d2x′ (2.15)

The reason for the opposite signs between â± and the exponent of e∓δy ∂/∂y is that the

creation and annihilation operators are passive transformations, whereas the continuum

translation operators are defined as active transformations. A Kramers-Moyal expansion

of the master equation can then be obtained by expanding the operator (2.6) in powers of

δx = δy = 1/N . Retaining only the first and the second terms in this large-size expansion,

we obtain the two-dimensional Fokker-Planck equation

∂ρ(~x, t)

∂t
= −~∇ · ~J(~x, t), (2.16)

which is a local continuity equation with a probability current density given by

~J(~x, t) = [−(ηx− ξy)(êx − êy)− µDxêx + (λ− µA)yêy] ρ(~x, t)−

− 1

2N

{
(êx − êy)

(
∂

∂x
− ∂

∂y

)
[(ηx+ ξy)ρ(~x, t)] +

+ êx
∂

∂x
[µDxρ(~x, t)] + êy

∂

∂y
[(λ+ µA)yρ(~x, t)]

}
, (2.17)

where each drift term is a product of the respective transition rate by the probability density,

along the unit vector in the direction of the transition, and the terms proportional to 1/N
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represent diffusion, with a diffusion tensor that involves off-diagonal terms (i.e., the terms

that involve mixed second derivatives ∂2ρ/∂x∂y are nonzero) and is dependent on the state

variables (x, y).

Since Eq. (2.16) gives the probability density ρ(~x, t) at any state ~x = (x, y) at time t ≥ 0,

given the initial condition ρ(~x, 0), it corresponds to the well-known forward Kolmogorov

equation [83–87]. Here we define the initial condition to be sharply peaked at a state

~x0 = (x0, y0), i.e., ρ(~x, 0) = δ(~x − ~x0). Note that the normalization of the probability

density ρ(~x, t) is not preserved by the time evolution, because the probability flux exits

through the recurrence boundary x+ y = 1, and also accumulates at the cure state (0, 0).

2.3.2 Boundary conditions for the forward equation

The boundary conditions for Eq. (2.16) are the following. At the recurrence line x+ y = 1,

the boundary condition is absorbing, i.e., ρ(~x, t) = 0. In the vicinity of the cure state (0, 0)

we define ρ(~x, t) = 0 on the line x + y = ε, where ε � 1/N is a small parameter. In the

weak limit (in the distributional sense) ε→ 0, the small region x+ y ≤ ε, representing the

cure state, becomes a single absorbing point where the probability density collapses to a

Dirac delta function weighted by the probability of cure before time t, which will henceforth

be denoted by pcure(t). In other words, we can separate the probability density ρ(~x, t) in a

regular part ρreg(~x, t) and a Dirac-delta component:

ρ(~x, t) = ρreg(~x, t) + pcure(t)δ(~x) (2.18)

In Section 2.3.3, an equation for the function pcure(t) is derived (see Eq. (2.37)) using

the backward Kolmogorov approach. In Section 3.1, the large-time limit of pcure(t) is

determined in closed form in terms of the initial condition. The single-absorbing-point

boundary condition above can be defined more rigorously by setting ρ(~x, t) = 0 on the

line x + y = ε, where ε � 1/N is sufficiently small (i.e., this line can be thought of as

an absorbing boundary through which the probability flux enters a small region near the
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origin), and by defining

ρ(~x, t) =
6

ε2

(
1− x+ y

ε

)
pcure(t) (2.19)

for any (x, y) within the small region {(x, y)|x ≥ 0; y ≥ 0;x + y ≤ ε}. When the prob-

ability density (2.19) is integrated over this small region, we get exactly pcure(t), i.e., the

small region near the origin approximately represents the cure state. In the weak limit (in

distributional sense) ε → 0, the probability density at the origin becomes a Dirac delta

distribution.

At the boundaries x = 0, ε ≤ y ≤ 1 and y = 0, ε ≤ x ≤ 1, the boundary conditions

are both reflecting, i.e., the normal component of the probability current density must

vanish. In other words, ~Jreg(~x, t) · ~n = 0, where ~n is the outward normal and ~Jreg(~x, t) is

the regular part of the current density defined by Eq. (2.17). This means there cannot be

any flux crossing the boundaries x = 0 or y = 0, except at the cure state (x, y) = (0, 0), at

which the regular part of ρ(~x, t) vanishes, whereas the delta peak works as a single absorbing

point. The absorbing boundary conditions should be interpreted as follows: while the single

absorbing point at the origin pins any probability that it absorbs to the cure state (thus

the delta peak), the probability flux through the recurrence boundary x + y = 1 exits to

the outer region {(x, y)|x ≥ 0; y ≥ 0;x+ y ≥ 1} and never returns.

The boundary condition near the origin, as properly defined above, ensures that the

Fokker-Planck equation (2.16) gives the correct probability conservation equation in its

integral form. Indeed, using the boundary-condition scheme described above and integrating

Eq. (2.16) over the area Ωε = {(x, y)|x ≥ 0; y ≥ 0; ε ≤ x+ y ≤ 1}, we get

ṗrisk(t) ≡
d

dt

ˆ
Ωε

ρ(~x, t)d2x = −
ˆ

Ωε

~∇ · ~J(~x, t)d2x, (2.20)

where prisk(t) is the probability to be at risk until time t (i.e., to have neither relapsed

nor been cured before time t) and ṗrisk(t) ≡ d prisk(t)/dt. Defining prec(t) and pcure(t),

respectively, as the probabilities of recurrence and cure at any time ≤ t, we can write

prisk(t) ≡ 1− prec(t)− pcure(t). (2.21)
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Using the divergence theorem and the reflecting boundary condition ~J(~x, t) · ~n = 0 at the

boundaries x = 0, ε ≤ y ≤ 1 and y = 0, ε ≤ x ≤ 1, we get

d

dt

ˆ
Ωε

ρ(~x, t)d2x = −
ˆ

x+y=1
(1,0)→(0,1)

~J(~x, t) · ~n dl −
ˆ

x+y=ε
(0,ε)→(ε,0)

~J(~x, t) · ~n dl, (2.22)

where ~n is the outward normal. This is equivalent to the statement

ṗrisk(t) = − ṗrec(t)− ṗcure(t), (2.23)

which is consistent with Eq. (2.21) above, as it should be.

Equation (2.16) is separable with respect to time, i.e., it can be reduced to an eigenvalue

problem for the forward Fokker-Planck operator Lf defined by recasting Eq. (2.16) in the

form ρ̇(~x, t) = Lfρ(~x, t), subject to the boundary conditions described above. However,

the equation is not separable in the coordinates (x, y) and also depends on these variables

explicitly through coefficients inside the differential operators. Finding a basis of two-

variable eigenfunctions of Lf satisfying the mixed boundary conditions described above is

a difficult problem, but unnecessary for our main goal, which is to derive an equation for

the recurrence-free survival function S(t), defined as the probability of no-recurrence before

time t, i.e.,

S(t) ≡
ˆ

Ωε

ρ(~x, t)d2x+ pcure(t) = 1− prec(t), (2.24)

where the domain of integration is the region Ωε = {(x, y)|x ≥ 0; y ≥ 0; ε ≤ x+ y ≤ 1} and

prec(t) and pcure(t) are respectively the time-dependent probabilities of recurrence and cure

before time t.

The function S(t) defined in Eq. (2.24) establishes the connection between data (recurrence-

free survival curves) and the model. The backward Kolmogorov approach is often more

appropriate to first-passage time problems [84–86, 88] and will be used in combination with

Eq. (2.17) to derive an equation for S(t). The current density derived from the forward

equation (Eq. (2.17)) will be used to derive formulas for the probability flux into the cure

state or through the recurrence boundary. Note that unlike the forward equation, the
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backward equation cannot be expressed as a local continuity equation for the conservation

of probability. Furthermore, the boundary conditions for the backward equation will be

derived from those of the forward equation in Section 2.3.3.

2.3.3 Backward Kolmogorov approach

Starting with Eq. (2.12) and using the adjoint of the master equation operator (2.6), we can

derive the backward Kolmogorov equation by means of a Kramers-Moyal expansion similar

to that leading to the forward equation (2.16). It should be noted that the differential

operators in the backward equation act on functions of the initial-state variables (x0, y0):

∂ρ(~x, ~x0, t)

∂t
= [−(ηx0 − ξy0)(êx − êy)− µDx0êx +

+(λ− µA)y0êy] · ~∇~x0ρ(~x, ~x0, t)+

+
2∑
i=1

2∑
j=1

Dij(~x0)
∂2ρ(~x, ~x0, t)

∂x0i∂x0j

≡ Lb ρ(~x, ~x0, t), (2.25)

where Lb is the backward operator, (x01, x02) ≡ (x0, y0), and Dij(~x0) are the components

of the diffusion tensor

D(~x0) =

D11(~x0) D12(~x0)

D21(~x0) D22(~x0)



=
1

2N

ηx0 + ξy0 + µDx0 −(ηx0 + ξy0)

−(ηx0 + ξy0) ηx0 + ξy0 + (λ+ µA)y0

 . (2.26)

The backward equation (2.25) is somewhat different from Eq. (2.16) in that the non-

constant coefficients appear outside the differential operators. It is subject to the final

condition that some state ~x will be reached at time t, starting from anywhere (~x0) in the

state space. This explains why the backward equation is often more useful for first-passage

time problems than its forward counterpart.
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2.3.4 Boundary conditions for the main backward equation

The boundary conditions for the backward equation (2.25) can be derived from those of the

forward equation (2.16) as follows (see e.g. [87]). Let f and g be arbitrary square-integrable

functions defined on the domain Ωε = {(x, y)|x ≥ 0; y ≥ 0; ε ≤ x + y ≤ 1}, satisfying the

forward and the backward equations/boundary conditions, respectively. Let us consider the

L2 inner product

〈Lff, g〉 ≡
ˆ

Ωε

g Lff d2x = −
ˆ

Ωε

g ~∇ · ~Jf d2x, (2.27)

where ~Jf is the current density as defined in Eq. (2.17) for the density function f . Inte-

grating the right-hand side of Eq. (2.27) by parts, it can be shown that

〈Lff, g〉 = 〈f,Lbg〉 −
‰
∂Ωε

[
g ~Jf + f(D~∇g)

]
· ~n dl, (2.28)

where D(~x) is the diffusion tensor defined in Eq. (2.26).

Since the backward operator is the adjoint of the forward operator, i.e., Lb = L†f , we must

have 〈Lff, g〉 = 〈f,Lbg〉 for any square-integrable functions f, g defined on the domain Ωε

that satisfy the forward and backward equation/boundary conditions, respectively. There-

fore, it follows that the boundary term on the right-hand side of Eq. (2.28) must vanish

for any such f, g. This means that given boundary conditions on any function f satisfying

the forward equation, the boundary conditions for any function g satisfying the backward

equation have to be chosen in such a way that the integrand on the second term of Eq.

(2.28) vanishes. It then follows that g = 0 for absorbing boundaries and (D~∇g) · ~n = 0 for

reflecting boundaries. Hence, on both absorbing boundaries x0 + y0 = ε and x0 + y0 = 1,

the boundary conditions are Dirichlet homogeneous, i.e., ρ(~x, ~x0, t) = 0. Using Eqs. (2.25)

and (2.26), we can also show that the boundary conditions at the reflecting boundaries are

∂ρ(~x,~x0,t)
∂x0

∣∣∣
x0=0

= ∂ρ(~x,~x0,t)
∂y0

∣∣∣
x0=0

(2.29)

at the boundary x0 = 0, ε ≤ y0 ≤ 1 and

∂ρ(~x,~x0,t)
∂x0

∣∣∣
y0=0

= ∂ρ(~x,~x0,t)
∂y0

∣∣∣
y0=0

(2.30)
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at the boundary y0 = 0, ε ≤ x0 ≤ 1.

2.3.5 Probability flux through the absorbing boundaries

The probability flux through the recurrence boundary can be obtained by integrating the

normal component of the current density (2.17) along the line x+ y = 1,

ṗrec(~x0, t) = −Ṡ(~x0, t) =

ˆ

x+y=1
(1,0)→(0,1)

~J(~x, ~x0, t) · ~n dl, (2.31)

where S(~x0, t) is the recurrence-free survival function (see Eqs. (2.24) and (2.22)) and

ṗrec(~x0, t) ≡ ∂
∂tprec(~x0, t). For µD = 0, using the boundary condition that the probability

density has to vanish at the recurrence line x+ y = 1, we get

ṗrec(~x0, t) = − 1

2N
(λ+ µA)

ˆ 1

0
y
∂ρ(x, y, ~x0, t)

∂y

∣∣∣∣
x=1−y

dy. (2.32)

Similarly, using the scheme described in Section 2.3.2 for the boundary condition near

the origin (see discussion below Eq. (2.18) and also Eq. (2.22)), for µD = 0 we find that

the probability flux into the cure state (0, 0) is given by

ṗcure(~x0, t) = − 1

2N
(λ+ µA) lim

ε→0+

ˆ ε

0
y
∂ρ(x, y, ~x0, t)

∂y

∣∣∣∣
x=ε−y

dy. (2.33)

2.3.6 Equations for time-dependent probabilities of cure and recurrence

Partial differential equations for prec(t) and pcure(t) (respectively defined above as the time-

dependent probabilities of recurrence and cure at any time ≤ t) can be derived by first doing

the differentiation and integration operations on the right-hand sides of Eqs. (2.32) and

(2.33) on both sides of Eq. (2.25). These operations commute with the backward operator

Lb defined in Eq. (2.25), because the latter only acts on the initial-condition variables

(x0, y0). By doing so, we get

p̈rec(~x0, t) = Lb ṗrec(~x0, t),

p̈cure(~x0, t) = Lb ṗcure(~x0, t), (2.34)
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where Lb is the backward operator defined in Eq. (2.25) and we have used the notation

prec(~x0, t), pcure(~x0, t) to recall the dependence on the initial condition ~x0 = (x0, y0). Inte-

grating from time t = 0 to an arbitrary time t, we get

ṗrec(~x0, t)− ṗrec(~x0, 0) = Lb prec(~x0, t),

ṗcure(~x0, t)− ṗcure(~x0, 0) = Lb pcure(~x0, t), (2.35)

where we have used the initial conditions prec(~x0, 0) = pcure(~x0, 0) = 0. Assuming a Dirac-

delta peak for the initial state-space probability density, i.e., ρ(~x, ~x0, 0) = δ2(~x − ~x0), it

follows from Eqs. (2.32) and (2.33) that the initial flux into both absorbing boundaries van-

ishes, i.e., ṗrec(~x0, 0) = ṗcure(~x0, 0) = 0. Therefore, it follows that prec(~x0, t) and pcure(~x0, t)

satisfy the backward equations

ṗrec(~x0, t) = Lb prec(~x0, t), (2.36)

ṗcure(~x0, t) = Lb pcure(~x0, t). (2.37)

Since the recurrence-free survival function is defined as S(~x0, t) = 1−prec(~x0, t), it must

satisfy the PDE

Ṡ(~x0, t) = Lb S(~x0, t). (2.38)

For µD = 0, we can simplify the backward equation (2.25) by transforming to the new

variables z0 ≡ x0, w0 ≡ x0 + y0,

∂ρ(~z, ~z0, t)

∂t
= Lb ρ(~z, ~z0, t), (2.39)

where ~z ≡ (z, w) and the transformed backward operator is given by

Lb =− [ηz0 − ξ(w0 − z0)]
∂

∂z0
+ (λ− µA)(w0 − z0)

∂

∂w0
+

+
1

2N
[ηz0 + ξ(w0 − z0)]

∂2

∂z2
0

+
1

2N
(λ+ µA)(w0 − z0)

∂2

∂w2
0

(2.40)

In the new variables (z0, w0), the boundary conditions for Eqs. (2.36), (2.37), (2.38) and

(2.39) are summarized in Table 2.1. The Neumann boundary conditions for Eq. (2.39) at
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Table 2.1: Boundary conditions for the PDEs satisfied by a few relevant functions of the
initial-state variables ~z0 = (z0, w0), where z0 ≡ x0 and w0 ≡ x0 +y0. Table reproduced from
[1].

Function Equation
Boundary

w0 = ε w0 = 1 z0 = 0 z0 = w0

ρ(~z, ~z0, t) ρ̇ = Lb ρ ρ = 0 ρ = 0 ∂ρ
∂z0

= 0 ∂ρ
∂z0

= 0

prec(~z0, t) ṗrec = Lb prec prec = 0 prec = 1 ∂prec
∂z0

= 0 ∂prec
∂z0

= 0

pcure(~z0, t) ṗcure = Lb pcure pcure = 1 pcure = 0 ∂pcure
∂z0

= 0 ∂pcure
∂z0

= 0

S(~z0, t) Ṡ = Lb S S = 1 S = 0 ∂S
∂z0

= 0 ∂S
∂z0

= 0

T
(1)
rec(~z0) Lb

[
prec(∞)T

(1)
rec

]
= −prec(∞) undef.* T

(1)
rec = 0 ∂T

(1)
rec

∂z0
= 0 ∂T

(1)
rec

∂z0
= 0

* The mean recurrence time diverges at the cure-state boundary w0 = ε.

the boundaries z0 = 0 and z0 = w0, given in Table 2.1, follow immediately from Eqs. (2.29)

and (2.30), and those for Eqs. (2.36), (2.37) and (2.38) follow from the equations for the

probability flux through the absorbing boundaries x+ y = 1 and x+ y = ε, given in 2.3.5.

The PDEs (2.36), (2.37) and (2.38), subject to the boundary conditions given in Table

2.1, are all separable in time, but not in the initial-state variables (z0, w0). However, they

can be solved analytically in the large-time limit t → ∞, as will be shown in Section 3.1

below.

2.3.7 Recurrence time probability distribution and moments

A key random variable in our model is the recurrence time henceforth denoted by Trec,

corresponding to the first passage time through the recurrence boundary. The normalized

probability that Trec lies between t and t+ dt can be obtained from a simple application of

Bayes’ theorem [86]:

Pr{t < Trec < t+ dt | recurrence} =
ṗrec(t)dt

prec(∞)
(2.41)

In other words, the probability density function (PDF) for the recurrence time Trec

is ṗrec(t)/prec(∞) = −Ṡ(t)/prec(∞), where the probability prec(∞) =
´∞

0 ṗrec(t)dt that

recurrence takes place at any time t < ∞ is given in closed analytic form in Section 3.1
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below (see Eq. (3.3)). The ratio prec(t)/prec(∞) then gives the cumulative distribution

function (CDF) of Trec.

Let

T (n)
rec ≡

ˆ ∞
0

tn
ṗrec(t)

prec(∞)
dt (2.42)

denote the n-th moment of the recurrence time Trec (n = 0, 1, 2, . . . ). From Eqs. (2.36) and

(2.42), we get the hierarchy of equations below [84, 87], where the n-th moment of Trec is

related to its (n− 1)-th moment:

Lb
[
prec(∞)T (n)

rec (~z0)
]

= −n prec(∞)T (n−1)
rec (~z0) (2.43)

Here we have used the notation T
(n)
rec (~z0) to recall the dependence on the initial condition

~z0. Since the function prec(∞) also depends on the initial condition through the variable

w0 (see Eq. (3.3) below), it cannot be taken outside the backward operator Lb, because the

latter acts on the initial condition variables (z0, w0).

The boundary condition for Eq. (2.43) at the absorbing boundary w0 = 1 is T
(n)
rec (~z0)] =

0. From Eq. (2.42) and Table 2.1, it also follows that Neumann boundary conditions

∂
∂z0

[prec(∞)T
(n)
rec (~z0)] = 0 must be imposed at both reflecting boundaries z0 = 0 and z0 = w0.

Letting n = 1 in Eq. (2.43), we get an equation for the Mean Recurrence Time (MRT),

denoted here by T
(1)
rec :

Lb
[
prec(∞)T (1)

rec(~z0)
]

= −prec(∞) (2.44)

This is a key equation in our analysis, which will be used to find an approximate analytical

formula for the MRT.
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Chapter 3

Analytical solutions and simulations

In this chapter, we discuss our main results, namely the stationary solution of Eq. (2.36) at

large times in closed analytic form, as well as the “outer solution” of the mean recurrence

time (MRT) equation (2.44) at leading (zeroth) order in 1/N , which is approximately valid

everywhere except inside thin boundary layers that stretch along the reflecting barriers

z0 = 0 and z0 = w0. For several choices of the parameters and initial conditions, these

solutions are compared against simulations. We then describe a simple procedure to fit

the model to recurrence-free survival data, using serous ovarian cancer data downloaded

from the public database The Cancer Genome Atlas [89] as an example. Finally, using

simulations, we show how the mean recurrence time (MRT) or the asymptotic (large-time)

probability of no recurrence can be increased by extending chemotherapy in time or by

increasing the tumor death-rate parameter during chemotherapy.

3.1 Stationary solution at large times

The stationary solution of Eq. (2.36), which satisfies ṗrec(~z0, t) = 0, gives the large-time

probability prec(z0, w0,∞) of absorption at the recurrence boundary w = 1, given the

initial state (z0, w0). In the large-time limit t → ∞, the probability of cure is given by

pcure(~z0,∞) = 1− prec(~z0,∞): recurrence or cure are the only possible fates at large times.

Therefore, prec(z0, w0,∞) satisfies the homogeneous backward equation

Lb prec(z0, w0,∞) = 0, (3.1)
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Figure 3.1: Large-time probability of recurrence vs. µA/λ for µD = 0, obtained analytically
using the backward Kolmogorov approach (see Eq. (3.3)). Panel 3.1a shows the effect of
changing the total initial number of tumor foci (N0), whereas panel 3.1b shows the effect
of a finite detectable-tumor size N on the phase transition. Figures reproduced from [1].

where the backward operator in the variables (z0, w0) is given by Eq. (2.40). The boundary

conditions are given in Table 2.1.

An ansatz solution to Eq. (3.1) would be a recurrence probability that only depends

on the total initial number of tumor foci w0 and not specifically on what fraction of this

initial number are dormant foci (z0), i.e., ∂
∂z0

prec(z0, w0,∞) = 0. This type of solution

automatically satisfies the Neumann boundary conditions at the reflecting boundaries z0 = 0

and z0 = w0 (see Table 2.1). Using the ansatz above and Eq. (2.40), the homogeneous PDE

(3.1) becomes the following ODE in the variable w0:

1

2N
(λ+ µA)

d2prec(∞)

dw2
0

+ (λ− µA)
dprec(∞)

dw0
= 0, (3.2)

where prec(∞) ≡ prec(z0, w0,∞) only depends on w0. This equation can be easily solved

for the Dirichlet boundary conditions given in Table 2.1. The solution is

prec(∞) =
1− e−2RN0

1− e−2RN
, (3.3)
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where N0 = w0N is the initial total number of tumor foci and

R ≡ 1− µA/λ
1 + µA/λ

. (3.4)

In Eq. (3.3), the limit ε → 0 has been taken. In the large-time limit t → ∞, the

probability of cure is given by

pcure(∞) = 1− prec(∞). (3.5)

In Fig. 3.1, the function (3.3) is plotted for different values of a detectable tumor size

N for a fixed initial number of foci N0 and also for different initial conditions N0 at a fixed

N .

In the limit N →∞, this solution displays a phase transition at µA/λ = 1:

prec(∞) =

1− e−2RN0 if µA/λ ≤ 1

0 otherwise

(3.6)

Thus, in the limit N →∞, the large-time probability of cure for µA/λ ≤ 1 is pcure(∞) =

1− prec(∞) = e−2RN0 , which is the large-time limit of the recurrence-free survival function

S(t).

The drift term of the Fokker-Planck equation (2.16) alone is not sufficient to reproduce

the phase transition (3.6). The latter is the result of a combination of drift and diffusion

in the presence of two opposite absorbing boundaries. For µA/λ > 1, the initial delta peak

ρ(~x, 0) = δ(~x− ~x0) travels toward the cure state (0, 0). Even though it broadens as a result

of diffusion, the broadening is not sufficient to reach the far-away recurrence boundary, since

the diffusion tensor is linear in the (x, y) coordinates (see Eq. (2.26)) and thus decreases

as the peak approaches the cure state. However, for µA/λ < 1, the peak travels toward the

recurrence boundary and broadening increases as the peak approaches it, as a result of the

linear growth of the diffusion tensor with the (x, y) coordinates. In that case, the broadening

is sufficient to allow partial absorption of the peak by the cure state, as long as µA/λ is

sufficiently close to the critical value µA/λ = 1. The result (3.3) is only slightly different
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Figure 3.2: Level curves of the leading-order outer solution of the mean recurrence time
equation (see Eqs. (3.15) and (3.16)) for µA/λ = 0.5 and ν ≡ ξ/η = 2.5. At large
N , these curves are approximately valid outside boundary layers that exist close to the
reflecting barriers x0 = 0 and y0 = 0. The sizes of these boundary layers vanish in the limit

N → ∞. The values of T
(1)
rec at the first few level curves are given in the figure in units of

the doubling time 1/λ. The spacings between adjacent lines (which were plotted for 1/λ

increments of T
(1)
rec) approach zero at the cure state (0, 0), where the mean recurrence time

diverges logarithmically. Figure reproduced from [1].

from the stationary solution of the M/M/1/N queue with absorbing boundary states (see

Eq. (2.11). Further details are given in Appendix B). As will be shown in Section 3.3, our

solution agrees with simulations of the discrete-state QBD process.

3.2 Approximate solution of the mean recurrence time equation

In this section, we will solve the mean recurrence time equation (2.44) analytically to

leading (zeroth) order in 1/N . This approximation is valid outside boundary layers near the

reflecting barriers z0 = 0 and z0 = w0, the sizes of which vanish as N → ∞. The leading

order solution can be obtained by neglecting the second derivative terms in Eq. (2.44). This

results in the first order PDE

[ηz0 − ξ(w0 − z0)]
∂T

(1)
rec

∂z0
− (λ− µA)(w0 − z0)

∂T
(1)
rec

∂w0
= 1, (3.7)

which can be solved by the method of characteristics, as follows.
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Along the characteristic curves (which are parametrized by a parameter r), the PDE

(3.7) becomes the set of ODEs

dz0

dr
= ηz0 − ξ(w0 − z0)

dw0

dr
= −(λ− µA)(w0 − z0) (3.8)

dT
(1)
rec

dr
= 1

This last equation immediately gives r = T
(1)
rec (here we can choose the constant of integration

to be zero, since it can be absorbed into the constants s1 and s2 in Eqs. (3.9) below).

Solving the first two ODEs yields

z0 = s1 e
Λ−T

(1)
rec + s2 e

Λ+T
(1)
rec ,

w0 =
1

ξ
(η + ξ − Λ−) s1 e

Λ−T
(1)
rec +

1

ξ
(η + ξ − Λ+) s2 e

Λ+T
(1)
rec , (3.9)

where s1 and s2 are constants of integration and

Λ± = a± b, (3.10)

where

a ≡ 1

2
(η + ξ + µA − λ) (3.11)

and

b ≡
[
a2 + η(λ− µA)

]1/2
. (3.12)

By imposing the absorbing boundary condition T
(1)
rec = 0 at w0 = 1, we find the relation

s1 =
ξ − (η + ξ − Λ+)s2

η + ξ − Λ−
(3.13)

Using this relation in Eqs. (3.9), it follows that

(η + ξ − Λ−)z0 − ξeΛ−T
(1)
rec = s2

[
(η + ξ − Λ−)eΛ+T

(1)
rec − (η + ξ − Λ+)eΛ−T

(1)
rec

]
,

ξw0 − ξeΛ−T
(1)
rec = s2

[
(η + ξ − Λ+)eΛ+T

(1)
rec − (η + ξ − Λ+)eΛ−T

(1)
rec

]
. (3.14)
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(a) Level curves for N0 = 7, m0 = 3.
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Figure 3.3: Level curves in parameter space of the leading-order outer solution of the
mean recurrence time (MRT) equation (see Eqs. (3.15) and (3.16)) for two different initial
conditions, with N = 100. The ruler at the bottom of each plot gives the values of the
MRT in units of the doubling time 1/λ. Figures reproduced from [1].

Eliminating the constant of integration s2 from Eqs. (3.14) and simplifying, we finally

arrive at the solution given by Eqs. (3.15) and (3.16).

The solution is

T (1)
rec = −1

b
lnu, (3.15)

where u is the only root of the transcendental equation

ua/b
{
−ξw0

[
(η + ξ − a)(1− u2) + b(1 + u2)

]
+

+ z0

[
(η + ξ − a)2 − b2

]
(1− u2)

}
+ 2ξbu = 0, (3.16)

where a and b given by Eqs. (3.11) and (3.12).

The finite-N solution of Eq. (2.44) converges to the leading-order approximation given

by Eqs. (3.15) and (3.16) pointwise, but not uniformly. Indeed, the approximate solution

above does not satisfy the homogeneous Neumann boundary conditions at z0 = 0 or z0 = w0

(see Table 2.1). Near each reflecting barrier, there is a boundary layer within which the

zeroth-order approximation in 1/N fails. This is seen in the form of the mean recurrence
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time (MRT) level curves given by Eqs. (3.15) and (3.16), which are straight lines that are

not parallel to the recurrence boundary w0 = 1, except asymptotically in the limit T
(1)
rec → 0

(see Fig. 3.2). In reality, close to each reflecting barrier (within some distance that vanishes

in the limit N → ∞), the exact (finite-N) level curves bend toward the boundary, where

these curves end at a right angle. At fixed initial conditions and as a function of the

parameters µA/λ and ξ/η, the shapes of the MRT level curves given by Eqs. (3.15) and

(3.16) in parameter space are shown in Fig. 3.3 for two different initial conditions, namely

N0 = 7, m0 = 3 and N0 = 50, m0 = 20.

The PDE (2.44), along with its boundary conditions given in Table 2.1, is a singular

perturbation problem that should be handled by special perturbation methods, because the

small parameter 1/N premultiplies the second-derivative terms in the backward operator

(2.40). Further inspection shows that Eq. (2.44) is structured in such a way that the problem

can be treated by boundary-layer theory [90]. Since the solution of Eq. (2.44) obtained by

dropping the diffusion (1/N) terms in the backward operator (2.40) is only valid outside

the boundary layers that exist near the reflecting boundaries z0 = 0 and z0 = w0 (the sizes

of which vanish as N → ∞), in the language of boundary layer theory the solution given

by Eqs. (3.15) and (3.16) is called the “outer solution” of the boundary value problem.

The “inner solutions”, on the other hand, require proper rescaling of the variables before

these solutions can be expanded asymptotically in the parameter 1/N ; in this case, the

second-derivative terms in Eq. (2.40) cannot be neglected inside each boundary layer, since

they become comparable to the first-derivative terms within each layer.

An approximate composite solution that would be valid everywhere can in principle

be obtained by the method of matched asymptotic expansions, which requires solving Eq.

(2.44) both inside and outside the boundary layers [90]. In this work, however, only the

leading-order outer solution is given (Eqs. (3.15) and (3.16) above). In practice, the outer

solution itself is already a remarkable and useful result, even to lowest order in 1/N , which

agrees reasonably well with simulations of the model (as will be shown in Section 3.3 below),
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Figure 3.4: Large-time fraction of patients for which the tumor recurred, obtained in a
simulation of the QBD model with 400 hypothetical patients. The parameters are µD = 0,
ν ≡ ξ/η = 5, m0 + n0 = 7, m0 = 3 and N = 100. The red curve shows the analytical result
given by Eq. (3.3). Figure reproduced from [1].

except for small corrections that can in principle be calculated using the boundary-layer

method.

3.3 Simulations

The discrete-state QBD process was simulated for several values of the model parameters

and initial conditions using a pseudo random number generator. The results from the

simulations were then compared to the large-time stationary solution given by Eq. (3.3),

and also to the outer solution given by Eqs. (3.15) and (3.16). The time step was chosen to

be such that the transition probabilities would always remain sufficiently small within the

range of the transition rates used in the simulations, even for transitions between states with

large numbers m,n ∼ N . For a given set of parameters, each simulation tracked both the

fraction of patients for which the tumor recurred and the recurrence times (from which the

MRT was estimated) for an ensemble of 400 hypothetical patients. The detectable tumor

size was set to N = 100.
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N = 100. The simulations were run for 400 hypothetical patients. The smooth curves
represent the leading-order outer solution of the MRT equation at different values of µA/λ
(see Eqs. (3.15) and (3.16)). We note the logarithmic divergence at the cure state N0 = 0.
Figure reproduced from [1].

For a simulation with ν ≡ ξ/η = 5 and initial condition m0 + n0 = 7, m0 = 3, Fig.

3.4 shows a plot of the large-time fraction of patients for which the tumor recurred against

µA/λ. The figure also shows that the result of the simulation agrees with the analytical

formula given by Eq. (3.3). Fig. 3.5 shows a plot of the MRT obtained in simulations

against the initial total number of tumor foci (N0) along the line m0 = n0 = N0/2, for 4

different values of µA/λ, with ν ≡ ξ/η = 2.5. These results are compared to the smooth

curves obtained from the leading-order outer solution of the MRT equation (Eqs. (3.15) and

(3.16)). At the cure state N0 = 0, the MRT diverges logarithmically and the discrepancy

between simulations and the outer solution increases as N0 approaches zero, due to the

boundary-layer structure (the vicinity of the cure state is the region where the boundary

layers along the reflecting barriers overlap).

For both initial conditions N0 = 7, m0 = 3 and N0 = 50, m0 = 20, Fig. 3.6 shows

the MRT obtained in simulations against the ratio ν ≡ ξ/η at 5 different values of µA/λ,
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Figure 3.6: Mean recurrence time (MRT) obtained in simulations vs. the ratio ν ≡ ξ/η for
two different initial conditions, with N = 100. Each set of points on each panel corresponds
to a different value of µA/λ and the lines represent the leading-order outer solution of the
MRT equation (see Eqs. (3.15) and (3.16)). The results represent an average over 400
hypothetical patients. Figures reproduced from [1].

and compares it to the curves obtained from the leading-order outer solution given by Eqs.

(3.15) and (3.16). As expected, the higher the value of µA/λ, the larger is the discrepancy,

since the finite-size effect is greatest near the critical point µA/λ = 1.

It is worth noting that the ratio ν ≡ ξ/η can in principle be measured in experiments

by estimating the relative times that the cells in a tumor spend in dormant versus active

phases of the cell cycle, for example, through reconstruction of cell cycle dynamics from

single-cell transcriptome data [91–93].

Fig. 3.7 shows the MRT obtained in simulations against µA/λ for the initial conditions

N0 = 7, m0 = 3 and N0 = 50, m0 = 20, at different values of the ratio ν ≡ ξ/η. These

results are compared to the smooth curves obtained from Eqs. (3.15) and (3.16). To leading

order, the MRT given by the outer solution diverges at the critical point µA/λ = 1, as shown

by Eqs. (3.15) and (3.16). The larger discrepancy near the critical point can be explained

by a finite size effect in the phase transition given by Eq. (3.3), which effectively shifts the
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Figure 3.7: Mean recurrence time (MRT) obtained in simulations vs. µA/λ for two different
initial conditions, with N = 100. Each set of points on each panel corresponds to a different
value of the ratio ν ≡ ξ/η and the smooth curves represent the leading-order outer solution
of the MRT equation (see Eqs. (3.15) and (3.16)). The simulations were run for 400
hypothetical patients. At leading order, the MRT given by the outer solution diverges at
the critical point µA/λ = 1. Figures reproduced from [1].
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critical point to a value slightly higher than µA/λ = 1 (see plot in Fig. 3.1b).

We note that the continuum limit of the discrete-state master equation is a good ap-

proximation, since it agrees reasonably well with the simulations even to leading (zeroth)

order in 1/N . This is a remarkable feature of our model, since the diffusion limit sometimes

fails for other types of birth-and-death processes, especially ones that involve non-linear

transition rates [94].

3.4 Moments of the tumor-size distribution

Let Et[~z] be the first moment of ~z = (z, w), restricted to the sample space Ωε of tumors at

risk of recurrence, i.e.,

Et[~z] =
1

prisk(~z0, t)

ˆ
Ωε

~z ρ(~z, ~z0, t) d
2z (3.17)

where

prisk(~z0, t) =

ˆ
Ωε

ρ(~z, ~z0, t) d
2z. (3.18)

From Eqs. (2.39) and (2.40), it follows that Et[~z] is given by the equation

∂

∂t
[ prisk(~z0, t) Et[~z] ] = Lb [ prisk(~z0, t) Et[~z] ] (3.19)

If the recurrence boundary at w = 1 is neglected, the solution of (3.19) is given by

prisk(~z0, t) Et[~z] = etLb ~z0 (3.20)

For n = 0, 1, 2, · · · , it is easy to show by induction thatLnb z0

Lnb w0

 =

 −(η + ξ) ξ

−(λ− µA) λ− µA


nz0

w0

 (3.21)

Using Eq. (3.21) to compute the right-hand side of Eq. (3.20), we find that in the

absence of the recurrence boundary, the first moment of the tumor-size distribution is given

by

Et[w] = [prisk(~z0, t)]
−1 1

b
e−at {w0 [b cosh(bt) + (η + ξ − α) sinh(bt)]− z0(λ− µ) sinh(bt)} ,

(3.22)
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Figure 3.8: First moment of the tumor size distribution for the initial condition m0 = n0 = 3
and with ξ/η = 2.5 and N = 100, at different values of µA/λ. The blue dots are the first
moment from the simulations, and the triangle-shaped red dots are the first moment given
Eq. (3.22), in which the recurrence boundary is neglected.

where a and b are given by Eqs. (3.11) and (3.12).

The second-order moments (restricted to the sample space Ωε of tumors at risk of re-

currence) Et[z2], Et[zw] and Et[w2] are given by

∂

∂t
[ prisk(~z0, t) Et[u] ] = Lb[ prisk(~z0, t) Et[u] ] (3.23)

where

u ≡


z2

zw

w2

 . (3.24)

If the recurrence boundary at w = 1 is neglected, the solution of (3.23) is given by

prisk(~z0, t) Et[u] = etLb u0, (3.25)

where

u0 ≡


z2

0

z0w0

w2
0

 . (3.26)

It is easy to show that

Lb u0 = Au0 + v0, (3.27)
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Figure 3.9: Second moment of the tumor size distribution for the initial condition m0 =
n0 = 3 and with ξ/η = 2.5 and N = 100, at different values of µA/λ.

where

A =


−2(η + ξ) 2ξ 0

0 −2a ξ

0 −2(λ− µA) 2(λ− µA)

 (3.28)

and

v0 =


1
N (η − ξ)z0 + 1

N ξw0

0

1
N (λ+ µA)(w0 − z0)

 . (3.29)

It then follows by induction that for n = 1, 2, · · · ,

Lnb u0 = Anu0 +
n−1∑
k=0

An−1−kLkb v0. (3.30)

Using Eq. (3.30) and the fact that A ⊗ 1b commutes with I ⊗ Lb, it then follows by

series expansion that Eq. (3.25) becomes

prisk(~z0, t) Et[u] = etLb u0 = etAu0 + (A⊗ 1b − I⊗ Lb)−1(etA ⊗ 1b − I⊗ etLb)v0 (3.31)

For the initial condition m0 = n0 = 3 and with the parameter value ξ/η = 2.5, the first

two moments of the tumor size distribution were obtained in simulations for a few different

values of µA/λ, and are plotted against time in Figs. 3.8 and 3.9. Note that the solution

given by Eq. (3.22), which was derived for the special case when the recurrence boundary

can be neglected, agrees with simulations for µA/λ > 1, since in the limit N → ∞ there

is no recurrence if µA is greater than the critical value µcritical = λ. For µA/λ < 1, Fig.
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3.8 shows that Eq. (3.22) agrees with simulations for sufficiently short times, before the

recurrence boundary is reached.

3.5 Fitting the model to recurrence-free survival data

Even in the context of univariate birth-and-death processes, estimating model parameters

from data is, in general, a difficult problem [95]. In this section, we describe a simple

procedure to fit the model to recurrence-free survival data through an example. Since

the method that we describe below relies on the leading-order outer solution given by Eqs.

(3.15) and (3.16), it is approximately valid (within O(1/N) corrections) for initial conditions

outside the boundary layers.

It is also worth noting that in our model, all tumor foci in a given individual are assumed

to be equivalent in their time evolution. In a more realistic scenario, various tumor foci

would start with different numbers of cells and grow at different rates, and consequently,

would have different parameters associated with them. It is difficult to even estimate, let

alone model, this heterogeneity. Our definition of a tumor focus can be thought of as

an “average” over foci and the parameters associated with a tumor focus as the “average

parameters” over foci. Since the goal of our analysis is not to make specific predictions for

individual patients but rather to model overall trends, we believe that our model is useful

in spite of such uncertainties.

Serous ovarian cancer data downloaded from the public database The Cancer Genome

Atlas [89] (TCGA) were used to generate the recurrence-free survival curve shown in Fig.

3.10. Out of the 583 patients in the data set, 170 were censored, i.e., although these

patients were free of recurrence by the time reported in the data set, they did not follow up

afterwards, so that their recurrence/no-recurrence status beyond the time of the last follow-

up remained unknown. For this reason, the Kaplan-Meier product-limit estimator [96] was

used to estimate the time-dependent probability of no recurrence. A brief description of

the Kaplan-Meier method is given in Appendix C.
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Figure 3.10: Product-limit estimate of the recurrence-free survival function (Kaplan-Meier
curve [96]) for ovarian cancer in a group of 583 patients, obtained from TCGA data [89],
showing Kaplan-Meier’s estimate for the 90% confidence interval (green lines). The red ver-
tical crosses (+) represent censored patients, whereas the black saltire crosses (×) represent
recurrence events. The inset provides a closer view of the KM curve for the time interval
between 0 and 500 days. Figure reproduced from [1].

In order to obtain the MRT from a given survival function S(t), we first need to renor-

malize the probability of recurrence prec(t) = 1−S(t) as in Eq. (2.41), i.e., the appropriate

probability measure is conditioned on recurrence. The renormalized survival function S̃(t)

is then given by

S̃(t) =
S(t)− S(∞)

1− S(∞)
, (3.32)

which vanishes in the limit t → ∞. The MRT is then given by the area under the curve

S̃(t), i.e., T
(1)
rec =

´∞
0 S̃(t)dt. For the serous ovarian cancer data from TCGA, we found

S(∞) = 0.086 (defined as the lowest value of the Kaplan-Meier estimate for S(t)) and an

MRT of 687.5 days. For a given initial condition, estimation of the parameter ν ≡ ξ/η from

Eqs. (3.15) and (3.16) requires that the time scale be fixed by specifying the doubling rate

λ. Using the order of magnitude estimate 1/λ = 40 days for the doubling time based on

clinical data [97], the MRT for the ovarian cancer data in units of the doubling time was

then fixed at λ(687.5 days) = 17.2.
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Figure 3.11: Simulation fits of the QBD model to a Kaplan-Meier (KM) recurrence-free
survival curve (dashed lines) for ovarian cancer data from The Cancer Genome Atlas [89].
Each simulated KM curve is from simulations for 2000 patients at the parameter values
shown in the legends, with N = 100 and m0 = 0.4N0. The simulations were fit to the data
using the scheme described in Section 3.5. For each curve, the value of µA/λ was obtained
using Eqs. (3.3), (3.4) fitted to the large-time no-recurrence probability value S(∞) = 0.086
obtained from the ovarian cancer data (Fig. 3.10). Given this value, ξ/η was obtained by

matching T
(1)
rec from Eqs. (3.15), (3.16) to the Mean Recurrence Time (MRT) value of 687.5

days from the ovarian data (see Fig. 3.10 and discussion in Section 3.5), using 1/λ = 40
days. In (a) the time axis is rescaled to units of the MRT, and in (b) the time is shown in
units of 1/λ = 40 days on the lower axis and in days at the top. The blue curve for N0 = 45
is shown in bold as the one whose shape is the best match to the clinical data. Figures
reproduced from [1].
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Figure 3.12: Corresponding recurrence rates (negative time derivatives) of the curves from
Fig. 3.11.

For a given choice of the initial number N0, Eqs. (3.3) and (3.4) can be solved for

the parameter µA/λ using the value prec(∞) = 1 − S(∞) = 0.914 obtained from the

Kaplan-Meier curve. Assuming m0 = 0.4N0 (for which the outer solution gives a reasonable

approximation of the MRT, unless N0 is too small), it only remains to determine the value

of the ratio ν ≡ ξ/η consistent with both the MRT (fixed at T
(1)
rec = 17.2/λ) and the inferred

µA/λ. This is done by solving Eqs. (3.15) and (3.16) numerically for ν ≡ ξ/η (see also Eq.

(2.2)).

Using the scheme described above to fix the parameters µA/λ and ν ≡ ξ/η, recurrence-

free survival curves were simulated for several initial values N0 = m0 +n0, with m0 = 0.4N0

and N = 100, for 2000 patients. Each panel in Fig. 3.11 shows the Kaplan-Meier curves

from these simulations matched to the ovarian cancer clinical recurrence data from TCGA.

The fitted parameter values are shown in the legends in Fig. 3.11. For a given N0, the value

of µA/λ was fit to the clinical data using Eqs. (3.3), (3.4) and the large-time asymptotic

value S(∞) = 1 − prec(∞) = 0.086. Using the fitted value of µA/λ, ν ≡ ξ/η was chosen

to fit Eqs. (3.15), (3.16) with T
(1)
rec ∼ MRT(clinical), where the latter value was determined



54

from the clinical data (from Fig. 3.10, MRT(clinical) = 687.5 days) and assuming 1/λ = 40

days. The MRT for the simulation is the mean value of the recurrence time over the subset

of the 2000 patients who had recurrence. The time axis can then be plotted in units of the

MRT (Fig. 3.11a) or in units of 1/λ = 40 days (Fig. 3.11b).

The discrepancy between Figs. 3.11a and 3.11b in the shapes of some of the simulated

curves is because the parameter value ξ/η was chosen using equations Eqs. (3.15), (3.16),

which are approximate to O(1/N). This means that the MRT from the clinical data is

only approximately matched to the MRT value from simulations using the approximation

MRT(clinical) ∼ MRT(simulation) ∼ T
(1)
rec . However, we see that the simulated curve that

best matches the Kaplan-Meier curve (N0 = 45) reproduces the recurrence rates quite well

(see Fig. 3.12, where the negative time derivatives of the RFS curves were plotted both in

units of MRT and in units of 1/λ). The recurrence rates in Fig. 3.12 were calculated from

smooth splines of the original curves with 15 degrees of freedom.

In the procedure described above for fitting the model to data, we have assumed a

sharply peaked initial condition, i.e., the initial condition is a delta function centered at

some specified initial number of tumor foci N0. However, in reality this number should

follow a probability distribution that would reflect the histogram of the residual-tumor size

in the population under study. Moreover, different patients may have different responses

to treatment (i.e., different values of µA/λ), as well as different ξ/η values. This means

that the fitted values should be regarded as only a guide that gives insight into the possible

scenarios leading to the observed recurrence-free survival curve.

3.6 Application of the model to chemotherapy simulation

The effect of chemotherapy on tumor recurrence can be simulated by switching the death

rate µA at a time t = tch (representing the end of chemotherapy) from a higher value

µch, which represents chemotherapy and lasts for times t ≤ tch, to a baseline value µ0 <

µch, which represents the absence of chemotherapy. Using this simple procedure, we can
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Figure 3.13: Simulations of the model for µch/λ = 0.8, µ0/λ = 0.4, ξ/η = 2.5, m0 = n0 = 3
and N = 100, with the duration tch of chemotherapy varying from 10 to 110, in units of
1/λ. (a) RFS curves obtained from simulating 4000 patients, where the horizontal line
shows S(∞) = 1 − prec(∞), the predicted asymptotic value of the large-time fraction of
non-recurrent patients for tch → ∞ (Eqs. (3.3), (3.4)) and the dashed green curve shows
the simulated survival curve for tch →∞. Figure reproduced from [1]. (b) Recurrence rates
(negative time derivatives) calculated from smooth splines of the original RFS curves with
15 degrees of freedom.
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study how varying chemotherapy duration affects the MRT and the asymptotic (large time)

fraction of non-recurring patients.

With µch = 0.8λ and µ0 = 0.4λ fixed, survival curves were simulated for tch varying from

10 to 110 (in units of 1/λ) for m0 = n0 = 3, N = 100 and ν ≡ ξ/η = 2.5 (Fig. 3.13). We

see that increasing the duration tch of chemotherapy increases the time to recurrence (i.e.,

it increases the MRT) and also improves the asymptotic fraction of non-recurring patients

(Fig. 3.13a). We also see (Fig. 3.14) that for these values of the parameters, although the

MRT increases monotonically with tch, beyond tch ≈ 43/λ the rate of change of the MRT

becomes lower than that of tch, suggesting that there is an optimum value of tch after which

there is a reduction in benefit from chemotherapy. This optimum value of tch will most

likely depend on all the parameters of the model: N0, µch, µ0, ξ, η, and λ. We also note

(Figs. 3.13a, 3.15) that the asymptotic fraction of non-recurrent patients in the simulation

increases with tch, and eventually saturates at the maximum value S(∞) = 1 − prec(∞)

computed in the model, obtained using µA = µch in Eqs. (3.3), (3.4).

Recurrence can also be reduced by increasing dosage and keeping the chemotherapy time

tch fixed. For tch = 10/λ and µ0 = 0.4λ, survival curves were simulated for µch/λ in the

interval 1.4−1.6 for m0 = n0 = 3, N = 100 and ξ/η = 2.5 (Fig. 3.16). We see that for these

parameters, a time scale of 10 doubling times is enough for the increase in chemotherapy

death rate on tumor foci to have a significant effect on long-term recurrence-free survival,

even though the higher death rate µch only acts during the finite period of time of a few

doublings. Increasing µch not only lowers recurrence rates, but also shifts them forward

to later times (see 3.16b). It is worth mentioning that the benefit of changing only tch is

limited by the asymptotic curve for tch → ∞, in which case the large-time recurrence-free

fraction is generally lower than 1 for µch < λ, and equal to 1 for µch > λ (recall the phase

transition given by Eq. (3.6)). This is to be contrasted with the effect of increasing µch with

tch fixed, in which case the long-term survival fraction can in theory be as large as desired,

although in practice there is always a maximum dose tolerated by patients that limits this
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Figure 3.14: (a) Mean recurrence time (MRT) vs. chemotherapy duration tch, measured in
units of 1/λ. (b) Difference between the MRT and tch as a function of tch for the simulated
survival curves of Fig. 3.13a. The vertical line on each plot shows the time point after which
tch becomes larger than the MRT, i.e. the time point after which chemotherapy becomes
less effective. Figures reproduced from [1].
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Figure 3.15: Asymptotic (large-time) non-recurrent fraction of patients versus chemother-
apy duration tch for the simulated survival curves in Fig. 3.13a. The horizontal line
shows the predicted asymptotic value of the non-recurrent fraction S(∞) = 1 − prec(∞)
for tch → ∞, obtained theoretically by setting µA = µch in Eqs. (3.3), (3.4). Figure
reproduced from [1].
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Figure 3.16: Simulations of the model for tch = 10/λ, µ0 = 0.4λ, ξ/η = 2.5, m0 = n0 = 3
and N = 100, with the chemotherapy death rate of the tumor (µch) varying from 1.4λ
to 1.6λ. (a) RFS curves (b) Recurrence rates (negative time derivatives) calculated from
smooth splines of the original RFS curves with 15 degrees of freedom.

approach, since chemotherapeutic agents are highly toxic and also kill normal tissue, just

not as efficiently as they attack rapidly growing tumors when the dose is moderate.

The version of the model presented in this section, with two additional parameters µch

and tch that define the chemotherapy regimen, will be used in Chapters 4 and 5, respectively,

to fit the model to clinical trial data and make relevant predictions for different treatment

scenarios.
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Chapter 4

Fitting the model to data from an ovarian cancer

neo-adjuvant trial with Olaparib

In this chapter, our goal is to fit the model proposed in Chapters 2 and 3 (specifically, the

version introduced in Section 3.6) to the Kaplan-Meier (KM) curves from an ovarian cancer

clinical trial [98], by finding a range of parameters for which simulated RFS curves agree

with the data, which will then be used in Chapter 5 to predict the large-time RFS fraction

for increased dosages of Olaparib (represented by the parameter µch) and/or increased

treatment times (represented by tch), within the relevant range of parameters determined

from the fits.

4.1 Ovarian cancer clinical trial with Olaparib

A randomized, double-blind, phase 3 clinical trial has recently been conducted with a group

of newly diagnosed, advanced high-grade ovarian cancer patients [98], to evaluate the efficacy

of the drug olaparib as maintenance (adjuvant) therapy following standard treatment with

cytoreductive surgery and platinum-based chemotherapy. This study will be the source of

data for applying our model to predict progression-free survival in different scenarios of

treatment.

The 391 patients who participated in the study had been diagnosed with stage III or

IV high-grade serous or endometrioid ovarian cancer, primary peritoneal cancer, Fallopian-

tube cancer or a combination of these cancers, and had a germline or somatic mutation in

BRCA1, BRCA2, or both. The latter requirement is related to the mechanism of action
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of olaparib, which is a poly(ADP-ribose) polymerase (PARP) inhibitor targeting tumor

cells with deficiencies in homologous recombination repair. Inactivated PARP is trapped at

single-strand DNA breaks by the inhibitor, which prevents the repair of these breaks, leading

to an accumulation of double-strand breaks in replicating cells [99, 100]. The latter cannot

be repaired accurately in tumor cells that have defects in homologous recombination repair

mechanism (such as those harboring BRCA1 or BRCA2 mutations), which leads to genomic

instability and ultimately, to cell death by apoptosis (if the p53 pathway is functional) or

replication catastrophe.

Patients were also selected for the trial on the basis of their previous response to

platinum-based chemotherapy, which was required to be complete or partial, with most

patients having no evidence of disease and a normal level of the CA-125 biomarker protein

after standard treatment. Of the 391 patients in the randomized trial, 260 received olaparib

and 131 received placebo. In the olaparib cohort, the median duration of the intervention

was 24.6 months. The recommended duration in the trial protocol was 2 years of olaparib,

with dose interruption or dose reduction in the case of adverse events. In our analysis, we

will assume that chemotherapy duration was fixed at 24 months.

At 3 years, the Kaplan-Meier estimate of progression-free survival was 60% in the ola-

parib cohort, versus 27% in the placebo cohort (control). The hazard ratio for disease

progression or death, calculated using a Cox Proportional Hazards model, was 0.30, with a

95% confidence interval ranging from 0.23 to 0.41, and a P-value P < 0.001. The median

time span of progression-free survival in the olaparib cohort was estimated to be about

3 years longer than in the placebo cohort. The conclusion of the study was that main-

tenance olaparib following standard treatment with cytoreductive surgery and platinum-

based chemotherapy improved progression-free survival significantly for the population un-

der study, for which the risk of disease progression or death of patients receiving olaparib

was found to be 70% lower than for patients receiving placebo.
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Months 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54

No. at risk
260 240 229 221 212 201 194 184 172 149 138 133 111 88 45 36 4 3 0

(Olaparib)

No. at risk
131 118 103 82 65 56 53 47 41 39 38 31 28 22 6 5 1 0 0

(Placebo)

Table 4.1: Number of patients at risk at the beginning of each month since randomiza-
tion, for the Olaparib and Placebo cohorts. Reproduced with permission from Ref. [98],
Copyright Massachusetts Medical Society.

4.2 Setting up the data from the clinical study

As is unfortunately true for many clinical studies, the recurrence-free survival KM curves

published in Ref. [98] for patients receiving placebo (control group) or the drug Olaparib

were not accompanied by individual patient data (IPD) with recurrence events and times.

However, a table specifying the number of patients at risk in one-month intervals is provided

for each KM curve (see Table 4.1). This Table contains valuable additional information,

because as we will show, when it is combined with data from the KM plots, it allows us

to reconstruct IPD for both the placebo and Olaparib cohorts, which can then be used to

compute errors and confidence intervals by the Kaplan-Meier approach [96] (for a note on

this methodology, see Appendix C), thereby providing data to find allowable ranges for our

parameters.

In order to reconstruct IPD from the available information, the web tool WebPlotDig-

itizer (https://automeris.io/WebPlotDigitizer/) was first used to accurately extract data

points directly from the KM plots shown in Fig. 2A of Ref. [98]. With the data points

from the published graphs at hand, as well as the data from Table 4.1, we then used the

algorithm proposed in Ref. [101] to generate a table of IPD for each cohort (placebo and

Olaparib), where a recurrence/no recurrence event and an event time is specified for each

individual patient. The reconstruction algorithm is outlined in Appendix D, where the IPD

tables for the placebo and Olaparib cohorts are also given.

Using the generated IPD data, we first verified that they generate exactly the same

KM plot as the one extracted from the figure in Ref. [98] when we use the product-limit
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Figure 4.1: Recurrence-free survival Kaplan-Meier curves for the placebo (lower curve) and
Olaparib (upper curve) cohorts of ovarian cancer patients in the study [98]. The red vertical
crosses (+) represent censored patients, whereas the black saltire crosses (×) represent
recurrence events. Each error band (green lines) corresponds to a 95% CI for the estimated
survival probability at each recurrence time, and was calculated from reconstructed IPD
using the Kaplan-Meier prescription (Eqs. (4.2) and (4.3)). The mean of each KM curve is
reproduced here with permission from Ref. [98], Copyright Massachusetts Medical Society.

Kaplan-Meier formula to estimate the survival function. Both the placebo and Olaparib

data sets passed this consistency check. According to the Kaplan-Meier prescription [96],

given a sequence of event times (recurrence or censoring) t′1 ≤ t′2 ≤ · · · t′N , the recurrence-

free survival function at time t can be estimated as

P̂ (t) =
∏
r

N − r
N − r + 1

, (4.1)

where the product is over all indices r such that each t′r ≤ t is a recurrence time. The

variance of the survival function can be estimated as

V̂ [P̂ (t)] = P̂ 2(t)
∑
r

1

(N − r)(N − r + 1)
, (4.2)

where, once again, the sum is over all indices r such that t′r ≤ t and t′r is a recurrence time.

Using Eq. (4.2) and assuming a Gaussian model for the error of P̂ (t) at each given time,

we can calculate the error corresponding to an α-confidence interval as

Error(α; t) =

√
V̂ [P̂ (t)] Φ−1

(
1− α

2

)
, (4.3)
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where Φ−1(q) is the quantile function for the standard normal distribution (i.e., the inverse

of the standard normal CDF, giving the z-score value).

The reconstructed KM curves for the placebo (control) and Olaparib cohorts are shown

in Fig. 4.1. These curves were plotted from the generated IPD using the Kaplan-Meier

estimator (4.1), with the error band corresponding to a 95% CI given by Eqs. (4.2) and

(4.3).

4.3 Fitting the model to the placebo KM curve

Our curve-fitting method starts by fixing the value of the parameter ξ/η, which represents

the ratio of the transition rates at which tumor foci transition from active to dormant

(ξ) and from dormant to active states (η). For each chosen value of this parameter, we

determine the remaining parameters by fitting simulated RFS curves to both the placebo

(control) and the Olaparib KM data.

For each fixed value of ξ/η, we used the placebo KM curve to determine the parameters

λ, µ0 and N0. The remaining parameter µch was then determined by fitting the model

to the Olaparib KM curve. In order to fit our model to the placebo curve, we require a

matching of: (A) large-time asymptotic values of the RFS fraction; (B) mean-recurrence

times (MRT); (C) the shapes of the RFS curves, once the first two conditions have been

met.

Before we proceed to fitting our model to the placebo curve, we need to do a preliminary

curve fit (which is essentially a smoothing procedure) in order to define the asymptotic value

of the KM curve, as well as its MRT, without the bias that originates from the number of

patients at each given time for which the tumor has not yet relapsed. Because this number

decreases over time, we see more variance in the KM estimator at later times, which means

that earlier times should be given more weight in estimating the RFS fraction, proportionally

to the time-dependent number of recurrence-free patients. For this preliminary smoothing
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Figure 4.2: Shifted exponential fits for the mean and the 95% CI upper/lower limits of
the placebo KM curve (see Eq. (4.4)), a smoothing step before the model is fitted to the
placebo data.

of the placebo KM curve, we choose the “shifted-exponential” function

RFS[placebo](t) = (1− b1)e−a1(t−t0) + b1 , (4.4)

where t0 is the point in time where the KM curve starts to drop from its initial value

RFS = 1. Between times t = 0 and t = t0, the value of the RFS function is constant, i.e.,

RFS(t) = 1. For the placebo data at hand, we see that t0 = 2.25 months. The parameters

a1 and b1 are then determined by a weighted nonlinear regression with a diagonal weight

matrix defined by Wii = Ni∑
iNi

, where Ni is the number of recurrence-free patients in the

placebo group at the i-th time point. By minimizing the weighted sum of squared residuals

S =
∑

iWiir
2
i , where ri is the difference between the smooth curve (4.4) and the KM value

at the i-th time point, we found a1 = 0.0757/month and b1 = 0.187. This means that an

estimated 18.7% of patients receiving placebo were recurrence-free at large times.

For the smooth curve (4.4), the large-time asymptotic value is therefore given by the

parameter

RFS[placebo](∞) = b1 = 0.187 , (4.5)
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Figure 4.3: (a) Simulated placebo curves for ξ/η = 1, for several values of the initial
condition N0 and KM curve (green line) with the smooth shifted exponential fit given
by Eq. (4.4) (dashed line). (b) Simulated curve of best fit, showing the 95% CI of the
simulation.

whereas the mean recurrence time (MRT) is given by

MRT[placebo] =

ˆ ∞
0

RFS(t)− RFS(∞)

1− RFS(∞)
dt = t0 + 1/a1 = 15.5 months. (4.6)

The smoothing procedure above was repeated for the curves that define the upper and

lower limits of the 95% CI error band of the placebo KM curve. The shifted exponential

fits (Eq. (4.4)) for all three curves (mean, lower and upper 95% CI limits) are shown in

Fig. 4.2.

The next step in our analysis was to fix an initial condition N0 and then determine

the corresponding value of the ratio µ0/λ by requiring that the large-time recurrence-free

fraction (4.5) matches the theoretical large-time probability of no-recurrence pcure(∞) =

1 − prec(∞), where prec(∞) is given by Eqs. (3.3) and (3.4). For each fixed N0, we can

immediately solve for the ratio µ0/λ by setting prec(∞) = 1 − b1 = 0.813. Once the ratio

µ0/λ is determined, we can determine the doubling rate λ by requiring that the MRT given

by Eq. (4.6) matches the theoretical value given by Eqs. (3.15) and (3.16).
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Figure 4.4: Weighted Residual Sum of Squares (RSS) for ξ/η = 1 (blue dots) fitted to a
quadratic function. The red square- and triangle-shaped dots represent the weighted RSS
for the lower and upper limits of the 95% CI error band.

For each choice of N0, once the parameters λ and µ0 are determined as described above,

an RFS placebo curve can be simulated for each initial condition N0. For ξ/η = 1, RFS

curves simulated with N = 100 for several initial conditions N0, as well as the placebo

KM curve and the smooth curve fit given by Eq. (4.4), are all shown in one plot in Fig.

4.3a. For the specific choice of transition-ratio parameter ξ/η = 1, we see that the weighted

residual sum of squares (RSS) between the simulated RFS curve and the smoothed KM

placebo curve (with weights given by the fraction at risk in the simulation) has a minimum

at around N0 = 40, as shown in Fig. 4.4. This optimal initial condition is where the

simulated RFS curves are found to best fit the overall shape of the KM placebo curve (see

Fig. 4.3b). The location of the weighted RSS minimum is defined by fitting the RSS curve

to a quadratic function. This process can be repeated for the upper and lower limits of the

95% CI error band (see Fig. 4.4), which determines an error interval around N0 = 40. For

ξ/η = 1, we find that N0 can be as low as 37 and as high as 43. For our purposes, we will

only consider even values of N0, because we define the initial condition as m0 = n0 = N0/2,

i.e., half the initial tumor foci are initially dormant and half of them are initially active.



67

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

0
5

10
15

20

ξ η

λ 
of

 b
es

t f
it 

(m
on

th
−1

)

(a)

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ● ●

2 4 6 8 10

2
4

6
8

10
12

ξ η

D
ou

bl
in

g 
tim

e 
of

 b
es

t f
it 

(d
ay

s)

(b)

Figure 4.5: (a) Relationship between the doubling rate λ and ξ/η imposed by the require-
ment that the MRT of the simulated placebo curves has to match the MRT of the KM
curve. (b) Doubling time (1/λ) in days against ξ/η.

The method described above can be repeated for an entire range of values of the

transition-ratio parameter ξ/η, such that the optimal values of λ, µ0 and N0 all become

functions of ξ/η. However, the values of µ0 and N0 turn out to be essentially constant

(independent of ξ/η), as shown in Table 4.2. In the case of λ, the requirement that the

MRT of each simulated placebo curve matches the MRT of the KM curve means that the

time scale defined by λ has to be reajusted as a function of ξ/η, as expected from the

approximately linear relationship between the MRT in 1/λ units and ξ/η (see Fig. 3.6 in

Chapter 3). The relationship between λ and ξ/η for the fits is shown in Fig. 4.5, where the

doubling time 1/λ in days is also shown as function of ξ/η. The error bars were calculated

by repeating the fitting procedure for the lower and upper limits of the 95% CI error band

of the placebo curve.
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Parameter Values

ξ/η 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

N0

min 37 36 37 37 36 37 36 37
mean 40 40 39 39 39 39 40 38
max 43 42 42 43 42 42 43 42

µ0/λ
min 0.957 0.956 0.956 0.957 0.956 0.956 0.957 0.956

mean 0.961 0.961 0.960 0.960 0.960 0.960 0.961 0.958
max 0.962 0.960 0.962 0.962 0.960 0.962 0.960 0.962

λ (month−1)
min 2.65 3.94 5.29 6.61 7.89 9.27 10.53 11.93

mean 3.00 4.49 5.98 7.47 8.97 10.48 12.01 13.44
max 3.04 4.55 6.06 7.58 9.10 10.63 12.15 13.68

(µch − µ0)/(λ− µ0)
min 0.816 0.816 0.816 0.816 0.864 0.864 0.816 0.768

mean 1.017 1.020 1.048 1.027 1.007 1.034 1.018 1.055
max 1.104 1.200 1.200 1.152 1.152 1.152 1.152 1.200

Table 4.2: Ranges of the fitting parameters for a few values of ξ/η.

4.4 Fitting the model to the Olaparib KM curve

Since all patients in the clinical trial were randomized into the Olaparib or placebo cohorts,

it is a reasonable assumption that the parameters λ, µ0 and N0 must be the same for

both groups (otherwise, the placebo cohort would not be a properly designed control).

For every fixed value of the ratio ξ/η, the parameters λ, µ0 and N0, which have already

been determined from fitting the model in the absence of chemotherapy to the placebo KM

curve, will be used to simulate RFS curves for the Olaparib cohort. The tumor death-

rate parameter µA for patients receiving the drug was initially set to a chemotherapy rate

µch > µ0, and then switched to the baseline level µA = µ0 after a time tch = 24 months for

which the patients were given the drug. In this section, our goal will be to simulate RFS

curves for different values of the parameter µch and eventually find the value for which the

RFS curve best fits the Olaparib KM curve. In principle, since the unknown parameter ξ/η

is arbitrarily chosen at the very beginning, the value of µch determined from the fit will be

a function of ξ/η.

Because the doubling rate λ and the ratio ξ/η are related through the relationship shown

in Fig. 4.5, an equivalent statement to our explanation above is that for every fixed value
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Figure 4.6: (a) Simulated RFS curves for ξ/η = 1, with different values of µch (color scale).
Only curves that essentially fall within the 95% CI of the Olaparib KM curve (shaded area)
are shown. (b) RFS curve that best fits the KM Olaparib curve according to our criterion
for goodness of fit, with the estimated 95% CI simulation error band. The corresponding
chemotherapy parameter is (µch − µ0) / (λ− µ0) = 1.018.

of λ, all the other parameters in the model are determined from the fits. Essentially, λ or

ξ/η define the time scale for the model according to the prescription in Fig. 4.5.

For each choice of ξ/η, RFS curves were simulated for a range of values of the parameter

µch. The next step will be to define a metric for the goodness of fit between our simulated

curves and the Olaparib KM curve. Minimizing such a metric will determine the optimal

value of µch. To illustrate our procedure, we choose ξ/η = 1, for which simulated curves

are plotted with the Olaparib KM data in Fig. 4.6a.

For the purpose of defining a parameter that specifies the potential efficacy of a drug (in

this case, Olaparib), we will henceforth present our results in terms of the difference between

the chemotherapy death rate µch and the baseline death rate µ0, relative to the difference

between µ0 and the critical value in the absence of chemotherapy, i.e., µcritical = λ. In other

words, our reference will be (µch − µ0) / (λ− µ0), which is related to the chemotherapy dose

through some unknown monotonically increasing function that we hope could be determined
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Figure 4.7: Area between the simulated RFS curves and the Olaparib KM curve within the
time interval from t = 0 to tch = 24 months (i.e., within the duration of chemotherapy), for
ξ/η = 1. The optimal value of the chemotherapy parameter (µch − µ0) / (λ− µ0) is defined
to be at the intersection of the fitted lines.

in clinical studies. Note that this parameter defines a new scale, where zero means absence

of chemotherapy, whereas unity means that the chemotherapy death rate is at the critical

value µcritical = λ.

Two relevant criteria need to be defined for estimating µch, or equivalently, our new

parameter (µch − µ0) / (λ− µ0): one that determines the value of the best fit and the other

that determines an interval around the optimal value, reflecting the uncertainty in the

Olaparib KM curve as defined by its 95% CI error band. For the best value of µch, we simply

choose the criterion that the area between the simulated RFS curves and the Olaparib KM

curve within the time interval from t = 0 to tch = 24 months (i.e., within the duration of

chemotherapy) has to be minimized. For ξ/η = 1, the area between the simulated curves

and the KM curve is plotted against the parameter (µch − µ0) / (λ− µ0) in Fig. 4.7. For

each fixed value of ξ/η, the minimum of the area function was determined by dividing the

set of points in its graph into two regions and performing a linear regression in each region.

The optimal value of µch is then determined as the point where the two lines intersect, as

shown in Fig. 4.7. For ξ/η = 1, we find (µch − µ0) / (λ− µ0) = 1.018. For a range of values
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Figure 4.8: Estimated values of the parameter (µch − µ0) / (λ− µ0) for different choices of
ξ/η and corresponding error bars due to the uncertainty in the Olaparib KM curve.

of ξ/η, the optimal values of the parameter (µch − µ0) / (λ− µ0) are shown in Table 4.2,

and as a bar plot in Fig. 4.8.

The next step in the procedure was to define a range of values around the optimal value

of µch that reflects the uncertainty of the Olaparib KM curve. For this purpose, we need to

define a metric for how well the simulated curves fall within the error band of the Olaparib

KM curve, defined as the 95% CI error band. To illustrate our criterion, the reader is

referred to Fig. 4.9a, where for two different simulated RFS curves, the excess area between

each curve and the Olaparib KM curve error band has been shaded with different colors.

Such excess area might exist below the lower 95% CI limit (as is the case with the blue

curve shown in the figure) or above the upper 95% CI limit (as with the pink curve). More

generally, a curve could in principle have contributions to the excess area both from below

and above the error band. Our criterion for µch to be within the range of values that are

consistent with the KM curve is that the excess area for the simulated RFS curve cannot

exceed 10% of the area between the upper and lower limits of the KM curve 95% CI error

band, within the time range of the clinical trial (i.e., between times t = 0 and t = 52.6

months). In Fig. 4.9b, where the excess area is plotted against (µch − µ0) / (λ− µ0) for
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Figure 4.9: (a) Definition of excess area between simulated RFS curves and the Olaparib
KM curve error band. (b) Relative excess area (defined as a fraction of the area between
the upper and lower limits of the 95% CI error band) versus (µch − µ0) / (λ− µ0) for ξ/η =
1. The points that meet the error criterion of a relative excess area lower than 10% are
highlighted in red.

ξ/η = 1, the points that meet our criterion form a plateau of minimal (if not zero) excess

area and are highlighted in red.

The intervals for (µch − µ0) / (λ− µ0), calculated using the criterion described above,

are shown in Table 4.2 and in the bar plot of Fig. 4.8 for different values of the scale

parameter ξ/η. Note that the optimal values from the fitting are essentially constant across

different values of ξ/η and are close to the critical value (= 1). Essentially, the error bars

show that for the given data, µch is equally likely to be on either side of the critical value

µcritical = λ, which we only take here as a reference, since a phase transition only exists in

the limit tch →∞.

The parameters determined from the fitting procedure are summarized in Table 4.2 and

the best fits for ξ/η = 1 are shown in Figs. 4.3b and 4.6b with their respective simulation

error bands (defined here as a Gaussian 95% CI) determined from averaging over 10 sets of

simulations, each of which consisted of 1000 simulation runs.



73

Chapter 5

Predicting Recurrence-Free Survival as a function of

Olaparib dosing and scheduling

In this chapter, we will use our model to predict different scenarios of treatment outcome

for the patients in the Olaparib clinical trial. Our main result is a prediction of the long-

term recurrence-free survival (RFS) when either the duration or the dosage of Olaparib

chemotherapy is increased. We will also discuss different scenarios in which the therapy may

be less or more effective, namely, when the ratio of transition rates to and from dormancy

(ξ/η parameter) is increased or decreased. Using the parameters determined in Chapter

4 by fitting the model to the Olaparib clinical trial data, we will also discuss briefly some

of the tumor-growth dynamics that the model predicts for the patients who participated

in the Olaparib study, or for any patient with a higher or lower active/dormant transition

parameter ξ/η being treated with the same drug.

5.1 Predictions for long-term recurrence-free survival of patients in the

Olaparib clinical trial

In Chapter 4, our model for chemotherapy was fitted to KM curves from a clinical trial

whose goal was to identify the potential benefit of adjuvant therapy using the drug ola-

parib for advanced high grade ovarian cancer patients. All the parameters of the model

were determined as functions of the ratio of transition rates to and from dormancy (ξ/η

parameter). We found that this parameter meets the fitting criteria if it is related to the

doubling rate λ through the functional relationship shown in Fig. 4.5a, because ξ/η and λ
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have opposite effects on the time to recurrence, which cancel each other out when both pa-

rameters are constrained as in Fig. 4.5a. This means that we may determine all the fitting

parameters equivalently as functions of either the doubling rate λ or the ratio ξ/η. Essen-

tially, fixing λ defines a relationship between the natural time scale of the model (measured

in units of the doubling time 1/λ) and the time scale of the clinical KM curves (defined

in months). Although this relationship remains undetermined, there are biomarkers that

can help clinicians estimate the parameter λ for ovarian cancer patients, such as the cancer

antigen CA125 [97]. Unfortunately, this information was not available for the patients in

the Olaparib study.

Remarkably, as will be shown, our predictions for large-time RFS for the patients in

the Olaparib trial turn out to be essentially independent of our choice of the time scale

1/λ. Specifically, it will be shown that the dependence of the large-time RFS on the

chemotherapy parameter (µch − µ0) / (λ− µ0) and on the treatment time tch (measured

in months) is independent of the choice of λ in the fitting procedure (or, equivalently, of

the corresponding value of ξ/η given by the relationship shown in Fig. 4.5a). As will be

discussed in Section 5.2, this does not mean that the large-time RFS does not depend on

the parameters λ and ξ/η individually; it simply means that if λ and ξ/η are constrained

as in Fig. 4.5a, the predicted large-time RFS turns out to be independent of the choice of

these parameters.

For the patients in the Olaparib study, an important question is how their recurrence-

free survival probability would change, had they been treated for a longer time tch or

had they received a higher dose of Olaparib, which is related to our model parameter

(µch − µ0) / (λ− µ0) by some unknown monotonically increasing function. To answer this

question, RFS curves were simulated on a 9× 12 grid of points in the (µch, tch) plane (5000

tumors for each pair of parameters), with all the other parameters fixed by the fits discussed

in Chapter 4. To find the large-time RFS fraction reliably, the tumor size distribution

Pk(t) = Pr{m+n = k; t} was recorded at time t = tch and the asymptotic RFS values were
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Figure 5.1: (a) Large-time RFS versus tch for several values of µch, with ξ/η = 1. (b)
Large-time RFS versus µch for several values of tch, with ξ/η = 1. The dashed line is the
predicted asymptotic curve for tch →∞.

estimated using the formula

RFS(∞) = RFS(tch)−
N−1∑
k=1

Pk(tch)
1− e−2R0k

1− e−2R0N
, (5.1)

where R0 = (1− µ0/λ)/(1 + µ0/λ).

The usefulness of Eq. (5.1) comes from the fact that the simulations are only reliable

within a limited time scale, so estimating the large-time RFS from the RFS value at a finite

time tch is more accurate than defining RFS(∞) to be the lowest value obtained in the

simulation.

To understand Eq. (5.1), we first note that the probability of recurrence can be decom-

posed into the probability of recurrence before or up to time tch, and the probability of re-

currence at any time after tch, starting from any of the possible tumor sizes k = 1, · · · , N−1

for a patient at risk at time tch:

prec(∞) = prec(tch) +

N−1∑
k=1

Pk(tch) Pr{recurrence |m+ n = k} (5.2)

Since the tumor is acted upon by a single death rate µ0 after time tch, we can use our
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Figure 5.2: (a) Level curves of the large-time RFS fraction in the plane (µch−µ0λ−µ0 , tch), for
ξ/η = 1 (red lines). (b) Corresponding percent changes relative to the best fit for the pa-
tients in the Olaparib trial (red lines), for which tch = 24 months and (µch − µ0) / (λ− µ0) =
1.018 (red circle shown in the figures, with the error bar for the chemotherapy parameter).
The blue lines are the curves along which (µch−µ0λ−µ0 )λtch = constant.

result given by Eq. (3.3) to write Pr{recurrence |m+ n = k} = (1− e−2R0k)/(1− e−2R0N ),

with R0 = (1− µ0/λ)/(1 + µ0/λ), and since RFS(t) = 1− prec(t), we arrive at Eq. (5.1).

For ξ/η = 1, the large-time RFS is plotted against tch for several values of µch, and

against µch for several values of tch in Fig. 5.1. As already noted in Section 3.6, increasing

tch at a fixed death rate µch can only improve large-time RFS up to some fixed value that

depends on µch, i.e., for fixed µch there is an upper bound to the improvement in recurrence

free survival as tch → ∞. This upper bound is represented by the dashed curve in Fig.

5.1b. Also note that for a fixed value of tch (i.e. if chemotherapy is extended by a fixed

amount of time), then the higher the value of µch, the higher the predicted large-time RFS

fraction. In contrast, if µch is increased by a fixed amount, then the longer the duration of

chemotherapy, the lower the relative increase in the RFS fraction, due to saturation toward

the upper bound set by the limiting case tch →∞. It is not clear how much an increase in

the value of (µch − µ0) / (λ− µ0) would be high enough that the Olaparib dose would be

too toxic to be tolerated by patients. Knowledge of the relationship between our parameter

(µch − µ0) / (λ− µ0) and dose, as well as the dose toxicity limit, are necessary to allow our
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(µch − µ0)/(λ− µ0)
0.28 0.52 0.76 1.00 1.24 1.48 1.72 1.96 2.20

t c
h

(m
on

th
s)

4 –57.8 –54.5 –50.0 –45.7 –41.9 –37.7 –34.4 –31.4 –26.6
8 –53.4 –47.9 –41.3 –32.6 –24.8 –17.7 –9.6 –2.1 5.0
12 –53.1 –40.7 –32.0 –21.2 –9.4 –1.2 9.8 19.9 27.0
16 –48.6 –37.4 –24.7 –10.9 1.0 11.9 26.0 36.3 47.0
20 –45.6 –35.8 –21.1 –6.1 8.4 24.4 37.6 50.1 60.7
24 –46.5 –31.6 –17.2 0.0 18.4 32.1 46.3 59.5 71.5
28 –45.8 –30.7 –12.1 5.7 22.5 39.5 52.7 66.7 77.3
32 –44.1 –28.3 –10.2 7.7 29.0 44.9 61.7 73.1 81.8
36 –44.2 –26.1 –5.7 13.1 33.3 50.7 65.3 77.2 84.7
40 –44.8 –24.3 –3.7 15.4 32.8 55.1 68.9 79.3 87.8
44 –43.1 –28.2 –2.8 17.0 34.9 56.9 70.4 82.5 90.1
48 –43.4 –25.1 –2.6 18.7 39.5 59.8 75.4 83.8 91.7

Table 5.1: RFS percent changes for ξ/η = 1, relative to tch = 24 months and (µch−µ0)/(λ−
µ0) = 1.00 (which is close to the parameter value of 1.018 for the Olaparib trial).

model to determine the best possible treatment outcome.

For ξ/η = 1, level curves of the large-time RFS fraction are plotted in the plane

(µch−µ0λ−µ0 , tch) in Fig. 5.2a. For the patients of the Olaparib trial, tch = 24 months and

from the fit with ξ/η = 1 in Chapter 4, we found (µch − µ0) / (λ− µ0) = 1.018. Rela-

tively to these patients, Fig. 5.2b shows level curves for the percent changes in large-time

RFS. Although the relation between the parameter (µch − µ0) / (λ− µ0) and the dose of

chemotherapy (or more specifically, drug concentration in the bloodstream) is unknown,

if we take this parameter to represent dose, Fig. 5.2 shows that it is possible to extend

chemotherapy to longer periods of time and simultaneously reduce the dose, while keep-

ing the predicted long-term RFS unchanged. For the patients in the Olaparib study, this

means following the 0% change level curve in Fig. 5.2b. However, in order to increase

RFS by extending the duration of chemotherapy, the total dose accumulated during the

time tch, which is represented here by the product (µch − µ0)tch, always needs to be in-

creased. This is because the large-time RFS always increases along curves of constant total

dose, (µch−µ0λ−µ0 )λtch = constant, if such curves are followed toward larger values of tch. The

problem with extending this reasoning naively is that increasing total dose is likely to have

significant side effects on the patients by exposing their normal tissues to the drug beyond
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(b) ξ/η = 0.5, λ = 2.25 month−1
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(c) ξ/η = 1, λ = 2.99 month−1
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Figure 5.3: RFS level curves for different choices of fitting parameters ξ/η and λ (in red).

what they can tolerate. Thus, we need to establish a medically determined toxicity limit

for total dose and relate it to our parameters before we can use our analysis to treat real

patients in the clinic.

For the patients of the Olaparib trial, the model predicts an approximate 13% increase

in RFS by extending chemotherapy from 24 to 36 months without changing the dose, and

about a 19% improvement by extending to 48 months. Table 5.1 shows the percent changes

in RFS relative to tch = 24 months and (µch − µ0)/(λ − µ0) = 1.00, which is close to the

reference value of 1.018 for the Olaparib trial. If treatment is extended beyond 48 months,

there is no longer a benefit, because the RFS saturates to the upper bound level represented

by the dashed line in Fig. 5.1b, so that the level curves become essentially vertical at large

times tch. Significantly higher increases in RFS are predicted for the patients in the Olaparib

trial when the dose is increased for a fixed time duration, or if both the dose and the time

are increased, as shown in Table 5.1. However, as noted, we cannot establish what the
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Figure 5.4: Olaparib curves for ξ/η = 0.12 (blue), ξ/η = 1 (yellow) and ξ/η = 5 (red),
with their respective 95% CI error bands for the simulations. On the left, the Olaparib KM
curve (green) is also plotted with its 95% CI error band. The horizontal lines represent the
large-time asymptotic values for the three curves.

best predicted treatment strategy would be, unless the toxicity limit for the parameter

(µch − µ0)/(λ− µ0) (which is related to dose), as well as the toxicity limit for the product

(µch−µ0)tch (which is related to the total dose accumulated within the time tch) are known.

Although the results discussed above refer to the parameter choice ξ/η = 1 and λ =

2.99 month−1, as was mentioned previously, they turn out to be independent of the choice

of the time scale λ for the fitting. Indeed, we see in Fig. 5.3 that the RFS level curves for

the different parameter choices ξ/η = 0.2, ξ/η = 0.5, ξ/η = 5 and ξ/η = 9, with λ given by

the relation shown in Fig. 4.5a, are all very similar.

5.2 Predicting the effect of dormancy on recurrence and cure rates of

patients treated with Olaparib

In Section 5.1, we noted that the large-time RFS for the Olaparib trial is independent of

the choice of parameters λ and ξ/η for the fitting, as long as these parameters are related

as in Fig. 4.5a. For λ = 2.99 month−1, which corresponds to a doubling time of 10.0 days,
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Figure 5.5: Placebo curves for ξ/η = 0.12 (blue), ξ/η = 1 (yellow) and ξ/η = 5 (red),
with their respective 95% CI error bands for the simulations. On the left, the placebo KM
curve (green) is also plotted with its 95% CI error band. The horizontal line represents the
large-time RFS value of 0.187, which is the same for all the curves.

we must choose ξ/η = 1 in order to fit the model to the Olaparib KM data. For a patient

with the same doubling rate of λ = 2.99 month−1, but a ξ/η parameter higher or lower

than the value ξ/η = 1 required by the fit, it is evident that the recurrence or cure rates

would not match those of the Olaparib clinical trial. Our next goal was to investigate how

the RFS fraction and the cured fraction change when only ξ/η changes, while all the other

parameters (including λ) are kept fixed at the values corresponding to the Olaparib KM

data.

For the Olaparib KM curve fit with λ = 2.99 month−1 and ξ/η = 1, changing ξ/η to the

lower value ξ/η = 0.12 or to the higher value ξ/η = 5 (while keeping λ, N0, µ0, µch and tch

all fixed), respectively increases and decreases long-term RFS for Olaparib chemotherapy,

as expected: if tumor foci transition to the dormant state less often, they become more

sensitive to elimination by chemotherapy, thus improving disease prognosis. For ξ/η = 0.12,

ξ/η = 1 and ξ/η = 5, the large-time RFS fractions for Olaparib chemotherapy are 59.2%,

50.3% and 33.2%, respectively. The RFS fraction, as well as the cured fraction for tumors
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0 0.5 1 1.5 2

( 
ch

 - 
0
 )/(  - 

0
 )

0

10

20

30

40

50

t ch
 (

m
o
n
th

s)

0
.2

5

0.25

0.25

0.3

0.3

0.3

0
.3

5

0.35

0.35

0
.4

0.4

0.4

0.45

0.45

0.5

0.5

0.55

0.6

0.652

2

2

2

4

4

4

6

6

8

8

10

12

(c) ξ/η = 5

Figure 5.6: Level curves of the large-time RFS in the plane (µch−µ0λ−µ0 , tch), where for all three
values of ξ/η, the parameters λ, N0 and µ0 were chosen to be the same as those of the
ξ/η = 1 fit.

treated with Olaparib at these three values of ξ/η are shown in Fig. 5.4, and the respective

curves in the absence of chemotherapy (placebo) are shown in Fig. 5.5.

Note that the fraction of patients who get cured as a function of time cannot be de-

termined directly from the clinical trial IPD, because the status of censored patients is

unknown: censored patients are those who, for one reason or another, choose to leave the

trial at some time point for reasons other than recurrence, which means that their subse-

quent history of relapse is unknown. However, not only can our model predict the cured

fraction for a set of parameters that fits the KM curve, but it can also predict how the
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cured fraction changes if one of the parameters from the fit changes, as shown in Figs. 5.4

and 5.5 for different values of ξ/η, with the parameters λ, N0, µ0, µch and tch all held fixed

at the same values as in the ξ/η = 1 fit.

Also note that although the placebo curves for different values of ξ/η shown in Fig. 5.5

are different from one another, their asymptotic values at large times (18.7% RFS fraction)

are all the same, unlike the Olaparib curves shown in Figs. 5.4. This is because in the

absence of chemotherapy, the mean recurrence time (MRT) depends on ξ/η (see Eqs. (3.15)

and (3.16)), whereas the large-time RFS does not (see Eqs. (3.3) and (3.4)). This means

that for different values of ξ/η and all other parameters equal, the amount of benefit from

treatment with Olaparib (which is defined here as the increase in large-time RFS relative

to placebo) is only determined by the Olaparib curves.

Fixing λ, µ0 and N0 to be the same as those of the ξ/η = 1 fit, while changing the ξ/η

parameter to either ξ/η = 0.12 or ξ/η = 5, for each point of the 9× 12 (µch, tch) grid used

for the analysis in Section 5.1, 5000 tumors were simulated, from which level curves of the

large-time RFS were generated. The plots for ξ/η = 0.12, ξ/η = 1 and ξ/η = 5 are shown

in Fig. 5.6. As expected, the large-time RFS fraction that results from increasing the dose

of Olaparib or the chemotherapy duration is significantly higher for the lower parameter

value ξ/η = 0.12 than for the higher value ξ/η = 5, with a considerably greater difference

between ξ/η = 1 and ξ/η = 5 versus ξ/η = 1 and ξ/η = 0.12.

Indeed, Fig. 5.7 shows that increasing the dose of Olaparib (i.e., increasing µch) by

the same amount at a fixed chemotherapy duration tch results in a greater large-time RFS

fraction if ξ/η = 1 changes to the lower value ξ/η = 0.12, and in a significantly smaller RFS

fraction if ξ/η = 1 changes to the higher value ξ/η = 5. Similarly, extending the duration

of chemotherapy at fixed dose results in a better prognosis for ξ/η = 0.12 versus ξ/η = 5:

for the lower parameter value, the large-time RFS saturates more quickly as a function of

tch to the upper bound defined by the limit tch → ∞, as shown in Fig. 5.8. This means

that for a fixed level of response, the duration of chemotherapy can be lower for patients
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Figure 5.7: Large-time RFS versus tch at fixed µch, for λ = 2.99 month−1 and all the other
parameters the same as those of the ξ/η = 1 fit.

with a low transition rate from the active to the dormant state (and a high rate for the

reverse transition) to ensure that there is enough time spent in the chemosensitive vs the

chemoresistant state, so that the tumor foci are killed by chemotherapy. In contrast, if the

transition rate from the active to the dormant state is high (and the rate for the reverse

transition is low), the duration of chemotherapy needs to be longer to ensure that enough

time is spent in the chemosensitive state.

Note that even though the RFS fraction changes to a greater value for ξ/η = 0.12 than

for ξ/η = 5 as the chemotherapy duration tch is increased at fixed µch, the amount of benefit

from extending chemotherapy, defined here as the percent increase in large-time RFS, is in

fact greater for ξ/η = 5 than for ξ/η = 0.12. This is simply because the large-time RFS

saturates toward the upper bound defined by the limit tch →∞ faster for ξ/η = 0.12 than

for ξ/η = 5, so that its rate of change with respect to tch also decreases faster.

In this section, we saw how patients with different transition rates between dormant

and active states respond to treatment, according to our model. Although it is expected

that the transition parameter may in principle vary across patients in a trial, the idea is
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(b) ξ/η = 5

Figure 5.8: Large-time RFS versus µch at fixed tch, for λ = 2.99 month−1 and all the other
parameters the same as those of the ξ/η = 1 fit. The dashed line corresponds to the limit
tch →∞.

to not only indicate overall trends, but also emphasize how the treatment strategy and the

prognosis of individual patients may strongly depend on parameters that could be difficult

to measure in a clinical setting. In the specific case of PARP inhibitor Olaparib, there is

evidence from recent cell-line experiments that at low dosages it could induce senescence of

ovarian cancer cells, instead of apoptosis [102]. If such effects do also occur in vivo, they are

likely patient-specific and our analysis shows that they would strongly affect progression-free

survival prospects.

5.3 Predicted tumor-growth dynamics for the Olaparib study and effects

of dormancy on dynamics

In this section, a few snapshots of the tumor-growth dynamics are shown for the clinical

data fit with ξ/η = 1, and also for the same parameter values as the ξ/η = 1 fit, but with

a higher or lower ξ/η.

For the fit with ξ/η = 1 (for which the doubling time 1/λ is about 10 days), the effect
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Figure 5.9: Time evolution of the tumor-size distribution for Olaparib (red) versus placebo
(green), for ξ/η = 1. The histograms are defined within the reduced sample space of patients
at risk of recurrence, and were generated from simulations with 5000 patients, using the
parameters that fit the clinical KM curves.

of treatment with Olaparib on tumor growth can be seen in Fig. 5.9, where tumor-size

distributions for Olaparib and placebo against time are compared. The upper tail of the

placebo distribution is longer, which causes a higher recurrence rate by diffusion. This effect

is amplified by the higher diffusion rates at the upper end of the distribution, because of

the linear dependence of the diffusion coefficients on the numbers of dormant and active

tumor foci.

For ξ/η = 0.12, ξ/η = 1 and ξ/η = 5 (with all the other parameters fixed by the

ξ/η = 1 fit), the state-space distribution for Olaparib chemotherapy at different time points

is plotted in Fig. 5.10. The color gradient of the heat maps was defined on a logarithmic

scale, for best visualization. In all three cases, we see that the distribution is concentrated

in a relatively small region, with the location of the peak depending upon the parameter

ξ/η. We also see that as early as t = 0.3 month, which is of the order of the doubling time

1/λ = 10 days, the initial sharp peak at m0 = n0 = N0/2 has already shifted to the region



86

defined by the ratio ξ/η.

The effect of the transitions between dormant and active states on growth dynamics

is seen in Fig. 5.11. For ξ/η = 0.12, diffusion is favored in the direction of the y axis

(representing the number of active tumor foci), whereas for ξ/η = 5, diffusion is favored in

the x axis (representing the number of dormant tumor foci). This is because the diffusion

coefficient for transitions between dormant and active states is given by ηx + ξy, and the

state-space distribution for ξ/η = 0.12 is peaked at low values of x and relatively high values

of y, whereas for ξ/η = 5 it is the other way around. It is also seen that the broadening of the

tumor-size distribution happens earlier for ξ/η = 0.12 than ξ/η = 5. Indeed, for ξ/η = 0.12

it essentially follows the broadening of the y-distribution (active tumor foci), whereas for

ξ/η = 5 it follows the broadening of the x-distribution (dormant tumor foci). While the

latter is only caused by diffusion due to transitions between dormant and active states, the

former is also caused by diffusion due to doubling and death events, since only active tumor

foci are chemosensitive. We see that recurrence and cure rates are mainly explained by

diffusion, which evidently happens earlier for ξ/η = 0.12 versus ξ/η = 5. However, even

though recurrence happens first for ξ/η = 0.12, the large-time recurrence-free fraction is

higher for ξ/η = 0.12 than for ξ/η = 5 (see Fig. 5.4).



87

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x = m N (dormant)

y
=

n
N

 (
ac

tiv
e)

1

10

100

1000

count

(a) t = 0.3 month

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x = m N (dormant)

y
=

n
N

 (
ac

tiv
e)

1

10

100

1000

count

(b) t = 1 month

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x = m N (dormant)
y

=
n

N
 (

ac
tiv

e)

1

10

100

1000

count

(c) t = 3 months

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x = m N (dormant)

y
=

n
N

 (
ac

tiv
e)

1

10

100

1000

count

(d) t = 8 months

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x = m N (dormant)

y
=

n
N

 (
ac

tiv
e)

1

10

100

1000

count

(e) t = 24 months

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x = m N (dormant)

y
=

n
N

 (
ac

tiv
e)

1

10

100

1000

count

(f) t = 0.3 month

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x = m N (dormant)

y
=

n
N

 (
ac

tiv
e)

1

10

100

1000

count

(g) t = 1 month

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x = m N (dormant)

y
=

n
N

 (
ac

tiv
e)

1

10

100

1000

count

(h) t = 3 months

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x = m N (dormant)

y
=

n
N

 (
ac

tiv
e)

1

10

100

1000

count

(i) t = 8 months

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x = m N (dormant)

y
=

n
N

 (
ac

tiv
e)

1

10

100

1000

count

(j) t = 24 months

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x = m N (dormant)

y
=

n
N

 (
ac

tiv
e)

1

10

100

1000

count

(k) t = 0.3 month

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x = m N (dormant)

y
=

n
N

 (
ac

tiv
e)

1

10

100

1000

count

(l) t = 1 month

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x = m N (dormant)

y
=

n
N

 (
ac

tiv
e)

1

10

100

1000

count

(m) t = 3 months

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x = m N (dormant)

y
=

n
N

 (
ac

tiv
e)

1

10

100

1000

count

(n) t = 8 months

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x = m N (dormant)

y
=

n
N

 (
ac

tiv
e)

1

10

100

1000

count

(o) t = 24 months

Figure 5.10: Heat maps of the state-space distribution in time, from simulations of Olaparib
chemotherapy. (a–e) ξ/η = 0.12, (f–j) ξ/η = 1, (k–o) ξ/η = 5. The colors represent the
number of patients (within an ensemble of 5000 patients) at risk of recurrence at each state
(m,n) in a logarithmic scale, where m (x axis) is the number of dormant tumor foci and n
(y axis) is the number of active tumor foci.
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Figure 5.11: Histograms from simulations of Olaparib chemotherapy, for ξ/η = 0.12 (red)
versus ξ/η = 5 (green). (a–e) Tumor-size distribution, (f–j) marginal distribution of the
number of dormant tumor foci, (k–o) marginal distribution of the number of active tumor
foci. All the histograms are defined within the reduced sample space of patients at risk of
recurrence.



89

Chapter 6

Conclusions and outlook

In this thesis, we developed a mechanistic mathematical model that describes the stochastic

dynamics of tumor recurrence through a Quasi Birth-and-Death (QBD) process. The main

assumption is the presence of residual tumor foci that can transition between a chemore-

sistant dormant state and a chemosensitive active-growth state. In Chapter 2, we started

with a continuous-time, discrete-state master equation that gives the finite-time transition

probability pm,n(t) from an initial state (m0, n0) to a state (m,n), where m and n are,

respectively, the numbers of dormant and active tumor foci. We then showed that for a

large detectable-tumor size N , the discrete master equation can be well approximated by

a drift-diffusion equation in a continuous state space. Recurrence and cure were built into

the model by imposing absorbing boundary conditions at the cure state (0, 0) and at the

recurrence boundary defined by m+ n = N , respectively.

Using the forward and backward Kolmogorov approaches in the continuum limit, in

Chapter 2 we derived equations for the time-dependent probabilities of recurrence and

cure, along with appropriate boundary conditions. The stationary solution at large times

was obtained analytically in Chapter 3 (see Eq. (3.3)) and was shown to display a phase

transition as a function of µA/λ, where µA is the death rate of active tumor foci and λ

is their doubling rate. We also derived an equation for the mean recurrence time (MRT),

which was solved analytically to leading order in 1/N by dropping the diffusion (second-

derivative) terms in the equation, an approximation that works outside thin boundary layers

along the reflecting barriers (see Eqs. (3.15) and (3.16) for this “outer solution”).

The analytical results were compared to simulations of the discrete-state QBD model.
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The large-time probability of recurrence obtained in simulations matched the analytical

solution, whereas the MRT from the simulations showed a small discrepancy to the leading

order outer solution of the MRT equation, except near the critical point µA/λ = 1, where

the discrepancy was larger due to finite-size effects (finite value of N). In principle, it

is possible to get an improved approximation by solving the MRT equation within the

boundary layers (where the variables have to be rescaled) and constructing a composite

solution by the method of matched asymptotic expansions [90].

In Chapters 4 and 5, we applied the model to recurrence data from a phase 3 ovarian

cancer clinical trial, in which patients were either treated with PARP inhibitor Olaparib

or received placebo (control group), following standard platinum-based chemotherapy. In

Chapter 4, we demonstrated that model parameters can be estimated from the clinical KM

curves for the placebo and Olaparib cohorts as functions of the ratio of the transition rates

to and from dormancy (ξ/η), or equivalently, as functions of the doubling time 1/λ, which

relates the natural time scale of the model to the time scale of the KM curves. To ensure

that the model fits the placebo KM curve, the parameter ξ/η is required to satisfy a linear

relationship with λ, as shown in Fig. 4.5a.

In Chapter 5, we used the parameters from the fits to predict long-term recurrence free

survival (RFS) when either the duration (represented by the parameter tch) or the dose

(represented by the parameter (µch − µ0)/(λ − µ0)) of maintenance therapy with olaparib

are increased. We showed that the level curves in the (µch, tch) plane for large-time RFS

are essentially independent of the choice of time-scale parameter λ for the fits. We then

investigated the influence of the parameter ξ/η on progression-free survival prospects, by

changing it while keeping all the other parameters from the fit constant. We showed that

while large-time RFS is independent of ξ/η in the absence of chemotherapy, it strongly

depends on the latter parameter if patients receive chemotherapy during a finite amount of

time. We predicted how the placebo and olaparib KM curves would change as a function of

the parameter ξ/η, and also how the cured fraction worsens or improves as ξ/η increases or
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decreases, respectively. Finally, we predicted how the effectiveness of increasing the duration

or the dose of olaparib chemotherapy depends on the ratio ξ/η by obtaining large-time RFS

level curves in the (µch, tch) plane for different values of this parameter.

The model proposed in this thesis focused on one aspect of tumor progression that affects

recurrence rates, namely the chemoresistance caused by transitions to a dormant state. In

a more realistic scenario, tumors are heterogeneous and may develop resistance to drugs

through selection and/or acquired mutations over the course of treatment. However, our

model lays a foundation for the development of more accurate, higher-dimensional models

that would account for the intricacies of clonal evolution during treatment and which would

be applicable to individual patients with known genomic signatures. This would require

a combination of data-driven approaches using machine learning methodologies [103] and

mechanistic modeling of the kind that was explored in this thesis, but with a larger number

of variables and parameters. Such models could be developed, for example, using branching

processes [48, 104–106] and adapting/incorporating our approach using absorbing boundary

conditions to study recurrence of tumors, with the aim of finding strategies to minimize

treatment evasion in evolving tumors.

Another possible future direction would be the investigation of a different version of our

model with logistic (rather than exponential) growth. This means limiting tumor growth by

replacing our linear death rates µn = µn by, for example, quadratic rates µn = µn+ α
Kn

2,

as in the so-called stochastic Verhulst model [107]. In our model, we made the assumption

that the deaths of different tumor foci within a given time interval are independent events.

However, this assumption is not strictly correct, because tumor growth is often limited by

blood supply, or in the case of liquid tumors, by limited nutrition available for tumor cells,

which causes growth rates to decrease at sufficiently large tumor sizes [56].
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Appendix A

Structure of the infinitesimal transition matrix

Projecting the operator Q̂ = Q̂bulk + Q̂edge given by Eqs. (2.6) and (2.7) on both sides

between basis vectors 〈m,n| and |m′, n′〉, we get matrix elements with a block-tridiagonal

structure in the direct-product linear space D ⊗A:

Q = Qbulk + Qedge =



Q00 Q01 0 . . . . . . 0

Q10 Q11 Q12 . . . . . . 0

0 Q21 Q22
. . .

...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . . QN−1,N

0 0 . . . . . . QN,N−1 QNN


(A.1)

From the geometry of the state space boundary (see Fig. 2.1b), it follows that the block

matrices Qmm decrease in size as m increases: Qmm is an (N − m + 1) × (N − m + 1)

matrix, since only the subspace spanned by the states |m, 0〉 , . . . , |m,N −m〉 is accessible.

The bulk part of each block Qmm is tridiagonal and acts within the accessible subspace of

A:

Qbulk
mm =



−mη 0 0 0 . . . 0

0 −mγD − γA 2µA 0 . . . 0

0 λ −mγD − 2γA 3µA . . . 0

0 0 2λ −mγD − 3γA

.
.
. 0

.

.

.

.

.

.

.

.

.
.
.
.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
. (N −m)µA

0 0 0 . . . . . . −mγD − (N −m)γA


, (A.2)
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where

γD ≡ µD + η ,

γA ≡ λ+ µA + ξ . (A.3)

The bulk parts of the off-diagonal blocks are the matrices

Qbulk
m,m+1 = (m+ 1)



µD−η

η µD

η
. . .

. . . µD

η


(N−m+1)×(N−m)

(A.4)

Qbulk
m,m−1 =



0 ξ

0 2ξ

. . .
. . .

. . .
. . .

0 (N −m+ 1)ξ


(N−m+1)×(N−m+2)

(A.5)

The edge corrections for the three block matrices above are given by

Qedge
mm =



0 0 . . . 0

...
. . .

. . .
...

...
. . . −(N −m)µA

0 . . . mγD + (N −m)γA


(N−m+1)×(N−m+1)

(A.6)

Qedge
m,m+1 =



0

0 0

0
. . .

. . .
. . .

. . . −(m+ 1)µD

−(m+ 1)η


(N−m+1)×(N−m)

(A.7)
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Qedge
m,m−1 =



0 0

0 0

. . .
. . .

. . .
. . .

0 −(N −m+ 1)ξ


(N−m+1)×(N−m+2)

(A.8)
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Appendix B

Solution of the M/M/1/N queue with absorbing boundary

states

In this appendix, the exact solution of the M/M/1/N queue with absorbing boundary

states is presented. Here we follow Ref. [82], where the solution is derived. This queuing

model is closely related to our QBD model, with the major differences that the state space

is one-dimensional and birth and death are the only possible transitions.

Let us consider a birth-and-death process with a finite number of states 0, 1, 2, · · · , N

representing the size of the queue, where 0 and N are absorbing boundary states and λn

and µn are, respectively, the birth rate from state n to n+ 1, and the death rate from state

n to n− 1. The absorbing boundary conditions are defined by the conditions λ0 = µN = 0.

The allowed transitions are shown in Fig. B.1.

Let X(t) be the stochastic process that represents the size of the queue at time t.

We assume that the waiting time between the transitions n − 1 → n and n → n + 1 is

exponentially distributed with mean 1/λn, and the waiting time between the transitions

n+1→ n and n→ n−1 is exponentially distributed with mean 1/µn. In the limit ξ/λ→ 1

and η/λ → ∞, our model reduces to this process with birth and death rates λn = nλ and

µn = nµ, which is the limiting case in which tumor foci are always active and never become

dormant.

Our goal is to determine the transition probability

pkn(t) ≡ Pr{X(t) = n|X(0) = k}, (B.1)
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Figure B.1: Diagram of allowed transitions in the M/M/1/N queue with absorbing boundary
states.

with initial condition

pkn(0) = δnk. (B.2)

The transition probabilities within a small time interval ∆t are given by

Pr{X(t+ ∆t) = j|X(t) = i} =



λi∆t+ o(∆t2) if j = i+ 1

µi∆t+ o(∆t2) if j = i− 1

1− (λi + µi)∆t+ o(∆t2) if j = i

o(∆t2) otherwise

(B.3)

From these assumptions, the following differential-difference equations can be derived

for the finite-time transition probabilities:

ṗk0(t) = µ1 pk0(t)

ṗk1(t) = −(λ1 + µ1) pk1(t) + µ2 pk2(t)

ṗkn(t) = λn−1 pk,n−1(t)− (λn + µn) pkn(t) + µn+1 pk,n+1(t) (if 1 < n < N − 1)

ṗk,N−1(t) = λN−2 pk,N−2(t)− (λN−1 + µN−1) pk,N−1(t)

ṗk,N (t) = λN−1 pk,N−1(t)

(B.4)

Eqs. (B.4) can be solved by Laplace transformation (which converts them to algebraic

equations in the s-domain), followed by matrix inversion and inverse Laplace transformation.
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The solution is

pn(t) =



π0 + µ1µ2 . . . µk
∑N−1

i=1 Ai e
−αit if n = 0

µn+1µn+2 . . . µk
∑N−1

i=1 Ani e
−αit if 1 ≤ n ≤ k∑N−1

i=1 Bki e
−αit if n = k

λn+1λn+2 . . . λk
∑N−1

i=1 Bni e
−αit if k < n ≤ N − 1

πN + λkλk+1 . . . λN−1
∑N−1

i=1 Bi e
−αit if n = N

(B.5)

where

π0 = 1− πN =

[
1 +

λN−1

µN−1
+
λN−1λN−2

µN−1µN−2
+ · · ·+ λN−1λN−2 . . . λk+1

µN−1µN−2 . . . µk+1

]
β−1, (B.6)

with

β =

[
1 +

λN−1

µN−1
+
λN−1λN−2

µN−1µN−2
+ · · ·+ λN−1λN−2 . . . λ1

µN−1µN−2 . . . µ1

]
. (B.7)

The coefficients Ai, Ani, Bi and Bni are given by

Ai =
PN−k−1(−αi)

(−αi)
N−1∏
j=1
j 6=i

(αj − αi)
, (B.8)

Ani =
PN−k−1(−αi)Qn−1(−αi)

N−1∏
j=1
j 6=i

(αj − αi)
, (B.9)

Bi =
Qk−1(−αi)

(−αi)
N−1∏
j=1
j 6=i

(αj − αi)
(B.10)

and

Bni =
PN−n−1(−αi)Qk−1(−αi)

N−1∏
j=1
j 6=i

(αj − αi)
. (B.11)

In these equations, Pr(θ) and Qr(θ) are polynomials satisfying the recurrence relations

Pr(θ)− (λN−r+1 + µN−r+1 + θ)Pr−1(θ) + λN−r+1µN−r+2Pr−2(θ) = 0 (B.12)

and

Qr(θ)− (λr + µr + θ)Qr−1(θ) + λr−1µrQr−2(θ) = 0, (B.13)
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with initial conditions P0(θ) = Q0(θ) = 1, P1(θ) = µN + θ and Q1(θ) = λ1 + µ1 + θ.

The parameters α1, · · · , αN are the eigenvalues of the matrix

B(0) =



λ1 + µ1 −
√
λ1µ2 . . . . . . . . . . . . . . . 0

−
√
λ1µ2 λ2 + µ2

. . . . . . . . . . . . . . . 0

...
. . .

. . .
. . .

...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

0 0 . . . . . . λN−2 + µN−2 −
√
λN−2µN−1

0 0 . . . . . . −
√
λN−2µN−1 λN−1 + µN−1



(B.14)

The large-time probabilities of absorption by the boundary states π0 and πn are given

by Eqs. (B.6) and (B.7). In connection to our model, for the special case λn = nλ, µn = nµ

we find

πN = 1− π0 =
1− (µ/λ)k

1− (µ/λ)N
, (B.15)

which corresponds to the large-time probability of recurrence of our model in the limit

ξ/λ → 1, η/λ → ∞, for an initial tumor size k. It is easy to show that if N is moderately

large (N = 100, for example, would be sufficient) and k & 3, this solution is essentially the

same as our stationary solution for the continuous version of the QBD model, given by Eq.

(3.3).
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Appendix C

The Kaplan-Meier survivorship curve

A frequent problem in the medical field and in many other fields of study is the statistical

estimation of so-called failure rates (i.e., the frequency at which a certain failure event of

interest occurs in a population) from incomplete data. Depending on the application, the

failure event may be the death of a patient, the relapse of a disease, the failure of a system

or component, etc. In this context, time-to-failure observations are often censored: for

example, in disease-recurrence studies, patients may leave the study or may die from other

causes, so that the recurrence/no-recurrence status of these patients is unknown beyond the

time of the last follow-up. In order to efficiently estimate the fraction P (t) of patients whose

recurrence-free lifespans are greater than t from such incomplete records, the methodology

developed by Kaplan and Meier in their seminal paper [96] is a suitable approach that

makes no assumptions on the form of P (t).

The data that generates a Kaplan-Meier (KM) plot is a list of event times, where each

event is either labeled “1” (representing the event of interest, for example, disease recur-

rence) or “0” (representing censoring or loss of information). In the context of this thesis,

the event of interest is recurrence of the tumor in a patient, and the survivorship function

P (t) should be interpreted as a time-dependent recurrence-free survival probability. In other

words, P (t) is defined as the probability that any evidence of the disease is absent until at

least time t. The graph of P (t), also known as Kaplan-Meier (KM) curve, is estimated from

data using the KM non-parametric methodology, and allows researchers to compare cohorts

of patients in clinical trials or studies (e.g. patients that received a drug versus patients

that only received placebo).
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Naively, it may be tempting to use only observations from patients whose recurrence/no-

recurrence status is known within some pre-defined time interval to estimate the survivorship

function P (t). This is known as a reduced-sample estimate of P (t). The problem with

this approach is that it does not use the data efficiently by extracting all the available

information, which may lead to biased estimates of P (t), unless the reduced sample itself

is a random sample (which mostly likely is not the case). The methodology developed

by Kaplan and Meier circumvents this issue with the so-called product-limit estimate of

P (t), which is the unique non-parametric distribution that maximizes the likelihood of the

observations.

If N is the number of observations (say, recurrence or censoring events) and the observed

event times are sorted in increasing order as t′1 ≤ t′2 ≤ · · · t′N , the recurrence-free survival

function at time t can be estimated as

P̂ (t) =
∏
r

N − r
N − r + 1

, (C.1)

where the product is over all indices r such that each t′r ≤ t is a recurrence time.

The variance of the survival function can be estimated as

V̂ [P̂ (t)] = P̂ 2(t)
∑
r

1

(N − r)(N − r + 1)
, (C.2)

where, once again, the sum is over all indices r such that t′r ≤ t and t′r is a recurrence time.
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Appendix D

Algorithm to reconstruct individual patient data from

Kaplan-Meier curves

In this appendix, the algorithm used in Chapter 4 to reconstruct individual patient data

(IPD) from Kaplan-Meier (KM) curves is outlined. This algorithm was proposed in Ref.

[101]. The IPD tables generated from the KM plots and risk tables for the Olaparib and

placebo cohorts of the ovarian cancer clinical trial are also shown on the pages to follow.

Algorithm 1: Iterative method to reconstruct IPD from Kaplan-Meier plots [101]

Input: Tk: time values extracted from KM plot (k = 1, · · · , n)
Sk: survival function values extracted from KM plot
nriski: number of patients at risk at i-th interval from provided table

(i = 1, · · · , nint)
triski: time at the beginning of i-th interval in risk table
totevents: reported total number of events (if available)

Output: For each time interval i of the risk table, a list of censored patients
c = 1, · · · , ˆncensori and respective censor times ˆcentc.

Define: loweri = min{k : Tk ≥ triski}
upperi = max{k : Tk ≤ triski+1}

Step 1:
Calculate initial guess for number censored on i-th interval:

ˆncensori ← (Sloweri+1
/Sloweri) ∗ nriski − nriski+1

Step 2:

Distribute the c = 1, · · · , ˆncensori censor times ˆcentc evenly over i-th interval:
ˆcentc = Tloweri + c ∗ (Tloweri+1

− Tloweri)/( ˆncensori + 1)

ˆcenk ← number of estimated censor times ˆcentc within [Tk, Tk+1]

(continues...)
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Step 3:

Calculate the number of events d̂k at each time Tk and then the estimated
number of patients at risk n̂k+1 at time Tk+1:

Initialize n̂loweri ← nriski
for k = loweri to upperi do

if i = 1 and k = loweri then
k′ ← 1

d̂k ← 0

ŜKMk ← 1

else

d̂k ← n̂k ∗ (1− Sk/ŜKMk′ )

ŜKMk ← ŜKMk′ ∗ (1− d̂k/n̂k)
end if

n̂k+1 ← n̂k − d̂k − ˆcenk

if d̂k 6= 0 then
Update the last index k′ ≤ k where an event occurred:
k′ ← k

end for

Step 4:

if ˆnriski+1 6= nriski+1 then
Update the estimated number of censor times in the i-th interval:

ˆncensori ← ˆncensori + (n̂upperi+1 − nriski+1)

repeat
Steps 2–4

until ˆnriski+1 matches nriski+1

Step 5:
do Steps 1–4 for i = 1 to nint− 1

Step 6:
Calculate the number censored for the last interval:

ˆncensornint ← min(
Tuppernint − Tlowernint
Tuppernint−1 − Tlower1

∗
nint−1∑
i=1

ˆncensori , nrisknint )

do Steps 2 and 3 for the last interval

(continues...)
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if the total number of events totevents is provided then
Step 7:

Calculate the estimated total number of events up until the beggining of the
last interval:

uppernint−1∑
k=1

d̂k

if
∑uppernint−1

k=1 d̂k ≥ totevents then
for k = lowernint to uppernint do

d̂k ← 0
ˆcenk ← 0
n̂k ← nuppernint−1

end for

else if
∑uppernint−1

k=1 d̂k < totevents then
Step 8:

Update the estimated number of censor times in the last interval:

ˆncensornint ← ˆncensornint + (

uppernint∑
k=1

d̂k − totevents )

repeat
Steps 2, 3 and 8

until
∑uppernint−1

k=1 d̂k = totevents or (
∑uppernint−1

k=1 d̂k < totevents and
ˆncensornint = 0 )

end if
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Table D.1: Generated IPD for the Olaparib cohort. Recurrence status 1 = recurred and
0 = censored.

#
Event Time Rec.

#
Event Time Rec.

#
Event Time Rec.

(months) Status (months) Status (months) Status

1 0.12 1 45 11.03 1 89 24.40 1
2 1.18 0 46 11.11 0 90 24.56 1
3 1.18 0 47 11.19 1 91 24.56 1
4 1.18 0 48 11.77 1 92 24.69 0
5 1.18 0 49 12.01 1 93 24.81 1
6 1.18 0 50 12.18 1 94 24.81 1
7 1.18 0 51 12.18 1 95 24.89 0
8 1.18 0 52 12.50 1 96 24.97 1
9 1.18 0 53 13.08 1 97 25.10 0
10 1.18 0 54 13.24 1 98 25.22 1
11 1.18 0 55 13.45 1 99 25.22 1
12 2.33 0 56 13.45 1 100 25.22 1
13 2.41 1 57 13.90 1 101 25.38 0
14 2.41 1 58 13.90 1 102 25.83 0
15 2.50 0 59 13.98 1 103 25.83 0
16 2.66 1 60 14.55 1 104 26.16 0
17 2.66 1 61 15.21 1 105 26.20 1
18 2.66 1 62 15.95 1 106 26.20 1
19 2.74 0 63 16.11 1 107 26.33 1
20 2.95 0 64 16.11 1 108 26.55 0
21 3.73 1 65 16.61 1 109 26.55 0
22 3.93 0 66 16.77 1 110 26.94 1
23 4.14 1 67 16.93 1 111 27.11 0
24 4.55 1 68 18.49 1 112 27.27 1
25 4.63 0 69 18.74 1 113 27.27 1
26 4.71 1 70 19.19 0 114 27.68 1
27 5.33 0 71 19.39 1 115 27.68 1
28 5.53 1 72 19.39 1 116 27.84 1
29 5.53 1 73 19.39 1 117 28.21 0
30 5.61 1 74 20.30 1 118 28.58 1
31 5.61 1 75 20.30 1 119 28.66 1
32 6.06 1 76 20.50 0 120 28.66 1
33 7.62 0 77 22.02 1 121 29.24 0
34 7.91 1 78 22.02 1 122 29.48 1
35 7.99 1 79 22.02 1 123 30.06 1
36 7.99 1 80 22.10 1 124 30.30 1
37 8.24 1 81 22.22 0 125 31.04 1
38 8.24 1 82 22.35 1 126 31.90 0
39 8.40 1 83 22.35 1 127 32.77 1
40 8.40 1 84 22.35 1 128 33.09 1
41 9.47 1 85 22.76 0 129 33.18 0
42 9.63 1 86 22.84 1 130 33.42 0
43 10.08 0 87 23.09 0 131 33.42 0
44 10.95 1 88 24.03 0 132 33.75 0
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#
Event Time Rec.

#
Event Time Rec.

#
Event Time Rec.

(months) Status (months) Status (months) Status

133 33.75 0 177 39.49 0 221 43.76 1
134 34.00 0 178 39.49 0 222 44.04 0
135 34.08 1 179 39.49 0 223 44.58 0
136 34.32 0 180 39.49 0 224 45.03 0
137 34.32 0 181 39.49 0 225 45.89 0
138 34.32 0 182 39.94 0 226 45.89 0
139 34.69 0 183 39.94 0 227 45.89 0
140 34.82 1 184 39.94 0 228 45.89 0
141 35.02 0 185 39.94 0 229 45.89 0
142 35.02 0 186 39.94 0 230 45.89 0
143 35.02 0 187 39.94 0 231 45.89 0
144 35.39 0 188 40.27 0 232 45.89 0
145 35.39 0 189 40.27 0 233 45.89 0
146 35.64 0 190 40.27 0 234 46.71 0
147 35.72 1 191 40.52 0 235 46.71 0
148 35.84 0 192 40.52 0 236 46.71 0
149 36.09 0 193 40.52 0 237 47.00 0
150 36.29 0 194 40.76 0 238 47.00 0
151 36.38 1 195 40.76 0 239 47.20 0
152 36.38 1 196 40.76 0 240 47.37 0
153 36.58 0 197 40.89 1 241 47.65 0
154 36.58 0 198 41.01 0 242 47.65 0
155 36.58 0 199 41.01 0 243 47.65 0
156 36.95 0 200 41.01 0 244 48.76 0
157 36.95 0 201 41.01 0 245 48.76 0
158 37.28 0 202 41.26 0 246 48.76 0
159 37.28 0 203 41.26 0 247 48.76 0
160 37.28 0 204 41.26 0 248 48.76 0
161 37.73 0 205 41.46 0 249 48.76 0
162 37.73 0 206 41.46 0 250 48.76 0
163 37.73 0 207 41.54 1 251 48.76 0
164 37.73 0 208 41.63 0 252 48.76 0
165 38.18 0 209 41.63 0 253 48.76 0
166 38.18 0 210 41.79 0 254 48.76 0
167 38.18 0 211 41.79 0 255 48.76 0
168 38.47 0 212 41.91 0 256 48.76 0
169 38.47 0 213 41.95 1 257 51.02 0
170 38.71 0 214 42.04 0 258 53.81 0
171 38.71 0 215 42.04 0 259 53.81 0
172 38.96 0 216 42.12 1 260 53.81 0
173 39.08 1 217 42.45 0
174 39.16 0 218 42.98 0
175 39.16 0 219 43.39 0
176 39.49 0 220 43.68 0
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Table D.2: Generated IPD for the placebo cohort. Recurrence status 1 = recurred and 0 =
censored.

#
Event Time Rec.

#
Event Time Rec.

#
Event Time Rec.

(months) Status (months) Status (months) Status

1 1.22 0 45 8.48 1 89 22.18 1
2 2.33 1 46 8.48 1 90 22.84 0
3 2.50 1 47 8.57 1 91 24.89 1
4 2.66 1 48 8.73 1 92 25.05 1
5 2.66 1 49 8.81 1 93 27.76 1
6 2.66 1 50 9.22 1 94 30.39 1
7 2.66 1 51 9.30 1 95 30.55 1
8 2.66 1 52 10.70 1 96 30.63 1
9 2.70 0 53 10.95 1 97 30.63 1
10 2.74 1 54 10.95 1 98 30.63 1
11 2.82 1 55 11.03 1 99 31.49 0
12 2.82 1 56 11.03 1 100 32.48 0
13 2.91 1 57 11.11 1 101 33.50 1
14 4.22 1 58 11.11 1 102 34.65 0
15 4.46 1 59 11.19 1 103 34.65 0
16 4.96 1 60 11.27 1 104 37.61 0
17 5.08 0 61 11.40 1 105 37.61 0
18 5.37 1 62 11.40 1 106 38.67 1
19 5.37 1 63 11.40 1 107 38.84 1
20 5.45 1 64 11.40 1 108 39.86 0
21 5.45 1 65 11.60 1 109 39.86 0
22 5.53 1 66 11.93 1 110 41.01 0
23 5.53 1 67 13.82 1 111 41.30 0
24 5.53 1 68 13.98 1 112 41.54 0
25 5.53 1 69 13.98 1 113 41.63 1
26 5.61 1 70 13.98 1 114 41.63 1
27 5.78 1 71 13.98 1 115 41.75 0
28 5.78 1 72 13.98 1 116 43.14 0
29 6.52 1 73 14.14 1 117 43.14 0
30 6.91 0 74 14.55 1 118 43.14 0
31 7.54 1 75 14.80 1 119 43.14 0
32 7.66 1 76 15.38 1 120 43.14 0
33 7.75 1 77 16.52 1 121 43.14 0
34 7.91 1 78 16.69 1 122 43.14 0
35 8.07 1 79 18.33 1 123 43.14 0
36 8.16 0 80 19.11 0 124 43.14 0
37 8.24 1 81 19.23 1 125 43.14 0
38 8.24 1 82 19.31 1 126 45.44 0
39 8.32 1 83 19.39 1 127 47.53 0
40 8.40 1 84 20.34 0 128 47.86 1
41 8.40 1 85 21.28 1 129 47.86 1
42 8.40 1 86 22.02 1 130 48.88 0
43 8.40 1 87 22.02 1 131 52.46 0
44 8.40 1 88 22.02 1
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