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In many real-life applications, three-dimensional (3D) surface topography contains rich 

information about products and manufacturing processes. Different faults commonly 

appear on the topography of finished products in local and global patterns during 

manufacturing. Such faults are likely to cause changes in the variance or autocorrelation of 

the topographic values. Monitoring such changes is challenging due to the unique 

properties of the topographic surfaces. In particular, the topographic values are spatially 

autocorrelated with their neighbors and their locations are randomly changing from one 

surface to another under normal process behavior. The existing online monitoring 

approaches for the 3D surface topography lack the detection and diagnoses of changes in 

the topographic surfaces. In this dissertation, we investigate and develop four different 

online monitoring approaches to accurately characterize, detect, and diagnose various 

changes in topographic surfaces. 

In the first approach, we develop a multi-level spatial randomness approach for online 

monitoring of global changes the surfaces. We propose a multi-level surface thresholding 



iii 

 

algorithm for improving the representation of surface characteristics in which an observed 

surface topography is sliced into different levels in reference to the characteristics of 

normal surfaces. The spatial statistical dependencies of surface characteristics at each 

surface level are accurately captured through a proposed spatial randomness (SR) profile. 

We then develop an effective monitoring statistic based on the functional principal 

component analysis for identifying anomaly surfaces with global changes based on their 

SR profiles.  

In the second approach, we propose a multi-label separation-deviation surface model for 

effective monitoring of local variance changes in 3D topographic surfaces. The approach 

improves the representation of local topographic changes through a developed multi-label 

separation-deviation surface (MSS) model, which labels the important surface 

characteristics and smoothes out the noisy characteristics. We also propose two effective 

features for monitoring changes in surface characteristics. The MSS feature is introduced 

for capturing deviations within the label assignments, and the generalized spatial 

randomness feature is derived for quantifying deviations between the label assignments. 

These two features are integrated into a single monitoring statistic to detect local variations 

in topographic surfaces. 

In the third approach, we develop a novel approach based on graph theory for accurate 

monitoring of local autocorrelation changes in 3D topographic surfaces. We enhance the 

representation of surface characteristics by proposing an in-control multi-region surface 

segmentation algorithm, which segments the observed surface pixels into clusters 

according to the information learned from in-control surfaces. The local and spatial 

topographic characteristics are accurately described through a developed maximum local 
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spatial randomness feature. After representing the surface as a spatially weighted graph, 

we monitor its connectivity through the developed spatial graph connectivity statistic for 

accurate detection of local autocorrelation changes in topographic surfaces.  

In the fourth and final approach, we investigate a generalized spatially weighted 

autocorrelation approach for fault detection and diagnosis in 3D topographic surfaces. We 

develop two algorithms to identify and assign spatial weights to the suspicious topographic 

regions. The normal surface “hard” thresholding algorithm initially enhances the 

representation of surface characteristics through binarization, followed by the normal 

surface connected-component labeling algorithm, which utilizes the obtained binary results 

to identify and assign spatial weights to the regions with suspicious characteristics. We 

also develop a generalized spatially weighted Moran (GSWM) index, which exploits the 

assigned weights to effectively monitor and detect changes in the spatial autocorrelation of 

each identified region. After an anomaly surface is detected based on its GSWM index, we 

accurately extract different fault information such as fault size, type, location, magnitude, 

and the number of faults.  

The proposed approaches are validated for their effectiveness, efficiencies, and 

performance for online monitoring and diagnosis of various changes in 3D topographic 

surfaces.  
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CHAPTER 1                                                                                                                                                                                                               

INTRODUCTION 

1.  

1.1 Importance of Surface Topography 

Surface topography, also known as surface roughness, or surface finish, is a key quality 

characteristic of products in many industries. For instance, in the biomedical industry, 

when the surface topography of implanted artificial organs joints, such as hip joint, knee 

replacement, and spine disc, is “rough,” it may result in the acceleration of their wear rates, 

which may cause unexpected failure (Scholes and Unsworth, 2009, Rengier et al., 2010). 

Moreover, in the aerospace industry, titanium alloys, which are commonly used in the 

manufacture of aircraft engines and airframes, require extremely “smooth” surfaces for 

maintaining high strength and toughness (Ramesh et al., 2008, Aspinwall et al., 2008, 

Zhang et al., 2017, Liang et al., 2019). Another example from the automotive industry is 

the piston rings, which are designed to seal the combustion chamber for minimizing the 

fuel consumption in a car engine. In practice, the piston rings require “smooth” surfaces 

due to the exposure of lubricants during the combustion process (Brown and Blunt, 2008, 

Söderfjäll et al., 2017). However, when the surface topography of the piston rings is 

“rough”, it results in abrasive wear, i.e., the erosion of the material from its original form, 

which may result in a lower performance of the car engine. Figure 1.1 shows the three-

dimensional (3D) surface topography of unworn and worn piston rings measured by atomic 

force microscope (AFM). Note that the unworn piston ring has a “smooth” surface as 

shown in Figure 1.1 (a), while the worn piston ring has a “rough” surface as shown in 

Figure 1.1 (b). 
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Figure 1.1 3D surface topography of (a) unworn piston ring with a “smooth” surface, and (b) worn 

piston ring with a “rough” surface (Söderfjäll et al. , 2017). 

 

Surface topography also has a major impact on the strength of the material and potential 

crack propagation. For example, in additive manufacturing processes, studies of as-built 

3D printed parts show that the surface roughness can decrease the fatigue strength of 

finished parts significantly (Wycisk et al., 2014, Jomaa et al., 2014). In particular, Wycisk 

et al. (2014) study the effect of the surface roughness on the fatigue life of laser additive 

manufactured titanium alloy Ti-6Al-4V. This study shows that after smoothing the surface 

roughness of as-built parts through a post-processing technique such as polishing, a 

significant enhancement in the part properties is achieved. More specifically, polishing can 

introduce compressive residual stresses that improve crack propagation resistance. 

Polishing is also found to improve the fatigue strength (endurance limit is improved from 

210 MPa for non-polished parts to 500 MPa for polished parts) (Wycisk et al., 2014). 

Another importance of surface topography is found in the assembly processes where the 

surface topography has a strong influence on the fitting accuracy of the system 

components. More specifically, when the finished components contain surface defects, 

such as ridges, pits, and scratches, they are likely to be assembled inappropriately, which 

may result in a significant reduction in the functional integrity of system components (Yang 
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et al., 2018). For example, mating surfaces, which are welded together for assembling the 

vehicle frames in the automotive industry, demand highly “smooth” surfaces (Brown and 

Blunt, 2008, Yang et al., 2018). This is because inappropriate assembly can accelerate the 

wear rate between the welded surfaces, which may yield a low performance of the vehicle 

frame.  

Surface topography not only holds information about the surface properties of a product 

but also holds important information about the manufacturing processes. Particularly, 

monitoring surface defects, such as cracks, scratches, and bubbles, may assist in detecting 

shifts in the manufacturing processes and subsequently in identifying the assignable causes 

of process shifts, such as operator error, tool wear, and defective material (Korkut and 

Donertas, 2007). Appropriate corrective actions can accordingly be implemented to 

eliminate these causes. Krolczyk et al. (2016) show that the shift in the process parameters 

in the milling operation, such as the feed rate and cutting speed, affects the structure of the 

surface topography of finished products. In particular, Figure 1.2 displays the 3D surface 

topography of two high-strength steels after being exposed to two milling process 

conditions: the normal milling process where the process parameters do not experience any 

shift from the nominal values, and the abnormal milling process where the process 

parameters are shifted. It is observed that the structure of 3D surface topography is 

considerably changed as shown in Figure 1.2 (a and b). 
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Figure 1.2 3D surface topography of two high-strength steels machined via the milling process 

with (a) no shift in the process parameters, and (b) a shift in the process parameters (Krolczyk et al. , 

2016). 

 

1.2 Research Background and Challenges 

The characteristics of topographic images are typically composed of a complex structure, 

which makes the monitoring of surface changes challenging. In particular, topographic 

images of units produced sequentially using the same manufacturing process exhibit high 

randomness in the locations of their characteristics such as peaks and valleys, although the 

process operates under normal conditions (Bui and Apley, 2018a, Bui and Apley, 2018b). 

This makes the monitoring and diagnoses of changes in the topographic image of the new 

units challenging. Figure 1.3 illustrates the random behavior among image characteristics. 

In particular, we generate three samples of topographic images with a fixed setting using 

the Gaussian random model, which is effective in simulating topographic images similar 

to those obtained during conventional manufacturing processes such as milling, cutting, 

and turning processes (Garcia and Stoll, 1984, Rao et al., 2015b). We notice that the image 

characteristics in terms of peaks (red color) and valleys (blue color) occur randomly in 
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different locations for all the three images.  

 

Figure 1.3 3D views of three generated topographic images along with their corresponding 2D 

views. 

 

Besides, topographic surfaces show high autocorrelation among their close neighboring 

pixels than the remote neighbors (Jeong et al., 2008, Alqahtani et al., 2020c, Alqahtani et 

al., 2020b). Subsequently, topographic pixels located at nearby locations have similar 

values (or colors) since these pixels share similar characteristics as shown earlier in Figure 

1.3. In addition, it is expected that the characteristics of the neighborhood of each pixel to 

be statistically similar under normal process behavior (Bui and Apley, 2018a, Alqahtani et 

al., 2020c, Alqahtani et al., 2020d). Thus, any change in the characteristics between the 

topographic values and their neighbors implies the appearance of surface faults (or 

changes) (Jeong et al., 2008). Therefore, it is critically important to analyze the spatial 

behavior embodied in the structure of the topographic values for the effective detection of 

surface faults.  
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Another challenge in surface monitoring is that there are a variety of surface defects that 

can be observed in practice, such as broken edges, uneven surfaces, burrs, micro-cracks, 

and scratches (Yang et al., 2018). These defects may cause two major changes to the 

characteristics of the topographic values: the variance and autocorrelation changes. The 

variance change is defined as the deviation of topographic values from the reference plane 

(or zero plane), whereas the autocorrelation change is defined as the deviation of the 

autocorrelation structure between the topographic values from the reference structure 

(Jiang et al., 2007, Jiang and Whitehouse, 2012). Examples of defects that cause the 

variance change include cracks and pinholes that emerge on the surface topography of 

manufactured metals (Jolic et al., 1994). In addition, examples of defects related to the 

autocorrelation change are scratches, pits, and ridges that frequently arise on the surface 

topography of semiconductor wafers (Rao et al., 2015b).  

Figure 1.4 shows examples of normal and two anomaly surfaces with variance and 

autocorrelation changes, respectively. In Figure 1.4 (b and e), we observe that the variance 

change mainly impacts the magnitude of topographic values on the z -axis in a way that 

the topographic values show more deviations from the reference plane, which results in 

valleys and peaks with darker colors compared to the ones of the normal surface. Moreover, 

in Figure 1.4 (c and f), we notice that the autocorrelation change mainly affects the structure 

of topographic values on the x -axis and the y -axis such that the topographic values tend 

to be more similar to their neighbors, which yields wider valleys and peaks. In general, 

characterizing and detecting the autocorrelation change is more difficult than the variance 

change. This is because the autocorrelation change does not impact the magnitude of 

topographic values, which can be within normal values, but it mainly impacts the spatial 
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relationships between the topographic values, which are difficult to detect. Since these two 

changes can be observed during manufacturing, developing effective approaches for 

detecting these two changes is needed. 

 
Figure 1.4 Examples of 3D topographic surfaces and their corresponding 2D plan views of (a and 

d) normal, and two anomaly surfaces with (b and e) variance change, and (c and f) autocorrelation 

change. 

 

Finally, the locality of surface faults (or change) is a critical issue that should also be 

addressed in monitoring 3D topographic surfaces (Bui and Apley, 2018a, Alqahtani et al., 

2020c, Alqahtani et al., 2020d). In practice, surface faults may occur in a local area where 

a small portion of a surface contains surface faults, i.e., less than say 10% of the total 

surface area is changed from the normal surface characteristics, or in a global area where 

a large portion of the surface is contaminated with faults, i.e., 10% or more of the total 

surface area is changed. In general, identifying local faults is more difficult than global 

faults since most of the topographic values of a surface with local faults do not experience 

a significant change from the norm, which makes the characteristics of local faults to be 
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dominated by the normal characteristics during the assessment process. Figure 1.5 shows 

the plan view of three simulated anomaly surfaces that include two local faults with 1% 

and 5% changes and one global fault with a 10% change. Therefore, detecting both local 

and global changes is important for effective monitoring of changes in topographic 

surfaces. 

 
Figure 1.5 Examples of anomaly surfaces with two local faults with (a) 1%, and (b) 5% 

changes, and one global fault with (c) 10% change. 

 

1.3 Problem Description  

Various surface monitoring approaches have been proposed for assessing the quality of 

products based on their topographic images in the last two decades. Simple monitoring 

approaches such as the average surface roughness and the root mean square roughness are 

commonly used to detect changes in topographic surfaces. In addition, advanced 

monitoring approaches based on signal processing, image processing, graph theory, and 

machine learning have recently been developed for assessing the characteristics of 3D 

surface topography. Due to the complex characteristics of topographic surfaces discussed 

in Section 1.2, the existing monitoring approaches lack the ability to detect local and global 

changes in the variance and autocorrelation of topographic values. Therefore, in this 
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dissertation, we overcome these limitations by developing different monitoring approaches 

based on various statistical theories for accurate and efficient detection and diagnosing of 

different forms of changes in 3D topographic surfaces.  

In this dissertation, the input data are a 3D topographic surface (or image), which is 

composed of a finite number of pixels that are measured from different sites of the surface. 

In particular, the 3D topographic surface (or image) can be expressed as 

{ : 1,2,..., }iZ z i M= = , where iz  is the topographic value (or height) of the pixel i  and M  

is the total number of the surface pixels. Therefore, for the given 3D surface topography of 

N  normal products 
( )jZ , 1,2,...,j N= ,  the goal of this dissertation is to determine 

whether the 3D surface topography of a new product 
( )newZ  is an anomaly. In addition, 

after 
( )newZ  is identified as an anomaly, we extract different fault information, such as fault 

size, fault type, fault magnitude, fault location, and the number of surface faults. 

1.4 Proposed Approaches for Online Monitoring of 3D Surface Topography  

In this dissertation, we develop four online monitoring approaches based on different 

statistical theories for detecting various forms of surface changes (or faults) in 3D 

topographic surfaces. The proposed approaches are briefly stated in the following sections.  

1.4.1 Multi-level Spatial Randomness Approach 

We develop a multi-level spatial randomness approach for online monitoring of global 

changes in 3D topographic surfaces. We propose a multi-level surface thresholding 

algorithm for enhancing the representation of surface characteristics. The algorithm 

efficiently slices the 3D surface topography of a new product into different levels in 

accordance with the characteristics of normal products. The characteristics of the 
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topographic values are then accurately quantified at each surface level through a developed 

spatial randomness (SR) profile. We then present an effective monitoring statistic based on 

the functional principal component analysis for detecting anomaly surfaces with different 

patterns of global changes. 

1.4.2 Multi-label Separation-deviation Surface Model 

We propose a multi-label separation-deviation surface (MSS) model for effective 

monitoring of local variance changes in 3D topographic surfaces. The MSS model is 

effective in enhancing the representation of local topographic defects by segmenting the 

topographic values into predefined labels. The segmentation results are obtained by 

minimizing the deviation of the topographic values from their expected values and the 

separation between the topographic values. This results in an effective representation of 

surface characteristics where the critical surface characteristics are labeled, and the noisy 

characteristics are smoothed out. We introduce two effective features for capturing changes 

in surface characteristics. The MSS feature is presented for quantifying variations within 

the label assignments, and the generalized spatial randomness (GSR) feature is derived for 

quantifying deviations in the spatial autocorrelation between the label assignments. The 

MSS and GSR features are integrated into a single monitoring statistic to detect local 

variations in topographic surfaces.  

1.4.3 Spatially Weighted Graph Theory-based Approach  

We present a novel approach based on graph theory for monitoring local autocorrelation 

changes in 3D topographic surfaces. The representation of surface characteristics is 

improved by proposing an in-control multi-region surface segmentation algorithm, which 

segments the observed surface pixels into clusters according to the information learned 
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from in-control surfaces. The algorithm also divides the surface into spatial regions for an 

effective description of spatial topographic characteristics. The local surface characteristics 

among obtained clusters are effectively captured through a developed maximum local 

spatial randomness feature. We then represent the relationships between the characteristics 

of the new and in-control surfaces as a spatially weighted graph network and subsequently 

monitor its connectivity through the spatial graph connectivity statistic for accurate 

detection of local autocorrelation changes in topographic surfaces. 

1.4.4 Generalized Spatially Weighted Autocorrelation Approach 

We investigate a generalized spatially weighted autocorrelation approach for accurate fault 

detection and diagnosis in 3D topographic surfaces. The proposed approach utilizes the 

information learned from normal surfaces to identify and assign spatial weights to the 

regions with suspicious characteristics of new surfaces. We develop two algorithms to 

obtain the weight assignments: the normal surface “hard” thresholding algorithm, which 

improves the representation of surface characteristics through binarization, and the normal 

surface connected-component labeling algorithm, which exploits the obtained binary 

results to identify and assign spatial weights to the suspicious topographic regions. We also 

develop the GSWM index, which exploits the assigned spatial weights to efficiently 

describe and monitor the spatial autocorrelation structure of each identified region. When 

an anomaly surface is detected based on its GSWM index, we accurately extract different 

fault information such as fault location, type, size, magnitude, and the number of faults.  

1.5 Dissertation Organization  

This dissertation is organized as follows. A comprehensive review, which covers the 

existing surface metrology systems, the input topographic data structure, the surface 
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simulation model, and the existing surface monitoring approaches, is provided in Chapter 

2. In Chapter 3, the multi-level spatial randomness approach is introduced for monitoring 

global surface changes. Chapter 4 presents the multi-label separation-deviation surface 

model for monitoring local variance changes. In Chapter 5, the spatially weighted graph 

theory-based approach is introduced for monitoring local autocorrelation changes. Chapter 

6 presents the generalized spatially weighted autocorrelation approach for fault detection 

and diagnosis. Finally, in Chapter 7, we discuss conclusions and recommendations for 

future research. 
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CHAPTER 2                                                                                                                

LITERATURE REVIEW 

2.  

In this chapter, we present a comprehensive review of the research being addressed in this 

dissertation. We review the recent and common surface metrology systems that are applied 

for measuring the surface topography of machined parts in Section 2.1. In Section 2.2, we 

explain the structure of topographic data. We then discuss the simulation model commonly 

used to generate topographic surfaces in Section 2.3. Finally, in Section 2.4, we review the 

existing monitoring approaches that are implemented for assessing the quality of products 

based on their topographic surfaces.  

2.1 Surface Metrology Systems 

With the emergence of modern technologies, various surface metrology systems have been 

developed by adopting a wide range of principles and scientific theories. Surface metrology 

systems are categorized into two types: contact-type and non-contact-type techniques. In 

the contact-type technique, the surface measurements are obtained by a direct contact 

between the surface of a workpiece and a detector tip of the measurement tool. For 

example, the stylus profilometer is one of the most popular tools for measuring the surface 

topography of products. The stylus profilometer contains a stylus tip, which traces the 

target surface and electrically identifies the surface measurements based on the observed 

vertical motion of the stylus tip (Ali, 2012). In addition, scanning probe microscopes 

(SPMs), such as atomic force microscope (AFM) and scanning tunneling microscope 

(STM), are a family of the contact-type microscopes that can obtain the 3D images of 

surface topography at the nanoscale level. More Specifically, the AFM has a small probe, 
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which detects the surface measurements by generating a force between the target surface 

and the probe (Ali, 2012). Similarly, the STM uses a physical probe that obtains the surface 

measurements by producing a tunneling current between the target surface and the probe 

(Townsend et al., 2016).  

Non-contact-type surface metrology systems have also been increasingly applied for 

measuring the topography of many manufactured products. These systems are mainly 

designed to obtain the surface measurements by observing the reflective properties of the 

measured parts without physically touching their surfaces (Blunt and Jiang, 2003). For 

instance, the 3D laser (or optical) microscope is one of the most popular non-contact-type 

metrology systems in which a laser beam is emitted to the surface sample, and the reflected 

beam is then transformed into surface measurements (Rao et al., 2015b, Tootooni et al., 

2016). In addition, the scanning electron microscope (SEM) uses the reflection of the 

electron beam for obtaining the measurements of the target surface (Townsend et al., 

2016). Another common non-contact-type metrology system is the white light 

interferometer (WLI), which uses the reflection of white light waves for detecting the 

surface measurements (Ali, 2012).  

Each type of the aforementioned metrology systems has its advantages and drawbacks. In 

particular, the contact-type metrology systems have some advantages in terms of its 

capability of long-distance and high-resolution measurements. However, the use of these 

systems may cause damage to the surface of the measured workpiece, such as scratches 

and holes. In addition, when the width of the surface characteristics such as peaks and 

valleys is smaller than the radius of the detector tip, these characteristics can be ignored 

and misidentified (Bhushan, 2000). More important, these systems are generally time-
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consuming due to the setup time for positioning the detector tip and the time for processing 

the surface measurements, which makes them inappropriate to work under the online 

monitoring scheme (Townsend et al., 2016). In contrast, the non-contact-type metrology 

systems are more efficient in acquiring the surface measurements due to the utilization of 

advanced vision sensors, which makes them more suitable to implement in the online 

monitoring environment (Townsend et al., 2016). Besides, the measured surface of a 

workpiece is protected from any damages since these systems do not physically contact 

with the workpiece. However, the non-contact-type systems show some drawbacks in 

terms of its high cost and its limitation in measuring the surface characteristics at the 

nanoscale level (Ali, 2012). Table 2.1 summarizes the advantages and drawbacks of the 

foregoing surface metrology systems. 

Table 2.1 Summary of the advantages and drawbacks of surface metrology systems 

N Type Metrology systems Advantages Drawbacks 

1 Contact Stylus profilometer 

Clear wave profile- 

capable of long-

distance- low cost 

Time-consuming- 

can cause scratches on 

the measured surface- 

tip wear 

2 Contact 
AFM- 

STM 

Capable of 3D 

measurements- 

high resolution 

Time-consuming- 

not suitable for 

measuring large 

sample areas- 

difficulties in 

positioning the tip 

3 Non-contact 

3D laser 

microscope- 

3D optical 

microscope 

Capable of 3D 

measurements- 

efficient 

measurement 

Limited to certain 

surfaces 

4 Non-contact WLI 

Capable of 3D 

measurements- 

efficient 

measurement 

Limited to certain 

surfaces- 

sensitive to vibrations 

5 Non-contact SEM 

Easy operation- 

efficient 

measurement 

Expensive- 

required more 

maintenance 
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2.2 Topographic Data Structure 

In this dissertation, the input data are a 3D topographic surface (or image), which is 

expressed as { ; 1,2,..., }iZ z i M= = , where iz  represents the height information of the pixel 

i  and M  is the total number of the surface pixels. Each pixel, iz Z , can be a positive or 

negative value where the positive value represents the positive deviation from the reference 

plane (i.e., zero plane), while the negative value represents the negative deviation. Figure 

2.1 illustrates an example of a generated 3D topographic surface Z . 

 
Figure 2.1 Sample of 3D surface topography associated with valleys (blue color), the zero or 

reference plane (green color), and peaks (red color). 

 

Some existing approaches consider a simple representation of the original topographic 

image, such as grayscale or binary images. In particular, the surface image can be converted 

to a grayscale image { ; 1,2,..., }iG g i M= = , where 
ig  is the grayscale intensity level of 

the pixel i . The grayscale image is obtained by mapping the topographic values into the 

grayscale intensity scale, which ranges from “0” (black color) that represents the valley 

characteristics to “255” (white color) that represents the peak characteristics. Furthermore, 

the surface image Z  can also be converted to a binary image { ; 1,2,..., }iB b i M= = , where 
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ib  is the assigned binary value of the pixel i . The binary image B  is obtained by applying 

the edge detection filters, such as a Canny filter, in which each pixel 
iz  is assigned either 

“0” (black color) that displays the valley characteristics or “1” (white color) that displays 

the peak characteristics. Figure 2.2 shows the top view of a generated 3D topographic 

surface and its corresponding grayscale and binary images. 

 
Figure 2.2 Example of (a) a generated topographic surface Z , and its corresponding (b) grayscale 

image G , and (c) binary image B . 

 

2.3 Surface Simulation Model 

The Gaussian random model is commonly used for simulating topographic surfaces similar 

to those obtained during conventional manufacturing processes such as milling, planning, 

and cutting processes (Garcia and Stoll, 1984). The simulation model is explained as 

follows. An uncorrelated Gaussian set is generated { ; 1,2,..., }iQ q i M= = , where M  is the 

total number of the generated pixels and 
iq  is an independent and identically distributed 

random variable that has a Gaussian distribution with a mean of zero and a defined standard 

deviation  . The Gaussian autocorrelation set C  is then obtained based on the Gaussian 



18 

 

 

 

autocovariance function { ; 1,2,..., }iC c i M= = , where 
ic  represents the magnitude of the 

autocorrelation of the pixel i , which is defined as  

( )2 2 2exp [( ) ( ) ] / [2 ] ,i i j i jc x x y y = − − + −   

where   is a scale parameter, ( , )i ix y  is the coordinate of the pixel i , and ( , )j jx y  is the 

coordinate of the thj  neighbor of the pixel i . Next, we convolute the set Q  with the set C  

using the fast Fourier transforms (FFT) algorithm to attain the Gaussian autocorrelated 

surface as shown in Equation (2.1) 

 ( )
1

(2 ) / ( ) ( )Z L M F F F CG 
−

=        , (2.1) 

where L  is the length of the topographic surface (e.g., 250 m ) and (.)F  is the FFT of 

given set. The FFT is applied due to its efficiency in computing convolution. Thereby, the 

Gaussian autocorrelated surface is obtained { ; 1,2,..., }iZ z i M= = , where M  is the size of 

simulated surface values (e.g., M = 256 256 ). Note that   controls how strongly the 

topographic values deviate as the squared distance between the topographic values and 

their zero mean (the reference plane) increases. Thus, smaller   yields smaller variation 

from the reference plane, whereas larger   yields larger variation. In addition,   controls 

how rapidly the correlation decays as the squared distance between the neighboring pixels 

increases. Therefore, smaller   leads to fast decay and less autocorrelated topographic 

values, while larger   leads to slow decay and more autocorrelated values.  

2.4 Review of Existing Monitoring Approaches 

Various monitoring approaches have been developed for assessing the “quality” of 

products based on their topographic surfaces. Most of these approaches extract and monitor 
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a small set of predefined features for detecting anomaly surfaces. These features are 

extracted based on different statistical approaches, such as topographic distribution, signal 

processing, image processing, graph theory, and machine learning. In the following 

section, we review the popular features in each approach and address their advantages and 

drawbacks. In particular, we evaluate the existing features based on its effectiveness in 

detecting local and global changes in the variance and autocorrelation of topographic 

values discussed earlier in Section 1.2.  

2.4.1 Features Based on Topographic Distribution Approach 

The surface characterization features based on the international organization for 

standardization (ISO) have been widely applied for assessing the surface topography of a 

workpiece (Brune et al., 2008, Ali, 2012). These features include the average roughness 

aS , the root mean square roughness qS , the skewness 
skS  , and the kurtosis 

kuS , which 

are respectively derived from the first, second, third, and fourth moments of the distribution 

of topographic values. In particular, the most commonly used feature for assessing the 

quality of surface topography is 
aS , which is expressed as the average of absolute deviation 

of all topographic values from the reference plane (Blunt and Jiang, 2003). The second-

most used feature is qS , which is defined as the root mean square deviation of all 

topographic values from the reference plane (Townsend et al., 2016). In addition, 
skS  and 

kuS  are introduced to describe the asymmetry and the sharpness of topographic distribution, 

respectively (Ali, 2012). Therefore, for the given surface topography of a product 

{ ; 1,2,..., }iZ z i M= = , the 
aS , qS , 

skS , and 
kuS  are calculated as given in Equations (2.2-

2.5), respectively, 
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S z
M =
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iq

S z
M S =

=


 , (2.4) 

 
4

4
1

1 M

ku i

iq

S z
M S =

=


 . (2.5) 

These features have received acceptance in both industry and literature due to ease of 

implementation and explanation (Schmähling, 2006, Rao et al., 2015b). In addition, these 

features are effective in detecting global variance change because of the way of 

characterizing the topographic distribution. However, these features lack the detection of 

local variance changes because local changes are likely to be dominated by other normal 

values. In addition, these features show a limitation in detecting local and global 

autocorrelation changes since they are defined as a first-order statistic, which mainly 

describes the characteristics of the topographic values individually without considering the 

spatial relationships among them. 

2.4.2 Features Based on Signal Processing Approach 

Signal processing is applied to monitor changes in topographic surfaces (Schmähling, 

2006, Palani and Natarajan, 2011, Kanafi and Tuononen, 2017). In particular, for the given 

grayscale image of surface topography, which can be represented as a matrix 

[ : 1, 2,..., ,xyg x N= =G 1,2,..., ]y M= , where xyg  is the grayscale intensity level at the 

row x  and column y , and ( N  and M )  are the number of rows and columns in the image 
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matrix, the fast Fourier transforms (FFT) algorithm is used to improve the representation 

of surface characteristics by decomposing the surface topography into a few bases where 

each base explains a certain surface characteristic (Schmähling, 2006, Palani and 

Natarajan, 2011, Kanafi and Tuononen, 2017). In particular, the FFT of xyg  is given as 

2 ( / / )

1 1

1 N M
j ux N vy M

uv xy

x y

f g e
N M

− +

= =

=


 , 1,2,..., , 1, 2,..., ,u N v M= =  

where u  and v  are the indexes of the frequency domain and j  is an imaginary unit. Note 

that 
uvf  is a complex number, which is defined in the frequency domain as 

uv uv uvf r j i= + , 1,2,..., , 1, 2,..., ,u N v M= =  

where 
uvr  and 

uvi  are the real and imaginary terms, respectively.  Consequently, the power 

spectrum 
uvp  is given by 

2 2 2| |uv uv uv uvp f r i= = +  , 1,2,..., , 1, 2,..., .u N v M= =  

After the surface is transformed into a 2D Fourier transform spectral, the power spectral 

density feature psdS  is obtained by averaging the power spectrum values as given in 

Equation (2.6) 

 
1 1

1 N M

psd uv

u v

S p
N M = =

=


 . (2.6) 

Since the FFT algorithm decomposes the surface into a few bases that capture the main 

characteristics of topographic distribution, psdS  is effective in detecting the global variance 

change of topographic values (Schmähling, 2006). However, the FFT algorithm is defined 

as a global decomposition filter where local surface defects are likely to be smoothed out, 

which may result in low detection performance of local variance change (Schmähling, 
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2006). In addition, the spatial relationships between pixels are ignored during the 

transformation process, which may yield a low detection performance of the local and 

global changes in the autocorrelation structure of topographic values.  

2.4.3 Features Based on Image Processing Approach 

Monitoring approaches based on image processing have also been proposed for describing 

and evaluating the surface topography of manufactured units (Xiao et al., 2006). In 

particular, edge detection filters, such as the Canny filter, are applied to convert the surface 

image { ; 1,2,..., }iZ z i M= =  to a binary image { ; 1,2,..., }iB b i M= = , where 
ib  is an 

assigned binary value of the pixel i . Then, the density of summits feature 
dsS  is calculated 

to capture the ratio of peaks per unit area (Xiao et al., 2006), which is given in Equation 

(2.7) 

 
1

1
1{ 1}

M

ds i

i

S b
M =

= = , (2.7) 

where 1{.} is an indicator function defined as 1{ 1} 1ib = = , otherwise zero. Note that a 

larger value of 
dsS  indicates that the observed surface is “rough” due to the increase of the 

number of peaks on the surface and vice versa. Since the variance change can cause a 

deviation in the topographic values from the reference plane, this is likely to result in an 

increase in the number of “1” in the obtained binary values. This change can be effectively 

quantified and detected by 
dsS , which subsequently yields an effective detection 

performance of the global variance change. However, the major drawback of 
dsS  is that it 

heavily depends on a heuristic selection of the edge detection filter parameters. Since 

surface faults may form in a variety of sizes and shapes, it is challenging to optimize these 

parameters. Consequently, the fault information located in spatial areas is likely to be lost 
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during the binarization process, which may result in low detection performance of the local 

and global autocorrelation change. Moreover, the characteristics of normal topographic 

values are likely to obscure the characteristics of local faults, which may lead to low 

detection performance of local variance change. 

The watershed algorithm is also utilized to quantify and monitor changes in surface 

characteristics (Yang et al., 2011, Gaetano et al., 2015). The watershed algorithm, which 

is originally inspired by the mechanism of the flooding process in geography, is used to 

segment the surface topography into different labels (or regions) (Beucher and Meyer, 

1993). More specifically, for the given grayscale image of surface topography 

{ ; 1,2,..., }iG g i M= = , where 
ig  is the grayscale intensity level of the pixel i , the 

watershed algorithm begins to fill each separated local minima (or valley) with different 

colored water (or label) as shown in Figure 2.3 (a). As the water increases, the water from 

different valleys begins to combine. Subsequently, dams (or watershed lines) are 

constructed in the coordinates where the water combines to avoid the water merging as 

shown in Figure 2.3 (b and c). Finally, the algorithm continues the previous process of 

filling water and constructing dams until all peaks become under the water as shown in 

Figure 2.3 (d).  

 
Figure 2.3 Illustration of the watershed algorithm: (a) the water flooding, (b and c) the process of 

constructing dams (red lines), and (d) the process of labeling surface valleys (Wang, 2010). 
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As a result, the grayscale surface image G  is converted to a discrete surface 

{ : 1,2,..., },iD d i M= =  where {1,2,...}id   is an assigned label of the pixel i . Then, the 

watershed feature, denoted as 
wS , is determined by finding the total number of assigned 

labels (Yang et al., 2011, Gaetano et al., 2015), which is given by Equation (2.8) 

 
1
maxw i

i M
S d

 
=  . (2.8) 

Note that a larger value of 
wS  implies a “rough” surface because of the increase of the 

number of assigned labels, while a small value of 
wS  implies a “smooth” surface. The 

watershed feature 
wS  is also applied to extract fault information by identifying the fault 

locations and the number of surface faults (Yang et al., 2011, Gaetano et al., 2015). The 

watershed algorithm is effective in assessing the surface structure due to the segmentation 

of surface characteristics. This makes 
wS  to be effective in monitoring the global 

autocorrelation change. However, the watershed algorithm does not capture the 

characteristics of topographic distribution, which may cause a low detection performance 

of the global variance change. The segmentation performance of local faults can also be 

impacted by the over-segmentation problem, which is likely to occur due to the noise or 

any other irregularities in the surface image (Wang, 2010). This may result in low 

performance in identifying local variance and autocorrelation changes.  

2.4.4 Features Based on Graph Theory Approach 

Monitoring approaches based on graph theory have been recently developed for describing 

and monitoring the characteristics of topographic surfaces (Rao et al., 2015a, Rao et al., 

2015b). More specifically, edge detection filters (e.g., a Canny filter) are initially applied 

to convert the surface image into the following binary matrix [ : 1, 2,..., ,xyb x N= =B
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1,2,..., ]y M= , where {0,1}xyb   is the assigned binary value in the row x  and column ,y

and ( N  and M ) are the number of rows and columns in the image matrix. Then, the binary 

matrix B  is represented by its row vectors such as , 1,2,...,k k N=r , where 
kr  is the M -

dimensional vector of the row k  in the matrix B . Next, the following steps are applied: 

• Step 1: Calculate the distance matrix based on the obtained , 1,2,..., ,k k N=r  using the 

Euclidean distance such as [ :1,2,..., ],ijl N=L where ijl  represents the Euclidean 

distance between the thi  and thj  row vectors and defined as 2|| ||ij i jl = −r r .  

• Step 2: Calculate the dissimilarity matrix by converting L  to a binary dissimilarity 

matrix using a predefined hard threshold C  such as 

[ ]ija=A , 
1, if

0, otherwise

ij

ij

l C
a

 
=  
 

, for , {1,2,..., }i j N  , 

where ija  represents the dissimilarity value between the thi  and thj  row vectors.  

• Step 3: Construct an undirected graph based on the obtained A , where the graph nodes 

are equal to the number of row vectors ( N  nodes), and the graph edge between the thi  

and thj  nodes is represented by the calculated dissimilarity value ija , , {1,2,..., }.i j N  

• Step 4: Calculate the normalized Laplacian matrix to quantify the characteristics of the 

obtained graph as 

1/2 1/2( ) ,− −=  − O D D A D  

where D  is the degree matrix obtained as ( ),jdiag d=D  where jd  is the number of 

edges connected to the thj  node and is defined as 
1

,
N

j ij

i

d a
=

= 1,2,...,j N= . 

• Step 5: Solve the Eigen spectrum using Equation (2.9)  



26 

 

 

 

  = O K λ K , (2.9) 

where λ  is a vector that includes the eigenvalue of each node and K  is a N N  matrix 

such that each column in K  represents the eigenvector of each node.  

• Step 6: Obtain the graph connectivity by finding the second smallest non-zero 

eigenvalue in λ , which is known as the Fiedler connectivity feature (or number) .cS  

The Fiedler connectivity feature 
cS  is used to quantify the “smoothness” of surface 

topography such that larger connectivity value indicates a more “rough” surface and vice 

versa. Due to the quantification of the pairwise distance between all nodes of the graph 

network, the Fiedler connectivity feature 
cS  is effective in detecting the global variance 

change. However, 
cS  lacks the identification of local variance change because faulty 

characteristics can be dominated by normal characteristics during the calculation of 
cS . In 

addition, 
cS  has a limitation in detecting the local and global autocorrelation changes since 

the spatial autocorrelation between the topographic values is not considered.  

2.4.5 Features Based on Machine Learning Approach 

Machine learning has been recently applied for monitoring and diagnosing faults in 

topographic surfaces (Bui and Apley, 2018a, Bui and Apley, 2018b). In particular, for the 

given surface topography of a part { ; 1,2,..., }iZ z i M= = , each topographic value 
iz  is 

subtracted from an estimated topographic value ˆ ( )if z , which is obtained by a supervised 

machine learning model (regression tree), to calculate the residual at each surface pixel 

such as  

ˆ ( )i i ir f z z= − , 1,2,...,i M= , 
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where 
ir  is the calculated surface residual of the pixel i . The behavior of the obtained 

surface residuals is subsequently monitored using the one-sample Anderson–Darling 

(OAD) feature, which examines whether the cumulative distribution function (CDF) of the 

observed residuals is similar to the CDF of the normal residuals. Particularly, after 

calculating the OAD feature for each pixel 
ia , 1,2,...,i M= , based on a squared moving 

window with a defined width w , the maximum OAD feature 
adS  is obtained as provided 

in Equation (2.10) 

 
1,2,...,
maxad i

i M
S a

=
=  . (2.10) 

After detecting an anomaly surface based on its 
adS , the fault locations are identified by 

comparing the calculated 
ia , 1,2,...,i M= , for each pixel to a predefined diagnostic 

threshold obtained based on a defined quantile of the probability density function (PDF) of 

the normal values of 
ia , 1,2,...,i M= . Note that 

adS  is effective in detecting the global 

variance change because 
adS  captures the deviation of the CDF of the observed residuals 

from the CDF of the normal residuals. However, 
adS  yields a low performance in detecting 

the local and global autocorrelation changes since 
adS  fails to utilize the spatial 

autocorrelation among topographic pixels. Moreover, 
adS  has a low detection performance 

of the local variance change because local faults are likely to be dominated by the normal 

topographic values. In addition, there are no clear guidelines on the selection of the width 

of the moving window parameter w , which may also impact the detection performance of 

.adS  
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In summary, the aforementioned monitoring approaches do not fully characterize the 

complex behavior among topographic pixels, which renders them ineffective in detecting 

and diagnosing local and global changes in the variance and autocorrelation of topographic 

values. Therefore, in this dissertation, we overcome these limitations by introducing four 

accurate and efficient statistical approaches for online monitoring and diagnosis of various 

changes in topographic surfaces. 
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CHAPTER 3 

MULTI-LEVEL SPATIAL RANDOMNESS APPROACH FOR MONITORING 

GLOBAL CHANGES IN 3D TOPOGRAPHIC SURFACES 

3. A 

3.1 Introduction 

Effective online monitoring approaches based on the 3D surface topography of 

manufactured products are needed in many industries as discussed in Section 1.1. Most of 

the existing monitoring approaches consider a single statistic for assessing the 

characteristics of surface topography, such as the average roughness and the root mean 

square roughness discussed in Section 2.4. However, using only a single statistic may not 

be sufficient for quantifying the spatial and complex structure of surface characteristics, 

which may result in a low assessment of global surface changes. Thus, representing the 3D 

surface topography as an 1D profile that describes the spatial structure of surface 

characteristics at different levels of surface heights is a novel approach for accurately 

characterizing and monitoring different forms of global changes in 3D topographic 

surfaces.  

In this chapter, we develop a multi-level spatial randomness approach for online 

monitoring of global changes in 3D topographic surfaces. Specifically, we enhance the 

representation of surface characteristics by slicing the 3D surface topography into different 

levels in accordance with the characteristics of the in-control surfaces through a proposed 

multi-level surface thresholding algorithm. We also introduce the spatial randomness (SR) 

profile, which captures different patterns of surface changes by quantifying the spatial 
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characteristics of topographic values at each surface level. After obtaining the SR profile, 

an effective monitoring statistic based on the functional principal component analysis is 

developed for accurate detection of global changes in topographic surfaces. Note that 

Chapter 3 is mostly based on the following published paper: ALQAHTANI, M. A., 

JEONG, M. K. and ELSAYED, E. A. 2020c. Multilevel spatial randomness approach for 

monitoring changes in 3D topographic surfaces. International Journal of Production 

Research, 58, 5545-5558. 

The remainder of this chapter is organized as follows. Section 3.2 presents the proposed 

approach in detail. Then, Section 3.3 shows the performance comparison between the 

proposed and the existing monitoring approaches. Section 3.4 demonstrates the 

performance of the proposed approach using a case study from the semiconductor industry. 

Conclusions are discussed in Section 3.5.  

3.2 Proposed Approach 

The proposed monitoring approach includes three stages; Stage 1: multi-level surface 

thresholding, Stage 2: feature extraction, and Stage 3: anomaly detection. In Stage 1, we 

divide the surface into different levels for an effective representation of topographic 

characteristics. Stage 2 extracts a statistical feature from each surface level for accurate 

quantification of spatial surface characteristics. Finally, Stage 3 monitors and detects 

anomaly surfaces based on their extracted features. The following sections explain each 

stage in detail. 

3.2.1 Stage 1: Multi-level Surface Thresholding 

The spatial and random characteristics of 3D topographic surfaces make the detection of 
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surface changes difficult. Thus, it is crucial to simplify and enhance the representation of 

topographic characteristics for achieving accurate detection performance of surface 

changes. Hard thresholding (HT) algorithms based on edge detection filters, such as Canny 

and Sobel filters, are commonly used for binarizing images based on a single threshold. 

The main goal of these filters is to identify any discontinuity or sharp change in the pixel 

intensities. This subsequently simplifies and improves the representation of image 

characteristics for effective surface analysis (Xiao et al., 2006). Due to the complex 

structure of topographic values, identifying only a single threshold is likely to remove the 

important characteristics of topographic values, which may yield a low representation of 

surface changes.  

The multi-level thresholding algorithms, on the other hand, are developed to achieve an 

improved representation of image characteristics (Liao et al., 2001, Vala and Baxi, 2013) 

For example, Otsu’s multi-level thresholding (OMT) algorithm is commonly used for 

image segmentation (Otsu, 1979, Liao et al., 2001). Particularly, the OMT algorithm 

divides the pixel intensities into “K-non-overlapping intervals” based on selected ( 1)K +  

thresholds. The selection of thresholds is obtained by minimizing the variance of each 

interval such that each pixel intensity is strictly assigned to one of the “K-non-overlapping 

intervals”. However, the algorithm does not consider the spatial autocorrelation among 

adjacent pixels during the segmentation process, which may result in a lower representation 

of changes in topographic surfaces.  

We propose a multi-level surface thresholding (MST) algorithm for improving the 

representation of topographic values. Let the input data be represented as a matrix 
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[ ; , 1, 2,.., ]xyz x y M= =Z , where xyz  is a real number that represents the height or 

topographic value located in the ( , )x y  coordinate and ( )M M  is the matrix size. The 

surface matrix is then decomposed into K  binary matrices ( ) ( )[ ]r r

xya=A , 1,2,...,r K= , 

according to the sign of predefined thresholds 
( )r , 1,2,...,r K= . Thus, each thr  binary 

matrix (or surface level), 
( )r

A  , 1, 2,..., ,r K=  is obtained as given in Equation (3.1) 

 

( )

( ) ( ) ( ) ( )
1,

0 : [ ] ,
0 , otherwise

r

xyr r r r

xy xy

z
a a




  
 = =  

  
A

( )

( ) ( ) ( ) ( )
1,

0 : [ ] , ,
0 , otherwise

r

xyr r r r

xy xy

z
a a




  
 = =  

  
A                                           

(3.1) 

where ( )r

xya  is a binary indicator that represents whether there is a material or a void located 

in the ( , )x y  coordinate. Note that ( )r

xya  is assigned “one”, if the slicing plane hits a 

“material”, and it is assigned “zero” if the slicing plane hits a “void”. More specifically, if 

the threshold is negative at the 
thr surface level (i.e., 

( ) 0r  ), then ( )r

xya  is assigned “one” 

when xyz  is less than 
( )r . However, if the threshold is positive at the 

thr  surface level (i.e., 

( ) 0r  ), then ( )r

xya  is assigned “one” when xyz  is greater than or equal 
( )r .  

In the proposed MST algorithm, the selection of thresholds ( )r , 1,2,...,r K= , is important 

for binarizing the topographic values at each surface level. Thus, for the given N  in-

control surfaces 
iZ , 1,2,...,i N= , the total number of surface levels K  (the determination 

of K  is discussed later in the chapter) and a defined type I error rate (e.g., 0.001 = ), the 

following steps are taken for estimating the threshold for each surface level: 
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• Step 1: Rank the topographic values in an increasing order for each surface ,iZ

1,2,...,i N= ,  

(1) (2) ( ){ , ,..., }i i i i M MF z z z = ,  

where (1) (2) ( ), ,...,i i i M Mz z z   are the order statistics of the topographic values in the thi  

surface.  

• Step 2: Obtain the   and 1- -quantiles for each ,iF 1,2,...,i N= , as shown in 

Equation (3.2)  

 
( ) (1 )Pr[ ] , Pr[ ] 1 ,i i i iF q F q  − =  = −  (3.2) 

where 
( )

iq 
 and 

(1 )

iq −
 are the   and 1- -quantiles obtained from the thi  surface. 

• Step 3: Calculate the thr  threshold for each obtained 
( )

iq 
 and 

(1 )

iq −
, 1,2,..., ,i N= by 

equally dividing the interval between 
( )

iq 
 and 

(1 )

iq −
 as given in Equation (3.3)  

              
(1 ) ( )

( ) ( ) ( )
( 1)

( 1)

r i i
i i

q q
q r

K

 


− −
= + −

−
, for 1,2,...,r K= , (3.3) 

where 
( ) ( ) (1 )r

i i iq q  −   is the obtained threshold value at the thr  surface level of the 
thi  surface. 

• Step 4: Calculate the average threshold for each thr  surface level using Equation (3.4)  

 
( ) ( )

1

/
N

r r

i

i

N 
=

= , for 1,2,...,r K= . (3.4) 

 

Figure 3.1 is an example of a 3D surface topography before and after being sliced into 20 

levels ( K =20) using the proposed MST algorithms. Note that surface level 1 is the lowest 

surface level, whereas surface level 20 is the highest level. In addition, the white areas 

represent the “material” pixels (i.e., “ones” in ( )rA ), while the black areas represent the 

“void” pixels (i.e., “zeros” in ( )rA ). Figure 3.1 shows that the MST algorithm constructs 

the surface levels in a cumulative manner where each surface level is calculated based on 

the information obtained from the previous levels. Accordingly, each topographic value 

may be assigned to one or multiple surface levels. Figure 3.1 (b) displays the first surface 
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level (1)
A , which only contains the material pixels below the first threshold (1) . However, 

Figure 3.1 (d) shows the tenth surface level (10)
A , which contains the material pixels below 

the tenth threshold (10) , including the ones in the previous levels (1) (2) (9){ , ,...., }A A A . 

 

Figure 3.1 Example of (a) a topographic surface Z , and its corresponding surface levels ( )rA  with 

(b) r =1, (c ) r =5, (d ) r =10, (e ) =15, and (f) r =20, obtained the MST algorithm.   

 

There are several advantages of applying the MST algorithm in monitoring topographic 

surfaces. In particular, the MST algorithm improves the representation of topographic 

values by discretizing the continuous topographic matrix into K binary matrices. The MST 

algorithm is also utilized for online monitoring such that the surface levels of a new surface 

are constructed based on predefined thresholds extracted from the characteristics of in-

control surfaces. In addition, the MST algorithm is effective in preserving the 

autocorrelation structure of topographic values. Particularly, the MST algorithm shows a 

specific pattern of the material pixels at each surface level where a less clustered pattern of 

r
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the material pixels is achieved at the top and bottom surface levels as shown in Figure 3.1 

(b and f), and a more clustered pattern is achieved at the central levels as shown in Figure 

3.1 (c, d, and e). This is because most of the material pixels typically appear around the 

reference plane, while fewer material pixels appear farther away. Thus, it is expected 

normal surfaces to have a similar pattern of their material pixels since they share similar 

surface characteristics. Subsequently, when a new surface contains any abnormality in its 

characteristics, this is likely to impact the pattern of its material pixels, which yields better 

monitoring of anomaly surfaces.  

In the following section, a spatial statistic is presented for quantifying the pattern of 

material pixels at each surface level. 

3.2.2 Stage 2: Feature Extraction 

The spatial randomness test (SRT) is well-known for detecting the existence of spatial 

autocorrelation in observed binary images (Taam and Hamada, 1993). The SRT determines 

whether the surface pixels are dependent on the pixels located at their nearby locations. 

The SRT is computed based on the join-count (JC) statistic, which counts the frequency of 

the appearance of the 0-to-0 join (i.e., between void pixels) and the 1-to-1 join (i.e., 

between material pixels) based on a specified neighborhood construction rule (Hansen and 

Thyregod, 1998). Since the topographic surface is classified as continuous data, the current 

SRT is deemed inapplicable for quantifying the spatial autocorrelation that exists between 

topographic values. Therefore, the proposed MTS algorithm is utilized to overcome this 

limitation. Particularly, let the obtained binary matrices ( )rA , 1,2,...,r K= , be represented 

as a set of binary values ( ) ( ){ ; 1,2,..., , 1,2,..., }r r

jA a j P r K= = = , where ( )r

ja  is the assigned 
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binary value of the thj  pixel at the thr  surface level and P M M=   is the total number of 

the image pixels. Then, the JC statistics of the 0-to-0 and 1-to-1 joins are computed as 

given in Equations (3.5 and 3.6), respectively, 

 ( ) ( )( ) ( ) ( )

1

1 1
P

r r r

v i j

j i

J a a
= 

= − − , (3.5) 

                             ( ) ( ) ( )

1

P
r r r

m i j

j i

J a a
= 

= , (3.6) 

where r  is the index of each surface level, 1,2,...,r K= , 
( )( r

vJ , 
( ) )r

mJ  are the JC statistics 

of void and material pixels, respectively, and   is a defined neighborhood construction 

rule. In this chapter, we utilize the popular king-move neighbor (KMN) rule, which 

considers the eight neighbors located vertically, horizontally, and diagonally adjacent to 

the examined pixel. Consequently, we obtain the spatial randomness (SR) profile by 

computing the spatial randomness level at each surface level as given in Equation (3.7)  

 
( ) ( ) ( ) ( )( ) (1 )r r r r

v mT r w J w J= + − , for 1,2,...,r K= , (3.7) 

where ( )rw  is an assigned weight for the JC statistic of material pixels at the thr  surface 

level, which is obtained as ( ) ( ) /r rw v P= , where ( )rv  is the total number of “ones” in the 

thr  binary set ( )rA . Note that the value of ( )T r  represents how the topographic values are 

spatially distributed and structured at the thr  surface level, 1,2,...,r K= . A lower value of 

( )T r  means that the topographic values at the thr  surface level are more random and distant 

from each other, whereas a higher value indicates that the topographic values are more 

autocorrelated and clustered. Therefore, the 3D surface topography is converted into a K -
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dimensional SR profile, where each value in the SR profile represents the spatial 

characteristics at each surface level.  

The SR profile has the advantages of capturing the spatial and random characteristics 

between the topographic values. In particular, the SR profile quantifies the spatial 

autocorrelation structure of topographic values by analyzing the JC statistics of void pixels 

(i.e., 0-to-0 join) and material pixels (i.e., 1-to-1 join) at each surface level based on a 

defined neighborhood construction rule. The SR profile is also effective in quantifying the 

random characteristics of topographic values in which the SR of topographic values at each 

surface level is expected to be statistically similar under the in-control process behavior. 

As a result, the shapes of the corresponding SR profiles of in-control surfaces are expected 

to be similar even though the locations of topographic values randomly change from one 

surface to another. This is because the calculation of the SR profile is independent of the 

actual locations (or coordinates) of the topographic values. This makes the SR profile 

effective in characterizing and monitoring both spatial and random characteristics of 

topographic values. 

3.2.3 Stage 3: Anomaly Detection 

In this section, the topographic surfaces with abnormal characteristics are effectively 

detected based on their SR profiles. Stage 3 includes two phases: Phase 1 (offline) and 

Phase 2 (online). In Phase 1, we learn and extract in-control parameters that capture the 

characteristics of in-control SR profiles ( )iT r , 1,2,...,i N= . Then, in Phase 2, we identify 

whether the SR profile of a new surface ( )newT r  is an anomaly based on the in-control 

parameters. 
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3.2.3.1 Phase 1: Estimating Parameters from In-control SR Profiles 

The functional principal component analysis (FPCA) is commonly applied to capture the 

prominent modes of variation in functional data (Ramsay and Silverman, 2005). Therefore, 

the FPCA is utilized to capture most of the variation between the grid points of in-control 

SR profiles. In particular, the FPCA transforms the in-control SR profiles (i.e., input data), 

which has a size N K , where N  is the sample size and K  is the total number of surface 

levels (or grid points), to a reduced set of uncorrelated variables, called as principal 

component (PC) scores, which has a size N D , where D  is significantly less than K  

(i.e., D K ). Therefore, each in-control SR profile ( )iT r , 1,2,...,i N= , can be 

represented by the first D  eigenfunctions using Equation (3.8) 

 ,

1

( ) ( ) ( ) ,
D

i i j j

j

T r T r e r
=

 +  for {1,2,..., }r K , (3.8) 

where ( )T r  is the mean SR profile, ( )je r , 1,2,...,j D= , are the eigenfunctions, ,i j , 

1,2,...,i N= , 1,2,...,j D= , are the principal component (PC) scores, and ( , )K D  are the 

original and reduced dimensional spaces, respectively. Note that the index “ r ” refers to 

the thr  grid point in the SR profile, {1,2,..., }r K , while the index “ j ” refers to the thj

mode of variation in the FPCA, 1,2,...,j D= .  

The eigenvalues j , 1,2,...,j D= , and eigenfunctions ( )je r , 1,2,...,j D= , are both 

calculated based on the covariance operator shown in Equation (3.9) 

 
1

1
c( , ) { ( ) ( )}{ ( ) ( )}

1

N

i i

i

t s T t T t T s T s
N =

= − −
−
 , (3.9) 
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where t  and s  are two grid points in the in-control SR profile, , {1,2,..., },t s r K =

( )( ) , ( )i iT t T s  are the SR value at the tht  and ths  grid points, and ( )( ) , ( )T t T s  are the 

mean test values of the SR at the tht  and ths  grid points, which are obtained as 

1

1
( ) ( )

N

i

i

T t T t
N =

=  , and 
1

1
( ) ( )

N

i

i

T s T s
N =

=  . After c( , )t s  is calculated, the eigenvalues and 

eigenfunctions { , ( ), 1, 2,..., }j je r j D =  are obtained by the spectral decomposition (SD). 

Specifically, the SD of the covariance function c( , )t s , , {1,2,..., }t s r K = , is given as 

1

( ) ( )
K

j j j

j

e t e s
=

 , where 
1 1 ... K      are the ordered nonnegative eigenvalues and 

( )( ), ( )j je t e s  are the corresponding eigenfunctions (Paynabar et al., 2016). Subsequently, 

we select the first D  eigenvalues and eigenfunctions { , ( ), 1, 2,..., }j je r j D =  as 

1 1

/
D K

j j

j j

  
= =

  , where   is a prespecified percentage of the cumulative target variance 

(Yu et al., 2012). 

The PC scores are calculated based on the inner product of two profiles: the centered profile 

(i.e., the thi  in-control SR profile is subtracted from the mean SR profile, 

( ) ( ) ( )i ir T r T r = − , 1, 2, ...,i N= ), and the first D  eigenfunctions ( )je r , 1, 2, ...,j D= . 

Note that it is reasonable to use summation instead of integral to calculate the inner product 

since each SR profile is discretized into an equally spaced grid of points (Paynabar, Zou, 

and Qiu 2016). Thus, the PC scores are obtained using Equation (3.10) 

,

1

( ), ( ) ( ) ( ),
K

i j i j i j

r

r e r r e r
=

=  =   for 1, 2, ...,i N= , and 1, 2, ...,j D= ,   (3.10) 
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where ,i j  is the thj  PC score of the thi  in-control SR profile. In the following section, we 

present how to monitor the quality of a new surface based on the parameters obtained from 

in-control SR profiles, including the mean SR profile, PC scores, eigenvalues, and 

eigenfunctions. 

3.2.3.2 Phase 2: Identifying Anomaly Surfaces 

The PC scores are key indicators that reflect the deviation between the new and mean 

profiles (Yu et al., 2012). Therefore, after observing a new surface 
newZ , the corresponding 

SR profile ( )newT r  is calculated. Then, the deviation between ( )newT r  and ( )T r  is computed 

in the original K -dimensional space as given in Equation (3.11) 

( ) ( ) ( )new newr T r T r = − . (3.11) 

Then, the inner product of the obtained deviation ( )new r  and the first D eigenfunctions 

( )je r  is calculated for projecting ( )new r  into the reduced D -dimensional space, which 

results in the values of the PC scores given in Equation (3.12) 

,

1

( ), ( ) ( ) ( ) ,
K

new j new j new j

r

r e r r e r
=

=  =   for 1, 2, ...,j D= . (3.12) 

Next, the obtained PC scores are squared and scaled by their respective eigenvalues for 

emphasizing and standardizing the projected deviation in the reduced D-dimensional 

space, which yields the monitoring statistic provided in Equation (3.13) 

 

2

,

1

( )D
new j

new

j j

Q


=

= ,  (3.13) 

The proposed monitoring statistic 
newQ  captures the total deviation between the SR profile 
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of a new surface and the mean SR profile of in-control surfaces in the reduced D -

dimensional space. Consequently, any deviation in the characteristics of the topographic 

values at any surface level can be effectively monitored and captured by 
newQ . Finally, the 

new surface is identified as an anomaly, if 
newQ C , where C  is a prespecified critical 

limit determined based on a bootstrapping method (Febrero et al., 2008). For the obtained 

monitoring statistics of N  in-control surfaces 
1 2{ , ,..., }NQ Q Q  and a defined type I error 

rate (e.g., 0.05 = ), the steps for determining the critical limit C  are as follows: 

• Step 1: Estimate the empirical distribution function of the sampled monitoring 

statistics by randomly sampling R  observations with replacement from the obtained 

N  in-control monitoring statistics such that we obtain the following set 

1 2{ , ,...., }.RQ Q Q  

• Step 2: Rank the R  sampled observations in increasing order, (1) (2) ( ){ , ,...., },RF Q Q Q=  

where (1) (2) ( ), ,...., RQ Q Q  are the order statistics, which are defined as 

(1) (2) ( ).... RQ Q Q   . 

• Step 3: Calculate the  -quantile of the ranked observations Pr[ ]F h  = . 

• Step 4: Repeat steps 1, 2, and 3 for T  replicates and obtain the  -quantile of each 

replicate such that we obtain the following set 
1 2{ , ,...., }TH h h h= . 

• Step 5: Obtain the critical limit C  by taking the median over the values in the set H  

as given in Equation (3.14) 

 
1,2,...,

median ( )t
t T

C h
=

= . (3.14) 
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Figure 3.2 shows a summary of the proposed approach. In the following section, different 

simulation studies are conducted to validate the performance of the proposed approach. 

 
Figure 3.2 Summary of the proposed approach. 

 

3.3 Performance Study 

3.3.1 Surface Settings for In-control and Anomaly Surfaces 

In the simulation experiments, we apply the Gaussian random model discussed in Section 

2.3 to generate topographic surfaces. We consider different fault scenarios to address 

various faults in topographic surfaces. In particular, we address different surface changes 

(or fault types), including variance and autocorrelation changes. Note that the variance and 

autocorrelation changes are generated by shifting the parameters   and   in the Gaussian 

random model, respectively. We also examine different fault sizes where the sizes of the 

parameters   and   are shifted from their normal values. Besides, different fault areas are 
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considered where a local fault area that allocates a specific percentage of the total surface 

area is randomly superimposed on the surface.  

Figure 3.3 shows examples of normal surface and two anomaly surfaces with local variance 

and autocorrelation changes, respectively, along with a selected region obtained from the 

bottom-left corner of each surface. Note that the three surfaces initially are generated under 

the following normal settings: 1 m =  and 1 m = . We also superimpose a local 

change that covers 2% of the total surface area (i.e., 36 36  pixels) on the bottom-left 

corner of each anomaly surface for illustration. In particular, a local variance change with 

2 m =  and 1 m = , and a local autocorrelation change with 1 m =  and 2 m =  

are superimposed on the surfaces shown in Figure 3.3 (b and c), respectively. We observe 

that the scale of the topographic values of the normal surface is about 4 m , and its 

characteristics (e.g., peaks and valleys) are appeared to be less autocorrelated. However, 

when the surface experiences the variance change, we notice that the scale of the 

topographic values is increased to about 6 m , but the pattern of peaks and valleys does 

not differ from the normal surface. Furthermore, when the surface has the autocorrelation 

change, we observe that the scale of topographic values does not change from the scale of 

the normal surface. However, a significant change in the valley and peak characteristics is 

observed in a way that the valleys and peaks become more similar and clustered. 
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Figure 3.3 Three generated surfaces (first row) along with three selected regions (second row) of 

(a) normal surface, and two anomaly surfaces with (a) local variance change, and (c) local 

autocorrelation change. 

3.3.2 Effectiveness of the Proposed Monitoring Approach 

3.3.2.1 Advantage of the SR Profile in Characterizing Surface Changes 

The patterns of the in-control SR profiles are generally characterized by a bell-shaped curve 

in which the lowest values of the SR profile (i.e., close to “zero”) are located at the top and 

bottom surface levels because few random peaks and valleys are likely to appear at these 

levels. In addition, the highest values of the SR profile are positioned at the central levels 

since most of the peaks and valleys are likely to cluster at these levels. Therefore, any 

significant change from the pattern of the bell-shaped curve can lead to identifying different 

surface changes, including both variance and autocorrelation. In particular, the variance 

change mainly impacts the magnitude of topographic values at the top and bottom levels, 

which results in the appearance of more clustered areas at these levels. Furthermore, the 

autocorrelation change primarily impacts the structure of the topographic values at the 



45 

 

 

 

central levels, which subsequently yields a change in the cluster pattern of topographic 

values at these levels.  

Figure 3.4 illustrates the effectiveness of the SR profile obtained by the proposed MST 

algorithm in capturing different forms of surface changes. The figure shows the SR profiles 

for 10 in-control and anomaly surfaces with different fault sizes and types where each 

surface is sliced into 20 levels ( 20K = ). Note that the x -axis represents the index of each 

surface level, 1,2,..., 20r = , and the y -axis represents the corresponding test value of the 

SR. We observe that the obtained anomaly SR profiles are clearly distinguished from the 

in-control profiles. This is due to the effectiveness of the SR profiles in capturing the spatial 

pattern of the material pixels at each surface level. Furthermore, when the fault size 

becomes larger, the SR profiles of anomaly surfaces become more evident from the in-

control profiles.  

 
Figure 3.4 Calculated SR profiles of in-control and anomaly surfaces with (a) variance change, and 

(b) autocorrelation change, along with two fault sizes: fault size 1 with 1 m  change and fault size 2 

with 4 m  change. 

 



46 

 

 

 

3.3.2.2 Effect of the Number of Surface Levels in the Detection Performance 

We study the effect of selecting different values of surface levels K , which is a parameter 

in the MST algorithm, in the detection performance. In practice, K  is determined based on 

the characteristics of the topographic values learned from the in-control surfaces. A smaller 

K  may impact the detection performance of the variance change because few surface 

levels are insufficient to describe the change in the magnitude of topographic values. 

Similarly, a larger K  may affect the detection performance of the autocorrelation change 

because adding more levels can cause the loss of the spatial autocorrelation structure of 

topographic values. Thus, a reasonable selection of K  is recommended where different 

patterns of surface changes can be effectively captured.  

Table 3.1 shows examples of the effect of selecting different values of K  in the detection 

performance using the proposed monitoring statistic Q . Note that the anomaly surfaces are 

generated with a 1% local fault under different surface changes (i.e., variance and 

autocorrelation). It is shown that selecting a few surface levels (e.g., 5 and 10 levels) 

impacts the detection performance of variance change. However, the detection 

performance of autocorrelation change is improved because fewer surface levels can lead 

to higher detection of changes in the spatial autocorrelation of topographic values. In 

contrast, selecting a larger K  (e.g., K =50 and K =100 levels) results in a higher detection 

of the variance change as shown in Table 3.1. However, the detection performance of 

autocorrelation change is decreased since a larger K  can cause the loss of the detailed 

structure of surface characteristics. Moreover, a larger   (e.g., K = 100) can increase the 

average computation time of the proposed monitoring statistic  as shown in Table 3.2. 

K

Q
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Therefore, we suggest selecting a reasonable number of surface levels (e.g., 25 levels) to 

enhance the overall detection performance for variance and autocorrelation and the 

detection time. 

Table 3.1 Detection performance of the monitoring statistic Q  under different K  

Fault Type 
Fault Size  Number of surface levels (K)  

    5 10 25 50 100 

Variance 

2 1 0.370 0.465 0.583 0.657 0.683 

4 1 0.955 0.999 1.000 1.000 1.000 

6 1 0.993 1.000 1.000 1.000 1.000 

Autocorrelation 

1 2 0.119 0.118 0.116 0.115 0.111 

1 4 0.294 0.260 0.269 0.258 0.267 

1 6 0.420 0.395 0.407 0.397 0.408 

 

Table 3.2 Average computation time of the monitoring statistic  under different  

Number of surface levels (K) 5 10 25 50 100 

Time in seconds 

 (standard deviation) 

0.066 

(0.003) 

0.154 

(0.002) 

0.395 

(0.016) 

0.783 

(0.012) 

1.550 

(0.008) 

 

3.3.3 Performance Comparisons 

This section assesses the performance of the proposed monitoring approach with the 

existing approaches stated in Section 2.4. In particular, normal surfaces are generated based 

on the following surface parameters: 1 m =  and 1 m = . We also address different 

fault scenarios by considering two fault types (i.e., variance and autocorrelation), two fault 

sizes (i.e., 2 and 4), and three fault areas (i.e., two local faults with 0.5% and 1% changes 

and one global fault with 10% change). Note that we calculate the critical limit for all 

approaches based on a fixed type I error rate (i.e., 
3 0.05) =  to obtain a fair comparison. 

Moreover, the detection performance is assessed based on the performance measure 

Q K
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provided in Equation (3.15), which is defined as the average percentage of accurate 

detection of anomaly surfaces (Bui and Apley, 2018a) 

Power of detection ( P )
1

1 V
j

j j

T

V N=

=  , (3.15) 

where V  is the size of simulation replicates ( 100V =  replicates), jT  is the number of 

accurate detection of anomaly surfaces obtained at the thj  replicate, and jN  is the size of 

anomaly surfaces generated at the thj  replicate (i.e., 
1 2 ... 100VN N N= = = =  samples).  

Table 3.3 shows the detection performance of anomaly surfaces with the variance and 

autocorrelation changes. We notice that 
aS  and qS  generally show low performance in 

detecting surface faults since they fail to capture the spatial characteristics among 

topographic values. Next, psdS  has a low detection performance of surface faults because 

psdS  is based on the FFT algorithm, which is ineffective in decomposing the information 

about local surface faults. Similarly, 
dsS  shows a low performance in detecting surface 

faults due to the heuristic approach of assigning binary values to the topographic values. 

Moreover, 
cS  results in low detection performance of surface faults because the 

topographic values with abnormal characteristics can be dominated by the in-control values 

during the computation of 
cS .  

In contrast, it is shown that the SR profile is effective in capturing the variance change at 

the top and bottom surface levels and the autocorrelation change at the central surface 

levels. Thus, the proposed statistic Q , which captures the deviation of the observed SR 

profile from the mean SR profile, reveals a superior detection performance for both 
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variance and autocorrelation changes under all defined fault scenarios and outperforms the 

existing monitoring approaches as shown in Table 3.3. We also notice that when the fault 

area increases, we achieve a better detection performance. Finally, the proposed approach 

is more sensitive to detect global faults associated with 5% or more surface charge than 

local faults associated with less than 5% surface charge.  

Table 3.3 Power of detection of anomaly surfaces under different surface changes 

Fault type Fault area 

Fault size Monitoring approaches 

    aS  qS  psdS  dsS  
cS  Q  

Variance 

0.5% 
2 1 0.058 0.060 0.060 0.059 0.072 0.178 

4 1 0.067 0.110 0.110 0.064 0.070 0.889 

1% 
2 1 0.062 0.070 0.070 0.056 0.068 0.600 

4 1 0.076 0.241 0.240 0.062 0.066 1.000 

10% 
2 1 0.100 0.982 0.979 0.054 0.053 1.000 

4 1 0.166 0.999 0.980 0.056 0.058 1.000 

Autocorrelation 

0.5% 
1 2 0.069 0.066 0.065 0.064 0.075 0.085 

1 4 0.079 0.075 0.075 0.075 0.092 0.127 

1% 
1 2 0.068 0.068 0.067 0.066 0.083 0.107 

1 4 0.118 0.117 0.117 0.102 0.134 0.243 

10% 
1 2 0.097 0.117 0.117 0.080 0.135 1.000 

1 4 0.241 0.252 0.252 0.191 0.206 1.000 

 

In Table 3.4, we show the effectiveness of applying single and multiple thresholding 

algorithms on the detection performance of topographic faults. In the single thresholding 

algorithm, the surface is initially binarized using a single threshold obtained by an edge 

detection filter (e.g., Canny filter), and then the spatial randomness test (SRT), denoted as 

T , is computed based on Equation (3.7) (Taam and Hamada, 1993). In the multi-level 

thresholding algorithms, the proposed monitoring statistic is calculated based on both the 

existing OMT algorithm, denoted as  R , and the proposed MST algorithm .Q  It is noticed 

that R  shows a better detection performance than T  in detecting changes in topographic 
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surfaces. As discussed earlier in Section 3.2.1, selecting only a single threshold may lead 

to the removal of important characteristics of topographic values, which can yield low 

detection performance of surface changes. In addition, we observe that the proposed 

statistic Q  outperforms T  and R  under both variance and autocorrelation changes. As 

presented earlier in Figure 3.1, the proposed MST algorithm is shown to be effective in 

preserving the autocorrelation structure of topographic values by constructing 

accumulative surface levels where each level contains the spatial information about the 

topographic values of the previous levels, which results in effective monitoring of 

topographic faults.  

Table 3.4 Effect of the proposed MST algorithm in the detection performance 

Fault type Fault area 
Fault size Monitoring approaches 

    T  R  Q  

Variance 

0.5% 
2 1 0.048 0.069 0.178 

4 1 0.049 0.100 0.889 

1% 
2 1 0.050 0.299 0.600 

4 1 0.045 0.917 1.000 

Autocorrelation 

0.5% 
1 2 0.051 0.053 0.085 

1 4 0.106 0.113 0.127 

1% 
1 2 0.100 0.106 0.107 

1 4 0.138 0.143 0.243 

 

3.4 A Case Study of Copper Wafer Surfaces 

In semiconductor manufacturing, hundreds of integrated circuits (ICs) or chips are 

assembled on a single wafer made of different materials such as copper and silicon (Zhang 

et al., 2016). These ICs have different functions based on the type of electronic devices to 
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be used in. However, surface faults such as pits, ridges, and scratches commonly appear on 

the surface topography of wafers during semiconductor manufacturing. These faults can 

form nucleation sites for corrosion and cracks that can cause low functional integrity of 

ICs, which yields a low performance of electronic devices (Rao et al., 2015a, Rao et al., 

2015b). Therefore, monitoring the surface topography of wafers is needed for enhancing 

the quality of its manufacturing process.  

There are various faults that might be observed during the manufacture of semiconductor 

wafers. In particular, pits and ridge faults may appear on the surface topography of wafers 

because of the chemical aging and uneven temperatures, whereas scratch faults may be 

observed due to the material handling and shipping of wafers (Jeong et al., 2008). Such 

faults are important indicators that should be addressed for accurate analyses of process 

changes. Figure 3.5 presents an example of the surface topography of a non-smooth and 

smooth copper wafer obtained using a laser interferometer (Rao et al., 2015a). Note that 

the non-smooth copper wafer is associated with different faults such as pits, ridges, and 

scratches.  

 

Figure 3.5 Example of the surface topography of (a) a non-smooth and (b) smooth copper wafer 

obtained using a laser interferometer (Rao et al., 2015a). 
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Following Rao et al. (2015b), we obtain the topography of one normal and three anomaly 

wafer surfaces associated with the following three types of wafer defects: scratches, pits, 

and ridges as shown in Figure 3.6. In particular, Figure 3.6 (a) illustrates the surface 

topography of a normal wafer. In Figure 3.6 (b), we show the surface topography of an 

anomaly wafer with random scratch defects (i.e., inclined lines with different lengths) that 

cover 1% of the total surface area. Figure 3.6 (c) depicts an anomaly wafer surface 

associated with random pits (i.e., scattered points) that allocate 1% of the surface area. 

Finally, in Figure 3.6 (d), we present an anomaly surface with random ridge defects (i.e., 

clustered points with different sizes) that cover 2% of the surface area.   

 
Figure 3.6 Illustrations of (a) normal wafer surface, and three anomaly wafer surfaces with (b) 

scratch defects, (c) pit defects, and (d) ridge defects. 
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Table 3.5 shows the performance comparison between the proposed and the existing 

monitoring approaches discussed in Section 2.4. The performance comparison includes 

different fault types (i.e., scratches, pits, and ridges) and fault areas (i.e., 0.3%, 0.6%, and 

1% surface changes). Note that the scratches, pits, and ridges can be classified as an 

autocorrelation change because they mainly impact the spatial structure of topographic 

surfaces. Since the SR profile is shown to be powerful in quantifying this change at the 

central surface levels, Q  results in superior detection performance and outperforms the 

existing monitoring approaches at all defined fault scenarios. Therefore, Q  is proven to be 

effective in monitoring the quality of wafer surfaces. 

Table 3.5 Power of detection of anomaly copper wafers 

Fault type Fault area 

Monitoring approaches 

aS  qS  psdS  dsS  
cS  Q  

Scratches 

0.3% 0.091 0.100 0.100 0.053 0.063 0.377 

0.6% 0.176 0.208 0.208 0.078 0.062 0.911 

1% 0.355 0.438 0.437 0.115 0.061 1.000 

Pits 

0.3% 0.090 0.095 0.095 0.059 0.065 0.241 

0.6% 0.164 0.191 0.191 0.071 0.064 0.771 

1% 0.320 0.400 0.398 0.105 0.067 0.997 

Ridges 

0.3% 0.091 0.097 0.097 0.058 0.060 0.543 

0.6% 0.176 0.203 0.203 0.074 0.058 0.991 

1% 0.344 0.419 0.419 0.109 0.061 1.000 

 

3.5 Conclusions 

In this chapter, we propose the multi-level spatial randomness approach for characterizing 

different changes in 3D topographic surfaces. It is shown that the developed MST 
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algorithm enhances the representation of topographic values by decomposing the surface 

image into different binary images. Besides, quantifying the spatial characteristics of 

topographic values at each surface level through the proposed SR profile is shown to 

improve the description of surface changes, including both variance and autocorrelation. 

The SR profile is also proven to be effective in characterizing the spatial and random 

properties of topographic values. Moreover, the proposed monitoring statistic Q  shows 

high performance in detecting changes in different types of topographic surfaces and 

subsequently outperforms the existing monitoring approaches. The proposed statistic Q  is 

also shown to be more superior in detecting global changes. 
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CHAPTER 4 

MULTI-LABEL SEPARATION-DEVIATION SURFACE MODEL FOR 

MONITORING LOCAL VARIATIONS IN 3D TOPOGRAPHIC SURFACES 

4.  

4.1 Introduction 

Topographic data hold critical information about the quality of finished products and 

manufacturing processes as discussed in Section 1.1. Topographic defects commonly 

appear in local patterns during manufacturing. Due to the complex structure of topographic 

data, existing monitoring approaches lack the detection of local defects as discussed in 

Section 2.4. In Chapter 3, although the proposed approach is shown to be effective in 

detecting both variance and autocorrelation changes with global changes, the approach 

appeared to be less effective in detecting local changes. This is because the local surface 

characteristics are likely to be dominated by the global characteristics during the 

calculation of spatial randomness at each surface level. The approach also has a limitation 

in dealing with noisy characteristics such as measurement errors, which may impact its 

detection performance. Therefore, in this chapter, we address these limitations by 

proposing an effective monitoring approach for accurate detection of local defects in 

topographic surfaces.  

Boykov et al. (2001) develop an effective model, which is called as separation-deviation 

(SD), to improve the representation of image characteristics. The SD model segments the 

image pixels into predefined labels by minimizing an objective function that includes two 

terms: the deviation term, which captures the similarity within image pixels, and the 
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separation term, which captures the similarities between adjacent image pixels. However, 

applying the SD model to surface monitoring has some limitations that may impact its 

performance in segmenting local surface defects. In particular, the model does not consider 

the normal surface characteristics during the segmentation of new surfaces, and the 

assigned labels are not accurately mapped to the value (or height) of topographic pixels. 

Thus, we overcome these limitations by proposing a multi-label separation-deviation 

surface (MSS) model for effective monitoring of local defects in topographic surfaces. 

Note that Chapter 4 is mostly based on the following published paper: ALQAHTANI, M. 

A., JEONG, M. K. and ELSAYED, E. A. 2020b. Multi-label separation-deviation surface 

model for detecting spatial defects in topographic surfaces. IEEE Transactions on 

Industrial Informatics. Accepted. 

The proposed MSS model enhances the representation of local defects by assigning each 

topographic pixel of a new surface into predefined labels according to the characteristics 

of normal surfaces (Alqahtani et al., 2020b). This results in an effective representation of 

topographic characteristics due to the labeling of important characteristics and the 

smoothing of noisy characteristics. Two statistical features are also presented for 

characterizing various local surface changes. The MSS feature is presented for quantifying 

variations within the assigned labels, and the generalized spatial randomness (GSR) feature 

with optimal weights is derived for quantifying variations in the spatial autocorrelation 

between the assigned labels. These two features are integrated into a single monitoring 

statistic to assess local changes in topographic surfaces.  

The remainder of this chapter is as follows. The existing SD model and its limitations to 

surface monitoring are reviewed in Section 4.2. The developed approach is presented in 
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Section 4.3. The performance of the proposed approach is validated by conducting 

extensive simulation studies in Section 4.4 and analyzing a case study from the 

semiconductor industry in Section 4.5. Conclusions are discussed in Section 4.6.  

4.2 Separation-deviation Model for Surface Monitoring 

Image segmentation algorithms are effective tools for improving the representation of 

image characteristics. These algorithms mainly aim to segment image pixels into 

homogenous and similar labels to capture the meaningful and important characteristics 

within an image (Hochbaum, 2011). Some image segmentation algorithms, such as k-

means and k-medoids, segment image pixels based on the similarities of the intensity of 

each pixel where pixels with similar intensities are assigned to the same label. Other 

algorithms, such as the watershed algorithm, segment image pixels based on the similarity 

between neighboring pixels where nearby pixels are assigned to the same label (Wang, 

2010). Segmenting image pixels based on only the similarities within pixel intensities or 

the similarities between adjacent pixels may yield a low representation of image 

characteristics. Thus, the separation-deviation (SD) model is introduced to simultaneously 

capture the similarities within and between image pixels for the effective representation of 

image characteristics (Boykov et al., 2001, Hochbaum, 2011). The SD model includes the 

deviation term, which captures the similarity within image pixels, and the separation term, 

which captures the similarities between adjacent image pixels. 

The objective of the SD model is to convert a topographic surface { ; 1,..., }iZ z i m= =  to a 

discrete surface { ; 1,2,..., },iX x i m= =  where 
ix  is a discrete number that belongs to one 

of the k  predefined labels, {1,2,..., }ix K k =  (Boykov et al., 2001, Hochbaum, 2011). 
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The assigned labels are obtained by minimizing the sum of deviation cost (.)iD  and the 

separation cost (.)ijS  over all topographic values as shown in Equation (4.1) 

( )

= argmin ( ) ( , )
i

i i ij i j
x K i Z i Z j i

X D x S x x
   

+   , (4.1) 

where   is a smoothing parameter that controls the smoothness of segmentation results 

and ( )i  is a specified neighborhood construction rule. Two popular neighborhood 

construction rules are commonly used to define ( )i : the rock-move neighborhood (RMN) 

and the king-move neighborhood (KMN). The RMN construction rule considers the four 

neighbors positioned vertically and horizontally adjacent to a topographic pixel, while the 

KMN construction rule considers the eight neighbors positioned in the vertical, horizontal, 

and diagonal of a topographic pixel. In the SD model, the deviation term captures the 

similarity of topographic values by minimizing the deviation between the observed 

topographic values 
iz  and their expected values. The separation (or smoothing) term 

captures the similarities between assigned labels by minimizing the separation between the 

assigned labels 
ix  and their neighbors jx .  

The use of the SD model in surface topography monitoring has some limitations. In 

particular, the SD model ignores the utilization of the characteristics of the normal surfaces 

during the segmentation process. Besides, the model does not consider the relationships 

between the assigned labels and the topographic values (heights). Such limitations may 

lead to a lower performance of segmenting changes in topographic surfaces. Therefore, we 

overcome these limitations by developing an effective monitoring approach based on the 
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proposed multi-label separation-deviation surface (MSS) model for accurate monitoring of 

changes in topographic surfaces.  

4.3 Developed Approach  

The developed approach has the following three stages; Stage 1: multi-label surface 

segmentation, Stage 2: feature extraction, and Stage 3: anomaly detection. In Stage 1, we 

enhance the description of local topographic defects by segmenting the topographic values 

into predefined labels through the developed MSS model. Stage 2 extracts two features 

from the obtained labels for quantifying changes in surface characteristics. Finally, in Stage 

3, anomaly surfaces are detected using the extracted features. Figure 4.1 shows a summary 

of the developed approach (Alqahtani et al., 2020b).  

 
Figure 4.1 Flow diagram of  the developed approach 

 

4.3.1 Stage 1: Multi-label Surface Segmentation 

We overcome the limitations of the existing SD model by proposing a multi-label 

separation-deviation surface (MSS) model for online monitoring of 3D topographic 

surfaces. The MSS model assigns each topographic value 
iz  in a new (or observed) surface 
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into one of the k  predefined labels, {1,2,..., }ix K k = , by minimizing the sum of the 

deviation and separation costs as given in Equation (4.2) 

0 0

( )

= argmin ( , , ) ( , )
i l

i i l l ij i j
x K l K i C i Z j i

X D z S x x  
    

+   , (4.2) 

where   is a smoothing parameter, 
0 0( , )l l   are the normal mean and standard deviation 

of the label l , 1,2,...,l k= , 
lC  is the set of values whose label is ,l  and ( )i  is a specified 

neighborhood construction rule. In the MSS model, the Mahalanobis function is utilized as 

a deviation function, which is defined in Equation (4.3)  

0 2
0 0

0

( )
( , , ) .

l l

i l
i i l l

l K i C l K i C l

z
D z


 

   

−
=   (4.3) 

From Equation (4.3), the distance between each observed topographic value 
iz  and the 

normal mean value of each label 
0 ,l 1,2,..., ,l k=  is calculated and then scaled by the 

normal standard deviation of each label 
0

l , 1,2,...,l k= . Subsequently, each topographic 

value, i Z , is assigned to a label set that has the closest distance 
1 2{ , ,...., }kC C C  to 

minimize the deviation cost.   

We propose Algorithm 4.1 to estimate the parameters of the normal mean and standard 

deviation of each label 
0 0{ , ; 1,2,..., }l l l k  = . Specifically, we consider n  normal 

topographic surfaces, denoted as 
( ) ( ){ ;j j

iZ z= 1,..., }i m= , 1,...,j n= , where 
( )j

iz  is the 

topographic value of the pixel i  measured from the surface j  and m  is the total number 

of pixels as shown in the for-loop in steps 1 and 8. In step 2, we utilize the k -means 

algorithm to efficiently obtain the segmentation results. Particularly, the k -means 
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algorithm has two main steps: the assignment and update steps. In the assignment step, the 

algorithm assigns each topographic value of the pixel i  to a label set, 
( )j

li R , 1,2,..., ,l k=

that has the nearest mean by minimizing the sum of the squared Euclidean distance between 

each topographic value and a predefined mean of each label set. Then, in the update step, 

the algorithm updates the mean of each label set 
( )j

l , 1,2,...,l k= . The k -means algorithm 

repeats these two steps until the assigned labels do not change. Consequently, the mean 

and standard deviation are calculated from the topographic values of the final obtained 

label sets 
( ) ( ){ , ; 1,2,..., }j j

l l l k  =  as explained in steps 3 to 5. In step 6, we rank the mean 

of each label in increasing order to connect each assigned label set to the magnitude of its 

topographic values. As a result, ( )

(1)

j  represents the mean of the set with the lowest 

topographic values, whereas ( )

( )

j

k  represents the mean of the set with the highest 

topographic values. In step 7, we map the standard deviation of each label to its ranked 

mean. Finally, the normal mean and standard deviation of each label are calculated by 

taking the mean over the values obtained from given normal surfaces as presented in steps 

9 to 11. 
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Algorithm 4.1: Estimating the normal mean and standard deviation for each label 
0 0{ , ; 1,2,...,l l l k  = } 

Given the total number of the assigned labels k  and normal topographic surfaces 
( )jZ , 

1,...,j n=  (e.g., n =1000), we apply the following steps: 

1:   for 1,2,...,j n=   do  

2: assign each topographic value into one of the k labels by minimizing the 

following function  

( )

( ) ( ) 2

1

min ( )
j

l

k
j j

i l

l i R

z 
= 

−  , 

where 
( )j

l  is the mean of topographic values with the label l  obtained from the 

surface j  and 
( )j

lR  is the set of assigned values with the label l  obtained from 

the surface j . 

3:      for 1,2,...,l k=  do 

4: calculate the mean and standard deviation of the topographic values that 

corresponds to the label l  

( )

( ) ( )

( )

1
,

j
l

j j

l ij

i Rl

z
n




=   and 
( )

( ) ( ) 2

( )

( )

( )

( 1)

j
l

j j

i l

i Rj

l j

l

z

n






−

=
−


, 

where 
( ) ( )( , )j j

l l   are the mean and standard deviation of the topographic 

values with the label l  obtained from the surface j  and 
( )j

ln  is the total 

number of the assigned values with the label l  obtained from the surface .j  

5:      end for 

6:      rank the mean of each label in increasing order 
( ) ( ) ( )

(1) (2) ( )...j j j

k      , 

      where ( ) ( ) ( )

(1) (2) ( ){ , ,..., }j j j

k    are the order statistics of the mean of each label. 

7: map the standard deviation of each label to its corresponding ranked mean 
( ) ( ) ( )

(1) (2) ( ){ , ,..., }j j j

k   . 

8:   end for 

9:   for 1,2,...,l k=  do 

10:    calculate the normal mean and standard deviation 

0 ( ) 0 ( )

( ) ( )

1 1

1 1
and

n n
j j

l l l l

j jn n
   

= =

= =  . 

11: end for 

 

The Potts function is defined as a discontinuity function, which indicates whether the 

assigned pixels are disconnected with its neighbors (Boykov et al., 2001). More 
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specifically, the Potts function penalizes each assigned pixel 
ix  by a defined smoothing 

parameter   if it does not match its neighbors jx . Therefore, we utilize the Potts function 

as a separation function to capture the similarities between the assigned labels and their 

neighbors as given in Equation (4.4)  

( ) ( )

( , ) ( )ij i j i j

i Z j i i Z j i

S x x I x x 
   

=     , (4.4) 

where (.)I  is an indicator function defined as ( ) 1,i jI x x =  otherwise zero. Therefore, the 

MSS model segments the topographic values of a new surface into one of the k  predefined 

labels with respect to the characteristics of normal surfaces. In addition, the obtained labels 

are accurately mapped to the magnitude of topographic values due to the use of the ranked 

normal means in the deviation function. As a result, the assigned values with the label 1 

( 1)ix =  constantly represent the region with the lowest topographic values (or lowest 

valley), and the assigned values with the label k  ( )ix k=  always represent the region with 

the highest topographic values (or highest peak). Finally, we utilize the graph cut algorithm 

to efficiently obtain the solution of the MSS model (Boykov et al., 2001).  

The developed MSS model has several advantages in monitoring topographic surfaces. The 

model is effective in enhancing the representation of topographic defects (Alqahtani et al., 

2020b). Specifically, when an anomaly surface is observed, we expect the structure of that 

surface to be distinguishable from the structure of the normal surfaces. This is because any 

abnormal topographic value is assigned to the nearest normal mean for minimizing the 

objective function of the MSS model. This causes labels 1 and k  to be assigned more than 

other labels to minimize the objective function, which subsequently yields a significant 
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change in the structure of the assigned labels. In addition, the model is superior in dealing 

with noisy values by controlling the smoothing parameter   in which a higher value of   

results in smoother segmentation results and vice versa. The model is also efficient for 

online monitoring since the computation time of the graph cut algorithm is linear with the 

number of assigned labels ( )O k  (Boykov et al., 2001).  

4.3.2 Stage 2: Feature Extraction  

In this section, we introduce two features for quantifying various topographic defects based 

on the label assignments obtained by the developed MSS model. Specifically, the multi-

label separation-deviation surface (MSS) feature is suggested for capturing the deviation 

of the observed topographic values from their respective normal mean values. The MSS 

feature, denoted as 
1y , is defined as the objective value of minimizing the MSS model as 

given in Equation (4.5) 

0 2

0
( )

( )
Minimize ( )

Subject To

l

i l
i j

l K i C i Z j il

i

z
I x x

x K i Z




   

−
+ 

  

  
, (4.5) 

The MSS feature reflects how the characteristics of an observed surface are similar to those 

of normal surfaces. A higher value of the MSS feature implies that the characteristics of 

observed topographic values deviate from the normal characteristics and vice versa. 

Therefore, it is expected the corresponding MSS values of normal surfaces to be 

statistically similar since they share similar surface characteristics. However, when some 

defects appear on the topography of an observed surface, this is likely to cause a deviation 

in the characteristics of the topographic values. As a result, a significant increase in the 

value of the MSS feature is expected due to the increase in the total cost of minimizing the 
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deviation and separation functions. Thus, the MSS feature is powerful in capturing 

deviations in surface characteristics.  

The spatial randomness (SR) feature is applied for identifying the presence of the spatial 

autocorrelation in observed binary surfaces (Hansen and Thyregod, 1998). The SR feature 

enables the evaluation of surface uniformity by examining whether an observed binary 

value of a pixel at one location is independent of the values of that pixel at neighboring 

locations. The SR feature is measured using the concept of join-count (JC) statistic, which 

computes the actual count of the 0-to-0 and 1-to-1 joins under a defined neighborhood 

construction rule. Therefore, for the given binary surface of a product 

{ ; 1,2,..., }iX x i m= = , {0,1}ix  , the JC statistics of the 0-to-0 and 1-to-1 joins are 

calculated using Equation (4.6), respectively,   

00

( )

(1 ) (1 )i j

i X j i

J x x
 

= − −  , and 
11

( )

i j

i X j i

J x x
 

=  , (4.6) 

where 00 11( , )J J  are the JC statistics of label 0 and label 1, respectively, and ( )i  is a 

defined neighborhood construction rule of the pixel i . The SRT is given in Equation (4.7) 

0 00 1 11S J J = + , (4.7) 

where 0  and 1   are the assigned weights for the 0-to-0 and 1-to-1 joins, respectively. 

Note that 0  and 1  are defined as the probability of not observing the labels 0 and 1 in 

the given binary surface, respectively. Specifically, 0  and 1  are calculated as 

0 1 /m m =  and 1 0 /m m = , where 0m  and 1m  are the number of pixels with the labels 0 

and 1, respectively,  and m  is the total number of the image pixels (Jeong et al., 2008). 

The SRT is commonly used for detecting the presence of the spatial autocorrelation among 
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values in binary surfaces. Since the 3D topographic surfaces naturally contain values that 

are spatially autocorrelated with their neighbors, the SR feature can be powerful not only 

in detecting but in monitoring the level of the spatial autocorrelation between the 

topographic values. However, the SR feature is applicable for binary surfaces only. Since 

the topographic surfaces are expressed as continuous data, the existing SR feature is 

unsuitable in monitoring these surfaces. 

We overcome the aforementioned drawback by generalizing the existing SR feature from 

the binary case to a more general case (segmented case) in which the spatial randomness 

of each assigned label obtained by the MSS model is quantified and monitored. Thus, we 

develop a generalized spatial randomness (GSR) feature to quantify and capture the spatial 

characteristics among each assigned label. In particular, we obtain the GSR feature by first 

generalizing the JC statistics for all k  assigned labels. Specifically, the JC statistic for each 

assigned label is obtained by measuring the actual count of the l -to- l  join, 1,2,...,l k= , 

according to a defined neighborhood construction rule ( )i . Therefore, for the obtained 

segmented surface { ; 1,2,..., }iX x i m= = , {1,2,..., }ix k , we propose the generalized JC 

statistic of the label l , 1,2,..., ,l k=  which is given in Equation (4.8) 

( )

( ) ( )ll i j

i X j i

J I x l I x l
 

= = =  , (4.8) 

where (.)I  is an indicator function defined as ( ) 1,iI x l= = and ( ) 1,jI x l= =  otherwise 

zero. Subsequently, the spatial randomness feature of the thl  label, 1,2,...,l k= , is derived 

using Equation (4.9) 
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l l ll r rrS d J d J= + , (4.9) 

where ( , )l rd d  are the assigned weights of label l  and label r , llJ  is the JC statistic of the 

label l , and rrJ  is the JC statistic of the label r , which is defined as the total sum of the 

JC statistics without the label l , 
1|

k

rr jj

j j l

J J
= 

=  . We develop Lemma 4.1 to obtain the 

optimal weights by minimizing the variance of lS  (the proof of Lemma 4.1 is given in 

Appendix A).  

Lemma 4.1: For the spatial randomness feature of the label l , lS , 1,2,...,l k= , the 

optimal weights which minimize the variance of lS  subjected to 1l rd d+ =  are obtained 

* *( , ) ( , )l r r ld d  = , where /l ln m =  is the probability of assigning the label l , which is 

measured by dividing the number pixels with the label l , ln , over the total number of 

surface pixels, m , and 
1|

1
k

r j l

j j l

  
= 

= = −   is the probability of not observing the label 

l . 

According to Lemma 4.1 and Equation (4.9), we propose the generalized spatial 

randomness (GSR) feature by integrating the spatial randomness feature of each assigned 

label as given in Equation (4.10) 

2

1 1|

k k

j ll

l j j l

y J
= = 

=  , (4.10) 

Note that when the total number of labels is “two” ( 2k = ), the GSR is reduced to the 

existing SR feature. 
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The developed GSR feature is robust to the random behavior among topographic values. 

In particular, the corresponding values of the GSR feature of the normal surfaces are 

expected to be similar even though the topographic values of these surfaces do not match 

their locations. This is because the GSR feature is measured independently from the actual 

locations of the topographic values. In addition, the GSR feature is powerful in monitoring 

deviations in the spatial structure between the assigned labels. Specifically, when an 

observed surface contains defects (anomaly surface), then the spatial structure of the 

assigned labels of that surface is expected to change from the structure of normal surfaces. 

This change can be effectively captured by quantifying the spatial randomness level of all 

assigned labels through the developed GSR feature.  

4.3.3 Stage 3: Anomaly Detection  

The goal of Stage 3 is to identify whether the new surface ( )newZ  is an anomaly based on 

given n  normal surfaces, ( )jZ , 1,2,...,j n= . Specifically, after a new surface ( )newZ  is 

observed, the surface is converted to a segmented surface ( )newX  by applying the MSS 

model. After the MSS feature ( )

1

newy  and the GSR feature ( )

2

newy  are both computed from 

( )newX , we integrate them into a single feature vector ( ) ( ) ( )

1 2[ , ]new new newy y=y . Finally, the 

monitoring statistic is calculated using Equation (4.11)  

( ) ( ) ' 1 ( )

0 0 0
ˆ( ) ( )new new newT −= − −y y Σ y y , (4.11) 

where 0y  and 1

0
ˆ −
Σ  are the normal mean and covariance matrix of the feature vector 

computed from normal surfaces. Therefore, when the monitoring statistic of a new surface 

( )newT  exceeds a defined critical value C , then, we identify the new surface ( )newZ  as an 
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anomaly. Note that C  is defined as ,2, 2[2( 1) / 2] nC n n F −= − − , where n  is the total 

number of normal surfaces and   is a prespecified false positive alarm rate, which is 

defined as the percentage of incorrectly identifying the normal surfaces as anomaly 

surfaces (Montgomery, 2007).  

4.4 Performance Analysis 

In the simulation studies, we utilize the Gaussian random model discussed in Section 2.3 

to generate topographic surfaces. In addition, anomaly surfaces are generated under 

different defect types, sizes, and areas to mimic various real-life defect scenarios as 

described earlier in Section 3.3.1. 

4.4.1 Analysis of the Developed MSS Model 

In this section, we study the effect of the smoothing parameter   and the number of 

assigned labels k  on the segmentation results. The smoothing parameter   is defined as 

a trade-off parameter that controls the effect of the deviation and separation terms in the 

MSS model. If the deviation term dominates the separation term, each topographic value 

tends to be assigned to the label set with the nearest normal mean. In contrast, if the 

separation term is weighted more than the deviation term, then a stronger influence is set 

on the boundary of each assigned label, which results in smoother segmentation results. 

The value of   is selected according to the behavior of the topographic surfaces under 

normal process behavior. A lower value of   (e.g., 0.25 = ) is recommended for surfaces 

with few noisy values, while a larger value of   (e.g., 15 = ) is recommended for 

surfaces with many noisy values.  
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The number of assigned labels k  is another important parameter of the MSS model. In 

practice, the selection of k  is determined according to the characteristics of normal 

surfaces. A larger k  (e.g., 10k = ) is recommended for surfaces composed of dense 

characteristics, whereas a smaller  k  (e.g., 3k = ) is recommended for surfaces composed 

of sparse characteristics. Figure 4.2 displays the result of specifying different values of   

and k  on segmenting a topographic surface. In the simulation studies, we select 0.25 =  

and 3k =  since the generated normal topographic data contain sparse characteristics and 

less noise. 

 
Figure 4.2 Segmentation results under different values of   and k : (a-c) 0.25, 5,15 = , and (d-

f) 3, 5,10k = . 

 

We also study the effectiveness of the developed MSS model in capturing topographic 

defects. Figure 4.3 shows examples of normal and anomaly surfaces before and after being 

segmented into three labels ( 3)k =  using the developed MSS model. We observe that the 

structure of the assigned labels of the two generated anomaly surfaces can be clearly 

distinguished from the structure of the normal surface. Particularly, when the variance 

change occurs, labels 1 and 3  tend to be assigned more than the other labels as shown in 

Figure 4.3 (b). This is because the MSS model minimizes the deviation function by 
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assigning the topographic values with abnormal negative values (or abnormal valleys) to 

the label set with the lowest normal mean (label 1) and the topographic values with 

abnormal positive values (or abnormal peaks) to the label set with the highest normal mean 

(label 3 ). Moreover, when the autocorrelation change occurs, the topographic values 

become more similar to their neighbors, which yields the labels assigned by the MSS model 

to be more grouped and clustered as presented in Figure 4.3 (c). 

 
Figure 4.3 Examples of (a) normal surface, and two anomaly surfaces with (b) variance change, 

and (c) autocorrelation change (first row), along with their corresponding label assignments 

obtained by the MSS model (second row). 

 

4.4.2 Detection Performance Comparisons 

This section compares the detection performance of the developed approach with the 

traditional monitoring approaches discussed in Section 2.4. In the performance 

comparisons, we use the performance measure described earlier in Equation (3.15). In 

particular, Table 4.1 presents the power of detection P  of the developed and traditional 

monitoring approaches using anomaly surfaces obtained by the Gaussian random model. 

Overall, we notice that the detection performance of the variance change is lower than the 

detection performance of the autocorrelation change. This is because the variance change 

primarily affects the variance of topographic values, which is not difficult to capture. 
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However, the autocorrelation change does not affect the variance of topographic values, 

but it mainly affects the spatial relationships among topographic values, which is difficult 

to detect. In addition, we notice that the power spectral density psdS  and the density of 

summits dsS  show low detection performance due to the use of the FFT filter as in psdS  

and edge detection filters as in dsS , which are likely to smooth the local defect information. 

Similarly, when the Fiedler number cS  is calculated, the topographic values of normal 

regions are likely to dominate the values of local defects, which results in lower power of 

detection of cS . We also observe that the one-sample Anderson–Darling approach adS  

shows better performance in detecting the variance change compared to the other 

traditional approaches due to the utilization of information learned from normal surfaces 

during the fitting process of the supervised learning model (regression tree). However, adS  

yields low performance in detecting the autocorrelation change because the spatial 

characteristics of local faults can be obscured by the spatial characteristics of normal 

topographic values. 

In contrast, the developed MSS feature is shown to be sensitive in capturing the variance 

change by quantifying the deviation between the assigned labels and their corresponding 

normal mean values. In addition, the developed GSR feature is effective in detecting the 

autocorrelation change by calculating the spatial randomness level for all assigned labels. 

Therefore, the monitoring statistic T , which calculates the deviation of a vector that 

includes both features from the normal mean vector, shows superior performance in 

detecting local topographic defects caused by either variance or autocorrelation change and 

outperforms the traditional monitoring approaches as presented in Table 4.1. In addition, 
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the proposed approach is shown to be more sensitive to detect the variance change than the 

autocorrelation since T  yields superior detection performance with a small change in the 

fault size of   (0.5 m  changes from the normal value) compared to the change in the 

fault size of   ( 2 m  changes from the normal value). 

Table 4.1 Power of detection of the developed and traditional monitoring approaches using 

anomaly surfaces generated by the Gaussian random model 

Defect type Defect area 

Defect size Monitoring approaches 

    psdS  
dsS  cS  adS  T  

Variance 

2.0% 
1.5 1 0.242 0.273 0.189 0.740 0.802 

1.6 1 0.281 0.336 0.223 0.910 0.964 

2.25% 
1.5 1 0.246 0.281 0.197 0.750 0.943 

1.6 1 0.276 0.335 0.222 0.960 0.994 

Autocorrelation 

2.0% 
1 3 0.095 0.095 0.112 0.120 0.681 

1 3.2 0.096 0.097 0.120 0.200 0.746 

2.25% 
1 3 0.094 0.095 0.113 0.190 0.863 

1 3.2 0.098 0.097 0.116 0.300 0.910 

 

We examine the significance of differences between the power of detection results obtained 

by the developed and traditional monitoring approaches. We apply the Wilcoxon signed 

test, which is effective in examining the median differences between two data sets. 

Particularly, we obtain the performance measure (power of detection) for 100 replicates 

for the developed and traditional monitoring approaches using the fault scenarios 

considered in Table 4.1. Consequently, after we obtain a vector of size 100 for each 

approach, we calculate the p-values for all pairwise comparisons between the developed 

and traditional approaches as shown in Table 4.2. 
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We observe that the power of detection results obtained by the developed approach are 

significantly different from the traditional approaches under a defined positive false rate 

(0.05). For example, for the variance change with the defect area of 2% and defect size of 

1.5, the power of detection results obtained by T  and psdS  are statistically different since 

its calculated p-value is significantly less than the defined positive false rate (p-value 

=3.74E-18 <0.05).  

Table 4.2 Pairwise comparisons between the power of detection results of the developed and 

traditional approaches using their p -values  

Defect 

type 

Defect 

area 

Defect size Monitoring approaches 

    psdS  
dsS  cS  adS  

Variance 

2.0% 
1.5 1 3.74E-18 3.73E-18 3.68E-18 0.011 

1.6 1 3.76E-18 3.75E-18 3.69E-18 0.042 

2.25% 
1.5 1 3.72E-18 3.73E-18 3.67E-18 0.024 

1.6 1 3.74E-18 3.78E-18 3.68E-18 0.045 

Autocorrel

ation 

2.0% 
1 3 3.70E-18 3.73E-18 3.73E-18 3.89E-16 

1 3.2 3.74E-18 3.74E-18 3.78E-18 1.48E-11 

2.25% 
1 3 3.67E-18 3.67E-18 3.73E-18 3.10E-16 

1 3.2 3.69E-18 3.71E-18 3.79E-18 1.27E-11 

 

We also perform additional experiments to investigate the effectiveness of the proposed 

approach under the statistical process control (SPC) environment, i.e., sequential testing. 

Table 4.3 shows the 1ARL  performance of the developed and traditional monitoring 

approaches using surfaces generated by the Gaussian random model. Note that we set the 

in-control 0ARL  for all approaches to be 200 and then calculate the out-of-control 1ARL  

under different defect types, sizes, and areas. In addition, we consider one surface at each 
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sampling point (i.e., sample size 1n = ), and the 1ARL  is obtained based on 1000 replicates. 

We observe that the developed approach is significantly quicker in detecting both variance 

and autocorrelation changes than the other monitoring approaches. This is more apparent 

in the autocorrelation change than in the variance change due to the difficulty of detecting 

the change in the spatial relationships among topographic data. For example, in the 

variance change with the defect area of 2% and defect size of 1.5, the 1ARL  of the 

developed approach is about 1.97, whereas the 1ARL  of the other monitoring approaches 

are at least around (≥4.34). However, in the autocorrelation change with the defect area of 

2% and defect size of 3, the 1ARL  of the developed approach is around 2.78, while the 

1ARL  of the other approaches are at least about (≥100.2). This implies the effectiveness 

and efficiency of the proposed approach in monitoring different topographic changes under 

the SPC environment. 

Table 4.3 1ARL  performance of the developed and traditional monitoring approaches using 

anomaly surfaces generated by the Gaussian random model 

Defect type Defect area 

Defect size Monitoring approaches 

    psdS  
dsS  cS  adS  T  

Variance 

2.0% 
1.5 1 22.42 17.12 19.00 4.34 1.97 

1.6 1 16.45 11.16 12.57 1.42 1.17 

2.25% 
1.5 1 21.07 15.52 18.78 2.69 1.25 

1.6 1 15.31 10.88 12.56 1.17 1.03 

Autocorrelation 

2.0% 
1 3 166.4 170.2 163.7 100.2 2.78 

1 3.2 163.1 161.6 148.4 16.08 2.39 

2.25% 
1 3 154.2 152.3 137.0 54.27 1.66 

1 3.2 147.0 142.4 134.4 12.10 1.43 
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We study the effect of the sample size n , i.e., the number of observed surfaces at each 

sampling point in the 1ARL  performance. Table 4.4 shows the 1ARL  performance of the 

developed approach under different sample sizes ( 1, 2,3n = ). We notice that the 1ARL  

performance is dependent on n . More specifically, when n  increases, better performance 

of 1ARL  is achieved. This is because when the sample size of the anomaly surfaces 

increases at each sampling point, this improves the accuracy of identifying anomaly 

surfaces. 

Table 4.4 Effect of different sample sizes in the 1ARL  performance of the developed approach 

Defect type Defect area 
Defect size Sample size 

    n =1 n =2 n =3 

Variance 

2.0% 
1.5 1 1.967 1.087 1.008 

1.6 1 1.167 1.001 1.000 

2.25% 
1.5 1 1.253 1.005 1.000 

1.6 1 1.025 1.000 1.000 

Autocorrelation 

2.0% 
1 3 2.783 1.203 1.014 

1 3.2 2.388 1.144 1.016 

2.25% 
1 3 1.663 1.039 1.002 

1 3.2 1.426 1.015 1.001 

 

Table 4.5 presents the average computation time of obtaining the statistics of the developed 

and traditional monitoring approaches for surfaces generated by the Gaussian random 

model. Note that the computation time for each approach is obtained by taking the average 

over 1000 samples, and the standard deviation for each approach is presented in the 

parentheses. We observe that the computation time of the developed approach T  is larger 
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than the other approaches (e.g., dsS , psdS , and cS ) due to its modeling complexity. 

However, the computation time of T  is still efficient and smaller than the computation 

time of other complex approaches such as adS . Particularly, T  takes an average of 0.121 

seconds to detect an anomaly surface, whereas adS  takes an average of 5.363 seconds. This 

makes the developed approach suitable for the online monitoring of topographic surfaces.  

Table 4.5 Average computation time of the developed and traditional monitoring approaches  

Monitoring 

approaches 
psdS  

dsS  cS  adS  T  

Time in seconds 

(standard 

deviation) 

0.001 

(7.54E-05) 

5.18E-05 

(6.22E-06) 

0.012 

(0.002) 

5.575 

(0.067) 

0.121 

(1.32E-03) 

  

4.5 A Case Study on Monitoring the Topography of Wafer Surfaces 

This section presents the detection performance of the developed approach using the case 

study from the semiconductor industry explained earlier in Section 3.4. Particularly, Table 

4.6 demonstrates the power of detection P  of the developed and traditional monitoring 

approaches using anomaly wafer surfaces. We observe that the appearance of the scratch, 

pit, and ridge defects can be categorized as an autocorrelation change since these defects 

mainly affect the spatial autocorrelation among topographic values (Rao et al., 2015b). We 

also notice that the traditional monitoring approaches fail to identify these defects due to 

their ignorance of the spatial relationships between the topographic values. In contrast, the 

proposed approach T  yields superior detection performance for all defined defect 

scenarios due to the effective modeling of the spatial relationships among topographic data 

and subsequently outperforms the traditional monitoring approaches. Therefore, T  shows 
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its robustness in detecting different types of defects that appear on the topography of wafer 

surfaces. 

Table 4.6 Power of detection of anomaly wafer surfaces 

Defect type Defect area 

Monitoring approaches 

psdS  
dsS  cS  T  

Scratches 

1% 0.105 0.099 0.110 0.867 

1.25% 0.108 0.100 0.112 0.972 

1.5% 0.110 0.104 0.113 0.997 

Pits 

1% 0.103 0.096 0.112 0.874 

1.25% 0.104 0.097 0.115 0.977 

1.5% 0.109 0.102 0.114 0.998 

Ridges 

2% 0.113 0.103 0.107 0.680 

3% 0.117 0.104 0.111 0.955 

5% 0.127 0.106 0.116 0.999 

 

Other manufacturing processes may experience direction changes in the surface 

topography of the finished products due to the wear of machine tools (Zhang et al., 2018, 

Bui and Apley, 2018b). For example, using a rotating grinder tool produces circular 

patterns while vertical or horizontal grinder produces completely different patterns. Figure 

4.4 (a) shows an example of directional patterns in a ground surface when using a 

horizontal grinder, while Figure 4.4 (b) shows the effect of the tool wear on the surface 

finish when using a rotating grinding (Zhang et al., 2018). 
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Figure 4.4 Directional patterns on ground surfaces obtained from (a) horizontal grinder, and (b) 

rotating grinder (Zhang et al., 2018). 

 

We examine the effectiveness of the developed approach in monitoring directional 

changes. Particularly, we generate directional changes by convoluting a non-Gaussian 

distribution function (e.g., beta distribution) with a non-Gaussian autocorrelation function 

(e.g., linear motion). Note that the linear motion includes a shape parameter  , which 

controls the direction of the surface characteristics and takes values from 0 to 360 degrees. 

Figure 4.5 shows three generated non-Gaussian surfaces with one normal sample with no 

directional change ( 0 = ), and two anomaly samples with mild and severe directional 

changes ( 20 =  and 60 = ), respectively. 
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Figure 4.5 Examples of three generated surfaces with (a) normal characteristics, and two anomaly 

characteristics with (b) mild, and (c) severe directional changes. 

 

Table 4.7 shows the detection performance results of the developed and traditional 

monitoring approaches using the power of detection under different directional changes 

( = 0.2, 0.3, 0.4, and 0.5). Note that when a surface experiences a directional change, the 

autocorrelation structure between the topographic values is likely to be impacted (Bui and 

Apley, 2018b). As the traditional monitoring approaches do not fully characterize the 

spatial relationships among topographic values, they show lower detection performance of 

such changes. In contrast, the developed approach outperforms the traditional approaches 

under all specified directional changes due to the accurate quantification of the spatial 

autocorrelation structure of the surface. Besides, the developed approach does not assume 

any distribution in advance, which makes the approach suitable in monitoring different 

types of topographic surfaces, including both Gaussian and non-Gaussian surfaces. 
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Table 4.7 Power of detection of the developed and traditional monitoring approach of 

non-Gaussian anomaly surfaces  

Theta ( ) 
Monitoring approaches 

psdS  
cS  wS  T  

0.2 0.114 0.085 0.250 0.379 

0.3 0.116 0.091 0.299 0.725 

0.4 0.123 0.100 0.336 0.933 

0.5 0.125 0.103 0.368 0.990 

 

4.6 Conclusions 

This chapter introduces a novel approach for monitoring local variations in topographic 

surfaces. The approach effectively improves the representation of local defects through the 

developed MSS model, where important characteristics are labeled, and noisy 

characteristics are smoothed out. The MSS and GSR features are introduced for capturing 

variations within and between the label assignments, respectively. After integrating the two 

presented features into a single monitoring statistic, effective monitoring of anomaly 

surfaces is accomplished. The developed approach is shown to be effective in detecting 

various surface changes, including variance, autocorrelation, and directional changes, and 

outperforms the traditional monitoring approaches. In particular, the proposed approach is 

more sensitive in detecting the local variance change than the local autocorrelation due to 

the effective segmentation of abnormal values achieved by the developed MSS model. In 

addition, different types of topographic surfaces, including both Gaussian and non-

Gaussian surfaces, are effectively monitored and assessed. Finally, the developed approach 

is proven to be efficient in monitoring topographic surfaces under the SPC environment. 
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CHAPTER 5  

SPATIALLY WEIGHTED GRAPH THEORY-BASED APPROACH FOR 

MONITORING LOCAL AUTOCORRELATION CHANGES IN 3D 

TOPOGRAPHIC SURFACES 

5.  

5.1 Introduction  

Surface topography is a key characteristic in monitoring the quality of finished products 

and manufacturing processes as discussed in Section 1.1. Due to the complex structure of 

topographic surfaces, existing minoring approaches lack the detection of local surface 

faults (Alqahtani et al., 2020c). In Chapter 4, the proposed approach is shown to be superior 

in detecting local variance change. However, the approach is appeared to be less effective 

in detecting local autocorrelation change, even though it outperforms the existing 

monitoring approaches. Examples of local autocorrelation change include pits, ridges, and 

scratches that commonly appear on the topography of wafer surfaces during semiconductor 

manufacturing (Alqahtani et al., 2020c). Detecting local autocorrelation change is 

challenging since this change is likely to cause a local change in the spatial structure of 

topographic values. Subsequently, this change cannot be simply captured by analyzing the 

distribution of topographic values where the spatial relationships among surface pixels are 

ignored. In this chapter, we address this challenge by developing a novel approach for 

accurate monitoring of local autocorrelation change in topographic surfaces. 

Rao et al. (2015a) propose a graph-based monitoring approach for characterizing and 

monitoring changes in surface characteristics. Although the approach yields an improved 
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description of surface characteristics, it shows a limitation in detecting local 

autocorrelation changes for not considering the spatial relationships among topographic 

pixels as discussed earlier in Section 2.4.4. Thus, we overcome these limitations by 

proposing a spatially weighted graph theory-based approach. The proposed approach 

initially improves the representation of surface characteristics by introducing an in-control 

multi-region surface segmentation algorithm, which segments the observed surface pixels 

into clusters according to the information learned from in-control surfaces. The local and 

spatial topographic characteristics are accurately described through a proposed maximum 

local spatial randomness (MLSR) feature. We improve the description of the topographic 

structure by representing the surface as a spatially weighted graph network where the graph 

nodes represent the obtained clusters, and the graph edges represent the similarity between 

clusters in terms of their MLSR feature. The local changes in the spatial autocorrelation of 

topographic values are subsequently detected by monitoring the connectivity of the 

obtained graph network through a developed spatial graph connectivity statistic. Note that 

Chapter 5 is mostly based on the following published paper: ALQAHTANI, M. A., 

JEONG, M. K. and ELSAYED, E. A. 2020d. Spatially weighted graph theory-based 

approach for monitoring faults in 3D topographic surfaces. International Journal of 

Production Research. Accepted. 

The remainder of this chapter is organized as follows. The proposed monitoring approach 

is presented in Section 5.2. Extensive simulation studies to validate the proposed approach 

are conducted in Section 5.3. In Section 5.4, a case study of semiconductor copper wafers 

is presented to evaluate the performance of the proposed monitoring approach. Finally, 

conclusions are discussed in Section 5.5.  
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5.2 Proposed Monitoring Approach 

The proposed approach is composed of the following stages; Stage 1: multi-region surface 

segmentation, Stage 2: feature extraction, and Stage 3: anomaly detection as shown in 

Figure 5.1. In Stage 1, we enhance the representation of local surface characteristics 

through segmentation. Then, in Stage 2, we extract features that capture the spatial 

structure among the obtained segmentation results. Finally, in Stage 3, we utilize the graph 

theory to represent and monitor changes in topographic surfaces. Each stage is discussed 

in detail in the following sections. 

 
Figure 5.1 Overview of the proposed monitoring approach. 

 

5.2.1 Stage 1: Multi-Region Surface Segmentation 

In many real-life applications, image segmentation is an important tool for improving the 

representation of image (or surface) characteristics by clustering the important 

characteristics and smoothing out the noisy ones. Image segmentation is typically defined 

as the process of assigning the image pixels into distinct clusters with similar attributes 

(Patil and Deore, 2013). Various algorithms, such as K-means, watershed, and edge 

detection, have been developed for obtaining accurate segmentation results (Wang, 2010). 

However, applying these algorithms for monitoring changes in surface characteristics has 
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some limitations. In particular, the information about in-control surfaces is ignored and not 

fully utilized during the segmentation process. Furthermore, the cluster labels are not 

connected to the values of topographic pixels. For example, if we apply these algorithms 

(e.g., K-means) to segment two surface samples generated under the same settings, we may 

observe that cluster 1 in sample 1 represents the pixels with the lowest topographic values, 

whereas cluster 1 in sample 2 represents the pixels with the highest topographic values. 

This inconsistency is likely to cause difficulty in monitoring changes in the characteristics 

of each cluster during the online monitoring of topographic surfaces.  

We overcome the above limitations by proposing an in-control multi-region surface 

segmentation (IMSS) algorithm, which is based on the K-means algorithm. Particularly, 

the IMSS algorithm considers the information learned from in-control surfaces during the 

segmentation of new surfaces (Alqahtani et al., 2020d). Accordingly, if a new surface 

contains characteristics similar to those of in-control surfaces, we expect the segmentation 

results of the new and in-control surfaces to be similar. However, if the new surface 

contains abnormal characteristics, we expect a significant change in the obtained 

segmentation results. In addition, the segmentation results are connected to the values of 

topographic pixels to track deviations in topographic characteristics. The IMSS algorithm 

also divides the segmented surface into regions that preserve the local surface 

characteristics.  

The IMSS algorithm is implemented by applying the following procedure for the given in-

control surfaces, denoted as ( ) ( ){ : 1,2,..., }j j

iZ z i M= = , where ( )j

iz  is the topographic value 

of the 
thi  pixel located in the 

thj  surface, 1,2,...,j N= , and M  is the total number of 

surface pixels.  Initially, we randomly assign the topographic pixels into K  clusters at the 
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first iteration, 1r = , and calculate the corresponding means of each cluster 

( ) , 1, 2,..., .r

k k K =  Then, we repeat the following two steps for each thr  iteration: the 

segmentation and update steps. In the segmentation step, we segment the topographic 

pixels into K clusters such that the sum of the squared Euclidean distance between the 

topographic values and the defined cluster means is minimized as given in Equation (5.1) 

 
( ) ( ) ( ) 2

1

arg min || ||
K

j j r

i k
k k i k

X z 
= 

= − , 1,2,...,i M= , (5.1) 

where ( )r

k  is the mean of the pixels located in the thk  cluster obtained from the thr  

iteration, 1,2,...r =  , and ( ) ( ){ , 1,2,..., }j j

iX x i M= = , {1,2,..., }ix k K = , is the obtained 

segmentation results. In the update step, we update the mean of each cluster using Equation 

(5.2) 

 

( ) ( )

( ) 1

( )

1

1{ }

1{ }

M
j j

i i
r i

k M
j

i

i

x k z

u

x k

=

=

= 

=

=




, 1,2,..., ,k K=  (5.2) 

where 1(.)  is an indicator function, which is expressed as ( )1{ } 1,j

ix k= = otherwise “zero”. 

The algorithm stops at iteration R  when the cluster assignments do not change. 

Subsequently, the means of the cluster obtained in the final iteration ( )r R=  are specified 

as the cluster means of the 
thj  surface ( ) ( )( , 1, 2,..., )R j

k k k K = = . Since the obtained 

cluster labels do not reflect the magnitude of topographic values, we rank the mean of each 

cluster in ascending order ( ) ( ) ( )

(1) (2) ( )...j j j

K     , and then calculate the in-control mean of 

each cluster as given in Equation (5.3) 



87 

 

 

 

 
(0) ( )

( )

1

1 N
j

k k

jN
 

=

=  , 1,2,...,k K= , (5.3) 

where (0)

1  is the mean of the cluster with the smallest in-control topographic values and 

(0)

K  is the mean of the cluster with the largest in-control topographic values.  

When ( ) ( ){ : 1,2,..., }new new

iZ z i M= =  for a new surface is obtained, we assign each 

topographic pixel into one of the K  clusters by minimizing the sum of the squared 

deviation of the values of topographic pixels from their corresponding in-control cluster 

means (0) , 1, 2,..., ,k k K =  as expressed in Equation (5.4) 

 
( ) ( ) (0) 2

1

arg min || ||
K

new new

i k
k k i k

X z 
= 

= − , 1,2,...,i M= , (5.4) 

where ( ) ( ){ ; 1,2,..., }new new

iX x i M= =  is the obtained segmentation results of the new 

surface. We also enhance the representation of local surface information by dividing the 

obtained segmented surface ( )newX  into T  regions. More specifically, we divide ( )newX  

into T-nonoverlapped regions with equal size ( ) ( )

,{ ;new new

t t qX x=  1,2,..., },tq Q=  1,2,..., ,t T=

where tQ  is the total number of topographic pixels located in the tht  region, which is 

assumed to be the same for all T  regions (i.e., 1 2 ... ).TQ Q Q Q= = = =  Guidelines on the 

choice of the number of clusters K  and the number of regions T  are discussed later in the 

chapter. 

Figure 5.2 displays a generated surface topography before and after being segmented into 

seven clusters ( 7)K =  using the IMSS algorithm. Note that the algorithm divides the 

segmented surface into 64 spatial regions ( 64)T =  with an equal size (i.e., 32 32Q =   
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pixels). We also show one of the obtained regions located at the top-left corner of the 

segmented surface. Note that the colors range from the dark blue that represents the lowest 

valley ( 1)k =  to the dark red that represents the highest peak ( 7)k = . In the following 

section, we introduce a new feature for quantifying the characteristics of the obtained 

segmentation results. 

 
Figure 5.2 Example of a generated surface topography and its corresponding top-left corner region 

(a) before and (b) after segmentation using the proposed IMSS algorithm. 

 

5.2.2 Stage 2: Feature Extraction 

Surface faults commonly occur in spatial and local patterns on the topography of anomaly 

products during manufacturing processes (Jeong et al., 2008, Bui and Apley, 2018a). 

Therefore, it is crucial to quantify the local change in the spatial relationships between 

topographic values for an effective identification of surface faults. The spatial randomness 

test (SRT) is powerful in detecting the existence of the spatial autocorrelation among pixels 

in binary images as discussed earlier in Section 4.3.2. However, the current version of the 

SRT is mainly designed for capturing spatial autocorrelations in binary surfaces. Thus, the 
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SRT is not applicable for topographic surfaces, which are composed of continuous values. 

In addition, the SRT is defined as a global measure in which the local faulty values are 

likely to be dominated by the other normal values, which may lead to low quantification 

of local changes in the spatial characteristics of local faults. 

We address the above drawbacks by generalizing the SRT feature to work with discrete (or 

segmented) surfaces. Mainly, after obtaining the segmentation result of a topographic 

surface using the IMSS algorithm ,{ : 1,2,..., } ,t t qX x q Q= =  1,2,..., ,t T=  we initially 

propose a local joint count (local JC) statistic of the k-k join, which counts the frequency 

of occurrence of the cluster k  to be neighbored to another cluster k  based on a defined 

neighborhood construction rule. Thus, the local JC statistic of the k-k join located in the tht  

region is defined using Equation (5.5) 

 , , ,

1 ( )

1{ }1{ }, for 1,2,..., , 1,2,..., ,
Q

t k t q t p

q p q

J x k x k t T k K
= 

= = = = =   (5.5) 

where ( )q  is defined as the eight neighbors that are positioned horizontally, vertically, 

and diagonally to the pixel q  and 1(.)  is an indicator function, which is expressed as 

, ,1{ } 1, 1{ } 1,t q t px k x k= = = = otherwise “zero”. Then, we propose a local spatial 

randomness (LSR) feature to quantify the spatial autocorrelation level of the thk  cluster 

located in the tht  region as shown in Equation (5.6) 

 , , , , 1,2,..., , 1,2,..., ,t k t k t ks J t T k K= = =
 (5.6) 

where
1

, ,

1| 1

1
1{ }

QK

t k t q

p p k q

x p
Q


−

=  =

= =   is an assigned weight, which is defined as the 

probability of not observing the thk  cluster in the tht  region. Subsequently, we describe the 
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spatial autocorrelation structure of each cluster by selecting the LSR feature from the most 

spatially autocorrelated region for effective monitoring of local surface faults, which tend 

to be spatially clustered in local areas (Bui and Apley, 2018a). Particularly, we obtain the 

maximum local spatial randomness (MLSR) feature for each thk  cluster as given in 

Equation (5.7) 

 ,
1,2,...,
maxk t k

t T
s s

=
= , 1,2,...,k K= . (5.7) 

As a result, we obtain the MLSR feature vector for each in-control surface 

[ ; 1, 2,..., ]ks k K= =s . After obtaining the MLSR feature for N  given in-control surfaces 

( ) ( )[ ; 1, 2,..., ]j j

ks k K= =s , 1,2,...,j N= , we capture the in-control characteristics of each 

cluster by calculating the referenced MLSR vector (0) (0) ; 1,2,..., ][ p p Ks ==s , where (0)

ps  is 

the referenced MLSR feature of the thp  cluster obtained by taking the mean over the N  

given in-control surfaces as given in Equation (5.8) 

 
(0) ( )

1

1 N

j

pp

js s
N =

=  , 1,2,...,p K= . (5.8) 

The proposed MLSR vector is an accurate representation of surface characteristics. In 

particular, the complex characteristics of a surface are simplified by converting the 3D 

surface topography into a 1D-dimensional vector with size .K  The spatial characteristics 

of a surface are also captured by the MSLR vector such that each element in the MSLR 

vector represents the spatial characteristics of each cluster calculated from the suspicious 

region in the surface. More important, the MSLR vector is effective in monitoring changes 

in surface characteristics. Specifically, we expect the in-control surfaces to share similar 
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MSLR vectors ( ) , 1, 2,...,j j N=s , since such surfaces are composed of similar spatial 

characteristics. However a new surface that contains faults is likely to cause a change in 

the spatial characteristics of the surface (Jeong et al., 2008). This change can subsequently 

be captured in the MLSR vector of the surface ( )new
s  because of the accurate description of 

the spatial surface characteristics.  

In the next section, we quantify and monitor the similarity between the new and referenced 

MLSR vectors through graph theory for accurate detection of anomaly surfaces. 

5.2.3 Stage 3: Anomaly Detection 

Representing the surface topography as a graph network is a powerful technique for 

describing and monitoring changes in topographic surfaces. Existing graph-based 

monitoring approaches such as Rao et al. (2015b) and Tootooni et al. (2016)  represent the 

characteristics of an observed surface as a graph network without considering the 

information about in-control surfaces. In addition, the spatial characteristics among 

topographic values are ignored during the construction of the graph network. These 

drawbacks can cause low characterization and detection of local and spatial topographic 

faults. Therefore, we present a novel graph network that fully describes the relationships 

between the spatial characteristics of new and in-control surfaces in terms of their MLSR 

feature for effective detection of local and spatial surface faults. Therefore, this stage 

includes two phases; Phase 1: graph representation and Phase 2: graph monitoring. In Phase 

1, we represent the relationship between the new and in-control surfaces in terms of their 

extracted MLSR feature as a spatially weighted graph network. Then, in Phase 2, we 

monitor the connectivity of the obtained graph to detect anomaly surfaces. 
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5.2.3.1 Phase 1: Graph Representation 

In this phase, we represent the spatial characteristics of new and in-control surfaces as a 

graph network based on two types of similarities: the between-neighboring-cluster and 

within-cluster similarities. Due to the fact that neighboring clusters are more spatially 

autocorrelated than the distant clusters (Jeong et al., 2008), we consider the between-

neighboring-cluster similarity to capture the change in the relationship between the 

obtained clusters and their neighbors. We also consider the within-cluster similarities to 

capture the deviation of the characteristics of the obtained clusters from their in-control 

characteristics. Thus, any abnormal change in the values of these two types of similarities 

can lead to the detection of anomaly surfaces.  

We measure the within-cluster similarity by calculating the pairwise similarity between 

each thk  element in the thj  in-control MLSR vector, ( ) ( )[ ; 1, 2,..., ],j j

ks k K= =s  

1,2,...,j N= , to its thp  corresponding element in the referenced MLSR vector, 

(0) (0) ; 1,2,..., ],[ p p Ks ==s  using the Gaussian similarity measure ( )

,

j

k pw , , 1, 2,...,k p K= , 

k p= , as described in Equation (5.9). Moreover, we quantify the between-cluster 

similarity by calculating the pairwise similarity between each thk  element in ( )j
s , 

1,2,...,j N= , and its thp  adjacent element in (0)
s  using the Gaussian similarity measure 

( )

,

j

k pw  , , 1, 2,...,k p K= , k p , as given in Equation (5.9) 

 
( ) ( ) (0) 2 (0)

, , ,exp( || || / ),j j

k p k p k p k pw s s = − −  1,2,...,j N= , (5.9) 

where 2

, {1 if (|| || 1or 0, otherwise 0}k p k p = − =  is an assigned spatial weight that 

indicates whether the thk  and thp  clusters are adjacent to each other  (i.e., 2|| || 1k p− = ) or 
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the same clusters (i.e., 2|| || 0k p− = ), and (0)

,k p  is a prespecified in-control standard 

deviation of the Euclidean similarity between the thk  and thp  clusters in terms of their 

MLSR values. We propose Algorithm 5.1 to calculate (0)

, ,k p  , 1, 2,..., ,k p K=  from in-

control surfaces. Note that ( )

,

j

k pw  indicates the level of the Gaussian similarity value, which 

takes values from “zero”, which implies that ( )j

ks  and (0)

ps  are totally dissimilar, to “one”, 

which indicates that ( )j

ks  and (0)

ps  are totally similar. Subsequently, we obtain the following 

similarity matrix ( ) ( )

,[ ; , 1,..., ],j j

k pw k p K= =W  1,2,..., ,j N= where the diagonal elements 

represent the within-cluster-similarities, and the off-diagonal elements represent the 

between-cluster similarities as illustrated in Figure 5.3.  

 
Figure 5.3 Illustration of the structure of the obtained similarity matrix. 
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Algorithm 5.1: Extraction of in-control similarity characteristics 

Given the MLSR vector for N  in-control surface ( ) ; 1,2,..., ],[ k

j

j k Ks ==s  1,2,..., ,j N=  

and the referenced MLSR vector (0) (0) ; 1, 2,..., ][ k k Ks ==s , we apply the following steps: 

1: for 1,2,...,k K=  do   

2:     for 1,2,...,p K=  do  

3:          for  1,2,...,j N=  do         

4: calculate the within-cluster similarity value between the thk  and thp

clusters using the squared Euclidean similarity measure   
( ) ( ) (0) 2

, || ||j j

k p k pw s s= −  

5:          end for 

6: calculate the in-control standard deviation of similarities between the thk  and 
thp  clusters over N  surfaces 

(0) ( ) (0) 2

, , ,

1

( ) / ( 1)
N

j

k p k p k p

j

w w N
=

= − −  

where ( )

, ,

(0)

1

1 N
j

k p k p

j

w w
N =

=   is the mean value of similarities between the thk  and 

thp clusters  

7:     end for 

8: end for 

 

 

We present the obtained similarity matrix as a weighted and directed graph ( ) ( , ),jG V E=  

where V  is the graph nodes that represent the obtained clusters of observed and referenced 

surfaces and E  is the graph edges that represent the similarity (or weight) between the 

graph nodes. Note that each node is defined by two indexes ( , )V j k , where j  is the index 

of each surface and k  is the index of each cluster as illustrated in Figure 5.4. Thus, the 

total number of obtained nodes is 2 K nodes. In addition, three possible edges are created 

from each node of the thj  surface to the nodes of the referenced surface. Specifically, two 

possible edges are connected from each node of the 
thj  surface to the neighboring nodes 

of the referenced surface, where the edge weights are obtained based on the between-
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neighboring-cluster similarity values ( )

, , ,j

k pw k  1,2,..., ,p K k p=  . In addition, one edge is 

connected from each node of the thj  surface to the same node of the referenced surface, 

where the edge weights are specified based on the within-cluster similarity values 

( )

, , 1,2,...,j

k kw k K= . Thus, we create a total of ( 2 ( 2) 2)K K+ + −   edges.  

 
Figure 5.4 Illustration of the proposed spatially weighted graph network. 

 

The graph network is effective in describing the relationship between the spatial 

characteristics of the in-control surfaces by quantifying the between-neighboring-cluster 

and within-cluster similarities. Thus, we expect the structure of the graph network of in-

control surfaces to be similar to each other since they share similar characteristics. 

Accordingly, when there is a change in the structure of the graph network of a new surface 

( ) ( , )newG V E= , this indicates the “abnormality” of that surface. Thus, in the next section, 

the connectivity of the proposed graph is monitored for detecting anomaly surfaces. 

5.2.3.2 Phase 2: Graph Monitoring 

In this section, we monitor the connectivity of the obtained graph network for an effective 

identification of anomaly surfaces. Particularly, we propose the intra- and inter-

connectivity measures, which are both integrated to quantify the overall connectivity of the 

obtained graph network. The intra-connectivity measure quantifies the connectivity within 

the same node of the observed and referenced surfaces for accurate monitoring of changes 

in the characteristics of the topographic values (variance change). Moreover, the inter-
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connectivity measure quantifies the connectivity between the neighboring nodes of the 

observed and referenced surfaces for effective monitoring of changes in the relationships 

between the topographic values (autocorrelation change). Thus, after obtaining the 

similarity matrices of in-control surfaces ( ) ( )

,[ ; , 1,..., ],j j

k pw k p K= =W  1,2,...,j N= , the 

intra- and inter-connectivity measures of these surfaces are respectively calculated using 

Equations (5.10 and 5.11) 

 
( ) ( )

,

1

1
,

K
j j

w k k

kw

C w
D =

=   1,2,..., ,j N=  (5.10) 

 
( ) ( )

,

1 1|

1
,

K K
j j

b k p

k p p kb

C w
D = = 

=   1,2,..., ,j N=  (5.11) 

where wD  is the total number of the within-cluster edges (i.e., wD K= ) and bD  is the total 

number of the between-neighboring-cluster edges (i.e., 2 ( 2) 2bD K= + −  ). 

Subsequently, we integrate these two measures into a single monitoring statistic called 

spatial graph connectivity for effective monitoring of surface changes, which is defined in 

Equation (5.12) 

  ( ) ( ) ( )j j j

w bC C C= + , 1,2,...,j N= . (5.12) 

In Equation (5.12), we assume an equal contribution of the intra- and inter-connectivity 

measures because the fault may yield a change in the characteristics of the topographic 

pixels, which can be captured by the intra-connectivity measure, or the relationships 

between the topographic pixels, which can be detected by the inter-connectivity measure. 

Since the type of change is mostly unknown in advance in real-life applications, we assume 

an equal contribution of both intra- and inter-connectivity measures to achieve an overall 

high detection performance of both changes. However, if there is prior knowledge about 
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the occurrence distribution of certain types of changes, then we can easily incorporate this 

ratio in Equation (5.12) to improve the detection performance. In addition, the value of 

( )jC  ranges from “zero”, which indicates that the nodes of the observed surface are weakly 

connected to the nodes of the referenced surface, to “two”, which implies the strong 

connectivity between the nodes of the observed and referenced surfaces. Accordingly, a 

larger connectivity value means that the characteristics of the observed and referenced 

surfaces are similar (i.e., “smooth” surface) and vice versa. Therefore, after we obtain the 

spatial graph connectivity statistic for in-control surfaces ( )jC , 1,2,..., ,j N=  we determine 

the lower critical limit H  for identifying anomaly surfaces as explained in Algorithm 5.2. 

Specifically, we utilize a bootstrapping method with a larger number of replicates for 

obtaining an estimate of the empirical distribution of the in-control statistics ( )jC , 

1,2,...,j N= . Subsequently, we determine the lower critical limit H  from the estimated 

distribution for a prespecified type I error, which is defined as the probability of incorrectly 

identifying the surfaces with in-control characteristics as anomaly surfaces (Febrero et al., 

2008). Subsequently, after the spatial graph connectivity statistic of a new surface ( )newC  is 

obtained, and if ( )newC H , then the new surface is classified as an anomaly. 
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Algorithm 5.2: Calculation of the lower critical limit H   

Given the in-control spatial graph connectivity statistics ( )jC , 1,2,..., ,j N=  the number 

of bootstrapping sampling observations U  (i.e., 1000U = ), the number of replications 

R  (i.e., 1000R = ), and a defined type I error  (i.e., 0.05 = ), we apply the following 

steps: 

1: for 1,2,...,r R=  do   

2: calculate the empirical distribution from the obtained N  in-control spatial graph 

connectivity statistics by randomly sampling U  observations with replacement  

{ , 1,2,..., }uA C u U= =  

3:     rank the collected samples in an ascending order   

( ){ , 1,2,..., }uE C u U= =  

where (1) (2) ( ), ,...., UC C C  are the order statistics of the selected samples (i.e., 

(1) (2) ( ).... UC C C    ) 

4:     Obtain the  -quantile of the ranked samples for the thr  replicate 

Pr[ ]rE t  =  

5: end for 

6: calculate the lower critical limit as 

1,2,...,
median ( )r
r R

H t
=

=  

 

Finally, the proposed approach is effective in extracting the fault locations for fault 

diagnosis. Particularly, the locations of surface faults are identified by first finding the node 

(or cluster) with the most abnormal characteristics in terms of its MLSR value, and then 

locating the region where the abnormal node belongs to. More specifically, after 

identifying a new surface as an anomaly, we find its fault locations by applying the 

following diagnosis algorithm:  

• Step 1: Given the calculated intra-connectivity measures of the anomaly surface ( )

, ,new

k pw  

, 1, 2,.., ,k p K=  ,k p=  which is defined earlier in Equation (5.9), we find the index of 

the abnormal node that has the minimum similarity to its corresponding node of the 

referenced surface as provided in Equation (5.13)  
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( )( )

,
1,2,...,

arg min new

k k
k K

w
=

= , (5.13) 

where {1,2,..., }K  is the index of the identified abnormal node. 

• Step 2: Given  , we locate the index of the abnormal region in the surface by finding 

the maximum MLSR value over all T  regions as given in Equation (5.14)   

( )( ) ( )

,
1,2,...,

arg max ,new new

t
t T

s 
=

=  (5.14) 

where ( ) {1,2,..., }new T   is the identified index of the abnormal region and ( )

,

new

ts   is the 

MLSR value of the abnormal node   calculated from the region t  as given earlier in 

Equation (5.7).  

In the proposed diagnosis algorithm, we consider the intra-connectivity measure to locate 

abnormal nodes since this measure is effective in analyzing each cluster independently, 

which allows us to accurately determine the abnormal node with the least connectivity. 

This makes the proposed approach not only effective in identifying anomaly surfaces but 

also in locating surface faults. 

5.3 Performance Study 

In this section, we utilize the Gaussian random model discussed in Section 2.3 for 

simulating topographic surfaces.  Besides, we generate anomaly surfaces by following the 

same fault scenarios explained earlier in Section 3.3.1  

5.3.1 Analysis of the Proposed Approach 

5.3.1.1 Effect of the Choice of K and T in the IMSS Algorithm 

In this section, we study the detection performance under different values of the number of 

clusters K  and the number of regions T , which are parameters of the proposed IMSS 
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algorithm. In Table 5.1, we present the detection power of the proposed approach with 

different choices of K  (i.e., K = 3 , 7 , and 10 ) and T  (i.e., T = 4 , 64 , and 256 ) under 

various fault scenarios. Figure 5.5 also illustrates the segmentation results obtained by the 

IMSS algorithm under the defined values of K  and T . We observe that when the number 

of clusters K  is large (e.g., 10K = ), we approach the complex structure of the original 

surface. This loses the advantage of the IMSS algorithm in simplifying the surface structure 

and subsequently yields lower detection power of surface faults as shown in Table 5.1. 

Similarly, when K  is small (e.g., 3K = ), this loses the detailed structure of the surface 

characteristics and results in lower detection power. We also notice that a larger number of 

regions T  (e.g., 256T = ) may cause a low representation of the surface structure, which 

yields lower detection power of surface faults. Likewise, a small number of regions T  

(e.g., 4T = ) may cause the local fault areas to be dominated by the normal areas, which 

results in lower detection power. Thus, a “moderate” selection of K  and T  is 

recommended (e.g., 7K =  and 64T = ) to achieve the best detection performance as 

presented in Table 5.1. 
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Table 5.1 Power of detection of the proposed approach with different K and T 

Fault type Fault area 
Fault size         K        

 T 
3 7 10 

      

Variance  

2.5% 

1.5 1 

4 0.094 0.727 0.844 

64 0.115 0.963 0.946 

256 0.074 0.573 0.505 

1.75 1 

4 0.143 0.970 0.998 

64 0.285 0.999 0.998 

256 0.073 0.973 0.978 

3% 

1.5 1 

4 0.133 0.867 0.944 

64 0.141 0.991 0.990 

256 0.084 0.684 0.626 

1.75 1 

4 0.214 0.994 0.997 

64 0.374 0.999 0.998 

256 0.088 0.984 0.988 

Autocorrelation  

2.5% 

1 2 

4 0.207 0.680 0.660 

64 0.799 0.949 0.873 

256 0.559 0.839 0.723 

1 2.25 

4 0.348 0.786 0.779 

64 0.932 0.991 0.954 

256 0.828 0.957 0.887 

3% 

1 2 

4 0.316 0.815 0.795 

64 0.890 0.983 0.951 

256 0.638 0.900 0.826 

1 2.25 

4 0.476 0.894 0.893 

64 0.978 0.996 0.984 

256 0.906 0.981 0.938 
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Figure 5.5 Segmentation results obtained by the IMSS algorithm with: (a) 3K = , 4T = , (b) 

7K = , 64,T =  and (c) 10K = , 256T = . 

 

5.3.1.2 Effectiveness of the IMSS Algorithm 

In this section, we study the effectiveness of the IMSS algorithm in representing different 

changes in the surface characteristics. In general, when the characteristics of a new surface 

are different from the in-control characteristics, we expect the obtained segmentation 

results to capture this change. For example, when the standard deviation parameter   is 

shifted, we expect to observe more abnormal positive and negative topographic values. 

Subsequently, the IMSS algorithm assigns these abnormal values to their closest defined 

in-control cluster means for minimizing their sum of squared Euclidean distances. This 

causes the abnormal negative values to be assigned to the cluster with the lowest mean 

(cluster 1)  and the abnormal positive values to be assigned to the cluster with the highest 

mean (cluster K ), which results in a significant change in the spatial structure of these two 

clusters. In addition, when the scale parameter   is shifted, we expect the observed values 

of topographic pixels to be more similar to their neighbors. Since the IMSS algorithm 

assigns the pixels with similar topographic values to the same cluster, this results in a 

considerable change in the structure of all assigned clusters.  
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Figure 5.6 illustrates the segmentation results of three generated surfaces: one in-control 

and two anomaly surfaces with variance and autocorrelation changes, using the proposed 

IMSS algorithm. Note that we select 7K =  and 64T =  such that each region has the same 

size (i.e., 32 32Q =   pixels). We also show the top-left region of the three defined 

surfaces. We observe that the structure of assigned clusters obtained from the two anomaly 

surfaces experiences a significant change from the structure of the in-control surface. In 

particular, the structure of the top-left region of the in-control surface shows a less 

autocorrelated pattern for all assigned clusters. However, the structure of the top-left region 

of the anomaly surface with the variance change shows that clusters 1 and 7  are assigned 

more than the other clusters due to the minimization of the sum of the squared Euclidean 

distance between the topographic values and their closest in-control cluster means. In 

addition, the structure of the top-left region of the anomaly surface with the autocorrelation 

change exhibits a significant change in the pattern of all clusters due to the deviation of the 

autocorrelation structure from the in-control structure. This shows the effectiveness of the 

IMSS algorithm in representing abnormal surface characteristics that are resulted from 

either variance or autocorrelation change. 
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Figure 5.6 Segmentation results of three generated surfaces using the IMSS algorithm with (a) in-

control characteristics, and anomaly characteristics with (b) variance change, and (c) autocorrelation 

change. 

 

5.3.1.3 Effectiveness of the Proposed Graph Network 

This section analyzes the effectiveness of the proposed graph network in monitoring 

different topographic changes. Figure 5.7 shows the structure of the proposed graph 

network for the three surfaces illustrated earlier in Figure 5.6. Note that the red circles 

represent the nodes of the observed surface, and the black circles represent the nodes of the 

referenced surface. In addition, the thickness of the edges represents the magnitude of the 

similarity (or weight) between the graph nodes, which ranges from zero (totally dissimilar) 

to one (totally similar). In the graph network of the in-control surface, the edge weights 

between the nodes of the observed surface and their corresponding and neighboring nodes 

of the referenced surface are high as shown in Figure 5.7 (a) (e.g., 1,1 2,10.99, 1.00w w= = ). 

This is because these nodes share similar characteristics in terms of their MLSR values. 

However, when we obtain an anomaly surface with the variance change, we expect clusters 
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1 and 7 to appear more than other clusters as shown earlier in Figure 5.6 (b). Accordingly, 

Figure 5.7 (b) depicts a less connected network in which the edge weights between the 

nodes 1 and 7 of the observed surface and their respective nodes of the referenced surface 

are significantly low ( 1,1 7,70.29, 0.25w w= = ). In addition, in the graph network of the 

anomaly surface with the autocorrelation change, the edge weights between the nodes of 

the observed surface and their respective and neighboring nodes of the referenced surface 

are decreased as shown in Figure 5.7 (c) (e.g., 7,7 5,40.11, 0.80w w= = ). This is due to the 

change in the pattern of the clusters as presented earlier in Figure 5.6 (c). This makes the 

proposed graph network effective in representing different changes in the surface, 

including both variance and autocorrelation changes. 

 
Figure 5.7 Examples of the proposed graph network of three generated surfaces with (a) in-control 

characteristics, and anomaly characteristics with (b) variance change, and (c) autocorrelation 

change. 

 

5.3.2 Performance Comparison  

This section compares the detection performance of the developed spatial graph 

connectivity statistic C  with the existing monitoring approaches presented earlier in 

Section 2.4. We also use the power of detection as a performance measure, which is given 
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earlier in Equation (3.15) under the same type I error (i.e., 0.05 = ) for all approaches to 

conduct a fair comparison. In particular, Table 5.2 shows the power of detection P  of the 

proposed and the existing monitoring approaches under various fault sizes, areas, and 

types. We observe that the average roughness aS  fails to identify local variance and 

autocorrelation changes since aS  ignores the deviation in the spatial relationships among 

topographic values. Similarly, the power spectral density psdS  shows lower detection of 

local faults because it mainly relies on the FFT algorithm, which is expressed as a global 

decomposition filter where local faults are likely to be smoothed out during the 

transformation of topographic values to the frequency domain. Next, the watershed 

measure wS  shows lower performance in identifying both local variance and 

autocorrelation changes because wS  is mainly based on the watershed algorithm, which 

suffers from the over-segmentation problem that may cause the local faults to be 

misidentified. The Fiedler connectivity feature cS  shows better performance in detecting 

the variance change compared to the other existing approaches. This is because cS  captures 

the variance change by calculating the dissimilarity between each row of the image matrix. 

However, a lower detection performance of the autocorrelation change is observed for not 

considering the spatial relationships among topographic values.  

In Table 5.2, we also obtain the power of detection for the approach based on the existing 

SRT feature Q . In particular, after binarizing the topographic values using the edge 

detection algorithms (e.g., Canny filter), we calculate Q  as explained earlier in Equation 

(4.7). We observe that Q  fails to detect the anomaly surfaces with local variance and 

autocorrelation changes. This is because Q  is obtained based on the binary result of the 
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original surface, which may yield the loss of the detailed structure of topographic values. 

In addition, the local fault area can be dominated by other normal areas during the 

calculation of Q .  

On the other hand, we show that anomaly surfaces associated with either variance or 

autocorrelation change result in a significant change in the structure of clusters obtained 

by the IMSS algorithm. This change is adequately quantified by the proposed MLSR 

feature, which measures the local spatial autocorrelation level of each obtained cluster. The 

proposed spatially weighted graph is also shown to be effective in describing both variance 

and autocorrelation changes by quantifying the similarity within and between each cluster 

of the new and referenced surfaces in terms of their MLSR feature. Subsequently, the 

proposed spatial graph connectivity statistic C , which monitors the connectivity of the 

obtained graph, reveals a superior performance in detecting both variance and 

autocorrelation changes and outperforms the existing monitoring approaches under all 

specified fault scenarios as shown in Table 5.2. In addition, we outperform the existing 

graph approach (Rao et al., 2015b), which is based on the Fiedler connectivity feature ,cS

by improving the detection performance of the variance and autocorrelation changes by 

56.04% and 308.95%, respectively. 
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Table 5.2 Power of detection of the proposed and the existing monitoring approaches using 

anomaly surfaces obtained by the Gaussian random model 

Surface 

 type 

Fault 

area 

Fault size Monitoring approaches 
 

    aS  psdS  
wS  cS  Q  C  

In-control surfaces 1 1 0.051 0.052 0.051 0.050 0.051 0.050 

Anomaly 

surfaces 

with 

variance 

change 

2.5% 
1.5 1 0.247 0.254 0.091 0.473 0.253 0.963 

1.75 1 0.275 0.287 0.094 0.704 0.288 0.999 

3% 
1.5 1 0.250 0.259 0.090 0.474 0.258 0.991 

1.75 1 0.290 0.294 0.096 0.550 0.292 0.999 

Anomaly 

surfaces 

with 

autocorre

lation 

change 

2.5% 

1 2 0.097 0.097 0.270 0.210 0.095 0.949 

1 
2.2

5 
0.107 0.110 0.405 0.245 0.108 0.991 

3% 

1 2 0.110 0.113 0.380 0.215 0.110 0.983 

1 
2.2

5 
0.113 0.116 0.544 0.220 0.117 0.996 

 

We also show the effectiveness of the proposed diagnosis algorithm in identifying the 

locations of anomaly regions. Figure 5.8 shows two examples of anomaly surfaces with 

variance and autocorrelation changes and their corresponding anomaly regions identified 

by the proposed algorithm. Since the surface is divided into local regions, we can 

immediately locate the region with the most abnormal characteristics using Equations (5.13 

and 5.14). In particular, the algorithm accurately identifies regions 22 and region 44 as 

anomalies, where these two regions are truly associated with variance and autocorrelation 

changes as shown in Figure 5.8 (a and b), respectively. 
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Figure 5.8 Examples of two anomaly surfaces with (a) variance change, and (b) 

autocorrelation change, and their corresponding anomaly regions identified by the 

proposed diagnosis algorithm. 

 

5.4 A Case Study of Wafer Surfaces  

We demonstrate the effectiveness of the proposed approach by using the case study of 

wafer surfaces described earlier in Section 3.4. Particularly, in Table 5.3, we show the 

detection power P  of the proposed and the existing monitoring approaches for anomaly 

semiconductor wafers. Note that P  is obtained for all approaches under a prespecified type 

I error  (i.e., 0.05). =  We observe that the existing monitoring approaches result in lower 

detection power of wafer faults because of the lack of characterization of the spatial 

autocorrelation among topographic pixels. In contrast, the proposed spatial graph 

connectivity statistic C  is shown to be more sensitive in detecting deviations in the spatial 

autocorrelation structure of the surface that may result from the appearance of faults, such 
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as pits, ridges, and scratches, during semiconductor manufacturing. Therefore, C  yields 

higher performance in identifying anomaly wafers with different faults sizes and areas and 

outperforms the existing monitoring approaches.  

Table 5.3 Power of detection of the proposed and the existing monitoring approaches using 

anomaly semiconductor wafers  

Surface 

 type 
Fault area 

Monitoring approaches 

aS  psdS  
wS  cS  Q  C  

In-control surfaces 0.050 0.050 0.053 0.051 0.050 0.051 

Anomaly  

surfaces  

with pits 

6% 0.084 0.083 0.802 0.212 0.081 0.818 

7% 0.095 0.095 0.910 0.262 0.101 0.913 

8% 0.104 0.096 0.952 0.289 0.116 0.967 

Anomaly  

surfaces  

with ridges 

1.5% 0.081 0.081 0.110 0.110 0.161 0.849 

2% 0.086 0.084 0.114 0.111 0.181 0.973 

2.5% 0.089 0.087 0.120 0.112 0.202 0.996 

Anomaly  

surfaces  

with scratches 

6% 0.079 0.079 0.821 0.200 0.074 0.907 

7% 0.091 0.088 0.911 0.267 0.113 0.972 

8% 0.097 0.094 0.965 0.275 0.116 0.993 

 

5.5 Conclusions 

In this chapter, we propose a novel spatially weighted graph theory-based approach for 

monitoring local autocorrelation changes in 3D topographic surfaces. We propose the 

IMSS algorithm, which segments the topographic values of a new surface into predefined 

clusters based on the information learned from in-control surfaces. We also propose the 

MLSR feature, which measures the local spatial autocorrelation level of each obtained 

cluster. After calculating the similarity values within and between clusters of the new and 

in-control surfaces using their MLSR feature, a novel spatially weighted graph network is 
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proposed with nodes that represent the segmented clusters and edges that represent the 

similarity between the graph nodes. Surfaces with abnormal characteristics are effectively 

detected by monitoring the connectivity of the obtained graph network through the 

developed spatial graph connectivity statistic. 

The proposed IMSS algorithm shows its effectiveness in enhancing the representation of 

local changes in surface characteristics. In addition, the spatial statistical dependencies 

among obtained clusters are adequately quantified and captured through the proposed 

MLSR feature. We accurately describe the spatial relationship between the characteristics 

of the new and in-control surfaces through the proposed graph network. Finally, the 

developed spatial connectivity statistic is proven to be robust in detecting different forms 

of local autocorrelation changes in topographic surfaces.  
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CHAPTER 6 

GENERALIZED SPATIALLY WEIGHTED AUTOCORRELATION APPROACH 

FOR FAULT DETECTION AND DIAGNOSIS IN 3D TOPOGRAPHIC 

SURFACES 

6.  

6.1 Introduction 

Detecting and diagnosing surface faults are crucial tasks in many applications. The existing 

monitoring approaches do not fully characterize the complex behavior among topographic 

pixels, which renders them ineffective in detecting and diagnosing faults in topographic 

images as discussed in Section 2.4. Although the proposed approach in Chapter 5 is 

effective in locating surface faults, it has a limitation in extracting fault diagnostic 

information, such as the fault size, and the fault magnitude and the number of faults. The 

approach also has a limitation in finding faults in multiple locations on the surface. 

Therefore, in this chapter, we overcome these limitations by introducing an effective and 

efficient online monitoring approach for detecting and diagnosing faults in topographic 

images. 

Moran (1950) develops Moran’s index, which quantifies the spatial autocorrelation 

between the image pixels based on their similarities. However, applying Moran’s index to 

online surface monitoring is ineffective because it lacks the quantification of local surface 

changes, is limited to the first-order neighbor, and is computationally expensive. Therefore, 

in this chapter, we overcome these limitations by introducing a generalized spatially 

weighted autocorrelation approach based on a developed generalized spatially weighted 
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Moran (GSWM) index for online monitoring and diagnosis of local faults in topographic 

images (Alqahtani et al., 2020a).   

The proposed approach utilizes the information learned from normal surfaces to assign 

spatial weights to the regions with suspicious characteristics of new surfaces. We propose 

two algorithms to obtain the weight assignments: the normal surface hard thresholding 

algorithm, which improves the representation of surface characteristics through 

binarization, and the normal surface connected-component labeling algorithm, which 

utilizes the obtained binary results to identify and assign spatial weights to the topographic 

regions with suspicious characteristics. We also develop the GSWM index, which exploits 

the assigned weights for characterizing the spatial autocorrelation structure of each 

identified region. The GSWM index calculates the cross-products of the spatially weighted 

deviations of the topographic values and their different order neighbors from the mean of 

normal topographic values. When an anomaly surface is detected based on its GSWM 

index, we accurately extract different fault information. Note that Chapter 6 is mostly based 

on the following working paper: ALQAHTANI, M. A., JEONG, M. K. and ELSAYED, E. 

A. 2020a. Generalized spatially weighted autocorrelation approach for monitoring faults 

in 3D topographic surfaces with application to wafer surface monitoring. Working paper. 

This chapter is organized as follows. In Section 6.2, we review the existing Moran’s index 

and its limitations to online surface monitoring. We then introduce the proposed 

generalized spatially weighted autocorrelation approach in Section 6.3. In Section 6.4, we 

compare the performance of the proposed approach with other existing approaches. A real-

life case study of the topography of semiconductor wafers is assessed in Section 6.5. 

Conclusions are stated in Section 6.6. 
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6.2 Moran’s Index for Surface Monitoring 

Moran’s index is commonly applied to identify the existence of spatial autocorrelation 

among spatial data. Moran’s index is expressed as the sum of cross-products between the 

deviation of observations and their neighbors from the observation mean (Moran, 1950). 

Particularly, for an observed topographic image (or surface) { : 1,2,..., }iZ z i M= = , where 

iz  is the intensity value of the pixel i  and M  is the size of image pixels, Moran’s index 

is given in Equation (6.1) 

 
,

1 1

2

,

1 1

( )( )
M M

i m i m

i m

M M

i m

i m

w z z z z

I

w

= =

= =

− −

=



, (6.1) 

where ( ,z  )  represent the mean and standard deviation of the values of topographic 

pixels, respectively, and ,i mw  is an assigned binary weight that specifies whether the pixels 

iz  and mz  are neighbors, i.e., , 1i mw =  if ( , )i mz z  are neighbors, , 0i mw =  otherwise. The 

weight assignments in Moran’s index are commonly calculated based on the first-order 

neighbors, i.e., the first closest neighbors to a pixel of interest. There are two popular 

neighborhood construction rules to identify the neighbors of a pixel of interest: the king-

move neighborhood (KMN) and the rook-move neighborhood (RMN). The KMN includes 

the neighbors located in the vertical, horizontal, and diagonal axes of a pixel of interest, 

while the RMN includes the neighbors located in the vertical and horizontal axes of a pixel 

of interest (Jeong et al., 2008).  

Applying Moran’s index for monitoring changes in topographic surfaces has some 

limitations. The characteristics of normal surfaces are ignored when evaluating new 
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surfaces, which may yield low quantification of changes in surface characteristics. 

Moreover, Moran’s index is defined as a global index where local surface characteristics 

are likely to be dominated by global characteristics, which may yield the 

mischaracterization of local faults. The weight assignments in Moran’s index are typically 

limited to capture the spatial autocorrelation at the first-order of neighboring pixels. 

Generalizing the weight assignments to multiple neighboring orders is crucial for an 

accurate evaluation of spatial autocorrelation structure. However, this task is challenging 

since the topographic characteristics are not identical under normal process conditions. In 

addition, the calculation of Moran’s index is computationally expensive since its 

computation time is polynomial, which is given as ( )O R M , where R  is the size of 

neighboring pixels and M  is the size of image pixels. This makes the current Moran’s 

index not suitable for online surface monitoring. 

In the following section, we overcome the above limitations by presenting the generalized 

spatially weighted autocorrelation approach, which is based on the developed generalized 

spatially weighted Moran index, for effective monitoring of changes in surface 

characteristics (Alqahtani et al., 2020a). 

6.3 Proposed Generalized Spatially Weighted Autocorrelation Approach 

The proposed approach is composed of four consecutive stages; Stage 1: suspicious 

topographic region identification, Stage 2: feature extraction, Stage 3: anomaly detection, 

and Stage 4: fault identification and diagnoses as illustrated in Figure 6.1. In Stage 1, we 

identify and assign spatial weights to the topographic regions with suspicious 

characteristics. We then exploit the assigned weights to extract features that accurately 

describe the spatial autocorrelation of each identified region in Stage 2. Stage 3 detects 
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anomaly surfaces based on their extracted features. Finally, in Stage 4, we extract fault 

information from the detected anomaly surfaces for fault diagnosis. In the following 

sections, we discuss each stage of the proposed approach in detail. 

 
Figure 6.1 Overview of the proposed approach. 

 

6.3.1 Stage 1: Suspicious Topographic Region Identification  

Connected component labeling (CCL) is an important process for finding the connected 

regions, also called components or objects, in binary images (Št and Beneš, 2011, He et 

al., 2017). A connected region is a region that contains pixels with the same intensity (i.e., 

pixels with the intensity of "1"), and all pixels in that region are connected to each other by 

a path obtained based on a specified neighborhood construction rule (He et al., 2017). The 

flood-fill algorithm is one of the most popular CCL algorithms, which aims to find the 

connected regions in a binary image and label them uniquely as separate regions. The 

flood-fill algorithm obtains the connected regions by representing the binary image as a 

graph network with nodes and edges (Silvela and Portillo, 2001). Each pixel is described 

as a node and an edge between two nodes is constructed if they are neighbors. The 

algorithm requires the following information: a starting node, a target value (i.e., a 

foreground value "1"), and a replacement value (i.e., an assigned label for each identified 

connected region k , 1,2,...)k =  (Silvela and Portillo, 2001). The algorithm consists of two 
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main steps: the identification and assignment steps. The identification step identifies all 

neighboring nodes that are connected to the starting node by a path of the target value "1" 

and then the assignment step assigns the identified nodes to a replacement value k . The 

algorithm repeats these two steps until all nodes associated with the target value are 

assigned to a replacement value.  

Applying the flood-fill algorithm to surface monitoring has some limitations. Particularly, 

the characteristics of normal topographic images are not utilized during the labeling 

process, which may lead to low performance of labeling fault information. In addition, the 

algorithm is limited to binary images, which makes it inapplicable for topographic images 

that consist of continuous values. The algorithm is also typically applied to a single binary 

image, which may lead to a low identification of surface characteristics such as peaks and 

valleys. Therefore, we overcome these limitations by introducing two algorithms for 

identifying the regions with suspicious characteristics of new surface based on the 

information learned from normal surfaces: the normal surface hard thresholding algorithm, 

which improves the surface representation through binarization and the normal surface 

connected-component labeling algorithm, which exploits the obtained binary results to 

identify and assign spatial weights to the regions with suspicious characteristics. The two 

algorithms are explained below. 

6.3.1.1 Normal Surface Hard Thresholding Algorithm 

Hard thresholding (HT) algorithms are effective in representing the important 

characteristics of an image as discussed earlier in Section 3.2.1. In particular, in Section 

3.2.1, we propose the multi-level surface thresholding (MST) algorithm to binarize a 

surface into different levels, and each surface level is calculated based on the information 
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obtained from the previous levels. However, in this section, we propose the normal surface 

hard thresholding (NSHT) algorithm, which only considers two surface levels, and each 

surface level is obtained independently from the other levels for accurate analysis of the 

valley and peak characteristics. More specifically, the NSHT algorithm assigns each pixel, 

,iz Z 1,2,...,i M= , into a binary value  ("0" or "1") based on a prespecified normal 

surface hard threshold 1h  as given in Equation (6.2)  

 0iz  : (1)

1 { : 1,2,..., }iB b i M= = , where (1)

1{1 if | | , 0 otherwise}i ib z h=  , 

0iz  : (2)

2 { : 1,2,..., }iB b i M= = , where (2)

1{1 if | | , 0 otherwise}i ib z h=  , 

(6.2) 

where 1 2( , )B B  are the output of binarizing the negative and positive topographic values, 

respectively. We propose Algorithm 6.1 to determine the normal surface hard threshold 1h  

based on normal surfaces. Particularly, 1h  is calculated based on the median value of 1 -

quantile of absolute normal topographic values, where 1  is a specified type I error rate, 

i.e., the rate of incorrectly identifying the normal topographic values as abnormal values. 

Figure 6.2 shows a topographic image and its corresponding negative and positive binary 

results obtained by the NSHT algorithm. 
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Figure 6.2 Example of (a) an observed surface Z , and its corresponding binary results of (b) 

negative topographic values 1B , and (c) positive topographic values 2B  obtained by the NSHT 

algorithm. 

 

Algorithm 6.1: Determining the normal surface hard threshold 1h  

Given N  normal topographic images ( ) ( ){ : 1,2,..., }j j

iZ z i M= = , 1,2,..., ,j N=  and a 

specified type I error rate 1  (e.g., 1 = 0.1), we implement the below steps: 

1:   for 1,2,...,j N=  do 

2:   obtain the absolute topographic values ( ){ : 1,2,..., }j

j iE e i M= = , ( ) ( )| |j j

i ie z=  

3:  rank the obtained values in increasing order such that ' ( )

( ){ : 1,2,..., },j

j iE e i M= =  

where ( ) ( ) ( )

(1) (2) ( ), ,....,j j j

Me e e  are the order statistics (i.e., ( ) ( ) ( )

(1) (2) ( )....j j j

Me e e   )  

4:   obtain the 1 -quantile of the values in the set '

jE  

'

1Pr[ ]j jE f  =  

5:   end for 

6:   calculate the normal surface hard threshold as 
1

1,2,...,
median ( )j

j N
h f

=
=  

 

6.3.1.2 Normal Surface Connected-Component Labeling Algorithm 

We overcome the limitations of the existing flood-fill algorithm by proposing the normal 

surface connected-component labeling (NSCCL) algorithm. The NSCCL algorithm 

utilizes the information learned from normal surfaces to effectively identify the regions 

with suspicious characteristics using the binary results obtained by the proposed NSHT 

algorithm. In particular, the NSCCL algorithm includes two sub-algorithms: Sub-algorithm 
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6.2-a and Sub-algorithm 6.2-b. In Sub-algorithm 6.2-a, we exploit the flood-fill algorithm 

to identify the connected regions in the obtained binary results of normal surfaces. In 

particular, we iterate between the identification and assignment steps of the flood-fill 

algorithm until all pixels with the value of "1" are assigned to a replacement value 

1,2,...k = . Note that ( , ) ( )p j

mb i  shown in step 9 indicates that the pixel m  is connected 

to the pixel i  in the binary result ( )j

pB  by a path determined according to a specified 

neighborhood construction rule  . Moreover, in step 10, we set each identified thm  

neighbor to "zero" ( ( , ) 0p j

mb = ) to avoid selecting this pixel again in the for-loop in step 5. 

As a result, we obtain the following weight assignments set ( ) ( , ){ : 1,2,..., } ,j k j

k iC c i M= =  

1,2,...,k K= , where ( , ) {0,1}k j

ic   is an assigned binary weight that specifies whether the 

pixel i  is located in the thk  identified region of the surface j , and K  is the number of 

identified regions. In steps 13 and 17, we obtain the size of each identified region and the 

total number of identified regions, respectively. Finally, in steps 18 to 21, we obtain the 

threshold of the normal region size 2h  by calculating the median value of 2 -quantile of 

normal region sizes, where 2  is a specified type I error rate, i.e., the rate of incorrectly 

identifying the normal region sizes as anomaly sizes.  

In Sub-algorithm 6.2-b, we exploit the characteristics obtained from Sub-algorithm 6.2-a 

to effectively identify the topographic regions with suspicious sizes in the binary results of 

a new surface. In general, Sub-algorithm 6.2-b consists of steps that are similar to the ones 

presented in Sub-algorithm 2-a. However, in step 13, we identify Q  suspicious regions that 

are associated with region sizes that exceed the threshold of the normal region size 2.h  
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Consequently, we obtain the following weight assignments set ( ){ : 1,2,..., },q

q iS s i M= =  

1,2,...,q Q= , where ( ) {0,1}q

is   is an assigned binary weight that specifies whether the 

pixel i  is located in the thq  suspicious region and Q  is the number of identified suspicious 

regions such that Q K . 

Sub-algorithm 6.2-a: learning the characteristics of normal surfaces 

Given the binary results of negative and positive topographic values for normal surfaces 
( ) ( , ){ : 1,2,..., },j p j

p iB b i M= = 1,2,p = 1,2,...,j N= , a neighborhood construction rule of the 

pixel i , ( )i , and a type I error rate 2  (e.g., 2 =0.05), we implement the below steps: 

1: for 1,2,...,j N=  do 

2:     set the replacement value 0k =  

3:     for 1,2p =  do 

4:          for 1,2,...,i M=  do 

5:              if 
( , )( 1)p j

ib =  do 

6:                 count 1k k= +  and set ( ) ( , ) ( , ){ : 1,2,..., } , 0j k j k j

k e eC c e M c= = =  

7:                 set ( , ) 1k j

ic = , update ( ) ( , ){ }j k j

k iC c= , and set the region size n =1  

8:                 for 1,2,...,m M=  do 

9:                      if  ( , )( 1)p j

mb =  and ( , )( ( ))p j

mb i  do 

10:                      set ( , ) 1k j

mc = , update ( ) ( , ){ }j k j

k mC c= , set ( , ) 0p j

mb = , and count 1n n= +  

11:                      end if               

12:                 end for 

13:                 Obtain the region size of the thk  region ( )j

kr n=  

14:              end if 

15:          end for 

16:     end for 

17:     obtain the total number of identified regions K k=  

18: rank the obtained region sizes in increasing order ( )

( ){ ; 1,2,..., }j

j kR r k K= = , where 

( ) ( ) ( )

(1) (2) ( ), ,....,j j j

Kr r r  are the order statistics (i.e., ( ) ( ) ( )

(1) (2) ( )....j j j

Kr r r   )  

19:     calculate the 2 -quantile of the values in the set jR  as 2Pr[ ]j jR n  =  

20: end for 

21: calculate the threshold of the normal region size as 
2

1,2,...,
median ( )j

j N
h n

=
=  
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Sub-algorithm 6.2-b: identifying the topographic regions with suspicious characteristics 

Given the binary results of the negative and positive topographic values of a new surface 
( ){ : 1,2,..., }, 1,2,p

p iB b i M p= = =  a neighborhood construction rule of the pixel i , ( )i , 

and the threshold of the normal region size 2h , we implement the below steps: 

1: set the replacement value 0k =  and set the number of suspicious regions 0q =   

2: for 1,2p =  do 

3:     for 1,2,...,i M=  do 

4:          if ( )( 1)p

ib =  do 

5:             count 1k k= +  and set ( ) ( ){ : 1,2,..., } , 0k k

k e eC c e M c= = =  

6:             set ( ) 1k

ic = , update ( ){ }k

k iC c= , and set the region size n =1  

7:             for 1,2,...,m M=  do 

8:                  if  ( )( 1)p

mb =  and ( ( ))mb i  do 

9:                     set ( ) 1k

mc = , update ( ){ }k

k mC c= , set ( ) 0p

mb = , and count 1n n= +  

10:                  end if               

11:             end for 

12:          Obtain the region size of the thk  region kr n=   

13:          if 2( )kr h  do count 1q q= +  and update q kS C=  end if 

14:          end if   

15:     end for 

16: end for 

17: obtain the total number of identified suspicious regions Q q=  

 

The proposed NSCCL algorithm improves the description of local and spatial surface 

characteristics by identifying the regions with suspicious region sizes and removing the 

regions with normal sizes. This can improve the detection performance of topographic 

faults, which are likely to associate with a change in the region size (Rao et al., 2015b). 

The algorithm is also effective in identifying the surface peaks and valleys with suspicious 

characteristics because it is implemented separately to the binary results of the negative 

and positive topographic values (i.e., 1B  and 2B ). Figure 6.3 shows a topographic image 

and its corresponding suspicious regions identified by the NSCCL algorithm. In particular, 
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we apply the NSCCL algorithm to the binary results obtained earlier in Figure 6.2 (b and 

c) to identify the regions with suspicious sizes. 

 
Figure 6.3 Example of (a) an observed topographic image Z , and (b) its corresponding suspicious 

regions identified by the NSCCL algorithm. 

 

6.3.2 Stage 2: Feature Extraction  

We propose the generalized spatially weighted Moran (GSWM) index to accurately 

quantify the level of the spatial autocorrelation structure of each suspicious region 

identified by the NSCCL algorithm. The GSWM index is defined as the cross-products of 

the spatially weighted deviations of the topographic values and their different neighboring 

orders from the normal mean. More specifically, the GSWM index generalizes the weight 

assignments in the Moran’s index from the first-order neighbor to multiple-order neighbors 

for adequate characterization of the spatial autocorrelation structure of each identified 

region. In other words, we utilize the weight assignments obtained by the NSCCL 

algorithm to define the neighborhood of each pixel at different order. The GSWM index 

also includes the characteristics of normal surfaces during the quantification of the spatial 

autocorrelation structure of new surfaces for effective monitoring of surface changes. The 

GSWM index is also insensitive to the random behavior between the surface characteristics 

because the spatial structure of each identified region is quantified regardless of the actual 
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coordinate of its pixels on the surface. More important, the GSWM index is suitable for 

online monitoring since its computation time is expressed as ( )O R Y , where R  is the 

size of neighboring pixels and Y  is the size of suspicious surface pixels, which is 

considerably less than the size of the surface pixels (i.e., Y M ).  

For a given topographic image { : 1,2,..., }iZ z i M= =  and its weight assignments set 

identified by the NSCCL algorithm ( ){ : 1,2,..., }q

q iS s i M= = , 1,2,...,q Q= , the GSWM 

index of the thq  suspicious region is formulated using Equation (6.3)  

 

( ) ( )

, 0 0

1 1

2 ( ) ( )

0 ,

1 1

( )( )
M M

q q

i i m i m

i m
q M M

q q

i i m

i m

s w z z z z

F

s w

= =

= =

− −

=



, 1,2,..., ,q Q=  (6.3) 

where ( )q

is  is an assigned binary weight that specifies whether the pixel iz  is located in the 

thq  suspicious region, i.e., ( ) 1q

is =  if iz  is located in the thq  suspicious region, ( ) 0q

is =  

otherwise, ( )

,

q

i mw  is an assigned binary weight that specifies whether the pixels iz  and mz  

are neighbors in the thq  suspicious region, i.e., ( )

, 1q

i mw =  if ( ){ 1}q

is =  and ( ){ 1}q

ms = , which 

indicates that the pixels iz  and mz  are connected to each other by a path of any neighboring 

order determined based on a specified neighborhood construction rule, ( )

, 0q

i mw =  otherwise, 

and ( 0z , 0 )  are the mean and standard deviation of normal topographic values; obtained 

based on N  normal surfaces ( ) ( ){ : 1,2,..., }j j

iZ z i M= = , 1,2,...,j N= , as given in 

Equations (6.4 and 6.5), respectively, 
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( )

0

1 1

1 N M
j

i

j i

z z
N M = =

=


 , and  (6.4) 

( ) 2

0 0

1 1

1
( ) / ( 1)

N M
j

i

j i

z z M
N


= =

= − −  . (6.5) 

6.3.3 Stage 3: Anomaly Detection  

In this stage, we determine whether a new surface ( )newZ  is an anomaly according to given 

N  normal surfaces ( )jZ , 1,2,...,j N= . Specifically, after we calculate the GSWM index 

for all suspicious regions of the thj  normal surface ( )j

qF , ( )1,2,..., jq Q= , and 1,2,..., ,j N=

we obtain the maximum generalized spatially weighted Moran (MGSWM) index as given 

in Equation (6.6), which describes the spatial autocorrelation level of the most suspicious 

region of a surface  

( )

( ) ( )

1,2,...,

max
j

j j

q
q Q

A F
=

= , 1,2,...,j N= , (6.6) 

where ( )jA  is the MGSWM index of the surface j . Note that we expect the MGSWM 

index of topographic images obtained under normal process conditions to be statistically 

similar since these surfaces are composed of similar characteristics. However, when a new 

surface contains faults, these faults are likely to cause a local change in the structure of that 

surface (Alqahtani et al., 2020d). Subsequently, we expect the MGSWM index to detect 

this change by quantifying the spatial autocorrelation level of the most suspicious region 

of that surface.  

After the MGSWM index is calculated for all given normal surfaces ( )jA , 1,2,...,j N= , 

we obtain the upper critical limit U  using Algorithm 6.3. In particular, Algorithm 6.3 
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determines U  based on a bootstrapping method with a prespecified type I error rate, i.e., 

the rate of incorrectly detecting the surfaces with normal characteristics as anomaly 

surfaces (Alqahtani et al., 2020c). Thus, when a new surface ( )newZ  is observed, we 

calculate its MGSWM index ( )newA . We subsequently compare ( )newA  with the upper 

critical limit U . If ( )newA U , the new surface is then identified as an anomaly.  

Algorithm 6.3: Determining the upper critical limit U  

Given the MGSWM index set of N  normal surfaces ( )

0 { , 1,2,..., }jA A j N= = , the size 

of bootstrapping samples C  (e.g., 1000C = ), the size of simulation replicates V  (e.g., 

1000V = ), and a specified type I error rate 3  (e.g., 3 0.05 = ), we implement the below 

steps: 

7: for 1,2,...,v V=  do   

8: obtain the empirical distribution of the set 0A  by randomly selecting C  samples 

with replacement from the set 0A  such as 0{ , 1,2,..., },v c cY y c C y A= =   

9: rank the values in the set vY  in increasing order  '

( ){ , 1,2,..., }v cY y c C= = , 

 where (1) (2) ( ), ,...., Cy y y  represent the order statistics (i.e., (1) (2) ( ).... Cy y y   )  

10: compute the 3 -quantile of the values in the set '

vY  for the replicate v  
'

3Pr[ ]v vY p  =  

11: end for 

12: determine the upper critical limit by taking the median over the obtained replicates 

1,2,...,
median ( )v
v V

U p
=

=  

 

6.3.4  Stage 4: Fault Identification and Diagnosis  

In this stage, we extract different fault information from each identified anomaly surface 

(Alqahtani et al., 2020d). In particular, we obtain the number of anomaly regions, denoted 

as 1T , by counting the number of regions with the GSWM index that exceeds the specified 

critical limit U  such as 
1

1

1{ }
Q

q

q

T F U
=

=  . After identifying the anomaly regions, we 
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extract the following fault information from each anomaly region: fault size, location, 

magnitude, autocorrelation, and type. The fault size, denoted as 2T , is defined as the unit 

area of each identified anomaly region, which is calculated by counting the number of 

pixels in each anomaly region. In particular, given the weight assignments set of the thq  

anomaly region ( ){ : 1,2,..., },q

q iS s i M= =  we calculate its fault size by counting the pixels 

with the value of "1" as ( )

2

1

1{ 1}
M

q

i

i

T s
=

= = . In addition, the fault location, denoted as 3T , 

is defined as the locations of pixels in each anomaly region. Therefore, the fault location 

of the thq  anomaly region is given as ( )

3 { , 1,2,..., }q

q iT S s i M= = = .  

The fault magnitude, denoted as 4T , measures the variation of topographic values from the 

reference plane. More specifically, 4T  is commonly quantified based on the standard 

deviation (SD) of topographic values (Rao et al., 2015b). However, the SD may overlook 

local variance changes since the values of local changes can be masked by the normal 

values. Thus, we overcome this limitation by proposing the spatial standard deviation 

(SSD) index, which quantifies the fault magnitude of each identified anomaly region by 

calculating the square root of the average of spatially weighted squared differences of the 

topographic values from the normal mean. Particularly, given the weight assignments set 

of the 
thq  anomaly region ( ){ : 1,2,..., }q

q iS s i M= = , the fault magnitude of the 
thq  anomaly 

region is calculated based on its SSD index as given in Equation (6.7)  

( ) 2 ( )

4 0

1 1

( ) / ( 1)
M M

q q

q i i i

i i

T D s z z s
= =

= = − −  , (6.7) 
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where qD  is the SSD index of the thq  anomaly region and 0z  is the mean of normal 

topographic values defined earlier in Equation (6.4). The fault autocorrelation, denoted as 

5T , measures the level of spatial autocorrelation among pixels in each anomaly region. 

Specifically, 5T  is obtained based on the proposed GSWM index, which is effective in 

quantifying the spatial autocorrelation among topographic pixels. Thus, the fault 

autocorrelation of the thq  anomaly region is defined as 5 .qT F=  

The fault type, denoted as 6T , identifies the type of surface change (i.e., variance or 

autocorrelation) that occurred in each identified anomaly region. The proposed SSD and 

GSWM indexes are simultaneously used to identify 6T . Specifically, when an anomaly 

region experiences a variance change, we expect both SSD and GSWM indexes of that 

region to exceed their critical limits W  and U , respectively, where W  and U  are obtained 

using Algorithm 6.3. This is because both SSD and GSWM indexes can capture the 

variation of topographic values from the normal mean. Thus, if 4( )T W  and 5( )T U , 

then we identify the fault type of the thq  anomaly region as 6T = “variance change”. 

However, when an anomaly region is observed with an autocorrelation change, the GSWM 

index of that region is only expected to exceed its critical limit. This is because the GSWM 

index is only effective in capturing changes in the spatial autocorrelation of surface 

structure. Therefore, if 4( )T W  and 5( )T U , we identify the fault type of the 
thq  

anomaly region as 6T = “autocorrelation change”.  
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6.4 Performance Analysis 

We use the Gaussian random model described in Section 2.3 to generate topographic 

surfaces. We also consider the same fault scenarios described earlier in Section 3.3.1.  

6.4.1 Effectiveness of the Proposed NSHT and NSCCL Algorithms  

In this section, we initially present the effectiveness of the proposed NSHT algorithm in 

representing changes in surface characteristics. Figure 6.4 shows examples of the selected 

regions of three generated surfaces and their corresponding binary results obtained by the 

NSHT algorithm. Note that we integrate the negative and positive binary results (i.e., 

1 2B B B= + ) to better illustrate the change in each surface. In general, we observe that the 

NSHT algorithm effectively captures both valley (blue color) and peak (red color) 

characteristics due to the separate binarization of negative and positive topographic values. 

We also notice that the surface characteristics of the normal surface, which are represented 

by "1" (or white areas) in the obtained binary results, tend to be more random and distant 

from each other. However, the characteristics of the binary result obtained under the 

variance change are appeared to be distinguished from the ones of the normal surface such 

a way that they become more clustered and closer to each other. This is due to the fact that 

the variance change yields more topographic values to exceed the normal surface hard 

threshold (i.e., 1h = 1.28E-06). Moreover, the surface characteristics of the binary results 

obtained under the autocorrelation change are shown to be different from the ones of the 

normal surface as they become more clustered with their neighbors. This is because of the 

change in the spatial relationships among topographic values. 
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Figure 6.4 Three topographic images and their corresponding binary results obtained by the NSHT 

algorithm from (a) normal surface, and two anomaly surfaces with (b) variance change, and (c) 

autocorrelation change. 

 

We also present the effectiveness of the proposed NSCCL algorithm in identifying the 

topographic regions with suspicious characteristics. After we obtain the binary results of 

the three generated surfaces presented in Figure 6.4, we apply the NSCCL algorithm to 

identify the regions with suspicious characteristics as shown in Figure 6.5. We notice that 

the NSCCL algorithm effectively assigns each connected region that is associated with a 

region size that exceeded the threshold of the normal region size (i.e., 2h =19) to a distinct 

label (or color). In particular, Figure 6.5 (a) shows only two suspicious regions identified 

from the normal surface. However, we notice an increase in the number of suspicious 

regions identified from the anomaly surfaces where 14 and 5 suspicious regions identified 

from the surfaces with the variance and autocorrelation changes as shown in Figure 6.5 (b 

and c), respectively. 
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Figure 6.5 Illustrations of the regions with suspicious characteristics identified by the NSCCL 

algorithm from (a) a normal surface, and two anomaly surfaces with (b) variance change, and (c) 

autocorrelation change. 

 

6.4.2 Performance of the Proposed Approach  

This section assesses the performance of the proposed monitoring approach with the 

existing approaches discussed earlier in Section 2.4. Note that we use the performance 

measure stated earlier in Equation (3.15). Particularly, Table 6.1 presents the power of 

detection P  of the proposed and the existing monitoring approaches under different fault 

sizes, areas, and types. We observe that the power spectral density feature psdS  yields low 

detection performance of local faults since psdS  is calculated using a global decomposition 

filter (the FFT filter), which is likely to remove the local fault information. The watershed 

feature wS  also results in low power of detection because wS  is heavily dependent on the 

watershed algorithm that suffers from the over-segmentation issue, which can cause low 

segmentation performance of local faults. Next, the Fiedler connectivity feature cS  shows 
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improved detection performance of the variance change due to the quantification of the 

pairwise distance between all nodes of the graph network. However, cS  yields poor 

performance in detecting the autocorrelation change because cS  does not capture the 

spatial autocorrelation among topographic pixels. 

We also show the performance of Moran’s index I , which results in a lower power of 

detection for both variance and autocorrelation changes due to the limitations of this index 

discussed earlier in Section 6.2. Next, the one-sample Anderson–Darling approach adS  

results in a high detection accuracy for the variance change because adS  captures the 

deviation of the CDF of the observed residuals from the CDF of the normal residuals. 

However, adS  yields a low detection performance for the autocorrelation change because 

the normal surface characteristics are likely to obscure the characteristics of local faults. 

In contrast, the proposed NSHT algorithm is shown to be effective in representing the 

variance and autocorrelation changes in a way that they are likely to cause a change in the 

structure of the binarized topographic values, and the proposed NSCCL algorithm is shown 

to be accurate in utilizing the binarized values to identify the regions of with suspicious 

structures. In addition, the proposed MGSWM index A  is effective in characterizing and 

monitoring changes in surface characteristics by calculating the spatial autocorrelation 

level of the region with the most suspicious structure. As a result, A  yields outstanding 

detection performance for both variance and autocorrelation changes under all specified 

fault scenarios and subsequently outperforms the other monitoring approaches as shown in 

Table 6.1.  
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Table 6.1 Power of detection P  of the proposed and the existing monitoring approaches for 

anomaly surfaces generated by the Gaussian random model 

Fault type 
Fault 

region 

Fault size Monitoring approaches 

    psdS  
wS  cS  I  adS  A  

Variance 

2.5% 

1.5 1 
0.23

8 

0.12

3 

0.40

9 

0.14

9 

0.56

8 

0.71

4 

1.7

5 
1 

0.29

6 

0.12

9 

0.67

7 

0.16

0 

0.92

8 

0.99

3 

3.0% 

1.5 1 
0.24

0 

0.13

0 

0.40

1 

0.15

8 

0.64

5 

0.79

4 

1.7

5 
1 

0.27

8 

0.13

0 

0.56

8 

0.16

6 

0.96

3 

0.99

8 

Autocorrelation 

2.5% 

1 2 
0.10

2 

0.26

2 

0.20

6 

0.20

5 

0.26

3 

0.76

0 

1 
2.2

5 

0.10

4 

0.33

9 

0.21

7 

0.25

5 

0.26

3 

0.87

6 

3.0% 

1 2 
0.10

5 

0.33

1 

0.22

2 

0.23

4 

0.29

8 

0.81

3 

1 
2.2

5 

0.10

8 

0.41

1 

0.23

4 

0.28

8 

0.30

7 

0.91

7 

 

We also assess and compare the diagnostic performance of the proposed and the existing 

monitoring approaches. Particularly, after we detect an anomaly surface, we calculate the 

following three diagnostic performance measures: (1) precision; expressed as the 

percentage of the identified anomalies that are true anomalies (this may include true and 

untrue anomalies), (2) recall; expressed as the percentage of the true anomalies that are 

correctly identified, and (3) F1-score; expressed as the harmonic mean of the precision and 

recall measures (Janssens et al., 2015). These measures are respectively given in Equations 

(6.8-6.10) 

Precision
1 1

1 1V V
j

j

j j j j

TN
P

V V TN FN= =

= =
+

  ,  (6.8) 
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Recall
1 1

1 1V V
j

j

j j j j

TN
R

V V TN FP= =

= =
+

  , (6.9) 

F1-score 
1

1
2

V
j j

j j j

P R

V P R=


= 

+
 , (6.10) 

where V  is the size of simulation replicates ( 100V =  replicates), ( , )j jP R  are the precision 

and recall measures in the thj  simulation replicate, jTN  is the number of true negative 

alarms, i.e.,  the number of anomaly pixels that are correctly identified as anomaly pixels, 

jFN  is the number of false negative alarms, i.e., the number of normal pixels that are 

incorrectly identified as anomaly pixels, and jFP  is the number of false positive alarms, 

i.e., the number of anomaly pixels that are incorrectly identified as normal pixels. 

In Table 6.2, we present the precision, recall, and F1-score measures for the proposed and 

the existing approaches. Particularly, we generate anomaly Gaussian random surfaces 

under two fault types, two fault sizes, and one fault area (i.e., 2.5%). It is clear that the 

proposed approach, denoted as A , has a much better diagnostic performance than the other 

approaches (i.e., wS  and adS ). This difference is more apparent in the autocorrelation 

change where wS  and adS  fail to capture the spatial structure of surface anomalies. In 

particular, for the variance change with the fault size 1.5 m , the F1-score, which is based 

on precision and recall measures, of wS  and adS  are 0.609 and 0.293, respectively, whereas 

this measure is 0.825 for A . In addition, for the autocorrelation change with the fault size 

2 m , the F1-score of A  is 0.822, which is much better than the F1-scores of wS  and ,adS

which are obtained as 0.390 and 0.273, respectively. This is because the spatial structure 
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of surface anomalies is effectively considered in the proposed approach through the 

GSWM index. 

 Table 6.2 Diagnostic performance results of the proposed and the existing monitoring approaches 

for anomaly surfaces generated by the Gaussian random model 

Fault type 

Fault 

size 
Precision Recall F1 

    wS  adS  A  wS  adS  A  wS  adS  A  

Variance 

1.5 1 
0.62

5 

0.74

3 

0.84

3 

0.61

4 

0.18

5 

0.81

7 

0.60

9 

0.29

3 

0.82

5 

1.7

5 
1 

0.63

2 

0.76

6 

0.86

6 

0.83

9 

0.31

2 

0.92

8 

0.71

9 

0.43

9 

0.89

3 

Autocorrelat

ion 

1 2 
0.63

3 

0.71

1 

0.81

7 

0.04

6 

0.17

3 

0.84

5 

0.39

0 

0.27

3 

0.82

2 

1 
2.2

5 

0.77

3 

0.69

7 

0.80

9 

0.02

1 

0.16

7 

0.88

5 

0.26

8 

0.26

4 

0.83

8 

 

Figure 6.6 shows examples of normal and two anomaly surfaces, along with the 

corresponding locations of anomaly regions extracted by the proposed approach. In Figure 

6.6, we observe that no normal region is incorrectly identified as anomalies for all three 

surfaces, whereas 2 and 9 anomaly regions are correctly identified as anomalies from the 

anomaly surfaces in Figure 6.6 (b and c), respectively. Moreover, in Table 6.3, we extract 

additional fault information from each identified anomaly region in Figure 6.6 (b and c), 

including the fault size 2T , the fault magnitude 4T  , and the fault autocorrelation 5T . We 

also identify the fault type 6T  of the anomaly regions obtained from Figure 6.6 (b) as 

“variance change” since 4T  and 5T  of these regions exceeded their critical limits (i.e., 

5.56 07EW −=  and 87.56U = ). However, we identify the fault type 6T  of the anomaly 

regions obtained from Figure 6.6 (c) as “autocorrelation change” because only 5T  of these 

regions exceeded its critical limit (i.e., 87.56U = ). 
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Figure 6.6  Examples of thee three generated surfaces (first row) and their corresponding anomaly 

regions (second and third rows) identified by the proposed approach from (a) a normal surface, and 

two anomaly surfaces with (b) variance change, and (c) autocorrelation change. 

 

 Table 6.3 Summary of the fault information extracted from anomaly surfaces shown in Figure 6.6   

Surface index Region 
Fault information 

2T  4T  5T  6T  

b 

1 26 9.83E-07 142.63 

Variance 

change 

2 83 1.17E-06 400.10 

3 50 1.26E-06 184.10 

4 43 5.83E-07 93.81 

5 49 1.21E-06 232.94 

6 42 1.26E-06 208.81 

7 28 8.95E-07 99.13 

8 45 9.53E-07 161.51 

9 65 7.70E-07 212.39 

c  
1 78 5.20E-07 155.42 Autocorrelation 

change 2 60 3.31E-07 95.83 
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Finally, we evaluate the average computation time for calculating the proposed and the 

existing monitoring approaches. Particularly, we calculate the average and standard 

deviation of the computation time for each approach based on 1000 samples as presented 

in Table 6.4. Referring to the proposed approach as A , its computation time is the total 

time that the approach takes from Stage 1 to Stage 4. Due to the model complexity of A , 

the average computation time of A  is larger than the other approaches such as psdS  and 

cS . However, it is still efficient and smaller than the other complex approaches, such as 

wS , I , and adS . In particular, A  needs an average of 0.34 seconds to detect an anomaly 

surface, while ,wS  I , and adS  need an average of 0.874, 0.772, and 5.363 seconds, 

respectively. This makes the proposed approach suitable for the online monitoring of 

topographic images.  

Table 6.4 Average computation time of the proposed and the existing monitoring approaches 

Monitoring approaches psdS  
wS  cS  I  adS  A  

Time in seconds 

(standard deviation) 

0.001 

(7.54E-05) 

0.874 

(0.024) 

0.012 

(0.002) 

0.772 

(0.001) 

5.575 

(0.067) 

0.340 

(0.009) 

 

6.5 A Case Study of Semiconductor Wafer Surfaces  

In this section, we examine the effectiveness of the proposed approach by considering the 

case study of semiconductor wafer presented earlier in Section 3.4. In Table 6.5, we present 

the performance comparison results in terms of the power of detection of anomaly wafers 

for the proposed and the existing monitoring approaches. We observe that the existing 

approaches result in low power of detection for both scratch and ridge faults because they 

lack the quantification of local changes in topographic surfaces. The proposed approach, 

in contrast, outperforms the existing approaches under all specified fault scenarios because 
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of the accurate identification, characterization, and monitoring of local changes in 

topographic surfaces. In addition, Figure 6.7 shows the effectiveness of the proposed 

approach in identifying faults in anomaly wafers. In particular, the proposed approach 

correctly identified 26 scratches and 20 ridges from the anomaly wafers with an accuracy 

of 81.25% and 100%, respectively, as shown in Figure 6.7 (b and c).    

 
Figure 6.7 Examples of the topographic images of (a) normal surface, and two anomaly wafers 

with (b) scratch faults, and (c) ridge faults, along with the anomaly regions identified by the 

proposed approach. 

 

Table 6.5 Power of detection of the proposed and the existing monitoring approaches using 

anomaly wafers   

Fault type Fault area 
Monitoring approaches 

psdS  
wS  cS  I  A  

Scratches 

1.5% 0.087 0.191 0.141 0.303 0.769 

2% 0.092 0.212 0.143 0.349 0.866 

2.5% 0.094 0.272 0.148 0.445 0.963 

Ridges 

2% 0.094 0.109 0.516 0.550 0.765 

2.5% 0.094 0.114 0.620 0.660 0.855 

3% 0.098 0.129 0.697 0.737 0.915 
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6.6 Conclusions 

In this chapter, we propose the generalized spatially weighted autocorrelation approach for 

accurate monitoring and detection of different patterns of local surface faults. We propose 

two algorithms to assign spatial weights to the important characteristics of new surfaces 

based on information learned from normal surfaces. The NSHT algorithm enhances the 

surface representation by binarizing the important surface characteristics, and the NSCCL 

algorithm exploits the obtained binary results to identify and assign spatial weights to the 

topographic regions with suspicious characteristics. The developed GSWM index 

subsequently utilizes the assigned weights to characterize the spatial autocorrelation 

structure of each identified region. After an anomaly surface is detected based on its 

maximum GSWM index, different fault information is extracted for fault diagnosis.  

The proposed approach shows its robustness and efficiency in monitoring and diagnosing 

various faults that emerge in different types of topographic images and subsequently 

outperforms the existing monitoring approaches. Specifically, the NSHT algorithm is 

shown to be effective in representing changes in surface characteristics through 

binarization. Since the variance and autocorrelation changes are likely to cause a change 

in the structure of the obtained binary results, the NSCCL algorithm is proven to be 

accurate in identifying the regions with suspicious structures. Different changes in surface 

characteristics, including both variance and autocorrelation, are accurately described and 

detected by monitoring the GSWM index of the most suspicious regions. Since the 

proposed approach only characterizes and monitors the regions with suspicious 

characteristics, this makes the approach efficient to implement in the online monitoring 

environment. 
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CHAPTER 7 

CONCLUSION AND FUTURE RESEARCH  

7.  

In this chapter, we present the summary and conclusions of this dissertation in Section 7.1 

and discuss future research in Section 7.2. 

7.1 Summary and Conclusions 

The proposed monitoring approaches bridge the gap between the existing literature and the 

need for effective online monitoring of 3D topographic surfaces. In particular, the proposed 

approaches show superior performance compared to the existing approaches in 

characterizing and assessing the complex characteristics of topographic surfaces. We 

briefly summarize the four proposed monitoring approaches as follows:  

1. We introduce the multi-level spatial randomness approach for monitoring global 

changes in 3D topographic surfaces. The approach enhances the representation of 

topographic values by slicing the 3D surface topography into different levels in 

reference to the characteristics of normal surfaces through the developed multi-

level surface thresholding algorithm. We effectively quantify the spatial and 

random properties of topographic values at each surface level using the proposed 

spatial randomness (SR) profile. We also develop a monitoring statistic based on 

the functional principal component analysis for effectively detecting different 

forms of global changes in topographic surfaces based on their SR profiles.  

2. We present the multi-label separation-deviation surface model for detecting local 

variance changes in 3D topographic surfaces. The approach improves the 
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representation of topographic defects through the developed multi-label separation-

deviation surface (MSS) model, which labels the important surface characteristics 

and smoothes out the noisy ones. We develop two features for monitoring changes 

in surface characteristics. The MSS feature is introduced for capturing deviations 

within the label assignments, and the generalized spatial randomness feature is 

derived for quantifying deviations between the label assignments. These two 

features are integrated into a single monitoring statistic to detect local variance 

changes in topographic surfaces.   

3. We develop a spatially weighted graph theory-based approach for accurate 

monitoring of local autocorrelation changes in 3D topographic surfaces. The 

approach improves the representation of surface characteristics by segmenting the 

observed surface pixels into predefined clusters through the developed in-control 

multi-region surface segmentation algorithm. We also propose the maximum local 

spatial randomness feature, which accurately describes the local and spatial 

characteristics among topographic values. After representing the surface as a 

spatially weighted graph network, we monitor its connectivity through the 

developed spatial graph connectivity to detect changes in topographic structures.  

4. We present the generalized spatially weighted autocorrelation approach for fault 

detection and diagnosis in topographic surfaces. We propose two algorithms to 

identify and assign spatial weights to the regions with suspicious characteristics. 

The normal surface “hard” thresholding algorithm initially enhances the 

representation of surface characteristics through binarization and followed by the 

normal surface connected-component labeling algorithm, which utilizes the 
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obtained binary results to identify and assign spatial weights to the suspicious 

topographic regions. We also develop the generalized spatially weighted Moran 

(GSWM) index, which exploits the assigned weights to characterize and monitor 

local changes in the spatial autocorrelation structure of each identified region. After 

an anomaly surface is detected based on its maximum GSWM index, we extract 

different fault information for fault diagnoses.  

7.2 Future Research 

The developed approaches for monitoring surfaces assume an independent monitoring 

scheme, i.e., the past monitored surfaces do not influence the monitoring of new surfaces. 

This may result in a lower assessment of small process shifts that may occur during 

manufacturing. Therefore, effective monitoring of small process shifts can be 

accomplished by using the characteristics of topographic surfaces from previous images to 

improve the current monitored image analogous to the Exponentially Weighted Moving 

Average (EWMA) and cumulative sum (CUSUM) in SPC, which are both sensitive in 

detecting small process shifts (Qiu, 2013). 

Multistage processes are used  in many manufacturing processes, such as automotive 

manufacturing processes, oil refining processes, fabrication processes, and batch 

manufacturing processes (Kim et al., 2019, Sangahn, 2019). Monitoring and controlling 

multistage processes are of vital importance to detect shifts in such processes. However, 

variation propagation from one stage to another is one of the most challenges in multistage 

processes, which is known as the cascade property, i.e., the output of upstream stages is 

likely to influence the input of downstream stages (Kim et al., 2019). Examples of 

variations that may occur in any process stage include operator errors, defective raw 
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materials, or jammed machines (Montgomery, 2007). Existing multistage monitoring 

approaches are limited to univariate or multivariate data (Kim et al., 2019, Sangahn, 2019). 

However, multistage monitoring approaches based on topographic data are sparse. 

Therefore, the proposed approaches can be extended from a single stage process to 

multistage processes where the topographic images among stages can be correlated to 

determine potential shifts in the process parameters and identify “faulty” stages. 

In contrast to the traditional monitoring approaches, multimode monitoring approaches are 

designed for processes with multiple operating modes, which is known as multimode 

processes (Yu and Qin, 2008, Jin and Liu, 2013, Turkoz, 2018). In such processes, each 

operating mode can be characterized by a single baseline model, and subsequently multiple 

baseline models can be integrated for effective monitoring of the quality of overall system 

behavior. In the proposed monitoring approaches, we assume that the process has only a 

single operating mode under normal process behavior. Therefore, extending the proposed 

approaches to multimode processes is crucial to effectively detect anomaly surfaces in such 

processes. 
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Appendix A. Proof of Lemma 4.1 

We show the proof of lemma 4.1 for obtaining the optimal weights of the GSR feature 

discussed in Section 4.2.2. For the given ln  and rn , where ln  is the number of pixels with 

the label l  and 
1|

k

r j

j j l

n n
= 

=   is the number of the pixels without the label l , the first and 

the second moments of llJ  are, respectively, given as follows (Cliff and Ord, 1981) 

(2) (2)E( ) / ,ll lJ cn n=  and 
(4) (2) (3) (4) (3) (4)

2 2

0 1 2(4) (2) (3) (4) (3) (4)

2
E( ) [ ] [ ] [ ] ,l l l l l l

ll

n n n n n n
J s s s

n n n n n n
= + − + + −  

where 
1 1|

k k

lj

l j j l

c J
= = 

=   is the sum of JC statistics and ( )

1

( 1)
k

k

i

n n i
=

= − +  is a positive integer 

constant. We refer to Cliff and Ord (1981) to obtain 0 ,s  1,s  and 2s . Therefore, we derive 

the expectation and variance of lS , 1,2,...,l k= , as follows 

(2) (2)

(2)

2 2

2 2
(4) (2) (4) (2)

2 2

(4) (2) (4) (2)

2

0
(2) (2) (2) (2)

(4) (2) (2)
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Var(S ) E(S ) E( )

s

a

2

ndl l ll r rr l l r r
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l l r r
l r

l r l r
l r

c
S d J d J d n d n

n

S

n n n n
d d

n n n n

n n n n
d d
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As ,n →  it can be assumed that ( ) ( )/ ,k k k

l ln n  ( ) ( )/k k k

r rn n  . Therefore, the variance 

of lS  can be written as 

2 2 2 2 2

2 0 1Var(S ) =( 4 / ) ( ) s ( ) .l l r l l r r l r l rs s n d d d d     − − + +  

Thus, after minimizing Var(S )l  subjected to 1,l rd d+ =  the optimum solution is obtained 

as * *( , ) ( , )l r r ld d  = .  
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