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This dissertation introduces original analytical methodologies for decision-making

in transportation systems. Moving away from the conventional yet burdensome sim-

ulation approaches, we advance closed-form solutions that describe transportation-

related processes. It contains two parts. Part 1 concentrates on the problem of

predicting congestion on roadways, and part 2 focuses on the problem of scheduling

inspections for railway track maintenance.

Part 1 provides a faster and more efficient method to determine traffic density

behavior for long-term congestion management using minimal statistical information.

Applications include road work, road improvements, and route choice. The research

adapts and generalizes two models (off-peak and peak hours) for the probability mass

function of traffic density in a major highway. It then validates them against real data.

The studied corridor experiences randomly occurring service deterioration caused by

accidents and inclement weather, such as snow and thunderstorms. We base the

models on queuing theory, and we compare the fundamental diagram with the data.

This research supports the validity of the models for each traffic condition un-

der certain assumptions on the distributional properties of the associated random

parameters. Different scenarios demonstrate traffic congestion and traffic breakdown

behavior under various deterioration levels. Last, we include a direct expansion of

the model for non-space-homogeneous segments. These models, which account for

non-recurrent congestion, can improve decision-making with no extensive datasets or
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time-consuming simulations.

Part 2 considers inspection and maintenance activities in railways. They are

essential to preserving railways’ safety and cost-effectiveness. Still, one of the leading

causes of derailments, the stochastic nature of railway defect occurrence, is rarely

present in the related literature. Defect occurrence has been investigated as a stand-

alone problem by other authors. Even then, models concentrating on defect prediction

demand large datasets of obscure parameters that can be costly or infeasible to gather.

We propose a new method that relies on customary data for predicting track

and geometry defects. We then develop a holistic approach to scheduling inspection

and maintenance activities that integrates the prediction of railway defects into the

problem. This integration is robust and allows for different constraints, such as crew

limitations via a Multi-Armed-Bandit framework. Results indicate a high accuracy

rate in prediction and effective scheduling policies that are adaptable to varying levels

of risk tolerance. Finally, we theorize that search games can solve the final decision

of where to inspect within the pre-defined segment.
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1

Introduction

In recent times, population concentration, economic growth, and lifestyle changes

have increased the demand for traffic infrastructure at an unprecedented rate, out-

pacing improvements to infrastructure. There is a constant emergence of innovative

technologies for all modals of transportation, such as autonomous cars and enhanced

track materials to overcome this increase in demand. This dissertation proposes so-

lutions for everyday problems that decision-makers still face both on roadways and

railways, despite the currently available technology. We apply and adapt novel devel-

opments in the operations research field to find optimal and near-optimal solutions

for decisions, often in closed-form. We hope that these solutions may foster elegant

innovations that are less prone to bias in the field, reducing its current reliance on

data and simulation.

In this dissertation, problems in roadways and railways serve as the background

for our theoretical development. The models extend to other fields and, with little

work, should be readily applicable to them. This section presents an overview of the

problems assessed throughout the dissertation. We also brief the reader on the ap-

proaches proposed in the literature and describe the flaws that we intend to overcome.

The following chapters further discuss previous studies in more detail.
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Predicting Roadway Congestions

The rate of congestions and delays is increasing. According to the Urban Mobility

Scorecard (Schrank et al., 2015), the average extra time spent in traffic per commuter

due to congestion in the USA was 42 hours in 2014 compared to 18 hours in 1982.

Nationwide, this means 6.8 billion hours or $160 billion in extra fuel consumption per

year. Even the introduction of autonomous vehicles may not curb congestion due to

high demand unless policies are developed to encourage ridesharing or improve flow

management.

This problem becomes increasingly ubiquitous as the worldwide population grows

and concentrates (Thakur et al., 2012). Unfortunately, transportation infrastructure

investments are still lagging, putting pressure on those responsible for planning trans-

portation systems (Schrank et al., 2015). Severe travel delays are frequently the result

of the inappropriate planning of transportation systems (Chiou, 2016). Poor plan-

ning may cause insufficient provision of link capacity, particularly under uncertain

travel demand and with the arrivals of non-recurrent incidents. Such issues need to

be accounted for in roadway designs, even when it is infeasible to gather the appro-

priate data. Therefore, transportation investments must be carefully considered to

help alleviate congestion and prevent future traffic problems.

While traffic congestion and breakdown caused by excess cars during peak hours

are common, other types of congestion have started to become more pervasive. Non-

recurrent congestions are a significant contributor to the total delay of vehicle travel

time (Skabardonis et al., 2003; Kwon et al., 2006). The two main factors that cause

non-recurrent delays are weather deterioration and accidents that affect the capacity

of the road. They account for well over half of the non-recurrent delays in urban

areas, and nearly all non-recurrent delays in rural areas (Skabardonis et al., 1998).
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Next, in chapter 2, we present current approaches to describe traffic density dis-

tributions from literature, explain the data used in the validation of our traffic den-

sity distribution models, and introduce our models. Based on the previous research

(Baykal-Gürsoy and Xiao, 2004; Baykal-Gürsoy et al., 2009a,b), the models described

in this dissertation extend, simplify, and validate their approach against a real dataset.

Baykal-Gürsoy and Xiao (2004); Baykal-Gürsoy et al. (2009a,b) derive the distri-

bution of density in closed-form, but its computation is nontrivial. Few properties

of the distribution can be directly derived from its complex closed-form, limiting its

application. However, in realistic scenarios, we can place reasonable bounds on the

parameters, leading to a simpler closed-form distribution. The properties of the re-

sulting distribution can then be directly computed and have an intuitive meaning,

allowing decision-makers to attain a better understanding of the behavior of the sys-

tem. Moreover, Baykal-Gürsoy and Xiao (2004), Baykal-Gürsoy et al. (2009a), and

Baykal-Gürsoy et al. (2009b) provide no validations against real data. Chapter 2 also

addresses this issue by validating the model against data obtained in Wisconsin.

To the best of our knowledge, there is not an agreed-upon steady-state probability

distribution for traffic density in roadways that experience non-recurrent congestion.

Most recent research that incorporates non-recurrent congestion focus on detecting

incidents rather than computing the steady-state distribution (Anbaroglu et al., 2014;

Chen et al., 2016; Laharotte et al., 2017). Mathematically, they work on the transient

portion of congestion behavior, thus focusing on real-time applications instead of

planning and long-term decision-making. Hence, there is a gap in the literature for

direct approaches to computing the steady-state distribution of traffic density when

accounting for non-recurrent congestion.

This study addresses the critical need for analytical congestion assessment models

that are neither overly simplistic nor excessively complex. An outcome is a systematic
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method that uses simple, usually in hand parameters, to estimate the probability

distribution of traffic density. They are:

1. mean traffic flows under normal and deteriorated conditions;

2. mean speeds under normal and deteriorated conditions;

3. incident frequency;

4. repair rate;

5. deterioration rate.

Rail Defect Prediction and Rail Inspection and Main-

tenance Scheduling

The demand for rail transport is experiencing a boost at a global level, subsequently

straining railway companies’ ability to maintain service quality (Sharma et al., 2018).

Simson et al. (2000) and Budai-Balke et al. (2009) argue that track maintenance and

renewal costs are one of the highest expenses for railway companies. The literature

divides maintenance and inspections into two kinds: a) corrective ones, which are

inspections to repair known existing defects, and b) preventive ones, which are in-

spections and adjustments on defect-prone tracks (Sharma et al., 2018) before defects

are detected. Notwithstanding the need for efficient inspection and maintenance to

ensure the safety and security of transported public and goods, these activities may

become costly if done excessively. This dissertation proposes algorithms to search for

adequate policies that improve railway companies’ processes for the inspection and

maintenance of tracks.

One of the main factors that impact the decision to inspect and maintain a track

is the number of defects it is expected to have. Hence, accurate defect predictions
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are an essential step in this process. The literature mostly treats the prediction of

defects and the scheduling of maintenance activities as different problems due to their

complex nature involving numerous constraints. Besides, literature avoids treating

all possible defect types together because of the increase in complexity. A few studies

(Sharma et al., 2018; Merrick and Soyer, 2015) integrate prediction and maintenance.

Sharma et al. (2018) introduce a Markovian model to predict whether defects happen

or not, and use Markov decision theory to determine the optimal inspection and repair

policy. Merrick and Soyer (2015) employ a nonhomogeneous Poisson process to model

the stochasticity of track failures when planning for their replacement.

Defect Data 

Defect
Prediction

Wait Time  
until next
Inspection

Unconstrained
Inspection
Scheduling

Constrained
Inspection
Scheduling

Inspection
Data

Crew
Constraints

DYNAMIC
PROGRAMMING

MACHINE
LEARNING

RESTLESS 
BANDITS 

Cost Data

SECTION 6

SECTION 5

SECTION 7

Figure 1: Flowchart of the integration between defect prediction and inspection.

In this dissertation, we propose an innovative integration of defect prediction and

optimal scheduling, as well as solutions for issues both in defect predictions, and

inspection and maintenance scheduling problem. First, we account for the stochastic
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nature of defect prediction. Then, using the results obtained, we develop an iterative

approach to schedule inspections with or without crew limitations optimally. Figure

1 visually describes the integration process proposed in chapters 5 and 6.

Lastly, inspection and maintenance crews are often unable to run throughout the

whole segment, adding a constraint that limits the length of the inspection on a

segment. Therefore, decision-makers may need to advise which sections to be pri-

oritized. Current studies assume an equal likelihood across the segment for defect

placement. However, in many cases, some areas within the segments are more defect-

prone than others. Given the characteristic risk-aversion of this setup, this research

proposes game-theoretical approaches to determine an optimal strategy for the in-

spection crews on where and when to inspect in chapter 7. This approach assumes

Nature to be a hider that could place defects optimally. The decision-maker should

minimize the expected cost of risk and the cost of inspection under the worst-case

scenario. Search games have been commonly used in patrolling and security stud-

ies (Yolmeh and Baykal-Gürsoy, 2018; Lin and Singham, 2015; Roberts and Gittins,

1978), but adaptations for other applications are still incipient.
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Part I

Roadways Recurrent and

Non-recurrent Congestions — A

queuing theory approach
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Chapter 1

Literature Review

Several authors have derived solutions for the steady-state and the transient recur-

rent and non-recurrent congestion problem. However, proposed approaches for these

problems face at least one of several shortcomings:

1. they require large datasets — and therefore are expensive or infeasible in most

situations;

2. they lack a closed-form solution — and therefore require extensive computation;

3. they provide expected results, instead of full distributions — and therefore do

not provide the full picture of the density behavior;

4. they do not account for non-recurrent congestion — and therefore lack robust-

ness;

5. they focus on real-time traffic state estimation — and therefore lack predictive

power;

6. they assume homogeneity of the auxiliary distribution parameters — and there-

fore limit the application to short segments.



9

This chapter reviews various approaches to congestion and density estimation pro-

posed by the literature, and explains their flaws and opportunities for improvement.

1.1 Long-term congestion forecasting

The traditional methodology for traffic modeling was introduced by Lighthill and

Whitham (1955) and Richards (1956). It approximates traffic as a deterministic fluid

governed by a conservation equation relating the flow, speed, and occupancy, the so-

called kinematic wave equation. While the initial models were powerful for modeling

the emergent behavior seen in real traffic, they were mathematically cumbersome.

Later models, like Newell (1993), made modifications that can accurately model traf-

fic density with fewer technical complexities. However, these models are only capable

of providing the expected flow parameters, not their distributions. Daganzo (1994)

introduces the Cell Transmission Model (CTM), a numerical method to solve the

kinematic wave equation. He also shows that the CTM can analyze non-recurrent

incidents behavior on a scenario-by-scenario basis by temporarily altering initial con-

ditions or parameters. The Switching-Mode (SMM) Model, proposed by Muñoz et al.

(2003), provides an example of a CTM-based method with varying and parameters.

Her approach consists of a combination of multiple CTMs, and it switches among them

according to the current congestion level. The usefulness of this multiple-scenario ap-

proach is well demonstrated by the author, but it fails to include the stochasticity of

real-life scenarios. It also does not provide the distributional information of the traffic

density. Later, Morbidi et al. (2014) implement speed randomness into the original

SMM model, assuming other parameters still to be deterministic.

An alternative approach divides traffic into much smaller sub-units, usually at the

scale of a single-vehicle. Car-following models, like the Intelligent Driver Model pro-

posed by Treiber et al. (2000), require extensive knowledge of driver characteristics.
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These data are often costly or infeasible to gather, preventing the modeling of large

or multiple studies. This shortcoming is particularly relevant in the planning of new

areas where infrastructure does not exist. Cellular Automata models like Nagel and

Schreckenberg (1992) do not have the same data requirements, and Daganzo (2006)

shows that they converge to the solutions of the original formulation by Lighthill and

Whitham (1955). The Cellular Automata models, as well as the CTM proposed by

Daganzo (1994), can be stochastic, allowing traffic engineers to characterize the full

distribution. Doing so, however, would require extensive simulation.

These simulation-based models are now standard in the industry, and few recent

discoveries have occurred for long-term congestion forecast. Finally, even fewer papers

have addressed non-recurrent incidents in their study of long-term behavior, although

they are a significant contributor to the total delay of vehicle travel time and traffic

breakdown (Skabardonis et al., 2003; Kwon et al., 2006). Baykal-Gürsoy and Xiao

(2004) and Baykal-Gürsoy et al. (2009a,b) propose a model using queuing theory

that accounts for non-recurrent congestion. They depict a segment of a roadway as

two-state finite or infinite queues.

1.1.1 Probability of Traffic Breakdown

Part of the literature focuses on finding the probability of traffic breakdown. Traffic

breakdown is triggered when a substantial speed decrease from the free flow speed

is detected between two consecutive time intervals. This speed decrease drastically

increases density, hence causing a sudden plunge in capacity. Kerner et al. (2002)

adapt the original Cellular Automaton model to derive a theoretical probability for

a spontaneous breakdown. With the further popularization of Cellular Automata

models by Maerivoet and De Moor (2005), the concept of using simulation became a

constant for the problem of finding the probability of traffic breakdown.
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With time, other variations have surfaced, such as the Monte-Carlo simulation

model proposed by Dong and Mahmassani (2012). Its novelty was the combination

of a stochastic approach to macroscopic flow breakdown with a microscopic model

of driver behaviors. However, these models face similar shortcomings – they require

extensive computational resources and complex detailed data. Hence, probabilistic

closed-form solutions for this problem have recently resurfaced in the literature (Arne-

sen and Hjelkrem, 2018; Han and Ahn, 2018). Even then, the solutions proposed are

limited for planning purposes, as they provide little direction for the decision-maker

and still require complex data information.

The problem of finding the probability of breakdown is contained in the more

general problem of determining the full density distribution. The knowledge of the

complete density distribution allows for direct computation of the probability of traffic

breakdown. It also equips decision-makers with additional valuable information on

the significance of different traffic parameters for breakdown and congestion.

1.2 Short-term congestion forecasting

Another problem extensively studied in the literature is the transient prediction of

congestion, i.e., the forecast of congestion for a short period when the initial condition

is known. Traditionally, CTM models were used to compute these behaviors, although

still facing similar issues such as the need for extensive simulations. Kurzhanskiy

(2009) created a variation of the original CTM designed explicitly for the transient

prediction of traffic density. His contribution is a model that does now assume that

cell capacities, arrivals, and measurement noises are known.

As a possible alternative for simulation-based models, Chrobok et al. (2004) also

describe two simple prediction models for short-term forecasting using historical data.

The constant model forecasts the same value for all horizons, while the linear model
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fits a linear curve from the last N measured values. Zhang et al. (2016) propose

the prediction of the congestion following an accident via a model that assumes the

accident scene to be preserved. In both papers, the parameters used are deterministic.

Conversely, Zhang et al. (2014) include the probabilistic nature of traffic in their

genetic-algorithm-based approach for congestion prediction. The output, in this case,

is binary (congestion/no-congestion).

The recent influx of data from new sources has been a boon for contemporary

research in traffic congestion for dynamic systems, enabling machine learning ap-

proaches to progress. Several of these studies do not directly focus on density as a

measure for congestion assessment. However, we conjecture that their implementa-

tion could be adapted to include density without a significant change in complexity.

Initially proposed by Dougherty et al. (1993), these seminal models divide roadways

into segments observed in discrete time units. Succeeding work by Dia (2001) sug-

gests that dynamic architectures, such as Recurrent Neural Networks (RNNs), can

perform better than simple fully-connected networks (MLPs). He uses the metrics of

speed and flow as inputs for his model, and defines congestion as the combination of

speed and flow parameters. More recently, Polson and Sokolov (2017) take advantage

of the advancements in computational power and describe how a deep fully-connected

neural network can accurately predict changes in traffic behavior caused by external

events such as sports games or accidents. They also use metrics other than density

in their model. Zhao et al. (2017) and Zhong et al. (2018) follow on the work of Dia

(2001) and show that deep Long-Short Term Memory networks (LSTMs) are well

suited to account for the time-dependence in traffic congestion. Lastly, Chen et al.

(2018) develop a CNN-based approach to the same problem, yet their results are

weaker than the ones obtained with other proposed architectures. These models also

differ in the input used. Although most use common variations of traditional traffic
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metrics (flow and speed), there is still no consensus in the literature regarding the

most appropriate input for traffic density ML-based classifiers. To the best of our

knowledge, no literature has implemented machine-learning-based predictive models

that directly use density as the output parameter.

While these methods are promising for the future of traffic modeling, they are not

well suited for planning applications. Typical solutions provide only expected values,

and their accuracy decreases as the forecast horizon increases. These advantages are

compelling for real-time traffic monitoring, but they do not transfer over to plan-

ning applications where these datasets are unavailable, and long-term distributional

predictions are needed.

1.2.1 Traffic State Estimation and Incident Detection

Despite the predictive portion of the research, a considerable part of the literature

centers on the detection of traffic states by tracking changes in available data. Their

idea is that predictive analyses may be unnecessary in the short-term if real-time

information is precise. Short-term predictive models mostly concentrate on the 10 to

40-minute window following the known instant. Therefore, the difference in response

time may be sufficiently minor that a robust real-time estimator may be more useful

than an ill-fit short-term predictor. Notwithstanding, short-term and long-term pre-

dictive models still benefit from this research as more accurately gathered data lead

to more reliable predictions.

The concept of traffic state estimation was introduced by Wang and Papageorgiou

(2005). It consists of determining all traffic variables (density, speed, and flow) at the

current time instant based on real-time measurements. Initial developments proposed

the usage of Kalman Filter based models for traffic state estimation (Sun et al., 2004;

Wang and Papageorgiou, 2005). Wang et al. (2009) revised and upgraded the original
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traffic state estimator model. Later on, Celikoglu (2014) and Celikoglu and Silgu

(2016) propose the application of a Neural Networks (NNs) approach for traffic state

estimation. They employ recent and current speed and flow data to determine in

which region of the fundamental diagram traffic stands at the time. As a means to

accurately represent the dynamically-changing Fundamental Diagram, they rely on

simulation. The estimated Fundamental Diagram and NN classification model are

then combined to compute the estimated density.

Current research to advance traffic state estimation uses microscopic simulation

(Papadopoulou et al., 2018), a stochastic Lagrangian model with parametric uncer-

tainties (Zheng et al., 2018), and relative flows from stationary and moving observers

in a streaming-data-driven methodology (van Erp et al., 2018).

A separate approach also discussed in the literature is the advancement of the

data generation process. Conventional detectors are inductive-loop traffic detectors

that depend on a vehicle’s ferrous body material to trigger its sensors. Qiu et al.

(2010) propose the inclusion of probe data in the analysis, as subsequent detectors

should have correlated outputs. Kwong et al. (2010) show that matching algorithms

can be used to generate traffic data from wireless sensor networks efficiently. Lastly,

other authors suggest innovative approaches, such as using smartphones as a source

for data (Panichpapiboon and Leakkaw, 2017), and obtaining data from large-scale

web camera pictures and videos (Zhang et al., 2017).

Indirectly, one of the main features these models aim to provide is incident de-

tection. This particular problem has been studied separately with the emergence of

new sources of data. Initially proposed by Ritchie and Cheu (1993), the research in

artificial intelligence for incident detection only took off in more recent years. Lately,

several authors have noted the potential of different AI approaches – Random Forests,

Logistic Regression, and Neural Networks – for incident detection (Cheng et al., 2015;
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Agarwal et al., 2016; Dogru and Subasi, 2018).

Despite the accurate results, these methods still struggle with the requirement of

intense computational demands, and, in most cases, the dependency on simulation.

They also do not produce a distributional output and have little long-term predictive

application.

1.3 Stochastic Queuing Models

A theoretical framework adopted by some authors to predict congestion is queuing

theory. Queuing analyses, together with deterministic (fluid-dynamics) models (May

and Keller, 1967; Newell, 1971), are primarily used for performance evaluation and

the synchronization of traffic lights (Newell, 1965). Early stochastic models assume

individual vehicle arrivals to follow a Poisson process (Zheng and Liu, 2017; Wang

and Ahmed, 2017; Gazis, 2006; J.N. Darroch and Morris, 1964; Tanner, 1953), or as

platoons of vehicles (Daganzo, 1994; Alfa and Neuts, 1995; Dunne, 1967; Lehoczky,

1972) to represent the behavior of cars moving between traffic signals.

Cheah and Smith (1994) and Jain and Smith (1997) studied stochastic queues

to explore the usefulness of finite server queuing models with state-dependent travel

speed for modeling both pedestrian and vehicle traffic flows. In this model, vehicles

arrive according to a Poisson process, and the total time to traverse the corridor is

assumed to follow a general distribution. If the roadway is at capacity, new arrivals

must take an alternative path. Consider vehicles traveling on a corridor, as depicted

in Figure 1.1. The space occupied by one individual vehicle represents a moving

server. The service cycle initiates when a car arrives at the corridor, and service (the

act of traveling) occurs until the vehicle leaves the corridor. A server in this context

is the moving vehicle-space, including the safe distance (space headway) to the car in

front. The number of available servers is then the maximum number of vehicles that
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the corridor can physically accommodate. Consequently, when there is no space left

for a car to enter, i.e., all servers are full, the vehicle either is allowed to wait in a

queue or is denied service (Cheah and Smith, 1994; Jain and Smith, 1997).

Other authors (Heidemann, 1996; Vandaele et al., 2000; Heidemann, 2001) studied

a similar system but with a single server and infinite queuing capacity. Such a flow

model is considered as a vertical queue that disregards the interdependence between

vehicles within the same cell (Daganzo, 1994). Although some of these models focus

on congestion, none of them include the occurrence of non-recurrent incidents as part

of the model.

Figure 1.1: Graphical depiction of a two-lane roadway segment.

The queuing model proposed by Baykal-Gürsoy and Xiao (2004) and Baykal-

Gürsoy et al. (2009a,b) is the only one that considers non-recurrent congestion.



17

Chapter 2

Traffic Density in Homogeneous

Sections

This chapter proposes a mathematical framework for long-term congestion prediction

that answers questions such as 1. How much would a change in traffic behavior impact

traffic congestion? 2. How can we estimate the probability of traffic flow breakdown

on roadways when minimal data is available? Moreover, by defining traffic break-

down as the particular number of cars for a segment that causes speed to drastically

decreased, this model explains how the probability of traffic breakdown changes ac-

cording to changes in traffic parameters, and how improvements on the road clearance

time impact congestion. A few examples of how to directly compute the probabil-

ity of traffic breakdown with the model can be found in tables 2.4 and 2.5. This

method simplifies and improves the assessment of non-recurring traffic density and

its variability, leading to a reduction in congestion. Consequently, it leads to a safer,

more efficient movement of people and goods, while also ensuring the timely delivery

of critical resources for national security, emergency response and evacuation, and

humanitarian relief efforts.
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Figure 2.1: Map from where Data were Collected.

2.1 Measuring Traffic Data

In this section, we provide one example of how one may assess the congestion problem

with real data. Data were collected from Wisconsin via 36 sensors in a 9-mile stretch,

18 on each side of the road (South-East and West-North Directions). Those sensors

are inductive loop detectors embedded in the roadway depicted in Figure 2.1.

The sensors record three common indicators used in traffic models: speed, flow,

and density. Density represents traffic congestion, counting the number of vehicles

occupying a particular space unit at a specific time. Flow counts the number of cars

passing through a certain point per unit time. Density, speed, and flow are closely

related, as increasing flow also increases density initially. However, when more cars

arrive than the highway can hold (surpassing the maximum flow), density keeps grow-

ing while flow decreases. The limit of the relationship occurs when traffic is down

to a complete stop (flow is zero), hence representing the breakdown of traffic (Da-

ganzo, 1994). Figure 2.2 represents a partial view of these relationships and showcases

Milwaukee’s data that this chapter uses for validation. Most current data-gathering
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techniques cannot measure density directly but obtain speed, occupancy, and vol-

ume from which traffic density can be calculated (Kurzhanskiy, 2009). Occupancy

is a proxy measure for density. It gives the percent coverage of the sensor per unit

time, while volume is a proxy measure for flow, when the period analyzed is divided

into equally spaced time intervals. In this section, we describe the methods used to

compute density given speed, occupancy, and volume.

Figure 2.2: Fundamental Diagram.

The sensors provide occupancy measures for half-mile segments. In this chapter,

we consider an average car length plus headway of 22 ft, obtained through the pro-

cedure described in Dailey (1999). We use ordinary least squares to find the best fit

for the average car length plus headway. The number of cars, namely density, is then

given by a simple ratio of occupancy times the length of the segment by the average

length and headway of vehicles. However, the sensor’s limitations cause occupancy

data to be recorded in increments of 0.002. As a result, density generated from the

data is rounded to specific values. Finally, although sensors also recorded speed, the

data was truncated at the speed limit (at 60 mph for some sensors, 65 mph for others).

A ‘reconstructed speed’ data set is then constructed from the volume and occupancy

data using a method proposed by Dailey (1999).
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As seen in Figure 2.1, there are numerous merges and forks through which vehicles

may leave and arrive. This introduces further error to volume and occupancy, there-

fore making the data harder to analyze. However, for most scenarios, the additional

noise does not undermine the validity of the model.

The most relevant traffic properties utilized in the validation are the frequency of

incident occurrence, f , the duration until clearance and recovery – so-called incident

clearance time, 1
r
, and the severity of capacity reduction caused by an incident, α. We

gather data from accidents and weather conditions to better understand incidents.

We then compare the sensors’ data with data from weather conditions to find rela-

tions between incidents or traffic deterioration and extreme weather events such as

fog, snowstorms, thunderstorms, rain, or normal conditions. Precipitation data were

obtained from the Climate Data Online system of the National Climatic Data Center

of the National Oceanic and Atmospheric Administration (NOAA, 2016). These data

depict the hourly amount of precipitation in hundredths of inches recorded at the

Milwaukee Mitchell International Airport weather station, for the same period as the

traffic data. The data also include information on snow days and days with fog and

thunderstorms. Our findings show that snowstorms and fog cause the highest impact

on travel time.

After comparing the sensor’s data with weather data and accident reports, we can

split the speed, occupancy, and volume information into two situations: normal con-

ditions (uptime), and adverse conditions (downtime). Downtime represents periods

in which an accident or inclement weather condition deteriorates traffic. Further-

more, data are separated into peak hour and non-peak hour and had weekends and

late nights removed for accuracy. This separation allows us to analyze the behavior

of each group separately. Lastly, winter month’s data is initially chosen to be the

validation scenario during non-peak hours, because extra congestion due to weather
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during wintertime tends to be predominant and extensive. Mean clearance time and

the mean time to an incident are calculated using only the times considered.

Since the previous assumption could be biased towards long stretches of down

periods, i.e., snowfalls that last several days, we also considered the case in which

the system may only be affected by incidents, with the occasional heavy rain. In this

situation, we analyze the frequency of incident occurrence, as well as the duration

until clearance for the summer months during non-peak hours. We show that the

model works in both situations.

2.2 Analytical Model

The main intention of this chapter is to analytically describe the probability mass

function of the number of vehicles on a road segment (traffic density) while accounting

for non-recurrent incidents. We also show that simulation and extensive datasets may

be unnecessary for long-term planning. In this section, we expand on earlier research

by creating a closed-form analytical model applicable to any roadway. A few of the

assumptions used in the model are discussed and compared to a real-world dataset.

The results include a simple approximation for the model proposed by Baykal-Gürsoy

and Xiao (2004) and Baykal-Gürsoy et al. (2009b) during non-peak hours and a

generalization for peak hours by Baykal-Gürsoy et al. (2009a). Their models consider

a segment of a road operating in a two-state environment process as a Markovian

queuing system. The two environment states represent the situation of the roadway,

which could be under normal or adverse conditions. The latter refers to incidents such

as snowstorms or accidents. They cause a reduction in the road capacity because of

closures or blockages, or because drivers tend to slow down and increase the distance

to the car in front for increased safety. The time in each environment state is assumed

to be random.
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2.2.1 Model Assumptions

Our model relies on the following assumptions:

1. Times to incidents and clearance times follow an exponential distribution.

2. Distributions for each segment can be generated independently.

3. Travel times are exponentially distributed, under normal and deteriorated con-

ditions.

4. Arrivals follow a Poisson process, under normal and deteriorated conditions.

Assumption (1) is met. The histograms for the time to incident and clearance

times are plotted together with a fitted exponential distribution in Figures 2.3 and

2.4 respectively. The distributions are fit with their maximum likelihood estimators.

r2 values, the proportion of total variation in the outcomes explained by the model,

are reported for each fit. They indicate that both times to incident and clearance

times can be modeled as exponential random variables. Assumption (1) allows us

to model the environment with a Markovian model, for which servers change state

according to a continuous-time Markov chain (CTMC).
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Figure 2.3: Time to Incident pdf.
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Assumption (2) is also met. Although propagation effects will likely impact the

parameters for upcoming segments, we expect that traffic engineers will use this

model for individual segments in which they know or can estimate all the parameters.

Section 2.2.2 lists these parameters, as well as their interpretation and methods of

estimation. Capturing the correlation between sensors would only be necessary if the

parameters were partially known, as depicted in figure 2.5. The modeling approach

proposed in this chapter’s modeling approach generates parameters from independent

datasets for each segment, thus accounting for possible propagation effects. Therefore,

distributions can be generated independently despite a possible correlation between

the parameters of different segments.

Multiple Tandem Queues System

Sensor 2 Sensor 3Sensor 1
Arrival Sensor 2 Arrival Sensor 3

Arrival  
Sensor 1 

Sensor 2Sensor 1 Sensor 2 Sensor 3

Random Single Queue System

Arrival  
Sensor 3

Arrival  
Sensor 2 

Arrival  
Sensor 1 

Figure 2.5: Representation of Arrivals for the System Proposed in this Model.

Furthermore, the correlations between sensors are obtained indirectly by the

model. The time of breakdowns will likely be correlated between segments, as weather

events and car accidents will frequently impact adjacent segments. This correlation

is captured by the change in arrival and service rates during a breakdown.

Assumption (4) is also not met by our dataset. However, this assumption is com-

monly used in literature (J.N. Darroch and Morris, 1964; Gazis, 2006; Zheng and Liu,

2017; Wang and Ahmed, 2017). Although some methods in literature do not assume

this, they introduce further complexity in the model, which then requires simulation
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Figure 2.6: Travel Time pdf under Nor-

mal Conditions.

Figure 2.7: Travel Time pdf under Ad-

verse Conditions.

for solutions. Numerical experiments indicate that many of these traffic simulations

produce nonhomogenous Poisson arrival processes. An example can be found in fig-

ure 2.8, which contains the histogram of interarrival times at an arbitrary cell in a

Cellular Automata model. Similar results can be found for other microscopic traffic

models, suggesting that even models which do not explicitly assume that arrivals are

Poisson ultimately reproduce a (possibly nonhomogenous) Poisson process.
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Figure 2.8: Histogram of Vehicle Interarrival Times from Nagel-Schreckenberg Simu-

lation.
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2.2.2 Model Structure and Parameters

Non-peak hours

In the queue shown in Figure 2.9, each state of the Markov chain represents both

the number of cars in the system and the condition, normal or adverse, of the system.

Figure 2.9 also depicts the definitions of parameters.

0Normal: 1

λ

µ 2

λ

2µ . . .

λ

3µ i

λ

iµ i+ 1

λ

(i+ 1)µ . . .

λ

(i+ 2)µ

0

f r

Failure: 1

λ′

µ′

f r

2

λ′

2µ′

f r

. . .

λ′

3µ′ i

λ′

iµ′

f r

i+ 1

λ′

(i+ 1)µ′

f r

. . .

λ′

(i+ 2)µ′

Figure 2.9: State Transition Diagram for a Markov-modulated M/M/∞ Queue.

Parameters λ and λ′ represent the arrival rate of the system in normal and adverse

conditions, respectively. It is typically true that λ ≥ λ′, although this is not necessary.

Under the assumptions of section 2.2.1, the expected time between arrivals is given

by 1
λ

and 1
λ′

. This gives a method for estimating λ and λ′ directly from traffic flow

data:

λ = 1
E[time between arrivals during normal conditions]

= E[flow during normal conditions],

λ′ = 1
E[time between arrivals during adverse conditions]

= E[flow during adverse conditions].

Parameters µ and µ′ represent the service rate of the system in normal and adverse

conditions, respectively. The service rate is the instantaneous probability of a car

leaving the segment of the road, and therefore, leaving the system. Because the
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model allocates one server per vehicle, there are infinitely many servers (as long as

full capacity is not reached). This assumption applies to non-peak hours, given the

unlikelihood of traffic breakdown during non-peak hours. We remove this assumption

when discussing peak hours. The more cars there are in the system, the more likely

one of them will leave. Thus, if there are n cars on the segment, then the total

service rate becomes nµ during normal conditions, and similarly nµ′ during adverse

conditions. Additionally, µ > µ′ because the service rate must be higher during

normal conditions.

The service rate parameters come from the relationship between distance and

speed. µ represents the rate of cars crossing a segment when the system is under

normal conditions and is given by the ratio of the average speed and the segment

length under normal conditions. Analogously, µ′ represents the rate of cars crossing a

segment when the system is under adverse conditions and is given by the ratio of the

average speed and distance under adverse conditions. This interpretation allows us

to estimate µ and µ′ given the distance between sensors and the reconstructed speed

(described in section 2.1):

1
µ

= segment length
E[speed reconstructed during normal conditions]

= E[travel time during normal conditions],
1
µ′

= segment length
E[speed reconstructed during adverse conditions]

= E[travel time during adverse conditions].

Parameters f and r represent the incident rate when the system is in normal

condition, and the repair rate when the system is in an adverse condition. They

are determined from the incident and weather reports by averaging the time until

an incident (accident or adverse weather condition) occurs and the clearance time of

each incident. The failure rate (the number of times the system goes from normal
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condition to adverse condition per unit time) is then given by one over the mean

time to an incident, or the expected time that the system will remain in normal

condition. Analogously, the clearance rate (the number of times the system goes from

adverse condition to normal condition per unit time) is then given by one over the

mean clearance time. For our dataset, the expected clearance time during summer

is around 1 hour. The expected clearance time during winter is around 4.5 hours

because snowfalls have a long lingering effect that takes longer to be cleared.

f = 1
E[time to incident] = 1

E[duration of normal condition] ,

r = 1
E[clearance time] = 1

E[duration of adverse condition] .

Keilson and Servi (1993) were the first to study such queues in a random environ-

ment. They derived the generating function of the stationary number of customers

in the system in terms of Kummer functions. Baykal-Gürsoy and Xiao (2004) and

Baykal-Gürsoy et al. (2009a,b) showed that the generating function reveals that the

steady-state number of vehicles in the system is composed of two independent random

variables. One represents the number of customers in an uninterrupted queue, and

the other represents the customers accumulated during interruptions. In other words,

the random number of cars on a corridor, X, is equal to X = Xφ +Y in steady-state,

with Xφ representing the random number of vehicles accumulated during the normal

condition, and Y representing the additional cars accrued due to incidents. Moreover,

Xφ and Y are independent of each other.

Furthermore, the complete distributions of Xφ and Y are derived. In equilibrium,

Xφ follows a Poisson, while fY = p · fY1 + (1− p) · fY2 follows a mixture of two Pois-

son random variables Y1 and Y2 with random parameters coming from two different
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truncated Beta distributions, as detailed below:

Xφ ∼ Poisson
(
λ

µ

)
, (2.1)

Y1 ∼ Poisson
(
B(a, b,−2ρ∗)

)
, (2.2)

Y2 ∼ Poisson
(
B(a+ 1, b+ 1,−2ρ∗)

)
, (2.3)

with: a =f
µ
, b =

(f
µ

+ r

µ′

)
, ρ∗ = 1

2 ·
(λ
µ
− λ′

µ′

)
, p =

(
r + fµ′

µ

)
(r + f) , c = −2ρ∗.

Once these parameters are determined, the model yields the probability mass

function for the traffic density. We compare it with the empirical traffic density

obtained from occupancy data to assess how good the fit is per sensor.

As mentioned before, each sensor is treated individually for validation purposes.

Nevertheless, the outputs of the analytical models generated for each sensor are cor-

related outputs because of the inherent correlation in the input data.

Model improvements

The sensor’s data yield parameters a and b that are on the order of 10−5 for winter

months, and a in the order of 10−5 and b in the order of 10−3 for summer months,

meaning that incident and clearance rates, f and r, are considerably lower than µ

and µ′. This relationship among these parameters depicts an ordinary situation since

the rate of accidents and clearances tend to be notably lower than the rate of cars

crossing the segment. This section proposes a simple approximation for this case.

The simplified model has the accuracy of the full model but is simpler to calculate.

Another underlying assumption used in this model is that the addition of new cars

will not affect the travel time – i.e., that the distribution for travel time is independent

of the number of vehicles in the system. For non-peak hours, the primary source of

congestion is not the arrival rate, but rather system deterioration caused by non-

recurrent events, such as accidents or weather conditions. The second half of this

section considers peak hours, and it also disregards this assumption.
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Applying these reasonable assumptions results in a single equation for the prob-

ability mass function of traffic density, which we later validate against the data.

Moreover, we prove this equation to be just a mixture of two Poisson distributions

when times to incidents and clearance times are considerably longer than travel times

under normal and adverse conditions.

As proposed by Baykal-Gürsoy and Xiao (2004), the probability mass function of

traffic density is a convolution sum between a Poisson random variable and a mixture

of two Poisson random variables with random parameters coming from truncated

Beta distributions. It represents the probability mass function for the state of an

infinite queue subject to two-server states.

X = Xφ + Y, (2.4)

fY = p · fY1 + (1− p) · fY2 . (2.5)

The probability mass function of Y1 given in equation 2.2 can be explicitly written

as:

P{Y1 = k} =
∫ c

0
e−γ · γ

k

k! ·
Γ(b)

Γ(a)Γ(b− a) ·

(
γ
c

)a−1(
1− γ

c

)b−a−1

c
dγ. (2.6)

P{Y2 = k} can be computed through the same integral, but via substituting (a)

to (a + 1) and (b) to (b + 1). Hence, derivations below can also be carried out for

P{Y2 = k} following the same operations.

This integral is not robust for all ranges of a and b. Additionally, its lack of a

closed-form prevents it from being readily applied. There are several effective methods

for computing this, the most simple being solving the balance equations numerically.

However, we will retain this closed-form as it allows for further simplifications.

Note that the exponential factor in equation 2.6 could be expanded by using Taylor

series to rewrite it as a sum multiplied by the truncated beta function that is equal
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to Γ(k+n+a)Γ(b−a)
Γ(k+n+b) (see Olver (2010)).

P{Y1 = k} =
∞∑
n=0

(−1)n
n!

∫ c

0
γn · γ

k

k! ·
Γ(b)

Γ(a)Γ(b− a) ·

(
γ
c

)a−1(
1− γ

c

)b−a−1

c
dγ

=
∞∑
n=0

(−1)n
n! · c

k+n

k! ·
Γ(b)

Γ(a)Γ(b− a) ·
∫ c

0

(
γ

c

)k+n+a−1 (
1− γ

c

)b−a−1
d
γ

c

=
∞∑
n=0

(−1)n
n! · c

k+n

k! ·
Γ(b)

Γ(a)Γ(b− a) ·
∫ 1

0
xk+n+a−1(1− x)b−a−1dx

=
∞∑
n=0

(−1)n
n! · c

k+n

k! ·
Γ(b)Γ(k + a+ n)
Γ(a)Γ(k + b+ n) .

The full equation can then be simplified by expanding the convolution sum to:

X =Xφ + Y,

P (X = k) =
k∑
q=0

P{Xφ = k − q}P{Y = q}

P (X = k) =
k∑
q=0

P{Xφ = k − q}(p · P{Y1 = q}+ (1− p) · P{Y2 = q})

=
k∑
q=0

e−λ/µ
(λ/µ)k−q
(k − q)!

[
p ·

∞∑
n=0

(−1)n
n! · c

q+n

q! ·
Γ(b)Γ(q + a+ n)
Γ(a)Γ(q + b+ n)

+ (1− p) ·
∞∑
n=0

(−1)n
n! · c

q+n

q! ·
Γ(b+ 1)Γ(q + a+ 1 + n)
Γ(a+ 1)Γ(q + b+ 1 + n)

]
. (2.7)

This new equation solves the issues the integral had for the extreme points.

In practice it is typically true that f � µ and r � µ′. This has the interpretation

that the time a vehicle spends traveling a segment is much shorter than the time it

takes for traffic to accumulate or disperse from an incident or clearance. Under this

assumption, further simplifications are possible. Tricomi and Erdélyi (1951) prove
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the following asymptotic approximation for the quotient of gamma functions:

Γ(z + a)
Γ(z + b) = za−b

[
1 + (a− b)(a+ b− 1)

2z +O(|z|)−2
]
. (2.8)

This is approximately 1 when |a− b| � z, which is implied by f � µ and r � µ′.

For k = 0:

P{Y1 = k} =
∞∑
n=0

(−1)n
n! · cn · Γ(b)Γ(a+ n)

Γ(a)Γ(b+ n)

= Γ(b)Γ(a)
Γ(a)Γ(b) +

∞∑
n=1

(−1)n
n! · cn · Γ(b)Γ(a+ n)

Γ(a)Γ(b+ n)

≈ 1 + Γ(b)
Γ(a)(e−c − 1). (2.9)

For k ≥ 1:

P{Y1 = k} =
∞∑
n=0

(−1)n
n! · c

k+n

k! ·
Γ(b)Γ(k + a+ n)
Γ(a)Γ(k + b+ n)

≈ Γ(b)
Γ(a)

e−c · ck

k! , (2.10)

The final equation is the weighted Poisson distribution.

This approximation is imprecise, since the ratio Γ(k+a+n)
Γ(k+b+n) slowly diverges from 1

as k + n grows bigger. However, the increase in the factorial terms in the equations

grows faster, thus offsetting such divergence. Numerical experiments indicate that

this approximation has no apparent adverse effect on the final density function.

The derivations to determine the equations to solve for P{Y1 = k} can be used

in a similar way for P{Y2 = k}, under the same assumptions (small a’s and b’s).

Since the only parameters changing are a = a + 1 and b = b + 1, it is easy to see

that again Γ(k+a+1+n)
Γ(k+b+1+n) can be approximated as 1 for all k’s; besides, Γ(b+1)

Γ(a+1) can also be

approximated to 1, allowing for even further simplification.
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Thus, the probability mass function of Y2, for all k’s is:

P{Y2 = k} =
∞∑
n=0

(−1)n
n! · c

k+n

k! ·
Γ(b+ 1)Γ(k + a+ 1 + n)
Γ(a+ 1)Γ(k + b+ 1 + n)

≈ Γ(b+ 1)
Γ(a+ 1)

e−c · ck

k!

≈ e−c · ck

k! , (2.11)

which is a Poisson distribution.

We can further derive the probability of traffic density as

fX = r

r + f
fXφ + f

r + f
fXb ,

where Xφ is a random variable that follows a Poisson with parameter (λ/µ), and Xb is

a random variable that follows a Poisson with parameter (λ′/µ′). Proof is postponed

to the Appendix. With a and b being small, the weight parameter of the mixture

tends to r
r+f for Xφ and f

r+f for Xb. This is expected, because when incident and

clearance rates are low, each car will likely spend the whole time in the same state of

the queue.

Proposition 1. The probability mass function of traffic density is the mixture of two

Poisson random variables with rates λ
µ

and λ′

µ′
when the incident and clearance rate

are considerably lower than µ and µ′. The mixing weight for the Poisson random

variable with rate λ
µ

is given by r
r+f .

We will derive the probability mass function of the random number of cars on a

segment from equations 2.1, 2.4, 2.5, 2.9, 2.10, and 2.11.
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Proof for Proposition 1.

P{X = k} =P{Xφ + Y = k} =
k∑
q=0

P{Xφ = k − q} · P{Y = q}

=P{Xφ = k} · P{Y = 0}

+
k∑
q=1

P{Xφ = k − q} · (p · P{Y1 = q}+ (1− p) · P{Y2 = q})

=e
−λ/µ · (λ/µ)k

k! ·
[
p ·
(

1 + Γ(b)
Γ(a)(e−c − 1)

)
+ (1− p)e−c

]

+
k∑
q=1

e−λ/µ · (λ/µ)k−q
(k − q)!

[
p ·
(

Γ(b)
Γ(a)

(e−ccq)
q!

)
+ (1− p)(e−ccq)

q!

]

=e
−λ/µ · (λ/µ)k

k! ·
[
e−c

(
1 + p

(
Γ(b)
Γ(a) − 1

))
+ p

(
1− Γ(b)

Γ(a)

)]

+
(

1 + p

(
Γ(b)
Γ(a) − 1

))
k∑
q=1

e−λ/µ · (λ/µ)k−q
(k − q)! · e

−ccq

q!

=e
−λ/µ · (λ/µ)k

k! ·
[
e−c

(
1 + p

(
Γ(b)
Γ(a) − 1

))
+ p

(
1− Γ(b)

Γ(a)

)]

+
(

1 + p

(
Γ(b)
Γ(a) − 1

))
k∑
q=1

e−λ/µ · (λ/µ)k−q
(k − q)! · e

−ccq

q! .
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Substituting
(
1− p

(
1− Γ(b)

Γ(a)

))
= m, we have

P{X = k} =e
−λ/µ · (λ/µ)k

k!
[
e−cm+ (1−m)

]
+m · e

(λ/µ+c)[(λ/µ+ c)k − (λ/µ)k]
k!

=(1−m) · e
−λ/µ · (λ/µ)k

k!

+m

(
e(λ/µ+c)[(λ/µ+ c)k − (λ/µ)k]

k! + e−λ/µ+c · (λ/µ)k
k!

)

=(1−m) · e
−λ/µ · (λ/µ)k

k! +m

(
e(λ/µ+c)(λ/µ+ c)k

k!

)
.

Therefore

P{X = k} = p

(
1− Γ(b)

Γ(a)

)
Xg +

(
1− p

(
1− Γ(b)

Γ(a)

))
Xb.

Now we will show that p
(
1− Γ(b)

Γ(a)

)
is approximately equal to r

r+f for small a

and b.

Claim: p
(
1− Γ(b)

Γ(a)

)
≈ r

r+f for small a and b.

For x > 0,

Γ(x) = Γ(x+ 1)
x

.

The above relation for x = a = f
µ

and x = b = f
µ

+ r
µ′
, implies

Γ(b)
Γ(a) =

f
µ

f
µ

+ r
µ′

· Γ(b+ 1)
Γ(a+ 1) .

Using the approximation (2.8) for z = 1, since a � 1, b � 1, and b − a � 1,

one can deduce that Γ(b+1)
Γ(a+1) is approximately equal to 1. Thus,

Γ(b)
Γ(a) =

f
µ

f
µ

+ r
µ′

.
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Because p = r+f µ
′
µ

r+f , the result follows

p

(
1− Γ(b)

Γ(a)

)
=
r + f µ

′

µ

r + f

1−
f
µ

f
µ

+ r
µ′


=
(
rµ+ fµ′

µ(r + f)

) r
µ′

f
µ

+ r
µ′

 = r

r + f
.

As a result, the probability mass function of density tends to the mixture

P{X = k} = r
r+fXg + f

r+fXb, where Xg follow a Poisson with parameter (λ/µ)

and Xb follow a Poisson with parameter (λ′/µ′).

The error of the approximation (2.8) can be derived similarly to the previous

proof:

Error = p

(
1− Γ(b)

Γ(a)

)
− r

r + f

=
(
rµ+ fµ′

µ(r + f)

)1−
f
µ

f
µ

+ r
µ′

· Γ(b+ 1)
Γ(a+ 1)

− r

r + f

=
(
rµ+ fµ′

µ(r + f)

)
−
(

fµ′

µ(r + f) ·
Γ(b+ 1)
Γ(a+ 1)

)
− µr

µ(r + f)

= f

r + f
· µ
′

µ
·
(

1− Γ(b+ 1)
Γ(a+ 1)

)
.

Again, as a and b become smaller, the error converges to zero. Figure 2.10 shows the

error for different ratios between f and µ and r and µ′. We can see that when they

are around 1% of the µ and µ′, the error is on the order of 10−3 and it decreases to

lower than 10−5 when the ratios drop to 0.01%.

Although one may argue this result could follow from intuition, this proof formally

demonstrates the result to be true for segments where the incident and clearance inter-

times are much longer than the average travel time to cross the segment. The proof

also shows that a more general formulation (equation 2.7) must be used for segments

that do not meet these criteria. Note that this suggests the probability mass function

for the density depends on the clearance and incident rate, thus supporting the impor-
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Figure 2.10: Error between the algebraically found weight and r
r+f for different ratios

of f and µ, and r and µ′.

tance of considering non-recurrent incidents in the model. This closed-form solution

also allows traffic engineers to compute higher moments since they can be derived by

weighing the moments from a Poisson distribution. The moment generating function

(MGF) of a Poisson random variable Z with parameter φ is MZ(t) = eφ(et−1). The nth

factorial moment of the distribution can be computed by taking the nth derivative of

the MGF, then setting t = 0 (Ross, 1996). The central moments of this Poisson ran-

dom variable Z are E[Z] = φ, V [Z] = φ, Skewness[Z] =
√
φ−1, and Kurt[Z] = φ−1.

Since the traffic density random variable X is approximated as a mixture of two in-

dependent Poisson random variables, we can immediately write its central moments

as described in Table 2.1.

E[X] = r
r+f ·

λ
µ

+ f
r+f ·

λ′

µ′
V [X] = r

r+f ·
λ
µ

+ f
r+f ·

λ′

µ′

Skewness[X] = r
r+f ·

√
µ
λ

+ f
r+f ·

√
µ′

λ′
Kurt[X] = r

r+f ·
µ
λ

+ f
r+f ·

µ′

λ′

Table 2.1: Central Moments for the traffic density distribution under non-peak hours.
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Peak hours

When the system operates in peak hours, the higher arrival rate of cars is also

a cause of congestion. In this case, the assumption that the travel time distribution

is independent of the number of vehicles is not as consistent with real-life scenarios.

Therefore, we need to account for another source of travel time deterioration: the

current number of cars in the system.

For this case, we combine our deterioration model with the congested traffic model

M/G/C/C discussed in Jain and Smith (1997). Let us assume a = [a1, a2, a3, . . .]

is a vector where component an represents the deterioration coefficient caused by

congestion when n cars are present. a1 = 1 because a single car can travel at free-flow

speed. Moreover, 0 ≤ an ≤ 1, and an is monotonically decreasing as n grows, meaning

that cars arriving can only maintain or worsen system conditions. As an initial

suggestion, Jain and Smith (1997) propose function an to be linearly or exponentially

decreasing in n. In this chapter, we assume a linearly decreasing function for an,

which avoids an overly fast deterioration caused by the additional cars.

Furthermore, since the probability of breakdown is not negligible in this scenario,

the system capacity is truncated at a certain point C, i.e., we assume that no more

cars arrive after C cars are in the system. The presence of C cars in the system

represents a complete breakdown, where there is no space left for another car to

arrive. The modeling thus follows an M/M/C/C queue in a random environment,

represented in Figure 2.11. Note the inclusion of the parameters representing the

extra congestion due to the accumulation of cars, and the limited capacity C of the

system.

The solution for such a queue is described below, and more details can be found

in Baykal-Gürsoy et al. (2009a).
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Figure 2.11: State Transition Diagram for a Markov-modulated M/M/C/C Queue.

The balance equations are given by:

piN (λ+ f + iµai) = rpiF + ((i+ 1)µai+1) pi+1,N + λpi−1,N , for i = 1, 2, . . . , C − 1,

piF (λ′ + r + iµ′ai) = fpiN + ((i+ 1)µ′ai+1) pi+1,F + λ′pi−1,F , for i = 1, 2, . . . , C − 1.

and the boundary equations are,

p0N(λ+ f) = rp0F + µa1p1N ,

p0F (λ′ + r) = fp1N + µ′a1p1F ,

pCN (CµaC + f) = rpCF + λpC−1,N ,

pCF (Cµ′aC + r) = fpCN + λ′pC−1,F ,

and the normalization equation is ∑C
i=0(piN + piF ) = 1.

Given a fixed value of C, determined as the maximum capacity of the road (the

number of cars for which the roadway is in a breakdown), we can solve for all piN

and piF , as long as the values of the vector a are available.

Note that, unlike the non-peak hours’ framework, the probability mass function

for density during peak-hours does not have an intuitive closed-form. We provide

a straightforward and efficient framework to compute it numerically via a relatively

small linear system of equations.
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2.3 Validation

This section shows how the proposed model compares to the dataset. Here, we use a

dataset to compute the parameters for the proposed model and compare it against the

lognormal and Weibull distributions. These models also provide a reasonable fit to

the data, but they require parameters that can only be found using observed density

data. By comparison, the parameters for the proposed model are often known by

traffic engineers or readily available with little data collection, allowing an effortless

implementation of the model for different road segments.

2.3.1 Discussion and Findings

Results are obtained from the comparisons between the curve generated from the

model and the data for each sensor, as depicted in figures 2.12, 2.13, and 2.14. The

curve represents the cumulative distributions generated through the analytical model

and from the density data computed from the occupancy data set. The main goal

is to determine whether the curve from the analytical model is a good fit for the

histogram and how it compares to other distributions used in literature. However, the

dataset used is censored due to limitations in the sensors’ precision. As a result, some

points in the density distribution are misrepresented in the dataset. This limitation

causes distribution tests, such as the Kolmogorov-Smirnov test, to fail for both our

model and other models used in literature. Therefore, we used the confidence interval

obtained from the Kolmogorov-Smirnov test (Massey Jr, 1951) along with an added

uncertainty level to account for sensors’ lack of precision to determine the validity of

the model.

As the figures show, the empirical cumulative distribution is within the KS-test

upper and lower bounds, and therefore matches the model’s cumulative distribution.
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Lastly, we compare the analytical model to other distributions used in literature

employing the Akaike Information Criterion.

Non-peak hours

The best approach when using this analytical model is to separate specific periods

in which these parameters behave according to the assumptions. The model assumes

that time to an incident and clearance times are exponentially distributed, as well as

the interarrival times for normal and adverse conditions, and travel times during nor-

mal and adverse conditions. As an example, January and February, months that are

known to be the snowiest, can have a model, and the remaining months separated in

two groups, dry season and rainy season, can have two other models. Such definitions

depend on local factors and should be determined individually.

Non-peak hours are defined as the times between 10 a.m. and 1 p.m., Tuesday to

Thursday.

Figure 2.12: Model’s analytical and data’s empirical CDFs (non-peak hours/winter).

Figures 2.12 and 2.13 depict one of the 36 sensors comparison for non-peak hours
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Figure 2.13: Model’s analytical and data’s empirical CDFs (non-peak hours/sum-

mer).

during winter and summer months. The upper and lower bounds represent the 5%

significance level of the model distribution (Massey Jr, 1951) when accounting for

data uncertainty due to the censored dataset. Since the empirical distributions re-

side within the bounds, the model is valid for both sets of months. Non-peak hours

data were gathered from 11 a.m. to 1 p.m., Tuesday to Thursdays. The main differ-

ence between the two figures is the slightly thicker tail in figure 2.12, mainly caused

by snowstorms that tend to have a more lasting impact than the heavy rains and

accidents in the summer.

Table 2.2 indicates that the model closely matches the goodness of fit of lognormal

and Weibull, two commonly used distributions (the complete AIC list for each sensor

is given in Table 2.9, Appendix 2). Hence, our model is valid for roads in which

incident and clearance rates (f and r) are much lower than µ and µ′. The values

also suggest the validity of the model for both winter and summer months, although
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Model LNormal WBull Model LNormal WBull
Winter Winter Winter Summer Summer Summer

Mean 4931 4941 5042 1362 1173 1370

Best AIC 30 2 1 13 19 8

(out of 33 sensors)

Table 2.2: Adapted AIC comparison between model and commonly used distributions

during non-peak hours.

parameters may need adjustments for the analyzed period.

These results endorse the validity of this queuing theory approach, suggesting the

simplified analytical model (a mixture of two Poisson distributions) is robust enough.

It matches the performance of or performs better than other distributions used in

literature. Furthermore, the results suggest that the assumptions made by the model

are valid.

Moreover, a significant advantage of this analytical model is that it does not

require detailed data, but rather aggregate parameters that can be easily estimated.

Furthermore, minor errors in estimation are not overly harmful to the performance of

the model. The derivatives of expected value and distribution of density with respect

to the parameters λ, λ′, µ, µ′, f, r allow for sensitivity analysis. Except for λ and λ′,

this model is robust to errors in estimation. For similar values to those seen on all

sensors, a 10% error in µ or µ′ results in a 1% error in expected density. The model

is sensitive to changes in λ and λ′, only when λ ≈ λ′. This model is, therefore,

appropriate as an initial gauge on how traffic density will behave in new roadways,

in roadways for which data are scarce, and in roadways that may have endured some

change in behavior.

Peak hours
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Similar to non-peak hours, the results for peak hours also proved to be very robust.

Peak hours are defined as the times between 8 a.m. and 10 a.m. for Southeast

direction, and between 6 p.m. and 8 p.m. for Northwest direction, Tuesday to

Thursday. These periods are chosen to match the commute from residential areas to

work locations in the morning and back in the evening.

The values of a are calculated from a function of the number of cars in the system

and the road segment capacity. They determine the deterioration in service level

(travel time) caused by the presence of more cars, thus causing drivers to drive more

carefully and slowly. Jain and Smith (1997) suggest that such a function could be

linear and follow an = C+1−n
C

, where C is the capacity of the segment. In our dataset,

segments are half-mile long and contain three lanes. Thus, we can obtain C as

C = length segment · number of lanes
average length of a car = 0.5 · 3

22/5280 = 360,

giving an = 361−n
360 .

An alternative approach is to generate a via travel time computed from the speed

data. By comparing average speed data for each density point in each sensor, we

can directly generate a. For each density point, we can observe every car’s speed,

thus creating an array of speed data points. For density points with fewer than three

speed data points, we assume speed remained the same as the previous density data

point to prevent outliers.

Although the two approaches yield good fits, the one that generates a from a

linear function covers a little more of the variance of the data. The average r2 for the

linearly generated a is 0.776, and for the a coming from speed data is 0.762. Hence,

we choose to present the results obtained with the linear function for a.

Figure 2.14 presents the empirical CDF generated from the data along with the

model’s CDF. The upper and lower bounds represent the 5% confidence interval of

the model distribution (Massey Jr, 1951) when accounting for data uncertainty due
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Figure 2.14: Model’s analytical and and data’s empirical CDFs (peak hours/summer).

to the gaps in the dataset. Since the empirical distribution resides within the bounds,

the model is valid.

Model LNormal WBull Model LNormal WBull
Winter Winter Winter Summer Summer Summer

Mean 5236 5377 5433 804 786 812

Best AIC 33 3 1 5 23 6

(out of 36 sensors) (1 tie) (1 tie) (1 tie) (1 tie)

Table 2.3: Adapted AIC comparison between model and commonly used distributions

during peak hours.

Table 2.3 compares the goodness of fit for our model with other commonly used

distributions for traffic density (the complete AIC list for each sensor is described in

Table 2.10, Appendix 2). Adapted AICs (following the same algorithm described for

non-peak hours) are calculated using the maximum log-likelihood function from the

data for the model, lognormal, and Weibull distributions. The MLEs calculated for

the model are obtained using the Nelder-Mead method with five iterations (Nelder
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and Mead, 1965), which implies that certain improvements can still be achieved in

the model’s AIC if more iterations are performed. Results indicate that the analytical

model performs slightly better than the other two fits during winter, and is consistent

with the other two fits during summer months. They reiterate the importance of our

model because it does not depend on large sets of data that can be expensive or

infeasible to gather, differently from the other distributions.

2.4 Applications

2.4.1 Sensitivity on the deterioration level α

We consider the effect of the ratio between µ′ and µ, which we call α. The lower

the α is, the worse the system becomes when it deteriorates. A value of α = 0.80

means service frequency drops 20% when the system deteriorates due to an incident.

This parameter is one of the most difficult to change – it mainly reflects the overall

infrastructure’s resilience to incidents. A change in this parameter could represent the

aging of a system or a significant change in utilization. The model presented in this

chapter can help traffic engineers understand the effect a variation in the deterioration

level would have on congestion.

Tables 2.4 and 2.5 contain several points on the tail distribution for density during

peak and non-peak hours. For non-peak hours, we set arrival rate is 15 cars per

minute, expected travel time is 1 minute under normal conditions, expected time to

incident is 41 hours and expected clearance time is 28 hours. For peak hours, we set

the arrival rate is 25 cars per minute, expected travel time is 1 minute under normal

conditions (before accounting for deterioration caused by congestion), and expected

time to incident is 41 hours and expected clearance time is 28 hours. The expected

travel time under adverse conditions vary with α as 1
αµ

, i.e., 1
α

E[travel time under
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normal conditions].

From the tables, we expect to see more than 11 cars with more than 30% probabil-

ity when α = 0.8 during non-peak hours and more than 18 with the same probability

during peak hours. It is interesting to see that, as α decreases, the tail becomes

thicker. The tables also show that the left side of the tail distribution is very similar

for both non-peak and peak hours (as shown for P{X > x} ≥ 70%). In this part of

the distribution, α has little impact. However, on the right side of the distribution

(as shown for P{X > x} ≤ 30%) for peak hours, the addition of cars caused by

a non-recurrent incident causes traffic to become worse when α is small, creating a

cascading effect in traffic congestion.

P{X > x} 99% 70% 30% 1% E[number of cars]

α=0.8 4 8 11 17 8.63

α=0.6 4 8 11 20 8.99

α=0.4 4 8 12 28 9.71

α=0.2 4 8 12 52 11.86

Table 2.4: Tail Probability for different levels of deterioration during non-peak hours.

P{X > x} 99% 70% 30% 1% E[number of cars]

α=0.8 8 14 18 27 15.01

α=0.6 8 14 18 33 15.69

α=0.4 8 14 19 49 17.14

α=0.2 8 14 19 112 22.81

Table 2.5: Tail Probability for different levels of deterioration during peak hours.

More graphically, on Figures 2.15 and 2.16, we can see how the probability mass

function behaves as α decreases for both non-peak and peak hours. Parameters used
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are:

1. arrival rate of 15 cars per minute for non-peak hours and of 15 cars for peak

hour

2. expected travel time of 1 minute under normal conditions (before accounting

for deterioration caused by congestion during peak hours)

3. expected time to incident of 41 hours

4. expected clearance time of 28 hours

At first, the tail starts to thicken. However, after some threshold, the system becomes

bimodal, with an evident separation between the normal condition and the adverse

condition distributions. This bimodality is more prominent during peak hours than

non-peak hours.

The probability of traffic breakdown directly follows from the resulting distri-

bution. Traffic engineers may determine the number of cars that causes a traffic

breakdown on this particular road, and then have the probability of breakdown de-

termined by the model. This model is flexible enough to provide decision-makers with

such a measure for different definitions of traffic breakdown since the literature has

yet to agree on a specific definition.

2.4.2 Example on the usage of the model for planning

In this section, we provide an example of how traffic engineers can apply this new

model in their decision-making process. Suppose traffic engineers plan to build a

highway with different 0.5-mile sections. They consider various investments, which

alter multiple parameters in the model. In particular, they will look at the number of

lanes to be built and the budget for nearby service vehicles and first responders. They
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Figure 2.15: PMF’s for non-peak hours Figure 2.16: PMF’s for peak hours

assume all 0.5-mile sections within a region behave similarly. Usually, such a study

would entail collecting data for similar existing highways and simulating changes to

them. However, the proposed model enables these analyses without such data or

simulations.

In order to understand how the highway would behave throughout different peri-

ods, they separate the analysis into three period groups: 1. low usage, which includes

late nights, early mornings, weekends, and holidays; 2. medium usage, which includes

weekdays, but during times that avoid the main commute rush; 3. high usage, which

includes weekdays peak-hours. By comparing the region with other similar locations,

the traffic engineers were able to estimate the following parameters:

From the results, we can assume that the system is unlikely to reach full capacity

under Medium Usage, and we, therefore, use the non-peak hours’ method to calculate

the density distribution. For the High Usage time frame, we use the peak-hours model

instead.

We first explore the effect of lane count, assuming an average clearance time of

30 minutes. Increasing the lane count is equivalent to increasing the capacity of

the system. Table 2.7 shows the probabilities of seeing more than 10% of the road

occupied and the probability of having less than 90% of the roadway occupied under
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Low Usage Medium Usage High Usage

λ 160 650 1100

λ′ 150 630 790

µ 60 21 18

µ′ 40 14 12

f 0.00002 0.005 0.02

r 2 2 2

Table 2.6: Parameters estimated by the traffic engineers for the location in which the

new highway will be built.

Medium and High Usage given the number (1, 2 or 3) of lanes. C represents the

capacity of the system, which is a function of the number of lanes. We immediately see

the trade-off between under-utilization in medium usage periods and over-utilization

in high-usage periods. The correct selection of lanes depends on the constraints faced

by the decision-maker. For the sake of discussion, we select two lanes, which will be

over-utilized 25% of the time during peak hours.

Medium Usage High Usage

Lanes P{X > 0.1 · C} P{X < 0.9 · C} P{X > 0.1 · C} P{X < 0.9 · C}

1 0.9999 1 1 0.2306

2 0.8799 1 1 0.7583

3 0.1608 1 1 0.9998

Table 2.7: Probability of under-utilization and over-utilization for different lane

counts.

We now consider changes to the clearance time, which can be affected by other

investments, such as the response time of first responders and service vehicles. Again
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we see a trade-off that must be reconciled by the decision-maker – over-utilization

can be reduced, but only by making significant reductions in clearance time. Another

consideration is that increasing the clearance rate (i.e., decreasing expected clearance

time) has a stronger impact on lowering over-utilization than under-utilization.

Med. Load High Load

E[Clearing Time] r P{X > 24} P{X < 216} P{> 24} P{< 216}

8.5 min 7 0.8796 1 1 0.9092

15 min 4 0.8797 1 1 0.8587

30 min 2 0.8799 1 1 0.7583

5 h 0.2 0.8825 1 1 0.2146

50 h 0.02 0.9036 1 1 0.0002

Table 2.8: Probability of under-utilization and over-utilization for different clearance

times, with 2 lanes.

APPENDIX – Full list of AICs for each sensor

Non-peak hours

Sensor Model Lognormal Weibull Model Lognormal Weibull
SE then WN Winter Winter Winter Summer Summer Summer

1 6057 5763 5607 783 784 804

2 4775 4795 5058 747 749 814

3 6427 5867 5732 817 814 840

4 4965 4985 5453 767 791 882

5 4555 4794 5307 738 769 862

Continued on next page
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Sensor Model Lognormal Weibull Model Lognormal Weibull
SE then WN Winter Winter Winter Summer Summer Summer

6 4740 4849 5250 789 787 800

7 4948 4970 5405 776 779 778

8 4752 4819 4792 1303 1233 1344

9 4636 4708 4664 787 792 786

10 4865 4866 4938 771 776 774

11 4956 5007 4995 822 830 820

12 4689 4754 4721 820 832 831

13 4078 4157 4263 700 700 705

14 4762 4814 4874 800 803 802

15 4762 4838 4791 816 816 818

16 4670 4740 4706 802 803 805

17 5009 5070 5021 804 804 804

18 5983 5337 5361 830 826 831

1 4822 4862 4869 833 829 810

2 5334 5319 5507 891 893 882

3 4724 4818 5251 806 807 802

4 4724 4818 5251 806 807 802

5 4867 4889 4899 988 887 1070

6 5003 5026 5018 1034 907 1073

7 4795 4832 4825 993 892 1102

8 3990 4125 4007 1210 1062 1364

9 4740 4802 4770 1058 929 957

10 4904 4942 4937 1328 1111 1147

Continued on next page
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Sensor Model Lognormal Weibull Model Lognormal Weibull
SE then WN Winter Winter Winter Summer Summer Summer

11 5106 5131 5127 1633 1271 1280

12 5319 5317 5287 1727 1632 1589

13 5642 5567 5549 1717 1588 1623

14 4900 4959 4914 1872 1972 2099

15 4722 4757 4947 4854 3187 N/A

16 4480 4620 4884 6314 4013 N/A

17 4890 4956 5196 3606 2302 9400

18 4941 5014 5328 2699 2437 5473

Table 2.9: Full list of the adapted AIC comparison between model and commonly

used distributions during non-peak hours.

Peak hours

Sensor Model Lognormal Weibull Model Lognormal Weibull
SE then WN Winter Winter Winter Summer Summer Summer

1 5505 6026 5767 774 772 780

2 4938 5132 5149 746 743 746

3 5663 6055 5775 800 796 798

4 5112 5302 5358 775 768 775

5 4777 5182 5341 736 728 734

6 5020 5147 5366 762 747 746

7 5255 5357 5626 771 776 767

8 N/A 5830 5990 874 831 883

Continued on next page
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Sensor Model Lognormal Weibull Model Lognormal Weibull
SE then WN Winter Winter Winter Summer Summer Summer

9 5000 5257 4999 790 774 795

10 5230 5426 5262 777 786 831

11 5245 5494 5353 867 812 868

12 5163 5351 5247 829 809 854

13 4577 4982 5141 789 687 721

14 5343 5468 5626 822 798 807

15 5385 5678 5922 825 798 863

16 5643 5683 5943 747 797 867

17 6003 6050 6263 886 853 886

18 5955 6062 6262 926 846 907

1 5391 5395 5510 823 809 852

2 5765 5770 5847 882 876 920

3 5221 5245 5258 797 788 796

4 5221 5245 5258 797 788 796

5 5286 5310 5323 784 778 780

6 5345 5375 5374 806 801 795

7 5212 5241 5249 827 761 767

8 4505 4533 4507 747 747 753

9 4929 4961 4952 781 775 772

10 5169 5195 5198 792 787 783

11 5138 5152 5199 886 827 817

12 5351 5506 5476 809 772 788

13 5554 5734 5689 828 809 818

Continued on next page
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Sensor Model Lognormal Weibull Model Lognormal Weibull
SE then WN Winter Winter Winter Summer Summer Summer

14 5039 5121 5180 779 758 806

15 4851 4864 4945 756 763 828

16 4814 4818 4972 738 746 821

17 5236 5228 5482 816 787 837

18 5402 5402 5784 806 803 871

Table 2.10: Full list of the adapted AIC comparison between model and commonly

used distributions during peak hours.
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Chapter 3

Traffic Density in Non-homogenous

Sections

This section focuses on expanding the results of chapter 2 to long segments in which

parameters may not remain homogeneous. We initially divide this long segment into

smaller sections in which the parameters remain homogeneous. Then, we study tech-

niques to combine the information from each short segment to obtain the distribution

for the long stretch. We also validate the results against the Wisconsin data described

in chapter 2.

We concentrate on results for non-peak hours because of mathematical conve-

nience. Winter data are used for validation.

3.1 Analytical Model

The model proposed in this chapter follows the approximated distribution derived

in chapter 2. Again, the approach models traffic as the Markov-modulated queue

depicted in Figure 2.9.

The set up of the problem proposed assumes parameters to be homogenous across



56

. . .

λ, λ′
µ1

µ′1
. . .

µ2

µ′2
. . .

µ3

µ′3
. . .

. . .

λ, λ′
µ

µ′

Figure 3.1: Representation of the tandem-queue and its single-queue alternative.

space. While this may be true for sufficiently small segments, curves, ramps, and other

road features may change the rate parameters. In this chapter, we propose a tandem-

queue approach to account for spatial changes in rate parameters. We maintain

the assumptions that failure rate and repair rate being considerably smaller than

the service rates. For comparison purposes, we consider two alternatives, depicted

in Figure 3.1. The first breaks the segment into 0.5-mile subsections. It considers

subsections as queue systems that form a tandem-network when combined. The

latter considers the whole segment as a single queue, as discussed in chapter 2. This

comparison will determine whether a tandem-queue approach is necessary.

This study proposes that a sequence of the Markov-modulated queue depicted in

Figure 2.9 can be approximated as a tandem-queue system in which the distribution

of customers in the system has the product-form:

lim
t→∞

P {Xi(t) = xi, 1 ≤ i ≤ N} =
N∏
i=1

P{Xi = i}

For this, we argue the following needed assumptions (Kulkarni, 2016):

1. It has N service stations (nodes) — where N represents the number of segments

considered;
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2. The departure process follows the same distribution of the arrival process — as

discussed in this section;

3. There is infinite waiting room in each node — cars can remain stopped for as

long as needed;

4. There are no external arrivals other than in the first node;

5. There are no middle departures from the system — cars must join the next

segment after completing one.

Assumptions (3), (4), and (5) are met from the way the problem is set, as depicted

in Figure 2.9. Assumption (1) is met because we assume a finitely long segment.

Assumption (2) is not met because service times are not independent and identically

distributed. However, we make this assumption for mathematical convenience and

because this assumption closely matches what we see in simulation. Figure 3.2 depicts

the inter-departure times, and the corresponding exponential Q-Q plot from a 10-

thousand hour simulation. Notice that we assume the departure interarrival times to

follow a mixture of exponentials, a more general distribution than the one pictured

in Figure 3.2.

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Inter departure times

0

20

40
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80

100

120

Inter-departure times

Exponential pdf
Simulated data
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Figure 3.2: Simulated queue inter-departure times.
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The following proof for assumption (2) is an adaptation of the work developed by

Mirasol (1963).

Proposition 2 (Departure Process). The departure process of a MAP/G/∞ queue

follows the same distribution of the arrival process.

Proof. Departure process for a MAP/G/∞ queue

Let us take a look at the queue when starting at time zero with no events, and

analyze it at time t and then at t + T . By finding solutions in this structure,

we can then push t to the limit so that we can see the behavior in steady-state.

Mirasol (1963) has used this approach to prove the departure distribution for

M/G/∞ queues. We will follow similar steps to prove the departure distribution

for a MAP/MSP queue in a random environment.

The process starts at time 0 with no customers. The arrival period is denoted

as subscripts and departures as superscripts. A thorough definition of each

notation follows.

• Departures:

– Ψ(t,t+T ) = number departing the system in (t,t+T),

– Ψ(t,t+T )
1 = portion of Ψ(t, t+ T ) that arrived in (0,t),

– Ψ(t,t+T )
2 = portion of Ψ(t, t+ T ) that arrived in (t,t+T).

Note that Ψ(t,t+T ) = Ψ(t,t+T )
1 + Ψ(t,t+T )

2 .

• Survivals:

– γ(t+ T ) = number surviving in the system at t+T,

– γ1(t+ T ) = portion of γ(t, t+ T ) that arrived in (0,t),

– γ2(t+ T ) = portion of γ(t, t+ T ) that arrived in (t,t+T).
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Note that γ(t+ T ) = γ1(t+ T ) + γ2(t+ T ).

• Leaving Probabilities (arrival state i can be ):

– u = Pr{an arrival in (0,t) leaves in (t,t+T)},

– v = Pr{an arrival in (0,t) leaves in (t+T, ∞)},

– w = Pr{an arrival in (t,t+T) leaves in (t,t+T)},

– z = Pr{an arrival in (t,t+T) leaves in (t+T, ∞)},

– H(x) = Pr{service time ≤ x},

In a nonhomogeneous Poisson process having n events occuring in (0,t),

the instances in time when these events occured is the joint distribution of

U(1), . . . , U(n), the order statistics of n i.i.d. Unif(0, t) random variables

(Campbell’s theorem).

Therefore:

u =
∫ t

0

H(T + x)−H(x)
t

dx w =
∫ T

0

H(x)
T

dx

v =
∫ t

0

1−H(T + x)
t

dx z =
∫ T

0

1−H(x)
T

dx

Let F (m,n; t, T ) = Pr{γ(t + T ) = m,Ψ(t+T ) = n} = ∑m
mb=0

∑n
nb=0 Pr{γg =

m − mb,Ψ(t+T )
g = n − nb | γb = mb,Ψ(t+T )

b = nb} · Pr{γb = mb,Ψ(t+T )
b = nb}.

We want to consider this joint probability, because it allows us to condition

on the number of arrivals, which has a known distribution. Let the number of

arrivals in a period x be denoted as N(x). We can condition F on the number

of arrivals in (0, t) – say N(t) = k, and the number of arrivals in (t, t + T ) –

say N(T ) = j. Note that Ψt,t+T
2 is totally dependedent on the j and γ2(t+ T ),
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Ψt,t+T
2 = j − γ2(t+ T ).

F (m,n; t, T ) =
m∑
i=0

n+i∑
j=i

∞∑
k=m+n−j

P{N(t) = k,N(T ) = j}·

P{γ2 = i, γ1 = m− 1,Ψ1 = n− (j − i) |N(t) = k,N(T ) = j}

The limits of the summation are defined from the relationships among the

parameters. As i represents the number of survivals at time t+ T that arrived

between t and t+T , it has to be less than the total number of survivals, which

implies i < m. Also, there are j arrivals in the period (t, t + T ). Therefore,

the number of arrivals j must be greater than the survivals i, j > i. We also

know that n departures happened in (t, t + T ). Since we know that Ψt,t+T
2 =

j−γ2(t+T ) = j−i has be less than n, j < n+i. Finally, the number of arrivals

in (0, t) can be no less than the total survivals at t + T plus total departures

minus the the arrivals in (t, t+ T ), implying k > m+ n− j.

We can now show that this joint distribution is just the product of the departure
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events and the survival events, proving that they are independent.

F (m,n; t, T ) =
m∑
i=0

[
n+i∑
j=i

(
P{γ2 = i |N(T ) = j}P{N(T ) = j}

∞∑
k=m+n−j

p{γ1 = m− 1,Ψ1 = n− (j − i) |N(t) = k}P{N(t) = k}
)]

=
m∑
i=0

[
n+i∑
j=i

(
j

i

)
ziwj−i

(
r

r + f
e−λT (λT )j/j! + f

r + f
e−λ

′T (λ′T )j/j!
)
·

∞∑
k=m+n−j

k! um−ivn−j+i(1− u− v)k−m−n+j

(m− i)!(n− j + i)!(k −m− n+ j)!(
r

r + f
e−λt(λt)j/j! + f

r + f
e−λ

′t(λ′t)j/j!
)]

=
(

r

r + f

)2
{
e−λ(zT+vt)[λ(zT + vt)]m

m!

}{
e−λ(wT+ut)[λ(wT + ut)]n

n!

}
+

(
f

r + f

)2{e−λ′(zT+vt)[λ′(zT + vt)]m

m!

}{
e−λ

′(wT+ut)[λ′(wT + ut)]n

n!

}
+

(
r

r + f

)(
f

r + f

){
e−λ(zT+vt)[λ(zT + vt)]m

m!

}{
e−λ

′(wT+ut)[λ′(wT + ut)]n

n!

}
+

(
f

r + f

)(
r

r + f

){
e−λ

′(zT+vt)[λ′(zT + vt)]m

m!

}{
e−λ(wT+ut)[λ(wT + ut)]n

n!

}

=
{

r

r + f
· e
−λ(zT+vt)[λ(zT + vt)]m

m! + f

r + f
· e
−λ′(zT+vt)[λ′(zT + vt)]m

m!

}
·{

r

r + f
· e
−λ(wT+ut)[λ(wT + ut)]n

n! + f

r + f
· e
−λ′(wT+ut)[λ′(wT + ut)]n

n!

}
.

Therefore, they are independent. Note that wT+ut can be rewritten as
∫ t+T
t H(x)dx.

Also note that lim
t→∞

∫ t+T
t H(x)dx = T , as it represents the area of a rectangle with

height 1, and width (t+ T )− t = T . Hence:
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P
{

Ψ(t,t+T ) = n
}

= r

r + f

e−λ(wT+ut)[λ(wT + ut)]n

n! + f

r + f

e−λ
′(wT+ut)[λ′(wT + ut)]n

n!

lim
t→∞

P
{

Ψ(t,t+T ) = n
}

= r

r + f
· e
−λT (λT )n

n! + f

r + f
· e
−λ′T (λ′T )n

n!

As such, we can consider the long stretch of the road consisting of the sequence

of N segments to be an Open-Jackson Network Tandem Queue.

lim
t→∞

P {Xi(t) = xi, 1 ≤ i ≤ k} =
k∏
i=1

(
ri

ri + fi

(
λ

µi

)xi e(λ/µi)

xi!
+ fi
ri + fi

(
λ′

µ′i

)xi e(λ′/µ′i)

xi!

)
.

(3.1)

3.1.1 Computing Density from The Product Form

As a consequence of equation 3.1, the total number of customers in the network follows

a distribution that is the sum of each segment’s distribution separately. Therefore,

we can obtain the overall distribution via convolution. Let A be the distribution of

the number of cars in the steady-state.

A = lim
t→∞

k∑
i=1

Xi(t)

P{Xi = xi} = ri
ri + fi

(
λ

µi

)xi e(λ/µi)

xi!
+ fi
ri + fi

(
λ′

µ′i

)xi e(λ′/µ′i)

xi!

Theorem 1. Let A be a sum of k > 1 mixtures of two Poisson with weights pj1, pj2 =

1 − pi1, and with parameters λjs, where j represents one particular mixture in the

sum (j = 1, 2, . . . k), and s represents the inner random variables of each mixture

(s = 1, 2).

Then A is a mixture of 2k Poissons named Aω, where ω = {s1, s2, ..., sk} is a
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string containing a particular combination of s’s for each j. The weights is defined as

the product ∏k
j=1 p

j
sj

. The parameter for each Aω is defined as ∑k
j=1 λ

j
sj

.

We will prove this using two alternative approaches.

1.) By using direct convolution

Proof. We will prove by induction.

Base case

Let X1 be a Poisson RV with parameter λ1 and X2 be a Poisson RV with

parameter λ2. Let Y1 be a Poisson RV with parameter µ1 and Y2 be a Poisson

RV with parameter µ2.

Then, let X and Y be two mixtures:

fX = p1fX1 + p2 · fX2

fY = q1fY1 + q2 · fY2 ,

where p1 + p2 = 1 and q1 + q2 = 1. We want to derive the probability mass

function for the RV A, where A = X+Y.

fA(n) =
n∑
i=0

fX(i)fY (n− i)

=
n∑
i=0

(p1 · fX1 (i) + p2 · fX2 (i)) · (q1 · fY1 (n− i) + q2 · fY2 (n− i))

= p1 · q1

n∑
i=0

fX1 (i) fY1(n− i) + p1q2

n∑
i=0

fX1 (i) fY2(n− i)

+ p2q1

n∑
i=0

fX2 (i) fY1(n− i) + p2q2

n∑
i=0

fX2 (i) fY2(n− i)

fA(n) = p1q1 · fA11 (n) + p1q2 · fA12 (n) + p2q1 · fA21 (n) + p2q2 · fA22 (n) ,

where Aij is a Poisson RV with parameter λi + µj. This finishes the proof for

k = 2.
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Induction Step

Assume that, for an arbitrary k, the claim is valid. We will show that it remains

valid for k + 1.

Let X be mixture of 2k Poisson RV (X1, . . . , X2k) with weights wj and parame-

ters ρj, j = 1, 2, . . . 2k. Let Y be a mixture of 2 Poisson RV (Y1, Y2) with weights

p1 and p2 = 1− p1 and parameters λ1 and λ2.

fA(n) =
n∑
i=0

fX(i)fY (n− i)

=
n∑
i=0

 2k∑
j=1

wj · fXj(i)
 · (p1 · fY1 (n− i) + p2 · fY2 (n− i))

=
n∑
i=0

2k∑
j=1

(
p1wj · fXj(i)fY1(n− i) + p2wj · fXj(i)fY2(n− i)

)

=
2k∑
j=1

n∑
i=0

(
p1wj · fXj(i)fY1(n− i) + p2wj · fXj(i)fY2(n− i)

)

=
2k∑
j=1

(
p1wj

n∑
i=0

(
fXj (i) fY1 (n− i)

)
+ p2wj

n∑
i=0

(
fXj (i) fY2 (n− i)

))

=
2k∑
j=1

p1wjfAj1(n) +
2k∑
j=0

p2wjfAj2(n),

where Ajs is a Poisson random variable with parameter ρj +λs, j = 1, 2, . . . , k,

and s = 1, 2. Therefore, A is a mixture of 2k+1 Poisson RV with corresponding

weights for each Ajs defined as wjps, and parameter ρj + λs, j = 1, 2, . . . , k,

and s = 1, 2.

2) By using generating functions

Proof. Also by induction.

Let GX(z) be the probability generating function for the RV X, i.e., G(z) =

E
[
zX
]
. Then, if we have a random variable A = X + Y , where X and Y are

independent, GA(z) = E
[
zX+Y

]
= E

[
zXzY

]
= E

[
zX
]
E
[
zY
]

= GX(z)GY (z).
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For a Poisson RV with parameter λ, G(z) = eλ(z−1). Given the properties of

expectation, we also know that the probability generating function of a mixture

of two RV is a mixture of the generating functions for each of the RV.

Base case

Let fX = p1fX1 + p2fX2 and fY = q1fY1 + q2fY2 , where p1 + p2 = 1, q1 + q2 = 1,

and X1, X2, Y1, and Y2 are Poisson distributed with parameters λ1, λ2, µ1, and

µ2, respectively. Then

GA(z)

=
(
p1e

λ1(z−1) + p2e
λ2(z−1)

) (
q1e

µ1(z−1) + q2e
µ2(z−1)

)
= p1q1e

(λ1+µ1)(z−1) + p2q1e
(λ2+µ1)(z−1) + p1q2e

(λ1+µ2)(z−1) + p2q2e
(λ1+µ2)(z−1)

This finishes the proof for k = 2.

Induction Step

Assume that, for an arbitrary k, the claim is valid. We will show that it remains

valid for k + 1.

Let X be mixture of 2k Poisson RV (X1, . . . , X2k) with weights wi and parame-

ters ρj, j = 1, 2, . . . 2k, as defined in the setup. Let Y be a mixture of 2 Poisson

RV (Y1, Y2) with weights p1 and p2 = 1− p1, and parameters λ1 and λ2. Then

GX(z) = ∑2k
j=0wje

ρj(z−1), and GY (z) = p1e
λ1(z−1) + (1− p1) eλ2(z−1).

GA(z) = GX(z)GY (z)

=
 2k∑
j=1

wje
ρj(z−1)

(p1e
λ1(z−1) + p2e

λ2(z−1)
)

=
2k∑
j=1

wje
ρj(z−1)p1e

λ1(z−1) +
2k∑
j=1

wje
ρj(z−1)p2e

λ2(z−1)

=
2k∑
j=1

p1wje
(ρj+λ1)(z−1) +

2k∑
j=1

p2wje
(ρj+λ2)(z−1).
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Therefore, A is a mixture of 2k+1 Poisson random variables with parameters

ρj + λs, and corresponding weights defined as wjps, where j = 1, . . . , 2k, and

s = 1, 2.

Applying Theorem 1 for Traffic Density

From chapter 2 and Lopes Gerum et al. (2019b), we know that during non-peak

hours the probability mass function for traffic density in one 0.5-mile segment can be

represented as:

fX(n) = r

r + f
fXφ(n) + f

r + f
fY (n),

where Xφ follows a Poisson with parameter λ
µ
, and Y follows a Poisson with param-

eter λ′

µ′
. Looking at a longer stretch, composed of k 0.5-mile segments, we have the

distribution for the overall stretch determined as:

fXall(n) =
2k∑
j=0

pjfXj(n),

where j corresponds to each possible combination of systems behavior for each seg-

ment. For each j, the corresponding weight is, therefore, the product of all weights

corresponding to each segment’s behavior, and the parameter for the corresponding

Poisson RV is the sum of the parameters for each segment, given the behavior.

As an example, let us look at two 0.5-mile segments, which form 1-mile segment.

The parameters for each segment i is given as λ, λ′, µi, µ′i, fi, ri, i = 1, 2. In this

case,

fXall = r1

r1 + f1

r2

r2 + f2
fX1+ r1

r1 + f1

f2

r2 + f2
fX2+ f1

r1 + f1

r2

r2 + f2
fX3+ f1

r1 + f1

f2

r2 + f2
fX4 ,

and the parameters for X1, X2, X3, and X4 are
(
λ
µ1

+ λ
µ2

)
,
(
λ
µ1

+ λ′

µ′2

)
,
(
λ′

µ′1
+ λ

µ2

)
, and(

λ′

µ′1
+ λ′

µ′2

)
, respectively.
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3.2 Validation

We use the data described in section 2.1 to validate the proposed model. After

filtering, we split the data in two groups, training and testing. The first group is used

to compute the parameters and to estimate the best fit for the distributions. The

testing group serves as an out of sample dataset to compute performance metrics,

such as the Akaike Information Criterion (AIC). 80% of the data is used as training,

and 20% as testing.

This validation determines whether the separation in smaller segments is neces-

sary. It compares the fit to the data of the tandem-queue-based distribution against

the fit of combining the segments in a single long stretch with a single arrival rate and

single service rate – i.e., disregarding spatial variation in the rate parameters. Then it

verifies how the proposed model compares with the standard lognormal distribution

used in literature.

3.2.1 Aggregate Parameters for the Single-Queue Approach

Let us combine k sequential segments into a long stretch. The segment index is used

to separate each parameter set from each other. One assumption made is that, if one

segment fails, the whole stretch fails. This assumption implies that the travel time

deteriorates in the whole stretch.

This assumption is valid for our dataset during winter times. When looking at all

two subsequent sensors at a time, we see the periods in which one sensor failed while

the other did not are, on average, 0.63% of the failed time, with a maximum of 2.56%

of the failed time for a particular pair during the whole analyzed period. Since snow

might skew this, we also analyzed the proportion for summer months. In this case,

we see the periods in which one sensor failed while the other did not are, on average,
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99.2% of the failed time, with a maximum of 100% of the failed time for a particular

pair. Therefore, although the sensors are fully correlated during the winter because

of snow, they are independent over the summer.

We use winter data for validation, and we obtain the parameters from the equa-

tions in Section 3.1.

3.2.2 Parameter Fitting for a Mixture of Poissons

Because we try to compare the performance of the convolutional distribution to one

used in literature, we choose the parameters best fit for the data, rather than using the

parameter estimation methods discussed. This choice assures fairness in the compar-

ison, since finding the parameters for lognormal demand usage of the whole dataset.

We remind the reader that this process is not needed when estimating the distribution

with the aggregate parameters, a considerable advantage of our formulation.

The best-suited parameters
˜
θ for a given distribution f can be estimated from N

data points by maximizing the complete likelihood function,

L(
˜
x :

˜
θ) =

N∏
i=1

f
˜
θ(xi).

Typically, the optimization is performed in the log realm, to avoid numerical

issues. Therefore:

˜
θ∗ = arg max

˜
θ

logL(
˜
x :

˜
θ) = arg max

˜
θ

N∑
i=1

log f
˜
θ(xi).

In the case of large mixtures, this maximization problem can be hard to solve.

The constraints on the weight parameters and the maximization of the logarithm

of a sum often cause numerical issues that impact the instability of non-linear opti-

mization solvers. An alternative approach for such problems is an application of the

Expectation-Maximization algorithm described in Bilmes et al. (1998) and Tomasi
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(2004). It separates the global optimization problem into two smaller ones. Start-

ing from a randomly assigned set of parameters, it then iterates until convergence.

We avoid the problem of maximizing the logarithm of a sum by bounding the log-

likelihood function using Jensen’s inequality. The derivation follows:

Derivation for the algorithm

Adapted from Bilmes et al. (1998) and Tomasi (2004).

Suppose we want to fit parameters for a mixture of K Poisson random variables.

We denote each pmf as gj(x) = e−λjλxj
x! . The objective is to find the best parameters

λks and weigths pks for a dataset containing N points. From the initial parame-

ters, we determine the membership probabilities of each data point, p(k | xi) for each

i = 1, ..., N . These represent the probabilities that datapoint xi belongs to random

variable k. From Bayes’ rule:

p(j | xi) = p(xj | k)pj
p(xi)

= gj(xi)pj∑K
m=1 gm(xi)pm

.

In practice, if a datapoint xi, a weight pj, or a parameter λj are large, numerical

issues may arise. This becomes increasingly problematic the longer the stretch is,

because more cars are expected to be present at any given time. To overcome this

numerical instability, we alter this equation to

p(j | xi) =
pj

e−λjλ
xi
j

xi!∑K
m=1

e−λmλ
xi
m

xi! pm
= exp (log (pj)− λj + xi log (λj))∑K

m=1 exp (log (pm)− λm + xi log (λm))
,

and we set a lower bound to the weight parameters. If these algebraic changes are

not sufficient to prevent numerical issues caused by the magnitude of the datapoint,

a simple scaling of the data solves the problem.

We now determine the best parameters while keeping the membership probabilities

fixed. From Jensen’s inequality, we have that,

log
K∑
j=1

πkαk ≥
K∑
j=1

πj logαj,
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because of the convexity of the logarithm. By replacing πj with pjgj(xi) and αj with
pjgj(xi)
p(j | xi) , we have:

logL(
˜
x :

˜
θ) =

N∑
i=1

log
K∑
j=1

pjgj(xi) ≥
N∑
i=1

K∑
j=1

p(j | xi) log pjgj(xi)
p(j | xi)

.

We focus on maximizing the bound determined in the inequality. Note that the

numerator in the logarithm is fixed at this point and can, therefore, be disregarded

by separating it out of the logarithm. We call the new objective function to maximize

b(
˜
θ):

b(
˜
θ) =

N∑
i=1

K∑
j=1

p(j | xi) log pjgj(xi)

∂b

∂λj
= ∂

∂λj

N∑
i=1

K∑
j=1

p(j | xi) log pjgj(xi)

=
N∑
i=1

K∑
j=1

p(j | xi)
∂

∂λj
log pjgj(xi)

=
N∑
i=1

p(j | xi)
(
xi
λj
− 1

)
.

By equating the derivative to zero, we can estimate λj for each j as:

λj =
∑N
i=1 p(j | xi)xi∑N
i=1 p(j | xi)

.

Once the λjs are determined, we can find the best pj for these new parameters.

Given the constraint that the weights must add up to 1, we add a Lagrange multiplier.

b(
˜
θ) =

N∑
i=1

K∑
j=1

p(j | xi) log pjgj(xi) + µ

 K∑
j=1

(pj)− 1


∂b

∂pj
= ∂

∂pj

N∑
i=1

K∑
j=1

p(j | xi) log pjgj(xi) + µ

 K∑
j=1

(pj)− 1


=
N∑
i=1

∂

∂pj
p(k | xi) log pjgj(xi) + ∂

∂pj
µ (pj − 1)

=
N∑
i=1

p(j | xi)
pj

+ µ.
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By summing of j and equating it to zero, we note that µ = −N .

0 =
N∑
i=1

p(j | xi)
pj

+ µ

K∑
j=1

µpj =−
N∑
i=1

K∑
j=1

p(j | xi)

µ =−N.

Therefore, we can estimate pj for each j as:

pj =
∑N
i=1 p(j | xi)

N
.

With this algorithm, one can then estimate both the parameters and the weights

by iterating until convergence of parameters and weights. Algorithm 1 summarizes

the steps. We use this method to determine the best parameters and weights for the

mixtures and the standard MLE formulatio for the lognormal.

3.3 Discussion and Findings

For our validation, we analyze groups of sensors of varying lengths. The data for each

group is the sum of the minute-stamped traffic density data of all sensors belonging

to that group. We compare how combining the segments and treating them as a

single queue perform versus treating the system as a tandem queue. Finally, we also

compare the goodness of the fit of the tandem-queue approach against a lognormal

fit. The results are presented in Table 3.1.

For each group of sensors, we generate the distributions of all three models. Part

of the distributions are depicted in Figure 3.3. It displays stretches of varying lengths

in the South-East direction during January and February.

Lognormal seems to better fit the data for long segments, but Figure 3.3 suggests

that extreme tails are better captured by our model. We remind the reader that
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Algorithm 1 Expectation Maximization to Estimate Parameters for a Mixture of

Poissons

Require:
˜
x with N datapoints, and K, the number of mixtures.

1: Initialize with a random set of K λjs and weights pjs.

2: while convergence is not obtained do

3: for i = 1 to N do

4: for j = 1 to K do

5: aij = e−λjλxij pk

6: end for

7: end for

8: for j = 1 to K do

9: for i = 1 to N do

10: p(j | xi) = aij∑K

m=1 am

11: end for

12: λj =
∑N

i=1 p(j | xi)xi∑N

i=1 p(j | xi)

13: pj =
∑N

i=1 p(j | xi)
N

14: end for

15: end while
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Mean AIC

Stretch Length Single Queue Tandem Lnormal Diff. Tandem Wins

0.5 mi 6833 - 6785 <1% 7/15

1 mi 8602 8205 7959 3% 3/14

1.5 mi 9752 9199 8672 6% 0/12

2 mi 11512 9660 9193 5% 1/10

2.5 mi 12448 10336 9601 7% 0/8

Table 3.1: Tues–Thurs; Jan and Feb; 10am-1pm; SE direction; Sensors 2-10 and 12-17

the proposed model could be generated with intuive aggregate parameters, while

lognormal cannot. Table 3.1 also indicates that the proposed model has AICs that

are close to lognormal.

Combining the segments and treating the stretch as a single queue indicates a bias

towards overestimating the number of cars present. This bias likely occurs because

of the presence of exit ramps in the stretch. Although this likely affects the tandem-

queue approach as well, Figure 3.4 agrees with the results of Table 3.1 and supports

that considering parameters separately dramatically improves performance.

The resulting AICs presented in table 3.1 demonstrate that the tandem-queue

framework performs marginally worse than the lognormal when the stretch is suf-

ficiently short. In the particular length of 0.5-mile, the queueing theory approach

performed better than lognormal in almost half of the analized sensors. We hypoth-

esize that the reason for this is because the locations in which the model performed

better than lognormal are straight sections, as pictured in Figure 3.5 (the full list of

AICs can be found in the Appendix).
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Figure 3.3: Best fit for model and lognormal in varying lengths.

Figure 3.5: Zoomed-in map for sensors whose data were best fit by the proposed

model.
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Figure 3.4: Traffic Density pmf’s for varying stretch lengths

For longer stretches, the lognormal distribution seems to be a better fit, likely due

to additional uncertainties caused by ramps and merges. Nonetheless, the tandem-

queue model allows for direct computation without the need for simulation or massive

amounts of data. Mere knowledge of aggregate parameters is sufficient for obtaining

an accurate initial gauge of the distribution of traffic density.
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APPENDIX – Full list of AICs for group of sensors

(SE Direction)

Sensor Group Lognormal Model Difference

(2) 6616.064329 6706.689514 90.625185

(3) 7241.579373 7420.351889 178.772516

(4) 6941.690609 7043.023467 101.332858

(5) 6976.848200 6846.907029 -129.941171

(6) 6923.414294 6913.936331 -9.477963

(7) 7176.321850 7230.446762 54.124913

(8) 6742.180870 6721.037478 -21.143391

(9) 6510.933888 6438.630752 -72.303136

(10) 6678.489760 6675.813118 -2.676643

(2, 3) 8132.120154 8312.090917 179.970763

(3, 4) 8266.963759 8939.652260 672.688501

(4, 5) 8209.168325 8114.226066 -94.942259

(5, 6) 8127.608853 8056.259081 -71.349772

(6, 7) 8303.057533 8109.814437 -193.243096

(7, 8) 8082.074626 8412.461911 330.387285

(8, 9) 7612.641413 7925.161553 312.520140

(9, 10) 7729.546542 8075.208779 345.662237

(2, 3, 4) 8915.556127 9397.999867 482.443741

(3, 4, 5) 8968.186073 9769.043441 800.857367

Continued on next page
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Sensor Group Lognormal Model Difference

(4, 5, 6) 8888.413364 9339.226056 450.812692

(5, 6, 7) 8979.481643 9021.974507 42.492864

(6, 7, 8) 8843.769424 9229.792986 386.023562

(7, 8, 9) 8519.538627 9153.381768 633.843141

(8, 9, 10) 8328.177821 8439.595207 111.417386

(2, 3, 4, 5) 9440.478266 9977.768101 537.289835

(3, 4, 5, 6) 9449.249861 9310.562550 -138.687311

(4, 5, 6, 7) 9494.534061 9776.934586 282.400525

(5, 6, 7, 8) 9378.801319 9582.570731 203.769411

(6, 7, 8, 9) 9153.699375 9371.976896 218.277521

(7, 8, 9, 10) 8960.664078 9264.044350 303.380272

(2, 3, 4, 5, 6) 9824.970142 10731.551441 906.581298

(3, 4, 5, 6, 7) 9913.180390 10469.584261 556.403871

(4, 5, 6, 7, 8) 9802.216136 10278.987066 476.770930

(5, 6, 7, 8, 9) 9624.691801 10007.094243 382.402442

(6, 7, 8, 9, 10) 9476.898664 9953.910466 477.011802

(12) 6722.019504 6589.541613 -132.477891

(13) 5876.105482 5782.412761 -93.692721

(14) 6644.163897 6713.277376 69.113480

(15) 6726.669374 6879.733407 153.064033

(16) 6631.546961 6827.397901 195.850940

(17) 7188.894622 7781.590979 592.696356

(18) 6971.432413 NaN NaN

Continued on next page
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Sensor Group Lognormal Model Difference

(12, 13) 7279.070223 7384.582621 105.512398

(13, 14) 7667.674507 7936.763552 269.089044

(14, 15) 7687.887747 8094.220382 406.332635

(15, 16) 8093.113335 8324.562822 231.449488

(16, 17) 8082.186279 8430.295575 348.109295

(17, 18) 8157.556223 8755.015071 597.458848

(12, 13, 14) 8201.288497 8552.477523 351.189026

(13, 14, 15) 8294.558679 9032.536325 737.977647

(14, 15, 16) 8562.843790 9433.897149 871.053359

(15, 16, 17) 8849.409436 9512.502706 663.093270

(16, 17, 18) 8722.291724 9508.861537 786.569812

(12, 13, 14, 15) 8701.000442 9836.005799 1135.005357

(13, 14, 15, 16) 8927.582001 9757.260249 829.678249

(14, 15, 16, 17) 9174.479403 9756.748822 582.269419

(15, 16, 17, 18) 9251.391537 9973.229226 721.837689

(12, 13, 14, 15, 16) 9219.588584 10098.345775 878.757191

(13, 14, 15, 16, 17) 9428.916595 10582.607773 1153.691178

(14, 15, 16, 17, 18) 9522.924462 10567.748367 1044.823905
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Part II

Predictive Inspection and

Maintenance Scheduling for

Railway Tracks
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Chapter 4

Literature Review

Literature has introduced several methods for the problems of determining the num-

ber of defects on a track, and scheduling railway inspections. However, these methods

face at least one of several shortcomings listed below.

Defect Prediction

1. they use data that is often unavailable or costly to gather — and therefore are

infeasible for most practical applications;

2. they are too simplistic — and therefore neglect important features that are

easily accessible.

Maintenance and Inspection scheduling

1. they assume the number of defects to be deterministic — and therefore fail to

account for the stochasticity of defect generation;

2. they include too many constraints in their model — and therefore can be in-

solvable with the currently available computers.
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A noteworthy additional flaw not yet extensively acknowledged in the literature

is the absence of integration methods between solutions for each problem. This inte-

gration is particularly relevant because track defects are one of the major causes of

derailments. This chapter discusses various approaches proposed in the literature.

4.1 Railway Defect Prediction

Earlier studies use summary statistics, particularly standard deviation, to evaluate

the risk of defects or derailments (Hamid and Gross, 1981). However, these summary

statistics are not constant over time and depend on conditions such as season, and

load. New studies implement complex models for more accurate reflections of real-

world conditions that benefit from probabilistic and stochastic approaches.

A portion of the more recent literature uses classification and regression-based

data analysis to predict defects. Sharma et al. (2018) develop a Track Quality Index

(TQI) based Markov Model. They divide tracks into 0.1-mile segments and compare

Random Forests (RF), Logistic Regression (LR) and Support Vector Machines (SVM)

models that predict a binary defect/no defect outcome. Martey et al. (2017) attempt

to predict geometric defects in a big data environment. However, since analyzing big

data has execution time constraints, they combine tracks so that similar tracks can be

studied together. They also employ Principle Component Analysis (PCA) at every

cluster to observe the determinants that cause defects and then predict the number

of defects via Linear Regression, Random Forests, and Support Vector Regression

techniques. In both studies (Sharma et al., 2018; Martey et al., 2017), Random

Forests outperforms other methods.

Moridpour et al. (2017) develop a regression-based model that implements the

degradation level of light rail tracks using Artificial Neural Networks (ANNs). A sim-

ilar study conducted by Güler (2014) predicts degradation due to geometric defects
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using ANN. While Güler (2014) prioritize geographic and train-related inputs, Morid-

pour et al. (2017) include urban and traffic-related inputs. Both authors report that

Artificial Neural Networks provide a success rate greater than 70%. One limitation of

such approaches is that they require detailed data, without which the performances

decrease drastically.

4.2 Railway Maintenance and Inspections

The scheduling of inspections and maintenance has been described as a complex,

multi-variate problem of significant importance (Fan et al., 2011; Chen et al., 2014;

Peralta et al., 2018; D’Ariano et al., 2019; Ghofrani et al., 2018). Previous studies

attempt to solve this problem by various adaptations of well-known optimization prob-

lems such as the Vehicle Routing Problem (VRP) or the Traveling Salesman Problem

(TSP). However, most studies assume that defects are deterministically known. They

fail to account for the stochasticity of where and when defects occur and thus disre-

gard the prediction problem.

Heinicke et al. (2015) characterize maintenance scheduling as a multi-depot VRP

with time windows. Fan et al. (2011) also consider a VRP, but only include trans-

portation (travel) costs. Despite the effort in modeling, Fan et al. (2011) and Heinicke

et al. (2015) do not provide algorithms to solve the model. They recognize that the

models are NP-hard, thus making a polynomial run time to reach the optimal solution

difficult to achieve.

Following the adaptations of well-known optimization problems, Camci (2014)

coins the term Traveling Maintainer Problem that represents a scheduling TSP with

repair, and inspections costs added to travel costs. Pour et al. (2018) construct a

Mixed Integer Programming model to assign teams according to their capabilities

near-optimally. A Lagrangian relaxation-based solution for this model is developed
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by Luan et al. (2017). A more extensive study is then conducted by Lidén and Joborn

(2017), who further incorporate the railway traffic into inspection and maintenance

scheduling. Nonetheless, all of these studies mention that the large number of vari-

ables results in considerable execution time due to the NP-hardness of the mathemat-

ical programs. Hence, heuristics and metaheuristics are frequently implemented to

obtain a feasible schedule (Camci, 2014; Andrade and Teixeira, 2016; Khalouli et al.,

2016), but that is not guaranteed to be optimal. For some modeling approaches,

column generation methods have proven successful in finding exact optimal solutions

for large-sized problems (Nishi et al., 2011; Lannez et al., 2015).

The incorporation of risk-based qualitative data into the maintenance schedul-

ing problem has also been considered in the literature. Jiang et al. (2003) employs

multiple degradation states with associated probabilities of failure to decide on the

maintenance schedule. This work is further developed by Consilvio et al. (2016), who

helps determine threshold levels to achieve a tolerable degradation range. Recently,

Wang et al. (2018) break down failure consequences into fuzzy linguistic classes from

negligible to catastrophic, and qualify failure likelihood from very low to very high.

In a recent review of railway transportation, Ghofrani et al. (2018) classify railway

maintenance as: a) condition-based, b) preventive, and c) corrective maintenance.

Predictive maintenance is embedded within condition-based maintenance. According

to Ghofrani et al. (2018), literature mostly deals with track defects using corrective

maintenance, and scheduling is mostly planned in cases when defects are already

known. Moreover, condition-based maintenance is mostly exploited for vehicle main-

tenance but rarely applied to tracks. Turner et al. (2016) provide an extensive litera-

ture review on planning and scheduling of railway traffic in Europe, also discussing a

few studies that incorporate maintenance activities into transportation planning and

scheduling.
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Chapter 5

Railways Track and Geometry

Defect Predictions

Defects in a railway system are a measure of track and railway quality. Hence, various

studies implemented applications focused on qualifying track quality based on the

number and size of defects present. This chapter presents a new approach to defect

prediction that builds from the literature but allows for a more direct application.

These advancements are also used in later chapters to help decision-makers better

schedule inspections and maintenance in tracks.

In rail terminology, geometry defects are horizontal and vertical misalignments in

the track (Sharma et al., 2018). In contrast, rail defects include track wear such as

corrosion or impairments such as broken rails or cracks (Clark, 2004). Some prior

work classifies defects as yellow or red, depending on their severity (He et al., 2015;

Cárdenas-Gallo et al., 2017). Yellow defects are minor defects, such as superficial

cracks or buckling, and satisfy the Federal Railroad Administration (FRA) standards.

On the other hand, red defects are significant defects (e.g., broken rails) that do not

meet FRA standards and need immediate repair. In this dissertation, we classify

defects as yellow or red, following the literature.
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Next, we will describe the data that will be later used in the examples.

5.1 Preprocessing Rail Data

Most rail companies gather data to understand the behavior of their processes. This

data includes information on defects and inspections. However, many companies

may struggle to maintain the accuracy of such data due to human interaction in data

registration, and the lack of enforced standards. Furthermore, some companies also

struggle with the availability of detailed data for prediction and scheduling. Therefore,

there is a trade-off between the benefits of process optimization through data analysis

and the cost of obtaining accurate and detailed data. In this section, we explain faulty

data treatment and noise filtering while maintaining an acceptable level of data for

modeling purposes.

We use rail data gathered over two years (2016 and 2017). The defect database

includes a list of all rail and geometry defects found in each segment of the network.

It details the time and the location in which the defect was found, and the type

and severity (yellow or red) of the defect found. The inspection data include the

type of inspection, the segment inspected, and the time of inspection. However, the

inspection data do not provide the exact beginning and end of inspection locations.

Moreover, segments vary from 300m to 60km in length, with an average of 17 km.

Figure 2 displays spatio-temporal defect observations on a particular segment. The

horizontal axis represents the whole length of the rail segment, while the vertical axis

represents time. The blue dots on the vertical axis correspond to the inspections.

Finally, a third database contains the daily load information for each segment. Load

information encompasses the total gross tonnage endured by the segment, including

the weight of wagons. The number of wagons transported or wheels in contact with

the track were not available.
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Figure 5.1: Spatiotemporal Defect Observations.

The defect data do not contain records for the corresponding inspection and vice

versa. To better assess the distribution of the number of defects per inspection, each

defect (rail or geometry) found in the defect dataset is matched to a corresponding

inspection. This matching is one-to-many: a defect can be found during only one

inspection, but an inspection can find multiple defects. Through this process, we

achieve 91% match, losing only 9% of the defect data. For each inspection, we match

the defects located in the inspected segment, found through the specific inspection

type, and registered during the time of the inspection. We add a buffer of no more

than one day to represent the delay between the time the inspection outcomes record-

ing and the inspection execution time. Unmatched data may represent a human error,

as well as data systems’ mismatches. Faulty data, such as inspections with negative

execution times, or with negative inter-arrival times, are also removed, along with the

defects that match them.
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The raw data contains more than 26 000 inspections and 82 000 defects. Broken

rails are one of the most commonly encountered red defect types (Figure 5.2). More-

over, they are the defect most often rated as red: around 96% of broken rails are

classified as red. Table 5.1 shows the defect types that are most commonly rated as

red. Note that the visual and ultrasound cracks usually precede broken rails.

Figure 5.2: Distribution of Defects Classified as ‘Red’ per Type of Defect.

Defect Type Percentage of Defects from each

type classified as ‘red’

Broken rails 95.97%

Visual Cracks 58.05%

Ultrasound cracks 52.52%

Warping 39.88%

Buckling 32.25%

Table 5.1: Defect types with highest rates of red defects.
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5.2 Non-linear Regression Models for Defect Pre-

diction

Literature agrees that predicting the number of defects in a track is mostly a non-

linear problem. Most authors propose closed-form equations for prediction, but ad-

vanced ‘black-box’ techniques are succeeding them. Machine-learning approaches,

such as RF and ANNs, have recently been employed for defect prediction (Güler,

2014; Moridpour et al., 2017; Sharma et al., 2018), but very little has been done on

the integration of such prediction models with inspection and maintenance scheduling

policies. Furthermore, many studies employ features that are often not available to

rail companies. In this study, we focus on methods that use widely available data.

In chapter 6, we integrate these approaches into the scheduling model to increase the

efficiency of inspection and maintenance scheduling policies. In this section, we use

a conventional methods to predict the number of yellow and red defects: Random

Forests (Sharma et al., 2018).

The related data used to generate the input features are commonly available or

easy to gather, such as the current month and season, and the gross load endured

since the previous inspection. In both methods, the set of all features contains a)

time in days since the last inspection, b) the gross load endured by the tracks since

the last inspection, c) month, d) season, and e-f) the number of yellow and red defects

found in the previous inspection.

Random Forest (RF) is an ensemble regression model that combines independent

regressors, namely decision trees. Each decision tree is constructed by randomly se-

lecting a subset of features from the set of all features, and by using the bootstrap

aggregation technique. The output is determined by averaging the outputs of all de-

cision trees. The use of multiple trees reduces the chance of over-fitting and decreases
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the variance (Friedman et al., 2001). Each tree is generated by sampling the training

data with replacement, and by using a randomly generated set of five features from

the seven possible features. Then, trees are grown with the criterion of using the

maximum impurity gain from all candidates to split branches. The impurity of each

node is calculated with the Gini’s diversity index to determine the impurity of each

node (Breiman et al., 1984). We grow 300 trees in this modeling approach.

Yellow defects are more common than red defects, and the prediction model is

run separately for both. The inputs of the model, as mentioned above, include the

number of red and yellow defects the previous inspection has found; hence, the inputs

are inspection related. The number of inspections is the same for both red and yellow

defects; any inspection can find both types. Thus, red and yellow defect prediction

models have the same number of inputs. The prediction model determines different

structures for the relationship between the inputs and the outputs for red or yellow

defects.

Finally, since the results of the predictions are real numbers, we use Multinomial

Ordinal Regression (MRO) to assign each prediction to its corresponding number of

defects.

5.2.1 Results

In this section, we provide the results of using the Random Forest algorithm to

predict rail defects of different severity levels. We use the standard loss function that

maximizes precision by analyzing mean absolute error and mean squared error. The %

exact match represents the precision of the model, namely the percentage of testing

data whose predictions perfectly matched the corresponding label. However, some

risk-averse decision-makers may consider false negatives worse than false positives.

For these cases, we propose a new formulation in Section 5.2.2.
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Cluster MAE MSE E[over] E[under]

1 0.40 0.59 1.50 1.28

2 0.51 0.82 1.44 1.44

3 0.53 0.77 1.31 1.31

4 0.41 0.62 1.88 1.28

Table 5.2: Yellow Defects - Random Forest Error Results.

This method exhibits a small error rate that matches the one in literature, despite

the fewer and more commonly found features used. Sharma et al. (2018) have recently

predicted the existence of a geometry defect at an accuracy rate of 75-77%. Cárdenas-

Gallo et al. (2017) apply the red/yellow distinction to railway defects, and their

accuracy is also around 80%. Due to the high likelihood of inspections finding few to

no defects, the models tend to undershoot more often than overshoot.

Table 5.2 displays the prediction of yellow defects during a walking inspection (0,

1, or 2 or more defects). The metrics Mean Absolute Error and Mean Squared Error

are displayed in the number of defects per inspection, and the round numbers on

the expected overestimation are caused by a few overestimates. Predicting a more

granular number of defects demands more data points than are available in this study,

but an increase in granularity is recommended as more data become available. 80%

of the data is used to train the model, with the remaining 20% used for testing.

The third and fourth columns describe the expected over or under-predicted number

of defects. The average number of over-predicted defects is significantly skewed by

extremely infrequent data points with no defect when it is predicted to have two

defects. Note that over-prediction of defects occurs in less than 2% of all inspections,

except in one cluster, where it occurs in around 4% of inspections.

Figures 5.3a and 5.3b depict the average accuracy for all clusters during one run.
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The overall accuracy of perfect (spot-on) predictions for testing data is around 82%

for red defects and 62% for yellow defects on average. Yellow defects are harder to

predict due to their high variance in the data. Given the risk-averse characteristics

of the problem, it may be preferable to over-predict rather than to under-predict if

one considers over-predictions acceptable.

(a) Red Defects - RF Prediction Results. (b) Yellow Defects - RF Prediction Results.

Figure 5.3: Underestimation, Overestimation and Exact Prediction Rates.

5.2.2 Risk-Averse Adaptation

In risk-averse screening systems, reducing missed observations is more critical than

removing unnecessary screenings (Thomas et al., 2001). In railway systems, reducing

missed observations refer to an overlooked rail or geometric defects on a rail segment,

whereas an unnecessary screening refers to maintenance or inspection done in a defect-

free rail segment. The risk of derailment and the possible consequences that stem

from missing a defect may be more costly than the cost of ensuring that a segment

remains defect-free. Hence, weights for underestimations become stricter than in

overestimations in such cases.

Results obtained by RF tend to favor under-shooting due to the class imbalance

of the data. However, decision-makers may choose to weight under-shooting more
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heavily, since missing a defect may have worse consequences than over-shooting. The

logistic regression results provide the confidence level of the model for each possible

prediction option. The standard selection chooses the prediction with the highest

confidence level, assuring a higher proportion of exact matches.

Risk-averse decision-makers may want to change the way the model chooses the

prediction by going iteratively from the maximum possible number of defects pre-

dicted to the minimum, summing the confidence levels each time. Once a certain

threshold is obtained, the number of defects is the prediction. Figure 5.4 depicts

how proportions of exact matches, under-shooting, and over-shooting change for each

threshold in one particular group of segments when using RF. It suggests that a steep

increase in over prediction is the trade-off for decreasing under prediction.

(a) Different thresholds for red defects. (b) Different thresholds for yel. defects.

Figure 5.4: Risk-Averse Results when Changing Model Thresholds.
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Chapter 6

Railways Inspection and

Maintenance Scheduling

Most authors assume a known list of defects across the network before scheduling

maintenance activities. However, when this information is not known with certainty,

one has to resort to stochastic methods to find the optimum inspection policies. In

this section, we propose a Markov decision process (Ross, 1992; Puterman, 1994;

Bertsekas, 2007) model that integrates the stochastic nature of defect occurrence into

scheduling. Through this model, one can determine the optimal inspection policy

for a specific segment over an infinite time horizon. An assumption used is that

all inspections are performed at the beginning of the day, and all defects observed

during the inspection are repaired instantaneously. New defects might arise during

the day after the inspection. Hence, one can model the segment deterioration state

as a discrete time Markov process that depends on the previous state and the action

taken in that state. Then, the Markovian decision problem to determine the sequence

of actions that minimize the discounted cost incurred over an infinite horizon becomes

ν(s(0)) = min
a(t)∈A

E

[ ∞∑
t=0

αtc(s(t), a(t))| s(0)
]
, (6.1)
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where ν(·) denotes the optimal total discounted cost, i.e., value function, starting

in state (·), s(t) ∈ S denotes the segment state at time t with S representing the set of

states, a(t) ∈ A denotes the binary variable representing if the segment is inspected or

not at time t with A representing the set of actions, and c(·, ·) denotes the expected

cost incurred when the state and action information are given. α represents the

discount factor, and the notation E[·|s(0)] represents the conditional expectation of

the discounted cost incurred over the infinite horizon given the initial deterioration

state of the segment. Later on, we generalize our approach to the case of multiple

segments under a constraint on the availability of inspection teams.

6.1 Dynamic Programming Formulation

A direct method to generate the optimal policy for equation 6.1 is to use the following

dynamic programming equation (Ross, 1992; Puterman, 1994),

ν(s) = min
a∈A

{
c(s, a) +

∑
s′∈S

αν(s′) · p{s′|s, a}
}
,∀s ∈ S, (6.2)

with p denoting the transition kernel. ν(s) represents the expected discounted cost

to go starting in state s from the current period onwards under the optimal policy.

Let c(s, a) correspond to the expected cost of inspection and repair if the action is

‘inspect’, and the expected cost of the risk of derailment otherwise. Since the state

space, S, and the action space, A, are finite, c(s, a) is uniformly bounded. p{s′|s, a}

denotes the probability of moving to a new state s′, given the current state s and

the action taken in the current period, a. These probabilities are estimated from the

data. In this problem, we fix the discount rate as α = 0.95.

Let us define the state of the segment as a composition of the current level of

rail deterioration and the load during the next period. The rail deterioration level,

or state, can be 1, when no red or yellow defects are present; 2, when no red defect
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is present; and 3, when at least one red defect is present. Load is also separated

into two states as high and low, where the cut-off is the median load endured by

the whole network, obtained from data. There are, therefore, six possible states:

(1, L), (2, L), (3, L), (1, H), (2, H), (3, H), denoted as 1, 2, . . . , 6, respectively.

After filtering the inspection data by one day inter-inspection time within each

cluster, the transition matrix for the action ‘inspect’ is obtained from the frequency

of each state change. These normalized frequencies correspond to the maximum

likelihood estimators of the transition probabilities (Bartlett, 1951; Anderson and

Goodman, 1957).

State 1 2 3 4 5 6

1 0.5266 0.1339 0.1072 0.1518 0.0447 0.0358

2 0.1772 0.2910 0.1899 0.2278 0.1013 0.0128

3 0.2058 0.1912 0.2793 0.1912 0.0148 0.1177

4 0.0981 0.0785 0.0719 0.4705 0.2026 0.0785

5 0.0556 0.1805 0.0695 0.3471 0.2916 0.0556

6 0.2352 0.0590 0.1471 0.3233 0.0590 0.1765

Table 6.1: Transition Matrix for the action ‘inspect’.

One methods is used to validate the transition matrix given in Table 6.1:

Correlation with the two-step matrix : A validation method used by Sharma et al.

(2018) is based on the two-step state transition matrix, P2. If the one-step transition

matrix is P , then the correlation between P 2 and P2 must be high. In our case, the

correlation is found to be strong at level 0.8633.

This methods indicates the validity of the transition matrix for ‘inspect’, which is

presented in Table 6.1. We use this transition matrix as a starting point to determine
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State 1 2 3 4 5 6

1 0.5266 0.1339 0.1072 0.1518 0.0447 0.0358

2 0.0000 0.6605 0.1072 0.0000 0.1965 0.0358

3 0.0000 0.0000 0.7677 0.0000 0.0000 0.2323

4 0.0981 0.0785 0.0719 0.4705 0.2026 0.0785

5 0.0000 0.1765 0.0719 0.0000 0.6731 0.0785

6 0.0000 0.0000 0.2485 0.0000 0.0000 0.7515

Table 6.2: Transition Matrix for the action ‘do not inspect’.

the transition matrix for the action ‘do not inspect’.

Let us look at the transition matrix for the action ‘inspect’ separately for high and

low load (only considering the 3 deterioration states). The first row of the transition

matrix for the action ‘inspect’ represents the probability of no red and no yellow

defects happening, given as P̄red and P̄yellow, respectively, the probability of no red

defects happening and some yellow defects happening (Pyellow), and the probability of

at least one red defect happening (Pred), given as (P̄red · P̄yellow, P̄red ·Pyellow, Pred). We

use these parameters to generate the transition matrix for the action ‘do not inspect’.

The transition probability for the action ‘do not inspect’ will be an upper trian-

gular matrix, because no repairs are performed when no inspection happens. The

first row is composed of (P̄red · P̄yellow, P̄red · Pyellow, Pred), which is the same as the

transition matrix for the action ‘inspect’. The second row is formed by (0, P̄red, Pred),

because the system remains in state 2 if no red defects are generated, and moves

to state 3 otherwise. Finally, the third row is formed as (0, 0, 1). With the transi-

tion probability for the action ‘do not inspect’ determined for high and low load, we

can rebuild the 6-state transition matrix through algebraic manipulations using the
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3-state low load transition matrix, the 3-state high load transition matrix, and the

2-state load transition matrix. The matrices obtained are shown in Tables 6.1 and

6.2. These matrices are based on the data and may not represent the true tables. A

structured approach on how to continuously update these matrices with the addition

of incoming data, while still optimally choosing segments to inspect is presented in

section 6.2.

When a = 0, c(s, a) can be defined as the risk cost dependent on the number of

defects existing at the beginning of the current period and the likelihood of new defects

occurrence. This cost can be computed by multiplying the cost of a derailment by the

probability that a derailment will occur given the number of defects present. Using

Bayes’ rule, the probability of a particular defect causing a derailment, p{der.|def.},

can be expressed as:

p{der.|def.} = p{def.|der.} · p{der.}
p{def.} .

Given a derailment, the probability of its being caused by a certain defect, namely

p{def.|der.}, is calculated by Liu et al. (2012). When comparing the data provided

in Liu et al. (2012) with our data, we infer that the probability of a derailment being

caused by a red defect is 22.6% and the probability of a derailment being caused by

a yellow defect is 9.6%.

Furthermore, Anderson and Barkan (2005) derive the probability of a derailment,

depending on the length of the train. On average, they report the probability of a

train derailing as p{der.} = 0.720 · 10−3. Finally, the probability of defect occurrence

p{def.} is given by Pred and Pyellow that are obtained from the transition matrix for

the action ‘inspect’.

Therefore,

p{der.|red defect} = 22.6% · 0.720 · 10−3

Pred
,
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p{der.|yellow defect} = 9.6% · 0.720 · 10−3

Pyellow
.

The cost of taking action ‘do not inspect’, c(s, 0), is just the probability of at

least one of the defects causing a derailment. It can be obtained from the equation

below, where cder represents the expected derailment cost, and R and Y are random

variables denoting the number of red and yellow defects present, respectively:

c(s, 0) = cder·
∑
r,y

[
1−
(

(1−p{der.|red def.})r·(1−p{der.|yel. def.})y
)]
p{R = r, Y = y|s}.

In this study, the joint distribution conditioned on the current state, p{R = r, Y =

y|s} ∀ r, y, is obtained empirically from the data. Finally, we multiply the cost by a

factor of 1.6 for the states containing high load, accounting for the higher impact a

derailment could bring, i.e. c(i,H, 0) = 2c(i, L, 0) for i = 1, 2, 3.

We assume that other costs, such as damage to the image of the company, or lives

lost are included in the cost of a derailment. Such costs can be adapted to account

for different risk levels.

Furthermore, when a = 1, c(s, a) includes the inspection and repair costs. For

purposes of this research, we assume the inspection cost to be linearly dependent on

the inspection length, and the repair cost to be an increasing function of the expected

number of defects. Hence, it is also increasing in the state.

c(s, 1) = E[$ insp.] +
∑

i={red,yel.}
E[# def.i|s] · E[$ rep./def.i].

In this equation, the cost of inspection accounts for crew time, equipment used,

and delays caused, and the cost of repair accounts for parts, manpower, and delay

costs. The expected number of defects can be estimated from the regression models

described in Section 5. Each segment may have specific cost parameters, and should,

therefore, have a segment-specific policy to optimize the scheduling as well.

The solution for this Markov decision process (MDP) obtained from the dynamic

programming equation provides the optimal action for every state. However, MDPs
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assume the knowledge of the current state to be able to forecast the future states.

Consequently, the “state” definition should include all the information one needs to

forecast the next state. In the case of segments that were not inspected during the

previous period, the decision maker faces the problem of not being able to observe

the current state. But, in the inspection problem, the state information is available

with a time delay, since each segment is observed within a finite time interval.

In order to provide the full state information, we augment the state space by the

number of days since last inspection (Bertsekas, 2005). If there was an inspection

yesterday, the inspection revealed red defects, and the load observed was High, then

the augmented state becomes s = (3, H, 0). We limit the time delay to at most 9 days

with no inspection, since that is the maximum delay we have observed in the data.

The new state space is, therefore, the set of all combinations of deterioration levels

(1,2 or 3), load information (low or high), and days since the state was last observed

(0-9), i.e., s = (i, j, k), for i = 1, 2, 3, j = H or L, and k = 0, 1, . . . , 9. The cardinality

of the state space, |S|, is 3 · 2 · 10 = 60. Then, the new transition matrices are,

State (·, ·, 0) (·, ·, 1) (·, ·, 2) · · · (·, ·, 8) (·, ·, 9)

(·, ·, 0) Pinsp 0 0 · · · 0 0

(·, ·, 1) Pinsp · Pnot 0 0 · · · 0 0

(·, ·, 2) Pinsp · P 2
not 0 0 · · · 0 0

· · · · · · · · · · · · · · · · · · · · ·

(·, ·, 8) Pinsp · P 8
not 0 0 · · · 0 0

(·, ·, 9) Pinsp · P 9
not 0 0 · · · 0 0

Table 6.3: Augmented P-Matrix for the action ‘inspect’,
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State (·, ·, 0) (·, ·, 1) (·, ·, 2) · · · (·, ·, 8) (·, ·, 9)

(·, ·, 0) 0 Pnot 0 · · · 0 0

(·, ·, 1) 0 0 P 2
not · · · 0 0

(·, ·, 2) 0 0 0 · · · 0 0

· · · · · · · · · · · · · · · · · · · · ·

(·, ·, 8) 0 0 0 · · · 0 P 9
not

(·, ·, 9) 0 0 0 · · · 0 Pbound

Table 6.4: Augmented P-Matrix for the action ‘do not inspect’.

where Pinsp and Pnot are the transition matrices displayed in Tables 6.3 and 6.4.

Pbound is the boundary matrix with all states transitioning to state 6 with probability

1 ([0,0,0,0,0,1](6x6)). The new cost vectors also need to be updated. The cost

of the action ‘do not inspect’ for state s, is the same as before, but accounts for

the expected next state. For instance, if the cost vector of not inspecting states

s ∈ {1, 2, . . . , 6}, where s contains the deterioration and load information is cnot =

(c(1, 0), c(2, 0), . . . , c(6, 0))T , the cost vector associated with (s, t), where t represents

the time since the last inspection, is P t
not · cnot. The extended cost of inspecting is

constructed similarly across all states (s, t).

6.1.1 Optimal Policy

The solution to equation 6.2 reveals that a threshold-type policy is optimal. In fact,

the results inform the decision maker how many days should elapse before inspecting

in case the current state has an optimal action of ‘do not inspect’. We present two

computational examples; the first assumes costs taken from the literature, and the

latter uses a higher inspection cost to exemplify how a more diverse policy may arise.



101

The first experiment is performed for a segment assuming that the cost of a de-

railment is $1.5M, and the cost of an inspection is $1500 (assuming a 10km inspection

at $150/km (Soleimanmeigouni et al., 2016; Transportation Economics and Manage-

ment Systems Inc, 2018)). Repairs are assumed to cost $1500 for red defects and

$1300 for yellow defects (He et al., 2015). All red defects require immediate repair.

Analyzing the data, we have that both red defects and some yellow defects require

immediate repair, while 80% of yellow defects that are categorized as superficial may

not. Hence, we assume that only more severe yellow defects will be repaired.

In the first setting (with the inspection cost of $150/km), the optimal MDP so-

lution is to inspect the segment right away, no matter in which state the segment

currently resides. This suggests our data contains segments that are prone to defects.

However, we know that it may not always be feasible for companies to inspect every

segment daily. In the case of limitations such as that, we provide an approach for the

constrained case in the next section.

For the second experiment, we increase the inspection cost to $5000 ($500/km) so

that we can visualize a more diverse optimal policy. In this scenario, the threshold

type policy prescribes an inspection rule in such a way that it is optimal to inspect

every time the segment has red defects under high load; to wait 1 day when the system

has i) red defects and is under low load, or ii) yellow or no defects and is under high

load; and to wait 3 days when the system has yellow or no defects and is under low

load (see Figure 6.1). It should be noted that each country or railway company may

have different regulations on the inspection frequency. In case of regulation violations,

the scheduling problem becomes a constrained problem that could be solved using

the Linear Programming (LP) formulation of discounted MDPs given in Kallenberg

(1989).

The results are compared with a benchmark policy to measure the efficiency of
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1,L 2,L1,H 2,H 3,H3,L

INSPECTWAIT 4 DAYS BEFORE
INSPECTING AGAIN

WAIT 1 DAY BEFORE
INSPECTING AGAIN

STATE

ACTION

WAIT 5 DAYS BEFORE
INSPECTING AGAIN

Figure 6.1: Inspection Scheduling Policy Representation from costs described in sec-

tion 6.1.1 and α = 0.95.

the policy obtained by MDPs and are demonstrated in Figures 6.2a and 6.2c. We

construct our benchmark policy based on the inspection schedule guidelines provided

with the dataset. Inspections are performed twice a week on major segments and

once a week on the other segments. Therefore, for the benchmark policy, we define

a 7-day wait for states with low load (1, 2 and 3), and a 4-day wait for states with

high load (4, 5, and 6). Note that neither the number nor the type of defects found

previously have an impact on the policy for the benchmark policy.

Expected gains are on the magnitude of the several of thousands of dollars per year

for each track segment, thus, showcasing the importance of reviewing how scheduling

is currently being assessed. Percent-wise, the benchmark policy is approximately

100% and 23% more expensive than the policy resulting from the MDP approach for

the respective cases in which inspection cost is set to $150/km and $500/km.

Figures 6.2b and 6.2d depict the results when the discount factor is set to α = 0.5.

It represents the short term savings by shifting to the MDP policy from the benchmark

policy. As expected, the values are a lot more dependent on the initial state, as the

discount factor has a higher impact on the convergence. The benchmark costs are

approximately between 12% and 35% more expensive than the MDP policy in the
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(a) Inspection cost=$150/km, α = 0.95 (b) Inspection cost=$150/km, α = 0.5

(c) Inspection cost=$500/km, α = 0.95 (d) Inspection cost=$500/km, α = 0.5

Figure 6.2: Values using the Benchmark Policy and the Optimal Values Obtained

from the MDP Formulation.

scenario considering the inspection cost to be $150/km and between 2% and 18% in

the scenario for which the inspection cost is set to $500/km .
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6.2 Segments as Restless Bandits

The results obtained in Section 6.1 provide decision makers with a detailed policy

they should follow when deciding whether to inspect or not to inspect a segment.

However, crew limitations may cause the policy to be inadmissible. In this case, the

problem can be formulated as the following constrained mathematical program

lim
N→∞

min
{
E

[
N∑
t=0

αt
n∑
i=1

ci(si(t), ai(t))
]}

s.t.
n∑
i=1

ai(t) ≤ m, t ∈ {1, 2, ..., N}

ai ∈ {0, 1}∀i,

where si(t) denotes the state of the ith segment at time t, ai(t) denotes the binary

variable representing if segment i is inspected or not at time t, and ci(·, ·) denotes the

expected cost incurred at segment i when the state and action information are given.

Bandit problems are mathematical models to optimally allocate limited efforts in

various competing projects so that maximum reward or minimum cost is achieved

under uncertainty (Gittins et al., 2011). Originally, the problem assumes no change

of state and zero rewards or costs when the passive action is taken. In the inspection

scheduling problem, this is not the case. A variation of the original bandit problem,

called the restless bandit problem, allows for such evolution of state and passively re-

ceived reward or cost (Gittins et al., 2011). Furthermore, this framework continuously

updates the transition matrices, maintaining and improving the system robustness.

Assume there are n segments to be inspected, and each segment has an initial

augmented state si ∈ S, with |S| = 60. Each state represents the level of deterioration

of the rail segment at the beginning of the period and the time passed since the last

inspection, as described in Section 6.1. Let us further assume that there are m crews

available to inspect n segments. Other parameters include a, a vector of actions
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for all states, and α ∈ [0, 1], the discount factor. Finally, let us assume the initial

probability transition matrices for the actions ‘inspect’ and ‘do not inspect‘ are the

ones obtained in section 6.1. If m, the number of crews available, is larger than n,

all segments can be inspected and the problem becomes unconstrained. On the other

hand, if m < n, this problem can be characterized as a restless bandit problem.

The restless bandit formulation chooses the best n of m competing segments

optimally by using a priority index called Whittle index if the problem is indexable.

We now prove the indexability of this scheduling problem.

The constraint on the crew number can be rewritten as

∞∑
t=0

αt
n∑
i=1

ai(t) ≤
m

1− α, t ∈ {1, 2, ..., N}.

Relaxing the activation constraint, we write the Lagrangian dual function as

L(λ) = min
ai

{
E

[ ∞∑
t=0

αt
n∑
i=1

ci(si(t), ai(t)) + λ ·
( ∞∑
t=0

αt
n∑
i=1

ai(t)−
m

1− α

)]}

= min
ai

{
E

[ ∞∑
t=0

αt
n∑
i=1

(
ci(si(t), ai(t)) + λai(t)

)]}
− λ

(
m

1− α

)

= min
ai

{ ∞∑
t=0

αt · E
[

n∑
i=1

(
ci(si(t), ai(t)]) + λai(t)

)]}
− λ

(
m

1− α

)

s.t. ai ∈ {0, 1}∀i.

This problem can be decoupled for each segment, disregarding the last term,

which is a constant.

Ci(λ) = min
{
E

[ ∞∑
t=0

αt(ci(si(t), ai(t)) + λai(t))
]}

s.t. ai ∈ {0, 1}∀i.

The set of all states for which it is optimal to choose a = 0 when λ is fixed

increases monotonically as λ increases. When λ = 0, all actions should be

‘inspect’ (based on the result from Section 6.1). As λ increases, there is a
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point at which it is better not to inspect. Therefore, this problem is indexable

(Gittins et al., 2011). The Whittle index is defined as

Wi(si) =

inf
{
λ :E

[
ci(si, 0) +

∞∑
t=1

αt(ci(si(t), ai(t)) + λ · ai(t))
]
<

E

[
ci(si, 1) + λ+

∞∑
t=1

αt(ci(si(t), ai(t)) + λ · ai(t))
]}
. (6.3)

Inspection decisions involve a risk-based approach that incorporates the trade-

off between the risk cost and the repair cost. The Whittle index, a well-established

measure for restless bandits, ranks the importance of this trade-off.

To compute the Whittle indices from equation 6.3, we solve several MDP for

iteratively increasing λ. Because the cardinality of both the state and action spaces

is finite, value-iteration or policy-iteration algorithms can be used to find the optimal

cost function for each MDP efficiently (Bertsekas, 2007). After calculating an index

for each segment in the candidate segments as identified in Section 6.1, and sorting

them from the highest to lowest, the decision maker should pick the first m segments

with the highest indices for inspection. Finally, the transition kernels are updated for

these m segments using the maximum likelihood estimation.

6.2.1 Example

We provide a simplified example in which 5 segments from the same cluster are

being considered for inspection, but only two crews are available. Of course, this

methodology also applies to more general cases in which segments come from different

clusters.

The cost parameters are assumed to be the same as the ones given in Section 6.1.1,

but with minor perturbations to characterize the particularities of each segment. In
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this scenario, inspections in segments B, and C cover 10 km of their length, while

inspections in segments A, D, and E cover 7 km of their length at the rate of $150

per km inspected.

Segments have been inspected t days ago and their last observed state is described

in Table 6.5. Suppose that the initial belief for the transition matrices of this cluster

is that they follow the ones in Figures 6.1 and 6.2.

Segment A B C D E

Derailment ($) 2M 2M 2M 1.5M 1.5M

Inspection ($) 1050 1500 1500 1050 1050

Red Repair ($) 1500 1500 1500 1400 1400

Yel. Repair ($) 1300 1200 1300 1300 1200

Last State (3,L) (3,H) (2,L) (2,H) (1,L)

t 1 0 4 1 6

Table 6.5: Costs and state information for each segment.

Inspection policy

The calculated Whittle indices are presented in Table 6.6. Indices are calculated

in increments of 100. Providing such a table allows decision makers to quickly assess

which segments should be prioritized in a situation where only a limited number

of crews is available. The decision maker should choose the segments with highest

indices.

Table 6.6 suggests that inspecting segments B and E is the best decision in this

scenario. The new states for segments B and E are observed, and t is set to 0. States

for segments A, C, and D are updated to (3,L,2), (2,L,5), and (2,H,2), respectively.
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Segment Augmented State Whittle Index

A (3,L,1) 9600

B (3,H,0) 10100

C (2,L,4) 2100

D (2,H,1) 2500

E (1,L,6) 10200

Table 6.6: Whittle Indices for each segment.

Updating transition matrices

Lastly, the transitions matrices for segments B and E need to be updated, after

the inspection is finished and the new state is known. Suppose the new deterioration

and load state after the inspection is 5 and 2, respectively. Since the new t is 0, given

that they have just been inspected, we will update the frequency of the corresponding

transition. The corresponding augmented states are 5 (2,H,0), and 2 (2,L,0).

With two new inspections, we can update the frequencies of the augmented tran-

sition matrices. We normalize the matrices by the total number of inspections, in-

cluding the last inspections. Finally, we compute the updated probabilities for the

transitions matrices following the procedure in Section 6.1, but directly using the

augmented matrices instead (using MLE on the updated frequencies). These new

transition matrices are now the updated ones for the corresponding cluster. Due to

the strong law of large numbers, they will tend to the true ones as more and more

data are accumulated.
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Chapter 7

Local Maintenance and Inspection

Scheduling via Search Games

This chapter introduces search games in which Nature plays the role of the Hider,

hiding defects in tracks, and an inspection crew plays the role of the Searcher, trying

to find as many of the defects as possible. The problem is discretized by dividing the

section the segment into smaller sub-segments. Each subsegment is assumed to be

small enough so that at most one defect can be hidden in it. Furthermore, searches

in subsegments containing defects always find the hidden defect.

1. Games in which both players know the number of defects. The Searcher does

not decide on how many subsegments to inspect, but only which segments to

inspect subject to constraints.

(a) Length Finding Game (LFC): This game is the only continuous one.

The objective for the Searcher is to find the most defects, given a fixed

inspection length.

(b) LFC with Inspection Length Choice: The Searcher aims to minimize

the sum of the cost of inspecting and the penalty paid for defects not found.
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The cost to inspect each sub-segment is the same, and so is the penalty

cost for defects not found.

(c) Finding all objects hidden in multiple Locations: The main differ-

ence is that each subsegment has a different inspection cost. The objective

for the Searcher is to find all hidden defects while spending as little in

inspection costs as possible.

2. Games in which the searcher chooses which subsegments to inspect.

(a) Deciding how many and which subsegments to inspect: The main

difference is that each subsegment has a different inspection cost. The

objective for the Searcher is to decide how many and which segments to

inspect. (solved 2x2)

(b) Searching for Objects in Multiple locations with Inspection Length

Choice: In this scenario, the Hider chooses how many defects to hide, and

such number remains unknown to the Searcher. The Searcher pays for sub-

segments inspected not containing defects, as well as for subsegments not

inspected containing defects. The objective for the Searcher is to minimize

the total costs of inspecting defect-free subsegments and not inspecting

subsegments with defects.

7.1 Constrained Decision Set for the Searcher

7.1.1 Length Finding Game

The length finding game is a simple game that can be used by a decision-maker that

has very little information about the segment to be inspected. It is also a starting

point for more detailed games. At the end of this section, we include some additional
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remarks.

In this opening game, we assume the track to be a segment. The Hider and the

Searcher know how many defects, k, will be hidden, and the fraction of track α to be

inspected is fixed. Since the goal of the Searcher is to maximize the number of defects

found given the constraints, he pays a cost, c1, for each defect not found (outside of

the searched area). This game is a zero-sum game.

Ruckle (1983) proposes a similar game, but with the payoff obtained by the

Searcher being 1 if all defects are found, and 0 otherwise. This game is called the

Lenght Hiding Game (LDG)

Proposition 3. From Ruckle (1983) (text adapted): “The value of the LHG game

for the searcher is (1−α)k. An optimal strategy for the Hider is to choose k points in

the segment independently by a uniform distribution on the segment. For each ε > 0,

the Searcher has the following ε-optimal strategy: choose n so large that (by the Law

of Large Numbers) (
n−k
bα·nc+1

)
(

k
bα·nc+1

) ≥ (1− α)k − ε.

Divide the segment into n subintervals [(i−1)/n, i/n) : i = 1, 2, 3, ..., n; and search

one of the
(

n
bα·nc+1

)
unions of bα · nc+ 1 with probability

(
n

bα·nc+1

)−1
.”

We use this proposition as a base for the LFG game solution.

Proposition 4. The value of the Length Finding Game is ν = c1k(1 − α), and the

optimal strategy for the Hider is to choose k points uniformly at random to hide the

defects. The optimal strategy for the Searcher is to divide the segment into n intervals,

with n small enough that the probability of more than one defect hidden in a particular

interval is negligible, and then choose α · n segments uniformly at random.
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Proof. Let the two players, Hider and Searcher, play this game on the segment

I = [0, 1]. H consists of all subsets of I with exactly k points; S consists of

all subsets of I with a total length exactly α < 1. The Hider chooses a set

H ∈ H and the searcher chooses a set S ∈ S. The payoff to Hider is S ∩H or

the number of points chosen by Searcher located within the subset chosen by

Hider.

Assuming an optimal strategy for Hider is to place the k points in I inde-

pendently by a uniform distribution on I. The Searcher chooses an arbitrary

strategy. The value of the game for the Hider is, then, given by the expected

value of the number of defects not found within the subset chosen by Hider.

Each defect has a probability of 1 − α of not being found. Clearly, the Hider

wants to maximize such payoff. The payoff for the Hider is:

Vhider = c1

k∑
m=0

m

(
k

m

)
(1− α)mαk−m = c1k(1− α).

On the Searcher’s side, consider the uniform strategy described in Proposition

3. Let us calculate the expected payoff against an arbitrary pure strategy of

Nature, the Hider. A given defect j gets chosen, giving a reward of c1 if and only

if its location f(j) is not in the Searcher’s chosen subset. This has probability
n−bα·nc+1

n
for the first defect found. As more defects are found, the chances of

finding defects go down; alternatively, when no defects are found, the chances of

finding go up. This system is a binomial without replacement. If we choose n,

so that α ·n is an integer, the probability of not finding the first defect becomes

1 − α. Therefore, the probability of matching a certain number of locations

also follows a hyper-geometric distribution. The probability that the Searcher
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finds m defects out of the k placed by the Hider is given by:

Pm =

(
k
m

)(
n−k

bαnc+1−m

)
(

n
bαnc+1

) .

The payoff is, therefore, given by c1 · (k − m) · Pm with probability Pm, for

m = {0, 1, 2, 3, ..., k} and with expected value given by:

Vsearcher = c1 · k ·
n− bα · nc − 1

n
= c1k(1− α),

when α · n is an integer.

Remark. Although the mean depicted above is the same one as the binomial strategy

played by the Hider, its variance is smaller, given that it comes from a hyper-geometric

distribution.

Corollary 1. If we loosen the constraint of having at most one defect per subset,

the expectation remains as the sum of the indicator functions for each point found.

This probability is (1 − α), yielding a value of the game equal to the one we proved:

Vgame = k(1−α)c1. However, the distribution will not be binomial or hypergeometric;

it will depend on the strategies chosen by the Hider.

7.1.2 Length Finding Game with Inspection Length Choice

For many scenarios, the inspection crew is allowed to choose how much of the track

should be inspected. Clearly, the more the track is inspected, the more expensive it

is for the company to pay for the crew. We can assume initially that the increment

in cost is linear to the increment in the length of track inspected.

Let us now look at the game described in section 7.1.1 but letting the Searcher

choose α. This is a trivial game if no cost is associated with α because he would

choose α = 1 for any scenario. We, therefore, add a cost to how long α is. Logically,
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the Searcher wants to minimize the cost of the chosen α plus the costs associated

with the points not found.

Proposition 5. The optimal strategy for the searcher is to choose α = 0 if c2 > c1 ·k,

and α = 1, otherwise. The hider can choose any strategy.

Proof. Following the same strategies as the LFG, when the Hider plays the

uniform strategy, the payoff for the Searcher will then be

Vsearcher = c1k(1− α) + c2α = c1k + α(c2 − c1k),

where c1 represents the cost of each non-found point and c2 represents the cost

of the length α chosen. Remember the searcher wants to minimize such payoff.

If we assume c2 to be a constant, therefore making the increase in cost to α

linear, it is trivial to see that the only two possible options for α are 0 or 1,

depending on the relationship (c2− c1 ·k). If c2 > c1 ·k, then α = 0. Otherwise,

α = 1.

7.1.3 Finding All Objects Hidden in Multiple Locations

Another consideration the decision-maker might want to include in the game is that

some locations are more likely to have defects than others. Possible causes include

load that passes by a section of the track, temperatures that a track section is subject

to, the age of a segment track section, among many others.

Let us look at a similar game to the LFG. In this scenario, Nature has an incentive

to place defects in specific locations at the expense of others. Therefore, we will add

different costs for the Searcher to inspect different subsections of I. In this problem,

we assume the game only ends when the inspection crew finds all defects.
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Let c be a vector [n × 1] of costs for each i subsection of an arbitrary n total

subsections of same size s in the line I = [0, 1]. The size of each subsection is assumed

to be small enough that no more than one defect may arise there. Therefore, s ·n = 1.

We can now look at this problem as a discrete search game, in which the Hider

hides k points among the n subsections. The Searcher wants to minimize the total

cost paid to find all points. There are two approaches to solving this game. The

first consists of developing a matrix version of the game, where each strategy is a

combination of k out of the n subsections. The latter was proposed by Lidbetter

(2013), who proved the following theorem:

Theorem 2. An optimal strategy for the Searcher is to choose k subsegments that

he will inspect initially, given that he will need to inspect at least k subsegments if he

wants to find k defects. If there are still missing defects after these initial inspections,

he inspects further subsegments randomly. The Hider hides defects with the same

strategy the Searcher chooses the initial k subsegments.

Matrix representation of the game

The payoff for the Hider will be the sum of the cost for the chosen k subsections

he initially opens, the cost of the subsegments containing defects, and the cost of

remaining subsegments being inspected times the probability he inspects it before

the game ends.

Let N be the set [1, 2, 3, ..., n] of all n subsegments from I. Let us assume the

searcher chooses a k-subset H from the set B(k) of all possible k-subsets of N . Let

Π(H) = ∑
i∈H ci, which represents the cost of inspecting the k initial subsections.

Now, since we are inspecting the remaining subsegments randomly following a

uniform distribution, the chance that the Searcher inspects a certain defect-free sub-

segment before he finds all defects is the same for all subsegments.

Let f(r) be the probability of inspecting a certain subsection not containing a
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defect before finding all remaining defects, where r denotes the number of remaining

defects. r can be obtained as the cardinality of the set A�{A ∩ H}. Let us order

subsegments so that the ones containing defects are first, and focus on the sequence of

the first r + 1 subsegments. The probability of not inspecting that segment without

a defect is the probability that all segments with defects are inspected first. This

probability is r!
(r+1)! = 1

r+1 . The probability of inspecting the subsegment without

a defect is, then, the complement, given by r
r+1 . Because we can arbitrarily order

subsegments, this is the same probability for all subsegments not containing a defect.

Each cell of the matrix represents a pair of the strategy H ∈ B(k) played by the

Searcher, and a strategy A ∈ B(k) played by the Hider. The cell values representing

the payoffs for each pair of strategies will be:

CHA = Π(H) + Π(A)− Π(A ∩H) +
∑
i/∈H,A

cif(r).

For instance, if n = 3, k = 2, and c = [1, 2, 3]. Then B(k) = {(1, 2), (1, 3), (2, 3)}.

If H1 = {2, 3}, then Π(H1) = 2+3 = 5. If A1 = {1, 2}, Π(A1) = 3, and Π(A1∩H1) =

Π({2}) = 2. Therefore: CH1A1 = 5 + 3 − 2 = 6. This makes sense, because the

searcher will need to inspect all three subsegments to find all k defects.

With the matrix populated for every possible combination of H and A ∈ B(k),

we now have a zero-sum matrix game for which we can find the optimal equilibrium

strategy for both players. One approach is to use linear programming (Young and

Zamir, 2014). Assume the set B(k) has cardinality φ. The payoff matrix can be

represented as follows:

Now, we know that the Searcher wants to minimize his payoff ν. Assume the

Hider plays a certain pure strategy An. We know the payoff for the searcher in this

case will be given by ∑φ
i=1 PHiCHiAn . Additionally, we also know he wants to pay as

minimum as possible, even though he knows the Hider will force him to pay as much

as possible. Therefore, he wants to find the minimum-maximum he will have to play.
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Hider

A1 ... Aφ

Searcher

H1 CH1A1 ... CH1Aφ

... ... ... ...

Hφ CHφA1 ... CHφAφ

We can then formulate the problem as

min ν

s.t.
φ∑
i=1

PHiCHiAn ≤ ν,∀n = 1, 2, . . . , φ

φ∑
i=1

PHi = 1,

PHi ≥ 0, i = 1, 2, 3, ..., φ, ν urs.

In a parallel way, the hider wants to maximize the payoff, knowing that the

searcher will minimize it. In a sense, he wants to maximize the minimum payoff

paid by the searcher. It turns out the linear programming model for the hider is the

Dual of the problem for the searcher:

max ω

s.t.
φ∑
i=1

PAiCHnAi ≥ ω,∀n = 1, 2, . . . , φ

φ∑
i=1

PAi = 1,

PAi ≥ 0, i = 1, 2, 3, ..., φ, ω urs.

Clearly, by duality, the payoff for both the Hider and the Searcher is the same,

ν = ω.

Closed-form solution
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An alternative solution proposed by Lidbetter (2013) is a closed-form solution for

the strategies of both players. The advantage of this method is that it avoids the

exponential increase of the matrix size when the number of subsegments increases.

The payoff of the game is the same obtained via the method using linear programming

to solve the matrix representation of the game. Lidbetter (2013) was the first to solve

this problem, and he shows that an optimal hider choice is the distribution for k-

subsets that is proportional to π(H) := ∏
i∈H ci.

7.2 Unconstrained Decision Set for the Searcher

This section loosens the constraint that the Searcher is bounded by the number of

subsegments he needs to inspect. At first, we still keep the hider set of strategies

constrained, but then we also relax this constraint for the second game in this section.

7.2.1 Searching for Known Number of Defects with Inspect

Length Choice

This version assumes both players know the number of defects to be hidden. There-

fore, the Hider is limited to how many segments will be included in her strategy. On

the other hand, the Searcher is allowed to choose to inspect however many subseg-

ments he wishes. Again, for each subsegment inspected containing a defect, the cost

is zero; for each subsegment inspected not containing a defect, the cost is ci; and, for

each subsegment containing a defect that is not inspected, the Searcher pays πi.

At first, let us analyze the case for two subsegments with one hidden defect. The

matrix is then (Hider in columns and Searcher in rows):

In this game, one can see that the set of possible strategies for the Searcher has

different cardinality than the one for the Hider. For instance, in the case where
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(1) (2)

∅ π1 π2

(1) 0 c1 + π2

(2) c2 + π1 0

(1,2) c2 c1

there are two subsegments and one defect to be hidden, the Hider can choose to

mix from the set Sh = {(1), (2)} and the Searcher can choose to mix from the set

Ss = {∅, (1), (2), (1, 2)}. In a sense, the Searcher commits to what boxes he opens

before playing, no matter what happens, making this a non-sequential game. Figure

7.1 represents how the optimal set of strategies change according to the choices of ci

s and πis. From this representation, we conjecture that the boundary is given by the

equations c1c2 = π1π2 and π1 = π2.

(a) c1 = 78 (b) c1 = 102.

Figure 7.1: Regions for which the Set of Optimal Strategies for the Searcher Remains

Optimal when c2 = 10.

From this conjecture, we can prove the solution for the game.

Proposition 6. Claim: We can to subdivide this game in four cases:

1. π1π2 ≤ c1c2, π1 ≤ π2
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The hider should play strategy y where he places the item in box (1) with probability
π2

π2+c2
and in box (2) with probability c2

π2+c2
, and for the searcher to play strategy x where

he mixes between ∅ with probability c2+π1
π2+c2

and (2) with probability π2−π1
c2+π2

.

2. π1π2 ≤ c1c2, π2 ≤ π1

The hider should play strategy y where he places the item in box (1) with probability
c1

π1+c1
and in box (2) with probability π1

π1+c1
, and for the searcher to play strategy x where

he mixes between ∅ with probability c1+π2
π1+c1

and (1) with probability π1−π2
c1+π1

.

3. π1π2 ≥ c1c2, c2 ≥ c1

The hider should play strategy y where he places the item in box (1) with probability
π2

π2+c2
and in box (2) with probability c2

π2+c2
, and for the searcher to play strategy x where

he mixes between (1) with probability c2−c1
π2+c2

and (1,2) with probability π2+c1
c2+π2

.

4. π1π2 ≥ c1c2, c2 ≤ c1

The hider should play strategy y where he places the item in box (1) with probability
c1

π1+c1
and in box (2) with probability π1

π1+c1
, and for the searcher to play strategy x where

he mixes between (2) with probability c2−c1
π1+c1

and (1,2) with probability π1−c2
c1+π1

.

Proof of proposition 6 by conjecture. The strategy set for the Hider is

{(1), (2)}. The strategy set for the Searcher is {(∅), (1), (2), (1, 2)}; In a sense,

the Searcher commits to what boxes he opens before playing, no matter what

happens, making this a non-sequential game.

We arbitrarily order the boxes so that c2 ≥ c1. The matrix is then (Hider in

columns and Searcher in rows):
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y1 y2

(1) (2)

x1 ∅ π1 π2

x2 (1) 0 c1 + π2

x3 (2) c2 + π1 0

x4 (1,2) c2 c1

Case 1. π1 · π2 ≤ c1 · c2

Case 1.1. π1 ≤ π2

Suppose that under the condition π1 · π2 ≤ c1 · c2 and π1 ≤ π2 the optimal

strategy for the searcher is to mix between opening no boxes, or box (2). We

will prove this is true by verifying that if the Searcher chose to play one of the

other two pure strategies, the resulting expected payoff of at least v, where v

is the payoff of the reduced game.

The reduced game can be displayed as:

(1) (2)

∅ π1 π2

(2) c2 + π1 0

By the difference trick, since π1 ≤ π2, an optimal strategy y for the hider is to

mix (1) and (2) with probabilities q and (1− q), where q = π2
π2+c2

, and for the

searcher to play strategy x where he mixes between ∅ and (2) with p and

1− p, where p = c2+π1
π2+c2

.

The value of this game can be easily calculated by multiplying

(p, 1− p) · (π2; 0), when the searcher plays x and the hider plays the pure

strategy (2). This results in:

v = pπ2 = (c2 + π1)π2

π2 + c2
.
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Now looking at the extended game, assume the searcher plays the pure

strategy (1, 2) when the hider plays strategy y, given by the mix described

above. We will show that he ensures an expected payoff of at least v. The

new payoff is:

v′ = c2π2 + c1c2

π2 + c2
.

When comparing:

v − v′ = (c2 + π1)π2

π2 + c2
− c2π2 + c1c2

π2 + c2

= π1π2 − c1c2

c2 + π2
≤ 0 since (c1c2 ≥ π1π2).

Therefore, the Searcher has no incentive to ever play this strategy (1,2) under

the conditions described as v′ ≥ v.

Now, looking at the payoff if the searcher plays the pure strategy (1). The

new payoff is:

v′ = c2(c1 + π2)
π2 + c2

.

This is the same payoff of playing strategy (1,2) purely. Therefore, as proven,

v′ ≥ v.

Therefore, the Searcher has no incentive to ever play this strategy (1) under

the conditions described as v′ ≥ v.

We now have proved that under the case π1 · π2 ≤ c1 · c2 and π1 ≤ π2, one of

the searcher optimal strategies is to mix only between ∅ and (2).

Case 1.2. π2 ≤ π1

Now looking at the case where π1 · π2 ≤ c1 · c2 and π2 ≤ π1, our claim is that

an optimal solution for the searcher is to mix only between ∅ and (1). The

proof is symmetric.
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By the difference trick, since π2 ≤ π1, an optimal strategy y for the hider is to

mix (1) and (2) with probabilities q and (1− q), where q = c1
π1+c1

, and for the

searcher to mix between ∅ and (1) with p and 1− p, where p = c1+π2
π1+c1

.

The value of the game is, calculated when the searcher plays x and the hider

plays the pure strategy (1):

v = pπ1 = (c1 + π2)π1

(π1 + c1) .

When choosing to play the pure strategy (1, 2) against the strategy y of the

hider, we obtain the payoff:

v′ = c1(c2 + π1)
π1 + c1

.

When comparing:

v − v′ = (c1 + π2)π1

(π1 + c1) −
c1(c2 + π1)
π1 + c1

= π1π2 − c1c2

c1 + π1
≤ 0 since (c1c2 ≥ π1π2).

Finally, let us look at the payoff when the Searcher plays the pure strategy (2)

against y.

v′ = c1(c2 + π1)
π1 + c1

.

This is the same payoff of playing strategy (1,2) purely. Therefore, as proven,

v′ ≥ v.

Case 2. π1 · π2 ≥ c1 · c2

Without loss of generality, again we assume c2 ≥ c1, as we can arbitrarily

determine the order of the boxes. We claim the Searcher has an optimal

strategy to mix solely between opening box (1) or opening both (1,2). The

reduced game is displayed below:
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(1) (2)

(1) 0 c1 + π2

(1,2) c2 c1

By the difference trick, since π1 ≤ π2, an optimal strategy y for the hider is to

mix (1) and (2) with probabilities q and (1− q), where q = π2
π2+c2

, and for the

searcher to play strategy x where he mixes between (1) and (1,2) with p and

1− p, where p = c2−c1
π2+c2

.

The value of this game can be easily calculated by multiplying

(p, 1− p) · (0; c2), when the searcher plays x and the hider plays the pure

strategy (1). This results in:

v = (1− p)c2 = (c1 + π2)c2

π2 + c2
.

Now looking at the extended game, assume the Searcher plays the pure

strategy ∅ when the Hider plays strategy y, given by the mix described above.

We will show that he ensures an expected payoff of at least v. The new payoff

is:

v′ = π1π2 + c2π2

π2 + c2
.

When comparing:

v − v′ = (c1 + π2)c2

π2 + c2
− π1π2 + c2π2

π2 + c2

= c1c2 − π1π2

c2 + π2
≤ 0 since (c1c2 ≤ π1π2).

Therefore, the Searcher has no incentive ever to play this strategy ∅ under the

conditions described as v′ ≥ v.

Now, looking at the payoff if the searcher plays the pure strategy (2). The



125

new payoff is:

v′ = π2(c2 + π1)
π2 + c2

.

This is the same payoff of playing strategy ∅ purely. Therefore, as proven,

v′ ≥ v.

Therefore, the Searcher has no incentive to ever play this strategy (2) under

the conditions described as v′ ≥ v.

We now have proved that under the case π1 · π2 ≥ c1 · c2 and π1 ≤ π2, one of

the searcher optimal strategies is to mix only between (1) and (1, 2).

By the rearranging principle, it is easy to see that, if c1 < c2, an optimal

strategy for the Searcher is to mix between (2), and (1,2).

In a more general setting, with n subsegments and k defects, a closed-form solution

has not yet been found. As shown in Figure 7.2, the number of regions grows, and

they do not follow as distinct functions as the two-subsegment case.

Figure 7.2: Regions for which the Set of Optimal Strategies for the Searcher Remains

Optimal when c1 = 3, c2 = 2, c3 = 5, and π3 = 3.

For these cases, a LP framework can solve specific numerical games. This frame-

work does not scale well to large number of defects and hiding locations, however.
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7.2.2 Searching for Unknown Number of Defects with In-

spect Length Choice

In this game, we relax the constraint of both players knowing the number of defects.

The Hider has a choice of how many defects he can hide, being from no defects to n

defects, given there are n subsegments of track available for hiding. As an incentive

for the Searcher, he does not need to pay for subsegments inspected that contains

defects but pays a fee for those inspected containing no defects, and a penalty for

those subsegments containing defects, but that he decided not to inspect.

Theorem 3. For a general n, let p(A) := ∏
j∈A

cj
πj

, with p(∅) = 1. Then, an optimal

hider strategy is to choose a subset A ⊂ [n], where [n] := {1, 2, ..., n}, with probability

pA, given by

pA = p(A)
S([n]) ,

where cj is the cost of inspecting subsegment j and not finding a defect, πj is the

penalty cost of not finding a defect hidden in subsegment j, and S(A) = ∑
B⊂A p(B).

For instance, if n = 2, then [n] = {1, 2}. If A = {1, 2}, then p(A) = p({1, 2}) =
c1
π1
· c2
π2

, S({1, 2}) = p(∅) + p({1}) + p({2}) + p({1, 2}).

On the opposite side, an optimal strategy for the searcher is to choose B ⊂ [n]

with probability pB̄.

The value of the game is

Vgame =
∑
j∈[n]

S([n]− {j})
S([n]) · cj.
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Proof. Assuming the Hider plays the strategy described. Then, the probability

qj that some subsegment j ∈ [n] has a hidden defect is

qj =
∑

{A⊂[n]:j∈A}
pA = cj

πj
· S([n]− {j})

S([n]) .

The complementary probability 1− qj can also be written as

1− qj =
∑

{A⊂[n]:j /∈A}
pA = S([n]− {j})

S([n]) .

Now let B be the subset of segments chosen by the searcher to inspect. If j ∈ B,

then the payoff cost in incremented by (1− qj)cj. On the other hand, if j /∈ B,

then the payoff cost is incremented by qjπj. Hence

Vsearcher =
∑
{j}∈B

(1− qj)cj +
∑
{j}/∈B

qjπj

=
∑
{j}∈B

S([n]− {j})
S([n]) · cj +

∑
{j}/∈B

cj
πj
· S([n]− {j})

S([n]) · πj

=
∑
{j}∈[n]

S([n]− {j})
S([n]) cj.

The proof for the other side, fixing the strategy of the Searcher and verifying

the payoff for the Hider, is symmetrical.

Remark. This game can also be solved as a matrix game, in which row strategies

are the ones chosen by the Hider, and column strategies are the ones chosen by the

Searcher. For a small number of subsegments, this matrix remains solvable using the

min-max theorem and LP. However, as the cardinality of the subsegment set increases,

the matrix size increases exponentially.



128

Chapter 8

Conclusion

This dissertation proposes novel methods to solve transportation decision problems.

The two main focuses are in traffic congestion forecasting and railway maintenance

scheduling.

In roadways, the main contributions obtained are the simplification of the solu-

tion for the distribution of traffic density described in Baykal-Gürsoy et al. (2009a),

and the generalization of the model for longer segments of road. The equation de-

veloped by the literature is mathematically cumbersome and hard to implement. By

analyzing valid approximations for roadway scenarios, we simplify their solution to a

straightforward closed-form equation. In chapter 2 (Lopes Gerum et al., 2019b), we

show this stationary distribution for the number of vehicles in the roadway in explicit

form.

We validate the model using real traffic data for short segments of the road. We

show that it generates accurate performance measures with explicit dependencies on

traffic and incident parameters, avoiding the use of costly simulation. In chapter 3

(Lopes Gerum and Baykal-Gürsoy, 2020), we generalize the model for long segments

of the road. We suggest that a sequence of random-queues can be modeled as a

tandem-queue. We explicitly give the closed-form solution, derived from algebraic
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manipulations of the product-form solution. With the same data, we validate the

models and compute the drop in performance as the segment length increase. The

results extend the validity of the solutions to much more complicated cases.

Current models in traffic management are expensive and complicated, yet the

models proposed in this study are simple, intuitive, and use straightforward statistical

parameters. This difference illustrates the disruptive potential our work has on the

design and operation of management tools for roadway traffic and incident mitigation.

With our models, decision-makers may no longer need to rely on expensive tools to

forecast traffic.

In railways, understanding defect occurrence is paramount for risk assessment.

Seminal work in the literature suggested that machine learning algorithms produce

accurate predictions of defect generation. However, they use complex and obscure

data that most companies do not have at hand. Chapter 5 (Lopes Gerum et al., 2019a)

looks at defect generation under inspections subjected to random interarrivals. This

randomness emerges from the dynamically changing budget that railway companies

often face. In opposition to the literature, the proposed algorithm only requires

reliable data that most companies have at hand. We determine that Random Forests

provide similar accuracy to the literature with fewer and these simpler features. We

also suggest an alternative interpretation of the results that accounts for the risk-

aversion characteristic of the problem (it is a lot better to inspect one extra time

than to leave a severe defect untreated).

With accurate predictions, we model the maintenance problem as a Markov de-

cision process. Chapter 6 demonstrates that inspection and predictive maintenance

has a threshold structure. Last, we consider this problem when there are not enough

inspection/repair teams. In this case, we provide Whittle indices for service priori-

tization. Previous studies address these problems separately or only consider track
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defects. We (Lopes Gerum et al., 2019a) are the first study that integrates defect

prediction with the design of optimum inspection and maintenance strategies using

real-world rail track defect and inspection data. The results indicate an improvement

in all current estimates.

The last decision for optimal scheduling is determining which sub-section of the

rail segment should be inspected by the crew. Walking inspections are often limited

and cannot cover a full segment at a time. In chapter 7, we develop search games

whose equilibria produce policies that minimize the worst-case scenario. Each game

contains distinct rules, accommodating different user cases. For most games, we find

closed-form equilibrium policies. For others, we provide a framework on how to find

equilibria numerically.
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