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ABSTRACT OF THE DISSERTATION

Some Topics on Time Series Analysis

by Chuan Liu

Dissertation Director: Han Xiao

This thesis deals with three problems. The first problem is concerned with the

classical white noise test, and the second is on the estimation of autoregressive

models for matrix-valued time series. These two time series problems are treated

in Chapter 2 and 3. The third problem, on the construction of exact algorithm

for the linear constrained LASSO, is treated in Chapter 4.

In Chapter 2, we study the asymptotic distribution of sample canonical cor-

relations under different distributional assumptions of the time series. The joint

density of the asymptotic distribution is derived explicitly for the normal and

elliptical distributions. For the general non-normal case, we propose to boot-

strap the canonical correlations to obtain the p-value. We carry out an extensive

simulation study to illustrate the size and power performances of the proposed

tests.

In Chapter 3, we propose a novel estimator of the matrix autoregressive model,

based on the weighted least squares. We derive the asymptotic distributions of

the estimator, and demonstrate its performance by simulations and real examples.

Chapter 4 deals with the exact algorithm of the constrained LASSO problem.
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We develop such an exact algorithm by exploring the geometric properties of the

problem. We prove that the solution path of the problem is piece-wise linear.

We also prove an exponential upper bound for the complexity of the constrained

LASSO problem.
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Chapter 1

Introduction

This dissertation includes two projects on multivariate time series analysis and

one project on regularized quadratic optimization. The first project is on the

multivariate white noise testing. The second project is about the weighted least

square estimation of the matrix autoregressive models. The third one concerns

the exact algorithm and complexity of the constrained LASSO.

One important question to ask in finance is if the efficient market hypothe-

sis is consistent with empirical data. Testing the predictability of returns is a

usual way to verify this hypothesis, since under an ideally efficient market, the

returns are expected to exhibit no linear dependencies. In statistics this has

been formulated and extensively studied as the white noise testing problem. In

Chapter 2 we propose a new multivariate white noise test based on the canonical

correlations. To be more precise, given a multivariate time series {X i}Ti=1, we

construct a new series {Y i ≡ (X t
i,X

t
i+1)t}T−1

i=1 and perform canonical correlation

analysis on this news series regarding the natural partition of components in its

definition. Starting from the simple normal distribution assumption, we derive

the asymptotic joint distribution of the sample canonical correlations calculated

based on {Y i}T−1
i=1 . Then by combining the ideas and techniques in the proof of

the normal case with the result in Eaton and Tyler (1994), we extend our results

to the elliptical distribution case. For the general non-normal distribution case,

such asymptotic distributions are much harder to establish so we use a bootstrap

procedure as a work-around to construct the test we need.
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With the advent of technology revolution, large amounts of data have become

readily available and the need to extract meaningful and practical insights from

the data has also become paramount with the influx of data. For example, data in

finance and economics are sometimes observed in matrix format. To model such

data in time series, one can forget about its matrix nature and use the traditional

vector autoregressive (VAR) models. But in many scenarios, the column and row

variables in the matrix data have close interactions but different interpretations.

So it is more natural to keep and take advantage of the matrix structure when

modeling this type of data. Chen et al. (2020) proposed a novel matrix autore-

gressive (MAR) model for this type of data. Based on their work, in Chapter 3,

we introduce a new weighted least square estimator for the MAR model. The

weights correspond to the marginal sample variances of the residual matrices.

We carry out the asymptotic analysis of this new estimator, and demonstrate its

superior performance over other estimators by an extensive numerical study and

an example on economic indicators.

Markowitz mean-variance efficient portfolio construction (Markowitz (1952))

and the linear discriminant analysis can both be formulated as a quadratic opti-

mization problem with linear constraints. When the number of assets or features

is large, the direct implementation of this optimization cannot provide a consis-

tent estimator of the weight vector, leading to inferior performance of the portfolio

or the classifier. This is in particular due to the poor estimation of the high di-

mensional covariance matrix. One way to solve this problem is to incorporate

better estimators of the mean vector and the covariance matrix, see for example

Shao et al. (2011). Another approach is to consider the regularized optimization

by penalizing the `1 norm of the weight vector (Fan et al., 2012b,c,a; Brodie et al.,

2009), leading to the so called constrained LASSO problem. In Chapter 4, we

propose an exact algorithm for the constrained LASSO problem, and investigate

the complexity of this algorithm. This exact algorithm is motivated by and builds
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upon the least angle regression proposed by the seminal work Efron et al. (2004).

We prove an exponential upper bound of the complexity based on the work of

Mairal and Yu (2012), and show that it is achievable by constructing a concrete

worst case example.
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Chapter 2

White Noise Test Based on Canonical

Correlations

2.1 Introduction

Let X1, . . . ,XT be observations from a p-dimensional weakly stationary time

series satisfying EX i = 0. The white noise test is testing

H0 : Cov(X t+τ ,X t) = 0, τ ≥ 1. (2.1)

Since not all the cross covariance matrices are estimable with a given observed

series, the test usually only involves lags τ = 1, 2, . . . ,m, where m ≥ 1 is a

prescribed integer.

In the model diagnostic procedure of times series analysis, we often need to

perform a white noise test on the residuals of a fitted model for the purpose of

checking whether the model is adequate. Various testing procedures have been

proposed in the literature for the univariate time series, including the Box Pierce

test (Box and Pierce, 1970), the Ljung Box test (Ljung and Box, 1978), and

the Lagrange Multiplier test (Breusch, 1978) and (Godfrey, 1978). Extensions

of these tests have also been developed for multivariate time series by Hosking

(1981), Hosking (1980) and Li and McLeod (1981), among many others. In this

Chapter we propose a new approach to the white noise test for multivariate time

series, based on canonical correlations.

Based on the series {X i}Ti=1, one can form a new series {Y i ≡ (X ′i,X
′
i+1)′}T−1

i=1
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by concatenating adjacent observations in the original series {X i}Ti=1. For the new

series {Y i}T−1
i=1 , since each observation has been partitioned into two size p parts

(the first p components and the last p components), canonical correlations anal-

ysis can be naturally performed based on these two sets of variables. Under the

null hypothesis (2.1), if the asymptotic distributions for the sample canonical cor-

relations can be established, then we can use these sample canonical correlations

to construct test statistics (for example, the largest sample canonical correlation)

to test the validity of null.

We start with a strong normal distribution assumption for the i.i.d series

{X i}Ti=1. We proved the following asymptotic distribution result for the sample

canonical correlations calculated based on {Y i}T−1
i=1 .

Theorem. Let r̂1 ≥ r̂2 ≥ · · · ≥ r̂p be the sample canonical correlations calculated

from the series {Y i}T−1
i=1 and denote wi ≡ T r̂2

i for i = 1, 2, ..., p. Under the i.i.d

normal assumptions, the limiting joint density function of w1, ..., wp as T → ∞

is
πp

2/2 exp (−1
2

∑p
i=1wi)

2p2/2Γp(p/2)Γp(p/2)
·

p∏
i=1

w
−1/2
i

p∏
j<i,j=1

(wj − wi), (2.2)

where w1 ≥ w2 ≥ ... ≥ wp ≥ 0 and Γn(.) denotes the multivariate gamma function.

Combining the techniques we introduced in the proof of the previous theorem

and a random matrix result established in Eaton and Tyler (1994), we can extend

our result to the scenario when the series {X i}Ti=1 is i.i.d elliptical. The result

can be state as follows.

Theorem. Let r̂1 ≥ r̂2 ≥ · · · ≥ r̂p be the sample canonical correlations calculated

from the series {Y i}T−1
i=1 and denote wi ≡ T r̂2

i for i = 1, 2, ..., p. Under the i.i.d

elliptical assumptions, the limiting joint density function of w1, ..., wp as T →∞

is
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πp
2/2

(2 + 2γ)p2/2Γp(p/2)Γp(p/2)
exp(−

p∑
i=1

wi
2 + 2γ

)

p∏
i=1

w
−1/2
i

p∏
i<j

(wi − wj) (2.3)

where w1 ≥ w2 ≥ ... ≥ wp ≥ 0 and Γn(.) denotes the multivariate gamma

function.

Note that even with the asymptotic joint distribution results for r̂1, r̂2, . . . , r̂p

under the normal or elliptical distribution assumptions, expressing the marginal

distributions (like the largest sample canonical correlation r̂1) explicitly might not

be an easy task, not to mention the fact that when the underlying distribution of

the series {X i}Ti=1 belongs to general non-normal family, the asymptotic distri-

bution results for these sample canonical correlations can be difficult to establish.

Fortunately, we have a tailored bootstrap procedure for the general non-

normal scenario and it is validated by the following consistency result.

Theorem. Assuming {X i}Ti=1 to be a series of i.i.d random vector with finite

fourth moment E‖X i‖4 < ∞ and EX i = 0. Then along almost all the sample

sequences ω = (X1,X2, . . . ,XT , . . . ), as T tends to ∞, we have the difference

between P(
√
T r̂1

(b) ≤ c|X1,X2, . . . ,XT ) and P(
√
T r̂1 ≤ c) converges uniformly

to 0, or equivalently we have

sup
−∞<c<∞

|P(
√
T r̂1

(b) ≤ c|X1,X2, . . . ,XT )− P(
√
T r̂1 ≤ c)| a.s.→ 0.

Based on this consistency result, under the general distribution assumptions,

we propose to bootstrap the series {X i}Ti=1 to calculate a series of values of

bootstrapped largest sample canonical correlation and use its empirical quantile

as threshold for testing the hypothesis (2.1).

The rest of this chapter is organized as follows. In Section 2.2 we discuss

our approach under normality and derive the asymptotic distribution of the lag-1

sample canonical correlations. In Section 2.3 we consider the extension to ellip-

tical distributions, and establish the corresponding asymptotic results. For more
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general distributions (with only a moment condition), we propose to bootstrap the

sample canonical correlations in Section 2.4 and 2.5, and prove the consistency of

the bootstrap test. We carry out an extensive simulation study in Section 2.6 to

compare the sizes and powers of the proposed tests with other state-of-art testing

procedures in literature. The proof are relegated in Section 2.7.

2.2 The Multivariate Normal Case

Let {X i}Ti=1 be an i.i.d sequence of multivariate normal time series in Rp with

mean 0 and covariance matrix Σx = {σij} and denote X i = (Xi1, Xi2, . . . , Xip)
′.

Now we consider the lag-1 series {Y i = (X ′i,X
′
i+1)′}T−1

i=1 and construct the sample

covariance matrix from the following matrix of lag-1 sample (note that this sample

has serial correlations):

Y =



X ′1 X ′2

X ′2 X ′3
...

...

X ′T−2 X ′T−1

X ′T−1 X ′T


(2.4)

which is of dimension (T − 1)× 2p.

Here our target is to investigate the asymptotic distribution of sample canoni-

cal correlations of the the lag-1 correlated Y sample in (2.4) and see whether it is

same as the independent case. And now we explain what does the independent

case here mean.

From the same series {X i}Ti=1, this time we consider a new random vector

series {V i = (X ′i,U
′
i)
′}T−1
i=1 where the series {U i} is an independent copy of

the series {X i}. Based on this series, we introduce a new matrix V from the

independent sample {V i = (X ′i,U
′
i)
′}T−1
i=1 where
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V =



X ′1 U ′1

X ′2 U ′2
...

...

X ′T−2 U ′T−2

X ′T−1 U ′T−1


(2.5)

which is also of dimension T × 2p. This is what we mean by independent case

and we denoted by (2.5).

For the purpose of the later discussions, let us denote the mean zero sample

covariance matrix (we use T instead of T −1 in the denominator of the expression

for simplicity and this clearly does not affect the asymptotic distribution of the

sample covariance matrix) in the lag-1 case (2.4) by N and

N ≡ 1

T
Y ′Y =

1

T

 ∑T−1
i=1 X iX

′
i

∑T−1
i=1 X iX

′
i+1∑T−1

i=1 X i+1X
′
i

∑T−1
i=1 X i+1X

′
i+1

 ≡
N 11 N 12

N 21 N 22

 .

For the independent case (2.5), we denote the mean zero covariance matrix

by M and

M ≡ 1

T
V ′V =

1

T

∑T−1
i=1 X iX

′
i

∑T−1
i=1 X iU

′
i∑T−1

i=1 U iX
′
i

∑T−1
i=1 U iU

′
i

 ≡
M 11 M 12

M 21 M 22

 .

Before we discuss our main results, we state a result from matrix theory here

which will be used later.

Proposition 1. Suppose we have two p × p matrices A and B and λAi and λBi

are the i-the largest eigenvalue of A and B respectively. Then we have

p∑
i=1

|λAi − λBi|2 ≤ ||A−B||22

where the norm ||.||2 is the Frobenius norm.



9

For the lag-1 sample in (2.4), the sample covariance matrix Σ̂y = 1
T
Y ′Y −

1
T 2Y

′11′Y . Note that if we multiply the second term by
√
T , then the term

1
T 3/2Y

′11′Y
p→ 0 when T →∞ by law of large numbers, the central limit theorem

and Slusky’s theorem. So the key here is the first term 1√
T
Y ′Y , or

√
TN in our

notation. Also note that the true covariance structure of the lag-1 random vector

Y i is

Σy =

Σx 0

0 Σx

 .

Now we are going to investigate how the off-diagonal block of N and M

relate to the distribution of canonical correlations in the two cases. But we need

two lemmas on the asymptotic normality of the mean zero sample covariance

matrix for the two cases (2.4) and (2.5) respectively before proceeding. Since the

independent case is more simpler than the lag-1 case, we are going to present the

result for the independent case (2.5) first. Here we note that in order to establish

the asymptotic normality for the case (2.4) as in Lemma 2, we are going to use

Cramer-Wold device and a martingale central limit theorem result from Hall and

Heyde (2014).

For the case (2.5) we have the following result:

Lemma 1. Assuming {X i}Ti=1 be an i.i.d sequence of multivariate normal time

series in Rp with mean 0 and covariance matrix Σx. Then for the case (2.5), the

random matrix M (in its vectorized sense vec(M )) has the following asymptotic

distribution property:
√
T (M −Σy)

d→D0

where D0 follows N2p
2p (0, (I + K2p)(Σy ⊗ Σy)) and Kn is the commutation

matrix, a block matrix whose block in position (i, j) is eje
′
i ∈ Rn

n,

Kn = (eje
′
i) ∈ Rn2

n2 .
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.

For the case (2.4) we have the following result:

Lemma 2. Assuming {X i}Ti=1 be an i.i.d sequence of multivariate normal time

series in Rp with mean 0 and covariance matrix Σx. Then for the case (2.4),

the matrix N (or in its vectorized sense vec(N ) ) has the following asymptotic

distribution property:
√
T (N −Σy)

d→D.

Here D follows N2p
2p (0, (Γ⊗ Γ))(I +K2p + J + J ′)(Γ⊗ Γ)) where Γ ≡ Σ1/2

y and

J =

 0 0

J0 0


which is of size 4p2 × 4p2 where J0 is a p × p partitioned block matrix of size

2p2 × 2p2 with the (i, j) block equal to

=



 0 0

eje
′
i 0

 , when i 6= j

 0 0

Ip + eie
′
i 0

 , when i = j

and Kn is the commutation matrix, a block matrix whose block in position

(i, j) is eje
′
i ∈ Rn

n,

Kn = (eje
′
i) ∈ Rn2

n2 .

.

With the above preparations, we can continue our discussions on how the

distribution of the sample canonical correlations are related under the two cases.

From the canonical correlation sections of the multivariate statistics textbooks

like Anderson (2003) and Bilodeau and Brenner (2008), we first note that the

squared sample canonical correlations are the roots of the following equation
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|N−1
11N 12N

−1
22N 21 − λIp| = 0 (2.6)

and we know from Lemma 2 that T 1/2(N − Σy)
d→ D for some distribution D

of which the entries are jointly normally distributed. Now if we consider the

normalized transformation Zi = Σ−1/2
x X i and replace the corresponding X i by

Zi in the determinant equation (2.6), we notice that such a transformation does

not change the roots of the equation. So without loss of generality, we can assume

Σx = Ip.

Let us denote T 1/2(N−Σy) byW with blocksW 11,W 12,W 21,W 22 similarly

partitioned as N . Now we can write

N 11 = Ip + T−1/2W 11

N 22 = Ip + T−1/2W 22

N 12 = T−1/2W 12.

Then from the matrix power series expansion

(I − tA)−1 =
∞∑
i=0

tiAi,

we have the inverse identities

N−1
11 = Ip − T−1/2W 11 +Op(T

−1)

and

N−1
22 = Ip − T−1/2W 22 +Op(T

−1).

So we can expand and calculate N−1
11N 12N

−1
22N 21 using the above equalities and

obtain

N−1
11N 12N

−1
22N 21 = T−1W 12W 21 +Op(T

−3/2). (2.7)
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The above arguments work similarly for the independent case (2.5). For this

case, let us denote T 1/2(M−Σy) byK with blocksK11, K12, K21, K22 similarly

partitioned as M . So we can write

M 11 = Ip + T−1/2K11

M 22 = Ip + T−1/2K22

M 12 = T−1/2K12.

Then from the same matrix power series expansion, we have the inverse identities

M−1
11 = Ip − T−1/2K11 +Op(T

−1)

and

M−1
22 = Ip − T−1/2K22 +Op(T

−1).

So we can expand and calculate M−1
11M 12M

−1
22M 21 using the above equalities

and obtain

M−1
11M 12M

−1
22M 21 = T−1K12K21 +Op(T

−3/2). (2.8)

If we can prove the a Op(T
−3/2) matrix perturbation on T−1K12K21 does not

change the asymptotic distribution of the roots of

|T−1K12K21 − λIp| = 0

then we might be able to work on the block M 12 instead of the whole matrix.

From now on we denote the true ordered canonical correlations under the two

cases to be r1, r2, . . . , rp (actually they all equal to 0 by our i.i.d assumption), the

corresponding ordered sample canonical correlations to be r̂1 ≥ r̂2 ≥ · · · ≥ r̂p and

adopt the expansion approach illustrated above for both cases to prove our main

theorem which can be stated as follows:
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Theorem 1. The asymptotic joint distribution of the sample canonical correla-

tions calculated from (2.4) and (2.5) are identical. Let wi = T r̂2
i for i = 1, 2, ..., p.

Then the limiting joint density function of w1, ..., wp as T →∞ is

πp
2/2 exp (−1

2

∑p
i=1wi)

2p2/2Γp(p/2)Γp(p/2)
·

p∏
i=1

w
−1/2
i

p∏
j<i,j=1

(wj − wi), (2.9)

where w1 ≥ w2 ≥ ... ≥ wp ≥ 0 and Γn(.) denotes the multivariate gamma function.

Among all the sample canonical correlation, we are often most interested in

the largest one. Here we present a result on the distribution of r̂2
1 when r1 = r2 =

... = rp = 0.

Proposition 2. Under the assumptions of Lemma 1, with further condition that

t = 1
2
(T − 2p − 2) is a positive integer, the distribution function of r̂2

1 can be

expressed as

P (r̂2
1 ≤ x) = xp

2/2

pt∑
k=0

?∑
κ

22k(1− x)k(
1

2
p)κ(

1

2
p)κ

∏s
i<j(2ki − 2kj − i+ j)∏s

i=1(2ki + s− i)!
(2.10)

where κ = (k1, k2, ..., kp) is an descending ordered partition of k,
∑?

κ denotes

summation over those partitions with largest part k1 ≤ t, s is the number of

nonzero parts of the partition κ of k and (a)κ is the generalized hypergeometric

coefficients given by

(a)κ =

p∏
i=1

(a− 1

2
(i− 1))ki (2.11)

where (a)k = a(a+ 1)...(a+ k − 1), (a)0 = 1.

Proof. See Corollary 11.3.4 of Muirhead (2009).

2.3 The Multivariate Elliptical Case

We assume normality for the results presented in the previous section, but a

question of theoretical and practical importance is the effect of non-normality
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on the problem. In this section, we are going to investigate the elliptical distri-

bution case. The elliptical distribution can be viewed as a generalization of the

multivariate normal distribution and are usually defined as follows:

Definition 1 (Elliptical distribution). A random vector x ∈ Rp follows an el-

liptical distribution with location parameter µ and scale parameter Λ if it has a

density of the form

fx(x) = |Λ|−1/2g[(x− µ)′Λ−1(x− µ)],

where g : [0,∞] → [0,∞] is a fixed function independent of µ and Λ = (Λij)

and depends on x only through (x − µ)′Λ−1(x − µ). We denote this elliptical

distribution by x ∼ Ep(µ,Λ).

Here we list some useful properties of elliptical distribution in the form of

proposition. Some of these properties are used in this section for our investigation.

For the detailed discussions and proof of the properties, one can refer to Chapter

13 of Bilodeau and Brenner (2008).

Proposition 3. The elliptical distributions have the following properties:

1. If we have x ∼ Ep(µ,Λ), then the linear transformation y = Bx + b

where B is a p × p matrix and b ∈ Rp satisfies y ∼ Ep(Bµ + b,BΛB′).

In particular, z = Λ−1/2(x − µ) ∼ Ep(0, Ip) has a rotationally invariant

distribution.

2. If z ∼ Ep(0, Ip) is rotationally invariant, then its characteristic function

ψz(s) can be expressed as a function of |s|. Or equivalently, there exists

a function φ(.) such that ψz(s) = φ(s′s). And we have x = Λ1/2z + µ

has characteristic function ψx(s) = exp(is′µ)φ(s′Λs). Moreover, if z has

finite second moment, E(z) = 0 and varz = αI for some constant α, and

we have E(x) = µ and varx = αΛ. Here the constant α = −2φ′(0).
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3. The marginal and conditional distributions of a elliptical distribution are

elliptical. To be more precise, let x = (x′1,x
′
2)′ ∼ Ep(µ,Λ) with xi ∈ Rpi,

i = 1, 2, p = p1 + p2, and partition µ and Λ as µ = (µ′1,µ
′
2)′ andΛ11 Λ12

Λ21 Λ22

. Then we have x2 ∼ Ep(µ2,Λ22) and x1|x2 ∼ Ep(µ1 +

Λ12Λ
−1
22 (x2 − µ2),Λ11 −Λ12Λ

−1
22 Λ21).

If we consider a more general i.i.d. elliptical distribution instead of normal

distribution for our problem and look at the approaches we use in the previous

section, one might notice that if we could establish similar results on the asymp-

totic normality of the sample covariance matrix, the arguments for Theorem 1

could essentially work to produce a similar theorem for the i.i.d. elliptical case. So

we are going to prove analogues of Lemma 2 and 1. Here we assume {X i}Ti=1 to be

an i.i.d sequence of elliptical time series in Rp with location parameter 0 and non-

singular scale matrix parameter Λx (we denoted by X i ∼ Ep(0,Λx)) and finite

fourth moments exist for this underlying elliptical distribution. Then by Propo-

sition 3, we have var(X i) ≡ Σx = αΛx for some constant α = −2φ′(0) where φ(.)

is the function introduced in the second property of Proposition 3. Throughout

this section we denote Λy ≡

Λx 0

0 Λx

 so we have Σy =

Σx 0

0 Σx

 = αΛy

under our setup. We also denote U i ≡ Λ−1/2
x X i so that {U i} ∼ Ep(0, Ip) is

rotationally invariant. Without loss of generality, we assume var(U11) = 1 where

U11 is the first coordinate of U 1. All other notations for the independent and

lag-1 case in the last section are assumed in this section.

First we have a result on the asymptotic distribution of the sample covariance

matrix for the independent case.

Lemma 3. Assuming {X i}Ti=1 be an i.i.d sequence of elliptical time series in Rp

where X i ∼ Ep(0,Λx) and its finite fourth moments exist. Then for the case

(2.5), the random matrix M (in the vectorized sense vecM) has the following
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asymptotic distribution property:

√
T (vecM −Σy)

d→D0

where D0 follows N2p
2p (0, (1 + κ)(I +K2p)(Σy ⊗Σy) + κ vec Σy[vec Σy]

′) and the

parameter κ ≡ φ′′(0)−φ′(0)2

φ′(0)2
=

Ez41−3Ez21
3Ez21

.

Remark. We note that for the normal special case, the function φ(x) = e−x/2.

Hence it is easy to compute and derive that the parameters in the lemma satisfy

α = 1 and κ = 0. Thus the covariance structure produced here coincides with the

covariance structure in Lemma 1.

Second we have a result for the lag-1 elliptical case on the asymptotic distri-

bution of the sample covariance matrix.

Lemma 4. Assuming {X i}Ti=1 be an i.i.d sequence of elliptical time series in Rp

where X i ∼ Ep(0,Λx) and its finite fourth moments exist. Then for the case

(2.4), the matrix N (in the vectorized sense vecN) has the following asymptotic

distribution property:
√
T (vecN −Σy)

d→D.

Here D follows N2p
2p (0, (1 + κ)(I +K2p)(Σy ⊗Σy) + κ vec Σy[vec Σy]

′ + (Λ1/2
y ⊗

Λ1/2
y )(L+L′)(Λ1/2

y ⊗Λ1/2
y )) where

L =

 0 0

L0 0


which is of size 4p2 × 4p2 and L0 is a p × p partitioned block matrix of size

2p2 × 2p2 with the (i, j) block equal to Cov(z2i ⊗ (z′1, z
′
2)′, z2j ⊗ (z′2, z

′
3)′) and

κ ≡ φ′′(0)−φ′(0)2

φ′(0)2
=

Ez41−3Ez21
3Ez21

.

Remark. Again for the normal case, we have α = 1 and κ = 0. And with the

special moments’ properties of normal (up to the fourth moment), one can verify

that L0 = J0 hence the results in this lemma coincide with results in lemma 2.
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With Lemma 3, 4 and distribution results from Eaton and Tyler (1994) and

Muirhead (2009), we can establish the following theorem:

Theorem 2. Under the assumptions made in this section, the asymptotic distri-

butions of the sample canonical correlations calculated from (2.4) and (2.5) are

still identical. Let Z be a p× p random matrix distributed as N(0, (1 + γ)Ip⊗ Ip)

where γ = (E(U4
11) − 3)/3 is the kurtosis parameter. Then the asymptotic joint

distribution of w1, w2, ..., wp where wi = T r̂2
i , is the same as the joint distribution

of the decreasingly ordered eigenvalues of the random matrix ZZ ′ and its density

is given as

πp
2/2

(2 + 2γ)p2/2Γp(p/2)Γp(p/2)
exp(−

p∑
i=1

wi
2 + 2γ

)

p∏
i=1

w
−1/2
i

p∏
j<i

(wj − wi) (2.12)

where w1 ≥ w2 ≥ ... ≥ wp ≥ 0 and Γn(.) denotes the multivariate gamma

function.

Remark. Note that when the distribution assumption in Theorem 2 is further

restricted to be normal, we have the kurtosis parameter γ = 0 and the density in

(2.12) now coincides with the density in (2.9).

2.4 The Multivariate non-Normal Case

For the non-normal case, it is difficult to obtain asymptotic results for the sample

canonical correlations like Theorem 2. But we can still construct a white noise

test based on canonical correlations with the idea of bootstrapping.

In this section we assume {X i}Ti=1 to be a general i.i.d time series with finite

fourth moment condition E‖X i‖4 < ∞ and EX i = 0. To make our theoretical

argument easier, first we centralize the series and denote Xc
i ≡ X i − X̄ i, then

we perform bootstrap on the centralized time series {Xc
i}Ti=1 to obtain a boot-

strap sample {X∗T i}Ti=1 of size T . And we define two modified version of sample
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covariance matrices as follow:

S(b) ≡ 1

T

 ∑T
i=1X

∗
T i(X

∗
T i)
′ ∑T−1

i=1 X
∗
T i(X

∗
T (i+1))

′∑T−1
i=1 X

∗
T (i+1)(X

∗
T i)
′ ∑T

i=1X
∗
T i(X

∗
T i)
′

 ≡
S(b)

11 S
(b)
12

S
(b)
21 S

(b)
22


and

S ≡ 1

T

 ∑T
i=1X iX

′
i

∑T−1
i=1 X iX

′
i+1∑T−1

i=1 X i+1X
′
i

∑T
i=1X iX

′
i

 ≡
S11 S12

S21 S22

 .

Note that the first one is for the bootstrap sample while the second one is for the

original sample. It is easy to see that the matrix S differs from the matrix N (de-

fined in Section 2.2) only in minor terms which appear in the diagonal blocks and

the minor terms are negligible when T tends to infinity. Let us also denote the

sample canonical correlations calculated from the bootstrap sample {X∗T i}Ti=1 by

r̂i
(b), i = 1, 2, ..., p, and the matrix T 1/2(S(b) − E(S(b)|X1,X2, . . . ,XT )) by W (b)

with blocks W
(b)
11 , W

(b)
12 , W

(b)
21 , W

(b)
22 similarly partitioned as S(b). We want to es-

tablish the asymptotic relationship between T 1/2(S(b)−E(S(b)|X1,X2, . . . ,XT ))

and T 1/2(S −Σy).

Before stating such a result, we present some necessary probability results as

propositions.

Proposition 4. Let a1, a2, a3, . . . , an, . . . be an infinite sequence of real numbers

which satisfies the condition limn→∞An < ∞ where An ≡
∑n

i=1 a
4
i

n
. Construct an

infinite sequence of random variables {Xi}∞i=1 based on {ai}∞i=1 as follows(no need

to impose independence here):

Xi ∼ uniform(a1, a2, . . . , ai)

for every i ∈ Z+. Then we have for every fixed ε > 0,

lim
n→∞

E{X4
nI(X2

n ≥ ε
√
n)} → 0. (2.13)

The next proposition can be viewed as a centralized version of Proposition 4.
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Proposition 5. Let a1, a2, a3, . . . , an, . . . be an infinite sequence of real numbers

which satisfies the following three conditions:

1. limn→∞An <∞ where An ≡
∑n

i=1 a
4
i

n
,

2. ān ≡
∑n

i=1 ai
n

is bounded for all n,

3.
∑n

i=1(ai−ān)2

n
is bounded for all n.

Construct an infinite sequence of random variables {Xi}∞i=1 based on {ai}∞i=1 as

follows(no need to impose independence here):

Xi ∼ uniform(a1 − āi, a2 − āi, . . . , ai − āi)

for every i ∈ Z+. Then we have for every fixed ε > 0,

lim
n→∞

E{(X2
n − E(X2

n))2I(|X2
n − E(X2

n)| ≥ ε
√
n)} → 0. (2.14)

Proposition 6. Let {ai}∞i=1 and {bi}∞i=1 be two infinite sequences of real numbers

which satisfies the following conditions:

1. limn→∞An <∞ where An ≡
∑n

i=1 a
2
i b

2
i

n
,

2. ān ≡
∑n

i=1 ai
n

and b̄n ≡
∑n

i=1 bi
n

is bounded for all n,

Construct two sequences of random variables {Xi}∞i=1 and {Yi}∞i=1 based on the two

number sequences {ai}∞i=1 and {bi}∞i=1 as follows(no need to impose independence

here):

Xi ∼ uniform(a1 − āi, a2 − āi, . . . , ai − āi)

and

Yi ∼ uniform(b1 − b̄i, b2 − b̄i, . . . , bi − b̄i)

for every i ∈ Z+. Then we have for every fixed ε > 0,

lim
n→∞

E{(XnYn − EXnEYn)2I(|XnYn − EXnEYn| ≥ ε
√
n)} → 0. (2.15)
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Proposition 7. Let {ai}∞i=1 and {bi}∞i=1 be two infinite sequences of real numbers

which satisfies the following conditions:

1. limn→∞An <∞ where An ≡
∑n

i=1 a
2
i b

2
i

n
,

2. ān ≡
∑n

i=1 ai
n

and b̄n ≡
∑n

i=1 bi
n

is bounded for all n,

3.
∑n

i=1(ai−ān)(bi−b̄n)

n
is bounded for all n.

Construct a sequence of random vectors {(Xi, Yi)}∞i=1 based on the two number

sequences {ai}∞i=1 and {bi}∞i=1 as follows:

(Xi, Yi) ∼ uniform((a1 − āi, b1 − b̄i), (a2 − āi, b2 − b̄i), . . . , (ai − āi, bi − b̄i))

for every i ∈ Z+. Then we have for every fixed ε > 0,

lim
n→∞

E{(XnYn − E(XnYn))2I(|XnYn − E(XnYn)| ≥ ε
√
n)} → 0. (2.16)

Now we are ready to present a lemma characterizing the asymptotic normality

of the conditional distribution of T 1/2(S(b) − E(S(b)|X1,X2, . . . ,XT )) given the

sample path X1,X2, . . . ,XT , . . . under some conditions.

Lemma 5. The conditional distribution of T 1/2(S(b) − E(S(b)|X1,X2, . . . ,XT ))

given the infinite sample path X1,X2, . . . ,XT , . . . converges in distribution to

multivariate normal distribution as the bootstrap sample size T tends to infinity

almost surely. And the covariance structure of this multivariate normal is the

same as the covariance structure of T 1/2(S −Σy).

Now we can state the main result for the non-normal case.

Theorem 3. Assuming {X i}Ti=1 to be a series of i.i.d random vector with finite

fourth moment E‖X i‖4 < ∞ and EX i = 0. Then along almost all the sample

sequences ω = (X1,X2, . . . ,XT , . . . ), as T tends to ∞, we have the difference

between P(
√
T r̂1

(b) ≤ c|X1,X2, . . . ,XT ) and P(
√
T r̂1 ≤ c) converges uniformly

to 0, or equivalently we have

sup
−∞<c<∞

|P(
√
T r̂1

(b) ≤ c|X1,X2, . . . ,XT )− P(
√
T r̂1 ≤ c)| a.s.→ 0.
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Remark. If should be pointed out that when there are multiple roots in the covari-

ance structure, the bootstrap consistency might not hold, see for example Section

5 of Eaton and Tyler (1991). But under our special problem setup, it can be

achieved.

2.5 Testing Procedures

Now we elaborate on how our test is performed base on the asymptotic results

obtained in previous sections. Since the asymptotic distribution for the sam-

ple canonical correlations under the lag-1 case (2.4) can be obtained explicitly

when the observations follow normal or elliptical distribution, when the generat-

ing scheme of data is normal or elliptical, one might adopt the largest canonical

correlation calculated from the lag-1 sample as test statistics and use the limiting

distribution obtained in Theorem 1 and 2 to compute the rejection threshold. But

such distribution assumptions might be too strong for real data. So we propose

the following testing procedure based on the bootstrap sample results in section

2.4.

Step 1. Given the original sample observations {X i}Ti=1 where X i ∈ Rp for

i = 1, . . . , T , calculate the centralized series Xc
i ≡X i − X̄ i. Construct the lag-1

sample based on the centralized series {Y i = (X
(c)
i ,X

(c)
i+1)′ ∈ R2p}T−1

i=1 .

Step 2. Calculate the sample covariance matrix of the lag-1 sample {Y i}.

Based on this, calculate the squared largest sample canonical correlation r̂1
2.

Step 3. Let b = 1(use as iterator), B ∈ Z+ be a predetermined value. While

b ≤ B, repeat the following:

1. Draw a bootstrap sample X∗1,X
∗
2, . . . ,X

∗
T from the from the centralized

series.

2. Construct the lag-1 sample {Y ∗i } from {X∗i }. Based on {Y ∗i }, record the

value of the squared largest sample canonical correlation r̂1
2
∗.
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3. increase b by 1.

Step 4. Order and denote the recorded B values of r̂1
2
∗ as follows:

r̂1
2
1 ≤ r̂1

2
2 ≤ · · · ≤ r̂1

2
B

Step 5. Let α be the prespecified size and q ≡ b(1− α)Bc. Our approximate

size α test based on canonical correlation rejects when r̂1
2 ≥ r̂1

2
q.

2.6 Simulation Results

To examine the performance of our test, we perform some simulation studies

comparing the sizes and powers of our proposed test with several well-known

white noise tests in literature. Other tests involved are the likelihood ratio test,

the Ljung Box test and the Lagrangian multiplier test.

For type I error comparison, we consider two types of white noise: normal and

t-distribution with 10 degree of freedom. Theses empirical results are shown in

Table 2.1 to 2.9 for dimension p = 5, 10, 25, size threshold α = 0.1, 0.05, 0.01 and

sample size T = 100, 300, 500, 1000, 2000.

Throughout this section, we denote CCT to be the proposed white noise

test based on canonical correlations, LRT to be the likelihood ratio test, LBT1

and LBT2 to be the Ljung Box test at lag-1 and lag-2 respectively, LMT1 and

LMT2 to be the Lagrangian multiplier test at lag-1 and lag-2 respectively.

We also perform an experiment to compare the powers of these white noise

tests when the null hypothesis is NOT true. 10 settings which violate the null

hypothesis are considered: MA(1) with θ = 0.3, 0.5, AR(1) with φ = 0.3, 0.4,

ARMA(1,1) with (θ, φ) = (0.3, 0.3), (0.2, 0.2), MA(2) with (θ1, θ2) = (0.2, 0.3), (0.3, 0.2)

and AR(2) with (φ1, φ2) = (0.2, 0.3), (0.3, 0.2).

Under each setting, the empirical rejection rate among 1000 replications are

computed for various dimension p, quantile q, sample size T setups. From the
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p=5 CCT LRT LBT1 LBT2 LMT1 LMT2

T=100 0.097 0.088 0.097 0.098 0.082 0.077

T=300 0.096 0.108 0.112 0.112 0.108 0.102

T=500 0.091 0.086 0.089 0.105 0.085 0.108

T=1000 0.098 0.096 0.097 0.093 0.096 0.093

T=2000 0.096 0.106 0.106 0.101 0.105 0.101

Table 2.1: type I error when the white noise is normal and α = 0.1.

p=5 CCT LRT LBT1 LBT2 LMT1 LMT2

T=100 0.042 0.037 0.042 0.046 0.033 0.034

T=300 0.050 0.056 0.057 0.049 0.053 0.042

T=500 0.048 0.047 0.049 0.057 0.047 0.051

T=1000 0.060 0.052 0.051 0.047 0.049 0.045

T=2000 0.044 0.052 0.052 0.042 0.052 0.041

Table 2.2: type I error when the white noise is normal and α = 0.05.

Tables 2.19 to 2.24 , we observe that our proposed test outperforms the other five

tests in terms of power under most of the model setups. We also note that as the

dimension p increase, the power of our test decrease in an insignificantly manner

comparing to all other tests considered.
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p=5 CCT LRT LBT1 LBT2 LMT1 LMT2

T=100 0.013 0.009 0.010 0.015 0.007 0.008

T=300 0.012 0.013 0.013 0.008 0.011 0.007

T=500 0.006 0.011 0.011 0.007 0.010 0.005

T=1000 0.018 0.011 0.010 0.010 0.010 0.011

T=2000 0.009 0.011 0.011 0.005 0.011 0.006

Table 2.3: type I error when the white noise is normal and α = 0.01.

p=10 CCT LRT LBT1 LBT2 LMT1 LMT2

T=100 0.099 0.108 0.132 0.141 0.093 0.078

T=300 0.098 0.096 0.098 0.111 0.091 0.095

T=500 0.107 0.107 0.111 0.117 0.105 0.100

T=1000 0.088 0.098 0.100 0.099 0.096 0.092

T=2000 0.099 0.093 0.093 0.094 0.092 0.094

Table 2.4: type I error when the white noise is normal and α = 0.1.

p=10 CCT LRT LBT1 LBT2 LMT1 LMT2

T=100 0.050 0.054 0.062 0.072 0.042 0.022

T=300 0.050 0.056 0.056 0.062 0.052 0.054

T=500 0.061 0.055 0.054 0.057 0.050 0.052

T=1000 0.045 0.043 0.045 0.046 0.043 0.047

T=2000 0.053 0.049 0.050 0.054 0.049 0.051

Table 2.5: type I error when the white noise is normal and α = 0.05.
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p=10 CCT LRT LBT1 LBT2 LMT1 LMT2

T=100 0.006 0.013 0.011 0.010 0.007 0.003

T=300 0.012 0.013 0.012 0.014 0.012 0.010

T=500 0.012 0.009 0.009 0.016 0.009 0.010

T=1000 0.009 0.010 0.009 0.010 0.009 0.009

T=2000 0.009 0.008 0.007 0.009 0.007 0.007

Table 2.6: type I error when the white noise is normal and α = 0.01.

p=25 CCT LRT LBT1 LBT2 LMT1 LMT2

T=100 0.089 0.191 0.169 0.257 0.067 0.057

T=300 0.093 0.094 0.103 0.130 0.084 0.081

T=500 0.090 0.104 0.110 0.118 0.099 0.079

T=1000 0.106 0.100 0.101 0.108 0.097 0.095

T=2000 0.102 0.111 0.112 0.107 0.110 0.096

Table 2.7: type I error when the white noise is normal and α = 0.1.

p=25 CCT LRT LBT1 LBT2 LMT1 LMT2

T=100 0.037 0.102 0.067 0.131 0.036 0.008

T=300 0.055 0.045 0.045 0.059 0.036 0.027

T=500 0.039 0.048 0.052 0.054 0.040 0.037

T=1000 0.054 0.045 0.047 0.051 0.045 0.040

T=2000 0.055 0.060 0.061 0.060 0.058 0.054

Table 2.8: type I error when the white noise is normal and α = 0.05.
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p=25 CCT LRT LBT1 LBT2 LMT1 LMT2

T=100 0.008 0.035 0.010 0.016 0.001 0.000

T=300 0.008 0.008 0.007 0.011 0.005 0.005

T=500 0.010 0.009 0.010 0.014 0.009 0.007

T=1000 0.013 0.005 0.005 0.007 0.004 0.004

T=2000 0.016 0.015 0.015 0.011 0.013 0.009

Table 2.9: type I error when the white noise is normal and α = 0.01.

p=5 CCT LRT LBT1 LBT2 LMT1 LMT2

T=100 0.100 0.094 0.106 0.109 0.090 0.077

T=300 0.104 0.098 0.107 0.108 0.097 0.096

T=500 0.124 0.117 0.117 0.108 0.116 0.098

T=1000 0.107 0.107 0.108 0.105 0.106 0.098

T=2000 0.095 0.088 0.089 0.099 0.088 0.098

Table 2.10: type I error when the white noise is t(10) and α = 0.1.

p=5 CCT LRT LBT1 LBT2 LMT1 LMT2

T=100 0.046 0.040 0.043 0.053 0.032 0.031

T=300 0.052 0.058 0.061 0.050 0.058 0.041

T=500 0.058 0.072 0.073 0.058 0.071 0.056

T=1000 0.058 0.056 0.057 0.047 0.056 0.052

T=2000 0.051 0.042 0.042 0.054 0.042 0.054

Table 2.11: type I error when the white noise is t(10) and α = 0.05.
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p=5 CCT LRT LBT1 LBT2 LMT1 LMT2

T=100 0.009 0.010 0.007 0.010 0.006 0.007

T=300 0.008 0.007 0.008 0.008 0.007 0.008

T=500 0.021 0.011 0.011 0.016 0.010 0.015

T=1000 0.011 0.007 0.006 0.015 0.005 0.012

T=2000 0.008 0.008 0.008 0.011 0.008 0.012

Table 2.12: type I error when the white noise is t(10) and α = 0.01.

p=10 CCT LRT LBT1 LBT2 LMT1 LMT2

T=100 0.096 0.108 0.119 0.132 0.098 0.075

T=300 0.096 0.097 0.097 0.120 0.090 0.109

T=500 0.110 0.105 0.106 0.106 0.101 0.102

T=1000 0.098 0.102 0.104 0.116 0.099 0.103

T=2000 0.090 0.091 0.092 0.091 0.092 0.090

Table 2.13: type I error when the white noise is t(10) and α = 0.1.

p=10 CCT LRT LBT1 LBT2 LMT1 LMT2

T=100 0.060 0.049 0.060 0.069 0.039 0.037

T=300 0.049 0.048 0.051 0.061 0.046 0.051

T=500 0.057 0.054 0.054 0.061 0.051 0.054

T=1000 0.053 0.056 0.055 0.052 0.053 0.045

T=2000 0.046 0.048 0.048 0.045 0.047 0.044

Table 2.14: type I error when the white noise is t(10) and α = 0.05.
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p=10 CCT LRT LBT1 LBT2 LMT1 LMT2

T=100 0.009 0.011 0.010 0.014 0.008 0.000

T=300 0.013 0.008 0.008 0.003 0.008 0.004

T=500 0.013 0.008 0.008 0.011 0.006 0.009

T=1000 0.011 0.011 0.011 0.006 0.010 0.007

T=2000 0.006 0.006 0.006 0.002 0.006 0.002

Table 2.15: type I error when the white noise is t(10) and α = 0.01.

p=25 CCT LRT LBT1 LBT2 LMT1 LMT2

T=100 0.085 0.180 0.155 0.210 0.073 0.028

T=300 0.104 0.115 0.118 0.136 0.095 0.086

T=500 0.103 0.107 0.117 0.113 0.100 0.090

T=1000 0.094 0.092 0.096 0.098 0.092 0.085

T=2000 0.106 0.110 0.113 0.102 0.110 0.097

Table 2.16: type I error when the white noise is t(10) and α = 0.1.

p=25 CCT LRT LBT1 LBT2 LMT1 LMT2

T=100 0.045 0.113 0.075 0.118 0.020 0.006

T=300 0.054 0.058 0.058 0.066 0.041 0.035

T=500 0.050 0.048 0.051 0.056 0.043 0.035

T=1000 0.053 0.045 0.047 0.046 0.046 0.041

T=2000 0.048 0.060 0.061 0.051 0.059 0.052

Table 2.17: type I error when the white noise is t(10) and α = 0.05.
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p=25 CCT LRT LBT1 LBT2 LMT1 LMT2

T=100 0.004 0.028 0.008 0.020 0.004 0.001

T=300 0.008 0.008 0.009 0.012 0.007 0.002

T=500 0.012 0.015 0.013 0.011 0.011 0.006

T=1000 0.010 0.011 0.011 0.008 0.010 0.009

T=2000 0.007 0.008 0.007 0.008 0.007 0.006

Table 2.18: type I error when the white noise is t(10) and α = 0.01.
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Table 2.19: empirical rejection rates when quantile q=0.90 and the white noise is normal

p=5 p=10 p=25

CCT LRT LBT1 LBT2 LMT1 LMT2 CCT LRT LBT1 LBT2 LMT1 LMT2 CCT LRT LBT1 LBT2 LMT1 LMT2

MA(1) theta=0.3

T=250 0.827 0.777 0.778 0.618 0.764 0.647 0.542 0.470 0.469 0.383 0.451 0.351 0.191 0.215 0.217 0.226 0.181 0.156

T=500 0.996 0.990 0.991 0.947 0.990 0.966 0.944 0.861 0.856 0.696 0.850 0.720 0.506 0.421 0.422 0.316 0.395 0.287

T=750 1.000 1.000 1.000 0.999 1.000 1.000 0.999 0.978 0.976 0.893 0.976 0.911 0.820 0.575 0.569 0.420 0.550 0.413

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.994 0.968 0.994 0.982 0.963 0.779 0.763 0.553 0.753 0.565

MA(1) theta=0.5

T=250 0.997 0.996 0.995 0.974 0.995 0.992 0.969 0.884 0.869 0.705 0.856 0.789 0.499 0.398 0.388 0.346 0.337 0.279

T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.987 1.000 0.998 0.990 0.836 0.813 0.636 0.794 0.664

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.974 0.965 0.812 0.961 0.886

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.960 0.998 0.988

AR(1) phi=0.3

T=250 0.910 0.867 0.866 0.750 0.861 0.705 0.658 0.573 0.574 0.466 0.544 0.388 0.206 0.260 0.273 0.235 0.217 0.145

T=500 1.000 0.996 0.996 0.989 0.996 0.985 0.983 0.928 0.926 0.820 0.921 0.762 0.630 0.489 0.484 0.378 0.456 0.296

T=750 1.000 1.000 1.000 0.998 1.000 0.998 1.000 0.988 0.986 0.965 0.986 0.948 0.922 0.708 0.695 0.540 0.672 0.453

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.993 1.000 0.993 0.990 0.881 0.864 0.736 0.852 0.641

AR(1) phi=0.4

T=250 0.999 0.994 0.994 0.966 0.994 0.959 0.961 0.873 0.864 0.769 0.848 0.675 0.518 0.446 0.432 0.395 0.371 0.216

T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.996 0.988 0.996 0.978 0.977 0.812 0.782 0.688 0.746 0.532

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.968 0.953 0.885 0.949 0.800

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.995 0.977 0.995 0.951

ARMA(1,1) theta=0.3 phi=0.3

T=250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.998 0.964 0.997 0.963 0.941 0.729 0.681 0.545 0.611 0.393

T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.984 0.923 0.982 0.890

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.991 1.000 0.987

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 2.19: empirical rejection rates when quantile q=0.90 and the white noise is normal

(continued)

p=5 p=10 p=25

CCT LRT LBT1 LBT2 LMT1 LMT2 CCT LRT LBT1 LBT2 LMT1 LMT2 CCT LRT LBT1 LBT2 LMT1 LMT2

ARMA(1,1) theta=0.2 phi=0.2

T=250 0.993 0.981 0.982 0.929 0.980 0.936 0.904 0.805 0.794 0.656 0.777 0.610 0.366 0.371 0.379 0.314 0.313 0.198

T=500 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.998 0.959 0.998 0.961 0.934 0.732 0.710 0.552 0.683 0.487

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 0.999 0.999 0.925 0.915 0.757 0.906 0.722

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.991 0.987 0.923 0.987 0.917

MA(2) theta1=0.2 theta2=0.3

T=250 0.633 0.589 0.587 0.841 0.579 0.753 0.373 0.352 0.361 0.576 0.337 0.431 0.168 0.196 0.199 0.302 0.169 0.183

T=500 0.919 0.890 0.891 0.995 0.890 0.992 0.718 0.634 0.630 0.899 0.621 0.809 0.301 0.309 0.320 0.487 0.289 0.344

T=750 0.985 0.978 0.978 1.000 0.977 1.000 0.938 0.848 0.847 0.993 0.843 0.979 0.535 0.409 0.413 0.664 0.391 0.517

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 0.985 0.955 0.955 0.998 0.954 0.995 0.758 0.551 0.540 0.831 0.529 0.705

MA(2) theta1=0.3 theta2=0.2

T=250 0.921 0.888 0.888 0.865 0.880 0.794 0.736 0.639 0.637 0.609 0.621 0.472 0.275 0.289 0.293 0.317 0.235 0.187

T=500 1.000 0.997 0.997 0.994 0.997 0.991 0.986 0.951 0.947 0.921 0.943 0.850 0.747 0.569 0.565 0.516 0.543 0.377

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000 0.982 0.959 0.765 0.747 0.706 0.732 0.540

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.998 0.916 0.904 0.867 0.900 0.752

AR(2) phi1=0.2 phi2=0.3

T=250 0.786 0.750 0.754 0.975 0.744 0.949 0.559 0.499 0.494 0.785 0.474 0.640 0.222 0.224 0.235 0.432 0.198 0.222

T=500 0.979 0.973 0.973 1.000 0.973 1.000 0.900 0.820 0.818 0.990 0.810 0.962 0.551 0.452 0.452 0.735 0.423 0.554

T=750 0.998 0.998 0.998 1.000 0.998 1.000 0.987 0.959 0.958 1.000 0.958 1.000 0.813 0.612 0.605 0.930 0.592 0.815

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.993 0.993 1.000 0.993 1.000 0.950 0.809 0.795 0.991 0.782 0.955

AR(2) phi1=0.3 phi2=0.2

T=250 0.977 0.960 0.959 0.978 0.956 0.955 0.864 0.767 0.762 0.854 0.751 0.713 0.407 0.364 0.359 0.447 0.297 0.256

T=500 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.988 0.988 0.995 0.988 0.986 0.900 0.712 0.689 0.806 0.657 0.558

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.932 0.923 0.968 0.921 0.852

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.983 0.979 0.996 0.979 0.960
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Table 2.20: empirical rejection rates when quantile q=0.95 and the white noise is normal

p=5 p=10 p=25

CCT LRT LBT1 LBT2 LMT1 LMT2 CCT LRT LBT1 LBT2 LMT1 LMT2 CCT LRT LBT1 LBT2 LMT1 LMT2

MA(1) theta=0.3

T=250 0.742 0.666 0.662 0.481 0.657 0.512 0.430 0.346 0.345 0.246 0.320 0.231 0.104 0.126 0.127 0.130 0.098 0.079

T=500 0.994 0.979 0.978 0.908 0.977 0.924 0.904 0.764 0.752 0.555 0.740 0.583 0.373 0.289 0.284 0.202 0.257 0.165

T=750 1.000 1.000 1.000 0.997 1.000 0.998 0.995 0.951 0.949 0.812 0.949 0.852 0.739 0.435 0.423 0.277 0.406 0.276

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.991 0.991 0.942 0.991 0.959 0.934 0.650 0.636 0.423 0.625 0.423

MA(1) theta=0.5

T=250 0.995 0.991 0.990 0.940 0.988 0.975 0.931 0.797 0.774 0.553 0.762 0.641 0.364 0.268 0.252 0.215 0.199 0.152

T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.998 0.969 0.998 0.991 0.973 0.746 0.693 0.480 0.659 0.515

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.952 0.927 0.702 0.918 0.788

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.992 0.924 0.992 0.970

AR(1) phi=0.3

T=250 0.856 0.784 0.779 0.619 0.765 0.568 0.544 0.437 0.420 0.336 0.389 0.240 0.119 0.157 0.148 0.129 0.104 0.072

T=500 0.997 0.992 0.992 0.972 0.992 0.963 0.962 0.873 0.860 0.699 0.856 0.621 0.509 0.345 0.337 0.246 0.305 0.178

T=750 1.000 1.000 1.000 0.997 1.000 0.996 0.998 0.977 0.974 0.922 0.974 0.896 0.876 0.572 0.540 0.406 0.522 0.314

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.987 1.000 0.982 0.983 0.780 0.750 0.595 0.737 0.500

AR(1) phi=0.4

T=250 0.997 0.988 0.984 0.937 0.981 0.909 0.922 0.786 0.764 0.648 0.747 0.509 0.380 0.312 0.280 0.249 0.230 0.115

T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.993 0.977 0.993 0.952 0.958 0.681 0.643 0.528 0.611 0.373

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000 0.998 1.000 0.934 0.902 0.804 0.891 0.661

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.995 0.960 0.995 0.900

ARMA(1,1) theta=0.3 phi=0.3

T=250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.992 0.932 0.987 0.913 0.889 0.597 0.519 0.393 0.453 0.235

T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.986 0.968 0.850 0.961 0.795

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.981 1.000 0.976

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 2.20: empirical rejection rates when quantile q=0.95 and the white noise is normal

(continued)

p=5 p=10 p=25

CCT LRT LBT1 LBT2 LMT1 LMT2 CCT LRT LBT1 LBT2 LMT1 LMT2 CCT LRT LBT1 LBT2 LMT1 LMT2

ARMA(1,1) theta=0.2 phi=0.2

T=250 0.984 0.967 0.963 0.868 0.962 0.873 0.860 0.705 0.681 0.511 0.648 0.474 0.258 0.247 0.229 0.186 0.186 0.102

T=500 1.000 1.000 1.000 0.999 1.000 0.999 0.999 0.994 0.994 0.928 0.994 0.933 0.886 0.600 0.563 0.399 0.529 0.333

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 1.000 0.997 0.999 0.877 0.851 0.634 0.832 0.598

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.980 0.973 0.851 0.969 0.831

MA(2) theta1=0.2 theta2=0.3

T=250 0.514 0.456 0.454 0.757 0.443 0.642 0.272 0.241 0.244 0.430 0.224 0.279 0.103 0.120 0.122 0.194 0.085 0.085

T=500 0.875 0.833 0.830 0.990 0.824 0.973 0.624 0.494 0.485 0.832 0.475 0.705 0.204 0.198 0.198 0.348 0.183 0.235

T=750 0.974 0.963 0.963 1.000 0.963 1.000 0.896 0.773 0.768 0.983 0.763 0.950 0.412 0.267 0.258 0.507 0.236 0.348

T=1000 0.999 0.997 0.997 1.000 0.997 1.000 0.972 0.921 0.919 0.998 0.914 0.992 0.669 0.421 0.415 0.740 0.407 0.578

MA(2) theta1=0.3 theta2=0.2

T=250 0.859 0.824 0.823 0.802 0.817 0.699 0.635 0.511 0.497 0.460 0.471 0.316 0.176 0.178 0.178 0.201 0.146 0.094

T=500 0.999 0.997 0.996 0.991 0.996 0.977 0.975 0.900 0.894 0.867 0.890 0.729 0.622 0.426 0.405 0.376 0.375 0.243

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.995 0.990 0.995 0.966 0.925 0.653 0.635 0.568 0.616 0.398

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.999 0.996 0.996 0.843 0.821 0.787 0.814 0.624

AR(2) phi1=0.2 phi2=0.3

T=250 0.699 0.646 0.639 0.949 0.633 0.904 0.458 0.355 0.349 0.690 0.318 0.495 0.134 0.142 0.148 0.278 0.103 0.114

T=500 0.971 0.957 0.957 1.000 0.956 0.999 0.852 0.729 0.720 0.977 0.713 0.930 0.452 0.339 0.325 0.604 0.299 0.399

T=750 0.997 0.997 0.997 1.000 0.997 1.000 0.981 0.934 0.927 1.000 0.922 1.000 0.751 0.501 0.480 0.878 0.463 0.690

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.987 0.985 1.000 0.984 1.000 0.922 0.698 0.679 0.980 0.670 0.902

AR(2) phi1=0.3 phi2=0.2

T=250 0.960 0.922 0.917 0.959 0.915 0.902 0.801 0.680 0.675 0.786 0.660 0.558 0.286 0.236 0.219 0.327 0.177 0.120

T=500 1.000 0.998 0.997 1.000 0.997 0.999 0.996 0.976 0.969 0.992 0.967 0.967 0.857 0.584 0.550 0.695 0.523 0.425

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.885 0.863 0.935 0.845 0.729

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.966 0.956 0.990 0.954 0.919
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Table 2.21: empirical rejection rates when quantile q=0.99 and the white noise is normal

p=5 p=10 p=25

CCT LRT LBT1 LBT2 LMT1 LMT2 CCT LRT LBT1 LBT2 LMT1 LMT2 CCT LRT LBT1 LBT2 LMT1 LMT2

MA(1) theta=0.3

T=250 0.528 0.427 0.415 0.249 0.397 0.245 0.174 0.143 0.131 0.067 0.120 0.055 0.030 0.030 0.025 0.027 0.014 0.009

T=500 0.967 0.914 0.909 0.755 0.907 0.808 0.786 0.544 0.515 0.296 0.502 0.320 0.189 0.119 0.103 0.059 0.085 0.041

T=750 1.000 1.000 1.000 0.983 1.000 0.992 0.971 0.859 0.842 0.591 0.838 0.649 0.527 0.220 0.203 0.115 0.192 0.105

T=1000 1.000 0.999 0.999 0.997 0.999 0.999 1.000 0.978 0.972 0.843 0.971 0.887 0.836 0.387 0.355 0.168 0.339 0.178

MA(1) theta=0.5

T=250 0.984 0.946 0.938 0.792 0.933 0.907 0.823 0.582 0.522 0.311 0.492 0.355 0.160 0.110 0.077 0.065 0.055 0.033

T=500 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.988 0.985 0.893 0.984 0.958 0.922 0.485 0.406 0.216 0.378 0.233

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 1.000 1.000 1.000 0.814 0.755 0.454 0.735 0.562

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.976 0.959 0.736 0.957 0.873

AR(1) phi=0.3

T=250 0.664 0.573 0.547 0.377 0.534 0.309 0.318 0.206 0.183 0.131 0.160 0.081 0.042 0.030 0.024 0.033 0.016 0.015

T=500 0.984 0.976 0.975 0.894 0.975 0.857 0.896 0.674 0.645 0.426 0.632 0.348 0.284 0.125 0.108 0.078 0.102 0.046

T=750 1.000 0.998 0.998 0.986 0.998 0.981 0.993 0.931 0.920 0.797 0.918 0.716 0.744 0.303 0.275 0.190 0.261 0.118

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.995 0.948 0.994 0.925 0.958 0.545 0.506 0.319 0.498 0.235

AR(1) phi=0.4

T=250 0.979 0.933 0.922 0.859 0.920 0.763 0.807 0.579 0.522 0.388 0.488 0.247 0.186 0.105 0.081 0.080 0.064 0.020

T=500 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.983 0.977 0.926 0.975 0.848 0.892 0.443 0.380 0.274 0.352 0.149

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.993 0.999 0.988 0.999 0.805 0.756 0.562 0.736 0.383

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.981 0.958 0.848 0.955 0.705

ARMA(1,1) theta=0.3 phi=0.3

T=250 1.000 0.999 0.999 0.994 0.999 0.998 0.998 0.956 0.929 0.766 0.922 0.705 0.717 0.323 0.213 0.147 0.162 0.062

T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.938 0.859 0.629 0.843 0.516

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.928 0.996 0.907

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 1.000 0.996
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Table 2.21: empirical rejection rates when quantile q=0.99 and the white noise is normal

(continued)

p=5 p=10 p=25

CCT LRT LBT1 LBT2 LMT1 LMT2 CCT LRT LBT1 LBT2 LMT1 LMT2 CCT LRT LBT1 LBT2 LMT1 LMT2

ARMA(1,1) theta=0.2 phi=0.2

T=250 0.950 0.886 0.874 0.675 0.864 0.663 0.710 0.464 0.404 0.257 0.382 0.192 0.107 0.069 0.053 0.047 0.034 0.025

T=500 1.000 1.000 1.000 0.997 1.000 0.998 0.998 0.968 0.956 0.783 0.952 0.775 0.739 0.342 0.291 0.157 0.256 0.103

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.977 1.000 0.980 0.996 0.691 0.619 0.379 0.601 0.312

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.921 0.894 0.645 0.883 0.598

MA(2) theta1=0.2 theta2=0.3

T=250 0.300 0.235 0.230 0.561 0.219 0.374 0.117 0.097 0.084 0.193 0.072 0.083 0.026 0.025 0.017 0.051 0.013 0.016

T=500 0.739 0.660 0.653 0.960 0.649 0.907 0.427 0.288 0.271 0.643 0.256 0.417 0.078 0.062 0.062 0.151 0.047 0.070

T=750 0.933 0.900 0.896 1.000 0.895 0.998 0.773 0.564 0.554 0.933 0.544 0.838 0.230 0.091 0.082 0.264 0.074 0.136

T=1000 0.992 0.983 0.983 1.000 0.981 1.000 0.931 0.762 0.745 0.991 0.742 0.975 0.476 0.204 0.199 0.493 0.189 0.293

MA(2) theta1=0.3 theta2=0.2

T=250 0.734 0.655 0.631 0.592 0.618 0.423 0.399 0.253 0.229 0.211 0.207 0.097 0.069 0.050 0.040 0.056 0.027 0.017

T=500 0.993 0.980 0.976 0.971 0.976 0.939 0.932 0.756 0.730 0.685 0.720 0.490 0.413 0.193 0.176 0.170 0.156 0.073

T=750 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.982 0.977 0.961 0.974 0.879 0.805 0.393 0.343 0.299 0.321 0.161

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.997 0.995 0.997 0.987 0.987 0.657 0.603 0.563 0.589 0.348

AR(2) phi1=0.2 phi2=0.3

T=250 0.542 0.474 0.454 0.866 0.449 0.750 0.261 0.183 0.161 0.449 0.149 0.255 0.030 0.030 0.021 0.081 0.013 0.024

T=500 0.921 0.883 0.879 0.999 0.877 0.998 0.732 0.536 0.510 0.934 0.498 0.815 0.243 0.128 0.110 0.347 0.100 0.161

T=750 0.995 0.988 0.987 1.000 0.987 1.000 0.952 0.846 0.836 0.999 0.830 0.990 0.586 0.268 0.255 0.670 0.243 0.411

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.956 0.948 1.000 0.948 1.000 0.831 0.460 0.426 0.923 0.410 0.746

AR(2) phi1=0.3 phi2=0.2

T=250 0.897 0.817 0.798 0.898 0.790 0.776 0.631 0.448 0.401 0.576 0.376 0.290 0.131 0.082 0.062 0.114 0.046 0.021

T=500 0.999 0.995 0.995 0.998 0.995 0.996 0.985 0.931 0.910 0.974 0.905 0.888 0.728 0.361 0.303 0.431 0.273 0.187

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997 1.000 0.996 0.997 0.984 0.699 0.645 0.795 0.618 0.480

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.904 0.881 0.951 0.876 0.782
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Table 2.22: empirical rejection rates when quantile q=0.90 and the white noise is t(10)

p=5 p=10 p=25

CCT LRT LBT1 LBT2 LMT1 LMT2 CCT LRT LBT1 LBT2 LMT1 LMT2 CCT LRT LBT1 LBT2 LMT1 LMT2

MA(1) theta=0.3

T=250 0.827 0.785 0.783 0.609 0.772 0.646 0.536 0.456 0.453 0.349 0.428 0.324 0.192 0.211 0.230 0.231 0.172 0.153

T=500 0.997 0.993 0.993 0.972 0.993 0.978 0.943 0.866 0.862 0.689 0.851 0.714 0.501 0.394 0.398 0.331 0.369 0.295

T=750 1.000 1.000 1.000 0.999 1.000 1.000 0.997 0.982 0.981 0.887 0.980 0.921 0.802 0.594 0.584 0.441 0.563 0.440

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.996 0.978 0.996 0.986 0.969 0.764 0.755 0.572 0.744 0.585

MA(1) theta=0.5

T=250 0.999 0.998 0.997 0.979 0.996 0.995 0.961 0.885 0.876 0.714 0.857 0.777 0.480 0.406 0.399 0.351 0.346 0.275

T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.989 1.000 0.998 0.985 0.813 0.784 0.611 0.756 0.644

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.976 0.966 0.851 0.961 0.909

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.996 0.958 0.996 0.985

AR(1) phi=0.3

T=250 0.911 0.859 0.858 0.753 0.850 0.707 0.641 0.561 0.552 0.433 0.522 0.346 0.235 0.245 0.256 0.257 0.210 0.148

T=500 1.000 1.000 1.000 0.986 1.000 0.987 0.977 0.926 0.919 0.809 0.915 0.755 0.614 0.475 0.474 0.383 0.447 0.301

T=750 1.000 1.000 1.000 0.998 1.000 0.998 0.999 0.993 0.992 0.952 0.992 0.930 0.925 0.689 0.675 0.544 0.662 0.461

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994 1.000 0.995 0.996 0.856 0.845 0.709 0.841 0.643

AR(1) phi=0.4

T=250 0.997 0.993 0.992 0.967 0.991 0.960 0.956 0.872 0.859 0.752 0.851 0.651 0.486 0.393 0.381 0.340 0.321 0.209

T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.998 0.990 0.998 0.975 0.972 0.809 0.792 0.679 0.771 0.552

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.964 0.957 0.889 0.953 0.799

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.997 0.982 0.996 0.950

ARMA(1,1) theta=0.3 phi=0.3

T=250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.951 0.997 0.950 0.910 0.679 0.631 0.527 0.581 0.370

T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.992 0.980 0.912 0.978 0.867

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.993 1.000 0.992

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 2.22: empirical rejection rates when quantile q=0.90 and the white noise is t(10)

(continued)

p=5 p=10 p=25

CCT LRT LBT1 LBT2 LMT1 LMT2 CCT LRT LBT1 LBT2 LMT1 LMT2 CCT LRT LBT1 LBT2 LMT1 LMT2

ARMA(1,1) theta=0.2 phi=0.2

T=250 0.992 0.980 0.979 0.925 0.977 0.925 0.919 0.807 0.796 0.635 0.779 0.585 0.403 0.362 0.364 0.314 0.306 0.212

T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.993 0.968 0.993 0.969 0.936 0.719 0.695 0.542 0.655 0.471

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.931 0.918 0.746 0.908 0.713

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.988 0.983 0.910 0.982 0.904

MA(2) theta1=0.2 theta2=0.3

T=250 0.603 0.591 0.596 0.830 0.587 0.747 0.351 0.346 0.349 0.533 0.324 0.389 0.149 0.179 0.193 0.299 0.156 0.177

T=500 0.920 0.891 0.891 0.998 0.889 0.992 0.717 0.638 0.639 0.897 0.628 0.789 0.306 0.283 0.291 0.483 0.253 0.335

T=750 0.993 0.989 0.989 1.000 0.989 1.000 0.923 0.842 0.837 0.990 0.835 0.977 0.496 0.414 0.407 0.662 0.392 0.503

T=1000 0.999 0.996 0.996 1.000 0.996 1.000 0.985 0.943 0.939 1.000 0.936 0.998 0.731 0.534 0.533 0.832 0.519 0.701

MA(2) theta1=0.3 theta2=0.2

T=250 0.932 0.902 0.899 0.854 0.897 0.790 0.714 0.591 0.593 0.558 0.565 0.425 0.253 0.258 0.263 0.308 0.218 0.189

T=500 1.000 0.998 0.998 1.000 0.998 0.995 0.989 0.950 0.944 0.920 0.944 0.837 0.736 0.530 0.518 0.508 0.483 0.366

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.998 0.994 0.997 0.978 0.955 0.751 0.732 0.705 0.715 0.548

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.923 0.910 0.862 0.902 0.750

AR(2) phi1=0.2 phi2=0.3

T=250 0.795 0.752 0.746 0.957 0.739 0.932 0.584 0.514 0.513 0.806 0.495 0.654 0.221 0.215 0.222 0.415 0.179 0.224

T=500 0.986 0.979 0.979 1.000 0.979 1.000 0.903 0.838 0.828 0.991 0.821 0.970 0.549 0.444 0.446 0.731 0.416 0.548

T=750 0.999 0.999 0.999 1.000 0.999 1.000 0.991 0.970 0.969 1.000 0.968 0.999 0.846 0.654 0.646 0.929 0.629 0.802

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.992 0.992 1.000 0.992 1.000 0.951 0.779 0.767 0.980 0.760 0.932

AR(2) phi1=0.3 phi2=0.2

T=250 0.978 0.958 0.959 0.986 0.957 0.962 0.837 0.761 0.755 0.833 0.740 0.663 0.401 0.356 0.352 0.446 0.293 0.224

T=500 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.994 0.992 0.999 0.992 0.983 0.926 0.714 0.697 0.803 0.673 0.584

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.993 0.921 0.907 0.960 0.902 0.840

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.987 0.983 0.996 0.981 0.962
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Table 2.23: empirical rejection rates when quantile q=0.95 and the white noise is t(10)

p=5 p=10 p=25

CCT LRT LBT1 LBT2 LMT1 LMT2 CCT LRT LBT1 LBT2 LMT1 LMT2 CCT LRT LBT1 LBT2 LMT1 LMT2

MA(1) theta=0.3

T=250 0.726 0.678 0.673 0.482 0.657 0.505 0.411 0.324 0.318 0.234 0.287 0.203 0.107 0.122 0.127 0.135 0.098 0.072

T=500 0.992 0.982 0.980 0.930 0.976 0.948 0.904 0.763 0.752 0.542 0.742 0.581 0.379 0.271 0.265 0.216 0.240 0.177

T=750 1.000 1.000 1.000 0.997 1.000 0.999 0.996 0.960 0.956 0.806 0.951 0.843 0.721 0.455 0.439 0.308 0.417 0.296

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.994 0.950 0.994 0.967 0.948 0.654 0.633 0.439 0.619 0.440

MA(1) theta=0.5

T=250 0.999 0.992 0.991 0.944 0.991 0.980 0.926 0.797 0.777 0.568 0.755 0.636 0.349 0.270 0.265 0.219 0.196 0.150

T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.962 0.997 0.990 0.969 0.704 0.657 0.468 0.628 0.502

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.950 0.929 0.751 0.917 0.837

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.992 0.907 0.990 0.968

AR(1) phi=0.3

T=250 0.836 0.785 0.781 0.635 0.774 0.578 0.534 0.405 0.404 0.297 0.366 0.232 0.149 0.157 0.149 0.142 0.108 0.071

T=500 0.999 0.994 0.993 0.969 0.993 0.970 0.958 0.860 0.851 0.708 0.843 0.629 0.503 0.336 0.325 0.253 0.302 0.184

T=750 1.000 0.999 0.999 0.997 0.999 0.998 0.999 0.981 0.976 0.915 0.976 0.885 0.865 0.560 0.543 0.394 0.521 0.315

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.990 0.998 0.983 0.985 0.768 0.740 0.588 0.723 0.496

AR(1) phi=0.4

T=250 0.990 0.984 0.983 0.948 0.980 0.919 0.930 0.796 0.773 0.649 0.753 0.508 0.356 0.262 0.241 0.220 0.193 0.109

T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.995 0.972 0.995 0.955 0.953 0.727 0.678 0.537 0.651 0.404

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.931 0.913 0.812 0.905 0.665

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.993 0.989 0.957 0.988 0.888

ARMA(1,1) theta=0.3 phi=0.3

T=250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.990 0.905 0.986 0.895 0.844 0.552 0.488 0.375 0.421 0.225

T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.979 0.949 0.832 0.936 0.778

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.984 1.000 0.978

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 2.23: empirical rejection rates when quantile q=0.95 and the white noise is t(10)

(continued)

p=5 p=10 p=25

CCT LRT LBT1 LBT2 LMT1 LMT2 CCT LRT LBT1 LBT2 LMT1 LMT2 CCT LRT LBT1 LBT2 LMT1 LMT2

ARMA(1,1) theta=0.2 phi=0.2

T=250 0.983 0.961 0.958 0.862 0.958 0.870 0.861 0.702 0.674 0.466 0.649 0.420 0.284 0.231 0.223 0.200 0.179 0.104

T=500 1.000 1.000 1.000 0.998 1.000 1.000 1.000 0.987 0.985 0.925 0.985 0.928 0.890 0.587 0.549 0.391 0.522 0.326

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 1.000 0.997 0.999 0.878 0.849 0.623 0.834 0.596

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.972 0.964 0.830 0.959 0.821

MA(2) theta1=0.2 theta2=0.3

T=250 0.515 0.464 0.460 0.742 0.447 0.633 0.225 0.220 0.219 0.388 0.204 0.241 0.083 0.105 0.102 0.189 0.086 0.096

T=500 0.858 0.815 0.816 0.993 0.814 0.982 0.626 0.516 0.510 0.821 0.499 0.681 0.201 0.167 0.166 0.340 0.147 0.225

T=750 0.989 0.974 0.974 1.000 0.974 1.000 0.876 0.747 0.741 0.978 0.736 0.939 0.384 0.303 0.297 0.531 0.282 0.375

T=1000 0.997 0.993 0.993 1.000 0.993 1.000 0.972 0.899 0.894 1.000 0.893 0.989 0.634 0.410 0.405 0.735 0.390 0.547

MA(2) theta1=0.3 theta2=0.2

T=250 0.896 0.842 0.835 0.788 0.827 0.685 0.602 0.467 0.448 0.424 0.429 0.279 0.146 0.172 0.171 0.201 0.133 0.097

T=500 0.999 0.998 0.998 0.995 0.997 0.989 0.974 0.910 0.904 0.860 0.900 0.737 0.612 0.393 0.374 0.370 0.348 0.240

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.989 0.986 0.982 0.985 0.959 0.922 0.638 0.624 0.579 0.609 0.405

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.992 0.852 0.833 0.779 0.822 0.604

AR(2) phi1=0.2 phi2=0.3

T=250 0.728 0.662 0.655 0.931 0.648 0.876 0.471 0.393 0.379 0.712 0.358 0.510 0.124 0.144 0.143 0.272 0.117 0.116

T=500 0.974 0.960 0.961 1.000 0.960 1.000 0.861 0.755 0.748 0.981 0.738 0.943 0.421 0.327 0.311 0.605 0.291 0.393

T=750 0.999 0.997 0.996 1.000 0.996 1.000 0.982 0.943 0.941 0.999 0.940 0.999 0.781 0.516 0.496 0.870 0.475 0.693

T=1000 1.000 0.999 0.999 1.000 0.999 1.000 0.995 0.989 0.989 1.000 0.989 1.000 0.922 0.684 0.666 0.961 0.655 0.888

AR(2) phi1=0.3 phi2=0.2

T=250 0.956 0.933 0.929 0.970 0.930 0.917 0.779 0.655 0.631 0.740 0.615 0.522 0.308 0.233 0.218 0.313 0.178 0.106

T=500 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.980 0.977 0.994 0.974 0.961 0.884 0.590 0.546 0.697 0.526 0.437

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.987 0.868 0.846 0.923 0.827 0.712

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.971 0.953 0.990 0.947 0.922
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Table 2.24: empirical rejection rates when quantile q=0.99 and the white noise is t(10)

p=5 p=10 p=25

CCT LRT LBT1 LBT2 LMT1 LMT2 CCT LRT LBT1 LBT2 LMT1 LMT2 CCT LRT LBT1 LBT2 LMT1 LMT2

MA(1) theta=0.3

T=250 0.516 0.400 0.379 0.228 0.368 0.248 0.206 0.138 0.125 0.057 0.113 0.044 0.031 0.040 0.031 0.028 0.019 0.008

T=500 0.967 0.933 0.929 0.761 0.927 0.823 0.781 0.535 0.505 0.296 0.494 0.303 0.158 0.103 0.091 0.070 0.082 0.052

T=750 0.999 0.998 0.998 0.977 0.998 0.986 0.979 0.847 0.826 0.596 0.819 0.649 0.524 0.232 0.211 0.109 0.206 0.092

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.976 0.970 0.844 0.968 0.891 0.844 0.409 0.389 0.209 0.374 0.201

MA(1) theta=0.5

T=250 0.989 0.957 0.949 0.798 0.946 0.916 0.806 0.572 0.501 0.285 0.478 0.331 0.161 0.108 0.084 0.065 0.064 0.025

T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.992 0.986 0.871 0.984 0.958 0.911 0.455 0.381 0.226 0.347 0.230

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 1.000 1.000 1.000 0.837 0.768 0.476 0.746 0.582

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.963 0.947 0.730 0.944 0.863

AR(1) phi=0.3

T=250 0.657 0.571 0.557 0.394 0.537 0.304 0.312 0.194 0.177 0.122 0.156 0.072 0.045 0.047 0.035 0.042 0.027 0.018

T=500 0.991 0.974 0.970 0.896 0.970 0.864 0.888 0.679 0.655 0.442 0.648 0.350 0.271 0.151 0.136 0.094 0.123 0.051

T=750 1.000 0.998 0.998 0.990 0.998 0.986 0.995 0.939 0.925 0.780 0.924 0.722 0.732 0.300 0.271 0.188 0.252 0.139

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.991 0.990 0.949 0.990 0.927 0.947 0.546 0.505 0.317 0.490 0.241

AR(1) phi=0.4

T=250 0.972 0.941 0.936 0.844 0.931 0.769 0.790 0.595 0.519 0.387 0.488 0.241 0.177 0.101 0.077 0.074 0.061 0.024

T=500 1.000 1.000 1.000 1.000 1.000 0.999 1.000 0.981 0.973 0.916 0.970 0.839 0.891 0.473 0.403 0.294 0.376 0.167

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 1.000 0.993 0.997 0.808 0.750 0.561 0.738 0.380

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.972 0.952 0.838 0.949 0.693

ARMA(1,1) theta=0.3 phi=0.3

T=250 1.000 1.000 1.000 0.992 1.000 0.997 1.000 0.965 0.928 0.743 0.921 0.698 0.685 0.314 0.219 0.158 0.170 0.085

T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 0.999 1.000 0.910 0.829 0.613 0.809 0.492

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.941 0.998 0.921

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000 0.995
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Table 2.24: empirical rejection rates when quantile q=0.99 and the white noise is t(10)

(continued)

p=5 p=10 p=25

CCT LRT LBT1 LBT2 LMT1 LMT2 CCT LRT LBT1 LBT2 LMT1 LMT2 CCT LRT LBT1 LBT2 LMT1 LMT2

ARMA(1,1) theta=0.2 phi=0.2

T=250 0.948 0.886 0.871 0.680 0.867 0.683 0.687 0.438 0.392 0.233 0.365 0.183 0.121 0.079 0.068 0.057 0.053 0.023

T=500 1.000 1.000 1.000 0.996 1.000 0.994 0.999 0.960 0.949 0.792 0.946 0.769 0.762 0.335 0.292 0.162 0.267 0.122

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.975 0.998 0.981 0.993 0.679 0.610 0.370 0.597 0.312

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 0.999 1.000 0.917 0.873 0.631 0.862 0.602

MA(2) theta1=0.2 theta2=0.3

T=250 0.311 0.239 0.230 0.546 0.222 0.369 0.092 0.077 0.074 0.164 0.065 0.087 0.019 0.029 0.026 0.054 0.020 0.015

T=500 0.717 0.640 0.629 0.964 0.626 0.909 0.437 0.285 0.267 0.607 0.258 0.414 0.083 0.049 0.048 0.143 0.043 0.065

T=750 0.953 0.911 0.908 1.000 0.907 1.000 0.743 0.534 0.523 0.913 0.515 0.791 0.204 0.136 0.128 0.291 0.117 0.165

T=1000 0.991 0.973 0.971 1.000 0.971 1.000 0.916 0.769 0.766 0.987 0.760 0.963 0.446 0.201 0.183 0.479 0.174 0.300

MA(2) theta1=0.3 theta2=0.2

T=250 0.732 0.648 0.629 0.598 0.621 0.427 0.368 0.247 0.217 0.188 0.199 0.097 0.043 0.062 0.046 0.055 0.029 0.016

T=500 0.994 0.984 0.982 0.975 0.980 0.932 0.938 0.756 0.728 0.677 0.714 0.482 0.395 0.159 0.139 0.168 0.119 0.076

T=750 1.000 1.000 1.000 0.999 1.000 0.999 1.000 0.975 0.969 0.954 0.965 0.856 0.835 0.393 0.357 0.329 0.339 0.196

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.996 0.994 0.996 0.974 0.977 0.637 0.595 0.541 0.581 0.348

AR(2) phi1=0.2 phi2=0.3

T=250 0.533 0.465 0.449 0.837 0.443 0.730 0.272 0.192 0.176 0.471 0.162 0.242 0.049 0.058 0.040 0.089 0.031 0.033

T=500 0.935 0.895 0.892 1.000 0.890 0.998 0.757 0.570 0.546 0.939 0.541 0.833 0.260 0.130 0.114 0.357 0.103 0.155

T=750 0.992 0.987 0.987 1.000 0.987 1.000 0.956 0.838 0.826 0.998 0.821 0.993 0.597 0.279 0.252 0.681 0.237 0.429

T=1000 0.999 0.998 0.998 1.000 0.998 1.000 0.992 0.964 0.962 0.999 0.962 0.999 0.848 0.461 0.422 0.893 0.403 0.680

AR(2) phi1=0.3 phi2=0.2

T=250 0.906 0.838 0.826 0.909 0.816 0.795 0.624 0.441 0.379 0.530 0.357 0.266 0.143 0.085 0.066 0.108 0.051 0.029

T=500 1.000 0.996 0.996 1.000 0.996 1.000 0.987 0.928 0.913 0.970 0.907 0.878 0.744 0.359 0.301 0.457 0.269 0.178

T=750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.998 0.999 0.997 0.994 0.975 0.686 0.632 0.775 0.619 0.468

T=1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.888 0.863 0.952 0.853 0.759
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2.7 Proofs

Proof of Proposition 1. This Proposition follows from Corollary 6.3.8 of Horn

et al. (1990) .

Proof of Lemma 1. This is a classical result and its justification, for instance, can

be found in Section 6.3 of Bilodeau and Brenner (2008).

Proof of Lemma 2. Note that the entries of
√
TN are of three types:

1√
T

T∑
i=2

X(i−1)kX(i−1)l,
1√
T

T∑
i=2

X(i−1)kXil and
1√
T

T∑
i=2

XikXil

where k and l are indices ranging from [1, . . . , p]. So a linear combination of all

the entries of
√
TN can be expressed as

T∑
i=2

1√
T
{

∑
k,l∈[1,2,...,p]

aklX(i−1)kX(i−1)l+
∑

k,l∈[1,2,...,p]

bklX(i−1)kXil+
∑

k,l∈[1,2,...,p]

cklXikXil}

(2.17)

where akl, bkl and ckl are coefficients.

Note that when T →∞, the three terms 1√
T

∑
k,l aklX1kX1l,

1√
T

∑
k,l bklX(T−1)kXT l

and 1√
T

∑
k,l cklXTkXT l all tends to 0 in probability hence is negligible when study-

ing the asymptotic behavior of the linear combination 2.17. In this sense, the

linear combination (2.17) is essentially equivalent to the linear combination

T∑
i=2

1√
T
{

∑
k,l∈[1,2,...,p]

βklX(i−1)kXil +
∑

k,l∈[1,2,...,p]

αklXikXil} (2.18)

where the coefficients βkl = bkl and αkl = akl + ckl.

Here we denote the term
∑

k,l∈[1,2,...,p] βklX(i−1)kXil +
∑

k,l∈[1,2,...,p] αklXikXil by

∆i and note that it does not depend on the number T .

Now we define
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GT i ≡
1√
T

(∆i − E(∆i))

ST i ≡
i∑

k=1

GTk

FT i ≡ σ(X1,X2, . . . ,X i)

and note that the σ-field FT i actually is independent of T . Then the tuple

{ST i,FTi, 2 ≤ i ≤ T, T ≥ 1} is a zero mean square integrable martingale ar-

ray with difference GT i and the σ-field FT i is clearly nested. Now we can apply

Corollary 3.1 of Hall and Heyde (2014) on this martingale array to obtain the

asymptotic normality of the random matrix
√
TN .

First we verify the conditional Lindeberg condition. Note that under our

setup, the conditional Lindeberg condition is equivalent to the Lindeberg con-

dition. So here we verify the later since it is easier. For any fixed ε > 0, we

have

T∑
i=2

E[G2
T iI(|GT i| > ε)]

=
T∑
i=1

E[
(∆i − E(∆i))

2

T
I(|∆i − E(∆i)| > ε

√
T )]

= E[(∆1 − E(∆1))2I(|∆1 − E(∆1)| > ε
√
T )]

p→ 0

as T tends to ∞. Hence the conditional Lindeberg condition is satisfied.

Second we verify the conditional variance condition. Here the conditional

variance
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T∑
i=2

E[G2
T i|FT,i−1]

=
T∑
i=2

E[(∆i − E(∆i))
2|FT,i−1]

T

=
T−1∑
i=1

f(X i)

T

for some function f(.) from Rp to R where

f(X i−1) = E[(
∑
k,l

βklX(i−1)kXil +
∑
k,l

αklXikXil

− E(
∑
k,l

αklXikXil))
2|X1,X2, . . . ,X i−1]

= E[(
∑
k,l

βklX(i−1)kXil)(
∑
k,l

βklX(i−1)kXil)|X i−1]

+ 2E[(
∑
k,l

βklX(i−1)kXil)(
∑
k,l

αklXikXil)|X i−1]

− (E[
∑
k,l

αklXikXil])
2

=
∑
k,l,m,n

E[βklβmnXilXin]X(i−1)kX(i−1)m

+ 2
∑
k,l,m,n

E[βklαmnXilXimXin]X(i−1)k

− (E[
∑
k,l

αklXikXil])
2

=
∑
k,l,m,n

βklβmnσlnX(i−1)kX(i−1)m − (
∑
k,l

αklσkl)
2

by the moment properties of multivariate normal and the mean 0 property that

we assume. Then by LLN, we have

T−1∑
i=1

f(X i)

T

p→ Ef(X1).

Hence the conditional variance condition is verified.
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So we have proved the asymptotic normality of the random matrix
√
TN and

what remains is to characterize its covariance structure. Let us denote A ≡ Σ1/2
x

which is chosen to be symmetric and zi ≡ A−1/2X i ∼ Np(0, Ip) be an i.i.d

sequence of standard normal random vectors. Then Y i can be expressed as Γui

where

Γ ≡

A 0

0 A

 ,ui ≡
 zi
zi+1

 .
Let us further denote ηi ≡ Y iY

′
i. Due to the lag-1 structure of the Y i series,

the asymptotic covariance of
√
TN is essentially determined by Cov(η1,η1) and

Cov(η1,η2). The computation result of the first term has actually been given in

Lemma 1 so we will only need to calculate the second term here.

By properties of Kronecker product, we have

Cov(vec(η1), vec(η2)) = Cov(Y 1 ⊗ Y 1,Y 2 ⊗ Y 2)

= Cov((Γ⊗ Γ)(u1 ⊗ u1), (Γ⊗ Γ)(u2 ⊗ u2))

= (Γ⊗ Γ) Cov(u1 ⊗ u1,u2 ⊗ u2)(Γ⊗ Γ)′.

So all we need is the calculation of the middle term Cov(u1⊗u1,u2⊗u2). Here

we note that this matrix term is of size 4p2 × 4p2 which can be represented via

block matrix as follows:

Cov(u1 ⊗ u1,u2 ⊗ u2) (2.19)

=

Cov(z1 ⊗ (z′1, z
′
2)′, z2 ⊗ (z′2, z

′
3)′) Cov(z1 ⊗ (z′1, z

′
2)′, z3 ⊗ (z′2, z

′
3)′)

Cov(z2 ⊗ (z′1, z
′
2)′, z2 ⊗ (z′2, z

′
3)′) Cov(z2 ⊗ (z′1, z

′
2)′, z3 ⊗ (z′2, z

′
3)′)

 .
Under the i.i.d normal assumption, it is easy to check the only possible non-zero

block of this matrix in the representation (2.27) is the lower left block Cov(z2 ⊗

(z′1, z
′
2)′, z2 ⊗ (z′2, z

′
3)′) which is of size 2p2 × 2p2.

From the definition of Kronecker product, this lower left block can be further

partitioned into a p× p block matrix where its (i, j)-th block is represented by

Cov(z2i ⊗ (z′1, z
′
2)′, z2j ⊗ (z′2, z

′
3)′) (2.20)
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and is of size 2p×2p. Still from the i.i.d assumption, we can represent this (i, j)-th

block(of size 2p × 2p) by a 2 × 2 block matrix where the only possible non-zero

block is the lower left one and is of size p × p. This p × p lower left block takes

the form Cov(z2iz2, z2jz2) from Kronecker product definition and can be further

simplified with the normal moment results. To be more precise, under the normal

setup, we have

Cov(z2iz2, z2jz2) =


eje

′
i when i 6= j,

Ip + eie
′
i when i = j.

Thus we have specified the covariance structure Cov(η1,η2) and hence the

final covariance structure is equal to the sum of the this term, its transpose and

the covariance structure appeared in Lemma 1.

Proof of Theorem 1. We are going to prove the first part of the theorem while

the second part follows directly from Corollary 11.3.8 of Muirhead (2009).

First we prove the asymptotic distribution of the roots of the equation

|T−1K12K21 − λIp| = 0 (2.21)

and the asymptotic distribution of the roots of the equation

|M−1
11M 12M

−1
22M 21 − λIp| = 0 (2.22)

are the same.

DenoteA ≡M−1
11M 12M

−1
22M 21 = T−1K12K21+Op(T

−3/2) andB ≡ T−1K12K21.

From Proposition 1, we have

p∑
i=1

|λAi − λBi|2 ≤ ||A−B||22

where λAi and λBi are the i-the largest eigenvalue of A and B respectively and

the matrix norm here is the Frobenius norm. Since each entry of A − B is of
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order Op(T
−3/2) and here the dimension p is fixed, we have ||A−B||2 is of order

Op(T
−3/2), and this implies for each i,

T 1/2(λAi − λBi)
p→ 0. (2.23)

Note that it is well known that under the independent case (2.5), the rate of

multiplication for λAi to have a non-trivial asymptotic distribution(which is nor-

mal) is T 1/2, so from (2.23) we have T 1/2λAi and T 1/2λBi have the same asymp-

totically normal distribution. Similar property also hold for any fixed linear com-

bination of λAi. Then applying the Cramer-Wold device argument, this first part

is justified.

Second we prove the distribution of N 12 and M 12 are asymptotically the

same. To be more precise, we prove

Cov(N 12) = Cov(M 12) =
1

T
Σx ⊗Σx.

Then based on the covariance structure, the random matrices N 12 and M 12 have

the same asymptotically normal distribution. Hence it is also true for the pair

K12 and W 12.

Here we note that N 12 = 1
T

∑T
i=1X iX

′
i+1 and a term like X iX

′
i+1 in the

expression is clearly independent of a term like XjX
′
j+1 whenever |i − j| > 1.

So the covariance structure of N 12 is mainly determined by Cov(G1,G1) and

Cov(G1,G2) where Gi ≡ X iX
′
i+1. Since Cov(X1iX2j,X2lX3m) = 0 for any

index i, j, l,m we pick from [1, 2, 3, . . . , p], this essentially justifies Cov(G1,G2) =

0.

From the above justifications, we know the covariance structure of N 12 is

completely determined by the term Cov(G1,G1) and more precisely we have

Cov(N 12) = 1
T

Cov(G1,G1). Since Cov(G1,G1) = Cov(X1U
′
1,X1U

′
1), it is

clear that the two random matrices N 12 and M 12 have the same covariance

structure. So what remains is to calculate Cov(G1,G1).
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To compute this, we have

Cov(G1,G1) ≡ var(vec(X1X
′
2)) = Cov(X2 ⊗X1,X2 ⊗X1)

= (A⊗ A) Cov(z2 ⊗ z1, z2 ⊗ z1)(A⊗ A)′ = (A⊗ A)(A⊗ A)′ = Σx ⊗Σx

where A ≡ Σ1/2
x and {zi} are the standard multivariate normal random vectors.

Hence the covariance justification is completed. Then combining the covariance

equality fact above with the previous two Lemmas 2 and 1 on the asymptotic

normality of the random matrices N and M , we know the random matrices N 12

and M 12 have the same asymptotically normal distribution.

At this point we are ready to prove the last part for the lag-1 case (2.4) which

is of similar fashion of the first part: the asymptotic distribution of the roots of

the equation

|T−1W 12W 21 − λIp| = 0 (2.24)

and the asymptotic distribution of the roots of the equation

|N−1
11N 12N

−1
22N 21 − λIp| = 0 (2.25)

are the same.

But we note that here in advance that the arguments for the this part are

not exactly the same comparing to the first part. For this part, we denote A ≡

N−1
11N 12N

−1
22N 21 = T−1W 12W 21 + Op(T

−3/2) and B ≡ T−1W 12W 21. Then

from Proposition 1, we have

p∑
i=1

|λAi − λBi|2 ≤ ||A−B||22

where λAi and λBi are the i-th largest eigenvalue of A and B respectively and

the matrix norm here is the Frobenius norm. Since each entry of A − B is of
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order Op(T
−3/2) and here the dimension p is fixed, we have ||A−B||2 is of order

Op(T
−3/2), and this implies for each i

T 1/2(λAi − λBi)
p→ 0. (2.26)

From the second part, we know that T−1W 12W 21 = N 12N 21 and T−1K12K21 =

M 12M 21 have the same asymptotic distribution. Then by the first part, we know

this time that the rate of multiplication for λBi to have a non-trivial asymptotic

distribution(which is normal) is T 1/2, so from (2.26) we have T 1/2λAi and T 1/2λBi

have the same asymptotically normal distribution. This time we note that similar

property also hold for any fixed linear combination of λBi. Then still applying

the Cramer-Wold device argument, this part is justified.

Combing the results from the three parts, it follows that the asymptotic dis-

tributions of the sample canonical correlations of calculated from (2.4) and (2.5)

are identical.

Proof of Lemma 3. The multivariate normal part justification can be found in

Section 6.3 of Bilodeau and Brenner (2008). Here we present the calculation on

its covariance structure.

Let W = V 1V 1>, then

varW = (Λ1/2
y )⊗ (Λ1/2

y ) var(zz>)(Λ1/2
y )⊗ (Λ1/2

y )

where z ∼ E2p(0, I) is rotationally invariant. Using Proposition 13.2 of Bilodeau

and Brenner (2008) (which was originally established in Tyler (1982)), var(zz>)

can be evaluated with

a1 = var(z1z2) = E(z2
1z

2
2) = µ22,

a2 = Cov(z2
1 , z

2
2) = E(z2

1z
2
2)− E(z2

1)E(z2
2) = µ22 − µ2

2.
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In terms of cumulants we have a1 = k22 + k2
2 and a2 = k22 where ki and kij

are the cumulants. And by differentiation on φ(.) (see the second property in

Proposition 3) one can verify that

k2 = −2φ′(0) ≡ α,

k4 = 12(φ′′(0)− φ′(0)2),

k22 = 4(φ′′(0)− φ′(0)2).

And we have for z1,

k4

k2
2

= 3
φ′′(0)− φ′(0)2

φ′(0)2
≡ 3κ,

where κ is introduced as a parameter to facilitate our expression and can be

interpreted as an excess kurtosis. So we have k4 = 3κα2 and k22 = κα2. And

finally we obtain a1 = (1 + κ)α2 and a2 = κα2 from which

var(zz>) = α2(1 + κ)(I +K2p) + α2κ vec(I)[vec(I)]>

and

varW = α2(1 + κ)(I +K2p)(Λy ⊗Λy) + α2κ vec(Λy)[vec(Λy)]>

= (1 + κ)(I +K2p)(Σy ⊗Σy) + κ vec(Σy)[vec(Σy)]>.

Via Taylor’s expansion and differentiation of φ(.), we can obtain φ′(0) =

−1
2
Ez2

1 and φ′′(0) =
Ez41
12

. So we have

κ =
φ′′(0)− φ′(0)2

φ′(0)2
=

Ez4
1 − 3Ez2

1

3Ez2
1

.

And this completes the characterization of the covariance structure.

Proof of Lemma 4. The proof of the asymptotic normality part is essentially the

same as Lemma 2, so we do not repeat this part here and go directly into estab-

lishing the covariance structure instead. Let us denote A ≡ Λ1/2
x which is chosen
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to be symmetric and zi ∼ Ep(0, Ip) be and i.i.d sequence of rotationally invariant

random vectors. Then Y i can be expressed as Γui where

Γ ≡

A 0

0 A

 ,ui ≡
 zi
zi+1

 .
Let us further denote ηi ≡ Y iY

′
i. Due the lag-1 structure of the Y i series,

the asymptotic covariance of
√
TN is essentially determined by Cov(η1,η1) and

Cov(η1,η2). The computation of the first term has actually been given in Lemma

3 so we will only need to calculate the second term here.

By properties of Kronecker product, we have

Cov(vec(η1), vec(η2)) = Cov(Y 1 ⊗ Y 1,Y 2 ⊗ Y 2)

= Cov((Γ⊗ Γ)(u1 ⊗ u1), (Γ⊗ Γ)(u2 ⊗ u2))

= (Γ⊗ Γ) Cov(u1 ⊗ u1,u2 ⊗ u2)(Γ⊗ Γ)′.

So all we need is the calculation of the middle term Cov(u1⊗u1,u2⊗u2). Here

we note that this matrix term is of size 4p2 × 4p2 which can be represented via

block matrix as follows:

Cov(u1 ⊗ u1,u2 ⊗ u2) (2.27)

=

Cov(z1 ⊗ (z′1, z
′
2)′, z2 ⊗ (z′2, z

′
3)′) Cov(z1 ⊗ (z′1, z

′
2)′, z3 ⊗ (z′2, z

′
3)′)

Cov(z2 ⊗ (z′1, z
′
2)′, z2 ⊗ (z′2, z

′
3)′) Cov(z2 ⊗ (z′1, z

′
2)′, z3 ⊗ (z′2, z

′
3)′)

 .
Under the i.i.d elliptical assumption, it is easy to check the only possible non-zero

block of this matrix in the representation (2.27) is the lower left block Cov(z2 ⊗

(z′1, z
′
2)′, z2 ⊗ (z′2, z

′
3)′) which is of size 2p2 × 2p2.

From the definition of Kronecker product, this lower left block can be further

partitioned into a p× p block matrix where its (i, j)-th block is represented by

Cov(z2i ⊗ (z′1, z
′
2)′, z2j ⊗ (z′2, z

′
3)′) (2.28)

and is of size 2p×2p. Still from the i.i.d assumption, we can represent this (i, j)-th

block(of size 2p × 2p) by a 2 × 2 block matrix where the only possible non-zero



52

block is the lower left one and is of size p×p. This p×p lower left block takes the

form Cov(z2iz2, z2jz2) from Kronecker product definition. Thus we have specified

the covariance structure Cov(η1,η2) and hence the final covariance structure is

equal to the sum of the this term, its transpose and the covariance structure

appeared in Lemma 3.

Proof of Theorem 2. The proof for the first part of the theorem is essentially the

same as the normal case with some minor modifications. First we prove the

asymptotic distribution of the roots of the equation

|T−1K12K21 − λIp| = 0 (2.29)

and the asymptotic distribution of the roots of the equation

|M−1
11M 12M

−1
22M 21 − λIp| = 0 (2.30)

are the same.

DenoteA ≡M−1
11M 12M

−1
22M 21 = T−1K12K21+Op(T

−3/2) andB ≡ T−1K12K21.

From Proposition 1, we have
p∑
i=1

|λAi − λBi|2 ≤ ||A−B||22

where λAi and λBi are the i-the largest eigenvalue of A and B respectively and

the matrix norm here is the Frobenius norm. Since each entry of A − B is of

order Op(T
−3/2) and here the dimension p is fixed, we have ||A−B||2 is of order

Op(T
−3/2), and this implies for each i

T 1/2(λAi − λBi)
p→ 0. (2.31)

Note that it is well known that under the independent case (2.5), the rate of

multiplication for λAi to have a non-trivial asymptotic distribution(which is nor-

mal) is T 1/2, so from (2.31) we have T 1/2λAi and T 1/2λBi have the same asymp-

totically normal distribution. Similar property also hold for any fixed linear com-

bination of λAi. Then applying the Cramer-Wold device argument, this first part

is justified.
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Second we prove that the distribution of the off-diagonal blocks N 12 and M 12

are asymptotically the same. Or equivalently, we have Cov(N 12) = Cov(M 12).

Since N 12 = 1
T

∑T
i=1X iX

′
i+1 and a term like X iX

′
i+1 in the expression is

clearly independent of a term like XjX
′
j+1 whenever |i − j| > 1, the covariance

structure of N 12 is mainly determined by Cov(G1,G1) and Cov(G1,G2) where

Gi ≡ X iX
′
i+1. Note that Cov(X1iX2j,X2lX3m) = 0 for any index i, j, l,m we

pick from [1, 2, 3, . . . , p], this essentially justifies Cov(G1,G2) = 0. So the covari-

ance structure of N 12 is completely determined by the term Cov(G1,G1) and

more precisely we have Cov(N 12) = 1
T

Cov(G1,G1). From definitions, we know

Cov(G1,G1) = Cov(X1U
′
1,X1U

′
1), so it is clear that the two random matrices

N 12 and M 12 have the same covariance structure.

At this point we are ready to prove the last part for the lag-1 case (2.4) which

is of similar fashion of the first part: The asymptotic distribution of the roots of

the equation

|T−1W 12W 21 − λIp| = 0 (2.32)

and the asymptotic distribution of the roots of the equation

|N−1
11N 12N

−1
22N 21 − λIp| = 0 (2.33)

are the same.

But we note that here in advance that the arguments for the this part are

not exactly the same comparing to the first part. For this part, we denote A ≡

N−1
11N 12N

−1
22N 21 = T−1W 12W 21 + Op(T

−3/2) and B ≡ T−1W 12W 21. Then

from Proposition 1, we have
p∑
i=1

|λAi − λBi|2 ≤ ||A−B||22

where λAi and λBi are the i-th largest eigenvalue of A and B respectively and

the matrix norm here is the Frobenius norm. Since each entry of A − B is of

order Op(T
−3/2) and here the dimension p is fixed, we have ||A−B||2 is of order

Op(T
−3/2), and this implies for each i
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T 1/2(λAi − λBi)
p→ 0. (2.34)

From the second part, we know that T−1W 12W 21 = N 12N 21 and T−1K12K21 =

M 12M 21 have the same asymptotic distribution. Then by the first part, we know

this time that the rate of multiplication for λBi to have a non-trivial asymptotic

distribution(which is normal) is T 1/2, so from (2.34) we have T 1/2λAi and T 1/2λBi

have the same asymptotically normal distribution. This time we note that similar

property also hold for any fixed linear combination of λBi. Then still applying

the Cramer-Wold device argument, this part is justified.

Combing the results from the above three parts of argument, it follows that

the asymptotic distributions of the sample canonical correlations of calculated

from (2.4) and (2.5) are identical so the first part of the theorem is justified.

Now what remains is to justify the second part of the theorem which presents

the explicit density form of the joint distribution. Note that from the part we have

just proved, we only need to obtain the asymptotic joint density of the canonical

correlations for the independent case (2.5) under the elliptical assumption.

Applying Theorem 5.2 and Proposition 5.3 of Eaton and Tyler (1994) to our el-

liptical context, we have the asymptotic joint distribution of
√
T r̂1,
√
T r̂2, ...,

√
T r̂p

is the same as the joint distribution of the ordered singular values of the random

matrix Z, hence the asymptotic joint distribution of T r̂2
1, ..., T r̂

2
p is the same as

the joint distribution of the ordered eigenvalues of ZZ ′. Also from Proposi-

tion 5.3 of Eaton and Tyler (1994), we have the random matrix ZZ ′ follows a

Wishartp(p, (1 + γ)Ip) distribution. Then applying Corollary 9.4.2 of Muirhead

(2009) to the matrix ZZ ′ via a simple change of variable wi = nli(here n and li

bear the same meaning as in the Corollary 9.4.2 of Muirhead (2009)), we obtained

the joint density presented in the second part of this theorem.
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Proof of Proposition 4. Let us denote Bn ≡ E{X4
nI(X2

n ≥ ε
√
n)}. First we note

that if Bn does not converge to 0, then the event a2
n ≥ ε

√
n must occur infinitely

often, or equivalent, we say there exists an infinite subsequence of {ai}∞i=1, denote

by {aki}∞i=1, such that for every i we have a2
ki
≥ ε
√
ki. Conversely, if such an

infinite subsequence exists, then by the following calculation:

Bki ≡ E{X4
ki
I(X2

ki
≥ ε
√
ki)} ≥

(ε
√
ki)

2

ki
= ε2,

Bn must NOT converge to 0.

Now suppose such an infinite subsequence {aki}∞i=1 exists, we have

Aki − Aki−1 =
a4
ki

ki
+ (

ki − 1

ki
− 1)Aki−1 ≥ ε2 + (

ki − 1

ki
− 1)Aki−1.

This indicates {An}∞n=1 can not be a Cauchy sequence which contradicts the

convergence condition of {An}∞n=1. Hence Bn must converge to 0.

Proof of Proposition 5. It is easy to see that E(X2
n) =

∑n
i=1(ai−ān)2

n
under our

setup. For this centralized case, we denote Bn ≡ E{(X2
n − E(X2

n))2I(|X2
n −

E(X2
n)| ≥ ε

√
n)}. Suppose Bn does not converge to 0, then since E(X2

n) =∑n
i=1(ai−ān)2

n
is bounded for all n, this implies the event (an − ān)2 ≥ ε

√
n must

occur infinitely often. And since ān is also bounded for all n, this again implies

that the event a2
n ≥ ε

√
n must occur infinitely often, or equivalent, there exists

an infinite subsequence of {ai}∞i=1, denote by {aki}∞i=1, such that for every i we

have a2
ki
≥ ε
√
ki.

Now apply similar Cauchy sequence arguments on {An}∞n=1 as in Proposition

4, we get a contradiction and the proof is completed.

Proof of Proposition 6. Use similar arguments as in Proposition 5.

Proof of Proposition 7. Use similar arguments as in Proposition 5.
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Proof of Lemma 5. We prove using the similar arguments which appear in Lemma

2. Without ambiguity, we suppress the global conditioning notation (.|X1, . . . ,XT , . . . )

in this proof.

Note that the entries of
√
TS(b) are of two types:

1√
T

T∑
i=1

X∗T i,kX
∗
T i,l and

1√
T

T∑
i=2

X∗T (i−1),kX
∗
T i,l

where k and l are indices ranging from [1, . . . , p]. So a linear combination of all

the entries of
√
TS(b) can be expressed as

1√
T

T∑
i=1

∑
k,l∈[1,2,...,p]

aklX
∗
T i,kX

∗
T i,l +

1√
T

T∑
i=2

∑
k,l∈[1,2,...,p]

bklX
∗
T (i−1),kX

∗
T i,l (2.35)

where akl and bkl are coefficients.

Under mild conditions on the sample path, when T →∞, the term

1√
T

∑
k,l∈[1,2,...,p]

aklX
∗
T1,kX

∗
T1,l

would be negligible for studying the asymptotic behavior of the linear combination

(2.35). In this sense, the linear combination (2.35) is essentially equivalent to the

linear combination

T∑
i=2

1√
T
{

∑
k,l∈[1,2,...,p]

bklX
∗
T (i−1),kX

∗
T i,l +

∑
k,l∈[1,2,...,p]

aklX
∗
T i,kX

∗
T i,l}. (2.36)

Here we define the following terms and note that these all depend on the

number T :

∆T i ≡
∑

k,l∈[1,2,...,p]

bklX
∗
T (i−1),kX

∗
T i,l +

∑
k,l∈[1,2,...,p]

aklX
∗
T i,kX

∗
T i,l,

GT i ≡
1√
T

(∆T i − E(∆T i)),
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STi ≡
i∑

k=1

GTk,

FT i ≡ σ(X∗T1,X
∗
T2, . . . ,X

∗
T i).

Then the tuple {ST i,FT i, 2 ≤ i ≤ T, T ≥ 1} is a zero mean square integrable

martingale array with difference GTi and the σ-field FT i is nested. Now we

investigate under what conditions on the sample path can we apply Corollary

3.1 of Hall and Heyde (2014) on this martingale array to obtain the conditional

asymptotic normality of the random matrix
√
TS(b) given X1,X2, . . . ,XT .

First we investigate the conditional Lindeberg condition. As noted before,

here the conditional Lindeberg condition is equivalent to the Lindeberg condition.

So we study the later instead. To be more specific, we need to check for what

conditions on the sample path, we could have for any fixed ε > 0,

T∑
i=2

E[G2
T iI(|GT i| > ε)]

=
T∑
i=2

E[
(∆T i − E(∆T i))

2

T
I(|∆T i − E(∆T i)| > ε

√
T )]

=
T − 1

T
E[(∆T2 − E(∆T2))2I(|∆T2 − E(∆T2)| > ε

√
T )]

p→ 0

as T tends to ∞.

Note that there are three types of terms in ∆T i:

1. X∗T (i−1),kX
∗
T i,l,

2. X∗T i,kX
∗
T i,l where k 6= l,

3. (X∗T i,k)
2.

When E(∆T2) is bounded for all T , it is easy to see that if

E[(∆T2 − E(∆T2))2I(|∆T2 − E(∆T2)| > ε
√
T )]

p→ 0 (2.37)

does not hold for general linear combination, then it must NOT hold for at least

one the three special cases:
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1. ∆T2 = X∗T1,kX
∗
T2,l,

2. ∆T2 = X∗T2,kX
∗
T2,l where k 6= l,

3. ∆T2 = (X∗T2,k)
2.

Then when the following conditions on the infinite sample path are satisfied:

1.
∑T

i=1X
4
i,k

T
converges for all k ∈ [1, . . . , p],

2.
∑T

i=1X
2
i,kX

2
i,l

T
converges for all k 6= l and k, l ∈ [1, . . . , p],

3. X̄T,k ≡
∑T

i=1Xi,k

T
is bounded for all k ∈ [1, . . . , p],

4.
∑T

i=1(Xi,k−X̄T,k)2

T
is bounded for all k ∈ [1, . . . , p],

5.
∑T

i=1(Xi,k−X̄T,k)(Xi,l−X̄T,l)

T
is bounded for all k 6= l and k, l ∈ [1, . . . , p],

we can apply Proposition 6 to the special case (2), Proposition 7 to special case

(3) and Proposition 5 to special case (1) to conclude that (2.37) holds given the

infinite sample path X1,X2, · · · ,XT , · · · . We also note that E(∆T2) is bounded

is actually implied by the conditions above.

Recall that we have assumed the finite fourth moment condition throughout

this section, and this implies all the above conditions would be satisfied almost

surely. Hence we have justified that the conditional Lindeberg condition holds

almost surely.

Second we investigate the conditional variance condition. Here the conditional

variance

T∑
i=2

E[G2
T i|FT,i−1] =

T∑
i=2

E[(∆T i − E(∆T i))
2|FT,i−1]

T
. (2.38)
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First we check for the special case (1) when ∆T i = X∗T (i−1),kX
∗
T i,l. we have

T∑
i=2

E[(∆T i − E(∆T i))
2|FT,i−1]

T

= (
1

T

T∑
i=1

X2
i,l)(

1

T

T∑
i=1

(X∗T i,k)
2)

p→ σ2
kσ

2
l

for almost all sample paths. Note that the Markov inequality is used above.

Other cases can be similarly justified and this condition also holds almost

surely. Combining all the above we have proved the asymptotic normality of the

random matrix
√
TS(b) given X1,X2, . . . ,XT .

Proof of Theorem 3. Note that from the multivariate normality established in

Lemma 5, essentially we have,

n(Dn − 0)
d→D (2.39)

and

n(D∗n − 0)
d→D a.s. (2.40)

for some distribution D where

Dn ≡ S−1/2
11 S12S

−1
22 S21S

−1/2
11

and

D∗n ≡ (S
(b)
11 )−1/2S

(b)
12 (S

(b)
22 )−1S

(b)
21 (S

(b)
11 )−1/2.

Then by the continuous mapping theorem (see for example Theorem 2.3 in

Van der Vaart (2000)), we have for any fixed c ∈ R, along almost all the sample

sequences ω = (X1,X2, . . . ,XT , . . . ),

lim
T→∞

P(
√
T r̂1

(b) ≤ c|X1,X2, . . . ,XT )− P(
√
T r̂1 ≤ c)

a.s.→ 0.
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Denote F ω
T (c) ≡ P(

√
T r̂1

(b) ≤ c|X1,X2, . . . ,XT ), GT (c) ≡ P(
√
T r̂1 ≤ c),

C = {cj, j ≥ 1} ≡ set of rational numbers enlarged by any irrational discontinuity

points of {GT (.)} and sets

A1 = {ω : F ω
T (cj)−GT (cj)→ 0, j ≥ 1},

A2 = {ω : F ω
T (c) is a probability distribution fucntion, T ≥ 1}.

It follows that PA1 = 1 and PA2 = 1. hence PA1A2 = 1. Then from Corollay 1

in Section 8.2 of Chow and Teicher (2012), we have F ω
T −GT

c→ 0 for ω ∈ A1A2,

then by Lemma 3 in the same section of Chow and Teicher (2012), F ω
T (c)−GT (c)

converges uniformly to 0 over −∞ < c <∞ for ω ∈ A1A2 and this completes the

proof.
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Chapter 3

Weighted Least Square Estimation of

Autoregressive Models for Matrix-Valued Time

Series

3.1 Introduction

Matrix and tensor type data are becoming more prevalent recently, and have been

extensively studied for independent samples. On the other hand, matrix/tensor

observations generated through the time usually exhibit temporal dependence,

and require new tools and analysis to understand their dynamics and make pre-

dictions. In a pioneering work, Chen et al. (2020) proposed an autoregressive

model for matrix-valued time series, and studied three estimators: projection esti-

mator, least squares estimator (LSE), and maximum likelihood estimator (MLE).

The MLE is derived under an additional assumption that the covariance tensor

of the error matrix has a special form of a Kronecker outer product. It has been

found that the MLE usually leads to the smallest estimation and prediction error,

comparing with the other two estimators, even if that additional assumption fails

to hold. A possible explanation of this phenomenon is that the MLE approach

amounts to estimating the error convariance tensor by a Kronecker product. Al-

though this can be a biased estimator, it is nevertheless a better one than the

scalar tensor, and also can be viewed as a regularized version of the sample co-

variance tensor. Similar phenomenon has been observed in the covariance matrix

estimation context, see for example Bickel and Levina (2004), Bickel et al. (2008)

and Ledoit and Wolf (2003).
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Motivated by these works, we propose a weighted least squares estimator

(WLSE), where the weights correspond with the marginal variances of the ele-

ments of the error matrix. Essentially this is incorporating a covariance tensor

estimator, given by the scalar tensor consisting of all marginal sample variances

of the residual matrices, into the least squares estimation. Again, although this

estimator can be biased, it nevertheless leads to a consistently estimator that can

be more efficient than the direct LSE. We establish the central limit theorem of

the WLSE, and demonstrate its performances through numerical studies and an

example on economic indicators, comparing with other estimators.

The rest of this chapter is organized as follows. In Section 3.2 we define

the matrix-valued autoregressive time series model and consider a weighted least

square approach for the parameter estimation which leads to our WLSE. Then

We prove a central limit theorem for the WLSE. In Section 3.3 and 3.4, we carried

out some simulation studies and a real data analysis to show the performance of

the WLSE. The proof are relegated in Section 3.5.

3.2 Weighted Least Square Estimator

Let X1,X2, . . . ,XT be a matrix-valued time series of length T where each ob-

servation X i is of size m × n. Let vec(.) be the vectorization of a matrix by

stacking the columns. After vectorization, we can directly apply the traditional

vector autoregressive model (VAR) of order 1 to vecX t and have the following

VAR(1) representation:

vec(X t) = Φ vec(X t−1) + vec(Et) (3.1)

where Φ is the coefficient matrix of size mn×mn and Et is the matrix innovation

of size m× n.

From this VAR(1) representation, it can be readily observed that the roles of
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rows and columns are mixed, the matrix structure of the original series has not

been fully utilized and the interpretation of the coefficient matrix Φ might be a

difficult task.

To overcome these drawbacks, Chen et al. (2020) propose the matrix autore-

gressive model (of order 1), denoted by MAR(1), which takes the form

X t = AX t−1B
′ +Et, (3.2)

where A = (aij) and B = (bij) are m ×m and n × n autoregressive coefficient

matrices, and Et = (et,ij) is a m× n matrix white noise.

We note that after taking the vec(.) operation on both sides of (3.2), the

MAR(1) model can be represented in the form of VAR(1)

vec(X t) = (B ⊗A) vec(X t−1) + vec(Et), (3.3)

where ⊗ denotes the matrix Kronecker product. So the model MAR(1) can be

viewed as a special case of the model VAR(1) with coefficient matrix in Kronecker

product form.

It is also worth pointing out that there is an identifiability issue regarding

the coefficient matrices A and B with the MAR(1) model in (3.2) as the model

remains the same if we divide A and multiply B by the same nonzero constant.

To avoid this identifiability issue, we use the convention that A is normalized

with Frobenius norm 1.

In (3.2), the innovation series {Et} is assumed to be a matrix white noise.

This means Cov(vec(Et), vec(Es)) = 0 as long as t 6= s while at the same time

Σ ≡ Cov(vec(Et)) is not necessarily diagonal.

It is interesting to note that when solving the MLE for a multivariate re-

gression or a vector autoregressive (VAR) estimation problem, the covariance

structure of the innovation is irrelevant. However this is not correct for the

matrix-valued autoregressive time series model like (3.2) as both the left and
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right matrix multiplication are introduced in the model specification. Though

the LSE approach is applicable for general covariance structure, it fails to incor-

porate in the covariance structure information of the matrix innovation. So it

is important to ask whether we can extend the LSE procedure with this type

of covariance information integrated. One natural idea is to consider a modified

minimization problem with the covariance structure involved and solve it.

Given the observations {X t}Tt=1, our weighted least square approach is aiming

to solve the following optimization problem:

min
A,B

T∑
t=2

‖(X t −AX t−1B
′) ◦W ‖2

F (3.4)

where W ≡ (wij) ∈ Rmn is a given weight matrix with entries wij = 1√
var(et,ij)

. In

practice, as the true values of these variances are not available, we use the sample

estimates of these marginal variances (for example, estimated from the residuals

after fitting a VAR(1) model to the data) instead to form a sample version weight

matrix Ŵ for the computation of our WLSE.

To solve the WLS problem (3.4), we can take the partial derivatives of the

objective function with respect to the entries of A and B respectively to obtain

the gradient condition for the problem. But first we need to introduce some

notations to facilitate our expression.

Let us denote f(A,B) ≡
∑T

t=2‖(X t −AX t−1B
′) ◦W ‖2

F . From matrix cal-

culus, the trace function enjoys the following three differentiation properties:

• ∂ Tr[XY ]
∂X

= 2Y ′,

• ∂ Tr[XAX′]
∂X

= XA′ +XA,

• Tr[(A ◦W )B] = Tr[A(W ′ ◦B)].

Thus we can apply these properties to take partial derivatives of f(.) with respect

to the matrices A and B and set them to 0 to obtain the following gradient

condition for the WLS minimization problem (3.4):
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T∑
t=2

(W ◦W ◦ (AX t−1B
′))BX ′t−1 −

T∑
t=2

(W ◦W ◦X t)BX
′
t−1 = 0

T∑
t=2

(W ′ ◦W ′ ◦ (BX ′t−1A
′))AX t−1 −

T∑
t=2

(W ′ ◦W ′ ◦X ′t)AX t−1 = 0.

(3.5)

Note that we have a total number of m2 + n2 equations here in system (3.5).

The function
∑

t‖(X t−AX t−1B
′) ◦W ‖2

F is guaranteed to have at least one

global minimum, hence the solutions to (3.5) always exist. On the other hand, if

two pairs of matrices (Â, B̂) and (Ã, B̃) both satisfy the gradient condition and

B̂ ⊗ Â = B̃ ⊗ Ã, we say they are the same solution of (3.5).

Similar as the least square procedure, to solve the WLS problem (3.4), starting

with some initial values, we iteratively update the two matrices Â and B̂ by

updating the entries of one of them in the gradient condition (3.5) by solving

system of linear equations while holding the entries of the other one fixed.

Now we are ready to state the asymptotic result for the WLS estimator.

Theorem 4 (Asymptotics of the WLSE). Define α ≡ vec(A), β ≡ vec(B′),

W ′
t ≡ [(BX ′t)⊗I : I⊗(AX t)], M ≡ diag(vec(W ◦W )) andH ≡ E(W tMW ′

t)+

γγ ′ where γ ≡ (α′,0′)′ ∈ Rm2+n2
. Let Ξ4 ≡ H−1E(W tMΣMW ′

t)H
−1 and

V ≡ [β ⊗ I, I ⊗ α]. Assume that the innovations E1, . . . ,ET are i.i.d with

mean zero, finite second moment and is absolutely continuous with respect to the

Lebesgue measure. Also assume the causality condition ρ(A) ·ρ(B) < 1 and A,B

and Σ are nonsingular. Then for the WLSE, it holds that

√
T

 vec(Â−A)

vec(B̂′ −B′)

⇒ N(0,Ξ4);

and
√
T [vec(B̂′)⊗ vec(Â)− vec(B′)⊗ vec(A)]⇒ N(0,V Ξ4V

′).

Corollary 1. The asymptotic results in Theorem 4 still hold when we replace the

weight matrix W by its sample version Ŵ .
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3.3 Simulation Results

In this section, we compare the performances of the WLSE with the LSE and

MLE introduced in Chen et al. (2020) under different settings for various choices

of dimension pair (m,n) and sample size T .

Given a dimension pair (m,n), we simulate X t according to model (3.2), and

the entries of matricesA andB are randomly generated and rescaled to guarantee

the causality condition and the constraint ‖A‖F = 1 is satisfied. The coefficient

matrices A and B are fixed for a given specified simulation setting with multiple

replications.

First we show the finite sample performances under five different settings of

the innovation covariance structure Cov(vec(Et)).

• Setting I: The covariance matrix Cov(vec(Et)) is set to Σ = I.

• Setting II: The covariance matrix Cov(vec(Et)) is a mixture of random

covariance matrix and a random diagonal matrix.

• Setting III: The covariance matrix Cov(vec(Et)) is set to Σc ⊗ Σr, the

Kronecker product of two random covariance matrices Σc and Σr.

• Setting IV: The covariance matrix Cov(vec(Et)) is a random diagonal marix.

• Setting V: The covariance matrix Cov(vec(Et)) is a mixture of random

diagonal matrix and Kronecker product matrix generated similarly as in

Setting III.

For each setting, we repeat the simulation 100 times, and show a box plot of

log(‖B̂ ⊗ Â−B ⊗A‖2
F ).

The simulation results for relatively small sample sizes are shown in Figures

3.1 to 3.5. In these figures, the dimensions m and n increase from top to bottom,
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Figure 3.1: Comparison of three estimators, LS, WLS and MLE, under Setting

I. The three rows correspond to (m,n) = (3, 2), (6, 4) and (9, 6) respectively, and

the four columns T = 200, 400, 1000 and 5000 respectively.

with values in (m,n) = (3, 2), (6, 4), (9, 6). The sample size T increases from left

to right at T = 200, 400, 1000 and 5000 respectively.

Under Setting I, we can observe from Figure 3.1 that LSE is the best estimator

when the covariance matrix is identity. This is reasonable as it is the maximum

likelihood estimator under this setting. And we note that the performance of MLE

and WLSE are very close but slightly worse than the LSE. This is reasonable as

both the MLEs and WLSEs need to estimate some additional parameters. Figures

3.2 to 3.5 show that both the MLE and WLSE outperform the LSE under Setting

II to V. And from Figures 3.3 to 3.4, we see that the MLE outperforms WLSE

under Setting III and the WLSE outperforms MLE under Setting IV which are

as expected. When is innovation covariance structure is of the Kronecker plus

diagonal mixture type, we observe from Figure 3.4 that the WLSE and MLE

have comparable performance as long as the matrices used to form the mixture
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Figure 3.2: Comparison of three estimators, LS, WLS and MLE, under Setting

II. The three rows correspond to (m,n) = (3, 2), (6, 4) and (9, 6) respectively, and

the four columns T = 200, 400, 1000 and 5000 respectively.

covariance structure have similar magnitude. Lastly, from Figure 3.2, we note

that WLSE outperforms MLE when the mixture type is Σ1 plus Σ2 where Σ1 is a

randomly generated covariance matrix and Σ2 is a randomly generated diagonal

matrix.

Then we compare the asymptotic efficiencies of these three estimators by

letting T → ∞ under the five different settings. We fix the dimension pair

(m,n) = (3, 2) for all the settings under this experiment. We show the results in

Figures 3.6 to 3.15. And we observe from these plots that the WLSE outperforms

MLE and LS under Settings II, IV and V while the MLE outperforms WLSE

and LSE under Settings III. All the estimators have similar performance under

Setting I which is as expected.

Lastly, we perform an experiment to show the finite-sample performance of

the asymptotic covariance matrix. We fix the dimension pair (m,n) = (3, 2) as
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Figure 3.3: Comparison of three estimators, LS, WLS and MLE, under Setting

III. The three rows correspond to (m,n) = (3, 2), (6, 4) and (9, 6) respectively,

and the four columns T = 200, 400, 1000 and 5000 respectively.

results for larger dimensions are similar. Under each of the five settings, we cre-

ate 95% confidence intervals of all parameters based on the asymptotic normality

distribution. Two types of confidence intervals are constructed: one for the en-

tries of A and B separately, and the other for the entries of vec(B) ⊗ vec(A).

We replicate the experiment 1000 times for all the settings. Tables 3.1 to 3.10

shows the percentage that the true parameter falls within the marginal confidence

interval of each parameter under for the three estimators under various scenarios.

We observe that the coverage is quite good, especially when T is large.

3.4 Real Data Analysis

We apply our WLS approach on a time series data of four economic indicators

(3-month interbank interest rate, GDP growth, total manufacture production
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Figure 3.4: Comparison of three estimators, LS, WLS and MLE, under Setting

IV. The three rows correspond to (m,n) = (3, 2), (6, 4) and (9, 6) respectively,

and the four columns T = 200, 400, 1000 and 5000 respectively.

growth and total consumer price index) from five countries (Canada, France,

Germany, United Kingdom and United States) which contain observations in

4×5 matrix format. This dataset is presented in Section 5.2 of Chen et al. (2020)

and downloaded from Organization for Economic Co-operation and Development

(OECD) at https://data.oecd.org/. We fit a MAR(1) model to the data using

four different estimation approaches: the three estimators proposed in Chen et al.

(2020) (Projection, LSE and MLE) and the WLS estimator proposed in this

Chapter. We also fit a stacked VAR(1) model and univariate AR(1) and AR(2)

models for each individual time series. The residual sum of squares of each model

and the sum of squares of the original data are reported in Table 3.11.

Table 3.12 and 3.13 show the estimated coefficients and their corresponding

standard error (in the parentheses) of A and B using the WLS approach. The

sign of significance for these coefficients are reported in Table 3.14 and 3.14.

https://data.oecd.org/ 
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Figure 3.5: Comparison of three estimators, LS, WLS and MLE, under Setting

V. The three rows correspond to (m,n) = (3, 2), (6, 4) and (9, 6) respectively, and

the four columns T = 200, 400, 1000 and 5000 respectively.

We also compare the out-of-sample rolling forecast performance between the

four approaches of the MAR(1) model with the univariate AR(1) and AR(2) and

the stacked VAR(1) model. We fit these models using all available data at time

t−1 and obtained the one step ahead prediction X̂ t−1(1) for X t at time t. Table

3.16 shows the sum of prediction error squares ‖X̂ t−1(1)−X t‖2
F of all methods.
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Figure 3.6: Comparison of asymptotic efficiencies of three estimators,LS,WLS,and

MLE, under Setting I (identity covariance structure), shows the average error over

100 repetitions for ‖B̂ ⊗ Â−B ⊗A‖2
F .

WLS LS MLE

T=100 0.9425 0.9443 0.9374

T=200 0.9466 0.9467 0.9451

T=500 0.9485 0.9494 0.9485

T=1000 0.9477 0.9485 0.9473

Table 3.1: Percentage of coverage of 95% confidence intervals for estimated

(vec′(Â), vec′(B̂))′ under setting I
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Figure 3.7: Comparison of asymptotic efficiencies of three estimators,LS,WLS,and

MLE, under Setting I (identity covariance structure), shows the average error over

100 repetitions for T × ‖B̂ ⊗ Â−B ⊗A‖2
F .

WLS LS MLE

T=100 0.9456 0.9478 0.9414

T=200 0.9451 0.9457 0.9431

T=500 0.9499 0.9503 0.9490

T=1000 0.9461 0.9464 0.9459

Table 3.2: Percentage of coverage of 95% confidence intervals for estimated

vec(B̂)⊗ vec(Â) under setting I



74

Figure 3.8: Comparison of asymptotic efficiencies of three estimators,LS,WLS,and

MLE, under Setting II (diagonal covariance structure + random covariance struc-

ture with eigenvalues generated from standard normal), shows the average error

over 100 repetitions for ‖B̂ ⊗ Â−B ⊗A‖2
F .

WLS LS MLE

T=100 0.9404 0.9382 0.8986

T=200 0.9465 0.9478 0.9155

T=500 0.9457 0.9471 0.9158

T=1000 0.9532 0.9548 0.9261

Table 3.3: Percentage of coverage of 95% confidence intervals for estimated

(vec′(Â), vec′(B̂))′ under setting II
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Figure 3.9: Comparison of asymptotic efficiencies of three estimators,LS,WLS,and

MLE, under Setting II (diagonal covariance structure + random covariance struc-

ture with eigenvalues generated from standard normal), shows the average error

over 100 repetitions for T × ‖B̂ ⊗ Â−B ⊗A‖2
F .

WLS LS MLE

T=100 0.9411 0.9415 0.8964

T=200 0.9466 0.9500 0.9145

T=500 0.9477 0.9483 0.9133

T=1000 0.9526 0.9537 0.9235

Table 3.4: Percentage of coverage of 95% confidence intervals for estimated

vec(B̂)⊗ vec(Â) under setting II
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Figure 3.10: Comparison of asymptotic efficiencies of three estima-

tors,LS,WLS,and MLE, under Setting III (Kronecker covariance structure), shows

the average error over 100 repetitions for ‖B̂ ⊗ Â−B ⊗A‖2
F .

WLS LS MLE

T=100 0.9395 0.9407 0.9339

T=200 0.9472 0.9480 0.9452

T=500 0.9505 0.9502 0.9488

T=1000 0.9483 0.9483 0.9485

Table 3.5: Percentage of coverage of 95% confidence intervals for estimated

(vec′(Â), vec′(B̂))′ under setting III
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Figure 3.11: Comparison of asymptotic efficiencies of three estima-

tors,LS,WLS,and MLE, under Setting III (Kronecker covariance structure), shows

the average error over 100 repetitions for T × ‖B̂ ⊗ Â−B ⊗A‖2
F .

WLS LS MLE

T=100 0.9427 0.9456 0.9385

T=200 0.9499 0.9502 0.9481

T=500 0.9483 0.9493 0.9483

T=1000 0.9473 0.9475 0.9469

Table 3.6: Percentage of coverage of 95% confidence intervals for estimated

vec(B̂)⊗ vec(Â) under setting III
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Figure 3.12: Comparison of asymptotic efficiencies of three estima-

tors,LS,WLS,and MLE, under Setting IV (diagonal covariance structure), shows

the average error over 100 repetitions for ‖B̂ ⊗ Â−B ⊗A‖2
F .

WLS LS MLE

T=100 0.9403 0.9428 0.9074

T=200 0.9471 0.9473 0.9176

T=500 0.9522 0.9521 0.9245

T=1000 0.9486 0.9484 0.9227

Table 3.7: Percentage of coverage of 95% confidence intervals for estimated

(vec′(Â), vec′(B̂))′ under setting IV
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Figure 3.13: Comparison of asymptotic efficiencies of three estima-

tors,LS,WLS,and MLE, under Setting IV (diagonal covariance structure), shows

the average error over 100 repetitions for T × ‖B̂ ⊗ Â−B ⊗A‖2
F .

WLS LS MLE

T=100 0.9423 0.9473 0.9083

T=200 0.9499 0.9512 0.9144

T=500 0.9512 0.9515 0.9177

T=1000 0.9498 0.9492 0.9179

Table 3.8: Percentage of coverage of 95% confidence intervals for estimated

vec(B̂)⊗ vec(Â) under setting IV
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Figure 3.14: Comparison of asymptotic efficiencies of three estima-

tors,LS,WLS,and MLE, under Setting V (diagonal+Kronecker covariance struc-

ture), shows the average error over 100 repetitions for ‖B̂ ⊗ Â−B ⊗A‖2
F .

WLS LS MLE

T=100 0.9411 0.9424 0.9278

T=200 0.9468 0.9470 0.9343

T=500 0.9487 0.9496 0.9409

T=1000 0.9475 0.9483 0.9398

Table 3.9: Percentage of coverage of 95% confidence intervals for estimated

(vec′(Â), vec′(B̂))′ under setting V
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Figure 3.15: Comparison of asymptotic efficiencies of three estima-

tors,LS,WLS,and MLE, under Setting V (diagonal+Kronecker covariance struc-

ture), shows the average error over 100 repetitions for T × ‖B̂ ⊗ Â−B ⊗A‖2
F .

WLS LS MLE

T=100 0.9444 0.9468 0.9302

T=200 0.9453 0.9460 0.9335

T=500 0.9495 0.9504 0.9402

T=1000 0.9483 0.9492 0.9401

Table 3.10: Percentage of coverage of 95% confidence intervals for estimated

vec(B̂)⊗ vec(Â) under setting V
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MAR(1).PROJ MAR(1).LSE MAR(1).MLE MAR(1).WLS VAR(1) iAR(1) iAR(2) original

1959.26 1412.26 1436.83 1417.40 1076.27 1656.15 1539.44 2076.00

Table 3.11: Residual sum of squares of MAR(1) model using four different esti-

mators and the stacked VAR(1) estimator, and the total residual sum of squares

of fitting univariate AR(1) and AR(2) to each individual time series, and the total

sum of squares of the original (normalized) data.

Int GDP Prod CPI

Int 0.26 (0.06) 0.28 (0.08) 0.06 (0.09) 0.06 (0.05)

GDP -0.18 (0.05) 0.45 (0.07) 0.34 (0.09) -0.07 (0.04)

Prod -0.21 (0.05) 0.37 (0.07) 0.46 (0.09) -0.01 (0.04)

CPI -0.17 (0.07) 0.12 (0.10) 0.04 (0.12) 0.25 (0.06)

Table 3.12: Estimated left coefficient matrix A of MAR(1) using WLS method.

Standard errors are shown in the parenthesis.

USA DEU FRA GBR CAN

USA 0.76 (0.11) -0.06 (0.14) 0.13 (0.11) 0.43 (0.11) -0.06 (0.13)

DEU 0.34 (0.07) 0.13 (0.11) 0.61 (0.08) 0.48 (0.07) -0.23 (0.09)

FRA 0.41 (0.10) 0.03 (0.15) 0.32 (0.12) 0.26 (0.11) 0.03 (0.14)

GBR 0.48 (0.10) -0.07 (0.13) 0.10 (0.10) 0.57 (0.10) -0.03 (0.12)

CAN 0.50 (0.08) 0.05 (0.11) 0.06 (0.09) 0.52 (0.08) 0.22 (0.10)

Table 3.13: Estimated right coefficient matrix B of MAR(1) using WLS method.

Standard errors are shown in the parenthesis.
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Int GDP Prod CPI

Int + + 0 0

GDP − + + 0

Prod − + + 0

CPI − 0 0 +

Table 3.14: Sign of significance for the entries of matrix A at 5% level. The sym-

bols (+,−, 0) indicate positively significant, negatively significant and insignifi-

cant respectively.

USA DEU FRA GBR CAN

USA + 0 0 + 0

DEU + 0 + + −

FRA + 0 + + 0

GBR + 0 0 + 0

CAN + 0 0 + +

Table 3.15: Sign of significance for the entries of matrix B at 5% level. The sym-

bols (+,−, 0) indicate positively significant, negatively significant and insignifi-

cant respectively.

MAR(1).PROJ MAR(1).LSE MAR(1).MLE MAR(1).WLS VAR(1) iAR(1) iAR(2)

159.99 147.36 139.59 149.13 172.45 158.04 166.57

Table 3.16: Sum of out-of-sample prediction error squares of MAR(1) model using

four different estimators and the stacked VAR(1) estimator, and the total sum of

out-of-sample prediction error squares of fitting univariate AR(1) and AR(2) to

each individual time series.
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3.5 Proofs

Proof of Theorem 4. For the weighted least square estimators, applying Lemma

8 similarly as in the proof of Theorem 3 in Chen et al. (2020), we have

Â = A+Op(T
−1/2), and B̂ = B +Op(T

−1/2).

Now repeating the gradient condition (3.5) in the sample fashion, we have:

T∑
t=2

(W ◦W ◦ (ÂX t−1B̂
′))B̂X ′t−1 −

T∑
t=2

(W ◦W ◦X t)B̂X
′
t−1 = 0

T∑
t=2

(W ′ ◦W ′ ◦ (B̂X ′t−1Â
′))ÂX t−1 −

T∑
t=2

(W ′ ◦W ′ ◦X ′t)ÂX t−1 = 0.

(3.6)

Replacing each X t by AX t−1B
′ + Et in (3.6) and using the trick ÂX t−1B̂

′ −

AX t−1B
′ = (Â−A)X t−1B̂

′ +AX t−1(B̂′ −B′) to simply, we can obtain

T∑
t=2

(W ◦W ◦ ((Â−A)X t−1B
′))BX ′t−1

+
T∑
t=2

(W ◦W ◦ (AX t−1(B̂′ −B′)))BX ′t−1

=
T∑
t=2

(W ◦W ◦Et)BX
′
t−1 + op(

√
T ),

T∑
t=2

X ′t−1A
′(W ◦W ◦ ((Â−A)X t−1B

′))

+
T∑
t=2

X ′t−1A
′(W ◦W ◦ (AX t−1(B̂′ −B′)))

=
T∑
t=2

X ′t−1A
′(W ◦W ◦Et) + op(

√
T ).

Taking vectorization on both sides, we have

∑t((X t−1B
′)⊗ I)M ((BX ′t−1)⊗ I)

∑
t((X t−1B

′)⊗ I)M (I ⊗ (AX t−1))∑
t(I ⊗ (X ′t−1A

′))M ((BX ′t−1)⊗ I)
∑

t(I ⊗ (X ′t−1A
′))M (I ⊗ (AX t−1))
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×

 vec(Â−A)

vec(B̂′ −B′)


=
∑
t

((X t−1B
′)⊗ I)M

(I ⊗ (X ′t−1A
′))M

 vec(Et) + op(
√
T ),

which can be rewritten as

(
∑
t

W t−1MW ′
t−1)

 vec(Â−A)

vec(B̂′ −B′)

 =
∑
t

W t−1M vec(Et) + op(
√
T ). (3.7)

Since X t is strictly stationary with i.i.d. innovations, by the ergodic theorem, we

have

1

T

∑
t

W t−1MW ′
t−1 → E(W tMW t) a.s.

Note that here the matrix E(W tMW t) is not full rank, but adding a term γγ ′

would make it full rank. On the other hand, since we require the Frobenius norm

of A and Â to be 1, it holds that α′(vec(Â)−α) = op(T
−1/2). Hence we have

(E(W tMW t) + γγ ′)

 vec(Â−A)

vec(B̂′ −B′)

 =
1

T

∑
t

W t−1M vec(Et) + op(T
−1/2).

(3.8)

By martingale CLT(see Hall and Heyde (2014)), the term on the RHS satisfies

1√
T

∑
t

W t−1M vec(Et)⇒ N(0,E(W tMΣMW ′
t)).

So multiplying
√
T on both sides of (3.8), we have

√
TH

 vec(Â−A)

vec(B̂′ −B′)

 =
1√
T

∑
t

W t−1M vec(Et) + op(1),

and it follows that

√
T

 vec(Â−A)

vec(B̂′ −B′)

⇒ N(0,Ξ4).
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For the last part, noting that

vec(B̂′)⊗ vec(Â)− vec(B′)⊗ vec(A)

= vec(B̂′ −B′)⊗α+ β ⊗ vec(Â−A) + vec(B̂′ −B′)⊗ vec(Â−A)

= vec(B̂′ −B′)⊗α+ β ⊗ vec(Â−A) +Op(T
−1)

=V

 vec(Â−A)

vec(B̂′ −B′)

+ op(T
−1/2),

where V ≡ [β ⊗ I, I ⊗ α], the asymptotic statement follows and the proof is

complete.

Proof of Corollary 1. This can be proved by applying Slusky’s Theorem in the

proof of Theorem 4.
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Chapter 4

Some Results on Constrained LASSO

4.1 Introduction

During the 1950s, Markowitz (1952) laid the foundation for the analysis of mean

variance efficient portfolios. His original approach involves solving a quadratic

programming problem with linear constraints.

Suppose we have p assets with return vectorR ≡ (R1, R2, . . . , Rp)
′ ∈ Rp where

Ri is the return of the i-th asset. Define

µ ≡ E(R),Σ ≡ var(R)

to be the mean and covariance structure of the return respectively and assume Σ

to be nonsingular. Then a portfolio with weight vector β ∈ Rp has the expected

return β′µ and risk β′Σβ.

Markowitz considers the problem of selecting the portfolio which maximizes

the tradeoff of the expected return and risk. This can be formulated mathemati-

cally as follows.

arg min
β∈Rp,β′1=1,β′µ=τ

β′Σβ (4.1)

where τ is a given expected return.

Problem (4.1) can be solved directly using orthogonal space decomposition

and the optimal solution βopt is a linear combination of Σ−1µ and Σ−11. This is

usually referred as the classic mean-variance approach of Markowitz.
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When trying to involve a large number of assets, it has been shown that the

performance of the classic approach can be poor under general large dimensional

setups due to the fact that the solution of the classical Markowitz problem depends

sensitively on the input mean vector µ and the covariance matrix Σ while at the

same time it is often a challenging task to estimate such a large dimensional

covariance matrix consistently.

To alleviate these issues under large dimensional setup, it is natural to consider

the regularized approach. For example, Brodie et al. (2009) modified the classic

Markowitz problem (4.1) by adding a penalty proportional to the L1-norm of

the portfolio weight vector β to the objective function and the new problem is

expressed mathematically as follows:

arg min
β∈Rp,β′1=1,β′µ=τ

β′Σβ + λ‖β‖1 (4.2)

where λ is the tuning parameter. We call this L1-norm ‖β‖1 the gross exposure

of the portfolio with weight vector β. This concept of imposing gross exposure

constraint was also considered and introduced independently in DeMiguel et al.

(2009) and Fan et al. (2012c).

Another motivation for considering regularized optimization problems like

(4.2) comes from classification. Suppose we have two p-dimensional normal distri-

butions Np(µ1,Σ) (with label variable Y = 1) and Np(µ2,Σ) (with label variable

Y = 2). Let X be a random vector which is drawn from either one of these two

distributions with equal probabilities. We consider the problem of determining

which class X is drawn.

For any linear discriminant classifier δβ(X) = I{β′(X − µ̄) > 0}, where

µ̄ ≡ µ1+µ2

2
, β ∈ Rp is a prescribed direction and I(.) is the indicator function

with value 1 corresponds to assigningX to label Y = 2 and 0 corresponds to label

Y = 1. The theoretical misclassification probability of this classifier with direction

β is 1−Φ{β′µd/(β′Σβ)1/2 } where µd = µ2−µ1

2
. To minimize this misclassification
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probability, it is equivalent to minimize β′Σβ subject to β′µd = 1. And this

essentially leads us to the Fisher discriminant with direction βFisher = Σ−1µd.

For real data applications, we can perform Fisher discriminant analysis using

the sample version of the direction βFisher and the performance is usually good

when p is small. But when the dimension p grows larger, it is well-known that

simply perform the Fisher discriminant analysis might produce poor results. This

again is due to the accumulation of noises when estimating Σ and µd. Like in

the portfolio optimization context, here it is natural to consider regularizing the

problem. And this leads us to the following regularized optimization problem

arg min
β∈Rp,β′µd=1

β′Σβ + λ‖β‖1 (4.3)

where λ is the tuning parameter.

So we have seen that regularized optimization problems like (4.2) and (4.3) are

important in the portfolio optimization and classification context. There are some

approximate algorithms proposed to solve such constrained LASSO problems in

literature, see for example Fan et al. (2012a) and James et al. (2012). But very

few work has been done for solving these constrained LASSO problems exactly. In

this chapter, we focus on problem (4.3) and propose an exact algorithm for solving

this constrained LASSO problem. Furthermore, following the work of Mairal and

Yu (2012), we also investigate the complexity of the constrained LASSO, and

prove that the complexity is exponential in p.

The rest of this chapter is organized as follows. In Section 4.2, we study some

properties of our constrained LASSO problem and propose an exact algorithm to

compute its solution path based on these properties. In Section 4.3, we investigate

the complexity nature of our problem and provide several plots for illustration

purpose. The proof are relegated in Section 4.4.
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4.2 Exact Algorithm for One Constraint LASSO problem

In this section, we first investigate the solution path of the following simpler

regularized optimization problem

βλ = arg min
β∈Rp,β′1=1

β′Σβ + λ‖β‖1 (4.4)

and extend our results to more general one constraint case later. In the process,

we propose an algorithm to compute the whole solution path of this problem. We

assume Σ to be a symmetric positive definite matrix throughout this chapter.

4.2.1 Basic Properties of the Problem

First we need the following result from convex analysis to establish the relation-

ship between the tuning parameter λ and the optimal solution βλ:

Proposition 8. Let f : Rp 7→ R be convex. Then x minimizes f over a convex

set X ⊂ Rp if and only if there exists a subgradient d ∈ ∂f(x) such that:

d′(z − x) ≥ 0, ∀z ∈ X.

With this proposition, we can prove the following result illustrating the basic

properties of the optimization problem (4.4):

Proposition 9. For the regularized optimization problem (4.4), the optimal so-

lution βλ is continuous in λ and the following equality

2Σβλ + λdλ = c1 (4.5)

holds for some constant c and subgradient dλ of the L1 norm function ‖.‖1 at βλ.

Conversely, if equality (4.5) holds for some β, d ∈ ∂‖β‖1 and c at λ, then such

β must coincide with the optimal solution βλ. Furthermore, when λ > 0, the

subgradient dλ which satisfies equality (4.5) is unique and continuous in λ.
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Based on the above proposition, we can prove a stronger result for the opti-

mization problem. The idea of the proof is based on an observation of the solution

path between two point λ1 and λ2 where the optimal solution at these two points

have the same sign pattern and is originally due to Mairal and Yu (2012).

We state the result in the following theorem.

Theorem 5. (Finite Piecewise Linearity of the Path) Let 1 ∈ Rp be the

vector with all entries 1, and Σ be a positive definite matrix of dimension p× p.

Let

βλ = arg min
β∈Rp,β′1=1

β′Σβ + λ‖β‖1.

then βλ is a continuous piecewise linear function of finite many pieces in λ.

4.2.2 The Exact Algorithm

With the finite piecewise linearity property established for the regularized opti-

mization problem (4.4), we are ready to present an exact algorithm for computing

its whole solution path. But first we need to introduce some conventions and as-

sumptions for our discussion.

When the optimal solution βλ evolves with λ, we say the optimal solution

component βk hits zero at λ if there exists a sequence {λn} tending to λ from the

left such that βk 6= 0 at all λn while βk = 0 at λ, and we say the subgradient

compoent dk hits 1(−1) at λ if there exists a sequence {λn} tending to λ from the

left such that dk ∈ (−1, 1) at all λn while dk = 1(−1) at λ. We say the optimal

solution component βk leaves zero at λ if there exists a sequence {λ′n} tending to

λ from the right such that βk 6= 0 at all λ′n while βk = 0 at λ, and we say the

subgradient compoent dk leaves the boundary ±1 at λ for the similar meaning.

Then we define the notion of smoothness for λ in [0, λmax]. Note that here

λmax = min
{
λ|βλj > 0 for all j

}
and beyond this point(or say for λ > λmax) βλ

would no longer change.
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Definition 2. A point λ in [0, λmax] is smooth if at this particular point, for any

index j, either βλj 6= 0 or βλj = 0 but with corresponding subgradient dλj lying in

the open interval (−1, 1).

Lastly, we introduce two assumptions and make some remarks.

Assumption 1. When λ = 0, the initial optimal solution β0 has no zero

component.

Remark: With this assumption, we can define dλj to be sign(βλj ) for each j

at λ = 0. We adopt this convention in the rest of this chapter.

Assumption 2. Ifλ ∈ [0, λmax] is not a smooth point, then only one index j

satisfies βλj = 0 and |dλj | = 1.

Remark: Note that for continuous data, these two assumptions are usually

satisfied.

With these preparations, now we can present a result which is not only inter-

esting by itself but also helpful for understanding the motivation of our algorithm.

Proposition 10. Under the above assumptions, for λ ∈ (0, λmax), if an optimal

component βk hits zero at λ(scenario 1), it would stay at zero in [λ, λ + ε) for

some positive ε and −1 < dk < 1 in the open interval (λ, λ + ε). Conversely, if

a dk hits 1 or −1 at λ(scenario 2), then there exists some positive ε such that

βk 6= 0 in the open interval (λ, λ+ ε).

Proof. For both scenarios, it is clear that λ is a non-smooth point. Then by

Proposition 9 and our assumptions, there exists a small interval Bλ = (λ−δ, λ+δ)

around λ, such that the conditions in the definition of smooth point are not

violated for any index j 6= k.

Scenario 1:

We define the following set:

A , {k} ∪ {j|βj 6= 0 at λ}.
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Then it is easy to see Ac = {j|βj = 0 but dj lies in (−1, 1)}.

Suppose the set A has cardinality q, Then WLOG we can partition Σ and d

according to set A like:

Σ =

 Σ11 Σ12

Σ21 Σ22

 ;d =

 s

z


where Σ11 and s correspond to A, Σ22 and z correspond to Ac.

Recall how we define the sequence {λn} when we make conventions of “βk hits

zero” and “dk hits 1(−1)” in the previous section. WLOG, we can assume βk is

positive at all λn and {λn} ⊂ Bλ.

Then we argue by contradiction. If the corresponding dk would not be away

from the boundary 1 and −1 in an open interval (λ, λ + ε) for some ε > 0, then

there exists a κ ∈ Bλ and κ > λ such that dk remains at 1 at κ.

Now for the tuning parameter, at λ, we have

2Σβ + λ

 s

z

 = c1, (4.6)

and for any ∆λ such that λ+ ∆λ equals to κ or any λn, we would have

2Σ(β + ∆β) + (λ+ ∆λ)

 s

z + ∆z

 = (c+ ∆c)1, (4.7)

where ∆β = (∆β1,∆β2)′ and ∆β2 = 0 corresponds to the update of the set Ac.

Then we take the difference of the two equalities (4.7) and (4.6), and simplify

the first q and last p − q equations separately. This leads to the following two

equalities:

2Σ11∆β1 + ∆λs = ∆c1q,

2Σ21∆β1 + ∆λ∆z + ∆λz + λ∆z = ∆c1p−q.

Using the fact that 1′q∆β
1 = 0, we can solve

∆β1 =
1

2
∆λt, (4.8)
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∆z =
∆λl

∆λ+ λ
, (4.9)

Here

t =
α

γ
b− a

and

l =
α

γ
1p−q − Σ21t− z

where α = 1′qΣ
−1
11 s, γ = 1′qΣ

−1
11 1q, a = Σ−1

11 s, b = Σ−1
11 1q.

Note that we always have sign(βk) = − sign(tk) 6= 0 at {λn}, where tk is

the k-th component of the fixed vector t in equation (4.8). This would imply

sign(βk) = sign(tk) 6= 0 at κ which is impossible since we can choose κ to be as

close to λ as possible and βk can not have a sudden sign change. Thus we have

proved the first part of the proposition.

Scenario 2:

We still argue by contradiction so that assume there exists a κ ∈ Bλ and κ > λ

such that βk remains at 0 at κ. In this scenario we define set A as follows:

A , {j|βj 6= 0 at λ}.

Then under this scenario, it is easy to see that the compliment set

Ac = {k} ∪ {j|βj = 0 but dj lies in (−1, 1)} .

Now this time we partition the matrix and vectors according to the new A

and apply the same arguements as in the previous scenario, this time we look

at the equation (4.9). This time we always have sign(∆zk) = − sign(lk) 6= 0 at

{λn}, where lk is the k-th component of the fixed vector l in equation (4.9). This

implies sign(∆zk) = sign(lk) 6= 0 at κ which is impossible since this would force

dk to cross the subgradient boundary value at λ.
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We will continue to use the notations t, l, α, γ, a, b which appear in the proof

of Proposition 10 throughout the rest of this chapter.

Under the assumptions we have, we note that the occurrence of the scenario

2 is equivalent to say βk leaves 0 at λ. Then it is not hard to see that the two

scenarios mentioned in Proposition 10 can not happen together at a point λ ∈

[0, λmax] and any non-smooth point in [0, λmax] would correpond to the occurrence

of one the scenarios. The occurrences of the scenarios through out [0, λmax] must

be finite by Theorem 5 thus there are finite numbers of non-smooth point in

[0, λmax].

We futher note that the equations (4.6) and (4.7) would be valid for a partition

via a set A as long as the subgradient components s which corresponds to A is

stable at λ and λ + ∆λ while the update ∆β2 which corresponds to Ac equals

to zero.

Now we start from λ = 0 and gradually increase it to λmax for our explanation

of the algorithm. At λ0 = 0, we can solve the optimal solution β0 explicitly and

from the assumptions the next occurrence of the scenarios(or say the next non-

smooth point) must be scenario 1. The question is how to find the step size ∆λ to

achieve the occurrence. We start with a set A0 = {1, 2, . . . , p} for the partition.

Since the equations (4.6), (4.7) will hold continuously when we increase ∆λ from

λ untill we reach the next non-smooth point, reaching the next non-smooth point

would essentially mean one of the equations among (4.8) and (4.9) has reach the

limit that beyond that point it can not be true(For (4.8) it means letting a βk

accross 0 and for (4.9) it means letting a zk accross the boundary so be outside

[−1, 1]) and vice versa. So at the current stage λ0 = 0, we only need to find

the smallest ∆λ which makes a nonzero βλj hit zero via equation (4.8). Or more

precisely find

λ1 , λ0 + min
j

{
2β0

j

−tj
|j such that sgn(β0

j ) = − sgn(tj)

}



96

and the index m which achieves the minimum in the above equation. The corre-

sponding β1, d1 can be updated via (4.8) and (4.9) easily.

So now we are at λ1, the question would be what set A shall we use to

continue the search for the next non-smooth point. From Proposition 10, we set

A1=A0/{m}, it would work for our purpose and from the new set A we shall

update t, l, α, γ, a, b correspondingly. To search the next non-smooth point

this time we also need to consider the possibility of scenario 2, thus we need to

utilize (4.8) and (4.9) together to find the smallest step size ∆λ hitting the next

non-smooth point. So this time we find

λ2 , λ1 + τ

where

τ = min{τ1, τ2}

Here

τ1 , min
j

{
−2β1

j /tj|j ∈ A1 and sgn(β1
j ) = − sgn(tj)

}
τ2 , min

i,j

{
λ1

li
1−zi − 1

,
λ1

lj
1+zj
− 1
|i ∈ C1, j ∈ C2

}
C1 , {i|i ∈ Ac1 and li > 1− zi}

C2 , {j|j ∈ Ac1 and lj < −(1 + zj)}

Also we here find the index m which achieves the minimum τ .

Similarly we can update β2, d2. The question remaining is how to update the

A for the next incremental search. Again from Proposition 10, what we need to

do is as follows. For the current index m, if scenario 1 happens(nonzero β1
j hit

zero), then update A2 = A1/{m}, otherwise update A2 = A1 ∪ {m}.

Now we can repeat the above procedures iteratively and by Theorem 5 and

Proposition 9 we know it would terminate in finitely many steps. From λk, we

find

λk+1 , λk + τ
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where

τ = min{τ1, τ2}

τ1 , min
j

{
−2βkj /tj|j ∈ Ak and sgn(βkj ) = − sgn(tj)

}
τ2 , min

i,j

{
λk

li
1−zi − 1

,
λk

lj
1+zj
− 1
|i ∈ C1, j ∈ C2

}
C1 , {i|i ∈ Ack and li > 1− zi}

C2 , {j|j ∈ Ack and lj < −(1 + zj)} .

Also we can find the index m for the current stage and update Ak+1 according

to the rule: if scenario 1 happens (nonzero βkj hit zero), then update Ak+1 =

Ak/{m}, otherwise update Ak+1 = Ak ∪ {m}. The βk+1, dk+1 is again updated

via (4.8) and (4.9) from the previous βk, dk with the τ calculated at the current

stage. And the t, l, α, γ, a, b for the current stage could be calculated since we

have obtained the partition set Ak+1.

With the above explanation, we summarize our algorithm for the regularized

optimization problem (4.4) as follows.

Step 1. Solve the initial optimal solution β0 when λ0 = 0. Set the initial

active set A0 = {1, 2, . . . , p}.

Step 2. Suppose we have already obtain βk, dk, λk , Ak.

Compute α = 1′qΣ
−1
11 s, γ = 1′qΣ

−1
11 1q, a = Σ−1

11 s, b = Σ−1
11 1q, t = α

γ
b − a,

l = α
γ
1p−q − Σ21t− z

with the partition set Ak and current s and z in dk.

Compute τ = min{τ1, τ2} and denote m to be the index achieving such τ .

Update βk+1=βk+1
2
τt, dk+1 = dk+∆z, here ∆zj = τ l

τ+λk
for j ∈ Ack, ∆zj = 0

otherwise.

For the partition set, if for index m, scenario 1 happens, update Ak+1 =

Ak/{m}, otherwise update Ak+1 = Ak ∪ {m}.

Step 3. Repeat step 2 untill it reaches λk = λmax where all βj > 0.
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4.2.3 The Weighted Case

In some circumstances, we might be more interested in the following weighted

problem:

βλ = arg min
β∈Rp,β′1=1

β′Σβ + λ

p∑
i=1

σ
1/2
ii |βi|

where σii is the i-th diagonal element of the matrix Σ.

This problem could be transformed into the form:

βλnew = arg min
βnew∈Rp,β′

newu=1

β′newRβnew + λ‖βnew‖1

via a change of variable βnew = diag{σ1/2
11 , . . . , σ

1/2
pp }β. Here

R = diag{σ1/2
11 , . . . , σ

1/2
pp }−1Σ diag{σ1/2

11 , . . . , σ
1/2
pp }−1,u = (σ

−1/2
11 , . . . , σ−1/2

pp )′.

This leads us to study the slightly more general case:

βλ = arg min
β∈Rp,β′u=1

β′Σβ + λ‖β‖1 (4.10)

where Σ is a symmetric positive definite matrix and u is a general nonzero vector

in Rp.

Like previous section, we can establish similar results for problem (4.10) and

the proof is essentially the same. These results are stated as follows:

Proposition 11. For the regularized optimization problem (4.10), the optimal

solution βλ is continuous in λ and the following equality

2Σβλ + λdλ = cu (4.11)

holds for some constant c and subgradient dλ of the L1 norm function ‖.‖1 at βλ.

Conversely, if equality (4.11) holds for some β, d ∈ ∂‖β‖1 and c at λ, then such

β must coincide with the optimal solution βλ. Furthermore, when λ > 0, the

subgradient dλ which satisfies equality (4.11) is unique and continuous in λ.
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Theorem 6. (Finite Piecewise Linearity of the Path) Let u ∈ Rp be a

nonzero vector, and Σ be a positive definite matrix of dimension p× p. Let

βλ = arg min
β∈Rp,β′u=1

β′Σβ + λ‖β‖1.

then βλ is a continuous piecewise linear function of finite many pieces in λ.

Assume the two assumptions in the previous section, we note that Proposition

10 also holds for problem (4.10). Using the fact that u′A∆β1 = 0 (A is the

partition set at point λ, as defined in the proof of Proposition 10), we obtain the

updating equalities for problem (4.10):

∆β1 =
1

2
∆λt, (4.12)

∆z =
∆λl

∆λ+ λ
, (4.13)

Here

t =
α

γ
b− a

and

l =
α

γ
uAc − Σ21t− z

where α = u′AΣ−1
11 s, γ = u′AΣ−1

11 uA, a = Σ−1
11 s, b = Σ−1

11 uA.

Then the algorithm we summarized in the previous section can be imple-

mented to solve optimization problem (4.10) with the newly defined vector t and

l in equations (4.12) and (4.13). Here we need to be careful about the stopping

rule since γ might be zero with a zero uA. But for our weighted case, as all the

entries in u are positive, the stopping rule would be the same as problem (4.4). So

we adopt all the definitions in the previous section and summarize the algorithm

for the regularized problem (4.10) as follows.

Step 1. Solve the initial optimal solution β0 when λ0 = 0. Set the initial

active set A0 = {1, 2, . . . , p}.

Step 2. Suppose we have already obtain βk, dk, λk , Ak.
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Compute α = u′AΣ−1
11 s, γ = u′AΣ−1

11 uA, a = Σ−1
11 s, b = Σ−1

11 uA, t = α
γ
b − a,

l = α
γ
uAc − Σ21t− z

with the partition set Ak and current s and z in dk.

Compute τ = min{τ1, τ2} and denote m to be the index achieving such τ .

Update βk+1=βk+1
2
τt, dk+1 = dk+∆z, here ∆zj = τ l

τ+λk
for j ∈ Ack, ∆zj = 0

otherwise.

For the partition set, if for index m, scenario 1 happens, update Ak+1 =

Ak/{m}, otherwise update Ak+1 = Ak ∪ {m}.

Step 3. Repeat step 2 untill it reaches λk = λmax where all βj = 0 except for

the index j which has the largest corresponding |µj|.

4.3 Complexity of the Constrained Lasso

In this section we are going to establish a complexity result for the regularized

problem (4.10) with intuitions from Mairal and Yu (2012). First we present a

lemma concerning the sign patterns of two related problems:

Lemma 6. Assume X ∈ Rn×p is a full column rank matrix and y ∈ Rn is a

vector. Then there exists a symmetric positive definite matrix Σ0, a constraint

vector u ∈ Rp such that after excluding the zero sign pattern, the sign pattern set

of the optimization problem

min
w∈Rp

1

2
‖y −Xw‖2

2 + λ‖w‖1 (4.14)

is completely included in the sign pattern set of the optimization problem

min
w∈Rp,w′u=1

1

2
w′Σ0w + λ‖w‖1. (4.15)

Now we can give a lemma on the upper bound of the number of linear segments

in the solution path of problem (4.15):

Lemma 7. Assume Σ ∈ Rp×p is positive definite, then the number of linear

segments in the regulariztion path of problem (4.15) is less than (3p + 1)/2.
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In Mairal and Yu (2012), the authors proved the upper bound (3p + 1)/2

actually can be achieved for problem (4.14), combining their result with Lemma

6 and 7, we can obtain a similar result for problem (4.10)(or equivalently, problem

(4.15)) as stated in the following theorem.

Theorem 7. Suppose we are free to choose the symmetric positive definite matrix

Σ ∈ Rp×p and the constraint vector u ∈ Rp in problem (4.10). Then in the

worst scenario, the regulariztion path of this problem has exactly (3p− 1)/2 linear

segments.

We provide some pathological solution path plots here to show that the upper

exponential bound in Theorem 7 are indeed achievable. In Figures 4.1 and 4.2 ,

we observe that there are 4 an 13 linear segments in the solution path respectively

which coincides with the value of the identity (3p − 1)/2 when p = 2 and 3.

4.4 Proofs

Proof of Proposition 8. See the appendix of Bertsekas (2008).

Proof of Proposition 9. The continuity of βλ in λ can be argued by contradiction.

Suppose βλ is not continuous at λ0, then there exists a sequence λn → λ0(n ∈

Z
+) and an ε > 0, such that βλn 6∈ Bε(βλ0) for all n ∈ Z+. Define fλ(β) ,

β′Σβ+λ‖β‖1, then we can find an x ∈ Bε(βλ0) such that fλ0(x) < fλ0(β
λn)−C

for all n ∈ Z+ where C is a positive constant. So at λn, we have

fλn(x)− fλn(βλn) = fλ0(x)− fλ0(βλn) + (λn − λ0)(‖x‖1 − ‖βλn‖1)

< −C + (λn − λ0)(‖x‖1 − ‖βλn‖1).

WLOG, we can assume ‖βλn‖1 is bounded for all n ∈ Z+ so as n → ∞

the second term in the above inequality would tend to 0. Hence we have for

sufficiently large n, fλn(x) < fλn(βλn) and this leads to a contradiction.
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Figure 4.1: Pathological regularization path with p = 2 variables and (32−1)/2 =

4 kinks. The curves represent the values of the coefficients at every kink of the

path. We use a non-linear(log) scale for the coefficients.

To prove the equality, we apply the previous proposition directly. Here the

cost function f(β) = β′Σβ+λ‖β‖1 and the set X is the hyperplane which satisfies

β′1 = 1. Note that here ∂f(β) = 2Σβ+λd where d ∈ ∂‖β‖1, the subdifferential

set of the L1 norm at β.

When β ranges over X, β−βλ essentially gives us the orthogonal compliment

of the space spanned by the 1 vector, which has dimension p−1. By the structure

of such a linear space, the inequality in the proposition now turns into the equality

(2Σβλ + λdλ)′(β − βλ) = 0. This indicates 2Σβλ + λdλ = c1 for some constant
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Figure 4.2: Pathological regularization path with p = 3 variables and (33−1)/2 =

13 kinks. The curves represent the values of the coefficients at every kink of the

path. We use a non-linear(log) scale for the coefficients.

c. Then if and only if assertion in Proposition 2 implies the converse is true.

For uniqueness, we argue by contradiction. If not, then there exist another

subgradient dλ1 6= dλ and another constant c1 6= c such that equality (4.5) holds

for for dλ1 and c1. Take the difference of the two equalities, we have

λ(dλ1 − dλ) = (c1 − c)1.

Since β′1 = 1, we know βj 6= 0 for some j at λ, this indicates the jth component

of dλ1 −dλ is 0. This is impossible since the jth component in the right hand side

is nonzero.
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At last it remains to prove the continuity of dλ in λ. Note that we only need

to prove the constant c is continuous in λ. From now on, let us use c(λ) to denote

the unique constant value at λ. If c(λ) is not continuous at the point λ0, then

there exists some ε > 0 and a sequence {λn} satisfying limn−→∞ |λn − λ0| = 0

such that |c(λn)− c(λ0)| > ε for any n. Evaluate the equality (4.5) at λ0 and λn,

take the difference, we have

2Σ(βλn − βλ0) + (λnd
λn − λ0d

λ0) = (c(λn)− c(λ0))1. (4.16)

Like when we prove the uniqueness, we know βj 6= 0 for some index j in a

neighborhood of λ0. Now we look at the jth component of equality (4.16). Since

βλ is continuous in λ and dλnj = dλ0j for sufficiently large n, we know the jth

component of the left hand side will converge to 0. But the jth component of the

right hand side clearly wouldn’t converge to 0. So we have a contradiction and

this completes the proof.

Proof of Theorem 5. First we define η(λ) , sign(βλ) to be the sign vector at λ for

any λ > 0. At any λ1, λ2 where 0 < λ1 < λ2, we have 2Σβλ1 + λ1d
λ1 = c11 and

2Σβλ2 + λ2d
λ2 = c21 for some c1 and c2 by the subgradient optimality condition

we proved in propositon 2. For any α ∈ [0, 1], multiply the first above equality by

α and the second by 1−α then add them up, it is easy to see that αβλ1+(1−α)βλ2

satisfies the subgradient optimality condition at λ = αλ1 + (1−α)λ2. So we have

βαλ1+(1−α)λ2=αβλ1 + (1− α)βλ2 , βλ1,λ2α .

This implies whenever two optimal solutions βλ1 and βλ2 have the same signs,

the solution path between λ1 and λ2 is a linear segment. This together with the

fact that the sign patterns of βλ as λ varies over (0,+∞) is at most 3p implies

the solution path {βλ|λ > 0} is continuous and piecewise linear with finite many

pieces.
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Proof of Lemma 6. First we define

u ,
X ′y

η
Σ , X ′X − X ′yy′X

η
(4.17)

where η is a positive real number chosen to be large enough to make Σ positive

definite.

Then from (4.17) we can solve the following relationships:

Σ + ηuu′ = X ′X ηu′ = y′X. (4.18)

Now we note that after we expand the quadratic term in problem (4.14), it

takes the form

min
w∈Rp

1

2
w′X ′Xw + λ‖w‖1 − y′Xw. (4.19)

Substituting X ′X and y′X from (4.18), we have the problem

min
w∈Rp

1

2
w′(Σ + ηuu′)w + λ‖w‖1 − ηw′u (4.20)

which has an equivalent form

min
w∈Rp

1

2
w′Σw + λ‖w‖1 +

1

2
η(w′u− 1)2. (4.21)

Now given λ, we denote w∗ to be the solution of problem (4.20) and cλ to be

the value of w∗′u. Then when cλ 6= 0(note that from the equivalent form (4.21)

it is not hard to see 0 6 cλ < 1), with the variable transformation w0 = w/cλ,

the solution of the problem (4.20) is proportional to the solution of the following

optimization problem

min
w0∈Rp,w′

0u=1

1

2
c2
λw
′
0(Σ + ηuu′)w0 + λ ∗ cλ ∗ ‖w0‖1

which is in turn equivalent to

min
w0∈Rp,w′

0u=1

1

2
w′0(Σ + ηuu′)w0 +

λ

cλ
‖w0‖1. (4.22)

So we have shown that after excluding the zero sign pattern, the sign pattern

set of problem (4.20) is included in the sign pattern set of problem (4.21). Now
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we see problem (4.21) is essentially a form of problem (4.15) and to complete the

proof, we only need to choose Σ0 = Σ + ηuu′.

Proof of Lemma 7. This follows by applying a similar procedure as in Mairal and

Yu (2012).

Proof of Theorem 7. Note that Lemma 6 essentially relates problem (4.15) with

problem (4.14). So we can simply choose the the design of X and y for the

worst-case complexity in Mairal and Yu (2012) for problem (4.14) to construct

the corresponding Σ and u for our need in problem (4.15), since the zero sign

pattern can not be included in problem (4.14), we essentially have a construction

of Σ and u with 3p+1
2
− 1 = 3p−1

2
linear segments.
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