
STRUCTURED DEEP NEURAL NETWORK WITH LOW
COMPLEXITY

By

SIYU LIAO

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Electrical & Computer Engineering

written under the direction of

Prof. Bo Yuan

and approved by

New Brunswick, New Jersey

October, 2020

ABSTRACT OF THE DISSERTATION

Structured Deep Neural Network with Low Complexity

By SIYU LIAO

Dissertation Director:

Prof. Bo Yuan

Deep Neural Network (DNN) has achieved great success in many fields. However, many

DNN models are both deep and large thereby causing high storage and energy consumption

during the training and inference phases. As the size of DNNs continues to grow, it is

critical to improve computation efficiency and energy consumption while maintaining the

corresponding model performance. Various methods have been proposed for compressing

DNN models, which can be categorized into three different levels, model level, structure

level, and weight level. This thesis focuses on structure enforcing compression algorithm

and embedding quantization method which aims at: i) less storage and computation com-

plexity, ii) easier hardware implementation because of structured memory access pattern,

iii) natural language processing oriented embedding binarization. The first chapter intro-

duces the motivation of this dissertation in detail. Chapter 2 goes over the background and

the related work about compressing deep neural network. Chapter 3, Chapter 4 and Chap-

ter 5 presents proposed compression methods for fully connected layer, convolution layer

and embedding layer. Final chapter 6 discusses possible future directions of this research.

ii

Acknowledgments

First and foremost, I want to thank my advisor Prof. Bo Yuan for his invaluable support

and guidance during my Ph.D. study. Many of my research ideas have been influenced by

his deep insight and persuasive speeches. He has always been a thoughtful and considerate

advisor. There are many times when I work with him on paper submission till the last

minute, even if it is midnight. He also understands foreign student’s difficulties thoroughly

and patiently listens to me talking about long commute, expensive tuition bills, family

emergency, and even visa problems.

I am very fortunate to have Prof. Yingying Chen, Prof. Sheng Wei and Prof. Jingjin

Yu as my committee members who have always been patient and supportive.

My sincere thanks also goes to Prof. Victor Pan and his student Liang Zhao for their

tremendous help in my research. I have the unique privilege to discuss with these experts

in the field of structure matrix. The inspiration for my early research actually came from a

discussion during the office hour of Prof. Victor Pan.

Special thanks are due to Prof. Robert Haralick and Prof. Jianting Zhang who always

tried to support and help by all means during the early days of my Ph.D. study.

I also wish to thank Mr. Chao Xue, Mr. Jean David Ruvini and Mr. Hetunandan

Kamisetty for providing the diverse summer internship projects.

I am deeply grateful to my fellow labmates: Yi Xie, Chunhua Deng, Miao Yin, Huy

Phan, Xiao Zang, Sui Yang, for the informative discussions, sleepless nights before deadlines,

collaborative projects and all the delicious food we shared together. Particularly, I would

like to express gratitude to Mr. Min Zhang for his constant encouragement and generous

help during the most difficult days when back in New York City.

Finally, I would like to thank my parents Ziyun Liao and Chunlian Chen, and my sister

Yuxin Liao who have always been supportive all these years.

iii

Dedication

To my mom, dad and my sister

iv

Table of Contents

Abstract . ii

Acknowledgments . iii

Dedication . iv

List of Tables . viii

List of Figures . ix

1. Introduction . 1

1.1. Motivation . 2

1.2. Dissertation Outline . 3

2. Background . 5

2.1. Deep Neural Network . 5

2.1.1. Convolutional Neural Network . 6

2.1.2. Long Short-term Memory . 8

2.2. DNN Compression . 8

2.2.1. Model Level . 9

2.2.2. Structure Level . 9

2.2.3. Weight Level . 10

3. Structure Matrix . 11

3.1. LDR Neural Networks . 12

3.1.1. Problem Statement . 13

3.1.2. The Universal Approximation Property of LDR Neural Networks . . 13

v

3.1.3. Error Bounds on LDR Neural Networks 18

3.1.4. Training LDR Neural Networks . 21

3.2. Block Circulant Fully Connected Layer . 22

3.2.1. Circulant Matrix Based Neural Network 23

3.2.2. Block Circulant Based Neural Network 24

3.2.3. Circulant Approximation . 25

3.3. Block Circulant Convolution Layer . 26

3.3.1. Fast Forward and Backward Propagation 27

3.3.2. Conversion from Non-circulant Tensor to Circulant Tensor 29

3.3.3. Efficiency on Space and Computation 31

3.4. Block Toeplitz Fully Connected Layer . 31

3.4.1. Impose Toeplitz Structured on DNNs 32

3.4.2. Impose Block-Toeplitz Structure on DNNs 33

3.5. Experiments . 35

3.5.1. ResNet on CIFAR-10 . 35

3.5.2. Wide ResNet on CIFAR-10 . 37

3.5.3. AlexNet on ImageNet . 40

3.5.4. Speech Recognition . 42

3.6. Conclusion . 43

4. Permuted Diagonal Matrix . 44

4.1. Permuted Diagonal Fully Connected Layer 45

4.1.1. Forward Propagation . 46

4.1.2. Backward Propagation . 46

4.1.3. Approximation . 47

4.2. Permuted Diagonal Convolution Layer . 49

4.2.1. Forward Propagation . 49

4.2.2. Backward Propagation . 50

4.2.3. Outline of Theoretical Proof on Universal Approximation 50

vi

4.2.4. Applicability on the Pre-trained Model 51

4.2.5. PermDNN vs Unstructured Sparse DNN 52

4.3. Experiments . 53

5. Isotropic Iterative Quantization . 56

5.1. Iterative Quantization and Embedding Isotropy 58

5.1.1. Maximize Bit Variance. 58

5.1.2. Minimize Quantization Loss. 59

5.1.3. Isotropy of Word Embedding . 59

5.2. Proposed Quantization . 60

5.2.1. Maximize Isotropy. 60

5.2.2. Dimension Reduction. 61

5.2.3. Minimize Quantization Loss. 61

5.3. Experimental Results . 64

5.3.1. Word Similarity . 65

5.3.2. Categorization . 66

5.3.3. Topic Classification . 67

5.3.4. Sentiment Analysis . 68

5.3.5. Visualization . 70

5.4. Conclusion . 71

6. Conclusions and Future Work . 72

References . 73

vii

List of Tables

1.1. Parameterized Layer Analysis. 3

3.1. Comparison with [1] in terms of FFT, time and space complexity, where

N = C0 = C2. 31

3.2. Compression Configurations. For the convolutional block with compression

ratio i, all the convolutional layers in that block has the same compression

ratio i. 36

3.3. Comparison among AlexNet models. 42

3.4. Task performance with different compression ratio 42

4.1. The CNN parameters. 49

4.2. AlexNet on ImageNet [2]. PD: Permuted Diagonal. 53

4.3. Stanford NMT (32-FC layer LSTMs) on IWSLT15 for English-Vietnamese

Translation. 54

4.4. ResNet-20 on CIFAR-10[3]. 54

4.5. Wide ResNet-48 on CIFAR-10. 55

5.1. Experiment Configurations. 65

5.2. Word Similarity Results. 66

5.3. Categorization Results. 67

5.4. Topic Classification Results. 68

5.5. Configurations for IMDB Classification. 69

viii

List of Figures

1.1. Model size and FLOPs of various recent DNNs [4]. 2

2.1. Convolutional Neural Network [5]. 7

3.1. Example of commonly used LDR (structured) matrices [6], i.e., circulant,

Cauchy, Toeplitz, Hankel, and Vandermonde matrices. 12

3.2. Illustration of a circulant weight tensor [7]. Blocks of the same color in the

middle share the same set of kernel weights (on the right). This significantly

reduces the total amount of parameters needed to represent this tensor. In

addition, the placement of blocks displays a circulant structure, facilitating

FFT-based fast algorithms. 28

3.3. ResNet-32 Test Error and Model Size. Use of circulant convolutional layer

can bring half of parameters reduction with negligible test error increase. . 37

3.4. ResNet-32 Test Error and Model Size. Use of circulant convolutional layer

can bring half of FLOPs reduction with negligible test error increase. . . . 38

3.5. Wide ResNet Model Size Reduction. Compared with baseline models, com-

pressed models achieve similar model size as ResNet-110. Compressed model

named like ”48-4” has 48 convolutional layers and widening parameter as 4. 39

3.6. Wide ResNet Test Error. Baseline models are different original Wide ResNets

and they are compared with the corresponding compressed models and ResNet-

110. 40

3.7. Wide ResNet FLOPs. The overall FLOPs measure the FLOPs percentage

of compressed models over corresponding baselines. We also list FLOPs

percentage of compressed convolutional blocks over original blocks. 41

4.1. Weight representation by using (a) conventional unstructured sparse matrix.

(b) block-permuted diagonal matrix. 45

ix

4.2. Example of imposing block-diagonal permuted structure on (a) weight matrix

of FC layer and (b) weight tensor of CONV layer. Here the block size p, as the

compression ratio, is 3. The entire weight matrix or tensor contains blocks

of component weight matrices or tensors, and each component permuted

diagonal matrix or tensor is affiliated with a permutation value (PermV).

PermV is selected from 0,1,...,p-1. The non-zero weight values or weight

filter kernels can only be placed in the main diagonal or permuted diagonal

positions in the component weight matrices or tensors. 48

4.3. Train a PermDNN from a pre-trained dense model. 52

4.4. Storage requirement comparison. 53

5.1. Quantization loss curve of 50000 embedding vectors from a pre-trained CNN

model. 62

5.2. IMDB CNN Test Accuracy Results. 70

5.3. Visualizing Binary IIQ Word Embedding. 70

x

1

Chapter 1

Introduction

Neural network has become one of the most powerful machine learning methods nowadays.

It achieves the state-of-the-art performance in many applications, such as face recognition

[8], machine translation [9] and even the game of go [10]. Compared with previous small

and shallow neural networks, current networks are usually found large and deep. Therefore,

people often call it by deep neural network (DNN).

Generally speaking, DNN aims at simulating human brain by passing the pulse (acti-

vation) among different neurons. Inside the network, layers of neurons are stacked in a

bottom-up manner and activation is transmitted from the bottom layer to the top layer.

Such activation at different layers is a transformation of input and to some degree rep-

resents certain understanding of input. The final activation output is utilized for regular

machine learning tasks like regression or classification. Note that with the raw input grad-

ually becoming into high level representation, this can save a lot of feature engineering

efforts compared with traditional machine learning methods [11]. People no longer need to

manually process the raw data into certain internal representation based on their domain

expertise. Thus, the DNN is a representation learning method.

Although neural network was proposed decades ago, as a supervised learning method,

its learning capability was limited by the data volume and the computing power. Back in

1989, the classical neural network called LeNet [12] only consists of 5 layers with 50000

training images. Thanks to the Moore’s Law and the prevalence of graphics processing

unit (GPU), current ResNet [13] winning the ImageNet challenge in 2015 takes 152 layers

and over 1M training images. The power of DNN is finally discovered under the present

data and hardware resource. More importantly, DNN is applicable to many different areas

including computer vision, natural language processing, biology, computational chemistry

2

and so on.

Although DNN has achieved the state-of-the-art performance, people find current DNNs

take much memory space and floating point operations (FLOPs). The large model size has

become a challenge when deploying on resource-constrained platforms like embedded mobile

devices. Fig. 1.1 shows the model size and FLOPs of various recent DNNs. All these DNN

models contain millions of parameters and take Giga FLOPs for single image inference.

Especially, their energy consumption also surpass the capability of regular mobile devices

[14].

Figure 1.1: Model size and FLOPs of various recent DNNs [4].

1.1 Motivation

Many existing research works show that current DNN models are often over-parameterized

[15][16][17]. There is a great potential to compress these large models into small ones.

This work aims at proposing algorithms for generating DNN models with low space and

time complexity. The main observation is that parameters of DNN are often organized

3

Table 1.1: Parameterized Layer Analysis.

Name CNN RNN

Convolution Layer Y N

Fully Connected Layer Y Y

Embedding Layer N Y

Batch Normalization Layer Y Y

in the form of matrix and even tensor. It is natural to compress these parameters by

finding their relationship and re-organizing into a more compact form, for example low

rank representation. Instead of finding the underlying hidden relation, this work compresses

DNNs into certain form with a strong structure like circulant structure. More importantly,

such structures are united under the same theoretical framework, i.e., low displacement

rank (LDR). Unlike many other compression methods, the proposed method is theoretically

sound in the context of neural network, which means the universal approximation theorem

is also guaranteed after compression [6].

Table. 1.1 summarizes common parameterized layers in regular DNN model, i.e., Con-

volutional Neural Network (CNN) and Recurrent Neural Network (RNN). Y stands for a

layer can appear in the corresponding DNN and N stands for not appearing. Although

many implementations like Tensorflow [18] name a single layer of RNN as RNN layer, it

is regarded as fully connected layer in this table because their computation is essentially

implemented in the same way (matrix multiplication). Other variants of DNN model like

long short-term memory (LSTM) [19] and convolutional LSTM [20] are not discussed since

they are also parameterized by layers mentioned in the table. Note that batch normalization

layer [21] contains much less parameters compared with other layers, i.e., only scaling and

shifting parameters. Therefore, this work only focuses on convolution layer, fully connected

layer and embedding layer.

1.2 Dissertation Outline

This work proposes several algorithms to compress convolution layer, fully connected layer

and embedding layer. All compression algorithms are applicable to DNNs that contain

these layers inside the model architecture. In summary, the contribution of this work can

4

be listed as following:

• Structure matrix based compression is developed for fully connected layer and convo-

lution layer. The training algorithm including forward and backward propagation are

discussed and a warm up initialization method is also provided.

• Inspired from communications, permuted diagonal matrix based compression is devel-

oped for fully connected and convolution layer. The detailed forward and backward

propagation are provided and a initialization from pre-trained model is also developed.

• Isotropic iterative quantization (IIQ) is developed for compressing word embedding.

It transforms embedding into binary representation and can also serve the embedding

layer for DNN models.

Chapter 2 provides the background for DNN and related compression techniques. Basic

concepts and formulation are formally defined and introduced. Literature review over DNN

compression is summarized and discussed in three different levels, including structure level,

weight level and representation level.

Chapter 3 describes the structure matrix based compression for DNN models, which

reduces the space and time complexity for convolution and fully connected layers. Especially,

the convolution layer is extended from the fully connected layer by imposing structure on

specific dimensions of the convolution tensor.

Chapter 4 takes the permuted diagonal matrix from the communication community

and apply to compressing DNN models. Permuted diagonal matrix was proposed for regu-

larizing the decoding matrix of linear code like LDPC [22], which is used for accelerating the

underlying belief propagation. This chapter develops the forward and backward propagation

of DNN based on permuted diagonal matrix.

Chapter 5 describes isotropic iterative quantization method which is inspired from

the word isotropy property in natural language processing and also the locality preserving

hashing (LSH) community. Therefore, IIQ is developed by combining the specific property

of NLP applications with the LSH method. This method is as theoretically sound as pro-

posed methods above and it is applicable to all point-wise mutual information (PMI) based

embedding.

5

Chapter 2

Background

2.1 Deep Neural Network

A deep neural network (DNN) is an artificial neural network consisting of multiple layers

between input X and output Y. Let D be the data distribution over (X ,Y) and let S be

given data with N i.i.d samples drawn from D such that S = {(xi,yi)}Ni=1, xi ∈ X and

yi ∈ Y. DNN describes a family of functions H composed of multiple differentiable layer

functions f1(·), . . . , fn(·),

H = {f : X → Y | ∀x ∈ X , f(x) = fn(. . . f2(f1(x)))}, (2.1)

where each layer function fi(·) for i = 1, . . . , n is usually a non-linear function. We denote

the output of each layer function as activation ai = fi(·). For example, fk(·) can be a

parametric hyperbolic tangent function,

ak = fk(ak−1) = tanh(Wk × ak−1 + bk), (2.2)

where Wk and bk are weight matrix and bias vector of the k-th layer respectively.

The learning goal of DNN is to find the mapping with the least discrepancy between

network output y′ = f(xi) and target output y. This can be formulated as minimizing a

non-negative loss function L̃(f) = ED[L(y,y′)]. Unfortunately, the true data distribution

is often unknown so people try to minimize over the given training data instead. Following

is an example of training loss based on Euclidean distance:

min
f∈H

L̂(f) = ES [L(y,y′)] =
1

N

N∑
i=1

||yi − y′i||2. (2.3)

However, there is generalization gap between L̂(f) and L̃(f) since training data is limited

and can’t represent the true data distribution. The gap can be observed in practice that

6

feeding well-trained DNN with extra testing data incurs higher loss. This is because the

true data distribution results in extra loss unseen in training data and the extra loss is

non-negative.

Since DNN is described as an optimization problem, it is natural to calculate derivative

of parameters and solve with existing optimization algorithms. For example, stochastic

gradient descent is often used in training DNN based on first order derivatives. A well

known algorithm for computing first order derivatives is called back-propagation algorithm

[23]. The essential idea is based on the chain rule in calculus as following:

L̂′ = L′(f(x))f ′(x) = L′(f(x))f ′n . . . f
′
1(x). (2.4)

It can be seen that computation goes with the expanding of function derivatives. Therefore,

back-propagation algorithm means derivatives are calculated from last layer to the first

layer. On the contrary, we call the process of computing from input to network output as

forward propagation.

2.1.1 Convolutional Neural Network

In computer vision, the input data is in high dimensional space. For example, a gray scale

image is represented as a matrix with each entry (pixel) indicating the amount of light so

it is in two dimensional space. A colorful RGB image consists of three similar matrices at

red, green and blue channels, respectively. This colorful image is then in three dimensional

space. Traditional DNN with one dimensional input will need lots of parameters when

feeding with high dimensional input data. For example, a 224 × 224 × 3 colorful image

will flatten into a vector with size 150528. Such over-parameterization can be a waste of

resource and result in over-fitting problem.

People proposed so-called convolutional neural network (CNN) to simulate the visual

cortex. Two dimensional convolution operation is applied in small region of the input image,

which is also known as receptive field. CNN can save people’s efforts by learning different

convolutions from training data. Fig. 2.1 is an example of convolutional neural network

for image classification. There are three types of layers including convolution layer, pooling

layer and fully connected layer. Input image is transformed into different feature maps at

7

each layer. The last fully connected layer outputs the classification probability. In this way,

CNN automatically extracts features from any input image and perform the classification

accordingly.

Figure 2.1: Convolutional Neural Network [5].

A convolution layer handles input X ∈ Rc0×w0×h0 and outputs Y ∈ Rc2×w2×h2 with

convolution kernels W ∈ Rc0×c2×w1×h1 . c0 and c2 are number of channels of input and

output respectively. w0, h0 and w2, h2 are width and height of input and output respectively.

w1 and h1 are the width and height of the convolution kernel. The formal computation is

given as following:

Y(m, i, j) =

c0∑
n=0

w1∑
p=0

y1∑
q=0

W(n,m, p, q) ·X(n, i− p, j − q). (2.5)

Although convolution layer outputs effective local feature maps, a small modification,

like shifting or rotation, in input will generate different output. People use pooling layer

to discard irrelevant local features against those small transformations of input. Pooling

operation often takes the summation, maximum or average of local features.

Fully connected layer takes input X ∈ Rn and outputs Y ∈ Rm with weight matrix

W ∈ Rm×n and bias vector b ∈ Rm. It is essentially a linear layer but sometimes composed

with point-wise non-linear function like rectified linear unit (ReLU) function:

Y = f(W ·X + b) = max(0,W ·X + b), (2.6)

where f(·) is the ReLU function taking the point-wise maximum between zero and each

input value.

8

2.1.2 Long Short-term Memory

Long short-term memory (LSTM) is a type of widely used RNN for various sequence-

involved tasks. Compared with traditional RNN, LSTM alleviates the problem of graident

vanishing problem when training regular RNN but may still encounter the gradient ex-

ploding problem. In general, a LSTM takes a sequence of input x1, . . . ,xT and generates

a sequence of output y1, . . . ,yT , where T is number of time steps. The computation in

LSTM can be formulated for each time step 1 ≤ t ≤ T as follows:

it = σ(Wixxt + Uiryt−1 + bi)

ft = σ(Wfxxt + Ufryt−1 + bf)

gt = h(Wgxxt + Ugryt−1 + bg)

ct = ft ◦ ct−1 + gt ◦ it

ot = σ(Woxxt + Uoryt−1 + bo)

yt = ot ◦ h(ct)

, (2.7)

where W and U indicate weight matrices and b indicates bias parameters for each gate

in LSTM, respectively. The ◦ is the element-wise product. σ(·) and h(·) are sigmoid and

hypertangent functions, respectively. The it, ft, ot are called input gate, forget gate and

output gate, respectively. The ct is the cell of the LSTM and those gates control the

information flow in and out of the cell. Generally speaking, sequence dependencies are

tracked by the cell.

2.2 DNN Compression

In this section, we introduce different DNN compression algorithms and summarize them

with three different levels, i.e., model level, structure level and weight level. Note that these

methods are applicable to those parametric layers in DNN.

9

2.2.1 Model Level

Model level compression algorithms aim at finding a compact architecture by studying the

relations between layers or models. A typical example is knowledge distillation [24], where

people distill a large model into a small model. The main idea is training the small one

with soft labels from the large model because those soft labels are assumed containing more

information. Many other works design a whole new DNN model that consists of a com-

pact sub-architecture, which is composed of multiple light-weighted layers. For example,

GooLeNet [25] has a compact model size because they restrict all convolutions into 1 × 1,

3× 3 and 5× 5 small convolutions. MobileNet [26] utilizes a special architecture that per-

forms small depth-wise and 1×1 point-wise convolutions as the new convolution operation.

SqueezeNet [27] proposes three compact DNN design strategies, such as switching 3 × 3

convolution into 1 × 1 convolution, reducing input channels before 3 × 3 convolution and

late down-sampling. ShuffleNet [28] solves the problem of limited input channel for group

convolution and comes up with the compact architecture composed of point-wise group

convolution and channel shuffle operation.

2.2.2 Structure Level

Structure level compression algorithms focus on the relation between weight parameters

within a single layer. A typical case is using singular value decomposition (SVD) for com-

pressing DNN weight matrices [?]. It is based on the matrix rank, i.e., the dimension of

the column space of the matrix. Moreover, people also apply high order tensor decompo-

sition methods like tensor train [29], tensor ring[30], block term decomposition [31] and

so on. More generally, [32] proposes to combine sparse matrix with low rank matrix for

compression.

Another example is using weight sharing [15] to restrict similar weight parameters to

be the same. Similarly, hashing based compressing algorithm [33] is proposed to determine

the parameter relation through a hashing function. However, it is still unknown to what

extent people can enforce certain relation on weight parameters. Unlike aforementioned

algorithms, [34] learns a structure of sparsity inside DNN via group lasso regularization.

10

It is also extended to the weight tensor by grouping along one of the dimension. But this

merely depends on the optimization process and people cannot set a target sparsity ahead

of training.

2.2.3 Weight Level

Weight level compression algorithms aim at choosing or representing each single weight

parameters. For example, it is straightforward to remove weight parameter that is very

small. Pruning with threshold turns out to be a useful method in practice [15]. Since single

precision (32 bits) is often implemented in practice, Another straightforward idea is using

fewer bits to represent weight parameters. Low precision can directly reduce model size in

general. People have explored fixed point representation and dynamic fixed point represen-

tation [35]. Furthermore, ternary bits training [36] and even binary training [37] algorithms

are developed and have demonstrate their effectiveness on several standard DNN models.

Unlike these uniform quantization methods, an adaptive precision selection algorithm for

each layer is proposed and outperforms others over many large DNN models on ImageNet

dataset.

11

Chapter 3

Structure Matrix

Low displacement rank (LDR) construction is a type of structure-imposing technique for

network model reduction and computational complexity reduction. By regularizing the

weight matrices of neural networks using the format of LDR matrices (when weight matrices

are square) or the composition of multiple LDR matrices (when weight matrices are non-

square), a strong structure is naturally imposed to the construction of neural networks.

Since an LDR matrix typically requires O(n) independent parameters and exhibits fast

matrix operation algorithms [38], an immense space for network model and computational

complexity reduction can be enabled. Pioneering work in this direction [39][40] applied

special types of LDR matrices (structured matrices), such as circulant matrices and Toeplitz

matrices, for weight representation. Other types of LDR matrices exist such as Cauchy

matrices, Vandermonde matrices, etc., as shown in Figure 3.1.

Compared with other types of network compression approaches, the LDR construction

shows several unique advantages. First, unlike heuristic weight-pruning methods [15][16]

that produce irregular pruned networks, the LDR construction approach always guaran-

tees the strong structure of the trained network, thereby avoiding the storage space and

computation time overhead incurred by the complicated indexing process. Second, as a

“train from scratch” technique, LDR construction does not need extra re-training, and

hence eliminating the additional complexity to the training process. Third, the reduction

in space complexity and computational complexity by using the structured weight matrices

are significant. Different from other network compression approaches that can only provide

a heuristic compression factor, the LDR construction can enable the model reduction and

computational complexity reduction in Big-O complexity: The storage requirement is re-

duced from O(n2) to O(n), and the computational complexity can be reduced from O(n2)

12

Figure 3.1: Example of commonly used LDR (structured) matrices [6], i.e., circulant,
Cauchy, Toeplitz, Hankel, and Vandermonde matrices.

to O(n log n) or O(n log2 n) because of the existence of fast matrix-vector multiplication al-

gorithm [38][41] for LDR matrices. For example, when applying structured matrices to the

fully-connected layers of AlexNet using ImageNet dataset [2], the storage requirement can

be reduced by more than 4,000X while incurring negligible degradation in overall accuracy

[39].

3.1 LDR Neural Networks

In this section we study the viability of applying LDR matrices in neural networks. Without

loss of generality, we focus on a feed-forward neural network with one fully-connected (hid-

den) layer, which is similar network setup as cybenko1989approximation. Here the input

layer (with n neurons) and the hidden layer (with kn neurons)1 are assumed to be fully

connected with a weight matrix W ∈ Rn×kn of displacement rank at most r corresponding

to displacement operators (A,B), where r � n. The domain for the input vector x is the

n-dimensional hypercube In := [0, 1]n, and the output layer only contains one neuron. The

neural network can be expressed as:

y = GW,θ(x) =
kn∑
j=1

αjσ(wj
Tx + θj). (3.1)

1Please note that this assumption does not sacrifice any generality because the n-by-m case can be
transformed to n-by-kn format with the nearest k using zero padding [39].

13

Here σ(·) is the activation function, wj ∈ Rn denotes the j-th column of the weight matrix

W, and αj , θj ∈ R for j = 1, ..., kn. When the weight matrix W = [w1|w2| · · · |wkn]

has a low-rank displacement, we call it an LDR neural network. Matrix displacement

techniques ensure that LDR neural network has much lower space requirement and higher

computational speed comparing to classical neural networks of the similar size.

3.1.1 Problem Statement

In this paper, we aim at providing theoretical support on the accuracy of function approx-

imation using LDR neural networks, which represents the “effectiveness” of LDR neural

networks compared with the original neural networks. Given a continuous function f(x)

defined on [0, 1]n, we study the following tasks:

• For any ε > 0, find an LDR weight matrix W so that the function defined by equation

(4) satisfies

max
x∈[0,1]n

|f(x)−GW,θ(x)| < ε. (3.2)

• Fix a positive integer n, find an upper bound ε so that for any continuous function

f(x) there exists a bias vector θ and an LDR matrix with at most n rows satisfying

equation (3.2).

• Find a multi-layer LDR neural network that achieves error bound (3.2) but with fewer

parameters.

The first task is handled in Section 3.1.2, which is the universal approximation property

of LDR neural networks. It states that the LDR neural networks could approximate an

arbitrary continuous function arbitrarily well and is the underpinning of the widespread

applications. The error bounds for shallow and deep neural networks are derived in Section

5. In addition, we derived explicit back-propagation expressions for LDR neural networks

in Section 3.1.4.

3.1.2 The Universal Approximation Property of LDR Neural Networks

We call a family of matrices S to have representation property if for any vector v ∈ Rn,

there exists a matrix M ∈ SA,B such that v is a column of M . Note that all five types of

14

LDR matrices shown in Fig. ?? have this representation property because of their explicit

pattern. In this section we will prove that this property also holds for many other LDR

families. Based on this result, we are able to prove the universal approximation property

of neural networks utilizing only LDR matrices.

Theorem 1. Let A, B be two n × n non-singular diagonalizable matrices. Define SrA,B

as the set of matrices M such that ∆A,B(M) has rank at most r. Then the representation

property holds for SrA,B if A and B satisfy

i) Aq = aI for some positive integer q ≤ n and a scalar a 6= 0; ii) (I − aBq) is

nonsingular; iii) the eigenvalues of B have distinguishable absolute values.

Proof. It suffices to prove for the case r = 1, as increasing r only provides more candidate

matrices to choose from. By the property of Stein displacement, any matrix M ∈ S can be

expressed in terms of A, B, and its displacement as follows:

M =

q−1∑
k=0

Ak∆A,B(M)Bk(I− aBq)−1. (3.3)

Next we express ∆A,B(M) as a product of two vectors g · hT since it has rank 1. Also write

A = Q−1ΛQ, where Λ = diag(λ1, ..., λn) is a diagonal matrix generated by the eigenvalues

of A. Now define ej to be the j-th unit column vector for j = 1, ..., n. Write

QMej =Q

q−1∑
k=0

Ak∆A,B(M)Bk(I− aBq)−1ej

=Q

q−1∑
k=0

(Q−1ΛQ)kghTBk(I− aBq)−1ej

=
(q−1∑
k=0

sh,jΛ
k
)
Qg.

(3.4)

Here we use sh,j to denote the resulting scalar from matrix product hTBk(I−aBq)−1ej for

k = 1, ..., n. Define T := (I− aBq)−1. In order to prove the theorem, we need to show that

there exists a vector h and an index k such that the matrix
∑q−1

k=0 sh,jΛ
k is nonsingular. In

order to distinguish scalar multiplication from matrix multiplication, we use notation a◦M

to denote the multiplication of a scalar value and a matrices whenever necessary. Rewrite

15

the expression as

q−1∑
k=0

sh,jΛ
k

=

q−1∑
k=0

hT ·
(
BkTej ◦ diag(λk1, ..., λ

k
n)
)

=

q−1∑
k=0

diag(hT ·Bk ·T · [λk1ej | · · · |λknej])

=diag

(
hT ·

(q−1∑
k=0

BkTλk1ej

)
, ...,hT ·

(q−1∑
k=0

BkTλknej

))
.

The diagonal matrix
∑q−1

k=0 sh,jΛ
k is nonsingular if and only if all of its diagonal entries

are nonzero. Let bij denote the column vector
∑q−1

k=0 BTkλki ej . Unless for every j there

is an index ij such that bijj = 0, we can always choose an appropriate vector h so that

the resulting diagonal matrix is nonsingular. Next we will show that the former case is not

possible using proof by contradiction. Assume that there is a column bijj = 0 for every

j = 1, 2, · · · , n, we must have:

0 =[bi11|bi22| · · · |binn]

=
[q−1∑
k=0

BkTλki1e1| · · · |
q−1∑
k=0

BkTλkinen

]

=

q−1∑
k=0

BkT · diag(λki1 , ..., λ
k
in).

Since B is diagonalizable, we write B = P−1ΠP, where Π = diag(η1, ..., ηn). Also we have

T = (I− aBq)−1 = P−1(I− aΠq)−1P. Then

0 =

q−1∑
k=0

BTkdiag(λki1 , ..., λ
k
in)

= P−1
[q−1∑
k=0

Πk(I− aΠq)−1diag(λki1 , ..., λ
k
in)

]
P

= P−1
q−1∑
k=0

diag
(

(λi1η1)
k, ..., (λinηn)k

)
(I− aΠq)−1P

= P−1diag
(q−1∑
k=0

(λi1η1)
k, ...,

q−1∑
k=0

(λinηn)k
)

(I− aΠq)−1P.

This implies that λi1η1, ..., λinηn are solutions to the equation

1 + x+ x2 + · · ·+ xq−1 = 0. (3.5)

16

By assumption of matrix B, η1, ..., ηk have different absolute values, and so are λi1η1, ..., λi1η1,

since all λk have the same absolute value because Aq = aI. This fact suggests that there are

q distinguished solutions of equation (3.5), which contradicts the fundamental theorem of

algebra. Thus it is incorrect to assume that matrix
∑q−1

k=0 sh,jΛ
k is singular for all h ∈ Rn.

With this property proven, given any vector v ∈ Rn, one can take the following procedure

to find a matrix M ∈ S and a index j such that the j-th column of M equals v:

i) Find a vector h and a index j such that matrix
∑q−1

k=0 sh,jΛ
k is non-singular;

ii) By equation (3.4), find

g :=Q−1
(q−1∑
k=0

sh,jΛ
k
)−1

QTv;

iii) Construct M ∈ S with g and h by equation (3.3). Then its j-th column will equal to v.

With the above construction, we have shown that for any vector v ∈ Rn one can find a

matrix M ∈ S and a index j such that the j-th column of M equals v, thus the theorem is

proved.

Our main goal of this section is to show that neural networks with many types of LDR

matrices (LDR neural networks) can approximate continuous functions arbitrarily well. In

particular, we are going to show that Toeplitz matrices and circulant matrices, as specific

cases of LDR matrices, have the same property. In order to do so, we need to introduce

the following definition of a discriminatory function and state one of its key property as

Lemma 2. A function σ(u) : R → R is called as discriminatory if the zero measure is the

only measure µ that satisfies the following property:∫
In
σ(wTx + θ)dµ(x) = 0,∀w ∈ Rn, θ ∈ R. (3.6)

Lemma 2. [cf. [42]] Any bounded, measurable sigmoidal function is discriminatory.

Now we are ready to present the universal approximation theorem of LDR neural net-

works with n-by-kn weight matrix W:

Theorem 3 (Universal Approximation Theorem for LDR Neural Networks). Let σ be any

continuous discriminatory function and SrA,B be a family of LDR matrices having represen-

tation property. Then for any continuous function f(x) defined on In and any ε > 0, there

17

exists a function G(x) in the form of equation (3.1) so that its weight matrix consists of k

submatrices from SrA,B and

max
x∈In

|G(x)− f(x)| < ε. (3.7)

Proof. Denote the i-th n× n submatrix of W as Wi. Then W can be written as

W =
[
W1|W2|...|Wk

]
. (3.8)

Let SIn denote the set of all continuous functions defined on In. Let UIn be the linear

subspace of SIn that can be expressed in form of equation (3.1) where W consists of k

sub-matrices with displacement rank at most r. We want to show that UIn is dense in the

set of all continuous functions SIn .

Suppose not, by Hahn-Banach Theorem, there exists a bounded linear functional L 6= 0

such that L(Ū(In)) = 0. Moreover, By Riesz Representation Theorem, L can be written as

L(h) =

∫
In
h(x)dµ(x),∀h ∈ S(In),

for some measure µ.

Next we show that for any y ∈ Rn and θ ∈ R, the function σ(yTx + θ) belongs to the

set UIn , and thus we must have ∫
In
σ(yTx + θ)dµ(x) = 0. (3.9)

For any vector y ∈ Rn, Theorem 1 guarantees that there exists an n × n LDR matrix

M = [b1| · · · |bn] and an index j such that bj = y. Now define a vector (α1, ..., αn) such

that αj = 1 and α1 = · · · = αn = 0. Also let the value of all bias be θ. Then the LDR

neural network function becomes

G(x) =

n∑
i=1

αiσ(bT
i x + θ)

=αjσ(bT
j x + θ) = σ(yTx + θ).

(3.10)

From the fact that L(G(x)) = 0, we derive that

0 =L(G(x))

=

∫
In

n∑
i=1

αiσ(bT
i x + θ) =

∫
In

σ(yTx + θ)dµ(x).

18

Since σ(t) is a discriminatory function by Lemma 2. We can conclude that µ is the zero

measure. As a result, the function defined as an integral with measure µ must be zero for

any input function h ∈ S(In). The last statement contradicts the property that L 6= 0 from

the Hahn-Banach Theorem, which is obtained based on the assumption that the set UIn

of LDR neural network functions are not dense in SIn . As this assumption is not true, we

have the universal approximation property of LDR neural networks.

Reference work [39], [40] have utilized a circulant matrix or a Toeplitz matrix for weight

representation in deep neural networks. Please note that for the general case of n-by-m

weight matrices, either the more general Block-circulant matrices should be utilized or

padding extra columns or rows of zeroes are needed [39]. Circulant matrices and Topelitz

matrices are both special form of LDR matrices, and thus we could apply the above universal

approximation property of LDR neural networks and provide theoretical support for the use

of circulant and Toeplitz matrices in [39], [40]. Moreover, it is possible to consolidate the

choice of parameters so that a block-Toeplitz matrix also shows Toeplitz structure globally.

Therefore we arrive at the following corollary.

Any continuous function can be arbitrarily approximated by neural networks constructed

with Toeplitz matrices or circulant matrices (with padding or using Block-circulant matri-

ces).

3.1.3 Error Bounds on LDR Neural Networks

With the universal approximation property proved, naturally we seek ways to provide error

bound estimates for LDR neural networks. We are able to prove that for LDR matrices

defined by O(n) parameters (n represents the number of rows and has the same order as the

number of columns), the corresponding structured neural network is capable of achieving

integrated squared error of order O(1/n), where n is the number of parameters. This result

is asymptotically equivalent to Barron’s aforementioned result on general neural networks,

indicating that there is essentially no loss for restricting to LDR matrices.

The functions we would like to approximate are those who are defined on a n-dimensional

ball Br = {x ∈ Rn : |x| ≤ r} such that
∫
Br
|x||f(x)|µ(dx) ≤ C, where µ is an arbitrary

19

measure normalized so that µ(Br) = 1. Let’s call this set ΓC,Br . barron1993universal

considered the following set of bounded multiples of a sigmoidal function composed with

linear functions:

Gσ = {ασ(yTx + θ) : |α| ≤ 2C,y ∈ Rn, θ ∈ R}. (3.11)

He proved the following theorem:

Theorem 4 (barron1993universal). For every function in ΓC,Br , every sigmoidal function

σ, every probability measure, and every k ≥ 1, there exists a linear combination of sigmoidal

functions fk(x) of the form

fk(x) =
k∑
j=1

αjσ(yT
j x + θj), (3.12)

such that ∫
Br

(f(x)− fk(x))2µ(dx) ≤ 4r2C

k
. (3.13)

Here yj ∈ Rn and θj ∈ R for every j = 1, 2, ..., N , Moreover, the coefficients of the linear

combination may be restricted to satisfy
∑k

j=1 |cj | ≤ 2rC.

Now we will show how to obtain a similar result for LDR matrices. Fix operator (A,B)

and define

Sknσ =
{ kn∑
j=1

αjσ(yT
j x + θj) : |αj | ≤ 2C,yj ∈ Rn,

θj ∈ R, j = 1, 2, ..., N,

and [y(i−1)n+1|y(i−1)n+2| · · · |yin]

is an LDR matrix, ∀i = 1, ..., k
}
.

(3.14)

Moreover, let Gkσ be the set of function that can be expressed as a sum of no more than

k terms from Gσ. Define the metric ||f − g||µ =
√∫

Br
(f(x)− g(x))2µ(dx). Theorem

4 essentially states that the minimal distance between a function f ∈ ΓC,B and Gmσ is

asymptotically O(1/n). The following lemma proves that Gkσ is in fact contained in Sknσ .

Lemma 5. For any k ≥ 1, Gkσ ⊂ Sknσ .

Proof. Any function fk(x) ∈ Gkσ can be written in the form

fk(x) =
k∑
j=1

αjσ(yT
j x + θj). (3.15)

20

For each j = 1, ..., k, define a n× n LDR matrix Wj such that one of its column is yj . Let

tij be the i-th column of Wj . Let ij correspond to the column index such that tij = yj for

all j. Now consider the following function

G(x) :=

k∑
j=1

n∑
i=1

βijσ(tTijx + θj), (3.16)

where βijj equals αj , and βij = 0 if i 6= ij . Notice that we have the following equality

G(x) :=

k∑
j=1

n∑
i=1

βijσ(tTijx + θj)

=

k∑
j=1

βijjσ(tTijx + θj)

=

k∑
j=1

αjσ(yT
j x + θj) = fk(x).

Notice that the matrix W = [W1|W2| · · · |Wk] consists k LDR submatrices. Thus fk(x)

belongs to the set Sknσ .

By Lemma 5, we can replace Gkσ with Sknσ in Theorem 4 and obtain the following error

bound estimates on LDR neural networks:

Theorem 6. For every disk Br ⊂ Rn, every function in ΓC,Br , every sigmoidal function

σ, every normalized measure µ, and every k ≥ 1, there exists neural network defined by a

weight matrix consists of k LDR submatrices such that∫
Br

(f(x)− fkn(x))2µ(dx) ≤ 4r2C

k
. (3.17)

Moreover, the coefficients of the linear combination may be restricted to satisfy
∑N

k=1 |ck| ≤

2rC.

Theorem 6 is the first theoretical result that gives a general error bound on LDR neural

networks. Empirically, [39] reported that circulant neural networks are capable of achiev-

ing the same level of accuracy as AlexNet with 1.18x-3.60x speedup and more than 90%

of space saving on fully-connected layers. [40] applied Toeplitz-type LDR matrices to sev-

eral benchmark image classification datasets, retaining the performance of state-of-the-art

models while providing more than 3.5 compression.

21

The next theorem naturally extended the result from liang2016deep to LDR neural

networks, indicating that LDR neural networks can also benefit a parameter reduction if

one uses more than one layers. More precisely, we have the following statement:

Theorem 7. Let f be a continuous function on [0, 1] and is 2n + 1 times differentiable

in (0, 1) for n = dlog 1
ε + 1]e. If |f (k)(x)| ≤ k! holds for all x ∈ (0, 1) and k ∈

[
2n + 1

]
,

then for any n×n matrices A and B satisfying the conditions of Theorem 1, there exists a

LDR neural network GA,B(x) with O(log 1
ε) layers, O(log2 1

ε) binary step units, O(log3 1
ε)

rectifier linear units such that

max
x∈[0,1]

|f(x)−GA,B(x)| < ε.

Proof. The theorem with better bounds and without assumption of being LDR neural

network is proved in liang2016deep as Theorem 4. For each binary step unit or rectifier

linear unit in the construction of the general neural network, attach (n− 1) dummy units,

and expand the weights associated to this unit from a vector to an LDR matrix based on

Theorem 1. By doing so we need to expand the number units by a factor of order log 1
ε ,

and the asymptotic bounds are relaxed accordingly.

3.1.4 Training LDR Neural Networks

In this section, we reformulate the gradient computation of LDR neural networks. The

computation for propagating through a fully-connected layer can be written as

y = σ(WTx + θ), (3.18)

where σ(·) is the activation function, W ∈ Rn×kn is the weight matrix, x ∈ Rn is input

vector and θ ∈ Rkn is bias vector. According to Equation (7), if Wi is an LDR matrix with

operators (Ai,Bi) satisfying conditions of Theorem 1, then it is essentially determined by

two matrices Gi ∈ Rn×r,Hi ∈ Rn×r as

Wi =
[q−1∑
k=0

Ak
iGiH

T
i Bk

i

]
(I− aBq

i)
−1. (3.19)

To fit the back-propagation algorithm, our goal is to compute derivatives ∂O
∂Gi

, ∂O
∂Hi

and ∂O
∂x

for any objective function O = O(W1, . . . ,Wk).

22

In general, given that a := WTx + θ, we can have:

∂O

∂W
= x(

∂O

∂a
)T ,

∂O

∂x
= W

∂O

∂a
,
∂O

∂θ
=
∂O

∂a
1. (3.20)

where 1 is a column vector full of ones. Let Ĝik := Ak
iGi, Ĥik := HT

i Bk
i (I − aB

q
i)
−1,

and Wik := ĜikĤik. The derivatives of ∂O
∂Wik

can be computed as following:

∂O

∂Wik
=

∂O

∂Wi
. (3.21)

According to Equation (3.20), if we let a = Wik, W = ĜT
ik and x = Ĥik, then ∂O

∂Ĝik
and

∂O
∂Ĥik

can be derived as:

∂O

∂Ĝik

=
[∂O
∂ĜT

ik

]T
=
[
Ĥik

∂O

∂Wik

]T
= (

∂O

∂Wik
)T ĤT

ik, (3.22)

∂O

∂Ĥik

= ĜT
ik

∂O

∂Wik
. (3.23)

Similarly, let a = Ĝik, W = (Ak
i)
T and x = Gi, then ∂O

∂Gi
can be derived as:

∂O

∂Gi
=

q−1∑
k=0

(Ak
i)
T (

∂O

∂Ĝik

)

=

q−1∑
k=0

(Ak
i)
T (

∂O

∂Wik
)T ĤT

ik.

(3.24)

Substituting with a = Ĥik, W = HT
i and x = Bk

i (I− aB
q
i)
−1, we have ∂O

∂Hi
derived as:

∂O

∂Hi
=

q−1∑
k=0

Bk
i (I− aB

q
i)
−1(

∂O

∂Ĥik

)T

=

q−1∑
k=0

Bk
i (I− aB

q
i)
−1(

∂O

∂Wik
)T Ĝik.

(3.25)

3.2 Block Circulant Fully Connected Layer

In this section, we introduce the detailed circulant matrix based neural network as in [43].

23

3.2.1 Circulant Matrix Based Neural Network

A circulant matrix W ∈ Rn×n is defined by a vector w = (w1, w2, . . . , wn) as following:

W =

w1 wn . . . w3 w2

w2 w1 wn w3

... w2 w1
. . .

...

wn−1
. . .

. . . wn

wn wn−1 . . . w2 w1

. (3.26)

It can be seen that values on diagonals are the same. Thus, the space complexity is linear

O(n) rather than O(n2) for general dense matrix. Moreover, the circulant matrix multipli-

cation can be represented via FFT:

a = Wx = IFFT(FFT(w) ◦ FFT(x)), (3.27)

where a ∈ Rn is the multiplication result, and x ∈ Rn is the input vector. The ◦ stands for

component-wise multiplication between two vectors. The computation complexity is now

reduced to O(n log n). In summary, circulant matrix representation of weight matrix can

lead to low complexity in terms of both space storage and computation time.

Given that most neural network training methods require first derivative of weight pa-

rameters, we present the calculation for the first derivative of circulant matrix:

∂L

∂w
=
∂L

∂a

∂a

∂w
, (3.28)

where L is the loss function of the neural network and ∂a
∂w ∈ Rn×n is a Jacobian matrix.

Fortunately, it is found that because of circulant structured weight matrix, this computation

can also be accelerated via Fast Fourier Transform [43]:

∂L

∂w
= IFFT(FFT(

∂L

∂a
) ◦ FFT(x′)), (3.29)

where x′ = (x1, xn, xn−1, . . . , x2).

According to the back-propagation algorithm [23], we also provide the first derivative of

vector a so that it can be used for gradient computation of the other layer:

∂L

∂x
=
∂L

∂a

∂a

∂x
, (3.30)

24

where ∂a
∂x ∈ Rn×n is also an Jacobian matrix. Similarly, this can also be accelerated via

Fast Fourier Transform [43]:

∂L

∂x
= IFFT(FFT(

∂L

∂a
) ◦ FFT(w′)), (3.31)

where w′ = (w1, wn, wn−1, . . . , w2).

3.2.2 Block Circulant Based Neural Network

Note that circulant matrix is always a square matrix. In practice, neural network layer

size can be arbitrarily determined according to different applications. Therefore, weight

matrices are often not square as desired. To fit with a general setting of weight matrix

W ∈ Rm×n, a straightforward design is to split weight matrix into square blocks. These

blocks are set to be circulant matrix, and the entire matrix is then called block circulant

matrix [43].

Let b be the block size and there are m
b ×

n
b blocks in total. Denote these block with

Ci,j ∈ Rb×b for i = 1, . . . , mb and j = 1, . . . , nb . Then weight matrix multiplication is

reformulated as below:

a = Wx =

C1,1 . . . C1,n

b

...
...

Cm
b
,1 . . . Cm

b
,n
b

x =

a1

a2

. . .

am
b

, (3.32)

where ai ∈ Rb is a column vector. Since each Ci,j is a circulant matrix, we define wi,j

as the vector determining the matrix. Similarly, ai can also be computed via FFT as

aforementioned:

ai =

n/b∑
j=1

Ci,jxj = IFFT(

n/b∑
j=1

FFT(wi,j) ◦ FFT(xj)), (3.33)

where xj ∈ Rb is a slice of vector x corresponding to the block Ci,j .

Moreover, the first derivative of block circulant matrix is provided as follows:

∂L

∂wi,j
=
∂L

∂ai

∂ai
∂wi,j

= IFFT(FFT(
∂L

∂ai
) ◦ FFT(x′j)), (3.34)

25

∂L

∂xj
=

m/b∑
i=1

∂L

∂ai

∂ai
∂xj

= IFFT(

m/b∑
i=1

FFT(
∂L

∂ai
) ◦ FFT(w′i,j))

, (3.35)

where w′i,j ∈ Rb and x′j ∈ Rb are defined similarly as in Eq. 3.29 and Eq. 3.31, respectively.

In summary, block circulant matrix takes mn
b number of parameters and the multiplica-

tion complexity is O(mnb log b). We also present the corresponding pseudocode for matrix

multiplication and derivative computation as follows. The forward propagation algorithm

is for block circulant matrix multiplication. The backward propagation algorithm is for

computing the first derviative of block circulant matrix and the input vector.

3.2.3 Circulant Approximation

Although we have described the training algorithm for circulant matrix based neural net-

work, this requires training the entire network from scratch. In this section, we introduce

another training option, i.e., converting from an existing dense neural network model to

a circulant structured neural network model. Compared with training from scratch, this

method can provide a warm up initialization which can converge faster than random ini-

tialization.

The essential idea is based on the circulant approximation algorithm as in [44]. For a

dense matrix W ∈ Rn×n, let w ∈ Rn be the vector for its closest circulant matrix. The

optimal w can be found via following:

wk =
1

n

n∑
i=1

n∑
j=1

Wi,j × 1
[
Wi,j

]
i−j mod n=k

, (3.36)

where wk ∈ w for k = 1, . . . , n, and 1
[
·
]

is an indicator function. Here optimal is achieved

under the Frobenius norm of the difference of given dense matrix and the approximated

circulant matrix. Moreover, for the block circulant matrix, it is applicable to each block to

achieve the approximation. The approximation algorithm is also summarized in pseudocode

as below.

Instead of using an indicator function, it is easier to directly accumulate over the target

weight parameter. Thus, using for loops to sweep over all possible indices can also give the

26

Algorithm 1: Circulant Approximation

Input: W
Output: w

1 initialize w as a zero vector;
2 for i← 1 until n do
3 for j ← 1 until n/b do
4 k ← (i− j) mod n;
5 wk ← wk + Wi,j ;

6 end

7 end
8 for i← 1 until n do
9 wi ← wi/n;

10 end
11 return w;

circulant approximation. This algorithm can be applied to weight matrices inside a given

pre-trained dense model and generate weight matrices for the target circulant structured

model. As a result, this naive algorithm design has the O(n2) computation complexity.

3.3 Block Circulant Convolution Layer

In general, a convolutional layer maps a 3-dimensional input tensor X ∈ RW0×H0×C0 into

a 3-dimensional output tensor Y ∈ RW2×H2×C2 through convolution with a 4-dimensional

kernel tensor W ∈ RW1×H1×C0×C2 . Here Wi and Hi for i = 0, 1, 2, are the spatial width

and height of the input, kernel, and output tensor, respectively; C0 and C2 are the number

of input channels and output channels. The convolution operation is expressed as follows:

Y(w2, h2, c2) =

W1∑
w1=1

H1∑
h1=1

C0∑
c0=1

(
X (w2 − w1, h2 − h1, c0) · W(w1, h1, c0, c2)

)
. (3.37)

Although stride can be set for convolution, we consider the case of stride that equals to

1 to make a better understanding of circulant convolution. It should be noted that stride

wouldn’t affect our convolution algorithm and design. Moreover, we can express Eq. 4.8 in

the form of a fiber multiplied by a slice as below:

Y(w2, h2, :) =

W1∑
w1=1

H1∑
h1=1

(
X (w2 − w1, h2 − h1, :) ∗W(w1, h1, :, :)

)
, (3.38)

27

where ∗ and : denote the matrix-vector multiplication and the range of indices, respectively.

Circulant convolutional layer. Different from a conventional convolutional layer,

the circulant convolutional layer has a weight tensor W that exhibits circulant structure.

In other words, the W of a circulant convolution layer is a 4D circulant tensors [45]. In

general, a circulant tensor can exhibit circulant structure along any pair of its dimensions.

However, as W1 and H1 are usually much smaller than C0 and C2 for tensor W, we impose

the circulant structure along the input channel and output channel dimensions to achieve

high model-size compression ratio. Note that in practice we need to partition the tensor W

into circulant sub-tensors of size W1×H1×N ×N . This is necessary because the circulant

structure requires that the two corresponding dimension must be equal, while C0 and C2

are usually not the same. Larger N means larger compression ratio but it could hurt the

model performance to some degree. By adjusting the partition size N we can balance the

trade-off between compression ratio and model accuracy.

More specifically, let N be the partition size with C0 = R×N and C2 = S ×N 2, then

W can be defined by a 4-dimensional base tensor W ′ ∈ RW1×H1×RN×S :

W(w1, h1, c0, c2) =W ′(w1, h1, p, q), (3.39)

where p, q are indices satisfying bc0/Nc = bp/Nc, bc2/Nc = q, and c0 − c2 ≡ p (mod N).

Fig. 3.2 illustrates the circulant structure of weight tensor W. From this figure, it can be

seen that the circulant structure is imposed to W along the input/output channel dimen-

sions. The block-circulant weight tensor consists of six circulant weight sub-tensors, where

different colors represent different circulant weight sub-tensors. Each circulant weight sub-

tensor consists of sixteen kernel filters that are represented in different colors such as green

and yellow.

3.3.1 Fast Forward and Backward Propagation

Eq. 3.39 shows that the weight tensorW of a circulant convolutional layer exhibits the circu-

lant structure and has the reduced number of independent parameters. Besides, according

to the tensor theory [45], circulant tensor also has the advantage of fast multiplication.

2Zero-padding is needed when N does not divide C0 or C2.

28

Figure 3.2: Illustration of a circulant weight tensor [7]. Blocks of the same color in the
middle share the same set of kernel weights (on the right). This significantly reduces the
total amount of parameters needed to represent this tensor. In addition, the placement of
blocks displays a circulant structure, facilitating FFT-based fast algorithms.

Since multiplication is the kernel computation in neural network training and inference,

the existence of fast multiplication of circulant tensor enables the immediate reduction in

computational cost. Next, we describe the fast forward and backward propagation schemes

by leveraging the fast multiplication of circulant weight tensor.

Fast forward propagation. We first present the fast forward propagation scheme.

Recall that Eq. 3.38 is the forward propagation scheme for a general convolutional layer.

To ease the notation, define Nk = ((k−1)N+1, ..., kN) for k = 1, ...,max(R,S), and rewrite

Eq. 3.38 as below:

Y(w2, h2, Ni) =

W1∑
w1=1

H1∑
h1=1

R∑
j=1

(
X (w2 − w1, h2 − h1, Nj) ∗W(w1, h1, Nj , Ni)

)
, (3.40)

where i ∈ {1, . . . , S}. According to [45, 46], Fast Fourier Transform (FFT) can be used to

accelerate the multiplication of a fiber and a slice of circulant tensor with time complexity

reduced from O(N2) to O(N logN). Therefore, when W is a circulant tensor, Eq. 3.40 can

be reformulated using FFT as below:

Y(w2, h2, Ni) = ifft
(W1∑
w1=1

H1∑
h1=1

R∑
j=1

fft
(
X (w2 − w1, h2 − h1, Nj)

)
◦ fft

(
W ′(w1, h1, Nj , Ni)

))
.

(3.41)

Here ◦ is the element-wise multiplication.

29

Fast backward propagation. Now consider backward propagation. Given loss func-

tion L, it is well known that the goal of backpropgation algorithm [12] is to compute

gradients of loss function L with respect to each weight and input. Hence according to the

chain rule, the gradient computation for circulant convolutional layer can be derived from

Eq. 3.39 and Eq. 3.40 as below:

∂L

∂W ′(w1, h1, p, q)
=

W2∑
w2=1

H2∑
h2=1

qN∑
c2=(q−1)N+1

∂L

∂Y(w2, h2, c2)

∂Y(w2, h2, c2)

∂W ′(w1, h1, p, q)
, (3.42)

∂L

∂X (x, y, c0)
=

W1∑
w1=1

H1∑
h1=1

∑
c2≡c0(mod N)

∂L

∂Y(w1 + x, h1 + y, c2)

∂Y(w1 + x, h1 + y, c2)

∂X (x, y, c0)
. (3.43)

Again, according to [45], when W is a circulant tensor, Eq. 3.42 and Eq. 3.43 can also

be accelerated by using FFT as below:

∂L

∂W ′(w1, h1, Nj , i)
= ifft(

W2∑
w2=1

H2∑
h2=1

fft(
∂L

∂Y(w2, h2, Ni)
) ◦ fft(x′j)), (3.44)

∂L

∂X (x, y,Nj)
= ifft(

W1∑
w1=1

H1∑
h1=1

S∑
i=1

fft(
∂L

∂Y(w1 + x, h1 + y,Ni)
) ◦ fft(w′j,i)), (3.45)

where x′j and w′j,i are fibers X (w1, h1, T) andW ′(x, y, (j−1)N+T, i) with T = (1, N, ..., 2).

Capability of training Circulant CNN from scratch. It should be noted that

the gradient computations described in Eq. 3.44 and Eq. 3.45 are actually based on W ′.

Since we can always construct the circulant tensor W from base tensor W ′ using Eq. 3.39,

Eq. 3.44 and 3.45 imply that the circulant structure of weight tensor W is always kept

during the training phase. In other words, if we initialize W as the circulant tensor at

the initialization stage of training, then during the training procedure Eq. 3.44 and 3.45

can guarantee W always exhibit circulant structure. Therefore, a circulant CNN can be

completely trained from the scratch.

3.3.2 Conversion from Non-circulant Tensor to Circulant Tensor

Forward and backward propagation section indicates that a circulant convolutional layer

can be trained from scratch. In this subsection, we also present a conversion technique that

30

can directly convert a non-circulant weight tensor to a circulant one. Such conversion is

very useful when a pre-trained model is already available and needs to be imposed with

circulant structure.

Specifically, the proposed conversion technique is based on the circulant approxima-

tion approach [47] used for circulant matrix. In matrix theory, let Z1 ∈ RN×N denote a

permutation matrix as following:

Z1 =

0 1 0 . . . 0

...
. . .

. . .
. . .

...

0
. . . 1

1 0 0 . . . 0

. (3.46)

Then a circulant matrix Wcirc ∈ RN×N with its first row w = (w0, w1, . . . , wN−1) can be

represented in the polynomial form of Z1 as follows:

Wcirc =
∑N−1

i=0 wiZ1
i. (3.47)

According to [47], for a non-circulant matrix Wnon−circ ∈ RN×N , its nearest circulant

matrix Wcirc (measured in the Frobenius norm) is given by projection:

w = projNWnon−circ,

∀wi ∈ w, wi =
1

N
〈Wnon−circ,Z1

i〉F,
(3.48)

where 〈·, ·〉F is the Frobenius inner product.

Note that the 4-D weight tensor of a convolutional layer can be viewed as a matrix of

size W1 ×W2 where each entry is a matrix of size C0 × C2. Therefore, by using Eq. 3.48,

the conversion from a non-circulant tensor Wnon−circ to a circulant tensor Wcirc can be

achieved by performing the projection as follows:

W ′(w1, h1, Nj , i) = projNWnon−circ(w1, h1, Nj , Ni), (3.49)

where W ′ is the base tensor that defines circulant tensor Wcirc, and the mapping from W ′

to Wcirc is given in Eq. 3.39.

Capability of training Circulant CNN from a pre-trained model. Based on

the conversion scheme shown in Eq. 3.49, any non-circulant convolutional layer of a pre-

trained model can be directly converted to a circulant convolutional layer. Typically such

31

Table 3.1: Comparison with [1] in terms of FFT, time and space complexity, where N =
C0 = C2.

Approach Time Complexity Space Complexity FFT Type

Original O(W2H2W1H1N
2) O(W1H1N

2) N/A

This Work O(W2H2W1H1N logN) O(W1H1RNS) 1-D

[1] O(N2W0H0 logW0H0) O(W1H1N
2) 2-D

direct conversion brings non-negligible accuracy drop incurred by the approximation error.

In order to recover the accuracy, further re-training on the converted model is needed by

following the backward propagation scheme in Eq. 3.44 and 3.45. Consequently, a non-

circulant pre-trained model can be imposed with circulant structure by using the proposed

circulant conversion and re-training schemes with preserving high accuracy.

3.3.3 Efficiency on Space and Computation

Table 3.1 summarizes the space and time complexity of the circulant convolutional layers. It

can be seen that the proposed circulant structure-imposing approach enables simultaneous

improvement on both space efficiency and computation efficiency. Larger N can result in

larger FFT size and lower space and time complexity. Also, compared with the 2-D FFT-

based fast convolution in [1], our 1-D FFT-based approach has much lower space and time

complexity since N is typically much larger than R and S.

3.4 Block Toeplitz Fully Connected Layer

In this section the proposed approach is to utilize Toeplitz matrix to represent weight

matrices in DNN models. Mathematically, a Toeplitz matrix W ∈ Rn×n can be defined by

a vector w = (w1−n, w2−n, . . . , w0, . . . , wn−1), where wi is a scalar for 1− n ≤ i ≤ n− 1:

W =

w0 w−1 . . . w1−n

w1 w0
. . .

...

...
. . .

. . . w−1

wn−1 . . . w1 w0

. (3.50)

It should be noted that there are 2n−1 parameters when defining a square Toeplitz matrix;

while the conventional unstructured matrix with the same size contains n2 parameters.

32

3.4.1 Impose Toeplitz Structured on DNNs

Section 2.2 shows that the Toeplitz matrix has much lower space complexity (O(n)) than

conventional matrix (O(n2)). Encouraged by this characteristics, we propose to impose

Toeplitz structure on the construction of DNN models. In other words, the weight matrices

of layers of DNNs are now enforced to be Toeplitz matrices. To accommodate this change,

both the forward propagation and backward propagation schemes need to be reformulated

as follows.

Forward propagation: To perform Toeplitz matrix-based forward propagation, a

straightforward method is to simply replace W in forward propagation with Toeplitz for-

mat and conduct matrix-vector multiplication. Although this simple change works, it is

not optimal in efficiency. This is because as a type of structured matrix, Toeplitz matrix

is inherently affiliated with fast matrix-vector multiplication. Specifically, as pointed out

in [46], the multiplication between Toeplitz matrix and vector can be performed using Fast

Fourier Transform (FFT) and its inverse (IFFT) as follows:

a = Wx = IFFT(FFT(w′) ◦ FFT(x′))1:n, (3.51)

where w′ = (w0, . . . , w1−n, 0, wn−1, . . . , w1) ∈ R2n, x′ = (x, 0, . . . , 0) ∈ R2n, x ∈ Rn is the

original input, and ◦ means the element-wise product. The subscript 1 : n means that

we take the first n elements from IFFT result as vector a ∈ Rn. Notice that because the

computational complexity of FFT/IFFT is O(n log n), the overall computational complexity

is reduced from O(n2) to O(n log n) and the space complexity is reduced from O(n2) to O(n)

too. This means that imposing Toeplitz structure on DNN models can save the storage and

accelerate the execution simultaneously.

Backward propagation: The essence of backward propagation is to calculate gradi-

ents. Similar to the procedure proposed in [39], we derive the gradient computation given

objective function L with respect to w′ as follows:

∂L

∂w′
= IFFT(FFT(

∂L

∂a′
) ◦ FFT(x′′)), (3.52)

where x′′ = (x1, 0, . . . , 0, xn, . . . , x2) ∈ R2n, and ∂L
∂a′ = (∂L∂a , 0, . . . , 0) ∈ R2n. Moreover, the

33

gradients of input x can be also calculated as:

∂L

∂x
= IFFT(FFT(

∂L

∂a′
) ◦ FFT(w′′))1:n, (3.53)

where w′′ = (w0, w1, . . . , wn−1, 0, w1−n, . . . , w−1) ∈ R2n, and the first n elements of IFFT

result will be vector ∂L
∂x .

3.4.2 Impose Block-Toeplitz Structure on DNNs

From the perspective of deployment, simply imposing square Toeplitz structure on DNN

models is challenging. This is because using Toeplitz matrix renders a fixed compression

ratio while in practice it always requires flexibility for compression effect. To address this

challenge, we propose to impose block-Toeplitz structure on the construction of DNNs. In

general, a block-Toeplitz matrix consists of multiple square Toeplitz matrices, and it can

fit weight matrices in any shape 3. Accordingly, the forward and backward propagation

schemes need to be re-investigated in more general scenarios.

Forward propagation: Let W ∈ Rm×n be the weight matrix, which is divided into

multiple square blocks in size b × b. There are m/b × n/b blocks and each is a Toeplitz

matrix wij that can be defined using 2b − 1 weight parameters, where i ∈ {1, . . . ,m/b},

j ∈ {1, . . . , n/b}. Similarly we can divide the input vector x into different xj ∈ Rb, and

output vector a into different ai ∈ Rb. Then the product of matrix and vector can be

re-written as follows:

a = Wx =

a1

...

am/b

 =

∑n/b

j=1 w1jxj
...∑n/b

j=1 wm/b,jxj

 , (3.54)

where the calculation of ai can be accelerated with FFT/IFFT as in Eqn. 3.51. Algorithm

4 summarizes the scheme of block-Toeplitz matrix-based forward propagation.

Backward propagation: In the scenario of using block Toeplitz matrix, similar to

the derivation in Section 3.1, the corresponding calculation of gradient descent can also be

3Zero-padding may be required If one dimension of matrix is not the multiple of another one. This will
not cause storage or computation overhead.

34

written as:

∂L

∂w′ij
= IFFT(FFT(

∂L

∂a′i
) ◦ FFT(x′′j)), (3.55)

∂L

∂xj
=

m/b∑
i=1

IFFT(FFT(
∂L

∂a′i
◦ FFT(w′′ij))1:b, (3.56)

where a′i, x′′j and w′ij are defined similarly as in Eqn. 3.52, and w′′ij is similar to w′′ as in

Eqn. 3.53, respectively. Algorithm 3 summarizes the scheme of block-Toeplitz matrix-based

backward propagation.

Notice that similar to the case of Toeplitz matrix, block-Toeplitz matrix also achieves

simultaneous reduction in space and computational complexity. Specifically, the space com-

plexity is reduced from O(n2) to O(n2/b) and computational complexity is reduced from

O(n2) to O(n
2

b log b). Hence such reduction can be precisely controlled by adjusting the

block size b.

Algorithm 2: Block-Toeplitz Matrix-based Forward Propagation

Input: w′11, ...,w
′
m/b,j ,x, b

Output: a
1 Partition x ∈ Rn into n/b vectors, x1, . . . ,xn/b;

2 for i← 1 until m/b do
3 ai ← 0;
4 for j ← until n/b do
5 ai ← ai + IFFT(FFT(w′ij) ◦ FFT(xj))1:b;

6 end

7 end
8 return a;

Algorithm 3: Block-Toeplitz Matrix-based Backward Propagation

Input: L
a′1
, . . . , L

a′m/b
,x′′1, . . . ,x

′′
n/b, b

Output: L
x ,

L
w′′11

, . . . , L
w′′m/b,n/b

1 for j ← 1 until n/b do

2
L
xj
← 0;

3 for i← until m/b do

4
L

w′ij
← IFFT(FFT(L

a′i
) ◦ FFT(x′′j));

5
L
xj
← L

xj
+ IFFT(FFT(L

a′i
) ◦ FFT(w′′ij))1:b;

6 end

7 end

8 return L
x ,

L
w′′11

, . . . , L
w′′m/b,n/b

;

35

3.5 Experiments

Dataset, Baseline & Experiment Environment. We evaluate our circulant structure-

imposing approaches on two typical image classification datasets: CIFAR-10 [3] and Ima-

geNet ILSVRC-2012 [2]. For each dataset, we take classical network models (ResNet [13]

for CIFAR-10 and AlexNet [48] for ImageNet) as the baseline models. The compressed cir-

culant CNN models are generated by replacing convolutional layers of the baseline models

with circulant convolutional layers. All models in this paper are trained using NVIDIA

GeForce GTX 1080 GPUs and Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz.

Selection of Training Strategy. As presented in Section imposing CircConv, the

circulant CNN model can be trained either from scratch or re-trained from a pre-trained non-

circulant model. In our experiments we evaluate these two different training strategies on

different datasets. Experimental results show that with the same compression configuration

setting, the compressed circulant CNN models generated by these two training strategies

have very similar test accuracies. Therefore in this paper we only report the results using

training-from-scratch strategy.

3.5.1 ResNet on CIFAR-10

In this experiment, ResNet-32 is selected as the baseline model due to its high accuracy

and easiness of training. The training data is augmented by following the method in [49]:

First pad each side of the image with four pixels and then apply 32×32 sized random crops

with horizontal flipping. The compressed ResNet-32 models are trained using stochastic

gradient descent (SGD) optimizer with learning rate 0.1, momentum 0.9, batch size 64 and

weight decay 0.0001.

Model setting. ResNet-32 consists of 15 convolutional blocks, where each convolu-

tional block contains two or three convolutional layers. Considering the number of possible

compression configurations on different convolutional layers is very large, we choose to make

the layers in the same block have the same compression ratio. In other words, a block-wise

compression strategy is adopted. Notice that because the first few convolutional layers of

36

Table 3.2: Compression Configurations. For the convolutional block with compression ratio
i, all the convolutional layers in that block has the same compression ratio i.

Partitioned Model ID
Block ID 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1

3 1 1 2 2 2 4 4

4 1 1 2 2 2 4 4

5 1 1 2 2 2 4 4

6 1 1 1 1 1 1 1

7 1 1 2 2 4 4 8

8 1 1 2 2 4 4 8

9 1 1 2 2 4 4 8

10 1 1 2 2 4 4 8

11 1 1 1 1 1 1 1

12 1 2 2 4 4 4 16

13 1 2 2 4 4 4 16

14 2 2 2 4 4 4 16

15 2 2 2 4 4 4 16

baseline [13]:ResNet-32 without partitioning

ResNet are very sensitive for compression [13], in this experiment we do not impose circu-

lant structure to the convolutional layers in the 1st and 2nd blocks of ResNet-32. Besides,

the 6th and 11th blocks are not compressed due to their small weight tensor.

Table 3.2 shows the detailed compression configurations for different convolutional blocks

of ResNet-32. Here we explore 7 different compression configurations and then obtain 7

compressed models. For each compressed model, the compression ratios for its component

convolutional blocks are listed in the row direction. Here each number i in a specific

compression configuration scheme indicates the compression ratio as i for the convolutional

layers in the corresponding convolutional block. When the block is associated with 1, that

means the corresponding convolutional block is not compressed. Notice that due to the

sensitivity of front blocks, for all the 7 models in Table 3.2 the compression ratios of the

front blocks are typically less than those of the later blocks.

Trade-off between accuracy and model size. Figure 3.3 shows the test error for 7

compressed models. It can be seen that model 1 even achieves slightly better performance

with a smaller model size than the baseline. Moreover, model 2, 3 and 4 achieve around 50%

reduction in model size with negligible accuracy drop. With more aggressive compression

37

configurations are selected (such as model 5, 6 and 7), more reduction in model size can be

further achieved with slight increase of test error.

Trade-off between accuracy and FLOPs. Our experiment also shows that the use

of circulant convolutional layer helps reduce computational cost significantly. As shown in

Figure 3.4, compressed model 1 and 2 achieve fewer FLOPs than baseline with the same or

even less test error. For model 3, it can achieve 50% reduction in FLOPs with negligible test

error increase. An interesting discovery is that though model 4, 5 and 6 have more aggressive

compression configurations than model 3, their corresponding reduction in FLOPs are less

than what model 3 achieves. This is because the convolutional layers in the model 3 are

mainly compressed with the factor of 2, which corresponds to 2-point FFT computation

that only needs real number operations.

12
3

4
5

6
7

Baseline
7.0

7.5

8.0

8.5

9.0

9.5

80 180 280 380 480

)
%(rorr

E tseT

Parameters (K)

CircConv Baseline

Figure 3.3: ResNet-32 Test Error and Model Size. Use of circulant convolutional layer can
bring half of parameters reduction with negligible test error increase.

3.5.2 Wide ResNet on CIFAR-10

We also conduct the experiment on CIFAR-10 dataset using Wide ResNet [50], which has

better performance than conventional ResNet in term of test accuracy. In this experiment,

the compressed Wide ResNet models are trained using SGD with learning rate 0.01, mo-

mentum 0.9, batch size 64 and weight decay 0.0005.

38

12
3

4
5

6
7

Baseline

6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0

40% 50% 60% 70% 80% 90% 100%

)
%(rorr

E tseT

FLOPs percentage (%)

CircConv Baseline

Figure 3.4: ResNet-32 Test Error and Model Size. Use of circulant convolutional layer can
bring half of FLOPs reduction with negligible test error increase.

Model settings. To construct baseline Wide ResNet models, we take the same basic

convolutional block structure in [50] and set different numbers of convolutional blocks and

widening parameters for different models. To achieve better performance, we add two more

blocks to the convolutional blocks that are wider than 16×k, where k is the inherent widen-

ing parameter of each block. Different from the experiment in ResNet experiment section,

this experiment on Wide ResNet adopts very aggressive compression strategy: For one con-

volutional layer, if the numbers of input channels (C0) and output channels (C2) are the

same, then the compression ratio for that layer is i = C0 = C2; otherwise the convolutional

layer is not compressed. We apply this compression strategy to five different Wide ResNet

baselines and obtain five compressed Wide ResNet models. For each compressed model, it is

labeled with two numbers (”d-k”), where d and k denote the number of convolutional layers

(”depth”) and widening parameter (”width”), respectively. These compressed models are

compared with their corresponding baseline models as well as ResNet-110, which achieves

the best performance on CIFAR-10 in [13].

Model size reduction. Figure 3.5 shows the number of parameters of Wide ResNet

baselines and the corresponding compressed models after imposing circulant structure. It

can be seen that the compressed models greatly reduce the model size. In particular,

39

Figure 3.5: Wide ResNet Model Size Reduction. Compared with baseline models, com-
pressed models achieve similar model size as ResNet-110. Compressed model named like
”48-4” has 48 convolutional layers and widening parameter as 4.

model ”60-4” can achieve 8.35 times reduction in the model size. Also, it can be seen that

the numbers of parameters of Wide ResNet models are similar to the size of ResNet-110

after applying circulant convolutional layer. For instance, Model ”48-4” has around 1.6M

parameters which is less than 1.7M for ResNet-110.

Test error analysis. Figure 3.6 shows test errors of baseline Wide ResNet models

and the corresponding compressed models using circulant convolutional layer. It can be

seen that all compressed models have slightly test error increase less than 1%. In addition,

compared with the state-of-the-art ResNet-110, all of the compressed models have around

1% test error decrease.

Comparison with ResNet-110. From Figure 3.6 we can see that all compressed

Wide ResNet models have less test error than ResNet-110. Meanwhile, Figure 3.5 shows

these compressed models have similar numbers of parameters as compared with ResNet-

110, and model ”48-4” has even fewer parameters. These results demonstrate that circulant

structure-imposing approach can be useful in reducing model redundancy and holding less

test error while maintaining similar model sizes.

40

Figure 3.6: Wide ResNet Test Error. Baseline models are different original Wide ResNets
and they are compared with the corresponding compressed models and ResNet-110.

FLOPs reduction. As shown in Figure 3.7, we measure the overall FLOPs reduction of

Wide ResNet. It is found that the compressed Wide ResNet models can achieve significant

reduction in FLOPs: all of them only require around 36% FLOPs as compared to the

corresponding baseline models. In addition, the FLOPs reduction for the compressed blocks

are very significant. From Figure 3.7 it can be seen that the FLOPs in the compressed blocks

of all compressed models are only less than 6% of the corresponding uncompressed blocks

in the original Wide ResNet baseline models.

3.5.3 AlexNet on ImageNet

To test the effectiveness of the proposed circulant-imposing approach on large-scale datasets,

we evaluate the performance of circulant CNNs on ImageNet (ILSVRC2012). Here the

baseline model is AlexNet [48]. All training images are randomly distorted as suggested in

[51]. We train our AlexNet models using RMSprop [52] with learning rate 0.01, momentum

0.9, batch size 32 and decay 0.9.

Model settings. We explore three different compression configurations for the five

convolutional layers in AlexNet. Table 3.3 listed the detailed compression configuration

41

Figure 3.7: Wide ResNet FLOPs. The overall FLOPs measure the FLOPs percentage
of compressed models over corresponding baselines. We also list FLOPs percentage of
compressed convolutional blocks over original blocks.

schemes by using notation ”a-b-c-d-e”. For instance, ”1-2-2-2-2” means the first convo-

lutional layer is not compressed, and the rest four layers are compressed with the factor

of 2. By using these configurations, three compressed AlexNet models are generated and

compared with original AlexNet baseline model. Also, since SSL in [34] is the state-of-

the-art work that explores the relationship between accuracy and compressed model size

for AlexNet, we also compare our circulant convolutional layer-based compressed AlexNet

models with three SSL regularization-based compressed AlexNet models in [34].

Test error analysis. Table 3.3 shows the test errors of compressed AlexNet mod-

els by using circulant structure-imposing and SSL approaches. It can be seen that both

these two approaches can render the compressed models with the similar test errors to the

original AlexNet model. Among them, the circulant model with ”1-2-2-2-2” compression

configuration achieves the least test error.

Model size reduction. Table 3.3 shows the percentage of number of parameters of

each model over original AlexNet model. It can be seen that circulant convolution-based

models have similar numbers of parameters to SSL-based models. Among them the circulant

convolution-based model with ”1-2-2-4-2” compression configuration has the least number

42

Table 3.3: Comparison among AlexNet models.

AlexNet
Model

Compression
Configuration

Test Error (%) Parameters (%) FLOPs(%)

Baseline N/A 42.9 100 100

CircConv 1-2-2-2-2 42.75 50.36 31.3

CircConv 1-2-2-4-2 42.99 40.01 31.3

CircConv 1-2-4-2-2 43.13 45.19 31.3

[34] N/A 42.75 51.20 39.0

[34] N/A 43.00 44.40 43.0

[34] N/A 43.25 42.30 45.0

of parameters.

FLOPs reduction. Table 3.3 shows the percentage of FLOPs of each model over the

original AlexNet model. It can be found that all circulant convolution-based models require

fewer FLOPs than the SSL regulation-based models. All the circulant convolution-based

models have around 31% FLOPs of original uncompressed AlexNet baseline.

Overall comparison. As shown in Table 3.3 , circulant convolution-based models have

similar accuracy to the state-of-the-art SSL models while maintaining similar number of pa-

rameters. Meanwhile, Table 3.3 shows that circulant convolution-based models requires less

FLOPs than the SSL models when targeting to the similar accuracy. Therefore, imposing

circulant structure to convolutional layer is a very promising accuracy-retained approach to

reduce both the space and computational costs.

3.5.4 Speech Recognition

Table 3.4: Task performance with different compression ratio

Model Block Size WER
Overall

Comp. Ratio

Uncompressed - 18.08 [53] 1.00

Compressed-1 32 17.02 15.34

Compressed-2 64 18.12 28.76

Compressed-3 128 21.20 51.56

To evaluate the proposed Toeplitz structure, we perform experiment on long short-term

memory (LSTM) for a speech recognition task. LSTM is a type of widely used DNN for

43

various sequence-involved tasks. In general, a LSTM takes a sequence of input x1, . . . ,xT

and generates a sequence of output y1, . . . ,yT , where T is number of time steps.

It is seen that LSTM consists of multiple weight matrices. Therefore, we impose block-

Toeplitz structure on all weight matrices to compress model size. Specifically, the com-

pression is performed on the model structure in the LSTM layers of model in [53]. The

dataset is the AN4 audio data for speech recognition, where training utterances are 948,

testing utterances are 130, and there are in total 29 unique spoken characters. During train

process, we train 150 epochs using batch size 32, learning rate 0.0003 with annealing rate

1.01. The task performance is measured in word error rate (WER).

Table 3.4 summarizes the test results with different compression ratio. It is seen that the

proposed approach leads to high compression ratio with negligible performance loss. Notice

that here the block size does not equal to overall compression ratio. This is because after

high compression on weight matrix the uncompressed bias vectors dominates the model

size.

3.6 Conclusion

We have proposed to impose the low displacement rank structure to convolutional neural

network. This structure-imposing approach leads to significant reduction in model size,

FLOPs with negligible accuracy drop. Complexity analysis and experiments on different

datasets and different network models demonstrate the effectiveness of the proposed ap-

proach.

44

Chapter 4

Permuted Diagonal Matrix

To improve energy efficiency, efficient model compression has emerged as a very active topic

in AI research community. Among different types of DNN compression techniques [54, 55,

56, 34], two approaches show the promising results. First, network sparsification is believed

to be the most popular and state-of-the-art strategy because of its good balance between

compression ratio and test accuracy. To date, many methods [54][55][34] have been proposed

to perform efficient sparsification on different DNN models. Echoing the importance and

popularity of this approach, several sparse model-oriented hardware architectures [57, 58,

59, 60] have been proposed .

However, the current network sparsification methods suffer from the inherent draw-

backs of irregularity, heuristic nature and indexing overhead. Consequently, despite the

encouraging compression ratio, the unstructured sparse DNN models cannot achieve opti-

mal performance on the current computing platforms, especially DNN hardware accelera-

tors. Essentially, the inefficient execution and hardware implementation are caused by the

non-hardware-friendly sparse models.

In this chapter, we propose PermDNN, a novel approach that generates and executes

hardware-friendly structured sparse DNN models using permuted diagonal matrices (PDM).

As illustrated in Fig. 4.1(b), permuted diagonal matrix is a type of structured sparse matrix

that places all the non-zero entries in the diagonal or permuted diagonal. When the weight

matrices of DNNs can be represented in the format of multiple permuted diagonal matrices

(so-called block-permuted diagonal matrices), their inherent strong structured sparsity leads

to great benefits for practical deployment. Specifically, it eliminates indexing overhead,

brings non-heuristic compression effects, and enables re-training-free model generation.

45

(a) Unstructured sparse weight matrix. (b) Block-permuted diagonal weight matrix.

Figure 4.1: Weight representation by using (a) conventional unstructured sparse matrix.
(b) block-permuted diagonal matrix.

Based on PDM, we develop an end-to-end training scheme that can generate a high-

accuracy permuted diagonal matrix-based DNN models from scratch. We also develop the

corresponding low-complexity inference scheme that executes efficiently on the trained struc-

tured sparse DNN models. Experiment results on different datasets for different application

tasks show that, enforced with the strong structure, the permuted diagonal matrix-based

DNNs achieve high sparsity ratios with no or negligible accuracy loss.

4.1 Permuted Diagonal Fully Connected Layer

Let W ∈ Rm×n be the weight matrix which can be divided into small blocks in shape k×k.

In total, there will be m/k × n/k blocks. Let Zs be a matrix generated by permuting a

diagonal matrix and the permutation is shifting from the main diagonal to the s-th diagonal

as follows:

Zs =

0 0 0 . . . 0 1

1 0 0 . . . 0 0

0
. . .

. . .
...

...

...
. . .

. . . 0 0

0 . . . 0 1 0

S

. (4.1)

Each block Wi,j for i = 1, . . . , mk and j = 1, . . . , nk can then be formulated as following:

Wi,j = Zsi,j × diag(wi,j), (4.2)

where si,j is the shifting parameters for the block and the diag(·) function outputs a diagonal

matrix for given vector. wi,j is a vector of k weight parameters inside the sub-matrix.

46

Therefore, the density of the block permuted diagonal matrix W is 1
k . The sparsity (1− 1

k)

is controlled via the setting of value k. With larger k, the matrix is more sparse.

4.1.1 Forward Propagation

DNN computes output from the first input layer to the last output layer and this process

is called forward propagation. For a layer defined with permuted diagonal matrix, the

computation is mainly matrix multiplication. Let input x ∈ Rn be equally divided into n/k

sub-vectors. The multiplication can be written as following:

a = Wx =
[n/k∑
j=1

Wi,jxj

]m/k
i=1

=
[n/k∑
j=1

Zsi,j × diag(wi,j)× xj

]m/k
i=1

=
[n/k∑
j=1

Zsi,j × diag(wi,j ◦ xj)
]m/k
i=1

,

(4.3)

where ◦ is the element-wise product. Note that Zsi,j is essentially shifting a vector which

could be completed in linear time complexity. Overall, the forward propagation complexity

can be easily implemented in the complexity of O(mn/k).

4.1.2 Backward Propagation

Recall that DNN optimization algorithms mainly utilize the first order derivatives. The

chain rule will expand the computation across layers, i.e., from the last layer to the very first

layer. This process is called backward propagation. There are two gradients to calculate,

∂L
∂wi,j

and ∂L
∂x . The ∂L

∂wi,j
is used for updating weight parameters. The ∂L

∂x is for computing

gradients at next layer. Let a be equally divided into m/k parts and ai be the i-th part.

We first set up bi,j ∈ Rk×k as following:

bi,j = diag(wi,j ◦ xj)

∂L

∂bi,j
= diag(Zk−si,j ×

∂L

∂ai
).

(4.4)

47

The ∂L
∂wi,j

and ∂L
∂x can be computed by:

∂L

∂wi,j
= diag(

∂L

∂bi,j
) ◦ xj

= (Zk−si,j ×
∂L

∂ai
) ◦ xj ,

(4.5)

∂L

∂xj
= diag(

∂L

∂bi,j
) ◦wi,j

= (Zk−si,j ×
∂L

∂ai
) ◦wi,j ,

(4.6)

where diag(·) is taking the diagonal line from the matrix. As a result, the computation

complexity for backward propagation is also O(mn/k) which is similar to the forward prop-

agation and the matrix density.

4.1.3 Approximation

As mentioned in [61], it is possible to find the closest permuted diagonal matrix when given

a matrix from pre-trained DNN model. Given shifting parameter s for W ∈ Rk×k, the

closest permuted diagonal matrix defined on w ∈ Rk is the corresponding s-th diagonal:

w = diag(Zk−s ×W), (4.7)

where diag(·) takes the diagonal line from the matrix. This method could be used to

initialize training from a pre-trained DNN model. It may accelerate the convergence of

training to some degree.

48

Figure 4.2: Example of imposing block-diagonal permuted structure on (a) weight matrix
of FC layer and (b) weight tensor of CONV layer. Here the block size p, as the compression
ratio, is 3. The entire weight matrix or tensor contains blocks of component weight matrices
or tensors, and each component permuted diagonal matrix or tensor is affiliated with a
permutation value (PermV). PermV is selected from 0,1,...,p-1. The non-zero weight values
or weight filter kernels can only be placed in the main diagonal or permuted diagonal
positions in the component weight matrices or tensors.

49

4.2 Permuted Diagonal Convolution Layer

In general, CONV layer is the most important component of a CNN model since it con-

sumes the largest portion of the overall computation. Mathematically, when the inference

is performed in a batch way, the computation of a CONV layer is essentially the 2D convo-

lution between a 4D input tensor (a batch of 3D inputs) and 4D weight tensor (a group of

3D filters), and the output of CONV layer is also a 4D tensor. The detailed computation

procedure is described as follows:

Y(n,m, e, f) =

C−1∑
c=0

R−1∑
r=0

S−1∑
s=0

W(m, c, r, s)×X (n, c, Ue+ r, Uf + s), (4.8)

where X ∈ RN×C×H×W , Y ∈ RN×M×E×F , W ∈ RM×C×R×S are input tensor, output

tensor, and weight tensor, respectively. And the meaning of parameters M, C, H/W, E/F,

R/S, N, U are described in Table 4.1.

Table 4.1: The CNN parameters.

Parameter Description

M Number of 3D filters

C Number of channels

H/W Height/width of input

E/F Height/width of output

R/S Filter kernel height/width

N Batch size of 3D input activations

U Stride

4.2.1 Forward Propagation

As illustrated in Fig. 4.2, the key idea of designing permuted diagonal CONV layer is to

impose such structure along the two dimensions that are defined by number of 3D filters

and number of channels. Based on this mechanism, the non-zero kernels can only be placed

in the main diagonal or permuted diagonal positions. Therefore, we only need to store non-

zero kernels W ′ ∈ R
M×C

p
×R×S

, and the mapping between original W and non-zero kernels

W ′ is defined as following:

50

W(m, c, r, s) =

W ′(kl × p+ i, r, s) (i+ kl) ≡ c mod p

0 otherwise

(4.9)

where p is the block size, i ≡ m mod p, l = bmp c ×
N
p + b cpc. The kl is the permuted

offset for diagonals, also denoted as PermV. Based on this mapping, the convolution is only

performed for non-zero kernels. Overall, the forward propagation can be summarized as:

Y(n,m, e, f) =

C
p
−1∑

g=0

R−1∑
r=0

S−1∑
s=0

X (n, gp+ (i+ kl mod p),

Ue+ r, Uf + s)×W ′(kl × p+ i, r, s).

(4.10)

4.2.2 Backward Propagation

Besides forward propagation, the corresponding backward propagation is also developed to

ensure the trained CONV layer exhibits permuted diagonal structure as follows:

∂J

W(m, c, r, s)
=

N−1∑
n=0

E−1∑
e=0

F−1∑
f=0

X(n, c, Ue+ r, Uf + s)

× ∂J

∂Y (n,m, e, f)
, ∀ W(m, c, r, s) 6= 0

(4.11)

∂J

∂X (n, c, x, y)
=

M−1∑
m=1

R−1∑
r=0

S−1∑
s=0

W(n,m, r, s)

× ∂J

∂Y(n,m, , (x− r)/U, (y − s)/U)
.

(4.12)

Notice that here Eqn. 4.12 is used to aid the gradient computation described in Eqn.

4.11 since X (n, c, x, y) in the current layer is the output of previous layer as Y(n,m, e, f).

4.2.3 Outline of Theoretical Proof on Universal Approximation

In CirCNN the universal approximation property of block-circulant matrix-based neural

network was given to theoretically prove the effectiveness of using circulant matrices. In this

work we discover that the PermDNN also exhibits the universal approximation property,

thereby making the rigorous foundation for our proposed permuted diagonal structure-

imposing method. The details of the proof will be provided in an individual technical

51

report and this subsection gives a brief outline of the proof as follows. First, we prove that

the ”connectedness” of PermDNN, – that means, thanks to the unique permuted diagonal

structure of each block, when the kl is not identical for all permuted diagonal matrices,

the sparse connections between adjacent block-permuted diagonal layers do not block away

information from any neuron in the previous layer. Based on this interesting property, we

further prove that the function space achieved by the block-permuted diagonal networks

is dense. Finally, with the Hahn-Banach Theorem we prove that there always exists a

block-permuted diagonal neural network that can closely approximate any target continuous

function defined on a compact region with any small approximation error, thereby showing

the universal approximation property of block-permuted diagonal networks. Besides, we also

derive that the error bound of this approximation error is in the order of O(1/n), where n

is the number of model parameters. Consequently, the existence of universal approximation

property of PermDNN theoretically guarantees its effectiveness on different DNN types

and applications.

4.2.4 Applicability on the Pre-trained Model

Besides training from scratch, the permuted diagonal matrix-based network model can also

be obtained from a pre-trained dense model. Fig. 4.3 illustrates the corresponding proce-

dure, which consists of two steps: permuted diagonal approximation and re-training/fine-

tuning. First, the original dense weight matrices/tensors need to be converted to permuted

diagonal matrices/tensors via permuted diagonal approximation. The mechanism of per-

muted diagonal approximation is to convert a non-permuted diagonal matrix/tensor to

a permuted diagonal format by only keeping the entries in the desired permuted diago-

nal positions. Mathematically, such approximation is the optimal approximation

in term of l2 norm measurement on the approximation error. After that, the

converted model already exhibits permuted diagonal structure and then can be further re-

trained/fine-tuned by using Eqns. (4.11)-(4.12) to finally obtain a high-accuracy permuted

diagonal network model. Such two-step generating approach is applied to all types of pre-

trained models and can lead to high accuracy. For instance, for pre-trained dense LeNet-5

model on MNIST dataset, with p = 4 for CONV layer and p = 100 for FC layer, the finally

52

converted permuted-diagonal network after re-training achieves 99.06% test accuracy and

overall 40× compression ratio without using quantization.

Figure 4.3: Train a PermDNN from a pre-trained dense model.

4.2.5 PermDNN vs Unstructured Sparse DNN

Compared to the existing network sparsification approaches, the proposed PermDNN en-

joys several attractive advantages:

First, PermDNN is a hardware-friendly model. As illustrated in Fig. 4.4, due to the

inherent regular structure of permuted diagonal matrix, the position of each non-zero entry

can now be calculated using very simple modulo operation, thereby completely eliminat-

ing the needs of storing the indices of entries. From the perspective of hardware design,

this elimination means that the permuted diagonal matrix-based PermDNN completely

avoids the huge space/computation overhead incurred by the complicated weight index-

ing/addressing in the state-of-the-art sparse DNN accelerator (e.g. EIE), and hence achieves

significant reduction in the space requirement and computational cost for DNN implemen-

tations.

Second, PermDNN provides controllable and adjustable compression and acceleration

schemes. The reductions in the model sizes and number of arithmetic operations are no

longer heuristic based and unpredictable. Instead it can now be precisely and deterministi-

cally controlled by adjusting the value of p. This further provides great benefits to explore

the design space exploring the tradeoff between hardware performance and test accuracy.

53

Finally, PermDNN enables direct end-to-end training while preserving high accuracy.

Since the structure of sparse weight matrices of PermDNN can now be pre-determined

by the model designers at the initialization stage of training, with our training algorithm

that preserves this fixed structure, the entire structured sparse network can be trained

from scratch, completely avoiding the increasing complexity incurred by the extra iterative

pruning and/or re-training process in the conventional unstructured sparse DNN training

schemes.

Figure 4.4: Storage requirement comparison.

4.3 Experiments

Table 4.2: AlexNet on ImageNet [2]. PD: Permuted Diagonal.

AlexNet
Block size (p) for
PD weight matrix
of FC6-FC7-FC8

Top-5
Acc.

Compression
for overall
FC layers

Original 32-bit float 1-1-1 80.20% 234.5MB(1×)

32-bit float with PD 10-10-4 80.00% 25.9MB(9.0×)

16-bit fixed with PD 10-10-4 79.90% 12.9MB(18.1×)

By leveraging the forward and backward propagation schemes, the PermDNN models

can be trained from scratch and tested. Table 4.2 - Table 4.5 show the task performance

and compression ratio of different PermDNN models on different types of datasets. Notice

that for one FC/CONV layer with block size p for its permuted diagonal (PD) weight

matrix/tensor, the compression ratio for that layer is p. The details of the experimental

54

Table 4.3: Stanford NMT (32-FC layer LSTMs) on IWSLT15 for English-Vietnamese Trans-
lation.

Stanford NMT
(32-FC layer LSTMs)1

Block size (p) for
PD weight matrix
of ALL FC Layers

BLEU
Points

Compression
for overall
FC layers

Original 32-bit float 1 23.3 419.4MB(1×)

32-bit float with PD 8 23.3 52.4MB(8×)

16-bit fixed with PD 8 23.2 26.2MB(16×)

Table 4.4: ResNet-20 on CIFAR-10[3].

ResNet-20
Block size (p) for
PD weight tensor
of CONV layers

Acc.
Compression

for overall
CONV Layers

Original 32-bit float 1 91.25% 1.09MB(1×)

32-bit float with PD 2 for most layers 90.85% 0.70MB(1.55×)

16-bit fixed with PD 2 for most layers 90.6% 0.35MB(3.10×)

setting are described as follows:

• AlexNet [48]: The block sizes (p) for the permuted diagonal weight matrices of three

FC layers (FC6, FC7 and FC8) are set as different values (10, 10 and 4) for different

FC layers.

• Stanford Neural Machine Translation (NMT) [62]: This is a stacked LSTM

model containing 4 LSTMs with 8 FC weight matrices for each LSTM. In the experi-

ment the value of p for all the FC layers is set as 8.

• ResNet-20 [13]: In this experiment for the group of CONV layers without 1x1 filter

kernel, the value of p is set as 2. For the group of CONV layers with 1x1 filter kernel,

p is set as 1.

• Wide ResNet-48 [50]: The widening parameter of this model is 8. For the group

of CONV layers without 1x1 filter kernel, the value of p is set as 4. For the group of

CONV layers with 1x1 filter kernel, p is set as 1.

• Selection of Permutation value (kl): kl can be selected via either natural in-

dexing or random indexing. Our simulation results show no difference between task

performance for these two setting methods. Table 4.2 - Table 4.5 are based on natural

55

Table 4.5: Wide ResNet-48 on CIFAR-10.

Wide ResNet-48
Block size (p) for
PD weight tensor
of CONV layers

Acc.
Compression

for overall
CONV layers

Original 32-bit float 1 95.14% 190.2MB(1×)

32-bit float with PD 4 for most layers 94.92% 61.9MB(3.07×)

16-bit fixed with PD 4 for most layers 94.76% 30.9MB(6.14×)

indexing. For instance, for a 4-by-16 block-permuted diagonal weight matrix with

p = 4, k0 ∼ k3 is set as 0 ∼ 3.

Table 4.2 - Table 4.5 show that imposing permuted diagonal structure to DNN models

enables significant reduction in the weight storage requirement for FC or CONV layers.

Meanwhile, the corresponding task performance, in terms of test accuracy (for computer

vision) or BLEU scores [63] (for language translation), are still retained as the same or only

exhibits negligible degradation. In short, PermDNN models can achieve high compression

ratios in network size and strong spatial network structure, and simultaneously, preserve

high task performance.

56

Chapter 5

Isotropic Iterative Quantization

Words are basic units in many natural language processing (NLP) applications, e.g., trans-

lation [64] and text classification [65]. Understanding words is crucial but can be very

challenging. One difficulty lies in the large vocabulary commonly seen in applications.

Moreover, their semantic permutations can be numerous, constituting rich expressions at

the sentence and paragraph levels.

In statistical language models, word distributions are learned for unigrams, bigrams,

and generally n-grams. A unigram distribution presents the probability for each word. The

histogram is already sufficiently complex given a large vocabulary. Then, the complexity of

bigram distributions is quadratic in the vocabulary size and that of n-gram ones is exponen-

tial. The combinatorial nature motivates researchers to develop alternative representations

which otherwise explode.

Instead of word distributions, continuous representations with floating-point vectors are

much more convenient to handle: they are differentiable, and their differences can be used

to draw semantic analogy. A variety of algorithms were proposed over the years for learning

these word vectors. Two representative ones are Word2Vec [66] and GloVe [67]. Word2Vec

is a classical algorithm based on either skip grams or a bag of words, both of which are

unsupervised and can directly learn word embeddings from a given corpus. GloVe is another

embedding learning algorithm, which combines the advantage of a global factorization of

the word co-occurrence matrix, as well as that of the local context. Both approaches are

effective in many NLP applications, including word analogy and name entity recognition.

Neural networks with word embeddings are frequently used in solving NLP problems,

such as sentiment analysis [68] and name entity recognition [69]. An advantage of word

embeddings is that interactions between words may be modeled by using neural network

57

layers (e.g., attention architectures). Despite the success of these word embeddings, they

often constitute a substantial portion of the overall model. For example, the pre-trained

Word2Vec [70] contains 3M word vectors and the storage is approximately 3GB. This cost

becomes a bottleneck in deployment on resource-constrained platforms.

Thus, much work studies the compression of word embeddings. [71] propose to represent

word vectors by using multiple codebooks trained with Gumbel-softmax. [72] learn binary

document emebddings via a bag-of-word-like process. The learned vectors are demonstrated

to be effective for document retrieval. In information retrieval, iterative quantization (ITQ)

[73] transforms vectors into binary ones, which are found to be successful in image retrieval.

The method maximizes the bit variance meanwhile minimizing the quantization loss. It

is theoretically sound and also computationally efficient. However, [72] find that directly

applying ITQ in NLP tasks may not be effective. In [74], authors propose an alternate

approach that improves the quality of word embeddings without incurring extra training.

The main idea lies in the concept of isotropy used to explain the success of pointwise mutual

information (PMI) based embeddings. The authors demonstrate that the isotropy could be

improved through projecting embedding vectors toward weak directions.

Therefore, in this work we propose isotropic iterative quantization (IIQ), which leverages

iterative quantization meanwhile satisfying the isotropic property. The main idea is to

optimize a new objective function regarding the isotropy of word embeddings, rather than

maximizing the bit variance. Maximizing the bit variance and maximizing isotropy are two

opposite ideas, because the former performs projection toward large eigenvalues (dominant

directions) while the latter projects toward the smallest ones (weak directions). Given prior

success [74], it is argued that maximizing isotropy is more beneficial in NLP applications.

In information retrieval (where the proposed method is inspired), locality-sensitive hash-

ing (LSH) is well studied and explored. The aim of LSH is to preserve the similarity between

inputs after hashing. This aim is well aligned with that of embedding compression. For

example, word similarity can be measured by the cosine distance of their embeddings. If

LSH is applied, the hashed emebddings should maintain a similar distance as the original

cosine distance but have much lower complexity in the meantime.

A well-known LSH method in image retrieval is ITQ [73]. However, its application in

58

NLP tasks such as document retrieval is not as successful [72]. Rather, the authors pro-

pose to learn binary paragraph embeddings via a bag-of-words-like model, which essentially

computes a binary hash function for the real-valued embedding vectors.

On the other hand, [71] propose a compact structure for embeddings by using the gumble

softmax. In this approach, each word vector is represented as the summation of a set of

real-valued embeddings. This idea amounts to learning a low-rank representation of the

embedding matrix.

Pre-trained embeddings may be directly used in deep neural networks (DNN) or serve as

initialization [75]. There exist several compression techniques for DNNs, including pruning

[15] and low-rank compression [76]. Most of these techniques requires retraining for specific

tasks, thus challenges exist when applying them to unsupervised word embeddings (e.g.,

GloVe).

[77] successfully apply DNN compression techniques to unsupervised embeddings. The

authors use pruning to sparsify embedding vectors, which however requires retraining after

each pruning iteration. Although retraining is common when compressing DNNs, it often

takes a long time to recover the model performance. Similarly, [78] uses low rank approxi-

mation to compress word embeddings, but they also face the same problem to fine-tune a

supervised model.

5.1 Iterative Quantization and Embedding Isotropy

In this section, we briefly revisit the iterative quantization method by breaking it down

into two steps. The first step is to maximize bit variance when transforming given vectors

into binary representation. The second step is about minimizing the quantization loss while

maintaining the maximum bit variance.

5.1.1 Maximize Bit Variance.

Let X ∈ Rn×d be the embedding dictionary, where each row xTi ∈ Rd denotes the embed-

ding vector for the i-th word in the dictionary. Assuming that vectors are zero centered

59

(
∑n

i=1 xi = 0), ITQ encodes vectors with a binary representation {−1,+1} through maxi-

mizing the bit variance, which is achieved by solving the following optimization problem:

max
W

F (W) =
1

n
tr(WTXTXW),

s.t. WTW = I and B = sgn(XW),

(5.1)

where W ∈ Rd×c and c ≤ d is the dimension of the encoded vectors. Here, B is the

final binary representation of X and tr(·) and sgn(·) are the trace and the sign function,

respectively. The problem is the same as that of Principal Component Analysis (PCA) and

could be solved by selecting the top c right singular vectors of X as W.

5.1.2 Minimize Quantization Loss.

Given a solution W to Equation (5.1), U = WR is also a solution for any orthogonal

matrix R ∈ Rc×c. Thus, we could minimize the quantization loss via adjusting the matrix

R while maintaining the solution to (5.1). The quantization loss is defined as the difference

between the vectors before and after the quantization:

Q(B,R) = ||B−XWR||2F , (5.2)

where || · ||F is the Frobenius norm. Note that B must be binary. The proposed solution

in ITQ is an iterative procedure that updates B and R in an alternating fashion until con-

vergence. In practice, ITQ turns out able to achieve good performance with early stopping

[73].

5.1.3 Isotropy of Word Embedding

In [79], isotropy is used to explain the success of PMI based word embedding algorithm, for

example GloVe embedding. However, [74] find that existing word embeddings are not nearly

isotropic but could be improved. The proposed solution is to project word embeddings

toward the weak directions rather than the dominant directions, which seems counter-

intuitive but in practice works well. The isotropy of word embedding X is defined as:

I(X) =
min||e||=1 Z(e)

max||e||=1 Z(e)
, (5.3)

60

where Z(·) is the partition function

Z(e) =
∑
xi∈X

exp(eTxi). (5.4)

The value of I(X) ∈ [0, 1] is a measure of isotropy of the given embedding X. A higher

I(·) means more isotropic and a better quality of the embedding. It is found making the

singular values close to each other can effectively improve embedding isotropy.

5.2 Proposed Quantization

The preceding section hints that maximizing the isotropy and maximizing the bit variance

are opposite in action: The former intends to make the singular values close by removing

the largest singular values, whereas the latter removes the smallest singular values and

maintains the largest. Given the success of isotropy in NLP applications, we propose to

minimize the quantization loss while improving the isotropy, rather than maximizing the

bit variance. We call the proposed method isotropic iterative quantization, IIQ.

The key idea of ITQ is based on the observation that U = WR is still a solution to the

objective function of (5.1). In our approach IIQ, we show that the orthogonal transformation

maintains the isotropy of the input embedding, so that we could apply a similar alternating

procedure as in ITQ to minimize the quantization loss. As a result, our method is composed

of three steps: maximizing isotropy, reducing dimension, and minimizing quantization loss.

5.2.1 Maximize Isotropy.

The isotropy measure I(X) can be approximated as following [74] :

Î(X) =
|X| − ||1TX||+ 1

2σ
2
min

|X|+ ||1TX||+ 1
2σ

2
max

, (5.5)

where σmin and σmax are the smallest and largest singular values of X, respectively. For

Î(X) to be 1, the middle term ||1TX|| on both the numerator and the denominator must

be zero and additionally σmin = σmax. The former requirement can be easily satisfied by

the zero-centering given embeddings:

u =
1

n
1T ·X

X̄ = X− 1 · uT ,
(5.6)

61

where ||1T X̄|| = 0. The latter may be approximately achieved by removing the large

singular values such that the rest of the singular values are close to each other. A reason why

removing the large singular values makes the rest close, is that often the large singular values

have substantial gaps while the rest are clustered. However, removing singular components

does not change its dimension. We denote the maximized result as X̂.

5.2.2 Dimension Reduction.

To make our method more flexible, we perform a dimension reduction afterward by using

PCA. This step essentially removes the smallest singular values so that the clustering of

the singular values may be further tightened. Note that PCA won’t affect the maximized

isotropy of given embeddings, since it only works on the singular values that are already

closed to each other after previous step. One can treat the dimension as a hyperparameter,

tailored for each data set.

5.2.3 Minimize Quantization Loss.

Given a solution X̂ to the maximization of (5.5), we prove that multiplying X̂ with an

orthogonal matrix R results in the same Î(X). In other words, we could minimize the

quantization loss (5.2) while maintaining the isotropy.

Proposition 8. If X̂ ∈ Rn×d is isotropic and R ∈ Rd×d is orthogonal, then U = X̂R

admits Î(U) = Î(X̂).

Proof. Given that R is orthogonal, we first prove that U has the same singular values as

does X̂. Let X̂ have the singular value decomposition (SVD)

X̂ = Pdiag(σmax, . . . , σmin)Q, (5.7)

where P ∈ Rn×d and orthogonal matrix Q ∈ Rd×d. Let Q′ = QR. Then, we have

U = Pdiag(σmax, . . . , σmin)Q′. (5.8)

Since Q′ is also orthogonal, Equation (5.8) gives the SVD of U. Therefore, U has the same

singular values as does X̂.

62

Moreover, ||1TU|| = ||1T X̂R|| = 0, thus U is also zero-centered. By Equation (5.5), we

conclude Î(U) = Î(X̂).

With the given proof, we can always use an orthogonal matrix R to reduce the quanti-

zation loss. The iterative optimization strategy as in ITQ [73] is adopted to minimize the

quantization loss. Two alternating steps lead to a local minimum. First, compute B given

R:

B = sgn(X̂ ·R). (5.9)

Second, update R given B. The update minimizes the quantization loss, which essentially

solves the orthogonal Procrustes problem. The solution is given by

S ·Ω · ŜT = SVD(BT · X̂ ·R)

R = Ŝ · ST ,
(5.10)

where SVD(·) is the singular value decomposition function and Ω is the diagonal matrix of

singular values.

Figure 5.1: Quantization loss curve of 50000 embedding vectors from a pre-trained CNN
model.

This iterative updating strategy runs until a local optimal solution is found. Fig. 5.1

shows an example of the quantization loss curve. This result is similar to the behavior of

63

Algorithm 4: Isotropic Iterative Quantization

Input: X ∈ Rn×d, D, T,O
Output: B

1 u← 1
n1T ·X;

2 X̄← X− 1 · uT ;

3 S ·Ω · ŜT ← SVD(X̄);
4 Set top D singular values in Ω as 0;

5 X̂← S ·Ω · ŜT ;
6 if O < d then

7 X̂← PCA(X̂, O)
8 end
9 Randomly initialize an orthogonal matrix R;

10 for i← 1 to T do

11 U← X̂ ·R;
12 B← sgn(U);

13 S ·Ω · ŜT ← SVD(BT ·U);

14 R← Ŝ · ST ;

15 end

16 return sgn(X̂ ·R);

ITQ, the authors of which proposed using early stopping to terminate iteration in practice.

We follow the guidance and run only 50 iterations in our experiments. Our method is an

unsupervised approach, which does not require any label supervision. Therefore, it can be

applied independently of downstream tasks and no fine tuning is needed. This advantage

benefits many problems where embeddings often slow down the learning process because of

the high space and computation complexity.

We present the pseudocode of the proposed IIQ method in Algorithm 4. The input

D denotes the number of top singular values to be removed, T denotes the number of

iterations for minimizing the quantization loss, and O denotes the dimension of the output

binary vectors. The first two lines make zero-centered embedding. Lines 3 to 5 maximize

the isotropy. Lines 6 to 8 reduce the embedding dimension. Lines 9 to 15 minimize the

quantization loss. Within the iteration loop, lines 11 to 12 update B based on the most

recent R, whereas lines 13 to 14 update R given the updated B. The last line uses the final

transformation R to return the binary embeddings as output.

64

5.3 Experimental Results

We run the proposed method on pre-trained embedding vectors and evaluate the compressed

embedding in various NLP tasks. For some tasks, the evaluation is directly conducted over

the embedding (e.g., measuring the cosine similarity between word vectors); whereas for

others, a classifier is trained with the embedding. We conduct all experiments in Python

by using Numpy and Keras. The environment is Ubuntu 16.04 with Intel(R) Xeon(R) CPU

E5-2698.

Pre-trained Embedding. We perform experiments with the GloVe embedding [67]

and the HDC embedding [80]. The GloVe embedding is trained from 42B tokens of Common

Crawl data. The HDC embedding is trained from public Wikipedia. It has a better quality

than GloVe because the training process considers both syntagmatic and paradigmatic

relations. All embedding vectors are used in the experiment without vocabulary truncation

or post-processing.

In addition, we evaluate embedding compression on a CNN model pre-trained with the

IMDB data set. Different from the prior case, the embedding from CNN is trained with

supervised class labels. We compress the embedding and retrain the model to evaluate

performance. This way enables us to compare with other compression methods fairly.

Configuration. We compare IIQ with the traditional ITQ method [73], the pruning

method [77], deep compositional code learning (DCCL) [81] and a recent method [82] we

name as NLB. The pruning method is set to prune 95% of the words for a similar compression

ratio. The DCCL method is similarly configured. We run NLB with its default setting. We

train the DCCL method for 200 epochs and set the batch size to be 1024 for GloVe and 64

for HDC. For our method, we set the iteration number T to be 50 since early stopping works

sufficiently well. We set the same iteration number for ITQ. We also set the parameter D

to be 2 for HDC, and 14 for Glove embedding. Note that we perform all vector operations

in real domain on the platform [83] and [84].

Table 5.1 lists the experiment configurations with method name, dimension, embedding

value type, and compression ratio. The baseline means the original embedding. Our method

starts with “IIQ,” followed by the compression ratio. The “dimension” column gives the

65

Table 5.1: Experiment Configurations.

Method Dimension Comp. Ratio

G
lo

V
e

Baseline 1917494× 300 1
Prune 1917494× 300 20
DCCL M = 32,K = 256 32
NLB 1917494× 300 32
ITQ 1917494× 300 32
IIQ-32 1917494× 300 32
IIQ-64 1917494× 150 64
IIQ-128 1917494× 75 128

H
D

C

Baseline 388723× 300 1
Prune 388723× 300 20
DCCL M = 32,K = 128 29
NLB 388723× 300 32
ITQ 388723× 300 32
IIQ-32 388723× 300 32
IIQ-64 388723× 150 64
IIQ-128 388723× 75 128

number of vectors and the vector dimension. For DCCL, we list the parameters M and K

that determine the compression ratio. Note that we use single precision for real values. The

last column shows the compression ratio, which is the the size of the original embedding

over that of the compressed one. Thus, the compression from real value to binary is 32.

Moreover, we also apply dimension reduction in IIQ so that higher compression ratio is

possible.

5.3.1 Word Similarity

The task measures Spearman’s rank correlation between word vector similarity and human

rated similarity. A higher correlation means a better quality of the word embedding. The

similarity between two words is computed as the cosine of the corresponding vectors, i.e.,

cos(x,y) = xTy/(||x|| · ||y||), where x and y are two word vectors. Out-of-vocabulary

(OOV) words are replaced by the mean vector.

In this experiment, seven data sets are used, including MEN [85] with 3000 pairs of

words obtained from Amazon crowdsourcing; MTurk [86] with 287 pairs, focusing on word

semantic relatedness; RG65 [87] with 65 pairs, an early published dataset; RW [88] with 2034

pairs of rare words selected based on frequencies; SimLex999 [89] with 999 pairs, aimed at

66

Table 5.2: Word Similarity Results.

Method MEN MTurk RG65 RW SimLex999 TR9856 WS353

G
lo

V
e

Baseline 73.62 64.50 81.71 37.43 37.38 9.67 69.07
Prune 17.97 22.09 39.66 12.45 -0.37 8.31 14.52
DCCL 54.46 50.46 63.89 28.04 25.48 7.91 54.55
NLB 73.99 64.98 72.07 40.86 40.52 14.00 66.09
ITQ 57.37 52.93 72.08 25.10 26.23 8.98 55.00
IIQ-32 76.43 63.33 78.16 41.35 41.87 9.80 72.22
IIQ-64 71.55 58.37 74.94 37.61 38.80 12.81 67.99
IIQ-128 59.25 50.42 62.39 28.71 33.25 12.31 53.56

H
D

C

Baseline 76.03 65.77 80.58 46.34 40.68 20.71 76.81
Prune 46.83 41.49 56.14 29.84 26.27 15.27 52.06
DCCL 68.82 55.78 72.23 39.33 35.02 18.41 66.09
NLB 72.06 61.57 72.58 35.45 38.50 11.71 67.20
ITQ 72.31 61.68 74.70 37.01 37.40 9.69 72.32
IIQ-32 74.37 66.71 78.04 38.75 39.35 9.63 75.32
IIQ-64 66.32 56.73 65.77 35.63 36.22 11.33 72.70
IIQ-128 55.83 51.33 45.76 32.03 29.45 12.61 58.54

genuine similarity estimation; TR9856 [90] with 9856 pairs, containing many acronyms and

name entities; and WS353 [91] with 353 pairs of mostly verbs and nouns. The experiment

is conducted on the platform [83].

Table 5.2 summarizes the results. The performance of IIQ degrades as the compression

ratio increases. This is expected, since a higher compression ratio leads to more loss of

information. In addition, our IIQ method consistently achieves better results than ITQ,

DCCL, NLB and the pruning method. Particularly, one sees that on the Men data set, IIQ

even outperforms the baseline embedding Glove. Another observation is that on TR9856,

a higher compression ratio surprisingly yields better results for IIQ. We speculate that the

cause is the multi-word term relations unique to TR9856. Interestingly, the pruning method

results in negative correlation in SimLex999 for the GloVe embedding. This means that

pruning too many small values inside word embedding can drastically destroy the embedding

quality.

5.3.2 Categorization

The task is to cluster words into different categories. The performance is measured by

purity, which is defined as the fraction of correctly classified words. We run the experiment

67

using agglomerative clustering and k-means clustering, and select the highest purity as the

final result for each embedding. This experiment is conducted on the platform [83] where

OOV words are replaced by the mean vector.

Four data sets are used in this experiment: Almuhareb-Poesio (AP) [92] with 402 words

in 21 categories; BLESS [93] with 200 nouns (animate or inanimate) in 17 categories; Battig

[94] with 5231 words in 56 taxonomic categories; and ESSLI2008 Workshop [95] with 45

verbs in 9 semantic categories.

Table 5.3 lists evaluation results for GloVe and HDC embeddings. One sees that the

proposed IIQ method works better than ITQ, DCCL, and the pruning method on all data

sets. But NLB sometimes achieves the best result for example on Battig. For ESSLI, IIQ

even outperforms the original GloVe and HDC embedding.

Table 5.3: Categorization Results.

Method AP BLESS Battig ESSLI

G
lo

V
e

Baseline 62.94 78.50 45.13 57.78
Prune 38.56 46.00 23.42 42.22
DCCL 52.24 75.00 36.09 48.89
NLB 59.45 78.50 43.39 66.67
ITQ 58.71 76.50 40.76 48.89
IIQ-32 64.18 80.00 41.98 60.00
IIQ-64 56.22 76.50 37.49 51.11
IIQ-128 45.02 69.00 31.43 44.44

H
D

C

Baseline 65.42 81.50 43.18 60.00
Prune 34.33 48.00 23.28 51.11
DCCL 55.97 74.50 40.16 53.33
NLB 59.20 75.50 41.88 62.22
ITQ 57.21 77.50 41.04 55.56
IIQ-32 61.69 78.00 41.29 62.22
IIQ-64 48.51 72.50 35.90 53.33
IIQ-128 43.03 57.50 28.50 62.22

5.3.3 Topic Classification

In this experiment, we perform topic classification by using sentence embedding. The

embedding is computed as the average of the corresponding word vectors. The average of

binary embedding is fed to the classifier in single precision. Missing words are treated as

zero and so are OOV words. In this task, we train a Multi-Layer Perceptron (MLP) as the

68

classifier for each method. Due to the different size of embeddings, we train 10 epochs for

all Glove embeddings and 4 epochs for all HDC embedding. Five-fold cross validation is

used to report classification accuracy.

Four data sets are selected from [96], including movie review (MR), customer review

(CR), opinion-polarity (MPQA), and subjectivity (SUBJ). Similar performance is achieved

by using the original embedding. The experiment is conducted on the platform of [84].

Table 5.4 shows the results for each method. Similar to the previous tasks, the proposed

IIQ method consistently performs better than ITQ, pruning, and DCCL. The only exception

is that for MPQA and SUBJ, DCCL and NLB achieves the best result for the GloVe

embedding respectively. As the compression ratio increases, IIQ encounters performance

degrade.

Table 5.4: Topic Classification Results.

Method CR MPQA MR SUBJ

G
lo

V
e

Baseline 78.78 87.16 76.42 91.29
Prune 73.48 81.93 71.97 87.19
DCCL 77.27 85.6 74.74 89.56
NLB 75.36 85.77 73.01 89.92
ITQ 71.79 84.11 73.18 89.55
IIQ-32 77.7 85.15 74.96 89.87
IIQ-64 75.07 83.02 73.17 88.14
IIQ-128 72.56 80.55 69.93 84.29

H
D

C

Baseline 76.40 86.61 75.71 90.86
Prune 70.97 78.84 67.56 83.58
DCCL 74.68 84.2 73.32 89.43
NLB 70.89 84.51 73.18 89.48
ITQ 73.57 84.44 72.3 89.46
IIQ-32 76.32 84.77 73.51 89.91
IIQ-64 72.18 82.07 70.32 87.41
IIQ-128 70.83 77.62 67.89 84.62

5.3.4 Sentiment Analysis

In this experiment, we evaluate over the embedding input to a pre-trained Convolutional

Neural Network (CNN) model on the IMDB data set [97]. The CNN model follows the

Keras tutorial [98]. We train 50,000 embedding vectors in 300 dimensions. The model is

composed of an embedding layer, followed by a dropout layer with probability 0.2, a 1D

69

convolution layer with 250 filters and kernel size 3, a 1D max pooling layer, a fully connected

layer with hidden dimension 250, a dropout layer with probability 0.2, a ReLU activation

layer, and a single output fully connected layer with sigmoid activation. Moreover, we use

adam optimizer with learning rate 0.0001, sentence length 400, batch size 128, and train

for 20 epochs. Input embedding fed into CNN is kept fixed (not trainable).

Table 5.5: Configurations for IMDB Classification.

Method Dimension Comp. Ratio

Baseline 50000× 300 1

Prune 50000× 300 20

DCCL M = 32,K = 32 27

NLB 50000× 300 32

ITQ 50000× 300 32

IIQ-32 50000× 300 32

IIQ-64 50000× 150 64

IIQ-128 50000× 75 128

The data set contains 25,000 movie reviews for training and another 25,000 for testing.

We randomly separate 5,000 reviews from the training set as validation data. The model

with the best performance on the validation set is kept as the final model for measuring

test accuracy. Moreover, all results are averaged from 10 runs for each embedding. The

baseline model is the pre-trained CNN model with 87.89% accuracy. Table 5.5 summarizes

the configurations for this experiment. All configurations are similar to the previous ex-

periments. The DCCL method is now configured with M = 32 and K = 32 to achieve a

similar compression ratio.

We present in Fig. 5.2 the result of each embedding. The histogram shows the average

accuracy of 10 runs experiments for each method and the error bar shows the standard

deviation. One sees that among all compression methods, IIQ achieves the least performance

degrade. IIQ with compression ratio 64 is the best.

70

Figure 5.2: IMDB CNN Test Accuracy Results.

(a) Nearest and furthest 100 words of “cook” in
IIQ-GloVe.

(b) Nearest and furthest 100 words of “man” in
IIQ-HDC.

Figure 5.3: Visualizing Binary IIQ Word Embedding.

5.3.5 Visualization

We visualize the binary IIQ embedding in Fig. 5.3 The nearest and furthest 100 word

vectors are shown. The distance is calculated by the dot product. Fig. 5.3(a) shows the IIQ-

compressed GloVe embedding and Fig. 5.3(b) shows the IIQ-compressed HDC embedding.

The y axis lists every 10 words and the x axis is the dimension of the embedding. One sees

that similar word vectors have similar patterns in many dimensions. A white column means

that the dimension is zero for all words. A black column means one. Moreover, there is

obvious difference between nearest and furthest words.

71

5.4 Conclusion

We present an isotropic iterative quantization (IIQ) method for compressing word em-

beddings. While it is based on the ITQ method in image retrieval, it also maintains the

embedding isotropy. We evaluate the proposed method on GloVe and HDC embeddings and

show that it is effective for word similarity, categorization, and several other downstream

tasks. For pre-trained embeddings that are less isotropic (e.g., GloVe), IIQ performs bet-

ter than ITQ owing to the improvement on isotropy. These findings are based on a 32-fold

(and higher) compression ratio. The results point to promising deployment of trained neural

network models with word embeddings on resource constrained platforms in real life.

72

Chapter 6

Conclusions and Future Work

This thesis aims at developing a structure matrix based DNN compression framework.

It mostly focuses on the application into computer vision, natural language processing

models. Both the forward and backward propagation are derived and demonstrate the

effectiveness of structure in terms of space and time complexity. We have studied the

use of low displacement rank, particularly the circulant structure in DNN models. In

addition, we presented the approximation algorithm converting a non-structured model

into our structured model. It is found that structure matrix based compression is useful in

compressing models as large as AlexNet and VGG.

Moreover, we also studied the word embedding compression algorithm. The concept

of isotropy is a special property for word embedding. We integrated this property into

the locality sensitive hashing methods and developed our isotropic iterative quantizaiton.

Its effectiveness has been shown over different NLP tasks when compared with traditional

methods and also the state-of-the-art algorithms.

In the future, we’d like to investigate the rank learning under the low displacement rank

framework, and also the structured sparsity learning in the permuted diagonal matrices.

More specifically, we want to develop from the optimization perspective such as proposing

a new optimizer for structure learning.

Lastly, we also want to study the application of our compression algorithms into differ-

ent areas, such as image segmentation, language modeling and even generative adversarial

networks. In summary, the essential goal of this and its future research is providing an

efficient and low cost training and inference solution for the machine learning community.

73

References

[1] Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast training of convolutional
networks through ffts. arXiv preprint arXiv:1312.5851, 2013.

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.

[3] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny
images. 2009.

[4] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An analysis of deep neural
network models for practical applications. arXiv preprint arXiv:1605.07678, 2016.

[5] Siyu Liao, Yi Xie, Xue Lin, Yanzhi Wang, Min Zhang, and Bo Yuan. Reduced-
complexity deep neural networks design using multi-level compression. IEEE Trans-
actions on Sustainable Computing, 2017.

[6] Liang Zhao, Siyu Liao, Yanzhi Wang, Zhe Li, Jian Tang, and Bo Yuan. Theoretical
properties for neural networks with weight matrices of low displacement rank. In
Proceedings of the 34th International Conference on Machine Learning - Volume 70,
ICML’17, page 4082–4090. JMLR.org, 2017.

[7] Siyu Liao, Zhe Li, Liang Zhao, Qinru Qiu, Yanzhi Wang, and Bo Yuan. Circconv: A
structured convolution with low complexity. In AAAI, 2019.

[8] Guosheng Hu, Yongxin Yang, Dong Yi, Josef Kittler, William Christmas, Stan Z Li,
and Timothy Hospedales. When face recognition meets with deep learning: an evalua-
tion of convolutional neural networks for face recognition. In Proceedings of the IEEE
international conference on computer vision workshops, pages 142–150, 2015.

[9] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural
machine translation system: Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016.

[10] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484, 2016.

[11] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

[12] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

74

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016.

[14] Song Han. Efficient methods and hardware for deep learning. 2017.

[15] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[16] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convo-
lutional networks using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

[17] Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando De Fre-
itas. Predicting parameters in deep learning. In Advances in neural information pro-
cessing systems, pages 2148–2156, 2013.

[18] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages 265–283, 2016.

[19] Klaus Greff, Rupesh K Srivastava, Jan Koutńık, Bas R Steunebrink, and Jürgen
Schmidhuber. Lstm: A search space odyssey. IEEE transactions on neural networks
and learning systems, 28(10):2222–2232, 2016.

[20] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-
chun Woo. Convolutional lstm network: A machine learning approach for precipitation
nowcasting. In Advances in neural information processing systems, pages 802–810,
2015.

[21] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[22] Robert Gallager. Low-density parity-check codes. IRE Transactions on information
theory, 8(1):21–28, 1962.

[23] Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne E Hubbard, and Lawrence D Jackel. Handwritten digit recognition with a back-
propagation network. In Advances in neural information processing systems, pages
396–404, 1990.

[24] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

[25] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–9, 2015.

[26] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861,
2017.

75

[27] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally,
and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡
0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016.

[28] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely
efficient convolutional neural network for mobile devices. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 6848–6856, 2018.

[29] Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Ten-
sorizing neural networks. In Advances in neural information processing systems, pages
442–450, 2015.

[30] Wenqi Wang, Yifan Sun, Brian Eriksson, Wenlin Wang, and Vaneet Aggarwal. Wide
compression: Tensor ring nets. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 9329–9338, 2018.

[31] Jinmian Ye, Linnan Wang, Guangxi Li, Di Chen, Shandian Zhe, Xinqi Chu, and Zenglin
Xu. Learning compact recurrent neural networks with block-term tensor decomposi-
tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 9378–9387, 2018.

[32] Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep
models by low rank and sparse decomposition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 7370–7379, 2017.

[33] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S Yu. Hashnet: Deep
learning to hash by continuation. In Proceedings of the IEEE international conference
on computer vision, pages 5608–5617, 2017.

[34] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning struc-
tured sparsity in deep neural networks. In Advances in Neural Information Processing
Systems, pages 2074–2082, 2016.

[35] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. Fixed point quantization of
deep convolutional networks. In International Conference on Machine Learning, pages
2849–2858, 2016.

[36] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantiza-
tion. arXiv preprint arXiv:1612.01064, 2016.

[37] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Binarized neural networks: Training deep neural networks with weights and activations
constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[38] Victor Pan. Structured matrices and polynomials: unified superfast algorithms.
Springer Science & Business Media, 2001.

[39] Yu Cheng, Felix X Yu, Rogerio S Feris, Sanjiv Kumar, Alok Choudhary, and Shi-
Fu Chang. An exploration of parameter redundancy in deep networks with circulant
projections. In Proceedings of the IEEE International Conference on Computer Vision,
pages 2857–2865, 2015.

76

[40] Vikas Sindhwani, Tara Sainath, and Sanjiv Kumar. Structured transforms for small-
footprint deep learning. In Advances in Neural Information Processing Systems, pages
3088–3096, 2015.

[41] Dario Bini, Victor Pan, and Wayne Eberly. Polynomial and matrix computations
volume 1: Fundamental algorithms. SIAM Review, 38(1):161–164, 1996.

[42] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-
matics of control, signals and systems, 2(4):303–314, 1989.

[43] Siyu Liao, Zhe Li, Xue Lin, Qinru Qiu, Yanzhi Wang, and Bo Yuan. Energy-efficient,
high-performance, highly-compressed deep neural network design using block-circulant
matrices. In 2017 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 458–465. IEEE, 2017.

[44] Siyu Liao, Ashkan Samiee, Chunhua Deng, Yu Bai, and Bo Yuan. Compressing deep
neural networks using toeplitz matrix: Algorithm design and fpga implementation. In
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1443–1447. IEEE, 2019.

[45] Mansoor Rezghi and Lars Eldén. Diagonalization of tensors with circulant structure.
Linear Algebra and its Applications, 435(3):422–447, 2011.

[46] Victor Pan. Structured matrices and polynomials: unified superfast algorithms.
Springer Science & Business Media, 2012.

[47] Moody T Chu and Robert J Plemmons. Real-valued low rank circulant approximation.
SIAM Journal on Matrix Analysis and Applications, 24(3):645–659, 2003.

[48] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[49] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[50] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[51] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2818–2826, 2016.

[52] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural networks for machine
learning, 4(2):26–31, 2012.

[53] Zhisheng Wang, Jun Lin, and Zhongfeng Wang. Accelerating recurrent neural net-
works: A memory-efficient approach. IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, 25(10):2763–2775, 2017.

[54] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and con-
nections for efficient neural network. In Advances in neural information processing
systems, pages 1135–1143, 2015.

77

[55] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky.
Sparse convolutional neural networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 806–814, 2015.

[56] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional
neural networks with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.

[57] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks. In ACM SIGARCH Computer
Architecture News, volume 44, pages 367–379. IEEE Press, 2016.

[58] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan
Venkatesan, Brucek Khailany, Joel Emer, Stephen W Keckler, and William J Dally.
Scnn: An accelerator for compressed-sparse convolutional neural networks. In Pro-
ceedings of the 44th Annual International Symposium on Computer Architecture, pages
27–40. ACM, 2017.

[59] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright
Jerger, and Andreas Moshovos. Cnvlutin: Ineffectual-neuron-free deep neural net-
work computing. In ACM SIGARCH Computer Architecture News, volume 44, pages
1–13. IEEE Press, 2016.

[60] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna Das, and
Scott Mahlke. Scalpel: Customizing dnn pruning to the underlying hardware par-
allelism. In Proceedings of the 44th Annual International Symposium on Computer
Architecture, pages 548–560. ACM, 2017.

[61] Chunhua Deng, Siyu Liao, Yi Xie, Keshab K Parhi, Xuehai Qian, and Bo Yuan. Per-
mdnn: Efficient compressed dnn architecture with permuted diagonal matrices. In
2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), pages 189–202. IEEE, 2018.

[62] Minh-Thang Luong and Christopher D Manning. Stanford neural machine translation
systems for spoken language domains. In Proceedings of the International Workshop
on Spoken Language Translation, pages 76–79, 2015.

[63] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method
for automatic evaluation of machine translation. In Proceedings of the 40th annual
meeting on association for computational linguistics, pages 311–318. Association for
Computational Linguistics, 2002.

[64] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[65] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks
for efficient text classification. arXiv preprint arXiv:1607.01759, 2016.

[66] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[67] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors
for word representation. In Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), pages 1532–1543, 2014.

78

[68] Cicero dos Santos and Maira Gatti. Deep convolutional neural networks for senti-
ment analysis of short texts. In Proceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Technical Papers, pages 69–78, 2014.

[69] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,
and Chris Dyer. Neural architectures for named entity recognition. arXiv preprint
arXiv:1603.01360, 2016.

[70] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

[71] Raphael Shu and Hideki Nakayama. Compressing word embeddings via deep compo-
sitional code learning. arXiv preprint arXiv:1711.01068, 2017.

[72] Karol Grzegorczyk and Marcin Kurdziel. Binary paragraph vectors. In Proceedings of
the 2nd Workshop on Representation Learning for NLP, pages 121–130, 2017.

[73] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. Itera-
tive quantization: A procrustean approach to learning binary codes for large-scale
image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(12):2916–2929, 2013.

[74] Jiaqi Mu, Suma Bhat, and Pramod Viswanath. All-but-the-top: Simple and effective
postprocessing for word representations. arXiv preprint arXiv:1702.01417, 2017.

[75] Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

[76] Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ram-
abhadran. Low-rank matrix factorization for deep neural network training with high-
dimensional output targets. In Acoustics, Speech and Signal Processing (ICASSP),
2013 IEEE International Conference on, pages 6655–6659. IEEE, 2013.

[77] Abigail See, Minh-Thang Luong, and Christopher D Manning. Compression of neural
machine translation models via pruning. arXiv preprint arXiv:1606.09274, 2016.

[78] Anish Acharya, Rahul Goel, Angeliki Metallinou, and Inderjit Dhillon. Online em-
bedding compression for text classification using low rank matrix factorization. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 6196–
6203, 2019.

[79] Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A latent
variable model approach to pmi-based word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 4:385–399, 2016.

[80] Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu, and Xueqi Cheng. Learning word repre-
sentations by jointly modeling syntagmatic and paradigmatic relations. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 136–145, 2015.

79

[81] Raphael Shu and Hideki Nakayama. Compressing word embeddings via deep compo-
sitional code learning. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Pro-
ceedings, 2018.

[82] Julien Tissier, Christophe Gravier, and Amaury Habrard. Near-lossless binarization of
word embeddings. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 7104–7111, 2019.

[83] Stanis law Jastrzebski, Damian Leśniak, and Wojciech Marian Czar-
necki. word-embeddings-benchmarks. https://github.com/kudkudak/

word-embeddings-benchmarks, 2015.

[84] Alexis Conneau and Douwe Kiela. Senteval: An evaluation toolkit for universal sen-
tence representations. arXiv preprint arXiv:1803.05449, 2018.

[85] Elia Bruni, Nam-Khanh Tran, and Marco Baroni. Multimodal distributional semantics.
Journal of Artificial Intelligence Research, 49:1–47, 2014.

[86] Kira Radinsky, Eugene Agichtein, Evgeniy Gabrilovich, and Shaul Markovitch. A
word at a time: computing word relatedness using temporal semantic analysis. In
Proceedings of the 20th international conference on World wide web, pages 337–346.
ACM, 2011.

[87] Herbert Rubenstein and John B Goodenough. Contextual correlates of synonymy.
Communications of the ACM, 8(10):627–633, 1965.

[88] Thang Luong, Richard Socher, and Christopher Manning. Better word representa-
tions with recursive neural networks for morphology. In Proceedings of the Seventeenth
Conference on Computational Natural Language Learning, pages 104–113, 2013.

[89] Felix Hill, Roi Reichart, and Anna Korhonen. Simlex-999: Evaluating semantic models
with (genuine) similarity estimation. Computational Linguistics, 41(4):665–695, 2015.

[90] Ran Levy, Liat Ein-Dor, Shay Hummel, Ruty Rinott, and Noam Slonim. Tr9856: A
multi-word term relatedness benchmark. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint Con-
ference on Natural Language Processing (Volume 2: Short Papers), volume 2, pages
419–424, 2015.

[91] Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Paşca, and Aitor
Soroa. A study on similarity and relatedness using distributional and wordnet-based
approaches. In Proceedings of Human Language Technologies: The 2009 Annual Con-
ference of the North American Chapter of the Association for Computational Linguis-
tics, pages 19–27. Association for Computational Linguistics, 2009.

[92] Abdulrahman Almuhareb and Massimo Poesio. Concept learning and categorization
from the web. In proceedings of the annual meeting of the Cognitive Science society,
2005.

[93] Marco Baroni and Alessandro Lenci. How we blessed distributional semantic evalua-
tion. In Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural
Language Semantics, pages 1–10. Association for Computational Linguistics, 2011.

80

[94] William F Battig and William E Montague. Category norms of verbal items in 56
categories a replication and extension of the connecticut category norms. Journal of
experimental Psychology, 80(3p2):1, 1969.

[95] S Evert M Baroni and A Lenci. Bridging the gap between semantic theory and com-
putational simulations: Proceedings of the esslli workshop on distributional lexical
semantics. In Proceedings of the esslli workshop on distributional lexical semantics,
2008.

[96] Sida Wang and Christopher D Manning. Baselines and bigrams: Simple, good senti-
ment and topic classification. In Proceedings of the 50th annual meeting of the asso-
ciation for computational linguistics: Short papers-volume 2, pages 90–94. Association
for Computational Linguistics, 2012.

[97] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. Learning word vectors for sentiment analysis. In Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland, Oregon, USA, June 2011. Association
for Computational Linguistics.

[98] Francois Chollet et al. Keras documentation, convolution1d for text classification.
https://keras.io/examples/imdb_cnn/. Accessed: 2019-08.

