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The wettability of powders plays a critical role in various industrial manufacturing 

processes and products. In particular, in the pharmaceutical industry, examples include wet 

granulation and the dissolution performance of solid doses obtained by powder 

compression. This study aims to develop a characterization method to study the wetting 

properties of powders, and finely divided solids in general, using a closed column packed 

with the material of interest. Using a closed column in contact with a liquid allows us to i) 
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study both the advancing and receding process as the liquid penetrates and is later displaced 

from the column, ii) to characterize the powder composing the porous media inside the 

column in both static and dynamic ways for a wide range of powder-liquid systems, and 

iii) to control (reduce) the characteristic time of the experiments by changing the 

experimental (column height).  

The advancing, receding and bubbling pressure are defined to characterize the system in a 

static way. Analytical solutions are provided to study the dynamics during the capillary 

rise process. The explicit solutions are obtained in terms of the pressure differential and 

the liquid mass, two independent variables in the system that can be measured directly in 

the experiments. The hydrostatic effects and the non-linear pressure dependence on the 

penetration height are considered in the solutions without any approximations. Therefore, 

the solutions are general and can be used to characterize a wide range of solid-liquid 

systems, especially for systems with large capillary pressure. Two non-dimensional 

parameters governing the system are identified: the capillary pressure and the initial 

pressure in the closed column, both normalized by the hydrostatic pressure corresponding 

to the effective column height. The non-dimensional description provides valuable 

information on how to optimize the experimental setup depending on the application. As 

an important example we discuss how to reduce the equilibrium time. 

Experiments were performed using two sets of glass beads, 10‘ά and 45‘ά with 

Polydimenthysiloxane (PDMS) as the model system. The experimental data are fitted with 

the analytical solutions to study different imbibition regimes and obtain the effective 

capillary pressure and permeability. Three imbibition regimes are determined: the 

early/Washburn imbibition, the intermediate and the late imbibition. It is shown that the 
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intermediate imbibition stage is the preferred region to obtain the effective capillary 

pressure and permeability values from fitting. The importance of these different stages and 

their importance to characterize systems presenting a relatively large heterogeneity of pore 

sizes is discussed. After validating the characterization method with the model system, it 

is applied to other solid-liquid systems with larger heterogeneity, including the larger glass 

beads and Deionized water, as well as pharmaceutical powders such as lactose, 

Microcrystalline cellulose (MCC) and alumina. In cases of highly heterogeneous system 

such as lactose and MCC, a spontaneous bubbling process is observed and thus the 

advancing pressure cannot be measured. The contact angle is estimated using the effective 

pressure obtained from the fitting with the analytical solutions. Different column heights 

were used in the experiments with lactose and a reduced time to reach the same completion 

factor is achieved by a shorter column. Performing shorter experiments was shown crucial 

when working with a powder (lactose) that is soluble in the penetrating liquid (water). 
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1. Introduction  

1.1 Motivation and thesis overview 

The wetting of powders plays a critical part in the manufacturing processes of various 

industries, such as food processing [2]ï[4], water infiltration [5]ï[7], mineral handling [8]ï

[10], and especially in pharmaceutical technology [11]. The wettability of both the active 

pharmaceutical ingredient and the excipients provides valuable information to process 

development and product quality control. For example, during the wet granulation process, 

the preferential wettability of one ingredient particle with the liquid binder can cause non-

uniformity in the granules [12]. When blending powders, the shear strain can affect the 

hydrophobicity of the blend and thus impact the dissolution rate of tablets made from that 

blend [13]. The importance of the powder wettability in diverse industries generates 

constant interest for researchers to develop appropriate methods to understand it from a 

fundamental perspective and to be able to characterize the wettability of different powders 

and finely divided solids in general. 

In this thesis, we focus on characterizing the wetting process of powders by capillary rise 

in a closed column. One of the benefits of using a closed column is that both the advancing 

and the receding process can be studied. Also important is that the dynamics during the 

imbibition process can be investigated, and the experimental data can be interpreted with 

analytical solutions, providing fundamental understanding on the dimensionless variables 

that determine the behavior of the system. 

The thesis is divided into seven chapters. The first chapter summarizes some background 

information, including the motivation behind our work and some basic concepts of wetting 
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and contact angle, followed by an overview of the existing approaches to study the contact 

angle in liquid-solid-gas systems, with special focus on those available to characterize the 

wettability of finely divided solids. 

Chapter two provides details on the experimental system design, including the 

experimental setup, material characterization, sample preparation and experimental 

procedures. The description of the experimental procedures explains how the advancing 

and receding processes are investigated with the setup used in our work.  

Chapter three provides analytical solutions for the imbibition process in a closed column. 

The solutions are obtained in terms of liquid mass and the pressure differential as a function 

of time. The hydrostatic effects and a non-linear pressure dependence on the penetration 

front are considered in the solution. Therefore, the solutions presented here are more 

general than those available in the literature and can be used for a wider range of capillary 

pressures than before. A simplified solution is also obtained for the initial stage of the 

imbibition process and it will be compared with the general solution in later chapters. 

The dimensionless form of the analytical solutions is presented in chapter four. Two non-

dimensional parameters governing the evolution of the system are identified. Based on the 

dimensionless analysis, means to optimize the experimental setup and conditions are 

provided. 

The experimental results are presented and discussed in chapter five, six and seven, each 

chapter focuses on a different solid-liquid system. Chapter five addresses the interaction of 

our model systems (glass beads) with the liquid used as reference (Polydimethylsiloxane 

(PDMS)). Chapter six compares the result between the reference liquid (PDMS) with the 

testing liquid (Deionized water). Both static and dynamic ways are used to characterize the 
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system in terms of contact angle, characteristic pore size and permeability. Additionally, 

different stages of the imbibition process are studied, depending on the initial dynamic 

characterization results. In chapter seven, a characterization protocol is summarized based 

on the results presented in chapters five and six. This protocol is then applied to 

pharmaceutical powders and the preliminary characterization results are discussed. A final 

discussion of the results and conclusions obtained in the thesis is presented in chapter eight.  

1.2 Basic concepts: sur face energy, wettability and contact angle  

In this section, we introduce some fundamental concepts commonly used to describe 

wetting. Wetting is a phenomenon that manifests the existence of the attractive forces 

between molecules. When two phases are in contact, for example, solid-liquid or gas-liquid, 

surface tension is a measure of the force per unit length or the energy per unit surface, 

acting on the boundary between the two phases. The  surface energy is the work needed to 

separate the two phases [14]. An extensive discussion on the physical meaning of surface 

tension is provided in the book by Defay and Prigogine [15].  

An indication of the interactions between the solid and two immiscible fluid phases is 

wettability. We are restricting our discussion here to the fluids being a liquid and the 

liquidôs vapor. In this context, the wettability  is  characterized in terms of the solid-liquid-

vapor contact angle — [16]. The contact angle captures the equilibrium balance between 

adhesive and cohesive forces in a three phase system [17]. The work of adhesion is the 

energy needed to separate two different phases while the work of cohesion is the energy to 

separate one phase into two [18], [19]. When the three phase system is in equilibrium, 

illustrated in figure 1.1, contact angle is related to three different interfacial tensions by the 

classical Youngôs equation [20]. 
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These three interfacial tensions are the solid-vapor surface tension ‎ , the solid-liquid 

surface tension ‎ , and the liquid-vapor surface tension ‎ . The line in which the three 

phases meet is called the triple contact line [21], [22]. The case when ‎ ‎ ‎  is 

called complete or perfect wetting and is manifested by a film coating the solid surface 

(— πЈ. The case when πЈ— ωπЈ is called partial wetting, and cases where — ωπЈ 

are called nonwetting [23]. A small contact angle of a solid with water (πЈ— ωπЈ 

indicates a hydrophilic solid surface while a large contact angle (— ωπЈ indicates that 

the solid is hydrophobic. 

 
Figure 1.1 A schematic drawing of a liquid droplet on a solid surface showing quantities in the Young 

equation. 

The Young equation predicts a single contact angle for each material system assuming a 

smooth, homogeneous, ideal surface. This contact angle is usually referred to as the 

thermodynamic equilibrium contact angle, or, static contact angle. In reality, however, 

surfaces are rough and heterogeneous, and liquids will show a range of contact angles on 

such surfaces. When the contact line is moving, the contact angle will, in general, be 

different from the static angle [24]. The movement of an interface in a porous media can 

be divided into two processes: imbibition and drainage. The process in which the wetting 

phase displaces a nonwetting phase is referred as the imbibition, the minimum contact 

angle that can be obtained during this process is the advancing contact angle. Conversely, 

 ὧέί—
‎ ‎

‎
 (1.1) 
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the drainage refers to the process when the nonwetting phase displaces the wetting phase. 

Correspondingly, the maximum contact angle that can be obtained during this process is 

referred as the receding contact angle [25]. 

The difference between the advancing and receding contact angles gives the contact angle 

hysteresis: 

 Ў— — — (1.2) 

  

Major sources causing contact angle hysteresis are  surface roughness [26]ï[30] and 

chemical heterogeneities [31]ï[37]. Contact angle hysteresis can also exist in 

homogeneous surface due to liquid retention or sorption [38]ï[40], or disjoining and 

conjoining pressure that acts in the vicinity of the three phase contact line and causes 

deformation of an elastic solid substrate [41]ï[43]. 

Since we are interested in the wetting process inside a porous media, we shall now 

introduce the concept of capillarity. Capillarity is used to describe the process when liquid 

penetrates in a porous material or a capillary tube. The interfacial forces acting on the 

contact line inside a capillary force the interface to curve, and a difference in the pressure 

(ὴ) between the two phases is given by the Laplace equation: 

 
ὴ

ς‎ὧέί—

ὶ
̆ 

(1.3) 

where g is the surface tension, ὶ is the radius of the capillary tube, and q is the contact angle. 

This pressure differential exerts a net force on the triple contact line that may makes it 

move.  



6 

 

 

When the triple contact line is in motion, the contact angle becomes dependent on the 

velocity of the moving contact line. This contact angle is referred to as the dynamic contact 

angle (larger than the advancing in an imbibition process and smaller than the receding in 

a drainage process). The relation between the dynamic contact angle and the contact line 

velocity has been studied in simple geometries in many different works both 

experimentally [44], [45] and theoretically [46]ï[49]. In synthesis, due to the 

hydrodynamic stress applied to a moving contact line, an effective macroscopic (dynamic) 

contact angle develops [50], [51]. This dynamic contact angle is related to the velocity of 

the contact line (ὺ) through the the capillary number [44], #Á ‘ὺ‎ϳ  where ‘ is the 

viscosity of the liquid. The capillary number is the ratio between the ñmacroscopicò viscous 

and the interfacial forces acting on the interface. It is worthy to mention that due to its 

definition, the scale of the capillary number is shifted and a value of 10-4 is considered 

large as the effects on the dynamic contact angle are considerable [44], [52]. On the other 

hand, a values in the order of 10-6 and lower, were experimentally found to be negligible 

[44].This effect of liquid velocity on the dynamic contact angle is found to be magnified 

by surface heterogeneity [53], including surface roughness and any impurities in the system 

[54]. 

 

1.3 Capillary  hysteresis and pore geometry 

In section 1.1 it is mentioned that using a closed column allows us to study both the 

advancing and the receding process for a given solid-liquid system. In particular, we will 

determine the difference in pressure between the end of the advancing process and the 

beginning of the receding one. This difference between the advancing pressure and the 
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receding pressure can be a result of the contact angle hysteresis, or the heterogeneity of the 

porous media. The existence of a different advancing and receding capillary pressure for 

each pore or capillary tube is straightforward when there is hysteresis in the contact angle. 

However, there are other sources that can contribute to the differences in the capillary 

pressure in a porous media and, in particular, we need to consider the pore geometry. First, 

let us consider the case of a capillary tube. For a single capillary tube, or a bundle of 

capillary tubes with the same radius, this difference in capillary pressure is a result of the 

contact angle hysteresis. However, in practical cases the pore media is heterogeneous, in 

the sense that there is a distribution of pore sizes (Note that we will refer to heterogeneous 

porous media as those porous media in which the pores are not monodisperse). The 

difference in the advancing and receding capillary pressure can be a result of the 

combination of the contact angle hysteresis and the heterogeneity of the pores. Let us then 

consider two models for heterogeneous porous media where there are bundles of parallel 

capillary tubes. In the first case, each of the capillary tubes is a cylinder with uniform radius 

but the capillary tubes are of different radii (figure 1.2a). In the other case, the radius is 

changing within each capillary tube (figure 1.2b). The top of the capillary tubes are all 

connected together and therefore have a common air pressure. We will refer to this pressure 

as the pressure differential.    
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Figure 1.2 Different types of the parallel capillary tubes. (a): The capillary tube is a cylinder that has a 

uniform radius, the radius varies from each tube/cylinder. (b): The radius varies in each of the capillary 

tubes. 

According to the Laplace equation, smaller pores correspond to a higher capillary pressure 

while larger pores correspond to a lower capillary pressure. During the imbibition process 

in both cases shown in figure 1.2, the pressure differential inside the tube increases as the 

liquid penetrates into the capillaries and air is compressed. In both cases, the pressure will 

continue increasing and eventually reach the advancing capillary pressure of the large pores. 

After reaching this capillary pressure, the result is different depending on the geometry. In 

the first case shown in figure 1.2a, the liquid will stop advancing in the large capillaries, 

representing large pores (ὶ), while it still advances in the small capillaries, representing 

small pores (ὶ), because the pressure differential is lower than the advancing pressure of 

the small pores. Since the top of the capillaries are connected, the liquid may recede in 

some of the tubes when the pressure differential reaches the receding pressure for a given 

tube radius. For capillaries with an open top, such receding process will not happen. In the 

case shown in figure 1.2b, the liquid cannot advance further into the next small pore after 

reaching the advancing pressure for large pores, because the next small pore is only 

ὶ ὶ

ὶ

ὶ

a) b) 
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connected through a large pore. In this case, the spontaneous imbibition process stops at 

the capillary pressure of the large pores. In this work we focus on the closed systems where 

the pores are interconnected on the top. In this case the pressure differential can be further 

increased after the liquid stops advancing by injecting air into the common air reservoir 

with a syringe. 

In the first case, after reaching the advancing pressure of large pores, since the capillaries 

are connected on the top, the pressure differential still increases as the liquid continues to 

advance in the small pores. Eventually the pressure will reach the receding pressure of the 

larger pores and the liquid will evacuate from them. Depending on the size of the pores, 

this moment can happen before or after reaching the advancing pressure of the smaller 

pores. Figure 1.3 shows the different scenarios of the receding and advancing pressures for 

different pore sizes. We consider there are two sizes of the pores  ὶ and ὶ, with ὶ ὶ. 

In the case shown in figure 1.3a, the receding pressure of ὶ (ὴ ) is higher than the 

advancing pressure of ὶ (ὴ ). After filling ὶ, the pressure will first reach the advancing 

pressure of ὶ and fill in the smaller pores. At this point, the spontaneous imbibition process 

will stop. If the pressure differential is further increased, for example using a syringe pump, 

the pressure will reach the receding pressure of ὶ and the large pores will be emptied. The 

smaller pores will be emptied later when the pressure reaches its corresponding receding 

pressure ὴ . In this example, however, this is not possible, as air will escape through the 

large tube and the pressure differential will vanish. In the other example, presented in figure 

1.3b, the receding pressure of ὶ is lower than the advancing pressure of ὶ (ὴ ὴ ). 

After reaching ὴ , the pressure will first reach the receding pressure ὴ  and the large 

pores will be emptied before the pressure reaches the advancing pressure of the smaller 
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pores. This scenario is more likely to happen when the porous media is highly 

heterogeneous. 

  

Figure 1.3 Different scenarios of the advancing and receding pressure for two pore sizes. (a): The 

receding pressure of large pores is higher than the advancing pressure of the small pores, ὴ ὴ  

Large pores will be emptied after the liquid fills in the small pores. (b): The receding pressure of the 

large pores is lower than the advancing pressure of the small pores, ὴ ὴ . Large pores will be 

emptied before reaching the advancing pressure of the small pores. 

For the case shown in figure 1.2b, after reaching the advancing pressure of large pores, 

liquid will stop advancing. The receding pressure can be reached by externally increasing 

the pressure differential using a syringe pump, and the liquid will recede from the entire 

capillary after reaching the receding pressure ὴ  of the large pores. A more detailed 

discussion on this geometry is provided in this work by Dullien and Batra [55]. 

A more complicated model geometry for the porous media is presented in figure 1.4. The 

pores are irregularly shaped (although represented by circles to demonstrate the effective 

pore size), randomly distributed and interconnected along the porous media. The pores 

filled with liquid are colored, the color represents the size (orange, grey and blue are the 

small, medium and large pores respectively), the size of the empty pores is represented by 

the color of their border following the same rule. In the example considered in figure 1.4, 

a) b) 
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initially all the pores are filled. As the liquid penetrates in the porous media, a cluster of 

large pores formed a layer (represented by the red solid circles in the figure). This layer 

blocks the liquid from advancing further in the porous media in the same way as in the case 

shown in figure 1.2b before. If the liquid were to continue advancing, it can only go through 

the small pores (orange). If there are no small pores that go through the barrier formed by 

the large pores shown in red in figure 1.4, liquid cannot advance further. Any pores larger 

than this radius can form the layer to block the liquid penetration. On the other hand, the 

receding pressure is the pressure at which the liquid first starts to recede from the porous 

media. Since large pores correspond to a lower receding pressure, liquid will evacuate 

through the connected large pores. Therefore, the receding pressure corresponds to the 

smallest pore needed to form this connection. Any pores larger than this can form a channel 

for the liquid to recede. To conclude, the pore geometry is very complicated in practical 

cases. Accordingly, the hysteresis in capillary pressure is a result of the combination of 

contact angle hysteresis and porous media heterogeneity, the latter includes pore size 

variation and the connectivity of the pores.  

 

Figure 1.4 An example of the randomly distributed pores in the porous media. The solid circles are 

fi lled with liquid. The empty circles have not been filled. 
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1.4 Methods to determine contact angle  

Over the years, researchers have developed various methods to study contact angle and 

wettability. A direct measurement of the contact angle is the sessile drop method. As shown 

in Fig 1.5a, a liquid droplet is placed on a solid surface and the contact angle is then 

measured directly at the triple contact line. Because of its simplicity, it is one of the most 

common methods to measure contact angle. However, this commonly used method is not 

practical in the case of porous materials because it requires a flat, smooth and nonporous 

solid surface for direct measurement. For powder samples, to create a flat, smooth surface, 

they are compacted into a disc or pellet under very high pressure. For pharmaceutical 

powders, the compaction pressure can be up to 210MPa [56]. One concern is that high 

compaction pressure may change the surface properties of the powder, for example, by 

changing to a different molecular orientation [57], or change the surface structure by plastic 

deformation [58]. Hence the contact angle of the compacted disc may not be representative 

of the powder. These problems make it challenging to use the sessile drop method.  

To avoid compacting the powders, an alternative method to prepare the powder sample is 

by packing them inside a column and tap it repeatedly until a homogeneous porosity is 

obtained. Using a packed column allows us to indirectly measure the contact angle through 

the capillary rise process. Using a column, the contact angle can be studied in a static or a 

dynamic way. 

According to Jurinôs law [59], the maximum height of a liquid rising in a vertical capillary 

is reached when the hydrostatics balances the capillary pressure ὴ: 

 Ὤ
ὴ

”Ὣ
 (1.4) 
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From the Laplace equation ὴ ς‎ὧέί—ὶϳ , the contact angle can be obtained by 

measuring the maximum height of liquid penetration inside an open column. One limitation 

for this static method is that, when the capillary pressure is too high, a very long column is 

required to reach the maximum height. For example, a 10m column (and several days if 

not months) is needed to reach the equilibrium in the capillary imbibition of water in a 

wetting material with one-micron size pores! 

An alternative method is to study the dynamics during the imbibition process. In 1921, 

Washburn demonstrated that for an open column, at short times, the square of the 

penetration height is linearly dependent on the penetration time [60] 

 
Ὤ

‎ὧέί—ὶ

ς–
ὸ 

(1.5) 

The contact angle can be extrapolated from the slope of Ὤ vs ὸ. A reference liquid is used 

to determine the effective radius ὶ. Since the hydrostatic pressure is neglected in this 

equation, only the very early stages of the penetration can be used to plot Ὤ vs ὸ. During 

this time, however, the liquid penetrates very fast and dynamic contact angle effects are 

dominant, as a result, the contact angle is dependent on the penetration velocity [61]ï[64] 

as discussed in 1.2. Inertia effects are responsible for additional deviations from the 

Washburn equation during the initial imbibition [65]ï[68]. Another limitation for the open 

column is that only the advancing contact angle can be studied, the receding process cannot 

be achieved with an open column.  
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Figure 1.5 Common methods to determine contact angles: (a) sessile drop method, (b) open column 

method, (c) closed column method. 

Modifications have been made on the open column method simply by closing the top to be 

able to measure the pressure inside the column. Therefore, closing the top of the column 

offers an additional measurement, the pressure differential inside the column.  In 1927, 

Bartell proposed a closed column method in which the column pressure is monitored by a 

pressure sensor [69], [70]. The capillary pressure is obtained through the measurement of 

the static pressure at which the liquid stops penetrating. Dunstan and White studied both 

the advancing and the receding process using a closed column [71]. The receding process 

is studied by increasing the column pressure after reaching the advancing static pressure, 

as a result, the liquid front is forced to recede. Stevens and Ralston also studied the receding 

process, they suggested calculating the capillary retention to obtain the receding contact 

angle [72]. Depalo and Santomaso looked into the dynamics of the capillary rise inside a 

closed column by integrating the column pressure over time [73]. They focused on the 

initial imbibition and during this time overpressure is approximately linearly dependent on 

the height of the liquid rise. This approximation, however, is only valid when the 

overpressure is significantly smaller than atmospheric pressure. In the case of very small 

particles, capillary pressures of the order of the atmospheric pressure is not unusual, and 
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the linear approximation is no longer valid. In addition, the solutions are numerical 

calculations and the analytical solution to the problem was not provided.  

In this work, we will present the analytical solutions for the imbibition process in porous 

media inside a closed column. The solution will include the hydrostatic effects and consider 

the non-linear pressure dependence on the penetration height. Compared to the previous 

solutions, this solution is more general and can therefore be applied to smaller particles. 

Using the analytical solutions, we can characterize the porous media dynamically by fitting 

the solution with the experimental data. We are able to determine the effective capillary 

pressure and permeability during different stages of the imbibition.  
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2. Methodology 

2.1 Experiment set up 

A schematic representation of the experimental system is shown in Figure 2.1. The powder 

sample is packed in an acrylic cylindrical column (height=12.70cm, inner 

diameter=1.27cm) vertically held by clamps and a metal stand. A filter paper and a porous 

disc are used at the bottom to prevent powders from falling out of the column. The top of 

the column is closed by a seal plug with O-rings and then connected to a four-way 

connector. The other three ends of the connector are connected to a syringe (Becton 

Dickinson, 3mL), a pressure sensor (Omega PX409, range: 0-103.4kPa) and the ambient 

air inside the setup with tubes (ETFE tubing from IDEX Health and Science LLC, 

ID=0.0254cm). An effort was made to reduce the dead volume in tubes and connectors in 

order to reduce the total empty volume of the setup and eventually decrease the time to 

reach equilibrium, as we will discuss later in section 7.3. Valves (IDEX shut off valve) are 

used to control the connection to the outside atmosphere (valve 1 in the figure) and the 

syringe (valve 2 in the figure). Pressure change inside the system is monitored by pressure 

sensor connected to a computer. The column containing the powder sample is brought into 

contact with a reservoir of the liquid of interest at the beginning of each experiment. To 

this end, we use a relatively large plastic plate container (diameter=5 inch) to create the 

liquid reservoir. The objective of using a large reservoir is to avoid any significant change 

in the liquid height during the liquid penetration into the column. The plate is placed on a 

scale (Ohaus NV212) to measure the liquid weight in the reservoir. The liquid reservoir 

and the plate were placed on a lift platform. They were lifted up by the platform until the 

surface of the liquid gets in touch with the bottom of the column. A syringe pump (Harvard 
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Apparatus, 703007) is connected to the syringe. It will be used to control the pumping rate 

of the syringe during the receding process. 

 

 

Figure 2.1 A  schematic view of the experimental setup. 

2.2 Experiment materials: particles and liquids 

The particles used to prepare the porous media were 10‘ά and 45‘ά glass beads, lactose 

and microcrystalline cellulose (MCC). The liquids used to wet the particles were 

polydimethylsiloxane (PDMS) and deionized water (DI water). Here we present the 

characterizations of these materials. 

2.2.1 Model System 

For the model system we use glass beads to perform initial experiments and to validate our 

proposed method. The glass beads were chosen as the model system because of their 

simplicity: they are spherical, not porous, and they will not swell or dissolve in water. Their 

particle size distributions were measured by a laser-diffraction analyzer with a Tornado 

Dry Powder System (LS-13320, Beckmann-Coulter) and shown in Table 2.1 and Figure 

sensor
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2.2. The 9-13‘ά glass beads were purchased from Sigma-Aldrich. We will refer to them 

as 10‘ά glass beads in future discussions. The 45-50‘ά glass beads were purchased from 

Polysciences, Inc. Originally the glass beads were 30-50‘ά, they were separated by sieves 

(Dual Manufacturing,  mesh #325, mesh opening =45‘ά) to obtain powders with a narrow 

particle size distribution.  

Particle Ὠ  ‘ά Ὠ  ‘ά Ὠ  ‘ά Ὠ  ‘ά  

9-13‘ά glass beads 4.39 11.03 22.67 8.46 

Table 2.1 Particle size distribution of glass beads. (Ὠ  is the Sauter mean diameter). 

 
Figure 2.2 Particle size distribution of 10ɛm glass beads. 

2.2.2 Pharmaceutical powders 

The model system represents the ideal case. After validating the solutions with the model 

system, we also want to extend this model to study the pharmaceutical powders. We chose 

lactose and MCC because they represent two different material properties we may 

encounter in practical scenarios. Lactose will dissolve in water, we will use a saturated 

solution as the wetting liquid. MCC can swell after wetted, as a result, the structure of the 

porous media can change. Their particle size distributions were presented in Table 2.2 and 

Figure 2.3. 
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Particle Ὠ  ‘ά Ὠ  ‘ά Ὠ  ‘ά Ὠ  ‘ά 

Lactose 10.73 63.00 118.67 15.80 

Microcrystalline Cellulose (MCC) 24.1 73.5 167.3 52.4 

Table 2.2 Particle size distribution of lactose and MCC (Ὠ  is the Sauter mean diameter). 

  

Figure 2.3 SEM images of a) lactose, b) MCC (Avicel 101). 

2.2.3 Wetting liquids  

Polydimethylsiloxane (PDMS) and deionized water (DI water) are used as wetting liquids. 

Because of its low surface tension, PDMS is chosen as a reference liquid. It is assumed that 

particles have zero contact angle when wetted by PDMS, the ὧέί— ρȢ The PDMS 

used in experiments was obtained from Gelest. Inc (DMS-T11). DI water is obtained from 

Direct-Q 3 UV Water Purification System (MilliporeSigma). Their properties are listed in 

Table 2.3. 

Wetting liquid 
Density 

(ὯὫȾά ) 

Viscosity 

(mὖὥϽί) 
Surface tension 

(άὔȾά  

PDMS 935 9.35 20.1 

DI water 1000 1.00 72.8 

Lactose Saturated solution 1071 1.10 71.6 

Table 2.3 Properties of wetting liquids at 20ęC, values for lactose saturated solution were taken from 

[73]. 

2.3 Sample preparation and experimental procedure 

Before packing the glass beads in a column, they are cleaned in the ultrasonic cleaner to 

remove any impurities or contaminants attached to the surface. They are cleaned first by 

acetone, followed by water, and then dried in the oven. The glass beads were packed in a 

a) b) 
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column by adding them incrementally and compressing with a plastic rod until a desired 

packing porosity • is achieved. Then, the column is closed by the plug with an O-ring seal 

discussed before. The packed and sealed column is then placed on the metal stand through 

the clamps and connected to the pressure sensor. At this time, valve 2 is closed for the 

advancing process while valve 1 is open. The column is thus open to atmosphere. Before 

staring the experiment, we pre-wet the porous disc with the same liquid that will penetrate 

into the column. Experiments start by lifting the liquid container until the bottom of the 

column makes contact with the liquid. After a short time, when the liquid penetrated 

approximately 5mm into the powder sample, the column is closed. Pressure change is then 

recorded every second using software USBH Application (OMEGA Engineering, Inc.). 

Liquid weight change is recorded using MATLAB (Mathworks, Inc.).  

The objective of the pre-wetting procedure before the liquid penetration is to prevent the 

formation of bubbles escaping at the bottom of the column. In some of our experiments we 

noticed there was bubble forming at the bottom of the column after it was brought into 

contact with the liquid. This phenomenon was also observed by Iveson et al [74]. They 

reported that a sudden pressure increase inside the column would cause the air to flow 

through the support at the bottom. In our case, we use porous discs with pore openings of 

40‘ά, which is larger than the pore sizes of the porous media. When the liquid is 

penetrating very fast in the beginning, it may leave some air pockets in the porous media. 

These air pockets will be emptied later when the column pressure builds up, bringing noises 

in the pressure and liquid weight measurement. To avoid this problem, we first estimate 

the amount of liquid to completely wet the porous disc. Then before putting column bottom 

into contact with the liquid, we would use that amount of liquid to wet the porous disc so 
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that we make sure there are no air pockets left in it. After implementing this pre-wetting 

procedure, no more bubbles were observed at the beginning of the experiment. 

As the liquid penetrates into the column, the air pressure in the dry part of the column 

increases. The expected curves of the pressure differential (blue curve) and the liquid 

weight (red curve) left in the container is plotted in figure 2.4a. Eventually the pressure 

inside the column reaches equilibrium, the advancing process has finished. The pressure 

differential measured at the end of the advancing process is the advancing pressure. Then, 

we open valve 2 and use the syringe pump to start injecting air into the column. As the 

syringe compresses the air in the column, the overhead pressure will increase again. The 

expected curves of the receding process is presented in figure 2.4b. At a certain pressure, 

the liquid begins to recede from the column. Pressure at this point corresponds to the 

receding pressure. As the syringe continues injecting air into the column and the pressure 

continues to increase, more liquid would leave the column. At some point the emptied 

pores form a connected path from the top of the column to the bottom, and air would be 

released from the bottom of the column. This process can be observed as bubbles start 

forming and releasing from the bottom of the column and into the liquid reservoir. Pressure 

drops drastically as bubbles are released. The highest pressure reached just before the first 

bubble is released is the bubbling pressure.  
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Figure 2.4 Expected curves for the pressure and liquid weight during a) advancing process, b) receding 

process. 

After finishing the experiments, the powder sample is emptied from the column, they are 

then discarded in a waste container for powders or cleaned for reuse. If reusing them, they 

will be collected in a container and together with the porous discs to be cleaned following 

the same cleaning procedures mentioned in the beginning of this section. The 45‘ά glass 

beads are the only particles that are being reused because they are a lot more expensive 

than any other particles used in this project. Once they are dried in the oven, they are sieved 

again by the sieve with mesh opening of 45‘ά before they are ready to use in the next 

experiments. The columns are wiped by paper towels to remove any leftover particles and 

liquids. They are then air dried in the drying rack in the lab. We use two different sets of 

columns and porous discs for PDMS and DI water so that the liquid will not get mixed up. 

 

 

 

 

 

a) b) 
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3. Analytical Solutions 

In this chapter, we derive the analytical solutions for the capillary rise in a porous media. 

We start with the governing equation for this process, followed by discussing a linear 

approximation used to relate the pressure differential with the penetration front. Then we 

solve the differential equation to obtain a full solution in terms of the liquid uptake and the 

pressure differential. In this full  solution, the hydrostatic effects are included, as well as 

the non-linear pressure dependence on the penetration front. Finally, we will discuss a 

simplified case for the beginning stage of the capillary rise, which we call the modified 

Washburn solution Equations governing capillary rise.   

3.1 Equations governing the capillary rise 

To derive the analytical solution of capillary rise in a closed column, we start with Darcyôs 

law[75]. In 1856, Darcy proposed that when a fluid with viscosity ‘ is passing through a 

porous media, the flow discharge is proportional to the pressure drop over a certain distance 

in the porous media,  

 ή
‖

‘
ὴɳ (3.1) 

where ‖ is the permeability of the porous media, according to the Kozeny-Carman equation, 

the permeability is related to the physical properties of the materials used [76]ï[78]. ή is 

the specific discharge or discharge per unit area, often referred to as the Darcy velocity. 

This velocity, however, is not the velocity at which the fluid is advancing or moving 

through the porous media. This velocity is also called the superficial velocity ό, and is a 
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hypothetical flow velocity calculated as if there is only, without taking into account the 

presence of porous medium, 

 
ό

ὗ

Ὓ
 

(3.2) 

Where ὗ is the volume flow rate of the fluid and Ὓ is the cross sectional area. We assume 

the porous media is completely saturated by the fluid and there is on air trapping in the 

porous media, Darcy velocity is related to the fluid velocity ὨὬȾὨὸ by porosity •: 

 ὨὬ

Ὠὸ

ή

•
 

(3.3) 

Note that we will neglect the inertia effects that might happen in the beginning of the 

capillary rise process [79]ï[82]. We also assume that the powder bed is homogeneous and 

isotropic, under this assumption, the permeability across the porous media is uniform, the 

liquid advancing process can be treated as a one-dimensional transport problem.  

The schematic drawing of the experiments is presented in figure 3.1. A cylindrical column 

with closed top is vertically packed with powder sample. This packed column has a length 

Ὄ and porosity •. The column bottom is in contact with a wetting liquid, and the length of 

the column immersed in the liquid is Ўὰ. There will be a gauge pressure ὴ at the bottom of 

the column that is different from the atmospheric pressure ὴ at the interface of liquid-air. 

For simplicity, we will neglect this gauge pressure because Ўὰ is only a few millimeters in 

all experiments and the resulting gauge pressure is relatively small. As we discussed, 

initially, the column top is open to atmosphere. When the liquid reaches a certain height 

Ὤȟ the column is closed (figure 3.1a). This is the initial time ὸ π. After it is closed for 

time ὸȟ liquid height reaches Ὤ (figure 3.1b). 
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Figure 3.1 Sketch of pressure and volume change when liquid penetrates in a closed column packed 

with powders. a): initial condition, the column is closed to the outside when the liquid penetrates to 

height Ὤ, the initial pressure inside the column is ὴ. b): the liquid front reaches height Ὤ, the pressure 

of the dry part inside the column is ὴ ὴ. 

According to Washburnôs work on the dynamics of capillary flow [60], the total driving 

force for the liquid penetration inside the porous media consists of three separate pressures: 

the unbalanced atmospheric pressure, which is the air pressure difference between the 

advancing and stationary interfaces. In our case, this is the pressure differential ὴ measured 

by the pressure sensor. The second component of the driving force is the hydrostatic 

pressure ὴ  ”ὫὬ Ὤ , where ” is the density of the wetting liquid and Ὣ is the 

gravitational acceleration. We assume that the pressure drop over the dry part of the column 

is negligible, due to the significant difference in the viscosity and density between the 

wetting liquids and the air. The last pressure term contributing to the driving force is the 

capillary pressure ὴ. As mentioned in section 1.2, the capillary pressure is the pressure 

difference between the liquid and air and is represented by the Laplace equation. In this 

work we consider this capillary pressure is independent of the position of the liquid front 

and the advancing velocity [83], [84]. Adding these three pressures we obtain the total 

driving force for the liquid penetration process inside a closed column: ɫὴ ὴ ὴ

Ўὰ 

liquid 

powder 

Ὤ 
ὴ
ὴ 

ὴ liquid 

Ὤ 

b) a) 

ὴ 

ὴ ὴ 

Ὄ 
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”ὫὬ Ὤ . Combining this driving force with Darcyôs law and replace the Darcy velocity 

with the fluid velocity ὨὬȾὨὸ: 

 •
ὨὬ

Ὠὸ

‖

‘

ὴ ὴ ”ὫὬ Ὤ

Ὤ Ὤ
 (3.4) 

Equation 3.4 is the governing equation of the liquid penetration process in the porous media 

in terms of the pressure differential ὴ and the penetration height Ὤ. In order to find the 

dynamics of liquid penetration, we need to find the relation between the penetration height 

and the pressure differential. In the schematic drawing in figure 3.1, when the column is 

closed, the pressure above the liquid front is in equilibrium with the outside and it is 

therefore equal to the atmospheric pressure ὴ. The initial volume of the air in the column 

is •Ὄ Ὤ Ὓ. After the liquid penetrates to height Ὤ, the pressure of the dry part in the 

column above the advancing front is now larger due to compression. This pressure is ὴ

ὴ and the air volume becomes •Ὄ Ὤ ὬὛ. Assuming that the air behaves as an ideal 

gas at constant temperature, this is an approximation for typical capillary pressures in 

powder systems [85]. we can use the ideal gas law to relate the pressure increase to the 

penetration height, 

 •ὴ Ὄ Ὤ Ὓ •ὴ ὴ Ὄ Ὤ ὬὛ (3.5) 

Where Ὓ is the cross section area of the column. From equation 3.1 we can obtain: 

 Ὤ Ὄ Ὤ
ὴ

ὴ ὴ
 (3.6) 

Ὄ is an effective height of a powder column, it represents the total empty space inside the 

column ὠ •ὛὌ. In the most ideal case, as shown in figure 3.1, when the entire column 
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is fully filled with powders and no extra empty space is introduced, the effective height Ὄ 

equals to the physical height of the powder column. In the experiments, however, the 

column is not completely filled with powders and there is also empty space in the 

connections, tubes and any other dead volume that comes with the setup. As a result,  Ὄ 

will be higher than the physical height of the powders packed in the column. In section 5.3 

we will provide methods to estimate this effective height. 

When ὴ is very small comparing to ὴ, then ὴ ὴ can be approximated by ὴ and the 

liquid height Ὤ can be approximated to depend linearly on the pressure differential ὴ. In 

fact, in this case equation 3.6 can be written as Ὤ ὑὴ where ὑ is a constant ὑ Ὄ

Ὤ Ⱦὴ . We will refer this approximation as the ñlinear approximationò in future 

discussions. This approximation is valid at the beginning of the capillary rise or at all times 

if ὴ is also significantly small compared to ὴ. This linear approximation was used by Wei 

[86] and Santomaso [73] to solve the problem numerically. In their experiments, the 

pressure differential is small and they focused on the beginning part of the capillary rise 

process, where this approximation is valid. In this chapter, we will derive implicit 

analytical solutions for this process and we will include the full pressure dependence in the 

solutions so that it can be used in cases when the pressure differential is large. 

 

3.2 Liquid mass uptake solution 

In the governing equation (3.4) there are two variables, liquid front Ὤ and the pressure 

differential ὴ. In order to obtain a solution to it we need to obtain a differential equation 

for one of them above. In general, during the experiments it can be difficult to determine 

the position of the liquid front by optical observation because of its fuzzy appearance. 
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Instead people usually use the liquid uptake ά in the porous media to calculate the liquid 

front Ὤ, under the assumption that the liquid can fully fill all the available pores of the 

powder column. Liquid front Ὤ and mass ά are related through the density ” of the liquid, 

the cross sectional area Ὓ of the column and the porosity • of the packed powder, 

 Ὤ
ά

•”Ὓ
Ȣ (3.7) 

Combining Equation (3.7) with (3.6) we obtain the equation relating liquid uptake with the 

pressure differential: 

 ὴ
άὴ

ὓ ά ά
ȟ (3.8) 

Where ά  is the initial liquid uptake when the column is open to atmosphere. ὓ ”ὠ

•”ὛὌ is the amount of liquid that can fill in all the empty space in the experiment setup. 

We then replace Ὤ and ὴ in equation 3.4 with Equation 3.7 and 3.8, to obtain a governing 

equation in terms of liquid uptake:   

 
Ὠά

Ὠὸ

‖•”Ὓ

‘

ὴ
άὴ

ὓ ά ά

ά ά

Ὣ

•Ὓ
 (3.9) 

To solve Equation 3.9, we first separate the variables: 

 ά ά ὓ ά ά

ὴ•Ὓ Ὣά ά ὓ ά ά ὴ•Ὓά
Ὠά

‖”Ὓ

‘
Ὠὸ   

(3.10) 

Then we write the left hand side using partial fractions decompositions, to obtain: 
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ὃά

Ὣά ά

ὄά ὅ

ά ά
Ὠά

‖”Ὓ

‘
Ὠὸ (3.11) 

Where άȟά  are roots of the denominator in the left hand side of Equation 3.10 and ά

ά , ά  is the amount of liquid uptake when it reaches equilibrium. Integrating both sides 

on equation 3.11, assuming that ὴ is constant (as discussed in section 1.2 and section 3.1, 

this can be done for capillary numbers ὕρπ   ) and using the initial condition that 

άὸ π π, we obtain the solution to equation 3.9: 

 
ὃ

Ὣ
ὄ ά

ὃά

Ὣ
ÌÎ

ά

ά ά
ὅ ὄά ÌÎ

ά

ά ά

‖”Ὓ

‘
ὸ (3.12) 

The constants are in terms of ά , ά  and ά : 

 ὃ
ά ὓ ςά ά ά ὓ ά

ά ά ά
 (3.13) 

 ὄ
ά ὓ ςά ά ά ὓ ά

Ὣά ά ά
 (3.14) 

 ὅ
ά ὓ ά

Ὣά
 (3.15) 

Equation 3.12 is the implicit analytical solutions for the liquid uptake as a function of time 

in the most general case. The hydrostatics and the effect of the pressure differential in the 

closed column were both included. In the experiments we record the liquid weight change 

over time, the unknown parameters in Equation 3.12 are the permeability ‖ of the porous 

media and the capillary pressure ὴ. We can fit the experiment using this solution to 

determine the permeability and the capillary pressure. In Chapter 5 we will show the results 

of these fittings. 
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3.3 Pressure solution 

One of the advantages of using a closed column is that we are now able to monitor the 

pressure differential as an additional direct measurement. In some cases, when the total 

liquid uptake is so small, e.g. less than 1g, but the scale resolution is only 0.01g and the 

resolution is not enough. However, using pressure will provide higher resolution because 

the column pressure can increase to thousands of pascals. To derive a solution in terms of 

pressure, we also start with the governing equation obtained in section 3.2, then replace Ὤ 

by ὴ using equation 3.6. By taking the derivatives on both sides of equation 3.6 we also 

obtain:  

 ὨὬ

Ὠὸ

Ὄ Ὤ ὴ

ὴ ὴ

Ὠὴ

Ὠὸ
 (3.16) 

After replacing Ὤ, ὨὬὨὸϳ  in equation 3.4 with (3.6) and (3.16) we obtain: 

 
Ὠὴ

Ὠὸ

‖ὴ ὴ

•‘ὴ Ὄ Ὤ

ὴ ὴ ὴ ὴ

ὴὌ ὴὬ
”Ὣ (3.17) 

Using separation of variables, equation 3.17 can be written as: 

 
Ὤὴ Ὄὴ

ὴ ὴ ὴ ὴ ὴ ὴ ”ὫὬὴ Ὄὴ
Ὠὴ

‖

•‘ὴ Ὄ Ὤ
Ὠὸ (3.18) 

The procedures to solve this equation is similar to the weight solutions, where we also 

assumed that ὴ is constant. We write the LHS of equation 3.18 using partial fraction 

decomposition to obtain: 

 
ὃὴ

ὴ ὴ

ὄὴ

 ὴ ὴ

ὅὴ Ὀ

ὴ ὴ
Ὠὴ

‖

•‘ὴ Ὄ Ὤ
Ὠὸ (3.19) 
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Where ὴȟ ὴ are the roots of denominator on the LHS of equation 3.18 

 ὴȟ
ρ

ς
ὴ ὴ ”ὫὌ ὴ ὴ ”ὫὌ τ”ὫὬὴ ὴὴ  (3.20) 

Given that ὴ π, ὴ π is the equilibrium pressure reached in experiments. Integrate 

both sides of equation 3.19 and using the initial condition that ὴὸ π π, we obtain the 

solution to equation 3.19: 

 

ὃÌÎ
ὴ

ὴ ὴ

ὃὴ

ὴ ὴ
ὅὴÌÎρ

ὴ

ὴ
ὅὴ Ὀ ÌÎρ

ὴ

ὴ

‖

‘•ὴ Ὄ Ὤ
ὸ 

(3.21) 

ὃȟὄȟὅ and Ὀ  are constants: 

 
ὃ

Ὄ ςὬ

ὴὴ ὴ
 (3.22) 

 ὄ ὅ (3.23) 

 
ὅ

Ὤ ὴὴ ὴ ὴὴ Ὄ ςὬ

ὴὴ ὴὴ ὴ ὴ ὴ
 (3.24) 

 
ὅ

Ὤ

ὴὴ
 (3.25) 

Equation 3.21 is the implicit solution for the liquid penetration process in terms of the 

pressure differential as a function of time in general case. In the experiments we record the 

pressure differential data over time, then we fit the experimental data using this solution to 

obtain the permeability ‖ and the capillary pressure ὴ of different solid-liquid systems. In 
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Chapter 5, 6 and 7 we will fit  these solutions to the experimental data and discuss the 

fittings. 

3.4 Modified Washburn solution 

In this section, we will derive solutions for the initial stage of the capillary rise in a closed 

column. In the beginning of the capillary rise, the hydrostatic effects are negligible because 

the penetration height is very small. The same goes for Washburn equation where the 

hydrostatic effects are neglected. Since we are using a closed column, we will refer to the 

solutions as the modified Washburn solution. 

For capillary rise in an open column, the pressure differential is zero. After neglecting the 

hydrostatic effects, the only term contributing to the driving force is the capillary pressure. 

Consider a case where Ὤ π, we then write the governing equation from equation 3.4:  

 Ὤ
ὨὬ

Ὠὸ

‖ὴ

‘•
 (3.26) 

Solving equation 3.26 and enforcing the initial condition Ὤὸ π π we obtain 

Washburn Equation [60]: 

 Ὤ
ς‖ὴ

‘•
ὸ (3.27) 

According to Washburn equation, the penetration height is proportional to the square root 

of the penetrating time. This equation applies to the initial stage of the capillary rise process 

in an open column where the hydrostatic pressure is negligible.  
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To obtain the modified Washburn solution for a closed column, we first write the governing 

equation. In closed columns the pressure differential is no longer zero. After neglecting the 

hydrostatic effects we obtain the governing equation: 

 •
ὨὬ

Ὠὸ

‖

‘

ὴ ὴ

Ὤ Ὤ
 (3.28) 

In Equation 3.28 there are two variables: the penetration height Ὤ and the pressure 

differential ὴ as we are assuming that ὴ is a constant (as previously discussed). In closed 

columns we have the pressure differential as a measurement in addition to the penetration 

front/liquid uptake, we will write this modified Washburn solution in terms of pressure. 

Although the pressure differential is not zero in a closed column, in the beginning stage, it 

is still very small comparing to the atmospheric pressure. Therefore we can use the linear 

approximation discussed in section 3.1 and write equation 3.6 as Ὤ ὑὴ, where ὑ is a 

constant ὑ Ὄ Ὤ Ⱦὴ. We replace Ὤ with ὴ in the equation 3.28 and write it in terms 

of pressure: 

 •
Ὠὴ

Ὠὸ

‖

‘

ὴ ὴ

ὑὴὬ
  (3.29) 

During the initial stage, when the pressure differential is significantly smaller than the 

capillary pressure ὴ, we can also neglect it on the right-hand-side of equation 3.29. 

Solving it and enforcing the initial condition ὴὸ π π we obtain the modified 

Washburn solution for a closed column: 

 
Ὤ

ὑ
ὴ
ὴ

ς

‖ὴ

‘•ὑ
ὸ (3.30) 
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The pressure term ὴ  is proportional to the penetration time. In cases when Ὤ

π, then the constant ὑ ὌȾὴ, and the solution becomes: 

 ὴ
ς‖ὴ

‘•ὑ
ὸ (3.31) 

Similar to the original Washburn equation, the pressure differential depends linearly on the 

square root of the penetration time. Remember that this equation is only valid for the initial 

stage of the capillary rise. In Figure 3.2 we plot the entire capillary rise duration using this 

modified Washburn solution (equation 3.30) together with the full solution in terms of 

pressure (equation 3.21), using the same parameters (‖, Ὄ, Ὤ, ὴ, ὴ, ‘, •): 

  
Figure 3.2 Plot the two solutions in terms of pressure as a function of time. The red dashed line 

represents the modified Washburn solution. The black solid line represents the full solution. a) 45ɛm 

glass beads with PDMS; b) 45ɛm glass beads with DI water. 

It is easy to tell from figure 3.2 that the differences between the two solutions are very 

small when the pressure differential is small. As it builds up in the column, the assumptions 

we made to obtain the modified Washburn solution are not valid. The height of the 

penetration front is not proportional to the pressure differential. The pressure differential 

becomes significant and cannot be neglected on the right-hand-side of equation 3.29. In 

a) b) 
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figure 3.2, as the pressure differential increases, the curve representing the full solution 

deviates from the modified Washburn solution and eventually saturates at certain pressure. 

The reason for the separations of the two solutions at large pressure can be the significance 

of the hydrostatic effects, or the increase of the pressure differential in the column. In the 

next chapter, we will give a more detailed discussion on the dimensionless parameters 

governing the evolution of the capillary rise experiments. We will also discuss the 

significative contributions coming from the hydrostatic effects and the pressure differential. 

In Chapter 5, we will use this modified Washburn solution to fit with the initial stage of 

the experiments and compare the fitting results with the full solution.  
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4. Dimensionless discussion 

In Chapter 3 we derived the analytical solutions in terms of liquid uptake and pressure 

differential for the capillary rise process in a closed column. The solutions will later be 

used to fit with experiments in Chapter 5. In this chapter, we will write the equations in 

dimensionless forms and identify the dimensionless parameters that are responsible for the 

dynamics of the capillary rise process with different liquids on a given particle system. We 

will also discuss how these dimensionless parameters can be monitored in the experiment 

setup to optimize the capillary rise experiments, especially by reducing the saturation time.  

4.1 Nondimensional equation and implicit solutions in an open 

column 

In Chapter 3.1 we obtained the governing equation in terms of liquid front when liquid is 

penetrating into the porous media: 

 
•
ὨὬ

Ὠὸ

‖

‘

ὴ ὴ ”ὫὬ Ὤ

Ὤ Ὤ
 

(3.4) 

Note that in this chapter of dimensionless discussion, we will consider the case when Ὤ

π for simplicity. When the column is open to atmosphere, the pressure differential ὴ π, 

and the initial pressure ὴ is no longer included in the equations. We then choose the 

capillary pressure ὴ to characterize the system. For an open column, the capillary rise 

stops when the capillary pressure is balanced by the hydrostatics. This equilibrium height 

Ὤ  is also known as the Jurinôs length [59] it can be obtained as: 

 ὴ ”ὫὬ (4.1) 

Using Ὤ as the characteristic length we obtain the governing equation for an open column 

in the dimensionless form: 
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‗
Ὠ‗

Ὠ†
ρ ‗ᴂ  

(4.2) 

Where ‗ ὬὬ ϳ is the dimensionless height and † ὸὸϳ  is the dimensionless time. For 

an open column, the characteristic time is given by ὸ •–Ὤ ‖ὴϳ

•–ὴ ‖”Ὣ Ȣϳ  

It should be noted that in Equation 4.2 there is no dimensionless parameters present, 

therefore, the solution to this equation is universal, it does not depend on the fluid or the 

porous media. Washburn derived an implicit solution for an open capillary [60], Green and 

Ampt also obtained the solution independently in their work on the soil infiltration [82]: 

 ‗ ÌÎ ρ ‗ †ᴂ (4.3) 

 

A different approach is to write the solutions with the Lambert function ὡ, discussed by 

Barry [87], [88] and more recently, Fries and Dreyer [79], [89]: 

 ‗† ρ ὡ Ὡ  (4.4) 

 

Where the Lambert function ὡ is defined by ὡ ὼὩ ὼ [90]. 

4.2 Nondimensional equation and implicit solutions in a closed 

column 

In the case of a closed column, the pressure differential ὴ is no longer zero. It is related to 

the initial pressure ὴ and the effective length Ὄ. This initial pressure can be monitored by 

putting the experiment setup inside a closed chamber. In our experiments, it is equal to the 

atmospheric pressure. We will use this initial pressure to derive an independent 

dimensionless pressure “ ὴ ”ὫὌϳ , we refer to it as the normalized initial pressure.  

Recall in Chapter 3.1, Ὄ is an effective length representing the empty space of the 

experiment setup. ”ὫὌ represents the hydrostatic pressure when the column of a length Ὄ 
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is fully filled with liquid. We can then use Ὄ to obtain another dimensionless number “

ὴ ”ὫὌϳ Ὤ Ὄϳ , it is the ratio of the capillary pressure to the hydrostatic pressure. We 

refer to it as the normalized capillary pressure. It is also the reverse of the Bond number. 

In cases where the Bond number is small, the hydrostatic effects can be neglected.  

Now we can use the characteristic length Ὄ and the characteristic pressure ”ὫὌ to 

nondimensionalize the governing equation 3.4: 

 
‗
Ὠ‗

Ὠ†
“ “ ‗  

(4.5) 

Where the new dimensionless height ‗ ὬὌϳ , the new dimensionless pressure “

ὴȾ”ὫὌ, and the dimensionless time † ὸȾὸ, with ὸ •–Ὄ Ὧ”Ὣϳ . 

Similarly, Equation 3.6 which relates Ὤ and ὴ can also be written in dimensionless form 

following the same dimensionless parameters ‗ and “: 

 
“ “

‗

ρ ‗
 

(4.6) 

Then we replace “ in the governing equation to obtain a differential equation in terms of 

the penetration height: 

 
‗
Ὠ‗

Ὠ†
“ “

‗

ρ ‗
‗  

(4.7) 

After separation of variables: 

 ‗ρ ‗

‗ ρ “ “ ‗ “
Ὠ‗ Ὠ†  

(4.8) 

To solve Equation 4.8, we write the left hand side using partial fraction decomposition, to 

obtain: 
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 ‗ ρ

‗ ‗

‗

‗ ‗

ρ ‗

‗ ‗

‗

‗ ‗
Ὠ‗ Ὠ†  

(4.9) 

Where ‗ and ‗ are roots of the denominator on the left hand side of Equation 4.8: 

 ‗ȟ
ρ

ς
ρ “ “ ρ “ “ τ“  (4.10) 

The physical meaning of ‗ and ‗ is the possible dimensionless equilibrium heights that 

can be reached in experiments. Considering that they satisfy ‗ ‗, it can also be proven 

that  ‗ ρ and ‗ ρ. The equilibrium height in a closed column Ὤ  can then be 

obtained as Ὤ ‗Ὄ. It can also be proven that ‗ is bounded by 

 ‗
Ὤ

Ὄ
ÍÉÎ ρȟ

“

ρ “
  (4.11) 

Integrating both sides on Equation 4.9 and using the initial condition ‗† π π we 

obtain the implicit solution for the liquid front as a function of time in a closed column: 

 
‗

‗ ρ

‗ ‗
‗ÌÎρ

‗

‗

ρ ‗

‗ ‗
‗ÌÎρ

‗

‗
†  

(4.12) 

This solution is a general solution that includes the hydrostatic effects and the pressure 

differential effects in a closed column. 

Another measurement of the experiment is the pressure differential ὴ. We can also obtain 

a dimensionless solution in terms of pressure following the same procedures we use for 

liquid front. The equation relating ‗ with “ can be written as: 

 ‗
“

“ “
 (4.13) 
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Replacing ‗ with Equation 4.13 in the governing equation we obtain the governing 

equation in terms of pressure: 

 “

“ “

“

“ “

Ὠ“

Ὠ†
“ “

“

“ “
  (4.14) 

After separation of variables: 

 ““

“ “ “ ρ “ “ “ ““
Ὠ“ Ὠ†  (4.15) 

Similar to the solutions for the height equation, the roots “ȟ“to the denominator “

ρ “ “ “ ““ π are possible equilibrium pressure for the capillary rise 

process.  

 “ȟ
ρ

ς
ρ “ “ ρ “ “ τ““  (4.16) 

Given that “ “, it is obvious that “ π and “ π. The equilibrium pressure during 

the capillary rise is equal to ὴ “”ὫὌ. The solution to Equation (4.15) can be found 

after writing the left hand side by partial fraction decomposition and then integrating both 

sides, the initial condition is “† π π. 

 “

“ “
“ “ ÌÎρ

“

“

““

“ “ “ “
ÌÎρ

“

“

““

“ “ “ “
ÌÎ ρ

“

“
†  

(4.17) 

Equation 4.17 is the implicit solution for the pressure differential as a function of time 

during the capillary rise process in a closed column. It is a general solution that includes 

the hydrostatic effects and the pressure differential effects. 
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Now that we have the implicit solutions for a closed column in terms of the liquid front 

(Equation 4.12) and the pressure differential (Equation 4.17), we can use them to obtain 

the characteristic time to reach equilibrium. The dimensionless equilibrium time † is 

defined as the time it takes for the liquid front to reach a certain completion fraction ‎ of 

the equilibrium height ‗, or for the pressure differential to reach a certain completion 

fraction ‎ of the equilibrium pressure “. 

For the case of using solution in terms of the liquid penetration height, at the given height 

‎‗, the equilibrium time † can be obtained by replacing ‗ by ‎‗ in Equation 4.12: 

 
† ‎‗

‗ ρ

‗ ‗
‗ÌÎρ

‎‗

‗

ρ ‗

‗ ‗
‗ÌÎρ ‎  (4.18) 

For the case of using solution in terms of the pressure differential, at the given pressure 

‎“, the equilibrium time † can be obtained by replacing ὴ by ‎“ in Equation 4.17: 

 †
‎“

“ ‎“
“ “ ÌÎρ

‎“

“

““

“ “ “ “
ÌÎρ ‎

““

“ “ “ “
ÌÎ ρ

‎“

“
  

(4.19) 

Both Equation 4.18 and 4.19 can be used to study the effects of the dimensionless 

parameters have on the equilibrium time, we will discuss more details on this topic later. 

4.3 Penetration dynamics depending on ⱫἫ and Ⱬ  

In this section, we will discuss how the dimensionless parameters affect the dynamics of 

the capillary rise experiments in a closed column. We will consider two different scenarios. 

Firstly, we fix the experiment setup and consider the effect of different values of the 
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capillary pressure on the penetration dynamics. In this case, the only parameter that is 

changing is the capillary pressure ὴ. With a fixed experiment setup, ὴ  and Ὄ are 

constants. Different values of the capillary pressure may be introduced by using particles 

of different contact angles but similar particle sizes, so the permeability of the porous media 

is similar. The second case is the opposite of the first one, we fix the capillary pressure ὴ 

and study the effect of different values of  ὴ and Ὄ. For this case, we will use a given solid 

and liquid system with different experiment setups where either ὴ or Ὄ is changing. The 

initial pressure ὴ can be monitored by putting the entire setup in a closed chamber. 

Different values of the effective length Ὄ can be achieved by changing the empty space of 

the setup, such as using a longer column. Note that when varying Ὄ, both “ and “ are 

changing simultaneously, but the ratio ‌ between them remains the same: “ ‌“.  

For the first case, since the setup is fixed, Ὄ is a constant, we will use the dimensionless 

variables discussed in section 4.2, which are ‗Ƞ“Ƞ†. The corresponding characteristic 

scales used to obtain these dimensionless variables are Ὄȟ”ὫὌȟὸ , recall that ὸ

•–Ὄ Ὧ”Ὣϳ , they all remain constant and are independent of the only changing 

parameter ὴ. In the second scenario, since ὴ is fixed while ὴ and Ὄ are changing, we 

will use the dimensionless variables ‗Ƞ“Ƞ†ᴂ discussed in section 4.1. As in the open 

column case, the dynamics is also independent of the experiment setup. The corresponding 

characteristic scales Ὤȟὴȟὸ , with ὸ •–ὴ ‖”Ὣϳ , are independent of the 

changing parameters ὴ and Ὄ and will remain constant in this case. These two groups of 

dimensionless variables are related by the following equations: ‗ “‗, “ ““ᴂ and 

† “†. 
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4.3.1 Penetration dynamics depending on ▬Ἣ 

We first look at the dynamics of the penetration height under different values of the 

capillary pressure ὴ. We plot the evolution of penetration front over time in dimensionless 

forms: ‗ and †. We consider two cases of different values of the normalized initial pressure 

“: “ πȢυ ρ (Figure 4.1a) and “ ς ρ (Figure 4.1b). In both cases (“ ρ and 

“ ρ, the equilibrium height increases with the capillary pressure and approaches the 

maximum height Ὄ (‗ ρ asymptotically. 

  

Figure 4.1 The evolution of the dimensionless penetration front over time under different values of the 

normalized capillary pressure. a): “=0.5 <1, b) “=2 >1. 

Here we present the contour plot to show the complete behavior of the dimensionless 

equilibrium height as a function of “ and “, shown in Figure 4.2a. We notice the same 

trend as in Figure 4.1, that for a given initial pressure, a large capillary pressure will lead 

to a large value of the equilibrium height. This trend corresponds to the vertical lines in 

Figure 4.2a as well as each solid line in Figure 4.2b. In Figure 4.2b we plot the equilibrium 

height as a function of the capillary pressure “. The dashed line is the open column case 

and the solid lines represent different initial pressures.  

On the other hand, the horizontal lines in Figure 4.2a corresponds to cases of a given “. It 

is obvious that in such cases, the equilibrium height decreases with the increasing value of 
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the initial pressure. The corresponding cases can be represented by the vertical lines in 

Figure 4.2b, where it is clear that increasing the value of “  results in a decreased 

equilibrium height. More details regarding this situation will be discussed in the following 

section where we explore the effects of ὴ and Ὄ.  

  

Figure 4.2 a) Contour plot of the dimensionless equilibrium height ‗ as a function of the dimensionless 

parameters “  and “ . b) Dimensionless equilibrium height ‗ as a function of the dimensionless 

capillary pressure “. The dashed line represents the open column case, ‗ “ ‗ ρ. The solid 

lines are the closed column cases with initial pressure “ πȢρȟπȢσȟπȢυȟπȢχȟπȢωȟρȢρȟρȢσȟρȢυȟρȢχ 
and ρȢωȢ 

We also notice in the early stage in Figure 4.2b, when the capillary pressure is very small, 

the equilibrium height is linearly dependent on “. At small values of “, the equilibrium 

height ‗ “ ρ “ϳ . The equilibrium is a result of the capillary pressure balanced by 

the hydrostatics and the pressure differential effects. In the study by Wei [86] et al, they 

designed an experiment setup to obtain an equilibrium height Ὤ ρςὬϳ . They connected 

an air bottle to their setup to introduce more empty space, consequently, the effective height 

in their experiments is large,  Ὄͯ ρπά. The corresponding normalized initial pressure “

ρ. The capillary pressure generated by the particles used in their experiments is very 

low, ὴͯ ρππὖὥ, which corresponds to  “ πͯȢππρ. As a result, the equilibrium height is 

also very small, ‗ ὕͯρπ . Depalo and Santomaso [73] took a similar path by attaching 
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an air reservoir to include extra empty space in the setup. The effective height in their 

experiments with glass ballottini and calcium carbonate is Ὄͯ υά . The resulting 

normalized capillary pressure “ ὕͯρπ  and the equilibrium height ‗ ὕͯρπ  are 

both very small as expected. 

In addition, it can be seen in Figure 4.2b that as the initial pressure decreases, the initial 

linear part is approaching the case of an open column. For which the ‗ “ or ὴ ”ὫὬ, 

corroborating that the pressure differential is trivial in the experiments. 

Next, we shall take a look at the evolution of the dimensionless pressure ὴ under different 

values of the capillary pressure ὴ. In Figure 4.3a we plot the case when “ ς. It is 

apparent that the dimensionless equilibrium pressure increases with the capillary pressure. 

The same trend is observed at different values of the initial pressure, similar to the case 

with the dimensionless equilibrium height presented in Figure 4.1.  

We also plot the dimensionless equilibrium pressure “ as a function of “ and “ in the 

contour plot in Figure 4.3b. We notice the same trend: for a given value of “ , 

corresponding to a vertical line in Figure 4.3b, the equilibrium pressure is higher for cases 

in which the capillary pressure is large. In the other case, from the horizontal lines in Figure 

4.3b, we observe that the dimensionless equilibrium pressure also increases with the 

normalized initial pressure. We will get back into details about this topic when we discuss 

the penetration dynamics depending on ὴ and Ὄ. 
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Figure 4.3 a) The evolution of the dimensionless pressure over time under different values of the 

normalized capillary pressure. The normalized initial pressure used for the plot is “=2. Similar trend 

is observed at different values of “. b) Contour plot of the dimensionless equilibrium pressure “ as 

a function of the dimensionless parameters “ and “. 

Finally, we study the effects of the capillary pressure on the equilibrium time. The 

dimensionless equilibrium time can be obtained by Equation 4.18. In Figure 4.4a we plot 

the dimensionless equilibrium time using ‎ πȢωυ in Equation 4.18.  

 
†Ȣ πȢωυ‗

‗ ρ

‗ ‗
‗ÌÎρ

πȢωυ‗

‗

ρ ‗

‗ ‗
‗ÌÎπȢπυ  (4.18) 

Where ‗, ‗ are related to “ȟ“. Therefore, the equilibrium time †Ȣ  can be presented 

as a function of the dimensionless parameters “ and “, †Ȣ †Ȣ “ȟ“ .  

Apparently, the dimensionless equilibrium time is not monotonic with the capillary 

pressure. This trend is also presented in Figure 4.4b, where the equilibrium time as a 

function of the dimensionless capillary pressure is plotted for given values of “. When the 

capillary pressure is small, “Ḻρ, both the pressure differential and hydrostatic effects 

are linearly dependent on the penetration height (ʇḺρ), and the equilibrium time 

increases with the capillary pressure. At this time, the dynamics is similar to that of an open 

column, except that there is a modified factor contributed by the pressure differential. This 

situation is observed in Weiôs work [86] where we estimate their dimensionless equilibrium 
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time is †Ȣ πȢππρ. Using the other parameters in the experiments, we estimate their 

equilibrium time is ὸȢ τπί, which is consistent with the results reported by the authors 

(Figure 4 in [86]). In the opposite cases when there is a significantly large dimensionless 

capillary pressure, “ḻρ, the dimensionless equilibrium height approaches 1 as the liquid 

will need to compress most of the empty space to reach a higher pressure differential to 

balance the large capillary pressure. In this situation, the dynamics approaches the case 

when neglecting the hydrostatic effects, where the equilibrium time is inversely 

proportional to “. 

  

Figure 4.4 a) Contour plot of the dimensionless equilibrium time †Ȣ  as a function of the dimensionless 

parameters “ and “. b) The dimensionless equilibrium time †Ȣ  as a function of the dimensionless 

capillary pressure “, at given values of the dimensionless initial pressure “. 

 

4.3.2 Penetration dynamics depending on ▬  and ╗ 

In this section, out interest is in how the experimental conditions ὴ and Ὄ affect the 

penetration dynamics. Now that the ὴ is constant while ὴ and Ὄ are changing, we use the 

dimensionless variables ‗ȟὴȟ†ᴂ as discussed previously. In Figure 4.5 we plot the 

dimensionless height as a function of time using different values of the normalized initial 

pressure “. We consider two cases of different values of the normalized capillary pressure 

a) b) 
















































































































































































